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Introduction 

The IMSL Fortran Library 
The IMSL Fortran Library consists of two separate but coordinated Libraries that allow easy user 
access. These Libraries are organized as follows:  
� MATH/LIBRARY general applied mathematics and special functions  
 The User�s Guide for IMSL MATH/LIBRARY has two parts: 

1. MATH/LIBRARY (Volumes 1 and 2) 
2. MATH/LIBRARY Special Functions 

� STAT/LIBRARY statistics  

Most of the routines are available in both single and double precision versions. Many routines for 
linear solvers and eigensystems are also available for complex and complex-double precision 
arithmetic. The same user interface is found on the many hardware versions that span the range 
from personal computer to supercomputer.  

This library is the result of a merging of the products: IMSL Fortran Numerical Libraries and 
IMSL Fortran 90 Library. 

User Background 
To use this product you should be familiar with the Fortran 90 language as well as the  
FORTRAN 77 language, which is, in practice, a subset of Fortran 90. A summary of the ISO and 
ANSI standard language is found in Metcalf and Reid (1990). A more comprehensive illustration 
is given in Adams et al. (1992). 

Those routines implemented in the IMSL Fortran Library provide a simpler, more reliable user 
interface than was possible with FORTRAN 77.  Features of the IMSL Fortran Library include the 
use of descriptive names, short required argument lists, packaged user-interface blocks, a suite of 
testing and benchmark software, and a collection of examples. Source code is provided for the 
benchmark software and examples. 

Some of the routines in the IMSL Fortran Library can take advantage of  a standard (MPI) 
Message Passing Interface environment. Gray shading in the documentation cues the reader when 
this is an issue. 

However, MPI is not required to use any of the routines in the Library. All documented routines 
can be called in a scalar environment.  
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Getting Started 
The IMSL MATH/LIBRARY is a collection of FORTRAN routines and functions useful in 
mathematical analysis research and application development. Each routine is designed and 
documented to be used in research activities as well as by technical specialists. 

To use any of these routines, you must write a program in FORTRAN 90 (or possibly some other 
language) to call the MATH/LIBRARY routine. Each routine conforms to established conventions 
in programming and documentation. We give first priority in development to efficient algorithms, 
clear documentation, and accurate results. The uniform design of the routines makes it easy to use 
more than one routine in a given application. Also, you will find that the design consistency 
enables you to apply your experience with one MATH/LIBRARY routine to all other IMSL rou-
tines that you use. 

Finding the Right Routine 
The MATH/LIBRARY is organized into chapters; each chapter contains routines with similar 
computational or analytical capabilities. To locate the right routine for a given problem, you may 
use either the table of contents located in each chapter introduction, or the alphabetical list of 
routines.  The GAMS index uses GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner, 
and J. L. Springmann 1990, Guide to Available Mathematical Software, National Institute of 
Standards and Technology NISTIR 90-4237). Use the GAMS  index to locate which 
MATH/LIBRARY routines pertain to a particular topic or problem. 

Often the quickest way to use the MATH/LIBRARY is to find an example similar to your problem 
and then to mimic the example. Each routine document has at least one example demonstrating its 
application. The example for a routine may be created simply for illustration, it may be from a 
textbook (with reference to the source), or it may be from the mathematical literature. 

Organization of the Documentation 
This manual contains a concise description of each routine, with at least one demonstrated exam-
ple of each routine, including sample input and results. You will find all information pertaining to 
the MATH/LIBRARY in this manual. Moreover, all information pertaining to a particular routine 
is in one place within a chapter. 

Each chapter begins with an introduction followed by a table of contents that lists the routines 
included in the chapter. Documentation of the routines consists of the following information: 
� IMSL Routine�s Generic Name  
� Purpose: a statement of the purpose of the routine. If the routine is a function rather than a 

subroutine the purpose statement will reflect this fact. 
� Function Return Value: a description of the return value (for functions only). 
� Required Arguments: a description of the required arguments in the order of their occurrence. 

Input arguments usually occur first, followed by input/output arguments, with output 
arguments described last. Futhermore, the following terms apply to arguments: 

Input Argument must be initialized; it is not changed by the routine. 

Input/Output Argument must be initialized; the routine returns output through this 
argument; cannot be a constant or an expression. 
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Input or Output Select appropriate option to define the argument as either input or 
output. See individual routines for further instructions. 

Output No initialization is necessary; cannot be a constant or an expression. The routine 
returns output through this argument. 

�     Optional Arguments: a description of the optional arguments in the order of their occurrence. 
�     Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine. 
�     Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is  

supplied for backwards compatibility with previous versions of the Library. 
�     Example: at least one application of this routine showing input and required dimension and 

type statements. 
�     Output: results from the example(s). 
�     Comments: details pertaining to code usage. 
�     Description: a description of the algorithm and references to detailed information. In many 

cases, other IMSL routines with similar or complementary functions are noted. 
�     Programming notes: an optional section that contains programming details not covered 

elsewhere. 
�     References: periodicals and books with details of algorithm development. 
�     Additional Examples: an optional section with additional applications of this routine showing 

input and required dimension and type statements. 

Naming Conventions 
The names of the routines are mnemonic and unique. Most routines are available in both a single 
precision and a double precision version, with names of the two versions sharing a common root. 
The root name is also the generic interface  name. The name of the double precision specific 
version begins with a �D_.� The single precision specific version begins with an �S_�. For 
example, the following pairs are precision specific names of routines in the two different 
precisions: S_GQRUL/D_GQRUL (the root is �GQRUL ,� for �Gauss quadrature rule�) and 
S_RECCF/D_RECCF (the root is �RECCF,� for �recurrence coefficient�). The precision specific 
names of the IMSL routines that return or accept the type complex data begin with the letter �C_� 
or �Z_�  for complex or double complex, respectively. Of course the generic name can be used as 
an entry point for all precisions supported. 

When this convention is not followed the generic and specific interfaces are noted in the 
documentation. For example, in the case of the BLAS and trigonometric intrinsic functions where 
standard names are already established, the standard names are used as the precision specific 
names. There may also be other interfaces supplied to the routine to provide for backwards 
compatibility with previous versions of the Library. These alternate interfaces are noted in the 
documentation when they are available.  

Except when expressly stated otherwise, the names of the variables in the argument lists follow 
the FORTRAN default type for integer and floating point. In other words, a variable whose name 
begins with one of the letters �I� through �N� is of type INTEGER, and otherwise is of type REAL 
or DOUBLE PRECISION, depending on the precision of the routine. 

An assumed-size array with more than one dimension that is used as a FORTRAN argument can 
have an assumed-size declarator for the last dimension only. In the MATH/LIBRARY routines, 
the information about the first dimension is passed by a variable with the prefix �LD� and with the 
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array name as the root. For example, the argument LDA contains the leading dimension of array A. 
In most cases, information about the dimensions of arrays is obtained from the array through the 
use of  Fortran 90�s size function.  Therefore, arguments carrying this type of information are 
usually defined as optional arguments. 

Where appropriate, the same variable name is used consistently throughout a chapter in the 
MATH/LIBRARY. For example, in the routines for random number generation, NR denotes the 
number of random numbers to be generated, and R or IR denotes the array that stores the numbers. 

When writing programs accessing the MATH/LIBRARY, the user should choose FORTRAN 
names that do not conflict with names of IMSL subroutines, functions, or named common blocks. 
The careful user can avoid any conflicts with IMSL names if, in choosing names, the following 
rules are observed: 
� Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the 

User�s Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_. 
� Do not choose a name consisting of more than three characters with a numeral in the second 

or third position. 

For further details, see the section on �Reserved Names� in the Reference Material. 

Using Library Subprograms 
The documentation for the routines uses the generic name and omits the prefix, and hence the 
entire suite of routines for that subject is documented under the generic name. 

Examples that appear in the documentation also use the generic name. To further illustrate this 
principle, note the lin_sol_gen documentation (see Chapter 1, Linear Systems), for solving 
general systems of linear algebraic equations. A description is provided for just one data type. 
There are four documented routines in this subject area: s_lin_sol_gen, d_lin_sol_gen, 
c_lin_sol_gen, and z_lin_sol_gen. 

These routines constitute single-precision, double-precision, complex, and complex double-
precision versions of the code. 

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with 
the routines. The naming convention for modules joins the suffix �_int� to the generic routine 
name. Thus, the line �use lin_sol_gen_int� is inserted near the top of any routine that calls 
the subprogram �lin_sol_gen�. More inclusive modules are also available. For example, the 
module named �imsl_libraries� contains the interface modules for all routines in the library.  

When dealing with a complex matrix, all references to the transpose of a matrix, AT , are replaced 
by the adjoint matrix 

A A AT H
� �

�  
where the overstrike denotes complex conjugation.  IMSL Fortran Library linear algebra software 
uses this convention to conserve the utility of generic documentation for that code subject. 
References to orthogonal matrices are replaced by their complex counterparts, unitary matrices. 
Thus, an n � n orthogonal matrix Q satisfies the condition Q Q IT

n� . An n � n unitary matrix V 
satisfies the analogous condition for complex matrices, V V In

*
� . 
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Programming Conventions 
In general, the IMSL MATH/LIBRARY codes are written so that computations are not affected by 
underflow, provided the system (hardware or software) places a zero value in the register. In this 
case, system error messages indicating underflow should be ignored. 

IMSL codes also are written to avoid overflow. A program that produces system error messages 
indicating overflow should be examined for programming errors such as incorrect input data, 
mismatch of argument types, or improper dimensioning. 

In many cases, the documentation for a routine points out common pitfalls that can lead to failure 
of the algorithm. 

Library routines detect error conditions, classify them as to severity, and treat them accordingly. 
This error-handling capability provides automatic protection for the user without requiring the user 
to make any specific provisions for the treatment of error conditions. See the section on �User 
Errors� in the Reference Material for further details. 

Module Usage 
Users are required to incorporate a �use� statement near the top of their program for the IMSL 
routine being called when writing new code that uses this library. However, legacy code which 
calls routines in the previous version of the library without the use of a �use� statement will 
continue to work as before.  Also, code which employed the �use numerical_libraries� statement 
from the previous version of the library will continue to work properly with this version of the 
library. 

Users wishing to update existing programs so as to call other routines from this library should 
incorporate a use statement for the specific new routine being called. (Here, the term �new 
routine� implies any routine in the library, only �new� to the user�s program.) Use of the more 
encompassing �imsl_libraries� module in this case could result in argument mismatches for 
the �old� routine(s) being called. (This would be caught by the compiler.) 

Users wishing to update existing programs so as to call the new generic versions of the routines 
must change their calls to the existing routines so as to match the new calling sequences and use 
either the routine specific interface modules or the all encompassing �imsl_libraries� module.  

Programming Tips 
It is strongly suggested that users force all program variables to be explicitly typed. This is done 
by including the line �IMPLICIT NONE� as close to the first line as possible. Study some of the 
examples accompanying an IMSL Fortran Library routine early on. These examples are available 
online as part of the product. 

Each subject routine called or otherwise referenced requires the �use� statement for an interface 
block designed for that subject routine. The contents of this interface block are the interfaces to the 
separate routines available for that subject. Packaged descriptive names for option numbers that 
modify documented optional data or internal parameters might also be provided in the interface 
block. Although this seems like an additional complication, many typographical errors are avoided 
at an early stage in development through the use of these interface blocks. The �use� statement is 
required for each routine called in the user�s program. As illustrated in Examples 3 and 4 in 
routine lin_geig_gen, the �use� statement is required for defining the secondary option flags. 
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The function subprogram for s_NaN() or d_NaN() does not require an interface block because 
it has only a �required� dummy argument. Also, if one is only using the Fortran 77 interfaces 
supplied for backwards compatibility then the �use� statements are not required. 

Optional Subprogram Arguments 
IMSL Fortran Library routines have required arguments and may have optional arguments. All 
arguments are documented for each routine. For example, consider the routine lin_sol_gen that 
solves the linear algebraic matrix equation Ax = b. The required arguments are three rank-2 
Fortran 90 arrays: A, b, and x. The input data for the problem are the A and b arrays; the solution 
output is the x array. Often there are other arguments for this linear solver that are closely 
connected with the computation but are not as compelling as the primary problem. The inverse 
matrix A�1 may be needed as part of a larger application. To output this parameter, use the 
optional argument given by the �ainv=� keyword. The rank-2 output array argument used on the 
right-hand side of the equal sign contains the inverse matrix. See Example 2 in Chapter 1, �Linear 
Solvers� of lin_sol_gen for an example of computing the inverse matrix. 

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES 
interface module includes backwards compatible positional argument interfaces to all routines 
which existed in the Fortran 77 version of the Library. Note that it is not necessary to use �use� 
statements when calling these routines by themselves.  Existing programs which called these 
routines will continue to work in the same manner as before. 

Some of the primary routines have arguments �epack=� and �iopt=�. As noted the �epack=� 
argument is of derived type s_error or d_error. The prefix �s_� or �d_� is chosen 
depending on the precision of the data type for that routine. These optional arguments are part of 
the interface to certain routines, and are used to modify internal algorithm choices or other 
parameters. 

Optional Data 
This additional optional argument (available for some routines) is further distinguished�a derived 
type array that contains a number of parameters to modify the internal algorithm of a routine. This 
derived type has the name ?_options, where �?_� is either �s_� or �d_�. The choice depends 
on the precision of the data type. The declaration of this derived type is packaged within the 
modules for these codes. 

The definition of the derived types is: 
 type ?_options 
         integer idummy; real(kind(?)) rdummy 
 end type 

where the �?_� is either �s_� or �d_�,  and the kind value matches the desired data type 
indicated by the choice of �s� or �d�. 

Example 3 in Chapter 1, �Linear Solvers� of lin_sol_gen illustrates the use of iterative 
refinement to compute a double-precision solution based on a single-precision factorization of the 
matrix. This is communicated to the routine using an optional argument with optional data. For 
efficiency of iterative refinement, perform the factorization step once, then save the factored 
matrix in the array A and the pivoting information in the rank-1 integer array, ipivots. By 
default, the factorization is normally discarded. To enable the routine to be re-entered with a 
previously computed factorization of the matrix, optional data are used as array entries in the 
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�iopt=� optional argument. The packaging of lin_sol_gen includes the definitions of the self-
documenting integer parameters lin_sol_gen_save_LU and lin_sol_gen_solve_A. These 
parameters have the values 2 and 3, but the programmer usually does not need to be aware of it. 
The following rules apply to the �iopt=iopt� optional argument: 

1. Define a relative index, for example IO, for placing option numbers and data into the 
array argument iopt. Initially, set IO = 1. Before a call to the IMSL Library routine, 
follow Steps 2 through 4. 

2. The data structure for the optional data array has the following form: 
iopt (IO) = ?_options (Option_number, Optional_data) 
[iopt (IO + 1) =?_options (Option_number, Optional_data)] 
 
The length of the data set is specified by the documentation for an individual routine. 
(The Optional_data is output in some cases and may not be used in other cases.) The 
square braces [. . .] denote optional items. 
 
Illustration: Example 3 in Chapter 2, �Singular Value and Eigenvalue Decomposition� 
of lin_eig_self, a new definition for a small diagonal term is passed to 
lin_sol_self. There is one line of code required for the change and the new 
tolerance: 
 
iopt (1) = d_options(d_lin_sol_self_set_small,  
epsilon(one) *abs (d(i))) 

3. The internal processing of option numbers stops when Option_number == 0 or when 
IO > size(iopt). This sends a signal to each routine having this optional argument 
that all desired changes to default values of internal parameters have been made. This 
implies that the last option number is the value zero or the value of size (iopt) 
matches the last optional value changed. 

4. To add more options, replace IO with IO + n, where n is the number of items required 
for the previous option. Go to Step 2. 

Option numbers can be written in any order, and any selected set of options can be chosen to be 
changed from the defaults. They may be repeated. Example 3 in Chapter 1, �Linear Solvers� of 
lin_sol_self uses three and then four option numbers for purposes of computing an 
eigenvector associated with a known eigenvalue. 

Error Handling 
The routines in the IMSL MATH/LIBRARY attempt to detect and report errors and invalid input. 
Errors are classified and are assigned a code number. By default, errors of moderate or worse 
severity result in messages being automatically printed by the routine. Moreover, errors of worse 
severity cause program execution to stop. The severity level as well as the general nature of the 
error is designated by an �error type� with numbers from 0 to 5. An error type 0 is no error; types 
1 through 5 are progressively more severe. In most cases, you need not be concerned with our 
method of handling errors. For those interested, a complete description of the error-handling 
system is given in the Reference Material, which also describes how you can change the default 
actions and access the error code numbers.  
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A separate error handler is provided to allow users to handle errors of differing types being 
reported from several nodes without danger of  �jumbling� or mixing error messages. The design 
of this error handler is described more fully in Hanson (1992). The primary feature of the design is 
the use of a separate array for each parallel call to a routine. This allows the user to summarize 
errors using the routine error_post in a non-parallel part of an application. For a more 
detailed discussion of  the use of this error handler in applications which use MPI for distributed 
computing, see the Reference Material. 

Printing Results 
Most of the routines in the IMSL MATH/LIBRARY (except the line printer routines and special 
utility routines) do not print any of the results. The output is returned in FORTRAN variables, and 
you can print these yourself. See Chapter 11, �Utilities,� for detailed descriptions of these 
routines. 

A commonly used routine in the examples is the IMSL routine UMACH (see the Reference chapter 
of this manual), which retrieves the FORTRAN device unit number for printing the results. 
Because this routine obtains device unit numbers, it can be used to redirect the input or output. 
The section on �Machine-Dependent Constants� in the Reference Material contains a description 
of the routine UMACH. 

Fortran 90 Constructs 
 The IMSL Fortran Library contains routines which take advantage of  

Fortran 90 language constructs, including Fortran 90 array data types. One 
feature of the design is that the default use may be as simple as the problem 
statement. Complicated, professional-quality mathematical software is 
hidden from the casual or beginning user.  

MPI REQUIRED

 

Users of the IMSL Fortran Library benefit by a standard (MPI) Message 
Passing Interface environment. This is needed to accomplish parallel 
computing within parts of the documentation. Light shading in the 
documentation cues the reader when this is an issue. If parallel computing 
is not required, then the MP Library suite of dummy MPI routines can be 
substituted for standard MPI routines. All requested MPI routines called by 
the MP Library are in this dummy suite. Warning messages will appear if a 
code or example requires more than one process to execute. Typically users 
need not be aware of the parallel codes.  
Note that a standard MPI environment is not part of the IMSL Fortran 
Library. The standard includes a library of MPI Fortran and C routines, 
MPI �include� files, usage documentation, and other run-time utilities. 

 In addition, high-level operators and functions are provided in the Library. 
They are described in Chapter 10, �Operators and Generic Functions - The 
Parallel Option.� For information on writing a more compact and readable 
code, see Chapter 10, Linear Algebra Operators and Generic Functions. 1 

  

                                                           
1 Important Note: Please refer to the �Table of Contents� for locations of chapter references, example references, and 
function references. 
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Using IMSL Fortran Library on Shared-Memory 
Multiprocessors 

The IMSL Fortran Library allows users to leverage the high-performance technology of shared 
memory parallelism  (SMP) when their environment supports it.   Support for SMP systems within 
the IMSL Library is delivered through various means, depending upon the availability of 
technologies such as OpenMP,  high performance BLAS, and hardware-specific IMSL algorithms.  
Use of the IMSL Fortran Library on SMP systems can be achieved by using the appropriate link 
environment variable when building your application.   Details on the available link environment 
variables for your installation of the IMSL Fortran Library can be found in the online README 
file of the product distribution.  

Using Operators and Generic Functions 
For users who are primarily interested in easy-to-use software for numerical linear algebra, see 
Chapter 10, �Linear Algebra Operators and Generic Functions.� This compact notation for 
writing Fortran 90 programs, when it applies, results in code that is easier to read and maintain 
than traditional subprogram usage. 

Note that the leading examples in Chapters 1 and 2 have been written using operators and generic 
functions whenever appropriate. These examples are named as shown in Chapter 10, Table A - 
�Examples and Corresponding Operators.�  Less code is typically needed to compute equivalent 
results. 

Users may begin their code development using operators and generic functions. If a more efficient 
executable code is required, a user may need to switch to equivalent subroutine calls using IMSL 
Fortran Library routines. 

Defined Array Operation Matrix Operation 
A .x. B AB  
.i. A A�1

 
.t. A, .h. A A AT , *  

A .ix. B A B�1  
B .xi. A BA�1 
A .tx. B, or (.t. A) .x. B 

A .hx. B, or (.h. A) .x. B 
A B A BT , *  

B .xt. A, or B .x. (.t. A) 

B .xh. A, or B .x. (.h. A) 
BA BAT , * 
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Defined Array Functions Matrix Operation 
S=SVD(A [,U=U, V=V]) A USV T

�  
E=EIG(A [[,B=B, D=D], 

V=V, W=W]) 

(AV = VE), AVD = BVE 
(AW = WE), AWD = BWE 

R=CHOL(A) A R RT
�  

Q=ORTH(A [,R=R]) A QR Q Q IT
� �a f,  

U=UNIT(A) u a a1 1 1, / ,� ��  

F=DET(A) det(A) = determinant 
K=RANK(A) rank(A) = rank 
P=NORM(A[,[type=]i]) 

p A a

p A s

p A a

j ij
i

m

huge i ij
j

n

� �

� � �

� �

�

��

�

�

1
1

2 1

1

max ( )

max ( )

 largest singular va

=1
a f

C=COND(A) s srank A1 / a f  

Z=EYE(N) Z IN�  

A=DIAG(X) A diag x� 1,�b g  
X=DIAGONALS(A) x a� 11,�b g  
W=FFT(Z); Z=IFFT(W) Discrete Fourier Transform, Inverse 
A=RAND(A) random numbers, 0 < A < 1 
L=isNaN(A) test for NaN, if (l) then� 
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Chapter 1: Linear Systems  

Routines 
1.1. Linear Solvers 

1.1.1 Solves a general system of linear equations  
 Ax = b.....................................................................LIN_SOL_GEN 9 

1.1.2 Solves a system of linear equations Ax = b, where A is a self-adjoint 
matrix.....................................................................LIN_SOL_SELF 17 

1.1.3 Solves a rectangular system of linear equations Ax � b,  
in a least-squares sense .........................................LIN_SOL_LSQ 27 

1.1.4 Solves a rectangular least-squares system of linear equations  
Ax � b using singular value decomposition............ LIN_SOL_SVD 36 

1.1.5 Solves multiple systems of linear equations............ LIN_SOL_TRI 44 

1.1.6 Computes the singular value decomposition (SVD)  
of a rectangular matrix, A.................................................LIN_SVD 57 

1.2. Large-Scale Parallel Solvers 

1.2.1 Parallel Constrained Least-Squares Solvers..................................  67 

1.2.2 Solves a linear, non-negative constrained least-squares  
system..................................... PARALLEL_NONNEGATIVE_LSQ 67 

1.2.3 Solves a linear least-squares system with bounds on  
the unknowns.................................. PARALLEL_BOUNDED_LSQ 75 

1.3. Solution of Linear Systems, Matrix Inversion, and  
Determinant Evaluation 

1.3.1 Real General Matrices 
High accuracy linear system solution .................................LSARG 83 
Solves a linear system......................................................... LSLRG 85 
Factors and computes condition number ............................LFCRG 89 
Factors ................................................................................. LFTRG 92 
Solves after factoring ...........................................................LFSRG 94 
High accuracy linear system solution after factoring ............ LFIRG 96 
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Computes determinant after factoring................................. LFDRG 99 
Inverts................................................................................... LINRG 101 

1.3.2 Complex General Matrices 
High accuracy linear system solution.................................. LSACG 103 
Solves a linear system .........................................................LSLCG 106 
Factors and computes condition number ............................ LFCCG 108 
Factors..................................................................................LFTCG 111 
Solves a linear system after factoring ................................. LFSCG 114 
High accuracy linear system solution after factoring.............LFICG 116 
Computes determinant after factoring................................. LFDCG 119 
Inverts................................................................................... LINCG 121 

1.3.3 Real Triangular Matrices 
Solves a linear system ......................................................... LSLRT 123 
Computes condition number ................................................LFCRT 125 
Computes determinant after factoring..................................LFDRT 127 
Inverts.................................................................................... LINRT 128 

1.3.4 Complex Triangular Matrices 
Solves a linear system ......................................................... LSLCT 130 
Computes condition number ................................................LFCCT 132 
Computes determinant after factoring..................................LFDCT 134 
Inverts.................................................................................... LINCT 136 

 
1.3.5 Real Positive Definite Matrices 

High accuracy linear system solution...................................LSADS 138 
Solves a linear system ......................................................... LSLDS 140 
Factors and computes condition number .............................LFCDS 143 
Factors.................................................................................. LFTDS 146 
Solve a linear system after factoring ....................................LFSDS 148 
High accuracy linear system solution after factoring............. LFIDS 150 
Computes determinant after factoring..................................LFDDS 153 
Inverts....................................................................................LINDS 154 

1.3.6 Real Symmetric Matrices 
High accuracy linear system solution................................... LSASF 156 
Solves a linear system ......................................................... LSLSF 159 
Factors and computes condition number ............................. LFCSF 162 
Factors.................................................................................. LFTSF 164 
Solves a linear system after factoring .................................. LFSSF 167 
High accuracy linear system solution after factoring..............LFISF 169 
Computes determinant after factoring.................................. LFDSF 172 

1.3.7 Complex Hermitian Positive Definite Matrices 
High accuracy linear system solution.................................. LSADH 173 
Solves a linear system .........................................................LSLDH 176 
Factors and computes condition number ............................ LFCDH 179 
Factors..................................................................................LFTDH 182 
Solves a linear system after factoring ..................................LFSDH 185 
High accuracy linear system solution after factoring............. LFIDH 187 
Computes determinant after factoring................................. LFDDH 190 
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1.3.8 Complex Hermitian Matrices 
High accuracy linear system solution .................................. LSAHF 191 
Solves a linear system..........................................................LSLHF 194 
Factors and computes condition number ............................ LFCHF 197 
Factors ..................................................................................LFTHF 200 
Solves a linear system after factoring...................................LFSHF 202 
High accuracy linear system solution after factoring .............LFIHF 204 
Computes determinant after factoring ................................. LFDHF 207 

1.3.9 Real Band Matrices in Band Storage 
Solves a tridiagonal system ..................................................LSLTR 209 
Solves a tridiagonal system: Cyclic Reduction .................... LSLCR 211 
High accuracy linear system solution .................................. LSARB 213 
Solves a linear system..........................................................LSLRB 216 
Factors and compute condition number .............................. LFCRB 219 
Factors ..................................................................................LFTRB 222 
Solves a linear system after factoring.................................. LFSRB 225 
High accuracy linear system solution after factoring .............LFIRB 227 
Computes determinant after factoring ................................. LFDRB 230 

1.3.10 Real Band Symmetric Positive Definite Matrices in Band Storage 
High accuracy linear system solution ..................................LSAQS 232 
Solves a linear system......................................................... LSLQS 234 
Solves a linear system..........................................................LSLPB 237 
Factors and computes condition number ............................LFCQS 240 
Factors ................................................................................. LFTQS 243 
Solves a linear system after factoring.................................. LFSQS 245 
High accuracy linear system solution after factoring .............LFIQS 247 
Computes determinant after factoring .................................LFDQS 250 

1.3.11 Complex Band Matrices in Band Storage 
Solves a tridiagonal system ..................................................LSLTQ 252 
Solves a tridiagonal system: Cyclic Reduction .................... LSLCQ 254 
High accuracy linear system solution .................................. LSACB 257 
Solves a linear system..........................................................LSLCB 259 
Factors and computes condition number ............................ LFCCB 262 
Factors ..................................................................................LFTCB 265 
Solves a linear system after factoring.................................. LFSCB 268 
High accuracy linear system solution after factoring .............LFICB 271 
Computes determinant after factoring ................................. LFDCB 274 

1.3.12 Complex Band Positive Definite Matrices in Band Storage 
High accuracy linear system solution ..................................LSAQH 276 
Solves a linear system......................................................... LSLQH 279 
Solves a linear system......................................................... LSLQB 282 
Factors and compute condition number ..............................LFCQH 284 
Factors ................................................................................. LFTQH 288 
Solves a linear system after factoring..................................LFSQH 290 
High accuracy linear system solution after factoring ............ LFIQH 292 
Computes determinant after factoring .................................LFDQH 295 

1.3.13 Real Sparse Linear Equation Solvers 
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Solves a sparse linear system .............................................LSLXG 297 
Factors..................................................................................LFTXG 301 
Solves a linear system after factoring ..................................LFSXG 306 

1.3.14 Complex Sparse Linear Equation Solvers 
Solves a sparse linear system ............................................. LSLZG 309 
Factors.................................................................................. LFTZG 314 
Solves a linear system after factoring ..................................LFSZG 319 

1.3.15 Real Sparse Symmetric Positive Definite Linear Equation Solvers 
Solves a sparse linear system ............................................. LSLXD 323 
Symbolic Factor................................................................... LSCXD 327 
Computes Factor..................................................................LNFXD 331 
Solves a linear system after factoring ..................................LFSXD 336 

1.3.16 Complex Sparse Hermitian Positive Definite Linear Equation Solvers 
Solves a sparse linear system ............................................. LSLZD  340 
Computes Factor..................................................................LNFZD 344 
Solves a linear system after factoring .................................. LFSZD 349 

1.3.17 Real Toeplitz Matrices in Toeplitz Storage 
Solves a linear system ......................................................... LSLTO 352 

1.3.18 Complex Toeplitz Matrices in Toeplitz Storage 
Solves a linear system ......................................................... LSLTC 354 

1.3.19 Complex Circulant Matrices in Circulant Storage 
Solves a linear system .........................................................LSLCC 356 

1.3.20 Iterative Methods 
Preconditioned conjugate gradient..................................... PCGRC 359 
Jacobi conjugate gradient ................................................... JCGRC 365 
Generalized minimum residual........................................... GMRES 368 

1.4. Linear Least Squares and Matrix Factorization 
1.4.1 Least Squares, QR Decomposition and Generalized Inverse 

Solves a Least-squares system .......................................... LSQRR 378 
Solves a Least-squares system .......................................... LQRRV 381 
High accuracy Least squares.............................................. LSBRR 385 
Linearly constrained Least squares .....................................LCLSQ 388 
QR decomposition...............................................................LQRRR 392 
Accumulation of QR decomposition .................................... LQERR 396 
QR decomposition Utilities ...................................................LQRSL 398 
QR factor update ................................................................. LUPQR 402 

1.4.2 Cholesky Factorization 
Cholesky factoring for rank deficient matrices ....................LCHRG 406 
Cholesky factor update........................................................ LUPCH 409 
Cholesky factor down-date.................................................. LDNCH 412 

1.4.3 Singular Value Decomposition (SVD) 
Real singular value decomposition ..................................... LSVRR 415 
Complex singular value decomposition............................... LSVCR 419 
Generalized inverse ............................................................ LSGRR 424 
 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 5 

 

 

 

Usage Notes  
Section 1.1 describes routines for solving systems of linear algebraic equations by direct matrix 
factorization methods, for computing only the matrix factorizations, and for computing linear 
least-squares solutions. 

Section 1.2 describes routines for solving systems of parallel constrained least-squares. 

Many of the routines described in sections 1.3 and 1.4 are for matrices with special properties or 
structure. Computer time and storage requirements for solving systems with coefficient matrices 
of these types can often be drastically reduced, using the appropriate routine, compared with using 
a routine for solving a general complex system. 

The appropriate matrix property and corresponding routine can be located in the “Routines” 
section. Many of the linear equation solver routines in this chapter are derived from subroutines 
from LINPACK, Dongarra et al. (1979). Other routines have been developed by Visual Numerics 
staff, derived from draft versions of LAPACK subprograms, Bischof et al. (1988), or were 
obtained from alternate sources. 

A system of linear equations is represented by Ax = b where A is the n � n coefficient data matrix, 
b is the known right-hand-side n-vector, and x is the unknown or solution n-vector. Figure 1-1 
summarizes the relationships among the subroutines. Routine names are in boxes and input/output 
data are in ovals. The suffix ** in the subroutine names depend on the matrix type. For example, 
to compute the determinant of A use LFC** or LFT** followed by LFD**. 

The paths using LSA** or LFI** use iterative refinement for a more accurate solution. The path 
using LSA** is the same as using LFC** followed by LFI**. The path using LSL** is the same as 
the path using LFC** followed by LFS**. The matrix inversion routines LIN** are available only 
for certain matrix types. 

Matrix Types 
The two letter codes for the form of coefficient matrix, indicated by ** in Figure 1-1, are as 
follows: 

 
RG Real general (square) matrix. 

CG Complex general (square) matrix. 

TR or CR Real tridiagonal matrix. 

RB Real band matrix. 

TQ or CQ Complex tridiagonal matrix. 

CB Complex band matrix. 

SF Real symmetric matrix stored in the upper half of a square matrix. 

DS Real symmetric positive definite matrix stored in the upper half of a square matrix.

DH Complex Hermitian positive definite matrix stored in the upper half of a complex 
square matrix. 
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HF Complex Hermitian matrix stored in the upper half of a complex square matrix. 

QS or PB Real symmetric positive definite band matrix. 

QH or QB Complex Hermitian positive definite band matrix. 

XG Real general sparse matrix. 

ZG Complex general sparse matrix. 

XD Real symmetric positive definite sparse matrix. 

ZD Complex Hermitian positive definite sparse matrix. 

  
  
   

A

b
LFT** LFC**

LFD**LFI**
LFS**

LIN** LSA**
LSL**

Condition
number

Factorization

DeterminantA�� x = A   b
or

x = A   b

��

�T
 

Figure 1-1   Solution and Factorization of Linear Systems 

Solution of Linear Systems 
The simplest routines to use for solving linear equations are LSL** and LSA** For example, the 
mnemonic for matrices of real general form is RG. So, the routines LSLRG (page 85) and LSARG 
(page 83) are appropriate to use for solving linear systems when the coefficient matrix is of real 
general form. The routine LSARG uses iterative refinement, and more time than LSLRG, to 
determine a high accuracy solution. 

The high accuracy solvers provide maximum protection against extraneous computational errors. 
They do not protect the results from instability in the mathematical approximation. For a more 
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complete discussion of this and other important topics about solving linear equations, see Rice 
(1983), Stewart (1973), or Golub and van Loan (1989). 

Multiple Right Sides 
There are situations where the LSL** and LSA** routines are not appropriate. For example, if the 
linear system has more than one right-hand-side vector, it is most economical to solve the system 
by first calling a factoring routine and then calling a solver routine that uses the factors. After the 
coefficient matrix has been factored, the routine LFS** or LFI** can be used to solve for one 
right-hand side at a time. Routines LFI** uses iterative refinement to determine a high accuracy 
solution but requires more computer time and storage than routines LFS**. 

Determinants 
The routines for evaluating determinants are named LFD**. As indicated in Figure 1-1, these 
routines require the factors of the matrix as input. The values of determinants are often badly 
scaled. Additional complications in structures for evaluating them result from this fact. See Rice 
(1983) for comments on determinant evaluation. 

Iterative Refinement 
Iterative refinement can often improve the accuracy of a well-posed numerical solution. The 
iterative refinement algorithm used is as follows: 

x� = A��b  
For i = 1, 50 
 ri = Axi�� � b computed in higher precision 
 pi = A�� ri 
 xi = xi�� - pi 
 if (|| pi ||� � �|| xi ||�) Exit 
End for  
Error — Matrix is too ill-conditioned 

If the matrix A is in single precision, then the residual ri = Axi���� � b is computed in double 
precision. If A is in double precision, then quadruple-precision arithmetic routines are used. 

The use of the value 50 is arbitrary. In fact a single correction is usually sufficient. It is also 
helpful even when ri  is computed in the same precision as the data.  

Matrix Inversion 
An inverse of the coefficient matrix can be computed directly by one of the routines named 
LIN**. These routines are provided for general matrix forms and some special matrix forms. 
When they do not exist, or when it is desirable to compute a high accuracy inverse, the two-step 
technique of calling the factoring routine followed by the solver routine can be used. The inverse 
is the solution of the matrix system AX = I where I denotes the n � n identity matrix, and the 
solution is X = A��. 
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Singularity 
The numerical and mathematical notions of singularity are not the same. A matrix is considered 
numerically singular if it is sufficiently close to a mathematically singular matrix. If error 
messages are issued regarding an exact singularity then specific error message level reset actions 
must be taken to handle the error condition. By default, the routines in this chapter stop. The 
solvers require that the coefficient matrix be numerically nonsingular. There are some tests to 
determine if this condition is met. When the matrix is factored, using routines LFC**, the 
condition number is computed. If the condition number is large compared to the working 
precision, a warning message is issued and the computations are continued. In this case, the user 
needs to verify the usability of the output. If the matrix is determined to be mathematically 
singular, or ill-conditioned, a least-squares routine or the singular value decomposition routine 
may be used for further analysis. 

Special Linear Systems 
Toeplitz matrices have entries which are constant along each diagonal, for example: 

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

p p p p
p p p p

A
p p p p
p p p p

�

� �

� � �

� �
� �
� ��
� �
� �
� �� �

 

Real Toeplitz systems can be solved using LSLTO, page 352. Complex Toeplitz systems can be 
solved using LSLTC, page 354. 

Circulant matrices have the property that each row is obtained by shifting the row above it one 
place to the right. Entries that are shifted off at the right reenter at the left. For example: 

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

p p p p
p p p p

A
p p p p
p p p p

� �
� �
� ��
� �
� �
� �� �

 

Complex circulant systems can be solved using LSLCC, page 356. 

Iterative Solution of Linear Systems 
The preconditioned conjugate gradient routines PCGRC, page 359, and JCGRC, page 365, can be 
used to solve symmetric positive definite systems. The routines are particularly useful if the 
system is large and sparse. These routines use reverse communication, so A can be in any storage 
scheme. For general linear systems, use GMRES, page 368. 

QR Decomposition 
The QR decomposition of a matrix A consists of finding an orthogonal matrix Q, a permutation 
matrix P, and an upper trapezoidal matrix R with diagonal elements of nonincreasing magnitude, 
such that AP = QR. This decomposition is determined by the routines LQRRR, page 392, or LQRRV, 
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page 381. It returns R and the information needed to compute Q. To actually compute Q use 
LQERR, page 396. Figure 1-2 summarizes the relationships among the subroutines. 

The QR decomposition can be used to solve the linear system Ax = b. This is equivalent to  
Rx = QTPb. The routine LQRSL, page 398, can be used to find QTPb from the information 
computed by LQRRR. Then x can be computed by solving a triangular system using LSLRT, 
page 123. If the system Ax = b is overdetermined, then this procedure solves the least-squares 
problem, i.e., it finds an x for which 

2

2
Ax b�  

is a minimum. 

If the matrix A is changed by a rank-1 update, A � A + �xyT, the QR decomposition of A can be 
updated/down-dated using the routine LUPQR, page 402. In some applications a series of linear 
systems which differ by rank-1 updates must be solved. Computing the QR decomposition once 
and then updating or down-dating it usually faster than newly solving each system. 

A

LUPQR

LQRSL

Least-squares
solution

QR decomposition

Qb, Q  b,T

Q

b
A��A + �xyT

LQERR

LQRRR or LQRRV

 

Figure 1-2   Least-Squares Routine 

LIN_SOL_GEN 
Solves a general system of linear equations Ax = b. Using optional arguments, any of several 
related computations can be performed. These extra tasks include computing the LU factorization 
of A using partial pivoting, representing the determinant of A, computing the inverse matrix A-1, 
and solving TA x b�  or Ax = b given the LU factorization of A. 

Required Arguments 
A —    Array of size n � n containing the matrix. (Input [/Output]) 
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B —    Array of size n � nb containing the right-hand side matrix. (Input [/Output]) 

X —   Array of size n � nb containing the solution matrix.(Output) 

Optional Arguments 
NROWS = n   (Input) 

Uses array A(1:n, 1:n) for the input matrix. 
Default: n = size (A, 1) 

NRHS = nb   (Input) 
Uses array b(1:n, 1:nb) for the input right-hand side matrix. 
Default: nb = size(b, 2) 
Note that b must be a rank-2 array. 

pivots = pivots(:)   (Output [/Input]) 
Integer array of size n that contains the individual row interchanges. To construct the 
permuted order so that no pivoting is required, define an integer array ip(n). Initialize 
ip(i) = i, i = 1, n and then execute the loop, after calling lin_sol_gen, 
 
k=pivots(i) 
interchange ip(i) and ip(k), i=1,n  
 
The matrix defined by the array assignment that permutes the rows,  
A(1:n, 1:n) = A(ip(1:n), 1:n), requires no pivoting for maintaining numerical 
stability. Now, the optional argument “iopt=” and the packaged option number 
?_lin_sol_gen_no_pivoting can be safely used for increased efficiency during 
the LU factorization of A. 

det = det(1:2)   (Output) 
Array of size 2 of the same type and kind as A for representing the determinant of the 
input matrix. The determinant is represented by two numbers. The first is the base with 
the sign or complex angle of the result. The second is the exponent. When det(2) is 
within exponent range, the value of this expression is given by abs(det(1))**det(2) * 
(det(1))/abs(det(1)). If the matrix is not singular, abs(det(1)) = radix(det); 
otherwise, det(1) = 0., and det(2) = � huge(abs(det(1))). 

ainv = ainv(:,:)   (Output) 
Array of the same type and kind as A(1:n, 1:n). It contains the inverse matrix, A-1, 
when the input matrix is nonsingular. 

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix; used for passing 
optional data to the routine. The options are as follows: 
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Packaged Options for lin_sol_gen 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_sol_gen_set_small 1 

s_, d_, c_, z_ lin_sol_gen_save_LU 2 

s_, d_, c_, z_ lin_sol_gen_solve_A 3 

s_, d_, c_, z_ lin_sol_gen_solve_ADJ 4 

s_, d_, c_, z_ lin_sol_gen_no_pivoting 5 

s_, d_, c_, z_ lin_sol_gen_scan_for_NaN 6 

s_, d_, c_, z_ lin_sol_gen_no_sing_mess 7 

s_, d_, c_, z_ lin_sol_gen_A_is_sparse 8 

iopt(IO) = ?_options(?_lin_sol_gen_set_small, Small) 
Replaces a diagonal term of the matrix U if it is smaller in magnitude than the value 
Small using the same sign or complex direction as the diagonal. The system is declared 
singular. A solution is approximated based on this replacement if no overflow results.  
Default: the smallest number that can be reciprocated safely  

iopt(IO) = ?_options(?_lin_sol_gen_set_save_LU, ?_dummy) 
Saves the LU factorization of A. Requires the optional argument “pivots=” if the 
routine will be used later for solving systems with the same matrix. This is the only 
case where the input arrays A and b are not saved. For solving efficiency, the diagonal 
reciprocals of the matrix U are saved in the diagonal entries of A. 

iopt(IO) = ?_options(?_lin_sol_gen_solve_A, ?_dummy) 
Uses the LU factorization of A computed and saved to solve Ax = b. 

iopt(IO) = ?_options(?_lin_sol_gen_solve_ADJ, ?_dummy) 

Uses the LU factorization of A computed and saved to solve ATx = b. 

iopt(IO) = ?_options(?_lin_sol_gen_no_pivoting, ?_dummy) 
Does no row pivoting. The array pivots (:), if present, are output as pivots (i) = i, 
for i = 1, �, n. 

iopt(IO) = ?_options(?_lin_sol_gen_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that  

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.  

See the isNaN() function, Chapter 10. 
Default: Does not scan for NaNs. 
iopt(IO) = ?_options(?_lin_sol_gen_no_sing_mess,?_dummy) 

Do not point an error message when the matrix A is singular. 
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iopt(IO) = ?_options(?_lin_sol_gen_A_is_sparse,?_dummy) 
Uses an indirect updating loop for the LU factorization that is efficient for sparse 
matrices where all matrix entries are stored. 

FORTRAN 90 Interface 
Generic: CALL LIN_SOL_GEN (A, B, X [,…]) 

Specific: The specific interface names are S_LIN_SOL_GEN,  D_LIN_SOL_GEN, 
C_LIN_SOL_GEN, and Z_LIN_SOL_GEN. 

Example 1: Solving a Linear System of Equations 
This example solves a linear system of equations. This is the simplest use of lin_sol_gen. The 
equations are generated using a matrix of random numbers, and a solution is obtained 
corresponding to a random right-hand side matrix. Also, see operator_ex01, Chapter 10, for this 
example using the operator notation. 

  
      use lin_sol_gen_int  
      use rand_gen_int  
      use error_option_packet  
  
      implicit none  
   
! This is Example 1 for LIN_SOL_GEN.   
  
      integer, parameter :: n=32  
      real(kind(1e0)), parameter :: one=1e0  
      real(kind(1e0)) err  
      real(kind(1e0)) A(n,n), b(n,n), x(n,n), res(n,n), y(n**2)  
  
! Generate a random matrix.  
      call rand_gen(y)  
      A = reshape(y,(/n,n/))  
  
! Generate random right-hand sides.  
      call rand_gen(y)  
      b = reshape(y,(/n,n/))  
  
! Compute the solution matrix of Ax=b.  
      call lin_sol_gen(A, b, x)  
  
! Check the results for small residuals.  
      res = b - matmul(A,x)  
      err = maxval(abs(res))/sum(abs(A)+abs(b))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_SOL_GEN is correct.'  
      end if  
  
      end   
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Output 
 
Example 1 for LIN_SOL_GEN is correct. 

 Description 
Routine LIN_SOL_GEN solves a system of linear algebraic equations with a nonsingular 
coefficient matrix A. It first computes the LU factorization of A with partial pivoting such that 
LU A� .  The matrix U is upper triangular, while the following is true: 

1
1 1 1 1n n n nL A L P L P L P A U�

� �

� ��  

The factors Pi and Li are defined by the partial pivoting. Each Pi is an interchange of row i with 
row j 	 i. Thus, Pi is defined by that value of j. Every 

T
i i iL I m e� �  

is an elementary elimination matrix. The vector im  is zero in entries 1, ..., i. This vector is stored 
as column i in the strictly lower-triangular part of the working array containing the decomposition 
information. The reciprocals of the diagonals of the matrix U are saved in the diagonal of the 
working array. The solution of the linear system Ax = b is found by solving two simpler systems,  

1y L b�

� and 1x U y�

�  

more mathematical details are found in Golub and Van Loan (1989, Chapter 3). 

Additional Examples 

Example 2: Matrix Inversion and Determinant 
This example computes the inverse and determinant of A, a random matrix. Tests are made on the 
conditions 

1AA I�

�  

and  

� � � �
11det detA A �

�

�  

Also, see operator_ex02. 
  
      use lin_sol_gen_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 2 for LIN_SOL_GEN.  
  
      integer i  
      integer, parameter :: n=32  
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  
      real(kind(1e0)) err  
      real(kind(1e0)) A(n,n), b(n,0), inv(n,n), x(n,0), res(n,n), &  
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           y(n**2), determinant(2), inv_determinant(2)  
  
! Generate a random matrix.  
  
      call rand_gen(y)  
      A = reshape(y,(/n,n/))  
  
! Compute the matrix inverse and its determinant.  
  
      call lin_sol_gen(A, b, x, nrhs=0, &  
                ainv=inv, det=determinant)  
  
! Compute the determinant for the inverse matrix.  
  
      call lin_sol_gen(inv, b, x, nrhs=0, &  
                det=inv_determinant)  
  
! Check residuals, A times inverse = Identity.  
  
      res = matmul(A,inv)  
      do i=1, n  
         res(i,i) = res(i,i) - one  
      end do  
!           <= sqrt(epsilon(one)))*abs(determinant(2))) then  
  
      err = sum(abs(res)) / sum(abs(a))  
      if (err <= sqrt(epsilon(one))) then  
         if (determinant(1) == inv_determinant(1) .and. &  
            (abs(determinant(2)+inv_determinant(2)) &  
            <= abs(determinant(2))*sqrt(epsilon(one)))) then  
            write (*,*) 'Example 2 for LIN_SOL_GEN is correct.'  
         end if  
      end if  
  
      end   

Output 
Example 2 for LIN_SOL_GEN is correct. 

Example 3: Solving a System with Iterative Refinement 
This example computes a factorization of a random matrix using single-precision arithmetic. The 
double-precision solution is corrected using iterative refinement. The corrections are added to the 
developing solution until they are no longer decreasing in size. The initialization of the derived 
type array iopti(1:2) = s_option(0,0.0e0) leaves the integer part of the second element 
of iopti(:) at the value zero. This stops the internal processing of options inside lin_sol_gen. 
It results in the LU factorization being saved after exit. The next time the routine is entered the 
integer entry of the second element of iopt(:) results in a solve step only. Since the LU 
factorization is saved in arrays A(:,:) and ipivots(:), at the final step, solve only steps can 
occur in subsequent entries to lin_sol_gen. Also, see operator_ex03,Chapter 10. 
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      use lin_sol_gen_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 3 for LIN_SOL_GEN.  
  
      integer, parameter :: n=32  
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  
      real(kind(1d0)), parameter :: d_zero=0.0d0  
      integer ipivots(n)  
      real(kind(1e0)) a(n,n), b(n,1), x(n,1), w(n**2)  
      real(kind(1e0)) change_new, change_old  
      real(kind(1d0)) c(n,1), d(n,n), y(n,1)  
      type(s_options) ::  iopti(2)=s_options(0,zero)  
        
        
! Generate a random matrix.  
  
      call rand_gen(w)  
      a = reshape(w, (/n,n/))  
  
! Generate a random right hand side.  
        
      call rand_gen(b(1:n,1))  
  
! Save double precision copies of the matrix and right hand side.  
  
      d = a  
      c = b  
  
! Start solution at zero.  
  
      y = d_zero  
      change_old = huge(one)  
  
! Use packaged option to save the factorization.  
  
      iopti(1) = s_options(s_lin_sol_gen_save_LU,zero)  
  
      iterative_refinement: do  
         b = c - matmul(d,y)  
         call lin_sol_gen(a, b, x, &  
                   pivots=ipivots, iopt=iopti)  
         y = x + y  
         change_new = sum(abs(x))  
  
! Exit when changes are no longer decreasing.  
  
         if (change_new >= change_old) &  
             exit iterative_refinement  
         change_old = change_new  
  
! Use option to re-enter code with factorization saved; solve only.  
         iopti(2) = s_options(s_lin_sol_gen_solve_A,zero)  
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      end do iterative_refinement  
      write (*,*) 'Example 3 for LIN_SOL_GEN is correct.'  
      end   

Output 
Example 3 for LIN_SOL_GEN is correct. 

Example 4: Evaluating the Matrix Exponential 
This example computes the solution of the ordinary differential equation problem 

dy Ay
dt

�  

with initial values y(0) = y0. For this example, the matrix A is real and constant with respect to t� . 
The unique solution is given by the matrix exponential: 

� � 0
Aty t e y�  

This method of solution uses an eigenvalue-eigenvector decomposition of the matrix  
1A XDX �

�   

to evaluate the solution with the equivalent formula 

� � 0
Dty t Xe z�  

where 
1

0 0z X y�

�   

is computed using the complex arithmetic version of lin_sol_gen. The results for y(t) are real 
quantities, but the evaluation uses intermediate complex-valued calculations. Note that the 
computation of the complex matrix X and the diagonal matrix D is performed using the IMSL 
MATH/LIBRARY FORTRAN 77 interface to routine EVCRG. This is an illustration of intermixing 
interfaces of FORTRAN 77 and Fortran 90 code. The information is made available to the Fortran 
90 compiler by using the FORTRAN 77 interface for EVCRG. Also, see operator_ex04, Chapter 
10, where the Fortran 90 function EIG() has replaced the call to EVCRG. 

 
      use lin_sol_gen_int  
      use rand_gen_int  
      use Numerical_Libraries  
  
      implicit none  
  
! This is Example 4 for LIN_SOL_GEN.  
  
      integer, parameter :: n=32, k=128  
      real(kind(1e0)), parameter :: one=1.0e0, t_max=1, delta_t=t_max/(k-1)  
      real(kind(1e0)) err, A(n,n), atemp(n,n), ytemp(n**2)  
      real(kind(1e0)) t(k), y(n,k), y_prime(n,k)  
      complex(kind(1e0)) EVAL(n), EVEC(n,n)  
      complex(kind(1e0)) x(n,n), z_0(n,1), y_0(n,1), d(n)  
      integer i  
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! Generate a random matrix in an F90 array.  
  
      call rand_gen(ytemp)  
      atemp = reshape(ytemp,(/n,n/))  
  
! Assign data to an F77 array.  
      A = atemp  
  
! Use IMSL Numerical Libraries F77 subroutine for the   
! eigenvalue-eigenvector calculation.  
      CALL EVCRG(N, A, N, EVAL, EVEC, N)  
  
! Generate a random initial value for the ODE system.  
      call rand_gen(ytemp(1:n))  
      y_0(1:n,1) = ytemp(1:n)  
  
! Assign the eigenvalue-eigenvector data to F90 arrays.   
      d = EVAL; x = EVEC  
  
! Solve complex data system that transforms the initial values, Xz_0=y_0.  
      call lin_sol_gen(x, y_0, z_0)  
      t = (/(i*delta_t,i=0,k-1)/)  
  
! Compute y and y' at the values t(1:k).  
      y = matmul(x, exp(spread(d,2,k)*spread(t,1,n))* &  
                   spread(z_0(1:n,1),2,k))  
      y_prime  = matmul(x, spread(d,2,k)* &  
                      exp(spread(d,2,k)*spread(t,1,n))* &  
                      spread(z_0(1:n,1),2,k))  
  
! Check results. Is  y' - Ay = 0?  
      err = sum(abs(y_prime-matmul(atemp,y))) / &  
           (sum(abs(atemp))*sum(abs(y)))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 4 for LIN_SOL_GEN is correct.'  
      end if  
  
      end   

Output 
 
'Example 4 for LIN_SOL_GEN is correct. 

Fatal and Terminal Error Messages 
See the messages.gls file for error messages for lin_sol_gen. The messages are numbered 
161�175; 181�195; 201�215; 221�235. 

LIN_SOL_SELF 
Solves a system of linear equations Ax = b, where A is a self-adjoint matrix. Using optional argu-
ments, any of several related computations can be performed. These extra tasks include computing 
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and saving the factorization of A using symmetric pivoting, representing the determinant of A, 
computing the inverse matrix A-1, or computing the solution of Ax = b given the factorization of A. 
An optional argument is provided indicating that A is positive definite so that the Cholesky 
decomposition can be used. 

Required Arguments 
A —    Array of size n � n containing the self-adjoint matrix. (Input [/Output] 

B —    Array of size n � nb containing the right-hand side matrix. (Input [/Output] 

X —    Array of size n � nb containing the solution matrix. (Input [/Output] 

Optional Arguments 
NROWS = n   (Input) 

Uses array A(1:n, 1:n) for the input matrix. 
Default: n = size(A, 1) 

NRHS = nb   (Input) 
Uses the array b(1:n, 1:nb) for the input right-hand side matrix. 
Default: nb = size(b, 2) 
Note that b must be a rank-2 array. 

pivots = pivots(:)   (Output [/Input]) 
Integer array of size n + 1 that contains the individual row interchanges in the first n 
locations. Applied in order, these yield the permutation matrix P. Location n + 1 
contains the number of the first diagonal term no larger than Small, which is defined on 
the next page of this chapter. 

det = det(1:2)   (Output) 
Array of size 2 of the same type and kind as A for representing the determinant of the 
input matrix. The determinant is represented by two numbers. The first is the base with 
the sign or complex angle of the result. The second is the exponent. When det(2) is 
within exponent range, the value of the determinant is given by the expression 
abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular, abs(det(1)) 
= radix(det); otherwise, det(1) = 0., and  
det(2) = �huge(abs(det(1))). 

ainv = ainv(:,:)   (Output) 
Array of the same type and kind as A(1:n, 1:n). It contains the inverse matrix,  
A-1 when the input matrix is nonsingular. 

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix; used for passing 
optional data to the routine. The options are as follows: 
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Packaged Options for lin_sol_self 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ Lin_sol_self_set_small 1 

s_, d_, c_, z_ Lin_sol_self_save_factors 2 

s_, d_, c_, z_ Lin_sol_self_no_pivoting 3 

s_, d_, c_, z_ Lin_sol_self_use_Cholesky 4 

s_, d_, c_, z_ Lin_sol_self_solve_A 5 

s_, d_, c_, z_ Lin_sol_self_scan_for_NaN 6 

s_, d_, c_, z_ Lin_sol_self_no_sing_mess 7 

iopt(IO) = ?_options(?_lin_sol_self_set_small, Small) 
When Aasen’s method is used, the tridiagonal system Tu = v is solved using LU 
factorization with partial pivoting. If a diagonal term of the matrix U is smaller in 
magnitude than the value Small, it is replaced by Small. The system is declared 
singular. When the Cholesky method is used, the upper-triangular matrix R, (see 
“Description”), is obtained. If a diagonal term of the matrix R is smaller in magnitude 
than the value Small, it is replaced by Small. A solution is approximated based on this 
replacement in either case.  
Default: the smallest number that can be reciprocated safely 

iopt(IO) = ?_options(?_lin_sol_self_save_factors, ?_dummy) 
Saves the factorization of A. Requires the optional argument “pivots=” if the routine 
will be used for solving further systems with the same matrix. This is the only case 
where the input arrays A and b are not saved. For solving efficiency, the diagonal 
reciprocals of the matrix R are saved in the diagonal entries of A when the Cholesky 
method is used.  

iopt(IO) = ?_options(?_lin_sol_self_no_pivoting, ?_dummy) 
Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) = i + 1 for  
i = 1, �, n � 1 when using Aasen’s method. When using the Cholesky method, 
pivots(i) = i for i = 1, �, n. 

iopt(IO) = ?_options(?_lin_sol_self_use_Cholesky, ?_dummy) 

The Cholesky decomposition PAPT = RTR is used instead of the Aasen method. 

iopt(IO) = ?_options(?_lin_sol_self_solve_A, ?_dummy) 
Uses the factorization of A computed and saved to solve Ax = b.  

iopt(IO) = ?_options(?_lin_sol_self_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that 

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.  

See the isNaN() function, Chapter 10. 
Default: Does not scan for NaNs 
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iopt(IO) = ?_options(?_lin_sol_self_no_sing_mess,?_dummy) 
Do not print an error message when the natrix A is singular. 

FORTRAN 90 Interface 
Generic: CALL LIN_SOL_SELF (A, B, X [,…]) 

Specific: The specific interface names are S_LIN_SOL_SELF, D_LIN_SOL_SELF, 
C_LIN_SOL_SELF, and Z_LIN_SOL_SELF. 

Example 1: Solving a Linear Least-squares System 
This example solves a linear least-squares system Cx � d, where Cmxn is a real matrix with m � n. 
The least-squares solution is computed using the self-adjoint matrix  

TA C C�   

and the right-hand side  
Tb A d�  

The n � n self-adjoint system Ax = b is solved for x. This solution method is not as satisfactory, in 
terms of numerical accuracy, as solving the system Cx � d directly by using the routine 
lin_sol_lsq. Also, see operator_ex05, Chapter 10. 

 
       use lin_sol_self_int  

use rand_gen_int  
  
      implicit none  
  
! This is Example 1 for LIN_SOL_SELF.  
  
      integer, parameter :: m=64, n=32  
      real(kind(1e0)), parameter :: one=1e0  
      real(kind(1e0)) err  
      real(kind(1e0)), dimension(n,n) :: A, b, x, res, y(m*n),&  
             C(m,n), d(m,n)  
  
! Generate two rectangular random matrices.  
      call rand_gen(y)  
      C = reshape(y,(/m,n/))  
  
      call rand_gen(y)  
      d = reshape(y,(/m,n/))  
  
! Form the normal equations for the rectangular system.  
      A = matmul(transpose(C),C)  
      b = matmul(transpose(C),d)  
  
! Compute the solution for Ax = b.  
      call lin_sol_self(A, b, x)  
  
! Check the results for small residuals.  
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      res = b - matmul(A,x)  
      err = maxval(abs(res))/sum(abs(A)+abs(b))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_SOL_SELF is correct.'  
      end if  
  
      end   

Output 
 
Example 1 for LIN_SOL_SELF is correct. 

Description 
Rountine LIN_SOL_SELF routine solves a system of linear algebraic equations with a nonsingular 
coefficient matrix A. By default, the routine computes the factorization of A using Aasen’s 
method. This decomposition has the form  

T TPAP LTL�  

where P is a permutation matrix, L is a unit lower-triangular matrix, and T is a tridiagonal self-
adjoint matrix. The solution of the linear system Ax = b is found by solving simpler systems,  

1u L Pb�

�  

 Tv = u 

and  
T Tx P L v�

�  

More mathematical details for real matrices are found in Golub and Van Loan (1989, Chapter 4). 

When the optional Cholesky algorithm is used with a positive definite, self-adjoint matrix, the 
factorization has the alternate form  

T TPAP R R�  

 where P is a permutation matrix and R is an upper-triangular matrix. The solution of the linear 
system Ax = b is computed by solving the systems 

Tu R Pb�

�   

and 
1Tx P R u�

�  

The permutation is chosen so that the diagonal term is maximized at each step of the 
decomposition. The individual interchanges are optionally available in the argument “pivots”. 
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Additional Examples  

Example 2: System Solving with Cholesky Method 
This example solves the same form of the system as Example 1. The optional argument “iopt=” 
is used to note that the Cholesky algorithm is used since the matrix A is positive definite and self-
adjoint. In addition, the sample covariance matrix  

2 1A�
�

� �   

is computed, where 
2

2 d Cx
m n

�

�

�

�

 

the inverse matrix is returned as the “ainv=” optional argument. The scale factor 2
�  and � are 

computed after returning from the routine. Also, see operator_ex06, Chapter 10. 
 
      use lin_sol_self_int  
      use rand_gen_int  
      use error_option_packet  
  
      implicit none  
  
! This is Example 2 for LIN_SOL_SELF.  
  
      integer, parameter :: m=64, n=32  
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  
      real(kind(1e0)) err  
      real(kind(1e0)) a(n,n), b(n,1), c(m,n), d(m,1), cov(n,n), x(n,1), &  
           res(n,1), y(m*n)  
      type(s_options) :: iopti(1)=s_options(0,zero)  
        
  
! Generate a random rectangular matrix and a random right hand side.  
  
      call rand_gen(y)  
      c = reshape(y,(/m,n/))  
  
      call rand_gen(d(1:n,1))  
  
! Form the normal equations for the rectangular system.  
  
      a = matmul(transpose(c),c)  
      b = matmul(transpose(c),d)  
  
! Use packaged option to use Cholesky decomposition.  
       
      iopti(1) = s_options(s_lin_sol_self_Use_Cholesky,zero)  
  
! Compute the solution of Ax=b with optional inverse obtained.  
  
      call lin_sol_self(a, b, x, ainv=cov, &  
                               iopt=iopti)  
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! Compute residuals, x - (inverse)*b, for consistency check.  
  
      res = x - matmul(cov,b)  
  
! Scale the inverse to obtain the covariance matrix.  
  
      cov = (sum((d-matmul(c,x))**2)/(m-n)) * cov  
  
! Check the results.  
  
      err = sum(abs(res))/sum(abs(cov))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 2 for LIN_SOL_SELF is correct.'  
      end if  
  
      end   

Output 
 
Example 2 for LIN_SOL_SELF is correct. 

Example 3: Using Inverse Iteration for an Eigenvector 
This example illustrates the use of the optional argument “iopt=” to reset the value of a Small 
diagonal term encountered during the factorization. Eigenvalues of the self-adjoint matrix  

TA C C�   

are computed using the routine lin_eig_self. An eigenvector, corresponding to one of these 
eigenvalues, �, is computed using inverse iteration. This solves the near singular system  
(A � �I)x = b for an eigenvector, x. Following the computation of a normalized eigenvector 

xy
x

�  

the consistency condition  
Ty Ay� �   

is checked. Since a singular system is expected, suppress the fatal error message that normally 
prints when the error post-processor routine error_post is called within the routine 
lin_sol_self. Also, see operator_ex07, Chapter 10. 

 
 
      use lin_sol_self_int  
      use lin_eig_self_int  
      use rand_gen_int  
      use error_option_packet  
  
      implicit none  
  
! This is Example 3 for LIN_SOL_SELF.  
  



 

 
 

24 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

      integer i, tries  
      integer, parameter :: m=8, n=4, k=2  
      integer ipivots(n+1)  
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  
      real(kind(1d0)) err  
      real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), y(m*n), &  
             e(n), atemp(n,n)  
      type(d_options) :: iopti(4)  
  
  
! Generate a random rectangular matrix.  
  
      call rand_gen(y)  
      c = reshape(y,(/m,n/))  
  
! Generate a random right hand side for use in the inverse   
! iteration.  
  
      call rand_gen(y(1:n))  
      b = reshape(y,(/n,1/))  
  
! Compute the positive definite matrix.  
  
      a = matmul(transpose(c),c)  
  
! Obtain just the eigenvalues.  
  
      call lin_eig_self(a, e)  
  
! Use packaged option to reset the value of a small diagonal.  
      iopti =    d_options(0,zero)  
      iopti(1) = d_options(d_lin_sol_self_set_small,&  
                 epsilon(one) * abs(e(1)))  
! Use packaged option to save the factorization.  
      iopti(2) = d_options(d_lin_sol_self_save_factors,zero)  
! Suppress error messages and stopping due to singularity   
! of the matrix, which is expected.  
      iopti(3) = d_options(d_lin_sol_self_no_sing_mess,zero)  
      atemp = a  
      do i=1, n  
         a(i,i) = a(i,i) - e(k)  
      end do  
  
! Compute A-eigenvalue*I as the coefficient matrix.  
      do tries=1, 2  
         call lin_sol_self(a, b, x, &  
                     pivots=ipivots, iopt=iopti)  
! When code is re-entered, the already computed factorization   
! is used.  
         iopti(4) = d_options(d_lin_sol_self_solve_A,zero)  
! Reset right-hand side nearly in the direction of the eigenvector.  
         b = x/sqrt(sum(x**2))  
      end do  
  
! Normalize the eigenvector.  
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      x = x/sqrt(sum(x**2))  
  
! Check the results.  
      err =  dot_product(x(1:n,1),matmul(atemp(1:n,1:n),x(1:n,1))) - &  
              e(k)  
  
! If any result is not accurate, quit with no summary printing.  
      if (abs(err) <= sqrt(epsilon(one))*e(1)) then  
        write (*,*) 'Example 3 for LIN_SOL_SELF is correct.'  
      end if  
  
      end   
 

Output 
 
Example 3 for LIN_SOL_SELF is correct. 

Example 4: Accurate Least-squares Solution with Iterative Refinement 
This example illustrates the accurate solution of the self-adjoint linear system 

0 0T

I A r b
A x

� � � � � �
�� � � � � �

� � � � � �
 

computed using iterative refinement. This solution method is appropriate for least-squares 
problems when an accurate solution is required. The solution and residuals are accumulated in 
double precision, while the decomposition is computed in single precision. Also, see 
operator_ex08, Chapter 10. 

 
      use lin_sol_self_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 4 for LIN_SOL_SELF.  
  
      integer i  
      integer, parameter :: m=8, n=4  
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  
      real(kind(1d0)), parameter :: d_zero=0.0d0  
      integer ipivots((n+m)+1)  
      real(kind(1e0)) a(m,n), b(m,1), w(m*n), f(n+m,n+m), &  
            g(n+m,1), h(n+m,1)  
      real(kind(1e0)) change_new, change_old  
      real(kind(1d0)) c(m,1), d(m,n), y(n+m,1)  
      type(s_options) ::  iopti(2)=s_options(0,zero)         
 
! Generate a random matrix.  
  
      call rand_gen(w)  
       
      a = reshape(w, (/m,n/))  
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! Generate a random right hand side.  
        
      call rand_gen(b(1:m,1))  
  
! Save double precision copies of the matrix and right hand side.  
  
      d = a  
      c = b  
  
! Fill in augmented system for accurately solving the least-squares  
! problem.  
  
      f = zero  
      do i=1, m  
         f(i,i) = one  
      end do  
      f(1:m,m+1:) = a  
      f(m+1:,1:m) = transpose(a)  
  
! Start solution at zero.  
  
      y = d_zero  
      change_old = huge(one)  
  
! Use packaged option to save the factorization.  
  
      iopti(1) = s_options(s_lin_sol_self_save_factors,zero)  
  
      iterative_refinement: do  
         g(1:m,1) = c(1:m,1) - y(1:m,1) - matmul(d,y(m+1:m+n,1))  
         g(m+1:m+n,1) = - matmul(transpose(d),y(1:m,1))  
         call lin_sol_self(f, g, h, &  
                   pivots=ipivots, iopt=iopti)  
         y = h + y  
         change_new = sum(abs(h))  
  
! Exit when changes are no longer decreasing.  
  
         if (change_new >= change_old) &  
             exit iterative_refinement  
         change_old = change_new  
  
! Use option to re-enter code with factorization saved; solve only.  
         iopti(2) = s_options(s_lin_sol_self_solve_A,zero)  
      end do iterative_refinement  
      write (*,*) 'Example 4 for LIN_SOL_SELF is correct.'  
      end   

Output 
 
Example 4 for LIN_SOL_SELF is correct. 
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Fatal and Terminal Error Messages 
See the messages.gls file for error messages for lin_sol_self. These error messages are numbered 
321�336; 341�356; 361�376; 381�396. 

LIN_SOL_LSQ 
Solves a rectangular system of linear equations Ax � b, in a least-squares sense. Using optional 
arguments, any of several related computations can be performed. These extra tasks include 
computing and saving the factorization of A using column and row pivoting, representing the 
determinant of A, computing the generalized inverse matrix A†, or computing the least-squares 
solution of  

Ax � b  

or  

ATy � b,  

given the factorization of A.  An optional argument is provided for computing the following 
unscaled covariance matrix 

� �
1TC A A

�

�  

Least-squares solutions, where the unknowns are non-negative or have simple bounds, can be 
computed with PARALLEL_NONEGATIVE_LSQ on page 67 and PARALLEL_BOUNDED_LSQ  
on page 75.  These codes can be restricted to execute without MPI. 

Required Arguments 
A —   Array of size m � n containing the matrix. (Input [/Output] 

B —   Array of size m � nb containing the right-hand side matrix. When using the option to 
solve adjoint systems ATx � b, the size of b is n � nb. (Input [/Output] 

X —   Array of size m � nb containing the right-hand side matrix. When using the option to 
solve adjoint systems ATx � b, the size of x is m � nb. (Output) 

Optional Arguments 
MROWS = m   (Input) 

Uses array A(1:m, 1:n) for the input matrix. 
Default: m = size(A, 1) 

NCOLS = n   (Input) 
Uses array A(1:m, 1:n) for the input matrix. 
Default: n = size(A, 2) 
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NRHS = nb   (Input) 
Uses the array b(1:, 1:nb) for the input right-hand side matrix. 
Default: nb = size(b, 2) 
Note that b must be a rank-2 array. 

pivots = pivots(:)   (Output [/Input]) 
Integer array of size 2 * min(m, n) + 1 that contains the individual row followed by the 
column interchanges. The last array entry contains the approximate rank of A. 

trans = trans(:)   (Output [/Input]) 
Array of size 2 * min(m, n) that contains data for the construction of the orthogonal 
decomposition. 

det = det(1:2)   (Output) 
Array of size 2 of the same type and kind as A for representing the products of the 
determinants of the matrices Q, P, and R. The determinant is represented by two 
numbers. The first is the base with the sign or complex angle of the result. The second 
is the exponent. When det(2) is within exponent range, the value of this expression is 
given by abs (det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular, 
abs(det(1)) = radix(det); otherwise, det(1) = 0., and det(2) = � huge(abs(det(1))). 

ainv = ainv(:,:)   (Output) 
Array with size n � m of the same type and kind as A(1:m, 1:n). It contains the 
generalized inverse matrix, A†. 

cov = cov(:,:)   (Output) 
Array with size n � n of the same type and kind as A(1:m, 1:n). It contains the 
unscaled covariance matrix, C = (ATA)-1. 

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix; used for passing 
optional data to the routine. The options are as follows:  

Packaged Options for lin_sol_lsq 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_sol_lsq_set_small 1 

s_, d_, c_, z_ lin_sol_lsq_save_QR 2 

s_, d_, c_, z_ lin_sol_lsq_solve_A 3 

s_, d_, c_, z_ lin_sol_lsq_solve_ADJ 4 

s_, d_, c_, z_ lin_sol_lsq_no_row_pivoting 5 

s_, d_, c_, z_ lin_sol_lsq_no_col_pivoting 6 

s_, d_, c_, z_ lin_sol_lsq_scan_for_NaN 7 

s_, d_, c_, z_ lin_sol_lsq_no_sing_mess 8 
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iopt(IO) = ?_options(?_lin_sol_lsq_set_small, Small) 
Replaces with Small if a diagonal term of the matrix R is smaller in magnitude than the 
value Small. A solution is approximated based on this replacement in either case. 
Default: the smallest number that can be reciprocated safely 

iopt(IO) = ?_options(?_lin_sol_lsq_save_QR, ?_dummy) 
Saves the factorization of A. Requires the optional arguments “pivots=” and 
“trans=” if the routine is used for solving further systems with the same matrix. This 
is the only case where the input arrays A and b are not saved. For efficiency, the 
diagonal reciprocals of the matrix R are saved in the diagonal entries of A.  

iopt(IO) = ?_options(?_lin_sol_lsq_solve_A, ?_dummy) 
Uses the factorization of A computed and saved to solve Ax = b.  

iopt(IO) = ?_options(?_lin_sol_lsq_solve_ADJ, ?_dummy) 

Uses the factorization of A computed and saved to solve ATx = b. 

iopt(IO) = ?_options(?_lin_sol_lsq_no_row_pivoting, ?_dummy) 
Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) = i for i = 1, 
�, min (m, n). 

iopt(IO) = ?_options(?_lin_sol_lsq_no_col_pivoting, ?_dummy) 
Does no column pivoting. The array pivots(:), if present, satisfies pivots(i + min (m, 
n)) = i for i = 1, �, min (m, n). 

iopt(IO) = ?_options(?_lin_sol_lsq_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that  

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.  

See the isNaN() function, Chapter 10. 
Default: Does not scan for NaNs 

iopt(IO) = ?_options(?_lin_sol_lsq_no_sing_mess,?_dummy) 
Do not print an error message when A is singular or k < min(m, n). 

FORTRAN 90 Interface 
Generic: CALL LIN_SOL_LSQ (A, B, X [,…]) 

Specific: The specific interface names are S_LIN_SOL_LSQ,  D_LIN_SOL_LSQ, 
C_LIN_SOL_LSQ, and Z_LIN_SOL_LSQ. 

Example 1: Solving a Linear Least-squares System 
This example solves a linear least-squares system Cx � d, where  

m nC
�
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is a real matrix with m > n. The least-squares problem is derived from polynomial data fitting to 
the function 

� � cos( )
2

x xy x e �� �  

using a discrete set of values in the interval �1 � x � 1. The polynomial is represented as the series 

� � � �
0

N

i i
i

u x c T x
�

��  

where the � �iT x  are Chebyshev polynomials. It is natural for the problem matrix and solution to 
have a column or entry corresponding to the subscript zero, which is used in this code. Also, see 
operator_ex09, Chapter 10. 

  
      use lin_sol_lsq_int  
      use rand_gen_int  
      use error_option_packet  
   
      implicit none  
  
! This is Example 1 for LIN_SOL_LSQ.  
  
      integer i  
      integer, parameter :: m=128, n=8  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) A(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &  
             u(m), v(m), w(m), delta_x  
  
! Generate a random grid of points.  
      call rand_gen(x)  
  
! Transform points to the interval -1,1.  
      x = x*2 - one  
  
! Compute the constant 'PI/2'.  
      pi_over_2 = atan(one)*2  
  
! Generate known function data on the grid.  
      y(1:m,1) = exp(x) + cos(pi_over_2*x)  
  
! Fill in the least-squares matrix for the Chebyshev polynomials.  
      A(:,0) = one; A(:,1) = x  
  
      do i=2, n  
         A(:,i) = 2*x*A(:,i-1) - A(:,i-2)  
      end do  
  
! Solve for the series coefficients.  
      call lin_sol_lsq(A, y, c)  
  
! Generate an equally spaced grid on the interval.  
      delta_x = 2/real(m-1,kind(one))  
      do i=1, m  
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         x(i) = -one + (i-1)*delta_x  
      end do  
  
! Evaluate residuals using backward recurrence formulas.  
      u = zero  
      v = zero  
      do i=n, 0, -1  
         w = 2*x*u - v + c(i,1)  
         v = u  
         u = w  
      end do  
  
      y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)  
  
! Check that n+1 sign changes in the residual curve occur.  
      x = one  
      x = sign(x,y(1:m,1))  
  
      if (count(x(1:m-1) /= x(2:m)) >= n+1) then  
         write (*,*) 'Example 1 for LIN_SOL_LSQ is correct.'  
      end if  
  
      end   
  

Output 
 
Example 1 for LIN_SOL_LSQ is correct. 

Description 
Routine LIN_SOL_LSQ solves a rectangular system of linear algebraic equations in a least-squares 
sense. It computes the decomposition of A using an orthogonal factorization. This decomposition 
has the form 

0
0 0
k kR

QAP �
� �

� � �
� �

 

where the matrices Q and P are products of elementary orthogonal and permutation matrices. The 
matrix R is k � k, where k is the approximate rank of A. This value is determined by the value of 
the parameter Small. See Golub and Van Loan (1989, Chapter 5.4) for further details. Note that the 
use of both row and column pivoting is nonstandard, but the routine defaults to this choice for en-
hanced reliability. 

Additional Examples 

Example 2: System Solving with the Generalized Inverse 
This example solves the same form of the system as Example 1. In this case, the grid of evaluation 
points is equally spaced. The coefficients are computed using the “smoothing formulas” by rows 
of the generalized inverse matrix, A†, computed using the optional argument “ainv=”. Thus, the 
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coefficients are given by the matrix-vector product c = (A†) y, where y is the vector of values of 
the function y(x) evaluated at the grid of points. Also, see operator_ex10, Chapter 10. 

 
      use lin_sol_lsq_int  
  
      implicit none  
  
! This is Example 2 for LIN_SOL_LSQ.  
  
      integer i  
      integer, parameter :: m=128, n=8  
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  
      real(kind(1d0)) a(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &  
             u(m), v(m), w(m), delta_x, inv(0:n, m)  
  
! Generate an array of equally spaced points on the interval -1,1.  
  
      delta_x = 2/real(m-1,kind(one))  
      do i=1, m  
         x(i) = -one + (i-1)*delta_x  
      end do  
  
! Compute the constant 'PI/2'.  
  
      pi_over_2 = atan(one)*2  
  
! Compute data values on the grid.  
  
      y(1:m,1) = exp(x) + cos(pi_over_2*x)  
  
! Fill in the least-squares matrix for the Chebyshev polynomials.  
  
      a(:,0) = one  
      a(:,1) = x  
  
      do i=2, n  
         a(:,i) = 2*x*a(:,i-1) - a(:,i-2)  
      end do  
  
! Compute the generalized inverse of the least-squares matrix.  
  
      call lin_sol_lsq(a, y, c, nrhs=0, ainv=inv)  
  
! Compute the series coefficients using the generalized inverse  
! as 'smoothing formulas.'  
  
      c(0:n,1) = matmul(inv(0:n,1:m),y(1:m,1))  
  
! Evaluate residuals using backward recurrence formulas.  
  
      u = zero  
      v = zero  
      do i=n, 0, -1  
         w = 2*x*u - v + c(i,1)  
         v = u  
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         u = w  
      end do  
  
      y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)  
  
! Check that n+2 sign changes in the residual curve occur.  
! (This test will fail when n is larger.)  
  
      x = one  
      x = sign(x,y(1:m,1))  
  
      if (count(x(1:m-1) /= x(2:m)) == n+2) then  
         write (*,*) 'Example 2 for LIN_SOL_LSQ is correct.'  
      end if  
  
      end   

Output 
 
Example 2 for LIN_SOL_LSQ is correct. 

Example 3: Two-Dimensional Data Fitting 
This example illustrates the use of radial-basis functions to least-squares fit arbitrarily spaced data 
points. Let m data values {yi} be given at points in the unit square, {pi}. Each pi is a pair of real 
values. Then, n points {qj} are chosen on the unit square. A series of radial-basis functions is used 
to represent the data, 

� �
2 2 1/ 2

1
( )

n

j j
j

f p c p q �

�

� � ��  

where 	2 is a parameter. This example uses 	2 = 1, but either larger or smaller values can give a 
better approximation for user problems. The coefficients {cj} are obtained by solving the 
following m � n linear least-squares problem: 

� �j jf p y�  

This example illustrates an effective use of Fortran 90 array operations to eliminate many details 
required to build the matrix and right-hand side for the {cj} .  For this example, the two sets of 
points {pi} and {qj} are chosen randomly. The values {yj}  are computed from the following 
formula: 

2| | | |jp
jy e�

�  

The residual function 

� � � �
2|| ||pr p e f p�

� �  

is computed at an N � N square grid of equally spaced points on the unit square. The magnitude of 
r(p) may be larger at certain points on this grid than the residuals at the given points, � �ip . Also, 
see operator_ex11, Chapter 10. 
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      use lin_sol_lsq_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 3 for LIN_SOL_LSQ.  
  
      integer i, j  
      integer, parameter :: m=128, n=32, k=2, n_eval=16  
      real(kind(1d0)), parameter :: one=1.0d0, delta_sqr=1.0d0  
      real(kind(1d0)) a(m,n), b(m,1), c(n,1), p(k,m), q(k,n), &  
              x(k*m), y(k*n), t(k,m,n), res(n_eval,n_eval), &  
              w(n_eval), delta  
        
! Generate a random set of data points in k=2 space.  
  
      call rand_gen(x)  
      p = reshape(x,(/k,m/))  
  
! Generate a random set of center points in k-space.  
  
      call rand_gen(y)  
      q = reshape(y,(/k,n/))  
  
! Compute the coefficient matrix for the least-squares system.  
  
      t = spread(p,3,n)  
      do j=1, n  
        t(1:,:,j) = t(1:,:,j) - spread(q(1:,j),2,m)  
      end do  
        
      a = sqrt(sum(t**2,dim=1) + delta_sqr)  
  
! Compute the right hand side of data values.  
  
      b(1:,1) = exp(-sum(p**2,dim=1))  
  
! Compute the solution.   
  
      call lin_sol_lsq(a, b, c)  
  
! Check the results.  
  
      if (sum(abs(matmul(transpose(a),b-matmul(a,c))))/sum(abs(a)) &  
          <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 3 for LIN_SOL_LSQ is correct.'  
      end if  
  
! Evaluate residuals, known function - approximation at a square   
! grid of points.  (This evaluation is only for k=2.)  
  
      delta = one/real(n_eval-1,kind(one))  
      do i=1, n_eval  
         w(i) = (i-1)*delta  
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      end do  
      res = exp(-(spread(w,1,n_eval)**2 + spread(w,2,n_eval)**2))  
      do j=1, n  
         res = res - c(j,1)*sqrt((spread(w,1,n_eval) - q(1,j))**2 + &  
                    (spread(w,2,n_eval) - q(2,j))**2 + delta_sqr)  
      end do  
  
      end   

Output 
 
Example 3 for LIN_SOL_LSQ is correct. 

Example 4: Least-squares with an Equality Constraint 
This example solves a least-squares system Ax � b with the constraint that the solution values have 
a sum equal to the value 1. To solve this system, one heavily weighted row vector and right-hand 
side component is added to the system corresponding to this constraint. Note that the weight used 
is  

1/ 2
�

�  

where � is the machine precision, but any larger value can be used. The fact that lin_sol_lsq 
performs row pivoting in this case is critical for obtaining an accurate solution to the constrained 
problem solved using weighting. See Golub and Van Loan (1989, Chapter 12) for more 
information about this method. Also, see operator_ex12, Chapter 10.  

  
      use lin_sol_lsq_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 4 for LIN_SOL_LSQ.  
  
      integer, parameter :: m=64, n=32  
      real(kind(1e0)), parameter :: one=1.0e0  
      real(kind(1e0)) :: a(m+1,n), b(m+1,1), x(n,1), y(m*n)  
        
        
  
! Generate a random matrix.  
      
      call rand_gen(y)  
      a(1:m,1:n) = reshape(y,(/m,n/))  
  
! Generate a random right hand side.  
  
      call rand_gen(b(1:m,1))  
  
! Heavily weight desired constraint.  All variables sum to one.  
  
      a(m+1,1:n) = one/sqrt(epsilon(one))  
  
      b(m+1,1) = one/sqrt(epsilon(one))  
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      call lin_sol_lsq(a, b, x)  
  
      if (abs(sum(x) - one)/sum(abs(x)) <= &  
                  sqrt(epsilon(one))) then  
         write (*,*) 'Example 4 for LIN_SOL_LSQ is correct.'  
      end if  
  
      end  

Output 
 
Example 4 for LIN_SOL_LSQ is correct. 
 

Fatal and Terminal Error Messages 
See the messages.gls file for error messages for lin_sol_lsq. These error messages are 
numbered 241�256; 261�276; 281�296; 301�316. 

LIN_SOL_SVD 
Solves a rectangular least-squares system of linear equations Ax � b using singular value 
decomposition 

TA USV�  

With optional arguments, any of several related computations can be performed. These extra tasks 
include computing the rank of A, the orthogonal m � m and n � n matrices U and V, and the m � n 
diagonal matrix of singular values, S. 

Required Arguments 
A —   Array of size m � n containing the matrix. (Input [/Output] 

B —   Array of size m � nb containing the right-hand side matrix. (Input [/Output] 

X—   Array of size n � nb containing the solution matrix. (Output) 

Optional Arguments 
MROWS = m   (Input) 

Uses array A(1:m, 1:n) for the input matrix. 
Default: m = size (A, 1) 

NCOLS = n   (Input) 
Uses array A(1:m, 1:n) for the input matrix. 
Default: n = size(A, 2) 
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NRHS = nb   (Input) 
Uses the array b(1:, 1:nb) for the input right-hand side matrix. 
Default: nb = size(b, 2) 
Note that b must be a rank-2 array. 

RANK = k   (Output) 
Number of singular values that are at least as large as the value Small. It will satisfy k 
<= min(m, n). 

u = u(:,:)   (Output) 
Array of the same type and kind as A(1:m, 1:n). It contains the m � m orthogonal 
matrix U of the singular value decomposition. 

s = s(:)   (Output) 
Array of the same precision as A(1:m, 1:n). This array is real even when the matrix 
data is complex. It contains the m � n diagonal matrix S in a rank-1 array. The singular 
values are nonnegative and ordered non-increasing. 

v = v(:,:)   (Output) 
Array of the same type and kind as A(1:m, 1:n). It contains the n � n orthogonal matrix 
V. 

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix. Used for passing 
optional data to the routine. The options are as follows: 

 
Packaged Options for lin_sol_svd 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_sol_svd_set_small 1 

s_, d_, c_, z_ lin_sol_svd_overwrite_input 2 

s_, d_, c_, z_ lin_sol_svd_safe_reciprocal 3 

s_, d_, c_, z_ lin_sol_svd_scan_for_NaN 4 

iopt(IO) = ?_options(?_lin_sol_svd_set_small, Small) 
Replaces with zero a diagonal term of the matrix S if it is smaller in magnitude than the 
value Small. This determines the approximate rank of the matrix, which is returned as 
the “rank=” optional argument. A solution is approximated based on this 
replacement. 
Default: the smallest number that can be safely reciprocated 

iopt(IO) = ?_options(?_lin_sol_svd_overwrite_input,?_dummy) 
Does not save the input arrays A(:,:) and b(:,:). 
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iopt(IO) = ?_options(?_lin_sol_svd_safe_reciprocal, safe) 
Replaces a denominator term with safe if it is smaller in magnitude than the value safe.  
Default: the smallest number that can be safely reciprocated 

iopt(IO) = ?_options(?_lin_sol_svd_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that 

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.  

See the isNaN() function, Chapter 10. 
Default: Does not scan for NaNs 

FORTRAN 90 Interface 
Generic: CALL LIN_SOL_SVD (A, B, X [,…]) 

Specific: The specific interface names are S_LIN_SOL_SVD, D_LIN_SOL_SVD, 
C_LIN_SOL_SVD, and Z_LIN_SOL_SVD. 

Example 1: Least-squares solution of a Rectangular System 
The least-squares solution of a rectangular m � n system Ax � b is obtained. The use of 
lin_sol_lsq is more efficient in this case since the matrix is of full rank. This example 
anticipates a problem where the matrix A is poorly conditioned or not of full rank; thus, 
lin_sol_svd is the appropriate routine. Also, see operator_ex13, Chapter 10. 

 
      use lin_sol_svd_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 1 for LIN_SOL_SVD.  
  
      integer, parameter :: m=128, n=32  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) A(m,n), b(m,1), x(n,1), y(m*n), err  
  
! Generate a random matrix and right-hand side.  
      call rand_gen(y)  
      A = reshape(y,(/m,n/))  
      call rand_gen(b(1:m,1))  
  
! Compute the least-squares solution matrix of Ax=b.  
      call lin_sol_svd(A, b, x)  
  
! Check that the residuals are orthogonal to the  
! column vectors of A.  
      err = sum(abs(matmul(transpose(A),b-matmul(A,x))))/sum(abs(A))  
      if (err <= sqrt(epsilon(one))) then  
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         write (*,*) 'Example 1 for LIN_SOL_SVD is correct.'  
      end if  
  
      end   

Output 
 
Example 1 for LIN_SOL_SVD is correct. 

Description 
Routine LIN_SOL_SVD solves a rectangular system of linear algebraic equations in a least-squares 
sense. It computes the factorization of A known as the singular value decomposition. This 
decomposition has the following form: 

A = USVT 

The matrices U and V are orthogonal. The matrix S is diagonal with the diagonal terms non-in-
creasing. See Golub and Van Loan (1989, Chapters 5.4 and 5.5) for further details. 

Additional Examples 

Example 2: Polar Decomposition of a Square Matrix 
A polar decomposition of an n � n random matrix is obtained. This decomposition satisfies  
A = PQ, where P is orthogonal and Q is self-adjoint and positive definite.  

Given the singular value decomposition  
TA USV�  

the polar decomposition follows from the matrix products  

 and T TP UV Q VSV� �  

This example uses the optional arguments “u=”, “s=”, and “v=”, then array intrinsic functions to 
calculate P and Q. Also, see operator_ex14, Chapter 10. 

 
      use lin_sol_svd_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 2 for LIN_SOL_SVD.  
  
      integer i  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  
      real(kind(1d0)) a(n,n), b(n,0), ident(n,n), p(n,n), q(n,n), &  
             s_d(n), u_d(n,n), v_d(n,n), x(n,0), y(n*n)  
        
! Generate a random matrix.  
  
      call rand_gen(y)  



 

 
 

40 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

      a = reshape(y,(/n,n/))  
  
! Compute the singular value decomposition.  
  
      call lin_sol_svd(a, b, x, nrhs=0, s=s_d, &  
                u=u_d, v=v_d)  
  
! Compute the (left) orthogonal factor.  
  
      p = matmul(u_d,transpose(v_d))  
  
! Compute the (right) self-adjoint factor.  
  
      q = matmul(v_d*spread(s_d,1,n),transpose(v_d))  
  
      ident=zero  
      do i=1, n  
         ident(i,i) = one  
      end do  
  
! Check the results.  
  
      if (sum(abs(matmul(p,transpose(p)) - ident))/sum(abs(p)) &  
               <= sqrt(epsilon(one))) then  
         if (sum(abs(a - matmul(p,q)))/sum(abs(a)) &  
               <= sqrt(epsilon(one))) then  
            write (*,*) 'Example 2 for LIN_SOL_SVD is correct.'  
         end if  
      end if  
  
      end   

Output 
 
Example 2 for LIN_SOL_SVD is correct. 

Example 3: Reduction of an Array of Black and White 
An n � n array A contains entries that are either 0 or 1. The entry is chosen so that as a two-
dimensional object with origin at the point (1, 1), the array appears as a black circle of radius n/4 
centered at the point (n/2, n/2). 

A singular value decomposition  
TA USV�   

is computed, where S is of low rank. Approximations using fewer of these nonzero singular values 
and vectors suffice to reconstruct A. Also, see operator_ex15, Chapter 10. 

  
      use lin_sol_svd_int  
      use rand_gen_int  
      use error_option_packet  
  
      implicit none  
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! This is Example 3 for LIN_SOL_SVD.  
  
      integer i, j, k  
      integer, parameter :: n=32  
      real(kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0  
      real(kind(1e0)) a(n,n), b(n,0), x(n,0), s(n), u(n,n), &  
             v(n,n), c(n,n)  
  
! Fill in value one for points inside the circle.  
      a = zero  
      do i=1, n  
         do j=1, n  
            if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) a(i,j) = one  
         end do  
      end do  
  
! Compute the singular value decomposition.  
      call lin_sol_svd(a, b, x, nrhs=0,&  
            s=s, u=u, v=v)  
  
! How many terms, to the nearest integer, exactly   
! match the circle?  
           c = zero; k = count(s > half)  
      do i=1, k  
        c = c + spread(u(1:n,i),2,n)*spread(v(1:n,i),1,n)*s(i)  
        if (count(int(c-a) /= 0) == 0) exit   
      end do  
  
      if (i < k) then  
         write (*,*) 'Example 3 for LIN_SOL_SVD is correct.'  
      end if  
      end   

Output 
 
Example 3 for LIN_SOL_SVD is correct. 

Example 4: Laplace Transform Solution 
This example illustrates the solution of a linear least-squares system where the matrix is poorly 
conditioned. The problem comes from solving the integral equation: 

� � � � � �
1

1

0

1st se f t dt s e g s� � �

� � ��  

The unknown function f(t) = 1 is computed. This problem is equivalent to the numerical inversion 
of the Laplace Transform of the function g(s) using real values of t and s, solving for a function 
that is nonzero only on the unit interval. The evaluation of the integral uses the following ap-
proximate integration rule: 

� � � �
11
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j

j
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st st

j
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�

��� �  
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The points � �jt  are chosen equally spaced by using the following: 

1
j

jt
n
�

�  

The points � �js  are computed so that the range of g(s) is uniformly sampled. This requires the so-
lution of m equations 

� �
1i i

ig s g
m

� �

�

 

for j = 1, �, n and i = 1, �, m. Fortran 90 array operations are used to solve for the collocation 
points � �is  as a single series of steps. Newton's method, 

hs s
h

� �
�

 

is applied to the array function  

� � 1sh s e sg�

� � �  

where the following is true: 

� �1, , T
mg g g� �  

Note the coefficient matrix for the solution values  

� � � �1 , ,
T

nf f t f t� � �� ��   

whose entry at the intersection of row i and column j is equal to the value 

1j

i

j

t
s t

t

e dt
�

�

�  

is explicitly integrated and evaluated as an array operation. The solution analysis of the resulting 
linear least-squares system  

Af g�  

 is obtained by computing the singular value decomposition  
TA USV�  

An approximate solution is computed with the transformed right-hand side 
Tb U g�  

followed by using as few of the largest singular values as possible to minimize the following 
squared error residual: 

� �
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1
1

n

j
j
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�

��  
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This determines an optimal value k to use in the approximate solution 

1

k
j

j
j j

v
f b

s
�

��  

Also, see operator_ex16, Chapter 10.  
  
      use lin_sol_svd_int  
      use rand_gen_int  
      use error_option_packet  
  
      implicit none  
  
! This is Example 4 for LIN_SOL_SVD.  
  
      integer i, j, k  
      integer, parameter :: m=64, n=16  
      real(kind(1e0)), parameter :: one=1e0, zero=0.0e0  
      real(kind(1e0)) :: g(m), s(m), t(n+1), a(m,n), b(m,1), &  
               f(n,1), U_S(m,m), V_S(n,n), S_S(n), &  
               rms, oldrms  
      real(kind(1e0)) :: delta_g, delta_t  
      
      delta_g = one/real(m+1,kind(one))  
  
! Compute which collocation equations to solve.  
      do i=1,m  
        g(i)=i*delta_g  
      end do  
  
! Compute equally spaced quadrature points.  
      delta_t =one/real(n,kind(one))  
      do j=1,n+1  
        t(j)=(j-1)*delta_t  
      end do  
  
! Compute collocation points.  
      s=m  
      solve_equations: do  
        s=s-(exp(-s)-(one-s*g))/(g-exp(-s))  
        if (sum(abs((one-exp(-s))/s - g)) <= &  
                 epsilon(one)*sum(g)) &  
            exit solve_equations  
      end do solve_equations  
  
! Evaluate the integrals over the quadrature points.  
      a = (exp(-spread(t(1:n),1,m)*spread(s,2,n)) &  
        - exp(-spread(t(2:n+1),1,m)*spread(s,2,n))) / &  
          spread(s,2,n)  
  
      b(1:,1)=g  
  
! Compute the singular value decomposition.  
  
      call lin_sol_svd(a, b, f, nrhs=0, &  
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              rank=k, u=U_S, v=V_S, s=S_S)  
  
! Singular values that are larger than epsilon determine   
! the rank=k.  
      k = count(S_S > epsilon(one))  
      oldrms = huge(one)  
      g = matmul(transpose(U_S), b(1:m,1))  
  
! Find the minimum number of singular values that gives a good   
! approximation to f(t) = 1.  
  
      do i=1,k  
         f(1:n,1) = matmul(V_S(1:,1:i), g(1:i)/S_S(1:i))  
         f = f - one  
         rms = sum(f**2)/n  
         if (rms > oldrms) exit  
         oldrms = rms  
      end do  
  
      write (*,"( ' Using this number of singular values, ', &  
          &i4 / ' the approximate R.M.S. error is ', 1pe12.4)") &  
      i-1, oldrms  
  
      if (sqrt(oldrms) <= delta_t**2) then  
         write (*,*) 'Example 4 for LIN_SOL_SVD is correct.'  
      end if  
  
      end  

Output 
 
Example 4 for LIN_SOL_SVD is correct. 

Fatal, Terminal, and Warning Error Messages 
See the messages.gls file for error messages for lin_sol_svd. These error messages are 
numbered 401�412; 421�432; 441�452; 461�472. 

LIN_SOL_TRI 
Solves multiple systems of linear equations  

, 1, ,j j jA x y j k� � �  

Each matrix Aj is tridiagonal with the same dimension, n. The default solution method is based on 
LU factorization computed using cyclic reduction or, optionally, Gaussian elimination with partial 
pivoting. 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 45 

 

 

 

Required Arguments 
C —    Array of size 2n � k containing the upper diagonals of the matrices Aj. Each upper 

diagonal is entered in array locations c(1:n � 1, j). The data C(n, 1:k) are not used. 
(Input [/Output]) 

D —    Array of size 2n � k containing the diagonals of the matrices Aj. Each diagonal is 
entered in array locations D(1:n, j). (Input [/Output]) 

B —    Array of size 2n � k containing the lower diagonals of the matrices Aj. Each lower 
diagonal is entered in array locations B(2:n, j). The data  
B(1, 1:k) are not used. (Input [/Output]) 

Y —    Array of size 2n � k containing the right-hand sides, yj. Each right-hand side is entered 
in array locations Y(1:n, j). The computed solution xj is returned in locations Y(1:n, j). 
(Input [/Output]) 

NOTE: The required arguments have the Input data overwritten. If these quantities are 
used later, they must be saved in user-defined arrays. The routine uses each array's 
locations (n + 1:2 * n, 1:k) for scratch storage and intermediate data in the LU 
factorization. The default values for problem dimensions are n = (size (D, 1))/2 and  
k = size (D, 2). 

Optional Arguments 
NCOLS = n   (Input) 

Uses arrays C(1:n � 1, 1:k), D(1:n, 1:k), and B(2:n, 1:k) as the upper, main and 
lower diagonals for the input tridiagonal matrices. The right-hand sides and solutions 
are in array Y(1:n, 1:k). Note that each of these arrays are rank-2. 
Default: n = (size(D, 1))/2 

NPROB = k   (Input) 
The number of systems solved. 
Default: k = size(D, 2) 

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix. Used for passing 
optional data to the routine. The options are as follows: 

Packaged Options for LIN_SOL_TRI 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_sol_tri_set_small 1 

s_, d_, c_, z_ lin_sol_tri_set_jolt 2 

s_, d_, c_, z_ lin_sol_tri_scan_for_NaN 3 
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Packaged Options for LIN_SOL_TRI 

s_, d_, c_, z_ lin_sol_tri_factor_only 4 

s_, d_, c_, z_ lin_sol_tri_solve_only 5 

s_, d_, c_, z_ lin_sol_tri_use_Gauss_elim 6 

iopt(IO) = ?_options(?_lin_sol_tri_set_small, Small) 
Whenever a reciprocation is performed on a quantity smaller than Small, it is replaced 
by that value plus 2 � jolt. 
Default: 0.25 � epsilon() 

iopt(IO) = ?_options(?_lin_sol_tri_set_jolt, jolt) 
Default: epsilon(), machine precision 

iopt(IO) = ?_options(?_lin_sol_tri_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that 

isNaN(C(i,j)) .or.   

isNaN(D(i,j)) .or.   

isNaN(B(i,j)) .or.   

isNaN(Y(i,j)) == .true.  

See the isNaN() function, Chapter 10. 
Default: Does not scan for NaNs. 

iopt(IO) = ?_options(?_lin_sol_tri_factor_only, ?_dummy) 
Obtain the LU factorization of the matrices Aj. Does not solve for a solution. 
Default: Factor the matrices and solve the systems. 

iopt(IO) = ?_options(?_lin_sol_tri_solve_only, ?_dummy) 
Solve the systems Ajxj = yj using the previously computed LU factorization. 
Default: Factor the matrices and solve the systems. 

iopt(IO) = ?_options(?_lin_sol_tri_use_Gauss_elim, ?_dummy) 
The accuracy, numerical stability or efficiency of the cyclic reduction algorithm may 
be inferior to the use of LU factorization with partial pivoting.  
Default: Use cyclic reduction to compute the factorization. 

FORTRAN 90 Interface 
Generic: CALL LIN_SOL_TRI (C, D, B, Y [,…]) 

Specific: The specific interface names are S_LIN_SOL_TRI, D_LIN_SOL_TRI, 
C_LIN_SOL_TRI, and Z_LIN_SOL_TRI. 
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Example 1: Solution of Multiple Tridiagonal Systems 
The upper, main and lower diagonals of n systems of size n � n are generated randomly. A scalar 
is added to the main diagonal so that the systems are positive definite. A random vector xj  is gen-
erated and right-hand sides yj  = Aj yj are computed. The routine is used to compute the solution, 
using the Aj  and yj. The results should compare closely with the xj  used to generate the right-hand 
sides. Also, see operator_ex17, Chapter 10. 

 
      use lin_sol_tri_int  
      use rand_gen_int  
      use error_option_packet  
  
      implicit none  
  
! This is Example 1 for LIN_SOL_TRI.  
  
      integer i  
      integer, parameter :: n=128  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) err  
      real(kind(1d0)), dimension(2*n,n) :: d, b, c, res(n,n), &  
        t(n), x, y  
  
! Generate the upper, main, and lower diagonals of the   
! n matrices A_i.  For each system a random vector x is used   
! to construct the right-hand side, Ax = y.  The lower part  
! of each array remains zero as a result.  
  
      c = zero; d=zero; b=zero; x=zero  
      do i = 1, n  
         call rand_gen (c(1:n,i))  
         call rand_gen (d(1:n,i))  
         call rand_gen (b(1:n,i))  
         call rand_gen (x(1:n,i))  
      end do  
  
! Add scalars to the main diagonal of each system so that   
! all systems are positive definite.  
      t = sum(c+d+b,DIM=1)  
      d(1:n,1:n) = d(1:n,1:n) + spread(t,DIM=1,NCOPIES=n)  
  
! Set Ax = y.  The vector x generates y.  Note the use  
! of EOSHIFT and array operations to compute the matrix  
! product, n distinct ones as one array operation.  
  
     y(1:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &  
                c(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=+1,DIM=1) + &  
                b(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=-1,DIM=1)  
  
! Compute the solution returned in y.  (The input values of c,   
! d, b, and y are overwritten by lin_sol_tri.)  Check for any  
! error messages.  
        
      call lin_sol_tri (c, d, b, y)  
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! Check the size of the residuals, y-x.  They should be small,   
! relative to the size of values in x.  
      res = x(1:n,1:n) - y(1:n,1:n)  
      err = sum(abs(res)) / sum(abs(x(1:n,1:n)))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_SOL_TRI is correct.'  
      end if  
  
      end   

Output 
 
Example 1 for LIN_SOL_TRI is correct. 

Description 
Routine lin_sol_tri solves k systems of tridiagonal linear algebraic equations, each problem of 
dimension n � n. No relation between k and n is required. See Kershaw, pages 86�88 in Rodrigue 
(1982) for further details. To deal with poorly conditioned or singular systems, a specific 
regularizing term is added to each reciprocated value. This technique keeps the factorization 
process efficient and avoids exceptions from overflow or division by zero. Each occurrence of an 
array reciprocal 1a�  is replaced by the expression � �

1a t �

� , where the array temporary t has the 
value 0 whenever the corresponding entry satisfies |a| > Small. Alternately, t has the value 2 � jolt. 
(Every small denominator gives rise to a finite “jolt”.) Since this tridiagonal solver is used in the 
routines lin_svd and lin_eig_self for inverse iteration, regularization is required. Users can 
reset the values of Small and jolt for their own needs. Using the default values for these 
parameters, it is generally necessary to scale the tridiagonal matrix so that the maximum 
magnitude has value approximately one. This is normally not an issue when the systems are 
nonsingular. 

The routine is designed to use cyclic reduction as the default method for computing the LU 
factorization. Using an optional parameter, standard elimination and partial pivoting will be used 
to compute the factorization. Partial pivoting is numerically stable but is likely to be less efficient 
than cyclic reduction.  

Additional Examples 

Example 2: Iterative Refinement and Use of Partial Pivoting 
This program unit shows usage that typically gives acceptable accuracy for a large class of prob-
lems. Our goal is to use the efficient cyclic reduction algorithm when possible, and keep on using 
it unless it will fail. In exceptional cases our program switches to the LU factorization with partial 
pivoting. This use of both factorization and solution methods enhances reliability and maintains 
efficiency on the average. Also, see operator_ex18, Chapter 10. 

 
 
      use lin_sol_tri_int  
      use rand_gen_int  
  
      implicit none  
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! This is Example 2 for LIN_SOL_TRI.  
  
      integer i, nopt  
      integer, parameter :: n=128  
      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0  
      real(kind(1d0)), parameter :: d_one=1d0, d_zero=0d0  
      real(kind(1e0)), dimension(2*n,n) :: d, b, c, res(n,n), &  
        x, y  
      real(kind(1e0)) change_new, change_old, err  
      type(s_options) :: iopt(2) = s_options(0,s_zero)  
      real(kind(1d0)), dimension(n,n) :: d_save, b_save, c_save, &  
             x_save, y_save, x_sol  
      logical solve_only  
  
  
      c = s_zero; d=s_zero; b=s_zero; x=s_zero  
  
! Generate the upper, main, and lower diagonals of the   
! matrices A.  A random vector x is used to construct the   
! right-hand sides: y=A*x.  
      do i = 1, n  
         call rand_gen (c(1:n,i))  
         call rand_gen (d(1:n,i))  
         call rand_gen (b(1:n,i))  
         call rand_gen (x(1:n,i))  
      end do  
  
! Save double precision copies of the diagonals and the   
! right-hand side.  
      c_save = c(1:n,1:n); d_save = d(1:n,1:n)   
      b_save = b(1:n,1:n); x_save = x(1:n,1:n)  
      y_save(1:n,1:n) = d(1:n,1:n)*x_save + &  
               c(1:n,1:n)*EOSHIFT(x_save,SHIFT=+1,DIM=1) + &  
               b(1:n,1:n)*EOSHIFT(x_save,SHIFT=-1,DIM=1)  
  
  
! Iterative refinement loop.  
      factorization_choice:  do nopt=0, 1  
  
! Set the logical to flag the first time through.  
  
         solve_only = .false.  
         x_sol = d_zero  
         change_old = huge(s_one)  
  
         iterative_refinement:  do  
  
! This flag causes a copy of data to be moved to work arrays   
! and a factorization and solve step to be performed.  
            if (.not. solve_only) then  
               c(1:n,1:n)=c_save; d(1:n,1:n)=d_save  
               b(1:n,1:n)=b_save  
            end if  
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! Compute current residuals, y - A*x, using current x.  
            y(1:n,1:n) = -y_save + &  
             d_save*x_sol + &  
             c_save*EOSHIFT(x_sol,SHIFT=+1,DIM=1) + &  
             b_save*EOSHIFT(x_sol,SHIFT=-1,DIM=1)  
  
            call lin_sol_tri (c, d, b, y, iopt=iopt)    
  
            x_sol = x_sol + y(1:n,1:n)  
  
            change_new = sum(abs(y(1:n,1:n)))  
  
! If size of change is not decreasing, stop the iteration.  
            if (change_new >= change_old) exit iterative_refinement  
  
            change_old = change_new  
            iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)  
            solve_only = .true.  
  
         end do iterative_refinement  
  
! Use Gaussian Elimination if Cyclic Reduction did not get an   
! accurate solution.  
! It is an exceptional event when Gaussian Elimination is required.  
         if (sum(abs(x_sol - x_save)) / sum(abs(x_save)) &  
           <= sqrt(epsilon(d_one))) exit factorization_choice  
  
         iopt = s_options(0,s_zero)  
         iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)  
  
      end do factorization_choice  
  
! Check on accuracy of solution.   
  
      res = x(1:n,1:n)- x_save  
      err = sum(abs(res)) / sum(abs(x_save))  
      if (err <= sqrt(epsilon(d_one))) then  
         write (*,*) 'Example 2 for LIN_SOL_TRI is correct.'  
      end if  
  
      end   

Output 
 
Example 2 for LIN_SOL_TRI is correct. 

Example 3: Selected Eigenvectors of Tridiagonal Matrices 
The eigenvalues  

1, , n� ��  

of a tridiagonal real, self-adjoint matrix are computed. Note that the computation is performed 
using the IMSL MATH/LIBRARY FORTRAN 77 interface to routineEVASB. The user may write 
this interface based on documentation of the arguments (IMSL 2003, p. 480), or use the module 
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Numerical_Libraries as we have done here. The eigenvectors corresponding to k < n of the 
eigenvalues are required. These vectors are computed using inverse iteration for all the 
eigenvalues at one step. See Golub and Van Loan (1989, Chapter 7). The eigenvectors are then 
orthogonalized. Also, see operator_ex19, Chapter 10. 

 
      use lin_sol_tri_int  
      use rand_gen_int  
      use Numerical_Libraries  
  
      implicit none  
  
! This is Example 3 for LIN_SOL_TRI.  
  
      integer i, j, nopt  
      integer, parameter :: n=128, k=n/4, ncoda=1, lda=2  
      real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0  
      real(kind(1e0)) A(lda,n), EVAL(k)  
      type(s_options) :: iopt(2)=s_options(0,s_zero)  
      real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &  
           b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k), temp  
      logical small  
  
! This flag is used to get the k largest eigenvalues.  
      small = .false.  
  
! Generate the main diagonal and the co-diagonal of the   
! tridiagonal matrix.    
  
      call rand_gen (b)  
      call rand_gen (d)  
  
      A(1,1:)=b; A(2,1:)=d  
  
! Use Numerical Libraries routine for the calculation of k   
! largest eigenvalues.  
  
      CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)  
      EVAL_T = EVAL  
  
  
! Use DNFL tridiagonal solver for inverse iteration   
! calculation of eigenvectors.  
      factorization_choice:  do nopt=0,1   
        
! Create k tridiagonal problems, one for each inverse   
! iteration system.  
         b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)  
         c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)  
         d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &  
                        spread(EVAL_T,DIM=1,NCOPIES=n)  
  
! Start the right-hand side at random values, scaled downward   
! to account for the expected 'blowup' in the solution.  
         do i=1, k  
            call rand_gen (y_t(1:n,i))  
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         end do   
  
! Do two iterations for the eigenvectors.     
         do i=1, 2  
            y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)  
            call lin_sol_tri(c_t, d_t, b_t, y_t, &  
                        iopt=iopt)  
            iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)  
         end do  
     
! Orthogonalize the eigenvectors.  (This is the most   
! intensive part of the computing.)  
         do j=1,k-1 ! Forward sweep of HMGS orthogonalization.  
            temp=s_one/sqrt(sum(y_t(1:n,j)**2))  
            y_t(1:n,j)=y_t(1:n,j)*temp  
     
            y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &  
            spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &  
                                              DIM=1,NCOPIES=n)* &  
            spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)  
         end do  
         temp=s_one/sqrt(sum(y_t(1:n,k)**2))  
         y_t(1:n,k)=y_t(1:n,k)*temp  
     
         do j=k-1,1,-1 ! Backward sweep of HMGS.  
            y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &  
            spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &  
                                              DIM=1,NCOPIES=n)* &  
            spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)  
         end do  
  
! See if the performance ratio is smaller than the value one.  
! If it is not the code will re-solve the systems using Gaussian  
! Elimination.  This is an exceptional event.  It is a necessary  
! complication for achieving reliable results.    
  
         res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &  
          spread(b,DIM=2,NCOPIES=k)* &  
          EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &  
          EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &  
            -   y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)  
  
! If the factorization method is Cyclic Reduction and perf_ratio is   
! larger than one, re-solve using Gaussian Elimination.  If the   
! method is already Gaussian Elimination, the loop exits  
! and perf_ratio is checked at the end.     
         perf_ratio = sum(abs(res(1:n,1:k))) / &  
                         sum(abs(EVAL_T(1:k))) / &  
                         epsilon(s_one) / (5*n)  
         if (perf_ratio <= s_one) exit factorization_choice  
         iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)  
     
      end do factorization_choice  
  
      if (perf_ratio <= s_one) then  
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         write (*,*) 'Example 3 for LIN_SOL_TRI is correct.'  
      end if  
  
      end   

Output 
 
Example 3 for LIN_SOL_TRI is correct. 
 

Example 4: Tridiagonal Matrix Solving within Diffusion Equations 
The normalized partial differential equation 

2

2t xx
u uu u
t x

� �

� �
� � �  

is solved for values of 0 � x � � and t > 0. A boundary value problem consists of choosing the 
value 

� � 00,u t u�  

such that the equation  

� �1 1 1,u x t u�  

 is satisfied.  Arbitrary values 

1 1
1,

2 2
x u�

� �  

and  

1 1t �  

are used for illustration of the solution process. The one-parameter equation  

� �1 1 1, 0u x t u� �  

The variables are changed to 

� � � � 0, ,v x t u x t u� �  

 that v(0, t) = 0. The function v(x, t) satisfies the differential equation. The one-parameter equation 
solved is therefore 

 � � � �1 1 1 0, 0v x t u u� � �  

To solve this equation for 0u , use the standard technique of the variational equation, 

0

vw
u
�

�
�  

Thus 
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2

w w
t x

� �

� �
�  

Since the initial data for 

� � 0,0v x u� �  

the variational equation initial condition is  

w(x, 0) = �1 

This model problem illustrates the method of lines and Galerkin principle implemented with the 
differential-algebraic solver, D2SPG (IMSL 2003, pp. 889�911). We use the integrator in “reverse 
communication” mode for evaluating the required functions, derivatives, and solving linear 
algebraic equations. See Example 4 of routine DASPG (IMSL 2003, pp. 908�911) for a problem 
that uses reverse communication. Next see Example 4 of routine IVPAG (IMSL 2003, pp. 867-
870) for the development of the piecewise-linear Galerkin discretization method to solve the 
differential equation. This present example extends parts of both previous examples and illustrates 
Fortran 90 constructs. It further illustrates how a user can deal with a defect of an integrator that 
normally functions using only dense linear algebra factorization methods for solving the corrector 
equations. See the comments in Brenan et al. (1989, esp. p. 137). Also, see operator_ex20, 
Chapter 10. 

 
      use lin_sol_tri_int  
      use rand_gen_int  
      use Numerical_Libraries  
  
      implicit none  
  
! This is Example 4 for LIN_SOL_TRI.  
  
      integer, parameter :: n=1000, ichap=5, iget=1, iput=2, &  
         inum=6, irnum=7  
      real(kind(1e0)), parameter :: zero=0e0, one = 1e0  
      integer    i, ido, in(50), inr(20), iopt(6), ival(7), &  
                iwk(35+n)  
      real(kind(1e0))      hx, pi_value, t, u_0, u_1, atol, rtol, sval(2), &  
                tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &  
                a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &  
                t_g(n), t_diag(2*n,1), t_upper(2*n,1), &  
                t_lower(2*n,1), t_sol(2*n,1)  
      type(s_options) :: iopti(2)=s_options(0,zero)  
  
      character(2) :: pi(1) = 'pi'  
! Define initial data.  
      t = 0.0e0  
      u_0 = 1  
      u_1 = 0.5  
      tend = one  
  
! Initial values for the variational equation.  
      y = -one; ypr= zero  
      pi_value = const(pi)  
      hx = pi_value/(n+1)  
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      a_diag = 2*hx/3  
      a_off  = hx/6  
      r_diag = -2/hx  
      r_off  = 1/hx  
        
! Get integer option numbers.  
      iopt(1) = inum  
      call iumag ('math', ichap, iget, 1, iopt, in)  
  
! Get floating point option numbers.  
      iopt(1) = irnum  
      call iumag ('math', ichap, iget, 1, iopt, inr)  
  
! Set for reverse communication evaluation of the DAE.  
      iopt(1) = in(26)  
      ival(1) = 0  
! Set for use of explicit partial derivatives.  
      iopt(2) = in(5)  
      ival(2) = 1  
! Set for reverse communication evaluation of partials.  
      iopt(3) = in(29)  
      ival(3) = 0  
! Set for reverse communication solution of linear equations.  
      iopt(4) = in(31)  
      ival(4) = 0  
! Storage for the partial derivative array are not allocated or   
! required in the integrator.  
      iopt(5) = in(34)  
      ival(5) = 1  
! Set the sizes of iwk, wk for internal checking.  
      iopt(6) = in(35)  
      ival(6) = 35 + n  
      ival(7) = 41 + 11*n  
! Set integer options:  
      call iumag ('math', ichap, iput, 6, iopt, ival)  
! Reset tolerances for integrator:  
      atol = 1e-3; rtol= 1e-3  
      sval(1) = atol; sval(2) = rtol  
      iopt(1) = inr(5)  
! Set floating point options:  
      call sumag ('math', ichap, iput, 1, iopt, sval)  
! Integrate ODE/DAE.  Use dummy external names for g(y,y')  
! and partials.  
      ido = 1  
      Integration_Loop: do  
  
          call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)  
! Find where g(y,y') goes.  (It only goes in one place here, but can  
! vary where divided differences are used for partial derivatives.)  
          iopt(1) = in(27)  
          call iumag ('math', ichap, iget, 1, iopt, ival)  
! Direct user response:  
        select case(ido)  
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        case(1,4)  
! This should not occur.  
          write (*,*) ' Unexpected return with ido = ', ido  
          stop  
  
        case(3)  
! Reset options to defaults.  (This is good housekeeping but not   
! required for this problem.)  
          in = -in  
          call iumag ('math', ichap, iput, 50, in, ival)  
          inr = -inr  
          call sumag ('math', ichap, iput, 20, inr, sval)  
          exit Integration_Loop  
        case(5)  
! Evaluate partials of g(y,y').  
          t_y = y; t_ypr = ypr  
  
          t_g = r_diag*t_y + r_off*EOSHIFT(t_y,SHIFT=+1) &  
                          + EOSHIFT(r_off*t_y,SHIFT=-1) &  
            -  (a_diag*t_ypr + a_off*EOSHIFT(t_ypr,SHIFT=+1) &  
                             + EOSHIFT(a_off*t_ypr,SHIFT=-1))  
! Move data from the assumed size to assumed shape arrays.  
          do i=1, n  
             wk(ival(1)+i-1) = t_g(i)  
          end do  
          cycle Integration_Loop  
  
        case(6)  
! Evaluate partials of g(y,y').  
! Get value of c_j for partials.  
          iopt(1) = inr(9)  
          call sumag ('math', ichap, iget, 1, iopt, sval)  
  
! Subtract c_j from diagonals to compute (partials for y')*c_j.  
! The linear system is tridiagonal.  
          t_diag(1:n,1) = r_diag - sval(1)*a_diag  
          t_upper(1:n,1) = r_off - sval(1)*a_off  
          t_lower = EOSHIFT(t_upper,SHIFT=+1,DIM=1)  
  
          cycle Integration_Loop  
  
        case(7)  
! Compute the factorization.  
          iopti(1) = s_options(s_lin_sol_tri_factor_only,zero)  
          call lin_sol_tri (t_upper, t_diag, t_lower, &  
                  t_sol, iopt=iopti)  
          cycle Integration_Loop  
  
        case(8)  
! Solve the system.  
          iopti(1) = s_options(s_lin_sol_tri_solve_only,zero)  
! Move data from the assumed size to assumed shape arrays.  
          t_sol(1:n,1)=wk(ival(1):ival(1)+n-1)  
  
          call lin_sol_tri (t_upper, t_diag, t_lower, &  



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 57 

 

 

 

                    t_sol, iopt=iopti)  
  
! Move data from the assumed shape to assumed size arrays.  
          wk(ival(1):ival(1)+n-1)=t_sol(1:n,1)  
  
          cycle Integration_Loop  
  
        case(2)  
! Correct initial value to reach u_1 at t=tend.  
          u_0 = u_0 - (u_0*y(n/2) - (u_1-u_0)) / (y(n/2) + 1)  
  
! Finish up internally in the integrator.  
          ido = 3  
          cycle Integration_Loop  
      end select  
      end do Integration_Loop  
  
      write (*,*) 'The equation u_t = u_xx, with u(0,t) = ', u_0  
      write (*,*) 'reaches the value ',u_1, ' at time = ', tend, '.'  
      write (*,*) 'Example 4 for LIN_SOL_TRI is correct.'  
  
      end  

Output 
 
Example 4 for LIN_SOL_TRI is correct. 
 

Fatal, Terminal, and Warning Error Messages 
See the messages.gls file for error messages for lin_sol_tri. These error messages are 
numbered 1081�1086; 1101�1106; 1121�1126; 1141�1146. 

LIN_SVD 
Computes the singular value decomposition (SVD) of a rectangular matrix, A. This gives the de-
composition  

TA USV�  

where V is an n � n orthogonal matrix, U is an m � m orthogonal matrix, and S is a real, 
rectangular diagonal matrix. 

Required Arguments 
A —    Array of size m � n containing the matrix. (Input [/Output]) 

S —    Array of size min(m, n) containing the real singular values. These nonnegative values 
are in non-increasing order. (Output) 

U —    Array of size m � m containing the singular vectors, U. (Output) 
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V—    Array of size n � n containing the singular vectors, V. (Output) 

Optional Arguments 
MROWS = m   (Input) 

Uses array A(1:m, 1:n) for the input matrix. 
Default: m = size(A, 1) 

NCOLS = n   (Input) 
Uses array A(1:m, 1:n) for the input matrix. 
Default: n = size(A, 2) 

RANK = k   (Output) 
Number of singular values that exceed the value Small. RANK will satisfy k <= min(m, 
n). 

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix. Used for passing 
optional data to the routine. The options are as follows: 

 
Packaged Options for LIN_SVD 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_svd_set_small 1 

s_, d_, c_, z_ lin_svd_overwrite_input 2 

s_, d_, c_, z_ lin_svd_scan_for_NaN 3 

s_, d_, c_, z_ lin_svd_use_qr 4 

s_, d_, c_, z_ lin_svd_skip_orth 5 

s_, d_, c_, z_ lin_svd_use_gauss_elim 6 

s_, d_, c_, z_ lin_svd_set_perf_ratio 7 
 

iopt(IO) = ?_options(?_lin_svd_set_small, Small) 
If a singular value is smaller than Small, it is defined as zero for the purpose of 
computing the rank of A.  
Default: the smallest number that can be reciprocated safely  

iopt(IO) = ?_options(?_lin_svd_overwrite_input, ?_dummy) 
Does not save the input array A(:, :). 

iopt(IO) = ?_options(?_lin_svd_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that  

isNaN(a(i,j)) == .true.  
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See the isNaN() function, Chapter 10. 
Default: The array is not scanned for NaNs. 

iopt(IO) = ?_options(?_lin_svd_use_qr, ?_dummy) 
Uses a rational QR algorithm to compute eigenvalues. Accumulate the singular vectors 
using this algorithm. 
Default: singular vectors computed using inverse iteration 

iopt(IO) = ?_options(?_lin_svd_skip_Orth, ?_dummy) 
If the eigenvalues are computed using inverse iteration, skips the final 
orthogonalization of the vectors. This method results in a more efficient computation. 
However, the singular vectors, while a complete set, may not be orthogonal. 
Default: singular vectors are orthogonalized if obtained using inverse iteration 

iopt(IO) = ?_options(?_lin_svd_use_gauss_elim, ?_dummy) 
If the eigenvalues are computed using inverse iteration, uses standard elimination with 
partial pivoting to solve the inverse iteration problems. 
Default: singular vectors computed using cyclic reduction 

iopt(IO) = ?_options(?_lin_svd_set_perf_ratio, perf_ratio) 
Uses residuals for approximate normalized singular vectors if they have a performance 
index no larger than perf_ratio. Otherwise an alternate approach is taken and the 
singular vectors are computed again: Standard elimination is used instead of cyclic 
reduction, or the standard QR algorithm is used as a backup procedure to inverse 
iteration. Larger values of perf_ratio are less likely to cause these exceptions. 
Default: perf_ratio = 4 

FORTRAN 90 Interface 
Generic: CALL LIN_SVD (A, S, U, V[,…]) 

Specific: The specific interface names are S_LIN_SVD, D_LIN_SVD, C_LIN_SVD, and 
Z_LIN_SVD. 

Example 1: Computing the SVD 
The SVD of a square, random matrix A is computed. The residuals R = AV � US are small with respect 
to working precision. Also, see operator_ex21, Chapter 10. 

 

      use lin_svd_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 1 for LIN_SVD.  
  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) err  
      real(kind(1d0)), dimension(n,n) :: A, U, V, S(n), y(n*n)  
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! Generate a random n by n matrix.  
      call rand_gen(y)  
      A = reshape(y,(/n,n/))  
  
! Compute the singular value decomposition.  
      call lin_svd(A, S, U, V)  
  
! Check for small residuals of the expression A*V - U*S.  
      err = sum(abs(matmul(A,V) - U*spread(S,dim=1,ncopies=n))) &  
                   / sum(abs(S))  
      if (err  <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_SVD is correct.'  
      end if  
      end   

Output 
 
Example 1 for LIN_SVD is correct. 

Description 
Routine lin_svd is an implementation of the QR algorithm for computing the SVD of 
rectangular matrices. An orthogonal reduction of the input matrix to upper bidiagonal form is 
performed. Then, the SVD of a real bidiagonal matrix is calculated. The orthogonal decomposition 
AV = US results from products of intermediate matrix factors. See Golub and Van Loan (1989, 
Chapter 8) for details. 

Additional Examples 

Example 2: Linear Least Squares with a Quadratic Constraint 
An m � n matrix equation Ax � b, m > n, is approximated in a least-squares sense. The matrix b is 
size m � k. Each of the k solution vectors of the matrix x is constrained to have Euclidean length of 
value �j > 0. The value of �i is chosen so that the constrained solution is 0.25 the length of the 
nonregularized or standard least-squares equation. See Golub and Van Loan (1989, Chapter 12) 
for more details. In the Example 2 code, Newton’s method is used to solve for each regularizing 
parameter of the k systems. The solution is then computed and its length is checked. Also, see 
operator_ex22, Chapter 10. 

 
      use lin_svd_int  
      use rand_gen_int   
  
      implicit none  
  
! This is Example 2 for LIN_SVD.  
  
      integer, parameter :: m=64, n=32, k=4  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) a(m,n), s(n), u(m,m), v(n,n), y(m*max(n,k)), &  
             b(m,k), x(n,k), g(m,k), alpha(k), lamda(k), &   
             delta_lamda(k), t_g(n,k), s_sq(n), phi(n,k), &  
             phi_dot(n,k), rand(k), err  
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! Generate a random matrix for both A and B.  
      call rand_gen(y)  
      a = reshape(y,(/m,n/))  
  
      call rand_gen(y)  
      b = reshape(y,(/m,k/))  
  
! Compute the singular value decomposition.  
      call lin_svd(a, s, u, v)  
  
! Choose alpha so that the lengths of the regularized solutions  
! are 0.25 times lengths of the non-regularized solutions.  
  
      g = matmul(transpose(u),b)  
      x = matmul(v,spread(one/s,dim=2,ncopies=k)*g(1:n,1:k))  
      alpha = 0.25*sqrt(sum(x**2,dim=1))  
  
      t_g = g(1:n,1:k)*spread(s,dim=2,ncopies=k)  
      s_sq = s**2; lamda = zero  
  
      solve_for_lamda:  do  
         x=one/(spread(s_sq,dim=2,ncopies=k)+ &  
                    spread(lamda,dim=1,ncopies=n))  
         phi = (t_g*x)**2; phi_dot = -2*phi*x  
         delta_lamda = (sum(phi,dim=1)-alpha**2)/sum(phi_dot,dim=1)  
  
! Make Newton method correction to solve the secular equations for  
! lamda.  
         lamda = lamda - delta_lamda  
  
         if (sum(abs(delta_lamda)) <= &  
             sqrt(epsilon(one))*sum(lamda)) &  
                         exit solve_for_lamda  
  
! This is intended to fix up negative solution approximations.  
         call rand_gen(rand)  
         where (lamda < 0) lamda = s(1) * rand  
  
      end do solve_for_lamda  
  
! Compute solutions and check lengths.  
      x = matmul(v,t_g/(spread(s_sq,dim=2,ncopies=k)+ &  
                       spread(lamda,dim=1,ncopies=n)))  
  
      err = sum(abs(sum(x**2,dim=1) - alpha**2))/sum(abs(alpha**2))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 2 for LIN_SVD is correct.'  
      end if  
  
      end   

Output 
 
Example 2 for LIN_SVD is correct. 
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Example 3: Generalized Singular Value Decomposition 
The n � n matrices A and B are expanded in a Generalized Singular Value Decomposition 
(GSVD). Two n � n orthogonal matrices, U and V, and a nonsingular matrix X are computed such 
that 

� �1, , nAX Udiag c c� �  

and  

� �1, , nBX Vdiag s s� �  

The values is  and ic i are normalized so that 

2 2 1i is c� �  

The ic are nonincreasing, and the is  are nondecreasing. See Golub and Van Loan (1989, Chapter 
8) for more details. Our method is based on computing three SVDs as opposed to the QR 
decomposition and two SVDs outlined in Golub and Van Loan. As a bonus, an SVD of the matrix 
X is obtained, and you can use this information to answer further questions about its conditioning. 
This form of the decomposition assumes that the matrix 

A
D

B
� �

� � �
� �

 

has all its singular values strictly positive. For alternate problems, where some singular values of 
D are zero, the GSVD becomes  

� �1, ,T
nU A diag c c W� �  

 and  

� �1, ,T
nV B diag s s W� �  

The matrix W has the same singular values as the matrix D. Also, see operator_ex23, Chapter 
10. 

 
      use lin_svd_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 3 for LIN_SVD.  
  
      integer, parameter :: n=32  
      integer i  
      real(kind(1d0)), parameter :: one=1.0d0  
      real(kind(1d0)) a(n,n), b(n,n), d(2*n,n), x(n,n), u_d(2*n,2*n), &  
             v_d(n,n), v_c(n,n), u_c(n,n), v_s(n,n), u_s(n,n), &  
             y(n*n), s_d(n), c(n), s(n), sc_c(n), sc_s(n), &  
             err1, err2  
  
! Generate random square matrices for both A and B.  
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      call rand_gen(y)  
      a = reshape(y,(/n,n/))  
  
      call rand_gen(y)  
      b = reshape(y,(/n,n/))  
  
! Construct D; A is on the top; B is on the bottom.  
  
      d(1:n,1:n) = a  
      d(n+1:2*n,1:n) = b  
   
! Compute the singular value decompositions used for the GSVD.  
  
      call lin_svd(d, s_d, u_d, v_d)  
      call lin_svd(u_d(1:n,1:n), c, u_c, v_c)  
      call lin_svd(u_d(n+1:,1:n), s, u_s, v_s)  
  
! Rearrange c(:) so it is non-increasing.  Move singular   
! vectors accordingly.  (The use of temporary objects sc_c and  
! x is required.)  
  
      sc_c = c(n:1:-1); c = sc_c  
      x = u_c(1:n,n:1:-1); u_c = x  
      x = v_c(1:n,n:1:-1); v_c = x  
  
! The columns of v_c and v_s have the same span.  They are   
! equivalent by taking the signs of the largest magnitude values  
! positive.  
  
      do i=1, n  
         sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(1:n,i)))),i))  
         sc_s(i) = sign(one,v_s(sum(maxloc(abs(v_s(1:n,i)))),i))  
      end do  
  
      v_c = v_c*spread(sc_c,dim=1,ncopies=n)  
      u_c = u_c*spread(sc_c,dim=1,ncopies=n)  
  
      v_s = v_s*spread(sc_s,dim=1,ncopies=n)  
      u_s = u_s*spread(sc_s,dim=1,ncopies=n)  
  
! In this form of the GSVD, the matrix X can be unstable if D  
! is ill-conditioned.  
      x = matmul(v_d*spread(one/s_d,dim=1,ncopies=n),v_c)  
  
! Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and  
! B*X = u_s*diag(s_1, ..., s_n).  
      err1 = sum(abs(matmul(a,x) - u_c*spread(c,dim=1,ncopies=n))) &  
              / sum(s_d)  
      err2 = sum(abs(matmul(b,x) - u_s*spread(s,dim=1,ncopies=n))) &  
              / sum(s_d)  
      if (err1 <= sqrt(epsilon(one)) .and. &  
          err2 <= sqrt(epsilon(one))) then  
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         write (*,*) 'Example 3 for LIN_SVD is correct.'  
      end if  
  
      end   
 

Example 4: Ridge Regression as Cross-Validation with Weighting 
This example illustrates a particular choice for the ridge regression problem: The least-squares 
problem Ax � b is modified by the addition of a regularizing term to become 

� �2 22
2 2

min x Ax b x�� �  

The solution to this problem, with row k deleted, is denoted by xk(�). Using nonnegative weights 
(w1, �, wm), the cross-validation squared error C(�) is given by: 

� � � �� �
2

1

m
T

k k k k
k

mC w a x b� �

�

� ��  
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This expression is minimized. See Golub and Van Loan (1989, Chapter 12) for more details. In the 
Example 4 code, mC(�), at p = 10 grid points are evaluated using a log-scale with respect to �, 

1 10.1 10s s�� � .  Array operations and intrinsics are used to evaluate the function and then to 
choose an approximate minimum. Following the computation of the optimum �, the regularized 
solutions are computed. Also, see operator_ex24, Chapter 10. 

 
      use lin_svd_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 4 for LIN_SVD.  
  
      integer i  
      integer, parameter :: m=32, n=16, p=10, k=4  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) log_lamda, log_lamda_t, delta_log_lamda  
      real(kind(1d0)) a(m,n), b(m,k), w(m,k), g(m,k), t(n), s(n), &  
              s_sq(n), u(m,m), v(n,n), y(m*max(n,k)),  &  
              c_lamda(p,k), lamda(k), x(n,k), res(n,k)  
  
! Generate random rectangular matrices for A and right-hand  
! sides, b.  
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      call rand_gen(y)  
      a = reshape(y,(/m,n/))  
  
      call rand_gen(y)  
      b = reshape(y,(/m,k/))  
  
! Generate random weights for each of the right-hand sides.  
      call rand_gen(y)  
      w = reshape(y,(/m,k/))  
  
! Compute the singular value decomposition.  
      call lin_svd(a, s, u, v)  
  
      g = matmul(transpose(u),b)  
      s_sq = s**2  
  
      log_lamda = log(10.*s(1)); log_lamda_t=log_lamda  
      delta_log_lamda = (log_lamda - log(0.1*s(n))) / (p-1)  
  
! Choose lamda to minimize the "cross-validation" weighted  
! square error.  First evaluate the error at a grid of points,  
! uniform in log_scale.  
  
      cross_validation_error:  do i=1, p  
         t = s_sq/(s_sq+exp(log_lamda))  
         c_lamda(i,:) = sum(w*((b-matmul(u(1:m,1:n),g(1:n,1:k)* &  
                             spread(t,DIM=2,NCOPIES=k)))/ &  
                      (one-matmul(u(1:m,1:n)**2, &  
                         spread(t,DIM=2,NCOPIES=k))))**2,DIM=1)  
         log_lamda = log_lamda - delta_log_lamda  
      end do cross_validation_error  
  
! Compute the grid value and lamda corresponding to the minimum.  
      do i=1, k  
         lamda(i) = exp(log_lamda_t -  delta_log_lamda* &  
                              (sum(minloc(c_lamda(1:p,i)))-1))  
      end do  
  
! Compute the solution using the optimum "cross-validation"   
! parameter.  
      x = matmul(v,g(1:n,1:k)*spread(s,DIM=2,NCOPIES=k)/ &  
                     (spread(s_sq,DIM=2,NCOPIES=k)+ &  
                      spread(lamda,DIM=1,NCOPIES=n)))  
! Check the residuals, using normal equations.  
      res = matmul(transpose(a),b-matmul(a,x)) - &  
                    spread(lamda,DIM=1,NCOPIES=n)*x  
      if (sum(abs(res))/sum(s_sq) <= &  
              sqrt(epsilon(one))) then  
         write (*,*) 'Example 4 for LIN_SVD is correct.'  
      end if  
  
      end  
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Output 
 
Example 4 for LIN_SVD is correct. 

Fatal, Terminal, and Warning Error Messages 
See the messages.gls file for error messages for lin_svd. These error messages are numbered 
1001�1010; 1021�1030; 1041�1050; 1061�1070. 
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Parallel Constrained Least-Squares Solvers 
 

 Solving Constrained Least-Squares Systems 
The routine PARALLEL_NONNEGATIVE_LSQ is used to solve dense least-
squares systems.  These are represented by Ax b�  where A is an m n�  
coefficient data matrix, b is a given right-hand side m -vector, and x  is the 
solution n -vector being computed.  Further, there is a constraint requirement, 

0x � .  The routine PARALLEL_BOUNDED_LSQ is used when the problem has 
lower and upper bounds for the solution, x� �� � .  By making the bounds 
large, individual constraints can be eliminated.  There are no restrictions on  the 
relative sizes of  m  and n .  When n  is large,  these codes can substantially 
reduce computer time and storage requirements, compared with using a routine 
for solving a constrained system and a single processor. 

The user provides the matrix partitioned by blocks of columns: 
� �1 2| | ... | kA A A A� .  An individual block of the partitioned matrix, say pA , is 

located entirely on the processor with rank MP_RANK= 1p � , where MP_RANK 
is packaged in the module MPI_SETUP_INT.  This module, and the function 
MP_SETUP(),define the Fortran Library MPI communicator, 
MP_LIBRARY_WORLD.  See Chapter 10, Parallelism Using MPI. 

PARALLEL_NONNEGATIVE_LSQ 
 

MPI REQUIRED

 

Solves a linear, non-negative constrained least-squares system. 

 Usage Notes 
CALL PARALLEL_NONNEGATIVE_LSQ& 

  (A,B,X,RNORM,W,INDEX,IPART,IOPT = IOPT) 

Required Arguments 
A(1:M,:)— (Input/Output)  Columns of the matrix with limits given by entries in 

the array IPART(1:2,1:max(1,MP_NPROCS)).  On output kA  is 
replaced by the product kQA , where Q is an orthogonal matrix.  The value 
SIZE(A,1) defines the value of M.  Each processor starts and exits with its 
piece of the partitioned matrix. 
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B(1:M) — (Input/Output)  Assumed-size array of length M containing the right-
hand side vector, b . On output b  is replaced by the product Qb , where 
Q is the orthogonal matrix applied to A .  All processors in the 
communicator start and exit with the same vector. 

X(1:N) — (Output)  Assumed-size array of length N containing the solution, 
0x � .  The value SIZE(X) defines the value of  N.  All processors exit 

with the same vector. 

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of 
the residual vector, Ax b� .  All processors exit with the same value. 

W(1:N) — (Output)  Assumed-size array of length N containing the dual vector, 
� � 0Tw A b Ax� � � .  All processors exit with the same vector. 

INDEX(1:N) — (Output)  Assumed-size array of length N containing the NSETP 
indices of columns in the positive solution, and the remainder that are at 
their constraint.  The  number of positive components in the solution x is 
give by the Fortran intrinsic function value,  
NSETP=COUNT(X > 0).  All processors exit with the same array. 

IPART(1:2,1:max(1,MP_NPROCS)) — (Input)  Assumed-size array containing 
the partitioning describing the matrix A .  The value MP_NPROCS is the 
number of processors in the communicator,  
except when MPI has been finalized with a call to the routine 
MP_SETUP(‘Final’).  This causes MP_NPROCS to be assigned 0.  
Normally users will give the partitioning to processor of rank = 
MP_RANK by setting IPART(1,MP_RANK+1)= first column index, and 
IPART(2,MP_RANK+1)= last column index.   The number of columns per 
node is typically based on their relative computing power.  To avoid a 
node with rank MP_RANK doing any work except communication, set 
IPART(1,MP_RANK+1) = 0 and IPART(2,MP_RANK+1)= -1.  In this 
exceptional case there is no reference to the array A(:,:) at that node. 

Optional Argument 
IOPT(:)— (Input)  Assumed-size array of derived type S_OPTIONS or 

D_OPTIONS.  This argument is used to change internal parameters of the 
algorithm.  Normally users will not be concerned about this argument, so 
they would not include it in the argument list for the routine. 
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Packaged Options for PARALLEL_NONNEGATIVE_LSQ 
Option Name Option Value 

PNLSQ_SET_TOLERANCE 1 

PNLSQ_SET_MAX_ITERATIONS 2 

PNLSQ_SET_MIN_RESIDUAL 3 

 

 IOPT(IO)=?_OPTIONS(PNLSQ_SET_TOLERANCE, TOLERANCE) Replaces the 
default rank tolerance for using a column, from EPSILON(TOLERANCE) 
to TOLERANCE.  Increasing the value of TOLERANCE will cause fewer 
columns to be moved from their constraints, and may  cause the minimum 
residual RNORM to increase. 

IOPT(IO)=?_OPTIONS(PNLSQ_SET_MIN_RESIDUAL, RESID) Replaces the 
default target for the minimum residual vector length from 0 to RESID.  
Increasing the value of RESID can result in fewer iterations and thus 
increased efficiency. The descent in the optimization will stop at the first 
point where the minimum residual RNORM is smaller than RESID. Using 
this option may result in the dual vector not satisfying its optimality 
conditions, as noted above. 

IOPT(IO)= PNLSQ_SET_MAX_ITERATIONS 

IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number 
of iterations from 3*N to NEW_MAX_ITERATIONS.  Note that this option 
requires two entries in the derived type array. 

FORTRAN 90 Interface 
Generic:    CALL PARALLEL_NONNEGATIVE_LSQ (A, B, X, 

RNORM, W, INDEX, IPART[,…]) 

Specific:    The specific interface names are S_PARALLEL_NONNEGATIVE_LSQ 
and D_PARALLEL_NONNEGATIVE_LSQ. 

Example 1: Distributed Linear Inequality 
Constraint Solver 
The program PNLSQ_EX1 illustrates the computation of the minimum 
Euclidean length solution of an ' 'm n�  system of linear inequality constraints , 
Gy h� .  The solution algorithm is based on Algorithm LDP, page 165-166, 
loc. cit.  The rows of � �:E G h� are partitioned and assigned random values.  
When the minimum Euclidean length solution to the inequalities has been 
calculated, the residuals 0r Gy h� � �  are computed, with the dual variables 
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to the NNLS problem indicating  the entries of  r  that are precisely zero. 

The fact that matrix products involving both E  and TE  are needed to compute 
the constrained solution y  and the residuals r , implies that message passing is 
required.  This occurs after the NNLS solution is computed. 

      PROGRAM PNLSQ_EX1 
! Use Parallel_nonnegative_LSQ to solve an inequality 
! constraint problem, Gy >= h. This algorithm uses 
! Algorithm LDP of Solving Least Squares Problems, 
! page 165. The constraints are allocated to the 
! processors, by rows, in columns of the array A(:,:). 
        USE PNLSQ_INT 
        USE MPI_SETUP_INT 
        USE RAND_INT 
        USE SHOW_INT 
 
        IMPLICIT NONE 
        INCLUDE "mpif.h" 
 
        INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, N=MP 
 
        REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0 
        REAL(KIND(1D0)), ALLOCATABLE :: & 
          A(:,:), B(:), X(:), Y(:), W(:), ASAVE(:,:) 
        REAL(KIND(1D0)) RNORM 
        INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:) 
 
        INTEGER K, L, DN, J, JSHIFT, IERROR 
        LOGICAL :: PRINT=.false. 
 
! Setup for MPI: 
        MP_NPROCS=MP_SETUP() 
 
        DN=N/max(1,max(1,MP_NPROCS))-1 
        ALLOCATE(IPART(2,max(1,MP_NPROCS))) 
 
! Spread constraint rows evenly to the processors. 
        IPART(1,1)=1 
        DO L=2,MP_NPROCS 
           IPART(2,L-1)=IPART(1,L-1)+DN 
           IPART(1,L)=IPART(2,L-1)+1 
        END DO 
        IPART(2,MP_NPROCS)=N 
 
! Define the constraint data using random values. 
        K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1) 
        ALLOCATE(A(M,K), ASAVE(M,K), X(N), W(N), & 
          B(M), Y(M), INDEX(N)) 
 
! The use of ASAVE can be removed by regenerating 
! the data for A(:,:) after the return from 
! Parallel_nonnegative_LSQ. 
        A=rand(A); ASAVE=A 
        IF(MP_RANK == 0 .and. PRINT) & 
          CALL SHOW(IPART, & 
            "Partition of the constraints to be solved") 
 
! Set the right-hand side to be one in the last component, zero elsewhere. 
        B=ZERO;B(M)=ONE 
 
! Solve the dual problem. 
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        CALL Parallel_nonnegative_LSQ & 
          (A, B, X, RNORM, W, INDEX, IPART) 
 
! Each processor multiplies its block times the part of 
! the dual corresponding to that part of the partition. 
        Y=ZERO 
        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1) 
           JSHIFT=J-IPART(1,MP_RANK+1)+1 
           Y=Y+ASAVE(:,JSHIFT)*X(J) 
        END DO 
 
! Accumulate the pieces from all the processors. Put sum into B(:) 
! on rank 0 processor. 
        B=Y 
        IF(MP_NPROCS > 1) & 
          CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,& 
           MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR) 
        IF(MP_RANK == 0) THEN 
 
! Compute constrained solution at the root. 
! The constraints will have no solution if B(M) = ONE. 
! All of these example problems have solutions. 
           B(M)=B(M)-ONE;B=-B/B(M) 
        END IF 
 
! Send the inequality constraint solution to all nodes. 
      IF(MP_NPROCS > 1) & 
        CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, & 
         0, MP_LIBRARY_WORLD, IERROR) 
 
! For large problems this printing needs to be removed. 
      IF(MP_RANK == 0 .and. PRINT) & 
 CALL SHOW(B(1:NP), & 
          "Minimal length solution of the constraints") 
 
! Compute residuals of the individual constraints. 
! If only the solution is desired, the program ends here. 
        X=ZERO 
        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1) 
           JSHIFT=J-IPART(1,MP_RANK+1)+1 
           X(J)=dot_product(B,ASAVE(:,JSHIFT)) 
        END DO 
 
! This cleans up residuals that are about rounding 
! error unit (times) the size of the constraint 
! equation and right-hand side.  They are replaced 
! by exact zero. 
        WHERE(W == ZERO) X=ZERO; W=X 
 
! Each group of residuals is disjoint, per processor. 
! We add all the pieces together for the total set of 
! constraints. 
        IF(MP_NPROCS > 1) & 
          CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION,& 
            MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR) 
        IF(MP_RANK == 0 .and. PRINT) & 
          CALL SHOW(W, "Residuals for the constraints") 
 
! See to any errors and shut down MPI. 
        MP_NPROCS=MP_SETUP('Final') 
        IF(MP_RANK == 0) THEN 
          IF(COUNT(W < ZERO) == 0) WRITE(*,*)& 
          " Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct." 
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 END IF 
     END 

Output 
 

Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct. 

Description 
Subroutine PARALLEL_NONNEGATIVE_LSQ solves the linear least-squares system 

, 0Ax b x� � , using the algorithm NNLS found in Lawson and Hanson, (1995), 
pages 160-161.  The code now updates the dual vector w  of  Step 2, page 161.  
The remaining new steps involve exchange of required data, using MPI. 

 

Additional Examples 

Example 2: Distributed Non-negative Least-Squares 
The program PNLSQ_EX2 illustrates the computation of the solution to a system of linear least-
squares equations with simple constraints: , 1,..., ,T

i ia x b i m� � subject to 0x � .  In this example 

we write the row vectors :T
i ia b� �� �  on a file.  This illustrates reading the data by rows and 

arranging the data by columns, as required by PARALLEL_NONNEGATIVE_LSQ.  After reading the 
data, the right-hand side vector is broadcast to the group before computing a solution, x .  The 
block-size is chosen so that each participating processor receives the same number of columns, 
except any remaining columns sent to the processor with largest rank.  This processor contains the 
right-hand side before the broadcast. 

   This example illustrates connecting a BLACS ‘context’ handle and the  
   Fortran Library MPI communicator, MP_LIBRARY_WORLD, described  
   in Chapter 10.   
 

 
   PROGRAM PNLSQ_EX2 
! Use Parallel_Nonnegative_LSQ to solve a least-squares 
! problem, A x = b, with x >= 0. This algorithm uses a 
! distributed version of NNLS,  found in the book 
! Solving Least Squares Problems, page 165. The data is 
! read from a file, by rows, and sent to the processors, 
! as array columns. 
 
   USE PNLSQ_INT 
   USE SCALAPACK_IO_INT 
   USE BLACS_INT 
    
   USE MPI_SETUP_INT 
   USE RAND_INT 
   USE ERROR_OPTION_PACKET 
 
   IMPLICIT NONE 
   INCLUDE "mpif.h" 
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   INTEGER, PARAMETER :: M=128, N=32, NP=N+1, NIN=10 
    
   real(kind(1d0)), ALLOCATABLE, DIMENSION(:) :: & 
     d_A(:,:), A(:,:), B, C, W, X, Y 
   real(kind(1d0)) RNORM, ERROR 
   INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:) 
 
   INTEGER I, J, K, L, DN, JSHIFT, IERROR, & 
     CONTXT, NPROW, MYROW, MYCOL, DESC_A(9) 
   TYPE(d_OPTIONS) IOPT(1) 
 
! Routines with the "BLACS_" prefix are from the 
! BLACS library. 
   CALL BLACS_PINFO(MP_RANK, MP_NPROCS) 
 
! Make initialization for BLACS. 
   CALL BLACS_GET(0,0, CONTXT) 
 
! Define processor grid to be 1 by MP_NPROCS. 
   NPROW=1 
   CALL BLACS_GRIDINIT(CONTXT, 'N/A', NPROW, MP_NPROCS) 
 
! Get this processor's role in the process grid. 
   CALL BLACS_GRIDINFO(CONTXT, NPROW, MP_NPROCS, & 
     MYROW, MYCOL) 
 
! Connect BLACS context with communicator MP_LIBRARY_WORLD. 
   CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD) 
 
! Setup for MPI: 
   MP_NPROCS=MP_SETUP() 
 
   DN=max(1,NP/MP_NPROCS) 
   ALLOCATE(IPART(2,MP_NPROCS)) 
 
! Spread columns evenly to the processors.  Any odd 
! number of columns are in the processor with highest 
! rank. 
   IPART(1,:)=1; IPART(2,:)=0 
   DO L=2,MP_NPROCS 
     IPART(2,L-1)=IPART(1,L-1)+DN 
     IPART(1,L)=IPART(2,L-1)+1 
   END DO 
   IPART(2,MP_NPROCS)=NP 
   IPART(2,:)=min(NP,IPART(2,:)) 
 
! Note which processor (L-1) receives the right-hand side. 
   DO L=1,MP_NPROCS 
     IF(IPART(1,L) <= NP .and. NP <= IPART(2,L)) EXIT 
   END DO 
 
   K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1) 
   ALLOCATE(d_A(M,K), W(N), X(N), Y(N),& 
     B(M), C(M), INDEX(N)) 
 
   IF(MP_RANK == 0 ) THEN 
     ALLOCATE(A(M,N)) 
! Define the matrix data using random values. 
     A=rand(A); B=rand(B) 
 
! Write the rows of data to an external file. 
     OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN') 
     DO I=1,M 
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       WRITE(NIN,*) (A(I,J),J=1,N), B(I) 
     END DO 
     CLOSE(NIN) 
   ELSE 
 
! No resources are used where this array is not saved. 
     ALLOCATE(A(M,0))         
   END IF 
 
! Define the matrix descriptor.  This includes the 
! right-hand side as an additional column.  The row 
! block size, on each processor, is arbitrary, but is 
! chosen here to match the column block size. 
   DESC_A=(/1, CONTXT, M, NP, DN+1, DN+1, 0, 0, M/) 
 
! Read the data by rows. 
   IOPT(1)=ScaLAPACK_READ_BY_ROWS 
   CALL ScaLAPACK_READ ("Atest.dat", DESC_A, & 
    d_A, IOPT=IOPT) 
 
! Broadcast the right-hand side to all processors. 
   JSHIFT=NP-IPART(1,L)+1 
   IF(K > 0) B=d_A(:,JSHIFT) 
   IF(MP_NPROCS > 1) & 
     CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION , L-1, & 
       MP_LIBRARY_WORLD, IERROR) 
 
! Adjust the partition of columns to ignore the 
! last column, which is the right-hand side. It is 
! now moved to B(:). 
   IPART(2,:)=min(N,IPART(2,:)) 
 
! Solve the constrained distributed problem. 
       C=B 
       CALL Parallel_Nonnegative_LSQ & 
       (d_A, B, X, RNORM, W, INDEX, IPART) 
 
 
! Solve the problem on one processor, with data saved 
! for a cross-check. 
       IPART(2,:)=0; IPART(2,1)=N; MP_NPROCS=1 
 
! Since all processors execute this code, all arrays 
! must be allocated in the main program. 
       CALL Parallel_Nonnegative_LSQ & 
       (A, C, Y, RNORM, W, INDEX, IPART) 
 
! See to any errors. 
       CALL e1pop("Mp_Setup") 
 
! Check the differences in the two solutions.  Unique solutions 
! may differ in the last bits, due to rounding.   
   IF(MP_RANK == 0) THEN 
     ERROR=SUM(ABS(X-Y))/SUM(Y) 
     IF(ERROR <= sqrt(EPSILON(ERROR))) write(*,*) & 
       ' Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.' 
     OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD') 
     CLOSE(NIN, STATUS='Delete')       
   END IF 
 
 
! Exit from using this process grid. 
  CALL BLACS_GRIDEXIT( CONTXT ) 
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  CALL BLACS_EXIT(0) 
 
  END 

Output 
Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.' 

 

PARALLEL_BOUNDED_LSQ 
Solves a linear least-squares system with bounds on the unknowns. 

Usage Notes 
CALL PARALLEL_BOUNDED_LSQ & 
(A, B, BND, X, RNORM, W, INDEX, IPART,& 

  NSETP, NSETZ, IOPT=IOPT) 

Required Arguments 
A(1:M,:)— (Input/Output)  Columns of the matrix with limits given by entries in the 

array IPART(1:2,1:max(1,MP_NPROCS)).  On output kA  is replaced by the 
product kQA , where Q is an orthogonal matrix.  The value SIZE(A,1) defines the 
value of M.  Each processor starts and exits with its piece of the partitioned matrix. 

B(1:M) — (Input/Output)  Assumed-size array of length M containing the right-hand side 
vector, b . On output b  is replaced by the product � �Q b Ag� , where Q is the 
orthogonal matrix applied to A  and g  is a set of active bounds for the solution.  
All processors in the communicator start and exit with the same vector. 

BND(1:2,1:N) — (Input)  Assumed-size array containing the bounds for x .  The lower 
bound j�  is in BND(1,J), and the upper bound j�  is in BND(2,J). 

X(1:N) — (Output)  Assumed-size array of length N containing the solution, x� �� � .  
The value SIZE(X) defines the value of  N.  All processors exit with the same 
vector. 

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the 
residual vector, Ax b� .  All processors exit with the same value. 

W(1:N) — (Output)  Assumed-size array of length N containing the dual vector, 
� �Tw A b Ax� � .  At a solution exactly one of the following is true for each 

,1 ,j j n� �  
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All processors exit with the same vector. 

INDEX(1:N) — (Output)  Assumed-size array of length N containing the NSETP indices 
of columns in the solution interior to bounds, and the remainder that are at a 
constraint. All processors exit with the same array. 

IPART(1:2,1:max(1,MP_NPROCS)) — (Input)  Assumed-size array containing the 
partitioning describing the matrix A .  The value MP_NPROCS is the number of 
processors in the communicator, except when MPI has been finalized with a call to 
the routine MP_SETUP(‘Final’).  This causes MP_NPROCS to be assigned 0.   
Normally users will give the partitioning to processor of rank = MP_RANK by 
setting IPART(1,MP_RANK+1)= first column index, and IPART(2,MP_RANK+1)= 
last column index.   The number of columns per node is typically based on their 
relative computing power.  To avoid a node with rank MP_RANK doing any work 
except communication, set IPART(1,MP_RANK+1) = 0 and 
IPART(2,MP_RANK+1)= -1.  In this exceptional case there is no reference to the 
array A(:,:) at that node. 

NSETP— (Output) An INTEGER indicating the number of solution  components not at 
constraints.  The column indices are output in the array INDEX(:). 

NSETZ— (Output) An INTEGER indicating the solution  components held at fixed 
values.  The column indices are output in the array INDEX(:). 

Optional Argument 

IOPT(:)— (Input)  Assumed-size array of derived type S_OPTIONS or D_OPTIONS.  
This argument is used to change internal parameters of the algorithm.  Normally 
users will not be concerned about this argument, so they would not include it in the 
argument list for the routine.   

 

 

Packaged Options for PARALLEL_BOUNDED_LSQ 
Option Name Option Value 

PBLSQ_SET_TOLERANCE 1 
PBLSQ_SET_MAX_ITERATIONS 2 
PBLSQ_SET_MIN_RESIDUAL 3 
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IOPT(IO)=?_OPTIONS(PBLSQ_SET_TOLERANCE, TOLERANCE) Replaces the default rank 
tolerance for using a column, from EPSILON(TOLERANCE) to TOLERANCE.  Increasing the 
value of TOLERANCE will cause fewer columns to be increased from their constraints, and may  
cause the minimum residual RNORM to increase. 

IOPT(IO)=?_OPTIONS(PBLSQ_SET_MIN_RESIDUAL, RESID) Replaces the default target for the 
minimum residual vector length from 0 to RESID.  Increasing the value of RESID can result in 
fewer iterations and thus increased efficiency. The descent in the optimization will stop at the 
first point where the minimum residual RNORM is smaller than RESID.  Using this option may 
result in the dual vector not satisfying its optimality conditions, as noted above. 

IOPT(IO)= PBLSQ_SET_MAX_ITERATIONS 

IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number of iterations from 
3*N to NEW_MAX_ITERATIONS.  Note that this option requires two entries in the derived type 
array. 

FORTRAN 90 Interface 
Generic: CALL PARALLEL_BOUNDED_LSQ (A, B, X[,…]) 

Specific:  The specific interface names are S_PARALLEL_BOUNDED_LSQ and 
D_PARALLEL_BOUNDED_LSQ. 

Example 1: Distributed Equality and Inequality Constraint Solver 
The program PBLSQ_EX1 illustrates the computation of the minimum Euclidean length solution of 
an ' 'm n�  system of linear inequality constraints , Gy h� .  Additionally the first 0f �  of the 
constraints are equalities.  The solution algorithm is based on Algorithm LDP, page 165-166, loc. 
cit.  By allowing the dual variables to be free,  the constraints become equalities.  The rows of 

� �:E G h� are partitioned and assigned random values.  When the minimum Euclidean length 
solution to the inequalities has been calculated, the residuals 0r Gy h� � �  are computed, with the 
dual variables to the BVLS problem indicating  the entries of  r  that are exactly zero. 
      PROGRAM PBLSQ_EX1 
! Use Parallel_bounded_LSQ to solve an inequality 
! constraint problem, Gy >= h. Force F of the constraints 
! to be equalities. This algorithm uses LDP of 
! Solving Least Squares Problems, page 165. 
! Forcing equality constraints by freeing the dual is 
! new here. The constraints are allocated to the 
! processors, by rows, in columns of the array A(:,:). 
        USE PBLSQ_INT 
        USE MPI_SETUP_INT 
        USE RAND_INT 
        USE SHOW_INT 
 
        IMPLICIT NONE 
        INCLUDE "mpif.h" 
 
        INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, & 
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          N=MP, F=NP/10 
 
        REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0 
        REAL(KIND(1D0)), ALLOCATABLE :: & 
   A(:,:), B(:), BND(:,:), X(:), Y(:), & 
          W(:), ASAVE(:,:) 
        REAL(KIND(1D0)) RNORM 
        INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:) 
 
        INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, NSETZ 
        LOGICAL :: PRINT=.false. 
 
! Setup for MPI: 
        MP_NPROCS=MP_SETUP() 
 
        DN=N/max(1,max(1,MP_NPROCS))-1 
        ALLOCATE(IPART(2,max(1,MP_NPROCS))) 
 
! Spread constraint rows evenly to the processors. 
        IPART(1,1)=1 
        DO L=2,MP_NPROCS 
           IPART(2,L-1)=IPART(1,L-1)+DN 
           IPART(1,L)=IPART(2,L-1)+1 
        END DO 
        IPART(2,MP_NPROCS)=N 
 
! Define the constraints using random data. 
        K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1) 
        ALLOCATE(A(M,K), ASAVE(M,K), BND(2,N), & 
          X(N), W(N), B(M), Y(M), INDEX(N)) 
 
! The use of ASAVE can be replaced by regenerating the 
! data for A(:,:) after the return from 
! Parallel_bounded_LSQ 
        A=rand(A); ASAVE=A 
        IF(MP_RANK == 0 .and. PRINT) & 
          call show(IPART,& 
            "Partition of the constraints to be solved") 
 
! Set the right-hand side to be one in the last 
! component, zero elsewhere. 
        B=ZERO;B(M)=ONE 
         
! Solve the dual problem. Letting the dual variable 
! have no constraint forces an equality constraint 
! for the primal problem. 
        BND(1,1:F)=-HUGE(ONE); BND(1,F+1:)=ZERO 
        BND(2,:)=HUGE(ONE) 
        CALL Parallel_bounded_LSQ & 
          (A, B, BND, X, RNORM, W, INDEX, IPART, & 
            NSETP, NSETZ) 
 
! Each processor multiplies its block times the part 
! of the dual corresponding to that partition. 
        Y=ZERO 
        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1) 
           JSHIFT=J-IPART(1,MP_RANK+1)+1 
           Y=Y+ASAVE(:,JSHIFT)*X(J) 
        END DO 
 
! Accumulate the pieces from all the processors. 
! Put sum into B(:) on rank 0 processor. 
        B=Y 
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        IF(MP_NPROCS > 1) & 
          CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,& 
           MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR) 
        IF(MP_RANK == 0) THEN 
 
! Compute constraint solution at the root. 
! The constraints will have no solution if B(M) = ONE. 
! All of these example problems have solutions. 
           B(M)=B(M)-ONE;B=-B/B(M) 
        END IF 
 
! Send the inequality constraint or primal solution to all nodes. 
  IF(MP_NPROCS > 1) & 
    CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, 0, & 
      MP_LIBRARY_WORLD, IERROR) 
 
! For large problems this printing may need to be removed. 
        IF(MP_RANK == 0 .and. PRINT) & 
          call show(B(1:NP), & 
            "Minimal length solution of the constraints") 
 
! Compute residuals of the individual constraints. 
        X=ZERO 
        DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1) 
           JSHIFT=J-IPART(1,MP_RANK+1)+1 
           X(J)=dot_product(B,ASAVE(:,JSHIFT)) 
        END DO 
 
! This cleans up residuals that are about rounding error 
! unit (times) the size of the constraint equation and 
! right-hand side.  They are replaced by exact zero. 
        WHERE(W == ZERO) X=ZERO 
        W=X 
 
! Each group of residuals is disjoint, per processor. 
! We add all the pieces together for the total set of 
! constraints. 
      IF(MP_NPROCS > 1) & 
        CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION, & 
          MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR) 
        IF(MP_RANK == 0 .and. PRINT) & 
          call show(W, "Residuals for the constraints") 
 
! See to any errors and shut down MPI. 
        MP_NPROCS=MP_SETUP('Final') 
        IF(MP_RANK == 0) THEN 
          IF(COUNT(W < ZERO) == 0 .and.& 
     COUNT(W == ZERO) >= F) WRITE(*,*)& 
            " Example 1 for PARALLEL_BOUNDED_LSQ is correct." 
        END IF 
     END 

 

Output 
Example 1 for PARALLEL_BOUNDED_LSQ is correct. 

Description 
Subroutine PARALLEL_BOUNDED_LSQ solves the least-squares linear system ,Ax b x� �� � � , 
using the algorithm BVLS found in Lawson and Hanson, (1995), pages 279-283.  The new steps 
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involve updating the dual vector and exchange of required data, using MPI.  The optional changes to 
default tolerances, minimum residual, and the number of iterations are new features. 

 

Additional Examples 

Example 2: Distributed Newton-Raphson Method with Step Control 
The program PBLSQ_EX2 illustrates the computation of the solution of a non-linear system of 
equations.  We use a constrained Newton-Raphson method.   
This algorithm works with the problem chosen for illustration.  The step-size control used here, 
employing only simple bounds, may not work on other non-linear systems of equations.  Therefore 
we do not recommend the simple non-linear solving technique illustrated here for an arbitrary 
problem.  The test case is Brown’s Almost Linear Problem, Moré, et al. (1982).  The components are 
given by: 

� � � �
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The functions are zero at the point � �1,..., ,
Tnx � � �

�

� , where 1� �  is a particular root of the 

polynomial equation � � 11 1 0n nn n� �
�

� � � � .   To avoid convergence to the local minimum 

� �0,...,0, 1 Tx n� � , we start at the standard point � �1/ 2,..., 1/ 2,1/ 2 Tx � and develop the Newton 

method using the linear terms � � � � � � 0f x y f x J x y� � � � , where � �J x is the Jacobian matrix.  
The update is constrained so that the first 1n �  components satisfy 1/ 2j jx y� � , or 1/ 2j jy x� � .  

The last component is bounded from both sides, 0 1/ 2n nx y� � � ,  or � �1/ 2n n nx y x� � � .  These 

bounds avoid the local minimum and allow us to replace the last equation by  � �
1
ln 0

n

j
j

x
�

�� , which 

is better scaled than the original.   The positive lower bound for n nx y�  is replaced by the strict 
bound, EPSILON(1D0), the arithmetic precision, which restricts the relative accuracy of nx .  The 
input for routine PARALLEL_BOUNDED_LSQ expects each processor to obtain that part of � �J x  it 
owns.  Those columns of the Jacobian matrix correspond to the partition given in the array 
IPART(:,:).  Here the columns of the matrix are evaluated, in parallel, on the nodes where they are 
required. 

 
      PROGRAM PBLSQ_EX2 
! Use Parallel_bounded_LSQ to solve a non-linear system 
! of equations. The example is an ACM-TOMS test problem, 
! except for the larger size.  It is "Brown's Almost Linear 
! Function." 
        USE ERROR_OPTION_PACKET 
        USE PBLSQ_INT 
        USE MPI_SETUP_INT 
        USE SHOW_INT 
        USE Numerical_Libraries, ONLY : N1RTY 
 
        IMPLICIT NONE 
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        INTEGER, PARAMETER :: N=200, MAXIT=5 
 
        REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0,& 
          HALF=5D-1, TWO=2D0 
        REAL(KIND(1D0)), ALLOCATABLE :: & 
         A(:,:), B(:), BND(:,:), X(:), Y(:), W(:) 
        REAL(KIND(1D0)) RNORM 
        INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:) 
 
        INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, & 
          NSETZ, ITER 
        LOGICAL :: PRINT=.false. 
        TYPE(D_OPTIONS) IOPT(3) 
 
! Setup for MPI: 
        MP_NPROCS=MP_SETUP() 
 
        DN=N/max(1,max(1,MP_NPROCS))-1 
        ALLOCATE(IPART(2,max(1,MP_NPROCS))) 
 
! Spread Jacobian matrix columns evenly to the processors. 
        IPART(1,1)=1 
        DO L=2,MP_NPROCS 
           IPART(2,L-1)=IPART(1,L-1)+DN 
           IPART(1,L)=IPART(2,L-1)+1 
        END DO 
        IPART(2,MP_NPROCS)=N 
 
        K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1) 
        ALLOCATE(A(N,K), BND(2,N), & 
          X(N), W(N), B(N), Y(N), INDEX(N)) 
 
! This is Newton's method on "Brown's almost 
! linear function." 
        X=HALF 
 ITER=0 
 
! Turn off messages and stopping for FATAL class errors. 
        CALL ERSET (4, 0, 0)   
 
NEWTON_METHOD: DO 
 
! Set bounds for the values after the step is taken.  
! All variables are positive and bounded below by HALF, 
! except for variable N, which has an upper bound of HALF. 
        BND(1,1:N-1)=-HUGE(ONE) 
        BND(2,1:N-1)=X(1:N-1)-HALF 
 BND(1,N)=X(N)-HALF 
        BND(2,N)=X(N)-EPSILON(ONE) 
 
! Compute the residual function. 
        B(1:N-1)=SUM(X)+X(1:N-1)-(N+1)  
 B(N)=LOG(PRODUCT(X)) 
 if(mp_rank == 0 .and. PRINT) THEN 
   CALL SHOW(B, & 
            "Developing non-linear function residual") 
 END IF 
        IF (MAXVAL(ABS(B(1:N-1))) <= SQRT(EPSILON(ONE)))& 
          EXIT NEWTON_METHOD 
   
! Compute the derivatives local to each processor. 
        A(1:N-1,:)=ONE 
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        DO J=1,N-1 
          IF(J < IPART(1,MP_RANK+1)) CYCLE 
          IF(J > IPART(2,MP_RANK+1)) CYCLE 
   JSHIFT=J-IPART(1,MP_RANK+1)+1 
   A(J,JSHIFT)=TWO 
 END DO 
        A(N,:)=ONE/X(IPART(1,MP_RANK+1):IPART(2,MP_RANK+1)) 
 
! Reset the linear independence tolerance. 
        IOPT(1)=D_OPTIONS(PBLSQ_SET_TOLERANCE,& 
          sqrt(EPSILON(ONE))) 
 IOPT(2)=PBLSQ_SET_MAX_ITERATIONS 
 
! If N iterations was not enough on a previous iteration, reset to 2*N. 
 IF(N1RTY(1) == 0) THEN 
   IOPT(3)=N 
        ELSE 
          IOPT(3)=2*N 
   CALL E1POP('MP_SETUP') 
          CALL E1PSH('MP_SETUP') 
        END IF 
     
        CALL parallel_bounded_LSQ & 
          (A, B, BND, Y, RNORM, W, INDEX, IPART, NSETP, & 
            NSETZ,IOPT=IOPT) 
 
! The array Y(:) contains the constrained Newton step.   
! Update the variables. 
        X=X-Y 
           
        IF(mp_rank == 0 .and. PRINT) THEN 
          CALL show(BND, "Bounds for the moves") 
          CALL SHOW(X, "Developing Solution") 
          CALL SHOW((/RNORM/), & 
            "Linear problem residual norm") 
        END IF 
      
! This is a safety measure for not taking too many steps.    
 ITER=ITER+1 
 IF(ITER > MAXIT) EXIT NEWTON_METHOD 
      END DO NEWTON_METHOD 
 
      IF(MP_RANK == 0) THEN 
        IF(ITER <= MAXIT) WRITE(*,*)& 
        " Example 2 for PARALLEL_BOUNDED_LSQ is correct." 
      END IF 
 
! See to any errors and shut down MPI. 
        MP_NPROCS=MP_SETUP('Final') 
         
     END 
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LSARG 
Solves a real general system of linear equations with iterative refinement. 

Required Arguments 
A —   N by N matrix containing the coefficients of the linear system.   (Input) 

B —   Vector of length N containing the right-hand side of the linear system.   (Input) 

X —   Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N —  Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH —  Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system ATX = B is solved. 

Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSARG (A, B, X [,…]) 

Specific: The specific interface names are S_LSARG and D_LSARG. 

FORTRAN 77 Interface 
Single: CALL LSARG (N, A, LDA, B, IPATH, X) 

Double: The double precision name is DLSARG. 

Example 
A system of three linear equations is solved. The coefficient matrix has real general form and 
the right-hand-side vector b has three elements. 

      USE LSARG_INT 
      USE WRRRN_INT 

!                                 Declare variables 
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      PARAMETER  (LDA=3, N=3) 
      REAL       A(LDA,LDA), B(N), X(N) 
! 
!                                 Set values for A and B 
! 
!                                 A = ( 33.0  16.0  72.0) 
!                                     (-24.0 -10.0 -57.0) 
!                                     ( 18.0 -11.0   7.0) 
! 
!                                 B = (129.0 -96.0   8.5) 
! 
      DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/ 
      DATA B/129.0, -96.0, 8.5/ 
! 
      CALL LSARG (A, B, X) 
!                                Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
      END 

Output 
           X 
    1       2       3 
1.000   1.500   1.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ARG/DL2ARG. The 

reference is: 

CALL L2ARG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — Work vector of length N2 containing the LU factorization of A on output. 

IPVT — Integer work vector of length N containing the pivoting information for the 
LU factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors 
Type Code 

3  1 The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4 2 The input matrix is singular 

Description 
Routine LSARG solves a system of linear algebraic equations having a real general coefficient 
matrix. It first uses the routine LFCRG, page 89, to compute an LU factorization of the 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 85 

 

 

 

coefficient matrix and to estimate the condition number of the matrix. The solution of the linear 
system is then found using the iterative refinement routine LFIRG, page 96. 

LSARG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if 
the iterative refinement algorithm fails to converge. These errors occur only if A is singular or 
very close to a singular matrix.  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system. LSARG solves 
the problem that is represented in the computer; however, this problem may differ from the 
problem whose solution is desired.  

LSLRG 
Solves a real general system of linear equations without iterative refinement. 

Required Arguments 
A —  N by N matrix containing the coefficients of the linear system.   (Input) 

B —  Vector of length N containing the right-hand side of the linear system.   (Input) 

X —  Vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system ATX = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSLRG (A, B, X [,…]) 

Specific: The specific interface names are S_LSLRG and D_LSLRG. 
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FORTRAN 77 Interface 
Single: CALL LSLRG (N, A, LDA, B, IPATH, X) 

Double: The double precision name is DLSLRG. 

Example 1 
A system of three linear equations is solved. The coefficient matrix has real general form and 
the right-hand-side vector b has three elements. 

      USE LSLRG_INT 
      USE WRRRN_INT 
 

!                                 Declare variables 
      PARAMETER  (LDA=3, N=3) 
      REAL       A(LDA,LDA), B(N), X(N) 
! 
!                                 Set values for A and B 
! 
!                                 A = ( 33.0  16.0  72.0) 
!                                     (-24.0 -10.0 -57.0) 
!                                     ( 18.0 -11.0   7.0) 
! 
!                                 B = (129.0 -96.0   8.5) 
! 
      DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/ 
      DATA B/129.0, -96.0, 8.5/ 
! 
      CALL LSLRG (A, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
      END 

Output 
 
           X 
    1       2       3 
1.000   1.500   1.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LRG/DL2LRG. The 

reference is: 

CALL L2LRG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — N � N work array containing the LU factorization of A on output. If A is not 
needed, A and FACT can share the same storage locations. See Item 3 below to 
avoid memory bank conflicts. 
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IPVT — Integer work vector of length N containing the pivoting information for the 
LU factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors  
Type Code  

3     1 The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4     2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2LRG the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSLRG. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLRG. Users directly calling L2LRG can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLRG or L2LRG. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSLRG temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG 
skips this computation. LSLRG restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSLRG solves a system of linear algebraic equations having a real general coefficient 
matrix. It first uses the routine LFCRG (page 89) to compute an LU factorization of the 
coefficient matrix based on Gauss elimination with partial pivoting. Experiments were analyzed 
to determine efficient implementations on several different computers. For some 
supercomputers, particularly those with efficient vendor-supplied BLAS, versions that call 
Level 1, 2 and 3 BLAS are used. The remaining computers use a factorization method provided 
to us by Dr. Leonard J. Harding of the University of Michigan. Harding’s work involves “loop 
unrolling and jamming” techniques that achieve excellent performance on many computers. 
Using an option, LSLRG will estimate the condition number of the matrix. The solution of the 
linear system is then found using LFSRG (page 94). 

The routine LSLRG fails if U, the upper triangular part of the factorization, has a zero diagonal 
element. This occurs only if A is close to a singular matrix.  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that small changes in A can cause large changes in the solution x. 
If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that either 
LSVRR, page 415, or LSARG, page 83, be used. 
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Additional Example 
A system of N = 16 linear equations is solved using the routine L2LRG. The option manager is 
used to eliminate memory bank conflict inefficiencies that may occur when the matrix 
dimension is a multiple of 16. The leading dimension of FACT = A is increased from N to  
N + IVAL(3)=17, since N=16=IVAL(4). The data used for the test is a nonsymmetric Hadamard 
matrix and a right-hand side generated by a known solution, xj = j,  j = 1, ..., N. 

      USE L2LRG_INT 
      USE IUMAG_INT 
      USE WRRRN_INT       
      USE SGEMV_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=17, N=16) 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    ICHP, IPATH, IPUT, KBANK 
      REAL       ONE, ZERO 
      PARAMETER  (ICHP=1, IPATH=1, IPUT=2, KBANK=16, ONE=1.0E0, & 
                 ZERO=0.0E0) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, IPVT(N), J, K, NN 
      REAL       A(LDA,N), B(N), WK(N), X(N) 
!                                 SPECIFICATIONS FOR SAVE VARIABLES 
      INTEGER    IOPT(1), IVAL(4) 
      SAVE       IVAL 
!                               Data for option values. 
      DATA IVAL/1, 16, 1, 16/ 
!                                 Set values for A and B: 
      A(1,1) = ONE 
      NN     = 1 
!                                 Generate Hadamard matrix. 
      DO 20  K=1, 4 
         DO 10  J=1, NN 
            DO 10  I=1, NN 
               A(NN+I,J) = -A(I,J) 
               A(I,NN+J) = A(I,J) 
               A(NN+I,NN+J) = A(I,J) 
   10    CONTINUE 
         NN = NN + NN 
   20 CONTINUE 
!                                 Generate right-hand-side. 
      DO 30  J=1, N 
         X(J) = J 
   30 CONTINUE 
!                                 Set B = A*X. 
      CALL SGEMV (’N’, N, N, ONE, A, LDA, X, 1, ZERO, B, 1) 
!                                 Clear solution array. 
         X = ZERO 
 
!                                 Set option to avoid memory 
!                                 bank conflicts. 
      IOPT(1) = KBANK 
      CALL IUMAG (’MATH’, ICHP, IPUT, 1, IOPT, IVAL) 
!                                 Solve A*X = B. 
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      CALL L2LRG (N, A, LDA, B, IPATH, X, A, IPVT, WK) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
      END 

Output 
                                        X 
   1      2       3       4       5       6       7       8       9      10 
1.00   2.00    3.00    4.00    5.00    6.00    7.00    8.00    9.00   10.00 
 
   11      12      13      14      15      16 
11.00   12.00   13.00   14.00   15.00   16.00 

LFCRG  
Computes the LU factorization of a real general matrix and estimate its L� condition number. 

Required Arguments 
A —  N by N matrix to be factored.   (Input) 

FACT — N by N matrix containing the LU factorization of the matrix A.   (Output)  
If A is not needed, A and FACT can share the same storage locations. 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   
(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N —  Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input)  
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCRG (A,  FACT, IPVT, RCOND  [,…]) 

Specific: The specific interface names are S_LFCRG and D_LFCRG. 
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FORTRAN 77 Interface 
Single: CALL LFCRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCRG. 

Example 
The inverse of a 3 � 3 matrix is computed. LFCRG is called to factor the matrix and to check for 
singularity or ill-conditioning. LFIRG is called to determine the columns of the inverse. 

      USE LFCRG_INT 
      USE UMACH_INT 
      USE LFIRG_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    IPVT(N), J, NOUT 
      REAL       A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RCOND, & 
                 RES(N), RJ(N) 
!                                 Set values for A 
!                                 A = (  1.0   3.0   3.0) 
!                                     (  1.0   3.0   4.0) 
!                                     (  1.0   4.0   3.0) 
! 
      DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/ 
! 
      CALL LFCRG (A, FACT, IPVT, RCOND) 
!                                 Print the reciprocal condition number 
!                                 and the L1 condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = 0.0E0 
      DO 10  J=1, N 
         RJ(J) = 1.0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFIRG 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFIRG (A, FACT, IPVT, RJ, AINV(:,J), RES) 
         RJ(J) = 0.0 
   10 CONTINUE 
!                                 Print results 
      CALL WRRRN (’AINV’, AINV)  
! 
99998 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 
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Output 
 
RCOND = 0.015 
L1 Condition number = 66.471 
 
          AINV 
        1       2       3 
1   7.000  -3.000  -3.000 
2  -1.000   0.000   1.000 
3  -1.000   1.000   0.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CRG/DL2CRG. The 

reference is: 

CALL L2CRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is 

WK — Work vector of length N. 

2. Informational errors 
Type Code 

3      1  The input matrix is algorithmically singular. 
4  2  The input matrix is singular 

Description 
Routine LFCRG performs an LU factorization of a real general coefficient matrix. It also 
estimates the condition number of the matrix. The LU factorization is done using scaled partial 
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the 
same as if each row were scaled to have the same �-norm. 

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive 
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described in a paper by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCRG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 
can occur only if A either is singular or is very close to a singular matrix.  

The LU factors are returned in a form that is compatible with routines LFIRG, page 96, LFSRG, 
94, and LFDRG, page 99. To solve systems of equations with multiple right-hand-side vectors, 
use LFCRG followed by either LFIRG or LFSRG called once for each right-hand side. The routine 
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LFDRG can be called to compute the determinant of the coefficient matrix after LFCRG has 
performed the factorization.  

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the 
upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct 
L  using 

L���= LN-1PN-1 � L�P� 

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik 
for   i = k + 1, �, N inserted below the diagonal. The strict lower half of F can also be thought 
of as containing the negative of the multipliers. LFCRG is based on the LINPACK routine 
SGECO; see Dongarra et al. (1979). SGECO uses unscaled partial pivoting. 

LFTRG 
Computes the LU factorization of a real general matrix. 

Required Arguments 
A — N by N matrix to be factored.   (Input) 

FACT — N by N matrix containing the LU factorization of the matrix A.   (Output)  
If A is not needed, A and FACT can share the same storage locations. 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input)  
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFTRG (A,  FACT,  IPVT [,…]) 

Specific: The specific interface names are S_LFTRG and D_LFTRG. 
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FORTRAN 77 Interface 
Single: CALL LFTRG (N, A, LDA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFCRG. 

Example 
A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the 
coefficient matrix. The routine LFSRG is called to compute the two solutions for the two right-
hand sides. In this case, the coefficient matrix is assumed to be well-conditioned and correctly 
scaled. Otherwise, it would be better to call LFCRG (page 89) to perform the factorization, and 
LFIRG (page 96) to compute the solutions. 

      USE LFTRG_INT 
      USE LFSRG_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    IPVT(N), J 
      REAL       A(LDA,LDA), B(N,2), FACT(LDFACT,LDFACT), X(N,2) 
! 
!                                 Set values for A and B 
! 
!                                 A = (  1.0   3.0   3.0) 
!                                     (  1.0   3.0   4.0) 
!                                     (  1.0   4.0   3.0) 
! 
!                                 B = (  1.0  10.0) 
!                                     (  4.0  14.0) 
!                                     ( -1.0   9.0) 
! 
      DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/ 
      DATA B/1.0, 4.0, -1.0, 10.0, 14.0, 9.0/ 
! 
      CALL LFTRG (A,  FACT,  IPVT) 
!                                 Solve for the two right-hand sides 
      DO 10  J=1, 2 
         CALL LFSRG (FACT, IPVT, B(:,J), X(:,J)) 
   10 CONTINUE 
!                                 Print results 
      CALL WRRRN (’X’, X) 
      END 

Output 
 
         X 
        1       2 
1  -2.000   1.000 
2  -2.000  -1.000 
3   3.000   4.000 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of L2TRG/ DL2TRG. The 

reference is: 

CALL L2TRG (N, A, LDA, FACT, LDFACT, IPVT, WK) 

The additional argument is: 

WK — Work vector of length N used for scaling. 

2. Informational error 
Type  Code  

4          2       The input matrix is singular. 

Description 
Routine LFTRG performs an LU factorization of a real general coefficient matrix. The LU 
factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial 
pivoting in that the pivoting strategy is the same as if each row were scaled to have the 
samenorm. 

The routine LFTRG fails if U, the upper triangular part of the factorization, has a zero diagonal 
element. This can occur only if A is singular or very close to a singular matrix. 

The LU factors are returned in a form that is compatible with routines LFIRG (page 96), LFSRG 
(page 94) and LFDRG (page 99). To solve systems of equations with multiple right-hand-side 
vectors, use LFTRG followed by either LFIRG or LFSRG called once for each right-hand side. 
The routine LFDRG can be called to compute the determinant of the coefficient matrix after 
LFTRG has performed the factorization. Let F be the matrix FACT and let p be the vector IPVT. 
The triangular matrix U is stored in the upper triangle of F. The strict lower triangle of F 
contains the information needed to reconstruct L-1 using 

L�� = LN-1PN-1 . . . L�P� 

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik 
for i = k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of 
as containing the negative of the multipliers.  

Routine LFTRG is based on the LINPACK routine SGEFA. See Dongarra et al. (1979). The 
routine SGEFA uses partial pivoting. 

LFSRG 
Solves a real general system of linear equations given the LU factorization of the coefficient 
matrix. 

Required Arguments 
FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output 

from routine LFCRG (page 89).   (Input) 
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IPVT — Vector of length N containing the pivoting information for the LU factorization of A 
as output from subroutine LFCRG (page 89) or LFTRG/DLFTRG (page 92).   (Input). 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system AX = B is solved.  

IPATH = 2 means the system ATX = B is solved.  

Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LFSRG (FACT,  IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSRG and D_LFSRG. 

FORTRAN 77 Interface 
Single: CALL LFSRG (N, FACT, LDFACT, IPVT, B, IPATH, X) 

Double:  The double precision name is DLFSRG. 

Example 
The inverse is computed for a real general 3 � 3 matrix. The input matrix is assumed to be well-
conditioned, hence, LFTRG is used rather than LFCRG. 

      USE LFSRG_INT 
      USE LFTRG_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    I, IPVT(N), J 
      REAL       A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N) 
! 
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!                                 Set values for A 
!                                 A = (  1.0   3.0   3.0) 
!                                     (  1.0   3.0   4.0) 
!                                     (  1.0   4.0   3.0) 
! 
      DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/ 
! 
      CALL LFTRG (A, FACT, IPVT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = 0.0E0 
      DO 10  J=1, N 
         RJ(J) = 1.0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSRG 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSRG (FACT, IPVT, RJ, AINV(:,J)) 
         RJ(J) = 0.0 
   10 CONTINUE 
!                                 Print results 
      CALL WRRRN (’AINV’, AINV) 
      END 

Output 
 
           AINV 
        1       2       3 
1   7.000  -3.000  -3.000 
2  -1.000   0.000   1.000 
3  -1.000   1.000   0.000 
 

Description 
Routine LFSRG computes the solution of a system of linear algebraic equations having a real 
general coefficient matrix. To compute the solution, the coefficient matrix must first undergo an 
LU factorization. This may be done by calling either LFCRG, page 89, or LFTRG, page 92. The 
solution to Ax = b is found by solving the triangular systems Ly = b and Ux = y. The forward 
elimination step consists of solving the system Ly = b by applying the same permutations and 
elimination operations to b that were applied to the columns of A in the factorization routine. 
The backward substitution step consists of solving the triangular system Ux = y for x.  

LFSRG, page 94, and LFIRG, page 96, both solve a linear system given its LU factorization. 
LFIRG generally takes more time and produces a more accurate answer than LFSRG. Each 
iteration of the iterative refinement algorithm used by LFIRG calls LFSRG. The routine LFSRG is 
based on the LINPACK routine SGESL; see Dongarra et al. (1979). 

LFIRG 
Uses iterative refinement to improve the solution of a real general system of linear equations. 
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Required Arguments 
A — N by N matrix containing the coefficient matrix of the linear system.   (Input) 

FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output 
from routine LFCRG/DLFCRG or LFTRG/DLFTRG.   (Input). 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 
as output from routine LFCRG/DLFCRG or LFTRG/DLFTRG.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input). 

X — Vector of length N containing the solution to the linear system.   (Output) 

RES — Vector of length N containing the final correction at the improved solution.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  

IPATH = 1 means the system A * X = B is solved.  

IPATH = 2 means the system ATX = B is solved.  

Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LFIRG (A, FACT, IPVT, B, X, RES  [,…]) 

Specific: The specific interface names are S_LFIRG and D_LFIRG. 

FORTRAN 77 Interface 
Single: CALL LFIRG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES) 

Double:  The double precision name is DLFIRG. 
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Example 
A set of linear systems is solved successively. The right-hand-side vector is perturbed after 
solving the system each of the first two times by adding 0.5 to the second element. 

      USE LFIRG_INT 
      USE LFCRG_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       A(LDA,LDA), B(N), FACT(LDFACT,LDFACT), RCOND, RES(N), X(N) 
! 
!                                 Set values for A and B 
! 
!                                 A = (  1.0   3.0   3.0) 
!                                     (  1.0   3.0   4.0) 
!                                     (  1.0   4.0   3.0) 
! 
!                                 B = ( -0.5  -1.0   1.5) 
! 
      DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/ 
      DATA B/-0.5, -1.0, 1.5/ 
! 
      CALL LFCRG (A, FACT, IPVT, RCOND) 
!                                 Print the reciprocal condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Solve the three systems 
      DO 10  J=1, 3 
         CALL LFIRG (A, FACT, IPVT, B, X, RES) 
!                                 Print results 
         CALL WRRRN (’X’, X, 1, N, 1) 
!                                 Perturb B by adding 0.5 to B(2) 
         B(2) = B(2) + 0.5 
   10 CONTINUE 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.015 
L1 Condition number = 66.471 
            X 
     1       2       3 
-5.000   2.000  -0.500 
 
            X 
     1       2       3 
-6.500   2.000   0.000 
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            X 
     1       2       3 
-8.000   2.000   0.500 

Comments 
Informational error 

Type  Code  

3     2  The input matrix is too ill-conditioned for iterative  
refinement to be effective. 

Description 
Routine LFIRG computes the solution of a system of linear algebraic equations having a real 
general coefficient matrix. Iterative refinement is performed on the solution vector to improve 
the accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is 
somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an LU factorization. This 
may be done by calling either LFCRG, page 89, or LFTRG, page 92. 

Iterative refinement fails only if the matrix is very ill-conditioned. 

Routines LFIRG (page 96) and LFSRG (page 94) both solve a linear system given its LU 
factorization. LFIRG generally takes more time and produces a more accurate answer than 
LFSRG. Each iteration of the iterative refinement algorithm used by LFIRG calls LFSRG. 

LFDRG 
Computes the determinant of a real general matrix given the LU factorization of the matrix. 

Required Arguments 
FACT — N by N matrix containing the LU factorization of the matrix A as output from routine 

LFCRG/DLFCRG (page 89).   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization as 
output from routine LFTRG/DLFTRG or LFCRG/DLFCRG.   (Input). 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 



 

 
 

100 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFDRG (FACT, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDRG and D_LFDRG. 

FORTRAN 77 Interface 
Single: CALL LFDRG (N, FACT, LDFACT, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDRG. 

Example 
The determinant is computed for a real general 3 � 3 matrix. 

      USE LFDRG_INT 
      USE LFTRG_INT 
      USE UMACH_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       A(LDA,LDA), DET1, DET2, FACT(LDFACT,LDFACT) 
! 
!                                 Set values for A 
!                                 A = ( 33.0  16.0  72.0) 
!                                     (-24.0 -10.0 -57.0) 
!                                     ( 18.0 -11.0   7.0) 
! 
      DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/ 
! 
      CALL LFTRG (A, FACT, IPVT) 
!                                 Compute the determinant 
      CALL LFDRG (FACT, IPVT, DET1, DET2) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
! 
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0) 
      END 

Output 
 

The determinant of A is -4.761 * 10**3. 
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Description 
Routine LFDRG computes the determinant of a real general coefficient matrix. To compute the 
determinant, the coefficient matrix must first undergo an LU factorization. This may be done by 
calling either LFCRG (page 89) or LFTRG (page 92). The formula det A = det L det U is used to 
compute the determinant. Since the determinant of a triangular matrix is the product of the 
diagonal elements 

1
det N

iii
U U

�

��  

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular 
matrices with unit diagonals and of permutation matrices, det L = (�1)k where k is the number 
of pivoting interchanges.  

Routine LFDRG is based on the LINPACK routine SGEDI; see Dongarra et al. (1979) 

LINRG 
Computes the inverse of a real general matrix. 

Required Arguments 
A — N by N matrix containing the matrix to be inverted.   (Input) 

AINV — N by N matrix containing the inverse of A.   (Output)  
If A is not needed, A and AINV can share the same storage locations. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 
Generic: CALL LINRG (A, AINV [,…]) 

Specific: The specific interface names are S_LINRG and D_LINRG. 
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FORTRAN 77 Interface 
Single: CALL LINRG (N, A, LDA, AINV, LDAINV) 

Double:  The double precision name is DLINRG. 

Example 
The inverse is computed for a real general 3 � 3 matrix. 

      USE LINRG_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDAINV=3) 
      INTEGER    I, J, NOUT 
      REAL       A(LDA,LDA), AINV(LDAINV,LDAINV) 
! 
!                                 Set values for A 
!                                 A = (  1.0   3.0   3.0) 
!                                     (  1.0   3.0   4.0) 
!                                     (  1.0   4.0   3.0) 
! 
      DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/ 
! 
      CALL LINRG (A, AINV) 
!                                 Print results 
      CALL WRRRN (’AINV’, AINV) 
      END 

Output 
 
            AINV 
        1       2       3 
1   7.000  -3.000  -3.000 
2  -1.000   0.000   1.000 
3  -1.000   1.000   0.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2NRG/DL2NRG. The 

reference is: 

CALL L2NRG (N, A, LDA, AINV, LDAINV, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length N+ N(N � 1)/2. 

IWK — Integer work vector of length N. 

2. Informational errors  
Type  Code  
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 3     1  The input matrix is too ill-conditioned. The inverse  
might not be accurate. 

 4     2  The input matrix is singular. 

Description 
Routine LINRG computes the inverse of a real general matrix. It first uses the routine LFCRG 
(page 89) to compute an LU factorization of the coefficient matrix and to estimate the condition 
number of the matrix. Routine LFCRG computes U and the information needed to compute L-1. 
LINRT, page 128, is then used to compute U-1. Finally, A-1  is computed using A-1 = U-1L-1.  

The routine LINRG fails if U, the upper triangular part of the factorization, has a zero diagonal 
element or if the iterative refinement algorithm fails to converge. This error occurs only if A is 
singular or very close to a singular matrix. 

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in A-1. 

LSACG 
Solves a complex general system of linear equations with iterative refinement. 

Required Arguments 
A — Complex N by N matrix containing the coefficients of the linear system.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system AHX = B is solved 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSACG (A, B, X [,…]) 
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Specific: The specific interface names are S_LSACG and D_LSACG. 

FORTRAN 77 Interface 
Single: CALL LSACG (N, A, LDA, B, IPATH, X) 

Double:  The double precision name is DLSACG. 

Example 
A system of three linear equations is solved. The coefficient matrix has complex general form 
and the right-hand-side vector b has three elements. 

      USE LSACG_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, N=3) 
      COMPLEX    A(LDA,LDA), B(N), X(N) 
!                                 Set values for  A and B 
! 
!                                 A = ( 3.0-2.0i  2.0+4.0i  0.0-3.0i) 
!                                     ( 1.0+1.0i  2.0-6.0i  1.0+2.0i) 
!                                     ( 4.0+0.0i -5.0+1.0i  3.0-2.0i) 
! 
!                                 B = (10.0+5.0i  6.0-7.0i -1.0+2.0i) 
! 
      DATA A/(3.0,-2.0), (1.0,1.0),  (4.0,0.0), (2.0,4.0), (2.0,-6.0), & 
            (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/ 
      DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/ 
!                                 Solve AX = B     (IPATH = 1) 
      CALL LSACG (A, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
      END 

Output 
 
                        X 
              1                2                3 
( 1.000,-1.000)  ( 2.000, 1.000)  ( 0.000, 3.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ACG/DL2ACG. The 

reference is: 

CALL L2ACG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — Complex work vector of length N2containing the LU factorization of A on 
output. 
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IPVT — Integer work vector of length N containing the pivoting information for the 
LU factorization of A on output. 

WK — Complex work vector of length N. 

2. Informational errors  
Type  Code  

   3     1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

   4     2  The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2ACG the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSACG. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSACG. Users directly calling L2ACG can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSACG or L2ACG. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 

17  This option has two values that determine if the L� condition number is to be 
computed. Routine LSACG temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG 
skips this computation. LSACG restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSACG solves a system of linear algebraic equations with a complex general coefficient 
matrix. It first uses the routine LFCCG, page 108, to compute an LU factorization of the 
coefficient matrix and to estimate the condition number of the matrix. The solution of the linear 
system is then found using the iterative refinement routine LFICG, page 116. 

LSACG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if 
the iterative refinement algorithm fails to converge. These errors occur only if A is singular or 
very close to a singular matrix. 

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system. LSACG solves 
the problem that is represented in the computer; however, this problem may differ from the 
problem whose solution is desired. 
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LSLCG 
Solves a complex general system of linear equations without iterative refinement. 

Required Arguments 
A — Complex N by N matrix containing the coefficients of the linear system.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system AHX = B is solved 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSLCG (A, B, X [,…]) 

Specific: The specific interface names are S_LSLCG and D_LSLCG. 

FORTRAN 77 Interface 
Single: CALL LSLCG (N, A, LDA, B, IPATH, X) 

Double:  The double precision name is DLSLCG. 

Example 
A system of three linear equations is solved. The coefficient matrix has complex general form 
and the right-hand-side vector b has three elements. 

      USE LSLCG_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, N=3) 
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      COMPLEX    A(LDA,LDA), B(N), X(N) 
!                                 Set values for  A and B 
! 
!                                 A = ( 3.0-2.0i  2.0+4.0i  0.0-3.0i) 
!                                     ( 1.0+1.0i  2.0-6.0i  1.0+2.0i) 
!                                     ( 4.0+0.0i -5.0+1.0i  3.0-2.0i) 
! 
!                                 B = (10.0+5.0i  6.0-7.0i -1.0+2.0i) 
! 
      DATA A/(3.0,-2.0), (1.0,1.0),  (4.0,0.0), (2.0,4.0), (2.0,-6.0),& 
            (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/ 
      DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/ 
!                                 Solve AX = B     (IPATH = 1) 
      CALL LSLCG (A, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
      END 

Output 
 
                          X 
              1                2                3 
( 1.000,-1.000)  ( 2.000, 1.000)  ( 0.000, 3.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LCG/DL2LCG. The 

reference is: 

CALL L2LCG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — N � N work array containing the LU factorization of A on output. If A is not 
needed, A and FACT can share the same storage locations. 

IPVT — Integer work vector of length N containing the pivoting information for the 
LU factorization of A on output. 

WK — Complex work vector of length N. 

2. Informational errors  
Type  Code 

3      1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4      2  The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2LCG the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
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temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSLCG. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLCG. Users directly calling L2LCG can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLCG or L2LCG. Default values for the option are IVAL(*) 
= 1, 16, 0, 1. 

17  This option has two values that determine if the L� condition number is to be 
computed. Routine LSLCG temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG 
skips this computation. LSLCG restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSLCG solves a system of linear algebraic equations with a complex general coefficient 
matrix. It first uses the routine LFCCG, page 108, to compute an LU factorization of the 
coefficient matrix and to estimate the condition number of the matrix. The solution of the linear 
system is then found using LFSCG, page 114.  

LSLCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 
occurs only if A either is a singular matrix or is very close to a singular matrix.  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that 
LSACG, page 103, be used. 

LFCCG 
Computes the LU factorization of a complex general matrix and estimate its L� condition number. 

Required Arguments 
A — Complex N by N matrix to be factored.   (Input) 

FACT — Complex N by N matrix containing the LU factorization of the matrix A   (Output)  
If A is not needed, A and FACT can share the same storage locations) 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   
(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 
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Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCCG (A, FACT, IPVT, RCOND [,…]) 

Specific: The specific interface names are S_LFCCG and D_LFCCG. 

FORTRAN 77 Interface 
Single: CALL LFCCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCCG. 

Example 
The inverse of a 3 � 3 matrix is computed. LFCCG is called to factor the matrix and to check for 
singularity or ill-conditioning. LFICG (page 116) is called to determine the columns of the 
inverse. 

      USE IMSL_LIBRARIES 
 
!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       RCOND, THIRD 
      COMPLEX    A(LDA,LDA), AINV(LDA,LDA), RJ(N), FACT(LDFACT,LDFACT), & 
                 RES(N) 
!                                 Declare functions 
      COMPLEX    CMPLX 
!                                 Set values for  A 
! 
!                                 A = (  1.0+1.0i  2.0+3.0i  3.0+3.0i) 
!                                     (  2.0+1.0i  5.0+3.0i  7.0+4.0i) 
!                                     ( -2.0+1.0i -4.0+4.0i -5.0+3.0i) 
! 
      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),& 
          (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/ 
! 
!                                 Scale A by dividing by three 
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      THIRD = 1.0/3.0 
      DO 10  I=1, N 
         CALL CSSCAL (N, THIRD, A(:,I), 1) 
   10 CONTINUE 
!                                 Factor A 
      CALL LFCCG (A, FACT, IPVT, RCOND) 
!                                 Print the L1 condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      CALL CSET (N, (0.0,0.0), RJ, 1) 
      DO 20  J=1, N 
         RJ(J) = CMPLX(1.0,0.0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFIRG 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFICG (A, FACT, IPVT, RJ, AINV(:,J), RES) 
         RJ(J) = CMPLX(0.0,0.0) 
   20 CONTINUE 
!                                 Print results 
      CALL WRCRN (’AINV’, AINV) 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.016 
L1 Condition number = 63.104 
 
                         AINV 
                 1                2                3 
1  ( 6.400,-2.800)  (-3.800, 2.600)  (-2.600, 1.200) 
2  (-1.600,-1.800)  ( 0.200, 0.600)  ( 0.400,-0.800) 
3  (-0.600, 2.200)  ( 1.200,-1.400)  ( 0.400, 0.200) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CCG/DL2CCG. The 

reference is: 

CALL L2CCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is: 

WK — Complex work vector of length N. 

2. Informational errors 
Type  Code  

3      1 The input matrix is algorithmically singular. 
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4  2 The input matrix is singular. 

Description 
Routine LFCCG performs an LU factorization of a complex general coefficient matrix. It also 
estimates the condition number of the matrix. The LU factorization is done using scaled partial 
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the 
same as if each row were scaled to have the same �-norm.  

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive 
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 
can occur only if A either is singular or is very close to a singular matrix.  

The LU factors are returned in a form that is compatible with routines LFICG, page 116, LFSCG, 
page 114, and LFDCG, page 119. To solve systems of equations with multiple right-hand-side 
vectors, use LFCCG followed by either LFICG or LFSCG called once for each right-hand side. 
The routine LFDCG can be called to compute the determinant of the coefficient matrix after 
LFCCG has performed the factorization.  

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the 
upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct 
L  using 

L�� = LN-1PN-1 � L�P� 

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik 
for i = k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of 
as containing the negative of the multipliers.  

LFCCG is based on the LINPACK routine CGECO; see Dongarra et al. (1979). CGECO uses 
unscaled partial pivoting. 

LFTCG 
Computes the LU factorization of a complex general matrix. 

Required Arguments 
A — Complex N by N matrix to be factored.   (Input) 

FACT — Complex N by N matrix containing the LU factorization of the matrix A   

  (Output)  
If A is not needed, A and FACT can share the same storage locations. 
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IPVT — Vector of length N containing the pivoting information for the LU factorization.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFTCG (A, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTCG and D_LFTCG. 

FORTRAN 77 Interface 
Single: CALL LFTCG (N, A, LDA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTCG. 

Example 
A linear system with multiple right-hand sides is solved. LFTCG is called to factor the 
coefficient matrix. LFSCG is called to compute the two solutions for the two right-hand sides. In 
this case the coefficient matrix is assumed to be well-conditioned and correctly scaled. 
Otherwise, it would be better to call LFCCG to perform the factorization, and LFICG to compute 
the solutions. 

      USE LFTCG_INT 
      USE LFSCG_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    IPVT(N) 
      COMPLEX    A(LDA,LDA), B(N,2), X(N,2), FACT(LDFACT,LDFACT) 
!                                 Set values for  A 
!                                 A = ( 1.0+1.0i  2.0+3.0i  3.0-3.0i) 
!                                     ( 2.0+1.0i  5.0+3.0i  7.0-5.0i) 
!                                     (-2.0+1.0i -4.0+4.0i  5.0+3.0i) 
! 
      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),& 
          (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/ 
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! 
!                                 Set the right-hand sides, B 
!                                 B = (  3.0+ 5.0i  9.0+ 0.0i) 
!                                     ( 22.0+10.0i 13.0+ 9.0i) 
!                                     (-10.0+ 4.0i  6.0+10.0i) 
! 
      DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0), (9.0,0.0),& 
          (13.0,9.0), (6.0,10.0)/ 
! 
!                                 Factor A 
      CALL LFTCG (A, FACT, IPVT) 
!                                 Solve for the two right-hand sides 
      DO 10  J=1, 2 
         CALL LFSCG (FACT, IPVT, B(:,J), X(:,J)) 
   10 CONTINUE 
!                                 Print results 
      CALL WRCRN (’X’, X) 
      END 

Output 
 
                X 
               1                2 
1  ( 1.000,-1.000)  ( 0.000, 2.000) 
2  ( 2.000, 4.000)  (-2.000,-1.000) 
3  ( 3.000, 0.000)  ( 1.000, 3.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2TCG/DL2TCG. The 

reference is: 

CALL L2TCG (N, A, LDA, FACT, LDFACT, IPVT, WK) 
The additional argument is: 

WK — Complex work vector of length N. 

2. Informational error 
Type  Code 

 4     2  The input matrix is singular. 

Description 
Routine LFTCG performs an LU factorization of a complex general coefficient matrix. The LU 
factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial 
pivoting in that the pivoting strategy is the same as if each row were scaled to have the same �-
norm. 

LFTCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 
can occur only if A either is singular or is very close to a singular matrix. 
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The LU factors are returned in a form that is compatible with routines LFICG, page 116, LFSCG, 
page 114, and LFDCG, page 119. To solve systems of equations with multiple right-hand-side 
vectors, use LFTCG followed by either LFICG or LFSCG called once for each right-hand side. 
The routine LFDCG can be called to compute the determinant of the coefficient matrix after 
LFCCG (page 108) has performed the factorization. 

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the 
upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct 
L using 

L = LN-1PN-1 � L�P� 

where Pk is the identity matrix with rows k and Pk interchanged and Lk is the identity with Fik 
for i = k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of 
as containing the negative of the multipliers. 

LFTCG is based on the LINPACK routine CGEFA; see Dongarra et al. (1979). CGEFA uses 
unscaled partial pivoting. 

LFSCG 
Solves a complex general system of linear equations given the LU factorization of the coefficient 
matrix. 

Required Arguments 
FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A 

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 
as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
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IPATH = 2 means the system AHX = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LFSCG (FACT, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSCG and D_LFSCG. 

FORTRAN 77 Interface 
Single: CALL LFSCG (N, FACT, LDFACT, IPVT, B, IPATH, X) 

Double:  The double precision name is DLFSCG. 

Example 
The inverse is computed for a complex general 3 � 3 matrix. The input matrix is assumed to be 
well-conditioned, hence LFTCG (page 111) is used rather than LFCCG. 

      USE IMSL_LIBRARIES 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    IPVT(N) 
      REAL       THIRD 
      COMPLEX    A(LDA,LDA), AINV(LDA,LDA), RJ(N), FACT(LDFACT,LDFACT) 
!                                 Declare functions 
      COMPLEX    CMPLX 
!                                 Set values for  A 
! 
!                                 A = (  1.0+1.0i  2.0+3.0i  3.0+3.0i) 
!                                     (  2.0+1.0i  5.0+3.0i  7.0+4.0i) 
!                                     ( -2.0+1.0i -4.0+4.0i -5.0+3.0i) 
! 
      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),& 
          (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/ 
! 
!                                 Scale A by dividing by three 
      THIRD = 1.0/3.0 
      DO 10  I=1, N 
         CALL CSSCAL (N, THIRD, A(:,I), 1) 
   10 CONTINUE 
!                                 Factor A 
      CALL LFTCG (A, FACT, IPVT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      CALL CSET (N, (0.0,0.0), RJ, 1) 
      DO 20  J=1, N 
         RJ(J) = CMPLX(1.0,0.0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSCG 
!                                 reference places the J-th column of 
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!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSCG (FACT, IPVT, RJ, AINV(:,J)) 
         RJ(J) = CMPLX(0.0,0.0) 
   20 CONTINUE 
!                                 Print results 
      CALL WRCRN (’AINV’, AINV) 
      END 

Output 
 
                          AINV 
                 1                2                3 
1  ( 6.400,-2.800)  (-3.800, 2.600)  (-2.600, 1.200) 
2  (-1.600,-1.800)  ( 0.200, 0.600)  ( 0.400,-0.800) 
3  (-0.600, 2.200)  ( 1.200,-1.400)  ( 0.400, 0.200) 

 

Description 
Routine LFSCG computes the solution of a system of linear algebraic equations having a 
complex general coefficient matrix. To compute the solution, the coefficient matrix must first 
undergo an LU factorization. This may be done by calling either LFCCG, page 108, or LFTCG, 
page 111. The solution to Ax = b is found by solving the triangular systems Ly = b and Ux = y. 
The forward elimination step consists of solving the system Ly = b by applying the same 
permutations and elimination operations to b that were applied to the columns of A in the 
factorization routine. The backward substitution step consists of solving the triangular system 
Ux = y for x.  

Routines LFSCG (page 114) and LFICG (page 116) both solve a linear system given its LU 
factorization. LFICG generally takes more time and produces a more accurate answer than 
LFSCG. Each iteration of the iterative refinement algorithm used by LFICG calls LFSCG.  

LFSCG is based on the LINPACK routine CGESL; see Dongarra et al. (1979). 

LFICG 
Uses iterative refinement to improve the solution of a complex general system of linear equations. 

Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the linear system.   (Input) 

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A 
as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 
as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 
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X — Complex vector of length N containing the solution to the linear system. (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   
(Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA  = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system AHX = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LFICG (A, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFICG and D_LFICG. 

FORTRAN 77 Interface 
Single: CALL LFICG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES) 

Double:  The double precision name is DLFICG. 

Example 
A set of linear systems is solved successively. The right-hand-side vector is perturbed after 
solving the system each of the first two times by adding 0.5 + 0.5i to the second element. 

      USE LFICG_INT 
      USE LFCCG_INT 
      USE WRCRN_INT 
      USE UMACH_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       RCOND 
      COMPLEX    A(LDA,LDA), B(N), X(N), FACT(LDFACT,LDFACT), RES(N) 
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!                                 Declare functions 
      COMPLEX    CMPLX 
!                                 Set values for  A 
! 
!                                 A = (  1.0+1.0i  2.0+3.0i  3.0-3.0i) 
!                                     (  2.0+1.0i  5.0+3.0i  7.0-5.0i) 
!                                     ( -2.0+1.0i -4.0+4.0i  5.0+3.0i) 
! 
      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0), & 
          (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/ 
! 
!                                 Set values for B 
!                                 B = ( 3.0+5.0i 22.0+10.0i -10.0+4.0i) 
! 
      DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0)/ 
!                                 Factor A 
      CALL LFCCG (A, FACT, IPVT, RCOND) 
!                                 Print the L1 condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Solve the three systems 
      DO 10  J=1, 3 
      CALL LFICG (A, FACT, IPVT, B, X, RES) 
!                                 Print results 
         CALL WRCRN (’X’, X, 1, N, 1) 
!                                 Perturb B by adding 0.5+0.5i to B(2) 
         B(2) = B(2) + CMPLX(0.5,0.5) 
   10 CONTINUE 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.023 
L1 Condition number = 42.799 
                        X 
              1                2                3 
( 1.000,-1.000)  ( 2.000, 4.000)  ( 3.000, 0.000) 
 
                        X 
              1                2                3 
( 0.910,-1.061)  ( 1.986, 4.175)  ( 3.123, 0.071) 
 
                        X 
              1                2                3 
( 0.821,-1.123)  ( 1.972, 4.349)  ( 3.245, 0.142) 

Comments 
Informational error 

Type  Code  

3  2  The input matrix is too ill-conditioned for iterative refinement to be 
  effective 
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Description 
Routine LFICG computes the solution of a system of linear algebraic equations having a 
complex general coefficient matrix. Iterative refinement is performed on the solution vector to 
improve the accuracy. Usually almost all of the digits in the solution are accurate, even if the 
matrix is somewhat ill-conditioned.  

To compute the solution, the coefficient matrix must first undergo an LU factorization. This 
may be done by calling either LFCCG, page 108, or LFTCG, page 111. 

Iterative refinement fails only if the matrix is very ill-conditioned. Routines LFICG 
(page 116)and LFSCG (page 114) both solve a linear system given its LU factorization. LFICG 
generally takes more time and produces a more accurate answer than LFSCG. Each iteration of 
the iterative refinement algorithm used by LFICG calls LFSCG. 

LFDCG 
Computes the determinant of a complex general matrix given the LU factorization of the matrix. 

Required Arguments 
FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A 

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 
as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG.   (Input) 

DET1 — Complex scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form det(A) = DET1 * 10DET. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFDCG (FACT, IPVT, DET1, DET2  [,…]) 

Specific: The specific interface names are S_LFDCG and D_LFDCG. 
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FORTRAN 77 Interface 
Single: CALL LFDCG (N, FACT, LDFACT, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDCG. 

Example 
The determinant is computed for a complex general 3 � 3 matrix. 

      USE LFDCG_INT 
      USE LFTCG_INT 
      USE UMACH_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       DET2 
      COMPLEX    A(LDA,LDA), FACT(LDFACT,LDFACT), DET1 
!                                 Set values for  A 
! 
!                                 A = (  3.0-2.0i  2.0+4.0i  0.0-3.0i) 
!                                     (  1.0+1.0i  2.0-6.0i  1.0+2.0i) 
!                                     (  4.0+0.0i -5.0+1.0i  3.0-2.0i) 
! 
      DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),& 
            (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/ 
! 
!                                 Factor A 
      CALL LFTCG (A, FACT, IPVT) 
!                                 Compute the determinant for the 
!                                 factored matrix 
      CALL LFDCG (FACT, IPVT, DET1, DET2) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
! 
99999 FORMAT (’ The determinant of A is’,3X,’(’,F6.3,’,’,F6.3,& 
             ’) * 10**’,F2.0) 
      END 

Output 
 
The determinant of A is ( 0.700, 1.100) * 10**1. 

 

Description 
Routine LFDCG computes the determinant of a complex general coefficient matrix. To compute 
the determinant the coefficient matrix must first undergo an LU factorization. This may be done 
by calling either LFCCG, page 108, or LFTCG, page 111. The formula det A = det L det U is used 
to compute the determinant. Since the determinant of a triangular matrix is the product of the 
diagonal elements,   
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det N

iii
U U

�

��  

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular 
matrices with unit diagonals and of permutation matrices, det L = (�1)k where k is the number 
of pivoting interchanges.  

LFDCG is based on the LINPACK routine CGEDI; see Dongarra et al. (1979). 

LINCG 
Computes the inverse of a complex general matrix. 

Required Arguments 
A — Complex N by N matrix containing the matrix to be inverted.   (Input) 

AINV — Complex N by N matrix containing the inverse of A.   (Output)  
If A is not needed, A and AINV can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 
Generic: CALL LINCG (A, AINV [,…]) 

Specific: The specific interface names are S_LINCG and D_LINCG. 

FORTRAN 77 Interface 
Single: CALL LINCG (N, A, LDA, AINV, LDAINV) 

Double:  The double precision name is DLINCG. 

Example 
The inverse is computed for a complex general 3 � 3 matrix. 
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      USE LINCG_INT 
      USE WRCRN_INT 
      USE CSSCAL_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, LDAINV=3, N=3) 
      REAL       THIRD 
      COMPLEX    A(LDA,LDA), AINV(LDAINV,LDAINV) 
!                                 Set values for  A 
! 
!                                 A = (  1.0+1.0i  2.0+3.0i  3.0+3.0i) 
!                                     (  2.0+1.0i  5.0+3.0i  7.0+4.0i) 
!                                     ( -2.0+1.0i -4.0+4.0i -5.0+3.0i) 
! 
      DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),& 
          (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/ 
! 
!                                 Scale A by dividing by three 
      THIRD = 1.0/3.0 
      DO 10  I=1, N 
         CALL CSSCAL (N, THIRD, A(:,I), 1) 
   10 CONTINUE 
!                                 Calculate the inverse of A 
      CALL LINCG (A, AINV) 
!                                 Print results 
      CALL WRCRN (’AINV’, AINV) 
      END 

Output 
 
                         AINV 
                 1                2                3 
1  ( 6.400,-2.800)  (-3.800, 2.600)  (-2.600, 1.200) 
2  (-1.600,-1.800)  ( 0.200, 0.600)  ( 0.400,-0.800) 
3  (-0.600, 2.200)  ( 1.200,-1.400)  ( 0.400, 0.200) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2NCG/DL2NCG. The 

reference is: 

CALL L2NCG (N, A, LDA, AINV, LDAINV, WK, IWK) 

The additional arguments are as follows: 

WK — Complex work vector of length N + N(N � 1)/2. 

IWK — Integer work vector of length N. 

2. Informational errors  
Type  Code  
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3     1  The input matrix is too ill-conditioned. The inverse might not be 
accurate. 

4      2  The input matrix is singular. 
 

Description 
Routine LINCG computes the inverse of a complex general matrix.  

It first uses the routine LFCCG, page 108, to compute an LU factorization of the coefficient 
matrix and to estimate the condition number of the matrix. LFCCG computes U and the 
information needed to compute L.  LINCT, page 136, is then used to compute U.  Finally A  is 
computed using A=UL.  

LINCG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if 
the iterative refinement algorithm fails to converge. This errors occurs only if A is singular or 
very close to a singular matrix. 

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in A-1. 

LSLRT 
Solves a real triangular system of linear equations. 

Required Arguments 
A — N by N matrix containing the coefficient matrix for the triangular linear system.   (Input)  

For a lower triangular system, only the lower triangular part and diagonal of A are 
referenced. For an upper triangular system, only the upper triangular part and diagonal 
of A are referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means solve AX = B, A lower triangular.  
IPATH = 2 means solve AX = B, A upper triangular.  
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IPATH = 3 means solve ATX = B, A lower triangular.  
IPATH = 4 means solve ATX = B, A upper triangular. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSLRT (A, B, X [,…]) 

Specific: The specific interface names are S_LSLRT and D_LSLRT. 

FORTRAN 77 Interface 
Single: CALL LSLRT (N, A, LDA, B, IPATH, X) 

Double:  The double precision name is DLSLRT. 

Example 
A system of three linear equations is solved. The coefficient matrix has lower triangular form 
and the right-hand-side vector, b, has three elements. 

      USE LSLRT_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3) 
      REAL       A(LDA,LDA), B(LDA), X(LDA) 
!                                 Set values for A and B 
! 
!                                 A = (  2.0               ) 
!                                     (  2.0    -1.0       ) 
!                                     ( -4.0     2.0    5.0) 
! 
!                                 B = (  2.0     5.0    0.0) 
! 
      DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/ 
      DATA B/2.0, 5.0, 0.0/ 
! 
!                                 Solve AX = B     (IPATH = 1) 
      CALL LSLRT (A, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, 3, 1) 
      END 

Output 
 
           X 
    1       2       3 
1.000  -3.000   2.000 
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Description 
Routine LSLRT solves a system of linear algebraic equations with a real triangular coefficient 
matrix. LSLRT fails if the matrix A has a zero diagonal element, in which case A is singular. 
LSLRT is based on the LINPACK routine STRSL; see Dongarra et al. (1979). 

LFCRT 
Estimates the condition number of a real triangular matrix. 

Required Arguments 
A — N by N matrix containing the coefficient matrix for the triangular linear system.   (Input)  

For a lower triangular system, only the lower triangular part and diagonal of A are 
referenced. For an upper triangular system, only the upper triangular part and diagonal 
of A are referenced. 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means A is lower triangular.  
IPATH = 2 means A is upper triangular. 
Default: IPATH =1. 

FORTRAN 90 Interface 
Generic: CALL LFCRT (A, RCOND [,…]) 

Specific: The specific interface names are S_LFCRT and D_LFCRT. 

FORTRAN 77 Interface 
Single: CALL LFCRT (N, A, LDA, IPATH, RCOND) 

Double:  The double precision name is DLFCRT. 
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Example 
An estimate of the reciprocal condition number is computed for a 3 � 3 lower triangular 
coefficient matrix. 

      USE LFCRT_INT 
      USE UMACH_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3) 
      REAL       A(LDA,LDA), RCOND 
      INTEGER    NOUT 
!                                 Set values for A and B 
!                                 A = (  2.0               ) 
!                                     (  2.0    -1.0       ) 
!                                     ( -4.0     2.0    5.0) 
! 
      DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/ 
! 
!                                 Compute the reciprocal condition 
!                                 number  (IPATH=1) 
      CALL LFCRT (A, RCOND) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.091  
L1 Condition number = 10.968 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CRT/ DL2CRT. The 

reference is: 

CALL L2CRT (N, A, LDA, IPATH, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational error 
Type  Code  

3      1  The input triangular matrix is algorithmically singular. 

Description 
Routine LFCRT estimates the condition number of a real triangular matrix. The L� condition 
number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive to compute ||A||�, 
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the condition number is only estimated. The estimation algorithm is the same as used by 
LINPACK and is described by Cline et al. (1979). 

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x.  

LFCRT is based on the LINPACK routine STRCO; see Dongarra et al. (1979). 

LFDRT 
Computes the determinant of a real triangular matrix. 

Required Arguments 
A — N by N matrix containing the triangular matrix.   (Input)  

The matrix can be either upper or lower triangular. 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LFDRT (A, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDRT and D_LFDRT. 

FORTRAN 77 Interface 
Single: CALL LFDRT (N, A, LDA, DET1, DET2) 

Double:  The double precision name is DLFDRT. 

Example 
The determinant is computed for a 3 � 3 lower triangular matrix. 
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      USE LFDRT_INT 
      USE UMACH_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3) 
      REAL       A(LDA,LDA), DET1, DET2 
      INTEGER    NOUT 
!                                 Set values for  A 
!                                 A = (  2.0               ) 
!                                     (  2.0    -1.0       ) 
!                                     ( -4.0     2.0    5.0) 
! 
      DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/ 
! 
!                                 Compute the determinant of A 
      CALL LFDRT (A, DET1, DET2) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0) 
      END 

Output 
 
The determinant of A is -1.000 * 10**1. 
 

Comments 
Informational error 

Type  Code  

3  1  The input triangular matrix is singular. 

Description 
Routine LFDRT computes the determinant of a real triangular coefficient matrix. The 
determinant of a triangular matrix is the product of the diagonal elements . 

1
det N

iii
A A

�

��  

LFDRT is based on the LINPACK routine STRDI; see Dongarra et al. (1979). 

LINRT 
Computes the determinant of a real triangular matrix. 

Required Arguments 
A — N by N matrix containing the triangular matrix to be inverted.   (Input)  

For a lower triangular matrix, only the lower triangular part and diagonal of A are 
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referenced. For an upper triangular matrix, only the upper triangular part and diagonal 
of A are referenced. 

AINV — N by N matrix containing the inverse of A.   (Output)  
If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is 
also upper triangular. If A is not needed, A and AINV can share the same storage 
locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means A is lower triangular.  
IPATH = 2 means A is upper triangular. 
Default: IPATH = 1. 

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 
Generic: CALL LINRT (A, AINV [,…]) 

Specific: The specific interface names are S_LINRT and D_LINRT. 

FORTRAN 77 Interface 
Single: CALL LINRT (N, A, LDA, IPATH, AINV, LDAINV) 

Double:  The double precision name is DLINRT. 

Example 
The inverse is computed for a 3 � 3 lower triangular matrix. 

      USE LINRT_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3) 
      REAL       A(LDA,LDA), AINV(LDA,LDA) 
!                                 Set values for  A 
!                                 A = (  2.0               ) 
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!                                     (  2.0    -1.0       ) 
!                                     ( -4.0     2.0    5.0) 
! 
      DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/ 
! 
!                                 Compute the inverse of A 
      CALL LINRT (A, AINV) 
!                                 Print results 
      CALL WRRRN (’AINV’, AINV) 
      END 

Output 
 
           AINV 
        1       2       3 
1   0.500   0.000   0.000 
2   1.000  -1.000   0.000 
3   0.000   0.400   0.200 
 

Description 
Routine LINRT computes the inverse of a real triangular matrix. It fails if A has a zero diagonal 
element. 

LSLCT 
Solves a complex triangular system of linear equations. 

Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the triangular linear system.   

(Input)  
For a lower triangular system, only the lower triangle of A is referenced. For an upper 
triangular system, only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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IPATH — Path indicator.   (Input)  
IPATH = 1 means solve AX = B, A lower triangular  
IPATH = 2 means solve AX = B, A upper triangular  
IPATH = 3 means solve AHX = B, A lower triangular  
IPATH = 4 means solve AHX = B, A upper triangular 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSLCT (A, B,X [,…]) 

Specific: The specific interface names are S_LSLCT and D_LSLCT. 

FORTRAN 77 Interface 
Single: CALL LSLCT (N, A, LDA, B, IPATH, X) 

Double:  The double precision name is DLSLCT. 

Example 
A system of three linear equations is solved. The coefficient matrix has lower triangular form 
and the right-hand-side vector, b, has three elements. 

      USE LSLCT_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER      LDA 
      PARAMETER    (LDA=3) 
      COMPLEX      A(LDA,LDA), B(LDA), X(LDA) 
!                                Set values for A and B 
! 
!                                A = ( -3.0+2.0i                     ) 
!                                    ( -2.0-1.0i  0.0+6.0i           ) 
!                                    ( -1.0+3.0i  1.0-5.0i -4.0+0.0i ) 
! 
!                                B = (-13.0+0.0i -10.0-1.0i -11.0+3.0i) 
! 
      DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),& 
            (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/ 
      DATA B/(-13.0,0.0), (-10.0,-1.0), (-11.0,3.0)/ 
! 
!                                 Solve AX = B 
      CALL LSLCT (A, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, 3, 1) 
      END 
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Output 
 
                           X 
              1                2                3 
( 3.000, 2.000)  ( 1.000, 1.000)  ( 2.000, 0.000) 
 

Comments 
Informational error 

Type  Code 

4     1  The input triangular matrix is singular. Some of its diagonal elements are near 
zero. 

Description 
Routine LSLCT solves a system of linear algebraic equations with a complex triangular 
coefficient matrix. LSLCT fails if the matrix A has a zero diagonal element, in which case A is 
singular. LSLCT is based on the LINPACK routine CTRSL; see Dongarra et al. (1979). 

LFCCT 
Estimates the condition number of a complex triangular matrix. 

Required Arguments 
A — Complex N by N matrix containing the triangular matrix.   (Input)  

For a lower triangular system, only the lower triangle of A is referenced. For an upper 
triangular system, only the upper triangle of A is referenced. 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means A is lower triangular.  
IPATH = 2 means A is upper triangular. 
Default: IPATH =1. 
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FORTRAN 90 Interface 
Generic: CALL LFCCT (A, RCOND [,…]) 

Specific: The specific interface names are S_LFCCT and D_LFCCT. 

FORTRAN 77 Interface 
Single: CALL LFCCT (N, A, LDA, IPATH, RCOND) 

Double:  The double precision name is DLFCCT. 

Example 
An estimate of the reciprocal condition number is computed for a 3 � 3 lower triangular 
coefficient matrix. 

      USE LFCCT_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3) 
      INTEGER    NOUT 
      REAL       RCOND 
      COMPLEX    A(LDA,LDA) 
!                                Set values for A 
! 
!                                A = ( -3.0+2.0i                     ) 
!                                    ( -2.0-1.0i  0.0+6.0i           ) 
!                                    ( -1.0+3.0i  1.0-5.0i -4.0+0.0i ) 
! 
      DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),& 
            (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/ 
! 
!                                 Compute the reciprocal condition 
!                                 number 
      CALL LFCCT (A, RCOND) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.191  
L1 Condition number = 5.223 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CCT/DL2CCT. The 

reference is: 

CALL L2CCT (N, A, LDA, IPATH, RCOND, CWK) 

The additional argument is: 

CWK — Complex work vector of length N. 

2. Informational error  
Type  Code  

3     1  The input triangular matrix is algorithmically singular. 

Description 
Routine LFCCT estimates the condition number of a complex triangular matrix. The L� condition 
number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive to compute ||A||�, 
the condition number is only estimated. The estimation algorithm is the same as used by 
LINPACK and is described by Cline et al. (1979). If the estimated condition number is greater 
than 1/� (where � is machine precision), a warning error is issued. This indicates that very small 
changes in A can cause very large changes in the solution x. LFCCT is based on the LINPACK 
routine CTRCO; see Dongarra et al. (1979). 

LFDCT 
Computes the determinant of a complex triangular matrix. 

Required Arguments 
A — Complex N by N matrix containing the triangular matrix.(Input) 

DET1 — Complex scalar containing the mantissa of the determinant.   (Output) 
The value DET1 is normalized so that 1.0 � �DET1� <10.0 or DET1= 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output) 
The determinant is returned in the form det(A) = DET1 *10DET2. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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FORTRAN 90 Interface 
Generic: CALL LFDCT (A, DET1, DET2[,…]) 

Specific: The specific interface names are S_LFDCT and D_LFDCT. 

FORTRAN 77 Interface 
Single: CALL LFDCT (N, A, LDA, DET1, DET2) 

Double:  The double precision name is DLFDCT. 

Example 
The determinant is computed for a 3 � 3 complex lower triangular matrix. 

      USE LFDCT_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    NOUT 
      REAL       DET2 
      COMPLEX    A(LDA,LDA), DET1 
!                                Set values for A 
! 
!                                A = ( -3.0+2.0i                     ) 
!                                    ( -2.0-1.0i  0.0+6.0i           ) 
!                                    ( -1.0+3.0i  1.0-5.0i -4.0+0.0i ) 
! 
      DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),& 
            (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/ 
! 
!                                 Compute the determinant of A 
      CALL LFDCT (A, DET1, DET2) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
99999 FORMAT (’ The determinant of A is (’,F4.1,’,’,F4.1,’) * 10**’,& 
             F2.0) 
      END 

Output 
The determinant of A is ( 0.5, 0.7) * 10**2. 
 

Comments 
Informational error  

Type  Code  

3     1  The input triangular matrix is singular. 
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Description 
Routine LFDCT computes the determinant of a complex triangular coefficient matrix. The 
determinant of a triangular matrix is the product of the diagonal elements  

1
det N

iii
A A

�

��  

LFDCT is based on the LINPACK routine CTRDI; see Dongarra et al. (1979). 

LINCT 
Computes the inverse of a complex triangular matrixs. 

Required Arguments 
A — Complex N by N matrix containing the triangular matrix to be inverted.   (Input)  

For a lower triangular matrix, only the lower triangle of A is referenced. For an upper 
triangular matrix, only the upper triangle of A is referenced. 

AINV — Complex N by N matrix containing the inverse of A.   (Output)  
If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is 
also upper triangular. If A is not needed, A and AINV can share the same storage 
locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means A is lower triangular.  
IPATH = 2 means A is upper triangular. 
Default: IPATH = 1. 

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 
Generic: CALL LINCT (A, AINV [,…]) 

Specific: The specific interface names are S_LINCT and D_LINCT. 
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FORTRAN 77 Interface 
Single: CALL LINCT (N, A, LDA, IPATH, AINV, LDAINV) 

Double:  The double precision name is DLINCT. 

Example 
The inverse is computed for a 3 � 3 lower triangular matrix. 

      USE LINCT_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA 
      PARAMETER  (LDA=3) 
      COMPLEX    A(LDA,LDA), AINV(LDA,LDA) 
!                                Set values for A 
! 
!                                A = ( -3.0+2.0i                     ) 
!                                    ( -2.0-1.0i  0.0+6.0i           ) 
!                                    ( -1.0+3.0i  1.0-5.0i -4.0+0.0i ) 
! 
      DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),& 
            (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/ 
! 
!                                 Compute the inverse of A 
      CALL LINCT (A, AINV) 
!                                 Print results 
      CALL WRCRN (’AINV’, AINV) 
      END 

Output 
 
                           AINV 
                   1                  2                  3 
1  (-0.2308,-0.1538)  ( 0.0000, 0.0000)  ( 0.0000, 0.0000) 
2  (-0.0897, 0.0513)  ( 0.0000,-0.1667)  ( 0.0000, 0.0000) 
3  ( 0.2147,-0.0096)  (-0.2083,-0.0417)  (-0.2500, 0.0000) 
 

Comments 
Informational error 

Type  Code  

4     1  The input triangular matrix is singular. Some of its diagonal elements are close 
to zero. 
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Description 
Routine LINCT computes the inverse of a complex triangular matrix. It fails if A has a zero 
diagonal element. 

LSADS 
Solves a real symmetric positive definite system of linear equations with iterative refinement. 

Required Arguments 
A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear 

system.   (Input)  
Only the upper triangle of A is referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSADS (A, B, X [,…]) 

Specific: The specific interface names are S_LSADS and D_LSADS. 

FORTRAN 77 Interface 
Single: CALL LSADS (N, A, LDA, B, X) 

Double:  The double precision name is DLSADS. 

Example 
A system of three linear equations is solved. The coefficient matrix has real positive definite 
form and the right-hand-side vector b has three elements. 

      USE LSADS_INT 
      USE WRRRN_INT 

!                                 Declare variables 
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      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      REAL       A(LDA,LDA), B(N), X(N) 
! 
!                                 Set values for A and B 
! 
!                                 A = (  1.0  -3.0   2.0) 
!                                     ( -3.0  10.0  -5.0) 
!                                     (  2.0  -5.0   6.0) 
! 
!                                 B = ( 27.0 -78.0  64.0) 
! 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
      DATA B/27.0, -78.0, 64.0/ 
! 
      CALL LSADS (A, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
          X 
    1       2       3 
1.000  -4.000   7.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ADS/DL2ADS. The 

reference is: 

CALL L2ADS (N, A, LDA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT— Work vector of length N2 containing the RTR factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors 
Type  Code  

3      1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4      2  The input matrix is not positive definite. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2ADS the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
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temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSADS. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSADS. Users directly calling L2ADS can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSADS or L2ADS. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 

17  This option has two values that determine if the L� condition number is to be 
computed. Routine LSADS temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CDS computes the condition number if IVAL(2) = 2. Otherwise L2CDS 
skips this computation. LSADS restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSADS solves a system of linear algebraic equations having a real symmetric positive 
definite coefficient matrix. It first uses the routine LFCDS, page 143, to compute an RTR 
Cholesky factorization of the coefficient matrix and to estimate the condition number of the 
matrix. The matrix R is upper triangular. The solution of the linear system is then found using 
the iterative refinement routine LFIDS, page 150. LSADS fails if any submatrix of R is not 
positive definite, if R has a zero diagonal element or if the iterative refinement algorithm fails to 
converge. These errors occur only if A is either very close to a singular matrix or a matrix which 
is not positive definite. If the estimated condition number is greater than 1/� (where � is machine 
precision), a warning error is issued. This indicates that very small changes in A can cause very 
large changes in the solution x. Iterative refinement can sometimes find the solution to such a 
system. LSADS solves the problem that is represented in the computer; however, this problem 
may differ from the problem whose solution is desired. 

 

LSLDS 
Solves a real symmetric positive definite system of linear equations without iterative refinement . 

Required Arguments 
A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear 

system.   (Input)  
Only the upper triangle of A is referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 141 

 

 

 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSLDS (A, B, X [,…]) 

Specific: The specific interface names are S_LSLDS and D_LSLDS. 

FORTRAN 77 Interface 
Single: CALL LSLDS (N, A, LDA, B, X) 

Double:  The double precision name is DLSLDS. 

Example 
A system of three linear equations is solved. The coefficient matrix has real positive definite 
form and the right-hand-side vector b has three elements. 

      USE LSLDS_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      REAL       A(LDA,LDA), B(N), X(N) 
! 
!                                 Set values for A and B 
! 
!                                 A = (  1.0  -3.0   2.0) 
!                                     ( -3.0  10.0  -5.0) 
!                                     (  2.0  -5.0   6.0) 
! 
!                                 B = ( 27.0 -78.0  64.0) 
! 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
      DATA B/27.0, -78.0, 64.0/ 
! 
      CALL LSLDS (A, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
! 
      END 
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Output 
 
          X 
    1       2       3 
1.000  -4.000   7.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LDS/DL2LDS. The 

reference is: 

CALL L2LDS (N, A, LDA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — N � N work array containing the RTR factorization of A on output. If A is not 
needed, A can share the same storage locations as FACT. 

WK — Work vector of length N. 

2. Informational errors 
Type  Code  

3      1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4      2 The input matrix is not positive definite. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2LDS the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLDS. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLDS. Users directly calling L2LDS can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLDS or L2LDS. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSLDS temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CDS computes the condition number if IVAL(2) = 2. Otherwise L2CDS 
skips this computation. LSLDS restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSLDS solves a system of linear algebraic equations having a real symmetric positive 
definite coefficient matrix. It first uses the routine LFCDS, page 143, to compute an RTR 
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Cholesky factorization of the coefficient matrix and to estimate the condition number of the 
matrix. The matrix R is upper triangular. The solution of the linear system is then found using 
the routine LFSDS, page 148. LSLDS fails if any submatrix of R is not positive definite or if R 
has a zero diagonal element. These errors occur only if A either is very close to a singular matrix 
or to a matrix which is not positive definite. If the estimated condition number is greater than 
1/� (where � is machine precision), a warning error is issued. This indicates that very small 
changes in A can cause very large changes in the solution x. If the coefficient matrix is ill-
conditioned, it is recommended that LSADS, page 138, be used. 

LFCDS 
Computes the RTR Cholesky factorization of a real symmetric positive definite matrix and 
estimate its L� condition number. 

Required Arguments 
A — N by N symmetric positive definite matrix to be factored.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in 
the upper triangular part.   (Output) 
Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 
the same storage locations. 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCDS (A, FACT, RCOND [,…]) 

Specific: The specific interface names are S_LFCDS and D_LFCDS. 
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FORTRAN 77 Interface 
Single: CALL LFCDS (N, A, LDA, FACT, LDFACT, RCOND) 

Double:  The double precision name is DLFCDS. 

Example 
The inverse of a 3 � 3 matrix is computed. LFCDS is called to factor the matrix and to check for 
nonpositive definiteness or ill-conditioning. LFIDS (page 150) is called to determine the 
columns of the inverse. 

      USE LFCDS_INT 
      USE UMACH_INT 
      USE WRRRN_INT 
      USE LFIDS_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NOUT 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      REAL       A(LDA,LDA), AINV(LDA,LDA), RCOND, FACT(LDFACT,LDFACT),& 
                 RES(N), RJ(N) 
! 
!                                 Set values for A 
!                                 A = (  1.0  -3.0   2.0) 
!                                     ( -3.0  10.0  -5.0) 
!                                     (  2.0  -5.0   6.0) 
! 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
!                                 Factor the matrix A 
      CALL LFCDS (A, FACT, RCOND) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = 0.0E0 
      DO 10  J=1, N 
         RJ(J) = 1.0E0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFIDS 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFIDS (A, FACT, RJ, AINV(:,J), RES) 
         RJ(J) = 0.0E0 
   10 CONTINUE 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
      CALL WRRRN (’AINV’, AINV) 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F9.3) 
      END 

Output 
 
RCOND = 0.001  
L1 Condition number = 674.727 
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          AINV 
        1       2       3 
1   35.00    8.00   -5.00 
2    8.00    2.00   -1.00 
3   -5.00   -1.00    1.00 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CDS/DL2CDS. The 

reference is: 

CALL L2CDS (N, A, LDA, FACT, LDFACT, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors 
Type  Code  

3      1  The input matrix is algorithmically singular. 

4      2  The input matrix is not positive definite. 

Description 

Routine LSADS computes an RTR Cholesky factorization and estimates the condition number of 
a real symmetric positive definite coefficient matrix. The matrix R is upper triangular. 

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive 
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A is very close to a singular matrix or to a matrix which is not 
positive definite.  

The RTR factors are returned in a form that is compatible with routines LFIDS, page 150, 
LFSDS, page 148, and LFDDS, page 153. To solve systems of equations with multiple right-
hand-side vectors, use LFCDS followed by either LFIDS or LFSDS called once for each right-
hand side. The routine LFDDS can be called to compute the determinant of the coefficient matrix 
after LFCDS has performed the factorization. 
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LFTDS 
Computes the RTR Cholesky factorization of a real symmetric positive definite matrix. 

Required Arguments 
A — N by N symmetric positive definite matrix to be factored.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in 
the upper triangle.   (Output)  
Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 
the same storage locations. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
 Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFTDS (A, FACT [,…]) 

Specific: The specific interface names are S_LFTDS and D_LFTDS. 

FORTRAN 77 Interface 
Single: CALL LFTDS (N, A, LDA, FACT, LDFACT) 

Double:  The double precision name is DLFTDS. 

Example 
The inverse of a 3 � 3 matrix is computed. LFTDS is called to factor the matrix and to check for 
nonpositive definiteness. LFSDS (page 148) is called to determine the columns of the inverse. 

      USE LFTDS_INT 
      USE LFSDS_INT 
      USE WRRRN_INT 
!                                 Declare variables 
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      INTEGER    LDA, LDFACT, N 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      REAL       A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N) 
! 
!                                 Set values for A 
!                                 A = (  1.0  -3.0   2.0) 
!                                     ( -3.0  10.0  -5.0) 
!                                     (  2.0  -5.0   6.0) 
! 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
!                                 Factor the matrix A 
      CALL LFTDS (A, FACT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = 0.0E0 
      DO 10  J=1, N 
         RJ(J) = 1.0E0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSDS 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSDS (FACT, RJ, AINV(:,J)) 
         RJ(J) = 0.0E0 
   10 CONTINUE 
!                                 Print the results 
      CALL WRRRN (’AINV’, AINV) 
! 
      END 

Output 
 
           AINV 
        1       2       3 
1   35.00    8.00   -5.00 
2    8.00    2.00   -1.00 
3   -5.00   -1.00    1.00 
 

Comments 
Informational error 

Type  Code  

4     2  The input matrix is not positive definite. 

Description 

Routine LFTDS computes an RTR Cholesky factorization of a real symmetric positive definite 
coefficient matrix. The matrix R is upper triangular. 
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LFTDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A is very close to a singular matrix or to a matrix which is not 
positive definite. 

The RTR factors are returned in a form that is compatible with routines LFIDS, page 150, 
LFSDS, page 148, and LFDDS, page 153. To solve systems of equations with multiple right-
hand-side vectors, use LFTDS followed by either LFIDS or LFSDS called once for each right-
hand side. The routine LFDDS can be called to compute the determinant of the coefficient matrix 
after LFTDS has performed the factorization. 

LFTDS is based on the LINPACK routine SPOFA; see Dongarra et al. (1979). 

LFSDS 
Solves a real symmetric positive definite system of linear equations given the RT R Cholesky 
factorization of the coefficient matrix. 

Required Arguments 

FACT — N by N matrix containing the RT R factorization of the coefficient matrix A as output 
from routine LFCDS/DLFCDS or LFTDS/DLFTDS.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFSDS (FACT, B, X [,…]) 

Specific: The specific interface names are S_LFSDS and D_LFSDS. 

FORTRAN 77 Interface 
Single: CALL LFSDS (N, FACT, LDFACT, B, X) 

Double:  The double precision name is DLFSDS. 
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Example 
A set of linear systems is solved successively. LFTDS (page 146) is called to factor the 
coefficient matrix. LFSDS is called to compute the four solutions for the four right-hand sides. In 
this case the coefficient matrix is assumed to be well-conditioned and correctly scaled. 
Otherwise, it would be better to call LFCDS (page 143) to perform the factorization, and LFIDS 
(page 150) to compute the solutions. 

      USE LFSDS_INT 
      USE LFTDS_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      REAL       A(LDA,LDA), B(N,4), FACT(LDFACT,LDFACT), X(N,4) 
! 
!                                 Set values for A and B 
! 
!                                 A = (  1.0  -3.0   2.0) 
!                                     ( -3.0  10.0  -5.0) 
!                                     (  2.0  -5.0   6.0) 
! 
!                                 B = ( -1.0   3.6  -8.0  -9.4) 
!                                     ( -3.0  -4.2  11.0  17.6) 
!                                     ( -3.0  -5.2  -6.0 -23.4) 
! 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
      DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,& 
          -9.4, 17.6, -23.4/ 
!                                 Factor the matrix A 
      CALL LFTDS (A, FACT) 
!                                 Compute the solutions 
      DO 10  I=1, 4 
         CALL LFSDS (FACT, B(:,I), X(:,I)) 
   10 CONTINUE 
!                                 Print solutions 
      CALL WRRRN (’The solution vectors are’, X) 
! 
      END 

Output 
 
     The solution vectors are 
        1       2       3       4 
1   -44.0   118.4  -162.0   -71.2 
2   -11.0    25.6   -36.0   -16.6 
3     5.0   -19.0    23.0     6.0 
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Comments 
Informational error  

Type  Code  

4       1  The input matrix is singular. 

Description 
This routine computes the solution for a system of linear algebraic equations having a real 
symmetric positive definite coefficient matrix. To compute the solution, the coefficient matrix 
must first undergo an RTR factorization. This may be done by calling either LFCDS, page 143, or 
LFTDS, page 146. R is an upper triangular matrix.  

The solution to Ax = b is found by solving the triangular systems RTy = b and Rx = y.  

LFSDS, (page 148) and LFIDS, page 150, both solve a linear system given its RTR 
factorization. LFIDS generally takes more time and produces a more accurate answer than 
LFSDS. Each iteration of the iterative refinement algorithm used by LFIDS calls LFSDS.  

LFSDS is based on the LINPACK routine SPOSL; see Dongarra et al. (1979). 

LFIDS 
Uses iterative refinement to improve the solution of a real symmetric positive definite system of 
linear equations. 

Required Arguments 
A — N by N matrix containing the symmetric positive definite coefficient matrix of the linear 

system.   (Input)  
Only the upper triangle of A is referenced. 

FACT — N by N matrix containing the RT R factorization of the coefficient matrix A as output 
from routine LFCDS/DLFCDS or LFTDS/DLFTDS.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

RES — Vector of length N containing the residual vector at the improved  
solution.   (Output)  
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Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimesion statement of the calling 
program.  (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
 Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFIDS (A, FACT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIDS and D_LFIDS. 

FORTRAN 77 Interface 
Single: CALL LFIDS (N, A, LDA, FACT, LDFACT, B, X, RES) 

Double:  The double precision name is DLFIDS. 

Example 
A set of linear systems is solved successively. The right-hand-side vector is perturbed after 
solving the system each of the first two times by adding 0.2 to the second element. 

      USE LFIDS_INT 
      USE LFCDS_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      REAL       A(LDA,LDA), B(N), RCOND, FACT(LDFACT,LDFACT), RES(N,3),& 
                X(N,3) 
! 
!                                 Set values for A and B 
! 
!                                 A = (  1.0  -3.0   2.0) 
!                                     ( -3.0  10.0  -5.0) 
!                                     (  2.0  -5.0   6.0) 
! 
!                                 B = (  1.0  -3.0   2.0) 
! 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
      DATA B/1.0, -3.0, 2.0/ 
!                                 Factor the matrix A 
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      CALL LFCDS (A, FACT, RCOND) 
!                                 Print the estimated condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Compute the solutions 
      DO 10  I=1, 3 
         CALL LFIDS (A, FACT, B, X(:,I), RES(:,I)) 
         B(2) = B(2) + .2E0 
   10 CONTINUE 
!                                 Print solutions and residuals 
      CALL WRRRN (’The solution vectors are’, X) 
      CALL WRRRN (’The residual vectors are’, RES) 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F9.3) 
      END 

Output 
 
RCOND = 0.001 
L1 Condition number =   674.727 
 
The solution vectors are 
        1       2       3 
1   1.000   2.600   4.200 
2   0.000   0.400   0.800 
3   0.000  -0.200  -0.400 
 
The residual vectors are 
         1        2        3 
1   0.0000   0.0000   0.0000 
2   0.0000   0.0000   0.0000 
3   0.0000   0.0000   0.0000 
 

Comments 
Informational error 

Type  Code  

3     2  The input matrix is too ill-conditioned for iterative refinement to be effective. 

Description 
Routine LFIDS computes the solution of a system of linear algebraic equations having a real 
symmetric positive definite coefficient matrix. Iterative refinement is performed on the solution 
vector to improve the accuracy. Usually almost all of the digits in the solution are accurate, even 
if the matrix is somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an RTR factorization. This 
may be done by calling either LFCDS, page 143, or LFTDS, page 146. 

Iterative refinement fails only if the matrix is very ill-conditioned. 
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LFIDS, page 150 and LFSDS, page 148, both solve a linear system given its RTR factorization. 
LFIDS generally takes more time and produces a more accurate answer than LFSDS. Each 
iteration of the iterative refinement algorithm used by LFIDS calls LFSDS. 

LFDDS 
Computes the determinant of a real symmetric positive definite matrix given the RTR Cholesky 
factorization of the matrix . 

Required Arguments 

FACT — N by N matrix containing the RT R factorization of the coefficient matrix A as output 
from routine LFCDS/DLFCDS or LFTDS/DLFTDS.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that, 1.0 � |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form, det(A) = DET1 * 10DET2. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFDDS (FACT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDDS and D_LFDDS. 

FORTRAN 77 Interface 
Single: CALL LFDDS (N, FACT, LDFACT, DET1, DET2) 

Double:  The double precision name is DLFDDS. 
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Example 
The determinant is computed for a real positive definite 3 � 3 matrix. 

      USE LFDDS_INT 
      USE LFTDS_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, NOUT 
      PARAMETER  (LDA=3, LDFACT=3) 
      REAL       A(LDA,LDA), DET1, DET2, FACT(LDFACT,LDFACT) 
! 
!                                 Set values for A 
!                                 A = (  1.0  -3.0   2.0) 
!                                     ( -3.0  20.0  -5.0) 
!                                     (  2.0  -5.0   6.0) 
! 
      DATA A/1.0, -3.0, 2.0, -3.0, 20.0, -5.0, 2.0, -5.0, 6.0/ 
!                                 Factor the matrix 
      CALL LFTDS (A, FACT) 
!                                 Compute the determinant 
      CALL LFDDS (FACT, DET1, DET2) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
! 
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0) 
      END 

Output 
 
The determinant of A is 2.100 * 10**1. 
 

Description 
Routine LFDDS computes the determinant of a real symmetric positive definite coefficient 
matrix. To compute the determinant, the coefficient matrix must first undergo an RTR 
factorization. This may be done by calling either LFCDS, page 143, or LFTDS, page 146. The 
formula det A = det RT det R = (det R)� is used to compute the determinant. Since the 
determinant of a triangular matrix is the product of the diagonal elements,  

1
det N

iii
R R

�

��  

(The matrix R is stored in the upper triangle of FACT.) 

LFDDS is based on the LINPACK routine SPODI; see Dongarra et al. (1979). 

LINDS 
Computes the inverse of a real symmetric positive definite matrix. 
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Required Arguments 
A — N by N matrix containing the symmetric positive definite matrix to be inverted.   (Input)  

Only the upper triangle of A is referenced. 

AINV — N by N matrix containing the inverse of A.  (Output)  
If A is not needed, A and AINV can share the same storage locations. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDAINV = size (AINV,1). 

FORTRAN 90 Interface 
Generic: CALL LINDS (A, AINV [,…]) 

Specific: The specific interface names are S_LINDS and D_LINDS. 

FORTRAN 77 Interface 
Single: CALL LINDS (N, A, LDA, AINV, LDAINV) 

Double:  The double precision name is DLINDS. 

Example 
The inverse is computed for a real positive definite 3 � 3 matrix. 

      USE LINDS_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDAINV 
      PARAMETER  (LDA=3, LDAINV=3) 
      REAL       A(LDA,LDA), AINV(LDAINV,LDAINV) 
! 
!                                 Set values for A 
!                                 A = (  1.0  -3.0   2.0) 
!                                     ( -3.0  10.0  -5.0) 
!                                     (  2.0  -5.0   6.0) 
! 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
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! 
      CALL LINDS (A, AINV) 
!                                 Print results 
      CALL WRRRN (’AINV’, AINV) 
! 
      END 

Output 
 
           AINV 
        1       2       3 
1   35.00    8.00   -5.00 
2    8.00    2.00   -1.00 
3   -5.00   -1.00    1.00 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2NDS/DL2NDS. The 

reference is: 

CALL L2NDS (N, A, LDA, AINV, LDAINV, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors  
Type  Code  

3      1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4      2  The input matrix is not positive definite. 

Description 
Routine LINDS computes the inverse of a real symmetric positive definite matrix. It first uses 
the routine LFCDS, page 143, to compute an RTR factorization of the coefficient matrix and to 
estimate the condition number of the matrix. LINRT, page 128, is then used to compute R-1. 
Finally A-1 is computed using R-1 = R-1  R-T.  

LINDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A is very close to a singular matrix or to a matrix which is not 
positive definite. 

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in A. 

LSASF 
Solves a real symmetric system of linear equations with iterative refinement. 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 157 

 

 

 

Required Arguments 
A — N by N matrix containing the coefficient matrix of the symmetric linear system.   (Input)  

Only the upper triangle of A is referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSASF (A, B, X [,…]) 

Specific: The specific interface names are S_LSASF and D_LSASF. 

FORTRAN 77 Interface 
Single: CALL LSASF (N, A, LDA, B, X) 

Double:  The double precision name is DLSASF. 

Example 
A system of three linear equations is solved. The coefficient matrix has real symmetric form and 
the right-hand-side vector b has three elements. 

      USE LSASF_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, N=3) 
      REAL       A(LDA,LDA), B(N), X(N) 
! 
!                                 Set values for A and B 
! 
!                                 A = (  1.0  -2.0   1.0) 
!                                     ( -2.0   3.0  -2.0) 
!                                     (  1.0  -2.0   3.0) 
! 
!                                 B = (  4.1  -4.7   6.5) 
! 
      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 
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      DATA B/4.1, -4.7, 6.5/ 
! 
      CALL LSASF (A, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
      END 

Output 
 
            X 
     1       2       3 
-4.100  -3.500   1.200 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ASF/DL2ASF. The 

reference is 

CALL L2ASF (N, A, LDA, B, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — N � N work array containing information about the  
U DUT factorization of A on output. If A is not needed, A and FACT can share the 
same storage location. 

IPVT — Integer work vector of length N containing the pivoting information for the 
factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors 
Type  Code  

 3     1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

 4     2  The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2ASF the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSASF. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSASF. Users directly calling L2ASF can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSASF or L2ASF. Default values for the option are IVAL(*) 
= 1, 16, 0, 1. 
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17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSASF temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CSF computes the condition number if IVAL(2) = 2. Otherwise L2CSF 
skips this computation. LSASF restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSASF solves systems of linear algebraic equations having a real symmetric indefinite 
coefficient matrix. It first uses the routine LFCSF, page 162, to compute a U DUT factorization 
of the coefficient matrix and to estimate the condition number of the matrix. D is a block 
diagonal matrix with blocks of order 1 or 2, and U is a matrix composed of the product of a 
permutation matrix and a unit upper triangular matrix. The solution of the linear system is then 
found using the iterative refinement routine LFISF, page 169.  

LSASF fails if a block in D is singular or if the iterative refinement algorithm fails to converge. 
These errors occur only if A is singular or very close to a singular matrix.  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A  can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system. LSASF solves 
the problem that is represented in the computer; however, this problem may differ from the 
problem whose solution is desired. 

LSLSF 
Solves a real symmetric system of linear equations without iterative refinement . 

Required Arguments 
A — N by N matrix containing the coefficient matrix of the symmetric linear system.   (Input)  

Only the upper triangle of A is referenced. 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

 Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 



 

 
 

160 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

FORTRAN 90 Interface 
Generic: CALL LSLSF (A, B, X [,…]) 

Specific: The specific interface names are S_LSLSF and D_LSLSF. 

FORTRAN 77 Interface 
Single: CALL LSLSF (N, A, LDA, B, X) 

Double:  The double precision name is DLSLSF. 

Example 
A system of three linear equations is solved. The coefficient matrix has real symmetric form and 
the right-hand-side vector b has three elements. 

      USE LSLSF_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, N=3) 
      REAL       A(LDA,LDA), B(N), X(N) 
! 
!                                 Set values for A and B 
! 
!                                 A = (  1.0  -2.0   1.0) 
!                                     ( -2.0   3.0  -2.0) 
!                                     (  1.0  -2.0   3.0) 
! 
!                                 B = (  4.1  -4.7   6.5) 
! 
      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 
      DATA B/4.1, -4.7, 6.5/ 
! 
      CALL LSLSF (A, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
      END 

Output 
 
            X 
     1       2       3 
-4.100  -3.500   1.200 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LSF/DL2LSF. The 

reference is: 

CALL L2LSF (N, A, LDA, B, X, FACT, IPVT, WK) 
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The additional arguments are as follows: 

FACT — N � N work array containing information about the 
U DUT factorization of A on output. If A is not needed, A and FACT can share the 
same storage locations. 

IPVT — Integer work vector of length N containing the pivoting information for the 
factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors 

Type  Code  
3      1  The input matrix is too ill-conditioned. The solution might not be 

accurate. 
4      2  The input matrix is singular. 
   Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine LSLSF the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLSF. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLSF. Users directly calling LSLSF can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLSF or LSLSF. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSLSF temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CSF computes the condition number if IVAL(2) = 2. Otherwise L2CSF 
skips this computation. LSLSF restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSLSF solves systems of linear algebraic equations having a real symmetric indefinite 
coefficient matrix. It first uses the routine LFCSF, page 162, to compute a U DUT factorization 
of the coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2, and U is a 
matrix composed of the product of a permutation matrix and a unit upper triangular matrix.  

The solution of the linear system is then found using the routine LFSSF, page 167.  

LSLSF fails if a block in D is singular. This occurs only if A either is singular or is very close to 
a singular matrix. 
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LFCSF 
Computes the U DUT factorization of a real symmetric matrix and estimate its L� condition 
number. 

Required Arguments 
A — N by N symmetric matrix to be factored.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing information about the factorization of the symmetric 
matrix A.   (Output)  
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the 
same storage locations. 

IPVT — Vector of length N containing the pivoting information for the factorization.   
(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCSF (A, FACT, IPVT, RCOND [,…]) 

Specific: The specific interface names are S_LFCSF and D_LFCSF. 

FORTRAN 77 Interface 
Single: CALL LFCSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCSF. 
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Example 
The inverse of a 3 � 3 matrix is computed. LFCSF is called to factor the matrix and to check for 
singularity or ill-conditioning. LFISF (page 169) is called to determine the columns of the 
inverse. 

      USE LFCSF_INT 
      USE UMACH_INT 
      USE LFISF_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N), RES(N),& 
                 RCOND 
! 
!                                 Set values for A 
! 
!                                 A = (  1.0  -2.0   1.0) 
!                                     ( -2.0   3.0  -2.0) 
!                                     (  1.0  -2.0   3.0) 
! 
      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 
!                                 Factor A and return the reciprocal 
!                                 condition number estimate 
      CALL LFCSF (A, FACT, IPVT, RCOND) 
!                                 Print the estimate of the condition 
!                                 number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
! 
!                                 matrix one at a time in RJ 
      RJ = 0.E0 
      DO 10  J=1, N 
         RJ(J) = 1.0E0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFISF 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFISF (A, FACT, IPVT, RJ, AINV(:,J), RES) 
         RJ(J) = 0.0E0 
   10 CONTINUE 
!                                 Print the inverse 
      CALL WRRRN (’AINV’, AINV) 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.034 
L1 Condition number = 29.750 
 
          AINV 
        1       2       3 
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1  -2.500  -2.000  -0.500 
2  -2.000  -1.000   0.000 
3  -0.500   0.000   0.500 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CSF/DL2CSF. The 

reference is: 

CALL L2CSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors 
Type  Code  

3     1 The input matrix is algorithmically singular. 
4      2  The input matrix is singular. 

Description 

Routine LFCSF performs a U DUT factorization of a real symmetric indefinite coefficient 
matrix. It also estimates the condition number of the matrix. The U DUT factorization is called 
the diagonal pivoting factorization.  

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive 
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCSF fails if A is singular or very close to a singular matrix.  

The U DUT factors are returned in a form that is compatible with routines LFISF, page 169, 
LFSSF, page 167, and LFDSF, page 172. To solve systems of equations with multiple right-
hand-side vectors, use LFCSF followed by either LFISF or LFSSF called once for each right-
hand side. The routine LFDSF can be called to compute the determinant of the coefficient matrix 
after LFCSF has performed the factorization.  

LFCSF is based on the LINPACK routine SSICO; see Dongarra et al. (1979). 

LFTSF 
Computes the U DUT factorization of a real symmetric matrix. 
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Required Arguments 
A — N by N symmetric matrix to be factored.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing information about the factorization of the symmetric 
matrix A.   (Output)  
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the 
same storage locations. 

IPVT — Vector of length N containing the pivoting information for the factorization.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFTSF (A, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTSF and D_LFTSF. 

FORTRAN 77 Interface 
Single: CALL LFTSF (N, A, LDA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTSF. 

Example 
The inverse of a 3 � 3 matrix is computed. LFTSF is called to factor the matrix and to check for 
singularity. LFSSF (page 167) is called to determine the columns of the inverse. 

      USE LFTSF_INT 
      USE LFSSF_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N) 
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      REAL       A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N) 
! 
!                                 Set values for A 
!                                 A = (  1.0  -2.0   1.0) 
!                                     ( -2.0   3.0  -2.0) 
!                                     (  1.0  -2.0   3.0) 
! 
      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 
!                                 Factor A 
      CALL LFTSF (A, FACT, IPVT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = 0.0E0 
      DO 10  J=1, N 
         RJ(J) = 1.0E0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSSF 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSSF (FACT, IPVT, RJ, AINV(:,J)) 
         RJ(J) = 0.0E0 
   10 CONTINUE 
!                                 Print the inverse 
      CALL WRRRN (’AINV’, AINV) 
      END 

Output 
 
            AINV 
        1       2       3 
1  -2.500  -2.000  -0.500 
2  -2.000  -1.000   0.000 
3  -0.500   0.000   0.500 
 

Comments 
Informational error 

Type  Code  

4     2  The input matrix is singular. 

Description 

Routine LFTSF performs a U DUT factorization of a real symmetric indefinite coefficient 
matrix. The U DUT factorization is called the diagonal pivoting factorization.  

LFTSF fails if A is singular or very close to a singular matrix.  
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The U DUT factors are returned in a form that is compatible with routines LFISF, page 169, 
LFSSF, page 167, and LFDSF, page 172. To solve systems of equations with multiple right-
hand-side vectors, use LFTSF followed by either LFISF or LFSSF called once for each right-
hand side. The routine LFDSF can be called to compute the determinant of the coefficient matrix 
after LFTSF has performed the factorization.  

LFTSF is based on the LINPACK routine SSIFA; see Dongarra et al. (1979). 

LFSSF 
Solves a real symmetric system of linear equations given the U DUT factorization of the 
coefficient matrix. 

Required Arguments 
FACT — N by N matrix containing the factorization of the coefficient matrix A as output from 

routine LFCSF/DLFCSF or LFTSF/DLFTSF.   (Input)  
Only the upper triangle of FACT is used. 

IPVT — Vector of length N containing the pivoting information for the factorization of A as 
output from routine LFCSF/DLFCSF or LFTSF/DLFTSF.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of A exactly as specified in the dimension statement of the 
calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFSSF (FACT, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSSF and D_LFSSF. 

FORTRAN 77 Interface 
Single: CALL LFSSF (N, FACT, LDFACT, IPVT, B, X) 

Double:  The double precision name is DLFSSF. 
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Example 
A set of linear systems is solved successively. LFTSF (page 164) is called to factor the 
coefficient matrix. LFSSF is called to compute the four solutions for the four right-hand sides. In 
this case the coefficient matrix is assumed to be well-conditioned and correctly scaled. 
Otherwise, it would be better to call LFCSF (page 162) to perform the factorization, and LFISF 
(page 169) to compute the solutions. 

      USE LFSSF_INT 
      USE LFTSF_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N) 
      REAL       A(LDA,LDA), B(N,4), X(N,4), FACT(LDA,LDA) 
! 
!                                 Set values for A and B 
! 
!                                 A = (  1.0  -2.0   1.0) 
!                                     ( -2.0   3.0  -2.0) 
!                                     (  1.0  -2.0   3.0) 
! 
!                                 B = ( -1.0   3.6  -8.0  -9.4) 
!                                     ( -3.0  -4.2  11.0  17.6) 
!                                     ( -3.0  -5.2  -6.0 -23.4) 
! 
      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 
      DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,& 
          -9.4, 17.6, -23.4/ 
!                                 Factor A 
      CALL LFTSF (A, FACT, IPVT) 
!                                 Solve for the four right-hand sides 
      DO 10  I=1, 4 
         CALL LFSSF (FACT, IPVT, B(:,I), X(:,I)) 
   10 CONTINUE 
!                                 Print results 
      CALL WRRRN (’X’, X) 
      END 

Output 
 
                   X 
        1       2       3       4 
1   10.00    2.00    1.00    0.00 
2    5.00   -3.00    5.00    1.20 
3   -1.00   -4.40    1.00   -7.00 
 

Description 
Routine LFSSF computes the solution of a system of linear algebraic equations having a real 
symmetric indefinite coefficient matrix.  
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To compute the solution, the coefficient matrix must first undergo a U DUT factorization. This 
may be done by calling either LFCSF, page 162, or LFTSF, page 164.  

LFSSF, page 167,  and LFISF, page 169, both solve a linear system given its U DUT 
factorization. LFISF generally takes more time and produces a more accurate answer than 
LFSSF. Each iteration of the iterative refinement algorithm used by LFISF calls LFSSF.  

LFSSF is based on the LINPACK routine SSISL; see Dongarra et al. (1979). 

LFISF 
Uses iterative refinement to improve the solution of a real symmetric system of linear equations. 

Required Arguments 
A — N by N matrix containing the coefficient matrix of the symmetric linear system.   (Input)  

Only the upper triangle of A is referenced 

FACT — N by N matrix containing the factorization of the coefficient matrix A as output from 
routine LFCSF/DLFCSF or LFTSF/DLFTSF.   (Input)  
Only the upper triangle of FACT is used. 

IPVT — Vector of length N containing the pivoting information for the factorization of A as 
output from routine LFCSF/DLFCSF or LFTSF/DLFTSF.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

RES — Vector of length N containing the residual vector at the improved  
solution.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 
Generic: CALL LFISF (A, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFISF and D_LFISF. 

FORTRAN 77 Interface 
Single: CALL LFISF (N, A, LDA,  FACT, LDFACT, IPVT, B, X, RES) 

Double:  The double precision name is DLFISF. 

Example 
A set of linear systems is solved successively. The right-hand-side vector is perturbed after 
solving the system each of the first two times by adding 0.2 to the second element. 

      USE LFISF_INT 
      USE UMACH_INT 
      USE LFCSF_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N), RCOND 
! 
!                                 Set values for A and B 
!                                 A = (  1.0  -2.0   1.0) 
!                                     ( -2.0   3.0  -2.0) 
!                                     (  1.0  -2.0   3.0) 
! 
!                                 B = (  4.1  -4.7   6.5) 
! 
      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 
      DATA B/4.1, -4.7, 6.5/ 
!                                 Factor A and compute the estimate 
!                                 of the reciprocal condition number 
      CALL LFCSF (A, FACT, IPVT, RCOND) 
!                                 Print condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Solve, then perturb right-hand side 
      DO 10  I=1, 3 
         CALL LFISF (A, FACT, IPVT, B, X, RES) 
!                                 Print results 
         CALL WRRRN (’X’, X, 1, N, 1) 
         CALL WRRRN (’RES’, RES, 1, N, 1) 
         B(2) = B(2) + .20E0 
   10 CONTINUE 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 
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Output 
 
RCOND = 0.034 
L1 Condition number = 29.750 
 
           X 
     1       2       3 
-4.100  -3.500   1.200 
 
               RES 
         1           2           3 
-2.384E-07  -2.384E-07   0.000E+00 
 
            X 
     1       2       3 
-4.500  -3.700   1.200 
 
               RES 
         1           2           3 
-2.384E-07  -2.384E-07   0.000E+00 
 
            X 
     1       2       3 
-4.900  -3.900   1.200 
 
               RES 
         1           2           3 
-2.384E-07  -2.384E-07   0.000E+00 
 

Comments 
Informational error  

Type  Code  

   3     2  The input matrix is too ill-conditioned for iterative refinement to be effective. 

Description 
LFISF computes the solution of a system of linear algebraic equations having a real symmetric 
indefinite coefficient matrix. Iterative refinement is performed on the solution vector to improve 
the accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is 
somewhat ill-conditioned.  

To compute the solution, the coefficient matrix must first undergo a U DUT factorization. This 
may be done by calling either LFCSF, page 162, or LFTSF, page 164.  

Iterative refinement fails only if the matrix is very ill-conditioned.  

LFISF, page  169 and LFSSF, page 167, both solve a linear system given its U DUT 
factorization. LFISF generally takes more time and produces a more accurate answer than 
LFSSF. Each iteration of the iterative refinement algorithm used by LFISF calls LFSSF. 
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LFDSF 
Computes the determinant of a real symmetric matrix given the U DUT factorization of the matrix. 

Required Arguments 
FACT — N by N matrix containing the factored matrix A as output from subroutine 

LFTSF/DLFTSF or LFCSF/DLFCSF.   (Input) 

IPVT — Vector of length N containing the pivoting information for the U DUT factorization 
as output from routine LFTSF/DLFTSF or LFCSF/DLFCSF.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that, 1.0 � |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form, det(A) = DET1 * 10DET2. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFDSF (FACT, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDSF and D_LFDSF. 

FORTRAN 77 Interface 
Single: CALL LFDSF (N, FACT, LDFACT, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDSF. 

Example 
The determinant is computed for a real symmetric 3 � 3 matrix. 

      USE LFDSF_INT 
      USE LFTSF_INT 
      USE UMACH_INT 

!                                 Declare variables 
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      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       A(LDA,LDA), FACT(LDA,LDA), DET1, DET2 
! 
!                                 Set values for A 
!                                 A = (  1.0  -2.0   1.0) 
!                                     ( -2.0   3.0  -2.0) 
!                                     (  1.0  -2.0   3.0) 
! 
      DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/ 
!                                 Factor A 
      CALL LFTSF (A, FACT, IPVT) 
!                                 Compute the determinant 
      CALL LFDSF (FACT, IPVT, DET1, DET2) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0) 
      END 

Output 
 
The determinant of A is -2.000 * 10**0. 

Description 
Routine LFDSF computes the determinant of a real symmetric indefinite coefficient matrix. To 
compute the determinant, the coefficient matrix must first undergo a U DUT factorization. This 
may be done by calling either LFCSF, page 162, or LFTSF, page 164. Since det U = �1, the 
formula det A = det U det D det UT = det D is used to compute the determinant. Next det D is 
computed as the product of the determinants of its blocks.  

LFDSF is based on the LINPACK routine SSIDI; see Dongarra et al. (1979). 

LSADH 
Solves a Hermitian positive definite system of linear equations with iterative refinement. 

Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the Hermitian positive 

definite linear system.   (Input)  
Only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution of the linear system.   (Output) 
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Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSADH (A, B, X [,…]) 

Specific: The specific interface names are S_LSADH and D_LSADH. 

FORTRAN 77 Interface 
Single: CALL LSADH (N, A, LDA, B, X) 

Double:  The double precision name is DLSADH. 

Example 
A system of five linear equations is solved. The coefficient matrix has complex positive definite 
form and the right-hand-side vector b has five elements. 

      USE LSADH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=5, N=5) 
      COMPLEX    A(LDA,LDA), B(N), X(N) 
! 
!                                 Set values for A and B 
! 
!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 
!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 
!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 
!              (                                  6.0+0.0i   1.0+1.0i ) 
!              (                                             9.0+0.0i ) 
! 
!        B =   ( 1.0+5.0i  12.0-6.0i  1.0-16.0i  -3.0-3.0i  25.0+16.0i ) 
! 
      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 
             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 
             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 
      DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),& 
             (25.0,16.0)/ 
! 
      CALL LSADH (A, B, X) 
!                                 Print results 
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      CALL WRCRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
                                  X 
              1                2                3                4 
( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 
              5 
( 3.000, 2.000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ADH/DL2ADH. The 

reference is: 

CALL L2ADH (N, A, LDA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — N � N work array containing the RH R factorization of A on output. 

WK — Complex work vector of length N. 

2. Informational errors 
Type  Code  

3      1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

3      4  The input matrix is not Hermitian. It has a diagonal entry with a 
small imaginary part. 

4      2  The input matrix is not positive definite. 
4      4  The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2ADH the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSADH. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSADH. Users directly calling L2ADH can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSADH or L2ADH. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 
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17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSADH temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CDH computes the condition number if IVAL(2) = 2. Otherwise L2CDH 
skips this computation. LSADH restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSADH solves a system of linear algebraic equations having a complex Hermitian 
positive definite coefficient matrix. It first uses the routine LFCDH, page 179, to compute an  
RH R Cholesky factorization of the coefficient matrix and to estimate the condition number of 
the matrix. The matrix R is upper triangular. The solution of the linear system is then found 
using the iterative refinement routine LFIDH, page 187.  

LSADH fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if 
the iterative refinement algorithm fails to converge. These errors occur only if A either is very 
close to a singular matrix or is a matrix that is not positive definite.  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system. LSADH solves 
the problem that is represented in the computer; however, this problem may differ from the 
problem whose solution is desired. 

LSLDH 
Solves a complex Hermitian positive definite system of linear equations without iterative 
refinement. 

Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the Hermitian positive 

definite linear system.   (Input)  
Only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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FORTRAN 90 Interface 
Generic: CALL LSLDH (A, B, X [,…]) 

Specific: The specific interface names are S_LSLDH and D_LSLDH. 

FORTRAN 77 Interface 
Single: CALL LSLDH (N, A, LDA, B, X) 

Double:  The double precision name is DLSLDH. 

Example 
A system of five linear equations is solved. The coefficient matrix has complex Hermitian 
positive definite form and the right-hand-side vector b has five elements. 

      USE LSLDH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=5, N=5) 
      COMPLEX    A(LDA,LDA), B(N), X(N) 
! 
!                                 Set values for A and B 
! 
!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 
!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 
!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 
!              (                                  6.0+0.0i   1.0+1.0i ) 
!              (                                             9.0+0.0i ) 
! 
!        B =   ( 1.0+5.0i  12.0-6.0i  1.0-16.0i  -3.0-3.0i  25.0+16.0i ) 
! 
      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 
             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 
             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 
      DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),& 
             (25.0,16.0)/ 
! 
      CALL LSLDH (A, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
                                       X 
              1                2                3                4 
( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 
              5 
( 3.000, 2.000) 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LDH/ DL2LDH. The 

reference is: 

CALL L2LDH (N, A, LDA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — N � N work array containing the RH R factorization of A on output. If A is not 
needed, A can share the same storage locations as FACT. 

WK — Complex work vector of length N. 

2. Informational errors  
Type  Code  

3      1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

3     4  The input matrix is not Hermitian. It has a diagonal entry with a 
small imaginary part. 

4     2  The input matrix is not positive definite. 
4     4  The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2LDH the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLDH. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLDH. Users directly calling L2LDH can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLDH or L2LDH. Default values for the option are IVAL(*) 
= 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSLDH temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CDH computes the condition number if IVAL(2) = 2. Otherwise L2CDH 
skips this computation. LSLDH restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSLDH solves a system of linear algebraic equations having a complex Hermitian 
positive definite coefficient matrix. It first uses the routine LFCDH, page 179, to compute an RH 
R Cholesky factorization of the coefficient matrix and to estimate the condition number of the 
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matrix. The matrix R is upper triangular. The solution of the linear system is then found using 
the routine LFSDH, page 185. 

LSLDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A is very close to a singular matrix or to a matrix which is not 
positive definite. 

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that 
LSADH, page 173, be used. 

LFCDH 
Computes the RH R factorization of a complex Hermitian positive definite matrix and estimate its 
L� condition number. 

Required Arguments 
A — Complex N by N Hermitian positive definite matrix to be factored.   (Input) Only the 

upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the upper triangular matrix R of the factorization 
of A in the upper triangle.   (Output)  
Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 
the same storage locations. 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N — Order of the matrix.      (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT --- Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.  (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCDH (A, FACT, RCOND [,…]) 

Specific: The specific interface names are S_LFCDH and D_LFCDH. 
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FORTRAN 77 Interface 
Single: CALL LFCDH (N, A, LDA, FACT, LDFACT, RCOND) 

Double:  The double precision name is DLFCDH. 

Example 
The inverse of a 5 � 5 Hermitian positive definite matrix is computed. LFCDH is called to factor 
the matrix and to check for nonpositive definiteness or ill-conditioning. LFIDH (page 187) is 
called to determine the columns of the inverse. 

      USE LFCDH_INT 
      USE LFIDH_INT 
      USE UMACH_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NOUT 
      PARAMETER  (LDA=5, LDFACT=5, N=5) 
      REAL       RCOND 
      COMPLEX    A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT),& 
                RES(N), RJ(N) 
! 
!                                 Set values for A 
! 
!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 
!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 
!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 
!              (                                  6.0+0.0i   1.0+1.0i ) 
!              (                                             9.0+0.0i ) 
! 
      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 
             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 
             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 
!                                 Factor the matrix A 
      CALL LFCDH (A, FACT, RCOND) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = (0.0E0, 0.0E0) 
      DO 10  J=1, N 
         RJ(J) = (1.0E0,0.0E0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFIDH 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFIDH (A, FACT, RJ, AINV(:,J), RES) 
         RJ(J) = (0.0E0,0.0E0) 
   10 CONTINUE 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
      CALL WRCRN (’AINV’, AINV) 
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! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.067 
L1 Condition number = 14.961 
 
                                   AINV 
                  1                  2                  3                 4 
1 ( 0.7166, 0.0000) ( 0.2166,-0.2166)  (-0.0899,-0.0300)  (-0.0207, 0.0622) 
2 ( 0.2166, 0.2166) ( 0.4332, 0.0000)  (-0.0599,-0.1198)  (-0.0829, 0.0415) 
3 (-0.0899, 0.0300) (-0.0599, 0.1198)  ( 0.1797, 0.0000)  ( 0.0000,-0.1244) 
4 (-0.0207,-0.0622) (-0.0829,-0.0415)  ( 0.0000, 0.1244)  ( 0.2592, 0.0000) 
5 ( 0.0092, 0.0046) ( 0.0138,-0.0046)  (-0.0138,-0.0138)  (-0.0288, 0.0288) 
                   5 
1  ( 0.0092,-0.0046) 
2  ( 0.0138, 0.0046) 
3  (-0.0138, 0.0138) 
4  (-0.0288,-0.0288) 
5  ( 0.1175, 0.0000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CDH/DL2CDH. The 

reference is:  

CALL L2CDH (N, A, LDA, FACT, LDFACT, RCOND, WK) 

The additional argument is 

WK — Complex work vector of length N. 

2. Informational errors 
Type  Code  

3      1  The input matrix is algorithmically singular. 
3      4  The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 
4      4  The input matrix is not Hermitian. 
4      2  The input matrix is not positive definite. It has a diagonal entry with 

an imaginary part. 

Description 

Routine LFCDH computes an RH R Cholesky factorization and estimates the condition number 
of a complex Hermitian positive definite coefficient matrix. The matrix R is upper triangular.  
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The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive 
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A is very close to a singular matrix or to a matrix which is not 
positive definite.  

The RH R factors are returned in a form that is compatible with routines LFIDH, page 187, 
LFSDH, page 185, and LFDDH, page 190. To solve systems of equations with multiple right-
hand-side vectors, use LFCDH followed by either LFIDH or LFSDH called once for each right-
hand side. The routine LFDDH can be called to compute the determinant of the coefficient matrix 
after LFCDH has performed the factorization.  

LFCDH is based on the LINPACK routine CPOCO; see Dongarra et al. (1979). 

LFTDH 
Computes the RH R factorization of a complex Hermitian positive definite matrix. 

Required Arguments 
A — Complex N by N Hermitian positive definite matrix to be factored.   (Input) Only the 

upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the upper triangular matrix R of the factorization 
of A in the upper triangle.   (Output)  
Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share 
the same storage locations. 

Optional Arguments 
N — Order of the matrix.      (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 
Generic: CALL LFTDH (A, FACT, [,…]) 

Specific: The specific interface names are S_LFTDH and D_LFTDH. 

FORTRAN 77 Interface 
Single: CALL LFTDH (N, A, LDA, FACT, LDFACT) 

Double:  The double precision name is DLFTDH. 

Example 
The inverse of a 5 � 5 matrix is computed. LFTDH is called to factor the matrix and to check for 
nonpositive definiteness. LFSDH (page 185) is called to determine the columns of the inverse. 

      USE LFTDH_INT 
      USE LFSDH_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N 
      PARAMETER  (LDA=5, LDFACT=5, N=5) 
      COMPLEX    A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N) 
! 
!                                 Set values for A 
! 
!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 
!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 
!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 
!              (                                  6.0+0.0i   1.0+1.0i ) 
!              (                                             9.0+0.0i ) 
! 
      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 
             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 
             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 
!                                 Factor the matrix A 
      CALL LFTDH (A, FACT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = (0.0E0,0.0E0) 
      DO 10  J=1, N 
         RJ(J) = (1.0E0,0.0E0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSDH 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSDH (FACT, RJ, AINV(:,J)) 
         RJ(J) = (0.0E0,0.0E0) 
   10 CONTINUE 
!                                 Print the results 
 
 



 

 
 

184 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

      CALL WRCRN (’AINV’, AINV, ITRING=1) 
! 
      END 

Output 
 
                                     AINV 
                  1                  2                  3                 4 
1 ( 0.7166, 0.0000) ( 0.2166,-0.2166)  (-0.0899,-0.0300)  (-0.0207, 0.0622) 
2                   ( 0.4332, 0.0000)  (-0.0599,-0.1198)  (-0.0829, 0.0415) 
3                                      ( 0.1797, 0.0000)  ( 0.0000,-0.1244) 
4                                                         ( 0.2592, 0.0000) 
                   5 
1  ( 0.0092,-0.0046) 
2  ( 0.0138, 0.0046) 
3  (-0.0138, 0.0138) 
4  (-0.0288,-0.0288) 
5  ( 0.1175, 0.0000) 
 

Comments 
Informational errors 

Type  Code 

3    4 The input matrix is not Hermitian. It has a diagonal entry with 
a small imaginary part. 

4     2  The input matrix is not positive definite. 
4     4  The input matrix is not Hermitian. It has a diagonal entry with 

an imaginary part. 

Description 

Routine LFTDH computes an RH R Cholesky factorization of a complex Hermitian positive 
definite coefficient matrix. The matrix R is upper triangular. 

LFTDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A is very close to a singular matrix or to a matrix which is not 
positive definite. 

The RH R factors are returned in a form that is compatible with routines LFIDH, page 187, 
LFSDH, page 185, and LFDDH, page 190. To solve systems of equations with multiple right-
hand-side vectors, use LFCDH followed by either LFIDH or LFSDH called once for each right-
hand side. The IMSL routine LFDDH can be called to compute the determinant of the coefficient 
matrix after LFCDH has performed the factorization. 

LFTDH is based on the LINPACK routine CPOFA; see Dongarra et al. (1979). 
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LFSDH 
Solves a complex Hermitian positive definite system of linear equations given the RH R 
factorization of the coefficient matrix. 

Required Arguments 
FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 

output from routine LFCDH/DLFCDH or LFTDH/DLFTDH.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFSDH (FACT, B, X [,…]) 

Specific: The specific interface names are S_LFSDH and D_LFSDH. 

FORTRAN 77 Interface 
Single: CALL LFSDH (N, FACT, LDFACT, B, X) 

Double:  The double precision name is DLFSDH. 

Example 
A set of linear systems is solved successively. LFTDH (page 182) is called to factor the 
coefficient matrix. LFSDH is called to compute the four solutions for the four right-hand sides. In 
this case, the coefficient matrix is assumed to be well-conditioned and correctly scaled. 
Otherwise, it would be better to call LFCDH (page 179) to perform the factorization, and LFIDH 
(page 187) to compute the solutions. 

      USE LFSDH_INT 
      USE LFTDH_INT 
      USE WRCRN_INT 
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!                                 Declare variables 
      INTEGER    LDA, LDFACT, N 
      PARAMETER  (LDA=5, LDFACT=5, N=5) 
      COMPLEX    A(LDA,LDA), B(N,3), FACT(LDFACT,LDFACT), X(N,3) 
 
!                                Set values for A and B 
! 
!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 
!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 
!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 
!              (                                  6.0+0.0i   1.0+1.0i ) 
!              (                                             9.0+0.0i ) 
! 
!        B =   (  3.0+3.0i    4.0+0.0i    29.0-9.0i ) 
!              (  5.0-5.0i   15.0-10.0i  -36.0-17.0i ) 
!              (  5.0+4.0i  -12.0-56.0i  -15.0-24.0i ) 
!              (  9.0+7.0i  -12.0+10.0i  -23.0-15.0i ) 
!              (-22.0+1.0i    3.0-1.0i   -23.0-28.0i ) 
 
      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 
             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 
             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 
      DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),& 
             (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),& 
             (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),& 
             (-23.0,-15.0), (-23.0,-28.0)/ 
 
!                                 Factor the matrix A 
      CALL LFTDH (A, FACT) 
!                                 Compute the solutions 
      DO 10  I=1, 3 
         CALL LFSDH (FACT, B(:,I), X(:,I)) 
   10 CONTINUE 
!                                 Print solutions 
      CALL WRCRN (’X’, X) 
! 
      END 

Output 
 
                           X 
                 1                2                3 
1  (  1.00,  0.00)  (  3.00, -1.00)  ( 11.00, -1.00) 
2  (  1.00, -2.00)  (  2.00,  0.00)  ( -7.00,  0.00) 
3  (  2.00,  0.00)  ( -1.00, -6.00)  ( -2.00, -3.00) 
4  (  2.00,  3.00)  (  2.00,  1.00)  ( -2.00, -3.00) 
5  ( -3.00,  0.00)  (  0.00,  0.00)  ( -2.00, -3.00) 
 

Comments 
Informational error  

Type  Code  
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4     1  The input matrix is singular. 

Description 
This routine computes the solution for a system of linear algebraic equations having a complex 
Hermitian positive definite coefficient matrix. To compute the solution, the coefficient matrix 
must first undergo an RH R factorization. This may be done by calling either LFCDH, page 179, 
or LFTDH, page 182. R is an upper triangular matrix.  

The solution to Ax = b is found by solving the triangular systems RH y = b and Rx = y.  

LFSDH and LFIDH, page 187, both solve a linear system given its RH R factorization. LFIDH 
generally takes more time and produces a more accurate answer than LFSDH. Each iteration of 
the iterative refinement algorithm used by LFIDH calls LFSDH.  

LFSDH is based on the LINPACK routine CPOSL; see Dongarra et al. (1979). 

LFIDH 
Uses iterative refinement to improve the solution of a complex Hermitian positive definite system 
of linear equations. 

Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the linear system.   (Input)  

Only the upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 
output from routine LFCDH/DLFCDH or LFTDH/DLFTDH.   (Input)  
Only the upper triangle of FACT is used. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution.   (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   
(Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFIDH (A, FACT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIDH and D_LFIDH. 

FORTRAN 77 Interface 
Single: CALL LFIDH (N, A, LDA, FACT, LDFACT, B, X, RES) 

Double:  The double precision name is DLFIDH. 

Example 
A set of linear systems is solved successively. The right-hand-side vector is perturbed by adding 
(1 + i)/2 to the second element after each call to LFIDH. 

      USE LFIDH_INT 
      USE LFCDH_INT 
      USE UMACH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N 
      PARAMETER  (LDA=5, LDFACT=5, N=5) 
      REAL       RCOND 
      COMPLEX    A(LDA,LDA), B(N), FACT(LDFACT,LDFACT), RES(N,3), X(N,3) 
! 
!                                 Set values for A and B 
! 
!        A =   (  2.0+0.0i  -1.0+1.0i   0.0+0.0i   0.0+0.0i   0.0+0.0i ) 
!              (             4.0+0.0i   1.0+2.0i   0.0+0.0i   0.0+0.0i ) 
!              (                       10.0+0.0i   0.0+4.0i   0.0+0.0i ) 
!              (                                  6.0+0.0i   1.0+1.0i ) 
!              (                                             9.0+0.0i ) 
! 
!        B =   ( 3.0+3.0i  5.0-5.0i  5.0+4.0i  9.0+7.0i  -22.0+1.0i ) 
! 
      DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),& 
             4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),& 
             (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/ 
      DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/ 
!                                 Factor the matrix A 
      CALL LFCDH (A, FACT, RCOND) 
!                                 Print the estimated condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Compute the solutions, then perturb B 
      DO 10  I=1, 3 
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         CALL LFIDH (A, FACT, B, X(:,I), RES(:,I)) 
         B(2) = B(2) + (0.5E0,0.5E0) 
   10 CONTINUE 
!                                 Print solutions and residuals 
      CALL WRCRN (’X’, X) 
      CALL WRCRN (’RES’, RES) 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.067 
L1 Condition number = 14.961 
 
                       X 
                 1                2                3 
1  ( 1.000, 0.000)  ( 1.217, 0.000)  ( 1.433, 0.000) 
2  ( 1.000,-2.000)  ( 1.217,-1.783)  ( 1.433,-1.567) 
3  ( 2.000, 0.000)  ( 1.910, 0.030)  ( 1.820, 0.060) 
4  ( 2.000, 3.000)  ( 1.979, 2.938)  ( 1.959, 2.876) 
5  (-3.000, 0.000)  (-2.991, 0.005)  (-2.982, 0.009) 
 
                                 RES 
                        1                        2                        3 
1 ( 1.192E-07, 0.000E+00)  ( 6.592E-08, 1.686E-07)  ( 1.318E-07, 2.010E-14) 
2 ( 1.192E-07,-2.384E-07)  (-5.329E-08,-5.329E-08)  ( 1.318E-07,-2.258E-07) 
3 ( 2.384E-07, 8.259E-08)  ( 2.390E-07,-3.309E-08)  ( 2.395E-07, 1.015E-07) 
4 (-2.384E-07, 2.814E-14)  (-8.240E-08,-8.790E-09)  (-1.648E-07,-1.758E-08) 
5 (-2.384E-07,-1.401E-08)  (-2.813E-07, 6.981E-09)  (-3.241E-07,-2.795E-08) 
 

Comments 
Informational error 

Type  Code  

3     3  The input matrix is too ill-conditioned for iterative refinement to be 
effective. 

Description 
Routine LFIDH computes the solution of a system of linear algebraic equations having a 
complex Hermitian positive definite coefficient matrix. Iterative refinement is performed on the 
solution vector to improve the accuracy. Usually almost all of the digits in the solution are 
accurate, even if the matrix is somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an RH R factorization. This 
may be done by calling either LFCDH, page 179, or LFTDH, page 182. 

Iterative refinement fails only if the matrix is very ill-conditioned. 
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LFIDH, page 187, and LFSDH, page 185, both solve a linear system given its RH R factorization. 
LFIDH generally takes more time and produces a more accurate answer than LFSDH. Each 
iteration of the iterative refinement algorithm used by LFIDH calls LFSDH. 

LFDDH 
Uses iterative refinement to improve the solution of a complex Hermitian positive definite system 
of linear equations. 

Required Arguments 

FACT — Complex N by N matrix containing the RT R factorization of the coefficient matrix A 
as output from routine LFCDH/DLFCDH or LFTDH/DLFTDH.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFDDH (FACT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDDH and D_LFDDH. 

FORTRAN 77 Interface 
Single: CALL LFDDH (N, FACT, LDFACT, DET1, DET2) 

Double:  The double precision name is DLFDDH. 

Example 
The determinant is computed for a complex Hermitian positive definite 3 � 3 matrix. 
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      USE LFDDH_INT 
      USE LFTDH_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, NOUT 
      PARAMETER  (LDA=3, LDFACT=3) 
      REAL       DET1, DET2 
      COMPLEX    A(LDA,LDA), FACT(LDFACT,LDFACT) 
! 
!                                 Set values for A 
! 
!        A =   (  6.0+0.0i   1.0-1.0i   4.0+0.0i ) 
!              (  1.0+1.0i   7.0+0.0i  -5.0+1.0i ) 
!              (  4.0+0.0i  -5.0-1.0i  11.0+0.0i ) 
! 
      DATA A /(6.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (7.0,0.0),& 
             (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (11.0,0.0)/ 
!                                 Factor the matrix 
      CALL LFTDH (A, FACT) 
!                                 Compute the determinant 
      CALL LFDDH (FACT, DET1, DET2) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
! 
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0) 
      END 

Output 
 
The determinant of A is  1.400 * 10**2. 
 

Description 
Routine LFDDH computes the determinant of a complex Hermitian positive definite coefficient 
matrix. To compute the determinant, the coefficient matrix must first undergo an RH R 
factorization. This may be done by calling either LFCDH, page 179, or LFTDH, page 182. The 
formula det A = det RH det R = (det R)� is used to compute the determinant. Since the 
determinant of a triangular matrix is the product of the diagonal elements,  

1
det N

iii
R R

�

��  

(The matrix R is stored in the upper triangle of FACT.) 

LFDDH is based on the LINPACK routine CPODI; see Dongarra et al. (1979). 

LSAHF 
Solves a complex Hermitian system of linear equations with iterative refinement. 
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Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  
Only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA  = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSAHF (A, B, X [,…]) 

Specific: The specific interface names are S_LSAHF and D_LSAHF. 

FORTRAN 77 Interface 
Single: CALL LSAHF (N, A, LDA, B, X) 

Double:  The double precision name is DLSAHF. 

Example 
A system of three linear equations is solved. The coefficient matrix has complex Hermitian form 
and the right-hand-side vector b has three elements. 

      USE LSAHF_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      COMPLEX    A(LDA,LDA), B(N), X(N) 
! 
!                               Set values for A and B 
! 
!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 
!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 
!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 
! 
!                               B = ( 7.0+32.0i -39.0-21.0i 51.0+9.0i ) 
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! 
      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 
            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 
      DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/ 
! 
      CALL LSAHF (A, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
      END 

Output 
 
                        X 
              1                2                3 
(  2.00,  1.00)  (-10.00, -1.00)  (  3.00,  5.00) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2AHF/DL2AHF. The 

reference is:  

CALL L2AHF (N, A, LDA, B, X, FACT, IPVT, CWK) 

The additional arguments are as follows: 

FACT — Complex work vector of length N2 containing information about the  
U DUH factorization of A on output. 

IPVT — Integer work vector of length N containing the pivoting information for the 
factorization of A on output. 

CWK — Complex work vector of length N. 

2. Informational errors 
Type  Code  

3      1  The input matrix is algorithmically singular. 
3      4  The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 
4      2  The input matrix singular. 
4      4  The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2AHF the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAHF. 
Additional memory allocation for FACT and option value restoration are done 
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automatically in LSAHF. Users directly calling L2AHF can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSAHF or L2AHF. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSAHF temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CHF computes the condition number if IVAL(2) = 2. Otherwise L2CHF 
skips this computation. LSAHF restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

 

Description 
Routine LSAHF solves systems of linear algebraic equations having a complex Hermitian 
indefinite coefficient matrix. It first uses the routine LFCHF, page 197 to compute a U DUH 
factorization of the coefficient matrix and to estimate the condition number of the matrix. D is a 
block diagonal matrix with blocks of order 1 or 2 and U is a matrix composed of the product of 
a permutation matrix and a unit upper triangular matrix. The solution of the linear system is then 
found using the iterative refinement routine LFIHF, page 204. 

LSAHF fails if a block in D is singular or if the iterative refinement algorithm fails to converge. 
These errors occur only if A is singular or very close to a singular matrix. 

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system. LSAHF solves 
the problem that is represented in the computer; however, this problem may differ from the 
problem whose solution is desired. 

LSLHF 
Solves a complex Hermitian system of linear equations without iterative refinement. 

Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  
Only the upper triangle of A is referenced. 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSLHF (A, B, X [,…]) 

Specific: The specific interface names are S_LSLHF and D_LSLHF. 

FORTRAN 77 Interface 
Single: CALL LSLHF (N, A, LDA, B, X) 

Double:  The double precision name is DLSLHF. 

Example 
A system of three linear equations is solved. The coefficient matrix has complex Hermitian form 
and the right-hand-side vector b has three elements. 

      USE LSLHF_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      COMPLEX    A(LDA,LDA), B(N), X(N) 
! 
!                               Set values for A and B 
! 
!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 
!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 
!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 
! 
!                               B = ( 7.0+32.0i -39.0-21.0i 51.0+9.0i ) 
! 
      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 
            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 
      DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/ 
! 
      CALL LSLHF (A, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
      END 

Output 
 
                        X 
              1                2                3 
(  2.00,  1.00)  (-10.00, -1.00)  (  3.00,  5.00) 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LHF/DL2LHF. The 

reference is:  

CALL L2LHF (N, A, LDA, B, X, FACT, IPVT, CWK) 

The additional arguments are as follows: 

FACT — Complex work vector of length N� containing information about the UDUH 
factorization of A on output. 

IPVT — Integer work vector of length N containing the pivoting information for the 
factorization of A on output. 

CWK — Complex work vector of length N. 

2. Informational errors 
Type  Code  

3     1  The input matrix is algorithmically singular. 
3      4  The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 
4      2  The input matrix singular. 
4      4  The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2LHF the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLHF. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLHF. Users directly calling L2LHF can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLHF or L2LHF. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSLHF temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CHF computes the condition number if IVAL(2) = 2. Otherwise L2CHF 
skips this computation. LSLHF restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSLHF solves systems of linear algebraic equations having a complex Hermitian 
indefinite coefficient matrix. It first uses the routine LFCHF, page 200, to compute a UDUH 
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factorization of the coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2 
and U is a matrix composed of the product of a permutation matrix and a unit upper triangular 
matrix.  

The solution of the linear system is then found using the routine LFSHF, page 202. LSLHF fails 
if a block in D is singular. This occurs only if A is singular or very close to a singular matrix. If 
the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that LSAHF, 
page 191 be used. 

LFCHF 
Computes the UDUH factorization of a complex Hermitian matrix and estimate its L� condition 
number. 

Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  
Only the upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the information about the factorization of the 
Hermitian matrix A.   (Output)  
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the 
same storage locations. 

IPVT — Vector of length N containing the pivoting information for the factorization.   
(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCHF (A, FACT, IPVT, RCOND [,…]) 
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Specific: The specific interface names are S_LFCHF and D_LFCHF. 

FORTRAN 77 Interface 
Single: CALL LFCHF (N, A, LDA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCHF. 

Example 
The inverse of a 3 � 3 complex Hermitian matrix is computed. LFCHF is called to factor the 
matrix and to check for singularity or ill-conditioning. LFIHF (page 204) is called to determine 
the columns of the inverse. 

      USE LFCHF_INT 
      USE UMACH_INT 
      USE LFIHF_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       RCOND 
      COMPLEX    A(LDA,LDA), AINV(LDA,N), FACT(LDA,LDA), RJ(N), RES(N) 
!                               Set values for A 
! 
!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 
!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 
!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 
! 
      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 
            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 
!                                 Set output unit number 
      CALL UMACH (2, NOUT) 
!                                 Factor A and return the reciprocal 
!                                 condition number estimate 
      CALL LFCHF (A, FACT, IPVT, RCOND) 
!                                 Print the estimate of the condition 
!                                 number 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = (0.0E0,0.0E0) 
      DO 10  J=1, N 
         RJ(J) = (1.0E0, 0.0E0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFIHF 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFIHF (A, FACT, IPVT, RJ, AINV(:,J), RES) 
         RJ(J) = (0.0E0, 0.0E0) 
   10 CONTINUE 
!                                 Print the inverse 
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      CALL WRCRN (’AINV’, AINV) 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.240 
L1 Condition number =  4.175 
 
                           AINV 
                   1                  2                  3 
1  ( 0.2000, 0.0000)  ( 0.1200, 0.0400)  ( 0.0800,-0.0400) 
2  ( 0.1200,-0.0400)  ( 0.1467, 0.0000)  (-0.1267,-0.0067) 
3  ( 0.0800, 0.0400)  (-0.1267, 0.0067)  (-0.0267, 0.0000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CHF/DL2CHF. The 

reference is: 

CALL L2CHF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, CWK) 

The additional argument is: 

CWK — Complex work vector of length N. 

2. Informational errors  
Type  Code  

3      1  The input matrix is algorithmically singular. 
3      4  The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 
4      2  The input matrix is singular. 
4     4  The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

Description 

Routine LFCHF performs a U DUH factorization of a complex Hermitian indefinite coefficient 
matrix. It also estimates the condition number of the matrix. The U DUH factorization is called 
the diagonal pivoting factorization.  

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive 
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  
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LFCHF fails if A is singular or very close to a singular matrix.  

The U DUH factors are returned in a form that is compatible with routines LFIHF, page 204, 
LFSHF, page 202, and LFDHF, page 207. To solve systems of equations with multiple right-
hand-side vectors, use LFCHF followed by either LFIHF or LFSHF called once for each right-
hand side. The routine LFDHF can be called to compute the determinant of the coefficient matrix 
after LFCHF has performed the factorization.  

LFCHF is based on the LINPACK routine CSICO; see Dongarra et al. (1979). 

LFTHF 
Computes the U DUH factorization of a complex Hermitian matrix. 

Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  
Only the upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the information about the factorization of the 
Hermitian matrix A.   (Output)  
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the 
same storage locations. 

IPVT — Vector of length N containing the pivoting information for the factorization.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFTHF (A, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTHF and D_LFTHF. 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 201 

 

 

 

FORTRAN 77 Interface 
Single: CALL LFTHF (N, A, LDA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTHF. 

Example 
The inverse of a 3 � 3 matrix is computed. LFTHF is called to factor the matrix and check for 
singularity. LFSHF is called to determine the columns of the inverse. 

      USE LFTHF_INT 
      USE LFSHF_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N) 
      COMPLEX    A(LDA,LDA), AINV(LDA,N), FACT(LDA,LDA), RJ(N) 
! 
!                               Set values for A 
! 
!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 
!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 
!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 
! 
      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 
            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 
!                                 Factor A 
      CALL LFTHF (A, FACT, IPVT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = (0.0E0,0.0E0) 
      DO 10  J=1, N 
         RJ(J) = (1.0E0, 0.0E0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSHF 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSHF (FACT, IPVT, RJ, AINV(:,J)) 
         RJ(J) = (0.0E0, 0.0E0) 
   10 CONTINUE 
!                                 Print the inverse 
      CALL WRCRN (’AINV’, AINV) 
      END 

Output 
 
                            AINV 
                   1                  2                  3 
1  ( 0.2000, 0.0000)  ( 0.1200, 0.0400)  ( 0.0800,-0.0400) 
2  ( 0.1200,-0.0400)  ( 0.1467, 0.0000)  (-0.1267,-0.0067) 
3  ( 0.0800, 0.0400)  (-0.1267, 0.0067)  (-0.0267, 0.0000) 



 

 
 

202 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

 

Comments 
Informational errors 

     Type    Code  

3     4  The input matrix is not Hermitian. It has a diagonal entry with a small 
  imaginary part. 
4     2  The input matrix is singular. 
4     4 The input matrix is not Hermitian. It has a diagonal entry with an imaginary 

part. 

Description 

Routine LFTHF performs a U DUH factorization of a complex Hermitian indefinite coefficient 
matrix. The U DUH factorization is called the diagonal pivoting factorization. 

LFTHF fails if A is singular or very close to a singular matrix. 

The U DUH factors are returned in a form that is compatible with routines LFIHF, page 204, 
LFSHF, page 202, and LFDHF, page 207. To solve systems of equations with multiple right-
hand-side vectors, use LFTHF followed by either LFIHF or LFSHF called once for each right-
hand side. The routine LFDHF can be called to compute the determinant of the coefficient matrix 
after LFTHF has performed the factorization. 

LFTHF is based on the LINPACK routine CSIFA; see Dongarra et al. (1979). 

LFSHF 
Solves a complex Hermitian system of linear equations given the U DUH factorization of the 
coefficient matrix. 

Required Arguments 
FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 
Only the upper triangle of FACT is used. 

IPVT — Vector of length N containing the pivoting information for the factorization of A as 
output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 
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Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFSHF (FACT, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSHF and D_LFSHF. 

FORTRAN 77 Interface 
Single: CALL LFSHF (N, FACT, LDFACT, IPVT, B, X) 

Double:  The double precision name is DLFSHF. 

Example 
A set of linear systems is solved successively. LFTHF (page 200) is called to factor the 
coefficient matrix. LFSHF is called to compute the three solutions for the three right-hand sides. 
In this case the coefficient matrix is assumed to be well-conditioned and correctly scaled. 
Otherwise, it would be better to call LFCHF (page 197) to perform the factorization, and LFIHF 
(page 204) to compute the solutions. 

      USE LFSHF_INT 
      USE WRCRN_INT 
      USE LFTHF_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N), I 
      COMPLEX    A(LDA,LDA), B(N,3), X(N,3), FACT(LDA,LDA) 
! 
!                               Set values for A and B 
! 
!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 
!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 
!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 
! 
!                               B = (  7.0+32.0i -6.0+11.0i -2.0-17.0i ) 
!                                   (-39.0-21.0i -5.5-22.5i  4.0+10.0i ) 
!                                   ( 51.0+ 9.0i 16.0+17.0i -2.0+12.0i ) 
! 
      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 
            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 
      DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0), (-6.0,11.0),& 
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            (-5.5,-22.5), (16.0,17.0), (-2.0,-17.0), (4.0,10.0),& 
            (-2.0,12.0)/ 
!                                 Factor A 
      CALL LFTHF (A, FACT, IPVT) 
!                                 Solve for the three right-hand sides 
      DO 10  I=1, 3 
         CALL LFSHF (FACT, IPVT, B(:,I), X(:,I)) 
   10 CONTINUE 
!                                 Print results 
      CALL WRCRN (’X’, X) 
      END 

Output 
 
                           X 
                 1                2                3 
1  (  2.00,  1.00)  (  1.00,  0.00)  (  0.00, -1.00) 
2  (-10.00, -1.00)  ( -3.00, -4.00)  (  0.00, -2.00) 
3  (  3.00,  5.00)  ( -0.50,  3.00)  (  0.00, -3.00) 
 

Description 
Routine LFSHF computes the solution of a system of linear algebraic equations having a 
complex Hermitian indefinite coefficient matrix.  

To compute the solution, the coefficient matrix must first undergo a U DUH factorization. This 
may be done by calling either LFCHF, page 197, or LFTHF, page 200.  

LFSHF and LFIHF, page 204, both solve a linear system given its U DUH factorization. LFIHF 
generally takes more time and produces a more accurate answer than LFSHF. Each iteration of 
the iterative refinement algorithm used by LFIHF calls LFSHF.  

LFSHF is based on the LINPACK routine CSISL; see Dongarra et al. (1979). 

LFIHF 
Uses iterative refinement to improve the solution of a complex Hermitian system of linear 
equations. 

Required Arguments 
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.   

(Input)  
Only the upper triangle of A is referenced. 

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 
output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 
Only the upper triangle of FACT is used. 
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IPVT — Vector of length N containing the pivoting information for the factorization of A as 
output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution.   (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   
(Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFIHF (A, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIHF and D_LFIHF. 

FORTRAN 77 Interface 
Single: CALL LFIHF (N, A, LDA, FACT, LDFACT, IPVT, B, X, RES) 

Double:  The double precision name is DLFIHF. 

Example 
A set of linear systems is solved successively. The right-hand-side vector is perturbed after 
solving the system each of the first two times by adding 0.2 + 0.2i to the second element. 

      USE LFIHF_INT 
      USE UMACH_INT 
      USE LFCHF_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       RCOND 
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      COMPLEX    A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N) 
! 
! 
!                               Set values for A and B 
! 
!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 
!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 
!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 
! 
!                               B = ( 7.0+32.0i -39.0-21.0i 51.0+9.0i ) 
! 
      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 
            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 
      DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/ 
!                                 Set output unit number 
      CALL UMACH (2, NOUT) 
!                                 Factor A and compute the estimate 
!                                 of the reciprocal condition number 
      CALL LFCHF (A, FACT, IPVT, RCOND) 
      WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 
!                                 Solve, then perturb right-hand side 
      DO 10  I=1, 3 
         CALL LFIHF (A, FACT, IPVT, B, X, RES) 
!                                 Print results 
         WRITE (NOUT,99999) I 
         CALL WRCRN (’X’, X, 1, N, 1) 
         CALL WRCRN (’RES’, RES, 1, N, 1) 
         B(2) = B(2) + (0.2E0, 0.2E0) 
   10 CONTINUE 
! 
99998 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
99999 FORMAT (//,’  For problem ’, I1) 
      END 

Output 
 
RCOND = 0.240 
L1 Condition number =  4.175 
For problem 1 
                        X 
              1                2                3 
(  2.00,  1.00)  (-10.00, -1.00)  (  3.00,  5.00) 
 
                                    RES 
                      1                        2                        3 
( 2.384E-07,-4.768E-07)  ( 0.000E+00,-3.576E-07)  (-1.421E-14, 1.421E-14) 
 
For problem 2 
                        X 
              1                2                3 
( 2.016, 1.032)  (-9.971,-0.971)  ( 2.973, 4.976) 
 
                                   RES 
                      1                        2                        3 
( 2.098E-07,-1.764E-07)  ( 6.231E-07,-1.518E-07)  ( 1.272E-07, 4.005E-07) 
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For problem 3 
                        X 
              1                2                3 
( 2.032, 1.064)  (-9.941,-0.941)  ( 2.947, 4.952) 
 
                                   RES 
                      1                        2                        3 
( 4.196E-07,-3.529E-07)  ( 2.925E-07,-3.632E-07)  ( 2.543E-07, 3.242E-07) 
 

Comments 
Informational error 

      Type  Code 

3      3  The input matrix is too ill-conditioned for iterative refinement to be  
  effective. 

Description 
Routine LFIHF computes the solution of a system of linear algebraic equations having a 
complex Hermitian indefinite coefficient matrix. 

Iterative refinement is performed on the solution vector to improve the accuracy. Usually almost 
all of the digits in the solution are accurate, even if the matrix is somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo a U DUH factorization. This 
may be done by calling either LFCHF, page 197, or LFTHF, page 200. 

Iterative refinement fails only if the matrix is very ill-conditioned. 

LFIHF and LFSHF, page 202, both solve a linear system given its U DUH factorization. LFIHF 
generally takes more time and produces a more accurate answer than LFSHF. Each iteration of 
the iterative refinement algorithm used by LFIHF calls LFSHF. 

LFDHF 
Computes the determinant of a complex Hermitian matrix given the U DUH factorization of the 
matrix. 

Required Arguments 
FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as 

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 
Only the upper triangle of FACT is used. 

IPVT — Vector of length N containing the pivoting information for the factorization of A as 
output from routine LFCHF/DLFCHF or LFTHF/DLFTHF.   (Input) 
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DET1 — Scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFDHF (FACT, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDHF and D_LFDHF. 

FORTRAN 77 Interface 
Single: CALL LFDHF (N, FACT, LDFACT, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDHF. 

Example 
The determinant is computed for a complex Hermitian 3 � 3 matrix. 

      USE LFDHF_INT 
      USE LFTHF_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
      INTEGER    IPVT(N), NOUT 
      REAL       DET1, DET2 
      COMPLEX    A(LDA,LDA), FACT(LDA,LDA) 
! 
!                               Set values for A 
! 
!                               A = ( 3.0+0.0i   1.0-1.0i   4.0+0.0i ) 
!                                   ( 1.0+1.0i   2.0+0.0i  -5.0+1.0i ) 
!                                   ( 4.0+0.0i  -5.0-1.0i  -2.0+0.0i ) 
! 
      DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),& 
            (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/ 
!                                 Factor A 
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      CALL LFTHF (A, FACT, IPVT) 
!                                 Compute the determinant 
      CALL LFDHF (FACT, IPVT, DET1, DET2) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
! 
99999 FORMAT (’ The determinant is’, F5.1, ’ * 10**’, F2.0) 
      END 

Output 
 
The determinant is -1.5 * 10**2. 
 

Description 
Routine LFDHF computes the determinant of a complex Hermitian indefinite coefficient matrix. 
To compute the determinant, the coefficient matrix must first undergo a U DUH factorization. 
This may be done by calling either LFCHF, page 197, or LFTHF, page 200 Since det U = �1, the 
formula det A = det U det D det UH = det D is used to compute the determinant. det D is 
computed as the product of the determinants of its blocks.  

LFDHF is based on the LINPACK routine CSIDI; see Dongarra et al. (1979). 

LSLTR 
Solves a real tridiagonal system of linear equations. 

Required Arguments 
C — Vector of length N containing the subdiagonal of the tridiagonal matrix in C(2) through 

C(N).   (Input/Output)  
On output C is destroyed. 

D — Vector of length N containing the diagonal of the tridiagonal matrix.   (Input/Output)  
On output D is destroyed. 

E — Vector of length N containing the superdiagonal of the tridiagonal matrix in E(1) through 
E(N � 1).   (Input/Output)  
On output E is destroyed. 

B — Vector of length N containing the right-hand side of the linear system on entry and the 
solution vector on return.   (Input/Output) 

Optional Arguments 
N — Order of the tridiagonal matrix.   (Input) 

Default: N = size (C,1). 
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FORTRAN 90 Interface 
Generic: CALL LSLTR (C, D, E, B [,…]) 

Specific: The specific interface names are S_LSLTR and D_LSLTR. 

FORTRAN 77 Interface 
Single: CALL LSLTR (N, C, D, E, B) 

Double:  The double precision name is DLSLTR. 

Example 
A system of n = 4 linear equations is solved. 

      USE LSLTR_INT 
      USE WRRRL_INT 

!                                 Declaration of variables 
      INTEGER    N 
      PARAMETER  (N=4) 
! 
      REAL       B(N), C(N), D(N), E(N) 
      CHARACTER  CLABEL(1)*6, FMT*8, RLABEL(1)*4 
! 
      DATA FMT/’(E13.6)’/ 
      DATA CLABEL/’NUMBER’/ 
      DATA RLABEL/’NONE’/ 
!                                 C(*), D(*), E(*), and B(*) 
!                                 contain the subdiagonal, diagonal, 
!                                 superdiagonal and right hand side. 
      DATA C/0.0, 0.0, -4.0, 9.0/, D/6.0, 4.0, -4.0, -9.0/ 
      DATA E/-3.0, 7.0, -8.0, 0.0/, B/48.0, -81.0, -12.0, -144.0/ 
! 
! 
      CALL LSLTR (C, D, E, B) 
!                                 Output the solution. 
      CALL WRRRL (’Solution:’, B, RLABEL, CLABEL, 1, N, 1, FMT=FMT) 
      END 

Output 
 
Solution: 
        1              2              3              4 
0.400000E+01  -0.800000E+01  -0.700000E+01   0.900000E+01 
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Comments 
Informational error 

    Type     Code  

4     2  An element along the diagonal became exactly zero during execution. 
 

Description 
Routine LSLTR factors and solves the real tridiagonal linear system  Ax = b.  LSLTR is intended 
just for tridiagonal systems. The coefficient matrix does not have to be symmetric. The 
algorithm is Gaussian elimination with partial pivoting for numerical stability. See Dongarra 
(1979), LINPACK subprograms SGTSL/DGTSL, for details. When computing on vector or 
parallel computers the cyclic reduction algorithm, page 211, should be considered as an 
alternative method to solve the system. 
 

LSLCR 
Computes the L DU factorization of a real tridiagonal matrix  A using a cyclic reduction algorithm. 

Required Arguments 
C — Array of size 2N containing the upper codiagonal of the N by N tridiagonal matrix in the 

entries C(1), �, C(N � 1).   (Input/Output) 

A — Array of size 2N containing the diagonal of the N by N tridiagonal matrix in the entries 
A(1), �, A(N).   (Input/Output) 

B — Array of size 2N containing the lower codiagonal of the N by N tridiagonal matrix in the 
entries B(1), �, B(N � 1).   (Input/Output) 

Y — Array of size 2N containing the right hand side for the system Ax = y in the order Y(1), 
�, Y(N).   (Input/Output)  The vector x overwrites Y in storage. 

U — Array of size 2N of flags that indicate any singularities of A.   (Output)  
A value U(I) = 1. means that a divide by zero would have occurred during the factoring. 
Otherwise U(I) = 0. 

IR — Array of integers that determine the sizes of loops performed in the cyclic reduction 
algorithm.   (Output) 

IS — Array of integers that determine the sizes of loops performed in the cyclic reduction 
algorithm.   (Output)  
The sizes of IR and IS must be at least log�(N) + 3. 
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Optional Arguments 
N — Order of the matrix.   (Input)  

N must be greater than zero 
Default: N = size (C,1). 

IJOB — Flag to direct the desired factoring or solving step.   (Input)  
Default: IJOB = 1. 

IJOB   Action 

1   Factor the matrix A and solve the system Ax = y, where y is stored in array 
 Y. 

2   Do the solve step only. Use y from array Y. (The factoring step has already 
 been done.) 

3   Factor the matrix A but do not solve a system. 

4, 5, 6   Same meaning as with the value IJOB = 3. For efficiency, no error checking 
 is done on the validity of any input value. 

FORTRAN 90 Interface 
Generic: CALL LSLCR (C, A, B, Y, U, IR, IS [,…]) 

Specific: The specific interface names are S_LSLCR and D_LSLCR. 

FORTRAN 77 Interface 
Single: CALL LSLCR (N, C, A, B, IJOB, Y, U, IR, IS) 

Double:  The double precision name is DLSLCR. 

Example 
A system of n = 1000 linear equations is solved. The coefficient matrix is the symmetric matrix 
of the second difference operation, and the right-hand-side vector y is the first column of the 
identity matrix. Note that an, n= 1. The solution vector will be the first column of the inverse 
matrix of A. Then a new system is solved where y is now the last column of the identity matrix. 
The solution vector for this system will be the last column of the inverse matrix. 

      USE LSLCR_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LP, N, N2 
      PARAMETER  (LP=12, N=1000, N2=2*N) 
! 
      INTEGER    I, IJOB, IR(LP), IS(LP), NOUT 
      REAL       A(N2), B(N2), C(N2), U(N2), Y1(N2), Y2(N2) 
! 
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!                                 Define matrix entries: 
      DO 10  I=1, N - 1 
         C(I)    = -1.E0 
         A(I)    = 2.E0 
         B(I)    = -1.E0 
         Y1(I+1) = 0.E0 
         Y2(I)   = 0.E0 
   10 CONTINUE 
      A(N)  = 1.E0 
      Y1(1) = 1.E0 
      Y2(N) = 1.E0 
! 
!                                 Obtain decomposition of matrix and 
!                                 solve the first system: 
      IJOB = 1 
      CALL LSLCR (C, A, B, Y1, U, IR, IS, IJOB=IJOB) 
! 
!                                 Solve the second system with the 
!                                 decomposition ready: 
      IJOB = 2 
      CALL LSLCR (C, A, B, Y2, U, IR, IS, IJOB=IJOB) 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The value of n is:  ’, N 
      WRITE (NOUT,*) ’ Elements 1, n of inverse matrix columns 1 ’//& 
                    ’and   n:’, Y1(1), Y2(N) 
      END 

Output 
 
The value of n is:    1000 
Elements 1, n of inverse matrix columns 1 and   n:    1.00000   1000.000 
 

Description 
Routine LSLCR factors and solves the real tridiagonal linear system Ax = y. The matrix is 
decomposed in the form A = L DU, where L is unit lower triangular, U is unit upper triangular, 
and D is diagonal. The algorithm used for the factorization is effectively that described in 
Kershaw (1982). More details, tests and experiments are reported in Hanson (1990). 

LSLCR is intended just for tridiagonal systems. The coefficient matrix does not have to be 
symmetric. The algorithm amounts to Gaussian elimination, with no pivoting for numerical 
stability, on the matrix whose rows and columns are permuted to a new order. See Hanson 
(1990) for details. The expectation is that LSLCR will outperform either LSLTR, page 209, or 
LSLPB, page 237, on vector or parallel computers. Its performance may be inferior for small 
values of n, on scalar computers, or high-performance computers with non-optimizing 
compilers. 

LSARB  
Solves a real system of linear equations in band storage mode with iterative refinement. 
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Required Arguments 
A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX= B is solved. 
IPATH = 2 means the system ATX = B is solved. 
Default: IPATH =1. 

FORTRAN 90 Interface 
Generic: CALL LSARB (A, NLCA, NUCA, B, X [,…]) 

Specific: The specific interface names are S_LSARB and D_LSARB. 

FORTRAN 77 Interface 
Single: CALL LSARB (N, A, LDA, NLCA, NUCA, B, IPATH, X) 

Double:  The double precision name is DLSARB. 

Example 
A system of four linear equations is solved. The coefficient matrix has real banded form with 1 
upper and 1 lower codiagonal. The right-hand-side vector b has four elements. 

      USE LSARB_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, N, NLCA, NUCA 
      PARAMETER  (LDA=3, N=4, NLCA=1, NUCA=1) 
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      REAL       A(LDA,N), B(N), X(N) 
!                                 Set values for A in band form, and B 
! 
!                                 A = (  0.0  -1.0  -2.0   2.0) 
!                                     (  2.0   1.0  -1.0   1.0) 
!                                     ( -3.0   0.0   2.0   0.0) 
! 
!                                 B = (  3.0   1.0  11.0  -2.0) 
! 
      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 
            2.0, 1.0, 0.0/ 
      DATA B/3.0, 1.0, 11.0, -2.0/ 
! 
      CALL LSARB (A, NLCA, NUCA, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
               X 
    1       2       3       4 
2.000   1.000  -3.000   4.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ARB/DL2ARB. The 

reference is: 

CALL L2ARB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — Work vector of length (2 * NLCA + NUCA + 1) � N containing the LU 
factorization of A on output. 

IPVT — Work vector of length N containing the pivoting information for the LU 
factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors  
Type  Code  

3     1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4      2 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 
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16  This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2ARB the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSARB. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSARB. Users directly calling L2ARB can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSARB or L2ARB. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 

17  This option has two values that determine if the L� condition number is to be 
computed. Routine LSARB temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CRB computes the condition number if IVAL(2) = 2. Otherwise L2CRB 
skips this computation. LSARB restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

 

Description 
Routine LSARB solves a system of linear algebraic equations having a real banded coefficient 
matrix. It first uses the routine LFCRB, page 219, to compute an LU factorization of the 
coefficient matrix and to estimate the condition number of the matrix. The solution of the linear 
system is then found using the iterative refinement routine LFIRB, page 227. 

LSARB fails if U, the upper triangular part of the factorization, has a zero diagonal element or if 
the iterative refinement algorithm fails to converge. These errors occur only if A is singular or 
very close to a singular matrix. 

If the estimated condition number is greater than 1	� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system. LSARB solves 
the problem that is represented in the computer; however, this problem may differ from the 
problem whose solution is desired. 

LSLRB  
Solves a real system of linear equations in band storage mode without iterative refinement. 

Required Arguments 
A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 
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X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX= B is solved. 
IPATH = 2 means the system ATX = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSLRB (A, NLCA, NUCA, B, X [,…]) 

Specific: The specific interface names are S_LSLRB and D_LSLRB. 

FORTRAN 77 Interface 
Single: CALL LSLRB (N, A, LDA, NLCA, NUCA, B, IPATH, X) 

Double:  The double precision name is DLSLRB. 

Example 
A system of four linear equations is solved. The coefficient matrix has real banded form with 1 
upper and 1 lower codiagonal. The right-hand-side vector b has four elements. 

      USE LSLRB_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N, NLCA, NUCA 
      PARAMETER  (LDA=3, N=4, NLCA=1, NUCA=1) 
      REAL       A(LDA,N), B(N), X(N) 
!                                 Set values for A in band form, and B 
! 
!                                 A = (  0.0  -1.0  -2.0   2.0) 
!                                     (  2.0   1.0  -1.0   1.0) 
!                                     ( -3.0   0.0   2.0   0.0) 
! 
!                                 B = (  3.0   1.0  11.0  -2.0) 
! 
      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 
            2.0, 1.0, 0.0/ 
      DATA B/3.0, 1.0, 11.0, -2.0/ 
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! 
      CALL LSLRB (A, NLCA, NUCA, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
              X 
    1       2       3       4 
2.000   1.000  -3.000   4.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LRB/DL2LRB. The 

reference is: 

CALL L2LRB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — (2 � NLCA + NUCA + 1) � N containing the LU factorization of A on output. If 
A is not needed, A can share the first (NLCA + NUCA + 1) * N storage locations 
with FACT. 

IPVT — Work vector of length N containing the pivoting information for the LU 
factorization of A on output. 

WK — Work vector of length N. 

2. Informational errors  
Type  Code  

3      1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4      2  The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2LRB the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLRB. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLRB. Users directly calling L2LRB can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLRB or L2LRB. Default values for the option are  
IVAL(*) = 1, 16, 0, 1. 
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17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSLRB temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CRB computes the condition number if IVAL(2) = 2. Otherwise L2CRB 
skips this computation. LSLRB restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

 

Description 
Routine LSLRB solves a system of linear algebraic equations having a real banded coefficient 
matrix. It first uses the routine LFCRB, page 219, to compute an LU factorization of the 
coefficient matrix and to estimate the condition number of the matrix. The solution of the linear 
system is then found using LFSRB, page 225. LSLRB fails if U, the upper triangular part of the 
factorization, has a zero diagonal element. This occurs only if A is singular or very close to a 
singular matrix. If the estimated condition number is greater than 1/� (where � is machine 
precision), a warning error is issued. This indicates that very small changes in A can cause very 
large changes in the solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is 
recommended that LSARB, page 213, be used. 

LFCRB  
Computes the LU factorization of a real matrix in band storage mode and estimate its L� condition 
number. 

Required Arguments 
A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage mode to be 

factored.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A.   
(Output)  
If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT. 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   
(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND [,…]) 

Specific: The specific interface names are S_LFCRB and D_LFCRB. 

FORTRAN 77 Interface 
Single: CALL LFCRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCRB. 

Example 
The inverse of a 4 � 4 band matrix with one upper and one lower codiagonal is computed. 
LFCRB is called to factor the matrix and to check for singularity or ill-conditioning. LFIRB (page 
227) is called to determine the columns of the inverse. 

      USE LFCRB_INT 
      USE UMACH_INT 
      USE LFIRB_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 

      INTEGER    IPVT(N) 
      REAL       A(LDA,N), AINV(N,N), FACT(LDFACT,N), RCOND, RJ(N), RES(N) 
!                                 Set values for A in band form 
!                                 A = (  0.0  -1.0  -2.0   2.0) 
!                                     (  2.0   1.0  -1.0   1.0) 
!                                     ( -3.0   0.0   2.0   0.0) 
! 
      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 
            2.0, 1.0, 0.0/ 
! 
      CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND) 
!                                 Print the reciprocal condition number 
!                                 and the L1 condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = 0.0E0 
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      DO 10  J=1, N 
         RJ(J) = 1.0E0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFIRB 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, RJ, AINV(:,J), RES) 
         RJ(J) = 0.0E0 
   10 CONTINUE 
!                                 Print results 
      CALL WRRRN (’AINV’, AINV) 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.065 
L1 Condition number = 15.351 
 
               AINV 
        1       2       3       4 
1  -1.000  -1.000   0.400  -0.800 
2  -3.000  -2.000   0.800  -1.600 
3   0.000   0.000  -0.200   0.400 
4   0.000   0.000   0.400   0.200 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CRB/DL2CRB. The 

reference is: 

CALL L2CRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors  
Type  Code  

3      1  The input matrix is algorithmically singular. 

4     2  The input matrix is singular. 
  

Description 
Routine LFCRB performs an LU factorization of a real banded coefficient matrix. It also 
estimates the condition number of the matrix. The LU factorization is done using scaled partial 
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the 
same as if each row were scaled to have the same �-norm.  
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The L� condition number of the matrix A is defined to be �(A) = 

A

�

A

�. Since it is expensive 
to compute 

A

�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  

LSCRB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 
can occur only if A is singular or very close to a singular matrix. The LU factors are returned in 
a form that is compatible with routines LFIRB, page 227, LFSRB, page 225, and LFDRB, page 
230. To solve systems of equations with multiple right-hand-side vectors, use LFCRB followed 
by either LFIRB or LFSRB called once for each right-hand side. The routine LFDRB can be called 
to compute the determinant of the coefficient matrix after LFCRB has performed the 
factorization.  

Let F be the matrix FACT, let ml= NLCA and let mu = NUCA. The first ml+ mu + 1 rows of F 
contain the triangular matrix U in band storage form. The lower ml rows of F contain the 
multipliers needed to reconstruct L�� .  

LFCRB is based on the LINPACK routine SGBCO; see Dongarra et al. (1979). SGBCO uses 
unscaled partial pivoting. 

LFTRB  
Computes the LU factorization of a real matrix in band storage mode. 

Required Arguments 
A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage mode to be 

factored.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A.   
(Output)  
If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT. 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFTRB (A, NLCA, NUCA, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTRB and D_LFTRB. 

FORTRAN 77 Interface 
Single: CALL LFTRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTRB. 

Example 
A linear system with multiple right-hand sides is solved. LFTRB is called to factor the coefficient 
matrix. LFSRB (page 225,) is called to compute the two solutions for the two right-hand sides. In 
this case the coefficient matrix is assumed to be appropriately scaled. Otherwise, it may be 
better to call routine LFCRB (page 219) to perform the factorization, and LFIRB (page 227) to 
compute the solutions. 

      USE LFTRB_INT 
      USE LFSRB_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 
      INTEGER    IPVT(N) 
      REAL       A(LDA,N), B(N,2), FACT(LDFACT,N), X(N,2) 
!                                 Set values for A in band form, and B 
! 
!                                 A = (  0.0  -1.0  -2.0   2.0) 
!                                     (  2.0   1.0  -1.0   1.0) 
!                                     ( -3.0   0.0   2.0   0.0) 
! 
!                                 B = ( 12.0 -17.0) 
!                                     (-19.0  23.0) 
!                                     (  6.0   5.0) 
!                                     (  8.0   5.0) 
! 
      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 
            2.0, 1.0, 0.0/ 
      DATA B/12.0, -19.0, 6.0, 8.0, -17.0, 23.0, 5.0, 5.0/ 
!                                 Compute factorization 
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      CALL LFTRB (A, NLCA, NUCA, FACT, IPVT) 
!                                 Solve for the two right-hand sides 
      DO 10  J=1, 2 
         CALL LFSRB (FACT, NLCA, NUCA, IPVT, B(:,J), X(:,J)) 
   10 CONTINUE 
!                                 Print results 
      CALL WRRRN (’X’, X) 
! 
      END 

Output 
 
        X 
        1       2 
1   3.000  -8.000 
2  -6.000   1.000 
3   2.000   1.000 
4   4.000   3.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2TRB/DL2TRB. The 

reference is: 

CALL L2TRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, WK) 

The additional argument is: 

WK — Work vector of length N used for scaling. 

2 Informational error 
Type  Code  

4     2  The input matrix is singular. 
 

3. Integer Options with Chapter 11 Options Manager 

21  The performance of the LU factorization may improve on high-performance 
computers if the blocking factor, NB, is increased. The current version of the 
routine allows NB to be reset to a value no larger than 32. Default value is NB = 
1. 

  

Description 
The routine LFTRB performs an LU factorization of a real banded coefficient matrix using 
Gaussian elimination with partial pivoting. A failure occurs if U, the upper triangular factor, has 
a zero diagonal element. This can happen if A is close to a singular matrix. The LU factors are 
returned in a form that is compatible with routines LFIRB, page 227, LFSRB, page 225, and 
LFDRB, page 230. To solve systems of equations with multiple right-hand-side vectors, use 
LFTRB followed by either LFIRB or LFSRB called once for each right-hand side. The routine 
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LFDRB can be called to compute the determinant of the coefficient matrix after LFTRB has 
performed the factorization  

Let ml = NLCA, and let mu = NUCA. The first ml + mu + 1 rows of FACT contain the triangular 
matrix U in band storage form. The next ml rows of FACT contain the multipliers needed to 
produce L.  

The routine LFTRB is based on the the blocked LU factorization algorithm for banded linear 
systems given in Du Croz, et al. (1990). Level-3 BLAS invocations were replaced by in-line 
loops. The blocking factor nb has the default value 1 in LFTRB. It can be reset to any positive 
value not exceeding 32. 

LFSRB  
Solves a real system of linear equations given the LU factorization of the coefficient matrix in 
band storage mode. 

Required Arguments 
FACT — (2 � NLCA + NUCA + 1) by N array containing the LU factorization of the coefficient 

matrix A as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 
as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system ATX = B is solved. 
Default: IPATH = 1. 
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FORTRAN 90 Interface 
Generic: CALL LFSRB (FACT, NLCA, NUCA, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSRB and D_LFSRB. 

FORTRAN 77 Interface 
Single: CALL LFSRB (N, FACT, LDFACT, NLCA, NUCA, IPVT, B, IPATH, X) 

Double:  The double precision name is DLFSRB. 

Example 
The inverse is computed for a real banded 4 � 4 matrix with one upper and one lower codiagonal. 
The input matrix is assumed to be well-conditioned, hence LFTRB (page 222) is used rather than 
LFCRB. 

      USE LFSRB_INT 
      USE LFTRB_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 
      INTEGER    IPVT(N) 
      REAL       A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N) 
!                                 Set values for A in band form 
!                                 A = (  0.0  -1.0  -2.0   2.0) 
!                                     (  2.0   1.0  -1.0   1.0) 
!                                     ( -3.0   0.0   2.0   0.0) 
! 
      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 
            2.0, 1.0, 0.0/ 
! 
      CALL LFTRB (A, NLCA, NUCA, FACT, IPVT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = 0.0E0 
      DO 10  J=1, N 
         RJ(J) = 1.0E0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSRB 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSRB (FACT, NLCA, NUCA, IPVT, RJ, AINV(:,J)) 
         RJ(J) = 0.0E0 
   10 CONTINUE 
!                                 Print results 
      CALL WRRRN (’AINV’, AINV) 
! 
      END 
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Output 
 
              AINV 
        1       2       3       4 
1  -1.000  -1.000   0.400  -0.800 
2  -3.000  -2.000   0.800  -1.600 
3   0.000   0.000  -0.200   0.400 
4   0.000   0.000   0.400   0.200 
 

Description 
Routine LFSRB computes the solution of a system of linear algebraic equations having a real 
banded coefficient matrix. To compute the solution, the coefficient matrix must first undergo an 
LU factorization. This may be done by calling either LFCRB, page 219, or LFTRB, page 222. The 
solution to Ax = b is found by solving the banded triangular systems Ly = b and Ux = y. The 
forward elimination step consists of solving the system Ly = b by applying the same 
permutations and elimination operations to b that were applied to the columns of A in the 
factorization routine. The backward substitution step consists of solving the banded triangular 
system Ux = y for x.  

LFSRB, page 225 and LFIRB, page 227, both solve a linear system given its LU factorization. 
LFIRB generally takes more time and produces a more accurate answer than LFSRB. Each 
iteration of the iterative refinement algorithm used by LFIRB calls LFSRB.  

LFSRB is based on the LINPACK routine SGBSL; see Dongarra et al. (1979). 

LFIRB  
Uses iterative refinement to improve the solution of a real system of linear equations in band 
storage mode. 

Required Arguments 
A — (NUCA +NLCA +1) by N array containing the N by N banded coefficient matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — (2 * NLCA +NUCA +1) by N array containing the LU factorization of the matrix A as 
output from routines LFCRB/DLFCRB or LFTRB/DLFTRB.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 
as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 



 

 
 

228 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

RES — Vector of length N containing the residual vector at the improved  
solution . (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system ATX = B is solved. 
Default: IPATH =1. 

FORTRAN 90 Interface 
Generic: CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIRB and D_LFIRB. 

FORTRAN 77 Interface 
Single:  CALL LFIRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, B, IPATH, X, 

RES) 

Double:  The double precision name is DLFIRB. 

Example 
A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 
the system each of the first two times by adding 0.5 to the second element. 

      USE LFIRB_INT 
      USE LFCRB_INT 
      USE UMACH_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 
      INTEGER    IPVT(N) 
      REAL       A(LDA,N), B(N), FACT(LDFACT,N), RCOND, RES(N), X(N) 
!                                 Set values for A in band form, and B 
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! 
!                                 A = (  0.0  -1.0  -2.0   2.0) 
!                                     (  2.0   1.0  -1.0   1.0) 
!                                     ( -3.0   0.0   2.0   0.0) 
! 
!                                 B = (  3.0   5.0   7.0  -9.0) 
! 
      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 
            2.0, 1.0, 0.0/ 
      DATA B/3.0, 5.0, 7.0, -9.0/ 
! 
      CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND) 
!                                 Print the reciprocal condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Solve the three systems 
      DO 10  J=1, 3 
         CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, B, X, RES) 
!                                 Print results 
         CALL WRRRN (’X’, X, 1, N, 1) 
!                                 Perturb B by adding 0.5 to B(2) 
         B(2) = B(2) + 0.5E0 
   10 CONTINUE 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.065 
L1 Condition number = 15.351 
                X 
    1       2       3       4 
2.000   1.000  -5.000   1.000 
 
                X 
    1       2       3       4 
1.500   0.000  -5.000   1.000 
 
                X 
    1       2       3       4 
1.000  -1.000  -5.000   1.000 
 

Comments 
Informational error 

 Type  Code  

3              2  The input matrix is too ill-conditioned for iterative refinement to be 
effective 
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Description 
Routine LFIRB computes the solution of a system of linear algebraic equations having a real 
banded coefficient matrix. Iterative refinement is performed on the solution vector to improve 
the accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is 
somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an LU factorization. This 
may be done by calling either LFCRB, page 219, or LFTRB, page 222. 

Iterative refinement fails only if the matrix is very ill-conditioned. 

LFIRB, page 227, and LFSRB, page 225, both solve a linear system given its LU factorization. 
LFIRB generally takes more time and produces a more accurate answer than LFSRB. Each 
iteration of the iterative refinement algorithm used by LFIRB calls LFSRB. 

LFDRB  
Computes the determinant of a real matrix in band storage mode given the LU factorization of the 
matrix. 

Required Arguments 
FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A as 

output from routine LFTRB/DLFTRB or LFCRB/DLFCRB.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization as 
output from routine LFTRB/DLFTRB or LFCRB/DLFCRB.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that 1.0 � 
DET1
 < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 
Generic: CALL LFDRB (FACT, NLCA, NUCA, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDRB and D_LFDRB. 

FORTRAN 77 Interface 
Single:  CALL LFDRB (N, FACT, LDFACT, NLCA, NUCA, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDRB. 

Example 
The determinant is computed for a real banded 4 � 4 matrix with one upper and one lower 
codiagonal. 

      USE LFDRB_INT 
      USE LFTRB_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 
      INTEGER    IPVT(N) 
      REAL       A(LDA,N), DET1, DET2, FACT(LDFACT,N) 
!                                 Set values for A in band form 
!                                 A = (  0.0  -1.0  -2.0   2.0) 
!                                     (  2.0   1.0  -1.0   1.0) 
!                                     ( -3.0   0.0   2.0   0.0) 
! 
      DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,& 
            2.0, 1.0, 0.0/ 
! 
      CALL LFTRB (A, NLCA, NUCA, FACT, IPVT) 
!                                 Compute the determinant 
      CALL LFDRB (FACT, NLCA, NUCA, IPVT, DET1, DET2) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0) 
      END 

Output 
 
The determinant of A is  5.000 * 10**0. 
 

Description 
Routine LFDRB computes the determinant of a real banded coefficient matrix. To compute the 
determinant, the coefficient matrix must first undergo an LU factorization. This may be done by 
calling either LFCRB, page 219, or LFTRB, page 222. The formula det A = det L det U is used to 
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compute the determinant. Since the determinant of a triangular matrix is the product of the 
diagonal elements,  

1
det N

i iiU U
�

��  

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FACT as a banded matrix.) Since 
L is the product of triangular matrices with unit diagonals and of permutation matrices,  
det L = (�1)k, where k is the number of pivoting interchanges.  

LFDRB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979). 

LSAQS  
Solves a real symmetric positive definite system of linear equations in band symmetric storage 
mode with iterative refinement. 

Required Arguments 
A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in 

band symmetric storage mode.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSAQS (A, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LSAQS and D_LSAQS. 

FORTRAN 77 Interface 
Single:  CALL LSAQS (N, A, LDA, NCODA, B, X) 

Double:  The double precision name is DLSAQS. 
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Example 
A system of four linear equations is solved. The coefficient matrix has real positive definite 
band form, and the right-hand-side vector b has four elements. 

      USE LSAQS_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N, NCODA 
      PARAMETER  (LDA=3, N=4, NCODA=2) 
      REAL       A(LDA,N), B(N), X(N) 
! 
!                       Set values for A in band symmetric form, and B 
! 
!                                 A = (  0.0   0.0  -1.0   1.0 ) 
!                                     (  0.0   0.0   2.0  -1.0 ) 
!                                     (  2.0   4.0   7.0   3.0 ) 
! 
!                                 B = (  6.0 -11.0 -11.0  19.0 ) 
! 
      DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/ 
      DATA B/6.0, -11.0, -11.0, 19.0/ 
!                                 Solve A*X = B 
      CALL LSAQS (A, NCODA, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
                   X 
      1       2       3       4 
     4.000  -6.000   2.000   9.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2AQS/DL2AQS. The 

reference is: 

CALL L2AQS (N, A, LDA, NCODA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — Work vector of length NCODA + 1 by N containing the RT R factorization of A 
in band symmetric storage form on output. 

WK — Work vector of length N. 

2. Informational errors 
Type  Code  



 

 
 

234 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

3      1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4      2  The input matrix is not positive definite. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2AQS the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAQS. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSAQS. 

 Users directly calling L2AQS can allocate additional space for FACT and set 
IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause 
inefficiencies. There is no requirement that users change existing applications 
that use LSAQS or L2AQS. Default values for the option are IVAL(*) = 1, 16, 0, 
1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSAQS temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CQS computes the condition number if IVAL(2) = 2. Otherwise L2CQS 
skips this computation. LSAQS restores the option. Default values for the option 
are IVAL(*) = 1,2. 

 

Description 
Routine LSAQS solves a system of linear algebraic equations having a real symmetric positive 
definite band coefficient matrix. It first uses the routine LFCQS, page 240, to compute an RTR 
Cholesky factorization of the coefficient matrix and to estimate the condition number of the 
matrix. R is an upper triangular band matrix. The solution of the linear system is then found 
using the iterative refinement routine LFIQS, page 247.  

LSAQS fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if 
the iterative refinement algorithm fails to converge. These errors occur only if A is very close to 
a singular matrix or to a matrix which is not positive definite.  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system. LSAQS solves 
the problem that is represented in the computer; however, this problem may differ from the 
problem whose solution is desired. 

LSLQS  
Solves a real symmetric positive definite system of linear equations in band symmetric storage 
mode without iterative refinement. 
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Required Arguments 
A — NCODA + 1 by N array containing the N by N positive definite band symmetric coefficient 

matrix in band symmetric storage mode.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSLQS (A, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LSLQS and D_LSLQS. 

FORTRAN 77 Interface 
Single:  CALL LSLQS (N, A, LDA, NCODA, B, X) 

Double:  The double precision name is DLSLQS. 

Example 
A system of four linear equations is solved. The coefficient matrix has real positive definite band 
form and the right-hand-side vector b has four elements. 

      USE LSLQS_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N, NCODA 
      PARAMETER  (LDA=3, N=4, NCODA=2) 
      REAL       A(LDA,N), B(N), X(N) 
! 
!                       Set values for A in band symmetric form, and B 
! 
!                                 A = (  0.0   0.0  -1.0   1.0 ) 
!                                     (  0.0   0.0   2.0  -1.0 ) 
!                                     (  2.0   4.0   7.0   3.0 ) 
! 
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!                                 B = (  6.0 -11.0 -11.0  19.0 ) 
! 
      DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/ 
      DATA B/6.0, -11.0, -11.0, 19.0/ 
!                                 Solve A*X = B 
      CALL LSLQS (A, NCODA, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
      END 

Output 
 
                 X 
      1       2       3       4 
     4.000  -6.000   2.000   9.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LQS/DL2LQS. The 

reference is: 

CALL L2LQS (N, A, LDA, NCODA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — NCODA + 1 by N work array containing the RTR factorization of A in band 
symmetric form on output. If A is not needed, A and FACT can share the same 
storage locations. 

WK — Work vector of length N. 

2. Informational errors 
Type  Code  

   3     1  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

   4     2  The input matrix is not positive definite. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2LQS the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLQS. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLQS. Users directly calling L2LQS can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLQS or L2LQS. Default values for the option are IVAL(*) 
= 1,16,0,1. 
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17 This option has two values that determine if the L��condition number is to be 
computed. Routine LSLQS temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CQS computes the condition number if IVAL(2) = 2. Otherwise L2CQS 
skips this computation. LSLQS restores the option. Default values for the option 
are IVAL(*) = 1,2. 

 

Description 
Routine LSLQS solves a system of linear algebraic equations having a real symmetric positive 
definite band coefficient matrix. It first uses the routine LFCQS, page 240, to compute an RTR 
Cholesky factorization of the coefficient matrix and to estimate the condition number of the 
matrix. R is an upper triangular band matrix. The solution of the linear system is then found 
using the routine LFSQS, page 245.  

LSLQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A is very close to a singular matrix or to a matrix which is not 
positive definite.  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that 
LSAQS, page 232, be used. 

LSLPB  
Computes the RTDR Cholesky factorization of a real symmetric positive definite matrix A in 
codiagonal band symmetric storage mode. Solve a system Ax = b. 

Required Arguments 
A — Array containing the N by N positive definite band coefficient matrix and right hand 

side in codiagonal band symmetric storage mode. (Input/Output) 
The number of array columns must be at least NCODA + 2. The number of column is 
not an input to this subprogram. 

On output, A contains the solution and factors. See Comments section for details.  

NCODA — Number of upper codiagonals of matrix A.   (Input)  
Must satisfy NCODA � 0 and NCODA < N. 

U — Array of flags that indicate any singularities of A, namely loss of positive-definiteness of 
a leading minor.   (Output) 
A value U(I) = 0. means that the leading minor of dimension I is not positive-definite. 
Otherwise, U(I) = 1. 
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Optional Arguments 
N — Order of the matrix.   (Input)  

Must satisfy N > 0. 
Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input)  
Must satisfy LDA � N + NCODA. 
Default: LDA = size (A,1). 

IJOB — Flag to direct the desired factorization or solving step.   (Input)  
Default: IJOB = 1. 

IJOB Meaning 

1 factor the matrix A and solve the system Ax = b, where b is stored in column 
NCODA + 2 of array A. The vector x overwrites b in storage. 

2 solve step only. Use b as column NCODA + 2 of A. (The factorization step has 
already been done.) The vector x overwrites b in storage. 

3 factor the matrix A but do not solve a system. 

4,5,6 same meaning as with the value IJOB - 3. For efficiency, no error checking is 
done on values LDA, N, NCODA, and U(*). 

FORTRAN 90 Interface 
Generic: CALL LSLPB (A, NCODA, U [,…]) 

Specific: The specific interface names are S_LSLPB and D_LSLPB. 

FORTRAN 77 Interface 
Single:  CALL LSLPB (N, A, LDA, NCODA, IJOB, U) 

Double:  The double precision name is DLSLPB. 

Example 
A system of four linear equations is solved. The coefficient matrix has real positive definite 
codiagonal band form and the right-hand-side vector b has four elements. 

      USE LSLPB_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER LDA, N, NCODA 
      PARAMETER (N=4, NCODA=2, LDA=N+NCODA) 
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! 
      INTEGER IJOB 
      REAL A(LDA,NCODA+2), U(N) 
      REAL R(N,N), RT(N,N), D(N,N), WK(N,N), AA(N,N) 
! 
! 
!                                 Set values for A and right side in 
!                                 codiagonal band symmetric form: 
! 
!                            A    =   (  *     *      *       * ) 
!                                     (  *     *      *       * ) 
!                                     (2.0     *      *      6.0) 
!                                     (4.0    0.0     *    -11.0) 
!                                     (7.0    2.0   -1.0   -11.0) 
!                                     (3.0   -1.0    1.0    19.0) 
! 
      DATA ((A(I+NCODA,J),I=1,N),J=1,NCODA+2)/2.0, 4.0, 7.0, 3.0, 0.0,& 
      0.0, 2.0, -1.0, 0.0, 0.0, -1.0, 1.0, 6.0, -11.0, -11.0,& 
      19.0/ 
      DATA R/16*0.0/, D/16*0.0/, RT/16*0.0/ 
!                                 Factor and solve A*x = b. 
      CALL LSLPB(A, NCODA, U) 
!                                 Print results 
      CALL WRRRN ('X', A((NCODA+1):,(NCODA+2):), NRA=1, NCA=N, LDA=1) 
  

      END 

 

Output 
                 X 

      1       2       3       4 

  4.000  -6.000   2.000   9.000   

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LPB/DL2LPB. The 

reference is: 

CALL L2LPB (N, A, LDA, NCODA, IJOB, U, WK) 

The additional argument is: 

WK — Work vector of length NCODA. 

2. If IJOB=1, 3, 4, or 6, A contains the factors R and D on output. These are stored in 
codiagonal band symmetric storage mode. Column 1 of A contains the reciprocal of 
diagonal matrix D. Columns 2 through NCODA+1 contain the upper diagonal values for 
upper unit diagonal matrix R.  If IJOB=1,2, 4, or 5, the last column of A contains the 
solution on output, replacing b. 
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3. Informational error 
Type  Code  

4      2  The input matrix is not positive definite. 

Description 
Routine LSLPB factors and solves the symmetric positive definite banded linear system Ax = b. 
The matrix is factored so that A = RTDR, where R is unit upper triangular and D is diagonal. The 
reciprocals of the diagonal entries of D are computed and saved to make the solving step more 
efficient. Errors will occur if D has a non-positive diagonal element. Such events occur only if A 
is very close to a singular matrix or is not positive definite. 

LSLPB is efficient for problems with a small band width. The particular cases NCODA = 0, 1, 2 
are done with special loops within the code. These cases will give good performance. See 
Hanson (1989) for details. When solving tridiagonal systems, NCODA = 1 , the cyclic reduction 
code LSLCR, page 211, should be considered as an alternative. The expectation is that LSLCR 
will outperform LSLPB on vector or parallel computers. It may be inferior on scalar computers 
or even parallel computers with non-optimizing compilers. 

LFCQS  
Computes the RT R Cholesky factorization of a real symmetric positive definite matrix in band 
symmetric storage mode and estimate its L� condition number. 

Required Arguments 
A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in 

band symmetric storage mode to be factored.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

FACT — NCODA + 1 by N array containing the RTR factorization of the matrix A in band 
symmetric form.   (Output)  
If A is not needed, A and FACT can share the same storage locations. 

RCOND — Scalar containing an estimate of the reciprocal of the L�condition number of A.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCQS (A, NCODA, FACT, RCOND [,…]) 

Specific: The specific interface names are S_LFCQS and D_LFCQS. 

FORTRAN 77 Interface 
Single:  CALL LFCQS (N, A, LDA, NCODA, FACT, LDFACT, RCOND) 

Double:  The double precision name is DLFCQS. 

Example 
The inverse of a 4 � 4 symmetric positive definite band matrix with one codiagonal is computed. 
LFCQS is called to factor the matrix and to check for nonpositive definiteness or ill-conditioning. 
LFIQS (page 247) is called to determine the columns of the inverse. 

      USE LFCQS_INT 
      USE LFIQS_INT 
      USE UMACH_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NCODA, NOUT 
      PARAMETER  (LDA=2, LDFACT=2, N=4, NCODA=1) 
      REAL       A(LDA,N), AINV(N,N), RCOND, FACT(LDFACT,N),& 
                RES(N), RJ(N) 
! 
!                              Set values for A in band symmetric form 
! 
!                                 A = (  0.0   1.0   1.0   1.0 ) 
!                                     (  2.0   2.5   2.5   2.0 ) 
! 
      DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/ 
!                                 Factor the matrix A 
      CALL LFCQS (A, NCODA, FACT, RCOND) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = 0.0E0 
      DO 10  J=1, N 
         RJ(J) = 1.0E0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFIQS 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFIQS (A, NCODA, FACT, RJ, AINV(:,J), RES) 
         RJ(J) = 0.0E0 
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   10 CONTINUE 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
      CALL WRRRN (’AINV’, AINV) 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.160 
L1 Condition number =  6.239 
                 AINV 
          1        2        3        4 
    1   0.6667  -0.3333   0.1667  -0.0833 
    2  -0.3333   0.6667  -0.3333   0.1667 
    3   0.1667  -0.3333   0.6667  -0.3333 
    4  -0.0833   0.1667  -0.3333   0.6667 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CQS/DL2CQS. The 

reference is: 

CALL L2CQS (N, A, LDA, NCODA, FACT, LDFACT, RCOND, WK) 

The additional argument is: 

WK — Work vector of length N. 

2. Informational errors 
Type  Code  

3      3  The input matrix is algorithmically singular. 
4      2  The input matrix is not positive definite. 

 

Description 

Routine LFCQS computes an RTR Cholesky factorization and estimates the condition number of 
a real symmetric positive definite band coefficient matrix. R is an upper triangular band matrix.  

The L� condition number of the matrix A is defined to be �(A) = 

A

�

A 

�. Since it is expensive 
to compute 

A

�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  
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LFCQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A is very close to a singular matrix or to a matrix which is not 
positive definite.  

The RTR factors are returned in a form that is compatible with routines LFIQS, page 247, 
LFSQS, page 245, and LFDQS, page 250. To solve systems of equations with multiple right-
hand-side vectors, use LFCQS followed by either LFIQS or LFSQS called once for each right-
hand side. The routine LFDQS can be called to compute the determinant of the coefficient matrix 
after LFCQS has performed the factorization. 

LFCQS is based on the LINPACK routine SPBCO; see Dongarra et al. (1979). 

LFTQS  
Computes the RTR Cholesky factorization of a real symmetric positive definite matrix in band 
symmetric storage mode. 

Required Arguments 
A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in 

band symmetric storage mode to be factored.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

FACT — NCODA + 1 by N array containing the RT R factorization of the matrix A.   (Output)  
If A s not needed, A and FACT can share the same storage locations. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFTQS (A, NCODA, FACT [,…]) 

Specific: The specific interface names are S_LFTQS and D_LFTQS. 
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FORTRAN 77 Interface 
Single:  CALL LFTQS (N, A, LDA, NCODA, FACT, LDFACT) 

Double:  The double precision name is DLFTQS. 

Example 
The inverse of a 3 � 3 matrix is computed. LFTQS is called to factor the matrix and to check for 
nonpositive definiteness. LFSQS (page 245) is called to determine the columns of the inverse. 

      USE LFTQS_INT 
      USE WRRRN_INT 
      USE LFSQS_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NCODA 
      PARAMETER  (LDA=2, LDFACT=2, N=4, NCODA=1) 
      REAL       A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N) 
! 
!                              Set values for A in band symmetric form 
! 
!                                 A = (  0.0   1.0   1.0   1.0 ) 
!                                     (  2.0   2.5   2.5   2.0 ) 
! 
      DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/ 
!                                 Factor the matrix A 
      CALL LFTQS (A, NCODA, FACT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = 0.0E0 
      DO 10  J=1, N 
         RJ(J) = 1.0E0 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSQS 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSQS (FACT, NCODA, RJ, AINV(:,J)) 
         RJ(J) = 0.0E0 
   10 CONTINUE 
!                                 Print the results 
      CALL WRRRN (’AINV’, AINV, ITRING=1) 
      END 

Output 
 
                 AINV 
         1        2        3        4 
1   0.6667  -0.3333   0.1667  -0.0833 
2            0.6667  -0.3333   0.1667 
3                     0.6667  -0.3333 
4                              0.6667 
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Comments 
Informational error 

Type  Code  

4     2  The input matrix is not positive definite. 
 

Description 

Routine LFTQS computes an RT R Cholesky factorization of a real symmetric positive definite 
band coefficient matrix. R is an upper triangular band matrix. 

LFTQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A is very close to a singular matrix or to a matrix which is not 
positive definite. 

The RT R factors are returned in a form that is compatible with routines LFIQS, page 247, 
LFSQS, page 245, and LFDQS, page 250. To solve systems of equations with multiple right 
hand-side vectors, use LFTQS followed by either LFIQS or LFSQS called once for each right-
hand side. The routine LFDQS can be called to compute the determinant of the coefficient matrix 
after LFTQS has performed the factorization. 

LFTQS is based on the LINPACK routine CPBFA; see Dongarra et al. (1979). 

LFSQS  
Solves a real symmetric positive definite system of linear equations given the factorization of the 
coefficient matrix in band symmetric storage mode. 

Required Arguments 

FACT — NCODA + 1 by N array containing the RT R factorization of the positive definite band 
matrix A in band symmetric storage mode as output from subroutine LFCQS/DLFCQS or 
LFTQS/DLFTQS.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X an share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 
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LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFSQS (FACT, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LFSQS and D_LFSQS. 

FORTRAN 77 Interface 
Single:  CALL LFSQS (N, FACT, LDFACT, NCODA, B, X) 

Double:  The double precision name is DLFSQS. 

Example 
A set of linear systems is solved successively. LFTQS (page 243) is called to factor the coefficient 
matrix. LFSQS is called to compute the four solutions for the four right-hand sides. In this case the 
coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be 
better to call LFCQS (page 240) to perform the factorization, and LFIQS (page 247) to compute the 
solutions. 

      USE LFSQS_INT 
      USE LFTQS_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NCODA 
      PARAMETER  (LDA=3, LDFACT=3, N=4, NCODA=2) 
      REAL       A(LDA,N), B(N,4), FACT(LDFACT,N), X(N,4) 
! 
! 
!                       Set values for A in band symmetric form, and B 
! 
!                                 A = (  0.0   0.0  -1.0   1.0 ) 
!                                     (  0.0   0.0   2.0  -1.0 ) 
!                                     (  2.0   4.0   7.0   3.0 ) 
! 
!                                 B = (  4.0  -3.0   9.0  -1.0 ) 
!                                     (  6.0  10.0  29.0   3.0 ) 
!                                     ( 15.0  12.0  11.0   6.0 ) 
!                                     ( -7.0   1.0  14.0   2.0 ) 
! 
      DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/ 
      DATA B/4.0, 6.0, 15.0, -7.0, -3.0, 10.0, 12.0, 1.0, 9.0, 29.0,& 
            11.0, 14.0, -1.0, 3.0, 6.0, 2.0/ 
!                                 Factor the matrix A 
      CALL LFTQS (A, NCODA, FACT) 
!                                 Compute the solutions 
      DO 10  I=1, 4 
         CALL LFSQS (FACT, NCODA, B(:,I), X(:,I)) 
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   10 CONTINUE 
!                                 Print solutions 
      CALL WRRRN (’X’, X) 
! 
      END 

Output 
 
                X 
        1       2       3       4 
1   3.000  -1.000   5.000   0.000 
2   1.000   2.000   6.000   0.000 
3   2.000   1.000   1.000   1.000 
4  -2.000   0.000   3.000   1.000 
 

Comments 
Informational error 

Type  Code  

   4     1  The factored matrix is singular. 

Description 
This routine computes the solution for a system of linear algebraic equations having a real 
symmetric positive definite band coefficient matrix. To compute the solution, the coefficient 
matrix must first undergo an RT R factorization. This may be done by calling either LFCQS, page 
240, or LFTQS, page 243. R is an upper triangular band matrix. 

The solution to Ax = b is found by solving the triangular systems RTy = b and Rx = y. 

LFSQS and LFIQS, page 247, both solve a linear system given its RT R factorization. LFIQS 
generally takes more time and produces a more accurate answer than LFSQS. Each iteration of 
the iterative refinement algorithm used by LFIQS calls LFSQS. 

LFSQS is based on the LINPACK routine SPBSL; see Dongarra et al. (1979). 

LFIQS  
Uses iterative refinement to improve the solution of a real symmetric positive definite system of 
linear equations in band symmetric storage mode. 

Required Arguments 
A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in 

band symmetric storage mode.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 
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FACT — NCODA + 1 by N array containing the RT R factorization of the matrix A from routine 
LFCQS/DLFCQS or LFTQS/DLFTQS.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the system.   (Output) 

RES — Vector of length N containing the residual vector at the improved solution.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFIQS (A, NCODA, FACT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIQS and D_LFIQS. 

FORTRAN 77 Interface 
Single:  CALL LFIQS (N, A, LDA, NCODA, FACT, LDFACT, B, X, RES) 

Double:  The double precision name is DLFIQS. 

Example 
A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving 
the system each of the first two times by adding 0.5 to the second element. 

      USE LFIQS_INT 
      USE UMACH_INT 
      USE LFCQS_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NCODA, NOUT 
      PARAMETER  (LDA=2, LDFACT=2, N=4, NCODA=1) 
      REAL       A(LDA,N), B(N), RCOND, FACT(LDFACT,N), RES(N,3),& 
                X(N,3) 
! 
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!                       Set values for A in band symmetric form, and B 
! 
!                                 A = (  0.0   1.0   1.0   1.0 ) 
!                                     (  2.0   2.5   2.5   2.0 ) 
! 
!                                 B = (  3.0   5.0   7.0   4.0 ) 
! 
      DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/ 
      DATA B/3.0, 5.0, 7.0, 4.0/ 
!                                 Factor the matrix A 
      CALL LFCQS (A, NCODA, FACT, RCOND) 
!                                 Print the estimated condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Compute the solutions 
      DO 10  I=1, 3 
         CALL LFIQS (A, NCODA, FACT, B, X(:,I), RES(:,I)) 
         B(2) = B(2) + 0.5E0 
   10 CONTINUE 
!                                 Print solutions and residuals 
      CALL WRRRN (’X’, X) 
      CALL WRRRN (’RES’, RES) 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.160 
L1 Condition number =  6.239 
             X 
        1       2       3 
1   1.167   1.000   0.833 
2   0.667   1.000   1.333 
3   2.167   2.000   1.833 
4   0.917   1.000   1.083 
 
                 RES 
            1           2           3 
1   7.947E-08   0.000E+00   9.934E-08 
2   7.947E-08   0.000E+00   3.974E-08 
3   7.947E-08   0.000E+00   1.589E-07 
4  -3.974E-08   0.000E+00  -7.947E-08 
 

Comments 
Informational error 

Type  Code 

3     4  The input matrix is too ill-conditioned for iterative refinement to be 
effective. 



 

 
 

250 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

Description 
Routine LFIQS computes the solution of a system of linear algebraic equations having a real 
symmetric positive-definite band coefficient matrix. Iterative refinement is performed on the 
solution vector to improve the accuracy. Usually almost all of the digits in the solution are 
accurate, even if the matrix is somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an RT R factorization. This 
may be done by calling either IMSL routine LFCQS, page 240, or LFTQS, page 243. 

Iterative refinement fails only if the matrix is very ill-conditioned. 

LFIQS, page 247 and LFSQS, page 245, both solve a linear system given its RT R factorization. 
LFIQS generally takes more time and produces a more accurate answer than LFSQS. Each 
iteration of the iterative refinement algorithm used by LFIQS calls LFSQS. 

LFDQS  
Computes the determinant of a real symmetric positive definite matrix given the RTR Cholesky 
factorization of the band symmetric storage mode. 

Required Arguments 

FACT — NCODA + 1 by N array containing the RT R factorization of the positive definite band 
matrix, A, in band symmetric storage mode as output from subroutine LFCQS/DLFCQS 
or LFTQS/DLFTQS.   (Input) 

NCODA — Number of upper codiagonals of A.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that 1.0 � 
DET1
 < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form det(A) = DET1 * 10DET2. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFDQS (FACT, NCODA, DET1, DET2 [,…]) 
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Specific: The specific interface names are S_LFDQS and D_LFDQS. 

FORTRAN 77 Interface 
Single:  CALL LFDQS (N, FACT, LDFACT, NCODA, DET1, DET2) 

Double:  The double precision name is DLFDQS. 

Example 
The determinant is computed for a real positive definite 4 � 4 matrix with 2 codiagonals. 

      USE LFDQS_INT 
      USE LFTQS_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NCODA, NOUT 
      PARAMETER  (LDA=3, N=4, LDFACT=3, NCODA=2) 
      REAL       A(LDA,N), DET1, DET2, FACT(LDFACT,N) 
! 
!                       Set values for A in band symmetric form 
! 
!                                 A = (  0.0   0.0   1.0  -2.0 ) 
!                                     (  0.0   2.0   1.0   3.0 ) 
!                                     (  7.0   6.0   6.0   8.0 ) 
! 
      DATA A/2*0.0, 7.0, 0.0, 2.0, 6.0, 1.0, 1.0, 6.0, -2.0, 3.0, 8.0/ 
!                                 Factor the matrix 
      CALL LFTQS (A, NCODA, FACT) 
!                                 Compute the determinant 
      CALL LFDQS (FACT, NCODA, DET1, DET2) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
! 
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0) 
      END 

Output 
 
The determinant of A is 1.186 * 10**3. 
 

Description 
Routine LFDQS computes the determinant of a real symmetric positive-definite band coefficient 
matrix. To compute the determinant, the coefficient matrix must first undergo an RT R 
factorization. This may be done by calling either IMSL routine LFCQS, page 240, or LFTQS, 
page 243. The formula det A = det RT det R = (det R�� is used to compute the determinant. Since 
the determinant of a triangular matrix is the product of the diagonal elements,  
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LFDQS is based on the LINPACK routine SPBDI; see Dongarra et al. (1979). 

LSLTQ  
Solves a complex tridiagonal system of linear equations. 

Required Arguments 
C — Complex vector of length N containing the subdiagonal of the tridiagonal matrix in C(2) 

through C(N).   (Input/Output)  
On output C is destroyed. 

D — Complex vector of length N containing the diagonal of the tridiagonal matrix.   
(Input/Output)  
On output D is destroyed. 

E — Complex vector of length N containing the superdiagonal of the tridiagonal matrix in 
E(1) through E(N � 1).   (Input/Output)  
On output E is destroyed. 

B — Complex vector of length N containing the right-hand side of the linear system on entry 
and the solution vector on return.   (Input/Output) 

Optional Arguments 
N — Order of the tridiagonal matrix.   (Input) 

Default: N = size (C,1). 

FORTRAN 90 Interface 
Generic: CALL LSLTQ (C, D, E, B [,…]) 

Specific: The specific interface names are S_LSLTQ and D_LSLTQ. 

FORTRAN 77 Interface 
Single:  CALL LSLTQ (N, C, D, E, B) 

Double:  The double precision name is DLSLTQ. 

Example 
A system of n = 4 linear equations is solved. 

      USE LSLTQ_INT 
      USE WRCRL_INT 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 253 

 

 

 

!                                 Declaration of variables 
      INTEGER    N 
      PARAMETER  (N=4) 
! 
      COMPLEX    B(N), C(N), D(N), E(N) 
      CHARACTER  CLABEL(1)*6, FMT*8, RLABEL(1)*4 
! 
      DATA FMT/’(E13.6)’/ 
      DATA CLABEL/’NUMBER’/ 
      DATA RLABEL/’NONE’/ 
!                                C(*), D(*), E(*) and B(*) 
!                                contain the subdiagonal, 
!                                diagonal, superdiagonal and 
!                                right hand side. 
      DATA C/(0.0,0.0), (-9.0,3.0), (2.0,7.0), (7.0,-4.0)/ 
      DATA D/(3.0,-5.0), (4.0,-9.0), (-5.0,-7.0), (-2.0,-3.0)/ 
      DATA E/(-9.0,8.0), (1.0,8.0), (8.0,3.0), (0.0,0.0)/ 
      DATA B/(-16.0,-93.0), (128.0,179.0), (-60.0,-12.0), (9.0,-108.0)/ 
! 
! 
      CALL LSLTQ (C, D, E, B) 
!                                 Output the solution. 
      CALL WRCRL (’Solution:’, B, RLABEL, CLABEL, 1, N, 1, FMT=FMT) 
      END 

Output 
 
Solution: 
                           1                              2 
(-0.400000E+01,-0.700000E+01)  (-0.700000E+01, 0.400000E+01) 
                           3                              4 
( 0.700000E+01,-0.700000E+01)  ( 0.900000E+01, 0.200000E+01) 

Comments 
Informational error 

 Type  Code 

4          2       An element along the diagonal became exactly zero during execution. 

Description 
Routine LSLTQ factors and solves the complex tridiagonal linear system Ax = b. LSLTQ is 
intended just for tridiagonal systems. The coefficient matrix does not have to be symmetric. The 
algorithm is Gaussian elimination with pivoting for numerical stability. See Dongarra et al. 
(1979), LINPACK subprograms CGTSL/ZGTSL, for details. When computing on vector or 
parallel computers the cyclic reduction algorithm, page 254, should be considered as an 
alternative method to solve the system. 
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LSLCQ  
Computes the LDU factorization of a complex tridiagonal matrix A using a cyclic reduction 
algorithm. 

Required Arguments 
C — Complex array of size 2N containing the upper codiagonal of the N by N tridiagonal 

matrix in the entries C(1), �, C(N � 1).   (Input/Output) 

A — Complex array of size 2N containing the diagonal of the N by N tridiagonal matrix in the 
entries A(1), �, A(N � 1).   (Input/Output) 

B — Complex array of size 2N containing the lower codiagonal of the N by N tridiagonal 
matrix in the entries B(1), �, B(N � 1).   (Input/Output) 

Y — Complex array of size 2N containing the right-hand side of the system Ax = y in the order 
Y(1),�,Y(N).   (Input/Output)  
The vector x overwrites Y in storage. 

U — Real array of size 2N of flags that indicate any singularities of A.   (Output) 
A value U(I) = 1. means that a divide by zero would have occurred during the 
factoring. Otherwise U(I) = 0. 

IR — Array of integers that determine the sizes of loops performed in the cyclic reduction 
algorithm.   (Output) 

IS — Array of integers that determine the sizes of loops performed in the cyclic reduction 
algorithm.   (Output)  
The sizes of these arrays must be at least log�(N) + 3. 

Optional Arguments 
N — Order of the matrix.   (Input) 

N must be greater than zero. 
Default: N = size (C,1). 

IJOB — Flag to direct the desired factoring or solving step.   (Input)  
Default: IJOB =1. 

IJOB      Action 

1 Factor the matrix A and solve the system Ax = y, where y is stored in 
array Y. 

2 Do the solve step only. Use y from array Y. (The factoring step has 
already been done.) 

3 Factor the matrix A but do not solve a system. 
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4 Same meaning as with the value IJOB = 3. For efficiency, no error 
checking is done on the validity of any input value. 

FORTRAN 90 Interface 
Generic: CALL LSLCQ (C, A, B, Y, U, IR, IS [,…]) 

Specific: The specific interface names are S_LSLCQ and D_LSLCQ. 

FORTRAN 77 Interface 
Single:  CALL LSLCQ (N, C, A, B, IJOB, Y, U, IR, IS) 

Double:  The double precision name is DLSLCQ. 

Example 
A real skew-symmetric tridiagonal matrix, A, of dimension n = 1000 is given by ck = �k, ak = 0, 
and bk = k, k = 1, �, n � 1, an = 0. This matrix will have eigenvalues that are purely imaginary. 
The eigenvalue closest to the imaginary unit is required. This number is obtained by using inverse 
iteration to approximate a complex eigenvector y. The eigenvalue is approximated  by   
 = yH Ay/yH y. (This example is contrived in the sense that the given tridiagonal skew-symmetric 
matrix eigenvalue problem is essentially equivalent to the tridiagonal symmetic eigenvalue 
problem where the ck = k and the other data are unchanged.) 

      USE LSLCQ_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    LP, N, N2 
      PARAMETER  (LP=12, N=1000, N2=2*N) 
! 
      INTEGER    I, IJOB, IR(LP), IS(LP), K, NOUT 
      REAL       AIMAG, U(N2) 
      COMPLEX    A(N2), B(N2), C(N2), CMPLX, CONJG, S, T, Y(N2) 
      INTRINSIC  AIMAG, CMPLX, CONJG 
!                                 Define entries of skew-symmetric 
!                                 matrix, A: 
      DO 10  I=1, N - 1 
         C(I) = -I 
!                                 This amounts to subtracting the 
!                                 positive imaginary unit from the 
!                                 diagonal.  (The eigenvalue closest 
!                                 to this value is desired.) 
         A(I) = CMPLX(0.E0,-1.0E0) 
         B(I) = I 
!                                 This initializes the approximate 
!                                 eigenvector. 
         Y(I) = 1.E0 
   10 CONTINUE 
      A(N) = CMPLX(0.E0,-1.0E0) 
      Y(N) = 1.E0 
!                                 First step of inverse iteration 
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!                                 follows. Obtain decomposition of 
!                                 matrix and solve the first system: 
      IJOB = 1 
      CALL LSLCQ (C, A, B, Y, U, IR, IS, N=N, IJOB=IJOB) 
! 
!                                 Next steps of inverse iteration 
!                                 follow. Solve the system again with 
!                                 the decomposition ready: 
      IJOB = 2 
      DO 20  K=1, 3 
         CALL LSLCQ (C, A, B, Y, U, IR, IS, N=N, IJOB=IJOB) 
   20 CONTINUE 
! 
!                                 Compute the Raleigh quotient to 
!                                 estimate the eigenvalue closest to 
!                                 the positive imaginary unit. After 
!                                 the approximate eigenvector, y, is 
!                                 computed, the estimate of the 
!                                 eigenvalue is ctrans(y)*A*y/t, 
!                                 where t = ctrans(y)*y. 
      S = -CONJG(Y(1))*Y(2) 
      T = CONJG(Y(1))*Y(1) 
      DO 30  I=2, N - 1 
         S = S + CONJG(Y(I))*((I-1)*Y(I-1)-I*Y(I+1)) 
         T = T + CONJG(Y(I))*Y(I) 
   30 CONTINUE 
      S = S + CONJG(Y(N))*(N-1)*Y(N-1) 
      T = T + CONJG(Y(N))*Y(N) 
      S = S/T 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’ The value of n is:  ’, N 
      WRITE (NOUT,*) ’ Value of approximate imaginary eigenvalue:’,& 
                   AIMAG(S) 
      STOP 
      END 

Output 
 
The value of n is:    1000 
Value of approximate imaginary eigenvalue:    1.03811 

 

Description 
Routine LSLCQ factors and solves the complex tridiagonal linear system Ax = y. The matrix is 
decomposed in the form A = LDU, where L is unit lower triangular, U is unit upper triangular, 
and D is diagonal. The algorithm used for the factorization is effectively that described in 
Kershaw (1982). More details, tests and experiments are reported in Hanson (1990). 

LSLCQ is intended just for tridiagonal systems. The coefficient matrix does not have to be 
Hermitian. The algorithm amounts to Gaussian elimination, with no pivoting for numerical 
stability, on the matrix whose rows and columns are permuted to a new order. See Hanson 
(1990) for details. The expectation is that LSLCQ will outperform either LSLTQ, page 252, or 
LSLQB, page 282, on vector or parallel computers. Its performance may be inferior for small 
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values of n, on scalar computers, or high-performance computers with non-optimizing 
compilers. 

LSACB  
Solves a complex system of linear equations in band storage mode with iterative refinement. 

Required Arguments 
A — Complex NLCA + NUCA + 1 by N array containing the N by N banded coefficient matrix in 

band storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system AHX = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSACB (A, NLCA, NUCA, B, X [,…]) 

Specific: The specific interface names are S_LSACB and D_LSACB. 

FORTRAN 77 Interface 
Single:  CALL LSACB (N, A, LDA, NLCA, NUCA, B, IPATH, X) 

Double:  The double precision name is DLSACB. 
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Example 
A system of four linear equations is solved. The coefficient matrix has complex banded form 
with one upper and one lower codiagonal. The right-hand-side vector b has four elements. 

      USE LSACB_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N, NLCA, NUCA 
      PARAMETER  (LDA=3, N=4, NLCA=1, NUCA=1) 
      COMPLEX    A(LDA,N), B(N), X(N) 
! 
!                Set values for A in band form, and B 
! 
!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 
!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 
!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 
! 
!                B = ( -10.0-5.0i  9.5+5.5i  12.0-12.0i  0.0+8.0i ) 
! 
      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 
            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 
            (1.0,-1.0), (0.0,0.0)/ 
      DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/ 
!                                 Solve A*X = B 
      CALL LSACB (A, NLCA, NUCA, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
                                   X 
             1                2                3                4 
( 3.000, 0.000)  (-1.000, 1.000)  ( 3.000, 0.000)  (-1.000, 1.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ACB/DL2ACB The 

reference is: 

CALL L2ACB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — Complex work vector of length (2 * NLCA + NUCA + 1) * N containing the 
LU factorization of A on output. 

IPVT — Integer work vector of length N containing the pivoting information for the 
LU factorization of A on output. 

WK — Complex work vector of length N. 
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2. Informational errors  
Type  Code  

3      3  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4      2  The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2ACB the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSACB. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSACB. Users directly calling L2ACB can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSACB or L2ACB. Default values for the option are IVAL(*) 
= 1,16,0,1. 

17  This option has two values that determine if the L� condition number is to be 
computed. Routine LSACB temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CCB computes the condition number if IVAL(2) = 2. Otherwise 
L2CCB skips this computation. LSACB restores the option. Default values for 
the option are IVAL(*) = 1,2. 

 

Description 
Routine LSACB solves a system of linear algebraic equations having a complex banded 
coefficient matrix. It first uses the routine LFCCB, page 262, to compute an LU factorization of 
the coefficient matrix and to estimate the condition number of the matrix. The solution of the 
linear system is then found using the iterative refinement routine LFICB, page 271. 

LSACB fails if U, the upper triangular part of the factorization, has a zero diagonal element or if 
the iterative refinement algorithm fails to converge. These errors occur only if A is singular or 
very close to a singular matrix. 

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system. LSACB solves 
the problem that is represented in the computer; however, this problem may differ from the 
problem whose solution is desired. 

LSLCB  
Solves a complex system of linear equations in band storage mode without iterative refinement. 
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Required Arguments 
A — Complex NLCA + NUCA + 1 by N array containing the N by N banded coefficient matrix in 

band storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, then B and X may share the same storage locations) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system AHX = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSLCB (A, NLCA, NUCA, B, X [,…]) 

Specific: The specific interface names are S_LSLCB and D_LSLCB. 

FORTRAN 77 Interface 
Single:  CALL LSLCB (N, A, LDA, NLCA, NUCA, B, IPATH, X) 

Double:  The double precision name is DLSLCB. 

Example 
A system of four linear equations is solved. The coefficient matrix has complex banded form with 
one upper and one lower codiagonal. The right-hand-side vector b has four elements. 

      USE LSLCB_INT 
      USE WRCRN_INT 

!                                 Declare variables 
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      INTEGER    LDA, N, NLCA, NUCA 
      PARAMETER  (LDA=3, N=4, NLCA=1, NUCA=1) 
      COMPLEX    A(LDA,N), B(N), X(N) 
! 
!                Set values for A in band form, and B 
! 
!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 
!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 
!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 
! 
!                B = ( -10.0-5.0i  9.5+5.5i  12.0-12.0i  0.0+8.0i ) 
! 
      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 
            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 
            (1.0,-1.0), (0.0,0.0)/ 
      DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/ 
!                                 Solve A*X = B 
      CALL LSLCB (A, NLCA, NUCA, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
                                   X 
             1                2                3                4 
( 3.000, 0.000)  (-1.000, 1.000)  ( 3.000, 0.000)  (-1.000, 1.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LCB/DL2LCB The 

reference is: 

CALL L2LCB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK) 

The additional arguments are as follows: 

FACT — (2 * NLCA + NUCA + 1) × N complex work array containing the LU 
factorization of A on output. If A is not needed, A can share the first  
(NLCA + NUCA + 1) * N locations with FACT. 

IPVT — Integer work vector of length N containing the pivoting information for the 
LU factorization of A on output. 

WK — Complex work vector of length N. 

2. Informational errors 
Type  Code  

3      3  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

4      2  The input matrix is singular. 
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3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2LCB the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLCB. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLCB. Users directly calling L2LCB can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLCB or L2LCB. Default values for the option are  
IVAL(*) = 1,16,0,1. 

17  This option has two values that determine if the L� condition number is to be 
computed. Routine LSLCB temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CCB computes the condition number if IVAL(2) = 2. Otherwise L2CCB 
skips this computation. LSLCB restores the option. Default values for the option 
are IVAL(*) = 1,2. 

Description 
Routine LSLCB solves a system of linear algebraic equations having a complex banded 
coefficient matrix. It first uses the routine LFCCB, page 262, to compute an LU factorization of 
the coefficient matrix and to estimate the condition number of the matrix. The solution of the 
linear system is then found using LFSCB, page 268. 

LSLCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 
occurs only if A is singular or very close to a singular matrix.  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that 
LSACB, page 257, be used. 

LFCCB  
Computes the LU factorization of a complex matrix in band storage mode and estimate its L� 
condition number. 

Required Arguments 
A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band storage 

mode to be factored.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 
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FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the 
matrix A.   (Output)  
If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT . 

IPVT — Vector of length N containing the pivoting information for the LU factorization.   
(Output) 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND [,…]) 

Specific: The specific interface names are S_LFCCB and D_LFCCB. 

FORTRAN 77 Interface 
Single:  CALL LFCCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND) 

Double:  The double precision name is DLFCCB. 

Example 
The inverse of a 4 � 4 band matrix with one upper and one lower codiagonal is computed. 
LFCCB is called to factor the matrix and to check for singularity or ill-conditioning. LFICB is 
called to determine the columns of the inverse. 

      USE LFCCB_INT 
      USE UMACH_INT 
      USE LFICB_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 
      INTEGER    IPVT(N) 
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      REAL       RCOND 
      COMPLEX    A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N), RES(N) 
! 
!                Set values for A in band form 
! 
!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 
!                    (  0.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 
!                    (  6.0+1.0i  4.0+1.0i  0.0+2.0i  0.0+0.0i ) 
! 
      DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 
            (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 
            (1.0,-1.0), (0.0,0.0)/ 
! 
      CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND) 
!                                 Print the reciprocal condition number 
!                                 and the L1 condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = (0.0E0,0.0E0) 
      DO 10  J=1, N 
         RJ(J) = (1.0E0,0.0E0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFICB 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFICB (A, NLCA, NUCA, FACT, IPVT, RJ, AINV(:,J), RES) 
         RJ(J) = (0.0E0,0.0E0) 
   10 CONTINUE 
!                                 Print results 
      CALL WRCRN (’AINV’, AINV) 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.022 
L1 condition number = 45.933 
                                 AINV 
                  1                2                3                4 
    1  ( 0.562, 0.170)  ( 0.125, 0.260)  (-0.385,-0.135)  (-0.239,-1.165) 
    2  ( 0.122, 0.421)  (-0.195, 0.094)  ( 0.101,-0.289)  ( 0.874,-0.179) 
    3  ( 0.034, 0.904)  (-0.437, 0.090)  (-0.153,-0.527)  ( 1.087,-1.172) 
    4  ( 0.938, 0.870)  (-0.347, 0.527)  (-0.679,-0.374)  ( 0.415,-1.759) 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CCB/DL2CCB. The 

reference is: 

CALL L2CCB  (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND, WK) 

The additional argument is 

WK — Complex work vector of length N. 

2. Informational errors 
Type  Code  

3      1  The input matrix is algorithmically singular. 
4      2  The input matrix is singular. 
 

Description 
Routine LFCCB performs an LU factorization of a complex banded coefficient matrix. It also 
estimates the condition number of the matrix. The LU factorization is done using scaled partial 
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the 
same as if each row were scaled to have the same �-norm.  

The L� condition number of the matrix A is defined to be �(A) = 

A

�

A

�� Since it is expensive 
to compute 

A

�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 
can occur only if A is singular or very close to a singular matrix.  

The LU factors are returned in a form that is compatible with IMSL routines LFICB, page 271, 
LFSCB, page 268, and LFDCB, page 274. To solve systems of equations with multiple right-
hand-side vectors, use LFCCB followed by either LFICB or LFSCB called once for each right-
hand side. The routine LFDCB can be called to compute the determinant of the coefficient matrix 
after LFCCB has performed the factorization.  

Let F be the matrix FACT, let ml = NLCA and let mu = NUCA. The first ml  + mu + 1 rows of F 
contain the triangular matrix U in band storage form. The lower ml  rows of F contain the 
multipliers needed to reconstruct L. 

LFCCB is based on the LINPACK routine CGBCO; see Dongarra et al. (1979). CGBCO uses 
unscaled partial pivoting. 

LFTCB  
Computes the LU factorization of a complex matrix in band storage mode. 
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Required Arguments 
A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band storage 

mode to be factored.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the 
matrix A.   (Output)  
If A is not needed, A can share the first (NLCA + NUCA + 1) � N locations with FACT. 

IPVT — Integer vector of length N containing the pivoting information for the LU 
factorization.   (Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFTCB (A, NLCA, NUCA, FACT, IPVT [,…]) 

Specific: The specific interface names are S_LFTCB and D_LFTCB. 

FORTRAN 77 Interface 
Single:  CALL LFTCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT) 

Double:  The double precision name is DLFTCB. 

Example 
A linear system with multiple right-hand sides is solved. LFTCB is called to factor the coefficient 
matrix. LFSCB (page 268), is called to compute the two solutions for the two right-hand sides. In 
this case the coefficient matrix is assumed to be well-conditioned and correctly scaled. 
Otherwise, it would be better to call LFCCB (page 262) to perform the factorization, and LFICB 
(page 271) to compute the solutions. 
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      USE LFTCB_INT 
      USE LFSCB_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 
      INTEGER    IPVT(N) 
      COMPLEX    A(LDA,N), B(N,2), FACT(LDFACT,N), X(N,2) 
! 
!                Set values for A in band form, and B 
! 
!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 
!                    (  0.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 
!                    (  6.0+1.0i  4.0+1.0i  0.0+2.0i  0.0+0.0i ) 
! 
!                B = (  -4.0-5.0i  16.0-4.0i ) 
!                    (   9.5+5.5i  -9.5+19.5i ) 
!                    (   9.0-9.0i  12.0+12.0i ) 
!                    (   0.0+8.0i  -8.0-2.0i  ) 
! 
      DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 
            (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 
            (1.0,-1.0), (0.0,0.0)/ 
      DATA B/(-4.0,-5.0), (9.5,5.5), (9.0,-9.0), (0.0,8.0),& 
            (16.0,-4.0), (-9.5,19.5), (12.0,12.0), (-8.0,-2.0)/ 
! 
      CALL LFTCB (A, NLCA, NUCA, FACT, IPVT) 
!                                 Solve for the two right-hand sides 
      DO 10  J=1, 2 
         CALL LFSCB (FACT, NLCA, NUCA, IPVT, B(:,J), X(:,J)) 
   10 CONTINUE 
!                                 Print results 
      CALL WRCRN (’X’, X) 
! 
      END 

Output 
 
                   X 
                1                2 
1  ( 3.000, 0.000)  ( 0.000, 4.000) 
2  (-1.000, 1.000)  ( 1.000,-1.000) 
3  ( 3.000, 0.000)  ( 0.000, 4.000) 
4  (-1.000, 1.000)  ( 1.000,-1.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2TCB/DL2TCB The 

reference is: 

CALL L2TCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, WK) 
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The additional argument is: 

WK — Complex work vector of length N used for scaling. 

2. Informational error 
Type  Code  

4     2  The input matrix is singular. 
 

Description 
Routine LFTCB performs an LU factorization of a complex banded coefficient matrix. The LU 
factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial 
pivoting in that the pivoting strategy is the same as if each row were scaled to have the same �-
norm.  

LFTCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This 
can occur only if A is singular or very close to a singular matrix.  

The LU factors are returned in a form that is compatible with routines LFICB, page 271, LFSCB, 
page 268, and LFDCB, page 274. To solve systems of equations with multiple right-hand-side 
vectors, use LFTCB followed by either LFICB or LFSCB called once for each right-hand side. 
The routine LFDCB can be called to compute the determinant of the coefficient matrix after 
LFTCB has performed the factorization.  

Let F be the matrix FACT, let ml = NLCA and let mu = NUCA. The first ml + mu + 1 rows of F 
contain the triangular matrix U in band storage form. The lower ml rows of F contain the 
multipliers needed to reconstruct L��. LFTCB is based on the LINPACK routine CGBFA; see 
Dongarra et al. (1979). CGBFA uses unscaled partial pivoting. 

LFSCB  
Solves a complex system of linear equations given the LU factorization of the coefficient matrix in 
band storage mode. 

Required Arguments 
FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the 

coefficient matrix A as output from subroutine LFCCB/DLFCCB or LFTCB/DLFTCB.   
(Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 
as output from subroutine LFCCB/DLFCCB or LFTCB/DLFTCB.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 
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X — Complex vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system AHX = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LFSCB (FACT, NLCA, NUCA, IPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSCB and D_LFSCB. 

FORTRAN 77 Interface 
Single:  CALL LFSCB (N, FACT, LDFACT, NLCA, NUCA, IPVT, B, IPATH, X) 

Double:  The double precision name is DLFSCB. 

Example 
The inverse is computed for a real banded 4 � 4 matrix with one upper and one lower 
codiagonal. The input matrix is assumed to be well-conditioned; hence LFTCB (page 265) is 
used rather than LFCCB. 

      USE LFSCB_INT 
      USE LFTCB_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 
      INTEGER    IPVT(N) 
      COMPLEX    A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N) 
! 
!                Set values for A in band form 
! 
!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 
!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 
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!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 
! 
      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 
            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 
            (1.0,-1.0), (0.0,0.0)/ 
! 
      CALL LFTCB (A, NLCA, NUCA, FACT, IPVT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = (0.0E0,0.0E0) 
      DO 10  J=1, N 
         RJ(J) = (1.0E0,0.0E0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSCB 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSCB (FACT, NLCA, NUCA, IPVT, RJ, AINV(:,J)) 
         RJ(J) = (0.0E0,0.0E0) 
   10 CONTINUE 
!                                 Print results 
      CALL WRCRN (’AINV’, AINV) 
! 
      END 

Output 
 
                1                2                3                4 
1  ( 0.165,-0.341)  ( 0.376,-0.094)  (-0.282, 0.471)  (-1.600, 0.000) 
2  ( 0.588,-0.047)  ( 0.259, 0.235)  (-0.494, 0.024)  (-0.800,-1.200) 
3  ( 0.318, 0.271)  ( 0.012, 0.247)  (-0.759,-0.235)  (-0.550,-2.250) 
4  ( 0.588,-0.047)  ( 0.259, 0.235)  (-0.994, 0.524)  (-2.300,-1.200) 

Description 
Routine LFSCB computes the solution of a system of linear algebraic equations having a 
complex banded coefficient matrix. To compute the solution, the coefficient matrix must first 
undergo an LU factorization. This may be done by calling either LFCCB, page 262, or LFTCB, 
page 265. The solution to Ax = b is found by solving the banded triangular systems Ly = b and 
Ux = y. The forward elimination step consists of solving the system Ly = b by applying the same 
permutations and elimination operations to b that were applied to the columns of A in the 
factorization routine. The backward substitution step consists of solving the banded triangular 
system Ux = y for x. 

LFSCB and LFICB, page 271, both solve a linear system given its LU factorization. LFICB 
generally takes more time and produces a more accurate answer than LFSCB. Each iteration of 
the iterative refinement algorithm used by LFICB calls LFSCB. 

LFSCB is based on the LINPACK routine CGBSL; see Dongarra et al. (1979). 
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LFICB  
Uses iterative refinement to improve the solution of a complex system of linear equations in band 
storage mode. 

Required Arguments 
A — Complex NLCA + NUCA + 1 by N array containing the N by N coefficient matrix in band 

storage mode.   (Input) 

NLCA — Number of lower codiagonals of A.   (Input) 

NUCA — Number of upper codiagonals of A.   (Input) 

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the 
matrix A as output from routine LFCCB/DLFCCB or LFTCB/DLFTCB.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization of A 
as output from routine LFCCB/DLFCCB or LFTCB/DLFTCB.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution.   (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   
(Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system AX = B is solved.  
IPATH = 2 means the system AHX = B is solved. 
Default: IPATH = 1. 
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FORTRAN 90 Interface 
Generic: CALL LFICB (A, NLCA, NUCA, FACT, IPVT, B,  X, RES[,…]) 

Specific: The specific interface names are S_LFICB and D_LFICB. 

FORTRAN 77 Interface 
Single: CALL LFICB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, B,  IPATH, X, 

RES) 

Double:  The double precision name is DLFICB. 

Example 
A set of linear systems is solved successively. The right-hand-side vector is perturbed after 
solving the system each of the first two times by adding (1 + i)/2 to the second element. 

      USE LFICB_INT 
      USE LFCCB_INT 
      USE WRCRN_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 
      INTEGER    IPVT(N) 
      REAL       RCOND 
      COMPLEX    A(LDA,N), B(N), FACT(LDFACT,N), RES(N), X(N) 
! 
!                Set values for A in band form, and B 
! 
!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 
!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 
!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 
! 
!                B = ( -10.0-5.0i  9.5+5.5i  12.0-12.0i  0.0+8.0i ) 
! 
      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 
            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 
            (1.0,-1.0), (0.0,0.0)/ 
      DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/ 
! 
      CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND) 
!                                 Print the reciprocal condition number 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99998) RCOND, 1.0E0/RCOND 
!                                 Solve the three systems 
      DO 10  J=1, 3 
         CALL LFICB (A, NLCA, NUCA, FACT, IPVT, B, X, RES) 
!                                 Print results 
         WRITE (NOUT, 99999) J 
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         CALL WRCRN (’X’, X, 1, N, 1) 
         CALL WRCRN (’RES’, RES, 1, N, 1) 
!                                 Perturb B by adding 0.5+0.5i to B(2) 
         B(2) = B(2) + (0.5E0,0.5E0) 
   10 CONTINUE 
! 
99998 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
99999 FORMAT (//,’  For system ’,I1) 
      END 

Output 
 
RCOND = 0.014 
L1 Condition number = 72.414 
 
For system 1 
                                  X 
            1                2                3                4 
( 3.000, 0.000)  (-1.000, 1.000)  ( 3.000, 0.000)  (-1.000, 1.000) 
 
                                    RES 
                      1                        2                        3 
( 0.000E+00, 0.000E+00)  ( 0.000E+00, 0.000E+00)  ( 0.000E+00, 5.684E-14) 
                      4 
( 3.494E-22,-6.698E-22) 
 
For system 2 
                                  X 
              1                2                3                4 
( 3.235, 0.141)  (-0.988, 1.247)  ( 2.882, 0.129)  (-0.988, 1.247) 
 
                                    RES 
                      1                        2                        3 
(-1.402E-08, 6.486E-09)  (-7.012E-10, 4.488E-08)  (-1.122E-07, 7.188E-09) 
                      4 
(-7.012E-10, 4.488E-08) 
 
For system 3 
                                  X 
              1                2                3                4 
( 3.471, 0.282)  (-0.976, 1.494)  ( 2.765, 0.259)  (-0.976, 1.494) 
 
                                    RES 
                      1                        2                        3 
(-2.805E-08, 1.297E-08)  (-1.402E-09,-2.945E-08)  ( 1.402E-08, 1.438E-08) 
                      4 
(-1.402E-09,-2.945E-08) 
 

Comments 
Informational error  

Type  Code  
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3     3  The input matrix is too ill-conditioned for iterative refinement be effective. 

Description 
Routine LFICB computes the solution of a system of linear algebraic equations having a 
complex banded coefficient matrix. Iterative refinement is performed on the solution vector to 
improve the accuracy. Usually almost all of the digits in the solution are accurate, even if the 
matrix is somewhat ill-conditioned. 

To compute the solution, the coefficient matrix must first undergo an LU factorization. This 
may be done by calling either LFCCB, page 262, or LFTCB, page 265.  

Iterative refinement fails only if the matrix is very ill-conditioned.  

LFICB and LFSCB, page 268, both solve a linear system given its LU factorization. LFICB 
generally takes more time and produces a more accurate answer than LFSCB. Each iteration of 
the iterative refinement algorithm used by LFICB calls LFSCB. 

LFDCB  
Computes the determinant of a complex matrix given the LU factorization of the matrix in band 
storage mode. 

Required Arguments 
FACT — Complex (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the 

matrix A as output from routine LFTCB/DLFTCB or LFCCB/DLFCCB.   (Input) 

NLCA — Number of lower codiagonals in matrix A.   (Input) 

NUCA — Number of upper codiagonals in matrix A.   (Input) 

IPVT — Vector of length N containing the pivoting information for the LU factorization as 
output from routine LFTCB/DLFTCB or LFCCB/DLFCCB.   (Input) 

DET1 — Complex scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that 1.0 � 
DET1 
 < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form det (A) = DET1 * 10DET2. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 
Generic: CALL LFDCB (FACT, NLCA, NUCA, IPVT, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDCB and D_LFDCB. 

FORTRAN 77 Interface 
Single: CALL LFDCB (N, FACT, LDFACT, NLCA, NUCA, IPVT, DET1, DET2) 

Double:  The double precision name is DLFDCB. 

Example 
The determinant is computed for a complex banded 4 � 4 matrix with one upper and one lower 
codiagonal. 

      USE LFDCB_INT 
      USE LFTCB_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NLCA, NUCA, NOUT 
      PARAMETER  (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1) 
      INTEGER    IPVT(N) 
      REAL       DET2 
      COMPLEX    A(LDA,N), DET1, FACT(LDFACT,N) 
! 
!                Set values for A in band form 
! 
!                A = (  0.0+0.0i  4.0+0.0i -2.0+2.0i -4.0-1.0i ) 
!                    ( -2.0-3.0i -0.5+3.0i  3.0-3.0i  1.0-1.0i ) 
!                    (  6.0+1.0i  1.0+1.0i  0.0+2.0i  0.0+0.0i ) 
! 
      DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),& 
            (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),& 
            (1.0,-1.0), (0.0,0.0)/ 
! 
      CALL LFTCB (A, NLCA, NUCA, FACT, IPVT) 
!                                 Compute the determinant 
      CALL LFDCB (FACT, NLCA, NUCA, IPVT, DET1, DET2) 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
! 
99999 FORMAT (’ The determinant of A is (’, F6.3, ’,’, F6.3, ’) * 10**’,& 
             F2.0) 
      END 

Output 
 
The determinant of A is ( 2.500,-1.500) * 10**1. 
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Description 
Routine LFDCB computes the determinant of a complex banded coefficient matrix. To compute 
the determinant, the coefficient matrix must first undergo an LU factorization. This may be done 
by calling either LFCCB, page 262, or LFTCB, page 265. The formula det A = det L det U is used 
to compute the determinant. Since the determinant of a triangular matrix is the product of the 
diagonal elements,  

1
det N

i iiU U
�

��  

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FACT as a banded matrix.) Since 
L is the product of triangular matrices with unit diagonals and of permutation matrices, det  
L = (�1)k, where k is the number of pivoting interchanges. 

LFDCB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979). 

LSAQH  
Solves a complex Hermitian positive definite system of linear equations in band Hermitian storage 
mode with iterative refinement. 

Required Arguments 
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

coefficient matrix in band Hermitian storage mode.   (Input) 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSAQH (A, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LSAQH and D_LSAQH. 
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FORTRAN 77 Interface 
Single: CALL LSAQH (N, A, LDA, NCODA, B, X) 

Double:  The double precision name is DLSAQH. 

Example 
A system of five linear equations is solved. The coefficient matrix has complex Hermitian positive 
definite band form with one codiagonal and the right-hand-side vector b has five elements. 

      USE LSAQH_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, N, NCODA 
      PARAMETER  (LDA=2, N=5, NCODA=1) 
      COMPLEX    A(LDA,N), B(N), X(N) 
! 
!            Set values for A in band Hermitian form, and B 
! 
!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 
!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 
! 
!            B = ( 1.0+5.0i 12.0-6.0i  1.0-16.0i -3.0-3.0i 25.0+16.0i ) 
! 
      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 
            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 
      DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),& 
            (25.0,16.0)/ 
!                                 Solve A*X = B 
      CALL LSAQH (A, NCODA, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
                                   X 
              1                2                3                4 
( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 
              5 
( 3.000, 2.000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2AQH/DL2AQH The 

reference is: 

CALL L2AQH (N, A, LDA, NCODA, B, X, FACT, WK) 
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The additional arguments are as follows: 

FACT — Complex work vector of length (NCODA + 1) * N containing the RH R 
factorization of A in band Hermitian storage form on output. 

WK — Complex work vector of length N. 

2. Informational errors  
Type  Code  

3     3  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

3      4  The input matrix is not Hermitian. It has a diagonal entry with a 
small imaginary part. 

4      2  The input matrix is not positive definite. 
4      4  The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2AQH the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAQH. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSAQH. Users directly calling L2AQH can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSAQH or L2AQH. Default values for the option are IVAL(*) 
= 1, 16, 0, 1. 

17  This option has two values that determine if the L� condition number is to be 
computed. Routine LSAQH temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CQH computes the condition number if IVAL(2) = 2. Otherwise L2CQH 
skips this computation. LSAQH restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

 

Description 
Routine LSAQH solves a system of linear algebraic equations having a complex Hermitian 
positive definite band coefficient matrix. It first uses the IMSL routine LFCQH, page 290, to 
compute an RH R Cholesky factorization of the coefficient matrix and to estimate the condition 
number of the matrix. R is an upper triangular band matrix. The solution of the linear system is 
then found using the iterative refinement IMSL routine LFIQH, page 292.  

LSAQH fails if any submatrix of R is not positive definite, if R has a zero diagonal element, or if 
the iterative refinement agorithm fails to converge. These errors occur only if the matrix A either 
is very close to a singular matrix or is a matrix that is not positive definite.  
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If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system. LSAQH solves 
the problem that is represented in the computer; however, this problem may differ from the 
problem whose solution is desired. 

LSLQH  
Solves a complex Hermitian positive definite system of linear equations in band Hermitian storage 
mode without iterative refinement. 

Required Arguments 
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

coefficient matrix in band Hermitian storage mode.   (Input) 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL LSLQH (A, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LSLQH and D_LSLQH. 

FORTRAN 77 Interface 
Single: CALL LSLQH (N, A, LDA, NCODA, B, X) 

Double:  The double precision name is DLSLQH. 
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Example 
A system of five linear equations is solved. The coefficient matrix has complex Hermitian 
positive definite band form with one codiagonal and the right-hand-side vector b has five 
elements. 

      USE LSLQH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    N, NCODA, LDA 
      PARAMETER  (N=5, NCODA=1, LDA=NCODA+1) 
      COMPLEX    A(LDA,N), B(N), X(N) 
! 
!            Set values for A in band Hermitian form, and B 
! 
!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 
!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 
! 
!            B = ( 1.0+5.0i 12.0-6.0i  1.0-16.0i -3.0-3.0i 25.0+16.0i ) 
! 
      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 
            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 
      DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),& 
            (25.0,16.0)/ 
!                                 Solve A*X = B 
      CALL LSLQH (A, NCODA, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
                                  X 
              1                2                3                4 
( 2.000, 1.000)  ( 3.000, 0.000)  (-1.000,-1.000)  ( 0.000,-2.000) 
 
              5 
( 3.000, 2.000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LQH/DL2LQH The 

reference is: 

CALL L2LQH (N, A, LDA, NCODA, B, X, FACT, WK) 

The additional arguments are as follows: 

FACT — (NCODA + 1) � N complex work array containing the RH R factorization of A 
in band Hermitian storage form on output. If A is not needed, A and FACT can 
share the same storage locations. 
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WK — Complex work vector of length N. 

2. Informational errors 
Type  Code  

3      3  The input matrix is too ill-conditioned. The solution might not be 
accurate. 

3      4  The input matrix is not Hermitian. It has a diagonal entry with a 
small imaginary part. 

4      2  The input matrix is not positive definite. 
4     4  The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part. 

3. Integer Options with Chapter 11 Options Manager 

16  This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2LQH the leading dimension of FACT is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLQH. 
Additional memory allocation for FACT and option value restoration are done 
automatically in LSLQH. Users directly calling L2LQH can allocate additional 
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSLQH or L2LQH. Default values for the option are IVAL(*) 
= 1, 16, 0, 1. 

17  This option has two values that determine if the L� condition number is to be 
computed. Routine LSLQH temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CQH computes the condition number if IVAL(2) = 2. Otherwise L2CQH 
skips this computation. LSLQH restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

 

Description 
Routine LSLQH solves a system of linear algebraic equations having a complex Hermitian 
positive definite band coefficient matrix. It first uses the routine LFCQH, page 290, to compute 
an RH R Cholesky factorization of the coefficient matrix and to estimate the condition number 
of the matrix. R is an upper triangular band matrix. The solution of the linear system is then 
found using the routine LFSQH, page 290. 

LSLQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A either is very close to a singular matrix or is a matrix that is not 
positive definite. 

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in A can cause very large changes in the 
solution x. If the coefficient matrix is ill-conditioned or poorly sealed, it is recommended that 
LSAQH, page 276, be used. 
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LSLQB  
Computes the RH DR Cholesky factorization of a complex Hermitian positive-definite matrix A in 
codiagonal band Hermitian storage mode. Solve a system Ax = b. 

Required Arguments 
A — Array containing the N by N positive-definite band coefficient matrix and the right hand 

side in codiagonal band Hermitian storage mode.   (Input/Output)  
The number of array columns must be at least 2 * NCODA + 3. The number of columns 
is not an input to this subprogram. 

NCODA — Number of upper codiagonals of matrix A.   (Input)  
Must satisfy NCODA � 0 and NCODA < N. 

U — Array of flags that indicate any singularities of A, namely loss of positive-definiteness of 
a leading minor.   (Output)  
A value U(I) = 0. means that the leading minor of dimension I is not positive-definite. 
Otherwise, U(I) = 1. 

Optional Arguments 
N — Order of the matrix.   (Input)  

Must satisfy N > 0. 
Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input)  
Must satisfy LDA � N + NCODA. 
Default: LDA = size (A,1). 

IJOB — flag to direct the desired factorization or solving step.   (Input)  
Default: IJOB =1. 

IJOB Meaning 

1 factor the matrix A and solve the system Ax = b; where the real part of b is 
stored in column 2 * NCODA + 2 and the imaginary part of b is stored in column 
2 * NCODA + 3 of array A. The real and imaginary parts of b are overwritten by 
the real and imaginary parts of x. 

2 solve step only. Use the real part of b as column 2 * NCODA + 2 and the 
imaginary part of b as column 2 * NCODA + 3 of A. (The factorization step has 
already been done.) The real and imaginary parts of b are overwritten by the real 
and imaginary parts of x. 

3 factor the matrix A but do not solve a system. 
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4,5,6  same meaning as with the value IJOB = 3. For efficiency, no error checking is 
done on values LDA, N, NCODA, and U(*). 

FORTRAN 90 Interface 
Generic: CALL LSLQB (A, NCODA, U [,…]) 

Specific: The specific interface names are S_LSLQB and D_LSLQB. 

FORTRAN 77 Interface 
Single: CALL LSLQB (N, A, LDA, NCODA, IJOB, U) 

Double:  The double precision name is DLSLQB. 

Example 
A system of five linear equations is solved. The coefficient matrix has real positive definite 
codiagonal Hermitian band form and the right-hand-side vector b has five elements. 

      USE LSLQB_INT 
      USE WRRRN_INT 

      INTEGER    LDA, N, NCODA 
      PARAMETER  (N=5, NCODA=1, LDA=N+NCODA) 
! 
      INTEGER    I, IJOB, J 
      REAL       A(LDA,2*NCODA+3), U(N) 
! 
!                                 Set values for A and right hand side 
!                                 in codiagonal band Hermitian form: 
! 
!                           (  *     *     *     *     * ) 
!                           ( 2.0    *     *    1.0   5.0) 
!                  A   =    ( 4.0  -1.0   1.0  12.0  -6.0) 
!                           (10.0   1.0   2.0   1.0 -16.0) 
!                           ( 6.0   0.0   4.0  -3.0  -3.0) 
!                           ( 9.0   1.0   1.0  25.0  16.0) 
! 
      DATA ((A(I+NCODA,J),I=1,N),J=1,2*NCODA+3)/2.0, 4.0, 10.0, 6.0,& 
          9.0, 0.0, -1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 2.0, 4.0, 1.0,& 
          1.0, 12.0, 1.0, -3.0, 25.0, 5.0, -6.0, -16.0, -3.0, 16.0/ 
! 
!                                 Factor and solve A*x = b. 
! 
      IJOB = 1 
      CALL LSLQB (A, NCODA, U) 
! 
!                                 Print results 
! 
      CALL WRRRN (’REAL(X)’, A((NCODA+1):,(2*NCODA+2):), 1, N, 1) 
      CALL WRRRN (’IMAG(X)’, A((NCODA+1):,(2*NCODA+3):), 1, N, 1) 
      END 
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Output 
 
                  REAL(X) 
    1       2       3       4       5 
2.000   3.000  -1.000   0.000   3.000 
 
                 IMAG(X) 
    1       2       3       4       5 
1.000   0.000  -1.000  -2.000   2.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LQB/DL2LQB The 

reference is: 

CALL L2LQB (N, A, LDA, NCODA, IJOB, U, WK1, WK2) 

The additional arguments are as follows: 

WK1 — Work vector of length NCODA. 

WK2 — Work vector of length NCODA. 

2. Informational error 
Type  Code  

4      2  The input matrix is not positive definite. 
 

Description 
Routine LSLQB factors and solves the Hermitian positive definite banded linear system Ax = b. 
The matrix is factored so that A = RH DR, where R is unit upper triangular and D is diagonal 
and real. The reciprocals of the diagonal entries of D are computed and saved to make the 
solving step more efficient. Errors will occur if D has a nonpositive diagonal element. Such 
events occur only if A is very close to a singular matrix or is not positive definite.  

LSLQB is efficient for problems with a small band width. The particular cases NCODA = 0, 1 are 
done with special loops within the code. These cases will give good performance. See Hanson 
(1989) for more on the algorithm. When solving tridiagonal systems, NCODA = 1, the cyclic 
reduction code LSLCQ (page 254) should be considered as an alternative. The expectation is that 
LSLCQ will outperform LSLQB on vector or parallel computers. It may be inferior on scalar 
computers or even parallel computers with non-optimizing compilers. 

LFCQH 
Computes the RH R factorization of a complex Hermitian positive definite matrix in band 
Hermitian storage mode and estimate its L� condition number. 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 285 

 

 

 

Required Arguments 
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

matrix to be factored in band Hermitian storage mode.   (Input) 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the matrix A.   
(Output)  
If A is not needed, A and FACT can share the same storage locations. 

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.   
(Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFCQH (A, NCODA, FACT, RCOND [,…]) 

Specific: The specific interface names are S_LFCQH and D_LFCQH. 

FORTRAN 77 Interface 
Single: CALL LFCQH (N, A, LDA, NCODA, FACT, LDFACT, RCOND) 

Double:  The double precision name is DLFCQH. 

Example 
The inverse of a 5 � 5 band Hermitian matrix with one codiagonal is computed. LFCQH is called 
to factor the matrix and to check for nonpositive definiteness or ill-conditioning. LFIQH (page 
292,) is called to determine the columns of the inverse. 

      USE LFCQH_INT 
      USE LFIQH_INT 
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      USE UMACH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    N, NCODA, LDA, LDFACT, NOUT 
      PARAMETER  (N=5, NCODA=1, LDA=NCODA+1, LDFACT=LDA) 
      REAL       RCOND 
      COMPLEX    A(LDA,N), AINV(N,N), FACT(LDFACT,N), RES(N), RJ(N) 
! 
!            Set values for A in band Hermitian form 
! 
!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 
!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 
! 
      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0), & 
            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 
!                                 Factor the matrix A 
      CALL LFCQH (A, NCODA, FACT, RCOND) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = (0.0E0,0.0E0) 
      DO 10  J=1, N 
         RJ(J) = (1.0E0,0.0E0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFIQH 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFIQH (A, NCODA, FACT, RJ, AINV(:,J), RES) 
         RJ(J) = (0.0E0,0.0E0) 
   10 CONTINUE 
!                                 Print the results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) RCOND, 1.0E0/RCOND 
      CALL WRCRN (’AINV’, AINV) 
! 
99999 FORMAT (’  RCOND = ’,F5.3,/,’  L1 Condition number = ’,F6.3) 
      END 

Output 
 
RCOND = 0.067 
L1 Condition number = 14.961 
 
                                     AINV 
                  1                  2                  3                 4 
1 ( 0.7166, 0.0000)  ( 0.2166,-0.2166)  (-0.0899,-0.0300) (-0.0207, 0.0622) 
2 ( 0.2166, 0.2166)  ( 0.4332, 0.0000)  (-0.0599,-0.1198) (-0.0829, 0.0415) 
3 (-0.0899, 0.0300)  (-0.0599, 0.1198)  ( 0.1797, 0.0000) ( 0.0000,-0.1244) 
4 (-0.0207,-0.0622)  (-0.0829,-0.0415)  ( 0.0000, 0.1244) ( 0.2592, 0.0000) 
5 ( 0.0092, 0.0046)  ( 0.0138,-0.0046)  (-0.0138,-0.0138) (-0.0288, 0.0288) 
                   5 
1  ( 0.0092,-0.0046) 
2  ( 0.0138, 0.0046) 
3  (-0.0138, 0.0138) 
4  (-0.0288,-0.0288) 
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5  ( 0.1175, 0.0000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CQH/DL2CQH. The 

reference is: 

CALL L2CQH (N, A, LDA, NCODA, FACT, LDFACT, RCOND, WK) 

The additional argument is: 

WK — Complex work vector of length N. 

2. Informational errors 
Type  Code  

3      1  The input matrix is algorithmically singular. 
3      4  The input matrix is not Hermitian. It has a diagonal entry with a 

small imaginary part. 
4     2  The input matrix is not positive definite. 
4      4  The input matrix is not Hermitian. It has a diagonal entry with an 

imaginary part 
 

Description 

Routine LFCQH computes an RH R Cholesky factorization and estimates the condition number 
of a complex Hermitian positive definite band coefficient matrix. R is an upper triangular band 
matrix.  

The L� condition number of the matrix A is defined to be �(A) = 

A 

�

A

�. Since it is expensive 
to compute 

A

�, the condition number is only estimated. The estimation algorithm is the same 
as used by LINPACK and is described by Cline et al. (1979).  

If the estimated condition number is greater than 1/� (where � is machine precision), a warning 
error is issued. This indicates that very small changes in  A can cause very large changes in the 
solution x. Iterative refinement can sometimes find the solution to such a system.  

LFCQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A either is very close to a singular matrix or is a matrix which is not 
positive definite.  

The RH R factors are returned in a form that is compatible with routines LFIQH, page 292, 
LFSQH, page 290, and LFDQH, page 295. To solve systems of equations with multiple right-
hand-side vectors, use LFCQH followed by either LFIQH or LFSQH called once for each right-
hand side. The routine LFDQH can be called to compute the determinant of the coefficient matrix 
after LFCQH has performed the factorization.  

LFCQH is based on the LINPACK routine CPBCO; see Dongarra et al. (1979). 
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LFTQH 
Computes the RH R factorization of a complex Hermitian positive definite matrix in band 
Hermitian storage mode. 

Required Arguments 
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

matrix to be factored in band Hermitian storage mode.   (Input) 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the matrix A.   
(Output)  
If A is not needed, A and FACT can share the same storage locations. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFTQH (A, NCODA, FACT [,…]) 

Specific: The specific interface names are S_LFTQH and D_LFTQH. 

FORTRAN 77 Interface 
Single: CALL LFTQH (N, A, LDA, NCODA, FACT, LDFACT) 

Double:  The double precision name is DLFTQH. 

Example 
The inverse of a 5 � 5 band Hermitian matrix with one codiagonal is computed. LFTQH is called 
to factor the matrix and to check for nonpositive definiteness. LFSQH is called to determine the 
columns of the inverse. 
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      USE LFTQH_INT 
      USE LFSQH_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NCODA 
      PARAMETER  (LDA=2, LDFACT=2, N=5, NCODA=1) 
      COMPLEX    A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N) 
! 
!            Set values for A in band Hermitian form 
! 
!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 
!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 
! 
      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 
            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 
!                                 Factor the matrix A 
      CALL LFTQH (A, NCODA, FACT) 
!                                 Set up the columns of the identity 
!                                 matrix one at a time in RJ 
      RJ = (0.0E0,0.0E0) 
      DO 10  J=1, N 
         RJ(J) = (1.0E0,0.0E0) 
!                                 RJ is the J-th column of the identity 
!                                 matrix so the following LFSQH 
!                                 reference places the J-th column of 
!                                 the inverse of A in the J-th column 
!                                 of AINV 
         CALL LFSQH (FACT, NCODA, RJ, AINV(:,J)) 
         RJ(J) = (0.0E0,0.0E0) 
   10 CONTINUE 
!                                 Print the results 
      CALL WRCRN (’AINV’, AINV) 
! 
      END 

Output 
 
                                      AINV 
                  1                  2                  3                 4 
1 ( 0.7166, 0.0000) ( 0.2166,-0.2166)  (-0.0899,-0.0300)  (-0.0207, 0.0622) 
2 ( 0.2166, 0.2166) ( 0.4332, 0.0000)  (-0.0599,-0.1198)  (-0.0829, 0.0415) 
3 (-0.0899, 0.0300) (-0.0599, 0.1198)  ( 0.1797, 0.0000)  ( 0.0000,-0.1244) 
4 (-0.0207,-0.0622) (-0.0829,-0.0415)  ( 0.0000, 0.1244)  ( 0.2592, 0.0000) 
5 ( 0.0092, 0.0046) ( 0.0138,-0.0046)  (-0.0138,-0.0138)  (-0.0288, 0.0288) 
                   5 
1  ( 0.0092,-0.0046) 
2  ( 0.0138, 0.0046) 
3  (-0.0138, 0.0138) 
4  (-0.0288,-0.0288) 
5  ( 0.1175, 0.0000) 
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Comments 
Informational errors 

Type  Code  

3     4  The input matrix is not Hermitian. It has a diagonal entry with a small 
imaginary part. 

4     2  The input matrix is not positive definite. 
4     4  The input matrix is not Hermitian. It has a diagonal entry with an imaginary 

part. 
 

Description 

Routine LFTQH computes an RHR Cholesky factorization of a complex Hermitian positive 
definite band coefficient matrix. R is an upper triangular band matrix. 

LFTQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element. 
These errors occur only if A either is very close to a singular matrix or is a matrix which is not 
positive definite. 

The RH R factors are returned in a form that is compatible with routines LFIQH, page 292, 
LFSQH, page 290, and LFDQH, page 295. To solve systems of equations with multiple right-
hand-side vectors, use LFTQH followed by either LFIQH or LFSQH called once for each right-
hand side. The routine LFDQH can be called to compute the determinant of the coefficient matrix 
after LFTQH has performed the factorization. 

LFTQH is based on the LINPACK routine SPBFA; see Dongarra et al. (1979). 

LFSQH 
Solves a complex Hermitian positive definite system of linear equations given the factorization of 
the coefficient matrix in band Hermitian storage mode. 

Required Arguments 

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the Hermitian 
positive definite band matrix A.   (Input)  
FACT is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH . 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

B — Complex vector of length N containing the right-hand-side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output)  
If B is not needed, B and X can share the same storage locations. 
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Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFSQH (FACT, NCODA, B, X [,…]) 

Specific: The specific interface names are S_LFSQH and D_LFSQH. 

FORTRAN 77 Interface 
Single: CALL LFSQH (N, FACT, LDFACT, NCODA, B, X) 

Double:  The double precision name is DLFSQH. 

Example 
A set of linear systems is solved successively. LFTQH, page 288, is called to factor the 
coefficient matrix. LFSQH is called to compute the three solutions for the three right-hand sides. 
In this case the coefficient matrix is assumed to be well-conditioned and correctly scaled. 
Otherwise, it would be better to call LFCQH, page 290, to perform the factorization, and LFIQH, 
page 292, to compute the solutions. 

      USE LFSQH_INT 
      USE LFTQH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NCODA 
      PARAMETER  (LDA=2, LDFACT=2, N=5, NCODA=1) 
      COMPLEX    A(LDA,N), B(N,3), FACT(LDFACT,N), X(N,3) 
! 
!            Set values for A in band Hermitian form, and B 
! 
!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 
!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 
! 
!            B = (  3.0+3.0i   4.0+0.0i   29.0-9.0i  ) 
!                (  5.0-5.0i  15.0-10.0i -36.0-17.0i ) 
!                (  5.0+4.0i -12.0-56.0i -15.0-24.0i ) 
!                (  9.0+7.0i -12.0+10.0i -23.0-15.0i ) 
!                (-22.0+1.0i   3.0-1.0i  -23.0-28.0i ) 
! 
      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 
            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 
      DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),& 
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            (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),& 
            (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),& 
            (-23.0,-15.0), (-23.0,-28.0)/ 
!                                 Factor the matrix A 
      CALL LFTQH (A, NCODA, FACT) 
!                                 Compute the solutions 
      DO 10  I=1, 3 
         CALL LFSQH (FACT, NCODA, B(:,I), X(:,I)) 
   10 CONTINUE 
!                                 Print solutions 
      CALL WRCRN (’X’, X) 
      END 

Output 
 
                           X 
                 1                2                3 
1  (  1.00,  0.00)  (  3.00, -1.00)  ( 11.00, -1.00) 
2  (  1.00, -2.00)  (  2.00,  0.00)  ( -7.00,  0.00) 
3  (  2.00,  0.00)  ( -1.00, -6.00)  ( -2.00, -3.00) 
4  (  2.00,  3.00)  (  2.00,  1.00)  ( -2.00, -3.00) 
5  ( -3.00,  0.00)  (  0.00,  0.00)  ( -2.00, -3.00) 
 

Comments 
Informational error 
       Type      Code  

4             1     The factored matrix has a diagonal element close to zero. 

Description 
This routine computes the solution for a system of linear algebraic equations having a complex 
Hermitian positive definite band coefficient matrix. To compute the solution, the coefficient 
matrix must first undergo an RH R factorization. This may be done by calling either IMSL 
routine LFCQH, page 290, or LFTQH, page 288. R is an upper triangular band matrix.  

The solution to Ax = b is found by solving the triangular systems RH y = b and Rx = y.  

LFSQH and LFIQH, page 292, both solve a linear system given its RH R factorization. LFIQH 
generally takes more time and produces a more accurate answer than LFSQH. Each iteration of 
the iterative refinement algorithm used by LFIQH calls LFSQH.  

LFSQH is based on the LINPACK routine CPBSL; see Dongarra et al. (1979). 

LFIQH 
Uses iterative refinement to improve the solution of a complex Hermitian positive definite system 
of linear equations in band Hermitian storage mode. 
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Required Arguments 
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian 

coefficient matrix in band Hermitian storage mode.   (Input) 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the matrix A as 
output from routine LFCQH/DLFCQH or LFTQH/DLFTQH.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

RES — Complex vector of length N containing the residual vector at the improved solution.   
(Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LFIQH (A, NCODA, FACT, B, X, RES [,…]) 

Specific: The specific interface names are S_LFIQH and D_LFIQH. 

FORTRAN 77 Interface 
Single: CALL LFIQH (N, A, LDA, NCODA, FACT, LDFACT,  B, X, RES) 

Double:  The double precision name is DLFIQH. 

Example 
A set of linear systems is solved successively. The right-hand side vector is perturbed after 
solving the system each of the fisrt two times by adding (1 + i)/2 to the second element. 

      use imsl_libraries 
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!                                 Declare variables 

      INTEGER    LDA, LDFACT, N, NCODA 

      PARAMETER  (LDA=2, LDFACT=2, N=5, NCODA=1) 

      REAL       RCOND 

      COMPLEX    A(LDA,N), B(N), FACT(LDFACT,N), RES(N,3), X(N,3) 

! 

!            Set values for A in band Hermitian form, and B 

! 

!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 

!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 

! 

!            B = (  3.0+3.0i 5.0-5.0i  5.0+4.0i 9.0+7.0i -22.0+1.0i ) 

! 

      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 

            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 

      DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/ 

!                                 Factor the matrix A 

      CALL LFCQH (A, NCODA, FACT, RCOND=RCOND) 

!                                 Print the estimated condition number 

      CALL UMACH (2, NOUT) 

      WRITE (NOUT, 99999) RCOND, 1.0E0/RCOND 

!                                 Compute the solutions 

      DO 10  I=1, 3 

         CALL LFIQH (A, NCODA, FACT,  B, X(:,I), RES(:,I)) 

         B(2) = B(2) + (0.5E0, 0.5E0) 

   10 CONTINUE 

!                                 Print solutions 

      CALL WRCRN ('X', X) 

      CALL WRCRN ('RES', RES) 

99999 FORMAT ('  RCOND = ', F5.3, /, '  L1 Condition number = ', F6.3) 

      END 

Output 
 
                           X 
                 1                2                3 
1  (  1.00,  0.00)  (  3.00, -1.00)  ( 11.00, -1.00) 
2  (  1.00, -2.00)  (  2.00,  0.00)  ( -7.00,  0.00) 
3  (  2.00,  0.00)  ( -1.00, -6.00)  ( -2.00, -3.00) 
4  (  2.00,  3.00)  (  2.00,  1.00)  ( -2.00, -3.00) 
5  ( -3.00,  0.00)  (  0.00,  0.00)  ( -2.00, -3.00) 
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Comments 
Informational error 

Type  Code  

 4     1  The factored matrix has a diagonal element close to zero. 

Description 
This routine computes the solution for a system of linear algebraic equations having a complex 
Hermitian positive definite band coefficient matrix. To compute the solution, the coefficient 
matrix must first undergo an RH R factorization. This may be done by calling either IMSL 
routine LFCQH, page 290, or LFTQH, page 288. R is an upper triangular band matrix.  

The solution to Ax = b is found by solving the triangular systems RH y = b and Rx = y.  

LFSQH and LFIQH, page 292, both solve a linear system given its RH R factorization. LFIQH 
generally takes more time and produces a more accurate answer than LFSQH. Each iteration of 
the iterative refinement algorithm used by LFIQH calls LFSQH. 

LFDQH 
Computes the determinant of a complex Hermitian positive definite matrix given the RT R 
Cholesky factorization in band Hermitian storage mode. 

Required Arguments 

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the Hermitian 
positive definite band matrix A.   (Input)  
FACT is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH. 

NCODA — Number of upper or lower codiagonals of A.   (Input) 

DET1 — Scalar containing the mantissa of the determinant.   (Output)  
The value DET1 is normalized so that 1.0 � 
DET1 
 < 10.0 or DET1 = 0.0. 

DET2 — Scalar containing the exponent of the determinant.   (Output)  
The determinant is returned in the form det (A) = DET1 * 10DET2. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (FACT,2). 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 
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FORTRAN 90 Interface 
Generic: CALL LFDQH (FACT, NCODA, DET1, DET2 [,…]) 

Specific: The specific interface names are S_LFDQH and D_LFDQH. 

FORTRAN 77 Interface 
Single: CALL LFDQH (N, FACT, LDFACT, NCODA, DET1, DET2) 

Double:  The double precision name is DLFDQH. 

Example 
The determinant is computed for a 5 � 5 complex Hermitian positive definite band matrix with 
one codiagonal. 

      USE LFDQH_INT 
      USE LFTQH_INT 
      USE UMACH_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N, NCODA, NOUT 
      PARAMETER  (LDA=2, N=5, LDFACT=2, NCODA=1) 
      REAL       DET1, DET2 
      COMPLEX    A(LDA,N), FACT(LDFACT,N) 
! 
!            Set values for A in band Hermitian form 
! 
!            A = ( 0.0+0.0i -1.0+1.0i  1.0+2.0i  0.0+4.0i  1.0+1.0i ) 
!                ( 2.0+0.0i  4.0+0.0i 10.0+0.0i  6.0+0.0i  9.0+0.0i ) 
! 
      DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),& 
            (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/ 
!                                 Factor the matrix 
      CALL LFTQH (A, NCODA, FACT) 
!                                 Compute the determinant 
      CALL LFDQH (FACT, NCODA, DET1, DET2) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) DET1, DET2 
! 
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0) 
      END 

Output 
 
The determinant of A is  1.736 * 10**3. 
 

Description 
Routine LFDQH computes the determinant of a complex Hermitian positive definite band 
coefficient matrix. To compute the determinant, the coefficient matrix must first undergo an  
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RH R factorization. This may be done by calling either LFCQH, page 290, or LFTQH, page 288. 
The formula det A = det RH det R = (det R)� is used to compute the determinant. Since the 
determinant of a triangular matrix is the product of the diagonal elements,  

1
det N

i iiR R
�

��   

LFDQH is based on the LINPACK routine CPBDI; see Dongarra et al. (1979). 

LSLXG 
Solves a sparse system of linear algebraic equations by Gaussian elimination. 

Required Arguments 
A — Vector of length NZ containing the nonzero coefficients of the linear system.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 
A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (B,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 
Default: NZ = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system Ax = b is solved.  
IPATH = 2 means the system ATx = b is solved. 
Default: IPATH = 1. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM.  
Default: IPARAM(1) = 0. 
See Comment 3. 

RPARAM — Parameter vector of length 5.   (Input/Output)  
See Comment 3. 
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FORTRAN 90 Interface 
Generic: CALL LSLXG (A, IROW, JCOL, B, X [,…]) 

Specific: The specific interface names are S_LSLXG and D_LSLXG. 

FORTRAN 77 Interface 
Single: CALL LSLXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X) 

Double:  The double precision name is DLSLXG. 

Example 
As an example consider the 6 � 6 linear system: 

10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� �� �
� �� � �
� �
� �� �� �

 

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33,�34, 31)T. The number of nonzeros in A is  
nz = 15. The sparse coordinate form for A is given by: 

 

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4
jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1

a 6 10 15 3 10 1 1 3 5 1 10 1 2 1 2� � � � � � � � �

 

 
      USE LSLXG_INT 
      USE WRRRN_INT 
      USE L4LXG_INT 
      INTEGER    N, NZ 
      PARAMETER  (N=6, NZ=15) 
! 
      INTEGER    IPARAM(6), IROW(NZ), JCOL(NZ) 
      REAL       A(NZ), B(N), RPARAM(5), X(N) 
! 
      DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,& 
          -2., -1., -2./ 
      DATA B/10., 7., 45., 33., -34., 31./ 
      DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/ 
      DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/ 
! 
!                                 Change a default parameter 
      CALL L4LXG (IPARAM, RPARAM) 
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      IPARAM(5) = 203 
!                                 Solve for X 
      CALL LSLXG (A, IROW, JCOL, B, X, IPARAM=IPARAM) 
! 
      CALL WRRRN (’ x ’, X, 1, N, 1) 
      END 

Output 
 
                         x 
    1       2       3       4       5       6 
1.000   2.000   3.000   4.000   5.000   6.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LXG/DL2LXG. The 

reference is: 

CALL L2LXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X, WK, LWK, IWK, 
LIWK) 

The additional arguments are as follows: 

WK — Real work vector of length LWK. 

LWK — The length of WK, LWK should be at least 2N + MAXNZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ. 

The workspace limit is determined by MAXNZ, where 

MAXNZ = MIN0(LWK-2N, INT(0.25(LIWK-17N))) 

2. Informational errors 
Type  Code  

3            1   The coefficient matrix is numerically singular. 
3            2   The growth factor is too large to continue. 
3            3       The matrix is too ill-conditioned for iterative refinement. 

3. If the default parameters are desired for LSLXG, then set IPARAM(1) to zero and call the 
routine LSLXG. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM. then the following steps should be taken before calling LSLXG. 

 CALL L4LXG (IPARAM, RPARAM)  
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LXG will set IPARAM and RPARAM to their default values, so only 
nondefault values need to be set above. 
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IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = The pivoting strategy 
IPARAM(2)  Action 
1                      Markowitz row search 
2                      Markowitz column search 
3                      Symmetric Markowitz search 
Default: 3. 

IPARAM(3) = The number of rows which have least numbers of nonzero elements that 
will be searched for a pivotal element. 
Default: 3. 

IPARAM(4) = The maximal number of nonzero elements in A at any stage of the 
Gaussian elimination.   (Output)  

IPARAM(5) = The workspace limit. 
IPARAM(5)  Action 
0                      Default limit, see Comment 1. 

 integer           This integer value replaces the default workspace limit.  
When L2LXG is called, the values of LWK and LIWK are used 
instead of IPARAM(5). 

Default: 0. 

IPARAM(6) = Iterative refinement is done when this is nonzero.  
Default: 0. 

RPARAM — Real vector of length 5.  
RPARAM(1) = The upper limit on the growth factor. The computation stops when the 
growth factor exceeds the limit.  
Default: 10��. 

RPARAM(2) = The stability factor. The absolute value of the pivotal element must be 
bigger than the largest element in absolute value in its row divided by 
RPARAM(2).  
Default: 10.0. 

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L will be 
removed if its absolute value becomes smaller than the drop-tolerance at any 
stage of the Gaussian elimination. 
Default: 0.0. 

RPARAM(4) = The growth factor. It is calculated as the largest element in absolute value 
in A at any stage of the Gaussian elimination divided by the largest element in 
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absolute value in the original A matrix.   (Output) 
Large value of the growth factor indicates that an appreciable error in the 
computed solution is possible. 

RPARAM(5) = The value of the smallest pivotal element in absolute value.   (Output) 

 If double precision is required, then DL4LXG is called and RPARAM is declared double 
precision. 

Description 
Consider the linear equation 

Ax = b 

where A is a n � n sparse matrix. The sparse coordinate format for the matrix A requires one real 
and two integer vectors. The real array a contains all the nonzeros in A. Let the number of 
nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and 
column numbers for these entries in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

with all other entries in A zero. 

The routine LSLXG solves a system of linear algebraic equations having a real sparse coefficient 
matrix. It first uses the routine LFTXG (page 301) to perform an LU factorization of the 
coefficient matrix. The solution of the linear system is then found using LFSXG (page 306).  

The routine LFTXG by default uses a symmetric Markowitz strategy (Crowe et al. 1990) to 
choose pivots that most likely would reduce fill-ins while maintaining numerical stability. 
Different strategies are also provided as options for row oriented or column oriented problems. 
The algorithm can be expressed as 

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

LFTXG 
Computes the LU factorization of a real general sparse matrix.. 

Required Arguments 
A — Vector of length NZ containing the nonzero coefficients of the linear system.   (Input) 
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IROW — Vector of length NZ containing the row numbers of the corresponding elements in 
A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in A.   (Input) 

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal 
elements.   (Output) 

NFAC — On input, the dimension of vector FACT.   (Input/Output)  
On output, the number of nonzero coefficients in the triangular matrix L and U. 

FACT — Vector of length NFAC containing the nonzero elements of L (excluding the 
diagonals) in the first NL locations and the nonzero elements of U in NL + 1  
to NFAC locations.   (Output) 

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements 
in FACT.   (Output) 

JCFAC — Vector of length NFAC containing the column numbers of the corresponding 
elements in FACT.   (Output) 

IPVT — Vector of length N containing the row pivoting information for the LU factorization.   
(Output) 

JPVT — Vector of length N containing the column pivoting information for the LU 
factorization.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (IPVT,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 
Default: NZ = size (A,1). 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM.  
Default: IPARAM(1) = 0. 
See Comment 3. 

RPARAM — Parameter vector of length 5.   (Input/Output) 
See Comment 3. 

FORTRAN 90 Interface 
Generic: CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT 

[,…]) 
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Specific: The specific interface names are S_LFTXG and D_LFTXG. 

FORTRAN 77 Interface 
Single: CALL LFTXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, 

IRFAC, JCFAC, IPVT, JPVT) 

Double:  The double precision name is DLFTXG. 

Example 
As an example, consider the 6 � 6 matrix of a linear system: 

10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� �� �
� �� � �
� �
� �� �� �

 

The sparse coordinate form for A is given by: 

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4
jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1
a   6 10 15 3 10 1 1 3 5 1 10 1 2 1 2� � � � � � � � �

 

      USE LFTXG_INT 
      USE WRRRN_INT 
      USE WRIRN_INT 

      INTEGER    N, NZ 
      PARAMETER  (N=6, NZ=15) 
      INTEGER    IROW(NZ), JCOL(NZ), NFAC, NL,& 
                 IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N) 
      REAL       A(NZ), FACT(3*NZ) 
! 
      DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,& 
            -2., -1., -2./ 
      DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/ 
      DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/ 
! 
      NFAC = 3*NZ 
!                                 Use default options 
      CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT) 
! 
      CALL WRRRN (’ fact ’, FACT, 1, NFAC, 1) 
      CALL WRIRN (’ irfac ’, IRFAC, 1, NFAC, 1) 
      CALL WRIRN (’ jcfac ’, JCFAC, 1, NFAC, 1) 
      CALL WRIRN (’ p ’, IPVT, 1, N, 1) 
      CALL WRIRN (’ q ’, JPVT, 1, N, 1) 
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! 
      END 

Output 
 
                                       fact 
    1      2       3       4       5       6       7       8       9    10 
-0.10  -5.00   -0.20   -0.10   -0.10   -1.00   -0.20    4.90   -5.10   1.00 
   11      12      13      14      15      16 
-1.00   30.00    6.00   -2.00   10.00   15.00 
 
                              irfac 
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 
3   4   4   5   5   6   6   6   5   5   4   4   3   3   2   1 
 
                              jcfac 
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 
2   3   1   4   2   5   2   6   6   5   6   4   4   3   2   1 
 
            p 
1   2   3   4   5   6 
3   1   6   2   5   4 
 
            q 
1   2   3   4   5   6 
3   1   2   6   5   4 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2TXG/DL2TXG. The 

reference is: 

CALL L2TXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, IRFAC, 
JCFAC, IPVT, JPVT, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 

WK — Real work vector of length LWK. 

LWK — The length of WK, LWK should be at least MAXNZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 15N + 4 � MAXNZ. 

The workspace limit is determined by MAXNZ, where 

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N))) 

2. Informational errors 
Type  Code  
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3      1  The coefficient matrix is numerically singular. 
3      2  The growth factor is too large to continue. 

3. If the default parameters are desired for LFTXG, then set IPARAM(1) to zero and call the 
routine LFTXG. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling LFTXG. 

CALL L4LXG (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LXG will set IPARAM and RPARAM to their default values, so only 
nondefault values need to be set above. 

The arguments are as follows: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = The pivoting strategy. 
IPARAM(2)  Action 
1         Markowitz row search 
2         Markowitz column search 
3         Symmetric Markowitz search 
Default: 3. 

IPARAM(3) = The number of rows which have least numbers of nonzero elements that 
will be searched for a pivotal element.  
Default: 3. 

IPARAM(4) = The maximal number of nonzero elements in A at any stage of the 
Gaussian elimination.   (Output)  

IPARAM(5) = The workspace limit.  
IPARAM(5)  Action 
0                    Default limit, see Comment 1. 
integer       This integer value replaces the default workspace limit.  
     When L2TXG is called, the values of LWK and LIWK are used  

  instead    of IPARAM(5). 

IPARAM(6) = Not used in LFTXG. 

RPARAM — Real vector of length 5. 

RPARAM(1) = The upper limit on the growth factor. The computation stops when the 
growth factor exceeds the limit. 
Default: 10. 

RPARAM(2) = The stability factor. The absolute value of the pivotal element must be 
bigger than the largest element in absolute value in its row divided by RPARAM(2). 
Default: 10.0. 

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L will be 
removed if its absolute value becomes smaller than the drop-tolerance at any stage of 
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the Gaussian elimination. 
Default: 0.0. 

RPARAM(4) = The growth factor. It is calculated as the largest element in absolute value 
in A at any stage of the Gaussian elimination divided by the largest element in absolute 
value in the original A matrix.   (Output) 
Large value of the growth factor indicates that an appreciable error in the computed 
solution is possible. 

RPARAM(5) = The value of the smallest pivotal element in absolute value.   (Output) 

If double precision is required, then DL4LXG is called and RPARAM is declared double 
precision. 

Description 
Consider the linear equation  

Ax = b 

where A is a n � n sparse matrix. The sparse coordinate format for the matrix A requires one real 
and two integer vectors. The real array a contains all the nonzeros in A. Let the number of 
nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and 
column numbers for these entries in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

with all other entries in A zero. 

The routine LFTXG performs an LU factorization of the coefficient matrix A. It by default uses a 
symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would 
reduce fillins while maintaining numerical stability. Different strategies are also provided as 
options for row oriented or column oriented problems. The algorithm can be expressed as  

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained using LFSXG (page 306) by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

LFSXG 
Solves a sparse system of linear equations given the LU factorization of the coefficient matrix.. 

Required Arguments 
NFAC — The number of nonzero coefficients in FACT as output from subroutine 

LFTXG/DLFTXG.   (Input) 
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NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal 
elements as output from subroutine LFTXG/DLFTXG.   (Input) 

FACT — Vector of length NFAC containing the nonzero elements of L (excluding the 
diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC 
locations as output from subroutine LFTXG/DLFTXG.   (Input) 

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements 
in FACT as output from subroutine LFTXG/DLFTXG.   (Input) 

JCFAC — Vector of length NFAC containing the column numbers of the corresponding 
elements in FACT as output from subroutine LFTXG/DLFTXG.   (Input) 

IPVT — Vector of length N containing the row pivoting information for the LU factorization 
as output from subroutine LFTXG/DLFTXG.   (Input) 

JPVT — Vector of length N containing the column pivoting information for the LU 
factorization as output from subroutine LFTXG/DLFTXG.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (B,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system Ax = B is solved.  
IPATH = 2 means the system ATx = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LFSXG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSXG and D_LFSXG. 

FORTRAN 77 Interface 
Single: CALL LFSXG (N, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, IPATH, X) 

Double:  The double precision name is DLFSXG. 
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Example 
As an example, consider the 6 � 6 linear system: 

10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� �� �
� �� � �
� �
� �� �� �

 

Let  

� �1 1, 2,3, 4,5,6Tx �  

so that Ax� = (10, 7, 45, 33,�34, 31)T, and  

� �2 6,5, 4,3,2,1Tx �  

so that Ax� = (60, 35, 60, 16, �22, 10)T. The sparse coordinate form for A is given by: 

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4
jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1
a   6 10 15 3 10 1 1 3 5 1 10 1 2 1 2� � � � � � � � �

 

      USE LFSXG_INT 
      USE WRRRL_INT 
      USE LFTXG_INT 

      INTEGER    N, NZ 
      PARAMETER  (N=6, NZ=15) 
      INTEGER    IPATH, IROW(NZ), JCOL(NZ), NFAC,& 
                 NL, IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N) 
      REAL       X(N), A(NZ), B(N,2), FACT(3*NZ) 
      CHARACTER  TITLE(2)*2, RLABEL(1)*4, CLABEL(1)*6 
      DATA RLABEL(1)/’NONE’/, CLABEL(1)/’NUMBER’/ 
! 
      DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,& 
            -2., -1., -2./ 
      DATA B/10., 7., 45., 33., -34., 31.,& 
            60., 35., 60., 16., -22., -10./ 
      DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/ 
      DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/ 
      DATA TITLE/’x1’, ’x2’/ 
! 
      NFAC = 3*NZ 
!                                 Perform LU factorization 
      CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT) 
! 
      DO 10 I = 1, 2 
!                                 Solve A * X(i) = B(i) 
         CALL LFSXG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B(:,I), X) 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 309 

 

 

 

! 
         CALL WRRRL (TITLE(I), X,  RLABEL, CLABEL, 1, N, 1) 
   10 CONTINUE 
      END 

Output 
 
                  x1 
  1     2     3     4     5     6 
1.0   2.0   3.0   4.0   5.0   6.0 
 
                 x2 
  1     2     3     4     5     6 
6.0   5.0   4.0   3.0   2.0   1.0 
 

Description 
Consider the linear equation 

Ax = b 

where A is a n � n sparse matrix. The sparse coordinate format for the matrix A requires one real 
and two integer vectors. The real array a contains all the nonzeros in A. Let the number of 
nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and 
column numbers for these entries in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

with all other entries in A zero. The routine LFSXG computes the solution of the linear equation 
given its LU factorization. The factorization is performed by calling LFTXG (page 301). The 
solution of the linear system is then found by the forward and backward substitution. The 
algorithm can be expressed as  

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 
Finally, the solution x is obtained by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

For more details, see Crowe et al. (1990). 

LSLZG 
Solves a complex sparse system of linear equations by Gaussian elimination. 
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Required Arguments 
A — Complex vector of length NZ containing the nonzero coefficients of the linear system.   

(Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 
A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (B,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 
Default: NZ = size (A,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system Ax = b is solved.  
IPATH = 2 means the system AH x = b is solved. 
Default: IPATH =1. 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 3. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 5.   (Input/Output)  
See Comment 3 

FORTRAN 90 Interface 
Generic: CALL LSLZG (A, IROW, JCOL, B, X [,…]) 

Specific: The specific interface names are S_LSLZG and D_LSLZG. 

FORTRAN 77 Interface 
Single: CALL LSLZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X) 

Double:  The double precision name is DLSLZG. 
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Example 
As an example, consider the 6 � 6 linear system: 

10 7 0 0 0 0 0
0 3 2 3 0 1 2 0 0
0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0
5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i
i i i

i
A

i i i
i i i i
i i i

�� �
� �� � � � �� �
� ��

� � �
� � � � �� �

� �� � � � � � �
� �
� � � � �� �� 	

 

Let  

xT = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i) 

so that 

Ax = (3 + 17i, �19 + 5i, 6 + 18i, �38 + 32i, �63 + 49i, �57 + 83i)T 

The number of nonzeros in A is nz = 15. The sparse coordinate form for A is given by: 

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5
jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6

 

      USE LSLZG_INT 
      USE WRCRN_INT 

      INTEGER    N, NZ 
      PARAMETER  (N=6, NZ=15) 
! 
      INTEGER    IROW(NZ), JCOL(NZ) 
      COMPLEX    A(NZ), B(N), X(N) 
! 
      DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),& 
          (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),& 
          (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/ 
      DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),& 
          (-63.0,49.0), (-57.0,83.0)/ 
      DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/ 
      DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/ 
! 
!                                 Use default options 
      CALL LSLZG (A, IROW, JCOL, B, X) 
! 
      CALL WRCRN (’X’, X) 
      END 

Output 
 
           X 
1  ( 1.000, 1.000) 
2  ( 2.000, 2.000) 
3  ( 3.000, 3.000) 
4  ( 4.000, 4.000) 
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5  ( 5.000, 5.000) 
6  ( 6.000, 6.000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LZG/DL2LZG. The 

reference is: 

CALL L2LZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X, WK, LWK, IWK, 
LIWK) 

The additional arguments are as follows: 

WK — Complex work vector of length LWK. 

LWK — The length of WK, LWK should be at least 2N+ MAXNZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ. 

The workspace limit is determined by MAXNZ, where 

MAXNZ � MIN0(LWK-2N, INT(0.25(LIWK-17N))) 

2. Informational errors 
Type  Code  

3      1  The coefficient matrix is numerically singular. 
3      2  The growth factor is too large to continue. 
3      3  The matrix is too ill-conditioned for iterative refinement. 

3. If the default parameters are desired for LSLZG, then set IPARAM(1) to zero and call the 
routine LSLZG. Otherwise, if any nondefault parameters  are desired for IPARAM or 
RPARAM. then the following steps should be taken before calling LSLZG. 

CALL L4LZG (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LZG will set IPARAM and RPARAM to their default values, so 
only nondefault values need to be set above. The arguments are as follows: 

IPARAM — Integer vector of length 6. 

IPARAM(1) = Initialization flag. 

IPARAM(2) = The pivoting strategy.  
IPARAM(2) Action 
1         Markowitz row search 
2         Markowitz column search 
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3         Symmetric Markowitz search 
Default: 3. 

IPARAM(3) = The number of rows which have least numbers of nonzero elements that 
will be searched for a pivotal element. 
Default: 3. 

IPARAM(4) = The maximal number of nonzero elements in A at any stage of the 
Gaussian elimination.   (Output) 

IPARAM(5) = The workspace limit. 

IPARAM(5) Action 
0         Default limit, see Comment 1. 
integer     This integer value replaces the default workspace limit.  

When L2LZG is called, the values of LWK and LIWK are used instead 
of IPARAM(5). 

Default: 0. 

IPARAM(6) = Iterative refinement is done when this is nonzero. 
Default: 0. 

RPARAM — Real vector of length 5. 

RPARAM(1) = The upper limit on the growth factor. The computation stops when the 
growth factor exceeds the limit.  
Default: 10. 

RPARAM(2) = The stability factor. The absolute value of the pivotal element must be 
bigger than the largest element in absolute value in its row divided by RPARAM(2). 
Default: 10.0. 

RPARAM(3) = Drop-tolerance. Any element in A will be removed if its absolute value 
becomes smaller than the drop-tolerance at any stage of the Gaussian elimination.  
Default: 0.0. 

RPARAM(4) = The growth factor. It is calculated as the largest element in absolute 
value in A at any stage of the Gaussian elimination divided by the largest element in 
absolute value in the original A matrix.   (Output) 
Large value of the growth factor indicates that an appreciable error in the computed 
solution is possible. 

RPARAM(5) = The value of the smallest pivotal element in absolute value.   (Output) 

If double precision is required, then DL4LZG is called and RPARAM is declared double 
precision. 

Description 
Consider the linear equation  

Ax = b 

where A is a n � n complex sparse matrix. The sparse coordinate format for the matrix A 
requires one complex and two integer vectors. The complex array a contains all the nonzeros in 
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A. Let the number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz, 
contain the row and column numbers for these entries in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

with all other entries in A zero. 

The subroutine LSLZG solves a system of linear algebraic equations having a complex sparse 
coefficient matrix. It first uses the routine LFTZG (page 314) to perform an LU factorization of 
the coefficient matrix. The solution of the linear system is then found using LFSZG (page 309). 
The routine LFTZG by default uses a symmetric Markowitz strategy (Crowe et al. 1990) to 
choose pivots that most likely would reduce fill-ins while maintaining numerical stability. 
Different strategies are also provided as options for row oriented or column oriented problems. 
The algorithm can be expressed as 

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 
Finally, the solution x is obtained by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

LFTZG 
Computes the LU factorization of a complex general sparse matrix. 

Required Arguments 
A — Complex vector of length NZ containing the nonzero coefficients of the linear system.   

(Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 
A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in A.   (Input) 

NFAC — On input, the dimension of vector FACT.   (Input/Output)  
On output, the number of nonzero coefficients in the triangular matrix L and U. 

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal 
elements.   (Output) 

FACT — Complex vector of length NFAC containing the nonzero elements of L (excluding 
the diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC 
locations.   (Output) 
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IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements 
in FACT.   (Output) 

JCFAC — Vector of length NFAC containing the column numbers of the corresponding 
elements in FACT.   (Output) 

IPVT — Vector of length N containing the row pivoting information for the LU factorization.   
(Output) 

JPVT — Vector of length N containing the column pivoting information for the LU 
factorization.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (IPVT,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 
Default: NZ = size (A,1). 

IPARAM — Parameter vector of length 6.   (Input/Output)  
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 3. 
Default: IPARAM = 0. 

RPARAM — Parameter vector of length 5.   (Input/Output)  
See Comment 3. 

FORTRAN 90 Interface 
Generic: CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT 

[,…]) 

Specific: The specific interface names are S_LFTZG and D_LFTZG. 

FORTRAN 77 Interface 
Single: CALL LFTZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, 

IRFAC, JCFAC, IPVT, JPVT) 

Double:  The double precision name is DLFTZG. 

Example 
As an example, the following 6 � 6 matrix is factorized, and the outcome is printed: 
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10 7 0 0 0 0 0
0 3 2 3 0 1 2 0 0
0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0
5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i
i i i

i
A

i i i
i i i i
i i i

�� �
� �� � � � �� �
� ��

� � �
� � � � �� �

� �� � � � � � �
� �
� � � � �� �� 	

 

The sparse coordinate form for A is given by: 

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5
jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6

 

 

      USE LFTZG_INT 
      USE WRCRN_INT 
      USE WRIRN_INT 

      INTEGER    N, NFAC, NZ 
      PARAMETER  (N=6, NZ=15) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IPVT(N), IRFAC(45), IROW(NZ), JCFAC(45),& 
                 JCOL(NZ), JPVT(N), NL 
      COMPLEX    A(NZ), FAC(45) 
! 
      DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),& 
          (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),& 
          (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/ 
      DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/ 
      DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/ 
      DATA NFAC/45/ 
!                                 Use default options 
      CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT) 
! 
      CALL WRCRN (’fact’,FACT, 1, NFAC, 1) 
      CALL WRIRN (’ irfac ’,IRFAC, 1, NFAC, 1) 
      CALL WRIRN (’ jcfac ’,JCFAC, 1, NFAC, 1) 
      CALL WRIRN (’ p ’,IPVT, 1, N, 1) 
      CALL WRIRN (’ q ’,JPVT, 1, N, 1) 
! 
      END 

Output 
 
          fact 
 1  (  0.50,  0.85) 
 2  (  0.15, -0.41) 
 3  ( -0.60,  0.30) 
 4  (  2.23, -1.97) 
 5  ( -0.15,  0.50) 
 6  ( -0.04,  0.26) 
 7  ( -0.32, -0.17) 
 8  ( -0.92,  7.46) 
 9  ( -6.71, -6.42) 
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10  ( 12.00,  2.00) 
11  ( -1.00,  2.00) 
12  ( -3.32,  0.21) 
13  (  3.00,  7.00) 
14  ( -2.00,  8.00) 
15  ( 10.00,  7.00) 
16  (  4.00,  2.00) 
 
                              irfac 
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 
3   4   4   5   5   6   6   6   5   5   4   4   3   3   2   1 
 
 
 
                              jcfac 
1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16 
2   3   1   4   2   5   2   6   6   5   6   4   4   3   2   1 
 
            p 
1   2   3   4   5   6 
3   1   6   2   5   4 
 
            q 
1   2   3   4   5   6 
3   1   2   6   5   4 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2TZG/DL2TZG. The 

reference is: 

CALL L2TZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, IRFAC, 
JCFAC, IPVT, JPVT, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 

WK — Complex work vector of length LWK. 

LWK — The length of WK, LWK should be at least MAXNZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 15N + 4 * MAXNZ. 

The workspace limit is determined by MAXNZ, where 

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N))) 

2. Informational errors 
Type  Code  

3     1  The coefficient matrix is numerically singular. 
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3      2  The growth factor is too large to continue. 

3. If the default parameters are desired for LFTZG, then set IPARAM(1) to zero and call the 
routine LFTZG. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM. then the following steps should be taken before calling LFTZG: 

CALL L4LZG (IPARAM, RPARAM)  
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LZG will set IPARAM and RPARAM to their default values so only 
nondefault values need to be set above. The arguments are as follows: 

IPARAM — Integer vector of length 6.  

IPARAM(1) = Initialization flag.  

IPARAM(2) = The pivoting strategy. 
IPARAM(2) Action 
1             Markowitz row search 
2             Markowitz column search 
3             Symmetric Markowitz search 
Default: 3. 

IPARAM(3) = The number of rows which have least numbers of nonzero elements that will be 
searched for a pivotal element. 
Default: 3. 

IPARAM(4) = The maximal number of nonzero elements in A at any stage of the Gaussian 
elimination.   (Output) 

IPARAM(5) = The workspace limit. 
IPARAM(5) Action 
0           Default limit, see Comment 1. 
integer       This integer value replaces the default workspace limit.  

When L2TZG is called, the values of LWK and LIWK are used instead of 
IPARAM(5). 

Default: 0.  

IPARAM(6) = Not used in LFTZG. 

RPARAM — Real vector of length 5.  

RPARAM(1) = The upper limit on the growth factor. The computation stops when the growth 
factor exceeds the limit.  
Default: 10.  

RPARAM(2) = The stability factor. The absolute value of the pivotal element must be bigger 
than the largest element in absolute value in its row divided by RPARAM(2).  
Default: 10.0. 

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L will be removed if 
its absolute value becomes smaller than the drop-tolerance at any stage of the Gaussian 
elimination.  
Default: 0.0. 
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RPARAM(4) = The growth factor. It is calculated as the largest element in absolute value in A at 
any stage of the Gaussian elimination divided by the largest element in absolute value in the 
original A matrix.   (Output) 
Large value of the growth factor indicates that an appreciable error in the computed solution 
is possible. 

RPARAM(5) = The value of the smallest pivotal element in absolute value.   (Output) 

If double precision is required, then DL4LZG is called and RPARAM is declared double 
precision. 

Description 
Consider the linear equation  

Ax = b 

where A is a complex n � n sparse matrix. The sparse coordinate format for the matrix A 
requires one complex and two integer vectors. The complex array a contains all the nonzeros in 
A. Let the number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz, 
contain the row and column indices for these entries in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

with all other entries in A zero. 

The routine LFTZG performs an LU factorization of the coefficient matrix A. It uses by default a 
symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would 
reduce fill-ins while maintaining numerical stability. Different strategies are also provided as 
options for row oriented or column oriented problems. The algorithm can be expressed as  

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained using LFSZG (page 319) by the following calculations: 

1) Lz = Pb 

2) Uy = z 

3) x = Qy 

LFSZG 
Solves a complex sparse system of linear equations given the LU factorization of the coefficient 
matrix. 

Required Arguments 
NFAC — The number of nonzero coefficients in FACT as output from subroutine 

LFTZG/DLFTZG.   (Input) 
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NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal 
elements as output from subroutine LFTZG/DLFTZG.   (Input) 

FACT — Complex vector of length NFAC containing the nonzero elements of L (excluding 
the diagonals) in the first NL locations and the nonzero elements of U in NL+ 1 to NFAC 
locations as output from subroutine LFTZG/DLFTZG.   (Input) 

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements 
in FACT as output from subroutine LFTZG/DLFTZG.   (Input) 

JCFAC — Vector of length NFAC containing the column numbers of the corresponding 
elements in FACT as output from subroutine LFTZG/DLFTZG.   (Input) 

IPVT — Vector of length N containing the row pivoting information for the LU factorization 
as output from subroutine LFTZG/DLFTZG.   (Input) 

JPVT — Vector of length N containing the column pivoting information for the LU 
factorization as output from subroutine LFTZG/DLFTZG.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (B,1). 

IPATH — Path indicator.   (Input)  
IPATH = 1 means the system Ax = b is solved. 
IPATH = 2 means the system AH x = b is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LFSZG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, X [,…]) 

Specific: The specific interface names are S_LFSZG and D_LFSZG. 

FORTRAN 77 Interface 
Single: CALL LFSZG (N, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, IPATH, X) 

Double:  The double precision name is DLFSZG. 
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Example 
As an example, consider the 6 � 6 linear system: 

10 7 0 0 0 0 0
0 3 2 3 0 1 2 0 0
0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0
5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i
i i i

i
A

i i i
i i i i
i i i

�� �
� �� � � � �� �
� ��

� � �
� � � � �� �

� �� � � � � � �
� �
� � � � �� �� 	

 

Let  

� �1 1 ,2 2 ,3 3 ,4 4 ,5 5 ,6 6Tx i i i i i i� � � � � � �  

so that 

Ax� = (3 + 17i, �19 + 5i, 6 + 18i, �38 + 32i, �63 + 49i, �57 + 83i)T 

and 

� �2 6 6 ,5 5 ,4 4 ,3 3 ,2 2 ,1Tx i i i i i i� � � � � � �  

so that 

Ax� = (18 + 102i, �16 + 16i, 8 + 24i, �11 �11i, �63 + 7i, �132 + 106i)T 

The sparse coordinate form for A is given by: 

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5
jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6

 

      USE LFSZG_INT 
      USE WRCRN_INT 
      USE LFTZG_INT 
      INTEGER    N, NZ 
      PARAMETER  (N=6, NZ=15) 
! 
      INTEGER    IPATH, IPVT(N), IRFAC(3*NZ), IROW(NZ),& 
                 JCFAC(3*NZ), JCOL(NZ), JPVT(N), NFAC, NL 
      COMPLEX    A(NZ), B(N,2), FACT(3*NZ), X(N) 
      CHARACTER  TITLE(2)*2 
! 
      DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),& 
          (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),& 
          (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/ 
      DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),& 
          (-63.0,49.0), (-57.0,83.0), (18.0,102.0), (-16.0,16.0),& 
          (8.0,24.0), (-11.0,-11.0), (-63.0,7.0), (-132.0,106.0)/ 
      DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/ 
      DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/ 
      DATA TITLE/’x1’,’x2’/ 
! 
      NFAC = 3*NZ 



 

 
 

322 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

!                                 Perform LU factorization 
      CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT) 
! 
      IPATH = 1 
      DO 10 I = 1,2 
!                                 Solve A * X(i) = B(i) 
         CALL LFSZG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT,& 
                    B(:,I),  X) 
         CALL WRCRN (TITLE(I), X) 
   10 CONTINUE 
! 
      END 

Output 
 
          x1 
1  ( 1.000, 1.000) 
2  ( 2.000, 2.000) 
3  ( 3.000, 3.000) 
4  ( 4.000, 4.000) 
5  ( 5.000, 5.000) 
6  ( 6.000, 6.000) 
 
         x2 
1  ( 6.000, 6.000) 
2  ( 5.000, 5.000) 
3  ( 4.000, 4.000) 
4  ( 3.000, 3.000) 
5  ( 2.000, 2.000) 
6  ( 1.000, 1.000) 

Description 
Consider the linear equation 

Ax = b 

where A is a complex n � n sparse matrix. The sparse coordinate format for the matrix A 
requires one complex and two integer vectors. The complex array a contains all the nonzeros in 
A. Let the number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz, 
contain the row and column numbers for these entries in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

with all other entries in A zero. 

The routine LFSZG computes the solution of the linear equation given its LU factorization. The 
factorization is performed by calling LFTZG (page 314). The solution of the linear system is then 
found by the forward and backward substitution. The algorithm can be expressed as  

P AQ = LU 

where P and Q are the row and column permutation matrices determined by the Markowitz 
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively. 

Finally, the solution x is obtained by the following calculations: 
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1) Lz = Pb 

2) Uy = z 

3) x = Qy 

For more details, see Crowe et al. (1990). 

LSLXD 
Solves a sparse system of symmetric positive definite linear algebraic equations by Gaussian 
elimination. 

Required Arguments 
A — Vector of length NZ containing the nonzero coefficients in the lower triangle of the linear 

system.   (Input)  
The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to NZ, and 
at this location the sparse matrix has value A(i). 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 
the lower triangle of A.   (Input)  
Note IROW(i) � JCOL(i), since we are only indexing the lower triangle. 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in the lower triangle of A.   (Input) 

B — Vector of length N containing the right-hand side of the linear system.   (Input) 

X — Vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (B,1). 

NZ — The number of nonzero coefficients in the lower triangle of the linear system.   (Input) 
Default: NZ = size (A,1). 

ITWKSP — The total workspace needed.   (Input) 
If the default is desired, set ITWKSP to zero.  
Default: ITWKSP = 0. 

FORTRAN 90 Interface 
Generic: CALL LSLXD (A, IROW, JCOL, B, X [,…]) 

Specific: The specific interface names are S_LSLXD and D_LSLXD. 
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FORTRAN 77 Interface 
Single: CALL LSLXD (N, NZ, A, IROW, JCOL, B, ITWKSP, X) 

Double:  The double precision name is DLSLXD. 

Example 
As an example consider the 5 � 5 linear system: 

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

A

� �
� �
� �
� ��
� �
� �
� �� �

 

Let xT = (1, 2, 3, 4, 5) so that Ax = (23, 55, 107, 197, 278)T. The number of nonzeros in the 
lower triangle of A is nz = 10. The sparse coordinate form for the lower triangle of A is given 
by: 

irow 1 2 3 3 4 4 5 5 5 5
jcol 1 2 1 3 3 4 1 2 4 5
a   10 20 1 30 4 40 2 3 5 50

 

or equivalently by 

irow 4 5 5 5 1 2 3 3 4 5
jcol 4 1 2 4 1 2 1 3 3 5
a   40 2 3 5 10 20 1 30 4 50

 

      USE LSLXD_INT 
      USE WRRRN_INT 
      INTEGER    N, NZ 
      PARAMETER  (N=5, NZ=10) 
! 
      INTEGER    IROW(NZ), JCOL(NZ) 
      REAL       A(NZ), B(N), X(N) 
! 
      DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./ 
      DATA B/23., 55., 107., 197., 278./ 
      DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/ 
      DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/ 
!                                 Solve A * X = B 
      CALL LSLXD (A, IROW, JCOL, B, X) 
!                                 Print results 
      CALL WRRRN (’ x ’, X, 1, N, 1) 
      END 
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Output 
 
                     x 
    1       2       3       4       5 
1.000   2.000   3.000   4.000   5.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LXD/DL2LXD. The 

reference is: 

CALL L2LXD (N, NZ, A, IROW, JCOL, B, X, IPER, IPARAM, RPARAM, WK, LWK, IWK, 
LIWK) 

The additional arguments are as follows: 

IPER — Vector of length N containing the ordering. 

IPARAM — Integer vector of length 4. See Comment 3. 

RPARAM — Real vector of length 2. See Comment 3. 

WK — Real work vector of length LWK. 

LWK — The length of WK, LWK should be at least 2N + 6NZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9. 

Note that the parameter ITWKSP is not an argument to this routine. 

2. Informational errors 
Type Code 

4      1 The coefficient matrix is not positive definite. 
4      2 A column without nonzero elements has been found in the coefficient 

matrix. 

3. If the default parameters are desired for L2LXD, then set IPARAM(1) to zero and call the 
routine L2LXD. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling L2LXD. 

CALL L4LXD (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LXD will set IPARAM and RPARAM to their default values, so only 
nondefault values need to be set above. The arguments are as follows: 

IPARAM — Integer vector of length 4. 
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IPARAM(1) = Initialization flag. 

IPARAM(2) = The numerical factorization method. 
IPARAM(2) Action 
0         Multifrontal 
1         Sparse column 
Default: 0. 

IPARAM(3) = The ordering option. 
IPARAM(3) Action 
0         Minimum degree ordering 
1         User’s ordering specified in IPER 
Default: 0. 

IPARAM(4) = The total number of nonzeros in the factorization matrix. 

RPARAM — Real vector of length 2.  

RPARAM(1) = The value of the largest diagonal element in the Cholesky factorization.  

RPARAM(2) = The value of the smallest diagonal element in the Cholesky factorization. 

If double precision is required, then DL4LXD is called and RPARAM is declared double 
precision. 

Description 
Consider the linear equation 

Ax = b 

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix 
A requires one real and two integer vectors. The real array a contains all the nonzeros in the 
lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer 
arrays irow and jcol, each of length nz, contain the row and column indices for these entries 
in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

irow(i) � jcol(i) i = 1, �, nz 

with all other entries in the lower triangle of A zero. 

The subroutine LSLXD solves a system of linear algebraic equations having a real, sparse and 
positive definite coefficient matrix. It first uses the routine LSCXD (page 327) to compute a 
symbolic factorization of a permutation of the coefficient matrix. It then calls LNFXD (page 331) 
to perform the numerical factorization. The solution of the linear system is then found using 
LFSXD (page 336). 

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set 
up the sparse data structure for the Cholesky factor, L. Then the routine LNFXD produces the 
numerical entries in L so that we have 

P APT= LLT 
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Here P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs 
the factorization using a multifrontal technique. This option requires more storage but in certain 
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George 
and Liu (1981). This is just the standard factorization method based on the sparse compressed 
storage scheme. 

Finally, the solution x is obtained by the following calculations: 

1) Ly� = Pb 

2) LTy� = y� 

3) x = PTy� 

The routine LFSXD accepts b and the permutation vector which determines P. It then returns x. 

LSCXD/DLSCXD 
Performs the symbolic Cholesky factorization for a sparse symmetric matrix using a minimum 
degree ordering or a user-specified ordering, and set up the data structure for the numerical 
Cholesky factorization 

Required Arguments 
IROW — Vector of length NZ containing the row subscripts of the nonzeros in the lower 

triangular part of the matrix including the nonzeros on the diagonal.   (Input) 

JCOL — Vector of length NZ containing the column subscripts of the nonzeros in the lower 
triangular part of the matrix including the nonzeros on the diagonal.   (Input)  
(IROW (K), JCOL(K)) gives the row and column indices of the k-th nonzero element of 
the matrix stored in coordinate form. Note, IROW(K) � JCOL(K). 

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal 
nonzeros in the Cholesky factor in compressed format.   (Output) 

INZSUB — Vector of length N + 1 containing pointers for NZSUB. The row subscripts for the 
off-diagonal nonzeros in column J are stored in NZSUB from location INZSUB (J) to 
INZSUB(J � (ILNZ (J �1) �ILNZ(J) � 1).   (Output) 

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor.   (Output) 

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor. The off-diagonal 
nonzeros in column J of the factor are stored from location ILNZ (J) to  
ILNZ(J + 1) � 1.   (Output)  
(ILNZ, NZSUB, INZSUB) sets up the data structure for the off-diagonal nonzeros of the 
Cholesky factor in column ordered form using compressed subscript format. 
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INVPER — Vector of length N containing the inverse permutation.   (Output)  
INVPER (K) = I indicates that the original row K is the new row I. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (INVPER,1). 

NZ — Total number of the nonzeros in the lower triangular part of the symmetric matrix, 
including the nonzeros on the diagonal.   (Input) 
Default: NZ = size (IROW,1). 

IJOB — Integer parameter selecting an ordering to permute the matrix symmetrically.   
(Input)  
IJOB = 0 selects the user ordering specified in IPER and reorders it so that the 
multifrontal method can be used in the numerical factorization. 
IJOB = 1 selects the user ordering specified in IPER. 
IJOB = 2 selects a minimum degree ordering. 
IJOB = 3 selects a minimum degree ordering suitable for the multifrontal method in the 
numerical factorization. 
Default: IJOB = 3. 

ITWKSP — The total workspace needed.   (Input)  
If the default is desired, set ITWKSP to zero. 
Default: ITWKSP = 0. 

MAXSUB — Number of subscripts contained in array NZSUB.   (Input/Output)  
On input, MAXSUB gives the size of the array NZSUB. 
Note that when default workspace (ITWKSP = 0) is used, set MAXSUB = 3 * NZ. 
Otherwise (ITWKSP > 0), set MAXSUB = (ITWKSP � 10 * N � 7) 	 4. On output, MAXSUB 
gives the number of subscripts used by the compressed subscript format. 
Default: MAXSUB = 3*NZ. 

IPER — Vector of length N containing the ordering specified by IJOB.   (Input/Output)  
IPER (I) = K indicates that the original row K is the new row I. 

ISPACE — The storage space needed for stack of frontal matrices.   (Output) 

FORTRAN 90 Interface 
Generic: Because the Fortran compiler cannot determine the precision desired from the 
required arguments, there is no generic Fortran 90 Interface for this routine. The specific 
Fortran 90 Interfaces are: 
 
Single:  CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…]) 

Or 
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 CALL S_LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…]) 

Double:  CALL DLSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])  

Or 

 CALL D_LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…]) 

FORTRAN 77 Interface 
Single: CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB, INZSUB, 

MAXNZ, ILNZ, IPER, INVPER, ISPACE) 

Double:  The double precision name is DLSCXD. 

Example 
As an example, the following matrix is symbolically factorized, and the result is printed: 

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

A

� �
� �
� �
� ��
� �
� �
� �� �

 

The number of nonzeros in the lower triangle of A is nz= 10. The sparse coordinate form for the 
lower triangle of A is given by: 

 

irow      1      2      3      3      4      4      5      5      5      5 

jcol      1      2      1      3      3      4      1      2      4      5 

or equivalently by 

irow      4      5      5      5      1      2      3      3      4      5 

jcol      4      1      2      4      1      2      1      3      3      5 
      USE LSCXD_INT 
      USE WRIRN_INT 
      INTEGER    N, NZ 
      PARAMETER  (N=5, NZ=10) 
! 
      INTEGER    ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 
                 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,& 
                 NZSUB(3*NZ) 
! 
      DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/ 
      DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/ 
      MAXSUB = 3 * NZ 
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      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER,& 
                 MAXSUB=MAXSUB, IPER=IPER) 
!                                 Print results 
      CALL WRIRN (’ iper ’, IPER, 1, N, 1) 
      CALL WRIRN (’ invper ’,INVPER, 1, N, 1) 
      CALL WRIRN (’ nzsub ’, NZSUB, 1, MAXSUB, 1) 
      CALL WRIRN (’ inzsub ’, INZSUB, 1, N+1, 1) 
      CALL WRIRN (’ ilnz ’, ILNZ, 1, N+1, 1) 
      END 

Output 
 
          iper 
1   2   3   4   5 
2   1   5   4   3 
 
        invper 
1   2   3   4   5 
2   1   5   4   3 
 
      nzsub 
1   2   3   4 
3   5   4   5 
 
          inzsub 
1   2   3   4   5   6 
1   1   3   4   4   4 
 
           ilnz 
1   2   3   4   5   6 
1   2   4   6   7   7 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2CXD. The reference is: 

CALL L2CXD (N, NZ, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, 
IPER, INVPER, ISPACE, LIWK, IWK) 

The additional arguments are as follows: 

LIWK — The length of IWK, LIWK should be at least 10N + 12NZ + 7. Note that the 
argument MAXSUB should be set to (LIWK � 10N � 7)/4. 

IWK — Integer work vector of length LIWK. 

Note that the parameter ITWKSP is not an argument to this routine. 

2. Informational errors 
Type Code 

4   1 The matrix is structurally singular. 
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Description 
Consider the linear equation 

Ax = b 

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix 
A requires one real and two integer vectors. The real array a contains all the nonzeros in the 
lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer 
arrays irow and jcol, each of length nz, contain the row and column indices for these entries 
in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

irow(i) � jcol(i) i = 1, �, nz 

with all other entries in the lower triangle of A zero.  

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set 
up the sparse data structure for the Cholesky factor, L. Then the routine LNFXD (page 331) 
produces the numerical entries in L so that we have 

P APT= LLT 

Here, P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs 
the factorization using a multifrontal technique. This option requires more storage but in certain 
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George 
and Liu (1981). This is just the standard factorization method based on the sparse compressed 
storage scheme. 

LNFXD 
Computes the numerical Cholesky factorization of a sparse symmetrical matrix A. 

Required Arguments 
A — Vector of length NZ containing the nonzero coefficients of the lower triangle of the 

linear system.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 
the lower triangle of A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in the lower triangle of A.   (Input) 

 

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine 
LSCXD/DLSCXD.   (Input) 
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NZSUB — Vector of length MAXSUB containing the row subscripts for the nonzeros in the 
Cholesky factor in compressed format as output from subroutine LSCXD/DLSCXD.   
(Input) 

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine 
LSCXD/DLSCXD.   (Input)  
The row subscripts for the nonzeros in column J are stored from location INZSUB (J) 
to INZSUB(J + 1) � 1. 

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD.   (Input) 

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as output from 
subroutine LSCXD/DLSCXD.   (Input)  
The row subscripts for the nonzeros in column J of the factor are stored from location 
ILNZ(J) to ILNZ(J + 1) � 1. (ILNZ, NZSUB, INZSUB) sets up the compressed data 
structure in column ordered form for the Cholesky factor. 

IPER — Vector of length N containing the permutation as output from subroutine 
LSCXD/DLSCXD.   (Input) 

INVPER — Vector of length N containing the inverse permutation as output from subroutine 
LSCXD/DLSCXD.   (Input) 

ISPACE — The storage space needed for the stack of frontal matrices as output from 
subroutine LSCXD/DLSCXD.   (Input) 

DIAGNL — Vector of length N containing the diagonal of the factor.   (Output) 

RLNZ — Vector of length MAXNZ containing the strictly lower triangle nonzeros of the 
Cholesky factor.   (Output) 

RPARAM — Parameter vector containing factorization information.   (Output)  
RPARAM(1) = smallest diagonal element. 
RPARAM(2) = largest diagonal element. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (IPER,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 
Default: NZ = size (A,1). 

IJOB — Integer parameter selecting factorization method.   (Input) 
IJOB = 1 yields factorization in sparse column format. 
IJOB = 2 yields factorization using multifrontal method. 
Default: IJOB = 1. 
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ITWKSP — The total workspace needed.   (Input) 
If the default is desired, set ITWKSP to zero. 
Default: ITWKSP = 0. 

FORTRAN 90 Interface 
Generic: CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, IPER, 

INVPER, ISPACE,  DIAGNL, RLNZ, RPARAM [,…]) 

Specific: The specific interface names are S_LNFXD and D_LNFXD. 

FORTRAN 77 Interface 
Single: CALL LNFXD (N, NZ, A, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB, INZSUB, 

MAXNZ, ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAGNL, RLNZ, RPARAM) 

Double:  The double precision name is DLNFXD. 

Example 
As an example, consider the 5 � 5 linear system: 

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

A

� �
� �
� �
� ��
� �
� �
� �� �

 

The number of nonzeros in the lower triangle of A is nz = 10. The sparse coordinate form for 
the lower triangle of A is given by: 

irow 1 2 3 3 4 4 5 5 5 5
jcol 1 2 1 3 3 4 1 2 4 5
a   10 20 1 30 4 40 2 3 5 50

 

or equivalently by 

irow 4 5 5 5 1 2 3 3 4 5
jcol 4 1 2 4 1 2 1 3 3 5
a   40 2 3 5 10 20 1 30 4 50

 

We first call LSCXD, page 327, to produce the symbolic information needed to pass on to LNFXD. 
Then call LNFXD to factor this matrix. The results are displayed below. 

      USE LNFXD_INT 
      USE LSCXD_INT 
      USE WRRRN_INT 
      INTEGER    N, NZ, NRLNZ 
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      PARAMETER  (N=5, NZ=10, NRLNZ=10) 

! 

      INTEGER    IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 

                 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,& 

                 NZSUB(3*NZ) 

      REAL       A(NZ), DIAGNL(N), RLNZ(NRLNZ), RPARAM(2) , R(N,N)  

! 

      DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./ 

      DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/ 

      DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/ 

!                                 Select minimum degree ordering 

!                                 for multifrontal method 

      IJOB = 3 

!                                 Use default workspace 

      MAXSUB = 3*NZ 

      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, & 

                  MAXSUB=MAXSUB) 

!                                 Check if NRLNZ is large enough 

      IF (NRLNZ .GE. MAXNZ) THEN 

!                                 Choose multifrontal method 

         IJOB = 2 

         CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, & 
                    ILNZ,IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, & 

                    IJOB=IJOB) 
!                                 Print results 

         CALL WRRRN (' diagnl ', DIAGNL,  NRA=1, NCA=N, LDA=1) 

         CALL WRRRN (' rlnz ', RLNZ,  NRA= 1,  NCA= MAXNZ,  LDA= 1) 

      END IF 

!  

!                                Construct L matrix 
      DO I=1,N 
!                                Diagonal 
        R(I,I) = DIAG(I) 
        IF (ILNZ(I) .GT. MAXNZ) GO TO 50 
!                                Find elements of RLNZ for this column 
        ISTRT = ILNZ(I) 
        ISTOP = ILNZ(I+1) - 1 
!                                Get starting index for NZSUB 
        K = INZSUB(I) 
        DO J=ISTRT, ISTOP 
!                                NZSUB(K) is the row for this element of 
                                 RLNZ 
           R((NZSUB(K)),I) = RLNZ(J) 
           K = K + 1 
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        END DO  
      END DO   
  50  CONTINUE 
      CALL WRRRN ('L', R, NRA=N, NCA=N)  

      END 

Output 
                 diagnl 
    1       2       3       4       5 
4.472   3.162   7.011   6.284   5.430 
 

                          rlnz 

      1         2        3         4         5         6 

0.6708   0.6325   0.3162   0.7132  -0.0285   0.6398   

  

                                L 
         1       2       3       4       5 
 1   4.472   0.000   0.000   0.000   0.000 
 2   0.000   3.162   0.000   0.000   0.000 
 3   0.671   0.632   7.011   0.000   0.000 
 4   0.000   0.000   0.713   6.284   0.000 
 5   0.000   0.316  -0.029   0.640   5.430 
 

Comments 
1. Workspace may be explicitly provided by use of L2FXD/DL2FXD . The reference is: 

CALL L2FXD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, 
IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 

WK — Real work vector of length LWK. 

LWK — The length of WK, LWK should be at least N + 3NZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 2N. 

Note that the parameter ITWKSP is not an argument to this routine. 

2. Informational errors  
Type Code 

4  1 The coefficient matrix is not positive definite. 
4  2 A column without nonzero elements has been found in the coefficient 

matrix. 
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Description 
Consider the linear equation  

Ax = b 

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix 
A requires one real and two integer vectors. The real array a contains all the nonzeros in the 
lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer 
arrays irow and jcol, each of length nz, contain the row and column indices for these entries 
in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

irow(i) � jcol(i) i = 1, �, nz 

with all other entries in the lower triangle of A zero. The routine LNFXD produces the Cholesky 
factorization of P APTgiven the symbolic factorization of A which is computed by LSCXD (page 
327). That is, this routine computes L which satisfies 

P APT= LLT 

The diagonal of L is stored in DIAGNL and the strictly lower triangular part of L is stored in 
compressed subscript form in R = RLNZ as follows. The nonzeros in the j-th column of L are 
stored in locations R(i), �, R(i + k) where i = ILNZ(j) and k = ILNZ(j + 1) � ILNZ(j) � 1. The 
row subscripts are stored in the vector NZSUB from locations INZSUB(j) to INZSUB(j) + k. 

The numerical computations can be carried out in one of two ways. The first method (when 
IJOB = 2) performs the factorization using a multifrontal technique. This option requires more 
storage but in certain cases will be faster. The multifrontal method is based on the routines in 
Liu (1987). For detailed description of this method, see Liu (1990), also Duff and Reid (1983, 
1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method (when 
IJOB = 1) is fully described in George and Liu (1981). This is just the standard factorization 
method based on the sparse compressed storage scheme. 

LFSXD 
Solves a real sparse symmetric positive definite system of linear equations, given the Cholesky 
factorization of the coefficient matrix. 

Required Arguments 
N — Number of equations.   (Input) 

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine 
LSCXD/DLSCXD.   (Input) 

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal 
nonzeros in the factor as output from subroutine LSCXD/DLSCXD.   (Input) 
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INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine 
LSCXD/DLSCXD.   (Input)  
The row subscripts of column J are stored from location INZSUB(J) to INZSUB(J + 1) 
� 1. 

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as output from 
subroutine LSCXD/DLSCXD.   (Input) 

RLNZ — Vector of length MAXNZ containing the off-diagonal nonzeros in the factor in 
column ordered format as output from subroutine LNFXD/DLNFXD.   (Input) 

ILNZ — Vector of length N + 1 containing pointers to RLNZ as output from subroutine 
LSCXD/DLSCXD. The nonzeros in column J of the factor are stored from location 
ILNZ(J) to ILNZ(J + 1) � 1.   (Input)  
The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the factor 
in a compressed subscript data format. 

DIAGNL — Vector of length N containing the diagonals of the Cholesky factor as output 
from subroutine LNFXD/DLNFXD.   (Input) 

IPER — Vector of length N containing the ordering as output from subroutine 
LSCXD/DLSCXD.   (Input)  
IPER(I) = K indicates that the original row K is the new row I. 

B — Vector of length N containing the right-hand side.   (Input) 

X — Vector of length N containing the solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL, 

IPER,  B, X) 

Specific: The specific interface names are S_LFSXD and D_LFSXD. 

FORTRAN 77 Interface 
Single: CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL, 

IPER, B, X) 

Double:  The double precision name is DLFSXD. 

Example 
As an example, consider the 5 � 5 linear system: 
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10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

A

� �
� �
� �
� ��
� �
� �
� �� �

 

Let  

� �1 1, 2,3, 4,5Tx �  

so that Ax� = (23, 55, 107, 197, 278)T, and  

� �2 5,4,3,2,1Tx �  

so that Ax� = (55, 83, 103, 97, 82)T. The number of nonzeros in the lower triangle of A is  
nz = 10. The sparse coordinate form for the lower triangle of A is given by: 

irow 1 2 3 3 4 4 5 5 5 5
jcol 1 2 1 3 3 4 1 2 4 5
a   10 20 1 30 4 40 2 3 5 50

 

or equivalently by 

irow 4 5 5 5 1 2 3 3 4 5
jcol 4 1 2 4 1 2 1 3 3 5
a   40 2 3 5 10 20 1 30 4 50

 

      USE LFSXD_INT 
      USE LNFXD_INT 
      USE LSCXD_INT 
      USE WRRRN_INT 

      INTEGER    N, NZ, NRLNZ 
      PARAMETER  (N=5, NZ=10, NRLNZ=10) 
! 
      INTEGER    IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 
                IROW(NZ), ISPACE, ITWKSP, JCOL(NZ), MAXNZ, MAXSUB,& 
                NZSUB(3*NZ) 
      REAL       A(NZ), B1(N), B2(N), DIAGNL(N), RLNZ(NRLNZ), RPARAM(2),& 
                X(N) 
! 
      DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./ 
      DATA B1/23., 55., 107., 197., 278./ 
      DATA B2/55., 83., 103., 97., 82./ 
      DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/ 
      DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/ 
!                                 Select minimum degree ordering 
!                                 for multifrontal method 
      IJOB = 3 
!                                 Use default workspace 
      ITWKSP = 0 
      MAXSUB = 3*NZ 
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      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, & 
                  MAXSUB=MAXSUB, IPER=IPER, ISPACE=ISPACE) 
!                                 Check if NRLNZ is large enough 
      IF (NRLNZ .GE. MAXNZ) THEN 
!                                 Choose multifrontal method 
         IJOB = 2 

  CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ,& 
              IPER, INVPER,ISPACE, DIAGNL, RLNZ, RPARAM, IJOB=IJOB) 

!                                 Solve A * X1 = B1 
         CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,& 
                     IPER, B1, X) 
!                                 Print X1 
         CALL WRRRN (’ x1 ’, X, 1, N, 1) 
!                                 Solve A * X2 = B2 
         CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, & 
                     DIAGNL, IPER, B2, X) 
!                                 Print X2 
         CALL WRRRN (’ x2 ’ X, 1, N, 1) 
      END IF 
! 
      END 

Output 
 
                    x1 
    1       2       3       4       5 
1.000   2.000   3.000   4.000   5.000 
 
                    x2 
    1       2       3       4       5 
5.000   4.000   3.000   2.000   1.000 
 

Comments 
Informational error  

Type  Code  

4    1 The input matrix is numerically singular. 

Description 
Consider the linear equation  

Ax = b 

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix 
A requires one real and two integer vectors. The real array a contains all the nonzeros in the 
lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer 
arrays irow and jcol, each of length nz, contain the row and column indices for these entries 
in A. That is 

Airowi�,icol�i� = a(i),  i = 1, �, nz 
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irow(i) � jcol(i) i = 1, �, nz 

with all other entries in the lower triangle of A zero. 

The routine LFSXD computes the solution of the linear system given its Cholesky factorization. 
The factorization is performed by calling LSCXD (page 327) followed by LNFXD (page 331). The 
routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set up 
the sparse data structure for the Cholesky factor, L. Then the routine LNFXD produces the 
numerical entries in L so that we have 

P APT= LLT 

Here P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs 
the factorization using a multifrontal technique. This option requires more storage but in certain 
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George 
and Liu (1981). This is just the standard factorization method based on the sparse compressed 
storage scheme.  

Finally, the solution x is obtained by the following calculations: 

1) Ly� = Pb 

2) LTy� = y� 

3) x = PTy��

LSLZD 
Solves a complex sparse Hermitian positive definite system of linear equations by Gaussian 
elimination. 

Required Arguments 
A — Complex vector of length NZ containing the nonzero coefficients in the lower triangle of 

the linear system.   (Input)  
The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to NZ, and 
at this location the sparse matrix has value A(i). 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 
the lower triangle of A.   (Input)  
Note IROW(i) � JCOL(i), since we are only indexing the lower triangle. 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in the lower triangle of A.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 
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X — Complex vector of length N containing the solution to the linear system.   (Output) 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (B,1). 

NZ — The number of nonzero coefficients in the lower triangle of the linear system.   (Input) 
Default: NZ = size (A,1). 

ITWKSP — The total workspace needed.   (Input)  
If the default is desired, set ITWKSP to zero. 
Default: ITWKSP = 0. 

FORTRAN 90 Interface 
Generic: CALL LSLZD (A, IROW, JCOL, B, X [,…]) 

Specific: The specific interface names are S_LSLZD and D_LSLZD. 

FORTRAN 77 Interface 
Single: CALL LSLZD (N, NZ, A, IROW, JCOL, B, ITWKSP, X) 

Double:  The double precision name is DLSLZD. 

Example 
As an example, consider the 3 � 3 linear system: 

2 0 1 0
1 4 0 1 2

0 1 2 10 0

i i
A i i i

i i

� � �� �
� �� � � � �� �
� �� �� 	

 

Let xT = (1 + i� 2 + 2i, 3 + 3i) so that Ax = (�2 + 2i, 5 + 15i, 36 + 28i)T. The number of 
nonzeros in the lower triangle of A is nz = 5. The sparse coordinate form for the lower triangle 
of A is given by: 

irow 1 2 3 2 3
jcol 1 2 3 1 2
a   2 0 4 0 10 0 1 1 2i i i i i� � � � � �

 

or equivalently by 

irow 3 2 3 1 2
jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i� � � � � �
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      USE LSLZD_INT 
      USE WRCRN_INT 

      INTEGER    N, NZ 
      PARAMETER  (N=3, NZ=5) 
! 
      INTEGER    IROW(NZ), JCOL(NZ) 
      COMPLEX    A(NZ), B(N), X(N) 
! 
      DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/ 
      DATA B/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/ 
      DATA IROW/1, 2, 3, 2, 3/ 
      DATA JCOL/1, 2, 3, 1, 2/ 
!                                 Solve A * X = B 
      CALL LSLZD (A, IROW, JCOL, B, X) 
!                                 Print results 
      CALL WRCRN (’ x ’, X, 1, N, 1) 
      END 

Output 
 
                          x 
              1                2                3 
( 1.000, 1.000)  ( 2.000, 2.000)  ( 3.000, 3.000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LZD/DL2LZD. The 

reference is: 

CALL L2LZD (N, NZ, A, IROW, JCOL, B, X, IPER, IPARAM, RPARAM, WK, LWK, IWK, 
LIWK) 

The additional arguments are as follows: 

IPER — Vector of length N containing the ordering. 

IPARAM — Integer vector of length 4. See Comment 3. 

RPARAM — Real vector of length 2. See Comment 3. 

WK — Complex work vector of length LWK. 

LWK — The length of WK, LWK should be at least 2N + 6NZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9. 

Note that the parameter ITWKSP is not an argument for this routine. 
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2. Informational errors 
Type Code  

4     1 The coefficient matrix is not positive definite. 
4     2 A column without nonzero elements has been found in the coefficient 

matrix. 

3. If the default parameters are desired for L2LZD, then set IPARAM(1) to zero and call the 
routine L2LZD. Otherwise, if any nondefault parameters are desired for IPARAM or 
RPARAM, then the following steps should be taken before calling L2LZD. 

CALL L4LZD (IPARAM, RPARAM) 
Set nondefault values for desired IPARAM, RPARAM elements. 

Note that the call to L4LZD will set IPARAM and RPARAM to their default values, so only 
nondefault values need to be set above. The arguments are as follows: 

IPARAM — Integer vector of length 4. 
IPARAM(1) = Initialization flag. 

IPARAM(2) = The numerical factorization method. 
IPARAM(2) Action 
0         Multifrontal 
1         Sparse column 
Default: 0. 

IPARAM(3) = The ordering option. 
IPARAM(3)  Action 
0         Minimum degree ordering 
1         User’s ordering specified in IPER 
Default: 0. 

IPARAM(4) = The total number of nonzeros in the factorization matrix. 

RPARAM — Real vector of length 2. 
RPARAM(1) = The absolute value of the largest diagonal element in the Cholesky 
factorization. 
RPARAM(2) = The absolute value of the smallest diagonal element in the Cholesky 
factorization. 

If double precision is required, then DL4LZD is called and RPARAM is declared double 
precision. 

Description 
Consider the linear equation 

Ax = b 

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix 
A requires one complex and two integer vectors. The complex array a contains all the nonzeros 
in the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two 
integer arrays irow and jcol, each of length nz, contain the row and column indices for these 
entries in A. That is 
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Airow�i�,icol�i� = a(i),  i = 1, �, nz 

irow(i) � jcol(i) i = 1, �, nz 

with all other entries in the lower triangle of A zero. 

The routine LSLZD solves a system of linear algebraic equations having a complex, sparse, 
Hermitian and positive definite coefficient matrix. It first uses the routine LSCXD (page 327) to 
compute a symbolic factorization of a permutation of the coefficient matrix. It then calls LNFZD 
(page 344) to perform the numerical factorization. The solution of the linear system is then 
found using LFSZD (page 349). 

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set 
up the sparse data structure for the Cholesky factor, L. Then the routine LNFZD produces the 
numerical entries in L so that we have 

P APT= LLH 

Here P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs 
the factorization using a multifrontal technique. This option requires more storage but in certain 
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George 
and Liu (1981). This is just the standard factorization method based on the sparse compressed 
storage scheme. 

Finally, the solution x is obtained by the following calculations: 

1)     Ly� = Pb 

2)  LH y� = y� 

3)   x = PT y� 

The routine LFSZD accepts b and the permutation vector which determines P . It then returns x. 

LNFZD 
Computes the numerical Cholesky factorization of a sparse Hermitian matrix A.  

Required Arguments 
A — Complex vector of length NZ containing the nonzero coefficients of the lower triangle of 

the linear system.   (Input) 

IROW — Vector of length NZ containing the row numbers of the corresponding elements in 
the lower triangle of A.   (Input) 

JCOL — Vector of length NZ containing the column numbers of the corresponding elements 
in the lower triangle of A.   (Input) 
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MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine 
LSCXD/DLSCXD.   (Input) 

NZSUB — Vector of length MAXSUB containing the row subscripts for the nonzeros in the 
Cholesky factor in compressed format as output from subroutine LSCXD/DLSCXD.   
(Input) 

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine 
LSCXD/DLSCXD.   (Input)  
The row subscripts for the nonzeros in column J are stored from location INZSUB(J) to 
INZSUB(J + 1) � 1. 

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD.   (Input) 

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as output from 
subroutine LSCXD/DLSCXD.   (Input)  
The row subscripts for the nonzeros in column J of the factor are stored from location 
ILNZ(J) to ILNZ(J + 1) � 1. 
(ILNZ , NZSUB, INZSUB) sets up the compressed data structure in column ordered form 
for the Cholesky factor. 

IPER — Vector of length N containing the permutation as output from subroutine 
LSCXD/DLSCXD.   (Input) 

INVPER — Vector of length N containing the inverse permutation as output from subroutine 
LSCXD/DLSCXD.   (Input) 

ISPACE — The storage space needed for the stack of frontal matrices as output from 
subroutine LSCXD/DLSCXD.   (Input) 

DIAGNL — Complex vector of length N containing the diagonal of the factor.   (Output) 

RLNZ — Complex vector of length MAXNZ containing the strictly lower triangle nonzeros of 
the Cholesky factor.   (Output) 

RPARAM — Parameter vector containing factorization information.   (Output)  
RPARAM (1) = smallest diagonal element in absolute value. 
RPARAM (2) = largest diagonal element in absolute value. 

Optional Arguments 
N — Number of equations.   (Input) 

Default: N = size (IPER,1). 

NZ — The number of nonzero coefficients in the linear system.   (Input) 
Default: NZ = size (A,1). 
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IJOB — Integer parameter selecting factorization method.   (Input)  
IJOB = 1 yields factorization in sparse column format. 
IJOB = 2 yields factorization using multifrontal method. 
Default: IJOB = 1. 

ITWKSP — The total workspace needed.   (Input)  
If the default is desired, set ITWKSP to zero. See Comment 1 for the default. 
Default: ITWKSP = 0. 

FORTRAN 90 Interface 
Generic: CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, IPER, 

 INVPER, ISPACE, DIAGNL, RLNZ, RPARAM [,…]) 

Specific: The specific interface names are S_LNFZD and D_LNFZD. 

FORTRAN 77 Interface 
Single: CALL LNFZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ, 

ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAGNL, RLNZ, RPARAM) 

Double:  The double precision name is DLNFZD. 

Example 
As an example, consider the 3 � 3 linear system: 

2 0 1 0
1 4 0 1 2

0 1 2 10 0

i i
A i i i

i i

� � �� �
� �� � � � �� �
� �� �� 	

 

The number of nonzeros in the lower triangle of A is nz = 5. The sparse coordinate form for the 
lower triangle of A is given by: 

irow 1 2 3 2 3
jcol 1 2 3 1 2

a 2 0 4 0 10 0 1 1 2i i i i i� � � � � �

 

or equivalently by 

irow 3 2 3 1 2
jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i� � � � � �

 

We first call LSCXD to produce the symbolic information needed to pass on to LNFZD. Then call 
LNFZD to factor this matrix. The results are displayed below. 
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      USE LNFZD_INT 
      USE LSCXD_INT 
      USE WRCRN_INT 

      INTEGER    N, NZ, NRLNZ 
      PARAMETER  (N=3, NZ=5, NRLNZ=5) 
! 
      INTEGER    IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 
                 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,& 
                 NZSUB(3*NZ) 
      REAL       RPARAM(2) 
      COMPLEX    A(NZ), DIAGNL(N), RLNZ(NRLNZ) 
! 
      DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/ 
      DATA IROW/1, 2, 3, 2, 3/ 
      DATA JCOL/1, 2, 3, 1, 2/ 
!                                 Select minimum degree ordering 
!                                 for multifrontal method 
      IJOB = 3 
      MAXSUB = 3*NZ 
      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, & 
                  IJOB=IJOB, MAXSUB=MAXSUB) 
!                                 Check if NRLNZ is large enough 
      IF (NRLNZ .GE. MAXNZ) THEN 
!                                 Choose multifrontal method 
         IJOB = 2 

  CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, & 
                     ILNZ, IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, & 
                     IJOB=IJOB) 
!                                 Print results 
         CALL WRCRN (’ diagnl ’, DIAGNL, 1, N, 1) 
         CALL WRCRN (’ rlnz ’, RLNZ, 1, MAXNZ, 1) 
      END IF 
! 
      END 

Output 
 
                         diagnl 
              1                2                3 
( 1.414, 0.000)  ( 1.732, 0.000)  ( 2.887, 0.000) 
 
                rlnz 
              1                2 
(-0.707,-0.707)  ( 0.577,-1.155) 
 

Comments 
1. Workspace may be explicitly provided by use of L2FZD/DL2FZD. The reference is: 

CALL L2FZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, 
IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, WK, LWK, IWK, LIWK) 

The additional arguments are as follows: 
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WK — Complex work vector of length LWK. 

LWK — The length of WK, LWK should be at least N + 3NZ. 

IWK — Integer work vector of length LIWK. 

LIWK — The length of IWK, LIWK should be at least 2N. 

Note that the parameter ITWKSP is not an argument to this routine. 

2. Informational errors 
Type Code 

 4     1 The coefficient matrix is not positive definite. 
 4     2 A column without nonzero elements has been found in the coefficient 

matrix. 

Description 
Consider the linear equation  

Ax = b 

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix 
A requires one complex and two integer vectors. The complex array a contains all the nonzeros 
in the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two 
integer arrays irow and jcol, each of length nz, contain the row and column indices for these 
entries in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

irow(i) � jcol(i) i = 1, �, nz 

with all other entries in the lower triangle of A zero. 

The routine LNFZD produces the Cholesky factorization of P APT given the symbolic 
factorization of A which is computed by LSCXD (page 327). That is, this routine computes L 
which satisfies  

P APT= LLH 

The diagonal of L is stored in DIAGNL and the strictly lower triangular part of L is stored in 
compressed subscript form in R = RLNZ as follows. The nonzeros in the jth column of L are 
stored in locations R(i), �, R(i + k) where i = ILNZ(j) and k = ILNZ(j + 1) � ILNZ(j) � 1. The 
row subscripts are stored in the vector NZSUB from locations INZSUB(j) to INZSUB(j) + k. 

The numerical computations can be carried out in one of two ways. The first method (when 
IJOB = 2) performs the factorization using a multifrontal technique. This option requires more 
storage but in certain cases will be faster. The multifrontal method is based on the routines in 
Liu (1987). For detailed description of this method, see Liu (1990), also Duff and Reid (1983, 
1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method (when 
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IJOB = 1) is fully described in George and Liu (1981). This is just the standard factorization 
method based on the sparse compressed storage scheme. 

LFSZD 
Solves a complex sparse Hermitian positive definite system of linear equations, given the 
Cholesky factorization of the coefficient matrix. 

Required Arguments 
N — Number of equations.   (Input) 

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine 
LSCXD/DLSCXD.   (Input) 

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal 
nonzeros in the factor as output from subroutine LSCXD/DLSCXD.   (Input) 

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine 
LSCXD/DLSCXD.   (Input)  
The row subscripts of column J are stored from location INZSUB(J) to INZSUB  
(J + 1) � 1. 

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as output from 
subroutine LSCXD/DLSCXD.   (Input) 

RLNZ — Complex vector of length MAXNZ containing the off-diagonal nonzeros in the factor 
in column ordered format as output from subroutine LNFZD/DLNFZD.   (Input) 

ILNZ — Vector of length N +1 containing pointers to RLNZ as output from subroutine 
LSCXD/DLSCXD. The nonzeros in column J of the factor are stored from location 
ILNZ(J) to ILNZ(J + 1) � 1.   (Input)  
The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the factor 
in a compressed subscript data format. 

DIAGNL — Complex vector of length N containing the diagonals of the Cholesky factor as 
output from subroutine LNFZD/DLNFZD.   (Input) 

IPER — Vector of length N containing the ordering as output from subroutine 
LSCXD/DLSCXD.   (Input)  
IPER(I) = K indicates that the original row K is the new row I. 

B — Complex vector of length N containing the right-hand side.   (Input) 

X — Complex vector of length N containing the solution.   (Output) 
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FORTRAN 90 Interface 
Generic: CALL LFSZD (N, MAXZUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL, 

 IPER, B, X) 

Specific: The specific interface names are S_LFSZD and D_LFSZD. 

FORTRAN 77 Interface 
Single: CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ,            

DIAGNL, IPER, B, X) 

Double:  The double precision name is DLFSZD. 

Example 
As an example, consider the 3 � 3 linear system: 

2 0 1 0
1 4 0 1 2

0 1 2 10 0

i i
A i i i

i i

� � �� �
� �� � � � �� �
� �� �� 	

 

Let 

� �1 1 ,2 2 ,3 3Tx i i i� � � �  

so that Ax� = (�2 + 2i, 5 + 15i, 36 + 28i)T, and 

� �2 3 3 ,2 2 ,1 1Tx i i i� � � �  

so that Ax� = (2 + 6i, 7 � 5i, 16 + 8i)T. The number of nonzeros in the lower triangle of A is  
nz = 5. The sparse coordinate form for the lower triangle of A is given by:  

irow 1 2 3 2 3
jcol 1 2 3 1 2

a 2 0 4 0 10 0 1 1 2i i i i i� � � � � �

 

or equivalently by 

irow 3 2 3 1 2
jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i� � � � � �

 

      USE IMSL_LIBRARIES 

      INTEGER    N, NZ, NRLNZ 
      PARAMETER  (N=3, NZ=5, NRLNZ=5) 
! 
      INTEGER    IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),& 
                 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,& 
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                 NZSUB(3*NZ) 
      COMPLEX    A(NZ), B1(N), B2(N), DIAGNL(N), RLNZ(NRLNZ), X(N) 
      REAL       RPARAM(2) 
! 
      DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/ 
      DATA B1/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/ 
      DATA B2/(2.0,6.0), (7.0,5.0), (16.0,8.0)/ 
      DATA IROW/1, 2, 3, 2, 3/ 
      DATA JCOL/1, 2, 3, 1, 2/ 
!                                 Select minimum degree ordering 
!                                 for multifrontal method 
      IJOB = 3 
!                                 Use default workspace 
      MAXSUB = 3*NZ 
      CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, & 
                  IJOB=IJOB, MAXSUB=MAXSUB, IPER=IPER, ISPACE=ISPACE) 
!                                 Check if NRLNZ is large enough 
      IF (NRLNZ .GE. MAXNZ) THEN 
!                                 Choose multifrontal method 
         IJOB = 2 
         CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB,& 
                    MAXNZ, ILNZ, IPER, INVPER, ISPACE, DIAGNL,& 
                    RLNZ, RPARAM, IJOB=IJOB) 
!                                 Solve A * X1 = B1 
         CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,& 
                    IPER, B1, X) 
!                                 Print X1 
         CALL WRCRN (’ x1 ’, X, 1, N,1) 
!                                 Solve A * X2 = B2 
         CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,& 
                    IPER, B2, X) 
!                                 Print X2 
         CALL WRCRN (’ x2 ’, X, 1, N,1) 
      END IF 
! 
      END 

Output 
 
                          x1 
              1                2                3 
( 1.000, 1.000)  ( 2.000, 2.000)  ( 3.000, 3.000) 
 
                         x2 
              1                2                3 
( 3.000, 3.000)  ( 2.000, 2.000)  ( 1.000, 1.000) 
 

Comments 
Informational error 

Type  Code  

4    1 The input matrix is numerically singular. 
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Description 
Consider the linear equation 

Ax = b 

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix 
A requires one complex and two integer vectors. The complex array a contains all the nonzeros 
in the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two 
integer arrays irow and jcol, each of length nz, contain the row and column indices for these 
entries in A. That is 

Airow�i�,icol�i� = a(i),  i = 1, �, nz 

irow(i) � jcol(i) i = 1, �, nz 

with all other entries in the lower triangle of A zero. 

The routine LFSZD computes the solution of the linear system given its Cholesky factorization. 
The factorization is performed by calling LSCXD (page 327) followed by LNFZD (page 344). The 
routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set up 
the sparse data structure for the Cholesky factor, L. Then the routine LNFZD produces the 
numerical entries in L so that we have 

P APT = LLH 

Here P is the permutation matrix determined by the ordering. 

The numerical computations can be carried out in one of two ways. The first method performs 
the factorization using a multifrontal technique. This option requires more storage but in certain 
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed 
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987), 
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George 
and Liu (1981). This is just the standard factorization method based on the sparse compressed 
storage scheme. Finally, the solution x is obtained by the following calculations: 

1) Ly� = Pb 

  2) LH y� = y� 

3) x = PT y��

LSLTO 
Solves a complex sparse Hermitian positive definite system of linear equations, given the 
Cholesky factorization of the coefficient matrix. 

Required Arguments 
A — Real vector of length 2N � 1 containing the first row of the coefficient matrix followed 

by its first column beginning with the second element.   (Input) 
See Comment 2. 
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B — Real vector of length N containing the right-hand side of the linear system.   (Input) 

X — Real vector of length N containing the solution of the linear system.   (Output)  
If B is not needed then B and X may share the same storage locations. 

Optional Arguments 
N — Order of the matrix represented by A.   (Input) 

Default: N = (size (A,1) +1)/2 

IPATH — Integer flag.   (Input)  
IPATH = 1 means the system Ax = B is solved. 
IPATH = 2 means the system AT x = B is solved. 
Default: IPATH =1. 

FORTRAN 90 Interface 
Generic: CALL LSLTO (A, B, X [,…]) 

Specific: The specific interface names are S_LSLTO and D_LSLTO. 

FORTRAN 77 Interface 
Single: CALL LSLTO (N, A, B, IPATH, X) 

Double:  The double precision name is DLSLTO. 

Example 
A system of four linear equations is solved. Note that only the first row and column of the 
matrix A are entered. 

      USE LSLTO_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=4) 
      REAL       A(2*N-1), B(N), X(N) 
!                                 Set values for  A, and B 
! 
!                                 A = (  2   -3   -1    6  ) 
!                                     (  1    2   -3   -1  ) 
!                                     (  4    1    2   -3  ) 
!                                     (  3    4    1    2  ) 
! 
!                                 B = ( 16  -29   -7    5  ) 
! 
      DATA A/2.0, -3.0, -1.0, 6.0, 1.0, 4.0, 3.0/ 
      DATA B/16.0, -29.0, -7.0, 5.0/ 
!                                 Solve AX = B 
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      CALL LSLTO (A, B, X) 
!                                 Print results 
      CALL WRRRN (’X’, X, 1, N, 1) 
      END 

Output 
 
                 X 
     1       2       3       4 
-2.000  -1.000   7.000   4.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LTO/DL2LTO. The 

reference is: 

CALL L2LTO (N, A, B, IPATH, X, WK) 

The additional argument is: 

WK — Work vector of length 2N � 2. 

2. Because of the special structure of Toeplitz matrices, the first row and the first column 
of a Toeplitz matrix completely characterize the matrix. Hence, only the elements  
A(1, 1), �, A(1, N), A(2, 1), �, A(N, 1) need to be stored. 

Description 
Toeplitz matrices have entries that are constant along each diagonal, for example,  

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

p p p p
p p p p

A
p p p p
p p p p

�

� �

� � �

� �
� �
� ��
� �
� �
� �� �

 

The routine LSLTO is based on the routine TSLS in the TOEPLITZ package, see Arushanian et 
al. (1983). It is based on an algorithm of Trench (1964). This algorithm is also described by 
Golub and van Loan (1983), pages 125�133. 

LSLTC 
Solves a complex Toeplitz linear system. 

Required Arguments 
A — Complex vector of length 2N � 1 containing the first row of the coefficient matrix 

followed by its first column beginning with the second element.   (Input)  
See Comment 2. 



 

 
 

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 355 

 

 

 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 

X — Complex vector of length N containing the solution of the linear system.   (Output) 

Optional Arguments 
N — Order of the matrix represented by A.   (Input) 

Default: N = size (A,1). 

IPATH — Integer flag.   (Input) 
IPATH = 1 means the system Ax = B is solved. 
IPATH = 2 means the system ATx = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSLTC (A, B, X [,…]) 

Specific: The specific interface names are S_LSLTC and D_LSLTC. 

FORTRAN 77 Interface 
Single: CALL LSLTC (N, A, B, IPATH, X) 

Double:  The double precision name is DLSLTC. 

Example 
A system of four complex linear equations is solved. Note that only the first row and column of 
the matrix A are entered. 

      USE LSLTC_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      PARAMETER  (N=4) 
      COMPLEX    A(2*N-1), B(N), X(N) 
!                                 Set values for  A and B 
! 
!                                 A = ( 2+2i    -3     1+4i   6-2i ) 
!                                     (  i      2+2i   -3     1+4i ) 
!                                     ( 4+2i     i     2+2i   -3   ) 
!                                     ( 3-4i    4+2i    i     2+2i ) 
! 
!                                 B = ( 6+65i  -29-16i  7+i  -10+i ) 
! 
      DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0), (0.0,1.0),& 
            (4.0,2.0), (3.0,-4.0)/ 
      DATA B/(6.0,65.0), (-29.0,-16.0), (7.0,1.0), (-10.0,1.0)/ 
!                                 Solve AX = B 
      CALL LSLTC (A, B, X) 
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!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
      END 

Output 
 
                                   X 
              1                2                3                4 
(-2.000, 0.000)  (-1.000,-5.000)  ( 7.000, 2.000)  ( 0.000, 4.000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LTC/DL2LTC. The 

reference is: 

CALL L2LTC (N, A, B, IPATH, X, WK) 

The additional argument is 

WK — Complex work vector of length 2N � 2. 

2. Because of the special structure of Toeplitz matrices, the first row and the first column 
of a Toeplitz matrix completely characterize the matrix. Hence, only the elements A(1, 
1), �, A(1, N), A(2, 1), �, A(N, 1) need to be stored. 

Description 
Toeplitz matrices have entries which are constant along each diagonal, for example,  

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

p p p p
p p p p

A
p p p p
p p p p

�

� �

� � �

� �
� �
� ��
� �
� �
� �� �

 

The routine LSLTC is based on the routine TSLC in the TOEPLITZ package, see Arushanian et 
al. (1983). It is based on an algorithm of Trench (1964). This algorithm is also described by 
Golub and van Loan (1983), pages 125�133.�

LSLCC 
Solves a complex circulant linear system. 

Required Arguments 
A — Complex vector of length N containing the first row of the coefficient matrix.   (Input) 

B — Complex vector of length N containing the right-hand side of the linear system.   (Input) 
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X — Complex vector of length N containing the solution of the linear system.   (Output) 

Optional Arguments 
N — Order of the matrix represented by A.   (Input) 

Default: N = size (A,1). 

IPATH — Integer flag.   (Input)  
IPATH = 1 means the system Ax = B is solved. 
IPATH = 2 means the system ATx = B is solved. 
Default: IPATH = 1. 

FORTRAN 90 Interface 
Generic: CALL LSLCC (A, B, X [,…]) 

Specific: The specific interface names are S_LSLCC and D_LSLCC. 

FORTRAN 77 Interface 
Single: CALL LSLCC (N, A, B, IPATH, X) 

Double:  The double precision name is DLSLCC. 

Example 
A system of four linear equations is solved. Note that only the first row of the matrix A is 
entered. 

      USE LSLCC_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    N 
      PARAMETER  (N=4) 
      COMPLEX    A(N), B(N), X(N) 
!                                 Set values for  A, and B 
! 
!                                 A = ( 2+2i -3+0i  1+4i  6-2i) 
! 
!                                 B = (6+65i  -41-10i  -8-30i  63-3i) 
! 
      DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0)/ 
      DATA B/(6.0,65.0), (-41.0,-10.0), (-8.0,-30.0), (63.0,-3.0)/ 
!                                 Solve AX = B     (IPATH = 1) 
      CALL LSLCC (A, B, X) 
!                                 Print results 
      CALL WRCRN (’X’, X, 1, N, 1) 
      END 
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Output 
 
              1                2                3                4 
(-2.000, 0.000)  (-1.000,-5.000)  ( 7.000, 2.000)  ( 0.000, 4.000) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LCC/DL2LCC. The 

reference is: 

CALL L2LCC (N, A, B, IPATH, X, ACOPY, WK) 

The additional arguments are as follows: 

ACOPY — Complex work vector of length N. If A is not needed, then A and ACOPY 
may be the same. 

WK — Work vector of length 6N + 15. 

2. Informational error 
Type Code 

4     2 The input matrix is singular. 

3. Because of the special structure of circulant matrices, the first row of a circulant matrix 
completely characterizes the matrix. Hence, only the elements A(1, 1), �, A(1, N) need 
to be stored. 

Description 
Circulant matrices have the property that each row is obtained by shifting the row above it one 
place to the right. Entries that are shifted off at the right re-enter at the left. For example, 

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

p p p p
p p p p

A
p p p p
p p p p

� �
� �
� ��
� �
� �
� �� �

 

If qk = p�k and the subscripts on p and q are interpreted modulo N, then 

1 1
1 1

( ) ( )
N N

j i j i j i i i
i i

Ax p x q x q x
� � � �

� �

� � � �� �  

where q * x is the convolution of q and x. By the convolution theorem, if q * x = b, then  

ˆˆ ˆ ˆ, where q x b q� �  

is the discrete Fourier transform of q as computed by the IMSL routine FFTCF and � denotes 
elementwise multiplication. By division, 
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ˆˆ ˆx b q� �  

where � denotes elementwise division. The vector x is recovered from 

x̂  

through the use of IMSL routine FFTCB. 

To solve AT x = b, use the vector p instead of q in the above algorithm. 

PCGRC 
Solves a real symmetric definite linear system using a preconditioned conjugate gradient method 
with reverse communication. 

Required Arguments 
IDO — Flag indicating task to be done.   (Input/Output)  

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set Z = AP, 
where A is the matrix, and call PCGRC again. If the routine returns with IDO = 2, then 
set Z to the solution of the system MZ = R, where M is the preconditioning matrix, and 
call PCGRC again. If the routine returns with IDO = 3, then the iteration has converged 
and X contains the solution. 

X — Array of length N containing the solution.   (Input/Output)  
On input, X contains the initial guess of the solution. On output, X contains the solution 
to the system. 

P — Array of length N.   (Output)  
Its use is described under IDO. 

R — Array of length N.   (Input/Output)  
On initial input, it contains the right-hand side of the linear system. On output, it 
contains the residual. 

Z — Array of length N.   (Input)  
When IDO = 1, it contains AP, where A is the linear system. When IDO = 2, it contains 
the solution of MZ = R, where M is the preconditioning matrix. When 
IDO = 0, it is ignored. Its use is described under IDO. 

Optional Arguments 
N — Order of the linear system.   (Input) 

Default: N = size (X,1). 

RELERR — Relative error desired.   (Input) 
Default: RELERR = 1.e-5 for single precision and 1.d-10 for double precision. 
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ITMAX — Maximum number of iterations allowed.   (Input) 
Default: ITMAX = N. 

FORTRAN 90 Interface 
Generic: CALL PCGRC (IDO, X, P, R, Z [,…]) 

Specific: The specific interface names are S_PCGRC and D_LPCGRC. 

FORTRAN 77 Interface 
Single: CALL PCGRC (IDO, N, X, P, R, Z, RELERR, ITMAX) 

Double:  The double precision name is DPCGRC. 

Example 
In this example, the solution to a linear system is found. The coefficient matrix A is stored as a 
full matrix. The preconditioning matrix is the diagonal of A. This is called the Jacobi 
preconditioner. It is also used by the IMSL routine JCGRC on page 365. 

      USE PCGRC_INT 
      USE MURRV_INT 
      USE WRRRN_INT 
      USE SCOPY_INT 

      INTEGER    LDA, N 
      PARAMETER  (N=3, LDA=N) 
! 
      INTEGER    IDO, ITMAX, J 
      REAL       A(LDA,N), B(N), P(N), R(N), X(N), Z(N) 
!                                  (   1,  -3,   2   ) 
!                            A =   (  -3,  10,  -5   ) 
!                                  (   2,  -5,   6   ) 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
!                            B =   (   27.0, -78.0, 64.0  ) 
      DATA B/27.0, -78.0, 64.0/ 
!                                 Set R to right side 
      CALL SCOPY (N, B, 1, R, 1) 
!                                 Initial guess for X is B 
      CALL SCOPY (N, B, 1, X, 1) 
! 
      ITMAX  = 100 
      IDO    = 0 
   10 CALL PCGRC (IDO, X, P, R, Z, ITMAX=ITMAX) 
      IF (IDO .EQ. 1) THEN 
!                                 Set z = Ap 
         CALL MURRV (A, P, Z) 
         GO TO 10 
      ELSE IF (IDO .EQ. 2) THEN 
!                                 Use diagonal of A as the 
!                                 preconditioning matrix M 
!                                 and set z = inv(M)*r 
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         DO 20  J=1, N 
            Z(J) = R(J)/A(J,J) 
   20    CONTINUE 
         GO TO 10 
      END IF 
!                                 Print the solution 
      CALL WRRRN (’Solution’, X) 
! 
      END 

Output 
 
Solution 
1   1.001 
2  -4.000 
3   7.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of P2GRC/DP2GRC. The 

reference is: 

CALL P2GRC (IDO, N, X, P, R, Z, RELERR, ITMAX, TRI, WK, IWK) 

The additional arguments are as follows: 

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix (in band 
symmetric form) whose largest eigenvalue is approximately the same as the 
largest eigenvalue of the iteration matrix. The workspace arrays TRI, WK and 
IWK should not be changed between the initial call with IDO = 0 and 
PCGRC/DPCGRC returning with IDO = 3. 

WK — Workspace of length 5 * ITMAX. 

IWK — Workspace of length ITMAX. 

2. Informational errors 
Type Code 

4     1  The preconditioning matrix is singular. 
4     2 The preconditioning matrix is not definite. 
4     3 The linear system is not definite. 
4     4 The linear system is singular. 
4     5 No convergence after ITMAX iterations. 

Description 
Routine PCGRC solves the symmetric definite linear system Ax = b using the preconditioned 
conjugate gradient method. This method is described in detail by Golub and Van Loan (1983, 
Chapter 10), and in Hageman and Young (1981, Chapter 7). 
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The preconditioning matrix, M, is a matrix that approximates A, and for which the linear system 
Mz = r is easy to solve. These two properties are in conflict; balancing them is a topic of much 
current research. 

The number of iterations needed depends on the matrix and the error tolerance RELERR. As a 
rough guide, ITMAX = N��� is often sufficient when N >> 1. See the references for further 
information. 

Let M be the preconditioning matrix, let b, p, r, x and z be vectors and let � be the desired 
relative error. Then the algorithm used is as follows. 

 = �1 

p� = x� 

r� = b � Ap 

For k = 1, �, itmax 

 zk = M��rk 

 If k = 1 then 

  �k = 1 

  pk = zk 

Else 

  1 1/T T
k k k k kz r z r�

� �

�  

  k k k kp z p�� �  

 End if 

 1 1 /
k

T T
k k k k k

k k k k

k k k k

z Ap

z r z p
x x p
r r z

�

�

�

� �

�

�

� �

� �

 

 If (||zk||� � �(1 � )||xk||�) Then 
  Recompute  

  If (||zk||� � �(1 � )||xk||�) Exit 

 End if end loop 

Here  is an estimate of 	(G), the largest eigenvalue of the iteration matrix  G = I � M�� A. 
The stopping criterion is based on the result (Hageman and Young, 1981, pages 148�151) 

max

1
1 ( )

k M k M

M k M

x x z
x G x�

�

�

�

 

Where  
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2 T
Mx x Mx�  

It is known that 

� � � � � �max 1 max 2 max 1T T G� � �� � � ��  

where the Tn are the symmetric, tridiagonal matrices 

1 2

2 2 3

3 3 4
nT

� �

� � �

� � �

� �
� �
� ��
� �
� �
� �� �� � �

 

with  

1 1 11 / 1/ , 1 1/k k k k� � � � � �
�

� � � � �  

and 

1/k k k� � �
�

�  

The largest eigenvalue of Tk is found using the routine EVASB. Usually this eigenvalue 
computation is needed for only a few of the iterations. 

Example 2 
In this example, a more complicated preconditioner is used to find the solution of a linear 
system which occurs in a finite-difference solution of Laplace’s equation on a 4 � 4 grid. The 
matrix is 

4 1 0 1
1 4 1 0 1

0 1 4 1 0 1
1 0 1 4 1 0 1

1 0 1 4 1 0 1
1 0 1 4 1 0 1

1 0 1 4 1 0
1 0 1 4 1

1 0 1 4

A

� �� �
� �� � �� �
� �� � �
� �
� � � �� �
� �� � � � �
� �

� � � �� �
� �� � �
� �

� � �� �
� �

� �� �� �

 

The preconditioning matrix M is the symmetric tridiagonal part of A, 
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1 4 1
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1 4 1
1 4 1

1 4 1
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1 4
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Note that M, called PRECND in the program, is factored once. 
      USE IMSL_LIBRARIES 
      INTEGER    LDA, LDPRE, N, NCODA, NCOPRE 
      PARAMETER  (N=9, NCODA=3, NCOPRE=1, LDA=2*NCODA+1,& 
                LDPRE=NCOPRE+1) 
! 
      INTEGER    IDO, ITMAX 
      REAL       A(LDA,N), P(N), PRECND(LDPRE,N), PREFAC(LDPRE,N),& 
                R(N), RCOND, RELERR, X(N), Z(N) 
!                                 Set A in band form 
      DATA A/3*0.0, 4.0, -1.0, 0.0, -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0,& 
          -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0,& 
          4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0,& 
          -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0,& 
          -1.0, 4.0, -1.0, 2*0.0, -1.0, 0.0, -1.0, 4.0, -1.0, 2*0.0,& 
          -1.0, 0.0, -1.0, 4.0, 3*0.0/ 
!                                 Set PRECND in band symmetric form  
      DATA PRECND/0.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0,& 
          -1.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0/ 
!                                 Right side is (1, ..., 1) 
      R = 1.0E0 
!                                 Initial guess for X is 0 
      X = 0.0E0 
!                                 Factor the preconditioning matrix 
      CALL LFCQS (PRECND, NCOPRE, PREFAC, RCOND) 
! 
      ITMAX  = 100 
      RELERR = 1.0E-4 
      IDO    = 0 
   10 CALL PCGRC (IDO, X, P, R, Z, RELERR=RELERR, ITMAX=ITMAX) 
      IF (IDO .EQ. 1) THEN 
!                                 Set z = Ap 
         CALL MURBV (A, NCODA, NCODA, P, Z) 
         GO TO 10 
      ELSE IF (IDO .EQ. 2) THEN 
!                                 Solve PRECND*z = r for r 
         CALL LSLQS (PREFAC, NCOPRE, R, Z) 
         GO TO 10 
      END IF 
!                                 Print the solution 
      CALL WRRRN (’Solution’, X) 
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! 
      END 

Output 
 
Solution 
1   0.955 
2   1.241 
3   1.349 
4   1.578 
5   1.660 
6   1.578 
7   1.349 
8   1.241 
9   0.955 
 

JCGRC 
Solves a real symmetric definite linear system using the Jacobi-preconditioned conjugate gradient 
method with reverse communication. 

Required Arguments 
IDO — Flag indicating task to be done.   (Input/Output)  

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set  
Z = A � P, where A is the matrix, and call JCGRC again. If the routine returns with IDO = 
2, then the iteration has converged and X contains the solution. 

DIAGNL — Vector of length N containing the diagonal of the matrix.   (Input)  
Its elements must be all strictly positive or all strictly negative. 

X — Array of length N containing the solution.   (Input/Output)  
On input, X contains the initial guess of the solution. On output, X contains the solution 
to the system. 

P — Array of length N.   (Output)  
Its use is described under IDO. 

R — Array of length N.   (Input/Output)  
On initial input, it contains the right-hand side of the linear system. On output, it 
contains the residual. 

Z — Array of length N.   (Input)  
When IDO = 1, it contains AP, where A is the linear system. When IDO = 0, it is 
ignored. Its use is described under IDO. 
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Optional Arguments 
N — Order of the linear system.   (Input) 

Default: N = size (X,1). 

RELERR — Relative error desired.   (Input) 
Default: RELERR = 1.e-5 for single precision and 1.d-10 for double precision. 

ITMAX — Maximum number of iterations allowed.   (Input) 
Default: ITMAX = 100. 

FORTRAN 90 Interface 
Generic: CALL JCGRC (IDO, DIAGNL, X, P, R, Z [,…]) 

Specific: The specific interface names are S_JCGRC and D_JPCGRC. 

FORTRAN 77 Interface 
Single: CALL JCGRC (IDO, N, DIAGNL, X, P, R, Z, RELERR, ITMAX) 

Double:  The double precision name is DJCGRC. 

Example 
In this example, the solution to a linear system is found. The coefficient matrix A is stored as a 
full matrix. 

      USE IMSL_LIBRARIES 

      INTEGER    LDA, N 
      PARAMETER  (LDA=3, N=3) 
! 
      INTEGER    IDO, ITMAX 
      REAL       A(LDA,N), B(N), DIAGNL(N), P(N), R(N), X(N), & 
                 Z(N) 
!                                  (   1,  -3,   2   ) 
!                            A =   (  -3,  10,  -5   ) 
!                                  (   2,  -5,   6   ) 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
!                            B =   (   27.0, -78.0, 64.0  ) 
      DATA B/27.0, -78.0, 64.0/ 
!                                 Set R to right side 
      CALL SCOPY (N, B, 1, R, 1) 
!                                 Initial guess for X is B 
      CALL SCOPY (N, B, 1, X, 1) 
!                                 Copy diagonal of A to DIAGNL 
      CALL SCOPY (N, A(:, 1), LDA+1, DIAGNL, 1) 
!                                 Set parameters 
      ITMAX  = 100 
      IDO    = 0 
   10 CALL JCGRC (IDO, DIAGNL, X, P, R, Z, ITMAX=ITMAX) 
      IF (IDO .EQ. 1) THEN 
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!                                 Set z = Ap 
         CALL MURRV (A, P, Z) 
         GO TO 10 
      END IF 
!                                 Print the solution 
      CALL WRRRN (’Solution’, X) 
! 
      END 

Output 
 
Solution 
1   1.001 
2  -4.000 
3   7.000 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of J2GRC/DJ2GRC. The 

reference is: 

CALL J2GRC (IDO, N, DIAGNL, X, P, R, Z, RELERR, ITMAX, TRI, WK, IWK) 

The additional arguments are as follows: 

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix (in band 
symmetric form) whose largest eigenvalue is approximately the same as the 
largest eigenvalue of the iteration matrix. The workspace arrays TRI, WK and 
IWK should not be changed between the initial call with IDO = 0 and 
JCGRC/DJCGRC returning with IDO = 2. 

WK — Workspace of length 5 * ITMAX. 

IWK — Workspace of length ITMAX. 

2. Informational errors 
Type Code 

4     1 The diagonal contains a zero. 
4     2 The diagonal elements have different signs. 
4     3 No convergence after ITMAX iterations. 
4     4 The linear system is not definite. 
4     5 The linear system is singular. 

Description 
Routine JCGRC solves the symmetric definite linear system Ax = b using the Jacobi conjugate 
gradient method. This method is described in detail by Golub and Van Loan (1983, Chapter 10), 
and in Hageman and Young (1981, Chapter 7). 
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This routine is a special case of the routine PCGRC, with the diagonal of the matrix A used as the 
preconditioning matrix. For details of the algorithm see PCGRC, page 359. 

The number of iterations needed depends on the matrix and the error tolerance RELERR. As a 
rough guide, ITMAX = N  is often sufficient when N » 1. See the references for further 
information. 

GMRES 
Uses the Generalized Minimal Residual Method with reverse communication to generate an 
approximate solution of Ax = b. 

Required Arguments 
IDO— Flag indicating task to be done.   (Input/Output) 

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set Z = AP, 
where A is the matrix, and call GMRES again. If the routine returns with IDO = 2, then 
set Z to the solution of the system MZ = P, where M is the preconditioning matrix, and 
call GMRES again. If the routine returns with IDO = 3, set Z = AM-1P, and call GMRES 
again. If the routine returns with IDO = 4, the iteration has converged, and X contains 
the approximate solution to the linear system. 

X — Array of length N containing an approximate solution.   (Input/Output) 
On input, X contains an initial guess of the solution. On output, X contains the 
approximate solution. 

P — Array of length N.   (Output) 
Its use is described under IDO. 

R — Array of length N.   (Input/Output) 
On initial input, it contains the right-hand side of the linear system. On output, it 
contains the residual, b � Ax. 

Z — Array of length N.   (Input) 
When IDO = 1, it contains AP, where A is the coefficient matrix. When IDO = 2, it 
contains M-1P. When IDO = 3, it contains AM-1P. When IDO = 0, it is ignored. 

TOL — Stopping tolerance.   (Input/Output) 
The algorithm attempts to generate a solution x such that |b � Ax| � TOL*|b|. On output, 
TOL contains the final residual norm. 

Optional Arguments 
N — Order of the linear system.   (Input) 

Default: N = size (X,1). 
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FORTRAN 90 Interface 
Generic: CALL GMRES (IDO, X, P, R, Z, TOL [,…]) 

Specific: The specific interface names are S_GMRES and D_GMRES. 

FORTRAN 77 Interface 
Single: CALL GMRES (IDO, N, X, P, R, Z, TOL) 

Double:  The double precision name is DGMRES. 

Example 1 
This is a simple example of GMRES usage. A solution to a small linear system is found. The 
coefficient matrix A is stored as a full matrix, and no preconditioning is used. Typically, 
preconditioning is required to achieve convergence in a reasonable number of iterations. 

      USE IMSL_LIBRARIES 
!                    Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (N=3, LDA=N) 
!                                  Specifications for local variables 
      INTEGER    IDO, NOUT 
      REAL       P(N), TOL, X(N), Z(N) 
      REAL       A(LDA,N), R(N) 
      SAVE       A, R 
!                                  Specifications for intrinsics 
      INTRINSIC  SQRT 
      REAL       SQRT 
!                                  ( 33.0  16.0  72.0) 
!                              A = (-24.0 -10.0 -57.0) 
!                                  ( 18.0 -11.0   7.0) 
! 
!                              B = (129.0 -96.0   8.5) 
! 
      DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/ 
      DATA R/129.0, -96.0, 8.5/ 
! 
      CALL UMACH (2, NOUT) 
! 
!                                  Initial guess = (0 ... 0) 
! 
      X = 0.0E0 
!                                  Set stopping tolerance to 
!                                  square root of machine epsilon 
      TOL = AMACH(4) 
      TOL = SQRT(TOL) 
      IDO = 0 
   10 CONTINUE 
      CALL GMRES (IDO, X, P, R, Z, TOL) 
      IF (IDO .EQ. 1) THEN 
!                                  Set z = A*p 
        CALL MURRV (A, P, Z) 
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         GO TO 10 
      END IF 
! 
      CALL WRRRN ('Solution', X, 1, N, 1) 
      WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL 
      END 

Output 
 
      Solution 
    1       2       3    
1.000   1.500   1.000  
Residual =     0.29746E-05 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G2RES/DG2RES. The 

reference is: 

CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, USRNPR, USRNRM, WORK) 

The additional arguments are as follows: 

INFO — Integer vector of length 10 used to change parameters of GMRES.   
(Input/Output).  

For any components INFO(1) ... INFO(7) with value zero on input, the default value 
is used.  
INFO(1) = IMP, the flag indicating the desired implementation. 

IMP Action 
1  first Gram-Schmidt implementation 
2  second Gram-Schmidt implementation 
3  first Householder implementation 
4  second Householder implementation 
Default: IMP = 1 

INFO(2) = KDMAX, the maximum Krylor subspace dimension, i.e., the maximum 
allowable number of GMRES iterations before restarting. It must satisfy  
1 � KDMAX � N. 
Default: KDMAX = min(N, 20) 

INFO(3) = ITMAX, the maximum number of GMRES iterations allowed. 
Default: ITMAX = 1000 

INFO(4) = IRP, the flag indicating whether right preconditioning is used. 
If IRP = 0, no right preconditioning is performed. If IRP = 1, right 
preconditioning is performed. If IRP = 0, then IDO = 2 or 3 will not occur. 
Default: IRP = 0 
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INFO(5) = IRESUP, the flag that indicates the desired residual vector updating prior to 
restarting or on termination. 

IRESUP Action 

1 update by linear combination, restarting only 

2 update by linear combination, restarting and termination 

3 update by direct evaluation, restarting only 

4 update by direct evaluation, restarting and termination 

Updating by direct evaluation requires an otherwise unnecessary matrix-vector 
product. The alternative is to update by forming a linear combination of various 
available vectors. This may or may not be cheaper and may be less reliable if the 
residual vector has been greatly reduced. If IRESUP = 2 or 4, then the residual vector 
is returned in WORK(1), ..., WORK(N). This is useful in some applications but costs 
another unnecessary residual update. It is recommended that IRESUP = 1 or 2 be used, 
unless matrix-vector products are inexpensive or great residual reduction is required. 
In this case use IRESUP = 3 or 4. The meaning of “inexpensive” varies with IMP as 
follows: 
IMP � 

1 (KDMAX + 1) *N flops 

2 N flops 

3 (2*KDMAX + 1) *N flops 

4 (2*KDMAX + 1) *N flops 

“Great residual reduction” means that TOL is only a few orders of magnitude larger 
than machine epsilon. 
Default: IRESUP = 1 

INFO(6) = flag for indicating the inner product and norm used in the Gram-Schmidt 
implementations. If INFO(6) = 0, sdot and snrm2, from BLAS, are used. If 
INFO(6) = 1, the user must provide the routines, as specified under arguments 
USRNPR and USRNRM. 
Default: INFO(6) = 0 

INFO(7) = IPRINT, the print flag. If IPRINT = 0, no printing is performed. If 
IPRINT = 1, print the iteration numbers and residuals. 
Default: IPRINT = 0 

INFO(8) = the total number of GMRES iterations on output. 

INFO(9) = the total number of matrix-vector products in GMRES on output. 

INFO(10) = the total number of right preconditioner solves in GMRES on output if 
IRP = 1. 

USRNPR — User-supplied FUNCTION to use as the inner product in the Gram-
Schmidt implementation, if INFO(6) = 1. If INFO(6) = 0, the dummy function 
G8RES/DG8RES may be used. The usage is  
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REAL FUNCTION USRNPR (N, SX, INCX, SY, INCY) 

N — Length of vectors X and Y.   (Input) 

SX — Real vector of length MAX(N*IABS(INCX),1).   (Input) 

INCX — Displacement between elements of SX.   (Input) 
X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or  
SX(1+(I-N)*INCX) if INCX is less than 0. 

SY — Real vector of length MAX(N*IABS(INXY),1).   (Input) 

INCY — Displacement between elements of SY.   (Input) 
Y(I) is defined to be SY(1+(I-1)*INCY) if INCY is greater than 0, or  
SY(1+(I-N)*INCY) if INCY is less than zero.  
USRNPR must be declared EXTERNAL in the calling program. 

USRNRM — User-supplied FUNCTION to use as the norm ||X|| in the Gram-Schmidt 
implementation, if INFO(6) = 1. If INFO(6) = 0, the dummy function 
G9RES/DG9RES may be used.The usage is  
REAL FUNCTION USRNRM (N, SX, INCX) 

N — Length of vectors X and Y.   (Input) 

SX — Real vector of length MAX(N*IABS(INCX),1).   (Input) 

INCX — Displacement between elements of SX.   (Input) 
X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or  
SX(1+(I-N)*INCX) if INCX is less than 0. 
USRNRM must be declared EXTERNAL in the calling program. 

WORK — Work array whose length is dependent on the chosen implementation. 

IMP length of WORK 
1 N*(KDMAX + 2) + KDMAX**2 + 3 *KDMAX + 2 

2 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 1 

3 N*(KDMAX + 2) + 3 *KDMAX + 2 

4 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 2 

Description 
The routine GMRES implements restarted GMRES with reverse communication to generate an 
approximate solution to Ax = b. It is based on GMRESD by Homer Walker. 

There are four distinct GMRES implementations, selectable through the parameter vector INFO. 
The first Gram-Schmidt implementation, INFO(1) = 1, is essentially the original algorithm by 
Saad and Schultz (1986). The second Gram-Schmidt implementation, developed by Homer 
Walker and Lou Zhou, is simpler than the first implementation. The least squares problem is 
constructed in upper-triangular form and the residual vector updating at the end of a GMRES 
cycle is cheaper. The first Householder implementation is algorithm 2.2 of Walker (1988), but 
with more efficient correction accumulation at the end of each GMRES cycle. The second 
Householder implementation is algorithm 3.1 of Walker (1988). The products of Householder 
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transformations are expanded as sums, allowing most work to be formulated as large scale 
matrix-vector operations. Although BLAS are used wherever possible, extensive use of Level 2 
BLAS in the second Householder implementation may yield a performance advantage on 
certain computing environments. 

The Gram-Schmidt implementations are less expensive than the Householder, the latter 
requiring about twice as much arithmetic beyond the coefficient matrix/vector products. 
However, the Householder implementations may be more reliable near the limits of residual 
reduction. See Walker (1988) for details. Issues such as the cost of coefficient matrix/vector 
products, availability of effective preconditioners, and features of particular computing 
environments may serve to mitigate the extra expense of the Householder implementations. 

Additional Examples 

Example 2 
This example solves a linear system with a coefficient matrix stored in coordinate form, the 
same problem as in the document example for LSLXG, page 297. Jacobi preconditioning is used, 
i.e. the preconditioning matrix M is the diagonal matrix with Mii = Aii, for i = 1, �, n. 

      USE IMSL_LIBRARIES 
      INTEGER    N, NZ 
 
      PARAMETER  (N=6, NZ=15) 
 
!                                  Specifications for local variables 
      INTEGER    IDO, INFO(10), NOUT 
      REAL       P(N), TOL, WORK(1000), X(N), Z(N) 
      REAL       DIAGIN(N), R(N) 
!                                  Specifications for intrinsics 
      INTRINSIC  SQRT 
      REAL       SQRT 
!                                  Specifications for subroutines 
      EXTERNAL   AMULTP 
!                                  Specifications for functions 
      EXTERNAL   G8RES, G9RES 
! 
      DATA DIAGIN/0.1, 0.1, 0.0666667, 0.1, 1.0, 0.16666667/ 
      DATA R/10.0, 7.0, 45.0, 33.0, -34.0, 31.0/ 
! 
      CALL UMACH (2, NOUT) 
!                                  Initial guess = (1 ... 1) 
      X = 1.0E0 
!                                  Set up the options vector INFO 
!                                  to use preconditioning 
      INFO = 0 
      INFO(4) = 1 
!                                  Set stopping tolerance to 
!                                  square root of machine epsilon 
      TOL = AMACH(4) 
      TOL = SQRT(TOL) 
      IDO = 0 
   10 CONTINUE 
      CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK) 
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      IF (IDO .EQ. 1) THEN 
!                                  Set z = A*p 
         CALL AMULTP (P, Z) 
         GO TO 10 
      ELSE IF (IDO .EQ. 2) THEN 
! 
!                                  Set z = inv(M)*p 
!                                  The diagonal of inv(M) is stored 
!                                  in DIAGIN 
! 
         CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1) 
         GO TO 10 
      ELSE IF (IDO .EQ. 3) THEN 
! 
!                                  Set z = A*inv(M)*p 
! 
         CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1) 
         P = Z 

         CALL AMULTP (P, Z) 
         GO TO 10 
      END IF 
! 
      CALL WRRRN ('Solution', X) 
      WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL 
      END 
! 
      SUBROUTINE AMULTP (P, Z) 
      USE IMSL_LIBRARIES 
      INTEGER    NZ 
      PARAMETER  (NZ=15) 
!                                  SPECIFICATIONS FOR ARGUMENTS 
      REAL       P(*), Z(*) 
!                                  SPECIFICATIONS FOR PARAMETERS 
      INTEGER    N 
      PARAMETER  (N=6) 
!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I 
      INTEGER    IROW(NZ), JCOL(NZ) 
      REAL       A(NZ) 
      SAVE       A, IROW, JCOL 
!                                  SPECIFICATIONS FOR SUBROUTINES 
!                                  Define the matrix A 
! 
      DATA A/6.0, 10.0, 15.0, -3.0, 10.0, -1.0, -1.0, -3.0, -5.0, 1.0, & 
          10.0, -1.0, -2.0, -1.0, -2.0/ 
      DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/ 
      DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/ 
! 
      CALL SSET(N, 0.0, Z, 1) 
!                                  Accumulate the product A*p in z 
      DO 10  I=1, NZ 
         Z(IROW(I)) = Z(IROW(I)) + A(I)*P(JCOL(I)) 
   10 CONTINUE 
      RETURN 
      END 
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Output 
 Solution 
1   1.000 
2   2.000 
3   3.000 
4   4.000 
5   5.000 
6   6.000 
Residual =     0.25882E-05 
 

Example 3 
The coefficient matrix in this example corresponds to the five-point discretization of the 2-d 
Poisson equation with the Dirichlet boundary condition. Assuming the natural ordering of the 
unknowns, and moving all boundary terms to the right hand side, we obtain the block 
tridiagonal matrix 

T I
I

A
I

I T

�� �
� ��� ��
� ��
� �

�� �� �

� �

� �
 

where 

4 1
1

1
1 4

T

�� �
� ��� ��
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�� �� �

� �

� �
 

and I is the identity matrix. Discretizing on a k � k grid implies that T and I are both k � k, and 
thus the coefficient matrix A is k2 � k2. 

The problem is solved twice, with discretization on a 50 � 50 grid. During both solutions, use 
the second Householder implementation to take advantage of the large scale matrix/vector 
operations done in Level 2 BLAS. Also choose to update the residual vector by direct evaluation 
since the small tolerance will require large residual reduction. 

The first solution uses no preconditioning. For the second solution, we construct a block 
diagonal preconditioning matrix 

T
M

T

� �
� �� � �
� �� �

�  

M is factored once, and these factors are used in the forward solves and back substitutions 
necessary when GMRES returns with IDO = 2 or 3.  

Timings are obtained for both solutions, and the ratio of the time for the solution with no 
preconditioning to the time for the solution with preconditioning is printed. Though the exact 
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results are machine dependent, we see that the savings realized by faster convergence from 
using a preconditioner exceed the cost of factoring M and performing repeated forward and back 
solves. 

      USE IMSL_LIBRARIES 
      INTEGER    K, N 
      PARAMETER  (K=50, N=K*K) 
!                                  Specifications for local variables 
      INTEGER    IDO, INFO(10), IR(20), IS(20), NOUT 
      REAL       A(2*N), B(2*N), C(2*N), G8RES, G9RES, P(2*N), R(N), & 
                TNOPRE, TOL, TPRE, U(2*N), WORK(100000), X(N), & 
                Y(2*N), Z(2*N) 
!                                  Specifications for subroutines 
      EXTERNAL   AMULTP, G8RES, G9RES 
!                                  Specifications for functions 
      CALL UMACH (2, NOUT) 
!                                  Right hand side and initial guess  
!                                  to (1 ... 1) 
      R = 1.0E0 
      X = 1.0E0 
!                                  Use the 2nd Householder  
!                                  implementation and update the 
!                                  residual by direct evaluation 
      INFO = 0 
      INFO(1) = 4 
      INFO(5) = 3 
      TOL     = AMACH(4) 

      TOL     = 100.0*TOL 
      IDO     = 0 
!                                  Time the solution with no  
!                                  preconditioning 
      TNOPRE  = CPSEC() 
   10 CONTINUE 
      CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK) 
      IF (IDO .EQ. 1) THEN 
! 
!                                  Set z = A*p 
! 
         CALL AMULTP (K, P, Z) 
         GO TO 10 
      END IF 
      TNOPRE = CPSEC() - TNOPRE 
! 
      WRITE (NOUT,'(A32, I4)') 'Iterations, no preconditioner = ', & 
                             INFO(8) 
! 
!                                  Solve again using the diagonal blocks 
!                                  of A as the preconditioning matrix M 
      R = 1.0E0 
      X = 1.0E0 
!                                  Define M 
      CALL SSET (N-1, -1.0, B, 1) 
      CALL SSET (N-1, -1.0, C, 1) 
      CALL SSET (N, 4.0, A, 1) 
      INFO(4) = 1 
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      TOL     = AMACH(4) 
      TOL     = 100.0*TOL 
      IDO     = 0 
      TPRE    = CPSEC() 
!                                  Compute the LDU factorization of M 
! 
      CALL LSLCR (C, A, B, Y, U, IR, IS, IJOB=6) 
   20 CONTINUE 
      CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK) 
         IF (IDO .EQ. 1) THEN 
! 
!                                  Set z = A*p 
! 
         CALL AMULTP (K, P, Z) 
         GO TO 20 
      ELSE IF (IDO .EQ. 2) THEN 
! 
!                                  Set z = inv(M)*p 
! 
         CALL SCOPY (N, P, 1, Z, 1) 
         CALL LSLCR (C, A, B, Z, U, IR, IS, IJOB=5) 
         GO TO 20 
      ELSE IF (IDO .EQ. 3) THEN 
! 
!                                  Set z = A*inv(M)*p 
! 
         CALL LSLCR (C, A, B, P, U, IR, IS, IJOB=5) 
         CALL AMULTP (K, P, Z) 
         GO TO 20 
      END IF 
      TPRE = CPSEC() - TPRE 
      WRITE (NOUT,'(A35, I4)') 'Iterations, with preconditioning = ',& 
                             INFO(8) 
      WRITE (NOUT,'(A45, F10.5)') '(Precondition time)/(No '// & 
                                'precondition time) = ', TPRE/TNOPRE 
! 
      END 
! 
      SUBROUTINE AMULTP (K, P, Z) 
      USE IMSL_LIBRARIES 
!                                  Specifications for arguments 
      INTEGER    K 
      REAL       P(*), Z(*) 
!                                  Specifications for local variables 
      INTEGER    I, N 
! 
      N = K*K 
!                                  Multiply by diagonal blocks 
! 
      CALL SVCAL (N, 4.0, P, 1, Z, 1) 
      CALL SAXPY (N-1, -1.0, P(2:(N-1)), 1, Z, 1) 
      CALL SAXPY (N-1, -1.0, P, 1, Z(2:(N-1)), 1) 
! 
!                                  Correct for terms not properly in 
!                                  block diagonal 
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      DO 10  I=K, N - K, K 
         Z(I)   = Z(I) + P(I+1) 
         Z(I+1) = Z(I+1) + P(I) 
   10 CONTINUE 
!                                  Do the super and subdiagonal blocks, 
!                                  the -I's 
! 
      CALL SAXPY (N-K, -1.0, P((K+1):(N-K)), 1, Z, 1) 
      CALL SAXPY (N-K, -1.0, P, 1, Z((K+1):(N-K)), 1) 
! 
      RETURN 
      END 

 

Output 
Iterations, no preconditioner =  329  
Iterations, with preconditioning =  192  
(Precondition time)/(No precondition time) =    0.66278 

LSQRR 
Solves a linear least-squares problem without iterative refinement. 

Required Arguments 
A — NRA by NCA matrix containing the coefficient matrix of the least-squares system to be 

solved.   (Input) 

B — Vector of length NRA containing the right-hand side of the least-squares system.   (Input) 

X — Vector of length NCA containing the solution vector with components corresponding to 
the columns not used set to zero.   (Output) 

RES — Vector of length NRA containing the residual vector B � A * X.   (Output) 

KBASIS — Scalar containing the number of columns used in the solution. 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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TOL — Scalar containing the nonnegative tolerance used to determine the subset of columns 
of A to be included in the solution.   (Input)  
If TOL is zero, a full complement of min(NRA, NCA) columns is used. See Comments. 
Default: TOL = 0.0 

FORTRAN 90 Interface 
Generic: CALL LSQRR (A, B, X, RES, KBASIS [,…]) 

Specific: The specific interface names are S_LSQRR and D_LSQRR. 

FORTRAN 77 Interface 
Single: CALL LSQRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS) 

Double:  The double precision name is DLSQRR. 

Example 
Consider the problem of finding the coefficients ci in 

f(x) = c� + c�x + c�x� 

given data at x = 1, 2, 3 and 4, using the method of least squares. The row of the matrix A 
contains the value of 1, x and x� at the data points. The vector b contains the data, chosen such 
that c� � 1, c� � 2 and c� � 0. The routine LSQRR solves this least-squares problem. 

      USE LSQRR_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (NRA=4, NCA=3, LDA=NRA) 
      REAL       A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL 
! 
!                                 Set values for A 
! 
!                                 A = (  1    2     4   ) 
!                                     (  1    4    16   ) 
!                                     (  1    6    36   ) 
!                                     (  1    8    64   ) 
! 
      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 
! 
!                                 Set values for B 
! 
      DATA B/ 4.999,  9.001,  12.999,  17.001 / 
! 
!                                 Solve the least squares problem 
      TOL = 1.0E-4 
      CALL LSQRR (A, B, X, RES, KBASIS, TOL=TOL) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
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      WRITE (NOUT,*) ’KBASIS = ’, KBASIS 
      CALL WRRRN (’X’, X, 1, NCA, 1) 
      CALL WRRRN (’RES’, RES, 1, NRA, 1) 
! 
      END 

Output 
 
KBASIS =   3 
 
            X 
    1       2       3 
0.999   2.000   0.000 
 
                     RES 
        1          2          3          4 
-0.000400   0.001200  -0.001200   0.000400 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2QRR/DL2QRR. The 

reference is: 

CALL L2QRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS, QR, QRAUX, IPVT, WORK) 

The additional arguments are as follows: 

QR — Work vector of length NRA * NCA representing an NRA by NCA matrix that 
contains information from the QR factorization of A. If A is not needed, QR can 
share the same storage locations as A. 

QRAUX — Work vector of length NCA containing information about the orthogonal 
factor of the QR factorization of A. 

IPVT — Integer work vector of length NCA containing the pivoting information for the 
QR factorization of A. 

WORK — Work vector of length 2 * NCA � 1. 

2. Routine LSQRR calculates the QR decomposition with pivoting of a matrix A and tests 
the diagonal elements against a user-supplied tolerance TOL. The first integer  
KBASIS = k is determined for which 

1, 1 11TOL *k kr r
� �

�  

In effect, this condition implies that a set of columns with a condition number approximately 
bounded by 1.0/TOL is used. Then, LQRSL performs a truncated fit of the first KBASIS 
columns of the permuted A to an input vector B. The coefficient of this fit is unscrambled to 
correspond to the original columns of A, and the coefficients corresponding to unused 
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columns are set to zero. It may be helpful to scale the rows and columns of A so that the error 
estimates in the elements of the scaled matrix are roughly equal to TOL. 

3. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2QRR the leading dimension of QR is increased by IVAL(3) 
when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSQRR. 
Additional memory allocation for QR and option value restoration are done 
automatically in LSQRR. Users directly calling L2QRR can allocate additional 
space for QR and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSQRR or L2QRR. Default values for the option are IVAL(*) 
= 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSQRR temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG 
skips this computation. LSQRR restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSQRR solves the linear least-squares problem. The routine LQRRR, page 392, is first 
used to compute the QR decomposition of A. Pivoting, with all rows free, is used. Column k is 
in the basis if 

11kkR R��  

with � = TOL. The truncated least-squares problem is then solved using IMSL routine LQRSL, 
page 398. Finally, the components in the solution, with the same index as columns that are not 
in the basis, are set to zero; and then, the permutation determined by the pivoting in IMSL 
routine LQRRR is applied. 

LQRRV 
Computes the least-squares solution using Householder transformations applied in blocked form. 

Required Arguments 
A — Real LDA by (NCA + NUMEXC) array containing the matrix and right-hand sides.   (Input)  

The right-hand sides are input in A(1  :  NRA, NCA + j), j = 1, �, NUMEXC. The array A 
is preserved upon output. The Householder factorization of the matrix is computed and 
used to solve the systems. 

X — Real LDX by NUMEXC array containing the solution.   (Output) 
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Optional Arguments 
NRA — Number of rows in the matrix.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in the matrix.   (Input) 
Default: NCA = size (A,2) - NUMEXC. 

NUMEXC — Number of right-hand sides.   (Input) 
Default: NUMEXC = size (X,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDX — Leading dimension of the solution array X exactly as specified in the dimension 
statement of the calling program.   (Input) 
Default: LDX = size (X,1). 

FORTRAN 90 Interface 
Generic: CALL LQRRV (A, X, [,…]) 

Specific: The specific interface names are S_LQRRV and D_LQRRV. 

FORTRAN 77 Interface 
Single: CALL LQRRV (NRA, NCA, NUMEXC, A, LDA, X, LDX) 

Double:  The double precision name is DLQRRV. 

Example 
Given a real m � k matrix B it is often necessary to compute the k least-squares solutions of the 
linear system AX = B, where A is an m � n real matrix. When m > n the system is considered 
overdetermined. A solution with a zero residual normally does not exist. Instead the 
minimization problem  

2
min

n
j

j j
x

Ax b
�

�

R
 

is solved k times where xj, bj are the j-th columns of the matrices X, B respectively. When A is of 
full column rank there exits a unique solution XLS that solves the above minimization problem. 
By using the routine LQRRV, XLS is computed. 

      USE LQRRV_INT 
      USE WRRRN_INT 
      USE SGEMM_INT 

!                                 Declare variables 
      INTEGER    LDA, LDX, NCA, NRA, NUMEXC 
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      PARAMETER  (NCA=3, NRA=5, NUMEXC=2, LDA=NRA, LDX=NCA) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      REAL       X(LDX,NUMEXC) 
!                                 SPECIFICATIONS FOR SAVE VARIABLES 
      REAL       A(LDA,NCA+NUMEXC) 
      SAVE       A 
!                                 SPECIFICATIONS FOR SUBROUTINES 
! 
!                                 Set values for A and the 
!                                 righthand sides. 
! 
!                                 A = (  1    2     4 |   7  10) 
!                                     (  1    4    16 |  21  10) 
!                                     (  1    6    36 |  43  9 ) 
!                                     (  1    8    64 |  73  10) 
!                                     (  1   10   100 | 111  10) 
! 
      DATA A/5*1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 4.0, 16.0, 36.0, 64.0, & 
          100.0, 7.0, 21.0, 43.0, 73.0, 111.0, 2*10., 9., 2*10./ 
! 
! 
!                                 QR factorization and solution 
      CALL LQRRV (A, X) 
      CALL WRRRN (’SOLUTIONS 1-2’, X) 
!                                 Compute residuals and print 
      CALL SGEMM (’N’, ’N’, NRA, NUMEXC, NCA, 1.E0, A, LDA, X, LDX, & 
                 -1.E0, A(1:,(NCA+1):),LDA) 
      CALL WRRRN (’RESIDUALS 1-2’, A(1:,(NCA+1):)) 
! 
      END 

Output 
 
   SOLUTIONS 1-2 
        1       2 
1    1.00   10.80 
2    1.00   -0.43 
3    1.00    0.04 
 
   RESIDUALS 1-2 
        1        2 
1   0.0000   0.0857 
2   0.0000  -0.3429 
3   0.0000   0.5143 
4   0.0000  -0.3429 
5   0.0000   0.0857 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2RRV/DL2RRV. The 

reference is: 

CALL L2RRV (NRA, NCA, NUMEXC, A, LDA, X, LDX, FACT, LDFACT, WK) 
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The additional arguments are as follows: 

FACT — LDFACT � (NCA + NUMEXC) work array containing the Householder 
factorization of the matrix on output. If the input data is not needed, A and FACT 
can share the same storage locations. 

LDFACT — Leading dimension of the array FACT exactly as specified in the 
dimension statement of the calling program.   (Input)  
If A and FACT are sharing the same storage, then LDA = LDFACT is required. 

WK — Work vector of length (NCA + NUMEXC + 1) * (NB + 1) . The default value is NB 
= 1. This value can be reset. See item 3 below. 

2. Informational errors 
Type Code 

4     1 The input matrix is singular. 

3. Integer Options with Chapter 11 Options Manager 

5 This option allows the user to reset the blocking factor used in computing the 
factorization. On some computers, changing IVAL(*) to a value larger than 1 
will result in greater efficiency. The value IVAL(*) is the maximum value to use. 
(The software is specialized so that IVAL(*) is reset to an “optimal” used value 
within routine L2RRV.) The user can control the blocking by resetting IVAL(*) 
to a smaller value than the default. Default values are IVAL(*) = 1, IMACH(5). 

6 This option is the vector dimension where a shift is made from in-line level-2 
loops to the use of level-2 BLAS in forming the partial product of Householder 
transformations. Default value is IVAL(*) = IMACH(5). 

10 This option allows the user to control the factorization step. If the value is 1 the 
Householder factorization will be computed. If the value is 2, the factorization 
will not be computed. In this latter case the decomposition has already been 
computed. Default value is IVAL(*) = 1. 

11 This option allows the user to control the solving steps. The rules for IVAL(*) 
are: 
1. Compute b � QTb, and x � R�b. 
2. Compute b � QTb. 
3. Compute b � Qb. 
4. Compute x � R�b. 
Default value is IVAL (*) = 1. Note that IVAL (*) = 2 or 3 may only be set when 
calling L2RRV/DL2RRV. 

Description 
Routine LSQRR solves the linear least-squares problem. The routine LQRRR, page 392, is first 
used to compute the QR decomposition of A. Pivoting, with all rows free, is used. Column k is 
in the basis if 
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with � = TOL. The truncated least-squares problem is then solved using IMSL routine LQRSL, 
page 398. Finally, the components in the solution, with the same index as columns that are not 
in the basis, are set to zero; and then, the permutation determined by the pivoting in IMSL 
routine LQRRR is applied. 

LSBRR 
Solves a linear least-squares problem with iterative refinement. 

Required Arguments 
A — Real NRA by NCA matrix containing the coefficient matrix of the least-squares system to 

be solved.   (Input) 

B — Real vector of length NRA containing the right-hand side of the least-squares system.   
(Input) 

X — Real vector of length NCA containing the solution vector with components corresponding 
to the columns not used set to zero.   (Output) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

TOL — Real scalar containing the nonnegative tolerance used to determine the subset of 
columns of A to be included in the solution.   (Input)  
If TOL is zero, a full complement of min(NRA, NCA) columns is used. See Comments. 
Default: TOL = 0.0 

RES — Real vector of length NRA containing the residual vector B � AX.   (Output) 

KBASIS — Integer scalar containing the number of columns used in the solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL LSBRR (A, B, X, [,…]) 
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Specific: The specific interface names are S_LSBRR and D_LSBRR. 

FORTRAN 77 Interface 
Single: CALL LSBRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS) 

Double:  The double precision name is DLSBRR. 

Example 
This example solves the linear least-squares problem with A, an 8 � 4 matrix. Note that the 
second and fourth columns of A are identical. Routine LSBRR determines that there are three 
columns in the basis. 

      USE LSBRR_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      PARAMETER  (NRA=8, NCA=4, LDA=NRA) 
      REAL       A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL 
! 
!                                 Set values for A 
! 
!                                 A = (  1    5    15    5  ) 
!                                     (  1    4    17    4  ) 
!                                     (  1    7    14    7  ) 
!                                     (  1    3    18    3  ) 
!                                     (  1    1    15    1  ) 
!                                     (  1    8    11    8  ) 
!                                     (  1    3     9    3  ) 
!                                     (  1    4    10    4  ) 
! 
      DATA A/8*1, 5., 4., 7., 3., 1., 8., 3., 4., 15., 17., 14., & 
        18., 15., 11., 9., 10., 5., 4., 7., 3., 1., 8., 3., 4. / 
! 
!                                 Set values for B 
! 
      DATA B/ 30., 31., 35., 29., 18., 35., 20., 22. / 
! 
!                                 Solve the least squares problem 
      TOL = 1.0E-4 
      CALL LSBRR (A, B, X, TOL=TOL, RES=RES, KBASIS=KBASIS) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’KBASIS = ’, KBASIS 
      CALL WRRRN (’X’, X, 1, NCA, 1) 
      CALL WRRRN (’RES’, RES, 1, NRA, 1) 
! 
      END 

Output 
 
KBASIS =   3 
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                X 
      1       2       3       4 
  0.636   2.845   1.058   0.000 
 
                               RES 
      1       2       3       4       5       6       7       8 
 -0.733   0.996  -0.365   0.783  -1.353  -0.036   1.306  -0.597 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2BRR/DL2BRR. The 

reference is: 

CALL L2BRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS, QR, BRRUX, IPVT, WK) 

The additional arguments are as follows: 

QR — Work vector of length NRA * NCA representing an NRA by NCA matrix that 
contains information from the QR factorization of A. See LQRRR for details. 

BRRUX — Work vector of length NCA containing information about the orthogonal 
factor of the QR factorization of A. See LQRRR for details. 

IPVT — Integer work vector of length NCA containing the pivoting information for the 
QR factorization of A. See LQRRR for details. 

WK — Work vector of length NRA + 2 * NCA � 1. 

2. Informational error 
Type Code 

   4    1 The data matrix is too ill-conditioned for iterative refinement to be 
effective. 

3. Routine LSBRR calculates the QR decomposition with pivoting of a matrix A and tests 
the diagonal elements against a user-supplied tolerance TOL. The first integer  
KBASIS = k is determined for which 

1, 1 11TOL*k kr r
� �

�  

 In effect, this condition implies that a set of columns with a condition number 
approximately bounded by 1.0/TOL is used. Then, LQRSL performs a truncated fit of the 
first KBASIS columns of the permuted A to an input vector B. The coefficient of this fit 
is unscrambled to correspond to the original columns of A, and the coefficients 
corresponding to unused columns are set to zero. It may be helpful to scale the rows 
and columns of A so that the error estimates in the elements of the scaled matrix are 
roughly equal to TOL. The iterative refinement method of Björck is then applied to this 
factorization. 
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4. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2BRR the leading dimension of QR is increased by IVAL(3) 
when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSBRR. 
Additional memory allocation for QR and option value restoration are done 
automatically in LSBRR. Users directly calling L2BRR can allocate additional 
space for QR and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSBRR or L2BRR. Default values for the option are IVAL(*) 
= 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSBRR temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG 
skips this computation. LSBRR restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
Routine LSBRR solves the linear least-squares problem using iterative refinement. The iterative 
refinement algorithm is due to Björck (1967, 1968). It is also described by Golub and Van Loan 
(1983, pages 182�183). 

LCLSQ 
Solves a linear least-squares problem with linear constraints. 

Required Arguments 
A — Matrix of dimension NRA by NCA containing the coefficients of the NRA least squares 

equations.   (Input) 

B — Vector of length NRA containing the right-hand sides of the least squares equations.   
(Input) 

C — Matrix of dimension NCON by NCA containing the coefficients of the NCON constraints.   
(Input)  
If NCON = 0, C is not referenced. 

BL — Vector of length NCON containing the lower limit of the general constraints.   (Input)  
If there is no lower limit on the I-th constraint, then BL(I) will not be referenced. 

BU — Vector of length NCON containing the upper limit of the general constraints.   (Input)  
If there is no upper limit on the I-th constraint, then BU(I) will not be referenced. If 
there is no range constraint, BL and BU can share the same storage locations. 
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IRTYPE — Vector of length NCON indicating the type of constraints exclusive of simple 
bounds, where IRTYPE(I) = 0, 1, 2, 3 indicates .EQ., .LE., .GE., and range 
constraints respectively.   (Input) 

XLB — Vector of length NCA containing the lower bound on the variables.   (Input)  
If there is no lower bound on the I-th variable, then XLB(I) should be set to 1.0E30. 

XUB — Vector of length NCA containing the upper bound on the variables.   (Input)  
If there is no upper bound on the I-th variable, then XUB(I) should be set to  
�1.0E30. 

X — Vector of length NCA containing the approximate solution.   (Output) 

Optional Arguments 
NRA — Number of least-squares equations.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of variables.   (Input) 
Default: NCA = size (A,2). 

NCON — Number of constraints.   (Input) 
Default: NCON = size (C,1). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the 
calling program.   (Input)  
LDA must be at least NRA. 
Default: LDA = size (A,1). 

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling 
program.   (Input)  
LDC must be at least NCON. 
Default: LDC = size (C,1). 

RES — Vector of length NRA containing the residuals B � AX of the least-squares equations at 
the approximate solution.   (Output) 

FORTRAN 90 Interface 
Generic: CALL LCLSQ (A, B, C, BL, BU, IRTYPE, XLB, XUB, X [,…]) 

Specific: The specific interface names are S_LCLSQ and D_LCLSQ. 

FORTRAN 77 Interface 
Single: CALL LCLSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL, BU, IRTYPE, XLB, XUB,               

                    X, RES) 
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Double:  The double precision name is DLCLSQ. 

Example 
A linear least-squares problem with linear constraints is solved. 

      USE LCLSQ_INT 
      USE UMACH_INT 
      USE SNRM2_INT 

! 
!     Solve the following in the least squares sense: 
!           3x1 + 2x2 +  x3 = 3.3 
!           4x1 + 2x2 +  x3 = 2.3 
!           2x1 + 2x2 +  x3 = 1.3 
!            x1 +  x2 +  x3 = 1.0 
! 
!     Subject to:  x1 + x2 + x3 <= 1 
!                  0 <= x1 <= .5 
!                  0 <= x2 <= .5 
!                  0 <= x3 <= .5 
! 
! ---------------------------------------------------------------------- 
!                                 Declaration of variables 
! 
      INTEGER     NRA, NCA, MCON, LDA, LDC 
      PARAMETER   (NRA=4, NCA=3, MCON=1, LDC=MCON, LDA=NRA) 
! 
      INTEGER     IRTYPE(MCON), NOUT 
      REAL        A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), & 
                 RESNRM, XSOL(NCA), XLB(NCA), XUB(NCA) 
!                                 Data initialization! 
      DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, & 
            2.0E0, 2.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0/, & 
            B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, & 
            C/3*1.0E0/, & 
            BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/ 
! 
!                                 Solve the bounded, constrained 
!                                 least squares problem. 
! 
      CALL LCLSQ (A, B, C, BC, BC, IRTYPE, XLB, XUB, XSOL, RES=RES) 
!                                 Compute the 2-norm of the residuals. 
      RESNRM = SNRM2 (NRA, RES, 1) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT, 999) XSOL, RES, RESNRM 
! 
 999  FORMAT (’  The solution is ’, 3F9.4, //, ’  The residuals ’, & 
            ’evaluated at the solution are ’, /, 18X, 4F9.4, //, & 
            ’  The norm of the residual vector is ’, F8.4) 
! 
      END 
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Output 
 
The solution is    0.5000   0.3000   0.2000 
The residuals evaluated at the solution are 
                   -1.0000   0.5000   0.5000   0.0000 
 
The norm of the residual vector is   1.2247 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2LSQ/DL2LSQ. The 

reference is: 

CALL L2LSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL, BU, IRTYPE, XLB, XUB, X, RES, 
WK, IWK) 

The additional arguments are as follows: 

WK — Real work vector of length (NCON + MAXDIM) * (NCA + NCON + 1) + 10 * NCA + 
9 * NCON + 3. 

IWK — Integer work vector of length 3 * (NCON + NCA). 

2. Informational errors 
Type Code 

3     1 The rank determination tolerance is less than machine precision. 
4     2 The bounds on the variables are inconsistent. 
4     3 The constraint bounds are inconsistent. 
4     4 Maximum number of iterations exceeded. 

3. Integer Options with Chapter 11 Options Manager 

13 Debug output flag. If more detailed output is desired, set this option to the value 
1. Otherwise, set it to 0. Default value is 0. 

14 Maximum number of add/drop iterations. If the value of this option is zero, up to 
5 * max(nra, nca) iterations will be allowed. Otherwise set this option to the 
desired iteration limit. Default value is 0. 

4. Floating Point Options with Chapter 11 Options Manager 

2 The value of this option is the relative rank determination tolerance to be used. 
Default value is sqrt(AMACH (4)). 

5 The value of this option is the absolute rank determination tolerance to be used. 
Default value is sqrt(AMACH (4)). 

Description 
The routine LCLSQ solves linear least-squares problems with linear constraints. These are 
systems of least-squares equations of the form Ax � b 
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subject to 

bl � Cx � bu 

xl � x � xu 

Here, A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is 
the coefficient matrix of the constraints. The vectors bl, bu, xl and xu are the lower and upper 
bounds on the constraints and the variables, respectively. The system is solved by defining 
dependent variables y � Cx and then solving the least squares system with the lower and upper 
bounds on x and y. The equation Cx � y = 0 is a set of equality constraints. These constraints are 
realized by heavy weighting, i.e. a penalty method, Hanson, (1986, pages 826�834). 

LQRRR 
Computes the QR decomposition, AP = QR, using Householder transformations. 

Required Arguments 
A — Real NRA by NCA matrix containing the matrix whose QR factorization is to be 

computed.   (Input) 

QR — Real NRA by NCA matrix containing information required for the QR factorization.   
(Output)  
The upper trapezoidal part of QR contains the upper trapezoidal part of R with its 
diagonal elements ordered in decreasing magnitude. The strict lower trapezoidal part of 
QR contains information to recover the orthogonal matrix Q of the factorization. 
Arguments A and QR can occupy the same storage locations. In this case, A will not be 
preserved on output. 

QRAUX — Real vector of length NCA containing information about the orthogonal part of the 
decomposition in the first min(NRA, NCA) position. (Output) 

Optional Arguments 
NRA — Number of rows of A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns of A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

PIVOT — Logical variable.   (Input)  
PIVOT = .TRUE. means column pivoting is enforced. 
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PIVOT = .FALSE. means column pivoting is not done. 
Default: PIVOT = .TRUE. 

IPVT — Integer vector of length NCA containing information that controls the final order of 
the columns of the factored matrix A.   (Input/Output)  
On input, if IPVT(K) > 0, then the K-th column of A is an initial column. If IPVT(K) = 0, 
then the K-th column of A is a free column. If IPVT(K) < 0, then the K-th column of A is 
a final column. See Comments. 
On output, IPVT(K) contains the index of the column of A that has been interchanged 
into the K-th column. This defines the permutation matrix P. The array IPVT is 
referenced only if PIVOT is equal to .TRUE. 
Default: IPVT = 0. 

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the 
calling program.   (Input) 
Default: LDQR = size (QR,1). 

CONORM — Real vector of length NCA containing the norms of the columns of the input 
matrix.   (Output) 
If this information is not needed, CONORM and QRAUX can share the same storage 
locations. 

FORTRAN 90 Interface 
Generic: CALL LQRRR (A, QR, QRAUX [,…]) 

Specific: The specific interface names are S_LQRRR and D_LQRRR. 

FORTRAN 77 Interface 
Single: CALL LQRRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX, 

CONORM) 

Double:  The double precision name is DLQRRR. 

Example 

In various statistical algorithms it is necessary to compute q = xT(AT A)��x, where A is a 
rectangular matrix of full column rank. By using the QR decomposition, q can be computed 
without forming AT A. Note that 

AT A = (QRP��)T (QRP��) = P���RT (QT Q)RP�� = P RT RPT 

since Q is orthogonal (QTQ = I) and P is a permutation matrix. Let 

1

0
T R

Q AP R
� �

� � � �
� �
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where R� is an upper triangular nonsingular matrix. Then 

� �
1 1 1 1 2

1 1 1 2
T T T T Tx A A x x PR R P x R P x

�

� � � � �

� �  

In the following program, first the vector t = P�� x is computed. Then  

1: Tt R t�

�  

Finally,  
2q t�  

 

 

      USE IMSL_LIBRARIES 
!                                 Declare variables 
      INTEGER    LDA, LDQR, NCA, NRA 
      PARAMETER  (NCA=3, NRA=4, LDA=NRA, LDQR=NRA) 
!                                 SPECIFICATIONS FOR PARAMETERS 
      INTEGER    LDQ 
      PARAMETER  (LDQ=NRA) 
!                                 SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    IPVT(NCA), NOUT 
      REAL       CONORM(NCA), Q, QR(LDQR,NCA), QRAUX(NCA), T(NCA) 
      LOGICAL    PIVOT 
      REAL       A(LDA,NCA), X(NCA) 
! 
!                                 Set values for A 
! 
!                                 A = (  1    2     4   ) 
!                                     (  1    4    16   ) 
!                                     (  1    6    36   ) 
!                                     (  1    8    64   ) 
! 
      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 
! 
!                                 Set values for X 
! 
!                                 X = (  1    2     3  ) 
      DATA X/1.0, 2.0, 3.0/ 
! 
!                                 QR factorization 
      PIVOT = .TRUE. 
      IPVT=0 
      CALL LQRRR (A, QR, QRAUX, PIVOT=PIVOT, IPVT=IPVT) 
!                                 Set t = inv(P)*x 
      CALL PERMU (X, IPVT, T, IPATH=1) 
!                                 Compute t = inv(trans(R))*t 
      CALL LSLRT (QR, T, T, IPATH=4) 
!                                 Compute 2-norm of t, squared. 
      Q = SDOT(NCA,T,1,T,1) 
!                                 Print result 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,*) ’Q = ’, Q 
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! 
      END 

Output 
 
Q =    0.840624 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2RRR/DL2RRR. The 

reference is: 

CALL L2RRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX, CONORM, WORK) 

The additional argument is 

WORK — Work vector of length 2NCA � 1. Only NCA � 1 locations of WORK are 
referenced if PIVOT = .FALSE. . 

2. LQRRR determines an orthogonal matrix Q, permutation matrix P, and an upper 
trapezoidal matrix R with diagonal elements of nonincreasing magnitude, such that AP 
= QR. The Householder transformation for column k, k = 1, �, min(NRA, NCA) is of the 
form 

1 T
kI u uu�

�  

where u has zeros in the first k � 1 positions. If the explicit matrix Q is needed, the user can 
call routine LQERR (page 396) after calling LQRRR. This routine accumulates Q from its 
factored form. 

3. Before the decomposition is computed, initial columns are moved to the beginning and 
the final columns to the end of the array A. Both initial and final columns are not 
moved during the computation. Only free columns are moved. Pivoting, if requested, is 
done on the free columns of largest reduced norm. 

4. When pivoting has been selected by having entries of IPVT initialized to zero, an 
estimate of the condition number of A can be obtained from the output by computing 
the magnitude of the number QR(1, 1)/QR(K, K), where K = MIN(NRA, NCA). This 
estimate can be used to select the number of columns, KBASIS, used in the solution 
step computed with routine LQRSL (page 398). 

Description 
The routine LQRRR computes the QR decomposition of a matrix using Householder 
transformations. It is based on the LINPACK routine SQRDC; see Dongarra et al. (1979). 

LQRRR determines an orthogonal matrix Q, a permutation matrix P, and an upper trapezoidal 
matrix R with diagonal elements of nonincreasing magnitude, such that AP = QR. The 
Householder transformation for column k is of the form 
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�  

for k = 1, 2, �, min(NRA, NCA), where u has zeros in the first k � 1 positions. The matrix Q is 
not produced directly by LQRRR . Instead the information needed to reconstruct the Householder 
transformations is saved. If the matrix Q is needed explicitly, the subroutine LQERR, described 
on page 396, can be called after LQRRR. This routine accumulates Q from its factored form. 

Before the decomposition is computed, initial columns are moved to the beginning of the array 
A and the final columns to the end. Both initial and final columns are frozen in place during the 
computation. Only free columns are pivoted. Pivoting, when requested, is done on the free 
columns of largest reduced norm. 

LQERR 
Accumulates the orthogonal matrix Q from its factored form given the QR factorization of a 
rectangular matrix A. 

Required Arguments 
QR — Real NRQR by NCQR matrix containing the factored form of the matrix Q in the first 

min(NRQR, NCQR) columns of the strict lower trapezoidal part of QR as output from 
subroutine LQRRR/DLQRRR.   (Input) 

QRAUX — Real vector of length NCQR containing information about the orthogonal part of 
the decomposition in the first min(NRQR, NCQR) position as output from routine 
LQRRR/DLQRRR.   (Input) 

Q — Real NRQR by NRQR matrix containing the accumulated orthogonal matrix Q; Q and QR 
can share the same storage locations if QR is not needed.   (Output) 

Optional Arguments 
NRQR — Number of rows in QR.   (Input) 

Default: NRQR = size (QR,1). 

NCQR — Number of columns in QR.   (Input) 
Default: NCQR = size (QR,2). 

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the 
calling program.   (Input) 
Default: LDQR = size (QR,1). 

LDQ — Leading dimension of Q exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDQ = size (Q,1). 
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FORTRAN 90 Interface 
Generic: CALL LQERR (QR, QRAUX, Q [,…]) 

Specific: The specific interface names are S_LQERR and D_LQERR. 

FORTRAN 77 Interface 
Single: CALL LQERR (NRQR,  NCQR, QR, LDQR, QRAUX, Q, LDQ) 

Double:  The double precision name is DLQERR. 

Example 
In this example, the orthogonal matrix Q in the QR decomposition of a matrix A is computed. 
The product X = QR is also computed. Note that X can be obtained from A by reordering the 
columns of A according to IPVT. 

      USE IMSL_LIBRARIES 
!                                 Declare variables 
      INTEGER    LDA, LDQ, LDQR, NCA, NRA 
      PARAMETER  (NCA=3, NRA=4, LDA=NRA, LDQ=NRA, LDQR=NRA) 
! 
      INTEGER    IPVT(NCA), J 
      REAL       A(LDA,NCA), CONORM(NCA), Q(LDQ,NRA), QR(LDQR,NCA), & 
                 QRAUX(NCA), R(NRA,NCA), X(NRA,NCA) 
      LOGICAL    PIVOT 
! 
!                                 Set values for A 
! 
!                                 A = (  1    2     4   ) 
!                                     (  1    4    16   ) 
!                                     (  1    6    36   ) 
!                                     (  1    8    64   ) 
! 
      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 
! 
!                                 QR factorization 
!                                 Set IPVT = 0 (all columns free) 
      IPVT = 0 
      PIVOT = .TRUE. 
      CALL LQRRR (A, QR, QRAUX, IPVT=IPVT, PIVOT=PIVOT) 
!                                 Accumulate Q 
      CALL LQERR (QR, QRAUX, Q) 
!                                 R is the upper trapezoidal part of QR 
      R = 0.0E0 
      DO 10  J=1, NRA 
         CALL SCOPY (J, QR(:,J), 1, R(:,J), 1) 
   10 CONTINUE 
!                                 Compute X = Q*R 
      CALL MRRRR (Q, R, X) 
!                                 Print results 
      CALL WRIRN (’IPVT’, IPVT, 1, NCA, 1) 
      CALL WRRRN (’Q’, Q) 
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      CALL WRRRN (’R’, R) 
      CALL WRRRN (’X = Q*R’, X) 
! 
      END 

Output 
 
   IPVT 
 1   2   3 
 3   2   1 
                   Q 
         1        2        3        4 
1  -0.0531  -0.5422   0.8082  -0.2236 
2  -0.2126  -0.6574  -0.2694   0.6708 
3  -0.4783  -0.3458  -0.4490  -0.6708 
4  -0.8504   0.3928   0.2694   0.2236 
 
             R 
        1       2       3 
1  -75.26  -10.63   -1.59 
2    0.00   -2.65   -1.15 
3    0.00    0.00    0.36 
4    0.00    0.00    0.00 
 
          X = Q*R 
        1       2       3 
1    4.00    2.00    1.00 
2   16.00    4.00    1.00 
3   36.00    6.00    1.00 
4   64.00    8.00    1.00 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2ERR/DL2ERR. The 

reference is: 

CALL L2ERR (NRQR, NCQR, QR, LDQR, QRAUX, Q, LDQ, WK) 

The additional argument is 

WK — Work vector of length 2 * NRQR. 

Description 
The routine LQERR accumulates the Householder transformations computed by IMSL routine 
LQRRR, page 392, to produce the orthogonal matrix Q. 

LQRSL 
Computes the coordinate transformation, projection, and complete the solution of the least-squares 
problem Ax = b. 
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Required Arguments 
KBASIS — Number of columns of the submatrix Ak of A.   (Input)  

The value KBASIS must not exceed min(NRA, NCA), where NCA is the number of 
columns in matrix A. The value NCA is an argument to routine LQRRR (page 392). The 
value of KBASIS is normally NCA unless the matrix is rank-deficient. The user must 
analyze the problem data and determine the value of KBASIS. See Comments. 

QR — NRA by NCA array containing information about the QR factorization of A as output 
from routine LQRRR/DLQRRR.   (Input) 

QRAUX — Vector of length NCA containing information about the QR factorization of A as 
output from routine LQRRR/DLQRRR.   (Input) 

B — Vector b of length NRA to be manipulated.   (Input) 

IPATH — Option parameter specifying what is to be computed.   (Input)  
The value IPATH has the decimal expansion IJKLM, such that: 
I � 0 means compute Qb; 
J � 0 means compute QTb; 
K � 0 means compute QTb and x; 
L � 0 means compute QTb and b � Ax; 
M � 0 means compute QTb and Ax. 

 For example, if the decimal number IPATH = 01101, then I = 0, J = 1, K = 1,  
L= 0, and M= 1. 

Optional Arguments 
NRA — Number of rows of matrix A.   (Input) 

Default: NRA = size (QR,1). 

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the 
calling program.   (Input) 
Default: LDQR = size (QR,1). 

QB — Vector of length NRA containing Qb if requested in the option IPATH.   (Output) 

QTB — Vector of length NRA containing QTb if requested in the option IPATH.   (Output) 

X — Vector of length KBASIS containing the solution of the least-squares problem Akx = b,  
if this is requested in the option IPATH.   (Output)  
If pivoting was requested in routine LQRRR/DLQRRR, then the J-th entry of X will be 
associated with column IPVT(J) of the original matrix A. See Comments. 
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RES — Vector of length NRA containing the residuals (b � Ax) of the least-squares problem if 
requested in the option IPATH.   (Output)  
This vector is the orthogonal projection of b onto the orthogonal complement of the 
column space of A. 

AX — Vector of length NRA containing the least-squares approximation Ax if requested in the 
option IPATH.   (Output)  
This vector is the orthogonal projection of b onto the column space of A. 

FORTRAN 90 Interface 
Generic: CALL LQRSL (KBASIS, QR, QRAUX, B, IPATH[,…]) 

Specific: The specific interface names are S_LQRSL and D_LQRSL. 

FORTRAN 77 Interface 
Single: CALL LQRSL (NRA, KBASIS, QR, LDQR, QRAUX, B, IPATH, QB, QTB, X,  

RES, AX) 

Double:  The double precision name is DLQRSL. 

Example 
Consider the problem of finding the coefficients ci in 

f(x) = c� + c�x + c�x� 

given data at xi = 2i, � = 1, 2, 3, 4, using the method of least squares. The row of the matrix A 
contains the value of 1, xi and 

2
ix  

at the data points. The vector b contains the data. The routine LQRRR is used to compute the QR 
decomposition of A. Then LQRSL is then used to solve the least-squares problem and compute 
the residual vector. 

      USE IMSL_LIBRARIES 

!                                 Declare variables 
      PARAMETER  (NRA=4, NCA=3, KBASIS=3, LDA=NRA, LDQR=NRA) 
      INTEGER    IPVT(NCA) 
      REAL       A(LDA,NCA), QR(LDQR,NCA), QRAUX(NCA), CONORM(NCA), & 
                 X(KBASIS), QB(1), QTB(NRA), RES(NRA), & 
                 AX(1), B(NRA) 
      LOGICAL    PIVOT 
! 
!                                 Set values for A 
! 
!                                 A = (  1    2     4   ) 
!                                     (  1    4    16   ) 
!                                     (  1    6    36   ) 
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!                                     (  1    8    64   ) 
! 
      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 
! 
!                                 Set values for B 
! 
!                                 B = ( 16.99  57.01  120.99  209.01 ) 
      DATA B/ 16.99,  57.01,  120.99,  209.01 / 
! 
!                                 QR factorization 
      PIVOT = .TRUE. 
      IPVT = 0 
      CALL LQRRR (A, QR, QRAUX, PIVOT=PIVOT, IPVT=IPVT) 
!                                 Solve the least squares problem 
      IPATH = 00110 
      CALL LQRSL (KBASIS, QR, QRAUX, B, IPATH, X=X, RES=RES) 
!                                 Print results 
      CALL WRIRN (’IPVT’, IPVT, 1, NCA, 1) 
      CALL WRRRN (’X’, X, 1, KBASIS, 1) 
      CALL WRRRN (’RES’, RES, 1, NRA, 1) 
! 
      END 

Output 
 
   IPVT 
 1   2   3 
 3   2   1 
 
           X 
    1       2       3 
3.000   2.002   0.990 
 
                   RES 
       1         2         3         4 
-0.00400   0.01200  -0.01200   0.00400 
 
Note that since IPVT is (3, 2, 1) the array X contains the solution coefficients ci in reverse order. 
 

Comments 
1. Informational error 

Type Code 

4    1 Computation of the least-squares solution of AK * X = B is requested, but the 
upper triangular matrix R from the QR factorization is singular. 

2. This routine is designed to be used together with LQRRR. It assumes that LQRRR/DLQRR 
has been called to get QR, QRAUX and IPVT. The submatrix Ak mentioned above is 
actually equal to Ak = (A(IPVT(1)), A(IPVT(2)), �, A(IPVT (KBASIS))), where 
A(IPVT(I)) is the IPVT(I)-th column of the original matrix. 
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Description 
Routine LQRSL is based on the LINPACK routine SQRSL, see Dongarra et al. (1979). 

The most important use of LQRSL is for solving the least-squares problem Ax = b, with 
coefficient matrix A and data vector b. This problem can be formulated, using the normal 
equations method, as AT Ax = AT b. Using LQRRR (page 392) the QR decomposition of A,  
AP = QR, is computed. Here P is a permutation matrix (P = P), Q is an orthogonal matrix  
(Q = QT) and R is an upper trapezoidal matrix. The normal equations can then be written as 

(PRT)(QTQ)R(PTx) = (PRT)QT b 

If ATA is nonsingular, then R is also nonsingular and the normal equations can be written as 
R(PTx) = QT b. LQRSL can be used to compute QT b and then solve for PT x. Note that the 
permuted solution is returned. 

The routine LQRSL can also be used to compute the least-squares residual, b � Ax. This is the 
projection of b onto the orthogonal complement of the column space of A. It can also compute 
Qb, QTb and Ax, the orthogonal projection of x onto the column space of A. 

LUPQR 
Computes an updated QR factorization after the rank-one matrix  �xyT is added. 

Required Arguments 
ALPHA — Scalar determining the rank-one update to be added.   (Input) 

W — Vector of length NROW determining the rank-one matrix to be added.   (Input)  
The updated matrix is A + �xyT. If I = 0 then W contains the vector x. If I = 1 then W 
contains the vector QTx. 

Y — Vector of length NCOL determining the rank-one matrix to be added.   (Input) 

R — Matrix of order NROW by NCOL containing the R matrix from the QR factorization.   
(Input)  
Only the upper trapezoidal part of R is referenced. 

IPATH — Flag used to control the computation of the QR update.   (Input)  
IPATH has the decimal expansion IJ such that: I = 0 means W contains the vector x. 
I= 1 means W contains the vector QTx.  
J = 0 means do not update the matrix Q. J = 1 means update the matrix Q. For example, 
if IPATH = 10 then, I = 1 and J = 0. 

RNEW — Matrix of order NROW by NCOL containing the updated R matrix in the QR 
factorization.   (Output)  
Only the upper trapezoidal part of RNEW is updated. R and RNEW may be the same. 
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Optional Arguments 
NROW — Number of rows in the matrix A = Q * R.   (Input) 

Default: NROW = size (W,1). 

NCOL — Number of columns in the matrix A = Q * R.   (Input) 
 Default: NCOL = size (Y,1). 

Q — Matrix of order NROW containing the Q matrix from the QR factorization.   (Input)  
Ignored if IPATH = 0. 
Default: Q is 1x1 and un-initialized. 

LDQ — Leading dimension of Q exactly as specified in the dimension statement of the calling 
program.   (Input)  
Ignored if IPATH = 0. 
Default: LDQ = size (Q,1). 

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDR = size (R,1). 

QNEW — Matrix of order NROW containing the updated Q matrix in the QR factorization.   
(Output)  
Ignored if J = 0, see IPATH for definition of J. 

LDQNEW — Leading dimension of QNEW exactly as specified in the dimension statement of 
the calling program.   (Input)  
Ignored if J = 0; see IPATH for definition of J. 
Default: LDQNEW = size (QNEW,1). 

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDRNEW = size (RNEW,1). 

FORTRAN 90 Interface 
Generic: CALL LUPQR (ALPHA, W, Y, R, IPATH, RNEW [ ,…]) 

Specific: The specific interface names are S_LUPQR and D_LUPQR. 

FORTRAN 77 Interface 
Single: CALL LUPQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH, QNEW, 

LDQNEW, RNEW, LDRNEW) 

Double:  The double precision name is DLUPQR. 
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Example 

The QR factorization of A is found. It is then used to find the QR factorization of A + xyT. Since 
pivoting is used, the QR factorization routine finds AP = QR, where P is a permutation matrix 
determined by IPVT. We compute 

� �� �TTAP xy A x Py P QR� �� � � �
� �  

The IMSL routine PERMU (See Chapter 11, Utilities) is used to compute Py. As a check 

QR� �  

is computed and printed. It can also be obtained from A + xyT by permuting its columns using 
the order given by IPVT. 

      USE IMSL_LIBRARIES 
!                                 Declare variables 
      INTEGER    LDA, LDAQR, LDQ, LDQNEW, LDQR, LDR, LDRNEW, NCOL, NROW 
      PARAMETER  (NCOL=3, NROW=4, LDA=NROW, LDAQR=NROW, LDQ=NROW, & 
                 LDQNEW=NROW, LDQR=NROW, LDR=NROW, LDRNEW=NROW) 
! 
      INTEGER    IPATH, IPVT(NCOL), J, MIN0 
      REAL       A(LDA,NCOL), ALPHA, AQR(LDAQR,NCOL), CONORM(NCOL), & 
                 Q(LDQ,NROW), QNEW(LDQNEW,NROW), QR(LDQR,NCOL), & 
                 QRAUX(NCOL), R(LDR,NCOL), RNEW(LDRNEW,NCOL), W(NROW), & 
                 Y(NCOL) 
      LOGICAL    PIVOT 
      INTRINSIC  MIN0 
! 
!                                 Set values for A 
! 
!                                 A = (  1    2     4   ) 
!                                     (  1    4    16   ) 
!                                     (  1    6    36   ) 
!                                     (  1    8    64   ) 
! 
      DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/ 
!                                 Set values for W and Y 
      DATA W/1., 2., 3., 4./ 
      DATA Y/3., 2., 1./ 
! 
!                                 QR factorization 
!                                 Set IPVT = 0 (all columns free) 
      IPVT = 0 
      PIVOT = .TRUE. 
      CALL LQRRR (A, QR, QRAUX, IPVT=IPVT, PIVOT=PIVOT) 
!                                 Accumulate Q 
      CALL LQERR (QR, QRAUX, Q) 
!                                 Permute Y 
      CALL PERMU (Y, IPVT, Y) 
!                                 R is the upper trapezoidal part of QR 
      R = 0.0E0 
      DO 10  J=1, NCOL 
         CALL SCOPY (MIN0(J,NROW), QR(:,J), 1, R(:,J), 1) 
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   10 CONTINUE 
!                                 Update Q and R 
      ALPHA = 1.0 
      IPATH = 01 
      CALL LUPQR (ALPHA, W, Y, R, IPATH, RNEW, Q=Q, QNEW=QNEW) 
!                                 Compute AQR = Q*R 
      CALL MRRRR (QNEW, RNEW, AQR) 
!                                 Print results 
      CALL WRIRN (’IPVT’, IPVT, 1, NCOL,1) 
      CALL WRRRN (’QNEW’, QNEW) 
      CALL WRRRN (’RNEW’, RNEW) 
      CALL WRRRN (’QNEW*RNEW’, AQR) 
      END 

Output 
 
   IPVT 
 1   2   3 
 3   2   1 
 
             QNEW 
         1        2        3        4 
1  -0.0620  -0.5412   0.8082  -0.2236 
2  -0.2234  -0.6539  -0.2694   0.6708 
3  -0.4840  -0.3379  -0.4490  -0.6708 
4  -0.8438   0.4067   0.2694   0.2236 
 
 
           RNEW 
        1       2       3 
1  -80.59  -21.34  -17.62 
2    0.00   -4.94   -4.83 
3    0.00    0.00    0.36 
4    0.00    0.00    0.00 
 
         QNEW*RNEW 
        1       2       3 
1    5.00    4.00    4.00 
2   18.00    8.00    7.00 
3   39.00   12.00   10.00 
4   68.00   16.00   13.00 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2PQR/DL2PQR. The 

reference is: 

CALL L2PQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH, QNEW, LDQNEW, 
RNEW, LDRNEW, Z, WORK) 

The additional arguments are as follows: 

Z — Work vector of length NROW. 
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WORK — Work vector of length MIN(NROW � 1, NCOL). 

Description 
Let A be an m � n matrix and let A = QR be its QR decomposition. (In the program, m is called 
NROW and n is called NCOL) Then 

A + �xyT = QR + �xyT = Q(R + �QTxyT) = Q(R + �wyT) 

where w = QT x. An orthogonal transformation J can be constructed, using a sequence of m � 1 
Givens rotations, such that Jw = �e�, where � = �||w||� and e� = (1, 0, �, 0)T. Then 

A + �xyT = (QJT )(JR + ��e�yT) 

Since JR is an upper Hessenberg matrix, H = JR + ��e�yT is also an upper Hessenberg matrix. 
Again using m � 1 Givens rotations, an orthogonal transformation G can be constructed such 
that GH is an upper triangular matrix. Then  

, where T T TA xy QR Q QJ G�� � �
� ��  

is orthogonal and 

R GH�
�  

is upper triangular.  

If the last k components of w are zero, then the number of Givens rotations needed to construct  
J or G is m � k � 1 instead of m � 1. 

For further information, see Dennis and Schnabel (1983, pages 55�58 and 311�313), or Golub 
and Van Loan (1983, pages 437�439). 

LCHRG 
Computes the Cholesky decomposition of a symmetric positive semidefinite matrix with optional 
column pivoting. 

Required Arguments 
A — N by N symmetric positive semidefinite matrix to be decomposed.   (Input)  

Only the upper triangle of A is referenced. 

FACT — N by N matrix containing the Cholesky factor of the permuted matrix in its upper 
triangle.   (Output)  
If A is not needed, A and FACT can share the same storage locations. 
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Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

PIVOT — Logical variable.   (Input)  
PIVOT = .TRUE. means column pivoting is done. PIVOT = .FALSE. means no 
pivoting is done. 
Default: PIVOT = .TRUE. 

IPVT — Integer vector of length N containing information that controls the selection of the 
pivot columns. (Input/Output)  
On input, if IPVT(K) > 0, then the K-th column of A is an initial column; if 
IPVT(K) = 0, then the K-th column of A is a free column; if IPVT(K) < 0, then the K-th 
column of A is a final column. See Comments. On output, IPVT(K) contains the index 
of the diagonal element of A that was moved into the K-th position. IPVT is only 
referenced when PIVOT is equal to .TRUE.. 

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFACT = size (FACT,1). 

FORTRAN 90 Interface 
Generic: CALL LCHRG (A, FACT [ ,…]) 

Specific: The specific interface names are S_LCHRG and D_LCHRG. 

FORTRAN 77 Interface 
Single: CALL LCHRG (N, A, LDA, PIVOT, IPVT, FACT, LDFACT) 

Double:  The double precision name is DLCHRG. 

Example 
Routine LCHRG can be used together with the IMSL routines PERMU (see Chapter 11) and LFSDS 
(page 148) to solve a positive definite linear system Ax = b. Since A = PRT RP, the system  
Ax = b is equivalent to RT R(Px) = Pb. LFSDS is used to solve RT Ry = Pb for y. The routine 
PERMU is used to compute both Pb and x = Py. 

 

 



 

 
 

408 � Chapter 1: Linear Systems IMSL MATH/LIBRARY 

 

 

 

      USE IMSL_LIBRARIES 

!                                 Declare variables 
      PARAMETER  (N=3, LDA=N, LDFACT=N) 
      INTEGER    IPVT(N) 
      REAL       A(LDA,N), FACT(LDFACT,N), B(N), X(N) 
      LOGICAL    PIVOT 
! 
!                                 Set values for A and B 
! 
!                                 A = (   1   -3   2  ) 
!                                     (  -3   10  -5  ) 
!                                     (   2   -5   6  ) 
! 
!                                 B = (  27  -78  64  ) 
! 
      DATA A/1.,-3.,2.,-3.,10.,-5.,2.,-5.,6./ 
      DATA B/27.,-78.,64./ 
!                                 Pivot using all columns 
      PIVOT = .TRUE. 
      IPVT = 0 
!                                 Compute Cholesky factorization 
      CALL LCHRG (A, FACT, PIVOT=PIVOT, IPVT=IPVT) 
!                                 Permute B and store in X 
      CALL PERMU (B, IPVT, X, IPATH=1) 
!                                 Solve for X 
      CALL LFSDS (FACT, X, X) 
!                                 Inverse permutation 
      CALL PERMU (X, IPVT, X, IPATH=2) 
!                                 Print X 
      CALL WRRRN (’X’, X, 1, N, 1) 
! 
      END 

Output 
 
           X 
    1       2       3 
1.000  -4.000   7.000 
 

Comments 
1. Informational error 

Type Code 

 4     1 The input matrix is not positive semidefinite. 

2. Before the decomposition is computed, initial elements are moved to the leading part 
of A and final elements to the trailing part of A. During the decomposition only rows 
and columns corresponding to the free elements are moved. The result of the 
decomposition is an upper triangular matrix R and a permutation matrix P that satisfy 
PT AP = RT R, where P is represented by IPVT. 
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3. LCHRG can be used together with subroutines PERMU and LSLDS to solve the positive 
semidefinite linear system AX = B with the solution X overwriting the right-hand side B 
as follows: 

 CALL ISET  (N, 0, IPVT, 1) 
CALL LCHRG (A, FACT, N, LDA, .TRUE, IPVT, LDFACT) 
CALL PERMU (B, IPVT, B, N, 1) 
CALL LSLDS (FACT, B, B, N, LDFACT) 
CALL PERMU (B, IPVT, B, N, 2) 

Description 
Routine LCHRG is based on the LINPACK routine SCHDC; see Dongarra et al. (1979). 

Before the decomposition is computed, initial elements are moved to the leading part of A and 
final elements to the trailing part of A. During the decomposition only rows and columns 
corresponding to the free elements are moved. The result of the decomposition is an upper 
triangular matrix R and a permutation matrix P that satisfy PT AP = RT R, where P is 
represented by IPVT. 

LUPCH 
Updates the RT R Cholesky factorization of a real symmetric positive definite matrix after a rank-
one matrix is added. 

Required Arguments 
R — N by N upper triangular matrix containing the upper triangular factor to be updated.   

(Input)  
Only the upper triangle of R is referenced. 

X — Vector of length N determining the rank-one matrix to be added to the factorization  
RT R.   (Input) 

RNEW — N by N upper triangular matrix containing the updated triangular factor of  
RT R + XXT.   (Output)  
Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can share 
the same storage locations. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (R,2). 

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDR = size (R,1). 
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LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDRNEW = size (RNEW,1). 

CS — Vector of length N containing the cosines of the rotations.   (Output) 

SN — Vector of length N containing the sines of the rotations.   (Output) 

FORTRAN 90 Interface 
Generic: CALL LUPCH (R, X, RNEW [ ,…]) 

Specific: The specific interface names are S_LUPCH and D_LUPCH. 

FORTRAN 77 Interface 
Single: CALL LUPCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN) 

Double:  The double precision name is DLUPCH. 

Example 
A linear system Az = b is solved using the Cholesky factorization of A. This factorization is then 
updated and the system (A + xxT) z = b is solved using this updated factorization. 

 

      USE IMSL_LIBRARIES 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      REAL       A(LDA,LDA), FACT(LDFACT,LDFACT), FACNEW(LDFACT,LDFACT), & 
                X(N), B(N), CS(N), SN(N), Z(N) 
! 
!                                 Set values for A 
!                                 A = (  1.0  -3.0   2.0) 
!                                     ( -3.0  10.0  -5.0) 
!                                     (  2.0  -5.0   6.0) 
! 
      DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/ 
! 
!                                 Set values for X and B 
      DATA X/3.0, 2.0, 1.0/ 
      DATA B/53.0, 20.0, 31.0/ 
!                                 Factor the matrix A 
      CALL LFTDS (A, FACT) 
!                                 Solve the original system 
      CALL LFSDS (FACT, B, Z) 
!                                 Print the results 
      CALL WRRRN (’FACT’, FACT, ITRING=1) 
      CALL WRRRN (’Z’, Z, 1, N, 1) 
!                                 Update the factorization 
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      CALL LUPCH (FACT, X, FACNEW) 
!                                 Solve the updated system 
      CALL LFSDS (FACNEW, B, Z) 
!                                 Print the results 
      CALL WRRRN (’FACNEW’, FACNEW, ITRING=1) 
      CALL WRRRN (’Z’, Z, 1, N, 1) 
! 
      END 

Output 
 
         FACT 
        1       2       3 
1   1.000  -3.000   2.000 
2           1.000   1.000 
3                   1.000 
          Z 
     1        2        3 
1860.0    433.0   -254.0 
 
      FACNEW 
     1       2       3 
1   3.162   0.949   1.581 
2           3.619  -1.243 
3                  -1.719 
 
 
        Z 
    1       2       3 
4.000   1.000   2.000 

Description 
The routine LUPCH is based on the LINPACK routine SCHUD; see Dongarra et al. (1979). 

The Cholesky factorization of a matrix is A = RT R, where R is an upper triangular matrix. 
Given this factorization, LUPCH computes the factorization  

T TA xx R R� �
� �  

In the program  

R�  

is called RNEW. 

LUPCH determines an orthogonal matrix U as the product GN�G��of Givens rotations, such that 

0T

R R
U

x
� �� �

� � �� �
� � � �

�

 

By multiplying this equation by its transpose, and noting that UT U = I, the desired result 
T T TR R xx R R� �

� �  
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is obtained. 

Each Givens rotation, Gi, is chosen to zero out an element in xT. The matrix  
Gi is (N + 1) � (N + 1) and has the form 

1 0 0 0
0 0
0 0 0
0 0

i

i i
i

N i

i i

I
c s

G
I

s c

�

�

� �
� �
� ��
� �
� �

�� �� �

 

where Ik  is the identity matrix of order k and ci = cos�i = CS(I), si = sin�i = SN(I) for some �i. 

LDNCH 
Downdates the RT R Cholesky factorization of a real symmetric positive definite matrix after a 
rank-one matrix is removed. 

Required Arguments 
R — N by N upper triangular matrix containing the upper triangular factor to be downdated.   

(Input)  
Only the upper triangle of R is referenced. 

X — Vector of length N determining the rank-one matrix to be subtracted from the 
factorization RT R.   (Input) 

RNEW — N by N upper triangular matrix containing the downdated triangular factor of  
RT R � X XT.   (Output)  
Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can share 
the same storage locations. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (R,2). 

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDR = size (R,1). 

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDRNEW = size (RNEW,1). 

CS — Vector of length N containing the cosines of the rotations.   (Output) 
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SN — Vector of length N containing the sines of the rotations.   (Output) 

FORTRAN 90 Interface 
Generic: CALL LDNCH (R, X, RNEW [ ,…]) 

Specific: The specific interface names are S_LDNCH and D_LDNCH. 

FORTRAN 77 Interface 
Single: CALL LDNCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN) 

Double:  The double precision name is DLDNCH. 

Example 
A linear system Az = b is solved using the Cholesky factorization of A. This factorization is then 
downdated, and the system (A � xxT)z = b is solved using this downdated factorization. 

      USE LDNCH_INT 
      USE LFTDS_INT 
      USE LFSDS_INT 
      USE WRRRN_INT 
!                                 Declare variables 
      INTEGER    LDA, LDFACT, N 
      PARAMETER  (LDA=3, LDFACT=3, N=3) 
      REAL       A(LDA,LDA), FACT(LDFACT,LDFACT), FACNEW(LDFACT,LDFACT), & 
                X(N), B(N), CS(N), SN(N), Z(N) 
! 
!                                 Set values for A 
!                                 A = ( 10.0   3.0   5.0) 
!                                     (  3.0  14.0  -3.0) 
!                                     (  5.0  -3.0   7.0) 
! 
      DATA A/10.0, 3.0, 5.0, 3.0, 14.0, -3.0, 5.0, -3.0, 7.0/ 
! 
!                                 Set values for X and B 
      DATA X/3.0, 2.0, 1.0/ 
      DATA B/53.0, 20.0, 31.0/ 
!                                 Factor the matrix A 
      CALL LFTDS (A, FACT) 
!                                 Solve the original system 
      CALL LFSDS (FACT, B, Z) 
!                                 Print the results 
      CALL WRRRN (’FACT’, FACT, ITRING=1) 
      CALL WRRRN (’Z’, Z, 1, N, 1) 
!                                 Downdate the factorization 
      CALL LDNCH (FACT, X, FACNEW) 
!                                 Solve the updated system 
      CALL LFSDS (FACNEW, B, Z) 
!                                 Print the results 
      CALL WRRRN (’FACNEW’, FACNEW, ITRING=1) 
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      CALL WRRRN (’Z’, Z, 1, N, 1) 
! 
      END 
 

Output 
          FACT 
        1       2       3 
1   3.162   0.949   1.581 
2           3.619  -1.243 
3                   1.719 
            Z 
      1       2       3 
  4.000   1.000   2.000 
 
          FACNEW 
        1       2       3 
1   1.000  -3.000   2.000 
2           1.000   1.000 
3                   1.000 
 
             Z 
     1        2        3 
1859.9    433.0   -254.0 

Comments 
Informational error 
 
Type  Code  
   4    1 RTR � X XT is not positive definite. R cannot be downdated. 

Description 
The routine LDNCH is based on the LINPACK routine SCHDD; see Dongarra et al. (1979). 

The Cholesky factorization of a matrix is A = RT R, where R is an upper triangular matrix. 
Given this factorization, LDNCH computes the factorization  

T TA xx R R� �
� �  

In the program 

R�  

is called RNEW. This is not always possible, since A � xxT may not be positive definite. 

LDNCH determines an orthogonal matrix U as the product GN �G�of Givens rotations, such that 

0 T
R R

U x
� �� �

� � �� �
� �� � � �

�

 

By multiplying this equation by its transpose and noting that UT U = I, the desired result  
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T T TR R xx R R� �
� �  

is obtained. 

Let a be the solution of the linear system RT a = x and let  

2

2
1 a� � �  

The Givens rotations, Gi, are chosen such that 

1

0
1N

a
G G �

� � � �
�� � � �

� � � �
�  

The Gi, are (N + 1) � (N + 1) matrices of the form 

1 0 0 0
0 0
0 0 0
0 0

i

i i
i

N i

i i

I
c s

G
I

s c

�

�

� �
� ��� ��
� �
� �
� �� �

 

where Ik is the identity matrix of order k; and ci= cos�i = CS(I), si= sin�i = SN(I) for some �i.  

The Givens rotations are then used to form  

1,
0 TN

R R
R G G x

� �� �
� � �� �
� �� � � �

�
� �

�
 

The matrix  

R�  

is upper triangular and  

x x��  

because 

� � � � � �
0

0 0 1
T T T Ta a

x R R U U R x x
� �

� � � � � �
� � � �� � � � � �

� � � � � �

� � �  

LSVRR 
Computes the singular value decomposition of a real matrix. 

Required Arguments 
A — NRA by NCA matrix whose singular value decomposition is to be computed.   (Input) 

IPATH — Flag used to control the computation of the singular vectors.   (Input)  
IPATH has the decimal expansion IJ such that: 
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I = 0 means do not compute the left singular vectors; 
I = 1 means return the NCA left singular vectors in U; 
I = 2 means return only the min(NRA, NCA) left singular vectors in U; 
J = 0 means do not compute the right singular vectors, 
J = 1 means return the right singular vectors in V. 

For example, IPATH = 20 means I = 2 and J = 0. 

S — Vector of length min(NRA + 1, NCA) containing the singular values of A in descending 
order of magnitude in the first min(NRA, NCA) positions.   (Output) 

Optional Arguments 
NRA — Number of rows in the matrix A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in the matrix A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

TOL — Scalar containing the tolerance used to determine when a singular value is negligible.   
(Input)  
If TOL is positive, then a singular value �i considered negligible if �i � TOL . If TOL is 
negative, then a singular value �i considered negligible if �i � |TOL| * ||A||�. In this 
case, |TOL| generally contains an estimate of the level of the relative error in the data. 
Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision. 

IRANK — Scalar containing an estimate of the rank of A.   (Output) 

U — NRA by NCU matrix containing the left singular vectors of A.   (Output)  
NCU must be equal to NRA if I is equal to 1. NCU must be equal to min(NRA, NCA) if I is 
equal to 2. U will not be referenced if I is equal to zero. If NRA is less than or equal to 
NCU, then U can share the same storage locations as A. See Comments. 

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDU = size (U,1). 

V — NCA by NCA matrix containing the right singular vectors of A.   (Output)  
V will not be referenced if J is equal to zero. V can share the same storage location as 
A, however, U and V cannot both coincide with A simultaneously. 
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LDV — Leading dimension of V exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDV = size (V,1). 

FORTRAN 90 Interface 
Generic: CALL LSVRR (A, IPATH, S [ ,…]) 

Specific: The specific interface names are S_LSVRR and D_LSVRR. 

FORTRAN 77 Interface 
Single: CALL LSVRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV) 

Double:  The double precision name is DLSVRR. 

Example 
This example computes the singular value decomposition of a 6 � 4 matrix A. The matrices U 
and V containing the left and right singular vectors, respectively, and the diagonal of �, 
containing singular values, are printed. On some systems, the signs of some of the columns of U 
and V may be reversed. 

      USE IMSL_LIBRARIES 
!                                 Declare variables 
      PARAMETER  (NRA=6, NCA=4, LDA=NRA, LDU=NRA, LDV=NCA) 
      REAL       A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA) 
! 
!                                 Set values for A 
! 
!                                 A = (  1    2    1    4  ) 
!                                     (  3    2    1    3  ) 
!                                     (  4    3    1    4  ) 
!                                     (  2    1    3    1  ) 
!                                     (  1    5    2    2  ) 
!                                     (  1    2    2    3  ) 
! 
      DATA A/1., 3., 4., 2., 1., 1., 2., 2., 3., 1., 5., 2., 3*1., & 
            3., 2., 2., 4., 3., 4., 1., 2., 3./ 
! 
!                                 Compute all singular vectors 
      IPATH = 11 
      TOL   = AMACH(4) 
      TOL   = 10.*TOL 
      CALL LSVRR(A, IPATH, S, TOL=TOL, IRANK=IRANK, U=U, V=V) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT, *) ’IRANK = ’, IRANK 
      CALL WRRRN (’U’, U) 
      CALL WRRRN (’S’, S, 1, NCA, 1) 
      CALL WRRRN (’V’, V) 
! 
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      END 

Output 
 
IRANK =   4 
                            U 
         1        2        3        4        5        6 
1  -0.3805   0.1197   0.4391  -0.5654   0.0243  -0.5726 
2  -0.4038   0.3451  -0.0566   0.2148   0.8089   0.1193 
3  -0.5451   0.4293   0.0514   0.4321  -0.5723   0.0403 
4  -0.2648  -0.0683  -0.8839  -0.2153  -0.0625  -0.3062 
5  -0.4463  -0.8168   0.1419   0.3213   0.0621  -0.0799 
6  -0.3546  -0.1021  -0.0043  -0.5458  -0.0988   0.7457 
 
                S 
      1       2       3       4 
  11.49    3.27    2.65    2.09 
 
                  V 
         1        2        3        4 
1  -0.4443   0.5555  -0.4354   0.5518 
2  -0.5581  -0.6543   0.2775   0.4283 
3  -0.3244  -0.3514  -0.7321  -0.4851 
4  -0.6212   0.3739   0.4444  -0.5261 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2VRR/DL2VRR. The 

reference is: 

CALL L2VRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV, ACOPY, WK) 

The additional arguments are as follows: 

ACOPY — NRA � NCA work array for the matrix A. If A is not needed, then A and 
ACOPY may share the same storage locations. 

WK — Work vector of length NRA + NCA + max(NRA, NCA) � 1. 

2. Informational error 
Type Code 

4     1 Convergence cannot be achieved for all the singular values and their 
corresponding singular vectors. 

3. When NRA is much greater than NCA, it might not be reasonable to store the whole 
matrix U. In this case, IPATH with I = 2 allows a singular value factorization of A to be 
computed in which only the first NCA columns of U are computed, and in many 
applications those are all that are needed. 

4. Integer Options with Chapter 11 Options Manager 
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16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2VRR the leading dimension of ACOPY is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSVRR. 
Additional memory allocation for ACOPY and option value restoration are done 
automatically in LSVRR. Users directly calling L2VRR can allocate additional 
space for ACOPY and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSVRR or L2VRR. Default values for the option are IVAL(*) 
= 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSVRR temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG 
skips this computation. LSVRR restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
The routine LSVRR is based on the LINPACK routine SSVDC; see Dongarra et al. (1979). 

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in A). For any n 
� p matrix A, there exists an n � n orthogonal matrix U and a p � p orthogonal matrix V such 
that 

� �

if   0

0 if   

T
n p

U AV
n p

� �� �
��� �

	 
 ��
� � �

 

where � = diag(��, �, �m), and m = min(n, p). The scalars �� � �� � � � �m � 0 are called the 
singular values of A. The columns of U are called the left singular vectors of A. The columns of 
V are called the right singular vectors of A. 

The estimated rank of A is the number of �k that is larger than a tolerance �. If � is the 
parameter TOL in the program, then 

if  > 0
if  < 0A

� �
�

� �
�

��
� �
��

 

LSVCR 
Computes the singular value decomposition of a complex matrix. 

Required Arguments 
A — Complex NRA by NCA matrix whose singular value decomposition is to be computed.   

(Input) 
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IPATH — Integer flag used to control the computation of the singular vectors.   (Input)  
IPATH has the decimal expansion IJ such that: 

I=0 means do not compute the left singular vectors; 
I=1 means return the NCA left singular vectors in U; 
I=2 means return only the min(NRA, NCA) left singular vectors in U; 
J=0 means do not compute the right singular vectors; 
J=1 means return the right singular vectors in V. 

For example, IPATH = 20 means I = 2 and J = 0. 

S — Complex vector of length min(NRA + 1, NCA) containing the singular values of A in 
descending order of magnitude in the first min(NRA, NCA) positions.   (Output) 

Optional Arguments 
NRA — Number of rows in the matrix A.   (Input) 

Default: NRA = size (A,1). 

NCA --- Number of columns in the matrix A.  (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

TOL — Real scalar containing the tolerance used to determine when a singular value is 
negligible.   (Input)  
If TOL is positive, then a singular value SI is considered negligible if SI � TOL . If TOL 
is negative, then a singular value SI is considered negligible if 
SI � 
TOL
*(Infinity norm of A). In this case 
TOL
 should generally contain an estimate 
of the level of relative error in the data. 
Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision. 

IRANK — Integer scalar containing an estimate of the rank of A.   (Output) 

U — Complex NRA by NRA if I = 1 or NRA by min(NRA, NCA) if I = 2 matrix containing the 
left singular vectors of A.   (Output)  
U will not be referenced if I is equal to zero. If NRA is less than or equal to NCA or 
IPATH = 2, then U can share the same storage locations as A. 

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDU = size (U,1). 

V — Complex NCA by NCA matrix containing the right singular vectors of A.   (Output)  
V will not be referenced if J is equal to zero. If NCA is less than or equal to NRA, then V 
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can share the same storage locations as A; however U and V cannot both coincide with A 
simultaneously. 

LDV — Leading dimension of V exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDV = size (V,1). 

FORTRAN 90 Interface 
Generic: CALL LSVCR (A, IPATH, S [,�]) 

Specific: The specific interface names are S_LSVCR and D_LSVCR. 

FORTRAN 77 Interface 
Single: CALL LSVCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV) 

Double:  The double precision name is DLSVCR. 

Example 
This example computes the singular value decomposition of a 6 � 3 matrix A. The matrices U 
and V containing the left and right singular vectors, respectively, and the diagonal of �, 
containing singular values, are printed. On some systems, the signs of some of the columns of U 
and V may be reversed. 

      USE IMSL_LIBRARIES 
!                                 Declare variables 
      PARAMETER  (NRA=6, NCA=3, LDA=NRA, LDU=NRA, LDV=NCA) 
      COMPLEX    A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA) 
! 
!                                 Set values for A 
! 
!                                 A = (  1+2i    3+2i    1-4i  ) 
!                                     (  3-2i    2-4i    1+3i  ) 
!                                     (  4+3i   -2+1i    1+4i  ) 
!                                     (  2-1i    3+0i    3-1i  ) 
!                                     (  1-5i    2-5i    2+2i  ) 
!                                     (  1+2i    4-2i    2-3i  ) 
! 
      DATA A/(1.0,2.0), (3.0,-2.0), (4.0,3.0), (2.0,-1.0), (1.0,-5.0), & 
            (1.0,2.0), (3.0,2.0), (2.0,-4.0), (-2.0,1.0), (3.0,0.0), & 
            (2.0,-5.0), (4.0,-2.0), (1.0,-4.0), (1.0,3.0), (1.0,4.0), & 
            (3.0,-1.0), (2.0,2.0), (2.0,-3.0)/ 
! 
!                                 Compute all singular vectors 
      IPATH = 11 
      TOL   = AMACH(4) 
      TOL   = 10. * TOL 
      CALL LSVCR(A, IPATH, S, TOL = TOL, IRANK=IRANK, U=U, V=V) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
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      WRITE (NOUT, *) ’IRANK = ’, IRANK 
      CALL WRCRN (’U’, U) 
      CALL WRCRN (’S’, S, 1, NCA, 1) 
      CALL WRCRN (’V’, V) 
! 
      END 

Output 
 
IRANK =   3 
                                      U 
                  1                 2                  3                 4 
1 ( 0.1968, 0.2186) ( 0.5011, 0.0217)  (-0.2007,-0.1003)  (-0.2036, 0.0405) 
2 ( 0.3443,-0.3542) (-0.2933, 0.0248)  ( 0.1155,-0.2338)  (-0.2316, 0.0287) 
3 ( 0.1457, 0.2307) (-0.5424, 0.1381)  (-0.4361,-0.4407)  ( 0.0281,-0.3088) 
4 ( 0.3016,-0.0844) ( 0.2157, 0.2659)  (-0.0523,-0.0894)  ( 0.8617, 0.0223) 
5 ( 0.2283,-0.6008) (-0.1325, 0.1433)  ( 0.3152,-0.0090)  (-0.0392,-0.0145) 
6 ( 0.2876,-0.0350) ( 0.4377,-0.0400)  ( 0.0458,-0.6205)  (-0.2303, 0.0924) 
 
                   5                  6 
1  ( 0.4132,-0.0985)  (-0.6017, 0.1612) 
2  (-0.5061, 0.0198)  (-0.5380,-0.0317) 
3  ( 0.2043,-0.1853)  ( 0.1012, 0.2132) 
4  (-0.1272,-0.0866)  (-0.0808,-0.0266) 
5  ( 0.6482,-0.1033)  ( 0.0995,-0.0837) 
6  (-0.1412, 0.1121)  ( 0.4897,-0.0436) 
 
                       S 
              1                2                3 
( 11.77,  0.00)  (  9.30,  0.00)  (  4.99,  0.00) 
 
                            V 
                   1                  2                  3 
1  ( 0.6616, 0.0000)  (-0.2651, 0.0000)  (-0.7014, 0.0000) 
2  ( 0.7355, 0.0379)  ( 0.3850,-0.0707)  ( 0.5482, 0.0624) 
3  ( 0.0507,-0.1317)  ( 0.1724, 0.8642)  (-0.0173,-0.4509) 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2VCR/DL2VCR. The 

reference is 

CALL L2VCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV, ACOPY, WK) 

The additional arguments are as follows: 

ACOPY — NRA * NCA complex work array of length for the matrix A. If A is not 
needed, then A and ACOPY can share the same storage locations. 

WK — Complex work vector of length NRA + NCA + max(NRA, NCA)  1. 
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2. Informational error 
Type Code 

4     1 Convergence cannot be achieved for all the singular values and their 
corresponding singular vectors. 

3. When NRA is much greater than NCA, it might not be reasonable to store the whole 
matrix U. In this case IPATH with I = 2 allows a singular value factorization of A to be 
computed in which only the first NCA columns of U are computed, and in many 
applications those are all that are needed. 

4. Integer Options with Chapter 11 Options Manager 

16 This option uses four values to solve memory bank conflict (access inefficiency) 
problems. In routine L2VCR the leading dimension of ACOPY is increased by 
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are 
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSVCR. 
Additional memory allocation for ACOPY and option value restoration are done 
automatically in LSVCR. Users directly calling L2VCR can allocate additional 
space for ACOPY and set IVAL(3) and IVAL(4) so that memory bank conflicts no 
longer cause inefficiencies. There is no requirement that users change existing 
applications that use LSVCR or L2VCR. Default values for the option are IVAL(*) 
= 1, 16, 0, 1. 

17 This option has two values that determine if the L� condition number is to be 
computed. Routine LSVCR temporarily replaces IVAL(2) by IVAL(1). The 
routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG 
skips this computation. LSVCR restores the option. Default values for the option 
are IVAL(*) = 1, 2. 

Description 
The IMSL routine LSVCR is based on the LINPACK routine CSVDC; see Dongarra et al. (1979). 

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in A).For any  
n � p matrix A there exists an n � n orthogonal matrix U and a p � p orthogonal matrix V such 
that  

� �

if   0

0 if   

T
n p

U AV
n p

� �� �
��� �

	 
 ��
� � �

 

where � = diag(�����, �m), and m = min(n, p). The scalars �� � �� � � � 0 are called the 
singular values of A. The columns of U are called the left singular vectors of A. The columns of 
V are called the right singular vectors of A. 

The estimated rank of A is the number of �k which are larger than a tolerance �. If � is the 
parameter TOL in the program, then 
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LSGRR 
Computes the generalized inverse of a real matrix. 

Required Arguments 
A — NRA by NCA matrix whose generalized inverse is to be computed.   (Input) 

GINVA — NCA by NRA matrix containing the generalized inverse of A.   (Output) 

Optional Arguments 
NRA — Number of rows in the matrix A.   (Input) 

Default: NRA = size (A,1). 

NCA — Number of columns in the matrix A.   (Input) 
Default: NCA = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

TOL — Scalar containing the tolerance used to determine when a singular value (from the 
singular value decomposition of A) is negligible.   (Input)  
If TOL is positive, then a singular value �i considered negligible if �i � TOL . If TOL is 
negative, then a singular value �i considered negligible if �i � |TOL| * ||A||�. In this 
case, |TOL| generally contains an estimate of the level of the relative error in the data. 
Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision. 

IRANK — Scalar containing an estimate of the rank of A.   (Output) 

LDGINV — Leading dimension of GINVA exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDGINV = size (GINV,1). 

FORTRAN 90 Interface 
Generic: CALL LSGRR (A, GINVA [ ,…]) 

Specific: The specific interface names are S_LSGRR and D_LSGRR. 
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FORTRAN 77 Interface 
Single: CALL LSGRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA, LDGINV) 

Double:  The double precision name is DLSGRR. 

Example 
This example computes the generalized inverse of a 3 � 2 matrix A. The rank k = IRANK and the 
inverse  

† GINVA �  

are printed. 
      USE IMSL_LIBRARIES 
!                                 Declare variables 
      PARAMETER  (NRA=3, NCA=2, LDA=NRA, LDGINV=NCA) 
      REAL       A(LDA,NCA), GINV(LDGINV,NRA) 
! 
!                                 Set values for A 
! 
!                                 A = (   1    0   ) 
!                                     (   1    1   ) 
!                                     ( 100  -50   ) 
! 
      DATA A/1., 1., 100., 0., 1., -50./ 
! 
!                                 Compute generalized inverse 
      TOL = AMACH(4) 
      TOL = 10.*TOL 
      CALL LSGRR (A, GINV,TOL=TOL, IRANK=IRANK) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT, *) ’IRANK = ’, IRANK 
      CALL WRRRN (’GINV’, GINV) 
! 
      END 

Output 
 
IRANK =   2 
             GINV 
         1        2        3 
1   0.1000   0.3000   0.0060 
2   0.2000   0.6000  -0.0080 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of L2GRR/DL2GRR. The 

reference is: 

CALL L2GRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA, LDGINV, WKA, WK) 
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The additional arguments are as follows: 

WKA — Work vector of length NRA * NCA used as workspace for the matrix A. If A is 
not needed, WKA and A can share the same storage locations. 

WK — Work vector of length LWK where LWK is equal to NRA� + NCA� + min(NRA + 1, 
NCA) + NRA + NCA + max(NRA, NCA) � 2. 

2. Informational error 
Type  Code 

4    1 Convergence cannot be achieved for all the singular values and their 
corresponding singular vectors. 

Description 
Let k = IRANK, the rank of A; let n = NRA, the number of rows in A; let p = NCA, the number of 
columns in A; and let  

† GINVA �  

be the generalized inverse of A. 

To compute the Moore-Penrose generalized inverse, the routine LSVRR (page 415) is first used 
to compute the singular value decomposition of A. A singular value decomposition of A 
consists of an n � n orthogonal matrix U, a p � p orthogonal matrix V and a diagonal matrix  
� = diag(����, �m), m = min(n, p), such that UT AV = [�, 0] if n � p and UT AV = [�, 0]T if  
n � p. Only the first p columns of U are computed. The rank k is estimated by counting the 
number of nonnegligible �i. 

The matrices U and V can be partitioned as U = (U�, U�) and V = (V�, V�) where both U� and V� 
are k � k matrices. Let �� = diag(��, �, �k). The Moore-Penrose generalized inverse of A is 

† 1
1 1 1V TA U�

� �  
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Chapter 2: Eigensystem Analysis 

Routines 
2.1. Eigenvalue Decomposition 

2.1.1 Computes the eigenvalues of a self-adjoint  
matrix, A.................................................................LIN_EIG_SELF 432 

2.1.2 Computes the eigenvalues of an n � n matrix, A .... LIN_EIG_GEN 439 

2.1.3 Computes the generalized eigenvalues of an n � n  
matrix pencil, Av = �Bv .........................................LIN_GEIG_GEN 448 

2.2. Eigenvalues and (Optionally) Eigenvectors of Ax = �x 
2.2.1 Real General Problem Ax = �x  

All eigenvalues .................................................................... EVLRG 455 
All eigenvalues and eigenvectors .......................................EVCRG 457 
Performance index................................................................EPIRG 460 

2.2.2 Complex General Problem Ax = �x 
All eigenvalues .................................................................... EVLCG 462 
All eigenvalues and eigenvectors .......................................EVCCG 464 
Performance index................................................................EPICG 467 

2.2.3 Real Symmetric Problem Ax = �x 
All eigenvalues ..................................................................... EVLSF 469 
All eigenvalues and eigenvectors ........................................EVCSF 471 
Extreme eigenvalues ...........................................................EVASF 473 
Extreme eigenvalues and their eigenvectors.......................EVESF 475 
Eigenvalues in an interval ....................................................EVBSF 478 
Eigenvalues in an interval and their eigenvectors ............... EVFSF 480 
Performance index................................................................ EPISF 483 

2.2.4 Real Band Symmetric Matrices in Band Storage Mode 
All eigenvalues ..................................................................... EVLSB 485 
All eigenvalues and eigenvectors ....................................... EVCSB 487 
Extreme eigenvalues ...........................................................EVASB 490 
Extreme eigenvalues and their eigenvectors.......................EVESB 492 
Eigenvalues in an interval ....................................................EVBSB 495 
Eigenvalues in an interval and their eigenvectors ...............EVFSB 498 
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Performance index ................................................................EPISB 501 
 

2.2.5 Complex Hermitian Matrices 
All eigenvalues .....................................................................EVLHF 502 
All eigenvalues and eigenvectors........................................ EVCHF 505 
Extreme eigenvalues........................................................... EVAHF 508 
Extreme eigenvalues and their eigenvectors ...................... EVEHF 510 
Eigenvalues in an interval ................................................... EVBHF 513 
Eigenvalues in an interval and their eigenvectors................EVFHF 515 
Performance index ................................................................EPIHF 518 

2.2.6 Real Upper Hessenberg Matrices 
All eigenvalues .................................................................... EVLRH 520 
All eigenvalues and eigenvectors........................................EVCRH 522 

2.2.7 Complex Upper Hessenberg Matrices 
All eigenvalues .................................................................... EVLCH 525 
All eigenvalues and eigenvectors........................................EVCCH 526 

2.3. Eigenvalues and (Optionally) Eigenvectors of Ax = �Bx 
2.3.1 Real General Problem Ax = �Bx 

All eigenvalues ....................................................................GVLRG 529 
All eigenvalues and eigenvectors....................................... GVCRG 531 
Performance index ...............................................................GPIRG 535 

2.3.2 Complex General Problem Ax = �Bx 
All eigenvalues ....................................................................GVLCG 537 
All eigenvalues and eigenvectors....................................... GVCCG 540 
Performance index ...............................................................GPICG 542 

2.3.3 Real Symmetric Problem Ax = �Bx 
All eigenvalues .................................................................... GVLSP 544 
All eigenvalues and eigenvectors........................................GVCSP 547 
Performance index ............................................................... GPISP 549 

Usage Notes  
This chapter includes routines for linear eigensystem analysis. Many of these are for matrices with 
special properties. Some routines compute just a portion of the eigensystem. Use of the appropriate 
routine can substantially reduce computing time and storage requirements compared to computing a 
full eigensystem for a general complex matrix. 

An ordinary linear eigensystem problem is represented by the equation Ax = �x where A denotes an  
n � n matrix. The value � is an eigenvalue and x � 0 is the corresponding eigenvector. The 
eigenvector is determined up to a scalar factor. In all routines, we have chosen this factor so that x has 
Euclidean length with value one, and the component of x of smallest index and largest magnitude is 
positive. In case x is a complex vector, this largest component is real and positive. 

Similar comments hold for the use of the remaining Level 1 routines in the following tables in those 
cases where the second character of the Level 2 routine name is no longer the character "2".  
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A generalized linear eigensystem problem is represented by Ax = �Bx where A and B are n � n 
matrices. The value � is an eigenvalue, and x is the corresponding eigenvector. The eigenvectors are 
normalized in the same manner as for the ordinary eigensystem problem. The linear eigensystem 
routines have names that begin with the letter “E”. The generalized linear eigensystem routines have 
names that begin with the letter “G”. This prefix is followed by a two-letter code for the type of 
analysis that is performed. That is followed by another two-letter suffix for the form of the coefficient 
matrix. The following tables summarize the names of the eigensystem routines. 

 
Symmetric and Hermitian Eigensystems 

 Symmet
ric 
Full 

Symmetric 
Band 

Hermitian 
Full 

All eigenvalues EVLSF 
p. 469 

EVLSB 
p. 485 

EVLHF 
p. 502 

All eigenvalues 
and eigenvectors 

EVCSF 
p. 471 

EVCSB 
p. 487 

EVCHF 
p. 505 

Extreme eigenvalues EVASF 
p. 473 

EVASB 
p. 490 

EVAHF 
p. 508 

Extreme eigenvalues 
and eigenvectors 

EVESF 
p. 475 

EVESB 
p. 492 

EVEHF 
p.510 

Eigenvalues in 
an interval 

EVBSF 
p. 478 

EVBSB 
p. 495 

EVBHF 
p. 513 

Eigenvalues and  
eigevectors in an interval 

EVFSF 
p. 480 

EVFSB 
p. 498 

EVFHF 
p 515 

Performance index EPISF 
p. 483 

EPISB 
p. 501 

EPIHF 
p. 518 

  
General Eigensystems 

 Real 
General 

Complex
General 

Real 
Hessenberg

Complex 
Hessenberg 

All eigenvalues EVLRG 
p. 455 

EVLCG 
p. 462 

EVLRH 
p. 455 

EVLCH 
p. 525 

All eigenvalues 
and eigenvectors 

EVCRG 
p. 457 

EVCCG 
p. 464 

EVCRH 
p. 522 

EVCCH 
p. 526 

Performance 
index 

EPIRG 
p. 460 

EPICG 
p. 467 

EPIRG 
p. 460 

EPICG 
p. 467 
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Generalized Eigensystems Ax = �Bx 
 Real 

General 
Complex 
General 

A Symmetric 
B Positive 

Definite 
All eigenvalues GVLRG 

p. 529 
GVLCG 
p. 537 

GVLSP 
p. 544 

All eigenvalues and 
eigenvectors 

GVCRG 
p. 531 

GVCCG 
p. 540 

GVCSP 
p. 547 

Performance index GPIRG 
p. 535 

GPICG 
p. 542 

GPISP 
p. 549 

Error Analysis and Accuracy 
The remarks in this section are for the ordinary eigenvalue problem. Except in special cases, routines 
will not return the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem Ax = �x. 
The computed pair  

,x ���  

is an exact eigenvector-eigenvalue pair for a “nearby” matrix A + E. Information about E is known 
only in terms of bounds of the form || E||� � �(n) ||A||� �. The value of �(n) depends on the algorithm 
but is typically a small fractional power of n. The parameter � is the machine precision. By a theorem 
due to Bauer and Fike (see Golub and Van Loan [1989, page 342], 

� � � �2
min for all  in AX E� � � � �� ��  

where � (A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of 
eigenvectors, || � ||� is the 2-norm, and 	(X) is the condition number of X defined as  
	(X) = || X ||� || X��||�. If A is a real symmetric or complex Hermitian matrix, then its eigenvector 
matrix X is respectively orthogonal or unitary. For these matrices,	(X) = 1. 

The eigenvalues  

j�
�  

and eigenvectors  

jx�  

computed by EVC** can be checked by computing their performance index 
 using EPI**. The 
performance index is defined by Smith et al. (1976, pages 124�126) to be 

1

1
1 1

max
10

j j j

j n
j

Ax x

n A x

�

�
�� �

�

�

�� �

�

 

No significance should be attached to the factor of 10 used in the denominator. For a real vector x, the 
symbol || x ||� represents the usual 1-norm of x. For a complex vector x, the symbol || x ||� is defined by 
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� �1
1

N

k k
k

x x x
�

� � � ��  

The performance index 
 is related to the error analysis because 

2 2j j j jEx Ax x�� �
�� � ��  

where E is the “nearby” matrix discussed above. 

While the exact value of 
 is machine and precision dependent, the performance of an eigensystem 
analysis routine is defined as excellent if 
 < 1, good if 1 � 
 � 100, and poor if 
 > 100. This is an 
arbitrary definition, but large values of 
 can serve as a warning that there is a blunder in the 
calculation. There are also similar routines GPI** to compute the performance index for generalized 
eigenvalue problems. 

If the condition number 	(X) of the eigenvector matrix X is large, there can be large errors in the 
eigenvalues even if 
 is small. In particular, it is often difficult to recognize near multiple eigenvalues 
or unstable mathematical problems from numerical results. This facet of the eigenvalue problem is 
difficult to understand: A user often asks for the accuracy of an individual eigenvalue. This can be 
answered approximately by computing the condition number of an individual eigenvalue. See Golub 
and Van Loan (1989, pages 344-345). For matrices A such that the computed array of normalized 
eigenvectors X is invertible, the condition number of �j is 	j � the Euclidean length of row j of the 
inverse matrix X�� . Users can choose to compute this matrix with routine LINCG, see Chapter 1, 
Linear Systems. An approximate bound for the accuracy of a computed eigenvalue is then given by  
	j � || A || To compute an approximate bound for the relative accuracy of an eigenvalue, divide this 
bound by | �j |. 

Reformulating Generalized Eigenvalue Problems 
The generalized eigenvalue problem Ax = �Bx is often difficult for users to analyze because it is 
frequently ill-conditioned. There are occasionally changes of variables that can be performed on the 
given problem to ease this ill-conditioning. Suppose that B is singular but A is nonsingular. Define the 
reciprocal  = ���. Then, the roles of A and B are interchanged so that the reformulated problem  
Bx = Ax is solved. Those generalized eigenvalues j = 0 correspond to eigenvalues  
�j = �. The remaining  

1
j j� � �

�  

The generalized eigenvectors for �j correspond to those for j. Other reformulations can be made: If B 
is nonsingular, the user can solve the ordinary eigenvalue problem Cx � B�� Ax = �x. This is not 
recommended as a computational algorithm for two reasons. First, it is generally less efficient than 
solving the generalized problem directly. Second, the matrix C will be subject to perturbations due to 
ill-conditioning and rounding errors when computing B��A. Computing the condition numbers of the 
eigenvalues for C may, however, be helpful for analyzing the accuracy of results for the generalized 
problem. 

There is another method that users can consider to reduce the generalized problem to an alternate 
ordinary problem. This technique is based on first computing a matrix decomposition B = PQ, where 
both P and Q are matrices that are “simple” to invert. Then, the given generalized problem is 
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equivalent to the ordinary eigenvalue problem Fy = �y. The matrix F � P��AQ��. The unnormalized 
eigenvectors of the generalized problem are given by x = Q��y. An example of this reformulation is 
used in the case where A and B are real and symmetric with B positive definite. The IMSL routines 
GVLSP, page 544, and GVCSP, page 547, use P = RT and Q = R where R is an upper triangular matrix 
obtained from a Cholesky decomposition, B = RTR. The matrix F = R�� AR�� is symmetric and real. 
Computation of the eigenvalue-eigenvector expansion for F is based on routine EVCSF, page 471. 

LIN_EIG_SELF 
Computes the eigenvalues of a self-adjoint (i.e. real symmetric or complex Hermitian) matrix, A. 
Optionally, the eigenvectors can be computed. This gives the decomposition A = VDVT , where V is 
an n � n orthogonal matrix and D is a real diagonal matrix. 

Required Arguments 
A —    Array of size n � n containing the matrix. (Input [/Output]) 

D —    Array of size n containing the eigenvalues. The values are in order of decreasing absolute 
value. (Output) 

Optional Arguments 
NROWS = n   (Input) 

Uses array A(1:n, 1:n) for the input matrix. 
Default: n = size(A, 1) 

v = v(:,:)   (Output) 
Array of the same type and kind as A(1:n, 1:n). It contains the n � n orthogonal matrix V. 

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix; used for passing optional 
data to the routine. The options are as follows: 
 

Packaged Options for LIN_EIG_SELF 
Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ Lin_eig_self_set_small 1 

s_, d_, c_, z_ Lin_eig_self_overwrite_input 2 

s_, d_, c_, z_ Lin_eig_self_scan_for_NaN 3 

s_, d_, c_, z_ Lin_eig_self_use_QR 4 

s_, d_, c_, z_ Lin_eig_self_skip_Orth 5 

s_, d_, c_, z_ Lin_eig_self_use_Gauss_elim 6 

s_, d_, c_, z_ Lin_eig_self_set_perf_ratio 7 
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iopt(IO) = ?_options(?_lin_eig_self_set_small, Small) 
If a denominator term is smaller in magnitude than the value Small, it is replaced by Small. 
Default: the smallest number that can be reciprocated safely 

iopt(IO) = ?_options(?_lin_eig_self_overwrite_input, ?_dummy) 
Do not save the input array A(:, :). 

iopt(IO) = ?_options(?_lin_eig_self_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that 

 isNaN(a(i,j)) == .true.  

 See the isNaN() function, Chapter 10. 
Default: The array is not scanned for NaNs. 

iopt(IO) = ?_options(?_lin_eig_use_QR, ?_dummy) 
Uses a rational QR algorithm to compute eigenvalues. Accumulate the eigenvectors using 
this algorithm. 
Default: the eigenvectors computed using inverse iteration 

iopt(IO) = ?_options(?_lin_eig_skip_Orth, ?_dummy) 
If the eigenvalues are computed using inverse iteration, skips the final orthogonalization of 
the vectors. This will result in a more efficient computation but the eigenvectors, while a 
complete set, may be far from orthogonal. 
Default: the eigenvectors are normally orthogonalized if obtained using inverse iteration. 

iopt(IO) = ?_options(?_lin_eig_use_Gauss_elim, ?_dummy) 
If the eigenvalues are computed using inverse iteration, uses standard elimination with 
partial pivoting to solve the inverse iteration problems. 
Default: the eigenvectors computed using cyclic reduction 

iopt(IO) = ?_options(?_lin_eig_self_set_perf_ratio, perf_ratio) 
Uses residuals for approximate normalized eigenvectors if they have a performance index 
no larger than perf_ratio. Otherwise an alternate approach is taken and the eigenvectors 
are computed again: Standard elimination is used instead of cyclic reduction, or the 
standard QR algorithm is used as a backup procedure to inverse iteration. Larger values of 
perf_ratio are less likely to cause these exceptions. 
Default: perf_ratio = 4 

FORTRAN 90 Interface 
Generic: CALL LIN_EIG_SELF (A, D [,…]) 

 Specific: The specific interface names are S_LIN_EIG_SELF, D_LIN_EIG_SELF, 
C_LIN_EIG_SELF, and Z_LIN_EIG_SELF. 
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Example 1: Computing Eigenvalues 

The eigenvalues of a self-adjoint matrix are computed. The matrix A = C+CT  is used, where C is ran-
dom. The magnitudes of eigenvalues of A agree with the singular values of A. Also, see 
operator_ex25, Chapter 10. 

 
      use lin_eig_self_int  
      use lin_sol_svd_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 1 for LIN_EIG_SELF.  
  
      integer, parameter :: n=64  
      real(kind(1e0)), parameter :: one=1e0  
      real(kind(1e0)) :: A(n,n), b(n,0), D(n), S(n), x(n,0), y(n*n)  
  
! Generate a random matrix and from it   
! a self-adjoint matrix.  
      call rand_gen(y)  
      A = reshape(y,(/n,n/))  
      A = A + transpose(A)  
  
! Compute the eigenvalues of the matrix.  
      call lin_eig_self(A, D)  
  
! For comparison, compute the singular values.  
      call lin_sol_svd(A, b, x, nrhs=0, s=S)  
  
! Check the results:  Magnitude of eigenvalues should equal  
! the singular values.  
  
      if (sum(abs(abs(D) - S)) <= &  
           sqrt(epsilon(one))*S(1)) then  
         write (*,*) 'Example 1 for LIN_EIG_SELF is correct.'  
      end if  
      end  

Output 
 
Example 1 for LIN_EIG_SELF is correct. 

Description 
Routine LIN_EIG_SELF is an implementation of the QR algorithm for self-adjoint matrices. An 
orthogonal similarity reduction of the input matrix to self-adjoint tridiagonal form is performed. Then, 
the eigenvalue-eigenvector decomposition of a real tridiagonal matrix is calculated. The expansion of 
the matrix as AV = VD results from a product of these matrix factors. See Golub and Van Loan (1989, 
Chapter 8) for details. 
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Additional Examples 

Example 2: Eigenvalue-Eigenvector Expansion of a Square Matrix 
A self-adjoint matrix is generated and the eigenvalues and eigenvectors are computed. Thus,  
A = VDVT, where V is orthogonal and D is a real diagonal matrix. The matrix V is obtained using an 
optional argument. Also, see operator_ex26, Chapter 10. 

 
      use lin_eig_self_int  
      use rand_gen_int  
  
      implicit none  
! This is Example 2 for LIN_EIG_SELF.  
  
      integer, parameter :: n=8  
      real(kind(1e0)), parameter :: one=1e0  
      real(kind(1e0)) :: a(n,n), d(n), v_s(n,n), y(n*n)  
  
! Generate a random self-adjoint matrix.  
      call rand_gen(y)  
      a = reshape(y,(/n,n/))  
      a = a + transpose(a)  
! Compute the eigenvalues and eigenvectors.  
      call lin_eig_self(a, d, v=v_s)  
! Check the results for small residuals.  
      if (sum(abs(matmul(a,v_s)-v_s*spread(d,1,n)))/d(1) <= &  
             sqrt(epsilon(one))) then  
         write (*,*) 'Example 2 for LIN_EIG_SELF is correct.'  
      end if  
      end  

Output 
 
Example 2 for LIN_EIG_SELF is correct. 

 

Example 3: Computing a few Eigenvectors with Inverse Iteration 

A self-adjoint n � n matrix is generated and the eigenvalues, � �id , are computed. The eigenvectors 
associated with the first k of these are computed using the self-adjoint solver, lin_sol_self, and 
inverse iteration. With random right-hand sides, these systems are as follows: 

� �A d I v bi i i� �  

The solutions are then orthogonalized as in Hanson et al. (1991) to comprise a partial decomposition  
AV = VD where V is an n � k matrix resulting from the orthogonalized � �iv  and D is the k � k diagonal 
matrix of the distinguished eigenvalues. It is necessary to suppress the error message when the matrix is 
singular. Since these singularities are desirable, it is appropriate to ignore the exceptions and not print 
the message text. Also, see operator_ex27, Chapter 10. 
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      use lin_eig_self_int  
      use lin_sol_self_int  
      use rand_gen_int  
      use error_option_packet  
  
      implicit none  
  
! This is Example 3 for LIN_EIG_SELF.  
  
      integer i, j  
      integer, parameter :: n=64, k=8  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) big, err  
      real(kind(1d0)) :: a(n,n), b(n,1), d(n), res(n,k), temp(n,n), &  
              v(n,k), y(n*n)  
      type(d_options) :: iopti(2)=d_options(0,zero)  
  
! Generate a random self-adjoint matrix.  
      call rand_gen(y)  
      a = reshape(y,(/n,n/))  
      a = a + transpose(a)  
 
! Compute just the eigenvalues.  
      call lin_eig_self(a, d)  
  
      do i=1, k  
  
! Define a temporary array to hold the matrices A - eigenvalue*I.  
         temp = a  
         do j=1, n  
            temp(j,j) = temp(j,j) - d(i)  
         end do  
  
! Use packaged option to reset the value of a small diagonal.  
         iopti(1) = d_options(d_lin_sol_self_set_small,&  
                    epsilon(one)*abs(d(i)))  
  
! Use packaged option to skip singularity messages.  
         iopti(2) = d_options(d_lin_sol_self_no_sing_mess,&  
                    zero)  
         call rand_gen(b(1:n,1))  
         call lin_sol_self(temp, b, v(1:,i:i),&  
              iopt=iopti)  
      end do  
  
! Orthogonalize the eigenvectors.  
      do i=1, k  
         big = maxval(abs(v(1:,i)))  
         v(1:,i) = v(1:,i)/big  
         v(1:,i) = v(1:,i)/sqrt(sum(v(1:,i)**2))  
         if (i == k) cycle  
         v(1:,i+1:k) = v(1:,i+1:k) + &  
               spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &  
               spread(v(1:,i),2,k-i)  
      end do  
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      do i=k-1, 1, -1  
         v(1:,i+1:k) = v(1:,i+1:k) + &  
               spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &  
               spread(v(1:,i),2,k-i)  
      end do  
  
! Check the results for both orthogonality of vectors and small   
! residuals.  
      res(1:k,1:k) = matmul(transpose(v),v)  
      do i=1,k  
         res(i,i)=res(i,i)-one  
      end do  
      err = sum(abs(res))/k**2  
      res = matmul(a,v) - v*spread(d(1:k),1,n)  
      if (err <= sqrt(epsilon(one))) then  
         if (sum(abs(res))/abs(d(1)) <= sqrt(epsilon(one))) then  
            write (*,*) 'Example 3 for LIN_EIG_SELF is correct.'  
         end if  
      end if  
      end  

Output 
 
Example 3 for LIN_EIG_SELF is correct. 

Example 4: Analysis and Reduction of a Generalized Eigensystem 
A generalized eigenvalue problem is Ax = �Bx, where A and B are n � n self-adjoint matrices. The 
matrix B is positive definite. This problem is reduced to an ordinary self-adjoint eigenvalue problem 
Cy = �y by changing the variables of the generalized problem to an equivalent form. The eigenvalue-
eigenvector decomposition B = VSVT is first computed, labeling an eigenvalue too small if it is less 
than epsilon(1.d0). The ordinary self-adjoint eigenvalue problem is  
Cy = �y provided that the rank of B, based on this definition of Small, has the value n. In that case, 

TC DV AVD�  

where  
1/ 2D S �

�  

The relationship between x and y is summarized as X = VDY, computed after the ordinary eigenvalue 
problem is solved for the eigenvectors Y of C. The matrix X is normalized so that each column has 
Euclidean length of value one. This solution method is nonstandard for any but the most ill-
conditioned matrices B. The standard approach is to compute an ordinary self-adjoint problem 
following computation of the Cholesky decomposition 

TB R R�  

where R is upper triangular. The computation of C can also be completed efficiently by exploiting its 
self-adjoint property. See Golub and Van Loan (1989, Chapter 8) for more information. Also, see 
operator_ex28, Chapter 10. 
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      use lin_eig_self_int  
      use rand_gen_int  
      implicit none  
  
! This is Example 4 for LIN_EIG_SELF.  
  
      integer i  
      integer, parameter :: n=64  
      real(kind(1e0)), parameter :: one=1d0  
      real(kind(1e0)) b_sum  
      real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &  
               S(n), vb_d, X, ytemp(n*n), res  
  
  
! Generate random self-adjoint matrices.  
      call rand_gen(ytemp)  
      A = reshape(ytemp,(/n,n/))  
      A = A + transpose(A)  
      
      call rand_gen(ytemp)  
      B = reshape(ytemp,(/n,n/))  
      B = B + transpose(B)  
  
      b_sum = sqrt(sum(abs(B**2))/n)  
  
! Add a scalar matrix so B is positive definite.  
      do i=1, n  
         B(i,i) = B(i,i) + b_sum  
      end do  
  
! Get the eigenvalues and eigenvectors for B.  
  
      call lin_eig_self(B, S, v=vb_d)  
  
! For full rank problems, convert to an ordinary self-adjoint   
! problem.  (All of these examples are full rank.)  
      if (S(n) > epsilon(one)) then  
  
         D = one/sqrt(S)  
  
         C = spread(D,2,n)*matmul(transpose(vb_d), &  
                matmul(A,vb_d))*spread(D,1,n)  
  
! Get the eigenvalues and eigenvectors for C.  
         call lin_eig_self(C, lambda, v=X)  
  
! Compute the generalized eigenvectors.  
         X = matmul(vb_d,spread(D,2,n)*X)  
  
! Normalize the eigenvectors for the generalized problem.  
         X = X * spread(one/sqrt(sum(X**2,dim=2)),1,n)  
  
         res =  matmul(A,X) - &  
               matmul(B,X)*spread(lambda,1,n)       
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! Check the results.  
         if (sum(abs(res))/(sum(abs(A))+sum(abs(B))) <= &  
            sqrt(epsilon(one))) then  
            write (*,*) 'Example 4 for LIN_EIG_SELF is correct.'  
         end if  
end if  
end  

Output 
 
Example 4 for LIN_EIG_SELF is correct. 

Fatal, Terminal, and Warning Error Messages 
See the messages.gls file for error messages for lin_eig_self. These error messages are numbered 
81�90; 101�110; 121�129; 141�149. 

LIN_EIG_GEN 
Computes the eigenvalues of an n � n matrix, A. Optionally, the eigenvectors of A or AT are com-
puted. Using the eigenvectors of A gives the decomposition AV = VE, where V is an n � n complex 
matrix of eigenvectors, and E is the complex diagonal matrix of eigenvalues. Other options include 
the reduction of A to upper triangular or Schur form, reduction to block upper triangular form with  
2 � 2 or unit sized diagonal block matrices, and reduction to upper Hessenberg form. 

Required Arguments 
A —    Array of size n � n containing the matrix. (Input [/Output]) 

E —    Array of size n containing the eigenvalues. These complex values are in order of 
decreasing absolute value. The signs of imaginary parts of the eigenvalues are in no 
predictable order. (Output) 

Optional Arguments 
NROWS = n   (Input) 

Uses array A(1:n, 1:n) for the input matrix. 
Default: n = size(A, 1) 

v = V(:,:)   (Output) 
Returns the complex array of eigenvectors for the matrix A.  

v_adj = U(:,:)   (Output) 
Returns the complex array of eigenvectors for the matrix AT.  Thus the residuals  

TS A U UE� �  
are small.  
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tri = T(:,:)   (Output) 
Returns the complex upper-triangular matrix T associated with the reduction of the matrix 
A to Schur form. Optionally a unitary matrix W is returned in array V(:,:) such that the 
residuals Z = AW � WT are small.  

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix. Used for passing optional 
data to the routine. The options are as follows: 

Packaged Options for LIN_EIG_GEN 
Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_eig_gen_set_small 1 

s_, d_, c_, z_ lin_eig_gen_overwrite_input 2 

s_, d_, c_, z_ lin_eig_gen_scan_for_NaN 3 

s_, d_, c_, z_ lin_eig_gen_no_balance 4 

s_, d_, c_, z_ lin_eig_gen_set_iterations 5 

s_, d_, c_, z_ lin_eig_gen_in_Hess_form 6 

s_, d_, c_, z_ lin_eig_gen_out_Hess_form 7 

s_, d_, c_, z_ lin_eig_gen_out_block_form 8 

s_, d_, c_, z_ lin_eig_gen_out_tri_form 9 

s_, d_, c_, z_ lin_eig_gen_continue_with_V 10 

s_, d_, c_, z_ lin_eig_gen_no_sorting 11 

iopt(IO) = ?_options(?_lin_eig_gen_set_small, Small) 
This is the tolerance used to declare off-diagonal values effectively zero compared with the 
size of the numbers involved in the computation of a shift. 
Default: Small = epsilon(), the relative accuracy of arithmetic 

iopt(IO) = ?_options(?_lin_eig_gen_overwrite_input, ?_dummy) 
Does not save the input array A(:, :).  
Default: The array is saved. 

iopt(IO) = ?_options(?_lin_eig_gen_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that  

isNaN(a(i,j)) == .true.  

See the isNaN() function, Chapter 10. 
Default: The array is not scanned for NaNs. 

iopt(IO) = ?_options(?_lin_eig_no_balance, ?_dummy) 
The input matrix is not preprocessed searching for isolated eigenvalues followed by 
rescaling. See Golub and Van Loan (1989, Chapter 7) for references. With some optional 
uses of the routine, this option flag is required. 
Default: The matrix is first balanced. 
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iopt(IO) = ?_options(?_lin_eig_gen_set_iterations, ?_dummy) 
Resets the maximum number of iterations permitted to isolate each diagonal block matrix. 
Default: The maximum number of iterations is 52. 

iopt(IO) = ?_options(?_lin_eig_gen_in_Hess_form, ?_dummy) 
The input matrix is in upper Hessenberg form. This flag is used to avoid the initial 
reduction phase which may not be needed for some problem classes. 
Default: The matrix is first reduced to Hessenberg form. 

iopt(IO) = ?_options(?_lin_eig_gen_out_Hess_form, ?_dummy) 
The output matrix is transformed to upper Hessenberg form, 1H .  If the optional argument 
“v=V(:,:)” is passed by the calling program unit, then the array V(:,:) contains an 
orthogonal matrix 1Q  such that  

1 1 1 0AQ Q H� �  

Requires the simultaneous use of option ?_lin_eig_no_balance. 
Default: The matrix is reduced to diagonal form. 

iopt(IO) = ?_options(?_lin_eig_gen_out_block_form, ?_dummy) 
The output matrix is transformed to upper Hessenberg form, 2H , which is block upper 
triangular. The dimensions of the blocks are either 2 � 2 or unit sized. Nonzero 
subdiagonal values of 2H  determine the size of the blocks. If the optional argument 
“v=V(:,:)” is passed by the calling program unit, then the array V(:,:) contains an 
orthogonal matrix 2Q  such that  

2 2 2 0AQ Q H� �  

Requires the simultaneous use of option ?_lin_eig_no_balance. 
Default: The matrix is reduced to diagonal form. 

iopt(IO) = ?_options(?_lin_eig_gen_out_tri_form, ?_dummy) 
The output matrix is transformed to upper-triangular form, T. If the optional argument 
“v=V(:,:)” is passed by the calling program unit, then the array V(:,:) contains a 
unitary matrix W such that  
AW � WT � 0. The upper triangular matrix T is returned in the optional argument 
“tri=T(:,:)”.  The eigenvalues of A are the diagonal entries of the matrix T . They are 
in no particular order. The output array E(:)is blocked with NaNs using this option. This 
option requires the simultaneous use of option ?_lin_eig_no_balance. 
Default: The matrix is reduced to diagonal form. 

iopt(IO) = ?_options(?_lin_eig_gen_continue_with_V, ?_dummy) 
As a convenience or for maintaining efficiency, the calling program unit sets the optional 
argument “v=V(:,:)” to a matrix that has transformed a problem to the similar matrix, 
A� . The contents of V(:,:) are updated by the transformations used in the algorithm. 

Requires the simultaneous use of option ?_lin_eig_no_balance. 
Default: The array V(:,:) is initialized to the identity matrix. 
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iopt(IO) = ?_options(?_lin_eig_gen_no_sorting, ?_dummy) 
Does not sort the eigenvalues as they are isolated by solving the 2 � 2 or unit sized blocks. 
This will have the effect of guaranteeing that complex conjugate pairs of eigenvalues are 
adjacent in the array E(:). 
Default: The entries of E(:) are sorted so they are non-increasing in absolute value. 

FORTRAN 90 Interface 
Generic: CALL LIN_EIG_GEN (A, E [,…]) 

 Specific: The specific interface names are S_LIN_EIG_GEN, D_LIN_EIG_GEN, 
C_LIN_EIG_GEN, and Z_LIN_EIG_GEN. 

Example 1: Computing Eigenvalues 
The eigenvalues of a random real matrix are computed. These values define a complex diagonal 
matrix E. Their correctness is checked by obtaining the eigenvector matrix V and verifying that the 
residuals R = AV � VE are small. Also, see operator_ex29, Chapter 10. 

 
      use lin_eig_gen_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 1 for LIN_EIG_GEN.  
  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) A(n,n), y(n*n), err  
      complex(kind(1d0)) E(n), V(n,n), E_T(n)  
      type(d_error) :: d_epack(16) = d_error(0,0d0)  
  
! Generate a random matrix.  
      call rand_gen(y)  
      A = reshape(y,(/n,n/))  
  
! Compute only the eigenvalues.  
      call lin_eig_gen(A, E)  
  
! Compute the decomposition, A*V = V*values,   
! obtaining eigenvectors.  
      call lin_eig_gen(A, E_T, v=V)  
  
! Use values from the first decomposition, vectors from the   
! second decomposition, and check for small residuals.  
      err = sum(abs(matmul(A,V) - V*spread(E,DIM=1,NCOPIES=n))) &  
                / sum(abs(E))  
      if (err  <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_EIG_GEN is correct.'  
      end if  
  
      end   
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Output 
 
Example 1 for LIN_EIG_GEN is correct. 

Description 
The input matrix A is first balanced. The resulting similar matrix is transformed to upper Hessenberg 
form using orthogonal transformations. The double-shifted QR algorithm transforms the Hessenberg 
matrix so that 2 � 2 or unit sized blocks remain along the main diagonal. Any off-diagonal that is 
classified as “small” in order to achieve this block form is set to the value zero. Next the block upper 
triangular matrix is transformed to upper triangular form with unitary rotations. The eigenvectors of 
the upper triangular matrix are computed using back substitution. Care is taken to avoid overflows 
during this process. At the end, eigenvectors are normalized to have Euclidean length one, with the 
largest component real and positive. This algorithm follows that given in Golub and Van Loan, (1989, 
Chapter 7), with some novel organizational details for additional options, efficiency and robustness. 

Additional Examples 

Example 2: Complex Polynomial Equation Roots 
The roots of a complex polynomial equation, 

� �
1

0
n

n k n
k

k

f z b z z�

�

� � ��  

are required. This algebraic equation is formulated as a matrix eigenvalue problem. The equivalent 
matrix eigenvalue problem is solved using the upper Hessenberg matrix which has the value zero 
except in row number 1 and along the first subdiagonal. The entries in the first row are given by 
a1,j = �bj, i = 1, �, n, while those on the first subdiagonal have the value one. This is a companion 
matrix for the polynomial. The results are checked by testing for small values of |f(ei)|, i = 1, �, n, at 
the eigenvalues of the matrix, which are the roots of f(z). Also, see operator_ex30,  
Chapter 10. 

 
      use lin_eig_gen_int  
      use rand_gen_int  
  
      implicit none  
! This is Example 2 for LIN_EIG_GEN.  
  
      integer i  
      integer, parameter :: n=12  
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  
      real(kind(1d0)) err, t(2*n)  
      type(d_options) :: iopti(1)=d_options(0,zero)  
      complex(kind(1d0)) a(n,n), b(n), e(n), f(n), fg(n)  
        
call rand_gen(t)  
      b = cmplx(t(1:n),t(n+1:),kind(one))  
  
! Define the companion matrix with polynomial coefficients   
! in the first row.  
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      a = zero  
  
      do i=2, n  
         a(i,i-1) = one  
      end do  
  
      a(1,1:n) = -b  
  
! Note that the input companion matrix is upper Hessenberg.  
      iopti(1) = d_options(z_lin_eig_gen_in_Hess_form,zero)  
  
! Compute complex eigenvalues of the companion matrix.  
  
      call lin_eig_gen(a, e, iopt=iopti)  
  
      f=one; fg=one  
        
! Use Horner's method for evaluation of the complex polynomial   
! and size gauge at all roots.  
    
      do i=1, n  
         f = f*e + b(i)  
         fg = fg*abs(e) + abs(b(i))  
      end do  
  
! Check for small errors at all roots.  
  
      err = sum(abs(f/fg))/n  
      if (err <= sqrt(epsilon(one))) then   
         write (*,*) 'Example 2 for LIN_EIG_GEN is correct.'  
      end if  
      end   

Output 
 
Example 2 for LIN_EIG_GEN is correct. 

Example 3: Solving Parametric Linear Systems with a Scalar Change 
The efficient solution of a family of linear algebraic equations is required. These systems are  
(A + hI)x = b. Here A is an n � n real matrix, I is the identity matrix, and b is the right-hand side 
matrix. The scalar h is such that the coefficient matrix is nonsingular. The method is based on the 
Schur form for matrix A: AW = WT, where W is unitary and T is upper triangular. This provides an 
efficient solution method for several values of h, once the Schur form is computed. The solution steps 
solve, for y, the upper triangular linear system 

� � TT hI y W b� �  

Then, x = x(h) = Wy. This is an efficient and accurate method for such parametric systems provided 
the expense of computing the Schur form has a pay-off in later efficiency. Using the Schur form in 
this way, it is not required to compute an LU factorization of A + hI with each new value of h. Note 
that even if the data A, h, and b are real, subexpressions for the solution may involve complex 
intermediate values, with x(h) finally a real quantity. Also, see operator_ex31, Chapter 10. 
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     use lin_eig_gen_int  
      use lin_sol_gen_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 3 for LIN_EIG_GEN.  
  
      integer i  
      integer, parameter :: n=32, k=2  
      real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0  
      real(kind(1e0)) a(n,n), b(n,k), x(n,k), temp(n*max(n,k)), h, err  
      type(s_options) :: iopti(2)  
      complex(kind(1e0)) w(n,n), t(n,n), e(n), z(n,k)  
        
      call rand_gen(temp)  
      a = reshape(temp,(/n,n/))  
  
      call rand_gen(temp)  
      b = reshape(temp,(/n,k/))  
  
      iopti(1) = s_options(s_lin_eig_gen_out_tri_form,zero)  
      iopti(2) = s_options(s_lin_eig_gen_no_balance,zero)  
  
! Compute the Schur decomposition of the matrix.  
  
      call lin_eig_gen(a, e, v=w, tri=t, &  
            iopt=iopti)  
  
! Choose a value so that A+h*I is non-singular.  
      h = one  
  
! Solve for (A+h*I)x=b using the Schur decomposition.  
  
      z = matmul(conjg(transpose(w)),b)  
  
! Solve intermediate upper-triangular system with implicit   
! additive diagonal, h*I.  This is the only dependence on   
! h in the solution process.  
      do i=n,1,-1  
         z(i,1:k) = z(i,1:k)/(t(i,i)+h)  
         z(1:i-1,1:k) = z(1:i-1,1:k) + &  
                        spread(-t(1:i-1,i),dim=2,ncopies=k)* &  
                        spread(z(i,1:k),dim=1,ncopies=i-1)  
      end do  
  
! Compute the solution.  It should be the same as x, but will not be   
! exact due to rounding errors.  (The quantity real(z,kind(one)) is  
! the real-valued answer when the Schur decomposition method is used.)  
  
      z = matmul(w,z)  
  
! Compute the solution by solving for x directly.  
      do i=1, n    
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         a(i,i) = a(i,i) + h  
      end do  
        
      call lin_sol_gen(a, b, x)  
  
! Check that x and z agree approximately.  
      err = sum(abs(x-z))/sum(abs(x))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 3 for LIN_EIG_GEN is correct.'  
      end if  
  
      end   

Output 
 
Example 3 for LIN_EIG_GEN is correct. 
 

Example 4: Accuracy Estimates of Eigenvalues Using Adjoint  
and Ordinary Eigenvectors 
A matrix A has entries that are subject to uncertainty. This is expressed as the realization that A can be 
replaced by the matrix A + �B, where the value � is “small” but still significantly larger than machine 
precision. The matrix B satisfies ||B|| � ||A||. A variation in eigenvalues is estimated using analysis 
found in Golub and Van Loan, (1989, Chapter 7, p. 344). Each eigenvalue and eigenvector is 
expanded in a power series in �. With  

� �i i ie e e� � �� � �  
 
and normalized eigenvectors, the bound 

| |i
i i

A
e

u v�
��  

is satisfied. The vectors  and i iu v  are the ordinary and adjoint eigenvectors associated respectively 
with ie  and its complex conjugate. This gives an upper bound on the size of the change to each ie  
due to changing the matrix data.  The reciprocal 

1

i iu v
�

�  

is defined as the condition number of ie .  Also, see operator_ex32, Chapter 10. 
 

      use lin_eig_gen_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 4 for LIN_EIG_GEN.  
  
      integer i  
      integer, parameter :: n=17  
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      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) a(n,n), c(n,n), variation(n), y(n*n), temp(n), &  
              norm_of_a, eta  
      complex(kind(1d0)), dimension(n,n) :: e(n), d(n), u, v  
  
! Generate a random matrix.  
      call rand_gen(y)  
      a = reshape(y,(/n,n/))  
  
! Compute the eigenvalues, left- and right- eigenvectors.  
      call lin_eig_gen(a, e, v=v, v_adj=u)  
  
! Compute condition numbers and variations of eigenvalues.  
      norm_of_a = sqrt(sum(a**2)/n)  
      do i=1, n  
         variation(i) = norm_of_a/abs(dot_product(u(1:n,i), &  
                                              v(1:n,i)))  
      end do  
        
! Now perturb the data in the matrix by the relative factors   
! eta=sqrt(epsilon) and solve for values again.  Check the   
! differences compared to the estimates.  They should not exceed   
! the bounds.  
  
      eta = sqrt(epsilon(one))  
      do i=1, n  
         call rand_gen(temp)  
         c(1:n,i) = a(1:n,i) + (2*temp - 1)*eta*a(1:n,i)  
      end do  
   
      call lin_eig_gen(c,d)  
  
! Looking at the differences of absolute values accounts for   
! switching signs on the imaginary parts.  
      if (count(abs(d)-abs(e) > eta*variation) == 0) then  
         write (*,*) 'Example 4 for LIN_EIG_GEN is correct.'  
      end if  
  
      end   

Output 
 
Example 4 for LIN_EIG_GEN is correct. 

Fatal, Terminal, and Warning Error Messages 
See the messages.gls file for error messages for lin_eig_gen. These error messages are numbered 
841�858; 861�878; 881�898; 901�918. 
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LIN_GEIG_GEN 
Computes the generalized eigenvalues of an n � n matrix pencil, Av = �Bv. Optionally, the gen-
eralized eigenvectors are computed. If either of A or B is nonsingular, there are diagonal matrices � 
and �, and a complex matrix V, all computed such that AV� = BV�. 

Required Arguments 
A —   Array of size n � n containing the matrix A. (Input [/Output]) 

B —   Array of size n � n containing the matrix B. (Input [/Output]) 

ALPHA —   Array of size n containing diagonal matrix factors of the generalized eigenvalues. 
These complex values are in order of decreasing absolute value. (Output) 

BETAV —   Array of size n containing diagonal matrix factors of the generalized eigenvalues. 
These real values are in order of decreasing value. (Output) 

Optional Arguments 

NROWS = n   (Input) 
Uses arrays A(1:n, 1:n) and B(1:n, 1:n) for the input matrix pencil. 
Default: n = size(A, 1) 

v = V(:,:)   (Output) 
Returns the complex array of generalized eigenvectors for the matrix pencil.  

iopt = iopt(:)   (Input) 
Derived type array with the same precision as the input matrix. Used for passing optional 
data to the routine. The options are as follows: 

 
Packaged Options for lin_geig_gen 

Option Prefix = ? Option Name Option Value 

s_, d_, c_, z_ lin_geig_gen_set_small 1 

s_, d_, c_, z_ lin_geig_gen_overwrite_input 2 

s_, d_, c_, z_ lin_geig_gen_scan_for_NaN 3 

s_, d_, c_, z_ lin_geig_gen_self_adj_pos 4 

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_self 5 

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_self 6 

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_lsq 7 

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_gen 8 
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iopt(IO) = ?_options(?_lin_geig_gen_set_small, Small) 
This tolerance, multiplied by the sum of absolute value of the matrix B, is used to define a 
small diagonal term in the routines lin_sol_lsq and lin_sol_self. That value can be 
replaced using the option flags lin_geig_gen_for_lin_sol_lsq, and 
lin_geig_gen_for_lin_sol_self. 
Default: Small = epsilon(.), the relative accuracy of arithmetic 

iopt(IO) = ?_options(?_lin_geig_gen_overwrite_input, ?_dummy) 
Does not save the input arrays A(:, :) and B(:, :).  
Default: The array is saved. 

iopt(IO) = ?_options(?_lin_geig_gen_scan_for_NaN, ?_dummy) 
Examines each input array entry to find the first value such that  

isNaN(a(i,j)) .or. isNaN(b(i,j)) == .true.  

See the isNaN() function, Chapter 10. 
Default: The arrays are not scanned for NaNs. 

iopt(IO) = ?_options(?_lin_geig_gen_self_adj_pos, ?_dummy) 
If both matrices A and B are self-adjoint and additionally B is positive-definite, then the 
Cholesky algorithm is used to reduce the matrix pencil to an ordinary self-adjoint 
eigenvalue problem. 

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_self, ?_dummy)  

iopt(IO+1) = ?_options((k=size of options for lin_sol_self), ?_dummy) 
The options for lin_sol_self follow as data in iopt(). 

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_self, ?_dummy)  

iopt(IO+1) = ?_options((k=size of options for lin_eig_self), ?_dummy) 
The options for lin_eig_self follow as data in iopt(). 

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_lsq, ?_dummy)  

iopt(IO+1) = ?_options((k=size of options for lin_sol_lsq), ?_dummy) 
The options for lin_sol_lsq follow as data in iopt(). 

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_gen, ?_dummy)  

iopt(IO+1) = ?_options((k=size of options for lin_eig_gen), ?_dummy) 
The options for lin_eig_gen follow as data in iopt(). 

FORTRAN 90 Interface 
Generic: CALL LIN_GEIG_GEN (A, B, ALPHA, BETAV [,…]) 

 Specific: The specific interface names are S_LIN_GEIG_GEN, D_LIN_GEIG_GEN, 
C_LIN_GEIG_GEN, and Z_LIN_GEIG_GEN. 
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Example 1: Computing Generalized Eigenvalues 
The generalized eigenvalues of a random real matrix pencil are computed. These values are checked 
by obtaining the generalized eigenvectors and then showing that the residuals 

1AV BV�� �

�  

are small. Note that when the matrix B is nonsingular � = I, the identity matrix. When B is singular 
and A is nonsingular, some diagonal entries of � are essentially zero. This corresponds to “infinite 
eigenvalues” of the matrix pencil. This random matrix pencil example has all finite eigenvalues. Also, 
see operator_ex33, Chapter 10. 

 
      use lin_geig_gen_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 1 for LIN_GEIG_GEN.  
  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1d0  
      real(kind(1d0)) A(n,n), B(n,n), betav(n), beta_t(n), err, y(n*n)  
      complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)  
  
! Generate random matrices for both A and B.  
      call rand_gen(y)  
      A = reshape(y,(/n,n/))  
      call rand_gen(y)  
      B = reshape(y,(/n,n/))  
  
! Compute the generalized eigenvalues.  
      call lin_geig_gen(A, B, alpha, betav)  
  
! Compute the full decomposition once again, A*V = B*V*values.  
      call lin_geig_gen(A, B, alpha_t, beta_t, &  
                v=V)  
  
! Use values from the first decomposition, vectors from the   
! second decomposition, and check for small residuals.  
      err = sum(abs(matmul(A,V) - &  
                   matmul(B,V)*spread(alpha/betav,DIM=1,NCOPIES=n))) / &  
                sum(abs(a)+abs(b))  
      if (err  <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 1 for LIN_GEIG_GEN is correct.'  
      end if  
  
      end   

Output 
Example 1 for LIN_GEIG_GEN is correct. 

 



 

 
 

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 451 

 

 

 

Description 
Routine lin_geig_gen implements a standard algorithm that reduces a generalized eigenvalue or 
matrix pencil problem to an ordinary eigenvalue problem. An orthogonal decomposition is computed 

TBP HR�  

The orthogonal matrix H is the product of n � 1 row permutations, each followed by a Householder 
transformation. Column permutations, P, are chosen at each step to maximize the Euclidian length of 
the pivot column. The matrix R is upper triangular. Using the default tolerance 
 = �||B||, where � is 
machine relative precision, each diagonal entry of R exceeds 
 in value. Otherwise, R is singular.  In 
that case A and B are interchanged and the orthogonal decomposition is computed one more time. If 
both matrices are singular the problem is declared singular and is not solved. The interchange of A 
and B is accounted for in the output diagonal matrices � and �. The ordinary eigenvalue problem is 
Cx = �x, where  

1T TC H AP R�

�  

and 

RPv = x 

If the matrices A and B are self-adjoint and if, in addition, B is positive-definite, then a more efficient 
reduction than the default algorithm can be optionally used to solve the problem: A Cholesky 
decomposition is obtained, RTR R = PBPT.  The matrix R is upper triangular and P is a permutation 
matrix. This is equivalent to the ordinary self-adjoint eigenvalue problem Cx = �x, where RPv = x and  

1T TC R PAP R� �

�  

The self-adjoint eigenvalue problem is then solved. 

Additional Examples 

Example 2: Self-Adjoint, Positive-Definite Generalized Eigenvalue Problem 
This example illustrates the use of optional flags for the special case where A and B are complex self-
adjoint matrices, and B is positive-definite. For purposes of maximum efficiency an option is passed 
to routine lin_sol_self so that pivoting is not used in the computation of the Cholesky 
decomposition of matrix B. This example does not require that secondary option. Also, see 
operator_ex34, Chapter 10. 

 
 
      use lin_geig_gen_int  
      use lin_sol_self_int  
      use rand_gen_int  
  
      implicit none  
  
! This is Example 2 for LIN_GEIG_GEN.  
  
      integer i  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  
      real(kind(1d0)) betav(n), temp_c(n,n), temp_d(n,n), err  
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      type(d_options) :: iopti(4)=d_options(0,zero)  
      complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V, alpha(n)  
  
  
! Generate random matrices for both A and B.  
      do i=1, n  
         call rand_gen(temp_c(1:n,i))  
         call rand_gen(temp_d(1:n,i))  
      end do  
      c = temp_c; d = temp_c  
      do i=1, n  
         call rand_gen(temp_c(1:n,i))  
         call rand_gen(temp_d(1:n,i))  
      end do  
      c = cmplx(real(c),temp_c,kind(one))  
      d = cmplx(real(d),temp_d,kind(one))  
  
      a = conjg(transpose(c)) + c  
      b = matmul(conjg(transpose(d)),d)  
  
! Set option so that the generalized eigenvalue solver uses an   
! efficient method for well-posed, self-adjoint problems.  
      iopti(1) = d_options(z_lin_geig_gen_self_adj_pos,zero)  
      iopti(2) = d_options(z_lin_geig_gen_for_lin_sol_self,zero)  
  
! Number of secondary optional data items and the options:  
      iopti(3) =   d_options(1,zero)   
      iopti(4) =   d_options(z_lin_sol_self_no_pivoting,zero)  
  
      call lin_geig_gen(a, b, alpha, betav, v=v, &  
        iopt=iopti)  
  
! Check that residuals are small.  Use the real part of alpha   
! since the values are known to be real.  
      err = sum(abs(matmul(a,v) - matmul(b,v)* &  
            spread(real(alpha,kind(one))/betav,dim=1,ncopies=n))) / &  
            sum(abs(a)+abs(b))  
      if (err <= sqrt(epsilon(one))) then  
         write (*,*) 'Example 2 for LIN_GEIG_GEN is correct.'  
      end if  
  
      end   

Output 
 
Example 2 for LIN_GEIG_GEN is correct. 

Example 3: A Test for a Regular Matrix Pencil 
In the classification of Differential Algebraic Equations (DAE), a system with linear constant coef-
ficients is given by A x� + Bx = f. Here A and B are n � n matrices, and f is an n-vector that is not part 
of this example. The DAE system is defined as solvable if and only if the quantity  
det(A + B) does not vanish identically as a function of the dummy parameter . A sufficient con-
dition for solvability is that the generalized eigenvalue problem Av = �Bv is nonsingular. By con-
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structing A and B so that both are singular, the routine flags nonsolvability in the DAE by returning 
NaN for the generalized eigenvalues. Also, see operator_ex35, Chapter 10. 

 
      use lin_geig_gen_int  
      use rand_gen_int  
      use error_option_packet  
      use isnan_int  
  
      implicit none  
  
! This is Example 3 for LIN_GEIG_GEN.  
  
      integer, parameter :: n=6  
      real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0  
      real(kind(1d0)) a(n,n), b(n,n), betav(n), y(n*n)  
      type(d_options) iopti(1)  
      type(d_error) epack(1)  
      complex(kind(1d0)) alpha(n)  
  
! Generate random matrices for both A and B.  
      call rand_gen(y)  
      a = reshape(y,(/n,n/))  
  
      call rand_gen(y)  
      b = reshape(y,(/n,n/))  
  
! Make columns of A and B zero, so both are singular.  
      a(1:n,n) = 0; b(1:n,n) = 0  
  
! Set internal tolerance for a small diagonal term.  
      iopti(1) = d_options(d_lin_geig_gen_set_small,sqrt(epsilon(one)))  
  
! Compute the generalized eigenvalues.  
      call lin_geig_gen(a, b, alpha, betav, &  
        iopt=iopti,epack=epack)  
  
! See if singular DAE system is detected.  
! (The size of epack() is too small for the message, so  
! output is blocked with NaNs.)  
      if (isnan(alpha)) then   
         write (*,*) 'Example 3 for LIN_GEIG_GEN is correct.'  
      end if  
  
      end   

Output 
 
Example 3 for LIN_GEIG_GEN is correct. 
 

Example 4: Larger Data Uncertainty than Working Precision 

Data values in both matrices A and B are assumed to have relative errors that can be as large as 1/ 2
�  

where � is the relative machine precision. This example illustrates the use of an optional flag that 
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resets the tolerance used in routine lin_sol_lsq for determining a singularity of either matrix. The 
tolerance is reset to the new value 1/ 2 B�  and the generalized eigenvalue problem is solved. We 
anticipate that B might be singular and detect this fact. Also, see operator_ex36, Chapter 10. 

 
      use lin_geig_gen_int  
      use lin_sol_lsq_int  
      use rand_gen_int  
      use isNaN_int  
  
      implicit none  
  
! This is Example 4 for LIN_GEIG_GEN.  
  
      integer, parameter :: n=32  
      real(kind(1d0)), parameter :: one=1d0, zero=0d0  
      real(kind(1d0)) a(n,n), b(n,n), betav(n), y(n*n), err  
      type(d_options) iopti(4)  
      type(d_error) epack(1)  
      complex(kind(1d0)) alpha(n), v(n,n)  
  
! Generate random matrices for both A and B.  
  
      call rand_gen(y)  
      a = reshape(y,(/n,n/))  
  
      call rand_gen(y)  
      b = reshape(y,(/n,n/))  
  
! Set the option, a larger tolerance than default for lin_sol_lsq.  
      iopti(1) = d_options(d_lin_geig_gen_for_lin_sol_lsq,zero)  
  
! Number of secondary optional data items  
      iopti(2) =   d_options(2,zero)   
      iopti(3) =   d_options(d_lin_sol_lsq_set_small,sqrt(epsilon(one))*&  
                    sqrt(sum(b**2)/n))  
      iopti(4) =   d_options(d_lin_sol_lsq_no_sing_mess,zero)  
  
! Compute the generalized eigenvalues.  
      call lin_geig_gen(A, B, alpha, betav, v=v, &  
                  iopt=iopti, epack=epack)  
  
      if(.not. isNaN(alpha)) then  
  
! Check the residuals.  
        err = sum(abs(matmul(A,V)*spread(betav,dim=1,ncopies=n) - &  
                     matmul(B,V)*spread(alpha,dim=1,ncopies=n))) / &  
                sum(abs(a)+abs(b))  
        if (err  <= sqrt(epsilon(one))) then  
           write (*,*) 'Example 4 for LIN_GEIG_GEN is correct.'  
 
        end if  
      end if  
      end   
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Output 
 
Example 4 for LIN_GEIG_GEN is correct. 
 

Fatal, Terminal, and Warning Error Messages 
See the messages.gls file for error messages for lin_geig_gen. These error messages are numbered 
921�936; 941�956; 961�976; 981�996. 

EVLRG 
Computes all of the eigenvalues of a real matrix. 

Required Arguments 
A — Real full matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVLRG (A, EVAL [,…]) 

 Specific:  The specific interface names are S_EVLRG and D_EVLRG. 

FORTRAN 77 Interface 
Single: CALL EVLRG (N, A, LDA, EVAL) 

Double: The double precision name is DEVLRG. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 85). The eigenvalues of this real matrix are computed and printed. The exact eigenvalues are 
known to be {4, 3, 2, 1}. 
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      USE EVLRG_INT 
      USE WRCRN_INT 
!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (N=4, LDA=N) 
! 
      REAL       A(LDA,N) 
      COMPLEX    EVAL(N) 
!                                 Set values of A 
! 
!                                 A = ( -2.0    2.0    2.0    2.0  ) 
!                                     ( -3.0    3.0    2.0    2.0  ) 
!                                     ( -2.0    0.0    4.0    2.0  ) 
!                                     ( -1.0    0.0    0.0    5.0  ) 
      DATA A/-2.0, -3.0, -2.0, -1.0, 2.0, 3.0, 0.0, 0.0, 2.0, 2.0, & 
          4.0, 0.0, 2.0, 2.0, 2.0, 5.0/ 
! 
!                                 Find eigenvalues of A 
      CALL EVLRG (A, EVAL) 
!                                 Print results 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      END 

Output 
                               EVAL 
              1                2                3                4 
( 4.000, 0.000)  ( 3.000, 0.000)  ( 2.000, 0.000)  ( 1.000, 0.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3LRG/DE3LRG. The 

reference is: 

CALL E3LRG (N, A, LDA, EVAL, ACOPY, WK, IWK) 

The additional arguments are as follows: 

ACOPY — Real work array of length N�. A and ACOPY may be the same, in which case the 
first N� elements of A will be destroyed. 

WK — Floating-point work array of size 4N. 

IWK — Integer work array of size 2N. 

2. Informational error 
Type  Code  

   4    1 The iteration for an eigenvalue failed to converge. 

3. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access inefficiency) 
problems. In routine E3LRG, the internal or working leading dimension of ACOPY is 



 

 
 

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 457 

 

 

 

increased by IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and 
IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2), respectively, in routine 
EVLRG . Additional memory allocation and option value restoration are 
automatically done in EVLRG. There is no requirement that users change existing 
applications that use EVLRG or E3LRG. Default values for the option are  
IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized 
eigenvalue problem and are not used in EVLRG. 

Description 
Routine EVLRG computes the eigenvalues of a real matrix. The matrix is first balanced. Elementary 
or Gauss similarity transformations with partial pivoting are used to reduce this balanced matrix to a 
real upper Hessenberg matrix. A hybrid double�shifted LR�QR algorithm is used to compute the 
eigenvalues of the Hessenberg matrix, Watkins and Elsner (1990). 

The balancing routine is based on the EISPACK routine BALANC. The reduction routine is based on 
the EISPACK routine ELMHES. See Smith et al. (1976) for the EISPACK routines. The LR�QR 
algorithm is based on software work of Watkins and Haag. Further details, some timing data, and 
credits are given in Hanson et al. (1990). 

EVCRG 
Computes all of the eigenvalues and eigenvectors of a real matrix. 

Required Arguments 
A — Floating-point array containing the matrix.   (Input) 

EVAL — Complex array of size N containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

EVEC — Complex array containing the matrix of eigenvectors.   (Output)  
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments 
N — Order of the matrix.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 
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FORTRAN 90 Interface 
Generic: CALL EVCRG (A, EVAL, EVEC [,…]) 

 Specific:  The specific interface names are S_EVCRG and D_EVCRG. 

FORTRAN 77 Interface 
Single: CALL EVCRG (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCRG. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 82). The eigenvalues and eigenvectors of this real matrix are computed and printed. The 
performance index is also computed and printed. This serves as a check on the computations. For 
more details, see IMSL routine EPIRG, page 460. 

      USE EVCRG_INT 
      USE EPIRG_INT 
      USE UMACH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N 
      PARAMETER  (N=3, LDA=N, LDEVEC=N) 
      INTEGER    NOUT 
      REAL       PI 
      COMPLEX    EVAL(N), EVEC(LDEVEC,N) 
      REAL       A(LDA,N) 

 
!                                 Define values of A: 
! 
!                                 A = (  8.0   -1.0   -5.0  ) 
!                                     ( -4.0    4.0   -2.0  ) 
!                                     ( 18.0   -5.0   -7.0  ) 
! 
      DATA A/8.0, -4.0, 18.0, -1.0, 4.0, -5.0, -5.0, -2.0, -7.0/ 
! 
!                                 Find eigenvalues and vectors of A 
      CALL EVCRG (A, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPIRG(N,A,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      CALL WRCRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 
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Output 
                    EVAL 
              1                2                3 
( 2.000, 4.000)  ( 2.000,-4.000)  ( 1.000, 0.000) 
 
                          EVEC 
                   1                  2                  3 
1  ( 0.3162, 0.3162)  ( 0.3162,-0.3162)  ( 0.4082, 0.0000) 
2  ( 0.0000, 0.6325)  ( 0.0000,-0.6325)  ( 0.8165, 0.0000) 
3  ( 0.6325, 0.0000)  ( 0.6325, 0.0000)  ( 0.4082, 0.0000) 
 
Performance index =  0.026 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E8CRG/DE8CRG. The 

reference is: 

CALL E8CRG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, 
     ECOPY WK,IWK) 

The additional arguments are as follows: 

ACOPY — Floating-point work array of size N by N. The arrays A and ACOPY may be the 
same, in which case the first N� elements of A will be destroyed. The array ACOPY 
can have its working row dimension increased from N to a larger value. An optional 
usage is required. See Item 3 below for further details. 

ECOPY — Floating-point work array of default size N by N + 1. The working, leading 
dimension of ECOPY is the same as that for ACOPY. To increase this value, an 
optional usage is required. See Item 3 below for further details. 

WK — Floating-point work array of size 6N. 

IWK — Integer work array of size N. 

2. Informational error 
Type  Code  

   4    1 The iteration for the eigenvalues failed to converge. No eigenvalues or 
eigenvectors are computed. 

3. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access inefficiency) 
problems. In routine E8CRG, the internal or working leading dimensions of ACOPY 
and ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The 
values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2), 
respectively, in routine EVCRG. Additional memory allocation and option value 
restoration are automatically done in EVCRG. There is no requirement that users 
change existing applications that use EVCRG or E8CRG. Default values for the option 
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are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized 
eigenvalue problem and are not used in EVCRG. 

Description 
Routine EVCRG computes the eigenvalues and eigenvectors of a real matrix. The matrix is first 
balanced. Orthogonal similarity transformations are used to reduce the balanced matrix to a real 
upper Hessenberg matrix. The implicit double�shifted QR algorithm is used to compute the 
eigenvalues and eigenvectors of this Hessenberg matrix. The eigenvectors are normalized such that 
each has Euclidean length of value one. The largest component is real and positive. 

The balancing routine is based on the EISPACK routine BALANC. The reduction routine is based on 
the EISPACK routines ORTHES and ORTRAN. The QR algorithm routine is based on the EISPACK 
routine HQR2. See Smith et al. (1976) for the EISPACK routines. Further details, some timing data, 
and credits are given in Hanson et al. (1990). 

EPIRG 
This function computes the performance index for a real eigensystem. 

Function Return Value 
EPIRG — Performance index.   (Output) 

Required Arguments 
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index 

computation is based.   (Input) 

A — Matrix of order N.   (Input) 

EVAL — Complex vector of length NEVAL containing eigenvalues of A.   (Input) 

EVEC — Complex N by NEVAL array containing eigenvectors of A.   (Input)  
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column of 
EVEC. 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: EPIRG (NEVAL, A, EVAL, EVEC[,…]) 

 Specific:  The specific interface names are S_EPIRG and D_EPIRG. 

FORTRAN 77 Interface 
Single: EPIRG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPIRG. 

Example 
For an example of EPIRG, see IMSL routine EVCRG, page 457. 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E2IRG/DE2IRG. The 

reference is: 

E2IRG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, CWK) 

The additional argument is: 

CWK — Complex work array of length N. 

2. Informational errors 
Type  Code  

   3    1 The performance index is greater than 100. 
   3    2 An eigenvector is zero. 
   3    3 The matrix is zero. 

Description 
Let M = NEVAL, � = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let � be the machine 
precision given by AMACH(4). The performance index, 
, is defined to be 
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The norms used are a modified form of the 1-norm. The norm of the complex vector v is 
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While the exact value of 
 is highly machine dependent, the performance of EVCSF is considered 
excellent if 
 < 1, good if 1 � 
 � 100, and poor if 
 > 100. 

The performance index was first developed by the EISPACK project at Argonne National 
Laboratory; see Smith et al. (1976, pages 124�125). 

EVLCG 
Computes all of the eigenvalues of a complex matrix. 

Required Arguments 
A — Complex matrix of order N.   (Input) 

EVAL —  Complex vector of length N containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVLCG (A, EVAL [,…]) 

Specific:  The specific interface names are S_EVLCG and D_EVLCG. 

FORTRAN 77 Interface 
Single: CALL EVLCG (N, A, LDA, EVAL, 1, N, 1) 

Double: The double precision name is EVLCG. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney  (1969, 
page 115). The program computes the eigenvalues of this matrix. 

      USE EVLCG_INT 

      USE WRCRN_INT 
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!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (N=3, LDA=N) 
! 
      COMPLEX    A(LDA,N), EVAL(N) 
!                                 Set values of A 
! 
!                                 A = ( 1+2i    3+4i   21+22i) 
!                                     (43+44i  13+14i  15+16i) 
!                                     ( 5+6i    7+8i   25+26i) 
! 
      DATA A/(1.0,2.0), (43.0,44.0), (5.0,6.0), (3.0,4.0), & 
          (13.0,14.0), (7.0,8.0), (21.0,22.0), (15.0,16.0), & 
          (25.0,26.0)/ 
! 
!                                 Find eigenvalues of A 
      CALL EVLCG (A, EVAL) 
!                                 Print results 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      END 

Output 
                          EVAL 
              1                2                3 
( 39.78, 43.00)  (  6.70, -7.88)  ( -7.48,  6.88) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3LCG/DE3LCG. The 

reference is: 

CALL E3LCG (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N�. A and ACOPY may be the same, in which 
case the first N� elements of A will be destroyed. 

RWK — Work array of length N. 

CWK — Complex work array of length 2N. 

IWK — Integer work array of length N. 

2. Informational error 
Type  Code 

   4    1 The iteration for an eigenvalue failed to converge. 

3. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access inefficiency) 
problems. In routine E3LCG, the internal or working, leading dimension of ACOPY is 
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increased by IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and 
IVAL (4) are temporarily replaced by IVAL(1) and IVAL(2), respectively, in routine 
EVLCG . Additional memory allocation and option value restoration are 
automatically done in EVLCG. There is no requirement that users change existing 
applications that use EVLCG or E3LCG. Default values for the option are IVAL(*) = 
1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized eigenvalue 
problem and are not used in EVLCG. 

Description 
Routine EVLCG computes the eigenvalues of a complex matrix. The matrix is first balanced. Unitary 
similarity transformations are used to reduce this balanced matrix to a complex upper Hessenberg 
matrix. The shifted QR algorithm is used to compute the eigenvalues of this Hessenberg matrix. 

The balancing routine is based on the EISPACK routine CBAL. The reduction routine is based on 
the EISPACK routine CORTH. The QR routine used is based on the EISPACK routine COMQR2. See 
Smith et al. (1976) for the EISPACK routines. 

EVCCG 
Computes all of the eigenvalues and eigenvectors of a complex matrix. 

Required Arguments 
A — Complex matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

EVEC —  Complex matrix of order N.   (Output)  
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 
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FORTRAN 90 Interface 
Generic: CALL EVCCG (A, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVCCG and D_EVCCG. 

FORTRAN 77 Interface 
Single: CALL EVCCG (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCCG. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 116). Its eigenvalues are known to be {1 + 5i, 2 + 6i, 3 + 7i, 4 + 8i}. The program computes 
the eigenvalues and eigenvectors of this matrix. The performance index is also computed and 
printed. This serves as a check on the computations; for more details, see IMSL routine EPICG, 
page 467. 

      USE EVCCG_INT 
      USE EPICG_INT 
      USE WRCRN_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N 
      PARAMETER  (N=4, LDA=N, LDEVEC=N) 
! 
      INTEGER    NOUT 
      REAL       PI 
      COMPLEX    A(LDA,N), EVAL(N), EVEC(LDEVEC,N) 
!                                 Set values of A 
! 
!                                 A = (5+9i  5+5i  -6-6i  -7-7i) 
!                                     (3+3i  6+10i -5-5i  -6-6i) 
!                                     (2+2i  3+3i  -1+3i  -5-5i) 
!                                     (1+i   2+2i  -3-3i     4i) 
! 
      DATA A/(5.0,9.0), (3.0,3.0), (2.0,2.0), (1.0,1.0), (5.0,5.0), & 
          (6.0,10.0), (3.0,3.0), (2.0,2.0), (-6.0,-6.0), (-5.0,-5.0), & 
          (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0), & 
          (-5.0,-5.0), (0.0,4.0)/ 
! 
!                                 Find eigenvalues and vectors of A 
       CALL EVCCG (A, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPICG(N,A,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      CALL WRCRN (’EVEC’, EVEC) 
  
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
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      END 

Output 
                              EVAL 
              1                2                3                4 
( 4.000, 8.000)  ( 3.000, 7.000)  ( 2.000, 6.000)  ( 1.000, 5.000) 
 
                              EVEC 
         1                  2                  3                 4 
1 ( 0.5774, 0.0000) ( 0.5774, 0.0000) ( 0.3780, 0.0000) ( 0.7559, 0.0000) 
2 ( 0.5774, 0.0000) ( 0.5773, 0.0000) ( 0.7559, 0.0000) ( 0.3780, 0.0000) 
3 ( 0.5774, 0.0000) ( 0.0000, 0.0000) ( 0.3780, 0.0000) ( 0.3780, 0.0000) 
4 ( 0.0000, 0.0000) ( 0.5774, 0.0000) ( 0.3780, 0.0000) ( 0.3780, 0.0000) 
 
Performance index =  0.016 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E6CCG/DE6CCG. The 

reference is: 

CALL E6CCG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, 
     RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N�. The arrays A and ACOPY may be the same, 
in which case the first N� elements of A will be destroyed. 

RWK — Work array of length N. 

CWK — Complex work array of length 2N. 

IWK — Integer work array of length N. 

2. Informational error  
Type  Code  

   4    1 The iteration for the eigenvalues failed to converge. No eigenvalues or 
eigenvectors are computed. 

3. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access inefficiency) 
problems. In routine E6CCG, the internal or working leading dimensions of ACOPY 
and ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The 
values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2), 
respectively, in routine EVCCG. Additional memory allocation and option value 
restoration are automatically done in EVCCG. There is no requirement that users 
change existing applications that use EVCCG or E6CCG. Default values for the option 
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are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized 
eigenvalue problem and are not used in EVCCG. 

Description 
Routine EVCCG computes the eigenvalues and eigenvectors of a complex matrix. The matrix is first 
balanced. Unitary similarity transformations are used to reduce this balanced matrix to a complex 
upper Hessenberg matrix. The QR algorithm is used to compute the eigenvalues and eigenvectors of 
this Hessenberg matrix. The eigenvectors of the original matrix are computed by transforming the 
eigenvectors of the complex upper Hessenberg matrix. 

The balancing routine is based on the EISPACK routine CBAL. The reduction routine is based on 
the EISPACK routine CORTH. The QR algorithm routine used is based on the EISPACK routine 
COMQR2. The back transformation routine is based on the EISPACK routine CBABK2 . See Smith et 
al. (1976) for the EISPACK routines. 

EPICG 
This function computes the performance index for a complex eigensystem. 

Function Return Value 
EPICG — Performance index.   (Output) 

Required Arguments 
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index 

computation is based.   (Input) 

A — Complex matrix of order N.   (Input) 

EVAL —  Complex vector of length N containing the eigenvalues of A.   (Input) 

EVEC — Complex matrix of order N containing the eigenvectors of A.   (Input)  
The J-th eigenvalue/eigenvector pair should be in EVAL(J) and in the J-th column of 
EVEC. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: EPICG (NEVAL, A, EVAL, EVEC[,…]) 

Specific:  The specific interface names are S_EPICG and D_EPICG. 

FORTRAN 77 Interface 
Single: EPICG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPICG. 

Example 
For an example of EPICG, see IMSL routine EVCCG on page 464. 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E2ICG/DE2ICG. The 

reference is: 

E2ICG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK) 

The additional argument is: 

WK — Complex work array of length N. 

2. Informational errors 
Type  Code  

   3     1  Performance index is greater than 100. 
   3    2  An eigenvector is zero. 
   3     3  The matrix is zero. 

Description 
Let M = NEVAL, � = EVAL, xj = EVEC(*, J), the j-th column of EVEC. Also, let � be the machine 
precision given by AMACH(4). The performance index, 
, is defined to be 

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

�

�
�� �

�

�  

The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

� �1
1

N

i i
i

v v v
�

� � � ��  



 

 
 

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 469 

 

 

 

While the exact value of 
 is highly machine dependent, the performance of EVCSF (page 471) is 
considered excellent if 
 < 1, good if 1 � 
 � 100, and poor if 
 > 100. The performance index was 
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, 
pages 124�125). 

EVLSF 
Computes all of the eigenvalues of a real symmetric matrix. 

Required Arguments 
A — Real symmetric matrix of order N.   (Input) 

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVLSF (A, EVAL [,…]) 

Specific:  The specific interface names are S_EVLSF and D_EVLSF. 

FORTRAN 77 Interface 
Single:    CALL EVLSF (N, A, LDA, EVAL) 

Double: The double precision name is DEVLSF. 

Example 
In this example, the eigenvalues of a real symmetric matrix are computed and printed. This matrix 
is given by Gregory and Karney (1969, page 56). 

      USE EVLSF_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (N=4, LDA=N) 
! 
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      REAL       A(LDA,N), EVAL(N) 
!                                 Set values of A 
! 
!                                 A = (  6.0    4.0    4.0    1.0) 
!                                     (  4.0    6.0    1.0    4.0) 
!                                     (  4.0    1.0    6.0    4.0) 
!                                     (  1.0    4.0    4.0    6.0) 
! 
      DATA A /6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0, & 
             4.0, 1.0, 4.0, 4.0, 6.0 / 
! 
!                                 Find eigenvalues of A 
      CALL EVLSF (A, EVAL) 
!                                 Print results 
      CALL WRRRN (’EVAL’, EVAL, 1, N, 1) 
      END 

Output 
              EVAL 
    1       2       3       4 
15.00    5.00    5.00   -1.00 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E4LSF/DE4LSF. The 

reference is: 

CALL E4LSF (N, A, LDA, EVAL,WORK, IWORK) 

The additional arguments are as follows: 

WORK — Work array of length 2N. 

IWORK — Integer array of length N. 

2. Informational error 
Type  Code  

   3    1 The iteration for the eigenvalue failed to converge in 100 iterations 
before deflating. 

Description 
Routine EVLSF computes the eigenvalues of a real symmetric matrix. Orthogonal similarity 
transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. Then, 
an implicit rational QR algorithm is used to compute the eigenvalues of this tridiagonal matrix. 

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The 
rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169). Further 
details, some timing data, and credits are given in Hanson et al. (1990). 
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EVCSF 
Computes all of the eigenvalues and eigenvectors of a real symmetric matrix. 

Required Arguments 
A — Real symmetric matrix of order N.   (Input) 

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

EVEC — Real matrix of order N.   (Output)  
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL EVCSF (A, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVCSF and D_EVCSF. 

FORTRAN 77 Interface 
Single: CALL EVCSF (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCSF. 

Example 
The eigenvalues and eigenvectors of this real symmetric matrix are computed and printed. The 
performance index is also computed and printed. This serves as a check on the computations. For 
more details, see EPISF on page 483. 

      USE EVCSF_INT 
      USE EPISF_INT 
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      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N 
      PARAMETER  (N=3, LDA=N, LDEVEC=N) 
! 
      INTEGER    NOUT 
      REAL       A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI 
! 
!                                 Set values of A 
! 
!                                 A = (  7.0   -8.0   -8.0) 
!                                     ( -8.0  -16.0  -18.0) 
!                                     ( -8.0  -18.0   13.0) 
! 
      DATA A/7.0, -8.0, -8.0, -8.0, -16.0, -18.0, -8.0, -18.0, 13.0/ 
! 
!                                 Find eigenvalues and vectors of A 
      CALL EVCSF (A, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPISF (N, A, EVAL, EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRRRN (’EVAL’, EVAL, 1, N, 1) 
      CALL WRRRN (’EVEC’, EVEC) 
 
      WRITE (NOUT, ’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
           EVAL 
      1       2       3 
 -27.90   22.68    9.22 
 
            EVEC 
         1        2        3 
1   0.2945  -0.2722   0.9161 
2   0.8521  -0.3591  -0.3806 
3   0.4326   0.8927   0.1262 
 
Performance index =  0.019 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E5CSF/DE5CSF. The 

reference is: 

CALL E5CSF (N, A, LDA, EVAL, EVEC, LDEVEC, WORK, IWK) 

The additional argument is: 

WORK — Work array of length 3N. 

IWK — Integer array of length N. 
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2. Informational error 
Type  Code  

   3    1 The iteration for the eigenvalue failed to converge in 100 iterations 
before deflating. 

Description 
Routine EVCSF computes the eigenvalues and eigenvectors of a real symmetric matrix. Orthogonal 
similarity transformations are used to reduce the matrix to an equivalent symmetric tridiagonal 
matrix. These transformations are accumulated. An implicit rational QR algorithm is used to 
compute the eigenvalues of this tridiagonal matrix. The eigenvectors are computed using the 
eigenvalues as perfect shifts, Parlett (1980, pages 169, 172). The reduction routine is based on the 
EISPACK routine TRED2. See Smith et al. (1976) for the EISPACK routines. Further details, some 
timing data, and credits are given in Hanson et al. (1990). 

EVASF 
Computes the largest or smallest eigenvalues of a real symmetric matrix. 

Required Arguments 
NEVAL — Number of eigenvalues to be computed.   (Input) 

A — Real symmetric matrix of order N.   (Input) 

SMALL — Logical variable.   (Input)  
If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL 
eigenvalues are computed. 

EVAL — Real vector of length NEVAL containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVASF (NEVAL, A, SMALL, EVAL [,…]) 

Specific:  The specific interface names are S_EVASF and D_EVASF. 
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FORTRAN 77 Interface 
Single: CALL EVASF (N, NEVAL, A, LDA, SMALL, EVAL) 

Double: The double precision name is DEVASF. 

Example 
In this example, the three largest eigenvalues of the computed Hilbert matrix aij = 1/(i + j �1) of 
order N = 10 are computed and printed. 

      USE EVASF_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N, NEVAL 
      PARAMETER  (N=10, NEVAL=3, LDA=N) 
! 
      INTEGER    I, J 
      REAL       A(LDA,N), EVAL(NEVAL), REAL 
      LOGICAL    SMALL 
      INTRINSIC  REAL 
!                                 Set up Hilbert matrix 
      DO 20  J=1, N 
         DO 10  I=1, N 
            A(I,J) = 1.0/REAL(I+J-1) 
   10    CONTINUE 
   20 CONTINUE 
!                                 Find the 3 largest eigenvalues 
      SMALL = .FALSE. 
       CALL EVASF (NEVAL, A, SMALL, EVAL) 
!                                 Print results 
       CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1) 
 
      END 

Output 
       EVAL 
    1       2       3 
1.752   0.343   0.036 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E4ASF/DE4ASF. The 

reference is: 

CALL E4ASF (N, NEVAL, A, LDA, SMALL, EVAL, WORK, IWK) 

WORK — Work array of length 4N. 

IWK — Integer work array of length N. 

2. Informational error 
Type  Code 
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   3    1 The iteration for an eigenvalue failed to converge. The best estimate will 
be returned. 

Description 
Routine EVASF computes the largest or smallest eigenvalues of a real symmetric matrix. Orthogonal 
similarity transformations are used to reduce the matrix to an equivalent symmetric tridiagonal 
matrix. Then, an implicit rational QR algorithm is used to compute the eigenvalues of this 
tridiagonal matrix. 

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The 
rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169). 

EVESF 
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real symmetric 
matrix. 

Required Arguments 
NEVEC — Number of eigenvalues to be computed.   (Input) 

A — Real symmetric matrix of order N.   (Input) 

SMALL — Logical variable.   (Input)  
If .TRUE., the smallest NEVEC eigenvalues are computed. If .FALSE., the largest NEVEC 
eigenvalues are computed. 

EVAL — Real vector of length NEVEC containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

EVEC — Real matrix of dimension N by NEVEC.   (Output)  
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 
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FORTRAN 90 Interface 
Generic: CALL EVESF (NEVEC, A, SMALL, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVESF and D_EVESF. 

FORTRAN 77 Interface 
Single: CALL EVESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVESF. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 55). The largest two eigenvalues and their eigenvectors are computed and printed. The 
performance index is also computed and printed. This serves as a check on the computations. For 
more details, see IMSL routine EPISF on page 483. 

      USE EVESF_INT 
      USE EPISF_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables  
      INTEGER    LDA, LDEVEC, N 
      PARAMETER  (N=4, LDA=N, LDEVEC=N) 
! 
      INTEGER    NEVEC, NOUT 
      REAL       A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI 
      LOGICAL    SMALL 
! 
!                                 Set values of A 
! 
!                                 A = (  5.0    4.0    1.0    1.0) 
!                                     (  4.0    5.0    1.0    1.0) 
!                                     (  1.0    1.0    4.0    2.0) 
!                                     (  1.0    1.0    2.0    4.0) 
! 
      DATA A/5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0, 1.0, 1.0, 4.0, & 
          2.0, 1.0, 1.0, 2.0, 4.0/ 
! 
!                                 Find eigenvalues and vectors of A 
      NEVEC = 2 
      SMALL = .FALSE. 
      CALL EVESF (NEVEC, A, SMALL, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPISF(NEVEC,A,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVEC, 1) 
      CALL WRRRN (’EVEC’, EVEC, N, NEVEC, LDEVEC) 
 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
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      END 

Output 
       EVAL 
     1       2 
 10.00    5.00 
 
       EVEC 
          1        2 
 1   0.6325  -0.3162 
 2   0.6325  -0.3162 
 3   0.3162   0.6325 
 4   0.3162   0.6325 
 
 Performance index =  0.026 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E5ESF/DE5ESF. The 

reference is: 

CALL E5ESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 9N. 

IWK — Integer array of length N. 

2. Informational errors  
Type  Code  

   3     1 The iteration for an eigenvalue failed to converge. The best estimate will 
be returned. 

   3    2 Inverse iteration did not converge. Eigenvector is not correct for the 
specified eigenvalue. 

   3    3 The eigenvectors have lost orthogonality. 

Description 
Routine EVESF computes the largest or smallest eigenvalues and the corresponding eigenvectors of 
a real symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to an 
equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm is used to 
compute the eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the 
eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of these vectors. The 
eigenvectors of the original matrix are computed by back transforming those of the tridiagonal 
matrix. 

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The 
rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169). The 
inverse iteration and orthogonalization computation is discussed in Hanson et al. (1990). The back 
transformation routine is based on the EISPACK routine TRBAK1. 
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EVBSF 
Computes selected eigenvalues of a real symmetric matrix. 

Required Arguments 
MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Real symmetric matrix of order N.   (Input) 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 
EHIGH) in decreasing order of magnitude.   (Output) 
Only the first NEVAL elements of EVAL are significant. 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVBSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL [,…]) 

Specific:  The specific interface names are S_EVBSF and D_EVBSF. 

FORTRAN 77 Interface 
Single: CALL EVBSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL) 

Double: The double precision name is DEVBSF. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 56). The eigenvalues of A are known to be �1, 5, 5 and 15. The eigenvalues in the interval 
[1.5, 5.5] are computed and printed. As a test, this example uses MXEVAL = 4. The routine EVBSF 
computes NEVAL, the number of eigenvalues in the given interval. The value of NEVAL is 2. 
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      USE EVBSF_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, MXEVAL, N 
      PARAMETER  (MXEVAL=4, N=4, LDA=N) 
! 
      INTEGER    NEVAL, NOUT 
      REAL       A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL) 
! 
!                                 Set values of A 
! 
!                                 A = (  6.0    4.0    4.0    1.0) 
!                                     (  4.0    6.0    1.0    4.0) 
!                                     (  4.0    1.0    6.0    4.0) 
!                                     (  1.0    4.0    4.0    6.0) 
! 
      DATA A/6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0, & 
          4.0, 1.0, 4.0, 4.0, 6.0/ 
! 
!                                 Find eigenvalues of A 
      ELOW  = 1.5 
      EHIGH = 5.5 
      CALL EVBSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,’(/,A,I2)’) ’ NEVAL = ’, NEVAL 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1) 
      END 

Output 
NEVAL =  2 
 
     EVAL 
    1       2 
5.000   5.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E5BSF/DE5BSF. The 

reference is 

CALL E5BSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 5N. 

IWK — Integer work array of length 1N. 

2. Informational error  
Type Code  
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   3     1  The number of eigenvalues in the specified interval exceeds MXEVAL. 
NEVAL contains the number of eigenvalues in the interval. No 
eigenvalues will be returned. 

Description 
Routine EVBSF computes the eigenvalues in a given interval for a real symmetric matrix. 
Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric 
tridiagonal matrix. Then, an implicit rational QR algorithm is used to compute the eigenvalues of 
this tridiagonal matrix. The reduction step is based on the EISPACK routine TRED1. See Smith et 
al. (1976). The rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 
169). 

EVFSF 
Computes selected eigenvalues and eigenvectors of a real symmetric matrix. 

Required Arguments 
MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Real symmetric matrix of order N.   (Input) 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval  
(ELOW, EHIGH) in decreasing order of magnitude.   (Output) 
Only the first NEVAL elements of EVAL are significant. 

EVEC — Real matrix of dimension N by MXEVAL.   (Output)  
The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column. Only the first 
NEVAL columns of EVEC are significant. Each vector is normalized to have Euclidean 
length equal to the value one. 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL EVFSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVFSF and D_EVFSF. 

FORTRAN 77 Interface 
Single: CALL EVFSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, 

     EVEC, LDEVEC) 

Double: The double precision name is DEVFSF. 

Example 
In this example, A is set to the computed Hilbert matrix. The eigenvalues in the interval [0.001, 1] 
and their corresponding eigenvectors are computed and printed. This example uses MXEVAL = 3. 
The routine EVFSF computes the number of eigenvalues NEVAL in the given interval. The value of 
NEVAL is 2. The performance index is also computed and printed. For more details, see IMSL 
routine EPISF on page 483. 

      USE EVFSF_INT 
      USE EPISF_INT 
      USE WRRRN_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, MXEVAL, N 
      PARAMETER  (MXEVAL=3, N=3, LDA=N, LDEVEC=N) 
! 
      INTEGER    NEVAL, NOUT 
      REAL       A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL), & 
                EVEC(LDEVEC,MXEVAL), PI 
!                                 Compute Hilbert matrix 
      DO 20 J=1,N 
         DO 10 I=1,N 
            A(I,J) = 1.0/FLOAT(I+J-1) 
   10    CONTINUE 
   20 CONTINUE 
!                                 Find eigenvalues and vectors 
      ELOW  = 0.001 
      EHIGH = 1.0 
      CALL EVFSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC, LDEVEC) 
!                                 Compute performance index 
      PI = EPISF(NEVAL,A,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,’(/,A,I2)’) ’ NEVAL = ’, NEVAL 
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      CALL WRRRN (’EVAL’, EVAL, 1, NEVAl, 1) 
      CALL WRRRN (’EVEC’, EVEC, N, NEVAL, LDEVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
NEVAL =  2 
 
      EVAL 
     1        2 
0.1223   0.0027 
 
        EVEC 
         1        2 
1  -0.5474  -0.1277 
2   0.5283   0.7137 
3   0.6490  -0.6887 
 
Performance index =  0.008 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3FSF/DE3FSF. The 

reference is: 

 ALL E3FSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, VAL, EVEC, 
LDEVEC, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 9N. 

IWK — Integer work array of length N. 

2. Informational errors 
Type Code 

   3    1 The number of eigenvalues in the specified range exceeds MXEVAL. 
NEVAL contains the number of eigenvalues in the range. No eigenvalues 
will be computed. 

   3    2 Inverse iteration did not converge. Eigenvector is not correct for the 
specified eigenvalue. 

   3    3 The eigenvectors have lost orthogonality. 

Description 
Routine EVFSF computes the eigenvalues in a given interval and the corresponding eigenvectors of 
a real symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to an 
equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm is used to 
compute the eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the 
eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of these vectors. The 
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eigenvectors of the original matrix are computed by back transforming those of the tridiagonal 
matrix. 

The reduction step is based on the EISPACK routine TRED1. The rational QR algorithm is called 
the PWK algorithm. It is given in Parlett (1980, page 169). The inverse iteration and 
orthogonalization processes are discussed in Hanson et al. (1990). The transformation back to the 
users’s input matrix is based on the EISPACK routine TRBAK1. See Smith et al. (1976) for the 
EISPACK routines. 

 

 

 

EPISF 
This function computes the performance index for a real symmetric eigensystem. 

Function Return Value 
EPISF — Performance index.   (Output) 

Required Arguments 
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index 

computation is based on.   (Input) 

A — Symmetric matrix of order N.   (Input) 

EVAL — Vector of length NEVAL containing eigenvalues of A.   (Input) 

EVEC — N by NEVAL array containing eigenvectors of A.   (Input)  
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column of 
EVEC. 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 



 

 
 

484 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY 

 

 

 

FORTRAN 90 Interface 
Generic: EPISF (NEVAL, A, EVAL, EVEC[,…]) 

Specific:  The specific interface names are S_EPISF and D_EPISF. 

FORTRAN 77 Interface 
Single: EPISF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPISF. 

Example 
For an example of EPISF, see routine EVCSF, on page 471. 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E2ISF/DE2ISF. The 

reference is: 

E2ISF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WORK) 

The additional argument is: 

WORK — Work array of length N. 

E2ISF — Performance Index. 

2. Informational errors 
Type  Code 

   3     1  Performance index is greater than 100. 
   3    2 An eigenvector is zero. 
   3    3 The matrix is zero. 

Description 
Let M = NEVAL, � = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let � be the machine 
precision, given by AMACH(4) (see the Reference chapter). The performance index, 
, is defined to 
be  

�

�

�

�

�

� �

max
1

1

1 1
10j M

j j j

j

Ax x

N A x
 

While the exact value of 
 is highly machine dependent, the performance of EVCSF (page 471) is 
considered excellent if 
 < 1, good if 1 � 
 � 100, and poor if 
 > 100. The performance index was 
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, 
pages 124�125). 



 

 
 

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 485 

 

 

 

EVLSB 
Computes all of the eigenvalues of a real symmetric matrix in band symmetric storage mode. 

Required Arguments 
A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

EVAL — Vector of length N containing the eigenvalues of A in decreasing order of magnitude.   
(Output) 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVLSB (A, NCODA, EVAL [,…]) 

Specific:  The specific interface names are S_EVLSB and D_EVLSB. 

FORTRAN 77 Interface 
Single: CALL EVLSB (N, A, LDA, NCODA, EVAL) 

Double: The double precision name is DEVLSB. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 77). The eigenvalues of this matrix are given by 

2

1 2cos 3
1k

k
N
�

�
� �

� � �� �
�� 	

 

Since the eigenvalues returned by EVLSB are in decreasing magnitude, the above formula for  
k = 1, �, N gives the the values in a different order. The eigenvalues of this real band symmetric 
matrix are computed and printed. 

      USE EVLSB_INT 
      USE WRRRN_INT 
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!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N, NCODA 
      PARAMETER  (N=5, NCODA=2, LDA=NCODA+1, LDEVEC=N) 
! 
      REAL       A(LDA,N), EVAL(N) 
!                                 Define values of A: 
!                                 A = (-1  2  1       ) 
!                                     ( 2  0  2  1    ) 
!                                     ( 1  2  0  2  1 ) 
!                                     (    1  2  0  2 ) 
!                                     (       1  2 -1 ) 
!                                 Represented in band symmetric 
!                                 form this is: 
!                                 A = ( 0  0  1  1  1 ) 
!                                     ( 0  2  2  2  2 ) 
!                                     (-1  0  0  0 -1 ) 
! 
      DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, & 
          0.0, 1.0, 2.0, -1.0/ 
! 
       CALL EVLSB (A, NCODA, EVAL) 
!                                 Print results 
      CALL WRRRN (’EVAL’, EVAL, 1, N, 1) 
      END 

Output 
                   EVAL 
    1       2       3       4       5 
4.464  -3.000  -2.464  -2.000   1.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3LSB/DE3LSB. The 

reference is: 

CALL E3LSB (N, A, LDA, NCODA, EVAL, ACOPY, WK) 

The additional arguments are as follows: 

ACOPY —  Work array of length N(NCODA + 1). The arrays A and ACOPY may be the 
same, in which case the first N(NCODA + 1) elements of A will be destroyed. 

WK —  Work array of length N. 

2. Informational error 
Type Code 

   4    1 The iteration for the eigenvalues failed to converge. 
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Description 
Routine EVLSB computes the eigenvalues of a real band symmetric matrix. Orthogonal similarity 
transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. The 
implicit QL algorithm is used to compute the eigenvalues of the resulting tridiagonal matrix. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QL 
routine is based on the EISPACK routine IMTQL1; see Smith et al. (1976). 

EVCSB 
Computes all of the eigenvalues and eigenvectors of a real symmetric matrix in band symmetric 
storage mode. 

Required Arguments 
A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

EVAL — Vector of length N containing the eigenvalues of A in decreasing order of magnitude.   
(Output) 

EVEC — Matrix of order N containing the eigenvectors.   (Output)  
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL EVCSB (A, NCODA, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVCSB and D_EVCSB. 
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FORTRAN 77 Interface 
Single: CALL EVCSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCSB. 

Example 
In this example, a DATA statement is used to set A to a band matrix given by Gregory and Karney 
(1969, page 75). The eigenvalues, �k, of this matrix are given by 

416sin
2 2k

k
N
�

�
� �

� � �
�	 


 

The eigenvalues and eigenvectors of this real band symmetric matrix are computed and printed. The 
performance index is also computed and printed. This serves as a check on the computations; for 
more details, see IMSL routine EPISB, page 501. 

      USE EVCSB_INT 
      USE EPISB_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N, NCODA 
      PARAMETER  (N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N) 
! 
      INTEGER    NOUT 
      REAL       A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI 
!                                 Define values of A: 
!                                 A = (  5  -4   1              ) 
!                                     ( -4   6  -4   1          ) 
!                                     (  1  -4   6  -4   1      ) 
!                                     (      1  -4   6  -4   1  ) 
!                                     (          1  -4   6  -4  ) 
!                                     (              1  -4   5  ) 
!                                 Represented in band symmetric 
!                                 form this is: 
!                                 A = (  0   0   1   1   1   1  ) 
!                                     (  0  -4  -4  -4  -4  -4  ) 
!                                     (  5   6   6   6   6   5  ) 
! 
      DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, & 
          6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/ 
! 
!                                 Find eigenvalues and vectors 
      CALL EVCSB (A, NCODA, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPISB(N,A,NCODA,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRRRN (’EVAL’, EVAL, 1, N, 1) 
      CALL WRRRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 
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Output 
                       EVAL 
    1       2       3       4       5       6 
14.45   10.54    5.98    2.42    0.57    0.04 
 
                          EVEC 
         1        2        3        4        5        6 
1  -0.2319  -0.4179  -0.5211   0.5211  -0.4179   0.2319 
2   0.4179   0.5211   0.2319   0.2319  -0.5211   0.4179 
3  -0.5211  -0.2319   0.4179  -0.4179  -0.2319   0.5211 
4   0.5211  -0.2319  -0.4179  -0.4179   0.2319   0.5211 
5  -0.4179   0.5211  -0.2319   0.2319   0.5211   0.4179 
6   0.2319  -0.4179   0.5211   0.5211   0.4179   0.2319 
 
Performance index =  0.029 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E4CSB/DE4CSB. The 

reference is: 

CALL E4CSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC, COPY, WK,IWK) 

The additional arguments are as follows: 

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the same, in which 
case the first N * NCODA elements of A will be destroyed. 

WK — Work array of length N. 

IWK — Integer work array of length N. 

 

 

2. Informational error 
Type  Code 

   4    1  The iteration for the eigenvalues failed to converge. 

3. The success of this routine can be checked using EPISB (page 501). 

Description 
Routine EVCSB computes the eigenvalues and eigenvectors of a real band symmetric matrix. 
Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric 
tridiagonal matrix. These transformations are accumulated. The implicit QL algorithm is used to 
compute the eigenvalues and eigenvectors of the resulting tridiagonal matrix. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QL 
routine is based on the EISPACK routine IMTQL2; see Smith et al. (1976). 
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EVASB 
Computes the largest or smallest eigenvalues of a real symmetric matrix in band symmetric storage 
mode. 

Required Arguments 
NEVAL — Number of eigenvalues to be computed.   (Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

SMALL — Logical variable.   (Input)  
If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL 
eigenvalues are computed. 

EVAL — Vector of length NEVAL containing the computed eigenvalues in decreasing order of 
magnitude.   (Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVASB (NEVAL, A, NCODA, SMALL, EVAL [,…]) 

Specific:  The specific interface names are S_EVASB and D_EVASB. 

FORTRAN 77 Interface 
Single: CALL EVASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL) 

Double: The double precision name is DEVASB. 

Example 
The following example is given in Gregory and Karney (1969, page 63). The smallest four 
eigenvalues of the matrix 
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are computed and printed. 
      USE EVASB_INT 
      USE WRRRN_INT 
      USE SSET_INT 

!                                 Declare variables 
      INTEGER    LDA, N, NCODA, NEVAL 
      PARAMETER  (N=11, NCODA=3, NEVAL=4, LDA=NCODA+1) 
! 
      REAL       A(LDA,N), EVAL(NEVAL) 
      LOGICAL    SMALL 
!                                 Set up matrix in band symmetric 
!                                 storage mode 
      CALL SSET (N, 6.0, A(4:,1), LDA) 
      CALL SSET (N-1, 3.0, A(3:,2), LDA) 
      CALL SSET (N-2, 1.0, A(2:,3), LDA) 
      CALL SSET (N-3, 1.0, A(1:,4), LDA) 
      CALL SSET (NCODA, 0.0, A(1:,1), 1) 
      CALL SSET (NCODA-1, 0.0, A(1:,2), 1) 
      CALL SSET (NCODA-2, 0.0, A(1:,3), 1) 
      A(4,1) = 5.0 
      A(4,N) = 5.0 
      A(3,2) = 2.0 
      A(3,N) = 2.0 
!                                 Find the 4 smallest eigenvalues 
      SMALL = .TRUE. 
      CALL EVASB (NEVAL, A, NCODA, SMALL, EVAL) 
!                                 Print results 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1) 
      END 

Output 
            EVAL 
    1       2       3       4 
4.000   3.172   1.804   0.522 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of E3ASB/DE3ASB. The 

reference is: 

CALL E3ASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL, 
     ACOPY, WK) 

The additional arguments are as follows: 

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the same, in which 
case the first N(NCODA + 1) elements of A will be destroyed. 

WK — Work array of length 3N. 

2. Informational error 
Type Code 

   3    1 The iteration for an eigenvalue failed to converge. The best estimate will 
be returned. 

Description 
Routine EVASB computes the largest or smallest eigenvalues of a real band symmetric matrix. 
Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric 
tridiagonal matrix. The rational QR algorithm with Newton corrections is used to compute the 
extreme eigenvalues of this tridiagonal matrix. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1978). The QR 
routine is based on the EISPACK routine RATQR; see Smith et al. (1976). 

EVESB 
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real 
symmetric matrix in band symmetric storage mode. 

Required Arguments 
NEVEC — Number of eigenvectors to be calculated.   (Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

SMALL — Logical variable.    (Input) 
If .TRUE. , the smallest NEVEC eigenvectors are computed. If .FALSE. , the largest NEVEC 
eigenvectors are computed. 

EVAL — Vector of length NEVEC containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 
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EVEC — Real matrix of dimension N by NEVEC.    (Output) 
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL EVESB (NEVEC, A, NCODA, SMALL, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVESB and D_EVESB. 

FORTRAN 77 Interface 
Single: CALL EVESB (N, NEVEC, A, LDA, NCODA, SMALL, EVAL, EVEC,  

     LDEVEC) 

Double: The double precision name is DEVESB. 

Example 
The following example is given in Gregory and Karney (1969, page 75). The largest three 
eigenvalues and the corresponding eigenvectors of the matrix are computed and printed. 

      USE EVESB_INT 
      USE EPISB_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N, NCODA, NEVEC 
      PARAMETER  (N=6, NCODA=2, NEVEC=3, LDA=NCODA+1, LDEVEC=N) 
! 
      INTEGER    NOUT 
      REAL       A(LDA,N), EVAL(NEVEC), EVEC(LDEVEC,NEVEC), PI 
      LOGICAL    SMALL 
!                                 Define values of A: 
!                                 A = (  5  -4   1              ) 
!                                     ( -4   6  -4   1          ) 
!                                     (  1  -4   6  -4   1      ) 
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!                                     (      1  -4   6  -4   1  ) 
!                                     (          1  -4   6  -4  ) 
!                                     (              1  -4   5  ) 
!                                 Represented in band symmetric 
!                                 form this is: 
!                                 A = (  0   0   1   1   1   1  ) 
!                                     (  0  -4  -4  -4  -4  -4  ) 
!                                     (  5   6   6   6   6   5  ) 
! 
      DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, & 
          6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/ 
! 
!                                 Find the 3 largest eigenvalues 
!                                 and their eigenvectors. 
      SMALL = .FALSE. 
      CALL EVESB (NEVEC, A, NCODA, SMALL, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPISB(NEVEC,A,NCODA,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVEC, 1) 
      CALL WRRRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
        EVAL 
    1       2       3 
14.45   10.54    5.98 
 
             EVEC 
         1        2        3 
1   0.2319  -0.4179   0.5211 
2  -0.4179   0.5211  -0.2319 
3   0.5211  -0.2319  -0.4179 
4  -0.5211  -0.2319   0.4179 
5   0.4179   0.5211   0.2319 
6  -0.2319  -0.4179  -0.5211 
 
Performance index =  0.175 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E4ESB/DE4ESB. The 

reference is: 

 CALL E4ESB (N,NEVEC, A, LDA, NCODA,SMALL,EVAL, EVEC, 
LDEVEC, ACOPY, WK, IWK) 

The additional argument is: 

ACOPY — Work array of length N(NCODA + 1). 
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WK — Work array of length N(2NCODA + 5). 

IWK — Integer work array of length N. 

2. Informational errors 
Type Code 

   3    1 Inverse iteration did not converge. Eigenvector is not correct for the 
specified eigenvalue. 

   3    2 The eigenvectors have lost orthogonality. 

3. The success of this routine can be checked using EPISB. 

Description 
Routine EVESB computes the largest or smallest eigenvalues and the corresponding eigenvectors of 
a real band symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix 
to an equivalent symmetric tridiagonal matrix. The rational QR algorithm with Newton corrections 
is used to compute the extreme eigenvalues of this tridiagonal matrix. Inverse iteration and 
orthogonalization are used to compute the eigenvectors of the given band matrix. The reduction 
routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QR routine is based 
on the EISPACK routine RATQR; see Smith et al. (1976). The inverse iteration and 
orthogonalization steps are based on EISPACK routine BANDV using the additional steps given in 
Hanson et al. (1990). 

 

EVBSB 
Computes the eigenvalues in a given interval of a real symmetric matrix stored in band symmetric 
storage mode. 

Required Arguments 
MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 
EHIGH) in decreasing order of magnitude.   (Output) 
Only the first NEVAL elements of EVAL are set. 
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Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVBSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL [,…]) 

Specific:  The specific interface names are S_EVBSB and D_EVBSB. 

FORTRAN 77 Interface 
Single: CALL EVBSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, 

     EVAL) 

Double: The double precision name is DEVBSB. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 77). The eigenvalues in the range (-2.5, 1.5) are computed and printed. As a test, this example 
uses MXEVAL = 5. The routine EVBSB computes NEVAL, the number of eigenvalues in the given 
range, has the value 3. 

      USE EVBSB_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, MXEVAL, N, NCODA 
      PARAMETER  (MXEVAL=5, N=5, NCODA=2, LDA=NCODA+1) 
! 
      INTEGER    NEVAL, NOUT 
      REAL       A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL) 
! 
!                                 Define values of A: 
!                                 A = ( -1   2   1          ) 
!                                     (  2   0   2   1      ) 
!                                     (  1   2   0   2   1  ) 
!                                     (      1   2   0   2  ) 
!                                     (          1   2  -1  ) 
!                                 Representedin band symmetric 
!                                 form this is: 
!                                 A = (  0   0   1   1   1 ) 
!                                     (  0   2   2   2   2 ) 
!                                     ( -1   0   0   0  -1 ) 
      DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, & 
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          0.0, 1.0, 2.0, -1.0/ 
! 
      ELOW  = -2.5 
      EHIGH = 1.5 
      CALL EVBSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,’(/,A,I1)’) ’ NEVAL = ’, NEVAL 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVAl, 1) 
      END 

Output 
NEVAL = 3 
 
          EVAL 
     1       2       3 
-2.464  -2.000   1.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3BSB/DE3BSB. The 

reference is: 

CALL E3BSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL,EVAL, 
ACOPY, WK) 

The additional arguments are as follows: 

ACOPY — Work matrix of size NCODA + 1 by N. A and ACOPY may be the same, in which 
case the first N(NCODA + 1) elements of A will be destroyed. 

WK — Work array of length 5N. 

2. Informational error 
Type Code 

   3    1 The number of eigenvalues in the specified interval exceeds MXEVAL. 
NEVAL contains the number of eigenvalues in the interval. No 
eigenvalues will be returned. 

Description 
Routine EVBSB computes the eigenvalues in a given range of a real band symmetric matrix. 
Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric 
tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues of the tridiagonal 
matrix in a given range. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The 
bisection routine is based on the EISPACK routine BISECT; see Smith et al. (1976). 
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EVFSB 
Computes the eigenvalues in a given interval and the corresponding eigenvectors of a real symmetric 
matrix stored in band symmetric storage mode. 

Required Arguments 
MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 
EHIGH) in decreasing order of magnitude.   (Output) 
Only the first NEVAL elements of EVAL are significant. 

EVEC — Real matrix containing in its first NEVAL columns the eigenvectors associated with the 
eigenvalues found and stored in EVAL. Eigenvector J corresponds to eigenvalue J for J = 1 
to NEVAL. Each vector is normalized to have Euclidean length equal to the value one.   
(Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL EVFSB (MXEVEL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL,   

 EVEC [,…]) 

Specific:  The specific interface names are S_EVFSB and D_EVFSB. 
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FORTRAN 77 Interface 
Single: CALL EVFSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, 

     EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVFSB. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 75). The eigenvalues in the range [1, 6] and their corresponding eigenvectors are computed 
and printed. As a test, this example uses MXEVAL = 4. The routine EVFSB computes NEVAL, the 
number of eigenvalues in the given range has the value 2. As a check on the computations, the 
performance index is also computed and printed. For more details, see IMSL routine EPISB on 
page 501. 

      USE EVFSB_INT 
      USE EPISB_INT 
      USE WRRRN_INT 
      USE UMACH_INT 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, MXEVAL, N, NCODA 
      PARAMETER  (MXEVAL=4, N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N) 
! 
      INTEGER    NEVAL, NOUT 
      REAL       A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL), & 
                 EVEC(LDEVEC,MXEVAL), PI 
!                                 Define values of A: 
!                                 A = (  5  -4   1              ) 
!                                     ( -4   6  -4   1          ) 
!                                     (  1  -4   6  -4   1      ) 
!                                     (      1  -4   6  -4   1  ) 
!                                     (          1  -4   6  -4  ) 
!                                     (              1  -4   5  ) 
!                                 Represented in band symmetric 
!                                 form this is: 
!                                 A = (  0   0   1   1   1   1  ) 
!                                     (  0  -4  -4  -4  -4  -4  ) 
!                                     (  5   6   6   6   6   5  ) 
      DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, & 
          6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/ 
! 
!                                 Find eigenvalues and vectors 
      ELOW  = 1.0 
      EHIGH = 6.0 
      CALL EVFSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPISB(NEVAL,A,NCODA,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,’(/,A,I1)’) ’ NEVAL = ’, NEVAL 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1) 
      CALL WRRRN (’EVEC’, EVEC, N, NEVAL, LDEVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
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      END 

Output 
NEVAL = 2 
 
    EVAL 
    1       2 
5.978   2.418 
 
       EVEC 
         1        2 
1   0.5211   0.5211 
2  -0.2319   0.2319 
3  -0.4179  -0.4179 
4   0.4179  -0.4179 
5   0.2319   0.2319 
6  -0.5211   0.5211 
 
    Performance index =  0.083 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3FSB/DE3FSB. The 

reference is: 

CALL E3FSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL, 
EVEC, LDEVEC, ACOPY, WK1, WK2, IWK) 

The additional arguments are as follows: 

ACOPY — Work matrix of size NCODA + 1 by N. 

WK1 — Work array of length 6N. 

WK2 — Work array of length 2N * NCODA + N 

IWK — Integer work array of length N. 

2. Informational errors 
Type Code 

   3    1 The number of eigenvalues in the specified interval exceeds MXEVAL. 
NEVAL contains the number of eigenvalues in the interval. No 
eigenvalues will be returned. 

   3    2 Inverse iteration did not converge. Eigenvector is not correct for the 
specified eigenvalue. 

   3    3 The eigenvectors have lost orthogonality. 

Description 
Routine EVFSB computes the eigenvalues in a given range and the corresponding eigenvectors of a 
real band symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to 
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an equivalent tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues of the 
tridiagonal matrix in the required range. Inverse iteration and orthogonalization are used to compute 
the eigenvectors of the given band symmetric matrix. 

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The 
bisection routine is based on the EISPACK routine BISECT; see Smith et al. (1976). The inverse 
iteration and orthogonalization steps are based on the EISPACK routine BANDV using remarks from 
Hanson et al. (1990). 

EPISB 
This function computes the performance index for a real symmetric eigensystem in band symmetric 
storage mode. 

Required Arguments 
EPISB — Performance index.   (Output) 

Required Arguments 
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance is based.   (Input) 

A — Band symmetric matrix of order N.   (Input) 

NCODA — Number of codiagonals in A.   (Input) 

EVAL — Vector of length NEVAL containing eigenvalues of A.   (Input) 

EVEC — N by NEVAL array containing eigenvectors of A.   (Input)  
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column of 
EVEC. 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: EPISB (NEVAL, A, NCODA, EVAL, EVEC[,…]) 



 

 
 

502 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY 

 

 

 

Specific:  The specific interface names are S_EPISB and D_EPISB. 

FORTRAN 77 Interface 
Single: EPISB(N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPISB. 

Example 
For an example of EPISB, see IMSL routine EVCSB on page 487. 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E2ISB/DE2ISB. The 

reference is: 

E2ISB(N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC, WK) 

The additional argument is: 

WK — Work array of length N. 

2. Informational errors 
Type Code 

   3    1 Performance index is greater than 100. 
   3     2 An eigenvector is zero. 
   3    3 The matrix is zero. 

Description 
Let M = NEVAL, � = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let � be the machine 
precision, given by AMACH(4), see the Reference chapter of the manual. The performance index, 
, 
is defined to be 

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

�

�
�� �

�

�  

While the exact value of 
 is highly machine dependent, the performance of EVCSF (page 471) is 
considered excellent if 
 < 1, good if 1 � 
 � 100, and poor if 
 > 100. The performance index was 
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, 
pages 124�125). 

EVLHF 
Computes all of the eigenvalues of a complex Hermitian matrix. 
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Required Arguments 
A — Complex Hermitian matrix of order N.   (Input)  

Only the upper triangle is used. 

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order  
of magnitude.   (Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVLHF (A, EVAL [,…]) 

Specific:  The specific interface names are S_EVLHF and D_EVLHF. 

FORTRAN 77 Interface 
Single: CALL EVLHF (N, A, LDA, EVAL) 

Double: The double precision name is DEVLHF. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 114). The eigenvalues of this complex Hermitian matrix are computed and printed. 

      USE EVLHF_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (N=2, LDA=N) 
! 
      REAL       EVAL(N) 
      COMPLEX    A(LDA,N) 
!                                 Set values of A 
! 
!                                 A = (  1      -i  ) 
!                                     (  i       1  ) 
! 
      DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/ 
! 
!                                 Find eigenvalues of A 
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      CALL EVLHF (A, EVAL) 
!                                 Print results 
      CALL WRRRN (’EVAL’, EVAL, 1, N, 1) 
      END 

Output 
       EVAL 
    1       2 
2.000   0.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3LHF/DE3LHF. The 

reference is: 

CALL E3LHF (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N�. A and ACOPY may be the same in which case 
A will be destroyed. 

RWK — Work array of length N. 

CWK — Complex work array of length 2N. 

IWK — Integer work array of length N. 

2. Informational errors 
Type Code 

   3    1 The matrix is not Hermitian. It has a diagonal entry with a small 
imaginary part. 

   4    1 The iteration for an eigenvalue failed to converge. 
   4    2 The matrix is not Hermitian. It has a diagonal entry with an imaginary 

part. 

3.        Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access inefficiency) 
problems. In routine E3LHF, the internal or working leading dimensions of ACOPY and 
ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The values 
IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2), respectively, in 
routine EVLHF. Additional memory allocation and option value restoration are 
automatically done in EVLHF. There is no requirement that users change existing 
applications that use EVLHF or E3LHF. Default values for the option are IVAL(*) = 1, 16, 
0, 1, 1, 16, 0, 1. Items 5 � 8 in IVAL(*) are for the generalized eigenvalue problem and are 
not used in EVLHF. 
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Description 
Routine EVLHF computes the eigenvalues of a complex Hermitian matrix. Unitary similarity 
transformations are used to reduce the matrix to an equivalent real symmetric tridiagonal matrix. 
The implicit QL algorithm is used to compute the eigenvalues of this tridiagonal matrix. 

The reduction routine is based on the EISPACK routine HTRIDI. The QL routine is based on the 
EISPACK routine IMTQL1. See Smith et al. (1976) for the EISPACK routines. 

EVCHF 
Computes all of the eigenvalues and eigenvectors of a complex Hermitian matrix. 

Required Arguments 
A — Complex Hermitian matrix of order N.   (Input)  

Only the upper triangle is used. 

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

EVEC — Complex matrix of order N.   (Output)  
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments  
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL EVCHF (A, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVCHF and D_EVCHF. 

FORTRAN 77 Interface 
Single: CALL EVCHF (N, A, LDA, EVAL, EVEC, LDEVEC) 



 

 
 

506 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY 

 

 

 

Double: The double precision name is DEVCHF. 

Example 
In this example, a DATA statement is used to set A to a complex Hermitian matrix. The eigenvalues 
and eigenvectors of this matrix are computed and printed. The performance index is also computed 
and printed. This serves as a check on the computations; for more details, see routine EPIHF on 
page 518. 

 

      USE IMSL_libraries 
 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N 
      PARAMETER  (N=3, LDA=N, LDEVEC=N) 
! 
      INTEGER    NOUT 
      REAL       EVAL(N), PI 
      COMPLEX    A(LDA,N), EVEC(LDEVEC,N) 
!                                 Set values of A 
! 
!                                 A = ((1, 0)  (  1,-7i)  ( 0,- i)) 
!                                     ((1,7i)  (  5,  0)  (10,-3i)) 
!                                     ((0, i)  ( 10, 3i)  (-2,  0)) 
! 
      DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0), & 
          (10.0, 3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/ 
! 
!                                 Find eigenvalues and vectors of A 
      CALL EVCHF (A, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPIHF(N,A,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRRRN (’EVAL’, EVAL, 1, N, 1) 
      CALL WRCRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
         EVAL 
    1       2       3 
15.38  -10.63   -0.75 
 
                            EVEC 
                   1                  2                  3 
1  ( 0.0631,-0.4075)  (-0.0598,-0.3117)  ( 0.8539, 0.0000) 
2  ( 0.7703, 0.0000)  (-0.5939, 0.1841)  (-0.0313,-0.1380) 
3  ( 0.4668, 0.1366)  ( 0.7160, 0.0000)  ( 0.0808,-0.4942) 
 
Performance index =  0.093 
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 Comments 
1. Workspace may be explicitly provided, if desired, by use of E5CHF/DE5CHF. The 

reference is: 

CALL E5CHF (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N�. A and ACOPY may be the same, in which 
case A will be destroyed. 

RWK — Work array of length N� + N. 

CWK — Complex work array of length 2N. 

IWK — Integer work array of length N. 

2. Informational error 
Type Code 

   3    1 The matrix is not Hermitian. It has a diagonal entry with a small 
imaginary part. 

   4    1 The iteration for an eigenvalue failed to converge. 
   4    2 The matrix is not Hermitian. It has a diagonal entry with an imaginary 

part. 

3. The success of this routine can be checked using EPIHF (page 518). 

4. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access inefficiency) 
problems. In routine E5CHF, the internal or working leading dimensions of ACOPY 
and ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The 
values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2), 
respectively, in routine EVCHF. Additional memory allocation and option value 
restoration are automatically done in EVCHF. There is no requirement that users 
change existing applications that use EVCHF or E5CHF. Default values for the option 
are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized 
eigenvalue problem and are not used in EVCHF. 

Description 
Routine EVCHF computes the eigenvalues and eigenvectors of a complex Hermitian matrix. Unitary 
similarity transformations are used to reduce the matrix to an equivalent real symmetric tridiagonal 
matrix. The implicit QL algorithm is used to compute the eigenvalues and eigenvectors of this 
tridiagonal matrix. These eigenvectors and the transformations used to reduce the matrix to 
tridiagonal form are combined to obtain the eigenvectors for the user’s problem. The reduction 
routine is based on the EISPACK routine HTRIDI. The QL routine is based on the EISPACK 
routine IMTQL2. See Smith et al. (1976) for the EISPACK routines. 
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EVAHF 
Computes the largest or smallest eigenvalues of a complex Hermitian matrix. 

Required Arguments 
NEVAL — Number of eigenvalues to be calculated.   (Input) 

A — Complex Hermitian matrix of order N.   (Input)  
Only the upper triangle is used. 

SMALL — Logical variable.   (Input)  
If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL 
eigenvalues are computed. 

EVAL — Real vector of length NEVAL containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVAHF (NEVAL, A, SMALL, EVAL [,…]) 

Specific:  The specific interface names are S_EVAHF and D_EVAHF. 

FORTRAN 77 Interface 
Single: CALL EVAHF (N, NEVAL, A, LDA, SMALL, EVAL) 

Double: The double precision name is DEVAHF. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 114). Its largest eigenvalue is computed and printed. 

      USE EVAHF_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
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      PARAMETER  (N=2, LDA=N) 
! 
      INTEGER    NEVAL 
      REAL       EVAL(N) 
      COMPLEX    A(LDA,N) 
      LOGICAL    SMALL 
!                                 Set values of A 
! 
!                                 A = (  1      -i  ) 
!                                     (  i       1  ) 
! 
      DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/ 
! 
!                                 Find the largest eigenvalue of A 
      NEVAL = 1 
      SMALL = .FALSE. 
      CALL EVAHF (NEVAL, A, SMALL, EVAL) 
!                                 Print results 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVAl, 1) 
      END 

Output 
EVAL 
2.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3AHF/DE3AHF. The 

reference is 

CALL E3AHF (N, NEVAL, A, LDA, SMALL, EVAL, ACOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N�. A and ACOPY may be the same in which case 
A will be destroyed. 

RWK — Work array of length 2N. 

CWK — Complex work array of length 2N. 

IWK — Work array of length N. 

2. Informational errors 
Type Code 

   3    1 The iteration for an eigenvalue failed to converge. The best estimate will 
be returned. 

   3    2 The matrix is not Hermitian. It has a diagonal entry with a small 
imaginary part. 

   4    2 The matrix is not Hermitian. It has a diagonal entry with an imaginary 
part. 
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Description 
Routine EVAHF computes the largest or smallest eigenvalues of a complex Hermitian matrix. 
Unitary transformations are used to reduce the matrix to an equivalent symmetric tridiagonal 
matrix. The rational QR algorithm with Newton corrections is used to compute the extreme 
eigenvalues of this tridiagonal matrix. 

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine is based on the 
EISPACK routine RATQR. See Smith et al. (1976) for the EISPACK routines. 

EVEHF 
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a complex 
Hermitian matrix. 

Required Arguments 
NEVEC — Number of eigenvectors to be computed.   (Input) 

A — Complex Hermitian matrix of order N.   (Input)  
Only the upper triangle is used. 

SMALL — Logical variable.   (Input)  
If .TRUE., the smallest NEVEC eigenvectors are computed. If .FALSE., the largest NEVEC 
eigenvectors are computed. 

EVAL — Real vector of length NEVEC containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

EVEC — Complex matrix of dimension N by NEVEC.   (Output)  
The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2).  

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 
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FORTRAN 90 Interface 
Generic: CALL EVEHF (NEVEC, A, SMALL, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVEHF and D_EVEHF. 

FORTRAN 77 Interface 
Single: CALL EVEHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVEHF. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 115). The smallest eigenvalue and its corresponding eigenvector is computed and printed. The 
performance index is also computed and printed. This serves as a check on the computations. For 
more details, see IMSL routine EPIHF on page 518. 

      USE IMSL_LIBRARIES 
!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N, NEVEC 
      PARAMETER  (N=3, NEVEC=1, LDA=N, LDEVEC=N) 
! 
      INTEGER    NOUT 
      REAL       EVAL(N), PI 
      COMPLEX    A(LDA,N), EVEC(LDEVEC,NEVEC) 
      LOGICAL    SMALL 
!                                 Set values of A 
! 
!                                 A = (  2      -i      0  ) 
!                                     (  i       2      0  ) 
!                                     (  0       0      3  ) 
! 
      DATA A/(2.0,0.0), (0.0,1.0), (0.0,0.0), (0.0,-1.0), (2.0,0.0), & 
          (0.0,0.0), (0.0,0.0), (0.0,0.0), (3.0,0.0)/ 
! 
!                                 Find smallest eigenvalue and its 
!                                 eigenvectors 
      SMALL = .TRUE. 
      CALL EVEHF (NEVEC, A, SMALL, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPIHF(NEVEC,A,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVEC, 1) 
      CALL WRCRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
EVAL 
1.000 
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         EVEC 
1  ( 0.0000, 0.7071) 
2  ( 0.7071, 0.0000) 
3  ( 0.0000, 0.0000) 
 
Performance index =  0.031 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3EHF/DE3EHF. The 

reference is: 

CALL E3EHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC, ACOPY, 
RW1, RW2, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N�. A and ACOPY may be the same, in which 
case A will be destroyed. 

RW1 — Work array of length N * NEVEC. Used to store the real eigenvectors of a 
symmetric tridiagonal matrix. 

RW2 — Work array of length 8N. 

CWK — Complex work array of length 2N. 

IWK — Work array of length N. 

2. Informational errors 
Type Code 

   3    1 The iteration for an eigenvalue failed to converge. The best estimate will 
be returned. 

   3    2 The iteration for an eigenvector failed to converge. The eigenvector will 
be set to 0. 

   3    3 The matrix is not Hermitian. It has a diagonal entry with a small 
imaginary part. 

   4    2 The matrix is not Hermitian. It has a diagonal entry with an imaginary 
part. 

3. The success of this routine can be checked using EPIHF (page 518). 

Description 
Routine EVEHF computes the largest or smallest eigenvalues and the corresponding eigenvectors of 
a complex Hermitian matrix. Unitary transformations are used to reduce the matrix to an equivalent 
real symmetric tridiagonal matrix. The rational QR algorithm with Newton corrections is used to 
compute the extreme eigenvalues of the tridiagonal matrix. Inverse iteration is used to compute the 
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eigenvectors of the tridiagonal matrix. Eigenvectors of the original matrix are found by back 
transforming the eigenvectors of the tridiagonal matrix.  

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine used is based on 
the EISPACK routine RATQR. The inverse iteration routine is based on the EISPACK routine 
TINVIT. The back transformation routine is based on the EISPACK routine HTRIBK. See Smith et 
al. (1976) for the EISPACK routines. 

EVBHF 
Computes the eigenvalues in a given range of a complex Hermitian matrix. 

Required Arguments 
MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Complex Hermitian matrix of order N.   (Input)  
Only the upper triangle is used. 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 
EHIGH) in decreasing order of magnitude.   (Output) 
Only the first NEVAL elements of EVAL are significant. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVBHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL [,…]) 

Specific:  The specific interface names are S_EVBHF and D_EVBHF. 

FORTRAN 77 Interface 
Single: CALL EVBHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL) 
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Double: The double precision name is DEVBHF. 

Example 
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969, 
page 114). The eigenvalues in the range [1.5, 2.5] are computed and printed. This example allows a 
maximum number of eigenvalues MXEVAL = 2. The routine computes that there is one eigenvalue in 
the given range. This value is returned in NEVAL. 

      USE EVBHF_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, MXEVAL, N 
      PARAMETER  (MXEVAL=2, N=2, LDA=N) 
! 
      INTEGER    NEVAL, NOUT 
      REAL       EHIGH, ELOW, EVAL(MXEVAL) 
      COMPLEX    A(LDA,N) 
!                                 Set values of A 
! 
!                                 A = (  1      -i  ) 
!                                     (  i       1  ) 
! 
      DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/ 
! 
!                                 Find eigenvalue 
      ELOW  = 1.5 
      EHIGH = 2.5 
      CALL EVBHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL) 
! 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,’(/,A,I3)’) ’ NEVAL = ’, NEVAL 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1) 
      END 

Output 
NEVAL =   1 
 
EVAL 
2.000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3BHF/DE3BHF. The 

reference is: 

CALL E3BHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, 
            EVAL, ACOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 
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ACOPY — Complex work matrix of size N by N. A and ACOPY may be the same, in which 
case the first N� elements of A will be destroyed. 

RWK — Work array of length 5N. 

CWK — Complex work array of length 2N. 

IWK — Work array of length MXEVAL. 

2. Informational errors 
Type Code 

   3    1 The number of eigenvalues in the specified range exceeds MXEVAL. 
NEVAL contains the number of eigenvalues in the range. No eigenvalues 
will be computed. 

   3    2 The matrix is not Hermitian. It has a diagonal entry with a small 
imaginary part. 

   4    2 The matrix is not Hermitian. It has a diagonal entry with an imaginary 
part. 

Description 
Routine EVBHF computes the eigenvalues in a given range of a complex Hermitian matrix. Unitary 
transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. A 
bisection algorithm is used to compute the eigenvalues in the given range of this tridiagonal matrix. 

The reduction routine is based on the EISPACK routine HTRIDI. The bisection routine used is 
based on the EISPACK routine BISECT. See Smith et al. (1976) for the EISPACK routines. 

 

EVFHF 
Computes the eigenvalues in a given range and the corresponding eigenvectors of a complex 
Hermitian matrix. 

Required Arguments 
MXEVAL — Maximum number of eigenvalues to be computed.   (Input) 

A — Complex Hermitian matrix of order N.   (Input) 
Only the upper triangle is used. 

ELOW — Lower limit of the interval in which the eigenvalues are sought.   (Input) 

EHIGH — Upper limit of the interval in which the eigenvalues are sought.   (Input) 

NEVAL — Number of eigenvalues found.   (Output) 
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EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW, 
EHIGH) in decreasing order of magnitude.   (Output) 
Only the first NEVAL elements of EVAL are significant. 

EVEC — Complex matrix containing in its first NEVAL columns the eigenvectors associated with 
the eigenvalues found stored in EVAL. Each vector is normalized to have Euclidean length 
equal to the value one.   (Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL EVFHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVFHF and D_EVFHF. 

FORTRAN 77 Interface 
Single: CALL EVFHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, 

     EVEC, LDEVEC) 

Double: The double precision name is DEVHFH. 

Example 
In this example, a DATA statement is used to set A to a complex Hermitian matrix. The eigenvalues 
in the range [�15, 0] and their corresponding eigenvectors are computed and printed. As a test, this 
example uses MXEVAL = 3. The routine EVFHF computes the number of eigenvalues in the given 
range. That value, NEVAL, is two. As a check on the computations, the performance index is also 
computed and printed. For more details, see routine EPIHF on page 518. 

      USE IMSL_LIBRARIES 
 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, MXEVAL, N 
      PARAMETER  (MXEVAL=3, N=3, LDA=N, LDEVEC=N) 
! 
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      INTEGER    NEVAL, NOUT 
      REAL       EHIGH, ELOW, EVAL(MXEVAL), PI 
      COMPLEX    A(LDA,N), EVEC(LDEVEC,MXEVAL) 
!                                 Set values of A 
! 
!                                 A = ((1, 0)  (  1,-7i)  ( 0,- i)) 
!                                     ((1,7i)  (  5,  0)  (10,-3i)) 
!                                     ((0, i)  ( 10, 3i)  (-2,  0)) 
! 
      DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0), & 
          (10.0,3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/ 
! 
!                                 Find eigenvalues and vectors 
      ELOW  = -15.0 
      EHIGH = 0.0 
      CALL EVFHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPIHF(NEVAL,A,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,’(/,A,I3)’) ’ NEVAL = ’, NEVAL 
      CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1) 
      CALL WRCRN (’EVEC’, EVEC, N, NEVAL, LDEVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
NEVAL =   2 
 
      EVAL 
     1       2 
-10.63   -0.75 
 
                 EVEC 
                   1                  2 
1  (-0.0598,-0.3117)  ( 0.8539, 0.0000) 
2  (-0.5939, 0.1841)  (-0.0313,-0.1380) 
3  ( 0.7160, 0.0000)  ( 0.0808,-0.4942) 
 
    Performance index =  0.057 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3FHF/DE3FHF. The 

reference is: 

CALL E3FHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL,EVAL, 
EVEC,LDEVEC, ACOPY, ECOPY, RWK,CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work matrix of size N by N. A and ACOPY may be the same, in which 
case the first N� elements of A will be destroyed. 
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ECOPY — Work matrix of size N by MXEVAL. Used to store eigenvectors of a real 
tridiagonal matrix. 

RWK — Work array of length 8N. 

CWK — Complex work array of length 2N. 

IWK — Work array of length MXEVAL. 

2. Informational errors  
Type Code 

   3    1 The number of eigenvalues in the specified range exceeds MXEVAL. 
NEVAL contains the number of eigenvalues in the range. No eigenvalues 
will be computed. 

   3    2 The iteration for an eigenvector failed to converge. The eigenvector will 
be set to 0. 

   3    3  The matrix is not Hermitian. It has a diagonal entry with a small 
imaginary part. 

   4    2 The matrix is not Hermitian. It has a diagonal entry with an imaginary 
part. 

Description 
Routine EVFHF computes the eigenvalues in a given range and the corresponding eigenvectors of a 
complex Hermitian matrix. Unitary transformations are used to reduce the matrix to an equivalent 
symmetric tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues in the given 
range of this tridiagonal matrix. Inverse iteration is used to compute the eigenvectors of the 
tridiagonal matrix. The eigenvectors of the original matrix are computed by back transforming the 
eigenvectors of the tridiagonal matrix. 

The reduction routine is based on the EISPACK routine HTRIDI. The bisection routine is based on 
the EISPACK routine BISECT. The inverse iteration routine is based on the EISPACK routine 
TINVIT. The back transformation routine is based on the EISPACK routine HTRIBK. See Smith et 
al. (1976) for the EISPACK routines. 

EPIHF 
This function computes the performance index for a complex Hermitian eigensystem. 

Function Return Value 
EPIHF — Performance index.   (Output) 

Required Arguments 
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index 

computation is based.   (Input) 
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A — Complex Hermitian matrix of order N.   (Input) 

EVAL — Vector of length NEVAL containing eigenvalues of A.   (Input) 

EVEC — Complex N by NEVAL array containing eigenvectors of A.   (Input)  
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column of 
EVEC. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: EPIHF (NEVAL, A, EVAL, EVEC[,…]) 

Specific:  The specific interface names are S_EPIHF and D_EPIHF. 

FORTRAN 77 Interface 
Single: EPIHF (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision function name is DEPIHF. 

Example 
For an example of EPIHF, see IMSL routine EVCHF, page 505. 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E2IHF/DE2IHF. The 

reference is: 

E2IHF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK) 

The additional argument is 

WK — Complex work array of length N. 
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2. Informational errors 
Type Code 

   3    1 Performance index is greater than 100. 
   3    2 An eigenvector is zero. 
   3    3 The matrix is zero. 

Description 
Let M = NEVAL, � = EVAL, xj = EVEC(*, J), the j-th column of EVEC. Also, let � be the machine 
precision, given by AMACH(4), see the Reference chapter of this manual. The performance index, 
, 
is defined to be  

1

1
1 1
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The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

� �1
1

N

i i
i

v v v
�

� � � ��  

While the exact value of 
 is highly machine dependent, the performance of EVCSF (page 471) is 
considered excellent if 
 < 1, good if 1 � 
 � 100, and poor if 
 > 100. The performance index was 
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976, 
pages 124�125). 

EVLRH 
Computes all of the eigenvalues of a real upper Hessenberg matrix. 

Required Arguments 
A — Real upper Hessenberg matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues in decreasing order of 
magnitude.   (Output) 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 
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FORTRAN 90 Interface 
Generic: CALL EVLRH (A, EVAL [,…]) 

Specific:  The specific interface names are S_EVLRH and D_EVLRH. 

FORTRAN 77 Interface 
Single: CALL EVLRH (N, A, LDA, EVAL) 

Double: The double precision name is DEVLRH. 

Example 
In this example, a DATA statement is used to set A to an upper Hessenberg matrix of integers. The 
eigenvalues of this matrix are computed and printed. 

      USE EVLRH_INT 
      USE UMACH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, N 
      PARAMETER  (N=4, LDA=N) 
! 
      INTEGER    NOUT 
      REAL       A(LDA,N) 
      COMPLEX    EVAL(N) 
!                                 Set values of A 
! 
!                                 A = (  2.0    1.0    3.0    4.0  ) 
!                                     (  1.0    0.0    0.0    0.0  ) 
!                                     (         1.0    0.0    0.0  ) 
!                                     (                1.0    0.0  ) 
! 
      DATA A/2.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 3.0, 0.0, 0.0, & 
          1.0, 4.0, 0.0, 0.0, 0.0/ 
! 
!                                 Find eigenvalues of A 
      CALL EVLRH (A, EVAL) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      END 

Output 
                            EVAL 

 1                2                3                4 

( 2.878, 0.000)  ( 0.011, 1.243)  ( 0.011,-1.243)  (-0.900, 0.000) 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of E3LRH/DE3LRH. The 

reference is: 

CALL E3LRH (N, A, LDA, EVAL, ACOPY, WK, IWK) 

The additional arguments are as follows: 

ACOPY — Real N by N work matrix. 

WK — Real vector of length 3n. 

IWK — Integer vector of length n. 

2. Informational error 
Type Code 

   4    1 The iteration for the eigenvalues failed to converge. 

Description 
Routine EVLRH computes the eigenvalues of a real upper Hessenberg matrix by using the QR 
algorithm. The QR Algorithm routine is based on the EISPACK routine HQR, Smith et al. (1976). 

 

 

EVCRH 
Computes all of the eigenvalues and eigenvectors of a real upper Hessenberg matrix. 

Required Arguments 
A — Real upper Hessenberg matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues in decreasing order of 
magnitude.   (Output) 

EVEC — Complex matrix of order N.   (Output)  
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement in the  
calling program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL EVCRH (A, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVCRH and D_EVCRH. 

FORTRAN 77 Interface 
Single: CALL EVCRH (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCRH. 

Example 
In this example, a DATA statement is used to set A to a Hessenberg matrix with integer entries. The 
values are returned in decreasing order of magnitude. The eigenvalues, eigenvectors and 
performance index of this matrix are computed and printed. See routine EPIRG on page 460 for 
details. 

      USE EVCRH_INT 
      USE EPIRG_INT 
      USE UMACH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N 
      PARAMETER  (N=4, LDA=N, LDEVEC=N) 
! 
      INTEGER    NOUT 
      REAL       A(LDA,N), PI 
      COMPLEX    EVAL(N), EVEC(LDEVEC,N) 
!                                 Define values of A: 
! 
!                                 A = ( -1.0   -1.0   -1.0   -1.0  ) 
!                                     (  1.0    0.0    0.0    0.0  ) 
!                                     (         1.0    0.0    0.0  ) 
!                                     (                1.0    0.0  ) 
! 
      DATA A/-1.0, 1.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0, & 
          1.0, -1.0, 0.0, 0.0, 0.0/ 
! 
!                                 Find eigenvalues and vectors of A 
      CALL EVCRH (A, EVAL, EVEC) 
!                                 Compute performance index 
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      PI = EPIRG(N,A,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      CALL WRCRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
                                    EVAL 
                 1                  2                  3                  4 
 (-0.8090, 0.5878)  (-0.8090,-0.5878)  ( 0.3090, 0.9511)  ( 0.3090,-0.9511) 
   
                                     EVEC 
                    1                  2                  3                  4 
 1  (-0.4045, 0.2939)  (-0.4045,-0.2939)  (-0.4045,-0.2939)  (-0.4045, 0.2939) 
 2  ( 0.5000, 0.0000)  ( 0.5000, 0.0000)  (-0.4045, 0.2939)  (-0.4045,-0.2939) 
 3  (-0.4045,-0.2939)  (-0.4045, 0.2939)  ( 0.1545, 0.4755)  ( 0.1545,-0.4755) 
 4  ( 0.1545, 0.4755)  ( 0.1545,-0.4755)  ( 0.5000, 0.0000)  ( 0.5000, 0.0000) 
 
 Performance index =  0.098 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E6CRH/DE6CRH. The 

reference is: 

CALL E6CRH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, ECOPY,RWK,IWK) 

The additional arguments are as follows: 

ACOPY — Real N by N work matrix. 

ECOPY — Real N by N work matrix. 

RWK — Real array of length 3N. 

IWK — Integer array of length N. 

2. Informational error 
Type Code 

   4    1 The iteration for the eigenvalues failed to converge. 

Description 
Routine EVCRH computes the eigenvalues and eigenvectors of a real upper Hessenberg matrix by 
using the QR algorithm. The QR algorithm routine is based on the EISPACK routine HQR2; see 
Smith et al. (1976). 
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EVLCH 
Computes all of the eigenvalues of a complex upper Hessenberg matrix. 

 

Required Arguments 
A — Complex upper Hessenberg matrix of order N.   (Input) 

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

Required Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

FORTRAN 90 Interface 
Generic: CALL EVLCH (A, EVAL [,…]) 

Specific:  The specific interface names are S_EVLCH and D_EVLCH. 

FORTRAN 77 Interface 
Single: CALL EVLCH (N, A, LDA, EVAL) 

Double: The double precision name is DEVLCH. 

Example 
In this example, a DATA statement is used to set the matrix A. The program computes and prints the 
eigenvalues of this matrix. 

      USE EVLCH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER LDA, N 
      PARAMETER (N=4, LDA=N) 
      COMPLEX A(LDA,N), EVAL(N) 
!                                 Set values of A 
! 
!                                 A = (5+9i  5+5i  -6-6i  -7-7i) 
!                                     (3+3i  6+10i -5-5i  -6-6i) 
!                                     ( 0    3+3i  -1+3i  -5-5i) 
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!                                     ( 0     0    -3-3i     4i) 
! 
      DATA A /(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0), & 
             (5.0,5.0), (6.0,10.0), (3.0,3.0), (0.0,0.0), & 
             (-6.0,-6.0), (-5.0,-5.0), (-1.0,3.0), (-3.0,-3.0), & 
             (-7.0,-7.0), (-6.0,-6.0), (-5.0,-5.0), (0.0,4.0)/ 
! 
!                                 Find the eigenvalues of A 
      CALL EVLCH (A, EVAL) 
!                                 Print results 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      END 

Output 
                               EVAL 
              1                2                3                4 
(  8.22, 12.22)  (  3.40,  7.40)  (  1.60,  5.60)  ( -3.22,  0.78) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E3LCH/DE3LCH. The 

reference is: 

CALL E3LCH (N, A, LDA, EVAL, ACOPY, RWK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex N by N work array. A and ACOPY may be the same, in which case A is 
destroyed. 

RWK — Real work array of length N. 

IWK — Integer work array of length N. 

2. Informational error 
Type Code 

   4          1  The iteration for the eigenvalues failed to converge. 

Description 
Routine EVLCH computes the eigenvalues of a complex upper Hessenberg matrix using the QR 
algorithm. This routine is based on the EISPACK routine COMQR2; see Smith et al. (1976). 

EVCCH 
Computes all of the eigenvalues and eigenvectors of a complex upper Hessenberg matrix. 

Required Arguments 
A — Complex upper Hessenberg matrix of order N.   (Input) 



 

 
 

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 527 

 

 

 

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of 
magnitude.   (Output) 

EVEC — Complex matrix of order N.   (Output)   
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments 
N — Order of the matrix A.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL EVCCH (A, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_EVCCH and D_EVCCH. 

FORTRAN 77 Interface 
Single: CALL EVCCH (N, A, LDA, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DEVCCH. 

Example 
In this example, a DATA statement is used to set the matrix A. The program computes the 
eigenvalues and eigenvectors of this matrix. The performance index is also computed and printed. 
This serves as a check on the computations; for more details, see IMSL routine EPICG, page 467. 
The zeros in the lower part of the matrix are not referenced by EVCCH, but they are required by 
EPICG (page 467). 

      USE EVCCH_INT 
      USE EPICG_INT 
      USE UMACH_INT 
      USE WRCRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDEVEC, N 
      PARAMETER  (N=4, LDA=N, LDEVEC=N) 
! 
      INTEGER    NOUT 



 

 
 

528 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY 

 

 

 

      REAL       PI 
      COMPLEX    A(LDA,N), EVAL(N), EVEC(LDEVEC,N) 
!                                 Set values of A 
! 
!                                 A = (5+9i  5+5i  -6-6i  -7-7i) 
!                                     (3+3i  6+10i -5-5i  -6-6i) 
!                                     ( 0    3+3i  -1+3i  -5-5i) 
!                                     ( 0     0    -3-3i     4i) 
! 
      DATA A/(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0), (5.0,5.0), & 
          (6.0,10.0), (3.0,3.0), (0.0,0.0), (-6.0,-6.0), (-5.0,-5.0), & 
          (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0), & 
          (-5.0,-5.0), (0.0,4.0)/ 
! 
!                                 Find eigenvalues and vectors of A 
      CALL EVCCH (A, EVAL, EVEC) 
!                                 Compute performance index 
      PI = EPICG(N,A,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      CALL WRCRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
                                 EVAL 
              1                2                3                4 
(  8.22, 12.22)  (  3.40,  7.40)  (  1.60,  5.60)  ( -3.22,  0.78) 
 
                                    EVEC 
                  1                 2                  3                  4 
1 ( 0.7167, 0.0000) (-0.0704, 0.0000)  (-0.3678, 0.0000)  ( 0.5429, 0.0000) 
2 ( 0.6402, 0.0000) (-0.0046, 0.0000)  ( 0.6767, 0.0000)  ( 0.4298, 0.0000) 
3 ( 0.2598, 0.0000) ( 0.7477, 0.0000)  (-0.3005, 0.0000)  ( 0.5277, 0.0000) 
4 (-0.0948, 0.0000) (-0.6603, 0.0000)  ( 0.5625, 0.0000)  ( 0.4920, 0.0000) 
 
Performance index =  0.020 

Comments 
1. Workspace may be explicitly provided, if desired, by use of E4CCH/DE4CCH. The 

reference is: 

CALL E4CCH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, CWORK, RWK,IWK) 

The additional arguments are as follows: 

ACOPY — Complex N by N work array. A and ACOPY may be the same, in which case A is 
destroyed. 

CWORK — Complex work array of length 2N. 

RWK — Real work array of length N. 
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IWK — Integer work array of length N. 

2 Informational error 
Type Code 

   4    1 The iteration for the eigenvalues failed to converge. 

3. The results of EVCCH can be checked using EPICG (page 467). This requires that the 
matrix A explicitly contains the zeros in A(I, J) for (I � 1) > J which are assumed by 
EVCCH. 

Description 
Routine EVCCH computes the eigenvalues and eigenvectors of a complex upper Hessenberg matrix 
using the QR algorithm. This routine is based on the EISPACK routine COMQR2; see Smith et al. 
(1976). 

GVLRG 
Computes all of the eigenvalues of a generalized real eigensystem Az = �Bz. 

Required Arguments 
A — Real matrix of order N.   (Input) 

B — Real matrix of order N.   (Input) 

ALPHA — Complex vector of size N containing scalars �i, i = 1, �, n. If �i � 0, �i = �i / �i  the 
eigenvalues of the system in decreasing order of magnitude.   (Output) 

BETAV —  Vector of size N containing scalars �i.   (Output) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL GVLRG (A, B, ALPHA, BETAV [,…]) 
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Specific:  The specific interface names are S_GVLRG and D_GVLRG. 

FORTRAN 77 Interface 
Single: CALL GVLRG (N, A, LDA, B, LDB, ALPHA, BETAV) 

Double: The double precision name is DGVLRG. 

Example 
In this example, DATA statements are used to set A and B. The eigenvalues are computed and 
printed. 

      USE IMSL_LIBRARIES 
      INTEGER    LDA, LDB, N 
      PARAMETER  (N=3, LDA=N, LDB=N) 
! 
      INTEGER    I 
      REAL       A(LDA,N), B(LDB,N), BETAV(N) 
      COMPLEX    ALPHA(N), EVAL(N) 
! 
!                                 Set values of A and B 
!                                 A = (  1.0     0.5    0.0  ) 
!                                     (-10.0     2.0    0.0  ) 
!                                     (  5.0     1.0    0.5  ) 
! 
!                                 B = (  0.5     0.0    0.0  ) 
!                                     (  3.0     3.0    0.0  ) 
!                                     (  4.0     0.5    1.0  ) 
! 
!                                 Declare variables 
      DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/ 
      DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/ 
! 
      CALL GVLRG (A, B, ALPHA, BETAV) 
!                                 Compute eigenvalues 
      DO 10  I=1, N 
            EVAL(I) = ALPHA(I)/BETAV(I) 
   10 CONTINUE 
!                                 Print results 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      END 

Output 
                        EVAL 
              1                2                3 
( 0.833, 1.993)  ( 0.833,-1.993)  ( 0.500, 0.000) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G3LRG/DG3LRG. The 

reference is: 
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CALL G3LRG (N, A, LDA, B, LDB, ALPHA, BETAV, ACOPY, BCOPY,  
RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Work array of size N� . The arrays A and ACOPY may be the same, in which 
case the first N� elements of A will be destroyed. 

BCOPY — Work array of size N� . The arrays B and BCOPY may be the same, in which 
case the first N� elements of B will be destroyed. 

RWK — Real work array of size N. 

CWK — Complex work array of size N. 

IWK — Integer work array of size N. 

2. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access inefficiency) 
problems. In routine G3LRG, the internal or working leading dimension of ACOPY is 
increased by IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and 
IVAL (4) are temporarily replaced by IVAL(1) and IVAL(2), respectively, in routine 
GVLRG . Analogous comments hold for BCOPY and the values IVAL(5) � IVAL(8) . 
Additional memory allocation and option value restoration are automatically done 
in GVLRG. There is no requirement that users change existing applications that use 
GVLRG or G3LRG. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. 

Description 
Routine GVLRG computes the eigenvalues of the generalized eigensystem Ax = �Bx where A and B 
are real matrices of order N. The eigenvalues for this problem can be infinite; so instead of returning 
�, GVLRG returns � and �. If � is nonzero, then � = �/�. 

The first step of the QZ algorithm is to simultaneously reduce A to upper Hessenberg form and B to 
upper triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-
triangular form while keeping B upper triangular. The generalized eigenvalues are then computed. 

The routine GVLRG uses the QZ algorithm due to Moler and Stewart (1973), as implemented by the 
EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977). 

GVCRG 
Computes all of the eigenvalues and eigenvectors of a generalized real eigensystem Az = �Bz. 

Required Arguments 
A — Real matrix of order N.   (Input) 
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B — Real matrix of order N.   (Input) 

ALPHA — Complex vector of size N containing scalars �i. If  
�i � 0, �i = �i / �i, i = 1, �, n are the eigenvalues of the system. 

BETAV — Vector of size N containing scalars �i.   (Output) 

EVEC — Complex matrix of order N.   (Output)  
The J-th eigenvector, corresponding to �J, is stored in the J-th column. Each vector is 
normalized to have Euclidean length equal to the value one. 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDB = size (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL GVCRG (A, B, ALPHA, BETAV, EVEC [,…]) 

Specific:  The specific interface names are S_GVCRG and D_GVCRG. 

FORTRAN 77 Interface 
Single: CALL GVCRG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC) 

Double: The double precision name is DGVCRG. 

Example 
In this example, DATA statements are used to set A and B. The eigenvalues, eigenvectors and 
performance index are computed and printed for the systems Ax = �Bx and Bx = Ax where  
 = ����. For more details about the performance index, see routine GPIRG (page 535). 

      USE IMSL_LIBRARIES 
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      INTEGER    LDA, LDB, LDEVEC, N 
      PARAMETER  (N=3, LDA=N, LDB=N, LDEVEC=N) 
! 
      INTEGER    I, NOUT 
      REAL       A(LDA,N), B(LDB,N), BETAV(N), PI 
      COMPLEX    ALPHA(N), EVAL(N), EVEC(LDEVEC,N) 
! 
!                                 Define values of A and B: 
!                                 A = (  1.0     0.5    0.0  ) 
!                                     (-10.0     2.0    0.0  ) 
!                                     (  5.0     1.0    0.5  ) 
! 
!                                 B = (  0.5     0.0    0.0  ) 
!                                     (  3.0     3.0    0.0  ) 
!                                     (  4.0     0.5    1.0  ) 
! 
!                                 Declare variables 
      DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/ 
      DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/ 
! 
      CALL GVCRG (A, B, ALPHA, BETAV, EVEC) 
!                                 Compute eigenvalues 
      DO 10  I=1, N 
            EVAL(I) = ALPHA(I)/BETAV(I) 
   10 CONTINUE 
!                                 Compute performance index 
      PI = GPIRG(N,A,B,ALPHA,BETAV,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      CALL WRCRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
!                                 Solve for reciprocals of values 
      CALL GVCRG (B, A, ALPHA, BETAV, EVEC) 
 
!                                 Compute reciprocals 
      DO 20  I=1, N 
            EVAL(I) = ALPHA(I)/BETAV(I) 
   20 CONTINUE 
!                                 Compute performance index 
      PI = GPIRG(N,B,A,ALPHA,BETAV,EVEC) 
!                                 Print results 
      CALL WRCRN (’EVAL reciprocals’, EVAL, 1, N, 1) 
      CALL WRCRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
                     EVAL 
              1                2                3 
( 0.833, 1.993)  ( 0.833,-1.993)  ( 0.500, 0.000) 
 
                       EVEC 
                 1                2                3 
1  (-0.197, 0.150)  (-0.197,-0.150)  ( 0.000, 0.000) 
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2  (-0.069,-0.568)  (-0.069, 0.568)  ( 0.000, 0.000) 
3  ( 0.782, 0.000)  ( 0.782, 0.000)  ( 1.000, 0.000) 
 
Performance index =  0.384 
 
               EVAL reciprocals 
              1                2                3 
( 2.000, 0.000)  ( 0.179, 0.427)  ( 0.179,-0.427) 
 
                         EVEC 
                 1                2                3 
1  ( 0.000, 0.000)  (-0.197,-0.150)  (-0.197, 0.150) 
2  ( 0.000, 0.000)  (-0.069, 0.568)  (-0.069,-0.568) 
3  ( 1.000, 0.000)  ( 0.782, 0.000)  ( 0.782, 0.000) 
 
Performance index =  0.283 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G8CRG/DG8CRG. The 

reference is: 

CALL G8CRG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC, ACOPY, 
BCOPY, ECOPY, RWK, CWK, IWK) 

The additional arguments are as follows: 

ACOPY — Work array of size N�. The arrays A and ACOPY may be the same, in which case 
the first N� elements of A will be destroyed. 

BCOPY — Work array of size N�. The arrays B and BCOPY may be the same, in which case 
the first N� elements of B will be destroyed. 

ECOPY — Work array of size N�. 

RWK — Work array of size N. 

CWK — Complex work array of size N. 

IWK — Integer work array of size N. 

2. Integer Options with Chapter 11 Options Manager 

1 This option uses eight values to solve memory bank conflict (access inefficiency) 
problems. In routine G8CRG, the internal or working leading dimensions of ACOPY 
and ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The 
values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2), 
respectively, in routine GVCRG. Analogous comments hold for the array BCOPY and 
the option values IVAL(5) � IVAL(8). Additional memory allocation and option 
value restoration are automatically done in GVCRG. There is no requirement that 
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users change existing applications that use GVCRG or G8CRG. Default values for the 
option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the 
generalized eigenvalue problem and are not used in GVCRG. 

Description 
Routine GVCRG computes the complex eigenvalues and eigenvectors of the generalized eigensystem 
Ax = �Bx where A and B are real matrices of order N. The eigenvalues for this problem can be 
infinite; so instead of returning �, GVCRG returns complex numbers � and real numbers �. If � is 
nonzero, then � = �/�. For problems with small ��� users can choose to solve the mathematically 
equivalent problem Bx = Ax where  = ���. 

The first step of the QZ algorithm is to simultaneously reduce A to upper Hessenberg form and B to 
upper triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-
triangular form while keeping B upper triangular. The generalized eigenvalues and eigenvectors for 
the reduced problem are then computed. 

The routine GVCRG is based on the QZ algorithm due to Moler and Stewart (1973), as implemented 
by the EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977). 

GPIRG 
This function computes the performance index for a generalized real eigensystem Az = �Bz. 

Function Return Value 
GPIRG — Performance index.   (Output) 

Required Arguments 
NEVAL — Number of eigenvalue/eigenvector pairs performance index computation is based on.   

(Input) 

A — Real matrix of order N.   (Input) 

B — Real matrix of order N.   (Input) 

ALPHA — Complex vector of length NEVAL containing the numerators of eigenvalues.   (Input) 

BETAV — Real vector of length NEVAL containing the denominators of eigenvalues.   (Input) 

EVEC — Complex N by NEVAL array containing the eigenvectors.   (Input) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 
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LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDB = size (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: GPIRG (NEVAL, A, B, ALPHA, BETAV, EVEC, GPIRG [,…]) 

Specific:  The specific interface names are S_GPIRG and D_GPIRG. 

FORTRAN 77 Interface 
Single: GPIRG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC) 

Double: The double precision function name is DGPIRG. 

Example 
For an example of GPIRG, see routine GVCRG on page 531. 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G2IRG/DG2IRG. The 

reference is: 

G2IRG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC,LDEVEC, WK) 

The additional argument is: 

WK — Complex work array of length 2N. 

2. Informational errors 
Type Code 

   3    1 Performance index is greater than 100. 
   3    2 An eigenvector is zero. 
   3    3 The matrix A is zero. 
   3    4 The matrix B is zero. 

3. The J-th eigenvalue should be ALPHA(J)/BETAV(J), its eigenvector should be in the J-th 
column of EVEC. 



 

 
 

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 537 

 

 

 

Description 
Let M = NEVAL, xj = EVEC(*,J) , the j-th column of EVEC. Also, let � be the machine precision 
given by AMACH(4), see the Reference chapter of this manual. The performance index, 
, is defined 
to be 

� �
1

1
1 1 1

max j j j j

j M
j j j
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A B x

� �
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The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

� �1
1

N

i i
i

v v v
�

� � � ��  

While the exact value of 
 is highly machine dependent, the performance of EVCSF (page 471) is 
considered excellent if 
 < 1, good if 1 � 
 � 100, and poor if 
 > 100. The performance index was 
first developed by the EISPACK project at Argonne National Laboratory; see Garbow et al. (1977, 
pages 77�79). 

GVLCG 
Computes all of the eigenvalues of a generalized complex eigensystem Az = �Bz. 

Required Arguments 
A — Complex matrix of order N.   (Input) 

B — Complex matrix of order N.   (Input) 

ALPHA — Complex vector of length N. Ultimately, alpha(i)/betav(i) (for i = 1, n), will be the 
eigenvalues of the system in decreasing order of magnitude.   (Output) 

BETAV — Complex vector of length N.   (Output) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDB = size (B,1). 
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FORTRAN 90 Interface 
Generic: CALL GVLCG (A, B, ALPHA, BETAV [,…]) 

Specific:  The specific interface names are S_GVLCG and D_GVLCG. 

FORTRAN 77 Interface 
Single: CALL GVLCG (N, A, LDA, B, LDB, ALPHA, BETAV) 

Double: The double precision name is DGVLCG. 

Example 
In this example, DATA statements are used to set A and B. Then, the eigenvalues are computed and 
printed. 

      USE GVLCG_INT 
      USE WRCRN_INT 

!                                 Declaration of variables 
      INTEGER    LDA, LDB, N 
      PARAMETER  (N=5, LDA=N, LDB=N) 
! 
      INTEGER    I 
      COMPLEX    A(LDA,N), ALPHA(N), B(LDB,N), BETAV(N), EVAL(N) 
! 
!                                 Define values of A and B 
! 
      DATA A/(-238.0,-344.0), (76.0,152.0), (118.0,284.0), & 
          (-314.0,-160.0), (-54.0,-24.0), (86.0,178.0), & 
          (-96.0,-128.0), (55.0,-182.0), (132.0,78.0), & 
          (-205.0,-400.0), (164.0,240.0), (40.0,-32.0), & 
          (-13.0,460.0), (114.0,296.0), (109.0,148.0), &  
          (-166.0,-308.0), (60.0,184.0), (34.0,-192.0), & 
          (-90.0,-164.0), (158.0,312.0), (56.0,158.0), & 
          (-60.0,-136.0), (-176.0,-214.0), (-424.0,-374.0), & 
          (-38.0,-96.0)/ 
      DATA B/(388.0,94.0), (-304.0,-76.0), (-658.0,-136.0), & 
          (-640.0,-10.0), (-162.0,-72.0), (-386.0,-122.0), & 
          (384.0,64.0), (-73.0,100.0), (204.0,-42.0), (631.0,158.0), & 
          (-250.0,-14.0), (-160.0,16.0), (-109.0,-250.0), & 
          (-692.0,-90.0), (131.0,52.0), (556.0,130.0), & 
          (-240.0,-92.0), (-118.0,100.0), (288.0,66.0), & 
          (-758.0,-184.0), (-396.0,-62.0), (240.0,68.0), & 
          (406.0,96.0), (-192.0,154.0), (278.0,76.0)/ 
! 
      CALL GVLCG (A, B, ALPHA, BETAV) 
!                                 Compute eigenvalues 
            EVAL = ALPHA/BETAV 
 
!                                 Print results 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
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      STOP 
      END 

Output 
                                 EVAL 
              1                2                3                4 
(-1.000,-1.333)  ( 0.765, 0.941)  (-0.353, 0.412)  (-0.353,-0.412) 
 
              5 
(-0.353,-0.412) 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G3LCG/DG3LCG. The 

reference is: 

CALL G3LCG (N, A, LDA, B, LDB, ALPHA, BETAV, ACOPY, BCOPY, CWK, WK, 
IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N�. A and ACOPY may be the same, in which 
case A will be destroyed. 

BCOPY — Complex work array of length N�. B and BCOPY may be the same, in which 
case B will be destroyed. 

CWK — Complex work array of length N. 

WK — Real work array of length N. 

IWK — Integer work array of length N. 

2. Informational error 
Type Code 

   4    1 The iteration for the eigenvalues failed to converge. 

Description 
Routine GVLCG computes the eigenvalues of the generalized eigensystem  
Ax = �Bx, where A and B are complex matrices of order n. The eigenvalues for this problem can be 
infinite; so instead of returning �, GVLCG returns � and �. If � is nonzero, then � = �/�. If the 
eigenvectors are needed, then use GVCCG. See page 540. 

The routine GVLCG is based on routines for the generalized complex eigenvalue problem by Garbow 
(1978). The QZ algorithm is described by Moler and Stewart (1973). Some timing information is 
given in Hanson et al. (1990). 
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GVCCG 
Computes all of the eigenvalues and eigenvectors of a generalized complex eigensystem  
Az = �Bz. 

Required Arguments 
A — Complex matrix of order N.   (Input) 

B — Complex matrix of order N.   (Input) 

ALPHA — Complex vector of length N. Ultimately, alpha(i)/betav(i) (for i = 1, �, n), will be the 
eigenvalues of the system in decreasing order of magnitude.   (Output) 

BETAV — Complex vector of length N.   (Output) 

EVEC — Complex matrix of order N.   (Output)  
The J-th eigenvector, corresponding to ALPHA(J)/BETAV (J), is stored in the  
J-th column. Each vector is normalized to have Euclidean length equal to the value one. 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling 
program.   (Input) 
Default: LDB = size (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL GVCCG (A, B, ALPHA, BETAV, EVEC [,…]) 

Specific:  The specific interface names are S_GVCCG and D_GVCCG. 

FORTRAN 77 Interface 
Single: CALL GVCCG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC) 
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Double: The double precision name is DGVCCG. 

Example 
In this example, DATA statements are used to set A and B. The eigenvalues and eigenvectors are 
computed and printed. The performance index is also computed and printed. This serves as a check 
on the computations. For more details, see routine GPICG on page 542. 

      USE IMSL_LIBRARIES 

      INTEGER    LDA, LDB, LDEVEC, N 
      PARAMETER  (N=3, LDA=N, LDB=N, LDEVEC=N) 
! 
      INTEGER    I, NOUT 
      REAL       PI 
      COMPLEX    A(LDA,N), ALPHA(N), B(LDB,N), BETAV(N), EVAL(N), & 
                EVEC(LDEVEC,N) 
! 
!                                 Define values of A and B 
!                                 A = (  1+0i   0.5+i   0+5i   ) 
!                                     (-10+0i     2+i   0+0i   ) 
!                                     (  5+i     1+0i   0.5+3i ) 
! 
!                                 B = ( 0.5+0i     0+0i  0+0i  ) 
!                                     (   3+3i     3+3i   0+i  ) 
!                                     (   4+2i    0.5+i   1+i  ) 
! 
!                                 Declare variables 
      DATA A/(1.0,0.0), (-10.0,0.0), (5.0,1.0), (0.5,1.0), (2.0,1.0), & 
          (1.0,0.0), (0.0,5.0), (0.0,0.0), (0.5,3.0)/ 
      DATA B/(0.5,0.0), (3.0,3.0), (4.0,2.0), (0.0,0.0), (3.0,3.0), & 
          (0.5,1.0), (0.0,0.0), (0.0,1.0), (1.0,1.0)/ 
!                                 Compute eigenvalues 
      CALL GVCCG (A, B, ALPHA, BETAV, EVEC) 
 
                        EVAL = ALPHA/BETAV 
!                                 Compute performance index 
      PI = GPICG(N,A,B,ALPHA,BETAV,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRCRN (’EVAL’, EVAL, 1, N, 1) 
      CALL WRCRN (’EVEC’, EVEC) 
      WRITE (NOUT, ’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
                        EVAL 
              1                2                3 
( -8.18,-25.38)  (  2.18,  0.61)  (  0.12, -0.39) 
                           EVEC 
                   1                  2                  3 
1  (-0.3267,-0.1245)  (-0.3007,-0.2444)  ( 0.0371, 0.1518) 
2  ( 0.1767, 0.0054)  ( 0.8959, 0.0000)  ( 0.9577, 0.0000) 
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3  ( 0.9201, 0.0000)  (-0.2019, 0.0801)  (-0.2215, 0.0968) 
 
Performance index =  0.709 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G6CCG/DG6CCG. The 

reference is: 

CALL G6CCG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, 
            LDEVEC, ACOPY, BCOPY, CWK, WK, IWK) 

The additional arguments are as follows: 

ACOPY — Complex work array of length N�. A and ACOPY may be the same in which case 
the first N� elements of A will be destroyed. 

BCOPY — Complex work array of length N�. B and BCOPY may be the same in which case 
the first N� elements of B will be destroyed. 

CWK — Complex work array of length N. 

WK — Real work array of length N. 

IWK — Integer work array of length N. 

2. Informational error 
Type Code 

   4    1 The iteration for an eigenvalue failed to converge. 

3. The success of this routine can be checked using GPICG (page 542). 

Description 
Routine GVCCG computes the eigenvalues and eigenvectors of the generalized eigensystem Ax = 
�Bx. Here, A and B, are complex matrices of order n. The eigenvalues for this problem can be 
infinite; so instead of returning �, GVCCG returns � and �. If � is nonzero, then � = � / �. 

The routine GVCCG uses the QZ algorithm described by Moler and Stewart (1973). The 
implementation is based on routines of Garbow (1978). Some timing results are given in Hanson et 
al. (1990). 

GPICG 
This function computes the performance index for a generalized complex eigensystem Az = �Bz. 

Function Return Value 
GPICG — Performance index.   (Output) 
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Required Arguments 
NEVAL — Number of eigenvalue/eigenvector pairs performance index computation is based on.   

(Input) 

A — Complex matrix of order N.   (Input) 

B — Complex matrix of order N.   (Input) 

ALPHA — Complex vector of length NEVAL containing the numerators of eigenvalues.   (Input) 

BETAV — Complex vector of length NEVAL containing the denominators of eigenvalues.   
(Input) 

EVEC — Complex N by NEVAL array containing the eigenvectors.   (Input) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDB = size (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: GPICG (NEVAL, A, B, ALPHA, BETAV, EVEC [,…]) 

Specific:  The specific interface names are S_GPICG and D_GPICG. 

FORTRAN 77 Interface 
Single: GPICG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC,  

 LDEVEC) 

Double: The double precision name is DGPICG. 
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Example 
For an example of GPICG, see routine GVCCG on page 540. 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G2ICG/DG2ICG. The 

reference is: 

G2ICG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC, 
      LDEVEC, WK) 

The additional argument is: 

WK — Complex work array of length 2N. 

2. Informational errors 
Type Code 

   3    1 Performance index is greater than 100. 
   3    2 An eigenvector is zero. 
   3    3 The matrix A is zero. 
   3    4 The matrix B is zero. 

3. The J-th eigenvalue should be ALPHA(J)/BETAV (J), its eigenvector should be in the J-th 
column of EVEC. 

Algorithm 
Let M = NEVAL, xj = EVEC(*, J) , the j-th column of EVEC. Also, let � be the machine precision 
given by AMACH(4). The performance index, 
, is defined to be 

� �
1

1
1 1 1

max j j j j

j M
j j j

Ax Bx

A B x

� �
�

� � �� �

�

�

�

 

The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

� �1
1

N

i i
i

v v v
�

� � � ��  

While the exact value of 
 is highly machine dependent, the performance of EVCSF (page 471) is 
considered excellent if 
 < 1, good if 1 � 
 � 100, and poor if 
 > 100.  

The performance index was first developed by the EISPACK project at Argonne National 
Laboratory; see Garbow et al. (1977, pages 77�79). 

GVLSP 
Computes all of the eigenvalues of the generalized real symmetric eigenvalue problem Az = �Bz, 
with B symmetric positive definite. 
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Required Arguments 
A — Real symmetric matrix of order N.   (Input) 

B — Positive definite symmetric matrix of order N.   (Input) 

EVAL — Vector of length N containing the eigenvalues in decreasing order of magnitude.   
(Output) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDB = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL GVLSP (A, B, EVAL [,…]) 

Specific:  The specific interface names are S_GVLSP and D_GVLSP. 

FORTRAN 77 Interface 
Single: CALL GVLSP (N, A, LDA, B, LDB, EVAL) 

Double: The double precision name is DGVLSP. 

Example 
In this example, a DATA statement is used to set the matrices A and B. The eigenvalues of the system 
are computed and printed. 

      USE GVLSP_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDB, N 
      PARAMETER  (N=3, LDA=N, LDB=N) 
! 
      REAL       A(LDA,N), B(LDB,N), EVAL(N) 
!                                 Define values of A: 
!                                 A = (  2    3    5  ) 
!                                     (  3    2    4  ) 
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!                                     (  5    4    2  ) 
      DATA A/2.0, 3.0, 5.0, 3.0, 2.0, 4.0, 5.0, 4.0, 2.0/ 
! 
!                                 Define values of B: 
!                                 B = (  3    1    0  ) 
!                                     (  1    2    1  ) 
!                                     (  0    1    1  ) 
      DATA B/3.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 1.0/ 
! 
!                                 Find eigenvalues 
      CALL GVLSP (A, B, EVAL) 
!                                 Print results 
      CALL WRRRN (’EVAL’, EVAL, 1, N, 1) 
      END 

Output 
         EVAL 
     1       2       3 
-4.717   4.393  -0.676 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G3LSP/DG3LSP. The 

reference is: 

CALL G3LSP (N, A, LDA, B, LDB, EVAL, IWK, WK1, WK2) 

The additional arguments are as follows: 

IWK — Integer work array of length N. 

WK1 — Work array of length 2N. 

WK2 — Work array of length N� + N. 

2. Informational errors 
Type Code 

   4    1 The iteration for an eigenvalue failed to converge. 
   4    2 Matrix B is not positive definite. 

Description 
Routine GVLSP computes the eigenvalues of Ax = �Bx with A symmetric and B symmetric positive 
definite. The Cholesky factorization B = RT R, with R a triangular matrix, is used to transform the 
equation Ax = �Bx to 

(R�T AR��)(Rx) = � (Rx) 

The eigenvalues of C = R�T AR��� are then computed. This development is found in Martin and 
Wilkinson (1968). The Cholesky factorization of B is computed based on IMSL routine LFTDS, (see 
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Chapter 1, Linear Systems);. The eigenvalues of C are computed based on routine EVLSF, page 469. 
Further discussion and some timing results are given Hanson et al. (1990). 

 

GVCSP 
Computes all of the eigenvalues and eigenvectors of the generalized real symmetric eigenvalue 
problem Az = �Bz, with B symmetric positive definite. 

Required Arguments 
A — Real symmetric matrix of order N.   (Input) 

B — Positive definite symmetric matrix of order N.   (Input) 

EVAL — Vector of length N containing the eigenvalues in decreasing order of magnitude.   
(Output) 

EVEC —  Matrix of order N.   (Output)  
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector 
is normalized to have Euclidean length equal to the value one. 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDB = size (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: CALL GVCSP (A, B, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_GVCSP and D_GVCSP. 
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FORTRAN 77 Interface 
Single: CALL CALL GVCSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DGVCSP. 

Example 
In this example, a DATA statement is used to set the matrices A and B. The eigenvalues, eigenvectors 
and performance index are computed and printed. For details on the performance index, see IMSL 
routine GPISP on page 549. 

      USE GVCSP_INT 
      USE GPISP_INT 
      USE UMACH_INT 
      USE WRRRN_INT 

!                                 Declare variables 
      INTEGER    LDA, LDB, LDEVEC, N 
      PARAMETER  (N=3, LDA=N, LDB=N, LDEVEC=N) 
! 
      INTEGER    NOUT 
      REAL       A(LDA,N), B(LDB,N), EVAL(N), EVEC(LDEVEC,N), PI 
!                                 Define values of A: 
!                                 A = (  1.1    1.2    1.4  ) 
!                                     (  1.2    1.3    1.5  ) 
!                                     (  1.4    1.5    1.6  ) 
      DATA A/1.1, 1.2, 1.4, 1.2, 1.3, 1.5, 1.4, 1.5, 1.6/ 
! 
!                                 Define values of B: 
!                                 B = (  2.0    1.0    0.0  ) 
!                                     (  1.0    2.0    1.0  ) 
!                                     (  0.0    1.0    2.0  ) 
      DATA B/2.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 2.0/ 
! 
!                                 Find eigenvalues and vectors 
      CALL GVCSP (A, B, EVAL, EVEC) 
!                                 Compute performance index 
      PI = GPISP(N,A,B,EVAL,EVEC) 
!                                 Print results 
      CALL UMACH (2, NOUT) 
      CALL WRRRN (’EVAL’, EVAL) 
      CALL WRRRN (’EVEC’, EVEC) 
      WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI 
      END 

Output 
          EVAL 
    1       2       3 
1.386  -0.058  -0.003 
 
             EVEC 
         1        2        3 
1   0.6431  -0.1147  -0.6817 
2  -0.0224  -0.6872   0.7266 
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3   0.7655   0.7174  -0.0858 
 
Performance index =  0.417 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G3CSP/DG3CSP. The 

reference is: 

CALL G3CSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC, IWK, WK1, WK2) 

The additional arguments are as follows: 

IWK — Integer work array of length N. 

WK1 — Work array of length 3N. 

WK2 — Work array of length N� + N.Type Code 

2. Informational errors 
 

   4    1 The iteration for an eigenvalue failed to converge. 
   4    2 Matrix B is not positive definite. 

3. The success of this routine can be checked using GPISP (page 549). 

Description 
Routine GVLSP (page 544) computes the eigenvalues and eigenvectors of Az = �Bz, with A 
symmetric and B symmetric positive definite. The Cholesky factorization B = RTR, with R a 
triangular matrix, is used to transform the equation Az = �Bz, to 

(R�� AR���)(Rz) = � (Rz) 

The eigenvalues and eigenvectors of C = R�� AR��� are then computed. The generalized eigenvectors 
of A are given by z = R��� x, where x is an eigenvector of C. This development is found in Martin 
and Wilkinson (1968). The Cholesky factorization is computed based on IMSL routine LFTDS, see 
Chapter 1, Linear Systems;. The eigenvalues and eigenvectors of C are computed based on routine 
EVCSF, page 471. Further discussion and some timing results are given Hanson et al. (1990). 

GPISP 
This function computes the performance index for a generalized real symmetric eigensystem problem. 

Function Return Value 
GPISP — Performance index.   (Output) 
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Required Arguments 
NEVAL — Number of eigenvalue/eigenvector pairs that the performance index computation is 

based on.   (Input) 

A — Symmetric matrix of order N.   (Input) 

B — Symmetric matrix of order N.   (Input) 

EVAL — Vector of length NEVAL containing eigenvalues.   (Input) 

EVEC — N by NEVAL array containing the eigenvectors.   (Input) 

Optional Arguments 
N — Order of the matrices A and B.   (Input) 

Default: N = size (A,2). 

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDA = size (A,1). 

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling 
program.   (Input) 
Default: LDB = size (B,1). 

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the 
calling program.   (Input) 
Default: LDEVEC = size (EVEC,1). 

FORTRAN 90 Interface 
Generic: GPISP (NEVAL, A, B, EVAL, EVEC [,…]) 

Specific:  The specific interface names are S_GPISP and D_GPISP. 

FORTRAN 77 Interface 
Single: GPISP (N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC) 

Double: The double precision name is DGPISP. 

Example 
For an example of GPISP, see routine GVCSP on page 547. 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of G2ISP/DG2ISP. The 

reference is: 

G2ISP(N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC, WORK) 

The additional argument is: 

WORK — Work array of length 2 * N. 

2. Informational errors 
Type Code 

   3    1 Performance index is greater than 100. 
   3    2 An eigenvector is zero. 
   3     3 The matrix A is zero. 
   3    4 The matrix B is zero. 

3. The J-th eigenvalue should be ALPHA(J)/BETAV(J), its eigenvector should be in the J-th 
column of EVEC. 

Description 
Let M = NEVAL, � = EVAL, xj = EVEC(*, J) , the j-th column of EVEC. Also, let � be the machine 
precision given by AMACH(4). The performance index, 
, is defined to be 

� �
1

1
1 1 1

max j j j

j M
j j

Ax Bx

A B x

�

�

� �� �

�

�

�

 

The norms used are a modified form of the 1-norm. The norm of the complex vector v is 

� �1
1

N

i i
i

v v v
�

� � � ��  

While the exact value of 
 is highly machine dependent, the performance of EVCSF (page 471) is 
considered excellent if 
 < 1, good if 1 � 
 � 100, and poor if 
 > 100. The performance index was 
first developed by the EISPACK project at Argonne National Laboratory; see Garbow et al. (1977, 
pages 77�79). 
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Chapter 3: Interpolation and 
Approximation 

Routines 
3.1 Curve and Surface Fitting with Splines 

 
Returns the derived type array result ..... SPLINE_CONSTRAINTS 562 
Returns an array result, given an array  
of input ................................................................SPLINE_VALUES 563 
Weighted least-squares fitting by B-splines to discrete  
One-Dimensional data is performed...................SPLINE_FITTING 564 
Returns the derived type array result given  
optional input.......................................SURFACE_CONSTRAINTS 574 
Returns a tensor product array result, given two arrays of  
independent variable values .......................... SURFACE_VALUES 575 
Weighted least-squares fitting by tensor product  
B-splines to discrete two-dimensional data  
is performed....................................................SURFACE_FITTING 577 
 

3.2.  Cubic Spline Interpolation 
Easy to use cubic spline routine ........................................... CSIEZ 587 
Not-a-knot ............................................................................. CSINT 590 
Derivative end conditions.................................................... CSDEC 593 
Hermite ............................................................................... CSHER 597 
Akima .................................................................................. CSAKM 600 
Shape preserving................................................................CSCON 603 
Periodic ................................................................................CSPER 606 

3.3.  Cubic Spline Evaluation and Integration 
Evaluation ............................................................................ CSVAL 609 
Evaluation of the derivative................................................. CSDER 610 
Evaluation on a grid .............................................................CS1GD 613 
Integration .............................................................................CSITG 616 

3.4.  B-spline Interpolation 
Easy to use spline routine.....................................................SPLEZ 618 



 

 
 

554 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY 

 

 

 

One-dimensional interpolation ..............................................BSINT 622 
Knot sequence given interpolation data .............................. BSNAK 625 
Optimal knot sequence given interpolation data .................BSOPK 628 
Two-dimensional tensor product interpolation ......................BS2IN 631 
Three-dimensional tensor product interpolation....................BS3IN 635 

3.5.  Spline Evaluation, Integration, and Conversion to Piecewise 
Polynomial Given the B-spline Representation 
Evaluation.............................................................................BSVAL 641 
Evaluation of the derivative .................................................BSDER 643 
Evaluation on a grid............................................................. BS1GD 646 
One-dimensional integration .................................................BSITG 649 
Two-dimensional evaluation................................................. BS2VL 651 
Two-dimensional evaluation of the derivative ..................... BS2DR 653 
Two-dimensional evaluation on a grid................................. BS2GD 656 
Two-dimensional integration .................................................BS2IG 661 
Three-dimensional evaluation .............................................. BS3VL 664 
Three-dimensional evaluation of the derivative .................. BS3DR 666 
Three-dimensional evaluation on a grid .............................. BS3GD 670 
Three-dimensional integration...............................................BS3IG 676 
Convert B-spline representation to piecewise polynomial .. BSCPP 680 

3.6. Piecewise Polynomial 
Evaluation.............................................................................PPVAL 681 
Evaluation of the derivative .................................................PPDER 684 
Evaluation on a grid............................................................. PP1GD 687 
Integration .............................................................................PPITG 690 

3.7. Quadratic Polynomial Interpolation Routines for Gridded Data 
One-dimensional evaluation................................................ QDVAL 692 
One-dimensional evaluation of the derivative .................... QDDER 694 
Two-dimensional evaluation.................................................QD2VL 696 
Two-dimensional evaluation of the derivative .....................QD2DR 699 
Three-dimensional evaluation ..............................................QD3VL 702 
Three-dimensional evaluation of the derivative ..................QD3DR 705 

3.8. Scattered Data Interpolation 
Akima’s surface fitting method .............................................. SURF 710 

3.9. Least-Squares Approximation 
Linear polynomial ..................................................................RLINE 713 
General polynomial .............................................................RCURV 716 
General functions ................................................................ FNLSQ 720 
Splines with fixed knots ....................................................... BSLSQ 725 
Splines with variable knot.....................................................BSVLS 729 
Splines with linear constraints.............................................CONFT 734 
Two-dimensional tensor-product splines with fixed knots.... BSLS2 743 
Three-dimensional tensor-product splines with fixed knots . BSLS3 748 

3.10. Cubic Spline Smoothing 
Smoothing by error detection ..............................................CSSED 754 
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Smoothing spline ................................................................CSSMH 758 
Smoothing spline using cross-validation .............................CSSCV 761 

3.11. Rational L� Approximation 
Rational Chebyshev.............................................................RATCH 764 

Usage Notes 
The majority of the routines in this chapter produce piecewise polynomial or spline functions that 
either interpolate or approximate given data, or are support routines for the evaluation, integration, 
and conversion from one representation to another. Two major subdivisions of routines are 
provided. The cubic spline routines begin with the letters “CS” and utilize the piecewise 
polynomial representation described below. The B-spline routines begin with the letters “BS” and 
utilize the B-spline representation described below. Most of the spline routines are based on 
routines in the book by de Boor (1978). 

Piecewise Polynomials 
A univariate piecewise polynomial (function) p is specified by giving its breakpoint sequence  
� � Rn, the order k (degree k � 1) of its polynomial pieces, and the k � (n � 1) matrix c of its local 
polynomial coefficients. In terms of this information, the piecewise polynomial (pp) function is 
given by 

� �
� �

� �
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1
1
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1 !
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The breakpoint sequence � is assumed to be strictly increasing, and we extend the pp function to 
the entire real axis by extrapolation from the first and last intervals. The subroutines in this chapter 
will consistently make the following identifications for FORTRAN variables: 

PPCOEF
BREAK
KORDER
NBREAK

c

k
N

�

�

�

�

�

 

This representation is redundant when the pp function is known to be smooth. For example, if p is 
known to be continuous, then we can compute c1,i+1 from the cji as follows 

� �
� �

� �

1

1, 1 1 1 2 1 !
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i i i i i kic p c c c
k
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where ��i := �i+1 � �i. For smooth pp, we prefer to use the irredundant representation in terms of 
the B-(for ‘basis’)-splines, at least when such a function is first to be determined. The above pp 
representation is employed for evaluation of the pp function at many points since it is more 
efficient. 
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Splines and B-splines 
B-splines provide a particularly convenient and suitable basis for a given class of smooth pp 
functions. Such a class is specified by giving its breakpoint sequence, its order, and the required 
smoothness across each of the interior breakpoints. The corresponding B-spline basis is specified 
by giving its knot sequence t � RM. The specification rule is the following: If the class is to have 
all derivatives up to and including the j-th derivative continuous across the interior breakpoint �i, 
then the number �i should occur k � j � 1 times in the knot sequence. Assuming that �1, and �n are 
the endpoints of the interval of interest, one chooses the first k knots equal to �1 and the last k 
knots equal to �n. This can be done since the B-splines are defined to be right continuous near �1 
and left continuous near �n. 

When the above construction is completed, we will have generated a knot sequence t of length M; 
and there will be m := M � k B-splines of order k, say B1 ,�, Bm that span the pp functions on the 
interval with the indicated smoothness. That is, each pp function in this class has a unique 
representation 

p = a1B1 + a2B2 + � + amBm 

as a linear combination of B-splines. The B-spline routines will consistently make use of the 
following identifiers for FORTRAN variables: 

BSCOEF
XKNOT
NCOEF
NKNOT

a

m
M

�

�

�

�

t
 

A B-spline is a particularly compact pp function. Bi is a nonnegative function that is nonzero only 
on the interval [ti, ti + k]. More precisely, the support of the i-th B-spline is [ti, ti + k]. No pp 
function in the same class (other than the zero function) has smaller support (i.e., vanishes on 
more intervals) than a B-spline. This makes B-splines particularly attractive basis functions since 
the influence of any particular B-spline coefficient extends only over a few intervals. When it is 
necessary to emphasize the dependence of the B-spline on its parameters, we will use the notation 

Bi,k,t 

to denote the i-th B-spline of order k for the knot sequence t. 
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CSAKM

CSINT CSDEC (natural spline)

CSCON

BSINT with K=3 BSINT with K=5

 

Figure 3-1   Spline Interpolants of the Same Data 

Cubic Splines 

Cubic splines are smooth (i.e., C 1 or C 2) fourth-order pp functions. For historical and other 
reasons, cubic splines are the most heavily used pp functions. Therefore, we provide special 
routines for their construction and evaluation. The routines for their determination use yet another 
representation (in terms of value and slope at all the breakpoints) but output the pp representation 
as described above for general pp functions. 

We provide seven cubic spline interpolation routines: CSIEZ (page 587), CSINT (page 590), 
CSDEC (page 593), CSHER (page 597), CSAKM (page 600), CSCON (page 603), and CSPER (page 
606). The first routine, CSIEZ, is an easy-to-use version of CSINT coupled with CSVAL. The 
routine CSIEZ will compute the value of the cubic spline interpolant (to given data using the ‘not-
a-knot’ criterion) on a grid. The routine CSDEC allows the user to specify various endpoint 
conditions (such as the value of the first or second derivative at the right and left points). This 
means that the natural cubic spline can be obtained using this routine by setting the second 
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derivative to zero at both endpoints. If function values and derivatives are available, then the 
Hermite cubic interpolant can be computed using CSHER. The two routines CSAKM and CSCON are 
designed so that the shape of the curve matches the shape of the data. In particular, CSCON 
preserves the convexity of the data while CSAKM attempts to minimize oscillations. If the data is 
periodic, then CSPER will produce a periodic interpolant. The routine CONFT (page 734) allows the 
user wide latitude in enforcing shapes. This routine returns the B-spline representation. 

It is possible that the cubic spline interpolation routines will produce unsatisfactory results. The 
adventurous user should consider using the B-spline interpolation routine BSINT that allows one 
to choose the knots and order of the spline interpolant. 

In Figure 3-1, we display six spline interpolants to the same data. This data can be found in 
Example 1 of the IMSL routine CSCON (page 603) Notice the different characteristics of the 
interpolants. The interpolation routines CSAKM (page 600) and CSCON are the only two that attempt 
to preserve the shape of the data. The other routines tend to have extraneous inflection points, with 
the piecewise quartic (k = 5) exhibiting the most oscillation. 

Tensor Product Splines 
The simplest method of obtaining multivariate interpolation and approximation routines is to take 
univariate methods and form a multivariate method via tensor products. In the case of two-
dimensional spline interpolation, the development proceeds as follows: Let tx be a knot sequence 
for splines of order kx, and ty be a knot sequence for splines of order ky. Let Nx + kx be the length 
of tx, and Ny + ky be the length of ty. Then, the tensor product spline has the form 
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for which the corresponding univariate interpolation problem could be solved, the tensor product 
interpolation problem becomes: Find the coefficients cnm so that 
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This problem can be solved efficiently by repeatedly solving univariate interpolation problems as 
described in de Boor (1978, page 347). Three-dimensional interpolation has analogous behavior. 
In this chapter, we provide routines that compute the two-dimensional tensorproduct spline 
coefficients given two-dimensional interpolation data (BS2IN, page 631), compute the three-
dimensional tensor-product spline coefficients given three-dimensional interpolation data (BS3IN, 
page 635) compute the two-dimensional tensor-product spline coefficients for a tensor-product 
least squares problem (BSLS2, page 743), and compute the three-dimensional tensor-product 
spline coefficients for a tensor-product least squares problem (BSLS3, page 748). In addition, we 
provide evaluation, differentiation, and integration routines for the twoand three-dimensional 
tensor-product spline functions. The relevant routines are BS2VL (page 651), BS3VL (page 664), 
BS2DR (page 653), BS3DR (page 666), BS2GD (page 656), BS3GD (page 670), BS2IG (page 661), 
and BS3IG (page 676). 
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Quadratic Interpolation 
The routines that begin with the letters “QD” in this chapter are designed to interpolate a one-, two-
, or three-dimensional (tensor product) table of values and return an approximation to the value of 
the underlying function or one of its derivatives at a given point. These routines are all based on 
quadratic polynomial interpolation. 

Scattered Data Interpolation 
We have one routine, SURF, that will return values of an interpolant to scattered data in the plane. 
This routine is based on work by Akima (1978), which utilizes C1 piecewise quintics on a 
triangular mesh. 

Least Squares 
Routines are provided to smooth noisy data: regression using linear polynomials (RLINE), 
regression using arbitrary polynomials (RCURV, page 716), and regression using user-supplied 
functions (FNLSQ, page 720). Additional routines compute the least-squares fit using splines with 
fixed knots (BSLSQ, page 725) or free knots (BSVLS, page 729). These routines can produce cubic-
spline least-squares fit simply by setting the order to 4. The routine CONFT (page 734) computes a 
fixed-knot spline weighted least-squares fit subject to linear constraints. This routine is very 
general and is recommended if issues of shape are important. The two- and three-dimensional 
tensor-product spline regression routines are (BSLS2, page 743) and (BSLS3, page 748). 

Smoothing by Cubic Splines 
Two “smoothing spline” routines are provided. The routine CSSMH (page 758) returns the cubic 
spline that smooths the data, given a smoothing parameter chosen by the user. Whereas, CSSCV 
(page 761) estimates the smoothing parameter by cross-validation and then returns the cubic spline 
that smooths the data. In this sense, CSSCV is the easier of the two routines to use. The routine 
CSSED (page 754) returns a smoothed data vector approximating the values of the underlying 
function when the data are contaminated by a few random spikes. 

Rational Chebyshev Approximation 
The routine RATCH (page 764) computes a rational Chebyshev approximation to a user-supplied 
function. Since polynomials are rational functions, this routine can be used to compute best 
polynomial approximations. 

Using the Univariate Spline Routines 
An easy to use spline interpolation routine CSIEZ (page 587) is provided . This routine computes 
an interpolant and returns the values of the interpolant on a user-supplied grid. A slightly more 
advanced routine SPLEZ (page 618) computes (at the users discretion) one of several interpolants 
or least-squares fits and returns function values or derivatives on a user-supplied grid. 

For more advanced uses of the interpolation (or least squares) spline routines, one first forms an 
interpolant from interpolation (or least-squares) data. Then it must be evaluated, differentiated, or 
integrated once the interpolant has been formed. One way to perform these tasks, using cubic 
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splines with the ‘not-a-knot’ end condition, is to call CSINT to obtain the local coefficients of the 
piecewise cubic interpolant and then call CSVAL to evaluate the interpolant. A more complicated 
situation arises if one wants to compute a quadratic spline interpolant and then evaluate it 
(efficiently) many times. Typically, the sequence of routines called might be BSNAK (get the 
knots), BSINT (returns the B-spline coefficients of the interpolant), BSCPP (convert to pp form), 
and PPVAL (evaluate). The last two calls could be replaced by a call to the B-spline grid evaluator 
BS1GD, or the last call could be replaced with pp grid evaluator PP1GD. The interconnection of the 
spline routines is summarized in Figure 3-2. 

CSVAL
CSDER
CSITG

CS1GD

BSNAK
BSOPK

BSINT

BSLSQ
BSVLS
CONFT

BSCPP

BSVAL
BSDER
BSITG
BS1GD

DATA

CSSMH

CSSCV

PPVAL
PPDER
PPITG
PP1GD

OUT

CSINT

CSHER

CSCON
CSPER

CSAKM

CSDEC

 
Figure 3-2   Interrelation of the Spline Routines 
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Choosing an Interpolation Routine 
The choice of an interpolation routine depends both on the type of data and on the use of the 
interpolant. We provide 18 interpolation routines. These routines are depicted in a decision tree in 
Figure 3-3. This figure provides a guide for selecting an appropriate interpolation routine. For 
example, if periodic one-dimensional (univariate) data is available, then the path through 
univariate to periodic leads to the IMSL routine CSPER, which is the proper routine for this 
setting. The general-purpose univariate interpolation routines can be found in the box beginning 
with CSINT. Two- and three-dimensional tensor-product interpolation routines are also provided. 
For two-dimensional scattered data, the appropriate routine is SURF . 
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Figure 3-3   Choosing an Interplation Routine 
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SPLINE_CONSTRAINTS 
This function returns the derived type array result, ?_spline_constraints, given optional 
input.  There are optional arguments for the derivative index, the value applied to the spline, and 
the periodic point for any periodic constraint.   

The function is used, for entry number j, 
?_spline_constraints(j) = &  
   spline_constraints([derivative=derivative_index,] &  
   point = where_applied, [value=value_applied,], &  
   type = constraint_indicator, &  
   [periodic_point = value_applied])  

The square brackets enclose optional arguments.  For each constraint either (but not both) the 
‘value =’ or the ‘periodic_point =’ optional arguments must be present. 

Required Arguments 
point = where_applied  (Input)  

The point in the data interval where a constraint is to be applied. 

type = constraint_indicator  (Input)  
The indicator for the type of constraint the spline function or its derivatives is to 
satisfy at the point: where_applied.  The choices are the character strings 
‘==’, ‘<=’, ‘>=’, ‘.=.’, and ‘.=-’.  They respectively indicate that the 
spline value or its derivatives will be equal to, not greater than, not less than, 
equal to the value of the spline at another point, or equal to the negative of the 
spline value at another point.  These last two constraints are called periodic and 
negative-periodic, respectively.  The alternate independent variable point is 
value_applied for either periodic constraint.  There is a use of periodic 
constraints in . 

Optional Arguments 
derivative = derivative_index  (Input)  

This is the number of the derivative for the spline to apply the constraint.  The 
value 0 corresponds to the function, the value 1 to the first derivative, etc.  If this 
argument is not present in the list, the value 0 is substituted automatically.  Thus 
a constraint without the derivative listed applies to the spline function. 

periodic_point = value_applied 
This optional argument improves readability by automatically identifying the 
second independent variable value for periodic constraints. 

FORTRAN 90 Interface 
Generic: CALL SPLINE_CONSTRAINTS (POINT, TYPE [,…]) 

Specific:  The specific interface names are S_SPLINE_CONSTRAINTS and 
D_SPLINE_CONSTRAINTS. 
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SPLINE_VALUES 
This rank-1 array function returns an array result, given an array of input.  Use the optional 
argument for the covariance matrix when the square root of the variance function is required.  The 
result will be a scalar value when the input variable is scalar. 

Required Arguments 
derivative = derivative  (Input)  

The index of the derivative evaluated.  Use non-negative integer values.  For the 
function itself use the value 0. 

variables = variables  (Input)  
The independent variable values where the spline or its derivatives are 
evaluated.  Either a rank-1 array or a scalar can be used as this argument. 

knots = knots  (Input)  
The derived type ?_spline_knots, defined as the array COEFFS was obtained 
with the function SPLINE_FITTING.  This contains the polynomial spline 
degree and the number of knots and the knots themselves for this spline 
function. 

coeffs = c  (Input)  
The coefficients in the representation for the spline function,  

� � � �
1

N

j j
j

f x c B x
�

�� .   

These result from the fitting process or array assignment 
C=SPLINE_FITTING(...), defined below.  The value 
 N = size(C)  satisfies the identity  
N - 1 + spline_degree = size (?_knots), where the two right-most quantities refer 
to components of the argument knots. 

Optional Arguments 
covariance = G  (Input)  

This argument, when present, results in the evaluation of the square root of the 
variance function 

� � � � � �� �
1/ 2Te x b x Gb x�   

where  

� � � � � �1 , ,
T

Nb x B x B x� � �� ��  

and G  is the covariance matrix associated with the coefficients of the spline 

� �1, , T
Nc c c� �  
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The argument G is an optional output parameter from the function 
spline_fitting, described below.  When the square root of the variance 
function is computed, the arguments DERIVATIVE and C are not used. 

iopt = iopt  (Input)  
This optional argument, of derived type ?_options, is not used in this 
release. 

FORTRAN 90 Interface 
Generic: CALL SPLINE_VALUES (DERIVATIVE, VARAIBLES, KNOTS, COEFFS [,…]) 

Specific:  The specific interface names are S_SPLINE_VALUES and D_SPLINE_VALUES. 

SPLINE_FITTING 
Weighted least-squares fitting by B-splines to discrete One-Dimensional data is performed.  
Constraints on the spline or its derivatives are optional.  The spline function  

� � � �
1

N

j j
j

f x c B x
�

��  

its derivatives, or the square root of its variance function are evaluated after the fitting. 

Required Arguments 
data = data(1:3,:)  (Input/Output)  

An assumed-shape array with size(data,1) = 3.  The data are placed in the array: 
data(1,i) = ix , data(2,i) = iy , and data(3,i) = i� , 1,...,i ndata� . If the 
variances are not known but are proportional to an unknown value, users may set 
data(3,i) = 1, 1,...,i ndata� . 

knots = knots  (Input)  
A derived type, ?_spline_knots, that defines the degree of the spline and the 
breakpoints for the data fitting interval. 

Optional Arguments 
constraints = spline_constraints  (Input) 

A rank-1 array of derived type ?_spline_constraints that give constraints the 
output spline is to satisfy. 

covariance = G  (Output) 
An assumed-shape rank-2 array of the same precision as the data.  This output is the 
covariance matrix of the coefficients.  It is optionally used to evaluate the square root 
of the variance function. 
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iopt = iopt(:)  (Input/Output) 
Derived type array with the same precision as the input array; used for passing optional 
data to spline_fitting. The options are as follows: 

Packaged Options for spline_fitting 
Prefix = None Option Name Option Value 

 Spline_fitting_tol_equal 1 
 Spline_fitting_tol_least 2 

iopt(IO) = ?_options(spline_fitting_tol_equal, ?_value) 
This resets the value for determining that equality constraint equations are rank-
deficient.  The default is ?_value = 10-4. 

iopt(IO) = ?_options(spline_fitting_tol_least, ?_value) 
This resets the value for determining that least-squares equations are rank-deficient.  
The default is ?_value = 10-4. 

FORTRAN 90 Interface 
Generic: CALL SPLINE_FITTING (DATA, KNOTS [,…]) 

Specific:  The specific interface names are S_SPLINE_FITTING and D_SPLINE_FITTING. 

Example 1: Natural Cubic Spline Interpolation to Data 
The function  

� � � �2exp / 2g x x� �   

is interpolated by cubic splines on the grid of points  

� �1 , 1,...,ix i x i ndata� � � �  

Those natural conditions are  

� � � � � � � �
2 2

2 2, 0,..., ; , 0 and i i i i
d f d gf x g x i ndata x x i ndata
dx dx

� � � �  

Our program checks the term .const  appearing in the maximum truncation error term 
4.error const x� ��  

at a finer grid. 
  
      USE spline_fitting_int  
      USE show_int  
      USE norm_int  
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      implicit none  
  
! This is Example 1 for SPLINE_FITTING, Natural Spline  
! Interpolation using cubic splines.  Use the function  
! exp(-x**2/2) to generate samples.  
  
      integer :: i  
      integer, parameter :: ndata=24, nord=4, ndegree=nord-1, &  
        nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord, nvalues=2*ndata  
      real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1  
      real(kind(1e0)), parameter :: delta_x=0.15, delta_xv=0.4*delta_x  
      real(kind(1e0)), target :: xdata(ndata), ydata(ndata), &   
            spline_data (3, ndata), bkpt(nbkpt), &  
            ycheck(nvalues), coeff(ncoeff), &  
            xvalues(nvalues), yvalues(nvalues), diffs  
  
      real(kind(1e0)), pointer :: pointer_bkpt(:)  
      type (s_spline_knots) break_points  
      type (s_spline_constraints) constraints(2)  
  
      xdata = (/((i-1)*delta_x, i=1,ndata)/)   
      ydata = exp(-half*xdata**2)  
      xvalues =(/(0.03+(i-1)*delta_xv,i=1,nvalues)/)  
      ycheck= exp(-half*xvalues**2)  
      spline_data(1,:)=xdata   
      spline_data(2,:)=ydata  
      spline_data(3,:)=one  
  
! Define the knots for the interpolation problem.  
         bkpt(1:ndegree) = (/(i*delta_x, i=-ndegree,-1)/)   
         bkpt(nord:nbkpt-ndegree) = xdata  
         bkpt(nbkpt-ndegree+1:nbkpt) =  &  
         (/(xdata(ndata)+i*delta_x, i=1,ndegree)/)  
  
! Assign the degree of the polynomial and the knots.  
      pointer_bkpt => bkpt  
      break_points=s_spline_knots(ndegree, pointer_bkpt)  
  
! These are the natural conditions for interpolating cubic  
! splines.  The derivatives match those of the interpolating  
! function at the ends.  
      constraints(1)=spline_constraints &  
         (derivative=2, point=bkpt(nord), type='==', value=-one)  
      constraints(2)=spline_constraints &  
         (derivative=2,point=bkpt(nbkpt-ndegree), type= '==', &  
         value=(-one+xdata(ndata)**2)*ydata(ndata))  
  
      coeff = spline_fitting(data=spline_data, knots=break_points,&  
             constraints=constraints)  
      yvalues=spline_values(0, xvalues, break_points, coeff)  
  
      diffs=norm(yvalues-ycheck,huge(1))/delta_x**nord   
  
      if (diffs <= one) then  
        write(*,*) 'Example 1 for SPLINE_FITTING is correct.'  
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      end if  
      end  
 

Output 
 

Example 1 for SPLINE_FITTING is correct. 

Description 
This routine has similar scope to CONFT/DCONFT found in IMSL (2003, pp 734-743).  We 
provide the square root of the variance function, but we do not provide for constraints on the 
integral of the spline.  The least-squares matrix problem for the coefficients is banded, with band-
width equal to the spline order.  This fact is used to obtain an efficient solution algorithm when 
there are no constraints.  When constraints are present the routine solves a linear-least squares 
problem with equality and inequality constraints.  The processed least-squares equations result in a 
banded and upper triangular matrix, following accumulation of the spline fitting equations.  The 
algorithm used for solving the constrained least-squares system will handle rank-deficient 
problems.  A set of reference are available in Hanson (1995) and Lawson and Hanson (1995).  The 
CONFT/DCONFT routine uses QPROG (loc cit., p. 959), which requires that the least-squares 
equations be of full rank. 

Additional Examples 

Example 2: Shaping a Curve and its Derivatives 
The function  

� � � �� �2exp / 2 1g x x noise� � �  

is fit by cubic splines on the grid of equally spaced points 

� �1 , 1,...,ix i x i ndata� � � �  

The term noise is uniform random numbers from the normalized interval  
� �,� �� , where 0.01� � .  The spline curve is constrained to be convex down for for 0 � x � 1 
convex upward for 1< x � 4, and have the second derivative exactly equal to the value zero at   
x = 1.  The first derivative is constrained with the value zero at x = 0  and is non-negative at the 
right and of the interval, x = 4.  A sample table of independent variables, second derivatives and 
square root of  variance function values is printed. 

 
      use spline_fitting_int  
      use show_int  
      use rand_int  
      use norm_int  
  
      implicit none  
  
! This is Example 2 for SPLINE_FITTING. Use 1st and 2nd derivative  
! constraints to shape the splines.  
  
      integer :: i, icurv  
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      integer, parameter :: nbkptin=13, nord=4, ndegree=nord-1, &  
             nbkpt=nbkptin+2*ndegree, ndata=21, ncoeff=nbkpt-nord  
      real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1  
      real(kind(1e0)), parameter :: range=4.0, ratio=0.02, tol=ratio*half  
      real(kind(1e0)), parameter :: delta_x=range/(ndata-1), 

delta_b=range/(nbkptin-1)  
      real(kind(1e0)), target :: xdata(ndata), ydata(ndata), ynoise(ndata),&   
            sddata(ndata), spline_data (3, ndata), bkpt(nbkpt), &  
            values(ndata), derivat1(ndata), derivat2(ndata), &  
            coeff(ncoeff), root_variance(ndata), diffs  
      real(kind(1e0)), dimension(ncoeff,ncoeff) :: sigma_squared  
  
      real(kind(1e0)), pointer :: pointer_bkpt(:)  
      type (s_spline_knots) break_points  
      type (s_spline_constraints) constraints(nbkptin+2)  
   
      xdata = (/((i-1)*delta_x, i=1,ndata)/)   
      ydata = exp(-half*xdata**2)   
      ynoise = ratio*ydata*(rand(ynoise)-half)  
      ydata = ydata+ynoise  
      sddata = ynoise  
      spline_data(1,:)=xdata  
      spline_data(2,:)=ydata  
      spline_data(3,:)=sddata  
  
      bkpt=(/((i-nord)*delta_b, i=1,nbkpt)/)   
  
! Assign the degree of the polynomial and the knots.  
      pointer_bkpt => bkpt  
      break_points=s_spline_knots(ndegree, pointer_bkpt)  
  
      icurv=int(one/delta_b)+1  
  
! At first shape the curve to be convex down.        
      do i=1,icurv-1  
        constraints(i)=spline_constraints &  
 (derivative=2, point=bkpt(i+ndegree), type='<=', value=zero)  
      end do  
  
! Force a curvature change.  
      constraints(icurv)=spline_constraints &  
 (derivative=2, point=bkpt(icurv+ndegree), type='==', value=zero)  
  
! Finally, shape the curve to be convex up.  
      do i=icurv+1,nbkptin  
        constraints(i)=spline_constraints &  
 (derivative=2, point=bkpt(i+ndegree), type='>=', value=zero)  
      end do  
  
! Make the slope zero and value non-negative at right.  
      constraints(nbkptin+1)=spline_constraints &  
 (derivative=1, point=bkpt(nord), type='==', value=zero)  
      constraints(nbkptin+2)=spline_constraints &  
 (derivative=0, point=bkpt(nbkptin+ndegree), type='>=', value=zero)  
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      coeff = spline_fitting(data=spline_data, knots=break_points, &  
              constraints=constraints, covariance=sigma_squared)  
  
!     Compute value, first two derivatives and the variance.  
      values=spline_values(0, xdata, break_points, coeff)  
      root_variance=spline_values(0, xdata, break_points, coeff, &  
                             covariance=sigma_squared)  
      derivat1=spline_values(1, xdata, break_points, coeff)  
      derivat2=spline_values(2, xdata, break_points, coeff)  
   
      call show(reshape((/xdata, derivat2, root_variance/),(/ndata,3/)),&  
"The x values, 2-nd derivatives, and square root of variance.")  
  
! See that differences are relatively small and the curve has  
! the right shape and signs.        
      diffs=norm(values-ydata)/norm(ydata)  
      if (all(values > zero) .and. all(derivat1 < epsilon(zero))&  
         .and. diffs <= tol) then  
        write(*,*) 'Example 2 for SPLINE_FITTING is correct.'  
      end if  
  
      end  

Output 
 

Example 2 for SPLINE_FITTING is correct. 

Example 3: Splines Model a Random Number Generator 
The function  

� � � �2exp / 2 , 1 1

0, | | 1

g x x x

x

� � � � �

� �

 

is an unnormalized probability distribution.  This function is similar to the standard Normal 
distribution, with specific choices for the mean and variance, except that it is truncated.  Our 
algorithm interpolates g(x) with a natural cubic spline, f(x).  The cumulative distribution is 
approximated by precise evaluation of the function 

� � � �
1

x
q x f t dt

�

� �  

Gauss-Legendre quadrature formulas, IMSL (1994, pp. 621-626), of order two are used on each 
polynomial piece of f(t)  to evaluate q(x) cheaply.  After normalizing the cubic spline so that q(1) 
= 1, we may then generate random numbers according to the distribution � � � �f x g x� .  The 
values of x  are evaluated by solving q(x) = u, -1 < x < 1.  Here u  is a uniform random sample.  
Newton’s method, for a vector of unknowns, is used for the solution algorithm.  Recalling the 
relation 

� �� � � � , 1 1d q x u f x x
dx

� � � � �  
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we believe this illustrates a method for generating a vector of random numbers according to a 
continuous distribution function having finite support. 

 
 use spline_fitting_int  
 use linear_operators  
 use Numerical_Libraries  
        
       implicit none  
  
! This is Example 3 for SPLINE_FITTING.  Use splines to  
! generate random (almost normal) numbers.  The normal distribution  
! function has support (-1,+1), and is zero outside this interval.  
! The variance is 0.5.  
  
 integer i, niterat  
        integer, parameter :: iweight=1, nfix=0, nord=4, ndata=50  
        integer, parameter :: nquad=(nord+1)/2, ndegree=nord-1  
        integer, parameter :: nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord  
        integer, parameter :: last=nbkpt-ndegree, n_samples=1000  
        integer, parameter :: limit=10  
 real(kind(1e0)), dimension(n_samples) :: fn, rn, x, alpha_x, beta_x  
        INTEGER LEFT_OF(n_samples)  
 real(kind(1e0)), parameter :: one=1e0, half=5e-1, zero=0e0, two=2e0  
 real(kind(1e0)), parameter :: delta_x=two/(ndata-1)  
        real(kind(1e0)), parameter :: qalpha=zero, qbeta=zero, domain=two   
        real(kind(1e0)) qx(nquad), qxi(nquad), qw(nquad), qxfix(nquad)  
        real(kind(1e0)) alpha_, beta_, quad(0:ndata-1)  
        real(kind(1e0)), target :: xdata(ndata), ydata(ndata), 
coeff(ncoeff), &   
            spline_data(3, ndata), bkpt(nbkpt)  
  
        real(kind(1e0)), pointer :: pointer_bkpt(:)  
        type (s_spline_knots) break_points  
        type (s_spline_constraints) constraints(2)  
  
! Approximate the probability density function by splines.  
        xdata = (/(-one+(i-1)*delta_x, i=1,ndata)/)   
        ydata = exp(-half*xdata**2)  
  
        spline_data(1,:)=xdata  
        spline_data(2,:)=ydata  
        spline_data(3,:)=one  
  
        bkpt=(/(-one+(i-nord)*delta_x, i=1,nbkpt)/)   
  
! Assign the degree of the polynomial and the knots.  
      pointer_bkpt => bkpt  
      break_points=s_spline_knots(ndegree, pointer_bkpt)  
  
! Define the natural derivatives constraints:  
        constraints(1)=spline_constraints &  
          (derivative=2, point=bkpt(nord), type='==', &  
          value=(-one+xdata(1)**2)*ydata(1))  
        constraints(2)=spline_constraints &  
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          (derivative=2, point=bkpt(last), type='==', &  
          value=(-one+xdata(ndata)**2)*ydata(ndata))  
  
! Obtain the spline coefficients.  
        coeff=spline_fitting(data=spline_data, knots=break_points,&  
        constraints=constraints)  
  
! Compute the evaluation points 'qx(*)' and weights 'qw(*)' for   
! the Gauss-Legendre quadrature.  This will give a precise  
! quadrature for polynomials of degree <= nquad*2.  
        call gqrul(nquad, iweight, qalpha, qbeta, nfix, qxfix, qx, qw)  
  
! Compute pieces of the accumulated distribution function:   
        quad(0)=zero  
 do i=1, ndata-1  
          alpha_= (bkpt(nord+i)-bkpt(ndegree+i))*half  
          beta_ = (bkpt(nord+i)+bkpt(ndegree+i))*half  
  
! Normalized abscissas are stretched to each spline interval.  
! Each polynomial piece is integrated and accumulated.  
          qxi = alpha_*qx+beta_  
          quad(i) = sum(qw*spline_values(0, qxi, break_points, 
coeff))*alpha_&  
                  + quad(i-1)  
 end do  
  
! Normalize the coefficients and partial integrals so that the  
! total integral has the value one.  
        coeff=coeff/quad(ndata-1); quad=quad/quad(ndata-1)  
        rn=rand(rn)   
        x=zero; niterat=0  
  
 solve_equation: do  
  
! Find the intervals where the x values are located.  
          LEFT_OF=NDEGREE; I=NDEGREE  
            do  
               I=I+1; if(I >= LAST) EXIT  
               WHERE(x >= BKPT(I))LEFT_OF = LEFT_OF+1  
            end do  
  
! Use Newton's method to solve the nonlinear equation:  
! accumulated_distribution_function - random_number = 0.  
            alpha_x = (x-bkpt(LEFT_OF))*half  
            beta_x  = (x+bkpt(LEFT_OF))*half  
            FN=QUAD(LEFT_OF-NORD)-RN  
            DO I=1,NQUAD  
               FN=FN+QW(I)*spline_values(0, alpha_x*QX(I)+beta_x,&  
                     break_points, coeff)*alpha_x  
            END DO  
  
! This is the Newton method update step:  
            x=x-fn/spline_values(0, x, break_points, coeff)  
            niterat=niterat+1  
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! Constrain the values so they fall back into the interval.  
! Newton's method may give approximates outside the interval.  
            where(x <= -one .or. x >= one) x=zero  
  
            if(norm(fn,1) <= sqrt(epsilon(one))*norm(x,1))&  
              exit solve_equation  
 end do solve_equation  
  
! Check that Newton's method converges.   
  
        if (niterat <= limit) then  
          write (*,*) 'Example 3 for SPLINE_FITTING is correct.'  
        end if  
  
 end  

Output 
 

Example 3 for SPLINE_FITTING is correct. 
 

Example 4: Represent a Periodic Curve 
The curve tracing the edge of a rectangular box, traversed in a counter-clockwise direction, is 
parameterized with a spline representation for each coordinate function, (x(t), y(t)).  The functions 
are constrained to be periodic at the ends of the parameter interval.  Since the perimeter arcs are 
piece-wise linear functions, the degree of the splines is the value one.  Some breakpoints are 
chosen so they correspond to corners of the box, where the derivatives of the coordinate functions 
are discontinuous.  The value of this representation is that for each t the splines representing (x(t), 
y(t)) are points on the perimeter of the box.  This “eases” the complexity of evaluating the edge of 
the box.  This example illustrates a method for representing the edge of a domain in two 
dimensions, bounded by a periodic curve. 

 
      use spline_fitting_int  
      use norm_int  
  
      implicit none  
  
! This is Example 4 for SPLINE_FITTING. Use piecewise-linear  
! splines to represent the perimeter of a rectangular box.  
  
      integer i, j   
      integer, parameter :: nbkpt=9, nord=2, ndegree=nord-1, &  
               ncoeff=nbkpt-nord, ndata=7, ngrid=100, &  
               nvalues=(ndata-1)*ngrid  
      real(kind(1e0)), parameter :: zero=0e0, one=1e0  
      real(kind(1e0)), parameter ::  delta_t=one, delta_b=one, delta_v=0.01  
      real(kind(1e0)) delta_x, delta_y  
      real(kind(1e0)), dimension(ndata) ::  sddata=one,  &  
! These are redundant coordinates on the edge of the box.  
             xdata=(/0.0, 1.0, 2.0, 2.0, 1.0, 0.0, 0.0/), &  
             ydata=(/0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0/)  
      real(kind(1e0)) tdata(ndata), xspline_data(3, ndata), &  
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            yspline_data(3, ndata), tvalues(nvalues), &  
            xvalues(nvalues), yvalues(nvalues), xcoeff(ncoeff), &  
            ycoeff(ncoeff), xcheck(nvalues), ycheck(nvalues), diffs  
      real(kind(1e0)), target :: bkpt(nbkpt)  
      real(kind(1e0)), pointer :: pointer_bkpt(:)  
      type (s_spline_knots) break_points  
      type (s_spline_constraints) constraints(1)  
  
      tdata = (/((i-1)*delta_t, i=1,ndata)/)   
      xspline_data(1,:)=tdata; yspline_data(1,:)=tdata   
      xspline_data(2,:)=xdata; yspline_data(2,:)=ydata  
      xspline_data(3,:)=sddata; yspline_data(3,:)=sddata  
  
      bkpt(nord:nbkpt-ndegree)=(/((i-nord)*delta_b,  &  
                                  i=nord, nbkpt-ndegree)/)   
! Collapse the outside knots.  
      bkpt(1:ndegree)=bkpt(nord)    
      bkpt(nbkpt-ndegree+1:nbkpt)=bkpt(nbkpt-ndegree)    
     
! Assign the degree of the polynomial and the knots.  
      pointer_bkpt => bkpt  
      break_points=s_spline_knots(ndegree, pointer_bkpt)  
  
! Make the two parametric curves also periodic.  
      constraints(1)=spline_constraints &  
        (derivative=0, point=bkpt(nord), type='.=.', &  
        value=bkpt(nbkpt-ndegree))  
  
      xcoeff = spline_fitting(data=xspline_data, knots=break_points, &  
                              constraints=constraints)  
      ycoeff = spline_fitting(data=yspline_data, knots=break_points, &  
                              constraints=constraints)  
  
! Use the splines to compute the coordinates of points along the perimeter.   
! Compare them with the coordinates of the edge points.   
      tvalues= (/((i-1)*delta_v, i=1,nvalues)/)   
      xvalues=spline_values(0, tvalues, break_points, xcoeff)  
      yvalues=spline_values(0, tvalues, break_points, ycoeff)  
      do i=1, nvalues  
        j=(i-1)/ngrid+1   
        delta_x=(xdata(j+1)-xdata(j))/ngrid  
 delta_y=(ydata(j+1)-ydata(j))/ngrid  
        xcheck(i)=xdata(j)+mod(i+ngrid-1,ngrid)*delta_x   
        ycheck(i)=ydata(j)+mod(i+ngrid-1,ngrid)*delta_y   
      end do  
  
      diffs=norm(xvalues-xcheck,1)/norm(xcheck,1)+&  
           norm(yvalues-ycheck,1)/norm(ycheck,1)  
      if (diffs <= sqrt(epsilon(one))) then  
        write(*,*) 'Example 4 for SPLINE_FITTING is correct.'  
      end if  
        
      end  
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Output 
 

Example 4 for SPLINE_FITTING is correct. 

Fatal and Terminal Error Messages 
See the messages.gls file for error messages for spline_fitting. These error messages are 
numbered 1340�1367. 

SURFACE_CONSTRAINTS 
To further shape a surface defined by a tensor product of B-splines, the routine suface_fitting 
will least squares fit data with equality, inequality and periodic constraints. These can apply to the 
surface function or its partial derivatives. Each constraint is packaged in the derived type 
?_surface_constraints. This function uses the data consisting of: the place where the 
constraint is to hold, the partial derivative indices, and the type of the constraint. This object is 
returned as the derived type function result ?_surface_constraints. The function itself has 
two required and two optional arguments. In a list of constraints, the j-th item will be: 

 
?_surface_constraints(j) = &  
surface_constraints&  
   ([derivative=derivative_index(1:2),] &  
   point = where_applied(1:2),[value=value_applied,],&  
   type = constraint_indicator, &  
   [periodic_point = periodic_point(1:2)])  

The square brackets enclose optional arguments.  For each constraint the arguments ‘value =’ 
and ‘periodic_point =’ are not used at the same time. 

Required Arguments 
point = where_applied  (Input)  

The point in the data domain where a constraint is to be applied.  Each point has 
an x and y coordinate, in that order. 

type = constraint_indicator (Input)  
The indicator for the type of constraint the tensor product spline function or its 
partial derivatives is to satisfy at the point: where_applied.  The choices are 
the character strings ‘==’, ‘<=’, ‘>=’, ‘.=.’, and ‘.=-’. They 
respectively indicate that the spline value or its derivatives will be equal to, not 
greater than, not less than, equal to the value of the spline at another point, or 
equal to the negative of the spline value at another point. These last two 
constraints are called periodic and negative-periodic, respectively. 

Optional Arguments 
derivative = derivative_index(1:2)  (Input)  

These are the number of the partial derivatives for the tensor product spline to 
apply the constraint.  The array (/0,0/) corresponds to the function, the value 
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(/1,0/)  to the first partial derivative with respect to x, etc.  If this argument is 
not present in the list, the value (/0,0/) is substituted automatically.  Thus a 
constraint without the derivatives listed applies to the tensor product spline 
function. 

periodic = periodic_point(1:2) 
This optional argument improves readability by identifying the second pair of 
independent variable values for periodic constraints. 

FORTRAN 90 Interface 
Generic: CALL SURFACE_CONSTRAINTS (POINT, TYPE [,…]) 

Specific:  The specific interface names are S_SURFACE_CONSTRAINTS and 
D_SURFACE_CONSTRAINTS. 

SURFACE_VALUES 
This rank-2 array function returns a tensor product array result, given two arrays of independent 
variable values.  Use the optional input argument for the covariance matrix when the square root 
of the variance function is evaluated.  The result will be a scalar value when the input independent 
variable is scalar. 

Required Arguments 
derivative = derivative(1:2)  (Input)  

The indices of the partial derivative evaluated.  Use non-negative integer values.  
For the function itself use the array (/0,0/). 

variablesx = variablesx (Input)  
The independent variable values in the first or x  dimension where the spline or 
its derivatives are evaluated.  Either a rank-1 array or a scalar can be used as this 
argument. 

variablesy = variablesy  (Input)  
The independent variable values in the second or y  dimension where the spline 
or its derivatives are evaluated.  Either a rank-1 array or a scalar can be used as 
this argument. 

knotsx = knotsx  (Input)  
The derived type ?_spline_knots, used when the array coeffs(:,:)was 
obtained with the function SURFACE_FITTING.  This contains the polynomial 
spline degree and the number of knots and the knots themselves, in the x 
dimension. 

knotsy = knotsy  (Input)  
The derived type ?_spline_knots, used when the array coeffs(:,:) was 
obtained with the function SURFACE_FITTING.  This contains the polynomial 
spline degree and the number of knots and the knots themselves, in the y 
dimension. 
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coeffs = c  (Input)  
The coefficients in the representation for the spline function,  

� � � � � �
1 1

,
N M

ij i j
j i

f x y c B y B x
� �

���  

These result from the fitting process or array assignment 
C=SURFACE_FITTING(...), defined below.  The values M = size (C,1) and  
N = size (C,2) satisfies the respective identities N -1 + spline_degree = size 
(?_knotsx), and M -1 + spline_degree = size (?_knotsy) , where the two right-
most quantities in both equations refer to components of the arguments knotsx 
and knotsy.  The same value of spline_degree must be used for both knotsx and 
knotsy. 

Optional Arguments 
covariance = G  (Input)  

This argument, when present, results in the evaluation of  the square root of the 
variance function 

� � � � � �� �
1/ 2

, , ,Te x y b x y Gb x y�  

where  

� � � � � � � � � �1 1 1, , , ,
T

Nb x y B x B y B x B y� � �� �� �  

and G is the covariance matrix associated with the coefficients of the spline 

� �11 1, , , T
Nc c c� � �  

The argument G is an optional output from surface_fitting, described 
below.  When the square root of the variance function is computed, the 
arguments DERIVATIVE and C are not used. 

iopt = iopt  (Input)  
This optional argument, of derived type ?_options, is not used in this 
release. 

FORTRAN 90 Interface 
Generic: CALL SURFACE_VALUES (DERIVATIVE, VARIABLESX, VARIABLESY,  

     KNOTSX, KNOTSY, COEFFS [,…]) 

Specific:  The specific interface names are S_SURFACE_VALUES and 
            D_SURFACE_VALUES. 
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SURFACE_FITTING 
Weighted least-squares fitting by tensor product B-splines to discrete two-dimensional data is 
performed.  Constraints on the spline or its partial derivatives are optional.  The spline function 

� � � � � �
1 1

,
N M

ij i j
j i

f x y c B y B x
� �

��� ,  

its derivatives, or the square root of its variance function are evaluated after the fitting. 

Required Arguments 
data = data(1:4,:)  (Input/Output)  

An assumed-shape array with size(data,1) = 4.  The data are placed in the array:  

 data(1,i) = ix ,  

 data(2,i) = iy ,  

 data(3,i) = iz ,  

 data(4,i) = i� , 1,...,i ndata� .  

If the variances are not known, but are proportional to an unknown value, use  

 data(4,i) = 1, 1,...,i ndata� . 

knotsx = knotsx  (Input)  
A derived type, ?_spline_knots, that defines the degree of the spline and the 
breakpoints for the data fitting domain, in the first dimension. 

knotsy = knotsy  (Input)  
A derived type, ?_spline_knots, that defines the degree of the spline and the 
breakpoints for the data fitting domain, in the second dimension. 

Optional Arguments 
constraints = surface_constraints  (Input) 

A rank-1 array of derived type ?_surface_constraints that defines constraints the 
tensor product spline is to satisfy. 

covariance = G  (Output) 
An assumed-shape rank-2 array of the same precision as the data.  This output is the 
covariance matrix of the coefficients.  It is optionally used to evaluate the square root 
of the variance function. 

iopt = iopt(:)  (Input/Output) 
Derived type array with the same precision as the input array; used for passing optional 
data to surface_fitting.  The options are as follows: 
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Packaged Options for SURFACE_FITTING 
Prefix = None Option Name Option Value 

 surface_fitting_smallness 1 
 surface_fitting_flatness 2 
 surface_fitting_tol_equal 3 
 surface_fitting_tol_least 4 
 surface_fitting_residuals 5 
 surface_fitting_print 6 
 surface_fitting_thinness 7 

iopt(IO) = ?_options&  

            (surface_fitting_smallnes, ?_value) 
This resets the square root of the regularizing parameter multiplying the squared 
integral of the unknown function.  The argument ?_value is replaced by the default 
value. The default is ?_value = 0. 

iopt(IO) = ?_options&  

            (surface_fitting_flatness, ?_value) 
This resets the square root of the regularizing parameter multiplying the squared 
integral of the partial derivatives of the unknown function.  The argument  ?_value  
is replaced by the default value. The default is  
?_value = sqrt(epsilon(?_value))*size, where  

� �| (3,:) / (4,:) | / 1size data data ndata� �� . 

iopt(IO) = ?_options&  

            (surface_fitting_tol_equal, ?_value) 
This resets the value for determining that equality constraint equations are rank-
deficient.  The default is ?_value = 10-4. 

iopt(IO) = ?_options&  

            (surface_fitting_tol_least, ?_value) 
This resets the value for determining that least-squares equations are rank-deficient.  
The default is ?_value = 10-4. 

iopt(IO) = ?_options&  

            (surface_fitting_residuals, dummy) 
This option returns the residuals = surface - data, in data(4,:).  That row of the 
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array is overwritten by the residuals.  The data is returned in the order of cell 
processing order, or left-to-right in x and then increasing in y.  The allocation of a 
temporary for data(1:4,:) is avoided, which may be desirable for problems with 
large amounts of data.  The default is to not evaluate the residuals and to leave 
data(1:4,:) as input. 

iopt(IO) = ?_options&  

            (surface_fitting_print, dummy) 
This option prints the knots or breakpoints for x and y, and the count of data points in 
cell processing order.  The default is to not print these arrays. 

iopt(IO) = ?_options&  

            (surface_fitting_thinness, ?_value) 
This resets the square root of the regularizing parameter multiplying the squared 
integral of the second partial derivatives of the unknown function.  The argument  
?_value is replaced by the default value. The default is ?_value = 10-3 � size,, 
where 

� �| (3,:) / (4,:) | / 1size data data ndata� �� . 

FORTRAN 90 Interface 
Generic: CALL SURFACE_FITTING (DATA, KNOTSX, KNOTSX, KNOTSY[,…]) 

Specific: The specific interface names are S_SURFACE_FITTING and 
D_SURFACE_FITTING. 

Example 1: Tensor Product Spline Fitting of Data 
The function  

� � � �2 2, expg x y x y� � �  

is least-squares fit by a tensor product of cubic splines on the square  

� � � �0,2 0,2�  

There are ndata  random pairs of values for the independent variables.  Each datum is given unit 
uncertainty.  The grid of knots in both x and y dimensions are equally spaced, in the interior cells, 
and identical to each other.  After the coefficients are computed a check is made that the surface 
approximately agrees with g(x,y) at a tensor product grid of equally spaced values. 

 
      USE surface_fitting_int  
      USE rand_int  
      USE norm_int  
  
      implicit none  
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! This is Example 1 for SURFACE_FITTING, tensor product  
! B-splines approximation.  Use the function  
! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.  
! The spline order is "nord" and the number of cells is  
! "(ngrid-1)**2".  There are "ndata" data values in the square.  
  
      integer :: i  
      integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &  
        nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100  
      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0  
      real(kind(1d0)), parameter :: TOLERANCE=1d-3  
      real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &  
             coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &  
             x(nvalues), y(nvalues), values(nvalues, nvalues)  
  
      real(kind(1d0)), pointer :: pointer_bkpt(:)  
      type (d_spline_knots) knotsx, knotsy  
  
! Generate random (x,y) pairs and evaluate the  
! example exponential function at these values.      
      spline_data(1:2,:)=two*rand(spline_data(1:2,:))  
      spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))  
      spline_data(4,:)=one  
  
! Define the knots for the tensor product data fitting problem.  
         delta = two/(ngrid-1)  
         bkpt(1:ndegree) = zero  
         bkpt(nbkpt-ndegree+1:nbkpt) =  two  
         bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)  
  
! Assign the degree of the polynomial and the knots.  
      pointer_bkpt => bkpt  
      knotsx=d_spline_knots(ndegree, pointer_bkpt)  
      knotsy=knotsx  
  
! Fit the data and obtain the coefficients.  
      coeff = surface_fitting(spline_data, knotsx, knotsy)  
  
! Evaluate the residual = spline - function  
! at a grid of points inside the square.  
      delta=two/(nvalues+1)  
      x=(/(i*delta,i=1,nvalues)/); y=x  
  
      values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))  
      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&  
             values  
  
! Compute the R.M.S. error:  
      sizev=norm(pack(values, (values == values)))/nvalues  
  
      if (sizev <= TOLERANCE) then  
        write(*,*) 'Example 1 for SURFACE_FITTING is correct.'  
      end if  
      end  



 

 
 

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 581 

 

 

 

Output 
 

Example 1 for SURFACE_FITTING is correct. 

Description 
The coefficients are obtained by solving a least-squares system of linear algebraic equations, 
subject to linear equality and inequality constraints.  The system is the result of the weighted data 
equations and regularization.  If there are no constraints, the solution is computed using a banded 
least-squares solver.  Details are found in Hanson (1995). 

Additional Examples 

Example 2: Parametric Representation of a Sphere 
From Struik (1961), the parametric representation of points (x,y,z) on the surface of a sphere of 
radius a > 0 is expressed in terms of spherical coordinates, 

� � � � � �
� � � � � �

� � � �

, cos cos , 2
, cos sin ,

, sin

x u v a u v u
y u v a u v v

z u v a u

� �

� �

� � � �

� � � �

�

 

The parameters are radians of latitude (u)and longitude (v).  The example program fits the same 
ndata  random pairs of latitude and longitude in each coordinate.  We have covered the sphere 
twice by allowing  

u� �� � �  

for latitude.  We solve three data fitting problems, one for each coordinate function.  Periodic 
constraints on the value of the spline are used for both u and v.  We could reduce the 
computational effort by fitting a spline function in one variable for the z coordinate.  To illustrate 
the representation of more general surfaces than spheres, we did not do this.  When the surface is 
evaluated we compute latitude, moving from the South Pole to the North Pole,  

2u� �� � �  

Our surface will approximately satisfy the equality 
2 2 2 2x y z a� � �  

These residuals are checked at a rectangular mesh of latitude and longitude pairs.  To illustrate the 
use of some options, we have reset the three regularization parameters to the value zero, the least-
squares system tolerance to a smaller value than the default, and obtained the residuals for each 
parametric coordinate function at the data points. 

 
      USE surface_fitting_int  
      USE rand_int  
      USE norm_int  
      USE Numerical_Libraries  
  
      implicit none  
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! This is Example 2 for SURFACE_FITTING, tensor product  
! B-splines approximation.  Fit x, y, z parametric functions  
! for points on the surface of a sphere of radius “A”.  
! Random values of latitude and longitude are used to generate  
! data.  The functions are evaluated at a rectangular grid  
! in latitude and longitude and checked to lie on the surface  
! of the sphere.  
  
      integer :: i, j  
      integer, parameter :: ngrid=6, nord=6, ndegree=nord-1, &  
        nbkpt=ngrid+2*ndegree, ndata =1000, nvalues=50, NOPT=5  
      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0  
      real(kind(1d0)), parameter :: TOLERANCE=1d-2  
      real(kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), &  
             coeff(ngrid+ndegree-1,ngrid+ndegree-1, 3), delta, sizev, &  
             pi, A, x(nvalues), y(nvalues), values(nvalues, nvalues), &  
             data(4,ndata)  
  
      real(kind(1d0)), pointer :: pointer_bkpt(:)  
      type (d_spline_knots) knotsx, knotsy  
      type (d_options) OPTIONS(NOPT)  
! Get the constant "pi" and a random radius, > 1.  
      pi = DCONST((/"pi"/)); A=one+rand(A)  
  
! Generate random (latitude, longitude) pairs and evaluate the  
! surface parameters at these points.  
      spline_data(1:2,:,1)=pi*(two*rand(spline_data(1:2,:,1))-one)  
      spline_data(1:2,:,2)=spline_data(1:2,:,1)  
      spline_data(1:2,:,3)=spline_data(1:2,:,1)  
  
! Evaluate x, y, z parametric points.  
      spline_data(3,:,1)=A*cos(spline_data(1,:,1))*cos(spline_data(2,:,1))  
      spline_data(3,:,2)=A*cos(spline_data(1,:,2))*sin(spline_data(2,:,2))  
      spline_data(3,:,3)=A*sin(spline_data(1,:,3))  
  
! The values are equally uncertain.  
      spline_data(4,:,:)=one  
  
! Define the knots for the tensor product data fitting problem.  
         delta = two*pi/(ngrid-1)  
         bkpt(1:ndegree) = -pi  
         bkpt(nbkpt-ndegree+1:nbkpt) =  pi  
         bkpt(nord:nbkpt-ndegree)=(/(-pi+i*delta,i=0,ngrid-1)/)  
  
! Assign the degree of the polynomial and the knots.  
      pointer_bkpt => bkpt  
      knotsx=d_spline_knots(ndegree, pointer_bkpt)  
      knotsy=knotsx  
   
! Fit a data surface for each coordinate.  
! Set default regularization parameters to zero and compute   
! residuals of the individual points. These are returned  
! in DATA(4,:).  
      do j=1,3  
        data=spline_data(:,:,j)  
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OPTIONS(1)=d_options(surface_fitting_thinness,zero)  
OPTIONS(2)=d_options(surface_fitting_flatness,zero)  
OPTIONS(3)=d_options(surface_fitting_smallness,zero)  
OPTIONS(4)=d_options(surface_fitting_tol_least,1d-5)  
OPTIONS(5)=surface_fitting_residuals  
        coeff(:,:,j) = surface_fitting(data, knotsx, knotsy,&  
           IOPT=OPTIONS)  
      end do  
  
! Evaluate the function at a grid of points inside the rectangle of   
! latitude and longitude covering the sphere just once.  Add the   
! sum of squares. They should equal "A**2" but will not due to  
! truncation and rounding errors.  
      delta=pi/(nvalues+1)  
      x=(/(-pi/two+i*delta,i=1,nvalues)/); y=two*x  
      values=zero  
      do j=1,3  
        values=values+&  
        surface_values((/0,0/), x, y, knotsx, knotsy, coeff(:,:,j))**2  
      end do  
      values=values-A**2  
! Compute the R.M.S. error:  
  
      sizev=norm(pack(values, (values == values)))/nvalues  
        
      if (sizev <= TOLERANCE) then  
        write(*,*) "Example 2 for SURFACE_FITTING is correct."  
      end if  
      end  

Output 
 

Example 2 for SURFACE_FITTING is correct. 

 

Example 3: Constraining Some Points using a Spline Surface 
This example illustrates the use of discrete constraints to shape the surface. The data fitting 
problem of Example 1 is modified by requiring that the surface interpolate the value one at  
x = y = 0.  The shape is constrained so first partial derivatives in both x and y are zero at x = y = 0.  
These constraints mimic some properties of the function g(x,y).  The size of the residuals at a grid 
of points and the residuals of the constraints are checked. 

 
      USE surface_fitting_int  
      USE rand_int  
      USE norm_int  
  
      implicit none  
  
! This is Example 3 for SURFACE_FITTING, tensor product  
! B-splines approximation, f(x,y).  Use the function  
! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.  
! The spline order is "nord" and the number of cells is  
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! "(ngrid-1)**2".  There are "ndata" data values in the square.  
! Constraints are put on the surface at (0,0).  Namely  
! f(0,0) = 1, f_x(0,0) = 0, f_y(0,0) = 0.  
  
      integer :: i  
      integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &  
        nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100, NC = 3  
      real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0  
      real(kind(1d0)), parameter :: TOLERANCE=1d-3  
      real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &  
             coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &  
             x(nvalues), y(nvalues), values(nvalues, nvalues), &  
             f_00, f_x00, f_y00  
  
      real(kind(1d0)), pointer :: pointer_bkpt(:)  
      type (d_spline_knots) knotsx, knotsy  
      type (d_surface_constraints) C(NC)  
      LOGICAL PASS  
  
! Generate random (x,y) pairs and evaluate the  
! example exponential function at these values.      
      spline_data(1:2,:)=two*rand(spline_data(1:2,:))  
      spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))  
      spline_data(4,:)=one  
  
! Define the knots for the tensor product data fitting problem.  
         delta = two/(ngrid-1)  
         bkpt(1:ndegree) = zero  
         bkpt(nbkpt-ndegree+1:nbkpt) =  two  
         bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)  
  
! Assign the degree of the polynomial and the knots.  
      pointer_bkpt => bkpt  
      knotsx=d_spline_knots(ndegree, pointer_bkpt)  
      knotsy=knotsx  
  
! Define the constraints for the fitted surface.  
     C(1)=surface_constraints(point=(/zero,zero/),type='==',value=one)  
     C(2)=surface_constraints(derivative=(/1,0/),&  
          point=(/zero,zero/),type='==',value=zero)  
     C(3)=surface_constraints(derivative=(/0,1/),&  
          point=(/zero,zero/),type='==',value=zero)  
  
! Fit the data and obtain the coefficients.  
  
      coeff = surface_fitting(spline_data, knotsx, knotsy,&  
              CONSTRAINTS=C)  
  
! Evaluate the residual = spline - function  
! at a grid of points inside the square.  
      delta=two/(nvalues+1)  
      x=(/(i*delta,i=1,nvalues)/); y=x  
  
      values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))  
      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&  
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             values  
      f_00 = surface_values((/0,0/), zero, zero,  knotsx, knotsy, coeff)  
      f_x00= surface_values((/1,0/), zero, zero,  knotsx, knotsy, coeff)  
      f_y00= surface_values((/0,1/), zero, zero,  knotsx, knotsy, coeff)  
  
! Compute the R.M.S. error:  
      sizev=norm(pack(values, (values == values)))/nvalues  
      PASS = sizev <= TOLERANCE   
      PASS = abs (f_00 - one) <= sqrt(epsilon(one)) .and. PASS  
      PASS = f_x00 <= sqrt(epsilon(one)) .and. PASS  
      PASS = f_y00 <= sqrt(epsilon(one)) .and. PASS  
  
      if (PASS) then  
        write(*,*) 'Example 3 for SURFACE_FITTING is correct.'  
      end if  
      end  

Output 
Example 3 for SURFACE_FITTING is correct. 

Example 4: Constraining a Spline Surface to be non-Negative 
The review of interpolating methods by Franke (1982) uses a test data set originally due to James 
Ferguson.  We use this data set of 25 points, with unit uncertainty for each dependent variable.  
Our algorithm does not interpolate the data values but approximately fits them in the least-squares 
sense.  We reset the regularization parameter values of flatness and thinness, Hanson (1995).  
Then the surface is fit to the data and evaluated at a grid of points.  Although the surface appears 
smooth and fits the data, the values are negative near one corner.  Our scenario for the application 
assumes that the surface be non-negative at all points of the rectangle containing the independent 
variable data pairs.  Our algorithm for constraining the surface is simple but effective in this case.  
The data fitting is repeated one more time but with positive constraints at the grid of points where 
it was previously negative. 

 
      USE surface_fitting_int  
      USE rand_int  
      USE norm_int  
  
      implicit none  
  
! This is Example 4 for SURFACE_FITTING, tensor product  
! B-splines approximation, f(x,y).  Use the data set from  
! Franke, due to Ferguson.  Without constraints the function  
! becomes negative in a corner.  Constrain the surface  
! at a grid of values so it is non-negative.  
  
      integer :: i, j, q  
      integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &  
        nbkpt=ngrid+2*ndegree, ndata = 25, nvalues=50  
      real(kind(1d0)), parameter :: zero=0d0, one=1d0  
      real(kind(1d0)), parameter :: TOLERANCE=1d-3  
      real(kind(1d0)), target :: spline_data (4, ndata), bkptx(nbkpt), &  
             bkpty(nbkpt),coeff(ngrid+ndegree-1,ngrid+ndegree-1), &  
             x(nvalues), y(nvalues), values(nvalues, nvalues), &  
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             delta  
      real(kind(1d0)), pointer :: pointer_bkpt(:)  
      type (d_spline_knots) knotsx, knotsy  
      type (d_surface_constraints), allocatable :: C(:)  
  
      real(kind(1e0)) :: data (3*ndata) = & ! This is Ferguson's data:  
(/2.0   ,  15.0  ,    2.5 ,      2.49 ,     7.647,    3.2,&  
  2.981 ,   0.291,    3.4 ,      3.471,    -7.062,    3.5,&  
  3.961 , -14.418,    3.5 ,      7.45 ,    12.003,    2.5,&  
  7.35  ,   6.012,    3.5 ,      7.251,     0.018,    3.0,&  
  7.151 ,  -5.973,    2.0 ,      7.051,   -11.967,    2.5,&  
  10.901,   9.015,    2.0 ,     10.751,     4.536,    1.925,&  
  10.602,   0.06 ,    1.85,     10.453,    -4.419,    1.576,&  
  10.304,  -8.895,    1.7 ,     14.055,    10.509,    1.5,&  
  14.194,   6.783,    1.3 ,     14.331,     3.054,    1.7,&  
  14.469,  -0.672,    2.1 ,     14.607,    -4.398,    1.75,&  
  15.0  ,  12.0  ,    0.5 ,     15.729,     8.067,    0.5,&  
  16.457,   4.134,    0.7 ,     17.185,     0.198,    1.1,&  
  17.914,  -3.735,    1.7/)  
  
      spline_data(1:3,:)=reshape(data,(/3,ndata/)); spline_data(4,:)=one  
  
! Define the knots for the tensor product data fitting problem.  
! Use the data limits to  the knot sequences.  
         bkptx(1:ndegree) = minval(spline_data(1,:))  
         bkptx(nbkpt-ndegree+1:nbkpt) =  maxval(spline_data(1,:))  
         delta=(bkptx(nbkpt)-bkptx(ndegree))/(ngrid-1)  
         bkptx(nord:nbkpt-ndegree)=(/(bkptx(1)+i*delta,i=0,ngrid-1)/)  
  
! Assign the degree of the polynomial and the knots for x.  
      pointer_bkpt => bkptx  
      knotsx=d_spline_knots(ndegree, pointer_bkpt)  
         bkpty(1:ndegree) = minval(spline_data(2,:))  
         bkpty(nbkpt-ndegree+1:nbkpt) =  maxval(spline_data(2,:))  
         delta=(bkpty(nbkpt)-bkpty(ndegree))/(ngrid-1)  
         bkpty(nord:nbkpt-ndegree)=(/(bkpty(1)+i*delta,i=0,ngrid-1)/)  
  
! Assign the degree of the polynomial and the knots for y.  
      pointer_bkpt => bkpty  
      knotsy=d_spline_knots(ndegree, pointer_bkpt)  
  
! Fit the data and obtain the coefficients.  
      coeff = surface_fitting(spline_data, knotsx, knotsy)  
  
      delta=(bkptx(nbkpt)-bkptx(1))/(nvalues+1)  
      x=(/(bkptx(1)+i*delta,i=1,nvalues)/)  
      delta=(bkpty(nbkpt)-bkpty(1))/(nvalues+1)  
      y=(/(bkpty(1)+i*delta,i=1,nvalues)/)  
  
! Evaluate the function at a rectangular grid.  
! Use non-positive values to  a constraint.  
      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)  
  
! Count the number of values <= zero.  Then constrain the spline  
! so that it is >= TOLERANCE at those points where it was <= zero.  
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      q=count(values <= zero)  
      allocate (C(q))  
      DO I=1,nvalues  
         DO J=1,nvalues  
           IF(values(I,J) <= zero) THEN  
             C(q)=surface_constraints(point=(/x(i),y(j)/), type='>=',&  
                  value=TOLERANCE)  
             q=q-1  
           END IF  
         END DO  
      END DO  
  
! Fit the data with constraints and obtain the coefficients.  
      coeff = surface_fitting(spline_data, knotsx, knotsy,&  
              CONSTRAINTS=C)  
      deallocate(C)  
  
! Evaluate the surface at a grid and check, once again, for   
! non-positive values.  All values should now be positive.  
      values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)  
if (count(values <= zero) == 0) then  
        write(*,*) 'Example 4 for SURFACE_FITTING is correct.'  
      end if  
  
      end  

Output 
 

Example 4 for SURFACE_FITTING is correct. 

Fatal and Terminal Error Messages 
See the messages.gls file for error messages for surface_fitting. These error messages are 
numbered 1151-1152, 1161-1162, 1370-1393. 

 

CSIEZ 
Computes the cubic spline interpolant with the ‘not-a-knot’ condition and return values of the 
interpolant at specified points. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

XVEC — Array of length N containing the points at which the spline is to be evaluated.   
(Input) 
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VALUE — Array of length N containing the values of the spline at the points in XVEC.   
(Output) 

Optional Arguments 
NDATA — Number of data points.   (Input) 

NDATA must be at least 2. 
Default: NDATA = size (XDATA,1). 

N — Length of vector XVEC.   (Input) 
Default: N = size (XVEC,1). 

FORTRAN 90 Interface 
Generic: CALL CSIEZ (XDATA, FDATA, XVEC, VALUE [,…]) 

Specific:  The specific interface names are S_CSIEZ and D_CSIEZ. 

FORTRAN 77 Interface 
Single: CALL CSIEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE) 

Double: The double precision name is DCSIEZ. 

Example 
In this example, a cubic spline interpolant to a function F is computed. The values of this spline 
are then compared with the exact function values. 

      USE CSIEZ_INT 
      USE UMACH_INT 
      INTEGER    NDATA 
      PARAMETER  (NDATA=11) 
!  
      INTEGER    I, NOUT 
      REAL       F, FDATA(NDATA), FLOAT, SIN, VALUE(2*NDATA-1), X,& 
                 XDATA(NDATA), XVEC(2*NDATA-1) 
      INTRINSIC  FLOAT, SIN 
!                                  Define function 
      F(X) = SIN(15.0*X) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
      DO 20  I=1, 2*NDATA - 1 
         XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2) 
   20 CONTINUE 
!                                  Compute cubic spline interpolant 
      CALL CSIEZ (XDATA, FDATA, XVEC, VALUE) 
!                                  Get output unit number 
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      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99998) 
99998 FORMAT (13X, ’X’, 9X, ’INTERPOLANT’, 5X, ’ERROR’) 
!                                  Print the interpolant and the error 
!                                  on a finer grid 
      DO 30  I=1, 2*NDATA - 1 
         WRITE (NOUT,99999) XVEC(I), VALUE(I), F(XVEC(I)) - VALUE(I) 
   30 CONTINUE 
99999 FORMAT(’ ’, 2F15.3, F15.6) 
      END 

Output 
  X         INTERPOLANT     ERROR 
0.000          0.000       0.000000 
0.050          0.809      -0.127025 
0.100          0.997       0.000000 
0.150          0.723       0.055214 
0.200          0.141       0.000000 
0.250         -0.549      -0.022789 
0.300         -0.978       0.000000 
0.350         -0.843      -0.016246 
0.400         -0.279       0.000000 
0.450          0.441       0.009348 
0.500          0.938       0.000000 
0.550          0.903       0.019947 
0.600          0.412       0.000000 
0.650         -0.315      -0.004895 
0.700         -0.880       0.000000 
0.750         -0.938      -0.029541 
0.800         -0.537       0.000000 
0.850          0.148       0.034693 
0.900          0.804       0.000000 
0.950          1.086      -0.092559 
1.000          0.650       0.000000 

Comments 
Workspace may be explicitly provided, if desired, by use of C2IEZ/DC2IEZ. The reference is: 

CALL C2IEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE, IWK, WK1, 
WK2) 

The additional arguments are as follows: 

IWK — Integer work array of length MAX0(N, NDATA) + N. 

WK1 — Real work array of length 5 * NDATA. 

WK2 — Real work array of length 2 * N. 
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Description 
This routine is designed to let the user easily compute the values of a cubic spline interpolant. 
The routine CSIEZ computes a spline interpolant to a set of data points (xi, fi) for i = 1, �, 
NDATA. The output for this routine consists of a vector of values of the computed cubic spline. 
Specifically, let n = N, v = XVEC, and y = VALUE, then if s is the computed spline we set 

yj = s(vj ) j = 1, �, n 

Additional documentation can be found by referring to the IMSL routines CSINT (page 590) or 
SPLEZ (page 618). 

CSINT 
Computes the cubic spline interpolant with the ‘not-a-knot’ condition. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 
representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   
(Output) 

Optional Arguments 
NDATA — Number of data points.   (Input) 

NDATA must be at least 2. 
Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 
Generic: CALL CSINT (XDATA, FDATA, BREAK, CSCOEF [,…]) 

Specific:  The specific interface names are S_CSINT and D_CSINT. 

FORTRAN 77 Interface 
Single: CALL CSINT (NDATA, XDATA, FDATA, BREAK, CSCOEF) 

Double: The double precision name is DCSINT. 
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Example 
In this example, a cubic spline interpolant to a function F is computed. The values of this spline 
are then compared with the exact function values. 

      USE CSINT_INT 
      USE UMACH_INT 
      USE CSVAL_INT 

!                                  Specifications 
      INTEGER    NDATA 
      PARAMETER  (NDATA=11) 
!  
      INTEGER    I, NINTV, NOUT 
      REAL       BREAK(NDATA), CSCOEF(4,NDATA), F,& 
                 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA) 
      INTRINSIC  FLOAT, SIN 
!                                  Define function 
      F(X) = SIN(15.0*X) 

!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Compute cubic spline interpolant 
      CALL CSINT (XDATA, FDATA, BREAK, CSCOEF) 
!                                  Get output unit number. 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’) 
      NINTV = NDATA - 1 
!                                  Print the interpolant and the error 
!                                  on a finer grid 
      DO 20  I=1, 2*NDATA - 1 
         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 
         WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),& 
                                     F(X) - CSVAL(X,BREAK,& 
                                     CSCOEF) 
   20 CONTINUE 
      END 

Output 
   X         Interpolant     Error 
0.000          0.000       0.000000 
0.050          0.809      -0.127025 
0.100          0.997       0.000000 
0.150          0.723       0.055214 
0.200          0.141       0.000000 
0.250         -0.549      -0.022789 
0.300         -0.978       0.000000 
0.350         -0.843      -0.016246 
0.400         -0.279       0.000000 
0.450          0.441       0.009348 
0.500          0.938       0.000000 
0.550          0.903       0.019947 
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0.600          0.412       0.000000 
0.650         -0.315      -0.004895 
0.700         -0.880       0.000000 
0.750         -0.938      -0.029541 
0.800         -0.537       0.000000 
0.850          0.148       0.034693 
0.900          0.804       0.000000 
0.950          1.086      -0.092559 
1.000          0.650       0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2INT/DC2INT. The 

reference is: 

CALL C2INT (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK) 

The additional argument is 

IWK — Work array of length NDATA. 

2. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be 
evaluated using CSDER (page 610). 

3. Note that column NDATA of CSCOEF is used as workspace. 

Description 

The routine CSINT computes a C 2 cubic spline interpolant to a set of data points (xi, fi) for i = 1, 
�, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are 
automatically determined by the program. These conditions correspond to the “not-a-knot” 
condition (see de Boor 1978), which requires that the third derivative of the spline be 
continuous at the second and next-to-last breakpoint. If N is 2 or 3, then the linear or quadratic 
interpolating polynomial is computed, respectively. 

If the data points arise from the values of a smooth (say C 4) function f, i.e. fi = f(xi), then the 
error will behave in a predictable fashion. Let � be the breakpoint vector for the above spline 
interpolant. Then, the maximum absolute error satisfies 

� �
� �
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For more details, see de Boor (1978, pages 55�56). 
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CSDEC 
Computes the cubic spline interpolant with specified derivative endpoint conditions. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input) The data 

point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

ILEFT — Type of end condition at the left endpoint.   (Input)  

ILEFT Condition 

   0  “Not-a-knot” condition 

   1  First derivative specified by DLEFT 

   2  Second derivative specified by DLEFT 

DLEFT — Derivative at left endpoint if ILEFT is equal to 1 or 2.   (Input) 
If ILEFT = 0, then DLEFT is ignored. 

IRIGHT — Type of end condition at the right endpoint.   (Input)  

IRIGHT Condition 

   0  “Not-a-knot” condition 

   1  First derivative specified by DRIGHT 

   2  Second derivative specified by DRIGHT 

DRIGHT — Derivative at right endpoint if IRIGHT is equal to 1 or 2.   (Input) If IRIGHT = 0 
then DRIGHT is ignored. 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 
representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   
(Output) 

Optional Arguments 
NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 
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FORTRAN 90 Interface 
Generic: CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT,              

 BREAK, CSCOEF [,…]) 

Specific:  The specific interface names are S_CSDEC and D_CSDEC. 

FORTRAN 77 Interface 
Single: CALL CSDEC (NDATA, XDATA, FDATA, ILEFT, DLEFT, IRIGHT,  

     DRIGHT, BREAK, CSCOEF) 

Double: The double precision name is DCSDEC. 

Example 1 
In Example 1, a cubic spline interpolant to a function f is computed. The value of the derivative 
at the left endpoint and the value of the second derivative at the right endpoint are specified. The 
values of this spline are then compared with the exact function values. 

      USE CSDEC_INT 
      USE UMACH_INT 
      USE CSVAL_INT 

      INTEGER    ILEFT, IRIGHT, NDATA 
      PARAMETER  (ILEFT=1, IRIGHT=2, NDATA=11) 
!  
      INTEGER    I, NINTV, NOUT 
      REAL       BREAK(NDATA), COS, CSCOEF(4,NDATA), DLEFT,& 
                 DRIGHT, F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA) 
      INTRINSIC  COS, FLOAT, SIN 
!                                  Define function 
      F(X) = SIN(15.0*X) 
!                                  Initialize DLEFT and DRIGHT 
      DLEFT  = 15.0*COS(15.0*0.0) 
      DRIGHT = -15.0*15.0*SIN(15.0*1.0) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Compute cubic spline interpolant 
      CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, & 
                  DRIGHT, BREAK, CSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’) 
      NINTV = NDATA - 1 
!                                  Print the interpolant on a finer grid 
      DO 20  I=1, 2*NDATA - 1 
         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 
         WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),& 
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                                     F(X) - CSVAL(X,BREAK,& 
                                     CSCOEF) 
   20 CONTINUE 
      END 

Output 
   X         Interpolant     Error 
0.000          0.000       0.000000 
0.050          0.675       0.006332 
0.100          0.997       0.000000 
0.150          0.759       0.019485 
0.200          0.141       0.000000 
0.250         -0.558      -0.013227 
0.300         -0.978       0.000000 
0.350         -0.840      -0.018765 
0.400         -0.279       0.000000 
0.450          0.440       0.009859 
0.500          0.938       0.000000 
0.550          0.902       0.020420 
0.600          0.412       0.000000 
0.650         -0.312      -0.007301 
0.700         -0.880       0.000000 
0.750         -0.947      -0.020391 
0.800         -0.537       0.000000 
0.850          0.182       0.000497 
0.900          0.804       0.000000 
0.950          0.959       0.035074 
1.000          0.650       0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2DEC/DC2DEC. The 

reference is: 

CALL C2DEC (NDATA, XDATA, FDATA, ILEFT, DLEFT,  
     IRIGHT, DRIGHT, BREAK, CSCOEF, IWK) 

The additional argument is: 

IWK — Work array of length NDATA. 

2. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be 
evaluated using CSDER (page 610). 

3. Note that column NDATA of CSCOEF is used as workspace. 

Description 

The routine CSDEC computes a C 2 cubic spline interpolant to a set of data points (xi, fi) for i = 1, 
�, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are to be 
selected by the user. The user may specify not-a-knot, first derivative, or second derivative at 
each endpoint (see de Boor 1978, Chapter 4).  
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If the data (including the endpoint conditions) arise from the values of a smooth (say C 4) 
function f, i.e. fi = f(xi), then the error will behave in a predictable fashion. Let � be the 
breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies 

� �

� �

� �1 1

44
, ,N N

f s C f
� � � �

�� �  

where 

12, ,
: i ii N

� � �
�

�

� �

�

 

For more details, see de Boor (1978, Chapter 4 and 5). 

Additional Examples 

Example 2 
In Example 2, we compute the natural cubic spline interpolant to a function f by forcing the 
second derivative of the interpolant to be zero at both endpoints. As in the previous example, we 
compare the exact function values with the values of the spline. 

      USE CSDEC_INT 
      USE UMACH_INT 
      INTEGER    ILEFT, IRIGHT, NDATA 
      PARAMETER  (ILEFT=2, IRIGHT=2, NDATA=11) 
!  
      INTEGER    I, NINTV, NOUT 
      REAL       BREAK(NDATA), CSCOEF(4,NDATA), DLEFT, DRIGHT,& 
                 F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA) 
      INTRINSIC  FLOAT, SIN 
!                                  Initialize DLEFT and DRIGHT 
      DATA DLEFT/0./, DRIGHT/0./ 
!                                  Define function 
      F(X) = SIN(15.0*X) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Compute cubic spline interpolant 
      CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT,& 
                  BREAK, CSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’) 
      NINTV = NDATA - 1 
!                                  Print the interpolant on a finer grid 
      DO 20  I=1, 2*NDATA - 1 
         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 
         WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),& 
                                     F(X) - CSVAL(X,BREAK,& 
                                     CSCOEF) 
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   20 CONTINUE 
      END 

Output 
    X         Interpolant     Error 
0.000          0.000       0.000000 
0.050          0.667       0.015027 
0.100          0.997       0.000000 
0.150          0.761       0.017156 
0.200          0.141       0.000000 
0.250         -0.559      -0.012609 
0.300         -0.978       0.000000 
0.350         -0.840      -0.018907 
0.400         -0.279       0.000000 
0.450          0.440       0.009812 
0.500          0.938       0.000000 
0.550          0.902       0.020753 
0.600          0.412       0.000000 
0.650         -0.311      -0.008586 
0.700         -0.880       0.000000 
0.750         -0.952      -0.015585 
0.800         -0.537       0.000000 

 

CSHER 
Computes the Hermite cubic spline interpolant. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

DFDATA — Array of length NDATA containing the values of the derivative.   (Input) 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 
representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   
(Output) 

Optional Arguments 
NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 
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FORTRAN 90 Interface 
Generic: CALL CSHER (XDATA, FDATA, DFDATA, BREAK, CSCOEF [,…]) 

Specific:  The specific interface names are S_CSHER and D_CSHER. 

FORTRAN 77 Interface 
Single: CALL CSHER (NDATA, XDATA, FDATA, BREAK, CSCOEF) 

Double: The double precision name is DCSHER. 

Example 
In this example, a cubic spline interpolant to a function f is computed. The value of the function 
f and its derivative f � are computed on the interpolation nodes and passed to CSHER. The values 
of this spline are then compared with the exact function values. 

      USE CSHER_INT 
      USE UMACH_INT 
      USE CSVAL_INT 

      INTEGER    NDATA 
      PARAMETER  (NDATA=11) 
!  
      INTEGER    I, NINTV, NOUT 
      REAL       BREAK(NDATA), COS, CSCOEF(4,NDATA), DF,& 
                 DFDATA(NDATA), F, FDATA(NDATA), FLOAT, SIN, X,& 
                 XDATA(NDATA) 
      INTRINSIC  COS, FLOAT, SIN 
!                                  Define function and derivative 
      F(X)  = SIN(15.0*X) 
      DF(X) = 15.0*COS(15.0*X) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I)  = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I)  = F(XDATA(I)) 
         DFDATA(I) = DF(XDATA(I)) 
   10 CONTINUE 
!                                  Compute cubic spline interpolant 
      CALL CSHER (XDATA, FDATA, DFDATA, BREAK, CSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’) 
      NINTV = NDATA - 1 
!                                  Print the interpolant on a finer grid 
      DO 20  I=1, 2*NDATA - 1 
         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 
         WRITE (NOUT,’(2F15.3, F15.6)’) X, CSVAL(X,BREAK,CSCOEF)& 
                                      , F(X) - CSVAL(X,BREAK,& 
                                      CSCOEF) 
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   20 CONTINUE 
      END 

Output 
   X         Interpolant     Error 
0.000          0.000       0.000000 
0.050          0.673       0.008654 
0.100          0.997       0.000000 
0.150          0.768       0.009879 
0.200          0.141       0.000000 
0.250         -0.564      -0.007257 
0.300         -0.978       0.000000 
0.350         -0.848      -0.010906 
0.400         -0.279       0.000000 
0.450          0.444       0.005714 
0.500          0.938       0.000000 
0.550          0.911       0.011714 
0.600          0.412       0.000000 
0.650         -0.315      -0.004057 
0.700         -0.880       0.000000 
0.750         -0.956      -0.012288 
0.800         -0.537       0.000000 
0.850          0.180       0.002318 
0.900          0.804       0.000000 
0.950          0.981       0.012616 
1.000          0.650       0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2HER/DC2HER. The 

reference is: 

CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK,  
     CSCOEF, IWK) 

The additional argument is: 

IWK — Work array of length NDATA. 

2. Informational error 
Type Code 

   4    2 The XDATA values must be distinct. 

3. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be 
evaluated using CSDER (page 610). 

4. Note that column NDATA of CSCOEF is used as workspace. 

Description 

The routine CSHER computes a C 1 cubic spline interpolant to the set of data points 
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for i = 1, �, NDATA = N. The breakpoints of the spline are the abscissas. 

If the data points arise from the values of a smooth (say C 4) function f, i.e.,  

( ) and ( )i i i if f x f f x� �� �  

then the error will behave in a predictable fashion. Let � be the 

breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies 
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For more details, see de Boor (1978, page 51). 

CSAKM 
Computes the Akima cubic spline interpolant. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input)  

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 
representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   
(Output) 

Optional Arguments 
NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 
Generic: CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF [,…]) 

Specific:  The specific interface names are S_CSAKM and D_CSAKM. 
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FORTRAN 77 Interface 
Single: CALL CSAKM (NDATA, XDATA, FDATA, BREAK, CSCOEF) 

Double: The double precision name is DCSAKM. 

Example 
In this example, a cubic spline interpolant to a function f is computed. The values of this spline 
are then compared with the exact function values. 

      USE CSAKM_INT 
      USE UMACH_INT 
      USE CSVAL_INT 

      INTEGER    NDATA 
      PARAMETER  (NDATA=11) 
!  
      INTEGER    I, NINTV, NOUT 
      REAL       BREAK(NDATA), CSCOEF(4,NDATA), F,& 
                 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA) 
      INTRINSIC  FLOAT, SIN 
!                                  Define function 
      F(X) = SIN(15.0*X) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Compute cubic spline interpolant 
      CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’) 
      NINTV = NDATA - 1 
!                                  Print the interpolant on a finer grid 
      DO 20  I=1, 2*NDATA - 1 
         X = FLOAT(I-1)/FLOAT(2*NDATA-2) 
         WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),& 
                                     F(X) - CSVAL(X,BREAK,& 
                                     CSCOEF) 
   20 CONTINUE 
      END 
 

Output 
   X         Interpolant     Error 
0.000          0.000       0.000000 
0.050          0.818      -0.135988 
0.100          0.997       0.000000 
0.150          0.615       0.163487 
0.200          0.141       0.000000 
0.250         -0.478      -0.093376 
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0.300         -0.978       0.000000 
0.350         -0.812      -0.046447 
0.400         -0.279       0.000000 
0.450          0.386       0.064491 
0.500          0.938       0.000000 
0.550          0.854       0.068274 
0.600          0.412       0.000000 
0.650         -0.276      -0.043288 
0.700         -0.880       0.000000 
0.750         -0.889      -0.078947 
0.800         -0.537       0.000000 
0.850          0.149       0.033757 
0.900          0.804       0.000000 
0.950          0.932       0.061260 
1.000          0.650       0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2AKMD/C2AKM. The 

reference is: 

CALL C2AKM (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK) 

The additional argument is: 

IWK — Work array of length NDATA. 

2. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be 
evaluated using CSDER (page 610). 

3. Note that column NDATA of CSCOEF is used as workspace. 

Description 

The routine CSAKM computes a C 1 cubic spline interpolant to a set of data points (xi, fi) for i = 1, 
�, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are 
automatically determined by the program; see Akima (1970) or de Boor (1978). 

If the data points arise from the values of a smooth (say C 4) function f, i.e. fi = f(xi), then the 
error will behave in a predictable fashion. Let � be the breakpoint vector for the above spline 
interpolant. Then, the maximum absolute error satisfies 

� �
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The routine CSAKM is based on a method by Akima (1970) to combat wiggles in the interpolant. 
The method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials 
are not reproduced. (However, linear polynomials are reproduced.) 
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CSCON 
Computes a cubic spline interpolant that is consistent with the concavity of the data. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input)  

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

IBREAK — The number of breakpoints.   (Output)  
It will be less than 2 * NDATA. 

BREAK — Array of length IBREAK containing the breakpoints for the piecewise cubic 
representation in its first IBREAK positions.   (Output)  
The dimension of BREAK must be at least 2 * NDATA. 

CSCOEF — Matrix of size 4 by N where N is the dimension of BREAK.   (Output)  
The first IBREAK � 1 columns of CSCOEF contain the local coefficients of the cubic 
pieces. 

Optional Arguments 
NDATA — Number of data points.   (Input)  

NDATA must be at least 3. 
Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 
Generic: CALL CSCON (XDATA, FDATA, IBREAK, BREAK, CSCOEF [,…]) 

Specific:  The specific interface names are S_CSCON and D_CSCON. 

FORTRAN 77 Interface 
Single: CALL CSCON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF) 

Double: The double precision name is DCSCON. 

Example 
We first compute the shape-preserving interpolant using CSCON, and display the coefficients and 
breakpoints. Second, we interpolate the same data using CSINT (page 590) in a program not 
shown and overlay the two results. The graph of the result from CSINT is represented by the 
dashed line. Notice the extra inflection points in the curve produced by CSINT. 
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      USE CSCON_INT 
      USE UMACH_INT 
      USE WRRRL_INT 

!                                  Specifications 
      INTEGER    NDATA 
      PARAMETER  (NDATA=9) 
!  
      INTEGER    IBREAK, NOUT 
      REAL       BREAK(2*NDATA), CSCOEF(4,2*NDATA), FDATA(NDATA),& 
                 XDATA(NDATA) 
      CHARACTER  CLABEL(14)*2, RLABEL(4)*2 
!  
      DATA XDATA/0.0, .1, .2, .3, .4, .5, .6, .8, 1./ 
      DATA FDATA/0.0, .9, .95, .9, .1, .05, .05, .2, 1./ 
      DATA RLABEL/’ 1’, ’ 2’, ’ 3’, ’ 4’/ 
      DATA CLABEL/’  ’, ’ 1’, ’ 2’, ’ 3’, ’ 4’, ’ 5’, ’ 6’,& 
           ’ 7’, ’ 8’, ’ 9’, ’10’, ’11’, ’12’, ’13’/ 
!                                  Compute cubic spline interpolant 
      CALL CSCON (XDATA, FDATA, IBREAK, BREAK, CSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Print the BREAK points and the 
!                                  coefficients (CSCOEF) for 
!                                  checking purposes. 
      WRITE (NOUT,’(1X,A,I2)’) ’IBREAK = ’, IBREAK 
      CALL WRRRL (’BREAK’, BREAK, RLABEL, CLABEL, 1, IBREAK, 1, & 
                  FMT=’(F9.3)’) 
      CALL WRRRL (’CSCOEF’, CSCOEF, RLABEL, CLABEL, 4, IBREAK, 4, & 
                  FMT=’(F9.3)’) 
      END 
 

Output 
IBREAK = 13 
                               BREAK 
           1          2          3          4          5          6 
1      0.000      0.100      0.136      0.200      0.259      0.300 
 
           7          8          9         10         11         12 
1      0.400      0.436      0.500      0.600      0.609      0.800 
 
          13 
1      1.000 
 
                              CSCOEF 
           1          2          3          4          5          6 
1      0.000      0.900      0.942      0.950      0.958      0.900 
2     11.886      3.228      0.131      0.131      0.131    -4.434 
3      0.000   -173.170      0.000      0.000      0.000   220.218 
4  -1731.699   4841.604      0.000      0.000  -5312.082  4466.875 
 
           7          8          9         10         11         12 
1      0.100      0.050      0.050      0.050      0.050      0.200 
2     -4.121      0.000      0.000      0.000      0.000      2.356 
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3    226.470      0.000      0.000      0.000      0.000     24.664 
4  -6222.348      0.000      0.000      0.000    129.115    123.321 
 
          13 
1      1.000 
2      0.000 
3      0.000 
4      0.000 

 

Figure 3-4   CSCON vs. CSINT 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2CON/DC2CON. The 

reference is: 

CALL C2CON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF, ITMAX,  
XSRT, FSRT, A, Y, DIVD, ID, WK) 

The additional arguments are as follows: 

ITMAX — Maximum number of iterations of Newton’s method.   (Input) 

XSRT — Work array of length NDATA to hold the sorted XDATA values. 

FSRT — Work array of length NDATA to hold the sorted FDATA values. 

A — Work array of length NDATA. 

Y — Work array of length NDATA � 2. 
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DIVD — Work array of length NDATA � 2. 

ID — Integer work array of length NDATA. 

WK — Work array of length 5 * (NDATA � 2). 

2 Informational errors  
Type Code 

   3    16 Maximum number of iterations exceeded, call C2CON/DC2CON to set 
a larger number for ITMAX. 

   4    3 The XDATA values must be distinct. 

3. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be 
evaluated using CSDER (page 610). 

4. The default value for ITMAX is 25. This can be reset by calling C2CON/DC2CON directly. 

Descritpion 
The routine CSCON computes a cubic spline interpolant to n = NDATA data points {xi, fi} for i = 
1, �, n. For ease of explanation, we will assume that xi < xi + 1, although it is not necessary for 
the user to sort these data values. If the data are strictly convex, then the computed spline is 
convex, C 2, and minimizes the expression 

� �
1

2
nx

x
g ���  

over all convex C 1 functions that interpolate the data. In the general case when the data have 
both convex and concave regions, the convexity of the spline is consistent with the data and the 
above integral is minimized under the appropriate constraints. For more information on this 
interpolation scheme, we refer the reader to Micchelli et al. (1985) and Irvine et al. (1986). 

One important feature of the splines produced by this subroutine is that it is not possible, a 
priori, to predict the number of breakpoints of the resulting interpolant. In most cases, there will 
be breakpoints at places other than data locations. The method is nonlinear; and although the 
interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear 
polynomials are reproduced.) This routine should be used when it is important to preserve the 
convex and concave regions implied by the data. 

CSPER 
Computes the cubic spline interpolant with periodic boundary conditions. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input)  

The data point abscissas must be distinct. 



 

 
 

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 607 

 

 

 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 
representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   
(Output) 

                              Optional Arguments 

NDATA — Number of data points.   (Input)  
NDATA must be at least 4. 
Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 
Generic: CALL CSPER (XDATA, FDATA, BREAK, CSCOEF [,…]) 

Specific:  The specific interface names are S_CSPER and D_CSPER. 

FORTRAN 77 Interface 
Single: CALL CSPER (NDATA, XDATA, FDATA, BREAK, CSCOEF) 

Double: The double precision name is DCSPER. 

Example 
In this example, a cubic spline interpolant to a function f is computed. The values of this spline 
are then compared with the exact function values. 

      USE IMSL_LIBRARIES 
      INTEGER    NDATA 
      PARAMETER  (NDATA=11) 
!  
      INTEGER    I, NINTV, NOUT 
      REAL       BREAK(NDATA), CSCOEF(4,NDATA), F,& 
                 FDATA(NDATA), FLOAT, H, PI, SIN, X, XDATA(NDATA) 
      INTRINSIC  FLOAT, SIN 
!  
!                                  Define function 
      F(X) = SIN(15.0*X) 
!                                  Set up a grid 
      PI = CONST(’PI’) 
      H = 2.0*PI/15.0/10.0 
      DO 10  I=1, NDATA 
         XDATA(I) = H*FLOAT(I-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Round off will cause FDATA(11) to 
!                                  be nonzero; this would produce a 



 

 
 

608 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY 

 

 

 

!                                  warning error since FDATA(1) is zero. 
!                                  Therefore, the value of FDATA(1) is 
!                                  used rather than the value of 
!                                  FDATA(11). 
      FDATA(NDATA) = FDATA(1) 
!  
!                                  Compute cubic spline interpolant 
      CALL CSPER (XDATA, FDATA, BREAK, CSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’) 
      NINTV = NDATA - 1 
      H     = H/2.0 
!                                  Print the interpolant on a finer grid 
      DO 20  I=1, 2*NDATA - 1 
         X = H*FLOAT(I-1) 
         WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),& 
                                     F(X) - CSVAL(X,BREAK,& 
                                     CSCOEF) 
   20 CONTINUE 
      END 

Output 
       X         Interpolant     Error 

0.000          0.000       0.000000 
0.021          0.309       0.000138 
0.042          0.588       0.000000 
0.063          0.809       0.000362 
0.084          0.951       0.000000 
0.105          1.000       0.000447 
0.126          0.951       0.000000 
0.147          0.809       0.000362 
0.168          0.588       0.000000 
0.188          0.309       0.000138 
0.209          0.000       0.000000 
0.230         -0.309      -0.000138 
0.251         -0.588       0.000000 
0.272         -0.809      -0.000362 
0.293         -0.951       0.000000 
0.314         -1.000      -0.000447 
0.335         -0.951       0.000000 
0.356         -0.809      -0.000362 
0.377         -0.588       0.000000 
0.398         -0.309      -0.000138 
0.419          0.000       0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2PER/DC2PER. The 

reference is: 
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CALL C2PER (NDATA, XDATA, FDATA, BREAK, CSCOEF, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 6 * NDATA. 

IWK — Work array of length NDATA. 

2. Informational error 
Type  Code 

   3    1 The data set is not periodic, i.e., the function values at the smallest 
and largest XDATA points are not equal. The value at the smallest 
XDATA point is used. 

3. The cubic spline can be evaluated using CSVAL (page 609) and its derivative can be 
evaluated using CSDER (page 610). 

Description  

The routine CSPER computes a C2 cubic spline interpolant to a set of data points (xi� fi) for i = 1� 
�� NDATA = N. The breakpoints of the spline are the abscissas. The program enforces periodic 
endpoint conditions. This means that the spline s satisfies s(a) = s(b)� s�(a) = s�(b)� and s�(a) = s�
(b), where a is the leftmost abscissa and b is the rightmost abscissa. If the ordinate values 
corresponding to a and b are not equal, then a warning message is issued. The ordinate value at 
b is set equal to the ordinate value at a and the interpolant is computed. 

If the data points arise from the values of a smooth (say C 4) periodic function f, i.e. fi = f(xi), 
then the error will behave in a predictable fashion. Let � be the breakpoint vector for the above 
spline interpolant. Then, the maximum absolute error satisfies 

� �

� �

� �1 1
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For more details, see de Boor (1978, pages 320�322). 

CSVAL 
This function evaluates a cubic spline. 

Function Return Value 
CSVAL — Value of the polynomial at X.   (Output) 
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Required Arguments 
X — Point at which the spline is to be evaluated.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic 
representation.   (Input)  
BREAK must be strictly increasing. 

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic 
pieces.   (Input) 

Optional Arguments 
NINTV — Number of polynomial pieces.   (Input) 

FORTRAN 90 Interface 
Generic: CSVAL (X, BREAK, CSCOEF[,…]) 

Specific:  The specific interface names are S_CSVAL and D_CSVAL. 

FORTRAN 77 Interface 
Single: CSVAL(X, NINTV, BREAK, CSCOEF) 

Double: The double precision function name is DCSVAL. 

Example 
For an example of the use of CSVAL, see IMSL routine CSINT (page 590). 

Description 
The routine CSVAL evaluates a cubic spline at a given point. It is a special case of the routine 
PPDER (page 684), which evaluates the derivative of a piecewise polynomial. (The value of a 
piecewise polynomial is its zero-th derivative and a cubic spline is a piecewise polynomial of 
order 4.) The routine PPDER is based on the routine PPVALU in de Boor (1978, page 89). 

 

 

CSDER 
This function evaluates the derivative of a cubic spline. 

Function Return Value 
CSDER —  Value of the IDERIV-th derivative of the polynomial at X.   (Output) 
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Required Arguments 
IDERIV — Order of the derivative to be evaluated.   (Input) 

In particular, IDERIV = 0 returns the value of the polynomial. 

X — Point at which the polynomial is to be evaluated.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic 
representation.   (Input)  
BREAK must be strictly increasing. 

CSCOEF —  Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic 
pieces.   (Input) 

Optional Arguments 
NINTV —  Number of polynomial pieces.   (Input) 

Default: NINTV = size (BREAK,1) – 1. 

FORTRAN 90 Interface 
Generic: CSDER (IDERIV, X, BREAK, CSCOEF, CSDER [,…]) 

Specific:  The specific interface names are S_CSDER and D_CSDER. 

FORTRAN 77 Interface 
Single: CSDER(IDERIV, X, NINTV, BREAK, CSCOEF) 

Double: The double precision function name is DCSDER. 

Example 
In this example, we compute a cubic spline interpolant to a function f using IMSL routine 
CSINT (page 590). The values of the spline and its first and second derivatives are computed 
using CSDER. These values can then be compared with the corresponding values of the 
interpolated function. 

      USE CSDER_INT 
      USE CSINT_INT 
      USE UMACH_INT 

      INTEGER    NDATA 
      PARAMETER  (NDATA=10) 
!  
      INTEGER    I, NINTV, NOUT 
      REAL       BREAK(NDATA), CDDF, CDF, CF, COS, CSCOEF(4,NDATA),& 
                 DDF, DF, F, FDATA(NDATA), FLOAT, SIN, X,& 
                 XDATA(NDATA) 
      INTRINSIC  COS, FLOAT, SIN 
!                                  Define function and derivatives 
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      F(X)   = SIN(15.0*X) 
      DF(X)  = 15.0*COS(15.0*X) 
      DDF(X) = -225.0*SIN(15.0*X) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Compute cubic spline interpolant 
      CALL CSINT (XDATA, FDATA, BREAK, CSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
99999 FORMAT (9X, ’X’, 8X, ’S(X)’, 5X, ’Error’, 6X, ’S’’(X)’, 5X,& 
             ’Error’, 6X, ’S’’’’(X)’, 4X, ’Error’, /) 
      NINTV = NDATA - 1 
!                                  Print the interpolant on a finer grid 
      DO 20  I=1, 2*NDATA 
         X    = FLOAT(I-1)/FLOAT(2*NDATA-1) 
         CF   = CSDER(0,X,BREAK,CSCOEF) 
         CDF  = CSDER(1,X,BREAK,CSCOEF) 
         CDDF = CSDER(2,X,BREAK,CSCOEF) 
         WRITE (NOUT,’(F11.3, 3(F11.3, F11.6))’) X, CF, F(X) - CF,& 
                                               CDF, DF(X) - CDF,& 
                                               CDDF, DDF(X) - CDDF 
   20 CONTINUE 
      END 

Output 
   X        S(X)     Error      S’(X)     Error      S’’(X)    Error 
 
0.000      0.000   0.000000     26.285 -11.284739   -379.458 379.457794 
0.053      0.902  -0.192203      8.841   1.722460   -283.411 123.664734 
0.105      1.019  -0.019333     -3.548   3.425718   -187.364 -37.628586 
0.158      0.617   0.081009    -10.882   0.146207    -91.317 -65.824875 
0.211     -0.037   0.021155    -13.160  -1.837700      4.730  -1.062027 
0.263     -0.674  -0.046945    -10.033  -0.355268    117.916  44.391640 
0.316     -0.985  -0.015060     -0.719   1.086203    235.999 -11.066727 
0.368     -0.682  -0.004651     11.314  -0.409097    154.861  -0.365387 
0.421      0.045  -0.011915     14.708   0.284042    -25.887  18.552732 
0.474      0.708   0.024292      9.508   0.702690   -143.785 -21.041260 
0.526      0.978   0.020854      0.161  -0.771948   -211.402 -13.411087 
0.579      0.673   0.001410    -11.394   0.322443   -163.483  11.674103 
0.632     -0.064   0.015118    -14.937  -0.045511     28.856 -17.856323 
0.684     -0.724  -0.019246     -8.859  -1.170871    163.866   3.435547 
0.737     -0.954  -0.044143      0.301   0.554493    184.217  40.417282 
0.789     -0.675   0.012143     10.307   0.928152    166.021 -16.939514 
0.842      0.027   0.038176     15.015  -0.047344     12.914 -27.575521 
0.895      0.764  -0.010112     11.666  -1.819128   -140.193 -29.538193 
0.947      1.114  -0.116304      0.258  -1.357680   -293.301  68.905701 
1.000      0.650   0.000000    -19.208   7.812407   -446.408 300.092896 
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Description 
The function CSDER evaluates the derivative of a cubic spline at a given point. It is a special 
case of the routine PPDER (page 684), which evaluates the derivative of a piecewise polynomial. 
(A cubic spline is a piecewise polynomial of order 4.) The routine PPDER is based on the routine 
PPVALU in de Boor (1978, page 89). 

CS1GD 
Evaluates the derivative of a cubic spline on a grid. 

Required Arguments 
IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the values of the cubic spline. 

XVEC — Array of length N containing the points at which the cubic spline is to be evaluated.   
(Input)  
The points in XVEC should be strictly increasing. 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic 
representation.   (Input)  
BREAK must be strictly increasing. 

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic 
pieces.   (Input) 

VALUE —  Array of length N containing the values of the IDERIV-th derivative of the cubic 
spline at the points in XVEC.   (Output) 

Optional Arguments 
N — Length of vector XVEC.   (Input) 

Default: N = size (XVEC,1). 

NINTV — Number of polynomial pieces.   (Input) 
Default: NINTV = size (BREAK,1) – 1. 

FORTRAN 90 Interface 
Generic: CALL CS1GD (IDERIV, XVEC, BREAK, CSCOEF, VALUE [,…]) 

Specific:  The specific interface names are S_CS1GD and D_CS1GD. 

FORTRAN 77 Interface 
Single: CALL CS1GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF, VALUE) 
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Double: The double precision name is DCS1GD. 

Example 
To illustrate the use of CS1GD, we modify the example program for CSINT (page 590). In this 
example, a cubic spline interpolant to F is computed. The values of this spline are then 
compared with the exact function values. The routine CS1GD is based on the routine PPVALU in 
de Boor (1978, page 89). 

      USE CS1GD_INT 
      USE CSINT_INT 
      USE UMACH_INT 
      USE CSVAL_INT 
!                                  Specifications 
      INTEGER    NDATA, N 
      PARAMETER  (NDATA=11, N=2*NDATA-1) 
!  
      INTEGER    I, NINTV, NOUT 
      REAL       BREAK(NDATA), CSCOEF(4,NDATA), F,& 
                 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA),& 
                 FVALUE(N), VALUE(N), XVEC(N) 
      INTRINSIC  FLOAT, SIN 
!                                  Define function 
      F(X) = SIN(15.0*X) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Compute cubic spline interpolant 
      CALL CSINT (XDATA, FDATA, BREAK, CSCOEF) 
      DO 20  I=1, N 
         XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2) 
         FVALUE(I) = F(XVEC(I)) 
   20  CONTINUE 
      IDERIV = 0 
      NINTV = NDATA - 1 
      CALL CS1GD (IDERIV, XVEC, BREAK, CSCOEF, VALUE) 
!                                  Get output unit number. 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’) 
!                                  Print the interpolant and the error 
!                                  on a finer grid 
      DO 30 J=1, N 
         WRITE (NOUT,’(2F15.3,F15.6)’) XVEC(J), VALUE(J),& 
                                     FVALUE(J)-VALUE(J) 
   30 CONTINUE 
      END 

Output 
   X         Interpolant     Error 
0.000          0.000       0.000000 
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0.050          0.809      -0.127025 
0.100          0.997       0.000000 
0.150          0.723       0.055214 
0.200          0.141       0.000000 
0.250         -0.549      -0.022789 
0.300         -0.978       0.000000 
0.350         -0.843      -0.016246 
0.400         -0.279       0.000000 
0.450          0.441       0.009348 
0.500          0.938       0.000000 
0.550          0.903       0.019947 
0.600          0.412       0.000000 
0.650         -0.315      -0.004895 
0.700         -0.880       0.000000 
0.750         -0.938      -0.029541 
0.800         -0.537       0.000000 
0.850          0.148       0.034693 
0.900          0.804       0.000000 
0.950          1.086      -0.092559 
1.000          0.650       0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C21GD/DC21GD. The 

reference is: 

CALL C21GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF,VALUE, IWK, 
WORK1, WORK2) 

The additional arguments are as follows: 

IWK — Array of length N. 

WORK1 — Array of length N. 

WORK2 — Array of length N. 

2. Informational error 
Type Code 

   4    4 The points in XVEC must be strictly increasing. 

Description 
The routine CS1GD evaluates a cubic spline (or its derivative) at a vector of points. That is, given 
a vector x of length n satisfying xi < xi + 1 for i = 1, �, n � 1, a derivative value j, and a cubic 
spline s that is represented by a breakpoint sequence and coefficient matrix this routine returns 
the values 

s(j)(xi) i = 1, �, n 

in the array VALUE. The functionality of this routine is the same as that of CSDER (page 610) 
called in a loop, however CS1GD should be much more efficient. 
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CSITG 
This function evaluates the integral of a cubic spline. 

Function Return Value 
CSITG — Value of the integral of the spline from A to B.   (Output) 

Required Arguments 
A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic 
representation.   (Input)  
BREAK must be strictly increasing. 

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic 
pieces.   (Input) 

Optional Arguments 
NINTV — Number of polynomial pieces.   (Input) 

Default: NINTV = size (BREAK,1) – 1. 

FORTRAN 90 Interface 
Generic: CSITG (A, B, BREAK, CSCOEF[,…]) 

Specific:  The specific interface names are S_CSITG and D_CSITG. 

FORTRAN 77 Interface 
Single: CSITG(A, B, NINTV, BREAK, CSCOEF) 

Double: The double precision function name is DCSITG. 

Example 

This example computes a cubic spline interpolant to the function x2 using CSINT (page 590) and 
evaluates its integral over the intervals [0., .5] and [0., 2.]. Since CSINT uses the not-a knot 
condition, the interpolant reproduces x2� hence the integral values are 1/24 and 8/3, respectively. 

      USE CSITG_INT 
      USE UMACH_INT 
      USE CSINT_INT 
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      INTEGER    NDATA 
      PARAMETER  (NDATA=10) 
!  
      INTEGER    I, NINTV, NOUT 
      REAL       A, B, BREAK(NDATA), CSCOEF(4,NDATA), ERROR,& 
                 EXACT, F, FDATA(NDATA), FI, FLOAT, VALUE, X,& 
                 XDATA(NDATA) 
      INTRINSIC  FLOAT 
!                                  Define function and integral 
      F(X)  = X*X 
      FI(X) = X*X*X/3.0 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Compute cubic spline interpolant 
      CALL CSINT (XDATA, FDATA, BREAK, CSCOEF) 
!                                  Compute the integral of F over 
!                                  [0.0,0.5] 
      A     = 0.0 
      B     = 0.5 
      NINTV = NDATA - 1 
      VALUE = CSITG(A,B,BREAK,CSCOEF) 
      EXACT = FI(B) - FI(A) 
      ERROR = EXACT - VALUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Print the result 
      WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR 
!                                  Compute the integral of F over 
!                                  [0.0,2.0] 
      A     = 0.0 
      B     = 2.0 
      VALUE = CSITG(A,B,BREAK,CSCOEF) 
      EXACT = FI(B) - FI(A) 
      ERROR = EXACT - VALUE 
!                                  Print the result 
      WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR 
99999 FORMAT (’ On the closed interval (’, F3.1, ’,’, F3.1,& 
             ’) we have :’, /, 1X, ’Computed Integral = ’, F10.5, /,& 
             1X, ’Exact Integral    = ’, F10.5, /, 1X, ’Error         ’& 
             , ’    = ’, F10.6, /, /) 
      END 

Output 
On the closed interval (0.0,0.5) we have : 
Computed Integral =    0.04167 
Exact Integral    =    0.04167 
Error             =   0.000000 
 
On the closed interval (0.0,2.0) we have : 
Computed Integral =    2.66666 
Exact Integral    =    2.66667 
Error             =   0.000006 
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Description 
The function CSITG evaluates the integral of a cubic spline over an interval. It is a special case 
of the routine PPITG (page 690), which evaluates the integral of a piecewise polynomial. (A 
cubic spline is a piecewise polynomial of order 4.) 

SPLEZ 
Computes the values of a spline that either interpolates or fits user-supplied data. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissae.   (Input)  

The data point abscissas must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

XVEC — Array of length N containing the points at which the spline function values are 
desired.   (Input)  
The entries of XVEC must be distinct. 

VALUE — Array of length N containing the spline values.   (Output) 
VALUE (I) = S(XVEC (I)) if IDER = 0� VALUE(I) = S�(XVEC (I)) if IDER = 1� and so 
forth, where S is the computed spline. 

Optional Arguments 
NDATA — Number of data points.   (Input)  

Default: NDATA = size (XDATA,1). 

All choices of ITYPE are valid if NDATA is larger than 6. More specifically, 

NDATA > ITYPE                or ITYPE = 1. 

NDATA > 3                         for ITYPE = 2, 3. 

NDATA > (ITYPE � 3)        for ITYPE = 4, 5� 6� 7� 8. 

NDATA > 3                         for ITYPE = 9� 10� 11� 12. 

NDATA > KORDER              for ITYPE = 13� 14� 15. 

ITYPE — Type of interpolant desired.   (Input)  
Default: ITYPE = 1. 

ITYPE 

1  yields CSINT 

2  yields CSAKM 
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3  yields CSCON 

4  yields BSINT-BSNAK K = 2 

5  yields BSINT-BSNAK K = 3 

6  yields BSINT-BSNAK K = 4 

7  yields BSINT-BSNAK K = 5 

8  yields BSINT-BSNAK K = 6 

9  yields CSSCV 

10  yields BSLSQ K = 2 

11  yields BSLSQ K = 3 

12  yields BSLSQ K = 4 

13  yields BSVLS K = 2 

14  yields BSVLS K = 3 

15  yields BSVLS K = 4 

IDER — Order of the derivative desired.   (Input) 
Default: IDER = 0. 

N — Number of function values desired.   (Input) 
Default: N = size (XVEC,1). 

FORTRAN 90 Interface 
Generic: CALL SPLEZ (XDATA, FDATA, XVEC, VALUE [,…]) 

Specific:  The specific interface names are S_SPLEZ and D_SPLEZ. 

FORTRAN 77 Interface 
Single: CALL SPLEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N, XVEC,  

                 VALUE) 

Double: The double precision name is DSPLEZ. 

Example 
In this example, all the ITYPE parameters are exercised. The values of the spline are then 
compared with the exact function values and derivatives. 
USE IMSL_LIBRARIES 
 INTEGER    NDATA, N 

      PARAMETER  (NDATA=21, N=2*NDATA-1) 
!                                  Specifications for local variables 
      INTEGER    I, IDER, ITYPE, NOUT 
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      REAL       FDATA(NDATA), FPVAL(N), FVALUE(N),& 
                 VALUE(N), XDATA(NDATA), XVEC(N), EMAX1(15),& 
                 EMAX2(15) 
!                                  Specifications for intrinsics 
      INTRINSIC  FLOAT, SIN, COS 
      REAL       FLOAT, SIN, COS 
!                                  Specifications for subroutines 
!  
      REAL       F, FP 
!  
!                                  Define a function 
      F(X)  = SIN(X*X) 
      FP(X) = 2*X*COS(X*X) 
!  
      CALL UMACH (2, NOUT) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
      DO 20  I=1, N 
         XVEC(I)    = 3.0*(FLOAT(I-1)/FLOAT(2*NDATA-2)) 
         FVALUE(I)  = F(XVEC(I)) 
         FPVAL(I) = FP(XVEC(I)) 
   20 CONTINUE 
!  
      WRITE (NOUT,99999) 
!                                  Loop to call SPLEZ for each ITYPE 
      DO 40  ITYPE=1, 15 
         DO 30  IDER=0, 1 
            CALL SPLEZ (XDATA, FDATA, XVEC, VALUE, ITYPE=ITYPE, & 
                        IDER=IDER) 
!                                 Compute the maximum error 
            IF (IDER .EQ. 0) THEN 
               CALL SAXPY (N, -1.0, FVALUE, 1, VALUE, 1) 
               EMAX1(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1))) 
            ELSE 
               CALL SAXPY (N, -1.0, FPVAL, 1, VALUE, 1) 
               EMAX2(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1))) 
            END IF 
   30  CONTINUE 
         WRITE (NOUT,’(I7,2F20.6)’) ITYPE, EMAX1(ITYPE), EMAX2(ITYPE) 
   40 CONTINUE 
!  
99999 FORMAT (4X, ’ITYPE’, 6X, ’Max error for f’, 5X,& 
              ’Max error for f’’’, /) 
      END 

Output 
ITYPE      Max error for f     Max error for f’ 
 
 1            0.014082            0.658018 
 2            0.024682            0.897757 
 3            0.020896            0.813228 
 4            0.083615            2.168083 
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 5            0.010403            0.508043 
 6            0.014082            0.658020 
 7            0.004756            0.228858 
 8            0.001070            0.077159 
 9            0.020896            0.813228 
10            0.392603            6.047916 
11            0.162793            1.983959 
12            0.045404            1.582624 
13            0.588370            7.680381 
14            0.752475            9.673786 
15            0.049340            1.713031 

Comments 
1. Workspace may be explicitly provided, if desired, by use of S2LEZ/DS2LEZ. The 

reference is: 

CALL S2LEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N, XVEC, VALUE, 
WRK, IWK) 

The additional arguments are as follows: 

WRK — Work array of length 32 * NDATA + 4 * N + 22. 

IWK — Work array of length MAX0(NDATA N) + N. 

2. Informational errors 
Type Code 

   4    1 XDATA entries are not unique. 
   4    2 XVEC entries are not unique. 

3. The workspace listed above is the maximum that is needed. Depending on the choice 
of ITYPE� the actual amount used may be less. If workspace is a critical resource, 
consult the explicit routines listed under ITYPE to see if less workspace can be used. 

Description 
This routine is designed to let the user experiment with various interpolation and smoothing 
routines in the library. 

The routine SPLEZ computes a spline interpolant to a set of data points (xi� fi) for i = 1���, 
NDATA if ITYPE = 1� �, 8. If ITYPE 	 9, various smoothing or least squares splines are 
computed. The output for this routine consists of a vector of values of the computed spline or its 
derivatives. Specifically, let i = IDER, n = N, v = XVEC, and y = VALUE, then if s is the computed 
spline we set 

yj = s(i)(vj) j = 1� �, n 

The routines called are listed above under the ITYPE heading. Additional documentation can be 
found by referring to these routines. 



 

 
 

622 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY 

 

 

 

BSINT 
Computes the spline interpolant, returning the B-spline coefficients. 

Required Arguments 
NDATA — Number of data points.   (Input) 

XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

KORDER — Order of the spline.   (Input) 
KORDER must be less than or equal to NDATA. 

XKNOT — Array of length NDATA + KORDER containing the knot sequence.   (Input) 
XKNOT must be nondecreasing. 

BSCOEF — Array of length NDATA containing the B-spline coefficients.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

Specific:  The specific interface names are S_BSINT and D_BSINT. 

FORTRAN 77 Interface 
Single: CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 

Double: The double precision name is DBSINT. 

Example 
In this example, a spline interpolant s, to 

� �f x x�  

is computed. The interpolated values are then compared with the exact function values using the 
IMSL routine BSVAL (page 641). 

      USE BSINT_INT 
      USE BSNAK_INT 
      USE UMACH_INT 
      USE BSVAL_INT 
      INTEGER    KORDER, NDATA, NKNOT 
      PARAMETER  (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER) 
!  
      INTEGER    I, NCOEF, NOUT 
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      REAL       BSCOEF(NDATA), BT, F, FDATA(NDATA), FLOAT,& 
                 SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT 
      INTRINSIC  FLOAT, SQRT 
!                                  Define function 
      F(X) = SQRT(X) 
!                                  Set up interpolation points 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Interpolate 
      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print on a finer grid 
      NCOEF = NDATA 
      XT    = XDATA(1) 
!                                  Evaluate spline 
      BT    = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF) 
      WRITE (NOUT,99998) XT, BT, F(XT) - BT 
      DO 20  I=2, NDATA 
         XT = (XDATA(I-1)+XDATA(I))/2.0 
!                                  Evaluate spline 
         BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF) 
         WRITE (NOUT,99998) XT, BT, F(XT) - BT 
         XT = XDATA(I) 
!                                  Evaluate spline 
         BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF) 
         WRITE (NOUT,99998) XT, BT, F(XT) - BT 
   20 CONTINUE 
99998 FORMAT (’ ’, F6.4, 15X, F8.4, 12X, F11.6) 
99999 FORMAT (/, 6X, ’X’, 19X, ’S(X)’, 18X, ’Error’, /) 
      END 
 

Output 
     X                   S(X)                  Error 
0.0000                 0.0000               0.000000 
0.1250                 0.2918               0.061781 
0.2500                 0.5000               0.000000 
0.3750                 0.6247              -0.012311 
0.5000                 0.7071               0.000000 
0.6250                 0.7886               0.002013 
0.7500                 0.8660               0.000000 
0.8750                 0.9365              -0.001092 
1.0000                 1.0000               0.000000 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of B2INT/DB2INT. The 

reference is: 

CALL B2INT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF, WK1, 
WK2, WK3, IWK) 

The additional arguments are as follows: 

WK1 — Work array of length (5 * KORDER � 2) * NDATA. 

WK2 — Work array of length NDATA. 

WK3 — Work array of length NDATA. 

IWK — Work array of length NDATA. 

2. Informational errors 
Type  Code 

   3          1      The interpolation matrix is ill-conditioned. 
   4          3      The XDATA values must be distinct. 
   4     4 Multiplicity of the knots cannot exceed the order of the spline. 
   4     5 The knots must be nondecreasing. 
   4  15 The I-th smallest element of the data point array must be greater than 

the Ith knot and less than the (I + KORDER)-th knot. 
   4  16 The largest element of the data point array must be greater than the 

(NDATA)-th knot and less than or equal to the (NDATA + KORDER)-th 
knot. 

   4  17 The smallest element of the data point array must be greater than or 
equal to the first knot and less than the (KORDER + 1)st knot. 

3. The spline can be evaluated using BSVAL (page 641), and its derivative can be evaluated 
using BSDER (page 643). 

 

Description 
Following the notation in de Boor (1978, page 108), let Bj = Bj,k,t denote the j-th B-spline of 
order k with respect to the knot sequence t. Then, BSINT computes the vector a satisfying 

� �
1

N

j j i i
j

a B x f
�

��  

and returns the result in BSCOEF = a. This linear system is banded with at most k � 1 
subdiagonals and k � 1 superdiagonals. The matrix 

A = (Bj (xi)) 
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is totally positive and is invertible if and only if the diagonal entries are nonzero. The routine 
BSINT is based on the routine SPLINT by de Boor (1978, page 204).  

The routine BSINT produces the coefficients of the B-spline interpolant of order KORDER with 
knot sequence XKNOT to the data (xi, fi) for i = 1 to NDATA, where x = XDATA and f = FDATA. Let 
t = XKNOT, k = KORDER, and N = NDATA. First, BSINT sorts the XDATA vector and stores the 
result in x. The elements of the FDATA vector are permuted appropriately and stored in f, 
yielding the equivalent data (xi, fi) for i = 1 to N. The following preliminary checks are 
performed on the data. We verify that 

1
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i i
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The first test checks to see that the abscissas are distinct. The second and third inequalities 
verify that a valid knot sequence has been specified. 

In order for the interpolation matrix to be nonsingular, we also check tk 
 xi 
 tN + 1 for i = 1 to 
N. This first inequality in the last check is necessary since the method used to generate the 
entries of the interpolation matrix requires that the k possibly nonzero B-splines at xi, 

Bj - k +1, �, Bj  where j satisfies tj 
 xi < tj + 1 

be well-defined (that is, j � k + 1 	 1). 

General conditions are not known for the exact behavior of the error in spline interpolation� 
however, if t and x are selected properly and the data points arise from the values of a smooth 
(say C k) function f, i.e. fi = f(xi), then the error will behave in a predictable fashion. The 
maximum absolute error satisfies 

� �

� �

� �1 1
, ,k N k N

kkf s C f
�

�

� �
t t t t

t  

where 

1, ,
: max i ii k N �

�

� �t t t
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For more information on this problem, see de Boor (1978, Chapter 13) and the references 
therein. This routine can be used in place of the IMSL routine CSINT (page 590) by calling 
BSNAK (page 625) to obtain the proper knots, then calling BSINT yielding the B-spline 
coefficients, and finally calling IMSL routine BSCPP (page 680) to convert to piecewise 
polynomial form. 

BSNAK 
Computes the “not-a-knot” spline knot sequence. 

Required Arguments 
NDATA — Number of data points.   (Input) 
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XDATA — Array of length NDATA containing the location of the data points.   (Input) 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length NDATA + KORDER containing the knot sequence.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

Specific:  The specific interface names are S_BSNAK and D_BSNAK. 

FORTRAN 77 Interface 
Single: CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 

Double: The double precision name is DBSNAK. 

Example 

In this example, we compute (for k = 3� �, 8) six spline interpolants sk to F(x) = sin(10x3) on 
the interval [0,1]. The routine BSNAK is used to generate the knot sequences for sk and then 
BSINT (page 622) is called to obtain the interpolant. We evaluate the absolute error 

|sk � F| 

at 100 equally spaced points and print the maximum error for each k. 
      USE IMSL_LIBRARIES 
      INTEGER    KMAX, KMIN, NDATA 
      PARAMETER  (KMAX=8, KMIN=3, NDATA=20) 
!  
      INTEGER    I, K, KORDER, NOUT 
      REAL       ABS, AMAX1, BSCOEF(NDATA), DIF, DIFMAX, F,& 
                 FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),& 
                 XKNOT(KMAX+NDATA), XT 
      INTRINSIC  ABS, AMAX1, FLOAT, SIN 
!                                  Define function and tau function 
      F(X) = SIN(10.0*X*X*X) 
      T(X) = 1.0 - X*X 
!                                  Set up data 
      DO 10  I=1, NDATA 
         XT       = FLOAT(I-1)/FLOAT(NDATA-1) 
         XDATA(I) = T(XT) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Loop over different orders 
      DO 30  K=KMIN, KMAX 
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         KORDER = K 
!                                  Generate knots 
         CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Interpolate 
         CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
         DIFMAX = 0.0 
         DO 20  I=1, 100 
            XT     = FLOAT(I-1)/99.0 
!                                  Evaluate spline 
            ST     = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF) 
            FT     = F(XT) 
            DIF    = ABS(FT-ST) 
!                                  Compute maximum difference 
            DIFMAX = AMAX1(DIF,DIFMAX) 
   20  CONTINUE 
!                                  Print maximum difference 
         WRITE (NOUT,99998) KORDER, DIFMAX 
   30 CONTINUE 
!  
99998 FORMAT (’ ’, I3, 5X, F9.4) 
99999 FORMAT (’ KORDER’, 5X, ’Maximum difference’, /) 
      END 

Output 
KORDER     Maximum difference 
   3        0.0080 
   4        0.0026 
   5        0.0004 
   6        0.0008 
   7        0.0010 
   8        0.0004 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2NAK/DB2NAK. The 

reference is: 

CALL B2NAK (NDATA, XDATA, KORDER, XKNOT, XSRT, IWK) 

The additional arguments are as follows: 

XSRT — Work array of length NDATA to hold the sorted XDATA values. If XDATA is not 
needed, XSRT may be the same as XDATA. 

IWK — Work array of length NDATA to hold the permutation of XDATA. 

2. Informational error 
Type Code 

   4    4 The XDATA values must be distinct. 

3. The first knot is at the left endpoint and the last knot is slightly beyond the last 
endpoint. Both endpoints have multiplicity KORDER. 
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4. Interior knots have multiplicity one. 

Description 
Given the data points x = XDATA , the order of the spline k = KORDER, and the number  
N = NDATA of elements in XDATA, the subroutine BSNAK returns in t = XKNOT a knot sequence 
that is appropriate for interpolation of data on x by splines of order k. The vector t contains the 
knot sequence in its first N + k positions. If k is even and we assume that the entries in the input 
vector x are increasing, then t is returned as 

ti = x1                  for i = 1, �, k 

ti = xi - k/2             for i = k + 1, �, N 

ti = xN + �  for i = N + 1, �, N + k 

where � is a small positive constant. There is some discussion concerning this selection of knots 
in de Boor (1978, page 211). If k is odd, then t is returned as 

1 for  = 1, , i x i k�t �  

1 11
2 2

( ) / 2 for  =  + 1, , i k ki i
x x i k N

� �

� � �

� �t �  

for  =  + 1, ,  + i Nx i N N k�� �t �  

It is not necessary to sort the values in x since this is done in the routine BSNAK. 

BSOPK 
Computes the “optimal” spline knot sequence. 

Required Arguments 
NDATA — Number of data points.   (Input) 

XDATA — Array of length NDATA containing the location of the data points.   (Input) 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length NDATA + KORDER containing the knot sequence.   (Output) 

FORTRAN 90 Interface 
Generic: CALL BSOPK (NDATA, XDATA, KORDER, XKNOT) 

Specific:  The specific interface names are S_BSOPK and D_BSOPK. 
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FORTRAN 77 Interface 
Single: CALL BSOPK (NDATA, XDATA, KORDER, XKNOT) 

Double: The double precision name is DBSOPK. 

Example 

In this example, we compute (for k = 3� �, 8) six spline interpolants sk to F(x) = sin(10x3) on 
the interval [0, 1]. The routine BSOPK is used to generate the knot sequences for sk and then 
BSINT (page 622) is called to obtain the interpolant. We evaluate the absolute error 

| sk � F | 

at 100 equally spaced points and print the maximum error for each k. 
      USE BSOPK_INT 
      USE BSINT_INT 
      USE UMACH_INT 
      USE BSVAL_INT 
      INTEGER    KMAX, KMIN, NDATA 
      PARAMETER  (KMAX=8, KMIN=3, NDATA=20) 
!  
      INTEGER    I, K, KORDER, NOUT 
      REAL       ABS, AMAX1, BSCOEF(NDATA), DIF, DIFMAX, F,& 
                 FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),& 
                 XKNOT(KMAX+NDATA), XT 
      INTRINSIC  ABS, AMAX1, FLOAT, SIN 
!                                  Define function and tau function 
      F(X) = SIN(10.0*X*X*X) 
      T(X) = 1.0 - X*X 
!                                  Set up data 
      DO 10  I=1, NDATA 
         XT       = FLOAT(I-1)/FLOAT(NDATA-1) 
         XDATA(I) = T(XT) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Loop over different orders 
      DO 30  K=KMIN, KMAX 
         KORDER = K 
!                                  Generate knots 
         CALL BSOPK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Interpolate 
         CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
         DIFMAX = 0.0 
         DO 20  I=1, 100 
            XT     = FLOAT(I-1)/99.0 
!                                  Evaluate spline 
            ST     = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF) 
            FT     = F(XT) 
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            DIF    = ABS(FT-ST) 
!                                  Compute maximum difference 
            DIFMAX = AMAX1(DIF,DIFMAX) 
   20  CONTINUE 
!                                  Print maximum difference 
         WRITE (NOUT,99998) KORDER, DIFMAX 
   30 CONTINUE 
!  
99998 FORMAT (’ ’, I3, 5X, F9.4) 
99999 FORMAT (’ KORDER’, 5X, ’Maximum difference’, /) 
      END 

Output 
KORDER   Maximum difference 
 
 3        0.0096 
 4        0.0018 
 5        0.0005 
 6        0.0004 
 7        0.0007 
 8        0.0035 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2OPK/DB2OPK. The 

reference is: 

CALL B2OPK (NDATA, XDATA, KORDER, XKNOT, MAXIT, WK, IWK) 

The additional arguments are as follows: 

MAXIT — Maximum number of iterations of Newton’s Method.   (Input) A suggested 
value is 10. 

WK — Work array of length (NDATA � KORDER) * (3 * KORDER � 2) + 6 * 
NDATA + 2 * KORDER + 5. 

IWK — Work array of length NDATA. 

2. Informational errors 
Type Code 

   3    6 Newton’s method iteration did not converge. 
   4    3 The XDATA values must be distinct. 
   4    4 Interpolation matrix is singular. The XDATA values may be too close 

together. 

3. The default value for MAXIT is 10� this can be overridden by calling B2OPK/DB2OPK 
directly with a larger value. 
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Description 
Given the abscissas x = XDATA for an interpolation problem and the order of the spline 
interpolant k = KORDER, BSOPK returns the knot sequence t = XKNOT that minimizes the constant 
in the error estimate 

|| f � s || 
 c || f (k) || 

In the above formula, f is any function in Ck and s is the spline interpolant to f at the abscissas x 
with knot sequence t. 

The algorithm is based on a routine described in de Boor (1978, page 204), which in turn is 
based on a theorem of Micchelli, Rivlin and Winograd (1976). 

BS2IN 
Computes a two-dimensional tensor-product spline interpolant, returning the tensor-product B-
spline coefficients. 

Required Arguments 
XDATA — Array of length NXDATA containing the data points in the X-direction.   (Input)  

XDATA must be strictly increasing. 

YDATA — Array of length NYDATA containing the data points in the Y-direction.   (Input)  
YDATA must be strictly increasing. 

FDATA — Array of size NXDATA by NYDATA containing the values to be interpolated.   
(Input)  
FDATA (I, J) is the value at (XDATA (I)� YDATA(J)). 

KXORD — Order of the spline in the X-direction.   (Input)  
KXORD must be less than or equal to NXDATA. 

KYORD — Order of the spline in the Y-direction.   (Input)  
KYORD must be less than or equal to NYDATA. 

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the X-direction.   
(Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the Y-direction.   
(Input)  
YKNOT must be nondecreasing. 

BSCOEF — Array of length NXDATA * NYDATA containing the tensor-product B-spline 
coefficients.   (Output)  
BSCOEF is treated internally as a matrix of size NXDATA by NYDATA. 
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Optional Arguments  
NXDATA — Number of data points in the X-direction.   (Input) 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the Y-direction.   (Input) 
Default: NYDATA = size (YDATA,1). 

LDF — The leading dimension of FDATA exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDF = size (FDATA,1). 

FORTRAN 90 Interface 
Generic: CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,  

            BSCOEF [,…]) 

Specific:  The specific interface names are S_BS2IN and D_BS2IN. 

FORTRAN 77 Interface 
Single: CALL BS2IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,  

     KXORD, KYORD, XKNOT, YKNOT, BSCOEF) 

Double: The double precision name is DBS2IN. 

Example 
In this example, a tensor product spline interpolant to a function f is computed. The values of the 
interpolant and the error on a 4 � 4 grid are displayed. 
USE BS2IN_INT 
USE BSNAK_INT 
USE BS2VL_INT 
USE UMACH_INT 

!                                  SPECIFICATIONS FOR PARAMETERS 
      INTEGER    KXORD, KYORD, LDF, NXDATA, NXKNOT, NXVEC, NYDATA,& 
                 NYKNOT, NYVEC 
      PARAMETER  (KXORD=5, KYORD=2, NXDATA=21, NXVEC=4, NYDATA=6,& 
                 NYVEC=4, LDF=NXDATA, NXKNOT=NXDATA+KXORD,& 
                 NYKNOT=NYDATA+KYORD) 
!  
      INTEGER    I, J, NOUT, NXCOEF, NYCOEF 
      REAL       BSCOEF(NXDATA,NYDATA), F, FDATA(LDF,NYDATA), FLOAT,& 
                 X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(NXVEC), Y,& 
                 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(NYVEC),VL 
      INTRINSIC  FLOAT 
!                                  Define function 
      F(X,Y) = X*X*X + X*Y 
!                                  Set up interpolation points 
      DO 10  I=1, NXDATA 
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         XDATA(I) = FLOAT(I-11)/10.0 
   10 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 
!                                  Set up interpolation points 
      DO 20  I=1, NYDATA 
         YDATA(I) = FLOAT(I-1)/5.0 
   20 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 
!                                  Generate FDATA 
      DO 40  I=1, NYDATA 
         DO 30  J=1, NXDATA 
            FDATA(J,I) = F(XDATA(J),YDATA(I)) 
   30  CONTINUE 
   40 CONTINUE 
!                                  Interpolate 
      CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,& 
                  BSCOEF) 
      NXCOEF = NXDATA 
      NYCOEF = NYDATA 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print over a grid of 
!                                  [0.0,1.0] x [0.0,1.0] at 16 points. 
      DO 50  I=1, NXVEC 
         XVEC(I) = FLOAT(I-1)/3.0 
   50 CONTINUE 
      DO 60  I=1, NYVEC 
         YVEC(I) = FLOAT(I-1)/3.0 
   60 CONTINUE 
!                                  Evaluate spline 
      DO 80  I=1, NXVEC 
         DO 70  J=1, NYVEC 
            VL = BS2VL (XVEC(I), YVEC(J), KXORD, KYORD, XKNOT,& 
                 YKNOT, NXCOEF, NYCOEF, BSCOEF)                                      
 
             WRITE (NOUT,’(3F15.4,F15.6)’) XVEC(I), YVEC(J),& 
                        VL, (F(XVEC(I),YVEC(J))-VL) 
   70  CONTINUE 
   80  CONTINUE 
99999 FORMAT (13X, ’X’, 14X, ’Y’, 10X, ’S(X,Y)’, 9X, ’Error’) 
      END 

Output 
    X              Y          S(X,Y)         Error 
0.0000         0.0000         0.0000       0.000000 
0.0000         0.3333         0.0000       0.000000 
0.0000         0.6667         0.0000       0.000000 
0.0000         1.0000         0.0000       0.000000 
0.3333         0.0000         0.0370       0.000000 
0.3333         0.3333         0.1481       0.000000 
0.3333         0.6667         0.2593       0.000000 
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0.3333         1.0000         0.3704       0.000000 
0.6667         0.0000         0.2963       0.000000 
0.6667         0.3333         0.5185       0.000000 
0.6667         0.6667         0.7407       0.000000 
0.6667         1.0000         0.9630       0.000000 
1.0000         0.0000         1.0000       0.000000 
1.0000         0.3333         1.3333       0.000000 
1.0000         0.6667         1.6667       0.000000 
1.0000         1.0000         2.0000       0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B22IN/DB22IN. The 

reference is: 

CALL B22IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD, 
KYORD, XKNOT, YKNOT, BSCOEF, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length NXDATA * NYDATA + MAX((2 * KXORD �1) 
NXDATA (2 * KYORD � 1) * NYDATA) + MAX((3 * KXORD � 2) * 
NXDATA (3 * KYORD � 2) * NYDATA) + 2 * MAX(NXDATA NYDATA). 

IWK — Work array of length MAX(NXDATA NYDATA). 

2. Informational errors 
Type  Code 

   3    1 Interpolation matrix is nearly singular. LU factorization failed. 
   3    2  Interpolation matrix is nearly singular. Iterative refinement failed. 
   4    6 The XDATA values must be strictly increasing. 
   4    7 The YDATA values must be strictly increasing. 
   4  13 Multiplicity of the knots cannot exceed the order of the spline. 
   4  14 The knots must be nondecreasing. 
   4  15 The I-th smallest element of the data point array must be greater 

than the I-th knot and less than the (I + K_ORD)-th knot. 
   4  16 The largest element of the data point array must be greater than the 

(N_DATA)-th knot and less than or equal to the (N_DATA + K_ORD)-th 
knot. 

   4  17 The smallest element of the data point array must be greater than or 
equal to the first knot and less than the (K_ORD + 1)st knot. 

Description 
The routine BS2IN computes a tensor product spline interpolant. The tensor product spline 
interpolant to data {(xi� yj� fij)}, where 1 
 i 
 Nx and 1 
 j 
 Ny, has the form 
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where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in 
KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences 
(XKNOT and YKNOT). The algorithm requires that 

tx(kx) 
 xi 
 tx(Nx + 1) 1 
 i 
 Nx 

ty(ky) 
 yj 
 ty(Ny + 1) 1 
 j 
 Ny 

Tensor product spline interpolants in two dimensions can be computed quite efficiently by 
solving (repeatedly) two univariate interpolation problems. The computation is motivated by the 
following observations. It is necessary to solve the system of equations 
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we note that for each fixed i from 1 to Nx, we have Ny linear equations in the same number of 
unknowns as can be seen below: 
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The same matrix appears in all of the equations above: 

� �, , 1 ,
y y ym k jB y m j N� � � �� �t  

Thus, we need only factor this matrix once and then apply this factorization to the Nx righthand 
sides. Once this is done and we have computed hmi, then we must solve for the coefficients cnm 
using the relation 
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for m from 1 to Ny, which again involves one factorization and Ny solutions to the different 
right-hand sides. The routine BS2IN is based on the routine SPLI2D by de Boor (1978, page 
347). 

 

 

BS3IN 
Computes a three-dimensional tensor-product spline interpolant, returning the tensor-product B-
spline coefficients. 
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Required Arguments 
XDATA — Array of length NXDATA containing the data points in the x-direction.   (Input)  

XDATA must be increasing. 

YDATA — Array of length NYDATA containing the data points in the y-direction.   (Input)  
YDATA must be increasing. 

ZDATA — Array of length NZDATA containing the data points in the z-direction.   (Input)  
ZDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to be 
interpolated.   (Input)  
FDATA (I� J� K) contains the value at (XDATA (I)� YDATA(J)� ZDATA(K)). 

KXORD — Order of the spline in the x-direction.   (Input)  
KXORD must be less than or equal to NXDATA. 

KYORD — Order of the spline in the y-direction.   (Input)  
KYORD must be less than or equal to NYDATA. 

KZORD — Order of the spline in the z-direction.   (Input)  
KZORD must be less than or equal to NZDATA. 

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the x-direction.   
(Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the y-direction.   
(Input)  
YKNOT must be nondecreasing. 

ZKNOT — Array of length NZDATA + KZORD containing the knot sequence in the z-direction.   
(Input)  
ZKNOT must be nondecreasing. 

BSCOEF — Array of length NXDATA * NYDATA * NZDATA containing the tensor-product B-
spline coefficients.   (Output)  
BSCOEF is treated internally as a matrix of size NXDATA by NYDATA by NZDATA. 

Optional Arguments 
NXDATA — Number of data points in the x-direction.   (Input) 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input) 
Default: NYDATA = size (YDATA,1). 
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NZDATA — Number of data points in the z-direction.   (Input) 
Default: NZDATA = size (ZDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 
calling program.   (Input) 
Default: LDF = size (FDATA,1). 

MDF — Middle dimension of FDATA exactly as specified in the dimension statement of the 
calling program.   (Input) 
Default: MDF = size (FDATA,2). 

FORTRAN 90 Interface 
Generic: CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD,   

KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF [,…]) 

Specific:  The specific interface names are S_BS3IN and D_BS3IN. 

FORTRAN 77 Interface 
Single: CALL BS3IN (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA, 

FDATA, LDF, MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, 
BSCOEF) 

Double: The double precision name is DBS3IN. 

Example 
In this example, a tensor-product spline interpolant to a function f is computed. The values of 
the interpolant and the error on a 4 � 4 � 2 grid are displayed. 
USE BS3IN_INT 
 USE BSNAK_INT 
 USE UMACH_INT 
 USE BS3GD_INT 

!                                  SPECIFICATIONS FOR PARAMETERS 
      INTEGER    KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT, NXVEC,& 
                 NYDATA, NYKNOT, NYVEC, NZDATA, NZKNOT, NZVEC 
      PARAMETER  (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NXVEC=4,& 
                 NYDATA=6, NYVEC=4, NZDATA=8, NZVEC=2, LDF=NXDATA,& 
                 MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,& 
                 NZKNOT=NZDATA+KZORD) 
!  
      INTEGER    I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF 
      REAL       BSCOEF(NXDATA,NYDATA,NZDATA), F,& 
                 FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(NXVEC,NYVEC,NZVEC)& 
                 , X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(NXVEC), Y,& 
                 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(NYVEC), Z,& 
                 ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZVEC) 
      INTRINSIC  FLOAT 
!                                  Define function. 
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      F(X,Y,Z) = X*X*X + X*Y*Z 
!                                  Set up X-interpolation points 
      DO 10  I=1, NXDATA 
         XDATA(I) = FLOAT(I-11)/10.0 
   10 CONTINUE 
!                                  Set up Y-interpolation points 
      DO 20  I=1, NYDATA 
         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 
   20 CONTINUE 
!                                  Set up Z-interpolation points 
      DO 30  I=1, NZDATA 
         ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1) 
   30 CONTINUE 
!                                  Generate knots 
      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 
      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 
      CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT) 
!                                  Generate FDATA 
      DO 50  K=1, NZDATA 
         DO 40  I=1, NYDATA 
            DO 40  J=1, NXDATA 
               FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K)) 
   40  CONTINUE 
   50 CONTINUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Interpolate 
      CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, & 
                  KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF) 
!  
      NXCOEF = NXDATA 
      NYCOEF = NYDATA 
      NZCOEF = NZDATA 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print over a grid of 
!                                  [-1.0,1.0] x [0.0,1.0] x [0.0,1.0] 
!                                  at 32 points. 
      DO 60  I=1, NXVEC 
         XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0 
   60 CONTINUE 
      DO 70  I=1, NYVEC 
         YVEC(I) = FLOAT(I-1)/3.0 
   70 CONTINUE 
      DO 80  I=1, NZVEC 
         ZVEC(I) = FLOAT(I-1) 
   80 CONTINUE 
!                                  Call the evaluation routine. 
      CALL BS3GD (0, 0, 0, XVEC, YVEC, ZVEC,& 
                  KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE) 
      DO 110  I=1, NXVEC 
         DO 100  J=1, NYVEC 
            DO 90  K=1, NZVEC 
               WRITE (NOUT,’(4F13.4, F13.6)’) XVEC(I), YVEC(K),& 
                                            ZVEC(K), VALUE(I,J,K),& 
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                                            F(XVEC(I),YVEC(J),ZVEC(K))& 
                                             - VALUE(I,J,K) 
   90       CONTINUE 
  100    CONTINUE 
  110 CONTINUE 
99999 FORMAT (10X, ’X’, 11X, ’Y’, 10X, ’Z’, 10X, ’S(X,Y,Z)’, 7X,& 
             ’Error’) 
      END 

Output 
    X           Y          Z          S(X,Y,Z)       Error 
-1.0000       0.0000       0.0000      -1.0000     0.000000 
-1.0000       0.3333       1.0000      -1.0000     0.000000 
-1.0000       0.0000       0.0000      -1.0000     0.000000 
-1.0000       0.3333       1.0000      -1.3333     0.000000 
-1.0000       0.0000       0.0000      -1.0000     0.000000 
-1.0000       0.3333       1.0000      -1.6667     0.000000 
-1.0000       0.0000       0.0000      -1.0000     0.000000 
-1.0000       0.3333       1.0000      -2.0000     0.000000 
-0.3333       0.0000       0.0000      -0.0370     0.000000 
-0.3333       0.3333       1.0000      -0.0370     0.000000 
-0.3333       0.0000       0.0000      -0.0370     0.000000 
-0.3333       0.3333       1.0000      -0.1481     0.000000 
-0.3333       0.0000       0.0000      -0.0370     0.000000 
-0.3333       0.3333       1.0000      -0.2593     0.000000 
-0.3333       0.0000       0.0000      -0.0370     0.000000 
-0.3333       0.3333       1.0000      -0.3704     0.000000 
 0.3333       0.0000       0.0000       0.0370     0.000000 
 0.3333       0.3333       1.0000       0.0370     0.000000 
 0.3333       0.0000       0.0000       0.0370     0.000000 
 0.3333       0.3333       1.0000       0.1481     0.000000 
 0.3333       0.0000       0.0000       0.0370     0.000000 
 0.3333       0.3333       1.0000       0.2593     0.000000 
 0.3333       0.0000       0.0000       0.0370     0.000000 
 0.3333       0.3333       1.0000       0.3704     0.000000 
 1.0000       0.0000       0.0000       1.0000     0.000000 
 1.0000       0.3333       1.0000       1.0000     0.000000 
 1.0000       0.0000       0.0000       1.0000     0.000000 
 1.0000       0.3333       1.0000       1.3333     0.000000 
 1.0000       0.0000       0.0000       1.0000     0.000000 
 1.0000       0.3333       1.0000       1.6667     0.000000 
 1.0000       0.0000       0.0000       1.0000     0.000000 
 1.0000       0.3333       1.0000       2.0000     0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B23IN/DB23IN. The 

reference is: 

CALL B23IN (NXDATA, XDATA, NYDATA, YDATA, NZDAYA, ZDATA, FDATA, 
LDF, MDF, KXORD, KYORD,  KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, WK,   
IWK) 

The additional arguments are as follows: 
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WK — Work array of length MAX((2 * KXORD � 1) * NXDATA, (2 * KYORD 
� 1) * NYDATA, (2 * KZORD � 1) * NZDATA) + MAX((3 * KXORD � 
2) * NXDATA, (3 * KYORD � 2) * NYDATA + (3 * KZORD � 2) * 
NZDATA) + NXDATA * NYDATA *NZDATA + 2 * MAX(NXDATA, NYDATA, 
NZDATA). 

IWK — Work array of length MAX(NXDATA, NYDATA, NZDATA). 

2. Informational errors 
Type   Code 

   3    1 Interpolation matrix is nearly singular. LU factorization failed. 
   3    2 Interpolation matrix is nearly singular. Iterative refinement failed. 
   4   13 Multiplicity of the knots cannot exceed the order of the spline. 
   4  14 The knots must be nondecreasing. 
   4  15 The I-th smallest element of the data point array must be greater 

than the Ith knot and less than the (I + K_ORD)-th knot. 
   4  16 The largest element of the data point array must be greater than the 

(N_DATA)-th knot and less than or equal to the (N_DATA + K_ORD)-th 
knot. 

   4  17 The smallest element of the data point array must be greater than or 
equal to the first knot and less than the (K_ORD + 1)st knot. 

   4  18 The XDATA values must be strictly increasing. 
   4  19 The YDATA values must be strictly increasing. 
   4  20 The ZDATA values must be strictly increasing. 

Description 
The routine BS3IN computes a tensor-product spline interpolant. The tensor-product spline 
interpolant to data {(xi, yj, zk, fijk)}, where 1 �  i � Nx, 1 � j � Ny, and 1 � k � Nz has the form  
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where kx, ky, and kz are the orders of the splines (these numbers are passed to the subroutine in 
KXORD, KYORD, and KZORD, respectively). Likewise, tx, ty, and tz are the corresponding knot 
sequences (XKNOT, YKNOT, and ZKNOT). The algorithm requires that 
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Tensor-product spline interpolants can be computed quite efficiently by solving (repeatedly) 
three univariate interpolation problems. The computation is motivated by the following 
observations. It is necessary to solve the system of equations 
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Setting 
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we note that for each fixed pair ij we have Nz linear equations in the same number of unknowns 
as can be seen below: 
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The same interpolation matrix appears in all of the equations above: 
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Thus, we need only factor this matrix once and then apply it to the NxNy right-hand sides. Once 
this is done and we have computed hlij, then we must solve for the coefficients cnml using the 
relation  
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that is the bivariate tensor-product problem addressed by the IMSL routine BS2IN (page 631). 
The interested reader should consult the algorithm description in the two-dimensional routine if 
more detail is desired. The routine BS3IN is based on the routine SPLI2D by de Boor (1978, 
page 347). 

BSVAL 
This function evaluates a spline, given its B-spline representation. 

Function Return Value 
BSVAL — Value of the spline at X.   (Output) 

Required Arguments 
X — Point at which the spline is to be evaluated.   (Input) 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length KORDER + NCOEF containing the knot sequence.   (Input) 
XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input) 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 
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FORTRAN 90 Interface 
Generic: BSVAL(X, KORDER, XKNOT, NCOEF, BSCOEF) 

Specific:  The specific interface names are S_BSVAL and D_BSVAL. 

FORTRAN 77 Interface 
Single: BSVAL(X, KORDER, XKNOT, NCOEF, BSCOEF) 

Double: The double precision function name is DBSVAL. 

Example 
For an example of the use of BSVAL, see IMSL routine BSINT (page 622). 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2VAL/DB2VAL. The 

reference is: 

 CALL B2VAL(X, KORDER, XKNOT, NCOEF, BSCOEF, WK1, WK2, WK3) 

The additional arguments are as follows: 

WK1 — Work array of length KORDER. 

WK2 — Work array of length KORDER. 

WK3 — Work array of length KORDER. 

2. Informational errors 

Type Code 
   4    4 Multiplicity of the knots cannot exceed the order of the spline. 
   4    5 The knots must be nondecreasing. 

Description 
The function BSVAL evaluates a spline (given its B-spline representation) at a specific point. It is 
a special case of the routine BSDER (page 643), which evaluates the derivative of a spline given 
its B-spline representation. The routine BSDER is based on the routine BVALUE by de Boor 
(1978, page 144). 

Specifically, given the knot vector t, the number of coefficients N, the coefficient vector a, and a 
point x, BSVAL returns the number 
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where Bj,k is the j-th B-spline of order k for the knot sequence t. Note that this function routine 
arbitrarily treats these functions as if they were right continuous near XKNOT(KORDER) and left 
continuous near XKNOT(NCOEF + 1). Thus, if we have KORDER knots stacked at the left or right 
end point, and if we try to evaluate at these end points, then we will get the value of the limit 
from the interior of the interval. 

BSDER 
This function evaluates the derivative of a spline, given its B-spline representation. 

Function Return Value 
BSDER — Value of the IDERIV-th derivative of the spline at X.   (Output) 

Required Arguments 
IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the value of the spline. 

X — Point at which the spline is to be evaluated.   (Input) 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.   (Input)  
XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input) 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 

FORTRAN 90 Interface 
Generic: BSDER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF) 

Specific:  The specific interface names are S_BSDER and D_BSDER. 

FORTRAN 77 Interface 
Single: BSDER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF) 

Double: The double precision function name is DBSDER. 

Example 
A spline interpolant to the function 

( )f x x�  
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is constructed using BSINT (page 622). The B-spline representation, which is returned by the 
IMSL routine BSINT, is then used by BSDER to compute the value and derivative of the 
interpolant. The output consists of the interpolation values and the error at the data points and 
the midpoints. In addition, we display the value of the derivative and the error at these same 
points. 

      USE BSDER_INT 
      USE BSINT_INT 
      USE BSNAK_INT 
      USE UMACH_INT 

      INTEGER    KORDER, NDATA, NKNOT 
      PARAMETER  (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER) 
!  
      INTEGER    I, NCOEF, NOUT 
      REAL       BSCOEF(NDATA), BT0, BT1, DF, F, FDATA(NDATA),& 
                 FLOAT, SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT 
      INTRINSIC  FLOAT, SQRT 
!                                  Define function and derivative 
      F(X)  = SQRT(X) 
      DF(X) = 0.5/SQRT(X) 
!                                  Set up interpolation points 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I)/FLOAT(NDATA) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Interpolate 
      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print on a finer grid 
      NCOEF = NDATA 
      XT    = XDATA(1) 
!                                  Evaluate spline 
      BT0   = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF) 
      BT1   = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF) 
      WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1 
      DO 20  I=2, NDATA 
         XT  = (XDATA(I-1)+XDATA(I))/2.0 
!                                  Evaluate spline 
         BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF) 
         BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF) 
         WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1 
         XT  = XDATA(I) 
!                                  Evaluate spline 
         BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF) 
         BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF) 
         WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1 
   20 CONTINUE 
99998 FORMAT (’ ’, F6.4, 5X, F7.4, 3X, F10.6, 5X, F8.4, 3X, F10.6) 
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99999 FORMAT (6X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 8X, ’S’’(X)’, 8X,& 
             ’Error’, /) 
      END 

Output 
     X        S(X)       Error        S’(X)        Error 
 
0.2000      0.4472     0.000000       1.0423     0.075738 
0.3000      0.5456     0.002084       0.9262    -0.013339 
0.4000      0.6325     0.000000       0.8101    -0.019553 
0.5000      0.7077    -0.000557       0.6940     0.013071 
0.6000      0.7746     0.000000       0.6446     0.000869 
0.7000      0.8366     0.000071       0.5952     0.002394 
0.8000      0.8944     0.000000       0.5615    -0.002525 
0.9000      0.9489    -0.000214       0.5279    -0.000818 
1.0000      1.0000     0.000000       0.4942     0.005814 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2DER/DB2DER. The 

reference is: 

CALL B2DER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF, WK1, WK2, WK3) 

The additional arguments are as follows: 

WK1 — Array of length KORDER. 

WK2 — Array of length KORDER. 

WK3 — Array of length KORDER. 

2. Informational errors 

Type Code 
   4    4  Multiplicity of the knots cannot exceed the order of the spline. 
   4    5  The knots must be nondecreasing. 

Description 
The function BSDER produces the value of a spline or one of its derivatives (given its B-spline 
representation) at a specific point. The function BSDER is based on the routine BVALUE by de 
Boor (1978, page 144). 

Specifically, given the knot vector t, the number of coefficients N, the coefficient vector a, the 
order of the derivative i and a point x, BSDER returns the number 

� � � �,
1

N
i

j j k
j

a B x
�

�  

where Bj,k is the j-th B-spline of order k for the knot sequence t. Note that this function routine 
arbitrarily treats these functions as if they were right continuous near XKNOT(KORDER) and left 
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continuous near XKNOT(NCOEF + 1). Thus, if we have KORDER knots stacked at the left or right 
end point, and if we try to evaluate at these end points, then we will get the value of the limit 
from the interior of the interval. 

BS1GD 
Evaluates the derivative of a spline on a grid, given its B-spline representation. 

Required Arguments 
IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the value of the spline. 

XVEC —  Array of length N containing the points at which the spline is to be evaluated.   
(Input)  
XVEC should be strictly increasing. 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.   (Input)  
XKNOT must be nondecreasing. 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 

VALUE — Array of length N containing the values of the IDERIV-th derivative of the spline 
at the points in XVEC.   (Output) 

Optional Arguments  
N — Length of vector XVEC.   (Input) 

Default: N = size (XVEC,1). 

NCOEF — Number of B-spline coefficients.   (Input) 
Default: NCOEF = size (BSCOEF,1). 

FORTRAN 90 Interface 
Generic: CALL BS1GD (IDERIV, XVEC, KORDER, XKNOT, BSCOEF, VALUE [,…]) 

Specific:  The specific interface names are S_BS1GD and D_BS1GD. 

FORTRAN 77 Interface 
Single: CALL BS1GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF, BSCOEF,  

     VALUE) 

Double: The double precision name is DBS1GD. 
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Example 
To illustrate the use of BS1GD, we modify the example program for BSDER (page 643). In this 
example, a quadratic (order 3) spline interpolant to F is computed. The values and derivatives of 
this spline are then compared with the exact function and derivative values. The routine BS1GD 
is based on the routines BSPLPP and PPVALU in de Boor (1978, page 89). 

      USE BS1GD_INT 
      USE BSINT_INT 
      USE BSNAK_INT 
      USE UMACH_INT 
      INTEGER    KORDER, NDATA, NKNOT, NFGRID 
      PARAMETER  (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER, NFGRID = 9) 
!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, NCOEF, NOUT 
      REAL       ANS0(NFGRID), ANS1(NFGRID), BSCOEF(NDATA),& 
                 FDATA(NDATA),& 
                 X, XDATA(NDATA), XKNOT(NKNOT), XVEC(NFGRID) 
!                                  SPECIFICATIONS FOR INTRINSICS 
      INTRINSIC  FLOAT, SQRT 
      REAL       FLOAT, SQRT 
!                                  SPECIFICATIONS FOR SUBROUTINES 
      REAL       DF, F 
!  
      F(X)  = SQRT(X) 
      DF(X) = 0.5/SQRT(X) 
!  
      CALL UMACH (2, NOUT) 
!                                  Set up interpolation points 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I)/FLOAT(NDATA) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Interpolate 
      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
      WRITE (NOUT,99999) 
!                                  Print on a finer grid 
      NCOEF   = NDATA 
      XVEC(1) = XDATA(1) 
      DO 20  I=2, 2*NDATA - 2, 2 
         XVEC(I)   = (XDATA(I/2+1)+XDATA(I/2))/2.0 
         XVEC(I+1) = XDATA(I/2+1) 
   20 CONTINUE 
      CALL BS1GD (0, XVEC, KORDER, XKNOT, BSCOEF, ANS0) 
      CALL BS1GD (1, XVEC, KORDER, XKNOT, BSCOEF, ANS1) 
      DO 30  I=1, 2*NDATA - 1 
         WRITE (NOUT,99998) XVEC(I), ANS0(I), F(XVEC(I)) - ANS0(I),& 
                           ANS1(I), DF(XVEC(I)) - ANS1(I) 
   30 CONTINUE 
99998 FORMAT (’ ’, F6.4, 5X, F7.4, 5X, F8.4, 5X, F8.4, 5X, F8.4) 
99999 FORMAT (6X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 8X, ’S’’(X)’, 8X,& 
             ’Error’, /) 
      END 
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Output 
     X        S(X)       Error        S’(X)        Error 
 
0.2000      0.4472       0.0000       1.0423       0.0757 
0.3000      0.5456       0.0021       0.9262      -0.0133 
0.4000      0.6325       0.0000       0.8101      -0.0196 
0.5000      0.7077      -0.0006       0.6940       0.0131 
0.6000      0.7746       0.0000       0.6446       0.0009 
0.7000      0.8366       0.0001       0.5952       0.0024 
0.8000      0.8944       0.0000       0.5615      -0.0025 
0.9000      0.9489      -0.0002       0.5279      -0.0008 
1.0000      1.0000       0.0000       0.4942       0.0058 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B21GD/DB21GD. The 

reference is: 

CALL B21GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF, BSCOEF, 
VALUE, RWK1, RWK2, IWK3, RWK4, RWK5, RWK6) 

The additional arguments are as follows: 

RWK1 — Real array of length KORDER * (NCOEF � KORDER + 1). 

RWK2 — Real array of length NCOEF � KORDER + 2. 

IWK3 — Integer array of length N. 

RWK4 — Real array of length N. 

RWK5 — Real array of length N. 

RWK6 — Real array of length (KORDER + 3) * KORDER 

2. Informational error 

Type Code 
   4    5 The points in XVEC must be strictly increasing 

Description 
The routine BS1GD evaluates a B-spline (or its derivative) at a vector of points. That is, given a 
vector x of length n satisfying xi < xi + 1 for i = 1, �, n � 1, a derivative value j, and a B-spline s 
that is represented by a knot sequence and coefficient sequence, this routine returns the values 

� � � � 1, ,j
is x i n� �  

in the array VALUE. The functionality of this routine is the same as that of BSDER (page 643) 
called in a loop, however BS1GD should be much more efficient. This routine converts the  
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B-spline representation to piecewise polynomial form using the IMSL routine BSCPP (page 
680), and then uses the IMSL routine PPVAL (page 681) for evaluation. 

BSITG 
This function evaluates the integral of a spline, given its B-spline representation. 

Function Return Value 
BSITG — Value of the integral of the spline from A to B.   (Output) 

Required Arguments 
A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length KORDER + NCOEF containing the knot sequence.   (Input)  
XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input) 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 

FORTRAN 90 Interface 
Generic: BSITG (A, B, KORDER, XKNOT, NCOEF, BSCOEF) 

Specific:  The specific interface names are S_BSITG and D_BSITG. 

 

FORTRAN 77 Interface 
Single: BSITG (A, B, KORDER, XKNOT, NCOEF, BSCOEF) 

Double: The double precision function name is DBSITG. 

Example 

We integrate the quartic (k = 5) spline that interpolates x3 at the points  
{i/10 : i = �10, �, 10} over the interval [0, 1]. The exact answer is 1/4 since the interpolant 
reproduces cubic polynomials. 

      USE BSITG_INT 
      USE BSNAK_INT 
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      USE BSINT_INT 
      USE UMACH_INT 
      INTEGER    KORDER, NDATA, NKNOT 
      PARAMETER  (KORDER=5, NDATA=21, NKNOT=NDATA+KORDER) 
!  
      INTEGER    I, NCOEF, NOUT 
      REAL       A, B, BSCOEF(NDATA), ERROR, EXACT, F,& 
                 FDATA(NDATA), FI, FLOAT, VAL, X, XDATA(NDATA),& 
                 XKNOT(NKNOT) 
      INTRINSIC  FLOAT 
!                                  Define function and integral 
      F(X)  = X*X*X 
      FI(X) = X**4/4.0 
!                                  Set up interpolation points 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-11)/10.0 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Interpolate 
      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!  
      NCOEF = NDATA 
      A     = 0.0 
      B     = 1.0 
!                                  Integrate from A to B 
      VAL   = BSITG(A,B,KORDER,XKNOT,NCOEF,BSCOEF) 
      EXACT = FI(B) - FI(A) 
      ERROR = EXACT - VAL 
!                                  Print results 
      WRITE (NOUT,99999) A, B, VAL, EXACT, ERROR 
99999 FORMAT (’ On the closed interval (’, F3.1, ’,’, F3.1,& 
             ’) we have :’, /, 1X, ’Computed Integral = ’, F10.5, /,& 
             1X, ’Exact Integral    = ’, F10.5, /, 1X, ’Error         ’& 
             , ’    = ’, F10.6, /, /) 
      END 

Output 
On the closed interval (0.0,1.0) we have : 
Computed Integral =    0.25000 
Exact Integral    =    0.25000 
Error             =   0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2ITG/DB2ITG. The 

reference is: 

CALL B2ITG(A, B, KORDER, XKNOT, NCOEF, BSCOEF, TCOEF,  
AJ, DL, DR) 

The additional arguments are as follows: 
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TCOEF —  Work array of length KORDER + 1. 

AJ —  Work array of length KORDER + 1. 

DL — Work array of length KORDER + 1. 

DR — Work array of length KORDER + 1. 

2. Informational errors 

Type Code 
   3    7 The upper and lower endpoints of integration are equal. 
   3    8 The lower limit of integration is less than XKNOT(KORDER). 
   3    9 The upper limit of integration is greater than XKNOT(NCOEF + 1). 
   4    4 Multiplicity of the knots cannot exceed the order of the spline. 
   4    5 The knots must be nondecreasing. 

Description 
The function BSITG computes the integral of a spline given its B-spline representation. 
Specifically, given the knot sequence t = XKNOT, the order k = KORDER, the coefficients a = 
BSCOEF , n = NCOEF and an interval [a, b], BSITG returns the value 

� �, ,
1

nb

i i ka
i

a B x dx
�

�� t  

This routine uses the identity (22) on page 151 of de Boor (1978), and it assumes that t1 = � = 
tk and tn + 1= � = tn + k. 

BS2VL 
This function evaluates a two-dimensional tensor-product spline, given its tensor-product B-spline 
representation. 

Function Return Value 
BS2VL — Value of the spline at (X, Y).   (Output) 

Required Arguments 
X — X-coordinate of the point at which the spline is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the spline is to be evaluated.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 
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XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   
(Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   
(Input)  
YKNOT must be nondecreasing. 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline 
coefficients.   (Input)  
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF. 

FORTRAN 90 Interface 
Generic: BS2VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, 

BSCOEF) 

Specific:  The specific interface names are S_BS2VL and D_BS2VL. 

FORTRAN 77 Interface 
Single: BS2VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, 

BSCOEF) 

Double: The double precision function name is DBS2VL. 

Example 
For an example of the use of BS2VL, see IMSL routine BS2IN (page 631). 

Comments 
Workspace may be explicitly provided, if desired, by use of B22VL/DB22VL. The reference 

is: 

CALL B22VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF,  
NYCOEF, BSCOEF, WK) 

The additional argument is 

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD. 
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Description 
The function BS2VL evaluates a bivariate tensor product spline (represented as a linear 
combination of tensor product B-splines) at a given point. This routine is a special case of the 
routine BS2DR (page 653), which evaluates partial derivatives of such a spline. (The value of a 
spline is its zero-th derivative.) For more information see de Boor (1978, pages 351�353).  

This routine returns the value of the function s at a point (x, y) given the coefficients c by 
computing  

� � � � � �, , , ,
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where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in 
KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences 
(XKNOT and YKNOT). 

BS2DR 
This function evaluates the derivative of a two-dimensional tensor-product spline, given its tensor-
product B-spline representation. 

Function Return Value 
BS2DR — Value of the (IXDER, IYDER) derivative of the spline at (X, Y).   (Output) 

Required Arguments 
IXDER — Order of the derivative in the X-direction.   (Input) 

IYDER — Order of the derivative in the Y-direction.   (Input) 

X — X-coordinate of the point at which the spline is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the spline is to be evaluated.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-
direction.   (Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   
(Input)  
YKNOT must be nondecreasing. 
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NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline 
coefficients.   (Input)  
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF. 

FORTRAN 90 Interface 
Generic: BS2DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT,  

        NXCOEF, NYCOEF, BSCOEF) 

Specific:  The specific interface names are S_BS2DR and D_BS2DR. 

FORTRAN 77 Interface 
Single: BS2DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT,  

     NXCOEF, NYCOEF, BSCOEF) 

Double: The double precision function name is DBS2DR. 

Example 
In this example, a spline interpolant s to a function f is constructed. We use the IMSL routine 
BS2IN (page 631) to compute the interpolant and then BS2DR is employed to compute  
s(2,1)(x, y). The values of this partial derivative and the error are computed on a 4 � 4 grid and 
then displayed. 

      USE BS2DR_INT 
      USE BSNAK_INT 
      USE UMACH_INT 
      USE BS2IN_INT 
!                                  SPECIFICATIONS FOR PARAMETERS 
      INTEGER    KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT 
      PARAMETER  (KXORD=5, KYORD=3, NXDATA=21, NYDATA=6, LDF=NXDATA,& 
                 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD) 
!  
      INTEGER    I, J, NOUT, NXCOEF, NYCOEF 
      REAL       BSCOEF(NXDATA,NYDATA), F, F21,& 
                 FDATA(LDF,NYDATA), FLOAT, S21, X, XDATA(NXDATA),& 
                 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT) 
      INTRINSIC  FLOAT 
 
!                                  Define function and (2,1) derivative 
      F(X,Y)   = X*X*X*X + X*X*X*Y*Y 
      F21(X,Y) = 12.0*X*Y 
!                                  Set up interpolation points 
      DO 10  I=1, NXDATA 
         XDATA(I) = FLOAT(I-11)/10.0 
   10 CONTINUE 
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!                                  Generate knot sequence 
      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 
!                                  Set up interpolation points 
      DO 20  I=1, NYDATA 
         YDATA(I) = FLOAT(I-1)/5.0 
   20 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 
!                                  Generate FDATA 
      DO 40  I=1, NYDATA 
         DO 30  J=1, NXDATA 
            FDATA(J,I) = F(XDATA(J),YDATA(I)) 
   30  CONTINUE 
   40 CONTINUE 
!                                  Interpolate 
      CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, & 
                  YKNOT, BSCOEF) 
      NXCOEF = NXDATA 
      NYCOEF = NYDATA 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print (2,1) derivative over a 
!                                  grid of [0.0,1.0] x [0.0,1.0] 
!                                  at 16 points. 
      DO 60  I=1, 4 
         DO 50  J=1, 4 
            X   = FLOAT(I-1)/3.0 
            Y   = FLOAT(J-1)/3.0 
!                                  Evaluate spline 
            S21 = BS2DR(2,1,X,Y,KXORD,KYORD,XKNOT,YKNOT,NXCOEF,NYCOEF,& 
                  BSCOEF) 
            WRITE (NOUT,’(3F15.4, F15.6)’) X, Y, S21, F21(X,Y) - S21 
   50  CONTINUE 
   60 CONTINUE 
99999 FORMAT (39X, ’(2,1)’, /, 13X, ’X’, 14X, ’Y’, 10X, ’S    (X,Y)’,& 
              5X, ’Error’) 
      END 
 
 

Output 
                               (2,1) 
    X              Y          S    (X,Y)     Error 
0.0000         0.0000         0.0000       0.000000 
0.0000         0.3333         0.0000       0.000000 
0.0000         0.6667         0.0000       0.000000 
0.0000         1.0000         0.0000       0.000001 
0.3333         0.0000         0.0000       0.000000 
0.3333         0.3333         1.3333       0.000002 
0.3333         0.6667         2.6667      -0.000002 
0.3333         1.0000         4.0000       0.000008 
0.6667         0.0000         0.0000       0.000006 
0.6667         0.3333         2.6667      -0.000011 
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0.6667         0.6667         5.3333       0.000028 
0.6667         1.0000         8.0001      -0.000134 
1.0000         0.0000        -0.0004       0.000439 
1.0000         0.3333         4.0003      -0.000319 
1.0000         0.6667         7.9996       0.000363 
1.0000         1.0000        12.0005      -0.000458 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B22DR/DB22DR. The 

reference is: 

CALL B22DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT, 
NXCOEF, NYCOEF, BSCOEF, WK) 

The additional argument is: 

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD. 

2. Informational errors 

Type Code 
   3    1 The point X does not satisfy 

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1). 
   3    2 The point Y does not satisfy 

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1). 

Description 
The routine BS2DR evaluates a partial derivative of a bivariate tensor-product spline 
(represented as a linear combination of tensor product B-splines) at a given point; see de Boor 
(1978, pages 351�353). 

This routine returns the value of s(p,q)at a point (x, y) given the coefficients c by computing  
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where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in 
KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences 
(XKNOT and YKNOT). 

BS2GD 
Evaluates the derivative of a two-dimensional tensor-product spline, given its tensor-product  
B-spline representation on a grid. 

Required Arguments 
IXDER — Order of the derivative in the X-direction.   (Input) 
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IYDER — Order of the derivative in the Y-direction.   (Input) 

XVEC — Array of length NX containing the X-coordinates at which the spline is to be 
evaluated.   (Input)  
The points in XVEC should be strictly increasing. 

YVEC — Array of length NY containing the Y-coordinates at which the spline is to be 
evaluated.   (Input)  
The points in YVEC should be strictly increasing. 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   
(Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   
(Input)  
YKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline 
coefficients.   (Input)  
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF. 

VALUE — Value of the (IXDER, IYDER) derivative of the spline on the NX by NY grid.   
(Output)  
VALUE (I, J) contains the derivative of the spline at the point (XVEC(I), YVEC(J)). 

Optional Arguments 
NX — Number of grid points in the X-direction.   (Input) 

Default: NX = size (XVEC,1). 

NY — Number of grid points in the Y-direction.   (Input) 
Default: NY = size (YVEC,1). 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 
Default: NXCOEF = size (XKNOT,1) – KXORD. 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 
Default: NYCOEF = size (YKNOT,1) – KYORD. 

LDVALU — Leading dimension of VALUE exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDVALU = size (VALUE,1). 
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FORTRAN 90 Interface 
Generic: CALL BS2GD (IXDER, IDER, XVEC, YVEC, KXORD, KYORD, XKNOT, 

YKNOT, BSCOEF, VALUE [,…]) 

Specific:  The specific interface names are S_BS2GD and D_BS2GD. 

FORTRAN 77 Interface 
Single: CALL BS2GD (IXDER, IYDER, NX, XVEC, NY, YVEC, KXORD, KYORD, 

XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE, LDVALU) 

Double: The double precision name is DBS2GD. 

Example 
In this example, a spline interpolant s to a function f is constructed. We use the IMSL routine 
BS2IN (page 631) to compute the interpolant and then BS2GD is employed to compute  
s(2,1) (x, y) on a grid. The values of this partial derivative and the error are computed on a 4 � 4 
grid and then displayed. 

      USE BS2GD_INT 
      USE BS2IN_INT 
      USE BSNAK_INT 
      USE UMACH_INT 

!                                  SPECIFICATIONS FOR LOCAL VARIABLES 
      INTEGER    I, J, KXORD, KYORD, LDF, NOUT, NXCOEF, NXDATA,& 
                 NYCOEF, NYDATA 
      REAL       DCCFD(21,6), DOCBSC(21,6), DOCXD(21), DOCXK(26),& 
                 DOCYD(6), DOCYK(9), F, F21, FLOAT, VALUE(4,4),& 
                 X, XVEC(4), Y, YVEC(4) 
      INTRINSIC  FLOAT 
!                                  Define function and derivative 
      F(X,Y)   = X*X*X*X + X*X*X*Y*Y 
      F21(X,Y) = 12.0*X*Y 
!                yj                  Initialize/Setup 
      CALL UMACH (2, NOUT) 
      KXORD  = 5 
      KYORD  = 3 
      NXDATA = 21 
      NYDATA = 6 
      LDF    = NXDATA 
!                                  Set up interpolation points 
      DO 10  I=1, NXDATA 
         DOCXD(I) = FLOAT(I-11)/10.0 
   10 CONTINUE 
!                                  Set up interpolation points 
      DO 20  I=1, NYDATA 
         DOCYD(I) = FLOAT(I-1)/5.0 
   20 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NXDATA, DOCXD, KXORD, DOCXK) 
!                                  Generate knot sequence 
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      CALL BSNAK (NYDATA, DOCYD, KYORD, DOCYK) 
!                                  Generate FDATA 
      DO 40  I=1, NYDATA 
         DO 30  J=1, NXDATA 
            DCCFD(J,I) = F(DOCXD(J),DOCYD(I)) 
   30  CONTINUE 
   40 CONTINUE 
!                                  Interpolate 
      CALL BS2IN (DOCXD, DOCYD, DCCFD, KXORD, KYORD, & 
                  DOCXK, DOCYK, DOCBSC) 
!                                  Print (2,1) derivative over a 
!                                  grid of [0.0,1.0] x [0.0,1.0] 
!                                  at 16 points. 
      NXCOEF = NXDATA 
      NYCOEF = NYDATA 
      WRITE (NOUT,99999) 
      DO 50  I=1, 4 
         XVEC(I) = FLOAT(I-1)/3.0 
         YVEC(I) = XVEC(I) 
   50 CONTINUE 
      CALL BS2GD (2, 1, XVEC, YVEC, KXORD, KYORD, DOCXK, DOCYK,& 
                  DOCBSC, VALUE) 
      DO 70  I=1, 4 
         DO 60  J=1, 4 
            WRITE (NOUT,’(3F15.4,F15.6)’) XVEC(I), YVEC(J),& 
                                        VALUE(I,J),& 
                                        F21(XVEC(I),YVEC(J)) -& 
                                        VALUE(I,J) 
   60  CONTINUE 
   70 CONTINUE 
99999 FORMAT (39X, ’(2,1)’, /, 13X, ’X’, 14X, ’Y’, 10X, ’S    (X,Y)’,& 
             5X, ’Error’) 
      END 

Output 
                                  (2,1) 

    X              Y          S    (X,Y)     Error 
0.0000         0.0000         0.0000       0.000000 
0.0000         0.3333         0.0000       0.000000 
0.0000         0.6667         0.0000       0.000000 
0.0000         1.0000         0.0000       0.000001 
0.3333         0.0000         0.0000      -0.000001 
0.3333         0.3333         1.3333       0.000001 
0.3333         0.6667         2.6667      -0.000004 
0.3333         1.0000         4.0000       0.000008 
0.6667         0.0000         0.0000      -0.000001 
0.6667         0.3333         2.6667      -0.000008 
0.6667         0.6667         5.3333       0.000038 
0.6667         1.0000         8.0001      -0.000113 
1.0000         0.0000        -0.0005       0.000488 
1.0000         0.3333         4.0004      -0.000412  
1.0000         0.6667         7.9995       0.000488 
1.0000         1.0000        12.0002      -0.000244 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of B22GD/DB22GD. The 

reference is: 

CALL B22GD (IXDER, IYDER, NX, XVEC, NY, YVEC, KXORD, KYORD, 
XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE, LDVALU, LEFTX, 
LEFTY, A, B, DBIATX, DBIATY, BX, BY) 

The additional arguments are as follows: 

LEFTX — Integer work array of length NX. 

LEFTY — Integer work array of length NY. 

A — Work array of length KXORD * KXORD. 

B — Work array of length KYORD * KYORD. 

DBIATX — Work array of length KXORD * (IXDER + 1). 

DBIATY — Work array of length KYORD * (IYDER + 1). 

BX — Work array of length KXORD * NX. 

BY — Work array of length KYORD * NY. 

2 Informational errors 
Type Code 

   3    1 XVEC(I) does not satisfy 
XKNOT (KXORD) .LE. XVEC(I) .LE. XKNOT(NXCOEF + 1) 

   3    2 YVEC(I) does not satisfy 
YKNOT (KYORD) .LE. YVEC(I) .LE. YKNOT(NYCOEF + 1) 

 
   4    3 XVEC is not strictly increasing. 
   4    4  YVEC is not strictly increasing. 

Description 
The routine BS2GD evaluates a partial derivative of a bivariate tensor-product spline 
(represented as a linear combination of tensor-product B-splines) on a grid of points; see de 
Boor (1978, pages 351�353). 

This routine returns the values of s(p,q)on the grid (xi, yj) for i = 1, �, nx and j = 1, �, ny given 
the coefficients c by computing (for all (x, y) in the grid) 
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where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in 
KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences 
(XKNOT and YKNOT). The grid must be ordered in the sense that xi < xi+1 and yj < yj+1. 

BS2IG 
This function evaluates the integral of a tensor-product spline on a rectangular domain, given its 
tensor-product B-spline representation. 

Function Return Value 
BS2IG — Integral of the spline over the rectangle (A, B) by (C, D).  

(Output) 

Required Arguments 
A — Lower limit of the X-variable.   (Input) 

B — Upper limit of the X-variable.   (Input) 

C — Lower limit of the Y-variable.   (Input) 

D — Upper limit of the Y-variable.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   
(Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   
(Input)  
YKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline 
coefficients.   (Input)  
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF. 

Optional Arguments 
NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

Default: NXCOEF = size (XKNOT,1) – KXORD. 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 
Default: NYCOEF = size (YKNOT,1) – KYORD. 
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FORTRAN 90 Interface 
Generic: BS2IG (A, B, C, D, KXORD, KYORD, XKNOT, YKNOT,            

BSCOEF [,…]) 

Specific:  The specific interface names are S_BS2IG and D_BS2IG. 

FORTRAN 77 Interface 
Single: BS2IG(A, B, C , D, KXORD, KYORD, XKNOT, YKNOT, NXCOEF,             

NYCOEF, BSCOEF) 

Double: The double precision function name is DBS2IG. 

Example 
We integrate the two-dimensional tensor-product quartic (kx = 5) by linear (ky = 2) spline that 
interpolates x3 + xy at the points {(i/10, j/5) : i = �10, �, 10 and j = 0, �, 5} over the rectangle 
[0, 1] � [.5, 1]. The exact answer is 5/16. 

      USE BS2IG_INT 
      USE BSNAK_INT 
      USE BS2IN_INT 
      USE UMACH_INT 

!                                  SPECIFICATIONS FOR PARAMETERS 
      INTEGER    KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT 
      PARAMETER  (KXORD=5, KYORD=2, NXDATA=21, NYDATA=6, LDF=NXDATA,& 
                 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD) 
!  
      INTEGER    I, J, NOUT, NXCOEF, NYCOEF 
      REAL       A, B, BSCOEF(NXDATA,NYDATA), C , D, F,& 
                 FDATA(LDF,NYDATA), FI, FLOAT, VAL, X, XDATA(NXDATA),& 
                 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT) 
      INTRINSIC  FLOAT 
!                                  Define function and integral 
      F(X,Y)      = X*X*X + X*Y 
      FI(A,B,C ,D) = .25*((B**4-A**4)*(D-C )+(B*B-A*A)*(D*D-C *C )) 
!                                  Set up interpolation points 
      DO 10  I=1, NXDATA 
         XDATA(I) = FLOAT(I-11)/10.0 
   10 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 
!                                  Set up interpolation points 
      DO 20  I=1, NYDATA 
         YDATA(I) = FLOAT(I-1)/5.0 
   20 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 
!                                  Generate FDATA 
      DO 40  I=1, NYDATA 
         DO 30  J=1, NXDATA 
            FDATA(J,I) = F(XDATA(J),YDATA(I)) 
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   30  CONTINUE 
   40 CONTINUE 
!                                  Interpolate 
      CALL BS2IN (XDATA, YDATA, FDATA, KXORD,& 
                  KYORD, XKNOT, YKNOT, BSCOEF) 
!                                  Integrate over rectangle 
!                                  [0.0,1.0] x [0.0,0.5] 
      NXCOEF = NXDATA 
      NYCOEF = NYDATA 
      A      = 0.0 
      B      = 1.0 
      C       = 0.5 
      D      = 1.0 
      VAL    = BS2IG(A,B,C ,D,KXORD,KYORD,XKNOT,YKNOT,BSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Print results 
      WRITE (NOUT,99999) VAL, FI(A,B,C ,D), FI(A,B,C ,D) - VAL 
99999 FORMAT (’ Computed Integral = ’, F10.5, /, ’ Exact Integral    ’& 
             , ’= ’, F10.5, /, ’ Error             ’& 
             , ’= ’, F10.6, /) 
      END 

Output 
Computed Integral =    0.31250 
Exact Integral    =    0.31250 
Error             =   0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B22IG/DB22IG. The 

reference is: 

CALL B22IG(A, B, C , D, KXORD, KYORD, XKNOT, YKNOT,  
NXCOEF, NYCOEF, BSCOEF, WK) 

The additional argument is: 

WK — Work array of length 4 * (MAX(KXORD, KYORD) + 1) + NYCOEF. 

2. Informational errors 

Type Code 
   3    1 The lower limit of the X-integration is less than XKNOT(KXORD). 
   3    2 The upper limit of the X-integration is greater than XKNOT(NXCOEF + 

1). 
   3    3 The lower limit of the Y-integration is less than YKNOT(KYORD). 
   3    4 The upper limit of the Y-integration is greater than YKNOT(NYCOEF + 

1). 
   4  13 Multiplicity of the knots cannot exceed the order of the spline. 
   4  14 The knots must be nondecreasing. 
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Description 
The function BS2IG computes the integral of a tensor-product two-dimensional spline given its 
B-spline representation. Specifically, given the knot sequence tx = XKNOT, ty = YKNOT, the order 
kx = KXORD, ky = KYORD, the coefficients � = BSCOEF, the number of coefficients nx = NXCOEF, 
ny = NYCOEF and a rectangle [a, b] by [c, d], BS2IG returns the value 
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� �

��� �  

where 

� � � � � �, , , , ,,
x x y yi j i k j kB x y B x B y� t t  

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for all knot 
sequences) that the first and last k knots are stacked, that is,t1 = � = tk and tn + 1 = � = tn + k, 
where k is the order of the spline in the x or y direction. 

BS3VL 
This function Evaluates a three-dimensional tensor-product spline, given its tensor-product B-
spline representation. 

Function Return Value 
BS3VL — Value of the spline at (X, Y, Z).   (Output) 

Required Arguments 
X — X-coordinate of the point at which the spline is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the spline is to be evaluated.   (Input) 

Z — Z-coordinate of the point at which the spline is to be evaluated.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

KZORD — Order of the spline in the Z-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   
(Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   
(Input)  
YKNOT must be nondecreasing. 
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ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.   
(Input)  
ZKNOT must be nondecreasing. 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

NZCOEF — Number of B-spline coefficients in the Z-direction.   (Input) 

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product  
B-spline coefficients.   (Input)  
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF. 

FORTRAN 90 Interface 
Generic: BS3VL(X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,  

 ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

 Specific:  The specific interface names are S_BS3VL and D_BS3VL. 

FORTRAN 77 Interface 
Single:    BS3VL(X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,                  

 ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

Double: The double precision function name is DBS3VL. 

Example 
For an example of the use of BS3VL, see IMSL routine BS3IN (page 635). 

Comments 
Workspace may be explicitly provided, if desired, by use of B23VL/DB23VL. The reference is: 

CALL B23VL(X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,  
     ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK) 

The additional argument is: 

WK — Work array of length 3 * MAX(KXORD, KYORD, KZORD) + KYORD * KZORD + 
KZORD. 

Description 
The function BS2IG evaluates a trivariate tensor-product spline (represented as a linear 
combination of tensor-product B-splines) at a given point. This routine is a special case of the 
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IMSL routine BS3DR (page 666), which evaluates a partial derivative of such a spline. (The 
value of a spline is its zero-th derivative.) For more information, see de Boor (1978, pages 
351�353). 

This routine returns the value of the function s at a point (x, y, z) given the coefficients c by 
computing 
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where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in 
KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot 
sequences (XKNOT, YKNOT, and ZKNOT). 

BS3DR 
This function evaluates the derivative of a three-dimensional tensor-product spline, given its 
tensor-product B-spline representation. 

Function Return Value 
BS3DR — Value of the (IXDER, IYDER, IZDER) derivative of the spline at (X, Y, Z).   

(Output) 

Required Arguments 
IXDER — Order of the X-derivative.   (Input) 

IYDER — Order of the Y-derivative.   (Input) 

IZDER — Order of the Z-derivative.   (Input) 

X — X-coordinate of the point at which the spline is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the spline is to be evaluated.   (Input) 

Z — Z-coordinate of the point at which the spline is to be evaluated.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

KZORD — Order of the spline in the Z-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   
(Input)  
KNOT must be nondecreasing. 
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YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   
(Input)  
YKNOT must be nondecreasing. 

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.   
(Input)  
ZKNOT must be nondecreasing. 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

NZCOEF — Number of B-spline coefficients in the Z-direction.   (Input) 

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product  
B-spline coefficients.   (Input)  
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF. 

FORTRAN 90 Interface 
Generic: BS3DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD,             

KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

Specific:  The specific interface names are S_BS3DR and D_BS3DR. 

FORTRAN 77 Interface 
Single: BS3DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD,            

KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

Double: The double precision function name is DBS3DR. 

Example 

In this example, a spline interpolant s to a function f(x, y, z) = x4 + y(xz)3 is constructed using 
BS3IN (page 635). Next, BS3DR is used to compute s(2,0,1)(x, y, z). The values of this partial 
derivative and the error are computed on a 4 � 4 � 2 grid and then displayed. 

      USE BS3DR_INT 
      USE BS3IN_INT 
      USE BSNAK_INT 
      USE UMACH_INT 

!                                  SPECIFICATIONS FOR PARAMETERS 
      INTEGER    KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,& 
                 NYDATA, NYKNOT, NZDATA, NZKNOT 
      PARAMETER  (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,& 
                 NZDATA=8, LDF=NXDATA, MDF=NYDATA,& 
                 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,& 
                 NZKNOT=NZDATA+KZORD) 
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!  
      INTEGER    I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF 
      REAL       BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,& 
                 FDATA(LDF,MDF,NZDATA), FLOAT, S201, X, XDATA(NXDATA),& 
                 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT), Z,& 
                 ZDATA(NZDATA), ZKNOT(NZKNOT) 
      INTRINSIC  FLOAT 
!                                  Define function and (2,0,1) 
!                                  derivative 
      F(X,Y,Z)    = X*X*X*X + X*X*X*Y*Z*Z*Z 
      F201(X,Y,Z) = 18.0*X*Y*Z 
!                                  Set up X-interpolation points 
      DO 10  I=1, NXDATA 
         XDATA(I) = FLOAT(I-11)/10.0 
   10 CONTINUE 
!                                  Set up Y-interpolation points 
      DO 20  I=1, NYDATA 
         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 
   20 CONTINUE 
!                                  Set up Z-interpolation points 
      DO 30  I=1, NZDATA 
         ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1) 
   30 CONTINUE 
!                                  Generate knots 
      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 
      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 
      CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT) 
!                                  Generate FDATA 
      DO 50  K=1, NZDATA 
         DO 40  I=1, NYDATA 
            DO 40  J=1, NXDATA 
               FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K)) 
   40  CONTINUE 
   50 CONTINUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Interpolate& 

CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT,                     
YKNOT, ZKNOT, BSCOEF) 

!  
      NXCOEF = NXDATA 
      NYCOEF = NYDATA 
      NZCOEF = NZDATA 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print over a grid of 
!                                  [-1.0,1.0] x [0.0,1.0] x [0.0,1.0] 
!                                  at 32 points. 
      DO 80  I=1, 4 
         DO 70  J=1, 4 
            DO 60  L=1, 2 
               X    = 2.0*(FLOAT(I-1)/3.0) - 1.0 
               Y    = FLOAT(J-1)/3.0 
               Z    = FLOAT(L-1) 
!                                  Evaluate spline 
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               S201 = BS3DR(2,0,1,X,Y,Z,KXORD,KYORD,KZORD,XKNOT,YKNOT,& 
                      ZKNOT,NXCOEF,NYCOEF,NZCOEF,BSCOEF) 
               WRITE (NOUT,’(3F12.4,2F12.6)’) X, Y, Z, S201,& 
                      F201(X,Y,Z) - S201 
   60     CONTINUE 
   70  CONTINUE 
   80 CONTINUE 
99999 FORMAT (38X, ’(2,0,1)’, /, 9X, ’X’, 11X,& 
             ’Y’, 11X, ’Z’, 4X, ’S     (X,Y,Z)    Error’) 
      END 

Output 
                                  (2,0,1) 
    X           Y           Z    S     (X,Y,Z)   Error 
-1.0000      0.0000      0.0000   -0.000107    0.000107 
-1.0000      0.0000      1.0000    0.000053   -0.000053 
-1.0000      0.3333      0.0000    0.064051   -0.064051 
-1.0000      0.3333      1.0000   -5.935941   -0.064059 
-1.0000      0.6667      0.0000    0.127542   -0.127542 
-1.0000      0.6667      1.0000  -11.873034   -0.126966 
-1.0000      1.0000      0.0000    0.191166   -0.191166 
-1.0000      1.0000      1.0000  -17.808527   -0.191473 
-0.3333      0.0000      0.0000   -0.000002    0.000002 
-0.3333      0.0000      1.0000    0.000000    0.000000 
-0.3333      0.3333      0.0000    0.021228   -0.021228 
-0.3333      0.3333      1.0000   -1.978768   -0.021232 
-0.3333      0.6667      0.0000    0.042464   -0.042464 
-0.3333      0.6667      1.0000   -3.957536   -0.042464 
-0.3333      1.0000      0.0000    0.063700   -0.063700 
-0.3333      1.0000      1.0000   -5.936305   -0.063694 
 0.3333      0.0000      0.0000   -0.000003    0.000003 
 0.3333      0.0000      1.0000    0.000000    0.000000 
 0.3333      0.3333      0.0000   -0.021229    0.021229 
 0.3333      0.3333      1.0000    1.978763    0.021238 
 0.3333      0.6667      0.0000   -0.042465    0.042465 
 0.3333      0.6667      1.0000    3.957539    0.042462 
 0.3333      1.0000      0.0000   -0.063700    0.063700 
 0.3333      1.0000      1.0000    5.936304    0.063697 
 1.0000      0.0000      0.0000   -0.000098    0.000098 
 1.0000      0.0000      1.0000    0.000053   -0.000053 
 1.0000      0.3333      0.0000   -0.063855    0.063855 
 1.0000      0.3333      1.0000    5.936146    0.063854 
 1.0000      0.6667      0.0000   -0.127631    0.127631 
 1.0000      0.6667      1.0000   11.873067    0.126933 
 1.0000      1.0000      0.0000   -0.191442    0.191442 
 1.0000      1.0000      1.0000   17.807940    0.192060 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B23DR/DB23DR. The 

reference is: 

CALL B23DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD, KZORD, 
XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK) 
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The additional argument is: 

WK — Work array of length 3 * MAX0(KXORD, KYORD, KZORD) + KYORD * 
KZORD + KZORD. 

2. Informational errors 

Type Code 
   3    1 The point X does not satisfy 

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1). 
   3    2 The point Y does not satisfy 

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1). 
   3    3 The point Z does not satisfy 

ZKNOT (KZORD) .LE. Z .LE. ZKNOT(NZCOEF + 1). 

Description 
The function BS3DR evaluates a partial derivative of a trivariate tensor-product spline 
(represented as a linear combination of tensor-product B-splines) at a given point. For more 
information, see de Boor (1978, pages 351�353). 

This routine returns the value of the function s(p, q, r) at a point (x, y, z) given the coefficients c 
by computing 
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where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in 
KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot 
sequences (XKNOT, YKNOT, and ZKNOT). 

BS3GD 
Evaluates the derivative of a three-dimensional tensor-product spline, given its tensor-product B-
spline representation on a grid. 

Required Arguments 
IXDER — Order of the X-derivative.   (Input) 

IYDER — Order of the Y-derivative.   (Input) 

IZDER — Order of the Z-derivative.   (Input) 

XVEC — Array of length NX containing the x-coordinates at which the spline is to be 
evaluated.   (Input)  
The points in XVEC should be strictly increasing. 



 

 
 

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 671 

 

 

 

YVEC — Array of length NY containing the y-coordinates at which the spline is to be 
evaluated.   (Input)  
The points in YVEC should be strictly increasing. 

ZVEC — Array of length NY containing the y-coordinates at which the spline is to be 
evaluated.   (Input)  
The points in YVEC should be strictly increasing. 

KXORD — Order of the spline in the x-direction.   (Input) 

KYORD — Order of the spline in the y-direction.   (Input) 

KZORD — Order of the spline in the z-direction.   (Input) 

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the x-direction.   
(Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the y-direction.   
(Input)  
YKNOT must be nondecreasing. 

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the z-direction.   
(Input)  
ZKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product  
B-spline coefficients.   (Input)  
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF. 

VALUE — Array of size NX by NY by NZ containing the values of the (IXDER, IYDER, 
IZDER) derivative of the spline on the NX by NY by NZ grid.   (Output)  
VALUE(I, J, K) contains the derivative of the spline at the point (XVEC(I), YVEC(J), 
ZVEC(K)). 

Optional Arguments 
NX — Number of grid points in the x-direction.   (Input) 

Default: NX = size (XVEC,1). 

NY — Number of grid points in the y-direction.   (Input) 
Default: NY = size (YVEC,1). 

NZ — Number of grid points in the z-direction.   (Input) 
Default: NZ = size (ZVEC,1). 

NXCOEF — Number of B-spline coefficients in the x-direction.   (Input) 
Default: NXCOEF = size (XKNOT,1) – KXORD. 
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NYCOEF — Number of B-spline coefficients in the y-direction.   (Input) 
Default: NYCOEF = size (YKNOT,1) – KYORD. 

NZCOEF — Number of B-spline coefficients in the z-direction.   (Input) 
Default: NZCOEF = size (ZKNOT,1) – KZORD. 

LDVALU — Leading dimension of VALUE exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDVALU = size (VALUE,1). 

MDVALU — Middle dimension of VALUE exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: MDVALU = size (VALUE,2). 

FORTRAN 90 Interface 
Generic: CALL BS3GD (IXDER, IYDER, IZDER, XVEC, YVEC, ZVEC, KXORD, 

KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF,              
VALUE [,…]) 

Specific:  The specific interface names are S_BS3GD and D_BS3GD. 

FORTRAN 77 Interface 
Single: CALL BS3GD (IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ,  

ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, 
NYCOEF, NZCOEF, BSCOEF, VALUE, LDVALU, MDVALU) 

Double: The double precision name is DBS3GD. 

Example 

In this example, a spline interpolant s to a function f(x, y, z) = x4 + y(xz)3 is constructed using 
BS3IN (page 635). Next, BS3GD is used to compute s(2,0,1)(x, y, z) on the grid. The values of this 
partial derivative and the error are computed on a 4 � 4 � 2 grid and then displayed. 

      USE BS3GD_INT 
      USE BS3IN_INT 
      USE BSNAK_INT 
      USE UMACH_INT 
      INTEGER    KXORD, KYORD, KZORD, LDF, LDVAL, MDF, MDVAL, NXDATA,& 
                 NXKNOT, NYDATA, NYKNOT, NZ, NZDATA, NZKNOT 
      PARAMETER  (KXORD=5, KYORD=2, KZORD=3, LDVAL=4, MDVAL=4,& 
                 NXDATA=21, NYDATA=6, NZ=2, NZDATA=8, LDF=NXDATA,& 
                 MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,& 
                 NZKNOT=NZDATA+KZORD) 
!  
      INTEGER    I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF 
      REAL       BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,& 
                 FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(LDVAL,MDVAL,NZ),& 
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                 X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(LDVAL), Y,& 
                 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(MDVAL), Z,& 
                 ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZ) 
      INTRINSIC  FLOAT 
!  
!  
!  
      F(X,Y,Z)    = X*X*X*X + X*X*X*Y*Z*Z*Z 
      F201(X,Y,Z) = 18.0*X*Y*Z 
!  
      CALL UMACH (2, NOUT) 
!                                  Set up X interpolation points 
      DO 10  I=1, NXDATA 
         XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) - 1.0 
   10 CONTINUE 
!                                  Set up Y interpolation points 
      DO 20  I=1, NYDATA 
         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 
   20 CONTINUE 
!                                  Set up Z interpolation points 
      DO 30  I=1, NZDATA 
         ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1) 
   30 CONTINUE 
!                                  Generate knots 
      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 
      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 
      CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT) 
!                                  Generate FDATA 
      DO 50  K=1, NZDATA 
         DO 40  I=1, NYDATA 
            DO 40  J=1, NXDATA 
               FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K)) 
   40  CONTINUE 
   50 CONTINUE 
!                                  Interpolate 
      CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD,& 
                  KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF) 
!  
      NXCOEF = NXDATA 
      NYCOEF = NYDATA 
      NZCOEF = NZDATA 
!                                  Print over a grid of 
!                                  [-1.0,1.0] x [0.0,1.0] x [0.0,1.0] 
!                                  at 32 points. 
      DO 60  I=1, 4 
         XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0 
   60 CONTINUE 
      DO 70  J=1, 4 
         YVEC(J) = FLOAT(J-1)/3.0 
   70 CONTINUE 
      DO 80  L=1, 2 
         ZVEC(L) = FLOAT(L-1) 
   80 CONTINUE 
      CALL BS3GD (2, 0, 1, XVEC, YVEC, ZVEC, KXORD, KYORD,& 
                  KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE) 
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!  
!  
      WRITE (NOUT,99999) 
      DO 110  I=1, 4 
         DO 100  J=1, 4 
            DO 90  L=1, 2 
               WRITE (NOUT,’(5F13.4)’) XVEC(I), YVEC(J), ZVEC(L),& 
                                     VALUE(I,J,L),& 
                                     F201(XVEC(I),YVEC(J),ZVEC(L)) -& 
                                     VALUE(I,J,L) 
   90   CONTINUE 
  100 CONTINUE 
  110 CONTINUE 
99999 FORMAT (44X, ’(2,0,1)’, /, 10X, ’X’, 11X, ’Y’, 10X, ’Z’, 10X,& 
             ’S     (X,Y,Z)  Error’) 
      STOP 
      END 

Output 
                                            (2,0,1) 
          X           Y          Z          S     (X,Y,Z)  Error 
      -1.0000       0.0000       0.0000      -0.0005       0.0005 
      -1.0000       0.0000       1.0000       0.0002      -0.0002 
      -1.0000       0.3333       0.0000       0.0641      -0.0641 
      -1.0000       0.3333       1.0000      -5.9360      -0.0640 
      -1.0000       0.6667       0.0000       0.1274      -0.1274 
      -1.0000       0.6667       1.0000     -11.8730      -0.1270 
      -1.0000       1.0000       0.0000       0.1911      -0.1911 
      -1.0000       1.0000       1.0000     -17.8086      -0.1914 
      -0.3333       0.0000       0.0000       0.0000       0.0000 
      -0.3333       0.0000       1.0000       0.0000       0.0000 
      -0.3333       0.3333       0.0000       0.0212      -0.0212 
      -0.3333       0.3333       1.0000      -1.9788      -0.0212 
      -0.3333       0.6667       0.0000       0.0425      -0.0425 
      -0.3333       0.6667       1.0000      -3.9575      -0.0425 
      -0.3333       1.0000       0.0000       0.0637      -0.0637 
      -0.3333       1.0000       1.0000      -5.9363      -0.0637 
       0.3333       0.0000       0.0000       0.0000       0.0000 
       0.3333       0.0000       1.0000       0.0000       0.0000 
       0.3333       0.3333       0.0000      -0.0212       0.0212 
       0.3333       0.3333       1.0000       1.9788       0.0212 
       0.3333       0.6667       0.0000      -0.0425       0.0425 
       0.3333       0.6667       1.0000       3.9575       0.0425 
       0.3333       1.0000       0.0000      -0.0637       0.0637 
       0.3333       1.0000       1.0000       5.9363       0.0637 
       1.0000       0.0000       0.0000      -0.0005       0.0005 
       1.0000       0.0000       1.0000       0.0000       0.0000 
       1.0000       0.3333       0.0000      -0.0637       0.0637 
       1.0000       0.3333       1.0000       5.9359       0.0641 
       1.0000       0.6667       0.0000      -0.1273       0.1273 
       1.0000       0.6667       1.0000      11.8733       0.1267 
       1.0000       1.0000       0.0000      -0.1912       0.1912 
       1.0000       1.0000       1.0000      17.8096       0.1904 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of B23GD/DB23GD. The 

reference is: 

CALL B23GD ((IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ,  
ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, 
NZCOEF, BSCOEF, VALUE, LDVALU, MDVALU LEFTX, LEFTY, LEFTZ, A, B, 
C , DBIATX, DBIATY, DBIATZ, BX, BY, BZ) 

The additional arguments are as follows: 

LEFTX — Work array of length NX. 

LEFTY — Work array of length NY. 

LEFTZ — Work array of length NZ. 

A — Work array of length KXORD * KXORD. 

B — Work array of length KYORD * KYORD. 

C — Work array of length KZORD * KZORD. 

DBIATX — Work array of length KXORD * (IXDER + 1). 

DBIATY — Work array of length KYORD * (IYDER + 1). 

DBIATZ — Work array of length KZORD * (IZDER + 1). 

BX — Work array of length KXORD * NX. 

BY — Work array of length KYORD * NY. 

BZ — Work array of length KZORD * NZ. 

2. Informational errors 

Type Code 
   3    1 XVEC(I) does not satisfy XKNOT(KXORD) � XVEC(I) � XKNOT(NXCOEF 

+ 1). 
   3    2 YVEC(I) does not satisfy YKNOT(KYORD) � YVEC(I) � YKNOT(NYCOEF 

+ 1). 
   3    3 ZVEC(I) does not satisfy ZKNOT(KZORD) � ZVEC(I) � ZKNOT(NZCOEF 

+ 1). 
   4    4 XVEC is not strictly increasing. 
   4    5 YVEC is not strictly increasing. 
   4    6 ZVEC is not strictly increasing. 
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Description 
The routine BS3GD evaluates a partial derivative of a trivariate tensor-product spline 
(represented as a linear combination of tensor-product B-splines) on a grid. For more 
information, see de Boor (1978, pages 351�353). 

This routine returns the value of the function s(p,q,r) on the grid (xi, yj, zk) for i = 1, �, nx, j = 1, 
�, ny, and k = 1, �, nz given the coefficients c by computing (for all (x, y, z) on the grid) 
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where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in 
KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot 
sequences (XKNOT, YKNOT, and ZKNOT). The grid must be ordered in the sense that xi < xi + 1, yj 
< yj + 1, and zk < zk + 1. 

BS3IG 
This function evaluates the integral of a tensor-product spline in three dimensions over a three-
dimensional rectangle, given its tensor-product B-spline representation. 

Function Return Value 
BS3IG — Integral of the spline over the three-dimensional rectangle (A, B) by (C, D) by (E, F).   

(Output) 

Required Arguments 
A — Lower limit of the X-variable.   (Input) 

B — Upper limit of the X-variable.   (Input) 

C — Lower limit of the Y-variable.   (Input) 

D — Upper limit of the Y-variable.   (Input) 

E — Lower limit of the Z-variable.   (Input) 

F — Upper limit of the Z-variable.   (Input) 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

KZORD — Order of the spline in the Z-direction.   (Input) 
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XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.   
(Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.   
(Input)  
YKNOT must be nondecreasing. 

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.   
(Input)  
ZKNOT must be nondecreasing. 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 

NZCOEF — Number of B-spline coefficients in the Z-direction.   (Input) 

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product B-
spline coefficients.   (Input)  
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF. 

FORTRAN 90 Interface 
Generic: BS3IG(A, B, C , D, E, F, KXORD, KYORD, KZORD, XKNOT,             

YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

Specific:  The specific interface names are S_BS3IG and D_BS3IG. 

FORTRAN 77 Interface 
Single: BS3IG(A, B, C , D, E, F, KXORD, KYORD, KZORD, XKNOT,             

YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF) 

Double: The double precision function name is DBS3IG. 

Example 
We integrate the three-dimensional tensor-product quartic (kx = 5) by linear (ky = 2) by 
quadratic (kz = 3) spline which interpolates x3 + xyz at the points 

� �� �/10, / 5, / 7 : 10, , 10, 0, , 5, and 0, , 7i j m i j m� � � �� � �  

over the rectangle [0, 1] � [.5, 1] � [0, .5]. The exact answer is 11/128. 
 

      USE BS3IG_INT 
      USE BS3IN_INT 
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      USE BSNAK_INT 
      USE UMACH_INT 

!                                  SPECIFICATIONS FOR PARAMETERS 
      INTEGER    KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,& 
                 NYDATA, NYKNOT, NZDATA, NZKNOT 
      PARAMETER  (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,& 
                 NZDATA=8, LDF=NXDATA, MDF=NYDATA,& 
                 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,& 
                 NZKNOT=NZDATA+KZORD) 
!  
      INTEGER    I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF 
      REAL       A, B, BSCOEF(NXDATA,NYDATA,NZDATA), C , D, E,& 
                 F, FDATA(LDF,MDF,NZDATA), FF, FIG, FLOAT, G, H, RI,& 
                 RJ, VAL, X, XDATA(NXDATA), XKNOT(NXKNOT), Y,& 
                 YDATA(NYDATA), YKNOT(NYKNOT), Z, ZDATA(NZDATA),& 
                 ZKNOT(NZKNOT) 
      INTRINSIC  FLOAT 
!                                  Define function 
      F(X,Y,Z) = X*X*X + X*Y*Z 
!                                  Set up interpolation points 
      DO 10  I=1, NXDATA 
         XDATA(I) = FLOAT(I-11)/10.0 
   10 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT) 
!                                  Set up interpolation points 
      DO 20  I=1, NYDATA 
         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 
   20 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT) 
!                                  Set up interpolation points 
      DO 30  I=1, NZDATA 
         ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1) 
   30 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT) 
!                                  Generate FDATA 
      DO 50  K=1, NZDATA 
         DO 40  I=1, NYDATA 
            DO 40  J=1, NXDATA 
               FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K)) 
   40  CONTINUE 
   50 CONTINUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Interpolate 
      CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, & 
                  YKNOT, ZKNOT, BSCOEF) 
!  
      NXCOEF = NXDATA 
      NYCOEF = NYDATA 
      NZCOEF = NZDATA 
      A      = 0.0 
      B      = 1.0 
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      C      = 0.5 
      D      = 1.0 
      E      = 0.0 
      FF     = 0.5 
!                                  Integrate 
      VAL    = BS3IG(A,B,C ,D,E,FF,KXORD,KYORD,KZORD,XKNOT,YKNOT,ZKNOT,& 
               NXCOEF,NYCOEF,NZCOEF,BSCOEF) 
!                                  Calculate integral directly 
      G   = .5*(B**4-A**4) 
      H   = (B-A)*(B+A) 
      RI  = G*(D-C ) 
      RJ  = .5*H*(D-C )*(D+C ) 
      FIG = .5*(RI*(FF-E)+.5*RJ*(FF-E)*(FF+E)) 
!                                  Print results 
      WRITE (NOUT,99999) VAL, FIG, FIG - VAL 
99999 FORMAT (’ Computed Integral = ’, F10.5, /, ’ Exact Integral    ’& 
             , ’= ’, F10.5,/, ’ Error             ’& 
             , ’= ’, F10.6, /) 
      END 

Output 
Computed Integral =    0.08594 
Exact Integral    =    0.08594 
Error             =   0.000000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B23IG/DB23IG. The 

reference is: 

CALL B23IG(A, B, C , D, E, F, KXORD, KYORD, KZORD, XKNOT, YKNOT, 
ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK) 

 

The additional argument is: 

WK — Work array of length 4 * (MAX(KXORD, KYORD, KZORD) + 1) + NYCOEF 
+ NZCOEF. 

2. Informational errors 
Type  Code 

   3    1 The lower limit of the X-integration is less than XKNOT(KXORD). 
   3    2 The upper limit of the X-integration is greater than  

XKNOT(NXCOEF + 1). 
   3    3  The lower limit of the Y-integration is less than YKNOT(KYORD). 
   3    4  The upper limit of the Y-integration is greater than  

YKNOT(NYCOEF + 1). 
   3    5  The lower limit of the Z- integration is less than ZKNOT(KZORD). 
   3    6  The upper limit of the Z-integration is greater than  

ZKNOT(NZCOEF + 1). 
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   4     13  Multiplicity of the knots cannot exceed the order of the spline. 
   4    14  The knots must be nondecreasing. 

Description 
The routine BS3IG computes the integral of a tensor-product three-dimensional spline, given its 
B-spline representation. Specifically, given the knot sequence tx = XKNOT, ty = YKNOT,  
tz = ZKNOT, the order kx = KXORD, ky = KYORD, kz = KZORD, the coefficients � = BSCOEF, the 
number of coefficients nx = NXCOEF, ny = NYCOEF, nz = NZCOEF, and a three-dimensional 
rectangle [a, b] by [c, d] by [e, f], BS3IG returns the value 

1 1 1

yx znn nb d f

ijm ijma c e
i j m

B dz dy dx�
� � �

���� � �  

where 

� � � � � � � �, , , , ,, ,
x x y y z zijm i k j k m kB x y z B x B y B z� t t t  

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for all knot 
sequences) that the first and last k knots are stacked, that is, t1 = � = tk and tn + 1 = � = tn + k, 
where k is the order of the spline in the x, y, or z direction. 

BSCPP 
Converts a spline in B-spline representation to piecewise polynomial representation. 

Required Arguments 
KORDER — Order of the spline.   (Input) 

XKNOT — Array of length KORDER + NCOEF containing the knot sequence.   (Input)  
XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input) 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Input) 

NPPCF —  Number of piecewise polynomial pieces.   (Output)  
NPPCF is always less than or equal to NCOEF � KORDER + 1. 

BREAK — Array of length (NPPCF + 1) containing the breakpoints of the piecewise 
polynomial representation.   (Output)  
BREAK must be dimensioned at least NCOEF � KORDER + 2. 

PPCOEF — Array of length KORDER * NPPCF containing the local coefficients of the 
polynomial pieces.   (Output)  
PPCOEF is treated internally as a matrix of size KORDER by NPPCF. 
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FORTRAN 90 Interface 
Generic: CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK,  

     PPCOEF) 

Specific:  The specific interface names are S_BSCPP and D_BSCPP. 

FORTRAN 77 Interface 
Single: CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK,  

     PPCOEF) 

Double: The double precision name is DBSCPP. 

Example 
For an example of the use of BSCPP, see PPDER (page 684). 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2CPP/DB2CPP. The 

reference is: 

CALL B2CPP (KORDER, XKNOT, NCOEF, BSCOEFF, NPPCF,  
     BREAK, PPCOEF, WK) 

The additional argument is 

WK — Work array of length (KORDER + 3) * KORDER. 

2. Informational errors 
Type Code 

   4    4  Multiplicity of the knots cannot exceed the order of the spline. 
   4    5 The knots must be nondecreasing. 

Description 
The routine BSCPP is based on the routine BSPLPP by de Boor (1978, page 140). This routine is 
used to convert a spline in B-spline representation to a piecewise polynomial (pp) representation 
which can then be evaluated more efficiently. There is some overhead in converting from the  
B-spline representation to the pp representation, but the conversion to pp form is recommended 
when 3 or more function values are needed per polynomial piece. 

PPVAL 
This function evaluates a piecewise polynomial. 
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Function Return Value 
PPVAL — Value of the piecewise polynomial at X.   (Output) 

Required Arguments 
X — Point at which the polynomial is to be evaluated.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints of the piecewise 
polynomial representation.   (Input)  
BREAK must be strictly increasing. 

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise 
polynomial pieces.   (Input)  
PPCOEF is treated internally as a matrix of size KORDER by NINTV. 

Optional Arguments 
KORDER — Order of the polynomial.   (Input) 

Default: KORDER = size (PPCOEF,1). 

NINTV — Number of polynomial pieces.   (Input) 
Default: NINTV = size (PPCOEF,2). 

FORTRAN 90 Interface 
Generic: PPVAL (X, BREAK, PPCOEF [,…]) 

Specific:  The specific interface names are S_PPVAL and D_PPVAL. 

FORTRAN 77 Interface 
Single: PPVAL (X, KORDER, NINTV, BREAK, PPCOEF) 

Double: The double precision function name is DPPVAL. 

Example 
In this example, a spline interpolant to a function f is computed using the IMSL routine BSINT 
(page 622). This routine represents the interpolant as a linear combination of B-splines. This 
representation is then converted to piecewise polynomial representation by calling the IMSL 
routine BSCPP (page 680). The piecewise polynomial is evaluated using PPVAL. These values 
are compared to the corresponding values of f. 

      USE PPVAL_INT 
      USE BSNAK_INT 
      USE BSCPP_INT 
      USE BSINT_INT 
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      USE UMACH_INT 
      INTEGER    KORDER, NCOEF, NDATA, NKNOT 
      PARAMETER  (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER) 
!  
      INTEGER    I, NOUT, NPPCF 
      REAL       BREAK(NCOEF), BSCOEF(NCOEF), EXP, F, FDATA(NDATA),& 
                 FLOAT, PPCOEF(KORDER,NCOEF), S, X, XDATA(NDATA),& 
                 XKNOT(NKNOT) 
      INTRINSIC  EXP, FLOAT 
!                                  Define function 
      F(X) = X*EXP(X) 
!                                  Set up interpolation points 
      DO 30  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   30 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Compute the B-spline interpolant 
      CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
!                                  Convert to piecewise polynomial 
      CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print the interpolant on a uniform 
!                                  grid 
      DO 40  I=1, NDATA 
         X = FLOAT(I-1)/FLOAT(NDATA-1) 
!                                  Compute value of the piecewise 
!                                  polynomial 
         S = PPVAL(X,BREAK,PPCOEF) 
         WRITE (NOUT,’(2F12.3, E14.3)’) X, S, F(X) - S 
 
 
   40 CONTINUE 
99999 FORMAT (11X, ’X’, 8X, ’S(X)’, 7X, ’Error’) 
      END 

Output 
    X        S(X)       Error 
0.000       0.000     0.000E+00 
0.053       0.055    -0.745E-08 
0.105       0.117     0.000E+00 
0.158       0.185     0.000E+00 
0.211       0.260    -0.298E-07 
0.263       0.342     0.298E-07 
0.316       0.433     0.000E+00 
0.368       0.533     0.000E+00 
0.421       0.642     0.000E+00 
0.474       0.761     0.596E-07 
0.526       0.891     0.000E+00 
0.579       1.033     0.000E+00 
0.632       1.188     0.000E+00 
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0.684       1.356     0.000E+00 
0.737       1.540    -0.119E-06 
0.789       1.739     0.000E+00 
0.842       1.955     0.000E+00 
0.895       2.189     0.238E-06 
0.947       2.443     0.238E-06 
1.000       2.718     0.238E-06 

Description 
The routine PPVAL evaluates a piecewise polynomial at a given point. This routine is a special 
case of the routine PPDER (page 684), which evaluates the derivative of a piecewise polynomial. 
(The value of a piecewise polynomial is its zero-th derivative.) 

The routine PPDER is based on the routine PPVALU in de Boor (1978, page 89). 

PPDER 
This function evaluates the derivative of a piecewise polynomial. 

Function Return Value 
PPDER — Value of the IDERIV-th derivative of the piecewise polynomial at X.   (Output) 

Required Arguments 
X — Point at which the polynomial is to be evaluated.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints of the piecewise 
polynomial representation.   (Input)  
BREAK must be strictly increasing. 

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise 
polynomial pieces.   (Input)  
PPCOEF is treated internally as a matrix of size KORDER by NINTV. 

Optional Arguments 
IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the value of the polynomial. 
Default: IDERIV = 1. 

KORDER — Order of the polynomial.   (Input) 
Default: KORDER = size (PPCOEF,1). 

NINTV — Number of polynomial pieces.   (Input) 
Default: NINTV = size (PPCOEF,2). 
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FORTRAN 90 Interface 
Generic: PPDER (X, BREAK, PPCOEF [,…]) 

Specific:  The specific interface names are S_PPDER and D_PPDER. 

FORTRAN 77 Interface 
Single: PPDER (IDERIV, X, KORDER, NINTV, BREAK, PPCOEF) 

Double: The double precision function name is DPPDER. 

Example 
In this example, a spline interpolant to a function f is computed using the IMSL routine BSINT 
(page 622). This routine represents the interpolant as a linear combination of B-splines. This 
representation is then converted to piecewise polynomial representation by calling the IMSL 
routine BSCPP (page 680). The piecewise polynomial’s zero-th and first derivative are evaluated 
using PPDER. These values are compared to the corresponding values of f. 

      USE IMSL_LIBRARIES 
      INTEGER    KORDER, NCOEF, NDATA, NKNOT 
      PARAMETER  (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER) 
!  
      INTEGER    I, NOUT, NPPCF 
      REAL       BREAK(NCOEF), BSCOEF(NCOEF), DF, DS, EXP, F,& 
                 FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), S,& 
                 X, XDATA(NDATA), XKNOT(NKNOT) 
      INTRINSIC  EXP, FLOAT 
!  
      F(X)  = X*EXP(X) 
      DF(X) = (X+1.)*EXP(X) 
!                                  Set up interpolation points 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Compute the B-spline interpolant 
      CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
!                                  Convert to piecewise polynomial 
      CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print the interpolant on a uniform 
!                                  grid 
      DO 20  I=1, NDATA 
         X = FLOAT(I-1)/FLOAT(NDATA-1) 
!                                  Compute value of the piecewise 
!                                  polynomial 
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         S = PPDER(X,BREAK,PPCOEF, IDERIV=0, NINTV=NPPCF) 
!                                  Compute derivative of the piecewise 
!                                  polynomial 
         DS = PPDER(X,BREAK,PPCOEF, IDERIV=1, NINTV=NPPCF) 
         WRITE (NOUT,’(2F12.3,F12.6,F12.3,F12.6)’) X, S, F(X) - S, DS,& 
                DF(X) – DS 
   20 CONTINUE 
99999 FORMAT (11X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 7X, ’S’’(X)’, 7X,& 
             ’Error’) 
      END 

Output 
    X        S(X)       Error       S’(X)       Error 
0.000       0.000    0.000000       1.000   -0.000112 
0.053       0.055    0.000000       1.109    0.000030 
0.105       0.117    0.000000       1.228   -0.000008 
0.158       0.185    0.000000       1.356    0.000002 
0.211       0.260    0.000000       1.494    0.000000 
0.263       0.342    0.000000       1.643    0.000000 
0.316       0.433    0.000000       1.804   -0.000001 
0.368       0.533    0.000000       1.978    0.000002 
0.421       0.642    0.000000       2.165    0.000001 
0.474       0.761    0.000000       2.367    0.000000 
0.526       0.891    0.000000       2.584   -0.000001 
0.579       1.033    0.000000       2.817    0.000001 
0.632       1.188    0.000000       3.068    0.000001 
0.684       1.356    0.000000       3.338    0.000001 
0.737       1.540    0.000000       3.629    0.000001 
0.789       1.739    0.000000       3.941    0.000000 
0.842       1.955    0.000000       4.276   -0.000006 
0.895       2.189    0.000000       4.636    0.000024 
0.947       2.443    0.000000       5.022   -0.000090 
1.000       2.718    0.000000       5.436    0.000341 

Description 
The routine PPDER evaluates the derivative of a piecewise polynomial function f at a given 
point. This routine is based on the subroutine PPVALU by de Boor (1978, page 89). In particular, 
if the breakpoint sequence is stored in � (a vector of length N = NINTV + 1), and if the 
coefficients of the piecewise polynomial representation are stored in c, then the value of the j-th 
derivative of f at x in[�i, �i + 1) is 
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when j = 0 to k � 1 and zero otherwise. Notice that this representation forces the function to be 
right continuous. If x is less than �1, then i is set to 1 in the above formula; if x is greater than or 
equal to �N , then i is set to N � 1. This has the effect of extending the piecewise polynomial 
representation to the real axis by extrapolation of the first and last pieces. 
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PP1GD 
Evaluates the derivative of a piecewise polynomial on a grid. 

Required Arguments 
XVEC — Array of length N containing the points at which the piecewise polynomial is to be 

evaluated.   (Input)  
The points in XVEC should be strictly increasing. 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise 
polynomial representation.   (Input)  
BREAK must be strictly increasing. 

PPCOEF —  Matrix of size KORDER by NINTV containing the local coefficients of the 
polynomial pieces.   (Input) 

VALUE — Array of length N containing the values of the IDERIV-th derivative of the 
piecewise polynomial at the points in XVEC.   (Output) 

Optional Arguments 
IDERIV — Order of the derivative to be evaluated.   (Input)  

In particular, IDERIV = 0 returns the values of the piecewise polynomial. 
Default: IDERIV = 1. 

N — Length of vector XVEC.   (Input) 
Default: N = size (XVEC,1). 

KORDER — Order of the polynomial.   (Input) 
Default: KORDER = size (PPCOEF,1). 

NINTV — Number of polynomial pieces.   (Input) 
Default: NINTV = size (PPCOEF,2). 

FORTRAN 90 Interface 
Generic: CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE [,…]) 

Specific:  The specific interface names are S_PP1GD and D_PP1GD. 

FORTRAN 77 Interface 
Single: CALL PP1GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK, PPCOEF,  

                VALUE) 

Double: The double precision name is DPP1GD. 
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Example 
To illustrate the use of PP1GD, we modify the example program for PPDER (page 684). In this 
example, a piecewise polynomial interpolant to F is computed. The values of this polynomial 
are then compared with the exact function values. The routine PP1GD is based on the routine 
PPVALU in de Boor (1978, page 89). 

      USE IMSL_LIBRARIES 

      INTEGER    KORDER, N, NCOEF, NDATA, NKNOT 
      PARAMETER  (KORDER=4, N=20, NCOEF=20, NDATA=20,& 
                 NKNOT=NDATA+KORDER) 
!  
      INTEGER    I, NINTV, NOUT, NPPCF 
      REAL       BREAK(NCOEF), BSCOEF(NCOEF), DF, EXP, F,& 
                 FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), VALUE1(N),& 
                 VALUE2(N), X, XDATA(NDATA), XKNOT(NKNOT), XVEC(N) 
      INTRINSIC  EXP, FLOAT 
!  
      F(X)  = X*EXP(X) 
      DF(X) = (X+1.)*EXP(X) 
!                                  Set up interpolation points 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Compute the B-spline interpolant 
      CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
!                                  Convert to piecewise polynomial 
      CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF) 
!                                  Compute evaluation points 
      DO 20  I=1, N 
         XVEC(I) = FLOAT(I-1)/FLOAT(N-1) 
   20 CONTINUE 
!                                  Compute values of the piecewise 
!                                  polynomial 
      NINTV = NPPCF 
      CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE1, IDERIV=0, NINTV=NINTV) 
!                                  Compute the values of the first 
!                                  derivative of the piecewise 
!                                  polynomial 
      CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE2, IDERIV=1, NINTV=NINTV) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99998) 
!                                  Print the results on a uniform 
!                                  grid 
      DO 30  I=1, N 
         WRITE (NOUT,99999) XVEC(I), VALUE1(I), F(XVEC(I)) - VALUE1(I)& 
                           , VALUE2(I), DF(XVEC(I)) - VALUE2(I) 
   30 CONTINUE 
99998 FORMAT (11X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 7X, ’S’’(X)’, 7X,& 
             ’Error’) 
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99999 FORMAT (’ ’, 2F12.3, F12.6, F12.3, F12.6) 
      END 

Output 
 

   X        S(X)       Error       S’(X)       Error 
0.000       0.000    0.000000       1.000   -0.000112 
0.053       0.055    0.000000       1.109    0.000030 
0.105       0.117    0.000000       1.228   -0.000008 
0.158       0.185    0.000000       1.356    0.000002 
0.211       0.260    0.000000       1.494    0.000000 
0.263       0.342    0.000000       1.643    0.000000 
0.316       0.433    0.000000       1.804   -0.000001 
0.368       0.533    0.000000       1.978    0.000002 
0.421       0.642    0.000000       2.165    0.000001 
0.474       0.761    0.000000       2.367    0.000000 
0.526       0.891    0.000000       2.584   -0.000001 
0.579       1.033    0.000000       2.817    0.000001 
0.632       1.188    0.000000       3.068    0.000001 
0.684       1.356    0.000000       3.338    0.000001 
0.737       1.540    0.000000       3.629    0.000001 
0.789       1.739    0.000000       3.941    0.000000 
0.842       1.955    0.000000       4.276   -0.000006 
0.895       2.189    0.000000       4.636    0.000024 
0.947       2.443    0.000000       5.022   -0.000090 
1.000       2.718    0.000000       5.436    0.000341 

Comments 
1. Workspace may be explicitly provided, if desired, by use of P21GD/DP21GD. The 

reference is: 

CALL P21GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK, PPCOEF, 
VALUE, IWK, WORK1, WORK2) 

The additional arguments are as follows: 

IWK — Array of length N. 

WORK1 — Array of length N. 

WORK2 — Array of length N. 

2. Informational error 

Type Code 
   4    4 The points in XVEC must be strictly increasing. 

Description 
The routine PP1GD evaluates a piecewise polynomial function f (or its derivative) at a vector of 
points. That is, given a vector x of length n satisfying xi < xi + 1 for i = 1, �, n � 1, a derivative 



 

 
 

690 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY 

 

 

 

value j, and a piecewise polynomial function f that is represented by a breakpoint sequence and 
coefficient matrix this routine returns the values 

� � � � 1, ,j
if x i n� �  

in the array VALUE. The functionality of this routine is the same as that of PPDER (page 684) 
called in a loop, however PP1GD is much more efficient. 

PPITG 
This function evaluates the integral of a piecewise polynomial. 

Function Return Value 
PPITG — Value of the integral from A to B of the piecewise polynomial.   (Output) 

Required Arguments 
A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise 
polynomial.   (Input)  
BREAK must be strictly increasing. 

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise 
polynomial pieces.   (Input)  
PPCOEF is treated internally as a matrix of size KORDER by NINTV. 

Optional Arguments 
KORDER — Order of the polynomial.   (Input) 

Default: KORDER = size (PPCOEF,1). 

NINTV — Number of piecewise polynomial pieces.   (Input) 
Default: NINTV = size (PPCOEF,2). 

FORTRAN 90 Interface 
Generic: PP1TG (A, B, BREAK, PPCOEF [,…]) 

Specific:  The specific interface names are S_PP1TG and D_PP1TG. 

FORTRAN 77 Interface 
Single: PP1TG (A, B, KORDER, NINTV, BREAK, PPCOEF) 



 

 
 

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 691 

 

 

 

Double: The double precision function name is DPP1TG. 

Example 

In this example, we compute a quadratic spline interpolant to the function x2 using the IMSL 
routine BSINT (page 622). We then evaluate the integral of the spline interpolant over the 
intervals [0, 1/2] and [0, 2]. The interpolant reproduces x2, and hence, the values of the integrals 
are 1/24 and 8/3, respectively. 

      USE IMSL_LIBRARIES 
      INTEGER    KORDER, NDATA, NKNOT 
      PARAMETER  (KORDER=3, NDATA=10, NKNOT=NDATA+KORDER) 
!  
      INTEGER    I, NOUT, NPPCF 
      REAL       A, B, BREAK(NDATA), BSCOEF(NDATA), EXACT, F,& 
                 FDATA(NDATA), FI, FLOAT, PPCOEF(KORDER,NDATA),& 
                 VALUE, X, XDATA(NDATA), XKNOT(NKNOT) 
      INTRINSIC  FLOAT 
!  
      F(X)  = X*X 
      FI(X) = X*X*X/3.0 
!                                  Set up interpolation points 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Generate knot sequence 
      CALL BSNAK (NDATA, XDATA, KORDER, XKNOT) 
!                                  Interpolate 
      CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF) 
!                                  Convert to piecewise polynomial 
      CALL BSCPP (KORDER, XKNOT, NDATA, BSCOEF, NPPCF, BREAK, PPCOEF) 
!                                  Compute the integral of F over 
!                                  [0.0,0.5] 
      A     = 0.0 
      B     = 0.5 
      VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF) 
      EXACT = FI(B) - FI(A) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Print the result 
      WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE 
!                                  Compute the integral of F over 
!                                  [0.0,2.0] 
      A     = 0.0 
      B     = 2.0 
      VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF) 
      EXACT = FI(B) - FI(A) 
!                                  Print the result 
      WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE 
99999 FORMAT (’ On the closed interval (’, F3.1, ’,’, F3.1,& 
             ’) we have :’, /, 1X, ’Computed Integral = ’, F10.5, /,& 
             1X, ’Exact Integral    = ’, F10.5, /, 1X, ’Error         ’& 
             , ’    = ’, F10.6, /, /) 
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!  
      END 

Output 
On the closed interval (0.0,0.5) we have : 
Computed Integral =    0.04167 
Exact Integral    =    0.04167 
Error             =   0.000000 
 
On the closed interval (0.0,2.0) we have : 
Computed Integral =    2.66667 
Exact Integral    =    2.66667 
Error             =   0.000001 

Description 
The routine PPITG evaluates the integral of a piecewise polynomial over an interval. 

QDVAL 
This function evaluates a function defined on a set of points using quadratic interpolation. 

Function Return Value 
QDVAL — Value of the quadratic interpolant at X.   (Output) 

Required Arguments 
X — Coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NDATA containing the location of the data points.   (Input) XDATA 
must be strictly increasing. 

FDATA — Array of length NDATA containing the function values.   (Input)  
FDATA(I) is the value of the function at XDATA(I). 

Optional Arguments 
NDATA —  Number of data points.   (Input)  

NDATA must be at least 3. 
Default: NDATA = size (XDATA,1). 

CHECK — Logical variable that is .TRUE. if checking of XDATA is required or .FALSE. if 
checking is not required.   (Input) 
Default: CHECK = .TRUE. 

FORTRAN 90 Interface 
Generic: QDVAL (X, XDATA, FDATA [,…]) 
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Specific:  The specific interface names are S_QDVAL and D_QDVAL. 

FORTRAN 77 Interface 
Single: QDVAL (X, NDATA, XDATA, FDATA, CHECK) 

Double: The double precision name is DQDVAL. 

Example 
In this example, the value of sin x is approximated at �/4 by using QDVAL on a table of 33 
equally spaced values. 

      USE IMSL_LIBRARIES 
      INTEGER    NDATA 
      PARAMETER  (NDATA=33) 
!  
      INTEGER    I, NOUT 
      REAL       F, FDATA(NDATA), H, PI, QT, SIN, X,& 
                 XDATA(NDATA) 
      INTRINSIC  SIN 
!                                  Define function 
      F(X) = SIN(X) 
!                                  Generate data points 
      XDATA(1) = 0.0 
      FDATA(1) = F(XDATA(1)) 
      H        = 1.0/32.0 
      DO 10  I=2, NDATA 
         XDATA(I) = XDATA(I-1) + H 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Get value of PI and set X 
      PI = CONST(’PI’) 
      X  = PI/4.0 
!                                  Evaluate at PI/4 
      QT = QDVAL(X,XDATA,FDATA) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Print results 
      WRITE (NOUT,99999) X, F(X), QT, (F(X)-QT) 
!  
99999 FORMAT (15X, ’X’, 6X, ’F(X)’, 6X, ’QDVAL’, 5X, ’ERROR’, //, 6X,& 
             4F10.3, /) 
      END 

Output 
    X      F(X)      QDVAL     ERROR 
 
0.785     0.707     0.707     0.000 
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Comments 
Informational error 

Type  Code  

   4    3 The XDATA values must be strictly increasing. 

Description 
The function QDVAL interpolates a table of values, using quadratic polynomials, returning an 
approximation to the tabulated function. Let (xi, fi) for i = 1, �, n be the tabular data. Given a 
number x at which an interpolated value is desired, we first find the nearest interior grid point xi. 
A quadratic interpolant q is then formed using the three points (xi-1, fi-1), (xi, fi), and (xi+1, fi+1). 
The number returned by QDVAL is q(x). 

QDDER 
This function evaluates the derivative of a function defined on a set of points using quadratic 
interpolation. 

Function Return Value 
QDDER — Value of the IDERIV-th derivative of the quadratic interpolant at X.   (Output) 

Required Arguments 
IDERIV — Order of the derivative.   (Input) 

X — Coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NDATA containing the location of the data points.   (Input) XDATA 
must be strictly increasing. 

FDATA — Array of length NDATA containing the function values.   (Input)  
FDATA(I) is the value of the function at XDATA(I). 

Optional Arguments 
NDATA — Number of data points.   (Input)  

NDATA must be at least three. 
Default: NDATA = size (XDATA,1). 

CHECK — Logical variable that is .TRUE. if checking of XDATA is required or .FALSE. if 
checking is not required.   (Input) 
Default: CHECK = .TRUE. 
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FORTRAN 90 Interface 
Generic: QDDER(IDERIV, X, XDATA, FDATA [,…]) 

Specific:  The specific interface names are S_QDVAL and D_QDVAL. 

FORTRAN 77 Interface 
Single: QDDER(IDERIV, X, NDATA, XDATA, FDATA, CHECK) 

Double: The double precision function name is DQDVAL. 

Example 
In this example, the value of sin x and its derivatives are approximated at �/4 by using QDDER on 
a table of 33 equally spaced values. 

      USE IMSL_LIBRARIES 
      INTEGER    NDATA 
      PARAMETER  (NDATA=33) 
!  
      INTEGER    I, IDERIV, NOUT 
      REAL       COS, F, F1, F2, FDATA(NDATA), H, PI,& 
                 QT, SIN, X, XDATA(NDATA) 
      LOGICAL CHECK     
      INTRINSIC  COS, SIN 
!                                  Define function and derivatives 
      F(X)  = SIN(X) 
      F1(X) = COS(X) 
      F2(X) = -SIN(X) 
!                                  Generate data points 
      XDATA(1) = 0.0 
      FDATA(1) = F(XDATA(1)) 
      H        = 1.0/32.0 
      DO 10  I=2, NDATA 
         XDATA(I) = XDATA(I-1) + H 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Get value of PI and set X 
      PI = CONST(’PI’) 
      X  = PI/4.0 
!                                  Check XDATA 
      CHECK = .TRUE. 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99998) 
!                                  Evaluate quadratic at PI/4 
      IDERIV = 0 
      QT     = QDDER(IDERIV,X,XDATA,FDATA, CHECK=CHECK) 
      WRITE (NOUT,99999) X, IDERIV, F(X), QT, (F(X)-QT) 
      CHECK = .FALSE. 
!                                  Evaluate first derivative at PI/4 
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      IDERIV = 1 
      QT     = QDDER(IDERIV,X,XDATA,FDATA) 
      WRITE (NOUT,99999) X, IDERIV, F1(X), QT, (F1(X)-QT) 
!                                  Evaluate second derivative at PI/4 
      IDERIV = 2 
      QT     = QDDER(IDERIV,X,XDATA,FDATA, CHECK=CHECK) 
      WRITE (NOUT,99999) X, IDERIV, F2(X), QT, (F2(X)-QT) 
!  
99998 FORMAT (33X, ’IDER’, /, 15X, ’X’, 6X, ’IDER’, 6X, ’F    (X)’,& 
             5X, ’QDDER’, 6X, ’ERROR’, //) 
99999 FORMAT (7X, F10.3, I8, 3F12.3/) 
      END 

Output 
                      IDER 
   X      IDER      F    (X)     QDDER      ERROR 
 
0.785       0       0.707       0.707       0.000 
 
0.785       1       0.707       0.707       0.000 
 
0.785       2      -0.707      -0.704      -0.003 

Comments 
1. Informational error 

Type  Code 
    4    3  The XDATA values must be strictly increasing. 

2. Because quadratic interpolation is used, if the order of the derivative is greater than 
two, then the returned value is zero. 

Description  
The function QDDER interpolates a table of values, using quadratic polynomials, returning an 
approximation to the derivative of the tabulated function. Let (xi, fi) for i = 1, �, n be the 
tabular data. Given a number x at which an interpolated value is desired, we first find the nearest 
interior grid point xi. A quadratic interpolant q is then formed using the three points (xi-1, fi-1) 

(xi, fi), and (xi+1, fi+1). The number returned by QDDER is q(j)(x), where j = IDERIV.  

QD2VL 
This function evaluates a function defined on a rectangular grid using quadratic interpolation. 

Function Return Value 
QD2VL — Value of the function at (X, Y).   (Output) 
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Required Arguments 
X — x-coordinate of the point at which the function is to be evaluated.   (Input) 

Y — y-coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NXDATA containing the location of the data points in the x-
direction.   (Input)  
XDATA must be increasing. 

YDATA — Array of length NYDATA containing the location of the data points in the y-
direction.   (Input)  
YDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA containing function values.   (Input) 
FDATA (I, J) is the value of the function at (XDATA (I), YDATA(J)). 

Optional Arguments 
NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be at least three. 
Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input)  
NYDATA must be at least three. 
Default: NYDATA = size (YDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 
calling program.   (Input)  
LDF must be at least as large as NXDATA. 
Default: LDF = size (FDATA,1). 

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is required or 
.FALSE. if checking is not required.   (Input) 
Default: CHECK = .TRUE. 

FORTRAN 90 Interface 
Generic: QD2VL(X, Y, XDATA, YDATA, FDATA [,…]) 

Specific:  The specific interface names are S_QD2VL and D_QD2VL. 

FORTRAN 77 Interface 
Single: QD2VL(X, Y, NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,  

     CHECK) 

Double: The double precision function name is DQD2VL. 
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Example 
In this example, the value of sin(x + y) at x = y = �/4 is approximated by using QDVAL on a table 
of size 21 � 42 equally spaced values on the unit square. 

      USE IMSL_LIBRARIES 
      INTEGER    LDF, NXDATA, NYDATA 
      PARAMETER  (NXDATA=21, NYDATA=42, LDF=NXDATA) 
!  
      INTEGER    I, J, NOUT 
      REAL       F, FDATA(LDF,NYDATA), FLOAT, PI, Q, & 
                 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA) 
      INTRINSIC  FLOAT, SIN 
!                                  Define function 
      F(X,Y) = SIN(X+Y) 
!                                  Set up X-grid 
      DO 10  I=1, NXDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NXDATA-1) 
   10 CONTINUE 
!                                  Set up Y-grid 
      DO 20  I=1, NYDATA 
         YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1) 
   20 CONTINUE 
!                                  Evaluate function on grid 
      DO 30  I=1, NXDATA 
         DO 30  J=1, NYDATA 
            FDATA(I,J) = F(XDATA(I),YDATA(J)) 
   30 CONTINUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Get value for PI and set X and Y 
      PI = CONST(’PI’) 
      X  = PI/4.0 
      Y  = PI/4.0 
!                                  Evaluate quadratic at (X,Y) 
      Q = QD2VL(X,Y,XDATA,YDATA,FDATA) 
!                                  Print results 
      WRITE (NOUT,’(5F12.4)’) X, Y, F(X,Y), Q, (Q-F(X,Y)) 
99999 FORMAT (10X, ’X’, 11X, ’Y’, 7X, ’F(X,Y)’, 7X, ’QD2VL’, 9X,& 
             ’DIF’) 
      END 

Output 
     X           Y       F(X,Y)       QD2VL         DIF 
0.7854      0.7854      1.0000      1.0000      0.0000 

Comments 
Informational errors  

Type Code  
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   4     6  The XDATA values must be strictly increasing. 

   4    7  The YDATA values must be strictly increasing. 

Description 
The function QD2VL interpolates a table of values, using quadratic polynomials, returning an 
approximation to the tabulated function. Let (xi, yj, fij) for i = 1, �, nx and j = 1, �, ny be the 
tabular data. Given a point (x, y) at which an interpolated value is desired, we first find the 
nearest interior grid point (xi, yj). A bivariate quadratic interpolant q is then formed using six 
points near (x, y). Five of the six points are (xi, yj), (xi ±1, yj), and (xi, yj ±1). The sixth point is the 
nearest point to (x, y) of the grid points (xi±1, yj±1). The value q(x, y) is returned by QD2VL. 

QD2DR 
This function evaluates the derivative of a function defined on a rectangular grid using quadratic 
interpolation. 

Function Return Value 
QD2DR — Value of the (IXDER, IYDER) derivative of the function at (X, Y).   (Output) 

Required Arguments 
IXDER — Order of the x-derivative.   (Input) 

IYDER — Order of the y-derivative.   (Input) 

X — X-coordinate of the point at which the function is to be evaluated.   (Input) 

Y — Y-coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NXDATA containing the location of the data points in the  
x-direction.   (Input)  
XDATA must be increasing. 

YDATA — Array of length NYDATA containing the location of the data points in the  
y-direction.   (Input)  
YDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA containing function values.   (Input) 
FDATA(I, J) is the value of the function at (XDATA(I), YDATA(J)). 
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Optional Arguments  
NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be at least three. 
Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input)  
NYDATA must be at least three. 
Default: NYDATA = size (YDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 
calling program.   (Input)  
LDF must be at least as large as NXDATA. 
Default: LDF = size (FDATA,1). 

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is required or 
.FALSE. if checking is not required.   (Input) 
Default: CHECK = .TRUE. 

FORTRAN 90 Interface 
Generic: QD2DR (IXDER, IYDER, X, Y, XDATA, YDATA, FDATA [,…]) 

Specific:  The specific interface names are S_QD2DR and D_QD2DR. 

FORTRAN 77 Interface 
Single: QD2DR(IXDER, IYDER, X, Y, NXDATA, XDATA, NYDATA,              

YDATA, FDATA, LDF, CHECK) 

Double: The double precision fucntion name is DQD2DR. 

Example 
In this example, the partial derivatives of sin(x + y) at x = y = �/3 are approximated by using 
QD2DR on a table of size 21 � 42 equally spaced values on the rectangle [0, 2] � [0, 2]. 

      USE IMSL_LIBRARIES 

      INTEGER    LDF, NXDATA, NYDATA 
      PARAMETER  (NXDATA=21, NYDATA=42, LDF=NXDATA) 
!  
      INTEGER    I, IXDER, IYDER, J, NOUT 
      REAL       F, FDATA(LDF,NYDATA), FLOAT, FU, FUNC, PI, Q,& 
                 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA) 
      INTRINSIC  FLOAT, SIN 
      EXTERNAL   FUNC 
!                                  Define function 
      F(X,Y) = SIN(X+Y) 
!                                  Set up X-grid 
      DO 10  I=1, NXDATA 
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         XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 
   10 CONTINUE 
!                                  Set up Y-grid 
      DO 20  I=1, NYDATA 
         YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1)) 
   20 CONTINUE 
!                                  Evaluate function on grid 
      DO 30  I=1, NXDATA 
         DO 30  J=1, NYDATA 
            FDATA(I,J) = F(XDATA(I),YDATA(J)) 
   30 CONTINUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99998) 
!                                  Check XDATA and YDATA 
!                                  Get value for PI and set X and Y 
      PI = CONST(’PI’) 
      X  = PI/3.0 
      Y  = PI/3.0 
!                                  Evaluate and print the function 
!                                  and its derivatives at X=PI/3 and 
!                                  Y=PI/3. 
      DO 40  IXDER=0, 1 
         DO 40  IYDER=0, 1 
            Q  = QD2DR(IXDER,IYDER,X,Y,XDATA,YDATA,FDATA) 
            FU = FUNC(IXDER,IYDER,X,Y) 
            WRITE (NOUT,99999) X, Y, IXDER, IYDER, FU, Q, (FU-Q) 
   40 CONTINUE 
!  
99998 FORMAT (32X, ’(IDX,IDY)’, /, 8X, ’X’, 8X, ’Y’, 3X, ’IDX’, 2X,& 
             ’IDY’, 3X, ’F       (X,Y)’, 3X, ’QD2DR’, 6X, ’ERROR’) 
99999 FORMAT (2F9.4, 2I5, 3X, F9.4, 2X, 2F11.4) 
      END 
      REAL FUNCTION FUNC (IX, IY, X, Y) 
      INTEGER    IX, IY 
      REAL       X, Y 
!  
      REAL       COS, SIN 
      INTRINSIC  COS, SIN 
!  
      IF (IX.EQ.0 .AND. IY.EQ.0) THEN 
!                                  Define (0,0) derivative 
         FUNC = SIN(X+Y) 
      ELSE IF (IX.EQ.0 .AND. IY.EQ.1) THEN 
!                                  Define (0,1) derivative 
         FUNC = COS(X+Y) 
      ELSE IF (IX.EQ.1 .AND. IY.EQ.0) THEN 
!                                  Define (1,0) derivative 
         FUNC = COS(X+Y) 
      ELSE IF (IX.EQ.1 .AND. IY.EQ.1) THEN 
!                                  Define (1,1) derivative 
         FUNC = -SIN(X+Y) 
      ELSE 
         FUNC = 0.0 
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      END IF 
      RETURN 
      END 

Output 
                             (IDX,IDY) 
     X        Y   IDX  IDY   F       (X,Y)   QD2DR      ERROR 
1.0472   1.0472    0    0      0.8660       0.8661    -0.0001 
1.0472   1.0472    0    1     -0.5000      -0.4993    -0.0007 
1.0472   1.0472    1    0     -0.5000      -0.4995    -0.0005 
1.0472   1.0472    1    1     -0.8660      -0.8634    -0.0026 

Comments 
1. Informational errors 

Type Code 
   4    6 The XDATA values must be strictly increasing. 
   4    7 The YDATA values must be strictly increasing. 

2. Because quadratic interpolation is used, if the order of any derivative is greater than 
two, then the returned value is zero. 

Description  
The function QD2DR interpolates a table of values, using quadratic polynomials, returning an 
approximation to the tabulated function. Let (xi, yj, fij) for i = 1, �, nx and j = 1, �, ny be the 
tabular data. Given a point (x, y) at which an interpolated value is desired, we first find the 
nearest interior grid point (xi, yj). A bivariate quadratic interpolant q is then formed using six 
points near (x, y). Five of the six points are (xi, yj), (xi±1, yj), and (xi, yj±1). The sixth point is the 

nearest point to (x, y) of the grid points (xi±1, yj±1). The value q(p, r) (x, y) is returned by QD2DR, 
where p = IXDER and r = IYDER. 

QD3VL 
This function evaluates a function defined on a rectangular three-dimensional grid using quadratic 
interpolation. 

Function Return Value 
QD3VL — Value of the function at (X, Y, Z).   (Output) 

Required Arguments 
X — x-coordinate of the point at which the function is to be evaluated.   (Input) 

Y — y-coordinate of the point at which the function is to be evaluated.   (Input) 

Z — z-coordinate of the point at which the function is to be evaluated.   (Input) 
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XDATA — Array of length NXDATA containing the location of the data points in the  
x-direction.   (Input)  
XDATA must be increasing. 

YDATA — Array of length NYDATA containing the location of the data points in the y-
direction.   (Input)  
YDATA must be increasing. 

ZDATA — Array of length NZDATA containing the location of the data points in the z-
direction.   (Input)  
ZDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function values.   (Input)  
FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)). 

Optional Arguments  
NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be at least three. 
Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input)  
NYDATA must be at least three. 
Default: NYDATA = size (YDATA,1). 

NZDATA — Number of data points in the z-direction.   (Input)  
NZDATA must be at least three. 
Default: NZDATA = size (ZDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 
calling program.   (Input)  
LDF must be at least as large as NXDATA.  
Default: LDF = size (FDATA,1). 

MDF — Middle (second) dimension of FDATA exactly as specified in the dimension 
statement of the calling program.   (Input)  
MDF must be at least as large as NYDATA. 
Default: MDF = size (FDATA,2). 

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and ZDATA is 
required or .FALSE. if checking is not required.   (Input) 
Default: CHECK = .TRUE. 

FORTRAN 90 Interface 
Generic: QD3VL (X, Y, Z, XDATA, YDATA, ZDATA, FDATA [,…]) 
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Specific:  The specific interface names are S_QD3VL and D_QD3VL. 

FORTRAN 77 Interface 
Single: QD3VL(X, Y, Z, NXDATA, XDATA, NYDATA, YDATA, NZDATA,       

 ZDATA, FDATA, LDF, MDF, CHECK) 

Double: The double precision function name is DQD3VL. 

Example 
In this example, the value of sin(x + y + z) at x = y = z = �/3 is approximated by using QD3VL on 
a grid of size 21 � 42 � 18 equally spaced values on the cube [0, 2]3. 

      USE IMSL_LIBRARIES 
      INTEGER    LDF, MDF, NXDATA, NYDATA, NZDATA 
      PARAMETER  (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,& 
                 MDF=NYDATA) 
!  
      INTEGER    I, J, K, NOUT 
      REAL       F, FDATA(LDF,MDF,NZDATA), FLOAT, PI, Q, & 
                 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA), Z,& 
                 ZDATA(NZDATA) 
      INTRINSIC  FLOAT, SIN 
!                                  Define function 
      F(X,Y,Z) = SIN(X+Y+Z) 
!                                  Set up X-grid 
      DO 10  I=1, NXDATA 
         XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 
   10 CONTINUE 
!                                  Set up Y-grid 
      DO 20  J=1, NYDATA 
         YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1)) 
   20 CONTINUE 
!                                  Set up Z-grid 
      DO 30  K=1, NZDATA 
         ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1)) 
   30 CONTINUE 
!                                  Evaluate function on grid 
      DO 40  I=1, NXDATA 
         DO 40  J=1, NYDATA 
            DO 40  K=1, NZDATA 
               FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K)) 
   40 CONTINUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Get value for PI and set values 
!                                  for X, Y, and Z 
      PI = CONST(’PI’) 
      X  = PI/3.0 
      Y  = PI/3.0 
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      Z  = PI/3.0 
!                                  Evaluate quadratic at (X,Y,Z) 
      Q = QD3VL(X,Y,Z,XDATA,YDATA,ZDATA,FDATA) 
!                                  Print results 
      WRITE (NOUT,’(6F11.4)’) X, Y, Z, F(X,Y,Z), Q, (Q-F(X,Y,Z)) 
99999 FORMAT (10X, ’X’, 10X, ’Y’, 10X, ’Z’, 5X, ’F(X,Y,Z)’, 4X,& 
             ’QD3VL’, 6X, ’ERROR’) 
      END 

Output 
      X          Y          Z     F(X,Y,Z)    QD3VL      ERROR 
1.0472     1.0472     1.0472     0.0000     0.0001     0.0001 

Comments 
Informational errors 

Type  Code  

   4    9  The XDATA values must be strictly increasing. 

   4  10  The YDATA values must be strictly increasing. 

   4  11 The ZDATA values must be strictly increasing. 

Description 
The function QD3VL interpolates a table of values, using quadratic polynomials, returning an 
approximation to the tabulated function. Let (xi, yj, zk, fijk) for i = 1, �, nx, j = 1, �, ny, and  
k = 1, �, nz be the tabular data. Given a point (x, y, z) at which an interpolated value is desired, 
we first find the nearest interior grid point (xi, yj, zk,). A trivariate quadratic interpolant q is then 
formed. Ten points are needed for this purpose. Seven points have the form 

� � � � � � � �1 1 1, , , , , , , , and , ,i j k i j k i j k i j kx y z x y z x y z x y z
� � �

 

The last three points are drawn from the vertices of the octant containing (x, y, z). There are four 
of these vertices remaining, and we choose to exclude the vertex farthest from the center. This 
has the slightly deleterious effect of not reproducing the tabular data at the eight exterior corners 
of the table. The value q(x, y, z) is returned by QD3VL. 

QD3DR 
This function evaluates the derivative of a function defined on a rectangular three-dimensional 
grid using quadratic interpolation. 

Function Return Value 
QD3DR — Value of the appropriate derivative of the function at (X, Y, Z).   (Output) 
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Required Arguments 
IXDER — Order of the x-derivative.   (Input) 

IYDER — Order of the y-derivative.   (Input) 

IZDER — Order of the z-derivative.   (Input) 

X — x-coordinate of the point at which the function is to be evaluated.   (Input) 

Y — y-coordinate of the point at which the function is to be evaluated.   (Input) 

Z — z-coordinate of the point at which the function is to be evaluated.   (Input) 

XDATA — Array of length NXDATA containing the location of the data points in the  
x-direction.   (Input)  
XDATA must be increasing. 

YDATA — Array of length NYDATA containing the location of the data points in the  
y-direction.   (Input)  
YDATA must be increasing. 

ZDATA — Array of length NZDATA containing the location of the data points in the  
z-direction.   (Input)  
ZDATA must be increasing. 

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function values.   (Input)  
FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)). 

Optional Arguments 
NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be at least three. 
Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input) 
NYDATA must be at least three. 
Default: NYDATA = size (YDATA,1). 

NZDATA — Number of data points in the z-direction.   (Input)  
NZDATA must be at least three. 
Default: NZDATA = size (ZDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the 
calling program.   (Input)  
LDF must be at least as large as NXDATA. 
Default: LDF = size (FDATA,1). 
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MDF — Middle (second) dimension of FDATA exactly as specified in the dimension 
statement of the calling program.   (Input)  
MDF must be at least as large as NYDATA. 
Default: MDF = size (FDATA,2). 

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and ZDATA is 
required or .FALSE. if checking is not required.   (Input) 
Default: CHECK = .TRUE. 

FORTRAN 90 Interface 
Generic: QD3DR (IXDER, IYDER, IZDER, X, Y, Z, XDATA, YDATA,               

ZDATA, FDATA [,…]) 

Specific:  The specific interface names are S_QD3DR and D_QD3DR. 

FORTRAN 77 Interface 
Single: QD3DR(IXDER, IYDER, IZDER, X, Y, Z, NXDATA, XDATA, NYDATA, 

YDATA, NZDATA, ZDATA, FDATA, LDF, MDF, CHECK) 

Double: The double precision function name is DQD3DR. 

Example 
In this example, the derivatives of sin(x + y + z) at x = y = z = �/5 are approximated by using 
QD3DR on a grid of size 21 � 42 � 18 equally spaced values on the cube [0, 2]3. 

      USE IMSL_LIBRARIES 
      INTEGER    LDF, MDF, NXDATA, NYDATA, NZDATA 
      PARAMETER  (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,& 
                 MDF=NYDATA) 
!  
      INTEGER    I, IXDER, IYDER, IZDER, J, K, NOUT 
      REAL       F, FDATA(NXDATA,NYDATA,NZDATA), FLOAT, FU,& 
                 FUNC, PI, Q, SIN, X, XDATA(NXDATA), Y,& 
                 YDATA(NYDATA), Z, ZDATA(NZDATA) 
      INTRINSIC  FLOAT, SIN 
      EXTERNAL   FUNC 
!                                 Define function 
      F(X,Y,Z) = SIN(X+Y+Z) 
!                                  Set up X-grid 
      DO 10  I=1, NXDATA 
         XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 
   10 CONTINUE 
!                                  Set up Y-grid 
      DO 20  J=1, NYDATA 
         YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1)) 
   20 CONTINUE 
!                                  Set up Z-grid 
      DO 30  K=1, NZDATA 
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         ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1)) 
   30 CONTINUE 
!                                  Evaluate function on grid 
      DO 40  I=1, NXDATA 
         DO 40  J=1, NYDATA 
            DO 40  K=1, NZDATA 
               FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K)) 
   40 CONTINUE 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Get value for PI and set X, Y, and Z 
      PI = CONST(’PI’) 
      X  = PI/5.0 
      Y  = PI/5.0 
      Z  = PI/5.0 
!                                  Compute derivatives at (X,Y,Z) 
!                                  and print results 
      DO 50  IXDER=0, 1 
         DO 50  IYDER=0, 1 
            DO 50  IZDER=0, 1 
               Q  = QD3DR(IXDER,IYDER,IZDER,X,Y,Z,XDATA,YDATA,ZDATA,FDATA) 
               FU = FUNC(IXDER,IYDER,IZDER,X,Y,Z) 
               WRITE (NOUT,99998) X, Y, Z, IXDER, IYDER, IZDER, FU, Q,& 
                                 (FU-Q) 
   50 CONTINUE 
!  
99998 FORMAT (3F7.4, 3I5, 4X, F7.4, 8X, 2F10.4) 
99999 FORMAT (39X, ’(IDX,IDY,IDZ)’, /, 6X, ’X’, 6X, ’Y’, 6X,& 
             ’Z’, 3X, ’IDX’, 2X, ’IDY’, 2X, ’IDZ’, 2X, ’F          ’,& 
             ’(X,Y,Z)’, 3X, ’QD3DR’, 5X, ’ERROR’) 
      END 
!  
      REAL FUNCTION FUNC (IX, IY, IZ, X, Y, Z) 
      INTEGER    IX, IY, IZ 
      REAL       X, Y, Z 
!  
      REAL       COS, SIN 
      INTRINSIC  COS, SIN 
!  
      IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN 
!                                  Define (0,0,0) derivative 
         FUNC = SIN(X+Y+Z) 
      ELSE IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN 
!                                  Define (0,0,1) derivative 
         FUNC = COS(X+Y+Z) 
      ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN 
!                                  Define (0,1,0,) derivative 
         FUNC = COS(X+Y+Z) 
      ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN 
!                                  Define (0,1,1) derivative 
         FUNC = -SIN(X+Y+Z) 
      ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN 
!                                  Define (1,0,0) derivative 
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         FUNC = COS(X+Y+Z) 
      ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN 
!                                  Define (1,0,1) derivative 
         FUNC = -SIN(X+Y+Z) 
      ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN 
!                                  Define (1,1,0) derivative 
         FUNC = -SIN(X+Y+Z) 
      ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN 
!                                  Define (1,1,1) derivative 
         FUNC = -COS(X+Y+Z) 
      ELSE 
         FUNC = 0.0 
      END IF 
      RETURN 
      END 

Output 
                                    (IDX,IDY,IDZ) 
    X      Y      Z   IDX  IDY  IDZ  F          (X,Y,Z)   QD3DR     ERROR 
0.6283 0.6283 0.6283    0    0    0     0.9511            0.9511   -0.0001 
0.6283 0.6283 0.6283    0    0    1    -0.3090           -0.3080   -0.0010 
0.6283 0.6283 0.6283    0    1    0    -0.3090           -0.3088    0.0002 
0.6283 0.6283 0.6283    0    1    1    -0.9511           -0.9587    0.0077 
0.6283 0.6283 0.6283    1    0    0    -0.3090           -0.3078   -0.0012 
0.6283 0.6283 0.6283    1    0    1    -0.9511           -0.9348   -0.0162 
0.6283 0.6283 0.6283    1    1    0    -0.9511           -0.9613    0.0103 
0.6283 0.6283 0.6283    1    1    1     0.3090            0.0000    0.3090 

 

 

Comments 
1. Informational errors 

Type Code 
   4    9 The XDATA values must be strictly increasing. 
   4  10 The YDATA values must be strictly increasing. 
   4  11 The ZDATA values must be strictly increasing. 

2. Because quadratic interpolation is used, if the order of any derivative is greater than 
two, then the returned value is zero. 

Description 
The function QD3DR interpolates a table of values, using quadratic polynomials, returning an 
approximation to the partial derivatives of the tabulated function. Let 

(xi, yj, zk, fijk) 

for i = 1, �, nx, j = 1, �, ny, and k = 1, �, nz be the tabular data.  Given a point (x, y, z) at 
which an interpolated value is desired, we first find the nearest interior grid point (xi, yj, zk). A 
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trivariate quadratic interpolant q is then formed. Ten points are needed for this purpose. Seven 
points have the form 

� � � � � � � �1 1 1, , , , , , , , and , ,i j k i j k i j k i j kx y z x y z x y z x y z
� � �

 

The last three points are drawn from the vertices of the octant containing (x, y, z). There are four 
of these vertices remaining, and we choose to exclude the vertex farthest from the center. This 
has the slightly deleterious effect of not reproducing the tabular data at the eight exterior corners 
of the table. The value q(p,r,t)(x, y, z) is returned by QD3DR, where p = IXDER, r = IYDER, and 
t = IZDER. 

SURF 
Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in 
two variables. 

Required Arguments 
XYDATA — A 2 by NDATA array containing the coordinates of the interpolation points.   

(Input)  
These points must be distinct. The x-coordinate of the I-th data point is stored in 
XYDATA(1, I) and the y-coordinate of the I-th data point is stored in XYDATA(2, I). 

FDATA — Array of length NDATA containing the interpolation values.   (Input) FDATA(I) 
contains the value at (XYDATA(1, I), XYDATA(2, I)). 

XOUT — Array of length NXOUT containing an increasing sequence of points.   (Input)  
These points are the x-coordinates of a grid on which the interpolated surface is to be 
evaluated. 

YOUT — Array of length NYOUT containing an increasing sequence of points.   (Input)  
These points are the y-coordinates of a grid on which the interpolated surface is to be 
evaluated. 

SUR — Matrix of size NXOUT by NYOUT.   (Output)  
This matrix contains the values of the surface on the XOUT by YOUT grid, i.e. SUR(I, J) 
contains the interpolated value at (XOUT(I), YOUT(J)). 

Optional Arguments  
NDATA — Number of data points.   (Input)  

NDATA must be at least four. 
Default: NDATA = size (FDATA,1). 

NXOUT — The number of elements in XOUT.   (Input) 
Default: NXOUT = size (XOUT,1). 
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NYOUT — The number of elements in YOUT.   (Input) 
Default: NYOUT = size (YOUT,1). 

LDSUR — Leading dimension of SUR exactly as specified in the dimension statement of the 
calling program.   (Input)  
LDSUR must be at least as large as NXOUT. 
Default: LDSUR = size (SUR,1). 

FORTRAN 90 Interface 
Generic: CALL SURF (XYDATA, FDATA, XOUT, YOUT, SUR [,…]) 

Specific:  The specific interface names are S_SURF and D_SURF. 

FORTRAN 77 Interface 
Single: CALL SURF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT,  

     SUR, LDSUR) 

Double: The double precision name is DSURF. 

Example 
In this example, the interpolant to the linear function 3 + 7x + 2y is computed from 20 data 
points equally spaced on the circle of radius 3. We then print the values on a 3 � 3 grid. 

      USE IMSL_LIBRARIES 
      INTEGER    LDSUR, NDATA, NXOUT, NYOUT 
      PARAMETER  (NDATA=20, NXOUT=3, NYOUT=3, LDSUR=NXOUT) 
!  
      INTEGER    I, J, NOUT 
      REAL       ABS, COS, F, FDATA(NDATA), FLOAT, PI,& 
                 SIN, SUR(LDSUR,NYOUT), X, XOUT(NXOUT),& 
                 XYDATA(2,NDATA), Y, YOUT(NYOUT) 
      INTRINSIC  ABS, COS, FLOAT, SIN 
!                                  Define function 
      F(X,Y) = 3.0 + 7.0*X + 2.0*Y 
!                                  Get value for PI 
      PI     = CONST(’PI’) 
!                                  Set up X, Y, and F data on a circle 
      DO 10  I=1, NDATA 
         XYDATA(1,I) = 3.0*SIN(2.0*PI*FLOAT(I-1)/FLOAT(NDATA)) 
         XYDATA(2,I) = 3.0*COS(2.0*PI*FLOAT(I-1)/FLOAT(NDATA)) 
         FDATA(I)    = F(XYDATA(1,I),XYDATA(2,I)) 
   10 CONTINUE 
!                                  Set up XOUT and YOUT data on [0,1] by 
!                                  [0,1] grid. 
      DO 20  I=1, NXOUT 
         XOUT(I) = FLOAT(I-1)/FLOAT(NXOUT-1) 
   20 CONTINUE 
      DO 30  I=1, NXOUT 
         YOUT(I) = FLOAT(I-1)/FLOAT(NYOUT-1) 
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   30 CONTINUE 
!                                  Interpolate scattered data 
      CALL SURF (XYDATA, FDATA, XOUT, YOUT, SUR) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99998) 
!                                  Print results 
      DO 40  I=1, NYOUT 
         DO 40  J=1, NXOUT 
            WRITE (NOUT,99999) XOUT(J), YOUT(I), SUR(J,I),& 
                              F(XOUT(J),YOUT(I)),& 
                              ABS(SUR(J,I)-F(XOUT(J),YOUT(I))) 
   40 CONTINUE 
99998 FORMAT (’ ’, 10X, ’X’, 11X, ’Y’, 9X, ’SURF’, 6X, ’F(X,Y)’, 7X,& 
             ’ERROR’, /) 
99999 FORMAT (1X, 5F12.4) 
      END 

Output 
     X           Y         SURF      F(X,Y)       ERROR 
 
0.0000      0.0000      3.0000      3.0000      0.0000 
0.5000      0.0000      6.5000      6.5000      0.0000 
1.0000      0.0000     10.0000     10.0000      0.0000 
0.0000      0.5000      4.0000      4.0000      0.0000 
0.5000      0.5000      7.5000      7.5000      0.0000 
1.0000      0.5000     11.0000     11.0000      0.0000 
0.0000      1.0000      5.0000      5.0000      0.0000 
0.5000      1.0000      8.5000      8.5000      0.0000 
1.0000      1.0000     12.0000     12.0000      0.0000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of S2RF/DS2RF. The 

reference is: 

CALL S2RF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT, SUR, 
LDSUR, IWK, WK) 

The additional arguments are as follows: 

IWK — Work array of length 31 * NDATA + NXOUT * NYOUT. 

WK — Work array of length 6 * NDATA. 

2. Informational errors 

Type Code 
   4    5 The data point values must be distinct. 
   4    6 The XOUT values must be strictly increasing. 
   4    7 The YOUT values must be strictly increasing. 

3. This method of interpolation reproduces linear functions. 
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Description 

This routine is designed to compute a C 1 interpolant to scattered data in the plane. Given the 
data points 

� �� � 3
1

, ,
N

i i i i
x y f in

�

R  

SURF returns (in SUR, the user-specified grid) the values of the interpolant s. The computation of 
s is as follows: First the Delaunay triangulation of the points  

� �� � 1
,

N
i i i

x y
�

 

is computed. On each triangle T in this triangulation, s has the form 

� �
5

, ,T m n
mn

m n
s x y c x y x y T

� �

� � � �  

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In addition, we 
have  

s(xi, yi) = fi  for i = 1, �, N 

and s is continuously differentiable across the boundaries of neighboring triangles. These 
conditions do not exhaust the freedom implied by the above representation. This additional 
freedom is exploited in an attempt to produce an interpolant that is faithful to the global shape 
properties implied by the data. For more information on this routine, we refer the reader to the 
article by Akima (1978). The grid is specified by the two integer variables NXOUT, NYOUT that 
represent, respectively, the number of grid points in the first (second) variable and by two real 
vectors that represent, respectively, the first (second) coordinates of the grid. 

RLINE 
Fits a line to a set of data points using least squares. 

Required Arguments 
XDATA — Vector of length NOBS containing the x-values.   (Input) 

YDATA — Vector of length NOBS containing the y-values.   (Input) 

B0 — Estimated intercept of the fitted line.   (Output) 

B1 — Estimated slope of the fitted line.   (Output) 

Optional Arguments  
NOBS — Number of observations.   (Input) 

Default: NOBS = size (XDATA,1). 

STAT — Vector of length 12 containing the statistics described below.   (Output)  
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I ISTAT(I) 

                                           1 Mean of XDATA 
                                           2 Mean of YDATA 
                                           3 Sample variance of XDATA 
                                           4 Sample variance of YDATA 
                                           5 Correlation 
                                           6 Estimated standard error of B0 
                                           7 Estimated standard error of B1 
                                           8 Degrees of freedom for regression 
                                           9 Sum of squares for regression 
                                           10 Degrees of freedom for error 
                                           11 Sum of squares for error 

12     Number of (x, y) points containing NaN (not a number) as either the x or  y value 

FORTRAN 90 Interface 
Generic: CALL RLINE (XDATA, YDATA, B0, B1 [,…]) 

Specific:  The specific interface names are S_RLINE and D_RLINE. 

FORTRAN 77 Interface 
Single: CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT) 

Double: The double precision name is DRLINE. 

Example 
This example fits a line to a set of data discussed by Draper and Smith (1981, Table 1.1, pages 
9�33). The response y is the amount of steam used per month (in pounds), and the independent 
variable x is the average atmospheric temperature (in degrees Fahrenheit). 

      USE RLINE_INT 
      USE UMACH_INT 
      USE WRRRL_INT 
      INTEGER    NOBS 
      PARAMETER  (NOBS=25) 
!  
      INTEGER    NOUT 
      REAL       B0, B1, STAT(12), XDATA(NOBS), YDATA(NOBS) 
      CHARACTER  CLABEL(13)*15, RLABEL(1)*4 
!  
      DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7,& 
           57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0,& 
           74.5, 72.1, 58.1, 44.6, 33.4, 28.6/ 
      DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5,& 
           7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09,& 
           8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/ 
      DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Mean of X’, ’Mean of Y’,& 
           ’Variance X’, ’Variance Y’, ’Corr.’, ’Std. Err. B0’,& 
           ’Std. Err. B1’, ’DF Reg.’, ’SS Reg.’, ’DF Error’,& 
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           ’SS Error’, ’Pts. with NaN’/ 
!  
      CALL RLINE (XDATA, YDATA, B0, B1, STAT=STAT) 
!  
      CALL UMACH (2, NOUT) 
      WRITE (NOUT,99999) B0, B1 
99999 FORMAT (’ B0 = ’, F7.2, ’  B1 = ’, F9.5) 
      CALL WRRRL (’%/STAT’, STAT, RLABEL, CLABEL, 1, 12, 1, & 
                  FMT = ’(12W10.4)’) 
!  
      END 

Output 
B0 =   13.62  B1 =  -0.07983 
 
                                STAT 
Mean of X   Mean of Y  Variance X  Variance Y       Corr.  Std. Err. B0 
      52.6          9.424       298.1       2.659     -0.8452         0.5815 
 
Std. Err. B1     DF Reg.     SS Reg.    DF Error    SS Error  Pts. with NaN 
0.01052           1       45.59          23       18.22              0 

 

Figure 3-5   Plot of the Data and the Least Squares Line 

Comments 
Informational error 
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Type  Code 

   4    1 Each (x, y) point contains NaN (not a number). There are no valid data. 

Description 
Routine RLINE fits a line to a set of (x, y) data points using the method of least squares. Draper 
and Smith (1981, pages 1�69) discuss the method. The fitted model is 

0 1
ˆ ˆŷ x� �� �  

where 0�̂  (stored in B0) is the estimated intercept and 1̂�  (stored in B1) is the estimated slope. In 
addition to the fit, RLINE produces some summary statistics, including the means, sample 
variances, correlation, and the error (residual) sum of squares. The estimated standard errors of 

0 1
ˆ ˆand� �  are computed under the simple linear regression model. The errors in the model are 

assumed to be uncorrelated and with constant variance. 

If the x values are all equal, the model is degenerate. In this case, RLINE sets 1̂�  

to zero and 0�̂  to the mean of the y values. 

RCURV 
Fits a polynomial curve using least squares. 

Required Arguments 
XDATA — Vector of length NOBS containing the x values.   (Input) 

YDATA — Vector of length NOBS containing the y values.   (Input) 

B — Vector of length NDEG + 1 containing the coefficients �̂ . 
(Output)  

 
The fitted polynomial is 

2
0 1 2

ˆ ˆ ˆ ˆˆ k
ky x x x� � � �� � � � ��  

Optional Arguments  
NOBS — Number of observations.   (Input) 

Default: NOBS = size (XDATA,1). 

NDEG — Degree of polynomial.   (Input) 
Default: NDEG = size (B,1) – 1. 
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SSPOLY — Vector of length NDEG + 1 containing the sequential sums of squares.   (Output)  
SSPOLY(1) contains the sum of squares due to the mean. For i = 1, 2, �, NDEG, 
SSPOLY(i + 1) contains the sum of squares due to xi adjusted for the mean, x, x2,�, 
and xi-1. 

STAT — Vector of length 10 containing statistics described below.   (Output)  

i Statistics 

1 Mean of x 

2 Mean of y 

3 Sample variance of x 

4 Sample variance of y 

5 R-squared (in percent) 

6 Degrees of freedom for regression 

7 Regression sum of squares 

8 Degrees of freedom for error 

9 Error sum of squares 

10 Number of data points (x, y) containing NaN (not a number) as a x or y value 

FORTRAN 90 Interface 
Generic: CALL RCURV (XDATA, YDATA, B [,…]) 

Specific:  The specific interface names are S_RCURV and D_RCURV. 

FORTRAN 77 Interface 
Single: CALL RCURV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT) 

Double: The double precision name is DRCURV. 

Example 
A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pages 279�285). 
The data set contains the response variable y measuring coffee sales (in hundred gallons) and the 
number of self-service coffee dispensers. Responses for fourteen similar cafeterias are in the 
data set. 
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      USE RCURV_INT 
      USE WRRRL_INT 
      USE WRRRN_INT 
      INTEGER    NDEG, NOBS 
      PARAMETER  (NDEG=2, NOBS=14) 
!  
      REAL       B(NDEG+1), SSPOLY(NDEG+1), STAT(10), XDATA(NOBS),& 
                 YDATA(NOBS) 
      CHARACTER  CLABEL(11)*15, RLABEL(1)*4 
!  
      DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Mean of X’, ’Mean of Y’,& 
                 ’Variance X’, ’Variance Y’, ’R-squared’,& 
                 ’DF Reg.’, ’SS Reg.’, ’DF Error’, ’SS Error’,& 
                 ’Pts. with NaN’/ 
      DATA XDATA/0., 0., 1., 1., 2., 2., 4., 4., 5., 5., 6., 6., 7.,& 
           7./ 
      DATA YDATA/508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,& 
           758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4/ 
!  
      CALL RCURV (XDATA, YDATA, B, SSPOLY=SSPOLY, STAT=STAT) 
!  
      CALL WRRRN (’B’, B, 1, NDEG+1, 1) 
      CALL WRRRN (’SSPOLY’, SSPOLY, 1, NDEG+1, 1) 
 
      CALL WRRRL (’%/STAT’, STAT, RLABEL, CLABEL, 1, 10, 1, & 
                  FMT='(2W10.4)') 
      END 

Output 
           B 
    1       2       3 
503.3    78.9    -4.0 
 
             SSPOLY 
        1           2           3 
7077152.0    220644.2      4387.7 
 
                               STAT 
Mean of X   Mean of Y  Variance X  Variance Y   R-squared    DF Reg. 
     3.571       711.0       6.418     17364.8       99.69           2 
 
 SS Reg.    DF Error    SS Error  Pts. with NaN 
225031.9          11       710.5              0 
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Figure 3-6   Plot of Data and Second Degree Polynomial Fit 

Comments 
1. Workspace may be explicitly provided, if desired, by use of R2URV/DR2URV. The 

reference is: 

CALL R2URV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY,  
     STAT, WK, IWK) 

The additional arguments are as follows: 

WK — Work vector of length 11 * NOBS + 11 * NDEG + 5 + (NDEG + 1) * 
(NDEG + 3). 

IWK — Work vector of length NOBS. 

2. Informational errors 

    Type Code 

   4    3 Each (x, y) point contains NaN (not a number). There are no valid 
data. 

   4    7 The x values are constant. At least NDEG + 1 distinct x values are 
needed to fit a NDEG polynomial. 

   3    4 The y values are constant. A zero order polynomial is fit. High order 
coefficients are set to zero. 
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   3    5 There are too few observations to fit the desired degree polynomial. 
High order coefficients are set to zero. 

   3    6 A perfect fit was obtained with a polynomial of degree less than 
NDEG. High order coefficients are set to zero. 

3. If NDEG is greater than 10, the accuracy of the results may be questionable. 

Description 
Routine RCURV computes estimates of the regression coefficients in a polynomial (curvilinear) 
regression model. In addition to the computation of the fit, RCURV computes some summary 
statistics. Sequential sums of squares attributable to each power of the independent variable 
(stored in SSPOLY) are computed. These are useful in assessing the importance of the higher 
order powers in the fit. Draper and Smith (1981, pages 101�102) and Neter and Wasserman 
(1974, pages 278�287) discuss the interpretation of the sequential sums of squares. The statistic 
R2 (stored in STAT(5)) is the percentage of the sum of squares of y about its mean explained by 
the polynomial curve. Specifically, 
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where  

ˆiy  

is the fitted y value at xi and  

y   

(stored in STAT(2)) is the mean of y. This statistic is useful in assessing the overall fit of the 
curve to the data. R2 must be between 0% and 100%, inclusive. R2 = 100% indicates a perfect fit 
to the data. 

Routine RCURV computes estimates of the regression coefficients in a polynomial model using 
orthogonal polynomials as the regressor variables. This reparameterization of the polynomial 
model in terms of orthogonal polynomials has the advantage that the loss of accuracy resulting 
from forming powers of the x-values is avoided. All results are returned to the user for the 
original model. 

The routine RCURV is based on the algorithm of Forsythe (1957). A modification to Forsythe’s 
algorithm suggested by Shampine (1975) is used for computing the polynomial coefficients. A 
discussion of Forsythe’s algorithm and Shampine’s modification appears in Kennedy and Gentle 
(1980, pages 342�347). 

FNLSQ 
Computes a least-squares approximation with user-supplied basis functions. 
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Required Arguments 
F — User-supplied FUNCTION to evaluate basis functions. The form is F(K, X), 

where 

K – Number of the basis function.   (Input)  
K may be equal to 1, 2, �, NBASIS. 
X – Argument for evaluation of the K-th basis function.   (Input) 
F – The function value.   (Output) 
F must be declared EXTERNAL in the calling program. The data FDATA is approximated 
by A(1) * F(1, X) + A(2) * F(2, X) +�+ A(NBASIS) * F(NBASIS, X) if INTCEP = 0 and 
is approximated by A(1) + A(2) * F(1, X) +�+ A(NBASIS + 1) * F(NBASIS, X) if 
INTCEP = 1. 

XDATA — Array of length NDATA containing the abscissas of the data points.   (Input) 

FDATA — Array of length NDATA containing the ordinates of the data points.   (Input) 

A — Array of length INTCEP + NBASIS containing the coefficients of the approximation.   
(Output)  
If INTCEP = 1, A(1) contains the intercept. A(INTCEP + I) contains the coefficient of 
the I-th basis function. 

SSE — Sum of squares of the errors.   (Output) 

Optional Arguments 
INTCEP — Intercept option.   (Input)  

Default: INTCEP = 0. 

INTCEP Action 

0  No intercept is automatically included in the model. 

1  An intercept is automatically included in the model. 

NBASIS — Number of basis functions.   (Input) 
Default: NBASIS = size (A,1) 

NDATA — Number of data points.   (Input) 
Default: NDATA = size (XDATA,1). 

IWT — Weighting option.   (Input)  
Default: IWT = 0. 
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IWT Action 

0 Weights of one are assumed. 

1 Weights are supplied in WEIGHT. 

WEIGHT — Array of length NDATA containing the weights.   (Input if IWT = 1)  
If IWT = 0, WEIGHT is not referenced and may be dimensioned of length one. 

FORTRAN 90 Interface 
Generic: CALL FNLSQ (F, XDATA, FDATA, A, SSE [,…]) 

Specific:  The specific interface names are S_FNLSQ and D_FNLSQ. 

FORTRAN 77 Interface 
Single: CALL FNLSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT, 

 WEIGHT, A, SSE) 

Double: The double precision name is DFNLSQ. 

Example 
In this example, we fit the following two functions (indexed by �) 

1 + sin x + 7 sin 3x + �	 

where 	 is random uniform deviate over the range [�1, 1], and � is 0 for the first function and 1 
for the second. These functions are evaluated at 90 equally spaced points on the interval [0, 6]. 
We use 4 basis functions, sin kx for k = 1, �, 4, with and without the intercept. 

      USE FNLSQ_INT 
      USE RNSET_INT 
      USE UMACH_INT 
      USE RNUNF_INT 
      INTEGER    NBASIS, NDATA 
      PARAMETER  (NBASIS=4, NDATA=90) 
!  
      INTEGER    I, INTCEP, NOUT 
      REAL       A(NBASIS+1), F, FDATA(NDATA), FLOAT, G, RNOISE,& 
                 SIN, SSE, X, XDATA(NDATA) 
      INTRINSIC  FLOAT, SIN 
      EXTERNAL   F 
!  
      G(X) = 1.0 + SIN(X) + 7.0*SIN(3.0*X) 
!                                  Set random number seed 
      CALL RNSET (1234579) 
!                                  Set up data values 
      DO 10  I=1, NDATA 
         XDATA(I) = 6.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 
         FDATA(I) = G(XDATA(I)) 
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   10 CONTINUE 
 
!                                  Compute least squares fit with no 
!                                  intercept 
      CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, & 
                  NBASIS=NBASIS) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99996) 
!                                  Write output 
      WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS) 
!  
      INTCEP = 1 
!                                  Compute least squares fit with 
!                                  intercept 
      CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, & 
                  NBASIS=NBASIS) 
!                                  Write output 
      WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1) 
!                                  Introduce noise 
      DO 20  I=1, NDATA 
         RNOISE = RNUNF() 
         RNOISE   = 2.0*RNOISE - 1.0 
         FDATA(I) = FDATA(I) + RNOISE 
   20 CONTINUE 
      INTCEP = 0 
!                                  Compute least squares fit with no 
!                                  intercept 
      CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, & 
                  NBASIS=NBASIS) 
!                                  Write heading 
      WRITE (NOUT,99997) 
!                                  Write output 
      WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS) 
!  
      INTCEP = 1 
!                                  Compute least squares fit with 
!                                  intercept 
      CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, & 
                  NBASIS=NBASIS) 
!                                  Write output 
      WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1) 
!  
99996 FORMAT (//, ’ Without error introduced we have :’, /,& 
             ’    SSE          Intercept      Coefficients  ’, /) 
99997 FORMAT (//, ’ With error introduced we have :’, /, ’    SSE     ’& 
             , ’     Intercept      Coefficients  ’, /) 
99998 FORMAT (1X, F8.4, 5X, F9.4, 5X, 4F9.4, /) 
99999 FORMAT (1X, F8.4, 14X, 5X, 4F9.4, /) 
      END 
      REAL FUNCTION F (K, X) 
      INTEGER    K 
      REAL       X 
!  
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      REAL       SIN 
      INTRINSIC  SIN 
!  
      F = SIN(K*X) 
      RETURN 
      END 

Output 
Without error introduced we have : 
SSE          Intercept      Coefficients 
 
89.8776                      1.0101   0.0199   7.0291   0.0374 
 0.0000        1.0000        1.0000   0.0000   7.0000   0.0000 
 
With error introduced we have : 
SSE          Intercept      Coefficients 
 
112.4662                     0.9963  -0.0675   6.9825   0.0133 
 30.9831       0.9522        0.9867  -0.0864   6.9548  -0.0223 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2LSQ/DF2LSQ. The 

reference is: 

CALL F2LSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA,  
     IWT, WEIGHT, A, SSE, WK) 

The additional argument is 

WK — Work vector of length (INTCEP + NBASIS)**2 + 4 * (INTCEP + NBASIS) + 
IWT + 1. On output, the first (INTCEP + NBASIS)**2 elements of WK contain the 
R matrix from a QR decomposition of the matrix containing a column of ones (if 
INTCEP = 1) and the evaluated basis functions in columns INTCEP + 1 through 
INTCEP + NBASIS. 

2. Informational errors 

Type Code 
  3    1 Linear dependence of the basis functions exists. One or more 

components of A are set to zero. 
   3    2 Linear dependence of the constant function and basis functions 

exists. One or more components of A are set to zero. 
   4    1 Negative weight encountered. 

Description 
The routine FNLSQ computes a best least-squares approximation to given univariate data of the 
form  
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(where M = NBASIS). In particular, if INTCEP = 0, this routine returns the error sum of squares 
SSE and the coefficients a which minimize  
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where w = WEIGHT, N = NDATA, x = XDATA, and, f = FDATA. 

If INTCEP = 1, then an intercept is placed in the model; and the coefficients a, returned by 
FNLSQ, minimize the error sum of squares as indicated below. 
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That is, the first element of the vector a is now the coefficient of the function that is identically 
1 and the coefficients of the Fj’s are now aj+1. 

One additional parameter in the calling sequence for FNLSQ is IWT. If IWT is set to 0, then wi = 1 
is assumed. If IWT is set to 1, then the user must supply the weights. 

BSLSQ 
Computes the least-squares spline approximation, and return the B-spline coefficients. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

KORDER — Order of the spline.   (Input)  
KORDER must be less than or equal to NDATA. 

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.   (Input)  
XKNOT must be nondecreasing. 

NCOEF — Number of B-spline coefficients.   (Input)  
NCOEF cannot be greater than NDATA. 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Output) 
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Optional Arguments 
NDATA — Number of data points.   (Input) 

Default: NDATA = size(XDATA, 1) 

WEIGHT — Array of length NDATA containing the weights.   (Input) 
Default: WEIGHT = 1.0. 

FORTRAN 90 Interface 
Generic: CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCOEF [,�]) 

Specific:  The specific interface names are S_BSLSQ and D_BSLSQ. 

FORTRAN 77 Interface 
Single: CALL BSLSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT,  

     NCOEF, BSCOEF) 

Double: The double precision name is DBSLSQ. 

Example 
In this example, we try to recover a quadratic polynomial using a quadratic spline with one 
interior knot from two different data sets. The first data set is generated by evaluating the 
quadratic at 50 equally spaced points in the interval (0, 1) and then adding uniformly distributed 
noise to the data. The second data set includes the first data set, and, additionally, the values at 0 
and at 1 with no noise added. Since the first and last data points are uncontaminated by noise, 
we have chosen weights equal to 105 for these two points in this second problem. The quadratic, 
the first approximation, and the second approximation are then evaluated at 11 equally spaced 
points. This example illustrates the use of the weights to enforce interpolation at certain of the 
data points. 

      USE IMSL_LIBRARIES 
      INTEGER    KORDER, NCOEF 
      PARAMETER  (KORDER=3, NCOEF=4) 
!  
      INTEGER    I, NDATA, NOUT 
      REAL       ABS, BSCOF1(NCOEF), BSCOF2(NCOEF), F,& 
                 FDATA1(50), FDATA2(52), FLOAT, RNOISE, S1,& 
                 S2, WEIGHT(52), X, XDATA1(50), XDATA2(52),& 
                 XKNOT(KORDER+NCOEF), XT, YT 
      INTRINSIC  ABS, FLOAT 
!  
      DATA WEIGHT/52*1.0/ 
!                                  Define function 
      F(X) = 8.0*X*(1.0-X) 
!                                  Set random number seed 
      CALL RNSET (12345679) 
      NDATA = 50 
!                                  Set up interior knots 
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      DO 10  I=1, NCOEF - KORDER + 2 
         XKNOT(I+KORDER-1) = FLOAT(I-1)/FLOAT(NCOEF-KORDER+1) 
   10 CONTINUE 
!                                  Stack knots 
      DO 20  I=1, KORDER - 1 
         XKNOT(I) = XKNOT(KORDER) 
         XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1) 
   20 CONTINUE 
!                                  Set up data points excluding 
!                                  the endpoints 0 and 1. 
!                                  The function values have noise 
!                                  introduced. 
      DO 30  I=1, NDATA 
         XDATA1(I) = FLOAT(I)/51.0 
         RNOISE    = RNUNF() 
         RNOISE    = RNOISE – 0.5 
         FDATA1(I) = F(XDATA1(I)) + RNOISE 
   30 CONTINUE 
!                                  Compute least squares B-spline 
!                                  representation. 
      CALL BSLSQ (XDATA1, FDATA1, KORDER, XKNOT, NCOEF, BSCOF1) 
!                                  Now use same XDATA values but with 
!                                  the endpoints included.  These 
!                                  points will have large weights. 
      NDATA = 52 
      CALL SCOPY (50, XDATA1, 1, XDATA2(2:), 1) 
      CALL SCOPY (50, FDATA1, 1, FDATA2(2:), 1) 
!  
      WEIGHT(1) = 1.0E5 
      XDATA2(1) = 0.0 
      FDATA2(1) = F(XDATA2(1)) 
      WEIGHT(NDATA) = 1.0E5 
      XDATA2(NDATA) = 1.0 
      FDATA2(NDATA) = F(XDATA2(NDATA)) 
!                                  Compute least squares B-spline 
!                                  representation. 
      CALL BSLSQ (XDATA2, FDATA2, KORDER, XKNOT, NCOEF, BSCOF2, & 
                  WEIGHT=WEIGHT) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99998) 
!                                  Print the two interpolants 
!                                  at 11 points. 
      DO 40  I=1, 11 
         XT = FLOAT(I-1)/10.0 
         YT = F(XT) 
!                                  Evaluate splines 
         S1 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF1) 
         S2 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF2) 
         WRITE (NOUT,99999) XT, YT, S1, S2, (S1-YT), (S2-YT) 
   40 CONTINUE 
!  
99998 FORMAT (7X, ’X’, 9X, ’F(X)’, 6X, ’S1(X)’, 5X, ’S2(X)’, 7X,& 
             ’F(X)-S1(X)’, 7X, ’F(X)-S2(X)’) 
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99999 FORMAT (’ ’, 4F10.4, 4X, F10.4, 7X, F10.4) 
      END 

Output 
X         F(X)      S1(X)     S2(X)       F(X)-S1(X)       F(X)-S2(X) 

0.0000    0.0000    0.0515    0.0000       0.0515           0.0000 

0.1000    0.7200    0.7594    0.7490       0.0394           0.0290 

0.2000    1.2800    1.3142    1.3277        0.0342          0.0477 

0.3000    1.6800    1.7158    1.7362       0.0358           0.0562 

0.4000    1.9200    1.9641    1.9744       0.0441           0.0544 

0.5000    2.0000    2.0593    2.0423       0.0593           0.0423 

0.6000    1.9200    1.9842    1.9468       0.0642           0.0268 

0.7000    1.6800    1.7220    1.6948       0.0420           0.0148 

0.8000    1.2800    1.2726    1.2863      -0.0074           0.0063 

0.9000    0.7200    0.6360    0.7214      -0.0840           0.0014 

1.0000    0.0000   -0.1878    0.0000      -0.1878           0.0000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2LSQ/DB2LSQ. The 

reference is: 

CALL B2LSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT,  
NCOEF, BSCOEF, WK1, WK2, WK3, WK4, IWK) 

 

The additional arguments are as follows: 

WK1 — Work array of length (3 + NCOEF) * KORDER. 

WK2 — Work array of length NDATA. 

WK3 — Work array of length NDATA. 

WK4 — Work array of length NDATA. 

IWK — Work array of length NDATA. 
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2. Informational errors 

Type Code 
   4    5 Multiplicity of the knots cannot exceed the order of the spline. 
   4     6 The knots must be nondecreasing. 
   4     7 All weights must be greater than zero. 
   4    8  The smallest element of the data point array must be greater than or 

equal to the KORDth knot. 
   4    9 The largest element of the data point array must be less than or equal 

to the (NCOEF + 1)st knot. 

3. The B-spline representation can be evaluated using BSVAL (page 641), and its 
derivative can be evaluated using BSDER (page 643). 

Description 
The routine BSLSQ is based on the routine L2APPR by de Boor (1978, page 255). The IMSL 
routine BSLSQ computes a weighted discrete L2 approximation from a spline subspace to a given 
data set (xi, fi) for i = 1, �, N (where N = NDATA). In other words, it finds B-spline coefficients, 
a = BSCOEF, such that 

� �
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is a minimum, where m = NCOEF and Bj denotes the j-th B-spline for the given order, KORDER, 
and knot sequence, XKNOT. This linear least squares problem is solved by computing and 
solving the normal equations. While the normal equations can sometimes cause numerical 
difficulties, their use here should not cause a problem because the B-spline basis generally leads 
to well-conditioned banded matrices. 

The choice of weights depends on the problem. In some cases, there is a natural choice for the 
weights based on the relative importance of the data points. To approximate a continuous 
function (if the location of the data points can be chosen), then the use of Gauss quadrature 
weights and points is reasonable. This follows because BSLSQ is minimizing an approximation 
to the integral  

2
F s dx��  

The Gauss quadrature weights and points can be obtained using the IMSL routine GQRUL (see 
Chapter 4, Integration and Differentiation). 

BSVLS 
Computes the variable knot B-spline least squares approximation to given data. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input) 
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FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

KORDER — Order of the spline.   (Input)  
KORDER must be less than or equal to NDATA. 

NCOEF — Number of B-spline coefficients.   (Input)  
NCOEF must be less than or equal to NDATA. 

XGUESS — Array of length NCOEF + KORDER containing the initial guess of knots.   (Input)  
XGUESS must be nondecreasing. 

XKNOT — Array of length NCOEF + KORDER containing the (nondecreasing) knot sequence.   
(Output) 

BSCOEF — Array of length NCOEF containing the B-spline representation.   (Output) 

SSQ — The square root of the sum of the squares of the error.   (Output) 

Optonal Arguments 
NDATA — Number of data points.   (Input)  

NDATA must be at least 2. 
Default: NDATA = size(XDATA, 1) 

WEIGHT — Array of length NDATA containing the weights.   (Input) 
Default: WEIGHT = 1.0. 

FORTRAN 90 Interface 
Generic: CALL BSVLS (NDATA, XDATA, FDATA, WEIGHT, KORDER, NCOEF,    

     XGUESS, XKNOT, BSCOEF, SSQ) 

Specific:  The specific interface names are S_BSVLS and D_BSVLS. 

FORTRAN 77 Interface 
Single: CALL BSVLS (XDATA, FDATA, KORDER, NCOEF, XGUESS, XKNOT,  

     BSCOEF, SSQ[,�]) 

Double: The double precision name is DBSVLS. 

Example 
In this example, we try to fit the function |x � .33| evaluated at 100 equally spaced points on  
[0, 1]. We first use quadratic splines with 2 interior knots initially at .2 and .8. The eventual 
error should be zero since the function is a quadratic spline with two knots stacked at .33. As a 
second example, we try to fit the same data with cubic splines with three interior knots initially 
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located at .1, .2, and, .5. Again, the theoretical error is zero when the three knots are stacked at 
.33. 

We include a graph of the initial least-squares fit using the IMSL routine BSLSQ (page 725) for 
the above quadratic spline example with knots at .2 and .8. This graph overlays the graph of the 
spline computed by BSVLS, which is indistinguishable from the data. 

      USE BSVLS_INT 
      USE UMACH_INT 
      INTEGER    KORD1, KORD2, NCOEF1, NCOEF2, NDATA 
      PARAMETER  (KORD1=3, KORD2=4, NCOEF1=5, NCOEF2=7, NDATA=100) 
!  
      INTEGER    I, NOUT 
      REAL       ABS, BSCOEF(NCOEF2), F, FDATA(NDATA), FLOAT, SSQ,& 
                 WEIGHT(NDATA), X, XDATA(NDATA), XGUES1(NCOEF1+KORD1),& 
                 XGUES2(KORD2+NCOEF2), XKNOT(NCOEF2+KORD2) 
      INTRINSIC  ABS, FLOAT 
!  
      DATA XGUES1/3*0.0, .2, .8, 3*1.0001/ 
      DATA XGUES2/4*0.0, .1, .2, .5, 4*1.0001/ 
      DATA WEIGHT/NDATA*.01/ 
!                                  Define function 
      F(X) = ABS(X-.33) 
!                                  Set up data 
      DO 10  I=1, NDATA 
         XDATA(I) = FLOAT(I-1)/FLOAT(NDATA) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Compute least squares B-spline 
!                                  representation with KORD1, NCOEF1, 
!                                  and XGUES1. 
      CALL BSVLS (XDATA, FDATA, KORD1, NCOEF1, XGUES1,& 
                  XKNOT, BSCOEF, SSQ, WEIGHT=WEIGHT) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Print heading 
      WRITE (NOUT,99998) ’quadratic’ 
!                                  Print SSQ and the knots 
      WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD1+NCOEF1) 
!                                  Compute least squares B-spline 
!                                  representation with KORD2, NCOEF2, 
!                                  and XGUES2. 
      CALL BSVLS (XDATA, FDATA, KORD2, NCOEF2, XGUES2,& 
                  XKNOT, BSCOEF, SSQ, WEIGHT=WEIGHT) 
!                                  Print SSQ and the knots 
      WRITE (NOUT,99998) ’cubic’ 
      WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD2+NCOEF2) 
!  
99998 FORMAT (’ Piecewise ’, A, /) 
99999 FORMAT (’ Square root of the sum of squares : ’, F9.4, /,& 
             ’ Knot sequence : ’, /, 1X, 11(F9.4,/,1X)) 
      END 
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Output 
Piecewise quadratic 
 
Square root of the sum of squares :    0.0008 
Knot sequence : 
   0.0000 
   0.0000 
   0.0000 
   0.3137 
   0.3464 
   1.0001 
   1.0001 
   1.0001 
 
Piecewise cubic 
 
Square root of the sum of squares :    0.0005 
Knot sequence : 
   0.0000 
   0.0000 
   0.0000  
   0.0000 
   0.3167 
   0.3273 
   0.3464 
   1.0001 
   1.0001 
   1.0001 
   1.0001 

 

Figure 3-7   BSVLS vs. BSLSQ 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of B2VLS/DB2VLS. The 

reference is: 

CALL B2VLS (NDATA, XDATA, FDATA, WEIGHT, KORDER, NCOEF, XGUESS, 
XKNOT, BSCOEF, SSQ, IWK, WK) 

The additional arguments are as follows: 

IWK — Work array of length NDATA. 

WK — Work array of length NCOEF * (6 + 2 * KORDER) + KORDER * (7 � KORDER) + 3 
* NDATA + 3. 

2. Informational errors 

Type Code 
   3    12 The knots found to be optimal are stacked more than KORDER. This 

indicates fewer knots will produce the same error sum of squares. 
The knots have been separated slightly. 

   4    9 The multiplicity of the knots in XGUESS cannot exceed the order of 
the spline. 

   4    10 XGUESS must be nondecreasing. 

Description 
The routine BSVLS attempts to find the best placement of knots that will minimize the 
leastsquares error to given data by a spline of order k = KORDER with N = NCOEF coefficients. 
The user provides the order k of the spline and the number of coefficients N. For this problem to 
make sense, it is necessary that N > k. We then attempt to find the minimum of the functional  

� � � �
2

, ,
1 1

,
M N

i i j j k j
i j

F a w f a B x
� �

� �
� �� �

� �
� �t t  

The user must provide the weights w = WEIGHT, the data xi = XDATA  and  
fi = FDATA, and M = NDATA. The minimum is taken over all admissible knot sequences t. 

The technique employed in BSVLS uses the fact that for a fixed knot sequence t the 
minimization in a is a linear least-squares problem that can be solved by calling the IMSL 
routine BSLSQ (page 725). Thus, we can think of our objective function F as a function of just t 
by setting 

� � � �min ,
a

G F a�t t  

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new objective 
function G. In addition to this local method, there is a global heuristic built into the algorithm 
that will be useful if the data arise from a smooth function. This heuristic is based on the routine 
NEWNOT of de Boor (1978, pages 184 and 258�261). 
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The user must input an initial guess, tg = XGUESS, for the knot sequence. This guess must be a 
valid knot sequence for the splines of order k with 

1 1 , 1, ,g g g g
k i N N kx i M

� �
� � � � � � �t t t t� � �  

with tg nondecreasing, and  

1, ,g g
i i k i N

�
� �t t �  

The routine BSVLS returns the B-spline representation of the best fit found by the algorithm as 
well as the square root of the sum of squares error in SSQ. If this answer is unsatisfactory, you 
may reinitialize BSVLS with the return from BSVLS to see if an improvement will occur. We 
have found that this option does not usually (substantially) improve the result. In regard to 
execution speed, this routine can be several orders of magnitude slower than one call to the 
least-squares routine BSLSQ. 

CONFT 
Computes the least-squares constrained spline approximation, returning the B-spline coefficients. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

FDATA — Array of size NDATA containing the values to be approximated.   (Input)  
FDATA(I) contains the value at XDATA(I). 

XVAL — Array of length NXVAL containing the abscissas at which the fit is to be constrained.   
(Input) 

NHARD — Number of entries of XVAL involved in the ‘hard’ constraints.   (Input)  
Note: (0 � NHARD � NXVAL). Setting NHARD to zero always results in a fit, while setting 
NHARD to NXVAL forces all constraints to be met. The ‘hard’ constraints must be 
satisfied or else the routine signals failure. The ‘soft’ constraints need not be satisfied, 
but there will be an attempt to satisfy the ‘soft’ constraints. The constraints must be 
ordered in terms of priority with the most important constraints first. Thus, all of the 
‘hard’ constraints must preceed the ‘soft’ constraints. If infeasibility is detected among 
the soft constraints, we satisfy (in order) as many of the soft constraints as possible. 

IDER — Array of length NXVAL containing the derivative value of the spline that is to be 
constrained.   (Input) 
If we want to constrain the integral of the spline over the closed interval (c, d), then we 
set IDER(I) = IDER(I + 1) = � 1 and XVAL(I) = c and XVAL(I + 1) = d. For 
consistency, we insist that ITYPE(I) = ITYPE(I + 1) .GE. 0 and c .LE. d. Note that 
every entry in IDER must be at least � 1. 

ITYPE — Array of length NXVAL indicating the types of general constraints.   (Input) 
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In order to set two point constraints, we must have ITYPE(I) = ITYPE(I + 1) and ITYPE(I) 
must be negative.  
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BL — Array of length NXVAL containing the lower limit of the general constraints, if there is 
no lower limit on the I-th constraint, then BL(I) is not referenced.   (Input) 

BU — Array of length NXVAL containing the upper limit of the general constraints, if there is 
no upper limit on the I-th constraint, then BU(I) is not referenced; if there is no range 
constraint, BL and BU can share the same storage locations.   (Input)  
If the I-th constraint is an equality constraint, BU(I) is not referenced. 

KORDER — Order of the spline.   (Input) 

XKNOT — Array of length NCOEF + KORDER containing the knot sequence.   (Input)  
The entries of XKNOT must be nondecreasing. 

BSCOEF — Array of length NCOEF containing the B-spline coefficients.   (Output) 
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Optional Arguments 
NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 

WEIGHT — Array of length NDATA containing the weights.   (Input) 
Default: WEIGHT = 1.0. 

NXVAL — Number of points in the vector XVAL.   (Input) 
Default: NXVAL = size (XVAL,1). 

NCOEF — Number of B-spline coefficients.   (Input) 
Default: NCOEF = size (BSCOEF,1). 

FORTRAN 90 Interface 
Generic: CALL CONFT (XDATA, FDATA, XVAL,NHARD, IDER, ITYPE,             

BL, BU, KORDER, XKNOT, BSCOEF [,…]) 

Specific:  The specific interface names are S_CONFT and D_CONFT. 

FORTRAN 77 Interface 
Single: CALL CONFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL,   

     NHARD, IDER, ITYPE, BL, BU, KORDER, XKNOT, NCOEF, BSCOEF) 

Double: The double precision name is DCONFT. 

Example 1 
This is a simple application of CONFT. We generate data from the function 

sin
2 2
x x� �
� � �

� �
 

contaminated with random noise and fit it with cubic splines. The function is increasing so we 
would hope that our least-squares fit would also be increasing. This is not the case for the 
unconstrained least squares fit generated by BSLSQ (page 725). We then force the derivative to 
be greater than 0 at NXVAL = 15 equally spaced points and call CONFT. The resulting curve is 
monotone. We print the error for the two fits averaged over 100 equally spaced points. 

      USE IMSL_LIBRARIES 
      INTEGER    KORDER, NCOEF, NDATA, NXVAL 
      PARAMETER  (KORDER=4, NCOEF=8, NDATA=15, NXVAL=15) 
!  
      INTEGER    I, IDER(NXVAL), ITYPE(NXVAL), NHARD, NOUT 
      REAL       ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA), & 
                 BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,& 
                 GRDSIZ, SIN, WEIGHT(NDATA), X, XDATA(NDATA),& 
                 XKNOT(KORDER+NDATA), XVAL(NXVAL) 
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      INTRINSIC  ABS, FLOAT, SIN 
!  
      F1(X) = .5*X + SIN(.5*X) 
!                                  Initialize random number generator 
!                                  and get output unit number. 
      CALL RNSET (234579) 
      CALL UMACH (2, NOUT) 
!                                  Use default weights of one. 
!      
!                                  Compute original XDATA and FDATA 
!                                  with random noise. 
      GRDSIZ = 10.0 
      DO 10  I=1, NDATA 
         XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1))) 
         FDATA(I) = RNUNF() 
         FDATA(I) = F1(XDATA(I)) + (FDATA(I)-.5) 
   10 CONTINUE 
!                                  Compute knots 
      DO 20  I=1, NCOEF - KORDER + 2 
         XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))& 
                             ) 
   20 CONTINUE 
      DO 30  I=1, KORDER - 1 
         XKNOT(I) = XKNOT(KORDER) 
         XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1) 
   30 CONTINUE 
!  
!                                  Compute BSLSQ fit. 
      CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCLSQ) 
!                                  Construct the constraints for 
!                                  CONFT. 
      DO 40  I=1, NXVAL 
         XVAL(I)  = GRDSIZ*FLOAT(I-1)/FLOAT(NXVAL-1) 
         ITYPE(I) = 3 
         IDER(I)  = 1 
         BL(I)    = 0.0 
   40 CONTINUE 
!                                  Call CONFT 
      NHARD = 0 
      CALL CONFT (XDATA, FDATA, XVAL, NHARD, IDER, ITYPE, BL, BU, KORDER,& 
                  XKNOT, BSCNFT, NCOEF=NCOEF) 
!                                  Compute the average error 
!                                  of 100 points in the interval. 
      ERRLSQ = 0.0 
      ERRNFT = 0.0 
      DO 50  I=1, 100 
         X      = GRDSIZ*FLOAT(I-1)/99.0 
         ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)& 
                  ) 
         ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)& 
                  ) 
   50 CONTINUE 
!                                  Print results 
      WRITE (NOUT,99998) ERRLSQ/100.0 
      WRITE (NOUT,99999) ERRNFT/100.0 
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!  
99998 FORMAT (’ Average error with BSLSQ fit:  ’, F8.5) 
99999 FORMAT (’ Average error with CONFT fit:  ’, F8.5) 
      END 

Output 
Average error with BSLSQ fit:   0.20250 
Average error with CONFT fit:   0.14334 

 

Figure 3-8   CONFT vs. BSLSQ Forcing Monotonicity 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2NFT/DC2NFT. The 

reference is: 

CALL C2NFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL, NHARD, 
IDER, ITYPE, BL, BU, KORDER, XKNOT, NCOEF, BSCOEF, H, G, A,  
RHS, WK, IPERM, IWK) 

The additional arguments are as follows: 

H — Work array of size NCOEF by NCOEF. Upon output, H contains the Hessian matrix 
of the objective function used in the call to QPROG (see Chapter 8, 
Optimization). 

G — Work array of size NCOEF. Upon output, G contains the coefficients of the linear 
term used in the call to QPROG. 
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A — Work array of size (2 * NXVAL + KORDER) by (NCOEF + 1). Upon output, A 
contains the constraint matrix used in the call QPROG. The last column of A is 
used to keep record of the original order of the constraints. 

RHS — Work array of size 2 * NXVAL + KORDER . Upon output, RHS contains the right 
hand side of the constraint matrix A used in the call to QPROG. 

WK — Work array of size (KORDER + 1) * (2 * KORDER + 1) + (3 * NCOEF * NCOEF + 
13 * NCOEF)/2 + (2 * NXVAL + KORDER +30)*(2*NXVAL + KORDER) + NDATA + 
1. 

IPERM — Work array of size NXVAL. Upon output, IPERM contains the permutaion of 
the original constraints used to generate the matrix A. 

IWK — Work array of size NDATA + 30 * (2 * NXVAL + KORDER) + 4 * NCOEF. 

2. Informational errors 

Type Code 
   3  11 Soft constraints had to be removed in order to get a fit. 
   4  12 Multiplicity of the knots cannot exceed the order of the spline. 
   4  13 The knots must be nondecreasing. 
   4  14 The smallest element of the data point array must be greater than or 

equal to the KORD-th knot. 
   4  15 The largest element of the data point array must be less than or equal 

to the (NCOEF + 1)st knot. 
   4  16 All weights must be greater than zero. 
   4  17 The hard constraints could not be met. 
   4  18 The abscissas of the constrained points must lie within knot interval. 
   4  19 The upperbound must be greater than or equal to the lowerbound for 

a range constaint. 
   4  20 The upper limit of integration must be greater than the lower limit of 

integration for constraints involving the integral of the 
approximation. 

Description 
The routine CONFT produces a constrained, weighted least-squares fit to data from a spline 
subspace. Constraints involving one point, two points, or integrals over an interval are allowed. 
The types of constraints supported by the routine are of four types. 
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An interval, Ip, (which may be a point, a finite interval , or semi-infinite interval) is associated 
with each of these constraints. 

The input for this routine consists of several items, first, the data set (xi, fi) for i = 1, �, N 
(where N = NDATA), that is the data which is to be fit. Second, we have the weights to be used in 
the least squares fit (w = WEIGHT). The vector XVAL of length NXVAL contains the abscissas of 
the points involved in specifying the constraints. The algorithm tries to satisfy all the 
constraints, but if the constraints are inconsistent then it will drop constraints, in the reverse 
order specified, until either a consistent set of constraints is found or the “hard” constraints are 
determined to be inconsistent (the “hard” constraints are those involving XVAL(1), �, 
XVAL(NHARD)). Thus, the algorithm satisfies as many constraints as possible in the order 
specified by the user. In the case when constraints are dropped, the user will receive a message 
explaining how many constraints had to be dropped to obtain the fit. The next several arguments 
are related to the type of constraint and the constraint interval. The last four arguments 
determine the spline solution. The user chooses the spline subspace (KORDER, XKNOT, and 
NCOEF), and the routine returns the B-spline coefficients in BSCOEF. 

Let nf denote the number of feasible constraints as described above. Then, the routine solves the 
problem. 
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This linearly constrained least-squares problem is treated as a quadratic program and is solved 
by invoking the IMSL routine QPROG (see Chapter 8, Optimization). 

The choice of weights depends on the data uncertainty in the problem. In some cases, there is a 
natural choice for the weights based on the estimates of errors in the data points. 

Determining feasibility of linear constraints is a numerically sensitive task. If you encounter 
difficulties, a quick fix would be to widen the constraint intervals Ip. 

Additional Examples 

Example 2 
We now try to recover the function 

4

1
1 x�

 

from noisy data. We first try the unconstrained least-squares fit using BSLSQ (page 725). 
Finding that fit somewhat unsatisfactory, we apply several constraints using CONFT. First, notice 
that the unconstrained fit oscillates through the true function at both ends of the interval. This is 
common for flat data. To remove this oscillation, we constrain the cubic spline to have zero 
second derivative at the first and last four knots. This forces the cubic spline to reduce to a linear 
polynomial on the first and last three knot intervals. In addition, we constrain the fit (which we 
will call s) as follows: 
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Notice that the last constraint was generated using the periodic option (requiring only the 
zeroeth derivative to be periodic). We print the error for the two fits averaged over 100 equally 
spaced points. 

      USE IMSL_LIBRARIES 
      INTEGER    KORDER, NCOEF, NDATA, NXVAL 
      PARAMETER  (KORDER=4, NCOEF=13, NDATA=51, NXVAL=12) 
!  
      INTEGER    I, IDER(NXVAL), ITYPE(NXVAL), NHARPT, NOUT 
      REAL       ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA),& 
                 BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,& 
                 GRDSIZ, WEIGHT(NDATA), X, XDATA(NDATA),& 
                 XKNOT(KORDER+NDATA), XVAL(NXVAL) 
      INTRINSIC  ABS, FLOAT 
!  
      F1(X) = 1.0/(1.0+X**4) 
!                                  Initialize random number generator 
!                                  and get output unit number. 
      CALL UMACH (2, NOUT) 
      CALL RNSET (234579) 
!                                  Use deafult weights of one. 
!       
!                                  Compute original XDATA and FDATA 
!                                  with random noise. 
      GRDSIZ = 14.0 
      DO 10  I=1, NDATA 
         XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1))) - GRDSIZ/2.0 
         FDATA(I) = RNUNF()  
         FDATA(I) = F1(XDATA(I)) + 0.125*(FDATA(I)-.5) 
   10 CONTINUE 
!                                  Compute KNOTS 
      DO 20  I=1, NCOEF - KORDER + 2 
         XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))& 
                             ) - GRDSIZ/2.0 
   20 CONTINUE 
      DO 30  I=1, KORDER - 1 
         XKNOT(I) = XKNOT(KORDER) 
         XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1) 
   30 CONTINUE 
!                                  Compute BSLSQ fit 
      CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCLSQ) 
!                                  Construct the constraints for 
!                                  CONFT 
      DO 40  I=1, 4 
         XVAL(I)    = XKNOT(KORDER+I-1) 
         XVAL(I+4)  = XKNOT(NCOEF-3+I) 
         ITYPE(I)   = 1 
         ITYPE(I+4) = 1 
         IDER(I)    = 2 
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         IDER(I+4)  = 2 
         BL(I)      = 0.0 
         BL(I+4)    = 0.0 
   40 CONTINUE 
!  
      XVAL(9)  = -7.0 
      ITYPE(9) = 3 
      IDER(9)  = 0 
      BL(9)    = 0.0 
!  
      XVAL(10)  = -7.0 
      ITYPE(10) = 2 
      IDER(10)  = -1 
      BU(10)    = 2.3 
!  
      XVAL(11)  = 7.0 
      ITYPE(11) = 2 
      IDER(11)  = -1 
      BU(11)    = 2.3 
!  
      XVAL(12)  = -7.0 
      ITYPE(12) = 10 
      IDER(12)  = 0 
!                                  Call CONFT 
      CALL CONFT (XDATA, FDATA, XVAL, NHARPT, IDER, ITYPE, BL, BU,& 
                  KORDER, XKNOT, BSCNFT, NCOEF=NCOEF) 
!                                  Compute the average error 
!                                  of 100 points in the interval. 
      ERRLSQ = 0.0 
      ERRNFT = 0.0 
      DO 50  I=1, 100 
         X      = GRDSIZ*FLOAT(I-1)/99.0 - GRDSIZ/2.0 
         ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)& 
                  ) 
         ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)& 
                  ) 
   50 CONTINUE 
!                                  Print results 
      WRITE (NOUT,99998) ERRLSQ/100.0 
      WRITE (NOUT,99999) ERRNFT/100.0 
!  
99998 FORMAT (’ Average error with BSLSQ fit:  ’, F8.5) 
99999 FORMAT (’ Average error with CONFT fit:  ’, F8.5) 
      END 

Output 
Average error with BSLSQ fit:   0.01783 
Average error with CONFT fit:   0.01339 
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Figure 3-9   CONFT vs. BSLSQ Approximating 1/(1 + x4) 

BSLS2 
Computes a two-dimensional tensor-product spline approximant using least squares, returning the 
tensor-product B-spline coefficients. 

Required Arguments 
XDATA — Array of length NXDATA containing the data points in the X-direction.   (Input)  

XDATA must be nondecreasing. 

YDATA — Array of length NYDATA containing the data points in the Y-direction.   (Input)  
YDATA must be nondecreasing. 

FDATA — Array of size NXDATA by NYDATA containing the values on the X � Y grid to be 
interpolated.   (Input)  
FDATA(I, J) contains the value at (XDATA(I), YDATA(I)). 

KXORD — Order of the spline in the X-direction.   (Input) 

KYORD — Order of the spline in the Y-direction.   (Input) 

XKNOT — Array of length KXORD + NXCOEF containing the knots in the X-direction.   (Input)  
XKNOT must be nondecreasing. 



 

 
 

744 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY 

 

 

 

YKNOT — Array of length KYORD + NYCOEF containing the knots in the Y-direction.   (Input)  
YKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF * NYCOEF that contains the tensor product B-spline 
coefficients.   (Output) 
BSCOEF is treated internally as an array of size NXCOEF by NYCOEF. 

Optional Arguments 
NXDATA — Number of data points in the X-direction.   (Input) 

Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the Y-direction.   (Input) 
Default: NYDATA = size (YDATA,1). 

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of 
calling program.   (Input) 
Default: LDF = size (FDATA,1). 

NXCOEF — Number of B-spline coefficients in the X-direction.   (Input) 
Default: NXCOEF = size (XKNOT,1) – KXORD. 

NYCOEF — Number of B-spline coefficients in the Y-direction.   (Input) 
Default: NYCOEF = size (YKNOT,1) – KYORD. 

XWEIGH — Array of length NXDATA containing the positive weights of XDATA.   (Input) 
Default: XWEIGH = 1.0. 

YWEIGH — Array of length NYDATA containing the positive weights of YDATA.   (Input) 
Default: YWEIGH = 1.0. 

FORTRAN 90 Interface 
Generic: CALL BSLS2 (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,                  

 BSCOEF [,…]) 

Specific:  The specific interface names are S_BSLS2 and D_BSLS2. 

FORTRAN 77 Interface 
Single: CALL BSLS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,  

     KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,  
     XWEIGH, YWEIGH, BSCOEF) 

Double: The double precision name is DBSLS2. 
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Example 

The data for this example arise from the function ex sin(x + y) + 	 on the rectangle  
[0, 3] � [0, 5]. Here, 	 is a uniform random variable with range [�1, 1]. We sample this function 
on a 100 � 50 grid and then try to recover it by using cubic splines in the x variable and 
quadratic splines in the y variable. We print out the values of the function ex sin(x + y) on a  
3 � 5 grid and compare these values with the values of the tensor-product spline that was 
computed using the IMSL routine BSLS2. 

      USE IMSL_LIBRARIES 
      INTEGER    KXORD, KYORD, LDF, NXCOEF, NXDATA, NXVEC, NYCOEF,& 
                 NYDATA, NYVEC 
      PARAMETER  (KXORD=4, KYORD=3, NXCOEF=15, NXDATA=100, NXVEC=4,& 
                 NYCOEF=7, NYDATA=50, NYVEC=6, LDF=NXDATA) 
!  
      INTEGER    I, J, NOUT 
      REAL       BSCOEF(NXCOEF,NYCOEF), EXP, F, FDATA(NXDATA,NYDATA),& 
                 FLOAT, RNOISE, SIN, VALUE(NXVEC,NYVEC), X,& 
                 XDATA(NXDATA), XKNOT(NXCOEF+KXORD), XVEC(NXVEC),& 
                 XWEIGH(NXDATA), Y, YDATA(NYDATA),& 
                 YKNOT(NYCOEF+KYORD), YVEC(NYVEC), YWEIGH(NYDATA) 
      INTRINSIC  EXP, FLOAT, SIN 
!                                  Define function 
      F(X,Y) = EXP(X)*SIN(X+Y) 
!                                  Set random number seed 
      CALL RNSET (1234579) 
!                                  Set up X knot sequence. 
      DO 10  I=1, NXCOEF - KXORD + 2 
         XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1)) 
   10 CONTINUE 
      XKNOT(NXCOEF+1) = XKNOT(NXCOEF+1) + 0.001 
!                                  Stack knots. 
      DO 20  I=1, KXORD - 1 
         XKNOT(I) = XKNOT(KXORD) 
         XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1) 
   20 CONTINUE 
!                                  Set up Y knot sequence. 
      DO 30  I=1, NYCOEF - KYORD + 2 
         YKNOT(I+KYORD-1) = 5.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1)) 
   30 CONTINUE 
      YKNOT(NYCOEF+1) = YKNOT(NYCOEF+1) + 0.001 
!                                  Stack knots. 
      DO 40  I=1, KYORD - 1 
         YKNOT(I) = YKNOT(KYORD) 
         YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1) 
   40 CONTINUE 
!                                  Set up X-grid. 
      DO 50  I=1, NXDATA 
         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 
   50 CONTINUE 
!                                  Set up Y-grid. 
      DO 60  I=1, NYDATA 
         YDATA(I) = 5.0*(FLOAT(I-1)/FLOAT(NYDATA-1)) 
   60 CONTINUE 
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!                                  Evaluate function on grid and 
!                                  introduce random noise in [1,-1]. 
      DO 70  I=1, NYDATA 
         DO 70  J=1, NXDATA 
            RNOISE     = RNUNF() 
            RNOISE     = 2.0*RNOISE - 1.0 
            FDATA(J,I) = F(XDATA(J),YDATA(I)) + RNOISE 
   70 CONTINUE 
!                                  Use default weights equal to 1. 
!     
!                                  Compute least squares approximation. 
      CALL BSLS2 (XDATA, YDATA, FDATA, KXORD, KYORD, & 
                  XKNOT, YKNOT, BSCOEF) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print interpolated values 
!                                  on [0,3] x [0,5]. 
      DO 80  I=1, NXVEC 
         XVEC(I) = FLOAT(I-1) 
   80 CONTINUE 
      DO 90  I=1, NYVEC 
         YVEC(I) = FLOAT(I-1) 
   90 CONTINUE 
!                                  Evaluate spline 
      CALL BS2GD (0, 0, XVEC, YVEC, KXORD, KYORD, XKNOT,& 
                  YKNOT, BSCOEF, VALUE) 
      DO 110  I=1, NXVEC 
         DO 100  J=1, NYVEC 
            WRITE (NOUT,’(5F15.4)’) XVEC(I), YVEC(J),& 
                                   F(XVEC(I),YVEC(J)), VALUE(I,J),& 
                                   (F(XVEC(I),YVEC(J))-VALUE(I,J)) 
  100    CONTINUE 
  110 CONTINUE 
99999 FORMAT (13X, ’X’, 14X, ’Y’, 10X, ’F(X,Y)’, 9X, ’S(X,Y)’, 10X,& 
             ’Error’) 
      END  

Output 
     X              Y          F(X,Y)         S(X,Y)          Error 
0.0000         0.0000         0.0000         0.2782        -0.2782 
0.0000         1.0000         0.8415         0.7762         0.0653 
0.0000         2.0000         0.9093         0.8203         0.0890 
0.0000         3.0000         0.1411         0.1391         0.0020 
0.0000         4.0000        -0.7568        -0.5705        -0.1863 
0.0000         5.0000        -0.9589        -1.0290         0.0701 
1.0000         0.0000         2.2874         2.2678         0.0196 
1.0000         1.0000         2.4717         2.4490         0.0227 
1.0000         2.0000         0.3836         0.4947        -0.1111 
1.0000         3.0000        -2.0572        -2.0378        -0.0195 
1.0000         4.0000        -2.6066        -2.6218         0.0151 
1.0000         5.0000        -0.7595        -0.7274        -0.0321 
2.0000         0.0000         6.7188         6.6923         0.0265 
2.0000         1.0000         1.0427         0.8492         0.1935 



 

 
 

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 747 

 

 

 

2.0000         2.0000        -5.5921        -5.5885        -0.0035 
2.0000         3.0000        -7.0855        -7.0955         0.0099 
2.0000         4.0000        -2.0646        -2.1588         0.0942 
2.0000         5.0000         4.8545         4.7339         0.1206 
3.0000         0.0000         2.8345         2.5971         0.2373 
3.0000         1.0000       -15.2008       -15.1079        -0.0929 
3.0000         2.0000       -19.2605       -19.1698        -0.0907 
3.0000         3.0000        -5.6122        -5.5820        -0.0302 
3.0000         4.0000        13.1959        12.6659         0.5300 
3.0000         5.0000        19.8718        20.5170        -0.6452 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2LS2/DB2LS2. The 

reference is: 

CALL B2LS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD, 
KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, XWEIGH, YWEIGH, BSCOEF, WK) 

The additional argument is: 

WK — Work array of length (NXCOEF + 1) * NYDATA + KXORD * NXCOEF + KYORD * 
NYCOEF + 3 * MAX(KXORD, KYORD). 

2. Informational errors 

Type Code 
   3  14 There may be less than one digit of accuracy in the least squares fit. 

Try using higher precision if possible. 
   4    5 Multiplicity of the knots cannot exceed the order of the spline. 
   4    6 The knots must be nondecreasing. 
   4    7 All weights must be greater than zero. 
   4    9 The data point abscissae must be nondecreasing. 
   4  10 The smallest element of the data point array must be greater than or 

equal to the K_ORDth knot. 
   4  11 The largest element of the data point array must be less than or equal 

to the (N_COEF + 1)st knot. 

Description 
The routine BSLS2 computes the coefficients of a tensor-product spline least-squares 
approximation to weighted tensor-product data. The input for this subroutine consists of data 
vectors to specify the tensor-product grid for the data, two vectors with the weights, the values 
of the surface on the grid, and the specification for the tensor-product spline. The grid is 
specified by the two vectors x = XDATA and y = YDATA of length n = NXDATA and m = NYDATA, 
respectively. A two-dimensional array f = FDATA contains the data values that are to be fit. The 
two vectors wx = XWEIGH and wy = YWEIGH contain the weights for the weighted least-squares 
problem. The information for the approximating tensor-product spline must also be provided. 
This information is contained in kx = KXORD, tx = XKNOT, and N = NXCOEF for the spline in the 
first variable, and in ky = KYORD , ty = YKNOT and M = NYCOEF for the spline in the second 
variable. The coefficients of the resulting tensor-product spline are returned in c = BSCOEF, 
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which is an N * M array. The procedure computes coefficients by solving the normal equations 
in tensor-product form as discussed 

in de Boor (1978, Chapter 17). The interested reader might also want to study the paper by E. 
Grosse (1980). 

The final result produces coefficients c minimizing 
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where the function Bkl is the tensor-product of two B-splines of order kx and ky. Specifically, we 
have  

� � � � � �, , , ,,
x x y ykl k k l kB x y B x B y� t t  

The spline 

1 1

N M

kl kl
k l

c B
� �
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can be evaluated using BS2VL (page 651) and its partial derivatives can be evaluated using 
BS2DR (page 653). 

BSLS3 
Computes a three-dimensional tensor-product spline approximant using least squares, returning 
the tensor-product B-spline coefficients. 

Required Arguments 
XDATA — Array of length NXDATA containing the data points in the x-direction.   (Input)  

XDATA must be nondecreasing. 

YDATA — Array of length NYDATA containing the data points in the y-direction.   (Input)  
YDATA must be nondecreasing. 

ZDATA — Array of length NZDATA containing the data points in the z-direction.   (Input)  
ZDATA must be nondecreasing. 

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to be 
interpolated.   (Input)  
FDATA(I, J, K) contains the value at (XDATA(I), YDATA(J), ZDATA(K)). 

KXORD — Order of the spline in the x-direction.   (Input) 

KYORD — Order of the spline in the y-direction.   (Input) 

KZORD — Order of the spline in the z-direction.   (Input) 
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XKNOT — Array of length KXORD + NXCOEF containing the knots in the x-direction.   (Input)  
XKNOT must be nondecreasing. 

YKNOT — Array of length KYORD + NYCOEF containing the knots in the y-direction.   (Input)  
YKNOT must be nondecreasing. 

ZKNOT — Array of length KZORD + NZCOEF containing the knots in the z-direction.   (Input)  
ZKNOT must be nondecreasing. 

BSCOEF — Array of length NXCOEF*NYCOEF*NZCOEF that contains the tensor product  
B-spline coefficients.   (Output) 

Optional Arguments 
NXDATA — Number of data points in the x-direction.   (Input)  

NXDATA must be greater than or equal to NXCOEF. 
Default: NXDATA = size (XDATA,1). 

NYDATA — Number of data points in the y-direction.   (Input)  
NYDATA must be greater than or equal to NYCOEF. 
Default: NYDATA = size (YDATA,1). 

NZDATA — Number of data points in the z-direction.   (Input)  
NZDATA must be greater than or equal to NZCOEF. 
Default: NZDATA = size (ZDATA,1). 

LDFDAT — Leading dimension of FDATA exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: LDFDAT = size (FDATA,1). 

MDFDAT — Second dimension of FDATA exactly as specified in the dimension statement of 
the calling program.   (Input) 
Default: MDFDAT = size (FDATA,2). 

NXCOEF — Number of B-spline coefficients in the x-direction.   (Input) 
Default: NXCOEF = size (XKNOT,1) – KXORD. 

NYCOEF — Number of B-spline coefficients in the y-direction.   (Input) 
Default: NYCOEF = size (YKNOT,1) – KYORD. 

NZCOEF — Number of B-spline coefficients in the z-direction.   (Input) 
Default: NZCOEF = size (ZKNOT,1) – KZORD. 

XWEIGH — Array of length NXDATA containing the positive weights of XDATA.   (Input) 
Default: XWEIGH = 1.0. 
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YWEIGH — Array of length NYDATA containing the positive weights of YDATA.   (Input) 
Default: YWEIGH = 1.0. 

ZWEIGH — Array of length NZDATA containing the positive weights of ZDATA.   (Input) 
Default: ZWEIGH = 1.0. 

FORTRAN 90 Interface 
Generic: CALL BSLS3 (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD,   

KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF [,…]) 

Specific:  The specific interface names are S_BSLS3 and D_BSLS3. 

FORTRAN 77 Interface 
Single: CALL BSLS3 (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA,  

FDATA, LDFDAT, MDFDAT, KXORD, KYORD, KZORD, XKNOT, YKNOT, 
ZKNOT, NXCOEF, NYCOEF, NZCOEF, XWEIGH, YWEIGH, ZWEIGH, 
BSCOEF) 

Double: The double precision name is DBSLS3. 

Example 

The data for this example arise from the function e(y-z) sin(x + y) + 	 on the rectangle  
[0, 3] � [0, 2] � [0, 1]. Here, 	 is a uniform random variable with range [�.5, .5]. We sample this 
function on a 4 � 3 � 2 grid and then try to recover it by using tensor-product cubic splines in all 
variables. We print out the values of the function e(y-z) sin(x + y) on a 4 � 3 � 2 grid and 
compare these values with the values of the tensor-product spline that was computed using the 
IMSL routine BSLS3. 

      USE BSLS3_INT 
      USE RNSET_INT 
      USE RNUNF_INT 
      USE UMACH_INT 
      USE BS3GD_INT 
      INTEGER    KXORD, KYORD, KZORD, LDFDAT, MDFDAT, NXCOEF, NXDATA,& 

                 NXVAL, NYCOEF, NYDATA, NYVAL, NZCOEF, NZDATA, NZVAL 
      PARAMETER  (KXORD=4, KYORD=4, KZORD=4, NXCOEF=8, NXDATA=15,& 
                 NXVAL=4, NYCOEF=8, NYDATA=15, NYVAL=3, NZCOEF=8,& 
                 NZDATA=15, NZVAL=2, LDFDAT=NXDATA, MDFDAT=NYDATA) 
!  
      INTEGER    I, J, K, NOUT 
      REAL       BSCOEF(NXCOEF,NYCOEF,NZCOEF), EXP, F,& 
                 FDATA(NXDATA,NYDATA,NZDATA), FLOAT, RNOISE,& 
                 SIN, SPXYZ(NXVAL,NYVAL,NZVAL), X, XDATA(NXDATA),& 
                 XKNOT(NXCOEF+KXORD), XVAL(NXVAL), XWEIGH(NXDATA), Y,& 
                 YDATA(NYDATA), YKNOT(NYCOEF+KYORD), YVAL(NYVAL),& 
                 YWEIGH(NYDATA), Z, ZDATA(NZDATA),& 
                 ZKNOT(NZCOEF+KZORD), ZVAL(NZVAL), ZWEIGH(NZDATA) 
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      INTRINSIC  EXP, FLOAT, SIN 
!                                  Define a function 
      F(X,Y,Z) = EXP(Y-Z)*SIN(X+Y) 
!  
      CALL RNSET (1234579) 
      CALL UMACH (2, NOUT) 
!                                  Set up knot sequences 
!                                  X-knots 
      DO 10  I=1, NXCOEF - KXORD + 2 
         XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1)) 
   10 CONTINUE 
      DO 20  I=1, KXORD - 1 
         XKNOT(I) = XKNOT(KXORD) 
         XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1) 
   20 CONTINUE 
!                                  Y-knots 
      DO 30  I=1, NYCOEF - KYORD + 2 
         YKNOT(I+KYORD-1) = 2.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1)) 
   30 CONTINUE 
      DO 40  I=1, KYORD - 1 
         YKNOT(I) = YKNOT(KYORD) 
         YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1) 
   40 CONTINUE 
!                                  Z-knots 
      DO 50  I=1, NZCOEF - KZORD + 2 
         ZKNOT(I+KZORD-1) = 1.0*(FLOAT(I-1)/FLOAT(NZCOEF-KZORD+1)) 
   50 CONTINUE 
      DO 60  I=1, KZORD - 1 
         ZKNOT(I) = ZKNOT(KZORD) 
         ZKNOT(I+NZCOEF+1) = ZKNOT(NZCOEF+1) 
   60 CONTINUE 
!                                  Set up X-grid. 
      DO 70  I=1, NXDATA 
         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) 
   70 CONTINUE 
!                                  Set up Y-grid. 
      DO 80  I=1, NYDATA 
         YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1)) 
   80 CONTINUE 
!                                  Set up Z-grid 
      DO 90  I=1, NZDATA 
         ZDATA(I) = 1.0*(FLOAT(I-1)/FLOAT(NZDATA-1)) 
   90 CONTINUE 
!                                  Evaluate the function on the grid 
!                                  and add noise. 
      DO 100  I=1, NXDATA 
         DO 100  J=1, NYDATA 
            DO 100  K=1, NZDATA 
               RNOISE = RNUNF() 
               RNOISE = RNOISE – 0.5 
               FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K)) + RNOISE 
  100 CONTINUE 
!                                  Use default weights equal to 1.0 
! 
!                                  Compute least-squares 
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      CALL BSLS3 (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, & 
                  YKNOT, ZKNOT, BSCOEF) 
!                                  Set up grid for evaluation. 
      DO 110  I=1, NXVAL 
         XVAL(I) = FLOAT(I-1) 
  110 CONTINUE 
      DO 120  I=1, NYVAL 
         YVAL(I) = FLOAT(I-1) 
  120 CONTINUE 
      DO 130  I=1, NZVAL 
         ZVAL(I) = FLOAT(I-1) 
  130 CONTINUE 
!                                  Evaluate on the grid. 
      CALL BS3GD (0, 0, 0, XVAL, YVAL, ZVAL, KXORD, KYORD, KZORD, XKNOT, & 
                  YKNOT, ZKNOT, BSCOEF, SPXYZ) 
!                                  Print results. 
      WRITE (NOUT,99998) 
      DO 140  I=1, NXVAL 
         DO 140  J=1, NYVAL 
            DO 140  K=1, NZVAL 
               WRITE (NOUT,99999) XVAL(I), YVAL(J), ZVAL(K),& 
                                 F(XVAL(I),YVAL(J),ZVAL(K)),& 
                                 SPXYZ(I,J,K), F(XVAL(I),YVAL(J),ZVAL(K)& 
                                 ) - SPXYZ(I,J,K) 
  140 CONTINUE 
99998 FORMAT (8X, ’X’, 9X, ’Y’, 9X, ’Z’, 6X, ’F(X,Y,Z)’, 3X,& 
             ’S(X,Y,Z)’, 4X, ’Error’) 
99999 FORMAT (’ ’, 3F10.3, 3F11.4) 
      END 

Output 
   X         Y         Z      F(X,Y,Z)   S(X,Y,Z)    Error 
0.000     0.000     0.000     0.0000     0.1987    -0.1987 
0.000     0.000     1.000     0.0000     0.1447    -0.1447 
0.000     1.000     0.000     2.2874     2.2854     0.0019 
0.000     1.000     1.000     0.8415     1.0557    -0.2142 
0.000     2.000     0.000     6.7188     6.4704     0.2484 
0.000     2.000     1.000     2.4717     2.2054     0.2664 
1.000     0.000     0.000     0.8415     0.8779    -0.0365 
1.000     0.000     1.000     0.3096     0.2571     0.0524 
1.000     1.000     0.000     2.4717     2.4015     0.0703 
1.000     1.000     1.000     0.9093     0.8995     0.0098 
1.000     2.000     0.000     1.0427     1.1330    -0.0902 
1.000     2.000     1.000     0.3836     0.4951    -0.1115 
2.000     0.000     0.000     0.9093     0.8269     0.0824 
2.000     0.000     1.000     0.3345     0.3258     0.0087 
2.000     1.000     0.000     0.3836     0.3564     0.0272 
2.000     1.000     1.000     0.1411     0.1905    -0.0494 
2.000     2.000     0.000    -5.5921    -5.5362    -0.0559 
2.000     2.000     1.000    -2.0572    -1.9659    -0.0913 
3.000     0.000     0.000     0.1411     0.4841    -0.3430 
3.000     0.000     1.000     0.0519    -0.4257     0.4776 
3.000     1.000     0.000    -2.0572    -1.9710    -0.0862 
3.000     1.000     1.000    -0.7568    -0.8479     0.0911 
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3.000     2.000     0.000    -7.0855    -7.0957     0.0101 
3.000     2.000     1.000    -2.6066    -2.1650    -0.4416 

Comments 
1. Workspace may be explicitly provided, if desired, by use of B2LS3/DB2LS3. The 

reference is: 

CALL B2LS3 (NXDATA, XDATA, NYDATA, NZDATA, ZDATA, YDATA, FDATA, 
LDFDAT, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, 
NYCOEF, NZCOEF, XWEIGH, YWEIGH, ZWEIGH, BSCOEF,  
WK) 

The additional argument is: 

WK — Work array of length NYCOEF * (NZDATA + KYORD + NZCOEF) + NZDATA * (1 + 
NYDATA) + NXCOEF * (KXORD + NYDATA * NZDATA) + KZORD * NZCOEF + 3 * 
MAX0(KXORD, KYORD, KZORD). 

2. Informational errors 

Type Code 
   3  13 There may be less than one digit of accuracy in the least squares fit. 

Try using higher precision if possible. 
   4    7 Multiplicity of knots cannot exceed the order of the spline. 
   4    8 The knots must be nondecreasing. 
   4    9 All weights must be greater than zero. 
   4  10 The data point abscissae must be nondecreasing. 
   4  11 The smallest element of the data point array must be greater than or 

equal to the K_ORDth knot. 
   4  12 The largest element of the data point array must be less than or equal 

to the (N_COEF + 1)st knot. 

Description 
The routine BSLS3 computes the coefficients of a tensor-product spline least-squares 
approximation to weighted tensor-product data. The input for this subroutine consists of data 
vectors to specify the tensor-product grid for the data, three vectors with the weights, the values 
of the surface on the grid, and the specification for the tensor-product spline. The grid is 
specified by the three vectors x = XDATA, y = YDATA, and z = ZDATA of length k = NXDATA, 
l = NYDATA , and m = NYDATA, respectively. A three-dimensional array f = FDATA contains the 
data values which are to be fit. The three vectors wx = XWEIGH, wy = YWEIGH, and wz = ZWEIGH 
contain the weights for the weighted least-squares problem. The information for the 
approximating tensor-product spline must also be provided. This information is contained in 
kx = KXORD, tx = XKNOT, and K = NXCOEF for the spline in the first variable, in ky = KYORD,  
ty = YKNOT and L = NYCOEF for the spline in the second variable, and in kz = KZORD, tz = ZKNOT 
and M = NZCOEF for the spline in the third variable. 

The coefficients of the resulting tensor product spline are returned in c = BSCOEF, which is an  
K � L � M array. The procedure computes coefficients by solving the normal equations in 
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tensor-product form as discussed in de Boor (1978, Chapter 17). The interested reader might 
also want to study the paper by E. Grosse (1980). 

The final result produces coefficients c minimizing 

� � � � � � � �
2

1 1 1 1 1
, ,

k l m K L M

x y z stu stu i j p ijp
i l j p s t u

w i w j w p c B x y z f
� � � � � �

� �
�� �

� �
��� ���  

where the function Bstu is the tensor-product of three B-splines of order kx, ky, and kz. 
Specifically, we have 

� � � � � � � �, , , , , ,, ,
x x y y z zstu s k t k u kB x y z B x B y B z� t t t  

The spline 

1 1 1

K L M

stu stu
s t u

c B
� � �

���  

can be evaluated at one point using BS3VL (page 664) and its partial derivatives can be 
evaluated using BS3DR (page 666). If the values on a grid are desired then we recommend 
BS3GD (page 670). 

CSSED 
Smooths one-dimensional data by error detection. 

Required Arguments 
XDATA — Array of length NDATA containing the abscissas of the data points.   (Input) 

FDATA — Array of length NDATA containing the ordinates (function values) of the data 
points.   (Input) 

DIS — Proportion of the distance the ordinate in error is moved to its interpolating curve.   
(Input)  
It must be in the range 0.0 to 1.0. A suggested value for DIS is one. 

SC — Stopping criterion.   (Input)  
SC should be greater than or equal to zero. A suggested value for SC is zero. 

MAXIT — Maximum number of iterations allowed.   (Input) 

SDATA — Array of length NDATA containing the smoothed data.   (Output) 

Optional Arguments 
NDATA — Number of data points.   (Input) 

Default: NDATA = size (XDATA,1). 
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FORTRAN 90 Interface 
Generic: CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA [,…] ) 

Specific:  The specific interface names are S_CSSED and D_CSSED. 

FORTRAN 77 Interface 
Single: CALL CSSED (NDATA, XDATA, FDATA, DIS, SC, MAXIT, SDATA) 

Double: The double precision name is DCSSED. 

Example 

We take 91 uniform samples from the function 5 + (5 + t2 sin t)/t on the interval [1, 10]. Then, 
we contaminate 10 of the samples and try to recover the original function values. 

      USE CSSED_INT 
      USE UMACH_INT 
      INTEGER    NDATA 
      PARAMETER  (NDATA=91) 
!  
      INTEGER    I, MAXIT, NOUT, ISB(10) 
      REAL       DIS, F, FDATA(91), SC, SDATA(91), SIN, X, XDATA(91),& 
                 RNOISE(10) 
      INTRINSIC  SIN 
!  
      DATA ISB/6, 17, 26, 34, 42, 49, 56, 62, 75, 83/ 
      DATA RNOISE/2.5, -3.0, -2.0, 2.5, 3.0, -2.0, -2.5, 2.0, -2.0, 3.0/ 
!  
      F(X) = (X*X*SIN(X)+5.0)/X + 5.0 
!                                  EX. #1; No specific information 
!                                  available 
      DIS   = 0.5 
      SC    = 0.56 
      MAXIT = 182 
!                                  Set values for XDATA and FDATA 
      XDATA(1) = 1.0 
      FDATA(1) = F(XDATA(1)) 
      DO 10  I=2, NDATA 
         XDATA(I) = XDATA(I-1) + .1 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Contaminate the data 
      DO 20 I=1, 10 
         FDATA(ISB(I)) = FDATA(ISB(I)) + RNOISE(I) 
   20 CONTINUE 
!                                  Smooth data 
      CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99997) 
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!                                  Write data 
      DO 30 I=1, 10 
         WRITE (NOUT,99999) F(XDATA(ISB(I))), FDATA(ISB(I)),& 
                            SDATA(ISB(I)) 
   30 CONTINUE 
!                                  EX. #2; Specific information 
!                                  available 
      DIS   = 1.0 
      SC    = 0.0 
      MAXIT = 10 
!                                  A warning message is produced 
!                                  because the maximum number of 
!                                  iterations is reached. 
!  
!                                  Smooth data 
      CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA) 
!                                  Write heading 
      WRITE (NOUT,99998) 
!                                  Write data 
      DO 40 I=1, 10 
         WRITE (NOUT,99999) F(XDATA(ISB(I))), FDATA(ISB(I)),& 
                            SDATA(ISB(I)) 
   40 CONTINUE 
!  
99997 FORMAT (’ Case A - No specific information available’, /,& 
             ’    F(X)       F(X)+NOISE          SDATA(X)’, /) 
99998 FORMAT (’ Case B - Specific information available’, /,& 
             ’    F(X)       F(X)+NOISE          SDATA(X)’, /) 
99999 FORMAT (’ ’, F7.3, 8X, F7.3, 11X, F7.3) 
      END 

Output 
Case A - No specific information available 
 F(X)       F(X)+NOISE          SDATA(X) 
 
 9.830         12.330             9.870 
 8.263          5.263             8.215 
 5.201          3.201             5.168 
 2.223          4.723             2.264 
 1.259          4.259             1.308 
 3.167          1.167             3.138 
 7.167          4.667             7.131 
10.880         12.880            10.909 
12.774         10.774            12.708 
 7.594         10.594             7.639 
 
 *** WARNING  ERROR 1 from CSSED.  Maximum number of iterations limit MAXIT  
 ***          =10 exceeded.  The best answer found is returned. 
Case B - Specific information available 
 F(X)       F(X)+NOISE          SDATA(X) 
 
 9.830         12.330             9.831 
 8.263          5.263             8.262 
 5.201          3.201             5.199 
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 2.223          4.723             2.225 
 1.259          4.259             1.261 
 3.167          1.167             3.170 
 7.167          4.667             7.170 
10.880         12.880            10.878 
12.774         10.774            12.770 
 7.594         10.594             7.592 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2SED/DC2SED. The 

reference is: 

CALL C2SED (NDATA, XDATA, FDATA, DIS, SC, MAXIT,  
     DATA, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 4 * NDATA + 30. 

IWK — Work array of length 2 * NDATA. 

2. Informational error 

Type Code 
   3    1 The maximum number of iterations allowed has been reached. 

3. The arrays FDATA and SDATA may the the same. 

Description 
The routine CSSED is designed to smooth a data set that is mildly contaminated with isolated 
errors. In general, the routine will not work well if more than 25% of the data points are in error. 
The routine CSSED is based on an algorithm of Guerra and Tapia (1974). 

Setting NDATA = n, FDATA = f, SDATA = s and XDATA = x, the algorithm proceeds as follows. 
Although the user need not input an ordered XDATA sequence, we will assume that x is 
increasing for simplicity. The algorithm first sorts the XDATA values into an increasing sequence 
and then continues. A cubic spline interpolant is computed for each of the 6-point data sets 
(initially setting s = f) 

(xj, sj) j = i � 3, �, i + 3 j 
 i, 

where i = 4, �, n � 3 using CSAKM (page 600). For each i the interpolant, which we will call Si, 
is compared with the current value of si, and a ‘point energy’ is computed as 

pei = Si(xi) � si 

Setting sc = SC, the algorithm terminates either if MAXIT iterations have taken place or if 

� �3 3 / 6 4, , 3i i ipe sc x x i n
� �

� � � ��  
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If the above inequality is violated for any i, then we update the i-th element of s by setting  
si = si + d(pei), where d = DIS. Note that neither the first three nor the last three data points are 
changed. Thus, if these points are inaccurate, care must be taken to interpret the results. 

The choice of the parameters d, sc and MAXIT are crucial to the successful usage of this 
subroutine. If the user has specific information about the extent of the contamination, then he 
should choose the parameters as follows: d = 1, sc = 0 and MAXIT to be the number of data 
points in error. On the other hand, if no such specific information is available, then choose  
d = .5, MAXIT � 2n, and 

� �1

max min.5
n

s ssc
x x

�
�

�

 

In any case, we would encourage the user to experiment with these values. 

CSSMH 
Computes a smooth cubic spline approximation to noisy data. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input) 

XDATA must be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

SMPAR — A nonnegative number which controls the smoothing.   (Input)  
The spline function S returned is such that the sum from I = 1 to NDATA of 
((S(XDATA(I))FDATA(I)) / WEIGHT(I))**2 is less than or equal to SMPAR. It is 
recommended that SMPAR lie in the confidence interval of this sum, i.e.,  
NDATA � SQRT(2 * NDATA).LE. SMPAR.LE. NDATA + SQRT(2 * NDATA). 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 
representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   
(Output) 

Optional Arguments 
NDATA — Number of data points.   (Input) 

NDATA must be at least 2. 
Default: NDATA = size (XDATA,1). 

WEIGHT — Array of length NDATA containing estimates of the standard deviations of 
FDATA.   (Input)  
All elements of WEIGHT must be positive. 
Default: WEIGHT = 1.0. 
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FORTRAN 90 Interface 
Generic: CALL CSSMH (XDATA, FDATA, SMPAR, BREAK, 

     CSCOEF [,…]) 

Specific:  The specific interface names are S_CSSMH and D_CSSMH. 

FORTRAN 77 Interface 
Single: CALL CSSMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK, 

     CSCOEF) 

Double: The double precision name is DCSSMH. 

Example 
In this example, function values are contaminated by adding a small “random” amount to the 
correct values. The routine CSSMH is used to approximate the original, uncontaminated data. 

      USE IMSL_LIBRARIES 
      INTEGER    NDATA 
      PARAMETER  (NDATA=300) 
!  
      INTEGER    I, NOUT 
      REAL       BREAK(NDATA), CSCOEF(4,NDATA), ERROR, F,& 
                 FDATA(NDATA), FLOAT, FVAL, SDEV, SMPAR, SQRT,& 
                 SVAL, WEIGHT(NDATA), X, XDATA(NDATA), XT 
      INTRINSIC  FLOAT, SQRT 
!  
      F(X) = 1.0/(.1+(3.0*(X-1.0))**4) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Set the random number seed 
      CALL RNSET (1234579) 
!                                  Contaminate the data 
      DO 20  I=1, NDATA 
         RN = RNUNF()  
         FDATA(I) = FDATA(I) + 2.0*RN - 1.0 
   20 CONTINUE 
!                                  Set the WEIGHT vector 
      SDEV = 1.0/SQRT(3.0) 
      CALL SSET (NDATA, SDEV, WEIGHT, 1) 
      SMPAR = NDATA 
!                                  Smooth the data 
      CALL CSSMH (XDATA, FDATA, SMPAR, BREAK, CSCOEF, WEIGHT=WEIGHT) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Write heading 
      WRITE (NOUT,99999) 
!                                  Print 10 values of the function. 
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      DO 30  I=1, 10 
         XT    = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 
!                                  Evaluate the spline 
         SVAL  = CSVAL(XT,BREAK,CSCOEF) 
         FVAL  = F(XT) 
         ERROR = SVAL - FVAL 
         WRITE (NOUT,’(4F15.4)’) XT, FVAL, SVAL, ERROR 
   30 CONTINUE 
!  
99999 FORMAT (12X, ’X’, 9X, ’Function’, 7X, ’Smoothed’, 10X,& 
             ’Error’) 
      END 

Output 
     X         Function       Smoothed          Error 
 0.0000         0.0123         0.1118         0.0995 
 0.3010         0.0514         0.0646         0.0131 
 0.6020         0.4690         0.2972        -0.1718 
 0.9030         9.3312         8.7022        -0.6289 
 1.2040         4.1611         4.7887         0.6276 
 1.5050         0.1863         0.2718         0.0856 
 1.8060         0.0292         0.1408         0.1116 
 2.1070         0.0082         0.0826         0.0743 
 2.4080         0.0031         0.0076         0.0045 
 2.7090         0.0014        -0.1789        -0.1803 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2SMH/DC2SMH. The 

reference is: 

CALL C2SMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR,  
BREAK, CSCOEF, WK, IWK) 

The additional arguments are as follows: 

WK — Work array of length 8 * NDATA + 5. 

IWK — Work array of length NDATA. 

2. Informational errors 

Type Code 
   3    1 The maximum number of iterations has been reached. The best 

approximation is returned. 
   4    3 All weights must be greater than zero. 

3. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be 
evaluated using CSDER (page 610). 
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Description 

The routine CSSMH is designed to produce a C2 cubic spline approximation to a data set in which 
the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline 
with knots at all the data abscissas x = XDATA, but it does not interpolate the data (xi, fi). The 
smoothing spline S is the unique C2 function which minimizes 

� �
2b

a
S x dx���  

subject to the constraint 

� �
2

1

N
i i

i i

S x f
w

�

�

�
��  

where w = WEIGHT, � = SMPAR is the smoothing parameter, and N = NDATA.  

Recommended values for � depend on the weights w. If an estimate for the standard deviation 
of the error in the value fi is available, then wi should be set to this value and the smoothing 
parameter � should be chosen in the confidence interval corresponding to the left side of the 
above inequality. That is, 

2 2N N N N�� � � �  

The routine CSSMH is based on an algorithm of Reinsch (1967). This algorithm is also discussed 
in de Boor (1978, pages 235�243). 

CSSCV 
Computes a smooth cubic spline approximation to noisy data using cross-validation to estimate the 
smoothing parameter. 

Required Arguments 
XDATA — Array of length NDATA containing the data point abscissas.   (Input) XDATA must 

be distinct. 

FDATA — Array of length NDATA containing the data point ordinates.   (Input) 

IEQUAL — A flag alerting the subroutine that the data is equally spaced.   (Input) 

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic 
representation.   (Output) 

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.   
(Output) 
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Optional Arguments 
NDATA — Number of data points.   (Input)  

NDATA must be at least 3. 
Default: NDATA = size (XDATA,1). 

FORTRAN 90 Interface 
Generic: CALL CSSCV (XDATA, FDATA, IEQUAL, BREAK, CSCOEF [,…]) 

Specific:  The specific interface names are S_CSSCV and D_CSSCV. 

FORTRAN 77 Interface 
Single: CALL CSSCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF) 

Double: The double precision name is DCSSCV. 

Example 
In this example, function values are computed and are contaminated by adding a small 
“random” amount. The routine CSSCV is used to try to reproduce the original, uncontaminated 
data. 

      USE IMSL_LIBRARIES 
      INTEGER    NDATA 
      PARAMETER  (NDATA=300) 
!  
      INTEGER    I, IEQUAL, NOUT 
      REAL       BREAK(NDATA), CSCOEF(4,NDATA), ERROR, F,& 
                 FDATA(NDATA), FLOAT, FVAL, SVAL, X,& 
                 XDATA(NDATA), XT, RN 
      INTRINSIC  FLOAT 
!  
      F(X) = 1.0/(.1+(3.0*(X-1.0))**4) 
!  
      CALL UMACH (2, NOUT) 
!                                  Set up a grid 
      DO 10  I=1, NDATA 
         XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 
         FDATA(I) = F(XDATA(I)) 
   10 CONTINUE 
!                                  Introduce noise on [-.5,.5] 
!                                  Contaminate the data 
      CALL RNSET (1234579) 
      DO 20  I=1, NDATA 
      RN = RNUNF () 
         FDATA(I) = FDATA(I) + 2.0*RN - 1.0 
   20 CONTINUE 
!  
!                                  Set IEQUAL=1 for equally spaced data 
      IEQUAL = 1 
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!                                  Smooth data 
      CALL CSSCV (XDATA, FDATA, IEQUAL, BREAK, CSCOEF) 
!                                  Print results 
      WRITE (NOUT,99999) 
      DO 30  I=1, 10 
         XT    = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1)) 
         SVAL  = CSVAL(XT,BREAK,CSCOEF) 
         FVAL  = F(XT) 
         ERROR = SVAL - FVAL 
         WRITE (NOUT,’(4F15.4)’) XT, FVAL, SVAL, ERROR 
   30 CONTINUE 
99999 FORMAT (12X, ’X’, 9X, ’Function’, 7X, ’Smoothed’, 10X,& 
             ’Error’) 
      END 

Output 
    X         Function       Smoothed          Error 
 0.0000         0.0123         0.2528         0.2405 
 0.3010         0.0514         0.1054         0.0540 
 0.6020         0.4690         0.3117        -0.1572 
 0.9030         9.3312         8.9461        -0.3850 
 1.2040         4.1611         4.6847         0.5235 
 1.5050         0.1863         0.3819         0.1956 
 1.8060         0.0292         0.1168         0.0877 
 2.1070         0.0082         0.0658         0.0575 
 2.4080         0.0031         0.0395         0.0364 
 2.7090         0.0014        -0.2155        -0.2169 

Comments 
1. Workspace may be explicitly provided, if desired, by use of C2SCV/DC2SCV. The 

reference is: 

CALL C2SCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF,  
WK, SDWK, IPVT) 

The additional arguments are as follows: 

WK — Work array of length 7 * (NDATA + 2). 

SDWK — Work array of length 2 * NDATA. 

IPVT — Work array of length NDATA. 

2. Informational error 

Type Code 
   4    2 Points in the data point abscissas array, XDATA, must be distinct. 
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Description 

The routine CSSCV is designed to produce a C2 cubic spline approximation to a data set in which 
the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline 
with knots at all the data abscissas x = XDATA, but it does not interpolate the data (xi, fi). The 
smoothing spline Ss is the unique C2 function that minimizes 

� �
2b

a
S x dx
�
���  

subject to the constraint 
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where � is the smoothing parameter and N = NDATA. The reader should consult Reinsch (1967) 
for more information concerning smoothing splines. The IMSL subroutine CSSMH (see page 
758) solves the above problem when the user provides the smoothing parameter �. This routine 
attempts to find the ‘optimal’ smoothing parameter using the statistical technique known as 
cross-validation. This means that (in a very rough sense) one chooses the value of � so that the 
smoothing spline (Ss) best approximates the value of the data at xi, if it is computed using all the 
data except the i-th; this is true for all i = 1, �, N. For more information on this topic, we refer 
the reader to Craven and Wahba (1979). 

RATCH 
Computes a rational weighted Chebyshev approximation to a continuous function on an interval. 

Required Arguments 
F — User-supplied FUNCTION to be approximated. The form is F(X), where 

 X – Independent variable.   (Input) 
F – The function value.   (Output) 

 F must be declared EXTERNAL in the calling program. 

PHI — User-supplied FUNCTION to supply the variable transformation which must be 
continuous and monotonic. The form is PHI(X), where 

X – Independent variable.   (Input) 

PHI – The function value.   (Output) 

PHI must be declared EXTERNAL in the calling program. 

WEIGHT — User-supplied FUNCTION to scale the maximum error. It must be continuous 
and nonvanishing on the closed interval (A, B). The form is WEIGHT(X), where 
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 X – Independent variable.   (Input) 
WEIGHT – The function value.   (Output) 

 WEIGHT must be declared EXTERNAL in the calling program. 

A — Lower end of the interval on which the approximation is desired.   (Input) 

B — Upper end of the interval on which the approximation is desired.   (Input) 

P — Vector of length N + 1 containing the coefficients of the numerator polynomial.   
(Output) 

Q — Vector of length M + 1 containing the coefficients of the denominator polynomial.   
(Output) 

ERROR — Min-max error of approximation.   (Output) 

Optional Arguments 
N — The degree of the numerator.   (Input) 

Default: N = size (P,1) – 1. 

M — The degree of the denominator.   (Input) 
Default: M = size (Q,1) – 1. 

FORTRAN 90 Interface 
Generic: CALL RATCH (F, PHI, WEIGHT, A, B, P, Q, ERROR [,…]) 

Specific:  The specific interface names are S_RATCH and D_RATCH. 

FORTRAN 77 Interface 
Single: CALL RATCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR) 

Double: The double precision name is DRATCH. 

Example 
In this example, we compute the best rational approximation to the gamma function, �, on the 
interval [2, 3] with weight function w = 1 and N = M = 2. We display the maximum error and 
the coefficients. This problem is taken from the paper of Cody, Fraser, and Hart (1968). We 
compute in double precision due to the conditioning of this problem. 

      USE RATCH_INT 
      USE UMACH_INT 
      INTEGER    M, N 
      PARAMETER  (M=2, N=2) 
!  
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      INTEGER    NOUT 
      DOUBLE PRECISION  A, B, ERROR, F, P(N+1), PHI, Q(M+1), WEIGHT 
      EXTERNAL   F, PHI, WEIGHT 
!  
      A = 2.0D0 
      B = 3.0D0 
!                                  Compute double precision rational 
!                                  approximation 
      CALL RATCH (F, PHI, WEIGHT, A, B, P, Q, ERROR) 
!                                  Get output unit number 
      CALL UMACH (2, NOUT) 
!                                  Print P, Q and min-max error 
      WRITE (NOUT,’(1X,A)’) ’In double precision we have:’ 
      WRITE (NOUT,99999) ’P      = ’, P 
      WRITE (NOUT,99999) ’Q      = ’, Q 
      WRITE (NOUT,99999) ’ERROR  = ’, ERROR 
99999 FORMAT (’ ’, A, 5X, 3F20.12, /) 
      END 
! ----------------------------------------------------------------------- 
!  
      DOUBLE PRECISION FUNCTION F (X) 
      DOUBLE PRECISION X 
!  
      DOUBLE PRECISION DGAMMA 
      EXTERNAL   DGAMMA 
!  
      F = DGAMMA(X) 
      RETURN 
      END 
! ----------------------------------------------------------------------- 
!  
      DOUBLE PRECISION FUNCTION PHI (X) 
      DOUBLE PRECISION X 
!  
      PHI = X 
      RETURN 
      END 
! ----------------------------------------------------------------------- 
!  
      DOUBLE PRECISION FUNCTION WEIGHT (X) 
      DOUBLE PRECISION X 
!  
      DOUBLE PRECISION DGAMMA 
      EXTERNAL   DGAMMA 
!  
      WEIGHT = DGAMMA(X) 
      RETURN 
      END 
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Output 
In double precision we have: 
P      =            1.265583562487     -0.650585004466      0.197868699191 
 
Q      =            1.000000000000     -0.064342721236     -0.028851461855 
 
ERROR  =           -0.000026934190 

Comments 
1. Workspace may be explicitly provided, if desired, by use of R2TCH/DR2TCH. The 

reference is: 

CALL R2TCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR,  
ITMAX, IWK, WK) 

The additional arguments are as follows: 

ITMAX — Maximum number of iterations.   (Input) 
The default value is 20. 

IWK — Workspace vector of length (N + M + 2). (Workspace) 

WK — Workspace vector of length (N + M + 8) * (N + M + 2). (Workspace) 

2. Informational errors 

Type Code 
   3    1 The maximum number of iterations has been reached. The routine 

R2TCH may be called directly to set a larger value for ITMAX. 
   3    2 The error was reduced as far as numerically possible. A good 

approximation is returned in P and Q, but this does not necessarily 
give the Chebyshev approximation. 

   4    3 The linear system that defines P and Q was found to be 
algorithmically singular. This indicates the possibility of a 
degenerate approximation. 

   4    4 A sequence of critical points that was not monotonic generated. This 
indicates the possibility of a degenerate approximation. 

   4    5 The value of the error curve at some critical point is too large. This 
indicates the possibility of poles in the rational function. 

   4    6 The weight function cannot be zero on the closed interval (A, B). 

Description 
The routine RATCH is designed to compute the best weighted L¥ (Chebyshev) approximant to a 
given function. Specifically, given a weight function w = WEIGHT, a monotone function  
 = PHI, and a function f to be approximated on the interval [a, b], the subroutine RATCH returns 
the coefficients (in P and Q) for a rational approximation to f on [a, b]. The user must supply the 
degree of the numerator N and the degree of the denominator M of the rational function  
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The goal is to produce coefficients which minimize the expression 
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Notice that setting (x) = x yields ordinary rational approximation. A typical use of the function 
 occurs when one wants to approximate an even function on a symmetric interval, say [�a, a] 
using ordinary rational functions. In this case, it is known that the answer must be an even 
function. Hence, one can set (x) = x2, only approximate on [0, a], and decrease by one half the 
degrees in the numerator and denominator. 

The algorithm implemented in this subroutine is designed for fast execution. It assumes that the 
best approximant has precisely N + M + 2 equi-oscillations. That is, that there exist N + M + 2 
points t1 < � < tN+M+2 satisfying  

� � � �1

N
M

i i
f R

e e
w�

�
� � � �t t  

Such points are called alternants. Unfortunately, there are many instances in which the best 
rational approximant to the given function has either fewer alternants or more alternants. In this 
case, it is not expected that this subroutine will perform well. For more information on rational 
Chebyshev approximation, the reader can consult Cheney (1966). The subroutine is based on 
work of Cody, Fraser, and Hart (1968). 
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Chapter 4: Integration and 
Differentiation 

Routines 
4.1.  Univariate Quadrature 

Adaptive general-purpose endpoint singularities................QDAGS 772 
Adaptive general purpose..................................................... QDAG 775 
Adaptive general-purpose points of singularity...................QDAGP 779 
Adaptive general-purpose infinite interval ........................... QDAGI 782 
Adaptive weighted oscillatory (trigonometric) ....................QDAWO 785 
Adaptive weighted Fourier (trigonometric)..........................QDAWF 789 
Adaptive weighted algebraic endpoint singularities........... QDAWS 793 
Adaptive weighted Cauchy principal value ........................ QDAWC 796 
Nonadaptive general purpose............................................... QDNG 799 

4.2.  Multidimensional Quadrature 
Two-dimensional quadrature (iterated integral)................. TWODQ 801 
Adaptive N-dimensional quadrature 
over a hyper-rectangle...........................................................QAND 806 
Integrates a function over a hyperrectangle using a  
quasi-Monte Carlo method ......................................................QMC 809 

4.3.  Gauss Rules and Three-term Recurrences 
Gauss quadrature rule for classical weights....................... GQRUL 811 
Gauss quadrature rule from recurrence coefficients ..........GQRCF 815 
Recurrence coefficients for classical weights ......................RECCF 818 
Recurrence coefficients from quadrature rule ....................RECQR 821 
Fejer quadrature rule ...........................................................FQRUL 824 

4.4. Differentiation 
Approximation to first, second, or third derivative.................DERIV 827 
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Usage Notes 
Univariate Quadrature 
The first nine routines described in this chapter are designed to compute approximations to 
integrals of the form  

� � � �
b

a
f x w x dx�  

The weight function w is used to incorporate known singularities (either algebraic or logarithmic), 
to incorporate oscillations, or to indicate that a Cauchy principal value is desired. For general 
purpose integration, we recommend the use of QDAGS (page 772) (even if no endpoint singularities 
are present). If more efficiency is desired, then the use of QDAG (page 775) (or QDAG*) should be 
considered. These routines are organized as follows: 
� w = 1 

� QDAGS 

� QDAG 

� QDAGP 

� QDAGI 

� QDNG 

� w(x) = sin �x or w(x) = cos �x 

� QDAWO (for a finite interval) 

� QDAWF (for an infinite interval) 

� w(x) = (x � a)�(b � x)� ln(x � a) ln(b �x), where the ln factors are optional 

� QDAWS 
� w(x) = 1/(x �c) Cauchy principal value 

� QDAWC 

The calling sequences for these routines are very similar. The function to be integrated is always 
F; the lower and upper limits are, respectively, A and B. The requested absolute error � is ERRABS, 
while the requested relative error � is ERRREL. These quadrature routines return two numbers of 
interest, namely, RESULT and ERREST, which are the approximate integral R and the error estimate 
E, respectively. These numbers are related as follows: 

� � � � � � � �� �max ,
b b

a a
f x w x dx R E f x w x dx� �� � �� �  

One situation that occasionally arises in univariate quadrature concerns the approximation of 
integrals when only tabular data are given. The routines described above do not directly address 
this question. However, the standard method for handling this problem is first to interpolate the 
data and then to integrate the interpolant. This can be accomplished by using the IMSL spline 
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interpolation routines described in Chapter 3, “Interpolation and Apprximation”, with one of the 
integration routines CSINT, BSINT, or PPITG. 

Multivariate Quadrature 
Two routines are described in this chapter that are of use in approximating certain multivariate 
integrals. In particular, the routine TWODQ returns an approximation to an iterated two-dimensional 
integral of the form 

� �
� �

� �
,

b h x

a g x
f x y dy dx� �  

The second routine, QAND, returns an approximation to the integral of a function of n variables 
over a hyper-rectangle 

� �
1

1
1 1, ,n

n

b b

n na a
f x x dx dx� �� � �  

If one has two- or three-dimensional tensor-product tabular data, use the IMSL spline interpolation 
routines BS2IN or BS3IN , followed by the IMSL spline integration routines BS2IG and BS3IG 
that are described in Chapter 3, Interpolation and Approximation. 

Gauss rules and three-term recurrences 
The routines described in this section deal with the constellation of problems encountered in 
Gauss quadrature. These problems arise when quadrature formulas, which integrate polynomials 
of the highest degree possible, are computed. Once a member of a family of seven weight 
functions is specified, the routine GQRUL (page 811) produces the points {xi} and weights {wi} for 
i = 1, �, N that satisfy 

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���  

for all functions f that are polynomials of degree less than 2N. The weight functions w may be 
selected from the following table: 

� �

� �

� �

� �

� �

� � � � � �

� �

� � � �

2

2

2

1 1,1 Legendre

1/ 1- 1,1 Chebyshev 1st kind

1 1,1 Chebyshev 2nd kind

, Hermite

1 1 1,1 Jacobi
0, Generalized Laguerre

1/ cosh Hyperbolic cosine

x

x

w x

x

x

e

x x
e x

x

� �

�

�

�

�

�

� �

�� �

� � �

�

�� �

Interval Name

 

Where permissible, GQRUL will also compute Gauss-Radau and Gauss-Lobatto quadrature rules. 
The routine RECCF (page 818) produces the three-term recurrence relation for the monic 
orthogonal polynomials with respect to the above weight functions. 
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Another routine, GQRCF (page 815), produces the Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule from the three-term recurrence relation. This means Gauss rules for general weight 
functions may be obtained if the three-term recursion for the orthogonal polynomials is known. 
The routine RECQR (page 821) is an inverse to GQRCF in the sense that it produces the recurrence 
coefficients given the Gauss quadrature formula. 

The last routine described in this section, FQRUL (page 824), generates the Fejér quadrature rules 
for the following family of weights: 

� �

� � � �

� � � � � �

� � � � � � � �

� � � � � � � �

1

1/

ln

ln

w x

w x x

w x b x x a

w x b x x a x a

w x b x x a b x

� �

� �

� �

�

�

� �

� � �

� � � �

� � � �

 

Numerical differentiation 
We provide one routine, DERIV (page 827), for numerical differentiation. This routine provides an 
estimate for the first, second, or third derivative of a user-supplied function. 

QDAGS 
Integrates a function (which may have endpoint singularities). 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(X), where 

 X � Independent variable.   (Input) 
 F � The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Required Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 
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FORTRAN 90 Interface 
Generic: CALL QDAGS (F, A, B, RESULT [,…]) 

Specific:  The specific interface names are S_QDAGS and D_QDAGS. 

FORTRAN 77 Interface 
Single: CALL QDAGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST) 

Double: The double precision name is DQDAGS. 

Example 
The value of 

� �
1 1/ 2

0
ln 4x x dx�

� ��  

is estimated. The values of the actual and estimated error are machine dependent. 
      USE QDAGS_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       A, ABS, B, ERRABS, ERREST, ERROR, ERRREL, EXACT, F, & 
                RESULT 
      INTRINSIC  ABS 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration 
      A = 0.0 
      B = 1.0 
!                                 Set error tolerances 
      ERRABS = 0.0 
      CALL QDAGS (F, A, B, RESULT, ERRABS=ERRABS, ERREST=ERREST) 
!                                 Print results 
      EXACT = -4.0 
      ERROR = ABS(RESULT-EXACT) 
      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, & 
            ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3) 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
      REAL       ALOG, SQRT 
      INTRINSIC  ALOG, SQRT 
      F = ALOG(X)/SQRT(X) 
      RETURN 
      END 
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Output 
Computed =  -4.000              Exact =  -4.000 
 
Error estimate = 1.519E-04      Error = 2.098E-05 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2AGS/DQ2AGS. The 

reference is 

CALL Q2AGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST, MAXSUB, 
NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD) 

 

 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  
A value of 500 is used by QDAGS. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.   
(Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.   
(Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals 
over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values 
in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  
Let k be  
NSUBIN                          if NSUBIN � (MAXSUB/2 + 2); 
MAXSUB + 1 � NSUBIN  otherwise. 
The first k locations contain pointers to the error estimates over the subintervals 
such that ELIST(IORD(1)), �, ELIST(IORD(k)) form a decreasing sequence. 

2. Informational errors 

Type Code 
   4    1 The maximum number of subintervals allowed has been reached. 
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   3    2 Roundoff error, preventing the requested tolerance from being 
achieved, has been detected. 

   3    3 A degradation in precision has been detected. 
   3    4 Roundoff error in the extrapolation table, preventing the requested 

tolerance from being achieved, has been detected. 
   4    5 Integral is probably divergent or slowly convergent. 

3. If EXACT is the exact value, QDAGS attempts to find RESULT such that  
|EXACT � RESULT| � max(ERRABS, ERRREL * |EXACT|). To specify only a relative 
error, set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to 
zero. 

Description 
The routine QDAGS is a general-purpose integrator that uses a globally adaptive scheme to 
reduce the absolute error. It subdivides the interval [A, B] and uses a 21-point Gauss-Kronrod 
rule to estimate the integral over each subinterval. The error for each subinterval is estimated by 
comparison with the 10-point Gauss quadrature rule. This routine is designed to handle 
functions with endpoint singularities. However, the performance on functions, which are well-
behaved at the endpoints, is quite good also. In addition to the general strategy described in 
QDAG (page 775), this routine uses an extrapolation procedure known as the �-algorithm. The 
routine QDAGS is an implementation of the routine QAGS, which is fully documented by Piessens 
et al. (1983). Should QDAGS fail to produce acceptable results, then either IMSL routines QDAG 
or QDAG* may be appropriate. These routines are documented in this chapter. 

QDAG 
Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules. 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(X), where 

 X � Independent variable.   (Input) 
 F � The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 
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ERRREL — Relative accuracy desired.   (Input) 
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

IRULE — Choice of quadrature rule.   (Input)  
Default: IRULE = 2. 
The Gauss-Kronrod rule is used with the following points:  

  IRULE   Points 

1   7-15  

2   10-21 

3   15-31 

4   20-41 

5   25-51 

6   30-61 

IRULE = 2 is recommended for most functions. If the function has a peak singularity, use 
IRULE = 1. If the function is oscillatory, use IRULE = 6. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QDAG (F, A, B, RESULT [,…]) 

Specific:  The specific interface names are S_QDAG and D_QDAG. 

FORTRAN 77 Interface 
Single: CALL QDAG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST) 

Double: The double precision name is DQDAG. 

Example 
The value of 

2 2

0
1xxe dx e� ��  

is estimated. Since the integrand is not oscillatory, IRULE = 1 is used. The values of the actual 
and estimated error are machine dependent. 
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      USE QDAG_INT 
      USE UMACH_INT 
      INTEGER    IRULE, NOUT 
      REAL       A, ABS, B, ERRABS, ERREST, ERROR, EXACT, EXP, & 
                 F, RESULT 
      INTRINSIC  ABS, EXP 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration 
      A = 0.0 
      B = 2.0 
!                                 Set error tolerances 
      ERRABS = 0.0 
!                                 Parameter for non-oscillatory 
!                                 function 
      IRULE = 1 
      CALL QDAG (F, A, B, RESULT, ERRABS=ERRABS, IRULE=IRULE, ERREST=ERREST) 
!                                 Print results 
      EXACT = 1.0 + EXP(2.0) 
      ERROR = ABS(RESULT-EXACT) 
      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, & 
            ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3) 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
      REAL       EXP 
      INTRINSIC  EXP 
      F = X*EXP(X) 
      RETURN 
      END 

Output 
Computed =   8.389              Exact =   8.389 
 
Error estimate = 5.000E-05      Error = 9.537E-07 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2AG/DQ2AG. The 

reference is: 

CALL Q2AG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST, 
MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  
A value of 500 is used by QDAG. 

NEVAL — Number of evaluations of F.   (Output) 
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NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.   
(Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.   
(Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals 
over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values 
in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 � NSUBIN 
otherwise. The first K locations contain pointers to the error estimates over the 
corresponding subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K)) 
form a decreasing sequence. 

2. Informational errors 

Type Code 
   4    1 The maximum number of subintervals allowed has been reached. 
   3    2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 
   3    3 A degradation in precision has been detected. 

3. If EXACT is the exact value, QDAG attempts to find RESULT such that ABS(EXACT � 
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error, 
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero. 

Description 
The routine QDAG is a general-purpose integrator that uses a globally adaptive scheme in order 
to reduce the absolute error. It subdivides the interval [A, B] and uses a (2k + 1)-point Gauss-
Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is 
estimated by comparison with the k-point Gauss quadrature rule. The subinterval with the 
largest estimated error is then bisected and the same procedure is applied to both halves. The 
bisection process is continued until either the error criterion is satisfied, roundoff error is 
detected, the subintervals become too small, or the maximum number of subintervals allowed is 
reached. The routine QDAG is based on the subroutine QAG by Piessens et al. (1983). 

Should QDAG fail to produce acceptable results, then one of the IMSL routines QDAG* may be 
appropriate. These routines are documented in this chapter. 
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QDAGP 
Integrates a function with singularity points given. 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(X), where 

 X � Independent variable.   (Input) 
 F � The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

POINTS — Array of length NPTS containing breakpoints in the range of integration.   (Input)  
Usually these are points where the integrand has singularities. 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 
NPTS — Number of break points given.   (Input) 

Default: NPTS = size (POINTS,1). 

ERRABS — Absolute accuracy desired.   (Input) 
Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QDAGP (F, A, B, POINTS, RESULT [,…]) 

Specific:  The specific interface names are S_QDAGP and D_QDAGP. 

FORTRAN 77 Interface 
Single: CALL QDAGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT,  

     ERREST) 

Double: The double precision name is DQDAGP. 
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Example 
The value of  

� �� �
3 3 2 2

0

77ln 1 2 61 ln 2 ln 7 27
4

x x x dx� � � � ��  

is estimated. The values of the actual and estimated error are machine dependent. Note that this 
subroutine never evaluates the user-supplied function at the user-supplied breakpoints. 

      USE QDAGP_INT 
      USE UMACH_INT 
      INTEGER    NOUT, NPTS 
      REAL       A, ABS, ALOG, B, ERRABS, ERREST, ERROR, ERRREL, & 
                EXACT, F, POINTS(2), RESULT, SQRT 
      INTRINSIC  ABS, ALOG, SQRT 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration 
      A = 0.0 
      B = 3.0 
!                                 Set error tolerances 
      ERRABS = 0.0 
      ERRREL = 0.01 
!                                 Set singularity parameters 
      NPTS      = 2 
      POINTS(1) = 1.0 
      POINTS(2) = SQRT(2.0) 
      CALL QDAGP (F, A, B, POINTS, RESULT, ERRABS=ERRABS, ERRREL=ERRREL, & 
                    ERREST=ERREST) 
!                                 Print results 
      EXACT = 61.0*ALOG(2.0) + 77.0/4.0*ALOG(7.0) - 27.0 
      ERROR = ABS(RESULT-EXACT) 
      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, & 
            ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3) 
! 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
      REAL       ABS, ALOG 
      INTRINSIC  ABS, ALOG 
      F = X**3*ALOG(ABS((X*X-1.0)*(X*X-2.0))) 
      RETURN 
      END 

Output 
Computed =  52.741              Exact =  52.741 
 
Error estimate = 5.062E-01      Error = 6.104E-04 
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Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2AGP/DQ2AGP. The 

reference is: 

CALL Q2AGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT, 
ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD, 
LEVEL, WK, IWK) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  
A value of 450 is used by QDAGP. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.   
(Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.   
(Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals 
over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values 
in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 � NSUBIN 
otherwise. The first K locations contain pointers to the error estimates over the 
subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K)) form a decreasing 
sequence. 

LEVEL — Array of length MAXSUB, containing the subdivision levels of the 
subinterval.   (Output)  
That is, if (AA, BB) is a subinterval of (P1, P2) where P1 as well as P2 is a  
user-provided break point or integration limit, then (AA, BB) has level L if  
ABS(BB � AA) = ABS(P2 � P1) * 2**(�L). 

WK — Work array of length NPTS + 2. 

IWK — Work array of length NPTS + 2. 

2. Informational errors 

Type Code 
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   4    1 The maximum number of subintervals allowed has been reached. 
   3    2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 
   3    3 A degradation in precision has been detected. 
   3    4 Roundoff error in the extrapolation table, preventing the requested 

tolerance from being achieved, has been detected. 
   4    5 Integral is probably divergent or slowly convergent. 

3. If EXACT is the exact value, QDAGP attempts to find RESULT such that ABS(EXACT � 
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error, 
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero. 

Description 
The routine QDAGP uses a globally adaptive scheme in order to reduce the absolute error. It 
initially subdivides the interval [A, B] into NPTS + 1 user-supplied subintervals and uses a 21-
point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each 
subinterval is estimated by comparison with the 10-point Gauss quadrature rule. This routine is 
designed to handle endpoint as well as interior singularities. In addition to the general strategy 
described in the IMSL routine QDAG (page 775), this routine employs an extrapolation procedure 
known as the �-algorithm. The routine QDAGP is an implementation of the subroutine QAGP, 
which is fully documented by Piessens et al. (1983). 

QDAGI 
Integrates a function over an infinite or semi-infinite interval. 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is 

F(X), where 
 X � Independent variable.   (Input) 
 F � The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

BOUND — Finite bound of the integration range.   (Input)  
Ignored if INTERV = 2. 

INTERV — Flag indicating integration interval.   (Input)  

 

 

 

INTERV  Interval 
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�1  (��, BOUND) 

1   (BOUND, + �) 

2   (��, + �) 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.  

ERRREL — Relative accuracy desired.   (Input) 
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QDAGI (F, BOUND, INTERV, RESULT [,…]) 

Specific:  The specific interface names are S_QDAGI and D_QDAGI. 

FORTRAN 77 Interface 
Single: CALL QDAGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT, 

ERREST) 

Double: The double precision name is DQDAGI. 

Example 
The value of 

� �

� �

� �
20

ln ln 10
201 10

x
dx

x

�� �

�

�
�  

is estimated. The values of the actual and estimated error are machine dependent. Note that we 
have requested an absolute error of 0 and a relative error of .001. The effect of these requests, as 
documented in Comment 3 above, is to ignore the absolute error requirement. 

      USE QDAGI_INT 
      USE UMACH_INT 
      USE CONST_INT 
      INTEGER    INTERV, NOUT 
      REAL       ABS, ALOG, BOUND, ERRABS, ERREST, ERROR, & 
                ERRREL, EXACT, F, PI, RESULT 
      INTRINSIC  ABS, ALOG 
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      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration 
      BOUND  = 0.0 
      INTERV = 1 
!                                 Set error tolerances 
      ERRABS = 0.0 
      CALL QDAGI (F, BOUND, INTERV, RESULT, ERRABS=ERRABS,  & 
                 ERREST=ERREST) 
!                                 Print results 
      PI    = CONST(’PI’) 
      EXACT = -PI*ALOG(10.)/20. 
      ERROR = ABS(RESULT-EXACT) 
      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3//’ Error ’, & 
            ’estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3) 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
      REAL       ALOG 
      INTRINSIC  ALOG 
      F = ALOG(X)/(1.+(10.*X)**2) 
      RETURN 
      END 

Output 
Computed =  -0.362              Exact =  -0.362 
 
Error estimate = 2.652E-06      Error = 5.960E-08 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2AGI/DQ2AGI. The 

reference is 

CALL Q2AGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT, ERREST, 
MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  
A value of 500 is used by QDAGI. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.   
(Output) 
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BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.   
(Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals 
over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values 
in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  
Let K be NSUBIN if NSUBIN .LE.(MAXSUB/2 + 2), MAXSUB + 1 � 
NSUBIN otherwise. The first K locations contain pointers to the error estimates 
over the subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K)) 
form a decreasing sequence. 

2. Informational errors 

Type Code 
   4    1 The maximum number of subintervals allowed has been reached. 
   3     2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 
   3     3 A degradation in precision has been detected. 
   3    4 Roundoff error in the extrapolation table, preventing the requested 

tolerance from being achieved, has been detected. 
   4    5 Integral is divergent or slowly convergent. 

3. If EXACT is the exact value, QDAGI attempts to find RESULT such that ABS(EXACT � 
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error, 
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero. 

Description 
The routine QDAGI uses a globally adaptive scheme in an attempt to reduce the absolute error. It 
initially transforms an infinite or semi-infinite interval into the finite interval [0, 1]. Then, 
QDAGI uses a 21-point Gauss-Kronrod rule to estimate the integral and the error. It bisects any 
interval with an unacceptable error estimate and continues this process until termination. This 
routine is designed to handle endpoint singularities. In addition to the general strategy described 
in QDAG (page 775), this subroutine employs an extrapolation procedure known as the �-
algorithm. The routine QDAGI is an implementation of the subroutine QAGI, which is fully 
documented by Piessens et al. (1983). 

QDAWO 
Integrates a function containing a sine or a cosine. 
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Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(X), where 

 X � Independent variable.   (Input) 
 F � The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

IWEIGH — Type of weight function used.   (Input)  

IWEIGH Weight 

1  COS(OMEGA * X) 

2  SIN(OMEGA * X) 

OMEGA — Parameter in the weight function.   (Input) 

RESULT — Estimate of the integral from A to B of F * WEIGHT.   (Output) 

Optional Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QDAWO (F, A, B, IWEIGH, OMEGA, RESULT [,…]) 

Specific:  The specific interface names are S_QDAWO and D_QDAWO. 

FORTRAN 77 Interface 
Single: CALL QDAWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL, RESULT,  

     ERREST) 

Double: The double precision name is DQDAWO. 
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Description 
The routine QDAWO uses a globally adaptive scheme in an attempt to reduce the absolute error. 
This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is 
either cos �x or sin �x. Depending on the length of the subinterval in relation to the size of �, 
either a modified Clenshaw-Curtis procedure or a Gauss-Kronrod 7/15 rule is employed to 
approximate the integral on a subinterval. In addition to the general strategy described for the 
IMSL routine QDAG (page 775), this subroutine uses an extrapolation procedure known as the �-
algorithm. The routine QDAWO is an implementation of the subroutine QAWO, which is fully 
documented by Piessens et al. (1983). 

 

Example 
The value of 

� � � �
1

0
ln sin 10x x dx��  

is estimated. The values of the actual and estimated error are machine dependent. Notice that the 
log function is coded to protect for the singularity at zero. 

      USE QDAWO_INT 
      USE UMACH_INT 
      USE CONST_INT 

      INTEGER    IWEIGH, NOUT 
      REAL       A, ABS, B, ERRABS, ERREST, ERROR, & 
                EXACT, F, OMEGA, PI, RESULT 
      INTRINSIC  ABS 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration 
      A = 0.0 
      B = 1.0 
!                                 Weight function = sin(10.*pi*x) 
      IWEIGH = 2 
      PI     = CONST(’PI’) 
      OMEGA  = 10.*PI 
!                                 Set error tolerances 
      ERRABS = 0.0 
      CALL QDAWO (F, A, B, IWEIGH, OMEGA, RESULT, ERRABS=ERRABS, &  
                 ERREST=ERREST) 
!                                 Print results 
      EXACT = -0.1281316 
      ERROR = ABS(RESULT-EXACT) 
      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, & 
            ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3) 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
      REAL       ALOG 
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      INTRINSIC  ALOG 
      IF (X .EQ. 0.) THEN 
         F = 0.0 
      ELSE 
         F = ALOG(X) 
      END IF 
      RETURN 
      END 

Output 
Computed =  -0.128              Exact =  -0.128 
 
Error estimate = 7.504E-05      Error = 5.260E-06 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2AWO/DQ2AWO. The 

reference is: 

CALL Q2AWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL, RESULT, 
ERREST, MAXSUB, MAXCBY, NEVAL, NSUBIN, ALIST, BLIST, RLIST, 
ELIST, IORD, NNLOG, WK) 

The additional arguments are as follows: 

MAXSUB — Maximum number of subintervals allowed.   (Input)  
A value of 390 is used by QDAWO. 

MAXCBY — Upper bound on the number of Chebyshev moments which can be 
stored. That is, for the intervals of lengths ABS(B � A) * 2**(�L), L = 0, 
1, �, MAXCBY � 2, MAXCBY.GE.1. The routine QDAWO uses 21.   (Input) 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.   
(Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.   
(Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals 
over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values 
in RLIST.   (Output) 

IORD — Array of length MAXSUB. Let K be NSUBIN if NSUBIN.LE. (MAXSUB/2 + 
2), MAXSUB + 1 � NSUBIN otherwise. The first K locations contain pointers 
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to the error estimates over the subintervals, such that ELIST(IORD(1)), �, 
ELIST(IORD(K)) form a decreasing sequence.   (Output) 

NNLOG — Array of length MAXSUB containing the subdivision levels of the 
subintervals, i.e. NNLOG(I) = L means that the subinterval numbered I is of 
length ABS(B � A) * (1� L).   (Output) 

WK — Array of length 25 * MAXCBY. (Workspace) 

2. Informational errors 

Type Code 
   4    1 The maximum number of subintervals allowed has been reached. 
   3    2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 
   3    3 A degradation in precision has been detected. 
   3    4 Roundoff error in the extrapolation table, preventing the requested 

tolerances from being achieved, has been detected. 
   4    5 Integral is probably divergent or slowly convergent. 

3. If EXACT is the exact value, QDAWO attempts to find RESULT such that ABS(EXACT � 
RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error, 
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero. 

QDAWF 
Computes a Fourier integral. 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(X), where 

 X � Independent variable.   (Input) 
 F � The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

IWEIGH — Type of weight function used.   (Input)  

IWEIGH Weight  

1          COS(OMEGA * X) 

2            SIN(OMEGA * X) 

OMEGA — Parameter in the weight function.   (Input) 

RESULT — Estimate of the integral from A to infinity of F * WEIGHT.   (Output) 
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Optional Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 
Default: ERREST = 1.e-3 for single precision and 1.d-8 for double precision. 

FORTRAN 90 Interface 
Generic: CALL QDAWF (F, A, IWEIGH, OMEGA, RESULT [,…]) 

Specific:  The specific interface names are S_QDAWF and D_QDAWF. 

FORTRAN 77 Interface 
Single: CALL QDAWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST) 

Double: The double precision name is DQDAWF. 

Example 
The value of  

� �1/ 2

0
cos / 2 1x x dx�

�
�

��  

is estimated. The values of the actual and estimated error are machine dependent. Notice that F 
is coded to protect for the singularity at zero. 

      USE QDAWF_INT 
      USE UMACH_INT 
      USE CONST_INT 

      INTEGER    IWEIGH, NOUT 
      REAL       A, ABS, ERRABS, ERREST, ERROR, EXACT, F, & 
                OMEGA, PI, RESULT 
      INTRINSIC  ABS 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set lower limit of integration 
      A = 0.0 
!                                 Select weight W(X) = COS(PI*X/2) 
      IWEIGH = 1 
      PI     = CONST(’PI’) 
      OMEGA  = PI/2.0 
!                                 Set error tolerance 
      CALL QDAWF (F, A, IWEIGH, OMEGA, RESULT, ERREST=ERREST) 
!                                 Print results 
      EXACT = 1.0 
      ERROR = ABS(RESULT-EXACT) 
      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
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99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, & 
            ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3) 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
      REAL       SQRT 
      INTRINSIC  SQRT 
      IF (X .GT. 0.0) THEN 
         F = 1.0/SQRT(X) 
      ELSE 
         F = 0.0 
      END IF 
      RETURN 
      END 

Output 
Computed =   1.000              Exact =   1.000 
 
Error estimate = 6.267E-04      Error = 2.205E-06 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2AWF/DQ2AWF. The 

reference is: 

CALL Q2AWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST, MAXCYL, 
MAXSUB, MAXCBY, NEVAL, NCYCLE, RSLIST, ERLIST, IERLST, NSUBIN,  
WK, IWK) 

The additional arguments are as follows: 

MAXSUB — Maximum number of subintervals allowed.   (Input)  
A value of 365 is used by QDAWF. 

MAXCYL — Maximum number of cycles allowed.   (Input)  
MAXCYL must be at least 3. QDAWF uses 50. 

MAXCBY — Maximum number of Chebyshev moments allowed.   (Input)  
QDAWF uses 21. 

NEVAL — Number of evaluations of F.   (Output) 

NCYCLE — Number of cycles used.   (Output) 

RSLIST — Array of length MAXCYL containing the contributions to the integral over 
the interval (A + (k � 1) * C, A + k * C), for k = 1, �, NCYCLE.   (Output)  
C = (2 * INT(ABS(OMEGA)) + 1) * PI/ABS(OMEGA). 

ERLIST — Array of length MAXCYL containing the error estimates for the intervals 
defined in RSLIST.   (Output) 
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IERLST — Array of length MAXCYL containing error flags for the intervals defined in 
RSLIST.   (Output)  

IERLST(K)  Meaning 

1     The maximum number of subdivisions (MAXSUB) has been 
 achieved on the K-th cycle. 

2           Roundoff error prevents the desired accuracy from being 
       achieved on the K-th cycle. 

3          Extremely bad integrand behavior occurs at some points 
   of the K-th cycle. 

 4           Integration procedure does not converge (to the desired 
    accuracy) due to roundoff in the extrapolation procedure 
    on the K-th cycle. It is assumed that the result on this  
    interval is the best that can be obtained.  

5          Integral over the K-th cycle is divergent or slowly  
   convergent. 

NSUBIN — Number of subintervals generated.   (Output) 

WK — Work array of length 4 * MAXSUB + 25 * MAXCBY. 

IWK — Work array of length 2 * MAXSUB. 

2. Informational errors 

Type Code  
   3    1 Bad integrand behavior occurred in one or more cycles. 
   4    2 Maximum number of cycles allowed has been reached. 
   3    3 Extrapolation table constructed for convergence acceleration of the 

series formed by the integral contributions of the cycles does not 
converge to the requested accuracy. 

3. If EXACT is the exact value, QDAWF attempts to find RESULT such that ABS(EXACT � 
RESULT) .LE. ERRABS. 

Description 
The routine QDAWF uses a globally adaptive scheme in an attempt to reduce the absolute error. 
This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is 
either cos �x or sin �x. The integration interval is always semi-infinite of the form [A, �]. 
These Fourier integrals are approximated by repeated calls to the IMSL routine QDAWO (page 
785) followed by extrapolation. The routine QDAWF is an implementation of the subroutine 
QAWF, which is fully documented by Piessens et al. (1983). 
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QDAWS 
Integrates a function with algebraic-logarithmic singularities. 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(X), where 

 X � Independent variable.   (Input) 
 F � The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 
B must be greater than A 

IWEIGH — Type of weight function used.   (Input)  

IWEIGH Weight 

1  (X � A)**ALPHA * (B � X)**BETAW 

2  (X � A)**ALPHA * (B � X)**BETAW * LOG(X � A) 

3  (X � A)**ALPHA * (B � X)**BETAW * LOG(B � X) 

4  (X � A)**ALPHA * (B � X)**BETAW * LOG (X � A) * LOG (B � X) 

ALPHA — Parameter in the weight function.   (Input)  
ALPHA must be greater than �1.0. 

BETAW — Parameter in the weight function.   (Input)  
BETAW must be greater than �1.0. 

RESULT — Estimate of the integral from A to B of F * WEIGHT.   (Output) 

Optional Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 
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FORTRAN 90 Interface 
Generic: CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, RESULT[,…] ) 

Specific:  The specific interface names are S_QDAWS and D_QDAWS. 

FORTRAN 77 Interface 
Single: CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, ERRABS, ERRREL,  

     RESULT, ERREST) 

Double: The double precision name is DQDAWS. 

Example 
The value of 

� �� � � �
� �1/ 21

0

3ln 2 4
1 1 ln

9
x x x x dx

�
� � �� �� ��  

is estimated. The values of the actual and estimated error are machine dependent. 
      USE QDAWS_INT 
      USE UMACH_INT 
      INTEGER    IWEIGH, NOUT 
      REAL       A, ABS, ALOG, ALPHA, B, BETAW, ERRABS, ERREST, ERROR, & 
                EXACT, F, RESULT 
      INTRINSIC  ABS, ALOG 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration 
      A = 0.0 
      B = 1.0 
!                                 Select weight 
      ALPHA  = 1.0 
      BETAW   = 0.5 
      IWEIGH = 2 
!                                 Set error tolerances 
      ERRABS = 0.0 
      CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, RESULT, & 
                ERRABS=ERRABS, ERREST=ERREST) 
!                                 Print results 
      EXACT = (3.*ALOG(2.)-4.)/9. 
      ERROR = ABS(RESULT-EXACT) 
      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, & 
            ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3) 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
      REAL       SQRT 
      INTRINSIC  SQRT 
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      F = SQRT(1.0+X) 
      RETURN 
      END 

Output 
Computed =  -0.213              Exact =  -0.213 
 
Error estimate = 1.261E-08      Error = 2.980E-08 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2AWS/DQ2AWS. The 

reference is 

CALL Q2AWS (F, A, B, IWEIGH, ALPHA, BETAW, ERRABS, ERRREL, 
RESULT, ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, 
ELIST, IORD) 

The additional arguments are as follows: 

MAXSUB — Maximum number of subintervals allowed.   (Input)  
A value of 500 is used by QDAWS. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.   
(Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.   
(Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals 
over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values 
in RLIST.   (Output) 

IORD — Array of length MAXSUB. Let K be NSUBIN if NSUBIN.LE. (MAXSUB/2 + 
2), MAXSUB + 1 � NSUBIN otherwise. The first K locations contain pointers to 
the error estimates over the subintervals, such that ELIST(IORD(1)), �, 
ELIST(IORD(K)) form a decreasing sequence.   (Output) 

2. Informational errors 

Type Code 
4  1 The maximum number of subintervals allowed has been reached. 
3  2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 
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3  3 A degradation in precision has been detected. 

3. If EXACT is the exact value, QDAWS attempts to find RESULT such that ABS(EXACT � 
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error, 
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero. 

Description 
The routine QDAWS uses a globally adaptive scheme in an attempt to reduce the absolute error. 
This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is 
a weight function described above. A combination of modified Clenshaw-Curtis and Gauss-
Kronrod formulas is employed. In addition to the general strategy described for the IMSL 
routine QDAG (page 775), this routine uses an extrapolation procedure known as the �-algorithm. 
The routine QDAWS is an implementation of the routine QAWS, which is fully documented by 
Piessens et al. (1983). 

QDAWC 
Integrates a function F(X)/(X � C) in the Cauchy principal value sense. 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(X), where 

 X � Independent variable.   (Input) 
 F � The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

C — Singular point.   (Input)  
C must not equal A or B. 

RESULT — Estimate of the integral from A to B of F(X)/(X � C).   (Output) 

Optional Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 
Default: ERREL =1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 
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FORTRAN 90 Interface 
Generic: CALL QDAWC (F, A, B, C, RESULT [,…]) 

Specific:  The specific interface names are S_QDAWC and D_QDAWC. 

FORTRAN 77 Interface 
Single: CALL QDAWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST) 

Double: The double precision name is DQDAWC. 

Example 
The Cauchy principal value of 

� �
� �5

31

ln 125 / 6311
185 6

dx
x x�

�

�
�  

is estimated. The values of the actual and estimated error are machine dependent. 
      USE QDAWC_INT 
      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       A, ABS, ALOG, B, C, ERRABS, ERREST, ERROR, EXACT, & 
                 F, RESULT 
      INTRINSIC  ABS, ALOG 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration and C 
      A = -1.0 
      B = 5.0 
      C = 0.0 
!                                 Set error tolerances 
      ERRABS = 0.0 
      CALL QDAWC (F, A, B, C, RESULT, ERRABS=ERRABS, ERREST=ERREST) 
!                                 Print results 
      EXACT = ALOG(125./631.)/18. 
      ERROR = 2*ABS(RESULT-EXACT) 
      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, & 
            ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3) 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
      F = 1.0/(5.*X**3+6.0) 
      RETURN 
      END 
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Output 
Computed =  -0.090              Exact =  -0.090 
 
Error estimate = 2.022E-06      Error = 2.980E-08 

Comments 
1. Workspace may be explicitly provided, if desired, by use of Q2AWC/DQ2AWC. The 

reference is: 

CALL Q2AWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST, MAXSUB, 
NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  
A value of 500 is used by QDAWC. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.   
(Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.   
(Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals 
over the intervals defined by ALIST, BLIST.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values 
in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output)  
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 � NSUBIN 
otherwise. The first K locations contain pointers to the error estimates over the 
subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K)) form a decreasing 
sequence. 

2. Informational errors 

Type Code 
   4    1 The maximum number of subintervals allowed has been reached. 
   3    2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 
   3    3 A degradation in precision has been detected. 
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3. If EXACT is the exact value, QDAWC attempts to find RESULT such that ABS(EXACT � 
RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error, 
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero. 

Description 
The routine QDAWC uses a globally adaptive scheme in an attempt to reduce the absolute error. 
This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) = 
1/(x � c). If c lies in the interval of integration, then the integral is interpreted as a Cauchy 
principal value. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas are 
employed. In addition to the general strategy described for the IMSL routine QDAG (page 775), 
this routine uses an extrapolation procedure known as the �-algorithm. The routine QDAWC is an 
implementation of the subroutine QAWC, which is fully documented by Piessens et al. (1983). 

QDNG 
Integrates a smooth function using a nonadaptive rule. 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(X), where 

 X – Independent variable.   (Input) 
 F – The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input) 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QDNG (F, A, B, RESULT [,…]) 

Specific:  The specific interface names are S_QDNG and D_QDNG. 
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FORTRAN 77 Interface 
Single: CALL QDNG (F, A, B, ERRABS, ERRREL, RESULT, ERREST) 

Double: The double precision name is DQDNG. 

Example 
The value of 

2 2

0
1xxe dx e� ��  

is estimated. The values of the actual and estimated error are machine dependent. 
      USE QDNG_INT 

      USE UMACH_INT 
      INTEGER    NOUT 
      REAL       A, ABS, B, ERRABS, ERREST, ERROR, EXACT, EXP, & 
                F, RESULT 
      INTRINSIC  ABS, EXP 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration 
      A = 0.0 
      B = 2.0 
!                                 Set error tolerances 
      ERRABS = 0.0 
      CALL QDNG (F, A, B, RESULT, ERRABS=ERRABS, ERREST=ERREST) 
!                                 Print results 
      EXACT = 1.0 + EXP(2.0) 
      ERROR = ABS(RESULT-EXACT) 
      WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR 
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, & 
            ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3) 
      END 
! 
      REAL FUNCTION F (X) 
      REAL       X 
      REAL       EXP 
      INTRINSIC  EXP 
      F = X*EXP(X) 
      RETURN 
      END 

Output 
Computed =   8.389              Exact =   8.389 
 
Error estimate = 5.000E-05      Error = 9.537E-07 

Comments 
1. Informational error 
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Type Code 
   4    1 The maximum number of steps allowed have been taken. The 

integral is too difficult for QDNG. 

2. If EXACT is the exact value, QDNG attempts to find RESULT such that ABS(EXACT � 
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error, 
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero. 

3. This routine is designed for efficiency, not robustness. If the above error is 
encountered, try QDAGS. 

Description 
The routine QDNG is designed to integrate smooth functions. This routine implements a 
nonadaptive quadrature procedure based on nested Paterson rules of order 10, 21, 43, and 87. 
These rules are positive quadrature rules with degree of accuracy 19, 31, 64, and 130, 
respectively. The routine QDNG applies these rules successively, estimating the error, until either 
the error estimate satisfies the user-supplied constraints or the last rule is applied. The routine 
QDNG is based on the routine QNG by Piessens et al. (1983). 

This routine is not very robust, but for certain smooth functions it can be efficient. If QDNG 
should not perform well, we recommend the use of the IMSL routine QDAGS (page 772). 

TWODQ 
Computes a two-dimensional iterated integral. 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(X, Y), where 

 X – First argument of F.   (Input) 
 Y – Second argument of F.   (Input) 
 F – The function value.   (Output) 
F must be declared EXTERNAL in the calling program. 

A — Lower limit of outer integral.   (Input) 

B — Upper limit of outer integral.   (Input) 

G — User-supplied FUNCTION to evaluate the lower limits of the inner integral. 
The form is G(X), where 
 X – Only argument of G.   (Input) 
 G – The function value.   (Output) 
G must be declared EXTERNAL in the calling program. 

H — User-supplied FUNCTION to evaluate the upper limits of the inner integral. The form is 
H(X), where 
 X – Only argument of H.   (Input) 
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 H – The function value.   (Output) 
H must be declared EXTERNAL in the calling program. 

RESULT — Estimate of the integral from A to B of F.   (Output) 

Optional Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 

IRULE --- Choice of quadrature rule.  (Input)  
Default: IRULE = 2. 
The Gauss-Kronrod rule is used with the following points: 
 
IRULE     Points 
1                7-15 
2         10-21 
3      15-31 
4      20-41 
5      25-51 
6      30-61 
 
If the function has a peak singularity, use IRULE = 1.  If the function is oscillatory, use 
IRULE = 6. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 
Generic: CALL TWODQ (F, A, B, G, H, RESULT [,…]) 

Specific:  The specific interface names are S_TWODQ and D_TWODQ. 

FORTRAN 77 Interface 
Single: CALL TWODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT,  

     ERREST) 

Double: The double precision name is DTWODQ. 

Example 1 
In this example, we approximate the integral 
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� �
1 3 2

0 1
cosy x y dy dx�� �  

The value of the error estimate is machine dependent. 
      USE TWODQ_INT 

      USE UMACH_INT 
      INTEGER    IRULE, NOUT 
      REAL       A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT 
      EXTERNAL   F, G, H 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration 
      A = 0.0 
      B = 1.0 
!                                 Set error tolerances 
      ERRABS = 0.0 
      ERRREL = 0.01 
!                                 Parameter for oscillatory function 
      IRULE = 6 
      CALL TWODQ (F, A, B, G, H, RESULT, ERRABS, ERRREL, IRULE, ERREST) 
!                                 Print results 
      WRITE (NOUT,99999) RESULT, ERREST 
99999 FORMAT (’ Result =’, F8.3, 13X, ’ Error estimate = ’, 1PE9.3) 
      END 
! 
      REAL FUNCTION F (X, Y) 
      REAL       X, Y 
      REAL       COS 
      INTRINSIC  COS 
      F = Y*COS(X+Y*Y) 
      RETURN 
      END 
! 
      REAL FUNCTION G (X) 
      REAL       X 
      G = 1.0 
      RETURN 
      END 
! 
      REAL FUNCTION H (X) 
      REAL       X 
      H = 3.0 
      RETURN 
      END 

Output 
Result =  -0.514              Error estimate = 3.065E-06 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of T2ODQ/DT2ODQ. The 

reference is:  
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CALL T2ODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT, 
ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST,  
IORD, WK, IWK) 

The additional arguments are as follows: 

MAXSUB — Number of subintervals allowed.   (Input)  
A value of 250 is used by TWODQ. 

NEVAL — Number of evaluations of F.   (Output) 

NSUBIN — Number of subintervals generated in the outer integral.   (Output) 

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints for 
the outer integral.   (Output) 

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints for 
the outer integral.   (Output) 

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals 
over the intervals defined by ALIST, BLIST, pertaining only to the outer 
integral.   (Output) 

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values 
in RLIST.   (Output) 

IORD — Array of length MAXSUB.   (Output) 
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 � NSUBIN 
otherwise. Then the first K locations contain pointers to the error estimates over 
the corresponding subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K)) 
form a decreasing sequence. 

WK — Work array of length 4 * MAXSUB, needed to evaluate the inner integral. 

IWK — Work array of length MAXSUB, needed to evaluate the inner integral. 

2. Informational errors 

Type Code 
   4    1 The maximum number of subintervals allowed has been reached. 
   3    2 Roundoff error, preventing the requested tolerance from being 

achieved, has been detected. 
   3    3  A degradation in precision has been detected. 

3. If EXACT is the exact value, TWODQ attempts to find RESULT such that ABS(EXACT � 
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error, 
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero. 
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Description 
The routine TWODQ approximates the two-dimensional iterated integral 

� �
� �

� �
,

b h x

a g x
f x y dy dx� �  

with the approximation returned in RESULT. An estimate of the error is returned in ERREST. The 
approximation is achieved by iterated calls to QDAG (page 775). Thus, this algorithm will share 
many of the characteristics of the routine QDAG. As in QDAG, several options are available. The 
absolute and relative error must be specified, and in addition, the Gauss-Kronrod pair must be 
specified (IRULE). The lower-numbered rules are used for less smooth integrands while the 
higher-order rules are more efficient for smooth (oscillatory) integrands. 

Additional Examples 

Example 2 
We modify the above example by assuming that the limits for the inner integral depend on x 
and, in particular, are g(x) = �2x and h(x) = 5x. The integral now becomes 

� �
1 5 2

0 2
cos

x

x
y x y dy dx

�

�� �  

The value of the error estimate is machine dependent. 
      USE TWODQ_INT 

      USE UMACH_INT 
!                               Declare F, G, H 
      INTEGER    IRULE, NOUT 
      REAL       A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT 
      EXTERNAL   F, G, H 
! 
      CALL UMACH (2, NOUT) 
!                                 Set limits of integration 
      A = 0.0 
      B = 1.0 
!                                 Set error tolerances 
      ERRABS = 0.001 
      ERRREL = 0.0 
!                                 Parameter for oscillatory function 
      IRULE = 6 
      CALL TWODQ (F, A, B, G, H, RESULT, ERRABS, ERRREL, IRULE, ERREST) 
!                                 Print results 
      WRITE (NOUT,99999) RESULT, ERREST 
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Error estimate = ’, 1PE9.3) 
      END 
      REAL FUNCTION F (X, Y) 
      REAL       X, Y 
! 
      REAL       COS 
      INTRINSIC  COS 
! 
      F = Y*COS(X+Y*Y) 
      RETURN 
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      END 
      REAL FUNCTION G (X) 
      REAL       X 
! 
      G = -2.0*X 
      RETURN 
      END 
      REAL FUNCTION H (X) 
      REAL       X 
! 
      H = 5.0*X 
      RETURN 
      END 

Output 
Computed =  -0.083              Error estimate = 2.095E-06 

QAND 
Integrates a function on a hyper-rectangle. 

Required Arguments 
F — User-supplied FUNCTION to be integrated. The form is F(N, X), where 

 N – The dimension of the hyper-rectangle.   (Input) 
 X – The independent variable of dimension N.   (Input) 
 F – The value of the integrand at X.   (Output) 
F must be declared EXTERNAL in the calling program. 

N — The dimension of the hyper-rectangle.   (Input)  
N must be less than or equal to 20. 

A — Vector of length N.   (Input)  
Lower limits of integration. 

B — Vector of length N.   (Input)  
Upper limits of integration. 

RESULT — Estimate of the integral from A to B of F.   (Output)  
The integral of F is approximated over the N-dimensional hyper-rectangle 
A.LE.X.LE.B. 

Optional Arguments 
ERRABS — Absolute accuracy desired.   (Input) 

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision. 

ERRREL — Relative accuracy desired.   (Input) 
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision. 
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MAXFCN — Approximate maximum number of function evaluations to be permitted.  
(Input) 
MAXFCN cannot be greater than 256� or IMACH(5) if N is greater than 3. 
Default: MAXFCN = 32**n. 

ERREST — Estimate of the absolute value of the error.   (Output) 

FORTRAN 90 Interface 
Generic: CALL QAND (F, N, A, B, RESULT [,…]) 

Specific:  The specific interface names are S_QAND and D_QAND. 

FORTRAN 77 Interface 
Single: CALL QAND (F, N, A, B, ERRABS, ERRREL, MAXFCN, RESULT,  

                ERREST) 

Double: The double precision name is DQAND. 

Example 1 
In this example, we approximate the integral of 

� �2 2 2
1 2 3x x xe� � �  

on an expanding cube. The values of the error estimates are machine dependent. The exact 
integral over  

3 3 / 2is �R  

      USE QAND_INT 
      USE UMACH_INT 
      INTEGER    I, J, MAXFCN, N, NOUT 
      REAL       A(3), B(3), CNST, ERRABS, ERREST, ERRREL, F, RESULT 
      EXTERNAL   F 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
! 
      N      = 3 
      MAXFCN = 100000 
!                                 Set error tolerances 
      ERRABS = 0.0001 
      ERRREL = 0.001 
! 
      DO 20  I=1, 6 
         CNST = I/2.0 
!                                 Set limits of integration 
!                                 As CNST approaches infinity, the 
!                                 answer approaches PI**1.5 
         DO 10  J=1, 3 
            A(J) = -CNST 
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            B(J) = CNST 
   10  CONTINUE 
         CALL QAND (F, N, A, B, RESULT, ERRABS, ERRREL, MAXFCN, ERREST) 
         WRITE (NOUT,99999) CNST, RESULT, ERREST 
   20 CONTINUE 
99999 FORMAT (1X, ’For CNST = ’, F4.1, ’, result = ’, F7.3, ’ with ’, & 
             ’error estimate ’, 1PE10.3) 
      END 
! 
      REAL FUNCTION F (N, X) 
      INTEGER    N 
      REAL       X(N) 
      REAL       EXP 
      INTRINSIC  EXP 
      F = EXP(-(X(1)*X(1)+X(2)*X(2)+X(3)*X(3))) 
      RETURN 
      END 
 
 
 
 

Output 
For CNST =  0.5, result =   0.785 with error estimate  3.934E-06 
For CNST =  1.0, result =   3.332 with error estimate  2.100E-03 
For CNST =  1.5, result =   5.021 with error estimate  1.192E-05 
For CNST =  2.0, result =   5.491 with error estimate  2.413E-04 
For CNST =  2.5, result =   5.561 with error estimate  4.232E-03 
For CNST =  3.0, result =   5.568 with error estimate  2.580E-04 

Comments 
1. Informational errors 

Type Code 
   3    1 MAXFCN was set greater than 256N. 
   4     2 The maximum number of function evaluations has been reached, and 

convergence has not been attained. 

2. If EXACT is the exact value, QAND attempts to find RESULT such that ABS(EXACT � 
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error, 
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero. 

Description 
The routine QAND approximates the n-dimensional iterated integral 

� �
1

1
1 1, ,n

n

b b

n na a
f x x dx dx� �� � �  

with the approximation returned in RESULT. An estimate of the error is returned in ERREST. The 
approximation is achieved by iterated applications of product Gauss formulas. The integral is 
first estimated by a two-point tensor product formula in each direction. Then for i = 1, �, n the 
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routine calculates a new estimate by doubling the number of points in the i-th direction, but 
halving the number immediately afterwards if the new estimate does not change appreciably. 
This process is repeated until either one complete sweep results in no increase in the number of 
sample points in any dimension, or the number of Gauss points in one direction exceeds 256, or 
the number of function evaluations needed to complete a sweep would exceed MAXFCN. 

QMC 
Integrates a function over a hyper rectangle using a quasi-Monte Carlo method. 

Required Arguments 
FCN —   User-supplied function to be integrated.  The form is FCN(X), where  

 X -  The independent variable.  (Input) 
FCN – The value of the integrand at X. (Output) 
 
FCN must be declared EXTERNAL in the calling program. 

A —   Vector containing lower limits of integration.   (Input) 

B —   Vector containing upper limits of integration.   (Input) 

RESULT —   The value of 

� �
1

1
1 1, ,n

n

b b

n na a
f x x dx dx� �� � �  

is returned, where n is the dimension of X.  If no value can be computed, then NaN is 
returned. (Output) 

Optional Arguments 
ERRABS —  Absolute accuracy desired. (Input) 

Default: 1.0e-2. 

ERRREL —  Relative accuracy desired. (Input) 
Default: 1.0e-2. 

ERREST —  Estimate of the absolute value of the error. (Output)  

MAXEVALS  —  Number of evaluations allowed.   (Input) 
Default: No limit. 

BASE —  The base of the Faure sequence. (Input) 
Default: The smallest prime number greater than or equal to the number of dimensions 
(length of a and b).  
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SKIP —  The number of points to be skipped at the beginning of the Faure sequence.  (Input) 
Default: basem/2 1� , where m � log / log B base  and B is the largest representable 
integer. 

FORTRAN 90 Interface 
Generic: CALL QMC (FCN, A, B, RESULT [,…]) 

Specific:  The specific interface names are S_QMC and D_QMC. 

Example 
This example evaluates the n-dimensional integral 

� �
1

1 1

0 0
1 1

1 11 1
3 2

niw
i

j n
i j

x dx dx
� �

� �� �
� � � � �� �	 


� �� � �
��� �� �  

with n=10. 

 
 use qmc_int 
       implicit none 
       integer, parameter   :: ndim=10 
       real(kind(1d0))      :: a(ndim) 
       real(kind(1d0))      :: b(ndim) 
       real(kind(1d0))      :: result 
       integer              :: I 
       external fcn              
 
       a = 0.d0 
       b = 1.d0 
 
       call qmc(fcn, a, b, result) 
       write (*,*) 'result = ', result 
      end  
 
        real(kind(1d0)) function fcn(x) 
            implicit none 
            real(kind(1d0)), dimension(:)  :: x 
            integer  :: i, j 
            real(kind(1d0)) :: prod, sum, sign 
 
            sign = -1.d0 
            sum = 0.d0 
            do i=1, size(x) 
                prod = 1.d0 
                prod = product(x(1:i)) 
                sum = sum + (sign * prod) 
                sign = -sign 
            end do 
            fcn = sum 
        end function fcn 
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Output 
         result = -0.3334789 

Description 
Integration of functions over hyper rectangle by direct methods, such as qand, is practical only 
for fairly low dimensional hypercubes. This is because the amount of work required increases 
exponentially as the dimension increases. 

An alternative to direct methods is QMC, in which the integral is evaluated as the value of the 
function averaged over a sequence of randomly chosen points. Under mild assumptions on the 
function, this method will converge like  

1/ k  

 where k is the number of points at which the function is evaluated. 

It is possible to improve on the performance of QMC by carefully choosing the points at which 
the function is to be evaluated. Randomly distributed points tend to be non-uniformly 
distributed. The alternative to a sequence of random points is a low-discrepancy sequence. A 
low-discrepancy sequence is one that is highly uniform. 

This function is based on the low-discrepancy Faure sequence as computed by faure_next, 
see Stat Library, Chapter 18, Random Number Generation. 

GQRUL 
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight 
functions. 

Required Arguments 
N — Number of quadrature points.   (Input) 

QX — Array of length N containing quadrature points.   (Output) 

QW — Array of length N containing quadrature weights.   (Output) 

Optional Arguments 
IWEIGH — Index of the weight function.   (Input)  

Default: IWEIGH = 1. 
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ALPHA — Parameter used in the weight function with some values of IWEIGH, otherwise it 
is ignored.   (Input) 
Default: ALPHA = 2.0. 

BETAW — Parameter used in the weight function with some values of IWEIGH, otherwise it 
is ignored.   (Input) 
Default: BETAW = 2.0. 

NFIX — Number of fixed quadrature points.   (Input)  
NFIX = 0, 1 or 2. For the usual Gauss quadrature rules, NFIX = 0. 
Default: NFIX = 0. 

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset quadrature 
point(s).   (Input) 

FORTRAN 90 Interface 
Generic: CALL GQRUL (N, QX, QW [,…]) 

Specific:  The specific interface names are S_GQRUL and D_GQRUL. 

FORTRAN 77 Interface 
Single: CALL GQRUL (N, IWEIGH, ALPHA, BETAW, NFIX, QXFIX, QX, QW) 

Double: The double precision name is DGQRUL. 

Example 1 
In this example, we obtain the classical Gauss-Legendre quadrature formula, which is accurate 
for polynomials of degree less than 2N, and apply this when N = 6 to the function x� on the 
interval [�1, 1]. This quadrature rule is accurate for polynomials of degree less than 12. 

      USE GQRUL_INT 
      USE UMACH_INT 
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      PARAMETER (N=6) 
      INTEGER    I, NOUT 
      REAL       ANSWER, QW(N), QX(N), SUM 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
! 
!                                 Get points and weights from GQRUL 
      CALL GQRUL (N, QX, QW) 
!                                 Write results from GQRUL 
      WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N) 
99998 FORMAT (6(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/)) 
!                                 Evaluate the integral from these 
!                                 points and weights 
      SUM = 0.0 
      DO 10  I=1, N 
         SUM = SUM + QX(I)**8*QW(I) 
   10 CONTINUE 
      ANSWER = SUM 
      WRITE (NOUT,99999) ANSWER 
99999 FORMAT (/, ’ The quadrature result making use of these ’, & 
             ’points and weights is ’, 1PE10.4, ’.’) 
      END 

Output 
QX(1) =  -0.9325       QW(1) =  0.17132 
QX(2) =  -0.6612       QW(2) =  0.36076 
QX(3) =  -0.2386       QW(3) =  0.46791 
QX(4) =   0.2386       QW(4) =  0.46791 
QX(5) =   0.6612       QW(5) =  0.36076 
QX(6) =   0.9325       QW(6) =  0.17132 
 
The quadrature result making use of these points and weights is 2.2222E-01. 
 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G2RUL/DG2RUL. The 

reference is 

CALL G2RUL (N, IWEIGH, ALPHA, BETAW, NFIX, QXFIX, QX,  
     QW, WK) 

The additional argument is 

WK — Work array of length N. 

2. If IWEIGH specifies the weight WT(X) and the interval (a, b), then approximately 

� � � � � �� � � �
1

*
Nb

a
I

F X WT X dX F QX I QW I
�

��� *  
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3. Gaussian quadrature is always the method of choice when the function F(X) behaves 
like a polynomial. Gaussian quadrature is also useful on infinite intervals (with 
appropriate weight functions), because other techniques often fail. 

4. The weight function 1/cosh(X) behaves like a polynomial near zero and like e|X| far 
from zero. 

Description 
The routine GQRUL produces the points and weights for the Gauss, Gauss-Radau, or Gauss-
Lobatto quadrature formulas for some of the most popular weights. In fact, it is slightly more 
general than this suggests because the extra one or two points that may be specified do not have 
to lie at the endpoints of the interval. This routine is a modification of the subroutine 
GAUSSQUADRULE (Golub and Welsch 1969). 

In the simple case when NFIX = 0, the routine returns points in x = QX and weights in w = QW so 
that  

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���  

for all functions f that are polynomials of degree less than 2N. 

If NFIX = 1, then one of the above xi equals the first component of QXFIX. Similarly, if NFIX = 
2, then two of the components of x will equal the first two components of QXFIX. In general, the 
accuracy of the above quadrature formula degrades when NFIX increases. The quadrature rule 
will integrate all functions f that are polynomials of degree less than 2N � NFIX. 

Additional Examples 

Example 2 
We modify Example 1 by requiring that both endpoints be included in the quadrature formulas 
and again apply the new formulas to the function x� on the interval [�1, 1]. This quadrature rule 
is accurate for polynomials of degree less than 10. 

      USE GQRUL_INT 

      USE UMACH_INT 
      PARAMETER (N=6) 
      INTEGER    I, IWEIGH, NFIX, NOUT 
      REAL       ALPHA, ANSWER, BETAW, QW(N), QX(N), QXFIX(2), SUM 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
! 
      IWEIGH   = 1 
      ALPHA    = 0.0 
      BETAW     = 0.0 
      NFIX     = 2 
      QXFIX(1) = -1.0 
      QXFIX(2) = 1.0 
!                                 Get points and weights from GQRUL 
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      CALL GQRUL (N, QX, QW, ALPHA=ALPHA, BETAW=BETAW, NFIX=NFIX,  & 
                 QXFIX=QXFIX) 
!                                 Write results from GQRUL 
      WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N) 
99998 FORMAT (6(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/)) 
!                                 Evaluate the integral from these 
!                                 points and weights 
      SUM = 0.0 
      DO 10  I=1, N 
         SUM = SUM + QX(I)**8*QW(I) 
   10 CONTINUE 
      ANSWER = SUM 
      WRITE (NOUT,99999) ANSWER 
99999 FORMAT (/, ’ The quadrature result making use of these ’, & 
            ’points and weights is ’, 1PE10.4, ’.’) 
      END 

Output 
QX(1) =  -1.0000       QW(1) =  0.06667 
QX(2) =  -0.7651       QW(2) =  0.37847 
QX(3) =  -0.2852       QW(3) =  0.55486 
QX(4) =   0.2852       QW(4) =  0.55486 
QX(5) =   0.7651       QW(5) =  0.37847 
QX(6) =   1.0000       QW(6) =  0.06667 
 
The quadrature result making use of these points and weights is 2.2222E-01. 

GQRCF 
Computes a Gauss, Gauss-Radau or Gauss-Lobatto quadrature rule given the recurrence 
coefficients for the monic polynomials orthogonal with respect to the weight function. 

Required Arguments 
N — Number of quadrature points.   (Input) 

B — Array of length N containing the recurrence coefficients.   (Input)  
See Comments for definitions. 

C — Array of length N containing the recurrence coefficients.   (Input)  
See Comments for definitions. 

QX — Array of length N containing quadrature points.   (Output) 

QW — Array of length N containing quadrature weights.   (Output) 
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Optional Arguments 
NFIX — Number of fixed quadrature points.   (Input)  

NFIX = 0, 1 or 2. For the usual Gauss quadrature rules NFIX = 0. 
Default: NFIX = 0. 

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset quadrature 
point(s).   (Input) 

FORTRAN 90 Interface 
Generic: CALL GQRCF (N, B, C, QX, QW [,…]) 

Specific:  The specific interface names are S_GQRCF and D_GQRCF. 

FORTRAN 77 Interface 
Single: CALL GQRCF (N, B, C, NFIX, QXFIX, QX, QW) 

Double: The double precision name is DGQRCF. 

Example 
We compute the Gauss quadrature rule (with N = 6) for the Chebyshev weight, (1 + x�)������, 
from the recurrence coefficients. These coefficients are obtained by a call to the IMSL routine 
RECCF (page 818). 

      USE GQRCF_INT 
      USE UMACH_INT 
      USE RECCF_INT 
      PARAMETER (N=6) 
      INTEGER    I, NFIX, NOUT 
      REAL       B(N), C(N), QW(N), QX(N), QXFIX(2) 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Recursion coefficients will come from 
!                                 routine RECCF. 
!                                 The call to RECCF finds recurrence 
!                                 coefficients for Chebyshev 
!                                 polynomials of the 1st kind. 
      CALL RECCF (N, B, C) 
! 
!                                  The call to GQRCF will compute the 
!                                 quadrature rule from the recurrence 
!                                 coefficients determined above. 
      CALL GQRCF (N, B, C, QX, QW) 
      WRITE (NOUT,99999) (I,QX(I),I,QW(I),I=1,N) 
99999 FORMAT (6(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/)) 
! 
      END 
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Output 
QX(1) =  -0.9325       QW(1) =  0.17132 
QX(2) =  -0.6612       QW(2) =  0.36076 
QX(3) =  -0.2386       QW(3) =  0.46791 
QX(4) =   0.2386       QW(4) =  0.46791 
QX(5) =   0.6612       QW(5) =  0.36076 
QX(6) =   0.9325       QW(6) =  0.17132 

Comments 
1. Workspace may be explicitly provided, if desired, by use of G2RCF/DG2RCF. The 

reference is: 

CALL G2RCF (N, B, C, NFIX, QXFIX, QX, QW, WK) 

The additional argument is: 

WK — Work array of length N. 

2. Informational error  

Type  Code 
   4    1 No convergence in 100 iterations. 

3. The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation 
P(I) = (X � B(I + 1)) * P(I � 1) � C(I + 1) * P(I � 2). C(1) contains the zero-th 
moment 

( )WT X dX�  

of the weight function. Each element of C must be greater than zero. 

4. If WT(X) is the weight specified by the coefficients and the interval is (a, b), then 
approximately  

� � � � � �� � � �
1

* *
Nb

a
I

F X WT X dX F QX I QW I
�

���  

5. Gaussian quadrature is always the method of choice when the function F(X) behaves 
like a polynomial. Gaussian quadrature is also useful on infinite intervals (with 
appropriate weight functions) because other techniques often fail. 

Description 
The routine GQRCF produces the points and weights for the Gauss, Gauss-Radau, or Gauss-
Lobatto quadrature formulas given the three-term recurrence relation for the orthogonal 
polynomials. In particular, it is assumed that the orthogonal polynomials are monic, and hence, 
the three-term recursion may be written as 

� � � � � � � �1 2 for =1, ,i i i i ip x x b p x c p x i N
� �

� � � �  
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where p� = 1 and p�� = 0. It is obvious from this representation that the degree of pi is i and that 
pi is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials 
(with respect to a nonnegative measure), it is necessary and sufficient that ci > 0. This routine is 
a modification of the subroutine GAUSSQUADRULE (Golub and Welsch 1969). In the simple case 
when NFIX = 0, the routine returns points in x = QX and weights in w = QW so that  

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���  

for all functions f that are polynomials of degree less than 2N. Here, w is any weight function for 
which the above recurrence produces the orthogonal polynomials pi on the interval [a, b] and w 
is normalized by 

� � 1

b

a
w x dx c��  

If NFIX = 1, then one of the above xi equals the first component of QXFIX. Similarly, if NFIX = 
2, then two of the components of x will equal the first two components of QXFIX. In general, the 
accuracy of the above quadrature formula degrades when NFIX increases. The quadrature rule 
will integrate all functions f that are polynomials of degree less than 2N � NFIX. 

 

RECCF 
Computes recurrence coefficients for various monic polynomials. 

Required Arguments 
N — Number of recurrence coefficients.   (Input) 

B — Array of length N containing recurrence coefficients.   (Output) 

C — Array of length N containing recurrence coefficients.   (Output) 

Optional Arguments 
IWEIGH — Index of the weight function.   (Input)  

Default: IWEIGH = 1. 
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ALPHA — Parameter used in the weight function with some values of IWEIGH, otherwise it 
is ignored.   (Input) 
Default: ALPHA=1.0. 

BETAW — Parameter used in the weight function with some values of IWEIGH, otherwise it 
is ignored.   (Input) 
Default: BETAW=1.0. 

FORTRAN 90 Interface 
Generic: CALL RECCF (N, B, C [,…]) 

Specific:  The specific interface names are S_RECCF and D_RECCF. 

FORTRAN 77 Interface 
Single: CALL RECCF (N, IWEIGH, ALPHA, BETAW, B, C) 

Double: The double precision name is DRECCF. 

Example 
Here, we obtain the well-known recurrence relations for the first six monic Legendre 
polynomials, Chebyshev polynomials of the first kind, and Laguerre polynomials. 

      USE RECCF_INT 
      USE UMACH_INT 
      PARAMETER (N=6) 
      INTEGER    I, IWEIGH, NOUT 
      REAL       ALPHA, B(N), C(N) 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
! 
      CALL RECCF (N, B, C) 
      WRITE (NOUT,99996) 
      WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N) 
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! 
      IWEIGH = 2 
      CALL RECCF (N, B, C, IWEIGH=IWEIGH) 
      WRITE (NOUT,99997) 
      WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N) 
! 
      IWEIGH = 6 
      ALPHA = 0.0 
      BETAW  = 0.0 
      CALL RECCF (N, B, C, IWEIGH=IWEIGH, ALPHA=ALPHA) 
      WRITE (NOUT,99998) 
      WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N) 
! 
99996 FORMAT (1X, ’Legendre’) 
99997 FORMAT (/, 1X, ’Chebyshev, first kind’) 
99998 FORMAT (/, 1X, ’Laguerre’) 
99999 FORMAT (6(6X,’B(’,I1,’) = ’,F8.4,7X,’C(’,I1,’) = ’,F8.5,/)) 
      END 

Output 
Legendre 
B(1) =   0.0000       C(1) =  2.00000 
B(2) =   0.0000       C(2) =  0.33333 
B(3) =   0.0000       C(3) =  0.26667 
B(4) =   0.0000       C(4) =  0.25714 
B(5) =   0.0000       C(5) =  0.25397 
B(6) =   0.0000       C(6) =  0.25253 
 
Chebyshev, first kind 
B(1) =   0.0000       C(1) =  3.14159 
B(2) =   0.0000       C(2) =  0.50000 
B(3) =   0.0000       C(3) =  0.25000 
B(4) =   0.0000       C(4) =  0.25000 
B(5) =   0.0000       C(5) =  0.25000 
B(6) =   0.0000       C(6) =  0.25000 
 
Laguerre 
B(1) =   1.0000       C(1) =  1.00000 
B(2) =   3.0000       C(2) =  1.00000 
B(3) =   5.0000       C(3) =  4.00000 
B(4) =   7.0000       C(4) =  9.00000 
B(5) =   9.0000       C(5) = 16.00000 
B(6) =  11.0000       C(6) = 25.00000 

Comments 
The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation P(I) = 
(X � B(I + 1)) * P(I � 1) � C(I + 1) * P(I � 2). The zero-th moment  

� �( )WT X dX�   

of the weight function is returned in C(1). 
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Description 
The routine RECCF produces the recurrence coefficients for the orthogonal polynomials for 
some of the most important weights. It is assumed that the orthogonal polynomials are monic; 
hence, the three-term recursion may be written as 

� � � � � � � �1 2 for =1, , i i i i ip x x b p x c p x i N
� �

� � � �  

where p� = 1 and p�� = 0. It is obvious from this representation that the degree of pi is i and that 
pi is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials 
(with respect to a nonnegative measure), it is necessary and sufficient that ci > 0. 

RECQR 
Computes recurrence coefficients for monic polynomials given a quadrature rule. 

Required Arguments 
QX — Array of length N containing the quadrature points.   (Input) 

QW — Array of length N containing the quadrature weights.   (Input) 

B — Array of length NTERM containing recurrence coefficients.   (Output) 

C — Array of length NTERM containing recurrence coefficients.   (Output) 

Optional Arguments 
N — Number of quadrature points.   (Input) 

Default: N = size (QX,1). 

NTERM — Number of recurrence coefficients.   (Input)  
NTERM must be less than or equal to N. 
Default: NTERM = size (B,1). 

FORTRAN 90 Interface 
Generic: CALL RECQR (QX, QW, B, C [,…]) 

Specific:  The specific interface names are S_RECQR and D_RECQR. 

FORTRAN 77 Interface 
Single: CALL RECQR (N, QX, QW, NTERM, B, C) 

Double: The double precision name is DRECQR. 
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Example 
To illustrate the use of RECQR, we will input a simple choice of recurrence coefficients, call 
GQRCF for the quadrature formula, put this information into RECQR, and recover the recurrence 
coefficients. 

      USE RECQR_INT 
      USE UMACH_INT 
      USE GQRCF_INT 
      PARAMETER (N=5) 
      INTEGER    I, J, NFIX, NOUT, NTERM 
      REAL       B(N), C(N), FLOAT, QW(N), QX(N), QXFIX(2) 
      INTRINSIC  FLOAT 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
      NFIX = 0 
!                                 Set arrays B and C of recurrence 
!                                 coefficients 
      DO 10  J=1, N 
         B(J) = FLOAT(J) 
         C(J) = FLOAT(J)/2.0 
   10 CONTINUE 
      WRITE (NOUT,99995) 
99995 FORMAT (1X, ’Original recurrence coefficients’) 
      WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N) 
99996 FORMAT (5(6X,’B(’,I1,’) = ’,F8.4,7X,’C(’,I1,’) = ’,F8.5,/)) 
! 
!                                 The call to GQRCF will compute the 
!                                 quadrature rule from the recurrence 
!                                 coefficients given above. 
! 
      CALL GQRCF (N, B, C, QX, QW) 
      WRITE (NOUT,99997) 
99997 FORMAT (/, 1X, ’Quadrature rule from the recurrence coefficients’ & 
            ) 
      WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N) 
99998 FORMAT (5(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/)) 
! 
!                                 Call RECQR to recover the original 
!                                 recurrence coefficients 
      NTERM = N 
      CALL RECQR (QX, QW, B, C) 
      WRITE (NOUT,99999) 
99999 FORMAT (/, 1X, ’Recurrence coefficients determined by RECQR’) 
      WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N) 
! 
      END 

Output 
Original recurrence coefficients 
B(1) =   1.0000       C(1) =  0.50000 
B(2) =   2.0000       C(2) =  1.00000 
B(3) =   3.0000       C(3) =  1.50000 
B(4) =   4.0000       C(4) =  2.00000 
B(5) =   5.0000       C(5) =  2.50000 
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Quadrature rule from the recurrence coefficients 
QX(1) =   0.1525       QW(1) =  0.25328 
QX(2) =   1.4237       QW(2) =  0.17172 
QX(3) =   2.7211       QW(3) =  0.06698 
QX(4) =   4.2856       QW(4) =  0.00790 
QX(5) =   6.4171       QW(5) =  0.00012 
 
Recurrence coefficients determined by RECQR 
B(1) =   1.0000       C(1) =  0.50000 
B(2) =   2.0000       C(2) =  1.00000 
B(3) =   3.0000       C(3) =  1.50000 
B(4) =   4.0000       C(4) =  2.00000 
B(5) =   5.0000       C(5) =  2.50000 

Comments 
1. Workspace may be explicitly provided, if desired, by use of R2CQR/DR2CQR. The 

reference is: 

CALL R2CQR (N, QX, QW, NTERM, B, C, WK) 

The additional argument is: 

WKWK — Work array of length 2 * N. 

2. The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation 
P(I) = (X � B(I + 1)) * P(I � 1) � C(I + 1) * P(I � 2). The zero-th moment 

� �( )WT X dX�  

of the weight function is returned in C(1). 

Description 
The routine RECQR produces the recurrence coefficients for the orthogonal polynomials given 
the points and weights for the Gauss quadrature formula. It is assumed that the orthogonal 
polynomials are monic; hence the three-term recursion may be written  

� � � � � � � �1 2 for =1, , i i i i ip x x b p x c p x i N
� �

� � � �  

where p� = 1 and p�� = 0. It is obvious from this representation that the degree of pi is i and that 
pi is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials 
(with respect to a nonnegative measure), it is necessary and sufficient that ci > 0. 

This routine is an inverse routine to GQRCF (page 815). Given the recurrence coefficients, the 
routine GQRCF produces the corresponding Gauss quadrature formula, whereas the routine 
RECQR produces the recurrence coefficients given the quadrature formula. 
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FQRUL 
Computes a Fejér quadrature rule with various classical weight functions. 

Required Arguments 
N — Number of quadrature points.   (Input) 

A — Lower limit of integration.   (Input) 

B — Upper limit of integration.   (Input)  
B must be greater than A. 

QX — Array of length N containing quadrature points.   (Output) 

QW — Array of length N containing quadrature weights.   (Output) 

Optional Arguments 
IWEIGH — Index of the weight function.   (Input) 

Default: IWEIGH = 1. 

  IWEIGH WT(X) 

   1 1 

   2 1/(X � ALPHA)  

   3 (B � X)��(X � A)�  

   4 (B � X)��(X � A)��log(X � A) 

   5 (B � X)��(X � A)��log(B � X) 

ALPHA — Parameter used in the weight function (except if IWEIGH = 1, it is ignored).   
(Input)  
If IWEIGH = 2, then it must satisfy A.LT.ALPHA.LT.B. If IWEIGH = 3, 4, or 5, then 
ALPHA must be greater than �1. 
Default: ALPHA= 0.0. 

BETAW — Parameter used in the weight function (ignored if IWEIGH = 1 or 2).   (Input)  
BETAW must be greater than �1.0. 
Default: BETAW= 0.0. 

FORTRAN 90 Interface 
Generic: CALL FQRUL (N, A, B, QX, QW [,…]) 



 

 
 

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 825 

 

 

 

Specific:  The specific interface names are S_FQRUL and D_FQRUL. 

FORTRAN 77 Interface 
Single: CALL FQRUL (N, A, B, IWEIGH, ALPHA, BETAW, QX, QW) 

Double: The double precision name is DFQRUL. 

Example 
Here, we obtain the Fejér quadrature rules using 10, 100, and 200 points. With these rules, we 
get successively better approximations to the integral 

� �
1 2

0

1sin 41
41

x x dx�

�

��  

      USE FQRUL_INT 
      USE UMACH_INT 
      USE CONST_INT 
      PARAMETER (NMAX=200) 
      INTEGER    I, K, N, NOUT 
      REAL       A, ANSWER, B, F, QW(NMAX), & 
                QX(NMAX), SIN, SUM, X, PI, ERROR 
      INTRINSIC  SIN, ABS 
! 
      F(X) = X*SIN(41.0*PI*X**2) 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
! 
      PI = CONST(’PI’) 
      DO 20  K=1, 3 
         IF (K .EQ. 1) N = 10 
         IF (K .EQ. 2) N = 100 
         IF (K .EQ. 3) N = 200 
         A      = 0.0 
         B      = 1.0 
          
!                                 Get points and weights from FQRUL 
         CALL FQRUL (N, A, B, QX, QW) 
!                                 Evaluate the integral from these 
!                                 points and weights 
         SUM = 0.0 
         DO 10  I=1, N 
            SUM = SUM + F(QX(I))*QW(I) 
   10  CONTINUE 
         ANSWER = SUM 
         ERROR = ABS(ANSWER - 1.0/(41.0*PI)) 
         WRITE (NOUT,99999) N, ANSWER, ERROR 
   20 CONTINUE 
! 
99999 FORMAT (/, 1X, ’When N = ’, I3, ’, the quadrature result making ’ & 
            , ’use of these points ’, /, ’ and weights is ’, 1PE11.4, & 
            ’, with error ’, 1PE9.2, ’.’) 
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      END 

Output 
When N =  10, the quadrature result making use of these points and weights 
is -1.6523E-01, with error  1.73E-01. 
 
When N = 100, the quadrature result making use of these points and weights 
is  7.7637E-03, with error  2.79E-08. 
 
When N = 200, the quadrature result making use of these points and weights 
is  7.7636E-03, with error  1.40E-08. 

Comments 
1. Workspace may be explicitly provided, if desired, by use of F2RUL/DF2RUL. The 

reference is: 

CALL F2RUL (N, A, B, IWEIGH, ALPHA, BETAW, QX, QW, WK) 

The additional argument is: 

WK — Work array of length 3 * N + 15. 

2. If IWEIGH specifies the weight WT(X) and the interval (A, B), then approximately  

� � � � � �� � � �
1

* *
NB

A
I

F X WT X dX F QX I QW I
�

���  

3. The routine FQRUL uses an FFT, so it is most efficient when N is the product of small 
primes. 

Description 
The routine FQRUL produces the weights and points for the Fejér quadrature rule. Since this 
computation is based on a quarter-wave cosine transform, the computations are most efficient 
when N, the number of points, is a product of small primes. These quadrature formulas may be 
an intermediate step in a more complicated situation, see for instance Gautschi and Milovanofic 
(1985). 

The Fejér quadrature rules are based on polynomial interpolation. First, choose classical 
abscissas (in our case, the Gauss points for the Chebyshev weight function (1 � x�)����), then 
derive the quadrature rule for a different weight. In order to keep the presentation simple, we 
will describe the case where the interval of integration is [�1, 1] even though FQRUL allows 
rescaling to an arbitrary interval [a, b]. 

We are looking for quadrature rules of the form 

� � � �
1

:
N

j j
j

Q f w f x
�

��  

where the 
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1{ }N
j jx

�
 

are the zeros of the N-th Chebyshev polynomial (of the first kind) TN (x) = cos(N arccos x). The 
weights in the quadrature rule Q are chosen so that, for all polynomials p of degree less than N, 

� � � � � � � �
1

1
1

N

j j
j

Q p w p x p x w x dx
�

�

� �� �  

for some weight function w. In FQRUL, the user has the option of choosing w from five families 
of functions with various algebraic and logarithmic endpoint singularities. 

These Fejér rules are important because they can be computed using specialized FFT quarter-
wave transform routines. This means that rules with a large number of abscissas may be 
computed efficiently. If we insert Tl  for p in the above formula, we obtain 

� � � � � � � �
1

1
1

N

l j l j l
j

Q T w T x T x w x dx
�

�

� �� �  

for l = 0, �, N � 1. This is a system of linear equations for the unknown weights wj that can be 
simplified by noting that 

� �2 1
cos 1, ,

2j

j
x j N

N
��

� � �  

and hence, 

� � � � � �

� �

1

1
1

1

2 1
cos

2

N

l j l j
j

N

j
j

T x w x dx w T x

l j
w

N
�

�

�

�

�

�

�

��

�
 

The last expression is the cosine quarter-wave forward transform for the sequence  

1{ }N
j jw

�
 

that is implemented in Chapter 6, Transforms under the name QCOSF. More importantly, QCOSF 
has an inverse QCOSB. It follows that if the integrals on the left in the last expression can be 
computed, then the Fejér rule can be derived efficiently for highly composite integers N utilizing 
QCOSB. For more information on this topic, consult Davis and Rabinowitz (1984, pages 84�86) 
and Gautschi (1968, page 259). 

 

DERIV 
This function computes the first, second or third derivative of a user-supplied function. 
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Function Return Value 
DERIV — Estimate of the first (KORDER = 1), second (KORDER = 2) or third (KORDER = 3) 

derivative of FCN at X.   (Output) 

Required Arguments 
FCN — User-supplied FUNCTION whose derivative at X will be computed. The  

form is FCN(X), where 
 X – Independent variable.   (Input) 
 FCN – The function value.   (Output) 
FCN must be declared EXTERNAL in the calling program. 

X — Point at which the derivative is to be evaluated.   (Input) 

Optional Arguments 
KORDER — Order of the derivative desired (1, 2 or 3).   (Input) 

Default: KORDER = 1. 

BGSTEP — Beginning value used to compute the size of the interval used in computing the 
derivative.   (Input)  
The interval used is the closed interval (X � 4 * BGSTEP, X + 4 * BGSTEP). BGSTEP 
must be positive. 
Default: BGSTEP = .01. 

TOL — Relative error desired in the derivative estimate.   (Input) 
Default: TOL = 1.e-2 for single precision and 1.d-4 for double precision. 

FORTRAN 90 Interface 
Generic: DERIV (FCN, X [,…]) 

Specific:  The specific interface names are S_DERIV and D_DERIV. 

FORTRAN 77 Interface 
Single: DERIV (FCN, KORDER, X, BGSTEP, TOL) 

Double: The double precision function name is DDERIV. 

Example 1 
In this example, we obtain the approximate first derivative of the function 

f(x) = �2 sin(3x/2) 

at the point x = 2. 
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      USE DERIV_INT 
      USE UMACH_INT 
      INTEGER    KORDER, NCOUNT, NOUT 
      REAL       BGSTEP, DERV, TOL, X 
      EXTERNAL   FCN 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
! 
      X      = 2.0 
      BGSTEP = 0.2 
      NCOUNT = 1 
      DERV   = DERIV(FCN,X, BGSTEP=BGSTEP) 
      WRITE (NOUT,99999) DERV 
99999 FORMAT (/, 1X, ’First derivative of FCN is ’, 1PE10.3) 
      END 
! 
      REAL FUNCTION FCN (X) 
      REAL       X 
      REAL       SIN 
      INTRINSIC  SIN 
      FCN = -2.0*SIN(1.5*X) 
      RETURN 
      END 

Output 
First derivative of FCN is  2.970E+00 
 

Comments 
1. Informational errors 

Type Code 
   3    2 Roundoff error became dominant before estimates converged. 

Increase precision and/or increase BGSTEP. 
   4     1 Unable to achieve desired tolerance in derivative estimation. Increase 

precision, increase TOL and/or change BGSTEP. If this error 
continues, the function may not have a derivative at X. 

2. Convergence is assumed when  

2 D2 D1 TOL
3
� � �  

for two successive derivative estimates D1 and D2. 

3. The initial step size, BGSTEP, must be chosen small enough that FCN is defined and 
reasonably smooth in the interval (X � 4 * BGSTEP, X + 4 * BGSTEP), yet large enough 
to avoid roundoff problems. 
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Description 
DERIV produces an estimate to the first, second, or third derivative of a function. The estimate 
originates from first computing a spline interpolant to the input function using values within the 
interval (X � 4.0 * BGSTEP, X + 4.0 * BGSTEP), then differentiating the spline at X. 

Additional Example 

Example 2 
In this example, we attempt to approximate in single precision the third derivative of the 
function 

f(x) = 2x� + 3x 

at the point x = 0.75. Although the function is well-behaved near x = 0.75, finding derivatives is 
often computationally difficult on 32-bit machines. The difficulty is overcome in double 
precision. 

      USE IMSL_LIBRARIES 
      INTEGER    KORDER, NOUT 
      REAL       BGSTEP, DERV, X 
      DOUBLE PRECISION DBGSTE, DDERV, DFCN, DTOL, DX 
      EXTERNAL   DFCN, FCN 
!                                 Get output unit number 
      CALL UMACH (2, NOUT) 
!                                 Turn off stopping due to error 
!                                 condition 
      CALL ERSET (0, -1, 0) 
! 
      X      = 0.75 
      BGSTEP = 0.1 
      KORDER = 3 
!                                 In single precision, on a 32-bit 
!                                 machine, the following attempt 
!                                 produces an error message 
      DERV = DERIV(FCN, X, KORDER, BGSTEP,TOL) 
!                                 In double precision, we get good 
!                                 results 
      DX     = 0.75D0 
      DBGSTE = 0.1D0 
      DTOL   = 0.01D0 
      KORDER = 3 
      DDERV  = DERIV(DFCN, DX,KORDER, DBGSTE, DTOL) 
      WRITE (NOUT,99999) DDERV 
99999 FORMAT (/, 1X, ’The third derivative of DFCN is ’, 1PD10.4) 
      END 
! 
      REAL FUNCTION FCN (X) 
      REAL       X 
      FCN = 2.0*X**4 + 3.0*X 
      RETURN 
      END 
! 
      DOUBLE PRECISION FUNCTION DFCN (X) 
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      DOUBLE PRECISION X 
      DFCN = 2.0D0*X**4 + 3.0D0*X 
      RETURN 
      END 
 
 

Output 
*** FATAL    ERROR 1 from DERIV.  Unable to achieve desired tolerance. 
***          Increase precision, increase TOL = 1.000000E-02 and/or change 
***          BGSTEP = 1.000000E-01.  If this error continues the function 
***          may not have a derivative at X = 7.500000E-01 
 
The third derivative of DFCN is 3.6000D+01 
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Appendix A: GAMS Index 

Description 
This index lists routines in MATH/LIBRARY by a tree-structured classification scheme known as 
GAMS Version 2.0 (Boisvert, Howe, Kahaner, and Springmann (1990). Only the GAMS classes 
that contain MATH/LIBRARY routines are included in the index. The page number for the 
documentation and the purpose of the routine appear alongside the routine name. 

The first level of the full classification scheme contains the following major subject areas: 
 
A. Arithmetic, Error Analysis  
B. Number Theory  
C. Elementary and Special Functions  
D. Linear Algebra 
E. Interpolation  
F. Solution of Nonlinear Equations  
G. Optimization  
H. Differentiation and Integration  
I. Differential and Integral Equations  
J. Integral Transforms  
K. Approximation  
L. Statistics, Probability  
M. Simulation, Stochastic Modeling  
N. Data Handling  
O. Symbolic Computation  
P. Computational Geometry  
Q. Graphics  
R. Service Routines  
S. Software Development Tools  
Z. Other 

 

There are seven levels in the classification scheme. Classes in the first level are identified by a 
capital letter as is given above. Classes in the remaining levels are identified by alternating letter-
and-number combinations. A single letter (a-z) is used with the odd-numbered levels. A number 
(1�26) is used within the even-numbered levels. 
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IMSL MATH/LIBRARY 
A...........ARITHMETIC, ERROR ANALYSIS 

A3.........Real 

A3c .......Extended precision 
DQADD Adds a double-precision scalar to the accumulator in 

extended precision. 
DQINI Initializes an extended-precision accumulator with a 

double-precision scalar. 
DQMUL Multiplies double-precision scalars in extended precision. 
DQSTO Stores a double-precision approximation to an extended-

precision scalar. 

A4.........Complex 

A4c .......Extended precision 
ZQADD Adds a double complex scalar to the accumulator in 

extended precision. 
ZQINI Initializes an extended-precision complex accumulator to a 

double complex scalar. 
ZQMUL Multiplies double complex scalars using extended 

precision. 
ZQSTO Stores a double complex approximation to an extended-

precision complex scalar. 

A6.........Change of representation 

A6c .......Decomposition, construction 
PRIME Decomposes an integer into its prime factors. 

B...........NUMBER THEORY 
PRIME Decomposes an integer into its prime factors. 

C...........ELEMENTARY AND SPECIAL FUNCTIONS 

C2.........Powers, roots, reciprocals 

HYPOT Computes a  without underflow or overflow. b2
�

2

C19.......Other special functions 
CONST Returns the value of various mathematical and physical 

constants. 
CUNIT Converts X in units XUNITS to Y in units YUNITS. 

D...........LINEAR ALGEBRA 

D1.........Elementary vector and matrix operations 

D1a.......Elementary vector operations 

D1a1.....Set to constant 
CSET Sets the components of a vector to a scalar, all complex. 
ISET Sets the components of a vector to a scalar, all integer. 
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SSET Sets the components of a vector to a scalar, all single 
precision. 

D1a2.....Minimum and maximum components 
ICAMAX Finds the smallest index of the component of a complex 

vector having maximum magnitude. 
ICAMIN Finds the smallest index of the component of a complex 

vector having minimum magnitude. 
IIMAX Finds the smallest index of the maximum component of a 

integer vector. 
IIMIN Finds the smallest index of the minimum of an integer 

vector. 
ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value. 
ISAMIN Finds the smallest index of the component of a single-

precision vector having minimum absolute value. 
ISMAX Finds the smallest index of the component of a single-

precision vector having maximum value. 
ISMIN Finds the smallest index of the component of a single-

precision vector having minimum value. 

D1a3.....Norm 

D1a3a ...L� (sum of magnitudes) 
DISL1 Computes the 1-norm distance between two points. 
SASUM Sums the absolute values of the components of a single-

precision vector. 
SCASUM Sums the absolute values of the real part together with the 

absolute values of the imaginary part of the components of 
a complex vector. 

D1a3b...L� (Euclidean norm) 
DISL2 Computes the Euclidean (2-norm) distance between two 

points. 
NORM2,CNORM2 Computes the Euclidean length of a vector or matrix,  

avoiding out-of-scale intermediate subexpressions. 
MNORM2,CMNORM2 Computes the Euclidean length of a vector or matrix,  

avoiding out-of-scale intermediate subexpressions 
NRM2, CNRM2 Computes the Euclidean length of a vector or matrix,  

avoiding out-of-scale intermediate subexpressions. 
SCNRM2 Computes the Euclidean norm of a complex vector. 
SNRM2 Computes the Euclidean length or L� norm of a single-

precision vector. 

D1a3c ...L� (maximum magnitude) 
DISLI Computes the infinity norm distance between two points. 
ICAMAX Finds the smallest index of the component of a complex 

vector having maximum magnitude. 
ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value. 
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D1a4.....Dot product (inner product) 
CDOTC Computes the complex conjugate dot product, x . yT

CDOTU Computes the complex dot product xTy. 
CZCDOT Computes the sum of a complex scalar plus a complex 

conjugate dot product, a x , using a double-precision 
accumulator. 

yT
�

CZDOTA Computes the sum of a complex scalar, a complex dot 
product and the double-complex accumulator, which is set 
to the result ACC � ACC + a + xTy. 

CZDOTC Computes the complex conjugate dot product, x , using 
a double-precision accumulator. 

yT

CZDOTI Computes the sum of a complex scalar plus a complex dot 
product using a double-complex accumulator, which is set 
to the result ACC � a + xTy. 

CZDOTU Computes the complex dot product xTy using a double-
precision accumulator. 

CZUDOT Computes the sum of a complex scalar plus a complex dot 
product, a + xTy, using a double-precision accumulator. 

DSDOT Computes the single-precision dot product xTy using a 
double precision accumulator. 

SDDOTA Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision 
accumulator, which is set to the result  
ACC � ACC + a + xTy. 

SDDOTI Computes the sum of a single-precision scalar plus a 
singleprecision dot product using a double-precision 
accumulator, which is set to the result ACC � a + xTy. 

SDOT Computes the single-precision dot product xTy. 
SDSDOT Computes the sum of a single-precision scalar and a single 

precision dot product, a + xTy, using a double-precision 
accumulator. 

D1a5.....Copy or exchange (swap) 
CCOPY Copies a vector x to a vector y, both complex. 
CSWAP Interchanges vectors x and y, both complex. 
ICOPY Copies a vector x to a vector y, both integer. 
ISWAP Interchanges vectors x and y, both integer. 
SCOPY Copies a vector x to a vector y, both single precision. 
SSWAP Interchanges vectors x and y, both single precision. 

D1a6.....Multiplication by scalar 
CSCAL Multiplies a vector by a scalar, y � ay, both complex. 
CSSCAL Multiplies a complex vector by a single-precision scalar, 

y � ay. 
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CSVCAL Multiplies a complex vector by a single-precision scalar 
and store the result in another complex vector, y � ax. 

CVCAL Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all complex. 

SSCAL Multiplies a vector by a scalar, y � ay, both single 
precision. 

SVCAL Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all single precision. 

D1a7.....Triad (ax + y for vectors x, y and scalar a) 
CAXPY Computes the scalar times a vector plus a vector,  

y � ax + y, all complex. 
SAXPY Computes the scalar times a vector plus a vector,  

y � ax + y, all single precision. 

D1a8.....Elementary rotation (Givens transformation) (search also class D1b10) 
CSROT Applies a complex Givens plane rotation. 
CSROTM Applies a complex modified Givens plane rotation. 
SROT Applies a Givens plane rotation in single precision. 
SROTM Applies a modified Givens plane rotation in single 

precision. 

D1a10...Convolutions 
RCONV Computes the convolution of two real vectors. 
VCONC Computes the convolution of two complex vectors. 
VCONR Computes the convolution of two real vectors. 

D1a11...Other vector operations 
CADD Adds a scalar to each component of a vector, x � x + a, all 

complex. 
CSUB Subtracts each component of a vector from a scalar,  

x � a � x, all complex. 
DISL1 Computes the 1-norm distance between two points. 
DISL2 Computes the Euclidean (2-norm) distance between two 

points. 
DISLI Computes the infinity norm distance between two points. 
IADD Adds a scalar to each component of a vector, x � x + a, all 

integer. 
ISUB Subtracts each component of a vector from a scalar,  

x � a � x, all integer. 
ISUM Sums the values of an integer vector. 
SADD Adds a scalar to each component of a vector, x � x + a, all 

single precision. 
SHPROD Computes the Hadamard product of two single-precision 

vectors. 
SPRDCT Multiplies the components of a single-precision vector. 
SSUB Subtracts each component of a vector from a scalar, 

x � a � x, all single precision. 
SSUM Sums the values of a single-precision vector. 
SXYZ Computes a single-precision xyz product. 
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D1b.......Elementary matrix operations 
CGERC Computes the rank-one update of a complex general 

matrix: 
A A xy T
� �� . 

CGERU Computes the rank-one update of a complex general 
matrix: 

. A A xyT
� ��

CHER Computes the rank-one update of an Hermitian matrix: 
A A xx T
� ��  with x complex and � real. 

CHER2 Computes a rank-two update of an Hermitian matrix: 
A A xy yxT T
� � �� � . 

CHER2K Computes one of the Hermitian rank 2k operations: 
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� , 

where C is an n by n Hermitian matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

CHERK Computes one of the Hermitian rank k operations: 
C AA C C A AT T
� � � �� � � or C�

C�

C�

, 
where C is an n by n Hermitian matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

CSYR2K Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or 

CSYRK Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

CTBSV Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x , 

where A is a triangular matrix in band storage mode. 
CTRSM Solves one of the complex matrix equations: 

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e j or 

�1 ,

where A is a triangular matrix. 
CTRSV Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x , 

where A is a triangular matrix. 



 

 
 

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-7 

 

 

 

HRRRR Computes the Hadamard product of two real rectangular 
matrices. 

SGER Computes the rank-one update of a real general matrix: 
. A A xyT

� ��

SSYR Computes the rank-one update of a real symmetric matrix: 
A A xxT
� �� . 

SSYR2 Computes the rank-two update of a real symmetric matrix: 
. A A xy yxT T

� � �� �

SSYR2K Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

�1

x

SSYRK Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

STBSV Solves one of the triangular systems: 

, 

where A is a triangular matrix in band storage mode. 

x A x x A
T

� �
� �1 1 or e j

STRSM Solves one of the matrix equations: 

where B is an m by n matrix and A is a triangular matrix. 

B A B B BA B A B B B A
T T

� � � �
� � �

� � � �
1 1 1, , ,e j e jor 

STRSV Solves one of the triangular linear systems: 

, 

where A is a triangular matrix. 

x A x x A
T

� �
� �1 1 or e j

D1b2.....Norm 
NR1CB Computes the 1-norm of a complex band matrix in band 

storage mode. 
NR1RB Computes the 1-norm of a real band matrix in band storage 

mode. 
NR1RR Computes the 1-norm of a real matrix. 
NR2RR Computes the Frobenius norm of a real rectangular matrix. 
NRIRR Computes the infinity norm of a real matrix. 

D1b3.....Transpose 
TRNRR Transposes a rectangular matrix. 

D1b4 Multiplication by vector 
BLINF Computes the bilinear form xTAy. 
CGBMV Computes one of the matrix-vector operations: 

y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y , 

where A is a matrix stored in band storage mode. 
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CGEMV Computes one of the matrix-vector operations: 
y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y

y

y

, 
CHBMV Computes the matrix-vector operation 

, 
where A is an Hermitian band matrix in band Hermitian 
storage. 

y Ax� �� �

CHEMV Computes the matrix-vector operation 
, 

where A is an Hermitian matrix. 
y Ax� �� �

CTBMV Computes one of the matrix-vector operations: 
x Ax x A x x AT T
� � �, ,  or x , 

where A is a triangular matrix in band storage mode. 
CTRMV Computes one of the matrix-vector operations: 

x Ax x A x x AT T
� � �, ,  or x

y

y

y

y

x

x

, 
where A is a triangular matrix. 

MUCBV Multiplies a complex band matrix in band storage mode by 
a complex vector. 

MUCRV Multiplies a complex rectangular matrix by a complex 
vector. 

MURBV Multiplies a real band matrix in band storage mode by a 
real vector. 

MURRV Multiplies a real rectangular matrix by a vector. 
SGBMV Computes one of the matrix-vector operations: 

, 
where A is a matrix stored in band storage mode. 
y Ax y y A xT
� � � �� � � �,  or 

SGEMV Computes one of the matrix-vector operations: 
, y Ax y y A xT

� � � �� � � �,  or 
SSBMV Computes the matrix-vector operation  

, 
where A is a symmetric matrix in band symmetric storage 
mode. 

y Ax� �� �

SSYMV Computes the matrix-vector operation 
, 

where A is a symmetric matrix. 
y Ax� �� �

STBMV Computes one of the matrix-vector operations: 

where A is a triangular matrix in band storage mode. 
x Ax x AT
� �or , 

STRMV  Computes one of the matrix-vector operations: 

where A is a triangular matrix. 
x Ax x AT
� �or , 

D1b5.....Addition, subtraction 
ACBCB Adds two complex band matrices, both in band storage 

mode. 
ARBRB Adds two band matrices, both in band storage mode. 
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D1b6.....Multiplication 
CGEMM Computes one of the matrix-matrix operations: 

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or 

 or 

,

C

C

 

CHEMM Computes one of the matrix-matrix operations: 
, 

where A is an Hermitian matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

CSYMM Computes one of the matrix-matrix operations: 
, 

where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

CTRMM Computes one of the matrix-matrix operations: 
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or 

,

C

 

where B is an m by n matrix and A is a triangular matrix. 
MCRCR Multiplies two complex rectangular matrices, AB. 
MRRRR Multiplies two real rectangular matrices, AB. 
MXTXF Computes the transpose product of a matrix, ATA. 
MXTYF Multiplies the transpose of matrix A by matrix B, ATB. 
MXYTF Multiplies a matrix A by the transpose of a matrix B, ABT. 
SGEMM Compute one of the matrix-matrix operations: 

. 
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or 
SSYMM Computes one of the matrix-matrix operations: 

, 
where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

STRMM Computes one of the matrix-matrix operations: 
, 

where B is an m by n matrix and A is a triangular matrix. 
B AB B A B B BA B BAT T
� � � �� � � �, , or 

D1b7.....Matrix polynomial 
POLRG 1207 Evaluates a real general matrix polynomial. 

D1b8.....Copy 
CCBCB Copies a complex band matrix stored in complex band 

storage mode. 
CCGCG Copies a complex general matrix. 
CRBRB Copies a real band matrix stored in band storage mode. 
CRGRG Copies a real general matrix. 
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D1b9.....Storage mode conversion 
CCBCG Converts a complex matrix in band storage mode to a 

complex matrix in full storage mode. 
CCGCB Converts a complex general matrix to a matrix in complex 

band storage mode. 
CHBCB Copies a complex Hermitian band matrix stored in band 

Hermitian storage mode to a complex band matrix stored 
in band storage mode. 

CHFCG Extends a complex Hermitian matrix defined in its upper 
triangle to its lower triangle. 

CRBCB Converts a real matrix in band storage mode to a complex 
matrix in band storage mode. 

CRBRG Converts a real matrix in band storage mode to a real 
general matrix. 

CRGCG Copies a real general matrix to a complex general matrix. 
CRGRB Converts a real general matrix to a matrix in band storage 

mode. 
CRRCR Copies a real rectangular matrix to a complex rectangular 

matrix. 
CSBRB Copies a real symmetric band matrix stored in band 

symmetric storage mode to a real band matrix stored in 
band storage mode. 

CSFRG Extends a real symmetric matrix defined in its upper 
triangle to its lower triangle. 

D1b10...Elementary rotation (Givens transformation) (search also class D1a8) 
SROTG Constructs a Givens plane rotation in single precision. 
SROTMG Constructs a modified Givens plane rotation in single 

precision. 

D2.........Solution of systems of linear equations (including inversion, LU and 
related decompositions) 

D2a.......Real nonsymmetric matrices 
LSLTO Solves a real Toeplitz linear system. 

D2a1.....General 
LFCRG Computes the LU factorization of a real general matrix and 

estimate its L� condition number. 
LFIRG Uses iterative refinement to improve the solution of a real 

general system of linear equations. 
LFSRG Solves a real general system of linear equations given the 

LU factorization of the coefficient matrix. 
LFTRG Computes the LU factorization of a real general matrix. 
LINRG Computes the inverse of a real general matrix. 
LSARG Solves a real general system of linear equations with 

iterative refinement. 
LSLRG Solves a real general system of linear equations without 

iterative refinement. 
LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using 

optional arguments, any of several related computations 
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x

B1 ,

can be performed. These extra tasks include computing the 
LU factorization of A using partial pivoting, representing 
the determinant of A, computing the inverse matrix A-1, 
and solving ATx = b or Ax = b given the LU factorization 
of A. 

D2a2.....Banded 
LFCRB Computes the LU factorization of a real matrix in band 

storage mode and estimate its L� condition number. 
LFIRB Uses iterative refinement to improve the solution of a real 

system of linear equations in band storage mode. 
LFSRB Solves a real system of linear equations given the LU 

factorization of the coefficient matrix in band storage 
mode. 

LFTRB Computes the LU factorization of a real matrix in band 
storage mode. 

LSARB Solves a real system of linear equations in band storage 
mode with iterative refinement. 

LSLRB Solves a real system of linear equations in band storage 
mode without iterative refinement. 

STBSV Solves one of the triangular systems: 

, 

where A is a triangular matrix in band storage mode. 

x A x x A
T

� �
� �1 1 or e j

D2a2a ...Tridiagonal 
LSLCR Computes the LDU factorization of a real tridiagonal 

matrix A using a cyclic reduction algorithm. 
LSLTR Solves a real tridiagonal system of linear equations. 

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1, 
�, k. Each matrix Aj is tridiagonal with the same 
dimension, n: The default solution method is based on LU 
factorization computed using cyclic reduction. An option 
is used to select Gaussian elimination with partial pivoting. 

TRI_SOLVE A real, tri-diagonal, multiple system solver. Uses both 
cyclic reduction and Gauss elimination. Similar in function 
to lin_sol_tri. 

D2a3.....Triangular 
LFCRT Estimates the condition number of a real triangular matrix. 
LINRT Computes the inverse of a real triangular matrix. 
LSLRT Solves a real triangular system of linear equations. 
STRSM Solves one of the matrix equations: 

 

where B is an m by n matrix and A is a triangular matrix. 

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor 
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x

STRSV Solves one of the triangular linear systems: 

 

where A is a triangular matrix. 

x A x x A
T

� �
� �1 1 or e j

D2a4.....Sparse 
LFSXG Solves a sparse system of linear equations given the LU 

factorization of the coefficient matrix. 
LFTXG Computes the LU factorization of a real general sparse 

matrix. 
LSLXG Solves a sparse system of linear algebraic equations by 

Gaussian elimination. 
GMRES Uses restarted GMRES with reverse communication to 

generate an approximate solution of Ax = b. 

D2b.......Real symmetric matrices 

D2b1.....General 

D2b1a. ..Indefinite 
LCHRG Computes the Cholesky decomposition of a symmetric 

positive semidefinite matrix with optional column 
pivoting. 

LFCSF Computes the U DUT factorization of a real symmetric 
matrix and estimate its L� condition number. 

LFISF Uses iterative refinement to improve the solution of a real 
symmetric system of linear equations. 

LFSSF Solves a real symmetric system of linear equations given 
the U DUT factorization of the coefficient matrix. 

LFTSF Computes the U DUT factorization of a real symmetric 
matrix. 

LSASF Solves a real symmetric system of linear equations with 
iterative refinement. 

LSLSF Solves a real symmetric system of linear equations without 
iterative refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 
self-adjoint matrix. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using symmetric pivoting, representing the 
determinant of A, computing the inverse matrix A-1, or 
computing the solution of Ax = b given the factorization of 
A. An optional argument is provided indicating that A is 
positive definite so that the Cholesky decomposition can 
be used. 

D2b1b...Positive definite 
LCHRG Computes the Cholesky decomposition of a symmetric 

positive semidefinite matrix with optional column 
pivoting. 
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LFCDS Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix and estimate its 
L�condition number. 

LFIDS Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations. 

LFSDS Solves a real symmetric positive definite system of linear 
equations given the RT R Choleksy factorization of the 
coefficient matrix. 

LFTDS Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix. 

LINDS Computes the inverse of a real symmetric positive definite 
matrix. 

LSADS Solves a real symmetric positive definite system of linear 
equations with iterative refinement. 

LSLDS Solves a real symmetric positive definite system of linear 
equations without iterative refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 
self-adjoint matrix. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using symmetric pivoting, representing the 
determinant of A, computing the inverse matrix A-1, or 
computing the solution of Ax = b given the factorization of 
A. An optional argument is provided indicating that A is 
positive definite so that the Cholesky decomposition can 
be used. 

D2b2.....Positive definite banded 
LFCQS Computes the RT R Cholesky factorization of a real 

symmetric positive definite matrix in band symmetric 
storage mode and estimate its L� condition number. 

LFDQS Computes the determinant of a real symmetric positive 
definite matrix given the RT R Cholesky factorization of 
the band symmetric storage mode. 

LFIQS Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations in 
band symmetric storage mode. 

LFSQS Solves a real symmetric positive definite system of linear 
equations given the factorization of the coefficient matrix 
in band symmetric storage mode. 

LFTQS Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix in band symmetric 
storage mode. 

LSAQS Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode with iterative 
refinement. 
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LSLPB Computes the RT DR Cholesky factorization of a real 
symmetric positive definite matrix A in codiagonal band 
symmetric storage mode. Solve a system Ax = b. 

LSLQS Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode without 
iterative refinement. 

D2b4.....Sparse 
JCGRC Solves a real symmetric definite linear system using the 

Jacobi preconditioned conjugate gradient method with 
reverse communication. 

LFSXD Solves a real sparse symmetric positive definite system of 
linear equations, given the Cholesky factorization of the 
coefficient matrix. 

LNFXD Computes the numerical Cholesky factorization of a sparse 
symmetrical matrix A. 

LSCXD Performs the symbolic Cholesky factorization for a sparse 
symmetric matrix using a minimum degree ordering or a 
userspecified ordering, and set up the data structure for the 
numerical Cholesky factorization. 

LSLXD Solves a sparse system of symmetric positive definite 
linear algebraic equations by Gaussian elimination. 

PCGRC Solves a real symmetric definite linear system using a 
preconditioned conjugate gradient method with reverse 
communication. 

D2c. ......Complex non-Hermitian matrices 
LSLCC Solves a complex circulant linear system. 
LSLTC Solves a complex Toeplitz linear system. 

D2c1.....General 
LFCCG Computes the LU factorization of a complex general 

matrix and estimate its L� condition number. 
LFICG Uses iterative refinement to improve the solution of a 

complex general system of linear equations. 
LFSCG Solves a complex general system of linear equations given 

the LU factorization of the coefficient matrix. 
LFTCG Computes the LU factorization of a complex general 

matrix. 
LINCG Computes the inverse of a complex general matrix. 
LSACG Solves a complex general system of linear equations with 

iterative refinement. 
LSLCG Solves a complex general system of linear equations 

without iterative refinement. 
LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using 

optional arguments, any of several related computations 
can be performed. These extra tasks include computing the 
LU factorization of A using partial pivoting, representing 
the determinant of A, computing the inverse matrix A-1, 
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and solving ATx = b or Ax = b given the LU factorization 
of A. 

D2c2.....Banded 
CTBSV Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
 ,   or e j e j, ,x  

where A is a triangular matrix in band storage mode. 
LFCCB Computes the LU factorization of a complex matrix in 

band storage mode and estimate its L� condition number. 
LFICB Uses iterative refinement to improve the solution of a 

complex system of linear equations in band storage mode. 
LFSCB Solves a complex system of linear equations given the LU 

factorization of the coefficient matrix in band storage 
mode. 

LFTCB Computes the LU factorization of a complex matrix in 
band storage mode. 

LSACB Solves a complex system of linear equations in band 
storage mode with iterative refinement. 

LSLCB Solves a complex system of linear equations in band 
storage mode without iterative refinement. 

D2c2a ...Tridiagonal 
LSLCQ Computes the LDU factorization of a complex tridiagonal 

matrix A using a cyclic reduction algorithm. 
LSLTQ Solves a complex tridiagonal system of linear equations. 

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1, 
�, k. Each matrix Aj is tridiagonal with the same 
dimension, n: The default solution method is based on LU 
factorization computed using cyclic reduction. An option 
is used to select Gaussian elimination with partial pivoting. 

 

D2c3.....Triangular 
CTRSM Solves one of the complex matrix equations: 

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor 

�1 ,

where A is a traiangular matrix. 
CTRSV Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
 ,   or e j e j,  x

where A is a triangular matrix. 
LFCCT Estimates the condition number of a complex triangular 

matrix. 
LINCT Computes the inverse of a complex triangular matrix. 
LSLCT Solves a complex triangular system of linear equations. 
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D2c4.....Sparse 
LFSZG Solves a complex sparse system of linear equations given 

the LU factorization of the coefficient matrix. 
LFTZG Computes the LU factorization of a complex general 

sparse matrix. 
LSLZG Solves a complex sparse system of linear equations by 

Gaussian elimination. 

D2d.......Complex Hermitian matrices 

D2d1.....General 

D2d1a. ..Indefinite 
LFCHF Computes the U DUH factorization of a complex 

Hermitian matrix and estimate its L� condition number. 
LFDHF Computes the determinant of a complex Hermitian matrix 

given the U DUH factorization of the matrix. 
LFIHF Uses iterative refinement to improve the solution of a 

complex Hermitian system of linear equations. 
LFSHF Solves a complex Hermitian system of linear equations 

given the U DUH factorization of the coefficient matrix. 
LFTHF Computes the U DUH factorization of a complex 

Hermitian matrix. 
LSAHF Solves a complex Hermitian system of linear equations 

with iterative refinement. 
LSLHF Solves a complex Hermitian system of linear equations 

without iterative refinement. 
LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 

self-adjoint matrix. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using symmetric pivoting, representing the 
determinant of A, computing the inverse matrix A-1, or 
computing the solution of Ax = b given the factorization of 
A. An optional argument is provided indicating that A is 
positive definite so that the Cholesky decomposition can 
be used. 

D2d1b...Positive definite 
LFCDH Computes the RH R factorization of a complex Hermitian 

positive definite matrix and estimate its L� condition 
number. 

LFIDH Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations. 

LFSDH Solves a complex Hermitian positive definite system of 
linear equations given the RH R factorization of the 
coefficient matrix. 
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LFTDH Computes the RH R factorization of a complex Hermitian 
positive definite matrix. 

LSADH Solves a Hermitian positive definite system of linear 
equations with iterative refinement. 

LSLDH Solves a complex Hermitian positive definite system of 
linear equations without iterative refinement. 

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a 
self-adjoint matrix. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using symmetric pivoting, representing the 
determinant of A, computing the inverse matrix A-1, or 
computing the solution of Ax = b given the factorization of 
A. An optional argument is provided indicating that A is 
positive definite so that the Cholesky decomposition can 
be used. 

D2d2.....Positive definite banded 
LFCQH Computes the RH R factorization of a complex Hermitian 

positive definite matrix in band Hermitian storage mode 
and estimate its L� condition number. 

LFIQH Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations in band Hermitian storage mode. 

LFSQH Solves a complex Hermitian positive definite system of 
linear equations given the factorization of the coefficient 
matrix in band Hermitian storage mode. 

LFTQH Computes the RH R factorization of a complex Hermitian 
positive definite matrix in band Hermitian storage mode. 

LSAQH Solves a complex Hermitian positive definite system of 
linear equations in band Hermitian storage mode with 
iterative refinement. 

LSLQB Computes the RH DR Cholesky factorization of a complex 
hermitian positive-definite matrix A in codiagonal band 
hermitian storage mode. Solve a system Ax = b. 

LSLQH Solves a complex Hermitian positive definite system of 
linearequations in band Hermitian storage mode without 
iterative refinement. 

D2d4.....Sparse 
LFSZD Solves a complex sparse Hermitian positive definite 

system of linear equations, given the Cholesky 
factorization of the coefficient matrix. 

LNFZD Computes the numerical Cholesky factorization of a sparse 
Hermitian matrix A. 

LSLZD Solves a complex sparse Hermitian positive definite 
system of linear equations by Gaussian elimination. 

D3.........Determinants 
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D3a. ......Real nonsymmetric matrices 

D3a1.....General 
LFDRG Computes the determinant of a real general matrix given 

the LU factorization of the matrix. 

D3a2.....Banded 
LFDRB Computes the determinant of a real matrix in band storage 

mode given the LU factorization of the matrix. 

D3a3.....Triangular 
LFDRT Computes the determinant of a real triangular matrix. 

D3b.......Real symmetric matrices 

D3b1.....General 

D3b1a. ..Indefinite 
LFDSF Computes the determinant of a real symmetric matrix 

given the U DUT factorization of the matrix. 

D3b1b...Positive definite 
LFDDS Computes the determinant of a real symmetric positive 

definite matrix given the RH R Cholesky factorization of 
the matrix. 

D3c. ......Complex non-Hermitian matrices 

D3c1.....General 
LFDCG Computes the determinant of a complex general matrix 

given the LU factorization of the matrix. 

D3c2.....Banded 
LFDCB Computes the determinant of a complex matrix given the 

LU factorization of the matrix in band storage mode. 

D3c3.....Triangular 
LFDCT Computes the determinant of a complex triangular matrix. 

D3d.......Complex Hermitian matrices 

D3d1.....General 

D3d1b...Positive definite 
LFDDH Computes the determinant of a complex Hermitian positive 

definite matrix given the RH R Cholesky factorization of 
the matrix. 

D3d2.....Positive definite banded 
LFDQH Computes the determinant of a complex Hermitian positive 

definite matrix given the RH R Cholesky factorization in 
band Hermitian storage mode. 

D4.........Eigenvalues, eigenvectors 

D4a. ......Ordinary eigenvalue problems (Ax = �x) 



 

 
 

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-19 

 

 

 

D4a1.....Real symmetric 
EVASF Computes the largest or smallest eigenvalues of a real 

symmetric matrix. 
EVBSF Computes selected eigenvalues of a real symmetric matrix. 
EVCSF Computes all of the eigenvalues and eigenvectors of a real 

symmetric matrix. 
EVESF Computes the largest or smallest eigenvalues and the 

corresponding eigenvectors of a real symmetric matrix. 
EVFSF Computes selected eigenvalues and eigenvectors of a real 

symmetric matrix. 
EVLSF Computes all of the eigenvalues of a real symmetric 

matrix. 
LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A. 

Optionally, the eigenvectors can be computed. This gives 
the decomposition A = VDVT, where V is an n � n 
orthogonal matrix and D is a real diagonal matrix. 

D4a2.....Real nonsymmetric 
EVCRG Computes all of the eigenvalues and eigenvectors of a real 

matrix. 
EVLRG Computes all of the eigenvalues of a real matrix. 

LIN_EIG_GEN Computes the eigenvalues of an n � n matrix, A. 
Optionally, the eigenvectors of A or AT are computed. 
Using the eigenvectors of A gives the decomposition  
AV = VE, where V is an n � n complex matrix of 
eigenvectors, and E is the complex diagonal matrix of 
eigenvalues. Other options include the reduction of A to 
upper triangular or Schur form, reduction to block upper 
triangular form with 2 � 2 or unit sized diagonal block 
matrices, and reduction to upper Hessenberg form. 

D4a3.....Complex Hermitian 
EVAHF Computes the largest or smallest eigenvalues of a complex 

Hermitian matrix. 
EVBHF Computes the eigenvalues in a given range of a complex 

Hermitian matrix. 
EVCHF Computes all of the eigenvalues and eigenvectors of a 

complex Hermitian matrix. 
EVEHF Computes the largest or smallest eigenvalues and the 

corresponding eigenvectors of a complex Hermitian 
matrix. 

EVFHF Computes the eigenvalues in a given range and the 
corresponding eigenvectors of a complex Hermitian 
matrix. 

EVLHF Computes all of the eigenvalues of a complex Hermitian 
matrix. 

LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A. 
Optionally, the eigenvectors can be computed. This gives 
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the decomposition A = VDVT, where V is an n � n 
orthogonal matrix and D is a real diagonal matrix. 

D4a4.....Complex non-Hermitian 
EVCCG Computes all of the eigenvalues and eigenvectors of a 

complex matrix. 
EVLCG Computes all of the eigenvalues of a complex matrix. 

LIN_EIG_GEN Computes the eigenvalues of an n � n matrix, A. 
Optionally, the eigenvectors of A or AT are computed. 
Using the eigenvectors of A gives the decomposition  
AV = VE, where V is an n � n complex matrix of 
eigenvectors, and E is the complex diagonal matrix of 
eigenvalues. Other options include the reduction of A to 
upper triangular or Schur form, reduction to block upper 
triangular form with 2 � 2 or unit sized diagonal block 
matrices, and reduction to upper Hessenberg form. 

D4a6.....Banded 
EVASB Computes the largest or smallest eigenvalues of a real 

symmetric matrix in band symmetric storage mode. 
EVBSB Computes the eigenvalues in a given interval of a real 

symmetric matrix stored in band symmetric storage mode. 
EVCSB Computes all of the eigenvalues and eigenvectors of a real 

symmetric matrix in band symmetric storage mode. 
EVESB Computes the largest or smallest eigenvalues and the 

corresponding eigenvectors of a real symmetric matrix in 
band symmetric storage mode. 

EVFSB Computes the eigenvalues in a given interval and the 
corresponding eigenvectors of a real symmetric matrix 
stored in band symmetric storage mode. 

EVLSB Computes all of the eigenvalues of a real symmetric matrix 
in band symmetric storage mode. 

D4b.......Generalized eigenvalue problems (e.g., Ax = �Bx) 

D4b1.....Real symmetric 
GVCSP Computes all of the eigenvalues and eigenvectors of the 

generalized real symmetric eigenvalue problem Az = �Bz, 
with B symmetric positive definite. 

GVLSP Computes all of the eigenvalues of the generalized real 
symmetric eigenvalue problem Az = �Bz, with B 
symmetric positive definite. 

LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix 
pencil, Av � �Bv. Optionally, the generalized eigenvectors 
are computed. If either of A or B is nonsingular, there are 
diagonal matrices � and � and a complex matrix V 
computed such that AV� = BV�. 

 

D4b2.....Real general 
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GVCRG Computes all of the eigenvalues and eigenvectors of a 
generalized real eigensystem Az = �Bz. 

GVLRG Computes all of the eigenvalues of a generalized real 
eigensystem Az = �Bz. 

LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix 
pencil, Av � �Bv. Optionally, the generalized eigenvectors 
are computed. If either of A or B is nonsingular, there are 
diagonal matrices � and � and a complex matrix V 
computed such that AV� = BV�. 

D4b4.....Complex general 
GVCCG Computes all of the eigenvalues and eigenvectors of a 

generalized complex eigensystem Az = �Bz. 
GVLCG Computes all of the eigenvalues of a generalized complex 

eigensystem Az = �Bz. 
LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix 

pencil, Av � �Bv. Optionally, the generalized eigenvectors 
are computed. If either of A or B is nonsingular, there are 
diagonal matrices � and � and a complex matrix V 
computed such that AV� = BV�. 

D4c.......Associated operations 
BALANC, CBSLANC Balances a general matrix before computing the 

eigenvalue-eigenvector decomposition. 
EPICG Computes the performance index for a complex 

eigensystem. 
EPIHF Computes the performance index for a complex Hermitian 

eigensystem. 
EPIRG Computes the performance index for a real eigensystem. 
EPISB Computes the performance index for a real symmetric 

eigensystem in band symmetric storage mode. 
EPISF Computes the performance index for a real symmetric 

eigensystem. 
GPICG Computes the performance index for a generalized 

complex eigensystem Az = �Bz. 
GPIRG Computes the performance index for a generalized real 

eigensystem Az = �Bz. 
GPISP Computes the performance index for a generalized real 

symmetric eigensystem problem. 
PERFECT_SHIFT Computes eigenvectors using actual eigenvalue as an 

explicit shift. Called by lin_eig_self. 
PWK A rational QR algorithm for computing eigenvalues of 

real, symmetric tri-diagonal matrices. Called by lin_svd 
and lin_eig_self. 

D4c2.....Compute eigenvalues of matrix in compact form 

D4c2b...Hessenberg 
EVCCH Computes all of the eigenvalues and eigenvectors of a 

complex upper Hessenberg matrix. 
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EVCRH Computes all of the eigenvalues and eigenvectors of a real 
upper Hessenberg matrix. 

EVLCH Computes all of the eigenvalues of a complex upper 
Hessenberg matrix. 

EVLRH Computes all of the eigenvalues of a real upper 
Hessenberg matrix. 

D5.........QR decomposition, Gram-Schmidt orthogonalization 
LQERR Accumulates the orthogonal matrix Q from its factored 

form given the QR factorization of a rectangular matrix A. 
LQRRR Computes the QR decomposition, AP = QR, using 

Householder transformations. 
LQRSL Computes the coordinate transformation, projection, and 

complete the solution of the least-squares problem Ax = b. 
LSBRR Solves a linear least-squares problem with iterative 

refinement. 
LSQRR Solves a linear least-squares problem without iterative 

refinement. 

D6.........Singular value decomposition 
LSVCR Computes the singular value decomposition of a complex 

matrix. 
LSVRR Computes the singular value decomposition of a real 

matrix. 
LIN_SOL_SVD Solves a rectangular least-squares system of linear 

equations Ax � b using singular value decomposition,  
A = USVT. Using optional arguments, any of several 
related computations can be performed. These extra tasks 
include computing the rank of A, the orthogonal m � m and 
n � n matrices U and V, and the m � n diagonal matrix of 
singular values, S. 

LIN_SVD Computes the singular value decomposition (SVD) of a 
rectangular matrix, A. This gives the decomposition  
A = USVT, where V is an n � n orthogonal matrix, U is an 
m � m orthogonal matrix, and S is a real, rectangular 
diagonal matrix. 

D7.........Update matrix decompositions 

D7b.......Cholesky 
LDNCH Downdates the RTR Cholesky factorization of a real 

symmetric positive definite matrix after a rank-one matrix 
is removed. 

LUPCH Updates the RTR Cholesky factorization of a real 
symmetric positive definite matrix after a rank-one matrix 
is added. 

D7c. ......QR 
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LUPQR Computes an updated QR factorization after the rank-one 
matrix �xyT is added. 

D9.........Singular, overdetermined or underdetermined systems of linear 
equations, generalized inverses 

D9a.......Unconstrained 

D9a1.....Least squares (L�) solution 
BAND_ 
ACCUMALATION Accumulatez and solves banded least-squares problem 
   using Householder transformations. 
BAND_SOLVE  Accumulatez and solves banded least-squares problem 
   using Householder transformations. 
HOUSE_HOLDER Accumulates and solves banded least-squares problem 
   using Householder transformations. 

 
LQRRR Computes the QR decomposition, AP = QR, using 

Householder transformations. 
LQRRV Computes the least-squares solution using Householder 

transformations applied in blocked form. 
LQRSL Computes the coordinate transformation, projection, and 

complete the solution of the least-squares problem Ax = b. 
LSBRR Solves a linear least-squares problem with iterative 

refinement. 
LSQRR Solves a linear least-squares problem without iterative 

refinement. 
LIN_SOL_LSQ Solves a rectangular system of linear equations Ax � b, in a 

least-squares sense. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using column and row pivoting, representing the 
determinant of A, computing the generalized inverse 
matrix A†, or computing the least-squares solution of  
Ax � b or ATy � d given the factorization of A. An optional 
argument is provided for computing the following 
unscaled covariance matrix: C = (ATA)-1. 

LIN_SOL_SVD Solves a rectangular least-squares system of linear 
equations Ax � b using singular value decomposition,  
A = USVT. Using optional arguments, any of several 
related computations can be performed. These extra tasks 
include computing the rank of A, the orthogonal m � m and 
n � n matrices U and V, and the m � n diagonal matrix of 
singular values, S. 

D9b.......Constrained 

D9b1.....Least squares (L�) solution 
LCLSQ Solves a linear least-squares problem with linear 

constraints. 
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D9c. ......Generalized inverses 
LSGRR Computes the generalized inverse of a real matrix. 

LIN_SOL_LSQ Solves a rectangular system of linear equations Ax � b, in a 
least-squares sense. Using optional arguments, any of 
several related computations can be performed. These 
extra tasks include computing and saving the factorization 
of A using column and row pivoting, representing the 
determinant of A, computing the generalized inverse 
matrix A†, or computing the least-squares solution of  
Ax � b or ATy � d given the factorization of A. An optional 
argument is provided for computing the following 
unscaled covariance matrix: C = (ATA)-1. 

E ...........INTERPOLATION 

E1 .........Univariate data (curve fitting) 

E1a .......Polynomial splines (piecewise polynomials) 
BSINT Computes the spline interpolant, returning the B-spline 

coefficients. 
CSAKM Computes the Akima cubic spline interpolant. 
CSCON Computes a cubic spline interpolant that is consistent with 

the concavity of the data. 
CSDEC Computes the cubic spline interpolant with specified 

derivative endpoint conditions. 
CSHER Computes the Hermite cubic spline interpolant. 
CSIEZ Computes the cubic spline interpolant with the ‘not-a-knot’ 

condition and return values of the interpolant at specified 
points. 

CSINT Computes the cubic spline interpolant with the ‘not-a-knot’ 
condition. 

CSPER Computes the cubic spline interpolant with periodic 
boundary conditions. 

QDVAL Evaluates a function defined on a set of points using 
quadratic interpolation. 

SPLEZ Computes the values of a spline that either interpolates or 
fits user-supplied data. 

SPLINE_FITTING Solves constrained least-squares fitting of one-dimensional 
data by B-splines. 

SPlINE_SUPPORT B-spline function and derivative evaluation package. 

E2 .........Multivariate data (surface fitting) 

E2a .......Gridded 
BS2IN Computes a two-dimensional tensor-product spline 

interpolant, returning the tensor-product B-spline 
coefficients. 

BS3IN Computes a three-dimensional tensor-product spline 
interpolant, returning the tensor-product B-spline 
coefficients. 
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QD2DR Evaluates the derivative of a function defined on a 
rectangular grid using quadratic interpolation. 

QD2VL Evaluates a function defined on a rectangular grid using 
quadratic interpolation. 

QD3DR Evaluates the derivative of a function defined on a 
rectangular three-dimensional grid using quadratic 
interpolation. 

QD3VL Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation. 

SURFACE_FITTING Solves constrained least-squares fitting of two-dimensional 
data by tensor products of B-splines. 

E2b .......Scattered 
SURF Computes a smooth bivariate interpolant to scattered data 

that is locally a quintic polynomial in two variables. 
SURFACE_FAIRING Constrained weighted least-squares fitting of tensor 

product B-splines to discrete data, with covariance matrix 
and constraints at points. 

E3 .........Service routines for interpolation 

E3a .......Evaluation of fitted functions, including quadrature 

E3a1 .....Function evaluation 
BS1GD Evaluates the derivative of a spline on a grid, given its B-

spline representation. 
BS2DR Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline 
representation. 

BS2GD Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS2VL Evaluates a two-dimensional tensor-product spline, given 
its tensor-product B-spline representation. 

BS3GD Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS3VL Evaluates a three-dimensional tensor-product spline, given 
its tensor-product B-spline representation. 

BSVAL Evaluates a spline, given its B-spline representation. 
CSVAL Evaluates a cubic spline. 
PPVAL Evaluates a piecewise polynomial. 
QDDER Evaluates the derivative of a function defined on a set of 

points using quadratic interpolation. 

E3a2 .....Derivative evaluation 
BS1GD Evaluates the derivative of a spline on a grid, given its B-

spline representation. 
BS2DR Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline 
representation. 
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BS2GD Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS3DR Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation. 

BS3GD Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BSDER Evaluates the derivative of a spline, given its B-spline 
representation. 

CS1GD Evaluates the derivative of a cubic spline on a grid. 
CSDER Evaluates the derivative of a cubic spline. 
PP1GD Evaluates the derivative of a piecewise polynomial on a 

grid. 
PPDER Evaluates the derivative of a piecewise polynomial. 
QDDER Evaluates the derivative of a function defined on a set of 

points using quadratic interpolation. 

E3a3 .....Quadrature 
BS2IG Evaluates the integral of a tensor-product spline on a 

rectangular domain, given its tensor-product B-spline 
representation. 

BS3IG Evaluates the integral of a tensor-product spline in three 
dimensions over a three-dimensional rectangle, given its 
tensorproduct B-spline representation. 

BSITG Evaluates the integral of a spline, given its B-spline 
representation. 

CSITG Evaluates the integral of a cubic spline. 

E3b .......Grid or knot generation 
BSNAK Computes the ‘not-a-knot’ spline knot sequence. 
BSOPK Computes the ‘optimal’ spline knot sequence. 

E3c .......Manipulation of basis functions (e.g., evaluation, change of basis) 
BSCPP Converts a spline in B-spline representation to piecewise 

polynomial representation. 

F ...........SOLUTION OF NONLINEAR EQUATIONS 

F1 .........Single equation 

F1a........Polynomial 

F1a1......Real coefficients 
ZPLRC Finds the zeros of a polynomial with real coefficients using 

Laguerre’s method. 
ZPORC Finds the zeros of a polynomial with real coefficients using 

the Jenkins-Traub three-stage algorithm. 

F1a2......Complex coefficients 
ZPOCC Finds the zeros of a polynomial with complex coefficients 

using the Jenkins-Traub three-stage algorithm. 
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F1b .......Nonpolynomial 
ZANLY Finds the zeros of a univariate complex function using 

Müller’s method. 
ZBREN Finds a zero of a real function that changes sign in a given 

interval. 
ZREAL Finds the real zeros of a real function using Müller’s 

method. 

F2 .........System of equations 
NEQBF Solves a system of nonlinear equations using factored 

secant update with a finite-difference approximation to the 
Jacobian. 

NEQBJ Solves a system of nonlinear equations using factored 
secant update with a user-supplied Jacobian. 

NEQNF Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm and a finite-difference 
approximation to the Jacobian. 

NEQNJ Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm with a user-supplied Jacobian. 

G...........OPTIMIZATION (search also classes K, L8) 

G1.........Unconstrained 

G1a.......Univariate 

G1a1.....Smooth function 

G1a1a. ..User provides no derivatives 
UVMIF Finds the minimum point of a smooth function of a single 

variable using only function evaluations. 

G1a1b...User provides first derivatives 
UVMID Finds the minimum point of a smooth function of a single 

variable using both function evaluations and first 
derivative evaluations. 

G1a2.....General function (no smoothness assumed) 
UVMGS Finds the minimum point of a nonsmooth function of a 

single variable. 

G1b.......Multivariate 

G1b1.....Smooth function 

G1b1a...User provides no derivatives 
UMCGF Minimizes a function of N variables using a conjugate 

gradient algorithm and a finite-difference gradient. 
UMINF Minimizes a function of N variables using a quasi-New 

method and a finite-difference gradient. 
UNLSF Solves a nonlinear least squares problem using a modified 

Levenberg-Marquardt algorithm and a finite-difference 
Jacobian. 

G1b1b...User provides first derivatives 
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UMCGG Minimizes a function of N variables using a conjugate 
gradient algorithm and a user-supplied gradient. 

UMIDH Minimizes a function of N variables using a modified 
Newton method and a finite-difference Hessian. 

UMING Minimizes a function of N variables using a quasi-New 
method and a user-supplied gradient. 

UNLSJ Solves a nonlinear least squares problem using a modified 
Levenberg-Marquardt algorithm and a user-supplied 
Jacobian. 

G1b1c. ..User provides first and second derivatives 
UMIAH Minimizes a function of N variables using a modified 

Newton method and a user-supplied Hessian. 

G1b2.....General function (no smoothness assumed) 
UMPOL Minimizes a function of N variables using a direct search 

polytope algorithm. 

G2.........Constrained 

G2a. ......Linear programming 

G2a1.....Dense matrix of constraints 
DLPRS Solves a linear programming problem via the revised 

simplex algorithm. 

G2a2.....Sparse matrix of constraints 
SLPRS Solves a sparse linear programming problem via the 

revised simplex algorithm. 

G2e. ......Quadratic programming 

G2e1.....Positive definite Hessian (i.e., convex problem) 
QPROG Solves a quadratic programming problem subject to linear 

equality/inequality constraints. 

G2h.......General nonlinear programming 

G2h1.....Simple bounds 

G2h1a. ..Smooth function 

G2h1a1 .User provides no derivatives 
BCLSF Solves a nonlinear least squares problem subject to bounds 

on the variables using a modified Levenberg-Marquardt 
algorithm and a finite-difference Jacobian. 

BCONF Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a finite-
difference gradient. 

G2h1a2 .User provides first derivatives 
BCLSJ Solves a nonlinear least squares problem subject to bounds 

on the variables using a modified Levenberg-Marquardt 
algorithm and a user-supplied Jacobian. 
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BCODH Minimizes a function of N variables subject to bounds the 
variables using a modified Newton method and a finite-
difference Hessian. 

BCONG Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a user-
supplied gradient. 

G2h1a3.User provides first and second derivatives 
BCOAH Minimizes a function of N variables subject to bounds the 

variables using a modified Newton method and a user-
supplied Hessian. 

G2h1b...General function (no smoothness assumed) 
BCPOL Minimizes a function of N variables subject to bounds the 

variables using a direct search complex algorithm. 

G2h2.....Linear equality or inequality constraints 

G2h2a...Smooth function 

G2h2a1.User provides no derivatives 
LCONF Minimizes a general objective function subject to linear 

equality/inequality constraints. 

G2h2a2.User provides first derivatives 
LCONG Minimizes a general objective function subject to linear 

equality/inequality constraints. 

G2h3.....Nonlinear constraints 

G2h3b...Equality and inequality constraints 
NNLPG  Uses a sequential equality constrained QP method. 
NNLPF Uses a sequential equality constrained QP method. 

G2h3b1.Smooth function and constraints 

G2h3b1a. User provides no derivatives 

G2h3b1b User provides first derivatives of function and constraints 

 

G4.........Service routines 

G4c.......Check user-supplied derivatives 
CHGRD Checks a user-supplied gradient of a function. 
CHHES Checks a user-supplied Hessian of an analytic function. 
CHJAC Checks a user-supplied Jacobian of a system of equations 

with M functions in N unknowns. 

G4d.......Find feasible point 
GGUES Generates points in an N-dimensional space. 

G4f .......Other 
CDGRD Approximates the gradient using central differences. 
FDGRD Approximates the gradient using forward differences. 
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FDHES Approximates the Hessian using forward differences and 
function values. 

FDJAC Approximates the Jacobian of M functions in N unknowns 
using forward differences. 

GDHES Approximates the Hessian using forward differences and a 
user-supplied gradient. 

H...........DIFFERENTIATION, INTEGRATION 

H1.........Numerical differentiation 
DERIV Computes the first, second or third derivative of a user-

supplied function. 

H2.........Quadrature (numerical evaluation of definite integrals) 

H2a. ......One-dimensional integrals 

H2a1.....Finite interval (general integrand) 

H2a1a ...Integrand available via user-defined procedure 

H2a1a1. Automatic (user need only specify required accuracy) 
QDAG Integrates a function using a globally adaptive scheme 

based on Gauss-Kronrod rules. 
QDAGS Integrates a function (which may have endpoint 

singularities). 
QDNG Integrates a smooth function using a nonadaptive rule. 

H2a2.....Finite interval (specific or special type integrand including weight 
functions, oscillating and singular integrands, principal value integrals, 
splines, etc.) 

H2a2a ...Integrand available via user-defined procedure 

H2a2a1 .Automatic (user need only specify required accuracy) 
QDAGP Integrates a function with singularity points given. 
QDAWC Integrates a function F(X)/(X � C) in the Cauchy principal 

value sense. 
QDAWO Integrates a function containing a sine or a cosine. 
QDAWS Integrates a function with algebraic-logarithmic 

singularities. 

H2a2b...Integrand available only on grid 

H2a2b1.Automatic (user need only specify required accuracy) 
BSITG Evaluates the integral of a spline, given its B-spline 

representation. 

H2a3.....Semi-infinite interval (including e�x weight function) 

H2a3a. ..Integrand available via user-defined procedure 

H2a3a1. Automatic (user need only specify required accuracy) 
QDAGI Integrates a function over an infinite or semi-infinite 

interval. 
QDAWF Computes a Fourier integral. 



 

 
 

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-31 

 

 

 

H2b.......Multidimensional integrals 

H2b1.....One or more hyper-rectangular regions (including iterated integrals) 
QMC Integrates a function over a hyperrectangle using a  

quasi-Monte Carlo method. 

H2b1a... Integrand available via user-defined procedure 

H2b1a1.Automatic (user need only specify required accuracy) 
QAND Integrates a function on a hyper-rectangle. 
TWODQ Computes a two-dimensional iterated integral. 

H2b1b... Integrand available only on grid 

H2b1b2.Nonautomatic 
BS2IG Evaluates the integral of a tensor-product spline on a 

rectangular domain, given its tensor-product B-spline 
representation. 

BS3IG Evaluates the integral of a tensor-product spline in three 
dimensions over a three-dimensional rectangle, given its 
tensorproduct B-spline representation. 

H2c.......Service routines (compute weight and nodes for quadrature formulas) 
FQRUL Computes a Fejér quadrature rule with various classical 

weight functions. 
GQRCF Computes a Gauss, Gauss-Radau or Gauss-Lobatto 

quadrature rule given the recurrence coefficients for the 
monic polynomials orthogonal with respect to the weight 
function. 

GQRUL Computes a Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule with various classical weight functions. 

RECCF Computes recurrence coefficients for various monic 
polynomials. 

RECQR Computes recurrence coefficients for monic polynomials 
given a quadrature rule. 

I ............DIFFERENTIAL AND INTEGRAL EQUATIONS 

I1 ..........Ordinary differential equations (ODE’s) 

I1a. ....... Initial value problems 

I1a1 ......General, nonstiff or mildly stiff 

I1a1a.....One-step methods (e.g., Runge-Kutta) 
IVMRK Solves an initial-value problem y� = f(t, y) for ordinary 

differential equations using Runge-Kutta pairs of various 
orders. 

IVPRK Solves an initial-value problem for ordinary differential 
equations using the Runge-Kutta-Verner fifth-order and 
sixth-order method. 

I1a1b. ...Multistep methods (e.g., Adams predictor-corrector) 
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IVPAG Solves an initial-value problem for ordinary differential 
equations using either Adams-Moulton’s or Gear’s BDF 
method. 

I1a2 ......Stiff and mixed algebraic-differential equations 
DASPG Solves a first order differential-algebraic system of 

equations, g(t, y, y�) = 0, using Petzold�Gear BDF method. 

I1b ........Multipoint boundary value problems 

I1b2 ......Nonlinear 
BVPFD Solves a (parameterized) system of differential equations 

with boundary conditions at two points, using a variable 
order, variable step size finite-difference method with 
deferred corrections. 

BVPMS Solves a (parameterized) system of differential equations 
with boundary conditions at two points, using a multiple-
shooting method. 

I1b3 ......Eigenvalue (e.g., Sturm-Liouville) 
SLCNT Calculates the indices of eigenvalues of a Sturm-Liouville 

problem with boundary conditions (at regular points) in a 
specified subinterval of the real line, [�, �]. 

SLEIG Determines eigenvalues, eigenfunctions and/or spectral 
density functions for Sturm-Liouville problems in the form 
with boundary conditions (at regular points). 

I2 ..........Partial differential equations 

I2a. .......Initial boundary value problems 

I2a1 ......Parabolic 
PDE_1D_MG  Integrates an initial-value PDE   

 problem with one space variable. 

I2a1a.....One spatial dimension 
MOLCH Solves a system of partial differential equations of the 

form ut = f(x, t, u, ux, uxx) using the method of lines. The 
solution is represented with cubic Hermite polynomials. 

I2b ........Elliptic boundary value problems 

I2b1 ......Linear 

I2b1a. ...Second order 

I2b1a1...Poisson (Laplace) or Helmholtz equation 

I2b1a1a.Rectangular domain (or topologically rectangular in the coordinate 
system) 

FPS2H Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based on 
the HODIE finite-difference scheme on a uni mesh. 
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FPS3H Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the 
HODIE finite-difference scheme on a uniform mesh. 

J............ INTEGRAL TRANSFORMS 

J1..........Trigonometric transforms including fast Fourier transforms 

J1a ........One-dimensional 

J1a1 ......Real 
FFTRB Computes the real periodic sequence from its Fourier 

coefficients. 
FFTRF Computes the Fourier coefficients of a real periodic 

sequence. 
FFTRI Computes parameters needed by FFTRF and FFTRB. 

J1a2 ......Complex 
FAST-DFT Computes the Discrete Fourier Transform (DFT) of a rank-

1 complex array, x. 
FFTCB Computes the complex periodic sequence from its Fourier 

coefficients. 
FFTCF Computes the Fourier coefficients of a complex periodic 

sequence. 
FFTCI Computes parameters needed by FFTCF and FFTCB. 

J1a3 ......Sine and cosine transforms 
FCOSI Computes parameters needed by FCOST. 
FCOST Computes the discrete Fourier cosine transformation of an 

even sequence. 
FSINI Computes parameters needed by FSINT. 
FSINT Computes the discrete Fourier sine transformation of an 

odd sequence. 
QCOSB Computes a sequence from its cosine Fourier coefficients 

with only odd wave numbers. 
QCOSF Computes the coefficients of the cosine Fourier transform 

with only odd wave numbers. 
QCOSI Computes parameters needed by QCOSF and QCOSB. 
QSINB Computes a sequence from its sine Fourier coefficients 

with only odd wave numbers. 
QSINF  Computes the coefficients of the sine Fourier transform 

with only odd wave numbers. 
QSINI Computes parameters needed by QSINF and QSINB. 

J1b........Multidimensional 
FFT2B Computes the inverse Fourier transform of a complex 

periodic two-dimensional array. 
FFT2D Computes Fourier coefficients of a complex periodic two-

dimensional array. 
FFT3B Computes the inverse Fourier transform of a complex 

periodic three-dimensional array. 
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FFT3F Computes Fourier coefficients of a complex periodic 
threedimensional array. 

FAST_2DFT Computes the Discrete Fourier Transform (DFT) of a rank-
2 complex array, x. 

FAST_3DFT Computes the Discrete Fourier Transform (DFT) of a rank-
3 complex array, x. 

J2 ..........Convolutions 
CCONV Computes the convolution of two complex vectors. 
RCONV Computes the convolution of two real vectors. 

J3 ..........Laplace transforms 
INLAP Computes the inverse Laplace transform of a complex 

function. 
SINLP Computes the inverse Laplace transform of a complex 

function. 

K...........APPROXIMATION (search also class L8) 

K1.........Least squares (L�) approximation 

K1a. ......Linear least squares (search also classes D5, D6, D9) 

K1a1.....Unconstrained 

K1a1a. ..Univariate data (curve fitting) 

K1a1a1 .Polynomial splines (piecewise polynomials) 
BSLSQ Computes the least-squares spline approximation, and 

return the B-spline coefficients. 
BSVLS Computes the variable knot B-spline least squares 

approximation to given data. 
CONFT Computes the least-squares constrained spline 

approximation, returning the B-spline coefficients. 
FRENCH_CURVE Constrained weighted least-squares fitting of B-splines to 

discrete data, with covariance matrix.and constraints at 
points. 

K1a1a2 .Polynomials 
RCURV Fits a polynomial curve using least squares. 

K1a1a3 .Other functions (e.g., trigonometric, user-specified) 

FNLSQ Compute a least-squares approximation with user-supplied basis functions. 

 

 

K1a1b...Multivariate data (surface fitting) 
BSLS2 Computes a two-dimensional tensor-product spline 

approximant using least squares, returning the tensor-
product B-spline coefficients. 
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BSLS3 Computes a three-dimensional tensor-product spline 
approximant using least squares, returning the tensor-
product B-spline coefficients. 

SURFACE_FAIRING Constrained weighted least-squares fitting of tensor 
product B-splines to discrete data, with covariance matrix 
and constraints at points. 

K1a2.....Constrained 
LIN_SOL_LSQ_CON  Routine for constrained linear-least squares based on a       
   least-distance, dual algorithm. 
LIN_SOL_LSQ_INQ Routine for constrained linear-least squares based on a       
   least-distance, dual algorithm. 
LEAST_PROJ_ 
DISTANCE  Routine for constrained linear-least squares based on a       
   least-distance, dual algorithm. 

 
PARALLEL_&  
NONONEGATIVE_LSQ Solves multiple systems of linear equations  
   Ajxj = yj, j = 1, �, k. Each matrix Aj is tridiagonal with 
   the same dimension, n: The default solution method is 
   based on LU factorization computed using cyclic  
   reduction. An option is used to select Gaussian  
   elimination with partial pivoting. 
PARALLEL_& BOUNDED_LSQ 

 Parallel routines for simple bounded constrained linear-
least squares based on a descent algorithm. 

K1a2a ...Linear constraints 
LCLSQ Solves a linear least-squares problem with linear 

constraints. 
PARALLEL_ 
NONNEGATIVE_LSQ Solves a large least-squares system with non-negative 
   constraints, using parallel computing.  
PARALLEL_ 
BOUNDED_LSQ Solves a large least-squares system with simple bounds, 
   using parallel computing. 

K1b.......Nonlinear least squares 

K1b1.....Unconstrained 

K1b1a...Smooth functions 

K1b1a1.User provides no derivatives 
UNLSF Solves a nonlinear least squares problem using a modified 

Levenberg-Marquardt algorithm and a finite-difference 
Jacobian. 

K1b1a2.User provides first derivatives 
UNLSJ Solves a nonlinear least squares problem using a modified 

Levenberg-Marquardt algorithm and a user-supplied 
Jacobian. 
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K1b2.....Constrained 

K1b2a...Linear constraints 
BCLSF Solves a nonlinear least squares problem subject to bounds 

on the variables using a modified Levenberg-Marquardt 
algorithm and a finite-difference Jacobian. 

BCLSJ Solves a nonlinear least squares problem subject to bounds 
on the variables using a modified Levenberg-Marquardt 
algorithm and a user-supplied Jacobian. 

BCNLS Solves a nonlinear least-squares problem subject to bounds 
on the variables and general linear constraints. 

K2.........Minimax (L�) approximation 
RATCH Computes a rational weighted Chebyshev approximation 

to a continuous function on an interval. 

K5.........Smoothing 
CSSCV Computes a smooth cubic spline approximation to noisy 

data using cross-validation to estimate the smoothing 
parameter. 

CSSED Smooths one-dimensional data by error detection. 
CSSMH Computes a smooth cubic spline approximation to noisy 

data. 

K6.........Service routines for approximation 

K6a. ......Evaluation of fitted functions, including quadrature 

K6a1.....Function evaluation 
BSVAL Evaluates a spline, given its B-spline representation. 
CSVAL Evaluates a cubic spline. 
PPVAL Evaluates a piecewise polynomial. 

K6a2.....Derivative evaluation 
BSDER Evaluates the derivative of a spline, given its B-spline 

representation. 
CS1GD Evaluates the derivative of a cubic spline on a grid. 
CSDER Evaluates the derivative of a cubic spline. 
PP1GD Evaluates the derivative of a piecewise polynomial on a 

grid. 
PPDER Evaluates the derivative of a piecewise polynomial. 

K6a3.....Quadrature 
CSITG Evaluates the integral of a cubic spline. 
PPITG Evaluates the integral of a piecewise polynomial. 

K6c. ......Manipulation of basis functions (e.g., evaluation, change of basis) 
BSCPP Converts a spline in B-spline representation to piecewise 

polynomial representation. 

L ...........STATISTICS, PROBABILITY 

L1 .........Data summarization 

L1c. ......Multi-dimensional data 
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L1c1 .....Raw data 

L1c1b. ..Covariance, correlation 
CCORL Computes the correlation of two complex vectors. 
RCORL Computes the correlation of two real vectors. 

L3 .........Elementary statistical graphics (search also class Q) 

L3e. ......Multi-dimensional data 

L3e3. ....Scatter diagrams 

L3e3a. ..Superimposed Y vs. X 
PLOTP Prints a plot of up to 10 sets of points. 

L6 .........Random number generation 

L6a. ......Univariate 
RAND_GEN Generates a rank-1 array of random numbers. The output 

array entries are positive and less than 1 in value. 

L6a21 ...Uniform (continuous, discrete), uniform order statistics 
RNUN Generates pseudorandom numbers from a uniform (0, 1) 

distribution. 
RNUNF Generates a pseudorandom number from a uniform (0, 1) 

distribution. 

L6b .......Mulitivariate 

L6b21 ...Linear L-1 (least absolute value) approximation random numbers 
FAURE_INIT Shuffles Faure sequence initialization. 
FAURE_FREE Frees the structure containing information about the Faure 

sequence. 
FAURE_NEXT Computes a shuffled Faure sequence. 

L6c. ......Service routines (e.g., seed) 
RNGET Retrieves the current value of the seed used in the IMSL 

random number generators. 
RNOPT Selects the uniform (0, 1) multiplicative congruential 

pseudorandom number generator. 
RNSET Initializes a random seed for use in the IMSL random 

number generators. 
RAND_GEN Generates a rank-1 array of random numbers. The output 

array entries are positive and less than 1 in value. 
 

L8 .........Regression (search also classes D5, D6, D9, G, K) 

L8a. ......Simple linear (e.g., y = �� + ��x + 	) (search also class L8h) 

L8a1. ....Ordinary least squares 
FNLSQ Computes a least-squares approximation with user-

supplied basis functions. 

L8a1a ...Parameter estimation 

L8a1a1. Unweighted data 
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RLINE Fits a line to a set of data points using least squares. 

L8b. ......Polynomial (e.g., y = �� + ��x + ��x
 + 	 ) (search also class L8c) 

L8b1 .....Ordinary least squares 

L8b1b ...Parameter estimation 

L8b1b2. Using orthogonal polynomials 
RCURV Fits a polynomial curve using least squares. 

L8c .......Multiple linear (e.g., y = �� + ��x� + � + �kxk + 	) 

L8c1 .....Ordinary least squares 

L8c1b ...Parameter estimation (search also class L8c1a) 

L8c1b1 .Using raw data 
LSBRR Solves a linear least-squares problem with iterative 

refinement. 
LSQRR Solves a linear least-squares problem without iterative 

refinement. 

N...........DATA HANDLING 

N1.........Input, output 
PGOPT Sets or retrieves page width and length for printing. 
WRCRL Prints a complex rectangular matrix with a given format 

and labels. 
WRCRN Prints a complex rectangular matrix with integer row and 

column labels. 
WRIRL Prints an integer rectangular matrix with a given format 

and labels. 
WRIRN Prints an integer rectangular matrix with integer row and 

column labels. 
WROPT Sets or retrieves an option for printing a matrix. 
WRRRL Prints a real rectangular matrix with a given format and 

labels. 
WRRRN Prints a real rectangular matrix with integer row and 

column labels. 
SCALAPACK_READ Reads matrix data from a file and place in a two-

dimensional block-cyclic form on a process grid. 
SCALAPACK_WRITE Writes matrix data to a file, starting with a two-

dimensional block-cyclic form on a process grid. 
SHOW Prints rank-1 and rank-2 arrays with indexing and text. 

 

N3.........Character manipulation 
ACHAR Returns a character given its ASCII value. 
CVTSI Converts a character string containing an integer number 

into the corresponding integer form. 
IACHAR Returns the integer ASCII value of a character argument. 
ICASE Returns the ASCII value of a character converted to 

uppercase. 
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IICSR Compares two character strings using the ASCII collating 
sequence but without regard to case. 

IIDEX Determines the position in a string at which a given 
character sequence begins without regard to case. 

N4.........Storage management (e.g., stacks, heaps, trees) 
IWKCIN Initializes bookkeeping locations describing the character 

workspace stack. 
IWKIN Initializes bookkeeping locations describing the workspace 

stack. 
ScaLAPACK_READ Moves data from a file to Block-Cyclic form, for use in 

ScaLAPACK. 
ScaLAPACK_WRITE Move data from Block-Cyclic form, following use in  

ScaLAPACK, to a file. 

N5.........Searching 

N5b....... Insertion position 
ISRCH Searches a sorted integer vector for a given integer and 

return its index. 
SRCH Searches a sorted vector for a given scalar and return its 

index. 
SSRCH Searches a character vector, sorted in ascending ASCII 

order, for a given string and return its index. 

N5c.......On a key 
IIDEX Determines the position in a string at which a given 

character sequence begins without regard to case. 
ISRCH Searches a sorted integer vector for a given integer and 

return its index. 
SRCH Searches a sorted vector for a given scalar and return its 

index. 
SSRCH Searches a character vector, sorted in ascending ASCII 

order, for a given string and return its index. 

N6.........Sorting 

N6a....... Internal 

N6a1.....Passive (i.e., construct pointer array, rank) 

N6a1a ... Integer 
SVIBP Sorts an integer array by nondecreasing absolute value and 

return the permutation that rearranges the array. 
SVIGP Sorts an integer array by algebraically increasing value and 

return the permutation that rearranges the array. 

N6a1b...Real 
SVRBP Sorts a real array by nondecreasing absolute value and 

return the permutation that rearranges the array. 
SVRGP Sorts a real array by algebraically increasing value and 

return the permutation that rearranges the array. 
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LIN_SOL_TRI Sorts a rank-1 array of real numbers x so the y results are 
algebraically nondecreasing,  y y . yn1 2� ��

N6a2.....Active 

N6a2a ...Integer 
SVIBN Sorts an integer array by nondecreasing absolute value. 
SVIBP Sorts an integer array by nondecreasing absolute value and 

return the permutation that rearranges the array. 
SVIGN Sorts an integer array by algebraically increasing value. 
SVIGP Sorts an integer array by algebraically increasing value and 

return the permutation that rearranges the array. 

N6a2b...Real 
SVRBN Sorts a real array by nondecreasing absolute value. 
SVRBP Sorts a real array by nondecreasing absolute value and 

return the permutation that rearranges the array. 
SVRGN Sorts a real array by algebraically increasing value. 
SVRGP Sorts a real array by algebraically increasing value and 

return the permutation that rearranges the array. 

N8.........Permuting 
PERMA Permutes the rows or columns of a matrix. 
PERMU Rearranges the elements of an array as specified by a 

permutation. 

Q...........GRAPHICS (search also classes L3) 
PLOTP Prints a plot of up to 10 sets of points. 

R...........SERVICE ROUTINES 
IDYWK Computes the day of the week for a given date. 
IUMAG Sets or retrieves MATH/LIBRARY integer options. 
NDAYS Computes the number of days from January 1, 1900, to the 

given date. 
NDYIN Gives the date corresponding to the number of days since 

January 1, 1900. 
SUMAG Sets or retrieves MATH/LIBRARY single-precision 

options. 
TDATE Get stoday’s date. 
TIMDY Gets time of day. 
VERML Obtains IMSL MATH/LIBRARY-related version, system 

and license numbers. 

R1.........Machine-dependent constants 
AMACH Retrieves single-precision machine constants. 
IFNAN Checks if a value is NaN (not a number). 
IMACH Retrieves integer machine constants. 
ISNAN Detects an IEEE NaN (not-a-number). 
NAN Returns, as a scalar function, a value corresponding to the 

IEEE 754 Standard format of floating point (ANSI/IEEE 
1985) for NaN. 

UMACH Sets or retrieves input or output device unit numbers. 
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R3.........Error handling 
BUILD_ERROR 
_STRUCTURE Fills in flags, values and update the data                            
 structure for error conditions that occur in Library routines. 
 Prepares the structure so that calls to routine 
 error_post will display the reason for the error. 

R3b.......Set unit number for error messages 
UMACH Sets or retrieves input or output device unit numbers. 

R3c .......Other utilities 
ERROR_POST Prints error messages that are generated by IMSL Library 

routines. 
ERSET Sets error handler default print and stop actions. 
IERCD Retrieves the code for an informational error. 
N1RTY Retrieves an error type for the most recently called IMSL 

routine. 

S. ..........SOFTWARE DEVELOPMENT TOOLS 

S3 .........Dynamic program analysis tools 
CPSEC Returns CPU time used in seconds. 
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Appendix B: Alphabetical Summary 
of Routines 

IMSL MATH/LIBRARY 
ACBCB 1441 Adds two complex band matrices, both in band storage 

mode. 

ACHAR 1624 Returns a character given its ASCII value. 

AMACH 1685 Retrieves single-precision machine constants. 

ARBRB 1438 Adds two band matrices, both in band storage mode. 

BCLSF 1274 Solves a nonlinear least squares problem subject to 
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a finite-difference Jacobian. 

BCLSJ 1281 Solves a nonlinear least squares problem subject to 
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a user-supplied Jacobian. 

BCNLS 1288 Solves a nonlinear least-squares problem subject to 
bounds on the variables and general linear constraints. 

BCOAH 1263 Minimizes a function of N variables subject to bounds the 
variables using a modified Newton method and a user-
supplied Hessian. 

BCODH 1257 Minimizes a function of N variables subject to bounds the 
variables using a modified Newton method and a finite-
difference Hessian. 

BCONF 1243 Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a finite-
difference gradient. 

BCONG 1249 Minimizes a function of N variables subject to bounds the 
variables using a quasi-Newton method and a user-
supplied gradient. 

BCPOL 1271 Minimizes a function of N variables subject to bounds the 
variables using a direct search complex algorithm. 



 

 
 

B-2 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY 

 

 

 

BLINF 1427 Computes the bilinear form xTAy. 

BS1GD 656 Evaluates the derivative of a spline on a grid, given its B-
spline representation. 

BS2DR 653 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation. 

BS2GD 656 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS2IG 661 Evaluates the integral of a tensor-product spline on a 
rectangular domain, given its tensor-product B-spline 
representation. 

BS2IN 631 Computes a two-dimensional tensor-product spline 
interpolant, returning the tensor-product B-spline 
coefficients. 

BS2VL 651 Evaluates a two-dimensional tensor-product spline, given 
its tensor-product B-spline representation. 

BS3DR 666 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation. 

BS3GD 670 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline 
representation on a grid. 

BS3IG 676 Evaluates the integral of a tensor-product spline in three 
dimensions over a three-dimensional rectangle, given its 
tensorproduct B-spline representation. 

BS3IN 635 Computes a three-dimensional tensor-product spline 
interpolant, returning the tensor-product B-spline 
coefficients. 

BS3VL 664 Evaluates a three-dimensional tensor-product spline, 
given its tensor-product B-spline representation. 

BSCPP 680 Converts a spline in B-spline representation to piecewise 
polynomial representation. 

BSDER 643 Evaluates the derivative of a spline, given its B-spline 
representation. 

BSINT 622 Computes the spline interpolant, returning the B-spline 
coefficients. 

BSITG 649 Evaluates the integral of a spline, given its B-spline 
representation. 
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BSLS2 743 Computes a two-dimensional tensor-product spline 
approximant using least squares, returning the tensor-
product B-spline coefficients. 

BSLS3 748 Computes a three-dimensional tensor-product spline 
approximant using least squares, returning the tensor-
product B-spline coefficients. 

BSLSQ 725 Computes the least-squares spline approximation, and 
return the B-spline coefficients. 

BSNAK 625 Computes the ‘not-a-knot’ spline knot sequence. 

BSOPK 628 Computes the ‘optimal’ spline knot sequence. 

BSVAL 641 Evaluates a spline, given its B-spline representation. 

BSVLS 729 Computes the variable knot B-spline least squares 
approximation to given data. 

BVPFD 870 Solves a (parameterized) system of differential equations 
with boundary conditions at two points, using a variable 
order, variable step size finite-difference method with 
deferred corrections. 

BVPMS 882 Solves a (parameterized) system of differential equations 
with boundary conditions at two points, using a multiple-
shooting method. 

CADD 1319 Adds a scalar to each component of a vector, x � x + a, 
all complex. 

CAXPY 1320 Computes the scalar times a vector plus a vector, y � ax 
+ y, all complex. 

CCBCB 1393 Copies a complex band matrix stored in complex band 
storage mode. 

CCBCG 1400 Converts a complex matrix in band storage mode to a 
complex matrix in full storage mode. 

CCGCB 1398 Converts a complex general matrix to a matrix in 
complex band storage mode. 

CCGCG 1390 Copies a complex general matrix. 

CCONV 1064 Computes the convolution of two complex vectors. 

CCOPY 1319 Copies a vector x to a vector y, both complex. 

CCORL 1073 Computes the correlation of two complex vectors. 

CDGRD 1336 Approximates the gradient using central differences. 

CDOTC 1320 Computes the complex conjugate dot product, x . yT

CDOTU 1320 Computes the complex dot product xTy. 
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CGBMV 1330 Computes one of the matrix-vector operations: 
y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y , 

where A is a matrix stored in band storage mode. 

CGEMM 1333 Computes one of the matrix-matrix operations: 
C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or 

 or 

,
 

CGEMV 1329 Computes one of the matrix-vector operations: 
y Ax y y A x y y AT T
� � � � � �� � � � � �, ,  or y , 

CGERC 1384 Computes the rank-one update of a complex general 
matrix: 
A A xy T
� �� . 

CGERU 1384 Computes the rank-one update of a complex general 
matrix: 

. A A xyT
� ��

CHBCB 1411 Copies a complex Hermitian band matrix stored in band 
Hermitian storage mode to a complex band matrix stored 
in band storage mode. 

CHBMV 1381 Computes the matrix-vector operation 
, 

where A is an Hermitian band matrix in band Hermitian 
storage. 

y Ax� �� �y

C

y

CHEMM 1385 Computes one of the matrix-matrix operations: 
, 

where A is an Hermitian matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

CHEMV 1381 Computes the matrix-vector operation 
, 

where A is an Hermitian matrix. 
y Ax� �� �

CHER 1384 Computes the rank-one update of an Hermitian matrix: 
A A xx T
� ��  with x complex and � real. 

CHER2 1384 Computes a rank-two update of an Hermitian matrix: 
A A xy yxT T
� � �� � . 

CHER2K 1387 Computes one of the Hermitian rank 2k operations: 
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� , 

where C is an n by n Hermitian matrix and A and B are n 
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by k matrices in the first case and k by n matrices in the 
second case. 

CHERK 1386 Computes one of the Hermitian rank k operations: 
C AA C C A AT T
� � � �� � � or C� , 

where C is an n by n Hermitian matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

CHFCG 1408 Extends a complex Hermitian matrix defined in its upper 
triangle to its lower triangle. 

CHGRD 1349 Checks a user-supplied gradient of a function. 

CHHES 1352 Checks a user-supplied Hessian of an analytic function. 

CHJAC 1355 Checks a user-supplied Jacobian of a system of equations 
with M functions in N unknowns. 

CHOL 1475 Computes the Cholesky factorization of a positive-
definite, symmetric or self-adjoint matrix, A. 

COND 1476 Computes the condition number of a rectangular  
matrix, A. 

CONFT 734 Computes the least-squares constrained spline 
approximation, returning the B-spline coefficients. 

CONST 1669 Returns the value of various mathematical and physical 
constants. 

CPSEC 1631 Returns CPU time used in seconds. 

CRBCB 1405 Converts a real matrix in band storage mode to a complex 
matrix in band storage mode. 

CRBRB 1392 Copies a real band matrix stored in band storage mode. 

CRBRG 1397 Converts a real matrix in band storage mode to a real 
general matrix. 

CRGCG 1402 Copies a real general matrix to a complex general matrix. 

CRGRB 1395 Converts a real general matrix to a matrix in band storage 
mode. 

CRGRG 1389 Copies a real general matrix. 

CRRCR 1403 Copies a real rectangular matrix to a complex rectangular 
matrix. 

CS1GD 602 Evaluates the derivative of a cubic spline on a grid. 

CSAKM 500 Computes the Akima cubic spline interpolant. 

CSBRB 1409 Copies a real symmetric band matrix stored in band 
symmetric storage mode to a real band matrix stored in 
band storage mode. 
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CSCAL 1319 Multiplies a vector by a scalar, y � ay, both complex. 

CSCON 603 Computes a cubic spline interpolant that is consistent 
with the concavity of the data. 

CSDEC 593 Computes the cubic spline interpolant with specified 
derivative endpoint conditions. 

CSDER 610 Evaluates the derivative of a cubic spline. 

CSET 1318 Sets the components of a vector to a scalar, all complex. 

CSFRG 1406 Extends a real symmetric matrix defined in its upper 
triangle to its lower triangle. 

CSHER 597 Computes the Hermite cubic spline interpolant. 

CSIEZ 587 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition and return values of the interpolant at 
specified points. 

CSINT 590 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition. 

CSITG 616 Evaluates the integral of a cubic spline. 

CSPER 506 Computes the cubic spline interpolant with periodic 
boundary conditions. 

CSROT 1325 Applies a complex Givens plane rotation. 

CSROTM 1326 Applies a complex modified Givens plane rotation. 

CSSCAL 1319 Multiplies a complex vector by a single-precision scalar, 
y � ay. 

CSSCV 761 Computes a smooth cubic spline approximation to noisy 
data using cross-validation to estimate the smoothing 
parameter. 

CSSED 754 Smooths one-dimensional data by error detection. 

CSSMH 758 Computes a smooth cubic spline approximation to noisy 
data. 

CSUB 1319 Subtracts each component of a vector from a scalar,  
x � a � x, all complex. 

CSVAL 609 Evaluates a cubic spline. 

CSVCAL 1319 Multiplies a complex vector by a single-precision scalar 
and store the result in another complex vector, y � ax. 

CSWAP 1320 Interchanges vectors x and y, both complex. 

CSYMM 1334 Computes one of the matrix-matrix operations: 
, 

where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +
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C�

C�

CSYR2K 1335 Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or 

CSYRK 1334 Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

CTBMV 1331 Computes one of the matrix-vector operations: 
x Ax x A x x AT T
� � �, ,  or x , 

where A is a triangular matrix in band storage mode. 

CTBSV 1332 Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
 ,   or e j e j, ,x  

where A is a triangular matrix in band storage mode. 

CTRMM 1335 Computes one of the matrix-matrix operations: 
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or 

,
 

where B is an m by n matrix and A is a triangular matrix. 

CTRMV 1331 Computes one of the matrix-vector operations: 
x Ax x A x x AT T
� � �, ,  or x , 

where A is a triangular matrix. 

CTRSM 1336 Solves one of the complex matrix equations: 

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor 

�1 ,

where A is a traiangular matrix. 

CTRSV 1331 Solves one of the complex triangular systems: 

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x , 

where A is a triangular matrix. 

CUNIT 1672 Converts X in units XUNITS to Y in units YUNITS. 

CVCAL 1319 Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all complex. 

CVTSI 1630 Converts a character string containing an integer number 
into the corresponding integer form. 
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CZCDOT 1321 Computes the sum of a complex scalar plus a complex 
conjugate dot product, a x , using a double-precision 
accumulator. 

yT
�

CZDOTA 1321 Computes the sum of a complex scalar, a complex dot 
product and the double-complex accumulator, which is 
set to the result ACC � ACC + a + xTy. 

CZDOTC 1320 Computes the complex conjugate dot product, x , using 
a double-precision accumulator. 

yT

CZDOTI 1321 Computes the sum of a complex scalar plus a complex 
dot product using a double-complex accumulator, which 
is set to the result ACC � a + xTy. 

CZDOTU 1320 Computes the complex dot product xTy using a double-
precision accumulator. 

CZUDOT 1321 Computes the sum of a complex scalar plus a complex 
dot product, a + xTy, using a double-precision 
accumulator. 

DASPG 889 Solves a first order differential-algebraic system of 
equations, g(t, y, y�) = 0, using Petzold�Gear BDF 
method. 

DERIV 827 Computes the first, second or third derivative of a user-
supplied function. 

DET 1477 Computes the determinant of a rectangular matrix, A. 

DIAG 1479 Constructs a square diagonal matrix from a rank-1 array 
or several diagonal matrices from a rank-2 array. 

DIAGONALS 1479 Extracts a rank-1 array whose values are the diagonal 
terms of a rank-2 array argument. 

DISL1 1452 Computes the 1-norm distance between two points. 

DISL2 1450 Computes the Euclidean (2-norm) distance between two 
points. 

DISLI 1454 Computes the infinity norm distance between two points. 

DLPRS 1297 Solves a linear programming problem via the revised 
simplex algorithm. 

DMACH 1686 See AMACH.  

DQADD 1460 Adds a double-precision scalar to the accumulator in 
extended precision. 

DQINI 1460 Initializes an extended-precision accumulator with a 
double-precision scalar. 
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DQMUL 1460 Multiplies double-precision scalars in extended precision. 

DQSTO 1460 Stores a double-precision approximation to an extended-
precision scalar. 

DSDOT 1371 Computes the single-precision dot product xTy using a 
double precision accumulator. 

DUMAG 1664 This routine handles MATH/LIBRARY and 
STAT/LIBRARY type DOUBLE PRECISION options. 

EIG 1480  Computes the eigenvalue-eigenvector decomposition of 
an ordinary or generalized eigenvalue problem. 

EPICG 467 Computes the performance index for a complex 
eigensystem. 

EPIHF 518 Computes the performance index for a complex 
Hermitian eigensystem. 

EPIRG 460 Computes the performance index for a real eigensystem. 

EPISB 501 Computes the performance index for a real symmetric 
eigensystem in band symmetric storage mode. 

EPISF 483 Computes the performance index for a real symmetric 
eigensystem. 

 ERROR_POST 1568 Prints error messages that are generated by IMSL routines 
using EPACK  

ERSET 1679 Sets error handler default print and stop actions. 

EVAHF 508 Computes the largest or smallest eigenvalues of a 
complex Hermitian matrix. 

EVASB 490 Computes the largest or smallest eigenvalues of a real 
symmetric matrix in band symmetric storage mode. 

EVASF 473 Computes the largest or smallest eigenvalues of a real 
symmetric matrix. 

EVBHF 513 Computes the eigenvalues in a given range of a complex 
Hermitian matrix. 

EVBSB 495 Computes the eigenvalues in a given interval of a real 
symmetric matrix stored in band symmetric storage 
mode. 

EVBSF 478 Computes selected eigenvalues of a real symmetric 
matrix. 

EVCCG 464 Computes all of the eigenvalues and eigenvectors of a 
complex matrix. 

EVCCH 526 Computes all of the eigenvalues and eigenvectors of a 
complex upper Hessenberg matrix. 
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EVCHF 505 Computes all of the eigenvalues and eigenvectors of a 
complex Hermitian matrix. 

EVCRG 457 Computes all of the eigenvalues and eigenvectors of a 
real matrix. 

EVCRH 522 Computes all of the eigenvalues and eigenvectors of a 
real upper Hessenberg matrix. 

EVCSB 487 Computes all of the eigenvalues and eigenvectors of a 
real symmetric matrix in band symmetric storage mode. 

EVCSF 471 Computes all of the eigenvalues and eigenvectors of a 
real symmetric matrix. 

EVEHF 510 Computes the largest or smallest eigenvalues and the 
corresponding eigenvectors of a complex Hermitian 
matrix. 

EVESB 492 Computes the largest or smallest eigenvalues and the 
corresponding eigenvectors of a real symmetric matrix in 
band symmetric storage mode. 

EVESF 475 Computes the largest or smallest eigenvalues and the 
corresponding eigenvectors of a real symmetric matrix. 

EVFHF 515 Computes the eigenvalues in a given range and the 
corresponding eigenvectors of a complex Hermitian 
matrix. 

EVFSB 498 Computes the eigenvalues in a given interval and the 
corresponding eigenvectors of a real symmetric matrix 
stored in band symmetric storage mode. 

EVFSF 480 Computes selected eigenvalues and eigenvectors of a real 
symmetric matrix. 

EVLCG 462 Computes all of the eigenvalues of a complex matrix. 

EVLCH 525 Computes all of the eigenvalues of a complex upper 
Hessenberg matrix. 

EVLHF 502 Computes all of the eigenvalues of a complex Hermitian 
matrix. 

EVLRG 455 Computes all of the eigenvalues of a real matrix. 

EVLRH 520 Computes all of the eigenvalues of a real upper 
Hessenberg matrix. 

EVLSB 485 Computes all of the eigenvalues of a real symmetric 
matrix in band symmetric storage mode. 

EVLSF 469 Computes all of the eigenvalues of a real symmetric 
matrix. 

EYE 1481 Creates a rank-2 square array whose diagonals are all the 
value one. 
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FAURE_FREE 1655 Frees the structure containing information about the 
Faure sequence. 

FAURE_INIT 1655 Shuffled Faure sequence initialization. 

FAURE_NEXT 1656 Computes a shuffled Faure sequence. 

 FAST_DFT 992 Computes the Discrete Fourier Transform  
of a rank-1 complex array, x. 

 FAST_2DFT 1000 Computes the Discrete Fourier Transform (2DFT)  
of a rank-2 complex array, x. 

 FAST_3DFT 1006 Computes the Discrete Fourier Transform (2DFT)  
of a rank-3 complex array, x. 

FCOSI 1030 Computes parameters needed by FCOST. 

FCOST 1028 Computes the discrete Fourier cosine transformation of 
an even sequence. 

FDGRD 1338 Approximates the gradient using forward differences. 

FDHES 1340 Approximates the Hessian using forward differences and 
function values. 

FDJAC 1346 Approximates the Jacobian of M functions in N unknowns 
using forward differences. 

FFT 1482 The Discrete Fourier Transform of a complex sequence 
and its inverse transform. 

FFT_BOX 1482 The Discrete Fourier Transform of several complex or 
real sequences. 

FFT2B 1048 Computes the inverse Fourier transform of a complex 
periodic two-dimensional array. 

FFT2D 1045 Computes Fourier coefficients of a complex periodic two-
dimensional array. 

FFT3B 1055 Computes the inverse Fourier transform of a complex 
periodic three-dimensional array. 

FFT3F 1051 Computes Fourier coefficients of a complex periodic 
threedimensional array. 

FFTCB 1019 Computes the complex periodic sequence from its Fourier 
coefficients. 

FFTCF 1017 Computes the Fourier coefficients of a complex periodic 
sequence. 

FFTCI 1022 Computes parameters needed by FFTCF and FFTCB. 

FFTRB 1012 Computes the real periodic sequence from its Fourier 
coefficients. 
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FFTRF 1009 Computes the Fourier coefficients of a real periodic 
sequence. 

FFTRI 1015 Computes parameters needed by FFTRF and FFTRB. 

FNLSQ 720 Computes a least-squares approximation with user-
supplied basis functions. 

FPS2H 961 Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based 
on the HODIE finite-difference scheme on a uni mesh. 

FPS3H 967 Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the 
HODIE finite-difference scheme on a uniform mesh. 

FQRUL 824 Computes a Fejér quadrature rule with various classical 
weight functions. 

FSINI 1026 Computes parameters needed by FSINT. 

FSINT 1024 Computes the discrete Fourier sine transformation of an 
odd sequence. 

GDHES 1343 Approximates the Hessian using forward differences and 
a user-supplied gradient. 

GGUES 1359 Generates points in an N-dimensional space. 

GMRES 368 Uses restarted GMRES with reverse communication to 
generate an approximate solution of Ax = b. 

GPICG 542 Computes the performance index for a generalized 
complex eigensystem Az = �Bz. 

GPIRG 535 Computes the performance index for a generalized real 
eigensystem Az = �Bz. 

GPISP 549 Computes the performance index for a generalized real 
symmetric eigensystem problem. 

GQRCF 815 Computes a Gauss, Gauss-Radau or Gauss-Lobatto 
quadrature rule given the recurrence coefficients for the 
monic polynomials orthogonal with respect to the weight 
function. 

GQRUL 811 Computes a Gauss, Gauss-Radau, or Gauss-Lobatto 
quadrature rule with various classical weight functions. 

GVCCG 540 Computes all of the eigenvalues and eigenvectors of a 
generalized complex eigensystem Az = �Bz. 

GVCRG 531 Computes all of the eigenvalues and eigenvectors of a 
generalized real eigensystem Az = �Bz. 



 

 
 

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-13 

 

 

 

GVCSP 547 Computes all of the eigenvalues and eigenvectors of the 
generalized real symmetric eigenvalue problem Az = �Bz, 
with B symmetric positive definite. 

GVLCG 537 Computes all of the eigenvalues of a generalized complex 
eigensystem Az = �Bz. 

GVLRG 529 Computes all of the eigenvalues of a generalized real 
eigensystem Az = �Bz. 

GVLSP 544 Computes all of the eigenvalues of the generalized real 
symmetric eigenvalue problem Az = �Bz, with B 
symmetric positive definite. 

HRRRR 1425 Computes the Hadamard product of two real rectangular 
matrices. 

HYPOT 1675 Computes a  without underflow or overflow. b2
�

2

IACHAR 1625 Returns the integer ASCII value of a character argument. 

IADD 1319 Adds a scalar to each component of a vector, x � x + a, 
all integer. 

ICAMAX 1324 Finds the smallest index of the component of a complex 
vector having maximum magnitude. 

ICAMIN 1323 Finds the smallest index of the component of a complex 
vector having minimum magnitude. 

ICASE 1626 Returns the ASCII value of a character converted to 
uppercase. 

ICOPY 1319 Copies a vector x to a vector y, both integer. 

IDYWK 1637 Computes the day of the week for a given date. 

IERCD 1680 Retrieves the code for an informational error. 

IFFT 1483 The inverse of the Discrete Fourier Transform of a 
complex sequence. 

IFFT_BOX 1484 The inverse Discrete Fourier Transform of several 
complex or real sequences.  

IFNAN(X) 1686 Checks if a value is NaN (not a number). 

IICSR 1627 Compares two character strings using the ASCII collating 
sequence but without regard to case. 

IIDEX 1629 Determines the position in a string at which a given 
character sequence begins without regard to case. 

IIMAX 1323 Finds the smallest index of the maximum component of a 
integer vector. 

IIMIN 1323 Finds the smallest index of the minimum of an integer 
vector. 
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IMACH 1683 Retrieves integer machine constants. 

INLAP 1078 Computes the inverse Laplace transform of a complex 
function. 

ISAMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum absolute value. 

ISAMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum absolute value. 

ISET 1318 Sets the components of a vector to a scalar, all integer. 

ISMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum value. 

ISMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum value. 

ISNAN 1485 This is a generic logical function used to test scalars or 
arrays for occurrence of an IEEE 754 Standard format of 
floating point (ANSI/IEEE 1985) NaN, or not-a-number. 

ISRCH 1620 Searches a sorted integer vector for a given integer and 
return its index. 

ISUB 1319 Subtracts each component of a vector from a scalar,  
x � a � x, all integer. 

ISUM 1322 Sums the values of an integer vector. 

ISWAP 1320 Interchanges vectors x and y, both integer. 

IUMAG 1658 Sets or retrieves MATH/LIBRARY integer options. 

IVMRK 844 Solves an initial-value problem y� = f(t, y) for ordinary 
differential equations using Runge-Kutta pairs of various 
orders. 

IVPAG 854 Solves an initial-value problem for ordinary differential 
equations using either Adams-Moulton’s or Gear’s BDF 
method. 

IVPRK 837 Solves an initial-value problem for ordinary differential 
equations using the Runge-Kutta-Verner fifth-order and 
sixth-order method. 

IWKCIN 1701 Initializes bookkeeping locations describing the character 
workspace stack. 

IWKIN 1700 Initializes bookkeeping locations describing the 
workspace stack. 

JCGRC 365 Solves a real symmetric definite linear system using the 
Jacobi preconditioned conjugate gradient method with 
reverse communication. 
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LCHRG 406 Computes the Cholesky decomposition of a symmetric 
positive semidefinite matrix with optional column 
pivoting. 

LCLSQ 388 Solves a linear least-squares problem with linear 
constraints. 

LCONF 1310 Minimizes a general objective function subject to linear 
equality/inequality constraints. 

LCONG 1316 Minimizes a general objective function subject to linear 
equality/inequality constraints. 

LDNCH 412 Downdates the RTR Cholesky factorization of a real 
symmetric positive definite matrix after a rank-one matrix 
is removed. 

LFCCB 262 Computes the LU factorization of a complex matrix in 
band storage mode and estimate its L� condition number. 

LFCCG 108 Computes the LU factorization of a complex general 
matrix and estimate its L� condition number. 

LFCCT 132 Estimates the condition number of a complex triangular 
matrix. 

LFCDH 179 Computes the RH R factorization of a complex Hermitian 
positive definite matrix and estimate its L� condition 
number. 

LFCDS 143 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix and estimate its 
L�condition number. 

LFCHF 197 Computes the U DUH factorization of a complex 
Hermitian matrix and estimate its L� condition number. 

LFCQH 284 Computes the RH R factorization of a complex Hermitian 
positive definite matrix in band Hermitian storage mode 
and estimate its L� condition number. 

LFCQS 240 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix in band symmetric 
storage mode and estimate its L� condition number. 

LFCRB 219 Computes the LU factorization of a real matrix in band 
storage mode and estimate its L� condition number. 

LFCRG 89 Computes the LU factorization of a real general matrix 
and estimate its L� condition number. 

LFCRT 125 Estimates the condition number of a real triangular 
matrix. 
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LFCSF 162 Computes the U DUT factorization of a real symmetric 
matrix and estimate its L� condition number. 

LFDCB 274 Computes the determinant of a complex matrix given the 
LU factorization of the matrix in band storage mode. 

LFDCG 119 Computes the determinant of a complex general matrix 
given the LU factorization of the matrix. 

LFDCT 134 Computes the determinant of a complex triangular matrix. 

LFDDH 190 Computes the determinant of a complex Hermitian 
positive definite matrix given the RH R Cholesky 
factorization of the matrix. 

LFDDS 153 Computes the determinant of a real symmetric positive 
definite matrix given the RH R Cholesky factorization of 
the matrix. 

LFDHF 207 Computes the determinant of a complex Hermitian matrix 
given the U DUH factorization of the matrix. 

LFDQH 295 Computes the determinant of a complex Hermitian 
positive definite matrix given the RH R Cholesky 
factorization in band Hermitian storage mode. 

LFDQS 250 Computes the determinant of a real symmetric positive 
definite matrix given the RT R Cholesky factorization of 
the band symmetric storage mode. 

LFDRB 230 Computes the determinant of a real matrix in band 
storage mode given the LU factorization of the matrix. 

LFDRG 99 Computes the determinant of a real general matrix given 
the LU factorization of the matrix. 

LFDRT 127 Computes the determinant of a real triangular matrix. 

LFDSF 172 Computes the determinant of a real symmetric matrix 
given the U DUT factorization of the matrix. 

LFICB 270 Uses iterative refinement to improve the solution of a 
complex system of linear equations in band storage mode. 

LFICG 116 Uses iterative refinement to improve the solution of a 
complex general system of linear equations. 

LFIDH 187 Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations. 

LFIDS 150 Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations. 
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LFIHF 204 Uses iterative refinement to improve the solution of a 
complex Hermitian system of linear equations. 

LFIQH 292 Uses iterative refinement to improve the solution of a 
complex Hermitian positive definite system of linear 
equations in band Hermitian storage mode. 

LFIQS 247 Uses iterative refinement to improve the solution of a real 
symmetric positive definite system of linear equations in 
band symmetric storage mode. 

LFIRB 227 Uses iterative refinement to improve the solution of a real 
system of linear equations in band storage mode. 

LFIRG 96 Uses iterative refinement to improve the solution of a real 
general system of linear equations. 

LFISF 169 Uses iterative refinement to improve the solution of a real 
symmetric system of linear equations. 

LFSCB 268 Solves a complex system of linear equations given the LU 
factorization of the coefficient matrix in band storage 
mode. 

LFSCG 114 Solves a complex general system of linear equations 
given the LU factorization of the coefficient matrix. 

LFSDH 184 Solves a complex Hermitian positive definite system of 
linear equations given the RH R factorization of the 
coefficient matrix. 

LFSDS 148 Solves a real symmetric positive definite system of linear 
equations given the RT R Choleksy factorization of the 
coefficient matrix. 

LFSHF 202 Solves a complex Hermitian system of linear equations 
given the U DUH factorization of the coefficient matrix. 

LFSQH 290 Solves a complex Hermitian positive definite system of 
linear equations given the factorization of the coefficient 
matrix in band Hermitian storage mode. 

LFSQS 245 Solves a real symmetric positive definite system of linear 
equations given the factorization of the coefficient matrix 
in band symmetric storage mode. 

LFSRB 225 Solves a real system of linear equations given the LU 
factorization of the coefficient matrix in band storage 
mode. 

LFSRG 94 Solves a real general system of linear equations given the 
LU factorization of the coefficient matrix. 

LFSSF 167 Solves a real symmetric system of linear equations given 
the U DUT factorization of the coefficient matrix. 
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LFSXD 336 Solves a real sparse symmetric positive definite system of 
linear equations, given the Cholesky factorization of the 
coefficient matrix. 

LFSXG 306 Solves a sparse system of linear equations given the LU 
factorization of the coefficient matrix. 

LFSZD 349 Solves a complex sparse Hermitian positive definite 
system of linear equations, given the Cholesky 
factorization of the coefficient matrix. 

LFSZG 319 Solves a complex sparse system of linear equations given 
the LU factorization of the coefficient matrix. 

LFTCB 265 Computes the LU factorization of a complex matrix in 
band storage mode. 

LFTCG 111 Computes the LU factorization of a complex general 
matrix. 

LFTDH 182 Computes the RH R factorization of a complex Hermitian 
positive definite matrix. 

LFTDS 146 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix. 

LFTHF 200 Computes the U DUH factorization of a complex 
Hermitian matrix. 

LFTQH 288 Computes the RH R factorization of a complex Hermitian 
positive definite matrix in band Hermitian storage mode. 

LFTQS 243 Computes the RT R Cholesky factorization of a real 
symmetric positive definite matrix in band symmetric 
storage mode. 

LFTRB 222 Computes the LU factorization of a real matrix in band 
storage mode. 

LFTRG 92 Computes the LU factorization of a real general matrix. 

LFTSF 164 Computes the U DUT factorization of a real symmetric 
matrix. 

LFTXG 301 Computes the LU factorization of a real general sparse 
matrix. 

LFTZG 314 Computes the LU factorization of a complex general 
sparse matrix. 

LINCG 121 Computes the inverse of a complex general matrix. 

LINCT 136 Computes the inverse of a complex triangular matrix. 

LINDS 154 Computes the inverse of a real symmetric positive 
definite matrix. 
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LINRG 101 Computes the inverse of a real general matrix. 

LINRT 128 Computes the inverse of a real triangular matrix. 

 LIN_EIG_GEN 439 Computes the eigenvalues of a self-adjoint  
matrix, A. 

 LIN_EIG_SELF 432 Computes the eigenvalues of a self-adjoint  
matrix, A. 

 LIN_GEIG_SELF 448 Computes the generalized eigenvalues of an n � n  
matrix pencil, Av = �Bv. 

 LIN_SOL_GEN 9 Solves a general system of linear equations Ax = b.  

 LIN_SOL_LSQ 27 Solves a rectangular system of linear equations Ax � b,  
in a least-squares sense. 

 LIN_SOL_SELF 17 Solves a system of linear equations Ax = b, where A is a 
self-adjoint matrix. 

 LIN_SOL_SVD  36 Solves a rectangular least-squares system of linear 
equations Ax � b using singular value decomposition. 

 LIN_SOL_TRI 44 Solves multiple systems of linear equations.  

 LIN_SVD 57 Computes the singular value decomposition (SVD) of a 
rectangular matrix, A. 

LNFXD 331 Computes the numerical Cholesky factorization of a 
sparse symmetrical matrix A. 

LNFZD 344 Computes the numerical Cholesky factorization of a 
sparse Hermitian matrix A. 

LQERR 396 Accumulates the orthogonal matrix Q from its factored 
form given the QR factorization of a rectangular matrix A. 

LQRRR 392 Computes the QR decomposition, AP = QR, using 
Householder transformations. 

LQRRV 381 Computes the least-squares solution using Householder 
transformations applied in blocked form. 

LQRSL 398 Computes the coordinate transformation, projection, and 
complete the solution of the least-squares problem Ax = b. 

LSACB 257 Solves a complex system of linear equations in band 
storage mode with iterative refinement. 

LSACG 103 Solves a complex general system of linear equations with 
iterative refinement. 

LSADH 173 Solves a Hermitian positive definite system of linear 
equations with iterative refinement. 

LSADS 138 Solves a real symmetric positive definite system of linear 
equations with iterative refinement. 
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LSAHF 191 Solves a complex Hermitian system of linear equations 
with iterative refinement. 

LSAQH 276 Solves a complex Hermitian positive definite system of 
linear equations in band Hermitian storage mode with 
iterative refinement. 

LSAQS 232 Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode with iterative 
refinement. 

LSARB 213 Solves a real system of linear equations in band storage 
mode with iterative refinement. 

LSARG 83 Solves a real general system of linear equations with 
iterative refinement. 

LSASF 156 Solves a real symmetric system of linear equations with 
iterative refinement. 

LSBRR 385 Solves a linear least-squares problem with iterative 
refinement. 

LSCXD 327 Performs the symbolic Cholesky factorization for a sparse 
symmetric matrix using a minimum degree ordering or a 
userspecified ordering, and set up the data structure for 
the numerical Cholesky factorization. 

LSGRR 424 Computes the generalized inverse of a real matrix. 

LSLCB 259 Solves a complex system of linear equations in band 
storage mode without iterative refinement. 

LSLCC 356 Solves a complex circulant linear system. 

LSLCG 106 Solves a complex general system of linear equations 
without iterative refinement. 

LSLCQ 253 Computes the LDU factorization of a complex tridiagonal 
matrix A using a cyclic reduction algorithm. 

LSLCR 211 Computes the LDU factorization of a real tridiagonal 
matrix A using a cyclic reduction algorithm. 

LSLCT 130 Solves a complex triangular system of linear equations. 

LSLDH 176 Solves a complex Hermitian positive definite system of 
linear equations without iterative refinement. 

LSLDS 140 Solves a real symmetric positive definite system of linear 
equations without iterative refinement. 

LSLHF 194 Solves a complex Hermitian system of linear equations 
without iterative refinement. 
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LSLPB 237 Computes the RT DR Cholesky factorization of a real 
symmetric positive definite matrix A in codiagonal band 
symmetric storage mode. Solve a system Ax = b. 

LSLQB 281 Computes the RH DR Cholesky factorization of a 
complex hermitian positive-definite matrix A in 
codiagonal band hermitian storage mode. Solve a system 
Ax = b. 

LSLQH 279 Solves a complex Hermitian positive definite system of 
linearequations in band Hermitian storage mode without 
iterative refinement. 

LSLQS 234 Solves a real symmetric positive definite system of linear 
equations in band symmetric storage mode without 
iterative refinement. 

LSLRB 216 Solves a real system of linear equations in band storage 
mode without iterative refinement. 

LSLRG 85 Solves a real general system of linear equations without 
iterative refinement. 

LSLRT 123 Solves a real triangular system of linear equations. 

LSLSF 159 Solves a real symmetric system of linear equations 
without iterative refinement. 

LSLTC 354 Solves a complex Toeplitz linear system. 

LSLTO 352 Solves a real Toeplitz linear system. 

LSLTQ 252 Solves a complex tridiagonal system of linear equations. 

LSLTR 209 Solves a real tridiagonal system of linear equations. 

LSLXD 323 Solves a sparse system of symmetric positive definite 
linear algebraic equations by Gaussian elimination. 

LSLXG 297 Solves a sparse system of linear algebraic equations by 
Gaussian elimination. 

LSLZD 340 Solves a complex sparse Hermitian positive definite 
system of linear equations by Gaussian elimination. 

LSLZG 309 Solves a complex sparse system of linear equations by 
Gaussian elimination. 

LSQRR 378 Solves a linear least-squares problem without iterative 
refinement. 

LSVCR 419 Computes the singular value decomposition of a complex 
matrix. 

LSVRR 415 Computes the singular value decomposition of a real 
matrix. 
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LUPCH 409 Updates the RTR Cholesky factorization of a real 
symmetric positive definite matrix after a rank-one matrix 
is added. 

LUPQR 402 Computes an updated QR factorization after the rank-one 
matrix �xyT is added. 

MCRCR 1423 Multiplies two complex rectangular matrices, AB. 

MOLCH 946 Solves a system of partial differential equations of the 
form ut = f(x, t, u, ux, uxx) using the method of lines. The 
solution is represented with cubic Hermite polynomials. 

MRRRR 1421 Multiplies two real rectangular matrices, AB. 

MUCBV 1436 Multiplies a complex band matrix in band storage mode 
by a complex vector. 

MUCRV 1435 Multiplies a complex rectangular matrix by a complex 
vector. 

MURBV 1433 Multiplies a real band matrix in band storage mode by a 
real vector. 

MURRV 1431 Multiplies a real rectangular matrix by a vector. 

MXTXF 1415 Computes the transpose product of a matrix, ATA. 

MXTYF 1416 Multiplies the transpose of matrix A by matrix B, ATB. 

MXYTF 1418 Multiplies a matrx A by the transpose of a matrix B, ABT. 

NAN 1486 Returns, as a scalar function, a value corresponding to the 
IEEE 754 Standard format of floating point (ANSI/IEEE 
1985) for NaN. . 

N1RTY 1680 Retrieves an error type for the most recently called IMSL 
routine. 

NDAYS 1634 Computes the number of days from January 1, 1900, to 
the given date. 

NDYIN 1636 Gives the date corresponding to the number of days since 
January 1, 1900. 

NEQBF 1169 Solves a system of nonlinear equations using factored 
secant update with a finite-difference approximation to 
the Jacobian. 

NEQBJ 1174 Solves a system of nonlinear equations using factored 
secant update with a user-supplied Jacobian. 

NEQNF 1162 Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm and a finite-difference 
approximation to the Jacobian. 
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NEQNJ 1165 Solves a system of nonlinear equations using a modified 
Powell hybrid algorithm with a user-supplied Jacobian. 

NNLPF 1323 Uses a sequential equality constrained QP method. 

NNLPG 1329 Uses a sequential equality constrained QP method. 

NORM 1487 Computes the norm of a rank-1 or rank-2 array. For rank-
3 arrays, the norms of each rank-2 array, in dimension 3, 
are computed. 

NR1CB 1449 Computes the 1-norm of a complex band matrix in band 
storage mode. 

NR1RB 1447 Computes the 1-norm of a real band matrix in band 
storage mode. 

NR1RR 1444 Computes the 1-norm of a real matrix. 

NR2RR 1446 Computes the Frobenius norm of a real rectangular 
matrix. 

NRIRR 1443 Computes the infinity norm of a real matrix. 

 OPERATOR: .h. 1472 Computes transpose and conjugate transpose of a matrix. 

OPERATOR: .hx. 1471 Computes matrix-vector and matrix-matrix products.  

OPERATOR:.i. 1473 Computes the inverse matrix, for square non-singular 
matrices. 

  OPERATOR:.ix. 1474 Computes the inverse matrix times a vector or matrix for 
square non-singular matrices. 

 OPERATOR:..t. 1472 Computes transpose and conjugate transpose of a matrix. 

 OPERATOR:.tx. 1471 Computes matrix-vector and matrix-matrix products.  

 OPERATOR:.x. 1471 Computes matrix-vector and matrix-matrix products.. 

 OPERATOR:..xh. 1471 Computes matrix-vector and matrix-matrix products.   

 OPERATOR:..xi. 1474 Computes the inverse matrix times a vector or matrix for 
square non-singular matrices. 

 OPERATORS:.xt. 1471 Computes matrix-vector and matrix-matrix products.  

ORTH 1488 Orthogonalizes the columns of a rank-2 or rank-3 array. 

PCGRC 359 Solves a real symmetric definite linear system using a 
preconditioned conjugate gradient method with reverse 
communication. 

PARALLEL_NONNEGATIVE_LSQ 67 Solves a linear, non-negative constrained least-squares  
system.  

 PARALLEL_BOUNDED_LSQ 75 Solves a linear least-squares system with bounds on  
the unknowns. 

 PDE_1D_MG 913 Method of lines with Variable Griddings.  
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PERMA 1602 Permutes the rows or columns of a matrix. 

PERMU 1600 Rearranges the elements of an array as specified by a 
permutation. 

PGOPT 1599 Sets or retrieves page width and length for printing. 

PLOTP 1664 Prints a plot of up to 10 sets of points. 

POLRG 1429 Evaluates a real general matrix polynomial. 

PP1GD 687 Evaluates the derivative of a piecewise polynomial on a 
grid. 

PPDER 684 Evaluates the derivative of a piecewise polynomial. 

PPITG 690 Evaluates the integral of a piecewise polynomial. 

PPVAL 681 Evaluates a piecewise polynomial. 

PRIME 1668 Decomposes an integer into its prime factors. 

QAND 806 Integrates a function on a hyper-rectangle. 

QCOSB 1041 Computes a sequence from its cosine Fourier coefficients 
with only odd wave numbers. 

QCOSF 1039 Computes the coefficients of the cosine Fourier transform 
with only odd wave numbers. 

QCOSI 1043 Computes parameters needed by QCOSF and QCOSB. 

QD2DR 699 Evaluates the derivative of a function defined on a 
rectangular grid using quadratic interpolation. 

QD2VL 696 Evaluates a function defined on a rectangular grid using 
quadratic interpolation. 

QD3DR 705 Evaluates the derivative of a function defined on a 
rectangular three-dimensional grid using quadratic 
interpolation. 

QD3VL 702 Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation. 

QDAG 775 Integrates a function using a globally adaptive scheme 
based on Gauss-Kronrod rules. 

QDAGI 782 Integrates a function over an infinite or semi-infinite 
interval. 

QDAGP 779 Integrates a function with singularity points given. 

QDAGS 772 Integrates a function (which may have endpoint 
singularities). 

QDAWC 796 Integrates a function F(X)/(X � C) in the Cauchy principal 
value sense. 

QDAWF 789 Computes a Fourier integral. 
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QDAWO 785 Integrates a function containing a sine or a cosine. 

QDAWS 793 Integrates a function with algebraic-logarithmic 
singularities. 

QDDER 694 Evaluates the derivative of a function defined on a set of 
points using quadratic interpolation. 

QDNG  799 Integrates a smooth function using a nonadaptive rule. 

QDVAL   692 Evaluates a function defined on a set of points using 
quadratic interpolation. 

QMC 809 Integrates a function over a hyperrectangle using a  
quasi-Monte Carlo method. 

 QPROG 1307 Solves a quadratic programming problem subject to linear 
equality/inequality constraints. 

 QSINB 1034 Computes a sequence from its sine Fourier coefficients 
with only odd wave numbers. 

 QSINF 1032  Computes the coefficients of the sine Fourier transform 
with only odd wave numbers. 

 QSINI 1037 Computes parameters needed by QSINF and QSINB. 

 RAND 1489 Computes a scalar, rank-1, rank-2 or rank-3 array of 
random numbers. 

 RAND_GEN 1639 Generates a rank-1 array of random numbers. 

 RANK 1490 Computes the mathematical rank of a rank-2 or rank-3 
array. 

RATCH 764 Computes a rational weighted Chebyshev approximation 
to a continuous function on an interval. 

RCONV 1059 Computes the convolution of two real vectors. 

RCORL 1068 Computes the correlation of two real vectors. 

RCURV 716 Fits a polynomial curve using least squares. 

RECCF 818 Computes recurrence coefficients for various monic 
polynomials. 

RECQR 821 Computes recurrence coefficients for monic polynomials 
given a quadrature rule. 

RLINE 713 Fits a line to a set of data points using least squares. 

RNGET 1648 Retrieves the current value of the seed used in the IMSL 
random number generators. 

RNOPT 1650 Selects the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

RNSET 1649 Initializes a random seed for use in the IMSL random 
number generators. 



 

 
 

B-26 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY 

 

 

 

y

RNUN 1653 Generates pseudorandom numbers from a uniform (0, 1) 
distribution. 

RNUNF 1651 Generates a pseudorandom number from a uniform (0, 1) 
distribution. 

SADD 1370 Adds a scalar to each component of a vector, x � x + a, 
all single precision. 

SASUM 1373 Sums the absolute values of the components of a single-
precision vector. 

SAXPY 1370 Computes the scalar times a vector plus a vector,  
y � ax + y, all single precision. 

ScaLaPACK_READ 1545 Reads matrix data from a file and transmits it into the 
two-dimensional block-cyclic form required by 
ScaLAPACK routines. 

ScaLaPACK_WRITE 1547 Writes the matrix data to a file. 

SCASUM 1322 Sums the absolute values of the real part together with the 
absolute values of the imaginary part of the components 
of a complex vector. 

SCNRM2 1322 Computes the Euclidean norm of a complex vector. 

SCOPY 1369 Copies a vector x to a vector y, both single precision. 

SDDOTA 1321 Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision 
accumulator, which is set to the result ACC � ACC + a + 
xTy. 

SDDOTI 1372 Computes the sum of a single-precision scalar plus a 
singleprecision dot product using a double-precision 
accumulator, which is set to the result ACC � a + xTy. 

SDOT 1370 Computes the single-precision dot product xTy. 

SDSDOT 1371 Computes the sum of a single-precision scalar and a 
single precision dot product, a + xTy, using a double-
precision accumulator. 

SGBMV 1381 Computes one of the matrix-vector operations: 
, 

where A is a matrix stored in band storage mode. 
y Ax y y A xT
� � � �� � � �,  or 

SGEMM 1385 Computes one of the matrix-matrix operations: 

. 
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or 
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SGEMV 1381 Computes one of the matrix-vector operations: 

, y Ax y y A xT
� � � �� � � �,  or 

SGER 1383 Computes the rank-one update of a real general matrix: 
. A A xyT

� ��

SHOW 1571 Prints rank-1 or rank-2 arrays of numbers in a readable 
format. 

SHPROD 1372 Computes the Hadamard product of two single-precision 
vectors. 

SINLP 1081 Computes the inverse Laplace transform of a complex 
function. 

SLCNT 986 Calculates the indices of eigenvalues of a Sturm-Liouville 
problem with boundary conditions (at regular points) in a 
specified subinterval of the real line, [�, �]. 

SLEIG 973 Determines eigenvalues, eigenfunctions and/or spectral 
density functions for Sturm-Liouville problems in the 
form with boundary conditions (at regular points). 

SLPRS 1301 Solves a sparse linear programming problem via the 
revised simplex algorithm. 

SNRM2 1373 Computes the Euclidean length or L� norm of a single-
precision vector. 

 SORT_REAL 1604 Sorts a rank-1 array of real numbers x so the y results are 
algebraically nondecreasing, y1 � y2 � � yn. 

SPLEZ  618 Computes the values of a spline that either interpolates or 
fits user-supplied data. 

 SPLINE_CONSTRAINTS  562 Returns the derived type array result. 

 SPLINE_FITTING  564 Weighted least-squares fitting by B-splines to discrete 
One-Dimensional data is performed.  

 SPLINE_VALUES  563 Returns an array result, given an array  
of input 

SPRDCT 1373 Multiplies the components of a single-precision vector. 

 SRCH 1618 Searches a sorted vector for a given scalar and return its 
index. 

 SROT 1375 Applies a Givens plane rotation in single precision. 

SROTG 1374 Constructs a Givens plane rotation in single precision. 

SROTM 1377 Applies a modified Givens plane rotation in single 
precision. 

SROTMG 1376 Constructs a modified Givens plane rotation in single 
precision. 
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y

SSBMV 1382 Computes the matrix-vector operation  
, 

where A is a symmetric matrix in band symmetric storage 
mode. 

y Ax� �� �

SSCAL 1369 Multiplies a vector by a scalar, y � ay, both single 
precision. 

 SSET 1369 Sets the components of a vector to a scalar, all single 
precision. 

 SSRCH 1622 Searches a character vector, sorted in ascending ASCII 
order, for a given string and return its index. 

SSUB 1370 Subtracts each component of a vector from a scalar,  
x � a � x, all single precision. 

SSUM 1372 Sums the values of a single-precision vector. 

SSWAP 1370 Interchanges vectors x and y, both single precision. 

SSYMM 1385 Computes one of the matrix-matrix operations: 
, 

where A is a symmetric matrix and B and C are m by n 
matrices. 

C AB C C BA� � �� � � � or +

SSYMV 1382 Computes the matrix-vector operation 
, 

where A is a symmetric matrix. 
y Ax� �� �

SSYR 1384 Computes the rank-one update of a real symmetric 
matrix: 
A A xxT
� �� . 

SSYR2 1384 Computes the rank-two update of a real symmetric 
matrix: 

. A A xy yxT T
� � �� �

SSYR2K 1386 Computes one of the symmetric rank 2k operations: 
, 

where C is an n by n symmetric matrix and A and B are n 
by k matrices in the first case and k by n matrices in the 
second case. 

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

SSYRK 1386 Computes one of the symmetric rank k operations: 
, 

where C is an n by n symmetric matrix and A is an n by k 
matrix in the first case and a k by n matrix in the second 
case. 

C AA C C A AT T
� � � �� � � or 

STBMV 1382 Computes one of the matrix-vector operations: 

where A is a triangular matrix in band storage mode. 
x Ax x AT
� �or , 
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x

x

B1 ,

x

STBSV 1383 Solves one of the triangular systems: 

, 

where A is a triangular matrix in band storage mode. 

x A x x A
T

� �
� �1 1 or e j

STRMM 1387 Computes one of the matrix-matrix operations: 
, 

where B is an m by n matrix and A is a triangular matrix. 
B AB B A B B BA B BAT T
� � � �� � � �, , or 

STRMV 1382 Computes one of the matrix-vector operations: 

where A is a triangular matrix. 
x Ax x AT
� �or , 

STRSM 1387 Solves one of the matrix equations: 

 

where B is an m by n matrix and A is a triangular matrix. 

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor 

STRSV 1383 Solves one of the triangular linear systems: 

 

where A is a triangular matrix. 

x A x x A
T

� �
� �1 1 or e j

SUMAG 1664 Sets or retrieves MATH/LIBRARY single-precision 
options. 

 SURF   710 Computes a smooth bivariate interpolant to scattered data 
that is locally a quintic polynomial in two variables. 

SURFACE_CONSTRAINTS   574 Returns the derived type array result given  
optional input.  

 SURFACE_FITTING  577 Weighted least-squares fitting by tensor product  
B-splines to discrete two-dimensional data  
is performed.  

 SURFACE_VALUES  575 Returns a tensor product array result, given two arrays of  
independent variable values. 

SVCAL 1369 Multiplies a vector by a scalar and store the result in 
another vector, y � ax, all single precision. 

SVD 1491 Computes the singular value decomposition of a rank-2 or 
rank-3 array, TA USV� . 

SVIBN 1615 Sorts an integer array by nondecreasing absolute value. 

SVIBP 1617 Sorts an integer array by nondecreasing absolute value 
and returns the permutation that rearranges the array. 

SVIGN 1610 Sorts an integer array by algebraically increasing value. 
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SVIGP 1611 Sorts an integer array by algebraically increasing value 
and returns the permutation that rearranges the array. 

SVRBN 1612 Sorts a real array by nondecreasing absolute value. 

SVRBP 1614 Sorts a real array by nondecreasing absolute value and 
returns the permutation that rearranges the array. 

SVRGN 1607 Sorts a real array by algebraically increasing value. 

SVRGP 1608 Sorts a real array by algebraically increasing value and 
returns the permutation that rearranges the array. 

SXYZ 1372 Computes a single-precision xyz product. 

TDATE 1633 Gets today’s date. 

TIMDY 1632 Gets time of day. 

TRNRR 1413 Transposes a rectangular matrix. 

TWODQ 801 Computes a two-dimensional iterated integral. 

UMACH 1688 Sets or retrieves input or output device unit numbers. 

UMAG 1661 Handles MATH/LIBRARY and STAT/LIBRARY type 
REAL and double precision options. 

UMCGF 1219 Minimizes a function of N variables using a conjugate 
gradient algorithm and a finite-difference gradient. 

UMCGG 1223 Minimizes a function of N variables using a conjugate 
gradient algorithm and a user-supplied gradient. 

UMIAH 1213 Minimizes a function of N variables using a modified 
Newton method and a user-supplied Hessian. 

UMIDH 1208 Minimizes a function of N variables using a modified 
Newton method and a finite-difference Hessian. 

UMINF 1196 Minimizes a function of N variables using a quasi-New 
method and a finite-difference gradient. 

UMING 1202 Minimizes a function of N variables using a quasi-New 
method and a user-supplied gradient. 

UMPOL 1227 Minimizes a function of N variables using a direct search 
polytope algorithm. 

UNIT 1492  Normalizes the columns of a rank-2 or rank-3 array so 
each has Euclidean length of value one. 

UNLSF 1231 Solves a nonlinear least squares problem using a modified 
Levenberg-Marquardt algorithm and a finite-difference 
Jacobian. 

UNLSJ 1237 Solves a nonlinear least squares problem using a modified 
Levenberg-Marquardt algorithm and a user-supplied 
Jacobian. 
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UVMGS 1193 Finds the minimum point of a nonsmooth function of a 
single variable. 

UVMID 1189 Finds the minimum point of a smooth function of a single 
variable using both function evaluations and first 
derivative evaluations. 

UVMIF 1186 Finds the minimum point of a smooth function of a single 
variable using only function evaluations. 

VCONC 1457 Computes the convolution of two complex vectors. 

VCONR 1455 Computes the convolution of two real vectors. 

VERML 1638 Obtains IMSL MATH/LIBRARY-related version, system 
and license numbers. 

WRCRL 1588 Prints a complex rectangular matrix with a given format 
and labels. 

WRCRN 1586 Prints a complex rectangular matrix with integer row and 
column labels. 

WRIRL 1583 Prints an integer rectangular matrix with a given format 
and labels. 

WRIRN 1581 Prints an integer rectangular matrix with integer row and 
column labels. 

WROPT 1591 Sets or retrieves an option for printing a matrix. 

WRRRL 1577 Prints a real rectangular matrix with a given format and 
labels. 

WRRRN 1575 Prints a real rectangular matrix with integer row and 
column labels. 

ZANLY 1153 Finds the zeros of a univariate complex function using 
Müller’s method. 

ZBREN 1156 Finds a zero of a real function that changes sign in a 
given interval. 

ZPLRC 1148 Finds the zeros of a polynomial with real coefficients 
using Laguerre’s method. 

ZPOCC 1152 Finds the zeros of a polynomial with complex coefficients 
using the Jenkins-Traub three-stage algorithm. 

ZPORC 1150 Finds the zeros of a polynomial with real coefficients 
using the Jenkins-Traub three-stage algorithm. 

ZQADD 1460 Adds a double complex scalar to the accumulator in 
extended precision. 

ZQINI 1460 Initializes an extended-precision complex accumulator to 
a double complex scalar. 
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ZQMUL 1460 Multiplies double complex scalars using extended 
precision. 

ZQSTO 1460 Stores a double complex approximation to an extended-
precision complex scalar. 

ZREAL 1159 Finds the real zeros of a real function using Müller’s 
method. 
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Product Support 

Contacting Visual Numerics Support 
Users within support warranty may contact Visual Numerics regarding the use of the IMSL 
Libraries. Visual Numerics can consult on the following topics: 

 Clarity of documentation 

 Possible Visual Numerics-related programming problems 

 Choice of IMSL Libraries functions or procedures for a particular problem 

 Evolution of the IMSL Libraries 

Not included in these consultation topics are mathematical/statistical consulting and debugging of 
your program.  

Consultation 
Contact Visual Numerics Product Support by faxing 713/781-9260 or by emailing: 

  support@houston.vni.com. 

The following describes the procedure for consultation with Visual Numerics. 

1. Include your serial (or license) number 

2. Include the product name and version number: IMSL Fortran Library Version 5.0 

3. Include compiler and operating system version numbers 

4. Include the name of the routine for which assistance is needed and a description of the 
problem 
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