
Mathematical Functions in Fortran

IMSL Fortran Library User’s Guide
MATH/LIBRARY Volume 1 of 2

Trusted For Over Years30

Mathematical Functions in Fortran

IMSL Fortran Library User’s Guide
MATH/LIBRARY Volume 1 of 2

P/N 7693 [w w w . v n i . c o m]

Visual Numerics, Inc. – United States
Corporate Headquarters
2000 Crow Canyon Place, Suite 270
San Ramon, CA 94583
PHONE: 925-807-0138
FAX: 925-807-0145
e-mail: info@vni.com
Westminster, CO
PHONE: 303-379-3040

Houston, TX
PHONE: 713-784-3131

Visual Numerics International Ltd.
Sussex House
6 The Forbury
Reading, Berkshire RGI 3EJ
UNITED KINGDOM

PHONE: +44-1-189 25-3370
FAX: +44 –1-189-25-3371
e-mail: info@vniuk.co.uk
Support: support@vniuk.co.uk

Visual Numerics SARL
Immeuble le Wilson 1
70, avenue due General de Gaulle
F-92058 PARIS LA DEFENSE, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C. V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-55-514-9730 or 9628
FAX: +52-55-514-4873

Visual Numerics International GmbH
Zettachring 10
D-70567Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4TH Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 102

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC

PHONE: +(886) 2-2727-2255
FAX: +(886) 2-2727-6798
e-mail: info@vni.com.tw

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050
KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273--2634
e-mail: info@vni.co.kr

World Wide Web site: http://www.vni.com

COPYRIGHT NOTICE: Copyright 1994-2003 by Visual Numerics, Inc. All rights reserved. Unpublished–rights reserved under the
copyright laws of the United States.
Printed in the USA.

The information contained in this document is subject to change without notice.

This document is provided AS IS, with NO WARRANTY. VISUAL NUMERICS, INC., SHALL NOT BE LIABLE FOR ANY
ERRORS WHICH MAY BE CONTAINED HEREIN OR FOR INCIDENTAL, CONSEQUENTIAL, OR OTHER INDIRECT
DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL. [Carol: note case
change]

IMSL, PV- WAVE, and Visual Numerics are registered in the U.S. Patent and Trademark Office by, and PV- WAVE Advantage is a
trademark of, Visual Numerics, Inc.

TRADEMARK NOTICE: The following are trademarks or registered trademarks of their respective owners, as follows: Microsoft,
Windows, Windows 95, Windows NT, Internet Explorer — Microsoft Corporation; Motif — The Open Systems Foundation, Inc.;
PostScript — Adobe Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts Institute of
Technology; RISC System/6000 and IBM — International Business Machines Corporation; Sun, Java, JavaBeans — Sun
Microsystems, Inc.; JavaScript, Netscape Communicator — Netscape, Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC,
VAX, VMS, OpenVMS — Compaq Information Technologies Group, L.P./Hewlett Packard Corporation; Tektronix 4510 Rasterizer —
Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; SPARCstation — SPARC International, licensed exclusively to Sun
Microsystems, Inc.; HyperHelp — Bristol Technology, Inc. Other products and company names mentioned herein are trademarks of
their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and
proprietary information. No part of this document may be reproduced or transmitted in any form without the prior written consent of
Visual Numerics.

RESTRICTED RIGHTS NOTICE: This documentation is provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the
US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer software — Restricted Rights clause
at FAR 52.227-19, and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is Visual
Numerics, Inc., 2500 Wilcrest Drive, Suite 200, Houston, TX 77042-2759.

IMSL Fortran, C, and Java
Application Development Tools

IMSL MATH/LIBRARY Contents � i

Contents

Volume I

Introduction xiii

Chapter 1: Linear Systems 1

Chapter 2: Eigensystem Analysis 427

Chapter 3: Interpolation and Approximation 553

Chapter 4: Integration and Differentiation 769

Appendix A: GAMS Index A-1

Appendix B: Alphabetical Summary of Routines B-1

Appendix C: References C-1

Product Support i

Index iii

Volume II

Chapter 5: Differential Equations 833

Chapter 6: Transforms 989

ii � Contents IMSL MATH/LIBRARY

Chapter 7: Nonlinear Equations 1147

Chapter 8: Optimization 1181

Chapter 9: Basic Matrix/Vector Operations 1363

Chapter 10: Linear Algebra Operators and Generic Functions 1463

Chapter 11: Utilities 1549

Reference Material 1675

Appendix A: GAMS Index A-1

Appendix B: Alphabetical Summary of Routines B-1

Appendix C: References C-1

Product Support i

Index iii

IMSL MATH/LIBRARY Introduction � xiii

Introduction

The IMSL Fortran Library
The IMSL Fortran Library consists of two separate but coordinated Libraries that allow easy user
access. These Libraries are organized as follows:
� MATH/LIBRARY general applied mathematics and special functions
 The User�s Guide for IMSL MATH/LIBRARY has two parts:

1. MATH/LIBRARY (Volumes 1 and 2)
2. MATH/LIBRARY Special Functions

� STAT/LIBRARY statistics

Most of the routines are available in both single and double precision versions. Many routines for
linear solvers and eigensystems are also available for complex and complex-double precision
arithmetic. The same user interface is found on the many hardware versions that span the range
from personal computer to supercomputer.

This library is the result of a merging of the products: IMSL Fortran Numerical Libraries and
IMSL Fortran 90 Library.

User Background
To use this product you should be familiar with the Fortran 90 language as well as the
FORTRAN 77 language, which is, in practice, a subset of Fortran 90. A summary of the ISO and
ANSI standard language is found in Metcalf and Reid (1990). A more comprehensive illustration
is given in Adams et al. (1992).

Those routines implemented in the IMSL Fortran Library provide a simpler, more reliable user
interface than was possible with FORTRAN 77. Features of the IMSL Fortran Library include the
use of descriptive names, short required argument lists, packaged user-interface blocks, a suite of
testing and benchmark software, and a collection of examples. Source code is provided for the
benchmark software and examples.

Some of the routines in the IMSL Fortran Library can take advantage of a standard (MPI)
Message Passing Interface environment. Gray shading in the documentation cues the reader when
this is an issue.

However, MPI is not required to use any of the routines in the Library. All documented routines
can be called in a scalar environment.

xiv � Introduction IMSL MATH/LIBRARY

Getting Started
The IMSL MATH/LIBRARY is a collection of FORTRAN routines and functions useful in
mathematical analysis research and application development. Each routine is designed and
documented to be used in research activities as well as by technical specialists.

To use any of these routines, you must write a program in FORTRAN 90 (or possibly some other
language) to call the MATH/LIBRARY routine. Each routine conforms to established conventions
in programming and documentation. We give first priority in development to efficient algorithms,
clear documentation, and accurate results. The uniform design of the routines makes it easy to use
more than one routine in a given application. Also, you will find that the design consistency
enables you to apply your experience with one MATH/LIBRARY routine to all other IMSL rou-
tines that you use.

Finding the Right Routine
The MATH/LIBRARY is organized into chapters; each chapter contains routines with similar
computational or analytical capabilities. To locate the right routine for a given problem, you may
use either the table of contents located in each chapter introduction, or the alphabetical list of
routines. The GAMS index uses GAMS classification (Boisvert, R.F., S.E. Howe, D.K. Kahaner,
and J. L. Springmann 1990, Guide to Available Mathematical Software, National Institute of
Standards and Technology NISTIR 90-4237). Use the GAMS index to locate which
MATH/LIBRARY routines pertain to a particular topic or problem.

Often the quickest way to use the MATH/LIBRARY is to find an example similar to your problem
and then to mimic the example. Each routine document has at least one example demonstrating its
application. The example for a routine may be created simply for illustration, it may be from a
textbook (with reference to the source), or it may be from the mathematical literature.

Organization of the Documentation
This manual contains a concise description of each routine, with at least one demonstrated exam-
ple of each routine, including sample input and results. You will find all information pertaining to
the MATH/LIBRARY in this manual. Moreover, all information pertaining to a particular routine
is in one place within a chapter.

Each chapter begins with an introduction followed by a table of contents that lists the routines
included in the chapter. Documentation of the routines consists of the following information:
� IMSL Routine�s Generic Name
� Purpose: a statement of the purpose of the routine. If the routine is a function rather than a

subroutine the purpose statement will reflect this fact.
� Function Return Value: a description of the return value (for functions only).
� Required Arguments: a description of the required arguments in the order of their occurrence.

Input arguments usually occur first, followed by input/output arguments, with output
arguments described last. Futhermore, the following terms apply to arguments:

Input Argument must be initialized; it is not changed by the routine.

Input/Output Argument must be initialized; the routine returns output through this
argument; cannot be a constant or an expression.

IMSL MATH/LIBRARY Introduction � xv

Input or Output Select appropriate option to define the argument as either input or
output. See individual routines for further instructions.

Output No initialization is necessary; cannot be a constant or an expression. The routine
returns output through this argument.

� Optional Arguments: a description of the optional arguments in the order of their occurrence.
� Fortran 90 Interface: a section that describes the generic and specific interfaces to the routine.
� Fortran 77 Style Interface: an optional section, which describes Fortran 77 style interfaces, is

supplied for backwards compatibility with previous versions of the Library.
� Example: at least one application of this routine showing input and required dimension and

type statements.
� Output: results from the example(s).
� Comments: details pertaining to code usage.
� Description: a description of the algorithm and references to detailed information. In many

cases, other IMSL routines with similar or complementary functions are noted.
� Programming notes: an optional section that contains programming details not covered

elsewhere.
� References: periodicals and books with details of algorithm development.
� Additional Examples: an optional section with additional applications of this routine showing

input and required dimension and type statements.

Naming Conventions
The names of the routines are mnemonic and unique. Most routines are available in both a single
precision and a double precision version, with names of the two versions sharing a common root.
The root name is also the generic interface name. The name of the double precision specific
version begins with a �D_.� The single precision specific version begins with an �S_�. For
example, the following pairs are precision specific names of routines in the two different
precisions: S_GQRUL/D_GQRUL (the root is �GQRUL ,� for �Gauss quadrature rule�) and
S_RECCF/D_RECCF (the root is �RECCF,� for �recurrence coefficient�). The precision specific
names of the IMSL routines that return or accept the type complex data begin with the letter �C_�
or �Z_� for complex or double complex, respectively. Of course the generic name can be used as
an entry point for all precisions supported.

When this convention is not followed the generic and specific interfaces are noted in the
documentation. For example, in the case of the BLAS and trigonometric intrinsic functions where
standard names are already established, the standard names are used as the precision specific
names. There may also be other interfaces supplied to the routine to provide for backwards
compatibility with previous versions of the Library. These alternate interfaces are noted in the
documentation when they are available.

Except when expressly stated otherwise, the names of the variables in the argument lists follow
the FORTRAN default type for integer and floating point. In other words, a variable whose name
begins with one of the letters �I� through �N� is of type INTEGER, and otherwise is of type REAL
or DOUBLE PRECISION, depending on the precision of the routine.

An assumed-size array with more than one dimension that is used as a FORTRAN argument can
have an assumed-size declarator for the last dimension only. In the MATH/LIBRARY routines,
the information about the first dimension is passed by a variable with the prefix �LD� and with the

xvi � Introduction IMSL MATH/LIBRARY

array name as the root. For example, the argument LDA contains the leading dimension of array A.
In most cases, information about the dimensions of arrays is obtained from the array through the
use of Fortran 90�s size function. Therefore, arguments carrying this type of information are
usually defined as optional arguments.

Where appropriate, the same variable name is used consistently throughout a chapter in the
MATH/LIBRARY. For example, in the routines for random number generation, NR denotes the
number of random numbers to be generated, and R or IR denotes the array that stores the numbers.

When writing programs accessing the MATH/LIBRARY, the user should choose FORTRAN
names that do not conflict with names of IMSL subroutines, functions, or named common blocks.
The careful user can avoid any conflicts with IMSL names if, in choosing names, the following
rules are observed:
� Do not choose a name that appears in the Alphabetical Summary of Routines, at the end of the

User�s Manual, nor one of these names preceded by a D, S_, D_, C_, or Z_.
� Do not choose a name consisting of more than three characters with a numeral in the second

or third position.

For further details, see the section on �Reserved Names� in the Reference Material.

Using Library Subprograms
The documentation for the routines uses the generic name and omits the prefix, and hence the
entire suite of routines for that subject is documented under the generic name.

Examples that appear in the documentation also use the generic name. To further illustrate this
principle, note the lin_sol_gen documentation (see Chapter 1, Linear Systems), for solving
general systems of linear algebraic equations. A description is provided for just one data type.
There are four documented routines in this subject area: s_lin_sol_gen, d_lin_sol_gen,
c_lin_sol_gen, and z_lin_sol_gen.

These routines constitute single-precision, double-precision, complex, and complex double-
precision versions of the code.

The appropriate routine is identified by the Fortran 90 compiler. Use of a module is required with
the routines. The naming convention for modules joins the suffix �_int� to the generic routine
name. Thus, the line �use lin_sol_gen_int� is inserted near the top of any routine that calls
the subprogram �lin_sol_gen�. More inclusive modules are also available. For example, the
module named �imsl_libraries� contains the interface modules for all routines in the library.

When dealing with a complex matrix, all references to the transpose of a matrix, AT , are replaced
by the adjoint matrix

A A AT H
� �

�
where the overstrike denotes complex conjugation. IMSL Fortran Library linear algebra software
uses this convention to conserve the utility of generic documentation for that code subject.
References to orthogonal matrices are replaced by their complex counterparts, unitary matrices.
Thus, an n � n orthogonal matrix Q satisfies the condition Q Q IT

n� . An n � n unitary matrix V
satisfies the analogous condition for complex matrices, V V In

*
� .

IMSL MATH/LIBRARY Introduction � xvii

Programming Conventions
In general, the IMSL MATH/LIBRARY codes are written so that computations are not affected by
underflow, provided the system (hardware or software) places a zero value in the register. In this
case, system error messages indicating underflow should be ignored.

IMSL codes also are written to avoid overflow. A program that produces system error messages
indicating overflow should be examined for programming errors such as incorrect input data,
mismatch of argument types, or improper dimensioning.

In many cases, the documentation for a routine points out common pitfalls that can lead to failure
of the algorithm.

Library routines detect error conditions, classify them as to severity, and treat them accordingly.
This error-handling capability provides automatic protection for the user without requiring the user
to make any specific provisions for the treatment of error conditions. See the section on �User
Errors� in the Reference Material for further details.

Module Usage
Users are required to incorporate a �use� statement near the top of their program for the IMSL
routine being called when writing new code that uses this library. However, legacy code which
calls routines in the previous version of the library without the use of a �use� statement will
continue to work as before. Also, code which employed the �use numerical_libraries� statement
from the previous version of the library will continue to work properly with this version of the
library.

Users wishing to update existing programs so as to call other routines from this library should
incorporate a use statement for the specific new routine being called. (Here, the term �new
routine� implies any routine in the library, only �new� to the user�s program.) Use of the more
encompassing �imsl_libraries� module in this case could result in argument mismatches for
the �old� routine(s) being called. (This would be caught by the compiler.)

Users wishing to update existing programs so as to call the new generic versions of the routines
must change their calls to the existing routines so as to match the new calling sequences and use
either the routine specific interface modules or the all encompassing �imsl_libraries� module.

Programming Tips
It is strongly suggested that users force all program variables to be explicitly typed. This is done
by including the line �IMPLICIT NONE� as close to the first line as possible. Study some of the
examples accompanying an IMSL Fortran Library routine early on. These examples are available
online as part of the product.

Each subject routine called or otherwise referenced requires the �use� statement for an interface
block designed for that subject routine. The contents of this interface block are the interfaces to the
separate routines available for that subject. Packaged descriptive names for option numbers that
modify documented optional data or internal parameters might also be provided in the interface
block. Although this seems like an additional complication, many typographical errors are avoided
at an early stage in development through the use of these interface blocks. The �use� statement is
required for each routine called in the user�s program. As illustrated in Examples 3 and 4 in
routine lin_geig_gen, the �use� statement is required for defining the secondary option flags.

xviii � Introduction IMSL MATH/LIBRARY

The function subprogram for s_NaN() or d_NaN() does not require an interface block because
it has only a �required� dummy argument. Also, if one is only using the Fortran 77 interfaces
supplied for backwards compatibility then the �use� statements are not required.

Optional Subprogram Arguments
IMSL Fortran Library routines have required arguments and may have optional arguments. All
arguments are documented for each routine. For example, consider the routine lin_sol_gen that
solves the linear algebraic matrix equation Ax = b. The required arguments are three rank-2
Fortran 90 arrays: A, b, and x. The input data for the problem are the A and b arrays; the solution
output is the x array. Often there are other arguments for this linear solver that are closely
connected with the computation but are not as compelling as the primary problem. The inverse
matrix A�1 may be needed as part of a larger application. To output this parameter, use the
optional argument given by the �ainv=� keyword. The rank-2 output array argument used on the
right-hand side of the equal sign contains the inverse matrix. See Example 2 in Chapter 1, �Linear
Solvers� of lin_sol_gen for an example of computing the inverse matrix.

For compatibility with previous versions of the IMSL Libraries, the NUMERICAL_LIBRARIES
interface module includes backwards compatible positional argument interfaces to all routines
which existed in the Fortran 77 version of the Library. Note that it is not necessary to use �use�
statements when calling these routines by themselves. Existing programs which called these
routines will continue to work in the same manner as before.

Some of the primary routines have arguments �epack=� and �iopt=�. As noted the �epack=�
argument is of derived type s_error or d_error. The prefix �s_� or �d_� is chosen
depending on the precision of the data type for that routine. These optional arguments are part of
the interface to certain routines, and are used to modify internal algorithm choices or other
parameters.

Optional Data
This additional optional argument (available for some routines) is further distinguished�a derived
type array that contains a number of parameters to modify the internal algorithm of a routine. This
derived type has the name ?_options, where �?_� is either �s_� or �d_�. The choice depends
on the precision of the data type. The declaration of this derived type is packaged within the
modules for these codes.

The definition of the derived types is:
 type ?_options
 integer idummy; real(kind(?)) rdummy
 end type

where the �?_� is either �s_� or �d_�, and the kind value matches the desired data type
indicated by the choice of �s� or �d�.

Example 3 in Chapter 1, �Linear Solvers� of lin_sol_gen illustrates the use of iterative
refinement to compute a double-precision solution based on a single-precision factorization of the
matrix. This is communicated to the routine using an optional argument with optional data. For
efficiency of iterative refinement, perform the factorization step once, then save the factored
matrix in the array A and the pivoting information in the rank-1 integer array, ipivots. By
default, the factorization is normally discarded. To enable the routine to be re-entered with a
previously computed factorization of the matrix, optional data are used as array entries in the

IMSL MATH/LIBRARY Introduction � xix

�iopt=� optional argument. The packaging of lin_sol_gen includes the definitions of the self-
documenting integer parameters lin_sol_gen_save_LU and lin_sol_gen_solve_A. These
parameters have the values 2 and 3, but the programmer usually does not need to be aware of it.
The following rules apply to the �iopt=iopt� optional argument:

1. Define a relative index, for example IO, for placing option numbers and data into the
array argument iopt. Initially, set IO = 1. Before a call to the IMSL Library routine,
follow Steps 2 through 4.

2. The data structure for the optional data array has the following form:
iopt (IO) = ?_options (Option_number, Optional_data)
[iopt (IO + 1) =?_options (Option_number, Optional_data)]

The length of the data set is specified by the documentation for an individual routine.
(The Optional_data is output in some cases and may not be used in other cases.) The
square braces [. . .] denote optional items.

Illustration: Example 3 in Chapter 2, �Singular Value and Eigenvalue Decomposition�
of lin_eig_self, a new definition for a small diagonal term is passed to
lin_sol_self. There is one line of code required for the change and the new
tolerance:

iopt (1) = d_options(d_lin_sol_self_set_small,
epsilon(one) *abs (d(i)))

3. The internal processing of option numbers stops when Option_number == 0 or when
IO > size(iopt). This sends a signal to each routine having this optional argument
that all desired changes to default values of internal parameters have been made. This
implies that the last option number is the value zero or the value of size (iopt)
matches the last optional value changed.

4. To add more options, replace IO with IO + n, where n is the number of items required
for the previous option. Go to Step 2.

Option numbers can be written in any order, and any selected set of options can be chosen to be
changed from the defaults. They may be repeated. Example 3 in Chapter 1, �Linear Solvers� of
lin_sol_self uses three and then four option numbers for purposes of computing an
eigenvector associated with a known eigenvalue.

Error Handling
The routines in the IMSL MATH/LIBRARY attempt to detect and report errors and invalid input.
Errors are classified and are assigned a code number. By default, errors of moderate or worse
severity result in messages being automatically printed by the routine. Moreover, errors of worse
severity cause program execution to stop. The severity level as well as the general nature of the
error is designated by an �error type� with numbers from 0 to 5. An error type 0 is no error; types
1 through 5 are progressively more severe. In most cases, you need not be concerned with our
method of handling errors. For those interested, a complete description of the error-handling
system is given in the Reference Material, which also describes how you can change the default
actions and access the error code numbers.

xx � Introduction IMSL MATH/LIBRARY

A separate error handler is provided to allow users to handle errors of differing types being
reported from several nodes without danger of �jumbling� or mixing error messages. The design
of this error handler is described more fully in Hanson (1992). The primary feature of the design is
the use of a separate array for each parallel call to a routine. This allows the user to summarize
errors using the routine error_post in a non-parallel part of an application. For a more
detailed discussion of the use of this error handler in applications which use MPI for distributed
computing, see the Reference Material.

Printing Results
Most of the routines in the IMSL MATH/LIBRARY (except the line printer routines and special
utility routines) do not print any of the results. The output is returned in FORTRAN variables, and
you can print these yourself. See Chapter 11, �Utilities,� for detailed descriptions of these
routines.

A commonly used routine in the examples is the IMSL routine UMACH (see the Reference chapter
of this manual), which retrieves the FORTRAN device unit number for printing the results.
Because this routine obtains device unit numbers, it can be used to redirect the input or output.
The section on �Machine-Dependent Constants� in the Reference Material contains a description
of the routine UMACH.

Fortran 90 Constructs
 The IMSL Fortran Library contains routines which take advantage of

Fortran 90 language constructs, including Fortran 90 array data types. One
feature of the design is that the default use may be as simple as the problem
statement. Complicated, professional-quality mathematical software is
hidden from the casual or beginning user.

MPI REQUIRED

Users of the IMSL Fortran Library benefit by a standard (MPI) Message
Passing Interface environment. This is needed to accomplish parallel
computing within parts of the documentation. Light shading in the
documentation cues the reader when this is an issue. If parallel computing
is not required, then the MP Library suite of dummy MPI routines can be
substituted for standard MPI routines. All requested MPI routines called by
the MP Library are in this dummy suite. Warning messages will appear if a
code or example requires more than one process to execute. Typically users
need not be aware of the parallel codes.
Note that a standard MPI environment is not part of the IMSL Fortran
Library. The standard includes a library of MPI Fortran and C routines,
MPI �include� files, usage documentation, and other run-time utilities.

 In addition, high-level operators and functions are provided in the Library.
They are described in Chapter 10, �Operators and Generic Functions - The
Parallel Option.� For information on writing a more compact and readable
code, see Chapter 10, Linear Algebra Operators and Generic Functions. 1

1 Important Note: Please refer to the �Table of Contents� for locations of chapter references, example references, and
function references.

IMSL MATH/LIBRARY Introduction � xxi

Using IMSL Fortran Library on Shared-Memory
Multiprocessors

The IMSL Fortran Library allows users to leverage the high-performance technology of shared
memory parallelism (SMP) when their environment supports it. Support for SMP systems within
the IMSL Library is delivered through various means, depending upon the availability of
technologies such as OpenMP, high performance BLAS, and hardware-specific IMSL algorithms.
Use of the IMSL Fortran Library on SMP systems can be achieved by using the appropriate link
environment variable when building your application. Details on the available link environment
variables for your installation of the IMSL Fortran Library can be found in the online README
file of the product distribution.

Using Operators and Generic Functions
For users who are primarily interested in easy-to-use software for numerical linear algebra, see
Chapter 10, �Linear Algebra Operators and Generic Functions.� This compact notation for
writing Fortran 90 programs, when it applies, results in code that is easier to read and maintain
than traditional subprogram usage.

Note that the leading examples in Chapters 1 and 2 have been written using operators and generic
functions whenever appropriate. These examples are named as shown in Chapter 10, Table A -
�Examples and Corresponding Operators.� Less code is typically needed to compute equivalent
results.

Users may begin their code development using operators and generic functions. If a more efficient
executable code is required, a user may need to switch to equivalent subroutine calls using IMSL
Fortran Library routines.

Defined Array Operation Matrix Operation
A .x. B AB
.i. A A�1

.t. A, .h. A A AT , *

A .ix. B A B�1
B .xi. A BA�1
A .tx. B, or (.t. A) .x. B

A .hx. B, or (.h. A) .x. B
A B A BT , *

B .xt. A, or B .x. (.t. A)

B .xh. A, or B .x. (.h. A)
BA BAT , *

xxii � Introduction IMSL MATH/LIBRARY

Defined Array Functions Matrix Operation
S=SVD(A [,U=U, V=V]) A USV T

�
E=EIG(A [[,B=B, D=D],

V=V, W=W])

(AV = VE), AVD = BVE
(AW = WE), AWD = BWE

R=CHOL(A) A R RT
�

Q=ORTH(A [,R=R]) A QR Q Q IT
� �a f,

U=UNIT(A) u a a1 1 1, / ,� ��

F=DET(A) det(A) = determinant
K=RANK(A) rank(A) = rank
P=NORM(A[,[type=]i])

p A a

p A s

p A a

j ij
i

m

huge i ij
j

n

� �

� � �

� �

�

��

�

�

1
1

2 1

1

max ()

max ()

 largest singular va

=1
a f

C=COND(A) s srank A1 / a f

Z=EYE(N) Z IN�

A=DIAG(X) A diag x� 1,�b g
X=DIAGONALS(A) x a� 11,�b g
W=FFT(Z); Z=IFFT(W) Discrete Fourier Transform, Inverse
A=RAND(A) random numbers, 0 < A < 1
L=isNaN(A) test for NaN, if (l) then�

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 1

Chapter 1: Linear Systems

Routines
1.1. Linear Solvers

1.1.1 Solves a general system of linear equations
 Ax = b...LIN_SOL_GEN 9

1.1.2 Solves a system of linear equations Ax = b, where A is a self-adjoint
matrix...LIN_SOL_SELF 17

1.1.3 Solves a rectangular system of linear equations Ax � b,
in a least-squares sense ...LIN_SOL_LSQ 27

1.1.4 Solves a rectangular least-squares system of linear equations
Ax � b using singular value decomposition............ LIN_SOL_SVD 36

1.1.5 Solves multiple systems of linear equations............ LIN_SOL_TRI 44

1.1.6 Computes the singular value decomposition (SVD)
of a rectangular matrix, A...LIN_SVD 57

1.2. Large-Scale Parallel Solvers

1.2.1 Parallel Constrained Least-Squares Solvers.................................. 67

1.2.2 Solves a linear, non-negative constrained least-squares
system..................................... PARALLEL_NONNEGATIVE_LSQ 67

1.2.3 Solves a linear least-squares system with bounds on
the unknowns.................................. PARALLEL_BOUNDED_LSQ 75

1.3. Solution of Linear Systems, Matrix Inversion, and
Determinant Evaluation

1.3.1 Real General Matrices
High accuracy linear system solutionLSARG 83
Solves a linear system... LSLRG 85
Factors and computes condition numberLFCRG 89
Factors ... LFTRG 92
Solves after factoring ...LFSRG 94
High accuracy linear system solution after factoring LFIRG 96

2 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Computes determinant after factoring................................. LFDRG 99
Inverts... LINRG 101

1.3.2 Complex General Matrices
High accuracy linear system solution.................................. LSACG 103
Solves a linear system ...LSLCG 106
Factors and computes condition number LFCCG 108
Factors..LFTCG 111
Solves a linear system after factoring LFSCG 114
High accuracy linear system solution after factoring.............LFICG 116
Computes determinant after factoring................................. LFDCG 119
Inverts... LINCG 121

1.3.3 Real Triangular Matrices
Solves a linear system ... LSLRT 123
Computes condition number ..LFCRT 125
Computes determinant after factoring..................................LFDRT 127
Inverts.. LINRT 128

1.3.4 Complex Triangular Matrices
Solves a linear system ... LSLCT 130
Computes condition number ..LFCCT 132
Computes determinant after factoring..................................LFDCT 134
Inverts.. LINCT 136

1.3.5 Real Positive Definite Matrices

High accuracy linear system solution...................................LSADS 138
Solves a linear system ... LSLDS 140
Factors and computes condition numberLFCDS 143
Factors.. LFTDS 146
Solve a linear system after factoringLFSDS 148
High accuracy linear system solution after factoring............. LFIDS 150
Computes determinant after factoring..................................LFDDS 153
Inverts..LINDS 154

1.3.6 Real Symmetric Matrices
High accuracy linear system solution................................... LSASF 156
Solves a linear system ... LSLSF 159
Factors and computes condition number LFCSF 162
Factors.. LFTSF 164
Solves a linear system after factoring LFSSF 167
High accuracy linear system solution after factoring..............LFISF 169
Computes determinant after factoring.................................. LFDSF 172

1.3.7 Complex Hermitian Positive Definite Matrices
High accuracy linear system solution.................................. LSADH 173
Solves a linear system ...LSLDH 176
Factors and computes condition number LFCDH 179
Factors..LFTDH 182
Solves a linear system after factoringLFSDH 185
High accuracy linear system solution after factoring............. LFIDH 187
Computes determinant after factoring................................. LFDDH 190

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 3

1.3.8 Complex Hermitian Matrices
High accuracy linear system solution LSAHF 191
Solves a linear system..LSLHF 194
Factors and computes condition number LFCHF 197
Factors ..LFTHF 200
Solves a linear system after factoring...................................LFSHF 202
High accuracy linear system solution after factoringLFIHF 204
Computes determinant after factoring LFDHF 207

1.3.9 Real Band Matrices in Band Storage
Solves a tridiagonal system ..LSLTR 209
Solves a tridiagonal system: Cyclic Reduction LSLCR 211
High accuracy linear system solution LSARB 213
Solves a linear system..LSLRB 216
Factors and compute condition number LFCRB 219
Factors ..LFTRB 222
Solves a linear system after factoring.................................. LFSRB 225
High accuracy linear system solution after factoringLFIRB 227
Computes determinant after factoring LFDRB 230

1.3.10 Real Band Symmetric Positive Definite Matrices in Band Storage
High accuracy linear system solutionLSAQS 232
Solves a linear system... LSLQS 234
Solves a linear system..LSLPB 237
Factors and computes condition numberLFCQS 240
Factors ... LFTQS 243
Solves a linear system after factoring.................................. LFSQS 245
High accuracy linear system solution after factoringLFIQS 247
Computes determinant after factoringLFDQS 250

1.3.11 Complex Band Matrices in Band Storage
Solves a tridiagonal system ..LSLTQ 252
Solves a tridiagonal system: Cyclic Reduction LSLCQ 254
High accuracy linear system solution LSACB 257
Solves a linear system..LSLCB 259
Factors and computes condition number LFCCB 262
Factors ..LFTCB 265
Solves a linear system after factoring.................................. LFSCB 268
High accuracy linear system solution after factoringLFICB 271
Computes determinant after factoring LFDCB 274

1.3.12 Complex Band Positive Definite Matrices in Band Storage
High accuracy linear system solutionLSAQH 276
Solves a linear system... LSLQH 279
Solves a linear system... LSLQB 282
Factors and compute condition numberLFCQH 284
Factors ... LFTQH 288
Solves a linear system after factoring..................................LFSQH 290
High accuracy linear system solution after factoring LFIQH 292
Computes determinant after factoringLFDQH 295

1.3.13 Real Sparse Linear Equation Solvers

4 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Solves a sparse linear system ...LSLXG 297
Factors..LFTXG 301
Solves a linear system after factoringLFSXG 306

1.3.14 Complex Sparse Linear Equation Solvers
Solves a sparse linear system ... LSLZG 309
Factors.. LFTZG 314
Solves a linear system after factoringLFSZG 319

1.3.15 Real Sparse Symmetric Positive Definite Linear Equation Solvers
Solves a sparse linear system ... LSLXD 323
Symbolic Factor... LSCXD 327
Computes Factor..LNFXD 331
Solves a linear system after factoringLFSXD 336

1.3.16 Complex Sparse Hermitian Positive Definite Linear Equation Solvers
Solves a sparse linear system ... LSLZD 340
Computes Factor..LNFZD 344
Solves a linear system after factoring LFSZD 349

1.3.17 Real Toeplitz Matrices in Toeplitz Storage
Solves a linear system ... LSLTO 352

1.3.18 Complex Toeplitz Matrices in Toeplitz Storage
Solves a linear system ... LSLTC 354

1.3.19 Complex Circulant Matrices in Circulant Storage
Solves a linear system ...LSLCC 356

1.3.20 Iterative Methods
Preconditioned conjugate gradient..................................... PCGRC 359
Jacobi conjugate gradient ... JCGRC 365
Generalized minimum residual... GMRES 368

1.4. Linear Least Squares and Matrix Factorization
1.4.1 Least Squares, QR Decomposition and Generalized Inverse

Solves a Least-squares system .. LSQRR 378
Solves a Least-squares system .. LQRRV 381
High accuracy Least squares.. LSBRR 385
Linearly constrained Least squaresLCLSQ 388
QR decomposition...LQRRR 392
Accumulation of QR decomposition LQERR 396
QR decomposition Utilities ...LQRSL 398
QR factor update ... LUPQR 402

1.4.2 Cholesky Factorization
Cholesky factoring for rank deficient matricesLCHRG 406
Cholesky factor update.. LUPCH 409
Cholesky factor down-date.. LDNCH 412

1.4.3 Singular Value Decomposition (SVD)
Real singular value decomposition LSVRR 415
Complex singular value decomposition............................... LSVCR 419
Generalized inverse .. LSGRR 424

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 5

Usage Notes
Section 1.1 describes routines for solving systems of linear algebraic equations by direct matrix
factorization methods, for computing only the matrix factorizations, and for computing linear
least-squares solutions.

Section 1.2 describes routines for solving systems of parallel constrained least-squares.

Many of the routines described in sections 1.3 and 1.4 are for matrices with special properties or
structure. Computer time and storage requirements for solving systems with coefficient matrices
of these types can often be drastically reduced, using the appropriate routine, compared with using
a routine for solving a general complex system.

The appropriate matrix property and corresponding routine can be located in the “Routines”
section. Many of the linear equation solver routines in this chapter are derived from subroutines
from LINPACK, Dongarra et al. (1979). Other routines have been developed by Visual Numerics
staff, derived from draft versions of LAPACK subprograms, Bischof et al. (1988), or were
obtained from alternate sources.

A system of linear equations is represented by Ax = b where A is the n � n coefficient data matrix,
b is the known right-hand-side n-vector, and x is the unknown or solution n-vector. Figure 1-1
summarizes the relationships among the subroutines. Routine names are in boxes and input/output
data are in ovals. The suffix ** in the subroutine names depend on the matrix type. For example,
to compute the determinant of A use LFC** or LFT** followed by LFD**.

The paths using LSA** or LFI** use iterative refinement for a more accurate solution. The path
using LSA** is the same as using LFC** followed by LFI**. The path using LSL** is the same as
the path using LFC** followed by LFS**. The matrix inversion routines LIN** are available only
for certain matrix types.

Matrix Types
The two letter codes for the form of coefficient matrix, indicated by ** in Figure 1-1, are as
follows:

RG Real general (square) matrix.

CG Complex general (square) matrix.

TR or CR Real tridiagonal matrix.

RB Real band matrix.

TQ or CQ Complex tridiagonal matrix.

CB Complex band matrix.

SF Real symmetric matrix stored in the upper half of a square matrix.

DS Real symmetric positive definite matrix stored in the upper half of a square matrix.

DH Complex Hermitian positive definite matrix stored in the upper half of a complex
square matrix.

6 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

HF Complex Hermitian matrix stored in the upper half of a complex square matrix.

QS or PB Real symmetric positive definite band matrix.

QH or QB Complex Hermitian positive definite band matrix.

XG Real general sparse matrix.

ZG Complex general sparse matrix.

XD Real symmetric positive definite sparse matrix.

ZD Complex Hermitian positive definite sparse matrix.

A

b
LFT** LFC**

LFD**LFI**
LFS**

LIN** LSA**
LSL**

Condition
number

Factorization

DeterminantA�� x = A b
or

x = A b

��

�T

Figure 1-1 Solution and Factorization of Linear Systems

Solution of Linear Systems
The simplest routines to use for solving linear equations are LSL** and LSA** For example, the
mnemonic for matrices of real general form is RG. So, the routines LSLRG (page 85) and LSARG
(page 83) are appropriate to use for solving linear systems when the coefficient matrix is of real
general form. The routine LSARG uses iterative refinement, and more time than LSLRG, to
determine a high accuracy solution.

The high accuracy solvers provide maximum protection against extraneous computational errors.
They do not protect the results from instability in the mathematical approximation. For a more

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 7

complete discussion of this and other important topics about solving linear equations, see Rice
(1983), Stewart (1973), or Golub and van Loan (1989).

Multiple Right Sides
There are situations where the LSL** and LSA** routines are not appropriate. For example, if the
linear system has more than one right-hand-side vector, it is most economical to solve the system
by first calling a factoring routine and then calling a solver routine that uses the factors. After the
coefficient matrix has been factored, the routine LFS** or LFI** can be used to solve for one
right-hand side at a time. Routines LFI** uses iterative refinement to determine a high accuracy
solution but requires more computer time and storage than routines LFS**.

Determinants
The routines for evaluating determinants are named LFD**. As indicated in Figure 1-1, these
routines require the factors of the matrix as input. The values of determinants are often badly
scaled. Additional complications in structures for evaluating them result from this fact. See Rice
(1983) for comments on determinant evaluation.

Iterative Refinement
Iterative refinement can often improve the accuracy of a well-posed numerical solution. The
iterative refinement algorithm used is as follows:

x� = A��b
For i = 1, 50
 ri = Axi�� � b computed in higher precision
 pi = A�� ri
 xi = xi�� - pi
 if (|| pi ||� � �|| xi ||�) Exit
End for
Error — Matrix is too ill-conditioned

If the matrix A is in single precision, then the residual ri = Axi���� � b is computed in double
precision. If A is in double precision, then quadruple-precision arithmetic routines are used.

The use of the value 50 is arbitrary. In fact a single correction is usually sufficient. It is also
helpful even when ri is computed in the same precision as the data.

Matrix Inversion
An inverse of the coefficient matrix can be computed directly by one of the routines named
LIN**. These routines are provided for general matrix forms and some special matrix forms.
When they do not exist, or when it is desirable to compute a high accuracy inverse, the two-step
technique of calling the factoring routine followed by the solver routine can be used. The inverse
is the solution of the matrix system AX = I where I denotes the n � n identity matrix, and the
solution is X = A��.

8 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Singularity
The numerical and mathematical notions of singularity are not the same. A matrix is considered
numerically singular if it is sufficiently close to a mathematically singular matrix. If error
messages are issued regarding an exact singularity then specific error message level reset actions
must be taken to handle the error condition. By default, the routines in this chapter stop. The
solvers require that the coefficient matrix be numerically nonsingular. There are some tests to
determine if this condition is met. When the matrix is factored, using routines LFC**, the
condition number is computed. If the condition number is large compared to the working
precision, a warning message is issued and the computations are continued. In this case, the user
needs to verify the usability of the output. If the matrix is determined to be mathematically
singular, or ill-conditioned, a least-squares routine or the singular value decomposition routine
may be used for further analysis.

Special Linear Systems
Toeplitz matrices have entries which are constant along each diagonal, for example:

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

p p p p
p p p p

A
p p p p
p p p p

�

� �

� � �

� �
� �
� ��
� �
� �
� �� �

Real Toeplitz systems can be solved using LSLTO, page 352. Complex Toeplitz systems can be
solved using LSLTC, page 354.

Circulant matrices have the property that each row is obtained by shifting the row above it one
place to the right. Entries that are shifted off at the right reenter at the left. For example:

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

p p p p
p p p p

A
p p p p
p p p p

� �
� �
� ��
� �
� �
� �� �

Complex circulant systems can be solved using LSLCC, page 356.

Iterative Solution of Linear Systems
The preconditioned conjugate gradient routines PCGRC, page 359, and JCGRC, page 365, can be
used to solve symmetric positive definite systems. The routines are particularly useful if the
system is large and sparse. These routines use reverse communication, so A can be in any storage
scheme. For general linear systems, use GMRES, page 368.

QR Decomposition
The QR decomposition of a matrix A consists of finding an orthogonal matrix Q, a permutation
matrix P, and an upper trapezoidal matrix R with diagonal elements of nonincreasing magnitude,
such that AP = QR. This decomposition is determined by the routines LQRRR, page 392, or LQRRV,

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 9

page 381. It returns R and the information needed to compute Q. To actually compute Q use
LQERR, page 396. Figure 1-2 summarizes the relationships among the subroutines.

The QR decomposition can be used to solve the linear system Ax = b. This is equivalent to
Rx = QTPb. The routine LQRSL, page 398, can be used to find QTPb from the information
computed by LQRRR. Then x can be computed by solving a triangular system using LSLRT,
page 123. If the system Ax = b is overdetermined, then this procedure solves the least-squares
problem, i.e., it finds an x for which

2

2
Ax b�

is a minimum.

If the matrix A is changed by a rank-1 update, A � A + �xyT, the QR decomposition of A can be
updated/down-dated using the routine LUPQR, page 402. In some applications a series of linear
systems which differ by rank-1 updates must be solved. Computing the QR decomposition once
and then updating or down-dating it usually faster than newly solving each system.

A

LUPQR

LQRSL

Least-squares
solution

QR decomposition

Qb, Q b,T

Q

b
A��A + �xyT

LQERR

LQRRR or LQRRV

Figure 1-2 Least-Squares Routine

LIN_SOL_GEN
Solves a general system of linear equations Ax = b. Using optional arguments, any of several
related computations can be performed. These extra tasks include computing the LU factorization
of A using partial pivoting, representing the determinant of A, computing the inverse matrix A-1,
and solving TA x b� or Ax = b given the LU factorization of A.

Required Arguments
A — Array of size n � n containing the matrix. (Input [/Output])

10 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

B — Array of size n � nb containing the right-hand side matrix. (Input [/Output])

X — Array of size n � nb containing the solution matrix.(Output)

Optional Arguments
NROWS = n (Input)

Uses array A(1:n, 1:n) for the input matrix.
Default: n = size (A, 1)

NRHS = nb (Input)
Uses array b(1:n, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

pivots = pivots(:) (Output [/Input])
Integer array of size n that contains the individual row interchanges. To construct the
permuted order so that no pivoting is required, define an integer array ip(n). Initialize
ip(i) = i, i = 1, n and then execute the loop, after calling lin_sol_gen,

k=pivots(i)
interchange ip(i) and ip(k), i=1,n

The matrix defined by the array assignment that permutes the rows,
A(1:n, 1:n) = A(ip(1:n), 1:n), requires no pivoting for maintaining numerical
stability. Now, the optional argument “iopt=” and the packaged option number
?_lin_sol_gen_no_pivoting can be safely used for increased efficiency during
the LU factorization of A.

det = det(1:2) (Output)
Array of size 2 of the same type and kind as A for representing the determinant of the
input matrix. The determinant is represented by two numbers. The first is the base with
the sign or complex angle of the result. The second is the exponent. When det(2) is
within exponent range, the value of this expression is given by abs(det(1))**det(2) *
(det(1))/abs(det(1)). If the matrix is not singular, abs(det(1)) = radix(det);
otherwise, det(1) = 0., and det(2) = � huge(abs(det(1))).

ainv = ainv(:,:) (Output)
Array of the same type and kind as A(1:n, 1:n). It contains the inverse matrix, A-1,
when the input matrix is nonsingular.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing
optional data to the routine. The options are as follows:

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 11

Packaged Options for lin_sol_gen

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_gen_set_small 1

s_, d_, c_, z_ lin_sol_gen_save_LU 2

s_, d_, c_, z_ lin_sol_gen_solve_A 3

s_, d_, c_, z_ lin_sol_gen_solve_ADJ 4

s_, d_, c_, z_ lin_sol_gen_no_pivoting 5

s_, d_, c_, z_ lin_sol_gen_scan_for_NaN 6

s_, d_, c_, z_ lin_sol_gen_no_sing_mess 7

s_, d_, c_, z_ lin_sol_gen_A_is_sparse 8

iopt(IO) = ?_options(?_lin_sol_gen_set_small, Small)
Replaces a diagonal term of the matrix U if it is smaller in magnitude than the value
Small using the same sign or complex direction as the diagonal. The system is declared
singular. A solution is approximated based on this replacement if no overflow results.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_sol_gen_set_save_LU, ?_dummy)
Saves the LU factorization of A. Requires the optional argument “pivots=” if the
routine will be used later for solving systems with the same matrix. This is the only
case where the input arrays A and b are not saved. For solving efficiency, the diagonal
reciprocals of the matrix U are saved in the diagonal entries of A.

iopt(IO) = ?_options(?_lin_sol_gen_solve_A, ?_dummy)
Uses the LU factorization of A computed and saved to solve Ax = b.

iopt(IO) = ?_options(?_lin_sol_gen_solve_ADJ, ?_dummy)

Uses the LU factorization of A computed and saved to solve ATx = b.

iopt(IO) = ?_options(?_lin_sol_gen_no_pivoting, ?_dummy)
Does no row pivoting. The array pivots (:), if present, are output as pivots (i) = i,
for i = 1, �, n.

iopt(IO) = ?_options(?_lin_sol_gen_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs.
iopt(IO) = ?_options(?_lin_sol_gen_no_sing_mess,?_dummy)

Do not point an error message when the matrix A is singular.

12 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

iopt(IO) = ?_options(?_lin_sol_gen_A_is_sparse,?_dummy)
Uses an indirect updating loop for the LU factorization that is efficient for sparse
matrices where all matrix entries are stored.

FORTRAN 90 Interface
Generic: CALL LIN_SOL_GEN (A, B, X [,…])

Specific: The specific interface names are S_LIN_SOL_GEN, D_LIN_SOL_GEN,
C_LIN_SOL_GEN, and Z_LIN_SOL_GEN.

Example 1: Solving a Linear System of Equations
This example solves a linear system of equations. This is the simplest use of lin_sol_gen. The
equations are generated using a matrix of random numbers, and a solution is obtained
corresponding to a random right-hand side matrix. Also, see operator_ex01, Chapter 10, for this
example using the operator notation.

 use lin_sol_gen_int
 use rand_gen_int
 use error_option_packet

 implicit none

! This is Example 1 for LIN_SOL_GEN.

 integer, parameter :: n=32
 real(kind(1e0)), parameter :: one=1e0
 real(kind(1e0)) err
 real(kind(1e0)) A(n,n), b(n,n), x(n,n), res(n,n), y(n**2)

! Generate a random matrix.
 call rand_gen(y)
 A = reshape(y,(/n,n/))

! Generate random right-hand sides.
 call rand_gen(y)
 b = reshape(y,(/n,n/))

! Compute the solution matrix of Ax=b.
 call lin_sol_gen(A, b, x)

! Check the results for small residuals.
 res = b - matmul(A,x)
 err = maxval(abs(res))/sum(abs(A)+abs(b))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_SOL_GEN is correct.'
 end if

 end

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 13

Output

Example 1 for LIN_SOL_GEN is correct.

 Description
Routine LIN_SOL_GEN solves a system of linear algebraic equations with a nonsingular
coefficient matrix A. It first computes the LU factorization of A with partial pivoting such that
LU A� . The matrix U is upper triangular, while the following is true:

1
1 1 1 1n n n nL A L P L P L P A U�

� �

� ��

The factors Pi and Li are defined by the partial pivoting. Each Pi is an interchange of row i with
row j 	 i. Thus, Pi is defined by that value of j. Every

T
i i iL I m e� �

is an elementary elimination matrix. The vector im is zero in entries 1, ..., i. This vector is stored
as column i in the strictly lower-triangular part of the working array containing the decomposition
information. The reciprocals of the diagonals of the matrix U are saved in the diagonal of the
working array. The solution of the linear system Ax = b is found by solving two simpler systems,

1y L b�

� and 1x U y�

�

more mathematical details are found in Golub and Van Loan (1989, Chapter 3).

Additional Examples

Example 2: Matrix Inversion and Determinant
This example computes the inverse and determinant of A, a random matrix. Tests are made on the
conditions

1AA I�

�

and

� � � �
11det detA A �

�

�

Also, see operator_ex02.

 use lin_sol_gen_int
 use rand_gen_int

 implicit none

! This is Example 2 for LIN_SOL_GEN.

 integer i
 integer, parameter :: n=32
 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
 real(kind(1e0)) err
 real(kind(1e0)) A(n,n), b(n,0), inv(n,n), x(n,0), res(n,n), &

14 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 y(n**2), determinant(2), inv_determinant(2)

! Generate a random matrix.

 call rand_gen(y)
 A = reshape(y,(/n,n/))

! Compute the matrix inverse and its determinant.

 call lin_sol_gen(A, b, x, nrhs=0, &
 ainv=inv, det=determinant)

! Compute the determinant for the inverse matrix.

 call lin_sol_gen(inv, b, x, nrhs=0, &
 det=inv_determinant)

! Check residuals, A times inverse = Identity.

 res = matmul(A,inv)
 do i=1, n
 res(i,i) = res(i,i) - one
 end do
! <= sqrt(epsilon(one)))*abs(determinant(2))) then

 err = sum(abs(res)) / sum(abs(a))
 if (err <= sqrt(epsilon(one))) then
 if (determinant(1) == inv_determinant(1) .and. &
 (abs(determinant(2)+inv_determinant(2)) &
 <= abs(determinant(2))*sqrt(epsilon(one)))) then
 write (*,*) 'Example 2 for LIN_SOL_GEN is correct.'
 end if
 end if

 end

Output
Example 2 for LIN_SOL_GEN is correct.

Example 3: Solving a System with Iterative Refinement
This example computes a factorization of a random matrix using single-precision arithmetic. The
double-precision solution is corrected using iterative refinement. The corrections are added to the
developing solution until they are no longer decreasing in size. The initialization of the derived
type array iopti(1:2) = s_option(0,0.0e0) leaves the integer part of the second element
of iopti(:) at the value zero. This stops the internal processing of options inside lin_sol_gen.
It results in the LU factorization being saved after exit. The next time the routine is entered the
integer entry of the second element of iopt(:) results in a solve step only. Since the LU
factorization is saved in arrays A(:,:) and ipivots(:), at the final step, solve only steps can
occur in subsequent entries to lin_sol_gen. Also, see operator_ex03,Chapter 10.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 15

 use lin_sol_gen_int
 use rand_gen_int

 implicit none

! This is Example 3 for LIN_SOL_GEN.

 integer, parameter :: n=32
 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
 real(kind(1d0)), parameter :: d_zero=0.0d0
 integer ipivots(n)
 real(kind(1e0)) a(n,n), b(n,1), x(n,1), w(n**2)
 real(kind(1e0)) change_new, change_old
 real(kind(1d0)) c(n,1), d(n,n), y(n,1)
 type(s_options) :: iopti(2)=s_options(0,zero)

! Generate a random matrix.

 call rand_gen(w)
 a = reshape(w, (/n,n/))

! Generate a random right hand side.

 call rand_gen(b(1:n,1))

! Save double precision copies of the matrix and right hand side.

 d = a
 c = b

! Start solution at zero.

 y = d_zero
 change_old = huge(one)

! Use packaged option to save the factorization.

 iopti(1) = s_options(s_lin_sol_gen_save_LU,zero)

 iterative_refinement: do
 b = c - matmul(d,y)
 call lin_sol_gen(a, b, x, &
 pivots=ipivots, iopt=iopti)
 y = x + y
 change_new = sum(abs(x))

! Exit when changes are no longer decreasing.

 if (change_new >= change_old) &
 exit iterative_refinement
 change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
 iopti(2) = s_options(s_lin_sol_gen_solve_A,zero)

16 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 end do iterative_refinement
 write (*,*) 'Example 3 for LIN_SOL_GEN is correct.'
 end

Output
Example 3 for LIN_SOL_GEN is correct.

Example 4: Evaluating the Matrix Exponential
This example computes the solution of the ordinary differential equation problem

dy Ay
dt

�

with initial values y(0) = y0. For this example, the matrix A is real and constant with respect to t� .
The unique solution is given by the matrix exponential:

� � 0
Aty t e y�

This method of solution uses an eigenvalue-eigenvector decomposition of the matrix
1A XDX �

�

to evaluate the solution with the equivalent formula

� � 0
Dty t Xe z�

where
1

0 0z X y�

�

is computed using the complex arithmetic version of lin_sol_gen. The results for y(t) are real
quantities, but the evaluation uses intermediate complex-valued calculations. Note that the
computation of the complex matrix X and the diagonal matrix D is performed using the IMSL
MATH/LIBRARY FORTRAN 77 interface to routine EVCRG. This is an illustration of intermixing
interfaces of FORTRAN 77 and Fortran 90 code. The information is made available to the Fortran
90 compiler by using the FORTRAN 77 interface for EVCRG. Also, see operator_ex04, Chapter
10, where the Fortran 90 function EIG() has replaced the call to EVCRG.

 use lin_sol_gen_int
 use rand_gen_int
 use Numerical_Libraries

 implicit none

! This is Example 4 for LIN_SOL_GEN.

 integer, parameter :: n=32, k=128
 real(kind(1e0)), parameter :: one=1.0e0, t_max=1, delta_t=t_max/(k-1)
 real(kind(1e0)) err, A(n,n), atemp(n,n), ytemp(n**2)
 real(kind(1e0)) t(k), y(n,k), y_prime(n,k)
 complex(kind(1e0)) EVAL(n), EVEC(n,n)
 complex(kind(1e0)) x(n,n), z_0(n,1), y_0(n,1), d(n)
 integer i

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 17

! Generate a random matrix in an F90 array.

 call rand_gen(ytemp)
 atemp = reshape(ytemp,(/n,n/))

! Assign data to an F77 array.
 A = atemp

! Use IMSL Numerical Libraries F77 subroutine for the
! eigenvalue-eigenvector calculation.
 CALL EVCRG(N, A, N, EVAL, EVEC, N)

! Generate a random initial value for the ODE system.
 call rand_gen(ytemp(1:n))
 y_0(1:n,1) = ytemp(1:n)

! Assign the eigenvalue-eigenvector data to F90 arrays.
 d = EVAL; x = EVEC

! Solve complex data system that transforms the initial values, Xz_0=y_0.
 call lin_sol_gen(x, y_0, z_0)
 t = (/(i*delta_t,i=0,k-1)/)

! Compute y and y' at the values t(1:k).
 y = matmul(x, exp(spread(d,2,k)*spread(t,1,n))* &
 spread(z_0(1:n,1),2,k))
 y_prime = matmul(x, spread(d,2,k)* &
 exp(spread(d,2,k)*spread(t,1,n))* &
 spread(z_0(1:n,1),2,k))

! Check results. Is y' - Ay = 0?
 err = sum(abs(y_prime-matmul(atemp,y))) / &
 (sum(abs(atemp))*sum(abs(y)))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_SOL_GEN is correct.'
 end if

 end

Output

'Example 4 for LIN_SOL_GEN is correct.

Fatal and Terminal Error Messages
See the messages.gls file for error messages for lin_sol_gen. The messages are numbered
161�175; 181�195; 201�215; 221�235.

LIN_SOL_SELF
Solves a system of linear equations Ax = b, where A is a self-adjoint matrix. Using optional argu-
ments, any of several related computations can be performed. These extra tasks include computing

18 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

and saving the factorization of A using symmetric pivoting, representing the determinant of A,
computing the inverse matrix A-1, or computing the solution of Ax = b given the factorization of A.
An optional argument is provided indicating that A is positive definite so that the Cholesky
decomposition can be used.

Required Arguments
A — Array of size n � n containing the self-adjoint matrix. (Input [/Output]

B — Array of size n � nb containing the right-hand side matrix. (Input [/Output]

X — Array of size n � nb containing the solution matrix. (Input [/Output]

Optional Arguments
NROWS = n (Input)

Uses array A(1:n, 1:n) for the input matrix.
Default: n = size(A, 1)

NRHS = nb (Input)
Uses the array b(1:n, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

pivots = pivots(:) (Output [/Input])
Integer array of size n + 1 that contains the individual row interchanges in the first n
locations. Applied in order, these yield the permutation matrix P. Location n + 1
contains the number of the first diagonal term no larger than Small, which is defined on
the next page of this chapter.

det = det(1:2) (Output)
Array of size 2 of the same type and kind as A for representing the determinant of the
input matrix. The determinant is represented by two numbers. The first is the base with
the sign or complex angle of the result. The second is the exponent. When det(2) is
within exponent range, the value of the determinant is given by the expression
abs(det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular, abs(det(1))
= radix(det); otherwise, det(1) = 0., and
det(2) = �huge(abs(det(1))).

ainv = ainv(:,:) (Output)
Array of the same type and kind as A(1:n, 1:n). It contains the inverse matrix,
A-1 when the input matrix is nonsingular.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing
optional data to the routine. The options are as follows:

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 19

Packaged Options for lin_sol_self

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ Lin_sol_self_set_small 1

s_, d_, c_, z_ Lin_sol_self_save_factors 2

s_, d_, c_, z_ Lin_sol_self_no_pivoting 3

s_, d_, c_, z_ Lin_sol_self_use_Cholesky 4

s_, d_, c_, z_ Lin_sol_self_solve_A 5

s_, d_, c_, z_ Lin_sol_self_scan_for_NaN 6

s_, d_, c_, z_ Lin_sol_self_no_sing_mess 7

iopt(IO) = ?_options(?_lin_sol_self_set_small, Small)
When Aasen’s method is used, the tridiagonal system Tu = v is solved using LU
factorization with partial pivoting. If a diagonal term of the matrix U is smaller in
magnitude than the value Small, it is replaced by Small. The system is declared
singular. When the Cholesky method is used, the upper-triangular matrix R, (see
“Description”), is obtained. If a diagonal term of the matrix R is smaller in magnitude
than the value Small, it is replaced by Small. A solution is approximated based on this
replacement in either case.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_sol_self_save_factors, ?_dummy)
Saves the factorization of A. Requires the optional argument “pivots=” if the routine
will be used for solving further systems with the same matrix. This is the only case
where the input arrays A and b are not saved. For solving efficiency, the diagonal
reciprocals of the matrix R are saved in the diagonal entries of A when the Cholesky
method is used.

iopt(IO) = ?_options(?_lin_sol_self_no_pivoting, ?_dummy)
Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) = i + 1 for
i = 1, �, n � 1 when using Aasen’s method. When using the Cholesky method,
pivots(i) = i for i = 1, �, n.

iopt(IO) = ?_options(?_lin_sol_self_use_Cholesky, ?_dummy)

The Cholesky decomposition PAPT = RTR is used instead of the Aasen method.

iopt(IO) = ?_options(?_lin_sol_self_solve_A, ?_dummy)
Uses the factorization of A computed and saved to solve Ax = b.

iopt(IO) = ?_options(?_lin_sol_self_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs

20 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

iopt(IO) = ?_options(?_lin_sol_self_no_sing_mess,?_dummy)
Do not print an error message when the natrix A is singular.

FORTRAN 90 Interface
Generic: CALL LIN_SOL_SELF (A, B, X [,…])

Specific: The specific interface names are S_LIN_SOL_SELF, D_LIN_SOL_SELF,
C_LIN_SOL_SELF, and Z_LIN_SOL_SELF.

Example 1: Solving a Linear Least-squares System
This example solves a linear least-squares system Cx � d, where Cmxn is a real matrix with m � n.
The least-squares solution is computed using the self-adjoint matrix

TA C C�

and the right-hand side
Tb A d�

The n � n self-adjoint system Ax = b is solved for x. This solution method is not as satisfactory, in
terms of numerical accuracy, as solving the system Cx � d directly by using the routine
lin_sol_lsq. Also, see operator_ex05, Chapter 10.

 use lin_sol_self_int

use rand_gen_int

 implicit none

! This is Example 1 for LIN_SOL_SELF.

 integer, parameter :: m=64, n=32
 real(kind(1e0)), parameter :: one=1e0
 real(kind(1e0)) err
 real(kind(1e0)), dimension(n,n) :: A, b, x, res, y(m*n),&
 C(m,n), d(m,n)

! Generate two rectangular random matrices.
 call rand_gen(y)
 C = reshape(y,(/m,n/))

 call rand_gen(y)
 d = reshape(y,(/m,n/))

! Form the normal equations for the rectangular system.
 A = matmul(transpose(C),C)
 b = matmul(transpose(C),d)

! Compute the solution for Ax = b.
 call lin_sol_self(A, b, x)

! Check the results for small residuals.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 21

 res = b - matmul(A,x)
 err = maxval(abs(res))/sum(abs(A)+abs(b))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_SOL_SELF is correct.'
 end if

 end

Output

Example 1 for LIN_SOL_SELF is correct.

Description
Rountine LIN_SOL_SELF routine solves a system of linear algebraic equations with a nonsingular
coefficient matrix A. By default, the routine computes the factorization of A using Aasen’s
method. This decomposition has the form

T TPAP LTL�

where P is a permutation matrix, L is a unit lower-triangular matrix, and T is a tridiagonal self-
adjoint matrix. The solution of the linear system Ax = b is found by solving simpler systems,

1u L Pb�

�

 Tv = u

and
T Tx P L v�

�

More mathematical details for real matrices are found in Golub and Van Loan (1989, Chapter 4).

When the optional Cholesky algorithm is used with a positive definite, self-adjoint matrix, the
factorization has the alternate form

T TPAP R R�

 where P is a permutation matrix and R is an upper-triangular matrix. The solution of the linear
system Ax = b is computed by solving the systems

Tu R Pb�

�

and
1Tx P R u�

�

The permutation is chosen so that the diagonal term is maximized at each step of the
decomposition. The individual interchanges are optionally available in the argument “pivots”.

22 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Additional Examples

Example 2: System Solving with Cholesky Method
This example solves the same form of the system as Example 1. The optional argument “iopt=”
is used to note that the Cholesky algorithm is used since the matrix A is positive definite and self-
adjoint. In addition, the sample covariance matrix

2 1A�
�

� �

is computed, where
2

2 d Cx
m n

�

�

�

�

the inverse matrix is returned as the “ainv=” optional argument. The scale factor 2
� and � are

computed after returning from the routine. Also, see operator_ex06, Chapter 10.

 use lin_sol_self_int
 use rand_gen_int
 use error_option_packet

 implicit none

! This is Example 2 for LIN_SOL_SELF.

 integer, parameter :: m=64, n=32
 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
 real(kind(1e0)) err
 real(kind(1e0)) a(n,n), b(n,1), c(m,n), d(m,1), cov(n,n), x(n,1), &
 res(n,1), y(m*n)
 type(s_options) :: iopti(1)=s_options(0,zero)

! Generate a random rectangular matrix and a random right hand side.

 call rand_gen(y)
 c = reshape(y,(/m,n/))

 call rand_gen(d(1:n,1))

! Form the normal equations for the rectangular system.

 a = matmul(transpose(c),c)
 b = matmul(transpose(c),d)

! Use packaged option to use Cholesky decomposition.

 iopti(1) = s_options(s_lin_sol_self_Use_Cholesky,zero)

! Compute the solution of Ax=b with optional inverse obtained.

 call lin_sol_self(a, b, x, ainv=cov, &
 iopt=iopti)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 23

! Compute residuals, x - (inverse)*b, for consistency check.

 res = x - matmul(cov,b)

! Scale the inverse to obtain the covariance matrix.

 cov = (sum((d-matmul(c,x))**2)/(m-n)) * cov

! Check the results.

 err = sum(abs(res))/sum(abs(cov))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_SOL_SELF is correct.'
 end if

 end

Output

Example 2 for LIN_SOL_SELF is correct.

Example 3: Using Inverse Iteration for an Eigenvector
This example illustrates the use of the optional argument “iopt=” to reset the value of a Small
diagonal term encountered during the factorization. Eigenvalues of the self-adjoint matrix

TA C C�

are computed using the routine lin_eig_self. An eigenvector, corresponding to one of these
eigenvalues, �, is computed using inverse iteration. This solves the near singular system
(A � �I)x = b for an eigenvector, x. Following the computation of a normalized eigenvector

xy
x

�

the consistency condition
Ty Ay� �

is checked. Since a singular system is expected, suppress the fatal error message that normally
prints when the error post-processor routine error_post is called within the routine
lin_sol_self. Also, see operator_ex07, Chapter 10.

 use lin_sol_self_int
 use lin_eig_self_int
 use rand_gen_int
 use error_option_packet

 implicit none

! This is Example 3 for LIN_SOL_SELF.

24 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 integer i, tries
 integer, parameter :: m=8, n=4, k=2
 integer ipivots(n+1)
 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
 real(kind(1d0)) err
 real(kind(1d0)) a(n,n), b(n,1), c(m,n), x(n,1), y(m*n), &
 e(n), atemp(n,n)
 type(d_options) :: iopti(4)

! Generate a random rectangular matrix.

 call rand_gen(y)
 c = reshape(y,(/m,n/))

! Generate a random right hand side for use in the inverse
! iteration.

 call rand_gen(y(1:n))
 b = reshape(y,(/n,1/))

! Compute the positive definite matrix.

 a = matmul(transpose(c),c)

! Obtain just the eigenvalues.

 call lin_eig_self(a, e)

! Use packaged option to reset the value of a small diagonal.
 iopti = d_options(0,zero)
 iopti(1) = d_options(d_lin_sol_self_set_small,&
 epsilon(one) * abs(e(1)))
! Use packaged option to save the factorization.
 iopti(2) = d_options(d_lin_sol_self_save_factors,zero)
! Suppress error messages and stopping due to singularity
! of the matrix, which is expected.
 iopti(3) = d_options(d_lin_sol_self_no_sing_mess,zero)
 atemp = a
 do i=1, n
 a(i,i) = a(i,i) - e(k)
 end do

! Compute A-eigenvalue*I as the coefficient matrix.
 do tries=1, 2
 call lin_sol_self(a, b, x, &
 pivots=ipivots, iopt=iopti)
! When code is re-entered, the already computed factorization
! is used.
 iopti(4) = d_options(d_lin_sol_self_solve_A,zero)
! Reset right-hand side nearly in the direction of the eigenvector.
 b = x/sqrt(sum(x**2))
 end do

! Normalize the eigenvector.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 25

 x = x/sqrt(sum(x**2))

! Check the results.
 err = dot_product(x(1:n,1),matmul(atemp(1:n,1:n),x(1:n,1))) - &
 e(k)

! If any result is not accurate, quit with no summary printing.
 if (abs(err) <= sqrt(epsilon(one))*e(1)) then
 write (*,*) 'Example 3 for LIN_SOL_SELF is correct.'
 end if

 end

Output

Example 3 for LIN_SOL_SELF is correct.

Example 4: Accurate Least-squares Solution with Iterative Refinement
This example illustrates the accurate solution of the self-adjoint linear system

0 0T

I A r b
A x

� � � � � �
�� � � � � �

� � � � � �

computed using iterative refinement. This solution method is appropriate for least-squares
problems when an accurate solution is required. The solution and residuals are accumulated in
double precision, while the decomposition is computed in single precision. Also, see
operator_ex08, Chapter 10.

 use lin_sol_self_int
 use rand_gen_int

 implicit none

! This is Example 4 for LIN_SOL_SELF.

 integer i
 integer, parameter :: m=8, n=4
 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
 real(kind(1d0)), parameter :: d_zero=0.0d0
 integer ipivots((n+m)+1)
 real(kind(1e0)) a(m,n), b(m,1), w(m*n), f(n+m,n+m), &
 g(n+m,1), h(n+m,1)
 real(kind(1e0)) change_new, change_old
 real(kind(1d0)) c(m,1), d(m,n), y(n+m,1)
 type(s_options) :: iopti(2)=s_options(0,zero)

! Generate a random matrix.

 call rand_gen(w)

 a = reshape(w, (/m,n/))

26 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Generate a random right hand side.

 call rand_gen(b(1:m,1))

! Save double precision copies of the matrix and right hand side.

 d = a
 c = b

! Fill in augmented system for accurately solving the least-squares
! problem.

 f = zero
 do i=1, m
 f(i,i) = one
 end do
 f(1:m,m+1:) = a
 f(m+1:,1:m) = transpose(a)

! Start solution at zero.

 y = d_zero
 change_old = huge(one)

! Use packaged option to save the factorization.

 iopti(1) = s_options(s_lin_sol_self_save_factors,zero)

 iterative_refinement: do
 g(1:m,1) = c(1:m,1) - y(1:m,1) - matmul(d,y(m+1:m+n,1))
 g(m+1:m+n,1) = - matmul(transpose(d),y(1:m,1))
 call lin_sol_self(f, g, h, &
 pivots=ipivots, iopt=iopti)
 y = h + y
 change_new = sum(abs(h))

! Exit when changes are no longer decreasing.

 if (change_new >= change_old) &
 exit iterative_refinement
 change_old = change_new

! Use option to re-enter code with factorization saved; solve only.
 iopti(2) = s_options(s_lin_sol_self_solve_A,zero)
 end do iterative_refinement
 write (*,*) 'Example 4 for LIN_SOL_SELF is correct.'
 end

Output

Example 4 for LIN_SOL_SELF is correct.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 27

Fatal and Terminal Error Messages
See the messages.gls file for error messages for lin_sol_self. These error messages are numbered
321�336; 341�356; 361�376; 381�396.

LIN_SOL_LSQ
Solves a rectangular system of linear equations Ax � b, in a least-squares sense. Using optional
arguments, any of several related computations can be performed. These extra tasks include
computing and saving the factorization of A using column and row pivoting, representing the
determinant of A, computing the generalized inverse matrix A†, or computing the least-squares
solution of

Ax � b

or

ATy � b,

given the factorization of A. An optional argument is provided for computing the following
unscaled covariance matrix

� �
1TC A A

�

�

Least-squares solutions, where the unknowns are non-negative or have simple bounds, can be
computed with PARALLEL_NONEGATIVE_LSQ on page 67 and PARALLEL_BOUNDED_LSQ
on page 75. These codes can be restricted to execute without MPI.

Required Arguments
A — Array of size m � n containing the matrix. (Input [/Output]

B — Array of size m � nb containing the right-hand side matrix. When using the option to
solve adjoint systems ATx � b, the size of b is n � nb. (Input [/Output]

X — Array of size m � nb containing the right-hand side matrix. When using the option to
solve adjoint systems ATx � b, the size of x is m � nb. (Output)

Optional Arguments
MROWS = m (Input)

Uses array A(1:m, 1:n) for the input matrix.
Default: m = size(A, 1)

NCOLS = n (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(A, 2)

28 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

NRHS = nb (Input)
Uses the array b(1:, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

pivots = pivots(:) (Output [/Input])
Integer array of size 2 * min(m, n) + 1 that contains the individual row followed by the
column interchanges. The last array entry contains the approximate rank of A.

trans = trans(:) (Output [/Input])
Array of size 2 * min(m, n) that contains data for the construction of the orthogonal
decomposition.

det = det(1:2) (Output)
Array of size 2 of the same type and kind as A for representing the products of the
determinants of the matrices Q, P, and R. The determinant is represented by two
numbers. The first is the base with the sign or complex angle of the result. The second
is the exponent. When det(2) is within exponent range, the value of this expression is
given by abs (det(1))**det(2) * (det(1))/abs(det(1)). If the matrix is not singular,
abs(det(1)) = radix(det); otherwise, det(1) = 0., and det(2) = � huge(abs(det(1))).

ainv = ainv(:,:) (Output)
Array with size n � m of the same type and kind as A(1:m, 1:n). It contains the
generalized inverse matrix, A†.

cov = cov(:,:) (Output)
Array with size n � n of the same type and kind as A(1:m, 1:n). It contains the
unscaled covariance matrix, C = (ATA)-1.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing
optional data to the routine. The options are as follows:

Packaged Options for lin_sol_lsq

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_lsq_set_small 1

s_, d_, c_, z_ lin_sol_lsq_save_QR 2

s_, d_, c_, z_ lin_sol_lsq_solve_A 3

s_, d_, c_, z_ lin_sol_lsq_solve_ADJ 4

s_, d_, c_, z_ lin_sol_lsq_no_row_pivoting 5

s_, d_, c_, z_ lin_sol_lsq_no_col_pivoting 6

s_, d_, c_, z_ lin_sol_lsq_scan_for_NaN 7

s_, d_, c_, z_ lin_sol_lsq_no_sing_mess 8

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 29

iopt(IO) = ?_options(?_lin_sol_lsq_set_small, Small)
Replaces with Small if a diagonal term of the matrix R is smaller in magnitude than the
value Small. A solution is approximated based on this replacement in either case.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_sol_lsq_save_QR, ?_dummy)
Saves the factorization of A. Requires the optional arguments “pivots=” and
“trans=” if the routine is used for solving further systems with the same matrix. This
is the only case where the input arrays A and b are not saved. For efficiency, the
diagonal reciprocals of the matrix R are saved in the diagonal entries of A.

iopt(IO) = ?_options(?_lin_sol_lsq_solve_A, ?_dummy)
Uses the factorization of A computed and saved to solve Ax = b.

iopt(IO) = ?_options(?_lin_sol_lsq_solve_ADJ, ?_dummy)

Uses the factorization of A computed and saved to solve ATx = b.

iopt(IO) = ?_options(?_lin_sol_lsq_no_row_pivoting, ?_dummy)
Does no row pivoting. The array pivots(:), if present, satisfies pivots(i) = i for i = 1,
�, min (m, n).

iopt(IO) = ?_options(?_lin_sol_lsq_no_col_pivoting, ?_dummy)
Does no column pivoting. The array pivots(:), if present, satisfies pivots(i + min (m,
n)) = i for i = 1, �, min (m, n).

iopt(IO) = ?_options(?_lin_sol_lsq_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs

iopt(IO) = ?_options(?_lin_sol_lsq_no_sing_mess,?_dummy)
Do not print an error message when A is singular or k < min(m, n).

FORTRAN 90 Interface
Generic: CALL LIN_SOL_LSQ (A, B, X [,…])

Specific: The specific interface names are S_LIN_SOL_LSQ, D_LIN_SOL_LSQ,
C_LIN_SOL_LSQ, and Z_LIN_SOL_LSQ.

Example 1: Solving a Linear Least-squares System
This example solves a linear least-squares system Cx � d, where

m nC
�

30 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

is a real matrix with m > n. The least-squares problem is derived from polynomial data fitting to
the function

� � cos()
2

x xy x e �� �

using a discrete set of values in the interval �1 � x � 1. The polynomial is represented as the series

� � � �
0

N

i i
i

u x c T x
�

��

where the � �iT x are Chebyshev polynomials. It is natural for the problem matrix and solution to
have a column or entry corresponding to the subscript zero, which is used in this code. Also, see
operator_ex09, Chapter 10.

 use lin_sol_lsq_int
 use rand_gen_int
 use error_option_packet

 implicit none

! This is Example 1 for LIN_SOL_LSQ.

 integer i
 integer, parameter :: m=128, n=8
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) A(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &
 u(m), v(m), w(m), delta_x

! Generate a random grid of points.
 call rand_gen(x)

! Transform points to the interval -1,1.
 x = x*2 - one

! Compute the constant 'PI/2'.
 pi_over_2 = atan(one)*2

! Generate known function data on the grid.
 y(1:m,1) = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.
 A(:,0) = one; A(:,1) = x

 do i=2, n
 A(:,i) = 2*x*A(:,i-1) - A(:,i-2)
 end do

! Solve for the series coefficients.
 call lin_sol_lsq(A, y, c)

! Generate an equally spaced grid on the interval.
 delta_x = 2/real(m-1,kind(one))
 do i=1, m

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 31

 x(i) = -one + (i-1)*delta_x
 end do

! Evaluate residuals using backward recurrence formulas.
 u = zero
 v = zero
 do i=n, 0, -1
 w = 2*x*u - v + c(i,1)
 v = u
 u = w
 end do

 y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+1 sign changes in the residual curve occur.
 x = one
 x = sign(x,y(1:m,1))

 if (count(x(1:m-1) /= x(2:m)) >= n+1) then
 write (*,*) 'Example 1 for LIN_SOL_LSQ is correct.'
 end if

 end

Output

Example 1 for LIN_SOL_LSQ is correct.

Description
Routine LIN_SOL_LSQ solves a rectangular system of linear algebraic equations in a least-squares
sense. It computes the decomposition of A using an orthogonal factorization. This decomposition
has the form

0
0 0
k kR

QAP �
� �

� � �
� �

where the matrices Q and P are products of elementary orthogonal and permutation matrices. The
matrix R is k � k, where k is the approximate rank of A. This value is determined by the value of
the parameter Small. See Golub and Van Loan (1989, Chapter 5.4) for further details. Note that the
use of both row and column pivoting is nonstandard, but the routine defaults to this choice for en-
hanced reliability.

Additional Examples

Example 2: System Solving with the Generalized Inverse
This example solves the same form of the system as Example 1. In this case, the grid of evaluation
points is equally spaced. The coefficients are computed using the “smoothing formulas” by rows
of the generalized inverse matrix, A†, computed using the optional argument “ainv=”. Thus, the

32 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

coefficients are given by the matrix-vector product c = (A†) y, where y is the vector of values of
the function y(x) evaluated at the grid of points. Also, see operator_ex10, Chapter 10.

 use lin_sol_lsq_int

 implicit none

! This is Example 2 for LIN_SOL_LSQ.

 integer i
 integer, parameter :: m=128, n=8
 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
 real(kind(1d0)) a(m,0:n), c(0:n,1), pi_over_2, x(m), y(m,1), &
 u(m), v(m), w(m), delta_x, inv(0:n, m)

! Generate an array of equally spaced points on the interval -1,1.

 delta_x = 2/real(m-1,kind(one))
 do i=1, m
 x(i) = -one + (i-1)*delta_x
 end do

! Compute the constant 'PI/2'.

 pi_over_2 = atan(one)*2

! Compute data values on the grid.

 y(1:m,1) = exp(x) + cos(pi_over_2*x)

! Fill in the least-squares matrix for the Chebyshev polynomials.

 a(:,0) = one
 a(:,1) = x

 do i=2, n
 a(:,i) = 2*x*a(:,i-1) - a(:,i-2)
 end do

! Compute the generalized inverse of the least-squares matrix.

 call lin_sol_lsq(a, y, c, nrhs=0, ainv=inv)

! Compute the series coefficients using the generalized inverse
! as 'smoothing formulas.'

 c(0:n,1) = matmul(inv(0:n,1:m),y(1:m,1))

! Evaluate residuals using backward recurrence formulas.

 u = zero
 v = zero
 do i=n, 0, -1
 w = 2*x*u - v + c(i,1)
 v = u

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 33

 u = w
 end do

 y(1:m,1) = exp(x) + cos(pi_over_2*x) - (u-x*v)

! Check that n+2 sign changes in the residual curve occur.
! (This test will fail when n is larger.)

 x = one
 x = sign(x,y(1:m,1))

 if (count(x(1:m-1) /= x(2:m)) == n+2) then
 write (*,*) 'Example 2 for LIN_SOL_LSQ is correct.'
 end if

 end

Output

Example 2 for LIN_SOL_LSQ is correct.

Example 3: Two-Dimensional Data Fitting
This example illustrates the use of radial-basis functions to least-squares fit arbitrarily spaced data
points. Let m data values {yi} be given at points in the unit square, {pi}. Each pi is a pair of real
values. Then, n points {qj} are chosen on the unit square. A series of radial-basis functions is used
to represent the data,

� �
2 2 1/ 2

1
()

n

j j
j

f p c p q �

�

� � ��

where 	2 is a parameter. This example uses 	2 = 1, but either larger or smaller values can give a
better approximation for user problems. The coefficients {cj} are obtained by solving the
following m � n linear least-squares problem:

� �j jf p y�

This example illustrates an effective use of Fortran 90 array operations to eliminate many details
required to build the matrix and right-hand side for the {cj} . For this example, the two sets of
points {pi} and {qj} are chosen randomly. The values {yj} are computed from the following
formula:

2| | | |jp
jy e�

�

The residual function

� � � �
2|| ||pr p e f p�

� �

is computed at an N � N square grid of equally spaced points on the unit square. The magnitude of
r(p) may be larger at certain points on this grid than the residuals at the given points, � �ip . Also,
see operator_ex11, Chapter 10.

34 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 use lin_sol_lsq_int
 use rand_gen_int

 implicit none

! This is Example 3 for LIN_SOL_LSQ.

 integer i, j
 integer, parameter :: m=128, n=32, k=2, n_eval=16
 real(kind(1d0)), parameter :: one=1.0d0, delta_sqr=1.0d0
 real(kind(1d0)) a(m,n), b(m,1), c(n,1), p(k,m), q(k,n), &
 x(k*m), y(k*n), t(k,m,n), res(n_eval,n_eval), &
 w(n_eval), delta

! Generate a random set of data points in k=2 space.

 call rand_gen(x)
 p = reshape(x,(/k,m/))

! Generate a random set of center points in k-space.

 call rand_gen(y)
 q = reshape(y,(/k,n/))

! Compute the coefficient matrix for the least-squares system.

 t = spread(p,3,n)
 do j=1, n
 t(1:,:,j) = t(1:,:,j) - spread(q(1:,j),2,m)
 end do

 a = sqrt(sum(t**2,dim=1) + delta_sqr)

! Compute the right hand side of data values.

 b(1:,1) = exp(-sum(p**2,dim=1))

! Compute the solution.

 call lin_sol_lsq(a, b, c)

! Check the results.

 if (sum(abs(matmul(transpose(a),b-matmul(a,c))))/sum(abs(a)) &
 <= sqrt(epsilon(one))) then
 write (*,*) 'Example 3 for LIN_SOL_LSQ is correct.'
 end if

! Evaluate residuals, known function - approximation at a square
! grid of points. (This evaluation is only for k=2.)

 delta = one/real(n_eval-1,kind(one))
 do i=1, n_eval
 w(i) = (i-1)*delta

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 35

 end do
 res = exp(-(spread(w,1,n_eval)**2 + spread(w,2,n_eval)**2))
 do j=1, n
 res = res - c(j,1)*sqrt((spread(w,1,n_eval) - q(1,j))**2 + &
 (spread(w,2,n_eval) - q(2,j))**2 + delta_sqr)
 end do

 end

Output

Example 3 for LIN_SOL_LSQ is correct.

Example 4: Least-squares with an Equality Constraint
This example solves a least-squares system Ax � b with the constraint that the solution values have
a sum equal to the value 1. To solve this system, one heavily weighted row vector and right-hand
side component is added to the system corresponding to this constraint. Note that the weight used
is

1/ 2
�

�

where � is the machine precision, but any larger value can be used. The fact that lin_sol_lsq
performs row pivoting in this case is critical for obtaining an accurate solution to the constrained
problem solved using weighting. See Golub and Van Loan (1989, Chapter 12) for more
information about this method. Also, see operator_ex12, Chapter 10.

 use lin_sol_lsq_int
 use rand_gen_int

 implicit none

! This is Example 4 for LIN_SOL_LSQ.

 integer, parameter :: m=64, n=32
 real(kind(1e0)), parameter :: one=1.0e0
 real(kind(1e0)) :: a(m+1,n), b(m+1,1), x(n,1), y(m*n)

! Generate a random matrix.

 call rand_gen(y)
 a(1:m,1:n) = reshape(y,(/m,n/))

! Generate a random right hand side.

 call rand_gen(b(1:m,1))

! Heavily weight desired constraint. All variables sum to one.

 a(m+1,1:n) = one/sqrt(epsilon(one))

 b(m+1,1) = one/sqrt(epsilon(one))

36 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 call lin_sol_lsq(a, b, x)

 if (abs(sum(x) - one)/sum(abs(x)) <= &
 sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_SOL_LSQ is correct.'
 end if

 end

Output

Example 4 for LIN_SOL_LSQ is correct.

Fatal and Terminal Error Messages
See the messages.gls file for error messages for lin_sol_lsq. These error messages are
numbered 241�256; 261�276; 281�296; 301�316.

LIN_SOL_SVD
Solves a rectangular least-squares system of linear equations Ax � b using singular value
decomposition

TA USV�

With optional arguments, any of several related computations can be performed. These extra tasks
include computing the rank of A, the orthogonal m � m and n � n matrices U and V, and the m � n
diagonal matrix of singular values, S.

Required Arguments
A — Array of size m � n containing the matrix. (Input [/Output]

B — Array of size m � nb containing the right-hand side matrix. (Input [/Output]

X— Array of size n � nb containing the solution matrix. (Output)

Optional Arguments
MROWS = m (Input)

Uses array A(1:m, 1:n) for the input matrix.
Default: m = size (A, 1)

NCOLS = n (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(A, 2)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 37

NRHS = nb (Input)
Uses the array b(1:, 1:nb) for the input right-hand side matrix.
Default: nb = size(b, 2)
Note that b must be a rank-2 array.

RANK = k (Output)
Number of singular values that are at least as large as the value Small. It will satisfy k
<= min(m, n).

u = u(:,:) (Output)
Array of the same type and kind as A(1:m, 1:n). It contains the m � m orthogonal
matrix U of the singular value decomposition.

s = s(:) (Output)
Array of the same precision as A(1:m, 1:n). This array is real even when the matrix
data is complex. It contains the m � n diagonal matrix S in a rank-1 array. The singular
values are nonnegative and ordered non-increasing.

v = v(:,:) (Output)
Array of the same type and kind as A(1:m, 1:n). It contains the n � n orthogonal matrix
V.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for passing
optional data to the routine. The options are as follows:

Packaged Options for lin_sol_svd

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_svd_set_small 1

s_, d_, c_, z_ lin_sol_svd_overwrite_input 2

s_, d_, c_, z_ lin_sol_svd_safe_reciprocal 3

s_, d_, c_, z_ lin_sol_svd_scan_for_NaN 4

iopt(IO) = ?_options(?_lin_sol_svd_set_small, Small)
Replaces with zero a diagonal term of the matrix S if it is smaller in magnitude than the
value Small. This determines the approximate rank of the matrix, which is returned as
the “rank=” optional argument. A solution is approximated based on this
replacement.
Default: the smallest number that can be safely reciprocated

iopt(IO) = ?_options(?_lin_sol_svd_overwrite_input,?_dummy)
Does not save the input arrays A(:,:) and b(:,:).

38 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

iopt(IO) = ?_options(?_lin_sol_svd_safe_reciprocal, safe)
Replaces a denominator term with safe if it is smaller in magnitude than the value safe.
Default: the smallest number that can be safely reciprocated

iopt(IO) = ?_options(?_lin_sol_svd_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNan(b(i,j)) ==.true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs

FORTRAN 90 Interface
Generic: CALL LIN_SOL_SVD (A, B, X [,…])

Specific: The specific interface names are S_LIN_SOL_SVD, D_LIN_SOL_SVD,
C_LIN_SOL_SVD, and Z_LIN_SOL_SVD.

Example 1: Least-squares solution of a Rectangular System
The least-squares solution of a rectangular m � n system Ax � b is obtained. The use of
lin_sol_lsq is more efficient in this case since the matrix is of full rank. This example
anticipates a problem where the matrix A is poorly conditioned or not of full rank; thus,
lin_sol_svd is the appropriate routine. Also, see operator_ex13, Chapter 10.

 use lin_sol_svd_int
 use rand_gen_int

 implicit none

! This is Example 1 for LIN_SOL_SVD.

 integer, parameter :: m=128, n=32
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) A(m,n), b(m,1), x(n,1), y(m*n), err

! Generate a random matrix and right-hand side.
 call rand_gen(y)
 A = reshape(y,(/m,n/))
 call rand_gen(b(1:m,1))

! Compute the least-squares solution matrix of Ax=b.
 call lin_sol_svd(A, b, x)

! Check that the residuals are orthogonal to the
! column vectors of A.
 err = sum(abs(matmul(transpose(A),b-matmul(A,x))))/sum(abs(A))
 if (err <= sqrt(epsilon(one))) then

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 39

 write (*,*) 'Example 1 for LIN_SOL_SVD is correct.'
 end if

 end

Output

Example 1 for LIN_SOL_SVD is correct.

Description
Routine LIN_SOL_SVD solves a rectangular system of linear algebraic equations in a least-squares
sense. It computes the factorization of A known as the singular value decomposition. This
decomposition has the following form:

A = USVT

The matrices U and V are orthogonal. The matrix S is diagonal with the diagonal terms non-in-
creasing. See Golub and Van Loan (1989, Chapters 5.4 and 5.5) for further details.

Additional Examples

Example 2: Polar Decomposition of a Square Matrix
A polar decomposition of an n � n random matrix is obtained. This decomposition satisfies
A = PQ, where P is orthogonal and Q is self-adjoint and positive definite.

Given the singular value decomposition
TA USV�

the polar decomposition follows from the matrix products

 and T TP UV Q VSV� �

This example uses the optional arguments “u=”, “s=”, and “v=”, then array intrinsic functions to
calculate P and Q. Also, see operator_ex14, Chapter 10.

 use lin_sol_svd_int
 use rand_gen_int

 implicit none

! This is Example 2 for LIN_SOL_SVD.

 integer i
 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
 real(kind(1d0)) a(n,n), b(n,0), ident(n,n), p(n,n), q(n,n), &
 s_d(n), u_d(n,n), v_d(n,n), x(n,0), y(n*n)

! Generate a random matrix.

 call rand_gen(y)

40 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 a = reshape(y,(/n,n/))

! Compute the singular value decomposition.

 call lin_sol_svd(a, b, x, nrhs=0, s=s_d, &
 u=u_d, v=v_d)

! Compute the (left) orthogonal factor.

 p = matmul(u_d,transpose(v_d))

! Compute the (right) self-adjoint factor.

 q = matmul(v_d*spread(s_d,1,n),transpose(v_d))

 ident=zero
 do i=1, n
 ident(i,i) = one
 end do

! Check the results.

 if (sum(abs(matmul(p,transpose(p)) - ident))/sum(abs(p)) &
 <= sqrt(epsilon(one))) then
 if (sum(abs(a - matmul(p,q)))/sum(abs(a)) &
 <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_SOL_SVD is correct.'
 end if
 end if

 end

Output

Example 2 for LIN_SOL_SVD is correct.

Example 3: Reduction of an Array of Black and White
An n � n array A contains entries that are either 0 or 1. The entry is chosen so that as a two-
dimensional object with origin at the point (1, 1), the array appears as a black circle of radius n/4
centered at the point (n/2, n/2).

A singular value decomposition
TA USV�

is computed, where S is of low rank. Approximations using fewer of these nonzero singular values
and vectors suffice to reconstruct A. Also, see operator_ex15, Chapter 10.

 use lin_sol_svd_int
 use rand_gen_int
 use error_option_packet

 implicit none

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 41

! This is Example 3 for LIN_SOL_SVD.

 integer i, j, k
 integer, parameter :: n=32
 real(kind(1e0)), parameter :: half=0.5e0, one=1e0, zero=0e0
 real(kind(1e0)) a(n,n), b(n,0), x(n,0), s(n), u(n,n), &
 v(n,n), c(n,n)

! Fill in value one for points inside the circle.
 a = zero
 do i=1, n
 do j=1, n
 if ((i-n/2)**2 + (j-n/2)**2 <= (n/4)**2) a(i,j) = one
 end do
 end do

! Compute the singular value decomposition.
 call lin_sol_svd(a, b, x, nrhs=0,&
 s=s, u=u, v=v)

! How many terms, to the nearest integer, exactly
! match the circle?
 c = zero; k = count(s > half)
 do i=1, k
 c = c + spread(u(1:n,i),2,n)*spread(v(1:n,i),1,n)*s(i)
 if (count(int(c-a) /= 0) == 0) exit
 end do

 if (i < k) then
 write (*,*) 'Example 3 for LIN_SOL_SVD is correct.'
 end if
 end

Output

Example 3 for LIN_SOL_SVD is correct.

Example 4: Laplace Transform Solution
This example illustrates the solution of a linear least-squares system where the matrix is poorly
conditioned. The problem comes from solving the integral equation:

� � � � � �
1

1

0

1st se f t dt s e g s� � �

� � ��

The unknown function f(t) = 1 is computed. This problem is equivalent to the numerical inversion
of the Laplace Transform of the function g(s) using real values of t and s, solving for a function
that is nonzero only on the unit interval. The evaluation of the integral uses the following ap-
proximate integration rule:

� � � �
11

10

j

j

tn
st st

j
j t

f t e dt f t e dt
�

� �

�

��� �

42 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

The points � �jt are chosen equally spaced by using the following:

1
j

jt
n
�

�

The points � �js are computed so that the range of g(s) is uniformly sampled. This requires the so-
lution of m equations

� �
1i i

ig s g
m

� �

�

for j = 1, �, n and i = 1, �, m. Fortran 90 array operations are used to solve for the collocation
points � �is as a single series of steps. Newton's method,

hs s
h

� �
�

is applied to the array function

� � 1sh s e sg�

� � �

where the following is true:

� �1, , T
mg g g� �

Note the coefficient matrix for the solution values

� � � �1 , ,
T

nf f t f t� � �� ��

whose entry at the intersection of row i and column j is equal to the value

1j

i

j

t
s t

t

e dt
�

�

�

is explicitly integrated and evaluated as an array operation. The solution analysis of the resulting
linear least-squares system

Af g�

 is obtained by computing the singular value decomposition
TA USV�

An approximate solution is computed with the transformed right-hand side
Tb U g�

followed by using as few of the largest singular values as possible to minimize the following
squared error residual:

� �
2

1
1

n

j
j

f
�

��

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 43

This determines an optimal value k to use in the approximate solution

1

k
j

j
j j

v
f b

s
�

��

Also, see operator_ex16, Chapter 10.

 use lin_sol_svd_int
 use rand_gen_int
 use error_option_packet

 implicit none

! This is Example 4 for LIN_SOL_SVD.

 integer i, j, k
 integer, parameter :: m=64, n=16
 real(kind(1e0)), parameter :: one=1e0, zero=0.0e0
 real(kind(1e0)) :: g(m), s(m), t(n+1), a(m,n), b(m,1), &
 f(n,1), U_S(m,m), V_S(n,n), S_S(n), &
 rms, oldrms
 real(kind(1e0)) :: delta_g, delta_t

 delta_g = one/real(m+1,kind(one))

! Compute which collocation equations to solve.
 do i=1,m
 g(i)=i*delta_g
 end do

! Compute equally spaced quadrature points.
 delta_t =one/real(n,kind(one))
 do j=1,n+1
 t(j)=(j-1)*delta_t
 end do

! Compute collocation points.
 s=m
 solve_equations: do
 s=s-(exp(-s)-(one-s*g))/(g-exp(-s))
 if (sum(abs((one-exp(-s))/s - g)) <= &
 epsilon(one)*sum(g)) &
 exit solve_equations
 end do solve_equations

! Evaluate the integrals over the quadrature points.
 a = (exp(-spread(t(1:n),1,m)*spread(s,2,n)) &
 - exp(-spread(t(2:n+1),1,m)*spread(s,2,n))) / &
 spread(s,2,n)

 b(1:,1)=g

! Compute the singular value decomposition.

 call lin_sol_svd(a, b, f, nrhs=0, &

44 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 rank=k, u=U_S, v=V_S, s=S_S)

! Singular values that are larger than epsilon determine
! the rank=k.
 k = count(S_S > epsilon(one))
 oldrms = huge(one)
 g = matmul(transpose(U_S), b(1:m,1))

! Find the minimum number of singular values that gives a good
! approximation to f(t) = 1.

 do i=1,k
 f(1:n,1) = matmul(V_S(1:,1:i), g(1:i)/S_S(1:i))
 f = f - one
 rms = sum(f**2)/n
 if (rms > oldrms) exit
 oldrms = rms
 end do

 write (*,"(' Using this number of singular values, ', &
 &i4 / ' the approximate R.M.S. error is ', 1pe12.4)") &
 i-1, oldrms

 if (sqrt(oldrms) <= delta_t**2) then
 write (*,*) 'Example 4 for LIN_SOL_SVD is correct.'
 end if

 end

Output

Example 4 for LIN_SOL_SVD is correct.

Fatal, Terminal, and Warning Error Messages
See the messages.gls file for error messages for lin_sol_svd. These error messages are
numbered 401�412; 421�432; 441�452; 461�472.

LIN_SOL_TRI
Solves multiple systems of linear equations

, 1, ,j j jA x y j k� � �

Each matrix Aj is tridiagonal with the same dimension, n. The default solution method is based on
LU factorization computed using cyclic reduction or, optionally, Gaussian elimination with partial
pivoting.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 45

Required Arguments
C — Array of size 2n � k containing the upper diagonals of the matrices Aj. Each upper

diagonal is entered in array locations c(1:n � 1, j). The data C(n, 1:k) are not used.
(Input [/Output])

D — Array of size 2n � k containing the diagonals of the matrices Aj. Each diagonal is
entered in array locations D(1:n, j). (Input [/Output])

B — Array of size 2n � k containing the lower diagonals of the matrices Aj. Each lower
diagonal is entered in array locations B(2:n, j). The data
B(1, 1:k) are not used. (Input [/Output])

Y — Array of size 2n � k containing the right-hand sides, yj. Each right-hand side is entered
in array locations Y(1:n, j). The computed solution xj is returned in locations Y(1:n, j).
(Input [/Output])

NOTE: The required arguments have the Input data overwritten. If these quantities are
used later, they must be saved in user-defined arrays. The routine uses each array's
locations (n + 1:2 * n, 1:k) for scratch storage and intermediate data in the LU
factorization. The default values for problem dimensions are n = (size (D, 1))/2 and
k = size (D, 2).

Optional Arguments
NCOLS = n (Input)

Uses arrays C(1:n � 1, 1:k), D(1:n, 1:k), and B(2:n, 1:k) as the upper, main and
lower diagonals for the input tridiagonal matrices. The right-hand sides and solutions
are in array Y(1:n, 1:k). Note that each of these arrays are rank-2.
Default: n = (size(D, 1))/2

NPROB = k (Input)
The number of systems solved.
Default: k = size(D, 2)

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for passing
optional data to the routine. The options are as follows:

Packaged Options for LIN_SOL_TRI

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_sol_tri_set_small 1

s_, d_, c_, z_ lin_sol_tri_set_jolt 2

s_, d_, c_, z_ lin_sol_tri_scan_for_NaN 3

46 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Packaged Options for LIN_SOL_TRI

s_, d_, c_, z_ lin_sol_tri_factor_only 4

s_, d_, c_, z_ lin_sol_tri_solve_only 5

s_, d_, c_, z_ lin_sol_tri_use_Gauss_elim 6

iopt(IO) = ?_options(?_lin_sol_tri_set_small, Small)
Whenever a reciprocation is performed on a quantity smaller than Small, it is replaced
by that value plus 2 � jolt.
Default: 0.25 � epsilon()

iopt(IO) = ?_options(?_lin_sol_tri_set_jolt, jolt)
Default: epsilon(), machine precision

iopt(IO) = ?_options(?_lin_sol_tri_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(C(i,j)) .or.

isNaN(D(i,j)) .or.

isNaN(B(i,j)) .or.

isNaN(Y(i,j)) == .true.

See the isNaN() function, Chapter 10.
Default: Does not scan for NaNs.

iopt(IO) = ?_options(?_lin_sol_tri_factor_only, ?_dummy)
Obtain the LU factorization of the matrices Aj. Does not solve for a solution.
Default: Factor the matrices and solve the systems.

iopt(IO) = ?_options(?_lin_sol_tri_solve_only, ?_dummy)
Solve the systems Ajxj = yj using the previously computed LU factorization.
Default: Factor the matrices and solve the systems.

iopt(IO) = ?_options(?_lin_sol_tri_use_Gauss_elim, ?_dummy)
The accuracy, numerical stability or efficiency of the cyclic reduction algorithm may
be inferior to the use of LU factorization with partial pivoting.
Default: Use cyclic reduction to compute the factorization.

FORTRAN 90 Interface
Generic: CALL LIN_SOL_TRI (C, D, B, Y [,…])

Specific: The specific interface names are S_LIN_SOL_TRI, D_LIN_SOL_TRI,
C_LIN_SOL_TRI, and Z_LIN_SOL_TRI.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 47

Example 1: Solution of Multiple Tridiagonal Systems
The upper, main and lower diagonals of n systems of size n � n are generated randomly. A scalar
is added to the main diagonal so that the systems are positive definite. A random vector xj is gen-
erated and right-hand sides yj = Aj yj are computed. The routine is used to compute the solution,
using the Aj and yj. The results should compare closely with the xj used to generate the right-hand
sides. Also, see operator_ex17, Chapter 10.

 use lin_sol_tri_int
 use rand_gen_int
 use error_option_packet

 implicit none

! This is Example 1 for LIN_SOL_TRI.

 integer i
 integer, parameter :: n=128
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) err
 real(kind(1d0)), dimension(2*n,n) :: d, b, c, res(n,n), &
 t(n), x, y

! Generate the upper, main, and lower diagonals of the
! n matrices A_i. For each system a random vector x is used
! to construct the right-hand side, Ax = y. The lower part
! of each array remains zero as a result.

 c = zero; d=zero; b=zero; x=zero
 do i = 1, n
 call rand_gen (c(1:n,i))
 call rand_gen (d(1:n,i))
 call rand_gen (b(1:n,i))
 call rand_gen (x(1:n,i))
 end do

! Add scalars to the main diagonal of each system so that
! all systems are positive definite.
 t = sum(c+d+b,DIM=1)
 d(1:n,1:n) = d(1:n,1:n) + spread(t,DIM=1,NCOPIES=n)

! Set Ax = y. The vector x generates y. Note the use
! of EOSHIFT and array operations to compute the matrix
! product, n distinct ones as one array operation.

 y(1:n,1:n)=d(1:n,1:n)*x(1:n,1:n) + &
 c(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=+1,DIM=1) + &
 b(1:n,1:n)*EOSHIFT(x(1:n,1:n),SHIFT=-1,DIM=1)

! Compute the solution returned in y. (The input values of c,
! d, b, and y are overwritten by lin_sol_tri.) Check for any
! error messages.

 call lin_sol_tri (c, d, b, y)

48 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Check the size of the residuals, y-x. They should be small,
! relative to the size of values in x.
 res = x(1:n,1:n) - y(1:n,1:n)
 err = sum(abs(res)) / sum(abs(x(1:n,1:n)))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_SOL_TRI is correct.'
 end if

 end

Output

Example 1 for LIN_SOL_TRI is correct.

Description
Routine lin_sol_tri solves k systems of tridiagonal linear algebraic equations, each problem of
dimension n � n. No relation between k and n is required. See Kershaw, pages 86�88 in Rodrigue
(1982) for further details. To deal with poorly conditioned or singular systems, a specific
regularizing term is added to each reciprocated value. This technique keeps the factorization
process efficient and avoids exceptions from overflow or division by zero. Each occurrence of an
array reciprocal 1a� is replaced by the expression � �

1a t �

� , where the array temporary t has the
value 0 whenever the corresponding entry satisfies |a| > Small. Alternately, t has the value 2 � jolt.
(Every small denominator gives rise to a finite “jolt”.) Since this tridiagonal solver is used in the
routines lin_svd and lin_eig_self for inverse iteration, regularization is required. Users can
reset the values of Small and jolt for their own needs. Using the default values for these
parameters, it is generally necessary to scale the tridiagonal matrix so that the maximum
magnitude has value approximately one. This is normally not an issue when the systems are
nonsingular.

The routine is designed to use cyclic reduction as the default method for computing the LU
factorization. Using an optional parameter, standard elimination and partial pivoting will be used
to compute the factorization. Partial pivoting is numerically stable but is likely to be less efficient
than cyclic reduction.

Additional Examples

Example 2: Iterative Refinement and Use of Partial Pivoting
This program unit shows usage that typically gives acceptable accuracy for a large class of prob-
lems. Our goal is to use the efficient cyclic reduction algorithm when possible, and keep on using
it unless it will fail. In exceptional cases our program switches to the LU factorization with partial
pivoting. This use of both factorization and solution methods enhances reliability and maintains
efficiency on the average. Also, see operator_ex18, Chapter 10.

 use lin_sol_tri_int
 use rand_gen_int

 implicit none

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 49

! This is Example 2 for LIN_SOL_TRI.

 integer i, nopt
 integer, parameter :: n=128
 real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0
 real(kind(1d0)), parameter :: d_one=1d0, d_zero=0d0
 real(kind(1e0)), dimension(2*n,n) :: d, b, c, res(n,n), &
 x, y
 real(kind(1e0)) change_new, change_old, err
 type(s_options) :: iopt(2) = s_options(0,s_zero)
 real(kind(1d0)), dimension(n,n) :: d_save, b_save, c_save, &
 x_save, y_save, x_sol
 logical solve_only

 c = s_zero; d=s_zero; b=s_zero; x=s_zero

! Generate the upper, main, and lower diagonals of the
! matrices A. A random vector x is used to construct the
! right-hand sides: y=A*x.
 do i = 1, n
 call rand_gen (c(1:n,i))
 call rand_gen (d(1:n,i))
 call rand_gen (b(1:n,i))
 call rand_gen (x(1:n,i))
 end do

! Save double precision copies of the diagonals and the
! right-hand side.
 c_save = c(1:n,1:n); d_save = d(1:n,1:n)
 b_save = b(1:n,1:n); x_save = x(1:n,1:n)
 y_save(1:n,1:n) = d(1:n,1:n)*x_save + &
 c(1:n,1:n)*EOSHIFT(x_save,SHIFT=+1,DIM=1) + &
 b(1:n,1:n)*EOSHIFT(x_save,SHIFT=-1,DIM=1)

! Iterative refinement loop.
 factorization_choice: do nopt=0, 1

! Set the logical to flag the first time through.

 solve_only = .false.
 x_sol = d_zero
 change_old = huge(s_one)

 iterative_refinement: do

! This flag causes a copy of data to be moved to work arrays
! and a factorization and solve step to be performed.
 if (.not. solve_only) then
 c(1:n,1:n)=c_save; d(1:n,1:n)=d_save
 b(1:n,1:n)=b_save
 end if

50 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Compute current residuals, y - A*x, using current x.
 y(1:n,1:n) = -y_save + &
 d_save*x_sol + &
 c_save*EOSHIFT(x_sol,SHIFT=+1,DIM=1) + &
 b_save*EOSHIFT(x_sol,SHIFT=-1,DIM=1)

 call lin_sol_tri (c, d, b, y, iopt=iopt)

 x_sol = x_sol + y(1:n,1:n)

 change_new = sum(abs(y(1:n,1:n)))

! If size of change is not decreasing, stop the iteration.
 if (change_new >= change_old) exit iterative_refinement

 change_old = change_new
 iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)
 solve_only = .true.

 end do iterative_refinement

! Use Gaussian Elimination if Cyclic Reduction did not get an
! accurate solution.
! It is an exceptional event when Gaussian Elimination is required.
 if (sum(abs(x_sol - x_save)) / sum(abs(x_save)) &
 <= sqrt(epsilon(d_one))) exit factorization_choice

 iopt = s_options(0,s_zero)
 iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)

 end do factorization_choice

! Check on accuracy of solution.

 res = x(1:n,1:n)- x_save
 err = sum(abs(res)) / sum(abs(x_save))
 if (err <= sqrt(epsilon(d_one))) then
 write (*,*) 'Example 2 for LIN_SOL_TRI is correct.'
 end if

 end

Output

Example 2 for LIN_SOL_TRI is correct.

Example 3: Selected Eigenvectors of Tridiagonal Matrices
The eigenvalues

1, , n� ��

of a tridiagonal real, self-adjoint matrix are computed. Note that the computation is performed
using the IMSL MATH/LIBRARY FORTRAN 77 interface to routineEVASB. The user may write
this interface based on documentation of the arguments (IMSL 2003, p. 480), or use the module

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 51

Numerical_Libraries as we have done here. The eigenvectors corresponding to k < n of the
eigenvalues are required. These vectors are computed using inverse iteration for all the
eigenvalues at one step. See Golub and Van Loan (1989, Chapter 7). The eigenvectors are then
orthogonalized. Also, see operator_ex19, Chapter 10.

 use lin_sol_tri_int
 use rand_gen_int
 use Numerical_Libraries

 implicit none

! This is Example 3 for LIN_SOL_TRI.

 integer i, j, nopt
 integer, parameter :: n=128, k=n/4, ncoda=1, lda=2
 real(kind(1e0)), parameter :: s_one=1e0, s_zero=0e0
 real(kind(1e0)) A(lda,n), EVAL(k)
 type(s_options) :: iopt(2)=s_options(0,s_zero)
 real(kind(1e0)) d(n), b(n), d_t(2*n,k), c_t(2*n,k), perf_ratio, &
 b_t(2*n,k), y_t(2*n,k), eval_t(k), res(n,k), temp
 logical small

! This flag is used to get the k largest eigenvalues.
 small = .false.

! Generate the main diagonal and the co-diagonal of the
! tridiagonal matrix.

 call rand_gen (b)
 call rand_gen (d)

 A(1,1:)=b; A(2,1:)=d

! Use Numerical Libraries routine for the calculation of k
! largest eigenvalues.

 CALL EVASB (N, K, A, LDA, NCODA, SMALL, EVAL)
 EVAL_T = EVAL

! Use DNFL tridiagonal solver for inverse iteration
! calculation of eigenvectors.
 factorization_choice: do nopt=0,1

! Create k tridiagonal problems, one for each inverse
! iteration system.
 b_t(1:n,1:k) = spread(b,DIM=2,NCOPIES=k)
 c_t(1:n,1:k) = EOSHIFT(b_t(1:n,1:k),SHIFT=1,DIM=1)
 d_t(1:n,1:k) = spread(d,DIM=2,NCOPIES=k) - &
 spread(EVAL_T,DIM=1,NCOPIES=n)

! Start the right-hand side at random values, scaled downward
! to account for the expected 'blowup' in the solution.
 do i=1, k
 call rand_gen (y_t(1:n,i))

52 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 end do

! Do two iterations for the eigenvectors.
 do i=1, 2
 y_t(1:n,1:k) = y_t(1:n,1:k)*epsilon(s_one)
 call lin_sol_tri(c_t, d_t, b_t, y_t, &
 iopt=iopt)
 iopt(nopt+1) = s_options(s_lin_sol_tri_solve_only,s_zero)
 end do

! Orthogonalize the eigenvectors. (This is the most
! intensive part of the computing.)
 do j=1,k-1 ! Forward sweep of HMGS orthogonalization.
 temp=s_one/sqrt(sum(y_t(1:n,j)**2))
 y_t(1:n,j)=y_t(1:n,j)*temp

 y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &
 spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &
 DIM=1,NCOPIES=n)* &
 spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)
 end do
 temp=s_one/sqrt(sum(y_t(1:n,k)**2))
 y_t(1:n,k)=y_t(1:n,k)*temp

 do j=k-1,1,-1 ! Backward sweep of HMGS.
 y_t(1:n,j+1:k)=y_t(1:n,j+1:k)+ &
 spread(-matmul(y_t(1:n,j),y_t(1:n,j+1:k)), &
 DIM=1,NCOPIES=n)* &
 spread(y_t(1:n,j),DIM=2,NCOPIES=k-j)
 end do

! See if the performance ratio is smaller than the value one.
! If it is not the code will re-solve the systems using Gaussian
! Elimination. This is an exceptional event. It is a necessary
! complication for achieving reliable results.

 res(1:n,1:k) = spread(d,DIM=2,NCOPIES=k)*y_t(1:n,1:k) + &
 spread(b,DIM=2,NCOPIES=k)* &
 EOSHIFT(y_t(1:n,1:k),SHIFT=-1,DIM=1) + &
 EOSHIFT(spread(b,DIM=2,NCOPIES=k)*y_t(1:n,1:k),SHIFT=1) &
 - y_t(1:n,1:k)*spread(EVAL_T(1:k),DIM=1,NCOPIES=n)

! If the factorization method is Cyclic Reduction and perf_ratio is
! larger than one, re-solve using Gaussian Elimination. If the
! method is already Gaussian Elimination, the loop exits
! and perf_ratio is checked at the end.
 perf_ratio = sum(abs(res(1:n,1:k))) / &
 sum(abs(EVAL_T(1:k))) / &
 epsilon(s_one) / (5*n)
 if (perf_ratio <= s_one) exit factorization_choice
 iopt(nopt+1) = s_options(s_lin_sol_tri_use_Gauss_elim,s_zero)

 end do factorization_choice

 if (perf_ratio <= s_one) then

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 53

 write (*,*) 'Example 3 for LIN_SOL_TRI is correct.'
 end if

 end

Output

Example 3 for LIN_SOL_TRI is correct.

Example 4: Tridiagonal Matrix Solving within Diffusion Equations
The normalized partial differential equation

2

2t xx
u uu u
t x

� �

� �
� � �

is solved for values of 0 � x � � and t > 0. A boundary value problem consists of choosing the
value

� � 00,u t u�

such that the equation

� �1 1 1,u x t u�

 is satisfied. Arbitrary values

1 1
1,

2 2
x u�

� �

and

1 1t �

are used for illustration of the solution process. The one-parameter equation

� �1 1 1, 0u x t u� �

The variables are changed to

� � � � 0, ,v x t u x t u� �

 that v(0, t) = 0. The function v(x, t) satisfies the differential equation. The one-parameter equation
solved is therefore

 � � � �1 1 1 0, 0v x t u u� � �

To solve this equation for 0u , use the standard technique of the variational equation,

0

vw
u
�

�
�

Thus

54 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

2

2

w w
t x

� �

� �
�

Since the initial data for

� � 0,0v x u� �

the variational equation initial condition is

w(x, 0) = �1

This model problem illustrates the method of lines and Galerkin principle implemented with the
differential-algebraic solver, D2SPG (IMSL 2003, pp. 889�911). We use the integrator in “reverse
communication” mode for evaluating the required functions, derivatives, and solving linear
algebraic equations. See Example 4 of routine DASPG (IMSL 2003, pp. 908�911) for a problem
that uses reverse communication. Next see Example 4 of routine IVPAG (IMSL 2003, pp. 867-
870) for the development of the piecewise-linear Galerkin discretization method to solve the
differential equation. This present example extends parts of both previous examples and illustrates
Fortran 90 constructs. It further illustrates how a user can deal with a defect of an integrator that
normally functions using only dense linear algebra factorization methods for solving the corrector
equations. See the comments in Brenan et al. (1989, esp. p. 137). Also, see operator_ex20,
Chapter 10.

 use lin_sol_tri_int
 use rand_gen_int
 use Numerical_Libraries

 implicit none

! This is Example 4 for LIN_SOL_TRI.

 integer, parameter :: n=1000, ichap=5, iget=1, iput=2, &
 inum=6, irnum=7
 real(kind(1e0)), parameter :: zero=0e0, one = 1e0
 integer i, ido, in(50), inr(20), iopt(6), ival(7), &
 iwk(35+n)
 real(kind(1e0)) hx, pi_value, t, u_0, u_1, atol, rtol, sval(2), &
 tend, wk(41+11*n), y(n), ypr(n), a_diag(n), &
 a_off(n), r_diag(n), r_off(n), t_y(n), t_ypr(n), &
 t_g(n), t_diag(2*n,1), t_upper(2*n,1), &
 t_lower(2*n,1), t_sol(2*n,1)
 type(s_options) :: iopti(2)=s_options(0,zero)

 character(2) :: pi(1) = 'pi'
! Define initial data.
 t = 0.0e0
 u_0 = 1
 u_1 = 0.5
 tend = one

! Initial values for the variational equation.
 y = -one; ypr= zero
 pi_value = const(pi)
 hx = pi_value/(n+1)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 55

 a_diag = 2*hx/3
 a_off = hx/6
 r_diag = -2/hx
 r_off = 1/hx

! Get integer option numbers.
 iopt(1) = inum
 call iumag ('math', ichap, iget, 1, iopt, in)

! Get floating point option numbers.
 iopt(1) = irnum
 call iumag ('math', ichap, iget, 1, iopt, inr)

! Set for reverse communication evaluation of the DAE.
 iopt(1) = in(26)
 ival(1) = 0
! Set for use of explicit partial derivatives.
 iopt(2) = in(5)
 ival(2) = 1
! Set for reverse communication evaluation of partials.
 iopt(3) = in(29)
 ival(3) = 0
! Set for reverse communication solution of linear equations.
 iopt(4) = in(31)
 ival(4) = 0
! Storage for the partial derivative array are not allocated or
! required in the integrator.
 iopt(5) = in(34)
 ival(5) = 1
! Set the sizes of iwk, wk for internal checking.
 iopt(6) = in(35)
 ival(6) = 35 + n
 ival(7) = 41 + 11*n
! Set integer options:
 call iumag ('math', ichap, iput, 6, iopt, ival)
! Reset tolerances for integrator:
 atol = 1e-3; rtol= 1e-3
 sval(1) = atol; sval(2) = rtol
 iopt(1) = inr(5)
! Set floating point options:
 call sumag ('math', ichap, iput, 1, iopt, sval)
! Integrate ODE/DAE. Use dummy external names for g(y,y')
! and partials.
 ido = 1
 Integration_Loop: do

 call d2spg (n, t, tend, ido, y, ypr, dgspg, djspg, iwk, wk)
! Find where g(y,y') goes. (It only goes in one place here, but can
! vary where divided differences are used for partial derivatives.)
 iopt(1) = in(27)
 call iumag ('math', ichap, iget, 1, iopt, ival)
! Direct user response:
 select case(ido)

56 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 case(1,4)
! This should not occur.
 write (*,*) ' Unexpected return with ido = ', ido
 stop

 case(3)
! Reset options to defaults. (This is good housekeeping but not
! required for this problem.)
 in = -in
 call iumag ('math', ichap, iput, 50, in, ival)
 inr = -inr
 call sumag ('math', ichap, iput, 20, inr, sval)
 exit Integration_Loop
 case(5)
! Evaluate partials of g(y,y').
 t_y = y; t_ypr = ypr

 t_g = r_diag*t_y + r_off*EOSHIFT(t_y,SHIFT=+1) &
 + EOSHIFT(r_off*t_y,SHIFT=-1) &
 - (a_diag*t_ypr + a_off*EOSHIFT(t_ypr,SHIFT=+1) &
 + EOSHIFT(a_off*t_ypr,SHIFT=-1))
! Move data from the assumed size to assumed shape arrays.
 do i=1, n
 wk(ival(1)+i-1) = t_g(i)
 end do
 cycle Integration_Loop

 case(6)
! Evaluate partials of g(y,y').
! Get value of c_j for partials.
 iopt(1) = inr(9)
 call sumag ('math', ichap, iget, 1, iopt, sval)

! Subtract c_j from diagonals to compute (partials for y')*c_j.
! The linear system is tridiagonal.
 t_diag(1:n,1) = r_diag - sval(1)*a_diag
 t_upper(1:n,1) = r_off - sval(1)*a_off
 t_lower = EOSHIFT(t_upper,SHIFT=+1,DIM=1)

 cycle Integration_Loop

 case(7)
! Compute the factorization.
 iopti(1) = s_options(s_lin_sol_tri_factor_only,zero)
 call lin_sol_tri (t_upper, t_diag, t_lower, &
 t_sol, iopt=iopti)
 cycle Integration_Loop

 case(8)
! Solve the system.
 iopti(1) = s_options(s_lin_sol_tri_solve_only,zero)
! Move data from the assumed size to assumed shape arrays.
 t_sol(1:n,1)=wk(ival(1):ival(1)+n-1)

 call lin_sol_tri (t_upper, t_diag, t_lower, &

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 57

 t_sol, iopt=iopti)

! Move data from the assumed shape to assumed size arrays.
 wk(ival(1):ival(1)+n-1)=t_sol(1:n,1)

 cycle Integration_Loop

 case(2)
! Correct initial value to reach u_1 at t=tend.
 u_0 = u_0 - (u_0*y(n/2) - (u_1-u_0)) / (y(n/2) + 1)

! Finish up internally in the integrator.
 ido = 3
 cycle Integration_Loop
 end select
 end do Integration_Loop

 write (*,*) 'The equation u_t = u_xx, with u(0,t) = ', u_0
 write (*,*) 'reaches the value ',u_1, ' at time = ', tend, '.'
 write (*,*) 'Example 4 for LIN_SOL_TRI is correct.'

 end

Output

Example 4 for LIN_SOL_TRI is correct.

Fatal, Terminal, and Warning Error Messages
See the messages.gls file for error messages for lin_sol_tri. These error messages are
numbered 1081�1086; 1101�1106; 1121�1126; 1141�1146.

LIN_SVD
Computes the singular value decomposition (SVD) of a rectangular matrix, A. This gives the de-
composition

TA USV�

where V is an n � n orthogonal matrix, U is an m � m orthogonal matrix, and S is a real,
rectangular diagonal matrix.

Required Arguments
A — Array of size m � n containing the matrix. (Input [/Output])

S — Array of size min(m, n) containing the real singular values. These nonnegative values
are in non-increasing order. (Output)

U — Array of size m � m containing the singular vectors, U. (Output)

58 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

V— Array of size n � n containing the singular vectors, V. (Output)

Optional Arguments
MROWS = m (Input)

Uses array A(1:m, 1:n) for the input matrix.
Default: m = size(A, 1)

NCOLS = n (Input)
Uses array A(1:m, 1:n) for the input matrix.
Default: n = size(A, 2)

RANK = k (Output)
Number of singular values that exceed the value Small. RANK will satisfy k <= min(m,
n).

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for passing
optional data to the routine. The options are as follows:

Packaged Options for LIN_SVD

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_svd_set_small 1

s_, d_, c_, z_ lin_svd_overwrite_input 2

s_, d_, c_, z_ lin_svd_scan_for_NaN 3

s_, d_, c_, z_ lin_svd_use_qr 4

s_, d_, c_, z_ lin_svd_skip_orth 5

s_, d_, c_, z_ lin_svd_use_gauss_elim 6

s_, d_, c_, z_ lin_svd_set_perf_ratio 7

iopt(IO) = ?_options(?_lin_svd_set_small, Small)
If a singular value is smaller than Small, it is defined as zero for the purpose of
computing the rank of A.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_svd_overwrite_input, ?_dummy)
Does not save the input array A(:, :).

iopt(IO) = ?_options(?_lin_svd_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 59

See the isNaN() function, Chapter 10.
Default: The array is not scanned for NaNs.

iopt(IO) = ?_options(?_lin_svd_use_qr, ?_dummy)
Uses a rational QR algorithm to compute eigenvalues. Accumulate the singular vectors
using this algorithm.
Default: singular vectors computed using inverse iteration

iopt(IO) = ?_options(?_lin_svd_skip_Orth, ?_dummy)
If the eigenvalues are computed using inverse iteration, skips the final
orthogonalization of the vectors. This method results in a more efficient computation.
However, the singular vectors, while a complete set, may not be orthogonal.
Default: singular vectors are orthogonalized if obtained using inverse iteration

iopt(IO) = ?_options(?_lin_svd_use_gauss_elim, ?_dummy)
If the eigenvalues are computed using inverse iteration, uses standard elimination with
partial pivoting to solve the inverse iteration problems.
Default: singular vectors computed using cyclic reduction

iopt(IO) = ?_options(?_lin_svd_set_perf_ratio, perf_ratio)
Uses residuals for approximate normalized singular vectors if they have a performance
index no larger than perf_ratio. Otherwise an alternate approach is taken and the
singular vectors are computed again: Standard elimination is used instead of cyclic
reduction, or the standard QR algorithm is used as a backup procedure to inverse
iteration. Larger values of perf_ratio are less likely to cause these exceptions.
Default: perf_ratio = 4

FORTRAN 90 Interface
Generic: CALL LIN_SVD (A, S, U, V[,…])

Specific: The specific interface names are S_LIN_SVD, D_LIN_SVD, C_LIN_SVD, and
Z_LIN_SVD.

Example 1: Computing the SVD
The SVD of a square, random matrix A is computed. The residuals R = AV � US are small with respect
to working precision. Also, see operator_ex21, Chapter 10.

 use lin_svd_int
 use rand_gen_int

 implicit none

! This is Example 1 for LIN_SVD.

 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) err
 real(kind(1d0)), dimension(n,n) :: A, U, V, S(n), y(n*n)

60 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Generate a random n by n matrix.
 call rand_gen(y)
 A = reshape(y,(/n,n/))

! Compute the singular value decomposition.
 call lin_svd(A, S, U, V)

! Check for small residuals of the expression A*V - U*S.
 err = sum(abs(matmul(A,V) - U*spread(S,dim=1,ncopies=n))) &
 / sum(abs(S))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_SVD is correct.'
 end if
 end

Output

Example 1 for LIN_SVD is correct.

Description
Routine lin_svd is an implementation of the QR algorithm for computing the SVD of
rectangular matrices. An orthogonal reduction of the input matrix to upper bidiagonal form is
performed. Then, the SVD of a real bidiagonal matrix is calculated. The orthogonal decomposition
AV = US results from products of intermediate matrix factors. See Golub and Van Loan (1989,
Chapter 8) for details.

Additional Examples

Example 2: Linear Least Squares with a Quadratic Constraint
An m � n matrix equation Ax � b, m > n, is approximated in a least-squares sense. The matrix b is
size m � k. Each of the k solution vectors of the matrix x is constrained to have Euclidean length of
value �j > 0. The value of �i is chosen so that the constrained solution is 0.25 the length of the
nonregularized or standard least-squares equation. See Golub and Van Loan (1989, Chapter 12)
for more details. In the Example 2 code, Newton’s method is used to solve for each regularizing
parameter of the k systems. The solution is then computed and its length is checked. Also, see
operator_ex22, Chapter 10.

 use lin_svd_int
 use rand_gen_int

 implicit none

! This is Example 2 for LIN_SVD.

 integer, parameter :: m=64, n=32, k=4
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) a(m,n), s(n), u(m,m), v(n,n), y(m*max(n,k)), &
 b(m,k), x(n,k), g(m,k), alpha(k), lamda(k), &
 delta_lamda(k), t_g(n,k), s_sq(n), phi(n,k), &
 phi_dot(n,k), rand(k), err

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 61

! Generate a random matrix for both A and B.
 call rand_gen(y)
 a = reshape(y,(/m,n/))

 call rand_gen(y)
 b = reshape(y,(/m,k/))

! Compute the singular value decomposition.
 call lin_svd(a, s, u, v)

! Choose alpha so that the lengths of the regularized solutions
! are 0.25 times lengths of the non-regularized solutions.

 g = matmul(transpose(u),b)
 x = matmul(v,spread(one/s,dim=2,ncopies=k)*g(1:n,1:k))
 alpha = 0.25*sqrt(sum(x**2,dim=1))

 t_g = g(1:n,1:k)*spread(s,dim=2,ncopies=k)
 s_sq = s**2; lamda = zero

 solve_for_lamda: do
 x=one/(spread(s_sq,dim=2,ncopies=k)+ &
 spread(lamda,dim=1,ncopies=n))
 phi = (t_g*x)**2; phi_dot = -2*phi*x
 delta_lamda = (sum(phi,dim=1)-alpha**2)/sum(phi_dot,dim=1)

! Make Newton method correction to solve the secular equations for
! lamda.
 lamda = lamda - delta_lamda

 if (sum(abs(delta_lamda)) <= &
 sqrt(epsilon(one))*sum(lamda)) &
 exit solve_for_lamda

! This is intended to fix up negative solution approximations.
 call rand_gen(rand)
 where (lamda < 0) lamda = s(1) * rand

 end do solve_for_lamda

! Compute solutions and check lengths.
 x = matmul(v,t_g/(spread(s_sq,dim=2,ncopies=k)+ &
 spread(lamda,dim=1,ncopies=n)))

 err = sum(abs(sum(x**2,dim=1) - alpha**2))/sum(abs(alpha**2))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_SVD is correct.'
 end if

 end

Output

Example 2 for LIN_SVD is correct.

62 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example 3: Generalized Singular Value Decomposition
The n � n matrices A and B are expanded in a Generalized Singular Value Decomposition
(GSVD). Two n � n orthogonal matrices, U and V, and a nonsingular matrix X are computed such
that

� �1, , nAX Udiag c c� �

and

� �1, , nBX Vdiag s s� �

The values is and ic i are normalized so that

2 2 1i is c� �

The ic are nonincreasing, and the is are nondecreasing. See Golub and Van Loan (1989, Chapter
8) for more details. Our method is based on computing three SVDs as opposed to the QR
decomposition and two SVDs outlined in Golub and Van Loan. As a bonus, an SVD of the matrix
X is obtained, and you can use this information to answer further questions about its conditioning.
This form of the decomposition assumes that the matrix

A
D

B
� �

� � �
� �

has all its singular values strictly positive. For alternate problems, where some singular values of
D are zero, the GSVD becomes

� �1, ,T
nU A diag c c W� �

 and

� �1, ,T
nV B diag s s W� �

The matrix W has the same singular values as the matrix D. Also, see operator_ex23, Chapter
10.

 use lin_svd_int
 use rand_gen_int

 implicit none

! This is Example 3 for LIN_SVD.

 integer, parameter :: n=32
 integer i
 real(kind(1d0)), parameter :: one=1.0d0
 real(kind(1d0)) a(n,n), b(n,n), d(2*n,n), x(n,n), u_d(2*n,2*n), &
 v_d(n,n), v_c(n,n), u_c(n,n), v_s(n,n), u_s(n,n), &
 y(n*n), s_d(n), c(n), s(n), sc_c(n), sc_s(n), &
 err1, err2

! Generate random square matrices for both A and B.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 63

 call rand_gen(y)
 a = reshape(y,(/n,n/))

 call rand_gen(y)
 b = reshape(y,(/n,n/))

! Construct D; A is on the top; B is on the bottom.

 d(1:n,1:n) = a
 d(n+1:2*n,1:n) = b

! Compute the singular value decompositions used for the GSVD.

 call lin_svd(d, s_d, u_d, v_d)
 call lin_svd(u_d(1:n,1:n), c, u_c, v_c)
 call lin_svd(u_d(n+1:,1:n), s, u_s, v_s)

! Rearrange c(:) so it is non-increasing. Move singular
! vectors accordingly. (The use of temporary objects sc_c and
! x is required.)

 sc_c = c(n:1:-1); c = sc_c
 x = u_c(1:n,n:1:-1); u_c = x
 x = v_c(1:n,n:1:-1); v_c = x

! The columns of v_c and v_s have the same span. They are
! equivalent by taking the signs of the largest magnitude values
! positive.

 do i=1, n
 sc_c(i) = sign(one,v_c(sum(maxloc(abs(v_c(1:n,i)))),i))
 sc_s(i) = sign(one,v_s(sum(maxloc(abs(v_s(1:n,i)))),i))
 end do

 v_c = v_c*spread(sc_c,dim=1,ncopies=n)
 u_c = u_c*spread(sc_c,dim=1,ncopies=n)

 v_s = v_s*spread(sc_s,dim=1,ncopies=n)
 u_s = u_s*spread(sc_s,dim=1,ncopies=n)

! In this form of the GSVD, the matrix X can be unstable if D
! is ill-conditioned.
 x = matmul(v_d*spread(one/s_d,dim=1,ncopies=n),v_c)

! Check residuals for GSVD, A*X = u_c*diag(c_1, ..., c_n), and
! B*X = u_s*diag(s_1, ..., s_n).
 err1 = sum(abs(matmul(a,x) - u_c*spread(c,dim=1,ncopies=n))) &
 / sum(s_d)
 err2 = sum(abs(matmul(b,x) - u_s*spread(s,dim=1,ncopies=n))) &
 / sum(s_d)
 if (err1 <= sqrt(epsilon(one)) .and. &
 err2 <= sqrt(epsilon(one))) then

64 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 write (*,*) 'Example 3 for LIN_SVD is correct.'
 end if

 end

Example 4: Ridge Regression as Cross-Validation with Weighting
This example illustrates a particular choice for the ridge regression problem: The least-squares
problem Ax � b is modified by the addition of a regularizing term to become

� �2 22
2 2

min x Ax b x�� �

The solution to this problem, with row k deleted, is denoted by xk(�). Using nonnegative weights
(w1, �, wm), the cross-validation squared error C(�) is given by:

� � � �� �
2

1

m
T

k k k k
k

mC w a x b� �

�

� ��

With the SVD A = USVT and product g = UTb, this quantity can be written as

� �
� �

� �

2
2

2 2
1

21
2

2 2
1

1

n
j

k kj j
m j j

k
nk j

kj
j j

s
b u g

s
mC w

s
u

s

�

�

�

�

�

�

� �� �
� �� ��
� �� ��� �� �	
� �� �
� ��� �
� �� ��� �� �

�

�

�

This expression is minimized. See Golub and Van Loan (1989, Chapter 12) for more details. In the
Example 4 code, mC(�), at p = 10 grid points are evaluated using a log-scale with respect to �,

1 10.1 10s s�� � . Array operations and intrinsics are used to evaluate the function and then to
choose an approximate minimum. Following the computation of the optimum �, the regularized
solutions are computed. Also, see operator_ex24, Chapter 10.

 use lin_svd_int
 use rand_gen_int

 implicit none

! This is Example 4 for LIN_SVD.

 integer i
 integer, parameter :: m=32, n=16, p=10, k=4
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) log_lamda, log_lamda_t, delta_log_lamda
 real(kind(1d0)) a(m,n), b(m,k), w(m,k), g(m,k), t(n), s(n), &
 s_sq(n), u(m,m), v(n,n), y(m*max(n,k)), &
 c_lamda(p,k), lamda(k), x(n,k), res(n,k)

! Generate random rectangular matrices for A and right-hand
! sides, b.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 65

 call rand_gen(y)
 a = reshape(y,(/m,n/))

 call rand_gen(y)
 b = reshape(y,(/m,k/))

! Generate random weights for each of the right-hand sides.
 call rand_gen(y)
 w = reshape(y,(/m,k/))

! Compute the singular value decomposition.
 call lin_svd(a, s, u, v)

 g = matmul(transpose(u),b)
 s_sq = s**2

 log_lamda = log(10.*s(1)); log_lamda_t=log_lamda
 delta_log_lamda = (log_lamda - log(0.1*s(n))) / (p-1)

! Choose lamda to minimize the "cross-validation" weighted
! square error. First evaluate the error at a grid of points,
! uniform in log_scale.

 cross_validation_error: do i=1, p
 t = s_sq/(s_sq+exp(log_lamda))
 c_lamda(i,:) = sum(w*((b-matmul(u(1:m,1:n),g(1:n,1:k)* &
 spread(t,DIM=2,NCOPIES=k)))/ &
 (one-matmul(u(1:m,1:n)**2, &
 spread(t,DIM=2,NCOPIES=k))))**2,DIM=1)
 log_lamda = log_lamda - delta_log_lamda
 end do cross_validation_error

! Compute the grid value and lamda corresponding to the minimum.
 do i=1, k
 lamda(i) = exp(log_lamda_t - delta_log_lamda* &
 (sum(minloc(c_lamda(1:p,i)))-1))
 end do

! Compute the solution using the optimum "cross-validation"
! parameter.
 x = matmul(v,g(1:n,1:k)*spread(s,DIM=2,NCOPIES=k)/ &
 (spread(s_sq,DIM=2,NCOPIES=k)+ &
 spread(lamda,DIM=1,NCOPIES=n)))
! Check the residuals, using normal equations.
 res = matmul(transpose(a),b-matmul(a,x)) - &
 spread(lamda,DIM=1,NCOPIES=n)*x
 if (sum(abs(res))/sum(s_sq) <= &
 sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_SVD is correct.'
 end if

 end

66 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output

Example 4 for LIN_SVD is correct.

Fatal, Terminal, and Warning Error Messages
See the messages.gls file for error messages for lin_svd. These error messages are numbered
1001�1010; 1021�1030; 1041�1050; 1061�1070.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 67

Parallel Constrained Least-Squares Solvers

 Solving Constrained Least-Squares Systems
The routine PARALLEL_NONNEGATIVE_LSQ is used to solve dense least-
squares systems. These are represented by Ax b� where A is an m n�
coefficient data matrix, b is a given right-hand side m -vector, and x is the
solution n -vector being computed. Further, there is a constraint requirement,

0x � . The routine PARALLEL_BOUNDED_LSQ is used when the problem has
lower and upper bounds for the solution, x� �� � . By making the bounds
large, individual constraints can be eliminated. There are no restrictions on the
relative sizes of m and n . When n is large, these codes can substantially
reduce computer time and storage requirements, compared with using a routine
for solving a constrained system and a single processor.

The user provides the matrix partitioned by blocks of columns:
� �1 2| | ... | kA A A A� . An individual block of the partitioned matrix, say pA , is

located entirely on the processor with rank MP_RANK= 1p � , where MP_RANK
is packaged in the module MPI_SETUP_INT. This module, and the function
MP_SETUP(),define the Fortran Library MPI communicator,
MP_LIBRARY_WORLD. See Chapter 10, Parallelism Using MPI.

PARALLEL_NONNEGATIVE_LSQ

MPI REQUIRED

Solves a linear, non-negative constrained least-squares system.

 Usage Notes
CALL PARALLEL_NONNEGATIVE_LSQ&

 (A,B,X,RNORM,W,INDEX,IPART,IOPT = IOPT)

Required Arguments
A(1:M,:)— (Input/Output) Columns of the matrix with limits given by entries in

the array IPART(1:2,1:max(1,MP_NPROCS)). On output kA is
replaced by the product kQA , where Q is an orthogonal matrix. The value
SIZE(A,1) defines the value of M. Each processor starts and exits with its
piece of the partitioned matrix.

68 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

B(1:M) — (Input/Output) Assumed-size array of length M containing the right-
hand side vector, b . On output b is replaced by the product Qb , where
Q is the orthogonal matrix applied to A . All processors in the
communicator start and exit with the same vector.

X(1:N) — (Output) Assumed-size array of length N containing the solution,
0x � . The value SIZE(X) defines the value of N. All processors exit

with the same vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of
the residual vector, Ax b� . All processors exit with the same value.

W(1:N) — (Output) Assumed-size array of length N containing the dual vector,
� � 0Tw A b Ax� � � . All processors exit with the same vector.

INDEX(1:N) — (Output) Assumed-size array of length N containing the NSETP
indices of columns in the positive solution, and the remainder that are at
their constraint. The number of positive components in the solution x is
give by the Fortran intrinsic function value,
NSETP=COUNT(X > 0). All processors exit with the same array.

IPART(1:2,1:max(1,MP_NPROCS)) — (Input) Assumed-size array containing
the partitioning describing the matrix A . The value MP_NPROCS is the
number of processors in the communicator,
except when MPI has been finalized with a call to the routine
MP_SETUP(‘Final’). This causes MP_NPROCS to be assigned 0.
Normally users will give the partitioning to processor of rank =
MP_RANK by setting IPART(1,MP_RANK+1)= first column index, and
IPART(2,MP_RANK+1)= last column index. The number of columns per
node is typically based on their relative computing power. To avoid a
node with rank MP_RANK doing any work except communication, set
IPART(1,MP_RANK+1) = 0 and IPART(2,MP_RANK+1)= -1. In this
exceptional case there is no reference to the array A(:,:) at that node.

Optional Argument
IOPT(:)— (Input) Assumed-size array of derived type S_OPTIONS or

D_OPTIONS. This argument is used to change internal parameters of the
algorithm. Normally users will not be concerned about this argument, so
they would not include it in the argument list for the routine.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 69

Packaged Options for PARALLEL_NONNEGATIVE_LSQ
Option Name Option Value

PNLSQ_SET_TOLERANCE 1

PNLSQ_SET_MAX_ITERATIONS 2

PNLSQ_SET_MIN_RESIDUAL 3

 IOPT(IO)=?_OPTIONS(PNLSQ_SET_TOLERANCE, TOLERANCE) Replaces the
default rank tolerance for using a column, from EPSILON(TOLERANCE)
to TOLERANCE. Increasing the value of TOLERANCE will cause fewer
columns to be moved from their constraints, and may cause the minimum
residual RNORM to increase.

IOPT(IO)=?_OPTIONS(PNLSQ_SET_MIN_RESIDUAL, RESID) Replaces the
default target for the minimum residual vector length from 0 to RESID.
Increasing the value of RESID can result in fewer iterations and thus
increased efficiency. The descent in the optimization will stop at the first
point where the minimum residual RNORM is smaller than RESID. Using
this option may result in the dual vector not satisfying its optimality
conditions, as noted above.

IOPT(IO)= PNLSQ_SET_MAX_ITERATIONS

IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number
of iterations from 3*N to NEW_MAX_ITERATIONS. Note that this option
requires two entries in the derived type array.

FORTRAN 90 Interface
Generic: CALL PARALLEL_NONNEGATIVE_LSQ (A, B, X,

RNORM, W, INDEX, IPART[,…])

Specific: The specific interface names are S_PARALLEL_NONNEGATIVE_LSQ
and D_PARALLEL_NONNEGATIVE_LSQ.

Example 1: Distributed Linear Inequality
Constraint Solver
The program PNLSQ_EX1 illustrates the computation of the minimum
Euclidean length solution of an ' 'm n� system of linear inequality constraints ,
Gy h� . The solution algorithm is based on Algorithm LDP, page 165-166,
loc. cit. The rows of � �:E G h� are partitioned and assigned random values.
When the minimum Euclidean length solution to the inequalities has been
calculated, the residuals 0r Gy h� � � are computed, with the dual variables

70 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

to the NNLS problem indicating the entries of r that are precisely zero.

The fact that matrix products involving both E and TE are needed to compute
the constrained solution y and the residuals r , implies that message passing is
required. This occurs after the NNLS solution is computed.

 PROGRAM PNLSQ_EX1
! Use Parallel_nonnegative_LSQ to solve an inequality
! constraint problem, Gy >= h. This algorithm uses
! Algorithm LDP of Solving Least Squares Problems,
! page 165. The constraints are allocated to the
! processors, by rows, in columns of the array A(:,:).
 USE PNLSQ_INT
 USE MPI_SETUP_INT
 USE RAND_INT
 USE SHOW_INT

 IMPLICIT NONE
 INCLUDE "mpif.h"

 INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, N=MP

 REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0
 REAL(KIND(1D0)), ALLOCATABLE :: &
 A(:,:), B(:), X(:), Y(:), W(:), ASAVE(:,:)
 REAL(KIND(1D0)) RNORM
 INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

 INTEGER K, L, DN, J, JSHIFT, IERROR
 LOGICAL :: PRINT=.false.

! Setup for MPI:
 MP_NPROCS=MP_SETUP()

 DN=N/max(1,max(1,MP_NPROCS))-1
 ALLOCATE(IPART(2,max(1,MP_NPROCS)))

! Spread constraint rows evenly to the processors.
 IPART(1,1)=1
 DO L=2,MP_NPROCS
 IPART(2,L-1)=IPART(1,L-1)+DN
 IPART(1,L)=IPART(2,L-1)+1
 END DO
 IPART(2,MP_NPROCS)=N

! Define the constraint data using random values.
 K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)
 ALLOCATE(A(M,K), ASAVE(M,K), X(N), W(N), &
 B(M), Y(M), INDEX(N))

! The use of ASAVE can be removed by regenerating
! the data for A(:,:) after the return from
! Parallel_nonnegative_LSQ.
 A=rand(A); ASAVE=A
 IF(MP_RANK == 0 .and. PRINT) &
 CALL SHOW(IPART, &
 "Partition of the constraints to be solved")

! Set the right-hand side to be one in the last component, zero elsewhere.
 B=ZERO;B(M)=ONE

! Solve the dual problem.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 71

 CALL Parallel_nonnegative_LSQ &
 (A, B, X, RNORM, W, INDEX, IPART)

! Each processor multiplies its block times the part of
! the dual corresponding to that part of the partition.
 Y=ZERO
 DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
 JSHIFT=J-IPART(1,MP_RANK+1)+1
 Y=Y+ASAVE(:,JSHIFT)*X(J)
 END DO

! Accumulate the pieces from all the processors. Put sum into B(:)
! on rank 0 processor.
 B=Y
 IF(MP_NPROCS > 1) &
 CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,&
 MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)
 IF(MP_RANK == 0) THEN

! Compute constrained solution at the root.
! The constraints will have no solution if B(M) = ONE.
! All of these example problems have solutions.
 B(M)=B(M)-ONE;B=-B/B(M)
 END IF

! Send the inequality constraint solution to all nodes.
 IF(MP_NPROCS > 1) &
 CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, &
 0, MP_LIBRARY_WORLD, IERROR)

! For large problems this printing needs to be removed.
 IF(MP_RANK == 0 .and. PRINT) &
 CALL SHOW(B(1:NP), &
 "Minimal length solution of the constraints")

! Compute residuals of the individual constraints.
! If only the solution is desired, the program ends here.
 X=ZERO
 DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
 JSHIFT=J-IPART(1,MP_RANK+1)+1
 X(J)=dot_product(B,ASAVE(:,JSHIFT))
 END DO

! This cleans up residuals that are about rounding
! error unit (times) the size of the constraint
! equation and right-hand side. They are replaced
! by exact zero.
 WHERE(W == ZERO) X=ZERO; W=X

! Each group of residuals is disjoint, per processor.
! We add all the pieces together for the total set of
! constraints.
 IF(MP_NPROCS > 1) &
 CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION,&
 MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)
 IF(MP_RANK == 0 .and. PRINT) &
 CALL SHOW(W, "Residuals for the constraints")

! See to any errors and shut down MPI.
 MP_NPROCS=MP_SETUP('Final')
 IF(MP_RANK == 0) THEN
 IF(COUNT(W < ZERO) == 0) WRITE(*,*)&
 " Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct."

72 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 END IF
 END

Output

Example 1 for PARALLEL_NONNEGATIVE_LSQ is correct.

Description
Subroutine PARALLEL_NONNEGATIVE_LSQ solves the linear least-squares system

, 0Ax b x� � , using the algorithm NNLS found in Lawson and Hanson, (1995),
pages 160-161. The code now updates the dual vector w of Step 2, page 161.
The remaining new steps involve exchange of required data, using MPI.

Additional Examples

Example 2: Distributed Non-negative Least-Squares
The program PNLSQ_EX2 illustrates the computation of the solution to a system of linear least-
squares equations with simple constraints: , 1,..., ,T

i ia x b i m� � subject to 0x � . In this example

we write the row vectors :T
i ia b� �� � on a file. This illustrates reading the data by rows and

arranging the data by columns, as required by PARALLEL_NONNEGATIVE_LSQ. After reading the
data, the right-hand side vector is broadcast to the group before computing a solution, x . The
block-size is chosen so that each participating processor receives the same number of columns,
except any remaining columns sent to the processor with largest rank. This processor contains the
right-hand side before the broadcast.

 This example illustrates connecting a BLACS ‘context’ handle and the
 Fortran Library MPI communicator, MP_LIBRARY_WORLD, described
 in Chapter 10.

 PROGRAM PNLSQ_EX2
! Use Parallel_Nonnegative_LSQ to solve a least-squares
! problem, A x = b, with x >= 0. This algorithm uses a
! distributed version of NNLS, found in the book
! Solving Least Squares Problems, page 165. The data is
! read from a file, by rows, and sent to the processors,
! as array columns.

 USE PNLSQ_INT
 USE SCALAPACK_IO_INT
 USE BLACS_INT

 USE MPI_SETUP_INT
 USE RAND_INT
 USE ERROR_OPTION_PACKET

 IMPLICIT NONE
 INCLUDE "mpif.h"

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 73

 INTEGER, PARAMETER :: M=128, N=32, NP=N+1, NIN=10

 real(kind(1d0)), ALLOCATABLE, DIMENSION(:) :: &
 d_A(:,:), A(:,:), B, C, W, X, Y
 real(kind(1d0)) RNORM, ERROR
 INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

 INTEGER I, J, K, L, DN, JSHIFT, IERROR, &
 CONTXT, NPROW, MYROW, MYCOL, DESC_A(9)
 TYPE(d_OPTIONS) IOPT(1)

! Routines with the "BLACS_" prefix are from the
! BLACS library.
 CALL BLACS_PINFO(MP_RANK, MP_NPROCS)

! Make initialization for BLACS.
 CALL BLACS_GET(0,0, CONTXT)

! Define processor grid to be 1 by MP_NPROCS.
 NPROW=1
 CALL BLACS_GRIDINIT(CONTXT, 'N/A', NPROW, MP_NPROCS)

! Get this processor's role in the process grid.
 CALL BLACS_GRIDINFO(CONTXT, NPROW, MP_NPROCS, &
 MYROW, MYCOL)

! Connect BLACS context with communicator MP_LIBRARY_WORLD.
 CALL BLACS_GET(CONTXT, 10, MP_LIBRARY_WORLD)

! Setup for MPI:
 MP_NPROCS=MP_SETUP()

 DN=max(1,NP/MP_NPROCS)
 ALLOCATE(IPART(2,MP_NPROCS))

! Spread columns evenly to the processors. Any odd
! number of columns are in the processor with highest
! rank.
 IPART(1,:)=1; IPART(2,:)=0
 DO L=2,MP_NPROCS
 IPART(2,L-1)=IPART(1,L-1)+DN
 IPART(1,L)=IPART(2,L-1)+1
 END DO
 IPART(2,MP_NPROCS)=NP
 IPART(2,:)=min(NP,IPART(2,:))

! Note which processor (L-1) receives the right-hand side.
 DO L=1,MP_NPROCS
 IF(IPART(1,L) <= NP .and. NP <= IPART(2,L)) EXIT
 END DO

 K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)
 ALLOCATE(d_A(M,K), W(N), X(N), Y(N),&
 B(M), C(M), INDEX(N))

 IF(MP_RANK == 0) THEN
 ALLOCATE(A(M,N))
! Define the matrix data using random values.
 A=rand(A); B=rand(B)

! Write the rows of data to an external file.
 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='UNKNOWN')
 DO I=1,M

74 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 WRITE(NIN,*) (A(I,J),J=1,N), B(I)
 END DO
 CLOSE(NIN)
 ELSE

! No resources are used where this array is not saved.
 ALLOCATE(A(M,0))
 END IF

! Define the matrix descriptor. This includes the
! right-hand side as an additional column. The row
! block size, on each processor, is arbitrary, but is
! chosen here to match the column block size.
 DESC_A=(/1, CONTXT, M, NP, DN+1, DN+1, 0, 0, M/)

! Read the data by rows.
 IOPT(1)=ScaLAPACK_READ_BY_ROWS
 CALL ScaLAPACK_READ ("Atest.dat", DESC_A, &
 d_A, IOPT=IOPT)

! Broadcast the right-hand side to all processors.
 JSHIFT=NP-IPART(1,L)+1
 IF(K > 0) B=d_A(:,JSHIFT)
 IF(MP_NPROCS > 1) &
 CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION , L-1, &
 MP_LIBRARY_WORLD, IERROR)

! Adjust the partition of columns to ignore the
! last column, which is the right-hand side. It is
! now moved to B(:).
 IPART(2,:)=min(N,IPART(2,:))

! Solve the constrained distributed problem.
 C=B
 CALL Parallel_Nonnegative_LSQ &
 (d_A, B, X, RNORM, W, INDEX, IPART)

! Solve the problem on one processor, with data saved
! for a cross-check.
 IPART(2,:)=0; IPART(2,1)=N; MP_NPROCS=1

! Since all processors execute this code, all arrays
! must be allocated in the main program.
 CALL Parallel_Nonnegative_LSQ &
 (A, C, Y, RNORM, W, INDEX, IPART)

! See to any errors.
 CALL e1pop("Mp_Setup")

! Check the differences in the two solutions. Unique solutions
! may differ in the last bits, due to rounding.
 IF(MP_RANK == 0) THEN
 ERROR=SUM(ABS(X-Y))/SUM(Y)
 IF(ERROR <= sqrt(EPSILON(ERROR))) write(*,*) &
 ' Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.'
 OPEN(UNIT=NIN, FILE='Atest.dat', STATUS='OLD')
 CLOSE(NIN, STATUS='Delete')
 END IF

! Exit from using this process grid.
 CALL BLACS_GRIDEXIT(CONTXT)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 75

 CALL BLACS_EXIT(0)

 END

Output
Example 2 for PARALLEL_NONNEGATIVE_LSQ is correct.'

PARALLEL_BOUNDED_LSQ
Solves a linear least-squares system with bounds on the unknowns.

Usage Notes
CALL PARALLEL_BOUNDED_LSQ &
(A, B, BND, X, RNORM, W, INDEX, IPART,&

 NSETP, NSETZ, IOPT=IOPT)

Required Arguments
A(1:M,:)— (Input/Output) Columns of the matrix with limits given by entries in the

array IPART(1:2,1:max(1,MP_NPROCS)). On output kA is replaced by the
product kQA , where Q is an orthogonal matrix. The value SIZE(A,1) defines the
value of M. Each processor starts and exits with its piece of the partitioned matrix.

B(1:M) — (Input/Output) Assumed-size array of length M containing the right-hand side
vector, b . On output b is replaced by the product � �Q b Ag� , where Q is the
orthogonal matrix applied to A and g is a set of active bounds for the solution.
All processors in the communicator start and exit with the same vector.

BND(1:2,1:N) — (Input) Assumed-size array containing the bounds for x . The lower
bound j� is in BND(1,J), and the upper bound j� is in BND(2,J).

X(1:N) — (Output) Assumed-size array of length N containing the solution, x� �� � .
The value SIZE(X) defines the value of N. All processors exit with the same
vector.

RNORM — (Output) Scalar that contains the Euclidean or least-squares length of the
residual vector, Ax b� . All processors exit with the same value.

W(1:N) — (Output) Assumed-size array of length N containing the dual vector,
� �Tw A b Ax� � . At a solution exactly one of the following is true for each

,1 ,j j n� �

76 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

, and arbitrary

, and 0

, and 0

, and =0

j j j j

j j j

j j j

j j j j

x w

x w

x w

x w

� �

�

�

� �

� � �

� � �

� � �

� � �

All processors exit with the same vector.

INDEX(1:N) — (Output) Assumed-size array of length N containing the NSETP indices
of columns in the solution interior to bounds, and the remainder that are at a
constraint. All processors exit with the same array.

IPART(1:2,1:max(1,MP_NPROCS)) — (Input) Assumed-size array containing the
partitioning describing the matrix A . The value MP_NPROCS is the number of
processors in the communicator, except when MPI has been finalized with a call to
the routine MP_SETUP(‘Final’). This causes MP_NPROCS to be assigned 0.
Normally users will give the partitioning to processor of rank = MP_RANK by
setting IPART(1,MP_RANK+1)= first column index, and IPART(2,MP_RANK+1)=
last column index. The number of columns per node is typically based on their
relative computing power. To avoid a node with rank MP_RANK doing any work
except communication, set IPART(1,MP_RANK+1) = 0 and
IPART(2,MP_RANK+1)= -1. In this exceptional case there is no reference to the
array A(:,:) at that node.

NSETP— (Output) An INTEGER indicating the number of solution components not at
constraints. The column indices are output in the array INDEX(:).

NSETZ— (Output) An INTEGER indicating the solution components held at fixed
values. The column indices are output in the array INDEX(:).

Optional Argument

IOPT(:)— (Input) Assumed-size array of derived type S_OPTIONS or D_OPTIONS.
This argument is used to change internal parameters of the algorithm. Normally
users will not be concerned about this argument, so they would not include it in the
argument list for the routine.

Packaged Options for PARALLEL_BOUNDED_LSQ
Option Name Option Value

PBLSQ_SET_TOLERANCE 1
PBLSQ_SET_MAX_ITERATIONS 2
PBLSQ_SET_MIN_RESIDUAL 3

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 77

IOPT(IO)=?_OPTIONS(PBLSQ_SET_TOLERANCE, TOLERANCE) Replaces the default rank
tolerance for using a column, from EPSILON(TOLERANCE) to TOLERANCE. Increasing the
value of TOLERANCE will cause fewer columns to be increased from their constraints, and may
cause the minimum residual RNORM to increase.

IOPT(IO)=?_OPTIONS(PBLSQ_SET_MIN_RESIDUAL, RESID) Replaces the default target for the
minimum residual vector length from 0 to RESID. Increasing the value of RESID can result in
fewer iterations and thus increased efficiency. The descent in the optimization will stop at the
first point where the minimum residual RNORM is smaller than RESID. Using this option may
result in the dual vector not satisfying its optimality conditions, as noted above.

IOPT(IO)= PBLSQ_SET_MAX_ITERATIONS

IOPT(IO+1)= NEW_MAX_ITERATIONS Replaces the default maximum number of iterations from
3*N to NEW_MAX_ITERATIONS. Note that this option requires two entries in the derived type
array.

FORTRAN 90 Interface
Generic: CALL PARALLEL_BOUNDED_LSQ (A, B, X[,…])

Specific: The specific interface names are S_PARALLEL_BOUNDED_LSQ and
D_PARALLEL_BOUNDED_LSQ.

Example 1: Distributed Equality and Inequality Constraint Solver
The program PBLSQ_EX1 illustrates the computation of the minimum Euclidean length solution of
an ' 'm n� system of linear inequality constraints , Gy h� . Additionally the first 0f � of the
constraints are equalities. The solution algorithm is based on Algorithm LDP, page 165-166, loc.
cit. By allowing the dual variables to be free, the constraints become equalities. The rows of

� �:E G h� are partitioned and assigned random values. When the minimum Euclidean length
solution to the inequalities has been calculated, the residuals 0r Gy h� � � are computed, with the
dual variables to the BVLS problem indicating the entries of r that are exactly zero.
 PROGRAM PBLSQ_EX1
! Use Parallel_bounded_LSQ to solve an inequality
! constraint problem, Gy >= h. Force F of the constraints
! to be equalities. This algorithm uses LDP of
! Solving Least Squares Problems, page 165.
! Forcing equality constraints by freeing the dual is
! new here. The constraints are allocated to the
! processors, by rows, in columns of the array A(:,:).
 USE PBLSQ_INT
 USE MPI_SETUP_INT
 USE RAND_INT
 USE SHOW_INT

 IMPLICIT NONE
 INCLUDE "mpif.h"

 INTEGER, PARAMETER :: MP=500, NP=400, M=NP+1, &

78 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 N=MP, F=NP/10

 REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0
 REAL(KIND(1D0)), ALLOCATABLE :: &
 A(:,:), B(:), BND(:,:), X(:), Y(:), &
 W(:), ASAVE(:,:)
 REAL(KIND(1D0)) RNORM
 INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

 INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, NSETZ
 LOGICAL :: PRINT=.false.

! Setup for MPI:
 MP_NPROCS=MP_SETUP()

 DN=N/max(1,max(1,MP_NPROCS))-1
 ALLOCATE(IPART(2,max(1,MP_NPROCS)))

! Spread constraint rows evenly to the processors.
 IPART(1,1)=1
 DO L=2,MP_NPROCS
 IPART(2,L-1)=IPART(1,L-1)+DN
 IPART(1,L)=IPART(2,L-1)+1
 END DO
 IPART(2,MP_NPROCS)=N

! Define the constraints using random data.
 K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)
 ALLOCATE(A(M,K), ASAVE(M,K), BND(2,N), &
 X(N), W(N), B(M), Y(M), INDEX(N))

! The use of ASAVE can be replaced by regenerating the
! data for A(:,:) after the return from
! Parallel_bounded_LSQ
 A=rand(A); ASAVE=A
 IF(MP_RANK == 0 .and. PRINT) &
 call show(IPART,&
 "Partition of the constraints to be solved")

! Set the right-hand side to be one in the last
! component, zero elsewhere.
 B=ZERO;B(M)=ONE

! Solve the dual problem. Letting the dual variable
! have no constraint forces an equality constraint
! for the primal problem.
 BND(1,1:F)=-HUGE(ONE); BND(1,F+1:)=ZERO
 BND(2,:)=HUGE(ONE)
 CALL Parallel_bounded_LSQ &
 (A, B, BND, X, RNORM, W, INDEX, IPART, &
 NSETP, NSETZ)

! Each processor multiplies its block times the part
! of the dual corresponding to that partition.
 Y=ZERO
 DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
 JSHIFT=J-IPART(1,MP_RANK+1)+1
 Y=Y+ASAVE(:,JSHIFT)*X(J)
 END DO

! Accumulate the pieces from all the processors.
! Put sum into B(:) on rank 0 processor.
 B=Y

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 79

 IF(MP_NPROCS > 1) &
 CALL MPI_REDUCE(Y, B, M, MPI_DOUBLE_PRECISION,&
 MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)
 IF(MP_RANK == 0) THEN

! Compute constraint solution at the root.
! The constraints will have no solution if B(M) = ONE.
! All of these example problems have solutions.
 B(M)=B(M)-ONE;B=-B/B(M)
 END IF

! Send the inequality constraint or primal solution to all nodes.
 IF(MP_NPROCS > 1) &
 CALL MPI_BCAST(B, M, MPI_DOUBLE_PRECISION, 0, &
 MP_LIBRARY_WORLD, IERROR)

! For large problems this printing may need to be removed.
 IF(MP_RANK == 0 .and. PRINT) &
 call show(B(1:NP), &
 "Minimal length solution of the constraints")

! Compute residuals of the individual constraints.
 X=ZERO
 DO J=IPART(1,MP_RANK+1),IPART(2,MP_RANK+1)
 JSHIFT=J-IPART(1,MP_RANK+1)+1
 X(J)=dot_product(B,ASAVE(:,JSHIFT))
 END DO

! This cleans up residuals that are about rounding error
! unit (times) the size of the constraint equation and
! right-hand side. They are replaced by exact zero.
 WHERE(W == ZERO) X=ZERO
 W=X

! Each group of residuals is disjoint, per processor.
! We add all the pieces together for the total set of
! constraints.
 IF(MP_NPROCS > 1) &
 CALL MPI_REDUCE(X, W, N, MPI_DOUBLE_PRECISION, &
 MPI_SUM, 0, MP_LIBRARY_WORLD, IERROR)
 IF(MP_RANK == 0 .and. PRINT) &
 call show(W, "Residuals for the constraints")

! See to any errors and shut down MPI.
 MP_NPROCS=MP_SETUP('Final')
 IF(MP_RANK == 0) THEN
 IF(COUNT(W < ZERO) == 0 .and.&
 COUNT(W == ZERO) >= F) WRITE(*,*)&
 " Example 1 for PARALLEL_BOUNDED_LSQ is correct."
 END IF
 END

Output
Example 1 for PARALLEL_BOUNDED_LSQ is correct.

Description
Subroutine PARALLEL_BOUNDED_LSQ solves the least-squares linear system ,Ax b x� �� � � ,
using the algorithm BVLS found in Lawson and Hanson, (1995), pages 279-283. The new steps

80 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

involve updating the dual vector and exchange of required data, using MPI. The optional changes to
default tolerances, minimum residual, and the number of iterations are new features.

Additional Examples

Example 2: Distributed Newton-Raphson Method with Step Control
The program PBLSQ_EX2 illustrates the computation of the solution of a non-linear system of
equations. We use a constrained Newton-Raphson method.
This algorithm works with the problem chosen for illustration. The step-size control used here,
employing only simple bounds, may not work on other non-linear systems of equations. Therefore
we do not recommend the simple non-linear solving technique illustrated here for an arbitrary
problem. The test case is Brown’s Almost Linear Problem, Moré, et al. (1982). The components are
given by:

� � � �

� �

1

1

1 , 1,..., 1

... 1

n

i i j
j

n n

f x x x n i n

f x x x
�

� � � � � � �

� � �

�

The functions are zero at the point � �1,..., ,
Tnx � � �

�

� , where 1� � is a particular root of the

polynomial equation � � 11 1 0n nn n� �
�

� � � � . To avoid convergence to the local minimum

� �0,...,0, 1 Tx n� � , we start at the standard point � �1/ 2,..., 1/ 2,1/ 2 Tx � and develop the Newton

method using the linear terms � � � � � � 0f x y f x J x y� � � � , where � �J x is the Jacobian matrix.
The update is constrained so that the first 1n � components satisfy 1/ 2j jx y� � , or 1/ 2j jy x� � .

The last component is bounded from both sides, 0 1/ 2n nx y� � � , or � �1/ 2n n nx y x� � � . These

bounds avoid the local minimum and allow us to replace the last equation by � �
1
ln 0

n

j
j

x
�

�� , which

is better scaled than the original. The positive lower bound for n nx y� is replaced by the strict
bound, EPSILON(1D0), the arithmetic precision, which restricts the relative accuracy of nx . The
input for routine PARALLEL_BOUNDED_LSQ expects each processor to obtain that part of � �J x it
owns. Those columns of the Jacobian matrix correspond to the partition given in the array
IPART(:,:). Here the columns of the matrix are evaluated, in parallel, on the nodes where they are
required.

 PROGRAM PBLSQ_EX2
! Use Parallel_bounded_LSQ to solve a non-linear system
! of equations. The example is an ACM-TOMS test problem,
! except for the larger size. It is "Brown's Almost Linear
! Function."
 USE ERROR_OPTION_PACKET
 USE PBLSQ_INT
 USE MPI_SETUP_INT
 USE SHOW_INT
 USE Numerical_Libraries, ONLY : N1RTY

 IMPLICIT NONE

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 81

 INTEGER, PARAMETER :: N=200, MAXIT=5

 REAL(KIND(1D0)), PARAMETER :: ZERO=0D0, ONE=1D0,&
 HALF=5D-1, TWO=2D0
 REAL(KIND(1D0)), ALLOCATABLE :: &
 A(:,:), B(:), BND(:,:), X(:), Y(:), W(:)
 REAL(KIND(1D0)) RNORM
 INTEGER, ALLOCATABLE :: INDEX(:), IPART(:,:)

 INTEGER K, L, DN, J, JSHIFT, IERROR, NSETP, &
 NSETZ, ITER
 LOGICAL :: PRINT=.false.
 TYPE(D_OPTIONS) IOPT(3)

! Setup for MPI:
 MP_NPROCS=MP_SETUP()

 DN=N/max(1,max(1,MP_NPROCS))-1
 ALLOCATE(IPART(2,max(1,MP_NPROCS)))

! Spread Jacobian matrix columns evenly to the processors.
 IPART(1,1)=1
 DO L=2,MP_NPROCS
 IPART(2,L-1)=IPART(1,L-1)+DN
 IPART(1,L)=IPART(2,L-1)+1
 END DO
 IPART(2,MP_NPROCS)=N

 K=max(0,IPART(2,MP_RANK+1)-IPART(1,MP_RANK+1)+1)
 ALLOCATE(A(N,K), BND(2,N), &
 X(N), W(N), B(N), Y(N), INDEX(N))

! This is Newton's method on "Brown's almost
! linear function."
 X=HALF
 ITER=0

! Turn off messages and stopping for FATAL class errors.
 CALL ERSET (4, 0, 0)

NEWTON_METHOD: DO

! Set bounds for the values after the step is taken.
! All variables are positive and bounded below by HALF,
! except for variable N, which has an upper bound of HALF.
 BND(1,1:N-1)=-HUGE(ONE)
 BND(2,1:N-1)=X(1:N-1)-HALF
 BND(1,N)=X(N)-HALF
 BND(2,N)=X(N)-EPSILON(ONE)

! Compute the residual function.
 B(1:N-1)=SUM(X)+X(1:N-1)-(N+1)
 B(N)=LOG(PRODUCT(X))
 if(mp_rank == 0 .and. PRINT) THEN
 CALL SHOW(B, &
 "Developing non-linear function residual")
 END IF
 IF (MAXVAL(ABS(B(1:N-1))) <= SQRT(EPSILON(ONE)))&
 EXIT NEWTON_METHOD

! Compute the derivatives local to each processor.
 A(1:N-1,:)=ONE

82 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 DO J=1,N-1
 IF(J < IPART(1,MP_RANK+1)) CYCLE
 IF(J > IPART(2,MP_RANK+1)) CYCLE
 JSHIFT=J-IPART(1,MP_RANK+1)+1
 A(J,JSHIFT)=TWO
 END DO
 A(N,:)=ONE/X(IPART(1,MP_RANK+1):IPART(2,MP_RANK+1))

! Reset the linear independence tolerance.
 IOPT(1)=D_OPTIONS(PBLSQ_SET_TOLERANCE,&
 sqrt(EPSILON(ONE)))
 IOPT(2)=PBLSQ_SET_MAX_ITERATIONS

! If N iterations was not enough on a previous iteration, reset to 2*N.
 IF(N1RTY(1) == 0) THEN
 IOPT(3)=N
 ELSE
 IOPT(3)=2*N
 CALL E1POP('MP_SETUP')
 CALL E1PSH('MP_SETUP')
 END IF

 CALL parallel_bounded_LSQ &
 (A, B, BND, Y, RNORM, W, INDEX, IPART, NSETP, &
 NSETZ,IOPT=IOPT)

! The array Y(:) contains the constrained Newton step.
! Update the variables.
 X=X-Y

 IF(mp_rank == 0 .and. PRINT) THEN
 CALL show(BND, "Bounds for the moves")
 CALL SHOW(X, "Developing Solution")
 CALL SHOW((/RNORM/), &
 "Linear problem residual norm")
 END IF

! This is a safety measure for not taking too many steps.
 ITER=ITER+1
 IF(ITER > MAXIT) EXIT NEWTON_METHOD
 END DO NEWTON_METHOD

 IF(MP_RANK == 0) THEN
 IF(ITER <= MAXIT) WRITE(*,*)&
 " Example 2 for PARALLEL_BOUNDED_LSQ is correct."
 END IF

! See to any errors and shut down MPI.
 MP_NPROCS=MP_SETUP('Final')

 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 83

LSARG
Solves a real general system of linear equations with iterative refinement.

Required Arguments
A — N by N matrix containing the coefficients of the linear system. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system ATX = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSARG (A, B, X [,…])

Specific: The specific interface names are S_LSARG and D_LSARG.

FORTRAN 77 Interface
Single: CALL LSARG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSARG.

Example
A system of three linear equations is solved. The coefficient matrix has real general form and
the right-hand-side vector b has three elements.

 USE LSARG_INT
 USE WRRRN_INT

! Declare variables

84 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (33.0 16.0 72.0)
! (-24.0 -10.0 -57.0)
! (18.0 -11.0 7.0)
!
! B = (129.0 -96.0 8.5)
!
 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
 DATA B/129.0, -96.0, 8.5/
!
 CALL LSARG (A, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
 END

Output
 X
 1 2 3
1.000 1.500 1.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ARG/DL2ARG. The

reference is:

CALL L2ARG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — Work vector of length N2 containing the LU factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting information for the
LU factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is singular

Description
Routine LSARG solves a system of linear algebraic equations having a real general coefficient
matrix. It first uses the routine LFCRG, page 89, to compute an LU factorization of the

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 85

coefficient matrix and to estimate the condition number of the matrix. The solution of the linear
system is then found using the iterative refinement routine LFIRG, page 96.

LSARG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if
the iterative refinement algorithm fails to converge. These errors occur only if A is singular or
very close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSARG solves
the problem that is represented in the computer; however, this problem may differ from the
problem whose solution is desired.

LSLRG
Solves a real general system of linear equations without iterative refinement.

Required Arguments
A — N by N matrix containing the coefficients of the linear system. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system ATX = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSLRG (A, B, X [,…])

Specific: The specific interface names are S_LSLRG and D_LSLRG.

86 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL LSLRG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLRG.

Example 1
A system of three linear equations is solved. The coefficient matrix has real general form and
the right-hand-side vector b has three elements.

 USE LSLRG_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (33.0 16.0 72.0)
! (-24.0 -10.0 -57.0)
! (18.0 -11.0 7.0)
!
! B = (129.0 -96.0 8.5)
!
 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
 DATA B/129.0, -96.0, 8.5/
!
 CALL LSLRG (A, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3
1.000 1.500 1.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LRG/DL2LRG. The

reference is:

CALL L2LRG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — N � N work array containing the LU factorization of A on output. If A is not
needed, A and FACT can share the same storage locations. See Item 3 below to
avoid memory bank conflicts.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 87

IPVT — Integer work vector of length N containing the pivoting information for the
LU factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LRG the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSLRG.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLRG. Users directly calling L2LRG can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLRG or L2LRG. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSLRG temporarily replaces IVAL(2) by IVAL(1). The
routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG
skips this computation. LSLRG restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSLRG solves a system of linear algebraic equations having a real general coefficient
matrix. It first uses the routine LFCRG (page 89) to compute an LU factorization of the
coefficient matrix based on Gauss elimination with partial pivoting. Experiments were analyzed
to determine efficient implementations on several different computers. For some
supercomputers, particularly those with efficient vendor-supplied BLAS, versions that call
Level 1, 2 and 3 BLAS are used. The remaining computers use a factorization method provided
to us by Dr. Leonard J. Harding of the University of Michigan. Harding’s work involves “loop
unrolling and jamming” techniques that achieve excellent performance on many computers.
Using an option, LSLRG will estimate the condition number of the matrix. The solution of the
linear system is then found using LFSRG (page 94).

The routine LSLRG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This occurs only if A is close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that small changes in A can cause large changes in the solution x.
If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that either
LSVRR, page 415, or LSARG, page 83, be used.

88 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Additional Example
A system of N = 16 linear equations is solved using the routine L2LRG. The option manager is
used to eliminate memory bank conflict inefficiencies that may occur when the matrix
dimension is a multiple of 16. The leading dimension of FACT = A is increased from N to
N + IVAL(3)=17, since N=16=IVAL(4). The data used for the test is a nonsymmetric Hadamard
matrix and a right-hand side generated by a known solution, xj = j, j = 1, ..., N.

 USE L2LRG_INT
 USE IUMAG_INT
 USE WRRRN_INT
 USE SGEMV_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=17, N=16)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER ICHP, IPATH, IPUT, KBANK
 REAL ONE, ZERO
 PARAMETER (ICHP=1, IPATH=1, IPUT=2, KBANK=16, ONE=1.0E0, &
 ZERO=0.0E0)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, IPVT(N), J, K, NN
 REAL A(LDA,N), B(N), WK(N), X(N)
! SPECIFICATIONS FOR SAVE VARIABLES
 INTEGER IOPT(1), IVAL(4)
 SAVE IVAL
! Data for option values.
 DATA IVAL/1, 16, 1, 16/
! Set values for A and B:
 A(1,1) = ONE
 NN = 1
! Generate Hadamard matrix.
 DO 20 K=1, 4
 DO 10 J=1, NN
 DO 10 I=1, NN
 A(NN+I,J) = -A(I,J)
 A(I,NN+J) = A(I,J)
 A(NN+I,NN+J) = A(I,J)
 10 CONTINUE
 NN = NN + NN
 20 CONTINUE
! Generate right-hand-side.
 DO 30 J=1, N
 X(J) = J
 30 CONTINUE
! Set B = A*X.
 CALL SGEMV (’N’, N, N, ONE, A, LDA, X, 1, ZERO, B, 1)
! Clear solution array.
 X = ZERO

! Set option to avoid memory
! bank conflicts.
 IOPT(1) = KBANK
 CALL IUMAG (’MATH’, ICHP, IPUT, 1, IOPT, IVAL)
! Solve A*X = B.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 89

 CALL L2LRG (N, A, LDA, B, IPATH, X, A, IPVT, WK)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
 END

Output
 X
 1 2 3 4 5 6 7 8 9 10
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

 11 12 13 14 15 16
11.00 12.00 13.00 14.00 15.00 16.00

LFCRG
Computes the LU factorization of a real general matrix and estimate its L� condition number.

Required Arguments
A — N by N matrix to be factored. (Input)

FACT — N by N matrix containing the LU factorization of the matrix A. (Output)
If A is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length N containing the pivoting information for the LU factorization.
(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCRG (A, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCRG and D_LFCRG.

90 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL LFCRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCRG.

Example
The inverse of a 3 � 3 matrix is computed. LFCRG is called to factor the matrix and to check for
singularity or ill-conditioning. LFIRG is called to determine the columns of the inverse.

 USE LFCRG_INT
 USE UMACH_INT
 USE LFIRG_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER IPVT(N), J, NOUT
 REAL A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RCOND, &
 RES(N), RJ(N)
! Set values for A
! A = (1.0 3.0 3.0)
! (1.0 3.0 4.0)
! (1.0 4.0 3.0)
!
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
!
 CALL LFCRG (A, FACT, IPVT, RCOND)
! Print the reciprocal condition number
! and the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = 0.0E0
 DO 10 J=1, N
 RJ(J) = 1.0
! RJ is the J-th column of the identity
! matrix so the following LFIRG
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFIRG (A, FACT, IPVT, RJ, AINV(:,J), RES)
 RJ(J) = 0.0
 10 CONTINUE
! Print results
 CALL WRRRN (’AINV’, AINV)
!
99998 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 91

Output

RCOND = 0.015
L1 Condition number = 66.471

 AINV
 1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CRG/DL2CRG. The

reference is:

CALL L2CRG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular

Description
Routine LFCRG performs an LU factorization of a real general coefficient matrix. It also
estimates the condition number of the matrix. The LU factorization is done using scaled partial
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the
same as if each row were scaled to have the same �-norm.

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described in a paper by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LFCRG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFIRG, page 96, LFSRG,
94, and LFDRG, page 99. To solve systems of equations with multiple right-hand-side vectors,
use LFCRG followed by either LFIRG or LFSRG called once for each right-hand side. The routine

92 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFDRG can be called to compute the determinant of the coefficient matrix after LFCRG has
performed the factorization.

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the
upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct
L using

L���= LN-1PN-1 � L�P�

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik
for i = k + 1, �, N inserted below the diagonal. The strict lower half of F can also be thought
of as containing the negative of the multipliers. LFCRG is based on the LINPACK routine
SGECO; see Dongarra et al. (1979). SGECO uses unscaled partial pivoting.

LFTRG
Computes the LU factorization of a real general matrix.

Required Arguments
A — N by N matrix to be factored. (Input)

FACT — N by N matrix containing the LU factorization of the matrix A. (Output)
If A is not needed, A and FACT can share the same storage locations.

IPVT — Vector of length N containing the pivoting information for the LU factorization.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFTRG (A, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTRG and D_LFTRG.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 93

FORTRAN 77 Interface
Single: CALL LFTRG (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFCRG.

Example
A linear system with multiple right-hand sides is solved. Routine LFTRG is called to factor the
coefficient matrix. The routine LFSRG is called to compute the two solutions for the two right-
hand sides. In this case, the coefficient matrix is assumed to be well-conditioned and correctly
scaled. Otherwise, it would be better to call LFCRG (page 89) to perform the factorization, and
LFIRG (page 96) to compute the solutions.

 USE LFTRG_INT
 USE LFSRG_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER IPVT(N), J
 REAL A(LDA,LDA), B(N,2), FACT(LDFACT,LDFACT), X(N,2)
!
! Set values for A and B
!
! A = (1.0 3.0 3.0)
! (1.0 3.0 4.0)
! (1.0 4.0 3.0)
!
! B = (1.0 10.0)
! (4.0 14.0)
! (-1.0 9.0)
!
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
 DATA B/1.0, 4.0, -1.0, 10.0, 14.0, 9.0/
!
 CALL LFTRG (A, FACT, IPVT)
! Solve for the two right-hand sides
 DO 10 J=1, 2
 CALL LFSRG (FACT, IPVT, B(:,J), X(:,J))
 10 CONTINUE
! Print results
 CALL WRRRN (’X’, X)
 END

Output

 X
 1 2
1 -2.000 1.000
2 -2.000 -1.000
3 3.000 4.000

94 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TRG/ DL2TRG. The

reference is:

CALL L2TRG (N, A, LDA, FACT, LDFACT, IPVT, WK)

The additional argument is:

WK — Work vector of length N used for scaling.

2. Informational error
Type Code

4 2 The input matrix is singular.

Description
Routine LFTRG performs an LU factorization of a real general coefficient matrix. The LU
factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial
pivoting in that the pivoting strategy is the same as if each row were scaled to have the
samenorm.

The routine LFTRG fails if U, the upper triangular part of the factorization, has a zero diagonal
element. This can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFIRG (page 96), LFSRG
(page 94) and LFDRG (page 99). To solve systems of equations with multiple right-hand-side
vectors, use LFTRG followed by either LFIRG or LFSRG called once for each right-hand side.
The routine LFDRG can be called to compute the determinant of the coefficient matrix after
LFTRG has performed the factorization. Let F be the matrix FACT and let p be the vector IPVT.
The triangular matrix U is stored in the upper triangle of F. The strict lower triangle of F
contains the information needed to reconstruct L-1 using

L�� = LN-1PN-1 . . . L�P�

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik
for i = k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of
as containing the negative of the multipliers.

Routine LFTRG is based on the LINPACK routine SGEFA. See Dongarra et al. (1979). The
routine SGEFA uses partial pivoting.

LFSRG
Solves a real general system of linear equations given the LU factorization of the coefficient
matrix.

Required Arguments
FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output

from routine LFCRG (page 89). (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 95

IPVT — Vector of length N containing the pivoting information for the LU factorization of A
as output from subroutine LFCRG (page 89) or LFTRG/DLFTRG (page 92). (Input).

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system AX = B is solved.

IPATH = 2 means the system ATX = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LFSRG (FACT, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSRG and D_LFSRG.

FORTRAN 77 Interface
Single: CALL LFSRG (N, FACT, LDFACT, IPVT, B, IPATH, X)

Double: The double precision name is DLFSRG.

Example
The inverse is computed for a real general 3 � 3 matrix. The input matrix is assumed to be well-
conditioned, hence, LFTRG is used rather than LFCRG.

 USE LFSRG_INT
 USE LFTRG_INT
 USE WRRRN_INT
! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER I, IPVT(N), J
 REAL A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N)
!

96 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Set values for A
! A = (1.0 3.0 3.0)
! (1.0 3.0 4.0)
! (1.0 4.0 3.0)
!
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
!
 CALL LFTRG (A, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = 0.0E0
 DO 10 J=1, N
 RJ(J) = 1.0
! RJ is the J-th column of the identity
! matrix so the following LFSRG
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFSRG (FACT, IPVT, RJ, AINV(:,J))
 RJ(J) = 0.0
 10 CONTINUE
! Print results
 CALL WRRRN (’AINV’, AINV)
 END

Output

 AINV
 1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

Description
Routine LFSRG computes the solution of a system of linear algebraic equations having a real
general coefficient matrix. To compute the solution, the coefficient matrix must first undergo an
LU factorization. This may be done by calling either LFCRG, page 89, or LFTRG, page 92. The
solution to Ax = b is found by solving the triangular systems Ly = b and Ux = y. The forward
elimination step consists of solving the system Ly = b by applying the same permutations and
elimination operations to b that were applied to the columns of A in the factorization routine.
The backward substitution step consists of solving the triangular system Ux = y for x.

LFSRG, page 94, and LFIRG, page 96, both solve a linear system given its LU factorization.
LFIRG generally takes more time and produces a more accurate answer than LFSRG. Each
iteration of the iterative refinement algorithm used by LFIRG calls LFSRG. The routine LFSRG is
based on the LINPACK routine SGESL; see Dongarra et al. (1979).

LFIRG
Uses iterative refinement to improve the solution of a real general system of linear equations.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 97

Required Arguments
A — N by N matrix containing the coefficient matrix of the linear system. (Input)

FACT — N by N matrix containing the LU factorization of the coefficient matrix A as output
from routine LFCRG/DLFCRG or LFTRG/DLFTRG. (Input).

IPVT — Vector of length N containing the pivoting information for the LU factorization of A
as output from routine LFCRG/DLFCRG or LFTRG/DLFTRG. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input).

X — Vector of length N containing the solution to the linear system. (Output)

RES — Vector of length N containing the final correction at the improved solution. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)

IPATH = 1 means the system A * X = B is solved.

IPATH = 2 means the system ATX = B is solved.

Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LFIRG (A, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFIRG and D_LFIRG.

FORTRAN 77 Interface
Single: CALL LFIRG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES)

Double: The double precision name is DLFIRG.

98 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example
A set of linear systems is solved successively. The right-hand-side vector is perturbed after
solving the system each of the first two times by adding 0.5 to the second element.

 USE LFIRG_INT
 USE LFCRG_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), B(N), FACT(LDFACT,LDFACT), RCOND, RES(N), X(N)
!
! Set values for A and B
!
! A = (1.0 3.0 3.0)
! (1.0 3.0 4.0)
! (1.0 4.0 3.0)
!
! B = (-0.5 -1.0 1.5)
!
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
 DATA B/-0.5, -1.0, 1.5/
!
 CALL LFCRG (A, FACT, IPVT, RCOND)
! Print the reciprocal condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Solve the three systems
 DO 10 J=1, 3
 CALL LFIRG (A, FACT, IPVT, B, X, RES)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
! Perturb B by adding 0.5 to B(2)
 B(2) = B(2) + 0.5
 10 CONTINUE
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.015
L1 Condition number = 66.471
 X
 1 2 3
-5.000 2.000 -0.500

 X
 1 2 3
-6.500 2.000 0.000

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 99

 X
 1 2 3
-8.000 2.000 0.500

Comments
Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative
refinement to be effective.

Description
Routine LFIRG computes the solution of a system of linear algebraic equations having a real
general coefficient matrix. Iterative refinement is performed on the solution vector to improve
the accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is
somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This
may be done by calling either LFCRG, page 89, or LFTRG, page 92.

Iterative refinement fails only if the matrix is very ill-conditioned.

Routines LFIRG (page 96) and LFSRG (page 94) both solve a linear system given its LU
factorization. LFIRG generally takes more time and produces a more accurate answer than
LFSRG. Each iteration of the iterative refinement algorithm used by LFIRG calls LFSRG.

LFDRG
Computes the determinant of a real general matrix given the LU factorization of the matrix.

Required Arguments
FACT — N by N matrix containing the LU factorization of the matrix A as output from routine

LFCRG/DLFCRG (page 89). (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization as
output from routine LFTRG/DLFTRG or LFCRG/DLFCRG. (Input).

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (FACT,2).

100 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFDRG (FACT, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDRG and D_LFDRG.

FORTRAN 77 Interface
Single: CALL LFDRG (N, FACT, LDFACT, IPVT, DET1, DET2)

Double: The double precision name is DLFDRG.

Example
The determinant is computed for a real general 3 � 3 matrix.

 USE LFDRG_INT
 USE LFTRG_INT
 USE UMACH_INT

! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), DET1, DET2, FACT(LDFACT,LDFACT)
!
! Set values for A
! A = (33.0 16.0 72.0)
! (-24.0 -10.0 -57.0)
! (18.0 -11.0 7.0)
!
 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
!
 CALL LFTRG (A, FACT, IPVT)
! Compute the determinant
 CALL LFDRG (FACT, IPVT, DET1, DET2)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
!
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0)
 END

Output

The determinant of A is -4.761 * 10**3.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 101

Description
Routine LFDRG computes the determinant of a real general coefficient matrix. To compute the
determinant, the coefficient matrix must first undergo an LU factorization. This may be done by
calling either LFCRG (page 89) or LFTRG (page 92). The formula det A = det L det U is used to
compute the determinant. Since the determinant of a triangular matrix is the product of the
diagonal elements

1
det N

iii
U U

�

��

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular
matrices with unit diagonals and of permutation matrices, det L = (�1)k where k is the number
of pivoting interchanges.

Routine LFDRG is based on the LINPACK routine SGEDI; see Dongarra et al. (1979)

LINRG
Computes the inverse of a real general matrix.

Required Arguments
A — N by N matrix containing the matrix to be inverted. (Input)

AINV — N by N matrix containing the inverse of A. (Output)
If A is not needed, A and AINV can share the same storage locations.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface
Generic: CALL LINRG (A, AINV [,…])

Specific: The specific interface names are S_LINRG and D_LINRG.

102 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL LINRG (N, A, LDA, AINV, LDAINV)

Double: The double precision name is DLINRG.

Example
The inverse is computed for a real general 3 � 3 matrix.

 USE LINRG_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3, LDAINV=3)
 INTEGER I, J, NOUT
 REAL A(LDA,LDA), AINV(LDAINV,LDAINV)
!
! Set values for A
! A = (1.0 3.0 3.0)
! (1.0 3.0 4.0)
! (1.0 4.0 3.0)
!
 DATA A/1.0, 1.0, 1.0, 3.0, 3.0, 4.0, 3.0, 4.0, 3.0/
!
 CALL LINRG (A, AINV)
! Print results
 CALL WRRRN (’AINV’, AINV)
 END

Output

 AINV
 1 2 3
1 7.000 -3.000 -3.000
2 -1.000 0.000 1.000
3 -1.000 1.000 0.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2NRG/DL2NRG. The

reference is:

CALL L2NRG (N, A, LDA, AINV, LDAINV, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length N+ N(N � 1)/2.

IWK — Integer work vector of length N.

2. Informational errors
Type Code

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 103

 3 1 The input matrix is too ill-conditioned. The inverse
might not be accurate.

 4 2 The input matrix is singular.

Description
Routine LINRG computes the inverse of a real general matrix. It first uses the routine LFCRG
(page 89) to compute an LU factorization of the coefficient matrix and to estimate the condition
number of the matrix. Routine LFCRG computes U and the information needed to compute L-1.
LINRT, page 128, is then used to compute U-1. Finally, A-1 is computed using A-1 = U-1L-1.

The routine LINRG fails if U, the upper triangular part of the factorization, has a zero diagonal
element or if the iterative refinement algorithm fails to converge. This error occurs only if A is
singular or very close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in A-1.

LSACG
Solves a complex general system of linear equations with iterative refinement.

Required Arguments
A — Complex N by N matrix containing the coefficients of the linear system. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system AHX = B is solved
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSACG (A, B, X [,…])

104 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Specific: The specific interface names are S_LSACG and D_LSACG.

FORTRAN 77 Interface
Single: CALL LSACG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSACG.

Example
A system of three linear equations is solved. The coefficient matrix has complex general form
and the right-hand-side vector b has three elements.

 USE LSACG_INT
 USE WRCRN_INT

! Declare variables
 PARAMETER (LDA=3, N=3)
 COMPLEX A(LDA,LDA), B(N), X(N)
! Set values for A and B
!
! A = (3.0-2.0i 2.0+4.0i 0.0-3.0i)
! (1.0+1.0i 2.0-6.0i 1.0+2.0i)
! (4.0+0.0i -5.0+1.0i 3.0-2.0i)
!
! B = (10.0+5.0i 6.0-7.0i -1.0+2.0i)
!
 DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0), &
 (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/
 DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/
! Solve AX = B (IPATH = 1)
 CALL LSACG (A, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ACG/DL2ACG. The

reference is:

CALL L2ACG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — Complex work vector of length N2containing the LU factorization of A on
output.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 105

IPVT — Integer work vector of length N containing the pivoting information for the
LU factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code

 3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

 4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2ACG the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSACG.
Additional memory allocation for FACT and option value restoration are done
automatically in LSACG. Users directly calling L2ACG can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSACG or L2ACG. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSACG temporarily replaces IVAL(2) by IVAL(1). The
routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG
skips this computation. LSACG restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSACG solves a system of linear algebraic equations with a complex general coefficient
matrix. It first uses the routine LFCCG, page 108, to compute an LU factorization of the
coefficient matrix and to estimate the condition number of the matrix. The solution of the linear
system is then found using the iterative refinement routine LFICG, page 116.

LSACG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if
the iterative refinement algorithm fails to converge. These errors occur only if A is singular or
very close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSACG solves
the problem that is represented in the computer; however, this problem may differ from the
problem whose solution is desired.

106 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LSLCG
Solves a complex general system of linear equations without iterative refinement.

Required Arguments
A — Complex N by N matrix containing the coefficients of the linear system. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system AHX = B is solved
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSLCG (A, B, X [,…])

Specific: The specific interface names are S_LSLCG and D_LSLCG.

FORTRAN 77 Interface
Single: CALL LSLCG (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLCG.

Example
A system of three linear equations is solved. The coefficient matrix has complex general form
and the right-hand-side vector b has three elements.

 USE LSLCG_INT
 USE WRCRN_INT

! Declare variables
 PARAMETER (LDA=3, N=3)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 107

 COMPLEX A(LDA,LDA), B(N), X(N)
! Set values for A and B
!
! A = (3.0-2.0i 2.0+4.0i 0.0-3.0i)
! (1.0+1.0i 2.0-6.0i 1.0+2.0i)
! (4.0+0.0i -5.0+1.0i 3.0-2.0i)
!
! B = (10.0+5.0i 6.0-7.0i -1.0+2.0i)
!
 DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),&
 (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/
 DATA B/(10.0,5.0), (6.0,-7.0), (-1.0,2.0)/
! Solve AX = B (IPATH = 1)
 CALL LSLCG (A, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3
(1.000,-1.000) (2.000, 1.000) (0.000, 3.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LCG/DL2LCG. The

reference is:

CALL L2LCG (N, A, LDA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — N � N work array containing the LU factorization of A on output. If A is not
needed, A and FACT can share the same storage locations.

IPVT — Integer work vector of length N containing the pivoting information for the
LU factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LCG the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

108 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

temporarily replaced by IVAL(1) and IVAL(2); respectively, in LSLCG.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLCG. Users directly calling L2LCG can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLCG or L2LCG. Default values for the option are IVAL(*)
= 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSLCG temporarily replaces IVAL(2) by IVAL(1). The
routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG
skips this computation. LSLCG restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSLCG solves a system of linear algebraic equations with a complex general coefficient
matrix. It first uses the routine LFCCG, page 108, to compute an LU factorization of the
coefficient matrix and to estimate the condition number of the matrix. The solution of the linear
system is then found using LFSCG, page 114.

LSLCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
occurs only if A either is a singular matrix or is very close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that
LSACG, page 103, be used.

LFCCG
Computes the LU factorization of a complex general matrix and estimate its L� condition number.

Required Arguments
A — Complex N by N matrix to be factored. (Input)

FACT — Complex N by N matrix containing the LU factorization of the matrix A (Output)
If A is not needed, A and FACT can share the same storage locations)

IPVT — Vector of length N containing the pivoting information for the LU factorization.
(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 109

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCCG (A, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCCG and D_LFCCG.

FORTRAN 77 Interface
Single: CALL LFCCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCCG.

Example
The inverse of a 3 � 3 matrix is computed. LFCCG is called to factor the matrix and to check for
singularity or ill-conditioning. LFICG (page 116) is called to determine the columns of the
inverse.

 USE IMSL_LIBRARIES

! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL RCOND, THIRD
 COMPLEX A(LDA,LDA), AINV(LDA,LDA), RJ(N), FACT(LDFACT,LDFACT), &
 RES(N)
! Declare functions
 COMPLEX CMPLX
! Set values for A
!
! A = (1.0+1.0i 2.0+3.0i 3.0+3.0i)
! (2.0+1.0i 5.0+3.0i 7.0+4.0i)
! (-2.0+1.0i -4.0+4.0i -5.0+3.0i)
!
 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&
 (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
!
! Scale A by dividing by three

110 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 THIRD = 1.0/3.0
 DO 10 I=1, N
 CALL CSSCAL (N, THIRD, A(:,I), 1)
 10 CONTINUE
! Factor A
 CALL LFCCG (A, FACT, IPVT, RCOND)
! Print the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Set up the columns of the identity
! matrix one at a time in RJ
 CALL CSET (N, (0.0,0.0), RJ, 1)
 DO 20 J=1, N
 RJ(J) = CMPLX(1.0,0.0)
! RJ is the J-th column of the identity
! matrix so the following LFIRG
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFICG (A, FACT, IPVT, RJ, AINV(:,J), RES)
 RJ(J) = CMPLX(0.0,0.0)
 20 CONTINUE
! Print results
 CALL WRCRN (’AINV’, AINV)
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.016
L1 Condition number = 63.104

 AINV
 1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CCG/DL2CCG. The

reference is:

CALL L2CCG (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is:

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 111

4 2 The input matrix is singular.

Description
Routine LFCCG performs an LU factorization of a complex general coefficient matrix. It also
estimates the condition number of the matrix. The LU factorization is done using scaled partial
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the
same as if each row were scaled to have the same �-norm.

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LFCCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A either is singular or is very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFICG, page 116, LFSCG,
page 114, and LFDCG, page 119. To solve systems of equations with multiple right-hand-side
vectors, use LFCCG followed by either LFICG or LFSCG called once for each right-hand side.
The routine LFDCG can be called to compute the determinant of the coefficient matrix after
LFCCG has performed the factorization.

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the
upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct
L using

L�� = LN-1PN-1 � L�P�

where Pk is the identity matrix with rows k and pk interchanged and Lk is the identity with Fik
for i = k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of
as containing the negative of the multipliers.

LFCCG is based on the LINPACK routine CGECO; see Dongarra et al. (1979). CGECO uses
unscaled partial pivoting.

LFTCG
Computes the LU factorization of a complex general matrix.

Required Arguments
A — Complex N by N matrix to be factored. (Input)

FACT — Complex N by N matrix containing the LU factorization of the matrix A

 (Output)
If A is not needed, A and FACT can share the same storage locations.

112 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPVT — Vector of length N containing the pivoting information for the LU factorization.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFTCG (A, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTCG and D_LFTCG.

FORTRAN 77 Interface
Single: CALL LFTCG (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTCG.

Example
A linear system with multiple right-hand sides is solved. LFTCG is called to factor the
coefficient matrix. LFSCG is called to compute the two solutions for the two right-hand sides. In
this case the coefficient matrix is assumed to be well-conditioned and correctly scaled.
Otherwise, it would be better to call LFCCG to perform the factorization, and LFICG to compute
the solutions.

 USE LFTCG_INT
 USE LFSCG_INT
 USE WRCRN_INT

! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER IPVT(N)
 COMPLEX A(LDA,LDA), B(N,2), X(N,2), FACT(LDFACT,LDFACT)
! Set values for A
! A = (1.0+1.0i 2.0+3.0i 3.0-3.0i)
! (2.0+1.0i 5.0+3.0i 7.0-5.0i)
! (-2.0+1.0i -4.0+4.0i 5.0+3.0i)
!
 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&
 (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 113

!
! Set the right-hand sides, B
! B = (3.0+ 5.0i 9.0+ 0.0i)
! (22.0+10.0i 13.0+ 9.0i)
! (-10.0+ 4.0i 6.0+10.0i)
!
 DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0), (9.0,0.0),&
 (13.0,9.0), (6.0,10.0)/
!
! Factor A
 CALL LFTCG (A, FACT, IPVT)
! Solve for the two right-hand sides
 DO 10 J=1, 2
 CALL LFSCG (FACT, IPVT, B(:,J), X(:,J))
 10 CONTINUE
! Print results
 CALL WRCRN (’X’, X)
 END

Output

 X
 1 2
1 (1.000,-1.000) (0.000, 2.000)
2 (2.000, 4.000) (-2.000,-1.000)
3 (3.000, 0.000) (1.000, 3.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TCG/DL2TCG. The

reference is:

CALL L2TCG (N, A, LDA, FACT, LDFACT, IPVT, WK)
The additional argument is:

WK — Complex work vector of length N.

2. Informational error
Type Code

 4 2 The input matrix is singular.

Description
Routine LFTCG performs an LU factorization of a complex general coefficient matrix. The LU
factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial
pivoting in that the pivoting strategy is the same as if each row were scaled to have the same �-
norm.

LFTCG fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A either is singular or is very close to a singular matrix.

114 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

The LU factors are returned in a form that is compatible with routines LFICG, page 116, LFSCG,
page 114, and LFDCG, page 119. To solve systems of equations with multiple right-hand-side
vectors, use LFTCG followed by either LFICG or LFSCG called once for each right-hand side.
The routine LFDCG can be called to compute the determinant of the coefficient matrix after
LFCCG (page 108) has performed the factorization.

Let F be the matrix FACT and let p be the vector IPVT. The triangular matrix U is stored in the
upper triangle of F. The strict lower triangle of F contains the information needed to reconstruct
L using

L = LN-1PN-1 � L�P�

where Pk is the identity matrix with rows k and Pk interchanged and Lk is the identity with Fik
for i = k + 1, ..., N inserted below the diagonal. The strict lower half of F can also be thought of
as containing the negative of the multipliers.

LFTCG is based on the LINPACK routine CGEFA; see Dongarra et al. (1979). CGEFA uses
unscaled partial pivoting.

LFSCG
Solves a complex general system of linear equations given the LU factorization of the coefficient
matrix.

Required Arguments
FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A
as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 115

IPATH = 2 means the system AHX = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LFSCG (FACT, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSCG and D_LFSCG.

FORTRAN 77 Interface
Single: CALL LFSCG (N, FACT, LDFACT, IPVT, B, IPATH, X)

Double: The double precision name is DLFSCG.

Example
The inverse is computed for a complex general 3 � 3 matrix. The input matrix is assumed to be
well-conditioned, hence LFTCG (page 111) is used rather than LFCCG.

 USE IMSL_LIBRARIES

! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER IPVT(N)
 REAL THIRD
 COMPLEX A(LDA,LDA), AINV(LDA,LDA), RJ(N), FACT(LDFACT,LDFACT)
! Declare functions
 COMPLEX CMPLX
! Set values for A
!
! A = (1.0+1.0i 2.0+3.0i 3.0+3.0i)
! (2.0+1.0i 5.0+3.0i 7.0+4.0i)
! (-2.0+1.0i -4.0+4.0i -5.0+3.0i)
!
 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&
 (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
!
! Scale A by dividing by three
 THIRD = 1.0/3.0
 DO 10 I=1, N
 CALL CSSCAL (N, THIRD, A(:,I), 1)
 10 CONTINUE
! Factor A
 CALL LFTCG (A, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ
 CALL CSET (N, (0.0,0.0), RJ, 1)
 DO 20 J=1, N
 RJ(J) = CMPLX(1.0,0.0)
! RJ is the J-th column of the identity
! matrix so the following LFSCG
! reference places the J-th column of

116 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! the inverse of A in the J-th column
! of AINV
 CALL LFSCG (FACT, IPVT, RJ, AINV(:,J))
 RJ(J) = CMPLX(0.0,0.0)
 20 CONTINUE
! Print results
 CALL WRCRN (’AINV’, AINV)
 END

Output

 AINV
 1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

Description
Routine LFSCG computes the solution of a system of linear algebraic equations having a
complex general coefficient matrix. To compute the solution, the coefficient matrix must first
undergo an LU factorization. This may be done by calling either LFCCG, page 108, or LFTCG,
page 111. The solution to Ax = b is found by solving the triangular systems Ly = b and Ux = y.
The forward elimination step consists of solving the system Ly = b by applying the same
permutations and elimination operations to b that were applied to the columns of A in the
factorization routine. The backward substitution step consists of solving the triangular system
Ux = y for x.

Routines LFSCG (page 114) and LFICG (page 116) both solve a linear system given its LU
factorization. LFICG generally takes more time and produces a more accurate answer than
LFSCG. Each iteration of the iterative refinement algorithm used by LFICG calls LFSCG.

LFSCG is based on the LINPACK routine CGESL; see Dongarra et al. (1979).

LFICG
Uses iterative refinement to improve the solution of a complex general system of linear equations.

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the linear system. (Input)

FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A
as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A
as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 117

X — Complex vector of length N containing the solution to the linear system. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.
(Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system AHX = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LFICG (A, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFICG and D_LFICG.

FORTRAN 77 Interface
Single: CALL LFICG (N, A, LDA, FACT, LDFACT, IPVT, B, IPATH, X, RES)

Double: The double precision name is DLFICG.

Example
A set of linear systems is solved successively. The right-hand-side vector is perturbed after
solving the system each of the first two times by adding 0.5 + 0.5i to the second element.

 USE LFICG_INT
 USE LFCCG_INT
 USE WRCRN_INT
 USE UMACH_INT

! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL RCOND
 COMPLEX A(LDA,LDA), B(N), X(N), FACT(LDFACT,LDFACT), RES(N)

118 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Declare functions
 COMPLEX CMPLX
! Set values for A
!
! A = (1.0+1.0i 2.0+3.0i 3.0-3.0i)
! (2.0+1.0i 5.0+3.0i 7.0-5.0i)
! (-2.0+1.0i -4.0+4.0i 5.0+3.0i)
!
 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0), &
 (-4.0,4.0), (3.0,-3.0), (7.0,-5.0), (5.0,3.0)/
!
! Set values for B
! B = (3.0+5.0i 22.0+10.0i -10.0+4.0i)
!
 DATA B/(3.0,5.0), (22.0,10.0), (-10.0,4.0)/
! Factor A
 CALL LFCCG (A, FACT, IPVT, RCOND)
! Print the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Solve the three systems
 DO 10 J=1, 3
 CALL LFICG (A, FACT, IPVT, B, X, RES)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
! Perturb B by adding 0.5+0.5i to B(2)
 B(2) = B(2) + CMPLX(0.5,0.5)
 10 CONTINUE
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.023
L1 Condition number = 42.799
 X
 1 2 3
(1.000,-1.000) (2.000, 4.000) (3.000, 0.000)

 X
 1 2 3
(0.910,-1.061) (1.986, 4.175) (3.123, 0.071)

 X
 1 2 3
(0.821,-1.123) (1.972, 4.349) (3.245, 0.142)

Comments
Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be
 effective

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 119

Description
Routine LFICG computes the solution of a system of linear algebraic equations having a
complex general coefficient matrix. Iterative refinement is performed on the solution vector to
improve the accuracy. Usually almost all of the digits in the solution are accurate, even if the
matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This
may be done by calling either LFCCG, page 108, or LFTCG, page 111.

Iterative refinement fails only if the matrix is very ill-conditioned. Routines LFICG
(page 116)and LFSCG (page 114) both solve a linear system given its LU factorization. LFICG
generally takes more time and produces a more accurate answer than LFSCG. Each iteration of
the iterative refinement algorithm used by LFICG calls LFSCG.

LFDCG
Computes the determinant of a complex general matrix given the LU factorization of the matrix.

Required Arguments
FACT — Complex N by N matrix containing the LU factorization of the coefficient matrix A

as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A
as output from routine LFCCG/DLFCCG or LFTCG/DLFTCG. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFDCG (FACT, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDCG and D_LFDCG.

120 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL LFDCG (N, FACT, LDFACT, IPVT, DET1, DET2)

Double: The double precision name is DLFDCG.

Example
The determinant is computed for a complex general 3 � 3 matrix.

 USE LFDCG_INT
 USE LFTCG_INT
 USE UMACH_INT

! Declare variables
 PARAMETER (LDA=3, LDFACT=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL DET2
 COMPLEX A(LDA,LDA), FACT(LDFACT,LDFACT), DET1
! Set values for A
!
! A = (3.0-2.0i 2.0+4.0i 0.0-3.0i)
! (1.0+1.0i 2.0-6.0i 1.0+2.0i)
! (4.0+0.0i -5.0+1.0i 3.0-2.0i)
!
 DATA A/(3.0,-2.0), (1.0,1.0), (4.0,0.0), (2.0,4.0), (2.0,-6.0),&
 (-5.0,1.0), (0.0,-3.0), (1.0,2.0), (3.0,-2.0)/
!
! Factor A
 CALL LFTCG (A, FACT, IPVT)
! Compute the determinant for the
! factored matrix
 CALL LFDCG (FACT, IPVT, DET1, DET2)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
!
99999 FORMAT (’ The determinant of A is’,3X,’(’,F6.3,’,’,F6.3,&
 ’) * 10**’,F2.0)
 END

Output

The determinant of A is (0.700, 1.100) * 10**1.

Description
Routine LFDCG computes the determinant of a complex general coefficient matrix. To compute
the determinant the coefficient matrix must first undergo an LU factorization. This may be done
by calling either LFCCG, page 108, or LFTCG, page 111. The formula det A = det L det U is used
to compute the determinant. Since the determinant of a triangular matrix is the product of the
diagonal elements,

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 121

1
det N

iii
U U

�

��

(The matrix U is stored in the upper triangle of FACT.) Since L is the product of triangular
matrices with unit diagonals and of permutation matrices, det L = (�1)k where k is the number
of pivoting interchanges.

LFDCG is based on the LINPACK routine CGEDI; see Dongarra et al. (1979).

LINCG
Computes the inverse of a complex general matrix.

Required Arguments
A — Complex N by N matrix containing the matrix to be inverted. (Input)

AINV — Complex N by N matrix containing the inverse of A. (Output)
If A is not needed, A and AINV can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface
Generic: CALL LINCG (A, AINV [,…])

Specific: The specific interface names are S_LINCG and D_LINCG.

FORTRAN 77 Interface
Single: CALL LINCG (N, A, LDA, AINV, LDAINV)

Double: The double precision name is DLINCG.

Example
The inverse is computed for a complex general 3 � 3 matrix.

122 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 USE LINCG_INT
 USE WRCRN_INT
 USE CSSCAL_INT

! Declare variables
 PARAMETER (LDA=3, LDAINV=3, N=3)
 REAL THIRD
 COMPLEX A(LDA,LDA), AINV(LDAINV,LDAINV)
! Set values for A
!
! A = (1.0+1.0i 2.0+3.0i 3.0+3.0i)
! (2.0+1.0i 5.0+3.0i 7.0+4.0i)
! (-2.0+1.0i -4.0+4.0i -5.0+3.0i)
!
 DATA A/(1.0,1.0), (2.0,1.0), (-2.0,1.0), (2.0,3.0), (5.0,3.0),&
 (-4.0,4.0), (3.0,3.0), (7.0,4.0), (-5.0,3.0)/
!
! Scale A by dividing by three
 THIRD = 1.0/3.0
 DO 10 I=1, N
 CALL CSSCAL (N, THIRD, A(:,I), 1)
 10 CONTINUE
! Calculate the inverse of A
 CALL LINCG (A, AINV)
! Print results
 CALL WRCRN (’AINV’, AINV)
 END

Output

 AINV
 1 2 3
1 (6.400,-2.800) (-3.800, 2.600) (-2.600, 1.200)
2 (-1.600,-1.800) (0.200, 0.600) (0.400,-0.800)
3 (-0.600, 2.200) (1.200,-1.400) (0.400, 0.200)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2NCG/DL2NCG. The

reference is:

CALL L2NCG (N, A, LDA, AINV, LDAINV, WK, IWK)

The additional arguments are as follows:

WK — Complex work vector of length N + N(N � 1)/2.

IWK — Integer work vector of length N.

2. Informational errors
Type Code

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 123

3 1 The input matrix is too ill-conditioned. The inverse might not be
accurate.

4 2 The input matrix is singular.

Description
Routine LINCG computes the inverse of a complex general matrix.

It first uses the routine LFCCG, page 108, to compute an LU factorization of the coefficient
matrix and to estimate the condition number of the matrix. LFCCG computes U and the
information needed to compute L. LINCT, page 136, is then used to compute U. Finally A is
computed using A=UL.

LINCG fails if U, the upper triangular part of the factorization, has a zero diagonal element or if
the iterative refinement algorithm fails to converge. This errors occurs only if A is singular or
very close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in A-1.

LSLRT
Solves a real triangular system of linear equations.

Required Arguments
A — N by N matrix containing the coefficient matrix for the triangular linear system. (Input)

For a lower triangular system, only the lower triangular part and diagonal of A are
referenced. For an upper triangular system, only the upper triangular part and diagonal
of A are referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means solve AX = B, A lower triangular.
IPATH = 2 means solve AX = B, A upper triangular.

124 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPATH = 3 means solve ATX = B, A lower triangular.
IPATH = 4 means solve ATX = B, A upper triangular.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSLRT (A, B, X [,…])

Specific: The specific interface names are S_LSLRT and D_LSLRT.

FORTRAN 77 Interface
Single: CALL LSLRT (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLRT.

Example
A system of three linear equations is solved. The coefficient matrix has lower triangular form
and the right-hand-side vector, b, has three elements.

 USE LSLRT_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3)
 REAL A(LDA,LDA), B(LDA), X(LDA)
! Set values for A and B
!
! A = (2.0)
! (2.0 -1.0)
! (-4.0 2.0 5.0)
!
! B = (2.0 5.0 0.0)
!
 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
 DATA B/2.0, 5.0, 0.0/
!
! Solve AX = B (IPATH = 1)
 CALL LSLRT (A, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, 3, 1)
 END

Output

 X
 1 2 3
1.000 -3.000 2.000

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 125

Description
Routine LSLRT solves a system of linear algebraic equations with a real triangular coefficient
matrix. LSLRT fails if the matrix A has a zero diagonal element, in which case A is singular.
LSLRT is based on the LINPACK routine STRSL; see Dongarra et al. (1979).

LFCRT
Estimates the condition number of a real triangular matrix.

Required Arguments
A — N by N matrix containing the coefficient matrix for the triangular linear system. (Input)

For a lower triangular system, only the lower triangular part and diagonal of A are
referenced. For an upper triangular system, only the upper triangular part and diagonal
of A are referenced.

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.
Default: IPATH =1.

FORTRAN 90 Interface
Generic: CALL LFCRT (A, RCOND [,…])

Specific: The specific interface names are S_LFCRT and D_LFCRT.

FORTRAN 77 Interface
Single: CALL LFCRT (N, A, LDA, IPATH, RCOND)

Double: The double precision name is DLFCRT.

126 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example
An estimate of the reciprocal condition number is computed for a 3 � 3 lower triangular
coefficient matrix.

 USE LFCRT_INT
 USE UMACH_INT

! Declare variables
 PARAMETER (LDA=3)
 REAL A(LDA,LDA), RCOND
 INTEGER NOUT
! Set values for A and B
! A = (2.0)
! (2.0 -1.0)
! (-4.0 2.0 5.0)
!
 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
!
! Compute the reciprocal condition
! number (IPATH=1)
 CALL LFCRT (A, RCOND)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.091
L1 Condition number = 10.968

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CRT/ DL2CRT. The

reference is:

CALL L2CRT (N, A, LDA, IPATH, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational error
Type Code

3 1 The input triangular matrix is algorithmically singular.

Description
Routine LFCRT estimates the condition number of a real triangular matrix. The L� condition
number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive to compute ||A||�,

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 127

the condition number is only estimated. The estimation algorithm is the same as used by
LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x.

LFCRT is based on the LINPACK routine STRCO; see Dongarra et al. (1979).

LFDRT
Computes the determinant of a real triangular matrix.

Required Arguments
A — N by N matrix containing the triangular matrix. (Input)

The matrix can be either upper or lower triangular.

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LFDRT (A, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDRT and D_LFDRT.

FORTRAN 77 Interface
Single: CALL LFDRT (N, A, LDA, DET1, DET2)

Double: The double precision name is DLFDRT.

Example
The determinant is computed for a 3 � 3 lower triangular matrix.

128 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 USE LFDRT_INT
 USE UMACH_INT

! Declare variables
 PARAMETER (LDA=3)
 REAL A(LDA,LDA), DET1, DET2
 INTEGER NOUT
! Set values for A
! A = (2.0)
! (2.0 -1.0)
! (-4.0 2.0 5.0)
!
 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
!
! Compute the determinant of A
 CALL LFDRT (A, DET1, DET2)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0)
 END

Output

The determinant of A is -1.000 * 10**1.

Comments
Informational error

Type Code

3 1 The input triangular matrix is singular.

Description
Routine LFDRT computes the determinant of a real triangular coefficient matrix. The
determinant of a triangular matrix is the product of the diagonal elements .

1
det N

iii
A A

�

��

LFDRT is based on the LINPACK routine STRDI; see Dongarra et al. (1979).

LINRT
Computes the determinant of a real triangular matrix.

Required Arguments
A — N by N matrix containing the triangular matrix to be inverted. (Input)

For a lower triangular matrix, only the lower triangular part and diagonal of A are

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 129

referenced. For an upper triangular matrix, only the upper triangular part and diagonal
of A are referenced.

AINV — N by N matrix containing the inverse of A. (Output)
If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is
also upper triangular. If A is not needed, A and AINV can share the same storage
locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.
Default: IPATH = 1.

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface
Generic: CALL LINRT (A, AINV [,…])

Specific: The specific interface names are S_LINRT and D_LINRT.

FORTRAN 77 Interface
Single: CALL LINRT (N, A, LDA, IPATH, AINV, LDAINV)

Double: The double precision name is DLINRT.

Example
The inverse is computed for a 3 � 3 lower triangular matrix.

 USE LINRT_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3)
 REAL A(LDA,LDA), AINV(LDA,LDA)
! Set values for A
! A = (2.0)

130 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! (2.0 -1.0)
! (-4.0 2.0 5.0)
!
 DATA A/2.0, 2.0, -4.0, 0.0, -1.0, 2.0, 0.0, 0.0, 5.0/
!
! Compute the inverse of A
 CALL LINRT (A, AINV)
! Print results
 CALL WRRRN (’AINV’, AINV)
 END

Output

 AINV
 1 2 3
1 0.500 0.000 0.000
2 1.000 -1.000 0.000
3 0.000 0.400 0.200

Description
Routine LINRT computes the inverse of a real triangular matrix. It fails if A has a zero diagonal
element.

LSLCT
Solves a complex triangular system of linear equations.

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the triangular linear system.

(Input)
For a lower triangular system, only the lower triangle of A is referenced. For an upper
triangular system, only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 131

IPATH — Path indicator. (Input)
IPATH = 1 means solve AX = B, A lower triangular
IPATH = 2 means solve AX = B, A upper triangular
IPATH = 3 means solve AHX = B, A lower triangular
IPATH = 4 means solve AHX = B, A upper triangular
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSLCT (A, B,X [,…])

Specific: The specific interface names are S_LSLCT and D_LSLCT.

FORTRAN 77 Interface
Single: CALL LSLCT (N, A, LDA, B, IPATH, X)

Double: The double precision name is DLSLCT.

Example
A system of three linear equations is solved. The coefficient matrix has lower triangular form
and the right-hand-side vector, b, has three elements.

 USE LSLCT_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA
 PARAMETER (LDA=3)
 COMPLEX A(LDA,LDA), B(LDA), X(LDA)
! Set values for A and B
!
! A = (-3.0+2.0i)
! (-2.0-1.0i 0.0+6.0i)
! (-1.0+3.0i 1.0-5.0i -4.0+0.0i)
!
! B = (-13.0+0.0i -10.0-1.0i -11.0+3.0i)
!
 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&
 (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
 DATA B/(-13.0,0.0), (-10.0,-1.0), (-11.0,3.0)/
!
! Solve AX = B
 CALL LSLCT (A, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, 3, 1)
 END

132 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output

 X
 1 2 3
(3.000, 2.000) (1.000, 1.000) (2.000, 0.000)

Comments
Informational error

Type Code

4 1 The input triangular matrix is singular. Some of its diagonal elements are near
zero.

Description
Routine LSLCT solves a system of linear algebraic equations with a complex triangular
coefficient matrix. LSLCT fails if the matrix A has a zero diagonal element, in which case A is
singular. LSLCT is based on the LINPACK routine CTRSL; see Dongarra et al. (1979).

LFCCT
Estimates the condition number of a complex triangular matrix.

Required Arguments
A — Complex N by N matrix containing the triangular matrix. (Input)

For a lower triangular system, only the lower triangle of A is referenced. For an upper
triangular system, only the upper triangle of A is referenced.

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.
Default: IPATH =1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 133

FORTRAN 90 Interface
Generic: CALL LFCCT (A, RCOND [,…])

Specific: The specific interface names are S_LFCCT and D_LFCCT.

FORTRAN 77 Interface
Single: CALL LFCCT (N, A, LDA, IPATH, RCOND)

Double: The double precision name is DLFCCT.

Example
An estimate of the reciprocal condition number is computed for a 3 � 3 lower triangular
coefficient matrix.

 USE LFCCT_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3)
 INTEGER NOUT
 REAL RCOND
 COMPLEX A(LDA,LDA)
! Set values for A
!
! A = (-3.0+2.0i)
! (-2.0-1.0i 0.0+6.0i)
! (-1.0+3.0i 1.0-5.0i -4.0+0.0i)
!
 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&
 (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
!
! Compute the reciprocal condition
! number
 CALL LFCCT (A, RCOND)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.191
L1 Condition number = 5.223

134 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CCT/DL2CCT. The

reference is:

CALL L2CCT (N, A, LDA, IPATH, RCOND, CWK)

The additional argument is:

CWK — Complex work vector of length N.

2. Informational error
Type Code

3 1 The input triangular matrix is algorithmically singular.

Description
Routine LFCCT estimates the condition number of a complex triangular matrix. The L� condition
number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive to compute ||A||�,
the condition number is only estimated. The estimation algorithm is the same as used by
LINPACK and is described by Cline et al. (1979). If the estimated condition number is greater
than 1/� (where � is machine precision), a warning error is issued. This indicates that very small
changes in A can cause very large changes in the solution x. LFCCT is based on the LINPACK
routine CTRCO; see Dongarra et al. (1979).

LFDCT
Computes the determinant of a complex triangular matrix.

Required Arguments
A — Complex N by N matrix containing the triangular matrix.(Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 � �DET1� <10.0 or DET1= 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 *10DET2.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 135

FORTRAN 90 Interface
Generic: CALL LFDCT (A, DET1, DET2[,…])

Specific: The specific interface names are S_LFDCT and D_LFDCT.

FORTRAN 77 Interface
Single: CALL LFDCT (N, A, LDA, DET1, DET2)

Double: The double precision name is DLFDCT.

Example
The determinant is computed for a 3 � 3 complex lower triangular matrix.

 USE LFDCT_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER NOUT
 REAL DET2
 COMPLEX A(LDA,LDA), DET1
! Set values for A
!
! A = (-3.0+2.0i)
! (-2.0-1.0i 0.0+6.0i)
! (-1.0+3.0i 1.0-5.0i -4.0+0.0i)
!
 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&
 (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
!
! Compute the determinant of A
 CALL LFDCT (A, DET1, DET2)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
99999 FORMAT (’ The determinant of A is (’,F4.1,’,’,F4.1,’) * 10**’,&
 F2.0)
 END

Output
The determinant of A is (0.5, 0.7) * 10**2.

Comments
Informational error

Type Code

3 1 The input triangular matrix is singular.

136 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Description
Routine LFDCT computes the determinant of a complex triangular coefficient matrix. The
determinant of a triangular matrix is the product of the diagonal elements

1
det N

iii
A A

�

��

LFDCT is based on the LINPACK routine CTRDI; see Dongarra et al. (1979).

LINCT
Computes the inverse of a complex triangular matrixs.

Required Arguments
A — Complex N by N matrix containing the triangular matrix to be inverted. (Input)

For a lower triangular matrix, only the lower triangle of A is referenced. For an upper
triangular matrix, only the upper triangle of A is referenced.

AINV — Complex N by N matrix containing the inverse of A. (Output)
If A is lower triangular, AINV is also lower triangular. If A is upper triangular, AINV is
also upper triangular. If A is not needed, A and AINV can share the same storage
locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means A is lower triangular.
IPATH = 2 means A is upper triangular.
Default: IPATH = 1.

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface
Generic: CALL LINCT (A, AINV [,…])

Specific: The specific interface names are S_LINCT and D_LINCT.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 137

FORTRAN 77 Interface
Single: CALL LINCT (N, A, LDA, IPATH, AINV, LDAINV)

Double: The double precision name is DLINCT.

Example
The inverse is computed for a 3 � 3 lower triangular matrix.

 USE LINCT_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA
 PARAMETER (LDA=3)
 COMPLEX A(LDA,LDA), AINV(LDA,LDA)
! Set values for A
!
! A = (-3.0+2.0i)
! (-2.0-1.0i 0.0+6.0i)
! (-1.0+3.0i 1.0-5.0i -4.0+0.0i)
!
 DATA A/(-3.0,2.0), (-2.0,-1.0), (-1.0, 3.0), (0.0,0.0), (0.0,6.0),&
 (1.0,-5.0), (0.0,0.0), (0.0,0.0), (-4.0,0.0)/
!
! Compute the inverse of A
 CALL LINCT (A, AINV)
! Print results
 CALL WRCRN (’AINV’, AINV)
 END

Output

 AINV
 1 2 3
1 (-0.2308,-0.1538) (0.0000, 0.0000) (0.0000, 0.0000)
2 (-0.0897, 0.0513) (0.0000,-0.1667) (0.0000, 0.0000)
3 (0.2147,-0.0096) (-0.2083,-0.0417) (-0.2500, 0.0000)

Comments
Informational error

Type Code

4 1 The input triangular matrix is singular. Some of its diagonal elements are close
to zero.

138 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Description
Routine LINCT computes the inverse of a complex triangular matrix. It fails if A has a zero
diagonal element.

LSADS
Solves a real symmetric positive definite system of linear equations with iterative refinement.

Required Arguments
A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear

system. (Input)
Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSADS (A, B, X [,…])

Specific: The specific interface names are S_LSADS and D_LSADS.

FORTRAN 77 Interface
Single: CALL LSADS (N, A, LDA, B, X)

Double: The double precision name is DLSADS.

Example
A system of three linear equations is solved. The coefficient matrix has real positive definite
form and the right-hand-side vector b has three elements.

 USE LSADS_INT
 USE WRRRN_INT

! Declare variables

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 139

 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
!
! B = (27.0 -78.0 64.0)
!
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
 DATA B/27.0, -78.0, 64.0/
!
 CALL LSADS (A, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3
1.000 -4.000 7.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ADS/DL2ADS. The

reference is:

CALL L2ADS (N, A, LDA, B, X, FACT, WK)

The additional arguments are as follows:

FACT— Work vector of length N2 containing the RTR factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2ADS the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are

140 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSADS.
Additional memory allocation for FACT and option value restoration are done
automatically in LSADS. Users directly calling L2ADS can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSADS or L2ADS. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSADS temporarily replaces IVAL(2) by IVAL(1). The
routine L2CDS computes the condition number if IVAL(2) = 2. Otherwise L2CDS
skips this computation. LSADS restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSADS solves a system of linear algebraic equations having a real symmetric positive
definite coefficient matrix. It first uses the routine LFCDS, page 143, to compute an RTR
Cholesky factorization of the coefficient matrix and to estimate the condition number of the
matrix. The matrix R is upper triangular. The solution of the linear system is then found using
the iterative refinement routine LFIDS, page 150. LSADS fails if any submatrix of R is not
positive definite, if R has a zero diagonal element or if the iterative refinement algorithm fails to
converge. These errors occur only if A is either very close to a singular matrix or a matrix which
is not positive definite. If the estimated condition number is greater than 1/� (where � is machine
precision), a warning error is issued. This indicates that very small changes in A can cause very
large changes in the solution x. Iterative refinement can sometimes find the solution to such a
system. LSADS solves the problem that is represented in the computer; however, this problem
may differ from the problem whose solution is desired.

LSLDS
Solves a real symmetric positive definite system of linear equations without iterative refinement .

Required Arguments
A — N by N matrix containing the coefficient matrix of the symmetric positive definite linear

system. (Input)
Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 141

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSLDS (A, B, X [,…])

Specific: The specific interface names are S_LSLDS and D_LSLDS.

FORTRAN 77 Interface
Single: CALL LSLDS (N, A, LDA, B, X)

Double: The double precision name is DLSLDS.

Example
A system of three linear equations is solved. The coefficient matrix has real positive definite
form and the right-hand-side vector b has three elements.

 USE LSLDS_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
!
! B = (27.0 -78.0 64.0)
!
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
 DATA B/27.0, -78.0, 64.0/
!
 CALL LSLDS (A, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
!
 END

142 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output

 X
 1 2 3
1.000 -4.000 7.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LDS/DL2LDS. The

reference is:

CALL L2LDS (N, A, LDA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — N � N work array containing the RTR factorization of A on output. If A is not
needed, A can share the same storage locations as FACT.

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LDS the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLDS.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLDS. Users directly calling L2LDS can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLDS or L2LDS. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSLDS temporarily replaces IVAL(2) by IVAL(1). The
routine L2CDS computes the condition number if IVAL(2) = 2. Otherwise L2CDS
skips this computation. LSLDS restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSLDS solves a system of linear algebraic equations having a real symmetric positive
definite coefficient matrix. It first uses the routine LFCDS, page 143, to compute an RTR

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 143

Cholesky factorization of the coefficient matrix and to estimate the condition number of the
matrix. The matrix R is upper triangular. The solution of the linear system is then found using
the routine LFSDS, page 148. LSLDS fails if any submatrix of R is not positive definite or if R
has a zero diagonal element. These errors occur only if A either is very close to a singular matrix
or to a matrix which is not positive definite. If the estimated condition number is greater than
1/� (where � is machine precision), a warning error is issued. This indicates that very small
changes in A can cause very large changes in the solution x. If the coefficient matrix is ill-
conditioned, it is recommended that LSADS, page 138, be used.

LFCDS
Computes the RTR Cholesky factorization of a real symmetric positive definite matrix and
estimate its L� condition number.

Required Arguments
A — N by N symmetric positive definite matrix to be factored. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in
the upper triangular part. (Output)
Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share
the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCDS (A, FACT, RCOND [,…])

Specific: The specific interface names are S_LFCDS and D_LFCDS.

144 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL LFCDS (N, A, LDA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCDS.

Example
The inverse of a 3 � 3 matrix is computed. LFCDS is called to factor the matrix and to check for
nonpositive definiteness or ill-conditioning. LFIDS (page 150) is called to determine the
columns of the inverse.

 USE LFCDS_INT
 USE UMACH_INT
 USE WRRRN_INT
 USE LFIDS_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NOUT
 PARAMETER (LDA=3, LDFACT=3, N=3)
 REAL A(LDA,LDA), AINV(LDA,LDA), RCOND, FACT(LDFACT,LDFACT),&
 RES(N), RJ(N)
!
! Set values for A
! A = (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
!
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
! Factor the matrix A
 CALL LFCDS (A, FACT, RCOND)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = 0.0E0
 DO 10 J=1, N
 RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFIDS
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFIDS (A, FACT, RJ, AINV(:,J), RES)
 RJ(J) = 0.0E0
 10 CONTINUE
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
 CALL WRRRN (’AINV’, AINV)
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F9.3)
 END

Output

RCOND = 0.001
L1 Condition number = 674.727

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 145

 AINV
 1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CDS/DL2CDS. The

reference is:

CALL L2CDS (N, A, LDA, FACT, LDFACT, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.

4 2 The input matrix is not positive definite.

Description

Routine LSADS computes an RTR Cholesky factorization and estimates the condition number of
a real symmetric positive definite coefficient matrix. The matrix R is upper triangular.

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LFCDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The RTR factors are returned in a form that is compatible with routines LFIDS, page 150,
LFSDS, page 148, and LFDDS, page 153. To solve systems of equations with multiple right-
hand-side vectors, use LFCDS followed by either LFIDS or LFSDS called once for each right-
hand side. The routine LFDDS can be called to compute the determinant of the coefficient matrix
after LFCDS has performed the factorization.

146 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFTDS
Computes the RTR Cholesky factorization of a real symmetric positive definite matrix.

Required Arguments
A — N by N symmetric positive definite matrix to be factored. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing the upper triangular matrix R of the factorization of A in
the upper triangle. (Output)
Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share
the same storage locations.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
 Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFTDS (A, FACT [,…])

Specific: The specific interface names are S_LFTDS and D_LFTDS.

FORTRAN 77 Interface
Single: CALL LFTDS (N, A, LDA, FACT, LDFACT)

Double: The double precision name is DLFTDS.

Example
The inverse of a 3 � 3 matrix is computed. LFTDS is called to factor the matrix and to check for
nonpositive definiteness. LFSDS (page 148) is called to determine the columns of the inverse.

 USE LFTDS_INT
 USE LFSDS_INT
 USE WRRRN_INT
! Declare variables

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 147

 INTEGER LDA, LDFACT, N
 PARAMETER (LDA=3, LDFACT=3, N=3)
 REAL A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N)
!
! Set values for A
! A = (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
!
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
! Factor the matrix A
 CALL LFTDS (A, FACT)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = 0.0E0
 DO 10 J=1, N
 RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFSDS
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFSDS (FACT, RJ, AINV(:,J))
 RJ(J) = 0.0E0
 10 CONTINUE
! Print the results
 CALL WRRRN (’AINV’, AINV)
!
 END

Output

 AINV
 1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

Comments
Informational error

Type Code

4 2 The input matrix is not positive definite.

Description

Routine LFTDS computes an RTR Cholesky factorization of a real symmetric positive definite
coefficient matrix. The matrix R is upper triangular.

148 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFTDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The RTR factors are returned in a form that is compatible with routines LFIDS, page 150,
LFSDS, page 148, and LFDDS, page 153. To solve systems of equations with multiple right-
hand-side vectors, use LFTDS followed by either LFIDS or LFSDS called once for each right-
hand side. The routine LFDDS can be called to compute the determinant of the coefficient matrix
after LFTDS has performed the factorization.

LFTDS is based on the LINPACK routine SPOFA; see Dongarra et al. (1979).

LFSDS
Solves a real symmetric positive definite system of linear equations given the RT R Cholesky
factorization of the coefficient matrix.

Required Arguments

FACT — N by N matrix containing the RT R factorization of the coefficient matrix A as output
from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFSDS (FACT, B, X [,…])

Specific: The specific interface names are S_LFSDS and D_LFSDS.

FORTRAN 77 Interface
Single: CALL LFSDS (N, FACT, LDFACT, B, X)

Double: The double precision name is DLFSDS.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 149

Example
A set of linear systems is solved successively. LFTDS (page 146) is called to factor the
coefficient matrix. LFSDS is called to compute the four solutions for the four right-hand sides. In
this case the coefficient matrix is assumed to be well-conditioned and correctly scaled.
Otherwise, it would be better to call LFCDS (page 143) to perform the factorization, and LFIDS
(page 150) to compute the solutions.

 USE LFSDS_INT
 USE LFTDS_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDFACT, N
 PARAMETER (LDA=3, LDFACT=3, N=3)
 REAL A(LDA,LDA), B(N,4), FACT(LDFACT,LDFACT), X(N,4)
!
! Set values for A and B
!
! A = (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
!
! B = (-1.0 3.6 -8.0 -9.4)
! (-3.0 -4.2 11.0 17.6)
! (-3.0 -5.2 -6.0 -23.4)
!
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
 DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,&
 -9.4, 17.6, -23.4/
! Factor the matrix A
 CALL LFTDS (A, FACT)
! Compute the solutions
 DO 10 I=1, 4
 CALL LFSDS (FACT, B(:,I), X(:,I))
 10 CONTINUE
! Print solutions
 CALL WRRRN (’The solution vectors are’, X)
!
 END

Output

 The solution vectors are
 1 2 3 4
1 -44.0 118.4 -162.0 -71.2
2 -11.0 25.6 -36.0 -16.6
3 5.0 -19.0 23.0 6.0

150 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments
Informational error

Type Code

4 1 The input matrix is singular.

Description
This routine computes the solution for a system of linear algebraic equations having a real
symmetric positive definite coefficient matrix. To compute the solution, the coefficient matrix
must first undergo an RTR factorization. This may be done by calling either LFCDS, page 143, or
LFTDS, page 146. R is an upper triangular matrix.

The solution to Ax = b is found by solving the triangular systems RTy = b and Rx = y.

LFSDS, (page 148) and LFIDS, page 150, both solve a linear system given its RTR
factorization. LFIDS generally takes more time and produces a more accurate answer than
LFSDS. Each iteration of the iterative refinement algorithm used by LFIDS calls LFSDS.

LFSDS is based on the LINPACK routine SPOSL; see Dongarra et al. (1979).

LFIDS
Uses iterative refinement to improve the solution of a real symmetric positive definite system of
linear equations.

Required Arguments
A — N by N matrix containing the symmetric positive definite coefficient matrix of the linear

system. (Input)
Only the upper triangle of A is referenced.

FACT — N by N matrix containing the RT R factorization of the coefficient matrix A as output
from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

RES — Vector of length N containing the residual vector at the improved
solution. (Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 151

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimesion statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
 Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFIDS (A, FACT, B, X, RES [,…])

Specific: The specific interface names are S_LFIDS and D_LFIDS.

FORTRAN 77 Interface
Single: CALL LFIDS (N, A, LDA, FACT, LDFACT, B, X, RES)

Double: The double precision name is DLFIDS.

Example
A set of linear systems is solved successively. The right-hand-side vector is perturbed after
solving the system each of the first two times by adding 0.2 to the second element.

 USE LFIDS_INT
 USE LFCDS_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDFACT, N
 PARAMETER (LDA=3, LDFACT=3, N=3)
 REAL A(LDA,LDA), B(N), RCOND, FACT(LDFACT,LDFACT), RES(N,3),&
 X(N,3)
!
! Set values for A and B
!
! A = (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
!
! B = (1.0 -3.0 2.0)
!
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
 DATA B/1.0, -3.0, 2.0/
! Factor the matrix A

152 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL LFCDS (A, FACT, RCOND)
! Print the estimated condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Compute the solutions
 DO 10 I=1, 3
 CALL LFIDS (A, FACT, B, X(:,I), RES(:,I))
 B(2) = B(2) + .2E0
 10 CONTINUE
! Print solutions and residuals
 CALL WRRRN (’The solution vectors are’, X)
 CALL WRRRN (’The residual vectors are’, RES)
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F9.3)
 END

Output

RCOND = 0.001
L1 Condition number = 674.727

The solution vectors are
 1 2 3
1 1.000 2.600 4.200
2 0.000 0.400 0.800
3 0.000 -0.200 -0.400

The residual vectors are
 1 2 3
1 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000

Comments
Informational error

Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be effective.

Description
Routine LFIDS computes the solution of a system of linear algebraic equations having a real
symmetric positive definite coefficient matrix. Iterative refinement is performed on the solution
vector to improve the accuracy. Usually almost all of the digits in the solution are accurate, even
if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an RTR factorization. This
may be done by calling either LFCDS, page 143, or LFTDS, page 146.

Iterative refinement fails only if the matrix is very ill-conditioned.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 153

LFIDS, page 150 and LFSDS, page 148, both solve a linear system given its RTR factorization.
LFIDS generally takes more time and produces a more accurate answer than LFSDS. Each
iteration of the iterative refinement algorithm used by LFIDS calls LFSDS.

LFDDS
Computes the determinant of a real symmetric positive definite matrix given the RTR Cholesky
factorization of the matrix .

Required Arguments

FACT — N by N matrix containing the RT R factorization of the coefficient matrix A as output
from routine LFCDS/DLFCDS or LFTDS/DLFTDS. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that, 1.0 � |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, det(A) = DET1 * 10DET2.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFDDS (FACT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDDS and D_LFDDS.

FORTRAN 77 Interface
Single: CALL LFDDS (N, FACT, LDFACT, DET1, DET2)

Double: The double precision name is DLFDDS.

154 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example
The determinant is computed for a real positive definite 3 � 3 matrix.

 USE LFDDS_INT
 USE LFTDS_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDFACT, NOUT
 PARAMETER (LDA=3, LDFACT=3)
 REAL A(LDA,LDA), DET1, DET2, FACT(LDFACT,LDFACT)
!
! Set values for A
! A = (1.0 -3.0 2.0)
! (-3.0 20.0 -5.0)
! (2.0 -5.0 6.0)
!
 DATA A/1.0, -3.0, 2.0, -3.0, 20.0, -5.0, 2.0, -5.0, 6.0/
! Factor the matrix
 CALL LFTDS (A, FACT)
! Compute the determinant
 CALL LFDDS (FACT, DET1, DET2)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
!
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0)
 END

Output

The determinant of A is 2.100 * 10**1.

Description
Routine LFDDS computes the determinant of a real symmetric positive definite coefficient
matrix. To compute the determinant, the coefficient matrix must first undergo an RTR
factorization. This may be done by calling either LFCDS, page 143, or LFTDS, page 146. The
formula det A = det RT det R = (det R)� is used to compute the determinant. Since the
determinant of a triangular matrix is the product of the diagonal elements,

1
det N

iii
R R

�

��

(The matrix R is stored in the upper triangle of FACT.)

LFDDS is based on the LINPACK routine SPODI; see Dongarra et al. (1979).

LINDS
Computes the inverse of a real symmetric positive definite matrix.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 155

Required Arguments
A — N by N matrix containing the symmetric positive definite matrix to be inverted. (Input)

Only the upper triangle of A is referenced.

AINV — N by N matrix containing the inverse of A. (Output)
If A is not needed, A and AINV can share the same storage locations.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDAINV — Leading dimension of AINV exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDAINV = size (AINV,1).

FORTRAN 90 Interface
Generic: CALL LINDS (A, AINV [,…])

Specific: The specific interface names are S_LINDS and D_LINDS.

FORTRAN 77 Interface
Single: CALL LINDS (N, A, LDA, AINV, LDAINV)

Double: The double precision name is DLINDS.

Example
The inverse is computed for a real positive definite 3 � 3 matrix.

 USE LINDS_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDAINV
 PARAMETER (LDA=3, LDAINV=3)
 REAL A(LDA,LDA), AINV(LDAINV,LDAINV)
!
! Set values for A
! A = (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
!
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/

156 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

!
 CALL LINDS (A, AINV)
! Print results
 CALL WRRRN (’AINV’, AINV)
!
 END

Output

 AINV
 1 2 3
1 35.00 8.00 -5.00
2 8.00 2.00 -1.00
3 -5.00 -1.00 1.00

Comments
1. Workspace may be explicitly provided, if desired, by use of L2NDS/DL2NDS. The

reference is:

CALL L2NDS (N, A, LDA, AINV, LDAINV, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is not positive definite.

Description
Routine LINDS computes the inverse of a real symmetric positive definite matrix. It first uses
the routine LFCDS, page 143, to compute an RTR factorization of the coefficient matrix and to
estimate the condition number of the matrix. LINRT, page 128, is then used to compute R-1.
Finally A-1 is computed using R-1 = R-1 R-T.

LINDS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in A.

LSASF
Solves a real symmetric system of linear equations with iterative refinement.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 157

Required Arguments
A — N by N matrix containing the coefficient matrix of the symmetric linear system. (Input)

Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSASF (A, B, X [,…])

Specific: The specific interface names are S_LSASF and D_LSASF.

FORTRAN 77 Interface
Single: CALL LSASF (N, A, LDA, B, X)

Double: The double precision name is DLSASF.

Example
A system of three linear equations is solved. The coefficient matrix has real symmetric form and
the right-hand-side vector b has three elements.

 USE LSASF_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)
!
! B = (4.1 -4.7 6.5)
!
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/

158 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 DATA B/4.1, -4.7, 6.5/
!
 CALL LSASF (A, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3
-4.100 -3.500 1.200

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ASF/DL2ASF. The

reference is

CALL L2ASF (N, A, LDA, B, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — N � N work array containing information about the
U DUT factorization of A on output. If A is not needed, A and FACT can share the
same storage location.

IPVT — Integer work vector of length N containing the pivoting information for the
factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code

 3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

 4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2ASF the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSASF.
Additional memory allocation for FACT and option value restoration are done
automatically in LSASF. Users directly calling L2ASF can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSASF or L2ASF. Default values for the option are IVAL(*)
= 1, 16, 0, 1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 159

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSASF temporarily replaces IVAL(2) by IVAL(1). The
routine L2CSF computes the condition number if IVAL(2) = 2. Otherwise L2CSF
skips this computation. LSASF restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSASF solves systems of linear algebraic equations having a real symmetric indefinite
coefficient matrix. It first uses the routine LFCSF, page 162, to compute a U DUT factorization
of the coefficient matrix and to estimate the condition number of the matrix. D is a block
diagonal matrix with blocks of order 1 or 2, and U is a matrix composed of the product of a
permutation matrix and a unit upper triangular matrix. The solution of the linear system is then
found using the iterative refinement routine LFISF, page 169.

LSASF fails if a block in D is singular or if the iterative refinement algorithm fails to converge.
These errors occur only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSASF solves
the problem that is represented in the computer; however, this problem may differ from the
problem whose solution is desired.

LSLSF
Solves a real symmetric system of linear equations without iterative refinement .

Required Arguments
A — N by N matrix containing the coefficient matrix of the symmetric linear system. (Input)

Only the upper triangle of A is referenced.

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

 Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

160 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL LSLSF (A, B, X [,…])

Specific: The specific interface names are S_LSLSF and D_LSLSF.

FORTRAN 77 Interface
Single: CALL LSLSF (N, A, LDA, B, X)

Double: The double precision name is DLSLSF.

Example
A system of three linear equations is solved. The coefficient matrix has real symmetric form and
the right-hand-side vector b has three elements.

 USE LSLSF_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3, N=3)
 REAL A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)
!
! B = (4.1 -4.7 6.5)
!
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
 DATA B/4.1, -4.7, 6.5/
!
 CALL LSLSF (A, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3
-4.100 -3.500 1.200

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LSF/DL2LSF. The

reference is:

CALL L2LSF (N, A, LDA, B, X, FACT, IPVT, WK)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 161

The additional arguments are as follows:

FACT — N � N work array containing information about the
U DUT factorization of A on output. If A is not needed, A and FACT can share the
same storage locations.

IPVT — Integer work vector of length N containing the pivoting information for the
factorization of A on output.

WK — Work vector of length N.

2. Informational errors

Type Code
3 1 The input matrix is too ill-conditioned. The solution might not be

accurate.
4 2 The input matrix is singular.
 Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine LSLSF the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLSF.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLSF. Users directly calling LSLSF can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLSF or LSLSF. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSLSF temporarily replaces IVAL(2) by IVAL(1). The
routine L2CSF computes the condition number if IVAL(2) = 2. Otherwise L2CSF
skips this computation. LSLSF restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSLSF solves systems of linear algebraic equations having a real symmetric indefinite
coefficient matrix. It first uses the routine LFCSF, page 162, to compute a U DUT factorization
of the coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2, and U is a
matrix composed of the product of a permutation matrix and a unit upper triangular matrix.

The solution of the linear system is then found using the routine LFSSF, page 167.

LSLSF fails if a block in D is singular. This occurs only if A either is singular or is very close to
a singular matrix.

162 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFCSF
Computes the U DUT factorization of a real symmetric matrix and estimate its L� condition
number.

Required Arguments
A — N by N symmetric matrix to be factored. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing information about the factorization of the symmetric
matrix A. (Output)
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the
same storage locations.

IPVT — Vector of length N containing the pivoting information for the factorization.
(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCSF (A, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCSF and D_LFCSF.

FORTRAN 77 Interface
Single: CALL LFCSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCSF.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 163

Example
The inverse of a 3 � 3 matrix is computed. LFCSF is called to factor the matrix and to check for
singularity or ill-conditioning. LFISF (page 169) is called to determine the columns of the
inverse.

 USE LFCSF_INT
 USE UMACH_INT
 USE LFISF_INT
 USE WRRRN_INT
! Declare variables
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N), RES(N),&
 RCOND
!
! Set values for A
!
! A = (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)
!
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
! Factor A and return the reciprocal
! condition number estimate
 CALL LFCSF (A, FACT, IPVT, RCOND)
! Print the estimate of the condition
! number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
!
! matrix one at a time in RJ
 RJ = 0.E0
 DO 10 J=1, N
 RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFISF
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFISF (A, FACT, IPVT, RJ, AINV(:,J), RES)
 RJ(J) = 0.0E0
 10 CONTINUE
! Print the inverse
 CALL WRRRN (’AINV’, AINV)
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.034
L1 Condition number = 29.750

 AINV
 1 2 3

164 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

1 -2.500 -2.000 -0.500
2 -2.000 -1.000 0.000
3 -0.500 0.000 0.500

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CSF/DL2CSF. The

reference is:

CALL L2CSF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.

Description

Routine LFCSF performs a U DUT factorization of a real symmetric indefinite coefficient
matrix. It also estimates the condition number of the matrix. The U DUT factorization is called
the diagonal pivoting factorization.

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LFCSF fails if A is singular or very close to a singular matrix.

The U DUT factors are returned in a form that is compatible with routines LFISF, page 169,
LFSSF, page 167, and LFDSF, page 172. To solve systems of equations with multiple right-
hand-side vectors, use LFCSF followed by either LFISF or LFSSF called once for each right-
hand side. The routine LFDSF can be called to compute the determinant of the coefficient matrix
after LFCSF has performed the factorization.

LFCSF is based on the LINPACK routine SSICO; see Dongarra et al. (1979).

LFTSF
Computes the U DUT factorization of a real symmetric matrix.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 165

Required Arguments
A — N by N symmetric matrix to be factored. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing information about the factorization of the symmetric
matrix A. (Output)
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the
same storage locations.

IPVT — Vector of length N containing the pivoting information for the factorization.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFTSF (A, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTSF and D_LFTSF.

FORTRAN 77 Interface
Single: CALL LFTSF (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTSF.

Example
The inverse of a 3 � 3 matrix is computed. LFTSF is called to factor the matrix and to check for
singularity. LFSSF (page 167) is called to determine the columns of the inverse.

 USE LFTSF_INT
 USE LFSSF_INT
 USE WRRRN_INT
! Declare variables
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N)

166 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 REAL A(LDA,LDA), AINV(N,N), FACT(LDA,LDA), RJ(N)
!
! Set values for A
! A = (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)
!
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
! Factor A
 CALL LFTSF (A, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = 0.0E0
 DO 10 J=1, N
 RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFSSF
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFSSF (FACT, IPVT, RJ, AINV(:,J))
 RJ(J) = 0.0E0
 10 CONTINUE
! Print the inverse
 CALL WRRRN (’AINV’, AINV)
 END

Output

 AINV
 1 2 3
1 -2.500 -2.000 -0.500
2 -2.000 -1.000 0.000
3 -0.500 0.000 0.500

Comments
Informational error

Type Code

4 2 The input matrix is singular.

Description

Routine LFTSF performs a U DUT factorization of a real symmetric indefinite coefficient
matrix. The U DUT factorization is called the diagonal pivoting factorization.

LFTSF fails if A is singular or very close to a singular matrix.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 167

The U DUT factors are returned in a form that is compatible with routines LFISF, page 169,
LFSSF, page 167, and LFDSF, page 172. To solve systems of equations with multiple right-
hand-side vectors, use LFTSF followed by either LFISF or LFSSF called once for each right-
hand side. The routine LFDSF can be called to compute the determinant of the coefficient matrix
after LFTSF has performed the factorization.

LFTSF is based on the LINPACK routine SSIFA; see Dongarra et al. (1979).

LFSSF
Solves a real symmetric system of linear equations given the U DUT factorization of the
coefficient matrix.

Required Arguments
FACT — N by N matrix containing the factorization of the coefficient matrix A as output from

routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)
Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as
output from routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of A exactly as specified in the dimension statement of the
calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFSSF (FACT, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSSF and D_LFSSF.

FORTRAN 77 Interface
Single: CALL LFSSF (N, FACT, LDFACT, IPVT, B, X)

Double: The double precision name is DLFSSF.

168 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example
A set of linear systems is solved successively. LFTSF (page 164) is called to factor the
coefficient matrix. LFSSF is called to compute the four solutions for the four right-hand sides. In
this case the coefficient matrix is assumed to be well-conditioned and correctly scaled.
Otherwise, it would be better to call LFCSF (page 162) to perform the factorization, and LFISF
(page 169) to compute the solutions.

 USE LFSSF_INT
 USE LFTSF_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N)
 REAL A(LDA,LDA), B(N,4), X(N,4), FACT(LDA,LDA)
!
! Set values for A and B
!
! A = (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)
!
! B = (-1.0 3.6 -8.0 -9.4)
! (-3.0 -4.2 11.0 17.6)
! (-3.0 -5.2 -6.0 -23.4)
!
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
 DATA B/-1.0, -3.0, -3.0, 3.6, -4.2, -5.2, -8.0, 11.0, -6.0,&
 -9.4, 17.6, -23.4/
! Factor A
 CALL LFTSF (A, FACT, IPVT)
! Solve for the four right-hand sides
 DO 10 I=1, 4
 CALL LFSSF (FACT, IPVT, B(:,I), X(:,I))
 10 CONTINUE
! Print results
 CALL WRRRN (’X’, X)
 END

Output

 X
 1 2 3 4
1 10.00 2.00 1.00 0.00
2 5.00 -3.00 5.00 1.20
3 -1.00 -4.40 1.00 -7.00

Description
Routine LFSSF computes the solution of a system of linear algebraic equations having a real
symmetric indefinite coefficient matrix.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 169

To compute the solution, the coefficient matrix must first undergo a U DUT factorization. This
may be done by calling either LFCSF, page 162, or LFTSF, page 164.

LFSSF, page 167, and LFISF, page 169, both solve a linear system given its U DUT
factorization. LFISF generally takes more time and produces a more accurate answer than
LFSSF. Each iteration of the iterative refinement algorithm used by LFISF calls LFSSF.

LFSSF is based on the LINPACK routine SSISL; see Dongarra et al. (1979).

LFISF
Uses iterative refinement to improve the solution of a real symmetric system of linear equations.

Required Arguments
A — N by N matrix containing the coefficient matrix of the symmetric linear system. (Input)

Only the upper triangle of A is referenced

FACT — N by N matrix containing the factorization of the coefficient matrix A as output from
routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)
Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as
output from routine LFCSF/DLFCSF or LFTSF/DLFTSF. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

RES — Vector of length N containing the residual vector at the improved
solution. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

170 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL LFISF (A, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFISF and D_LFISF.

FORTRAN 77 Interface
Single: CALL LFISF (N, A, LDA, FACT, LDFACT, IPVT, B, X, RES)

Double: The double precision name is DLFISF.

Example
A set of linear systems is solved successively. The right-hand-side vector is perturbed after
solving the system each of the first two times by adding 0.2 to the second element.

 USE LFISF_INT
 USE UMACH_INT
 USE LFCSF_INT
 USE WRRRN_INT
! Declare variables
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N), RCOND
!
! Set values for A and B
! A = (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)
!
! B = (4.1 -4.7 6.5)
!
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
 DATA B/4.1, -4.7, 6.5/
! Factor A and compute the estimate
! of the reciprocal condition number
 CALL LFCSF (A, FACT, IPVT, RCOND)
! Print condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Solve, then perturb right-hand side
 DO 10 I=1, 3
 CALL LFISF (A, FACT, IPVT, B, X, RES)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
 CALL WRRRN (’RES’, RES, 1, N, 1)
 B(2) = B(2) + .20E0
 10 CONTINUE
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 171

Output

RCOND = 0.034
L1 Condition number = 29.750

 X
 1 2 3
-4.100 -3.500 1.200

 RES
 1 2 3
-2.384E-07 -2.384E-07 0.000E+00

 X
 1 2 3
-4.500 -3.700 1.200

 RES
 1 2 3
-2.384E-07 -2.384E-07 0.000E+00

 X
 1 2 3
-4.900 -3.900 1.200

 RES
 1 2 3
-2.384E-07 -2.384E-07 0.000E+00

Comments
Informational error

Type Code

 3 2 The input matrix is too ill-conditioned for iterative refinement to be effective.

Description
LFISF computes the solution of a system of linear algebraic equations having a real symmetric
indefinite coefficient matrix. Iterative refinement is performed on the solution vector to improve
the accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is
somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo a U DUT factorization. This
may be done by calling either LFCSF, page 162, or LFTSF, page 164.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFISF, page 169 and LFSSF, page 167, both solve a linear system given its U DUT
factorization. LFISF generally takes more time and produces a more accurate answer than
LFSSF. Each iteration of the iterative refinement algorithm used by LFISF calls LFSSF.

172 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFDSF
Computes the determinant of a real symmetric matrix given the U DUT factorization of the matrix.

Required Arguments
FACT — N by N matrix containing the factored matrix A as output from subroutine

LFTSF/DLFTSF or LFCSF/DLFCSF. (Input)

IPVT — Vector of length N containing the pivoting information for the U DUT factorization
as output from routine LFTSF/DLFTSF or LFCSF/DLFCSF. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that, 1.0 � |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form, det(A) = DET1 * 10DET2.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFDSF (FACT, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDSF and D_LFDSF.

FORTRAN 77 Interface
Single: CALL LFDSF (N, FACT, LDFACT, IPVT, DET1, DET2)

Double: The double precision name is DLFDSF.

Example
The determinant is computed for a real symmetric 3 � 3 matrix.

 USE LFDSF_INT
 USE LFTSF_INT
 USE UMACH_INT

! Declare variables

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 173

 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL A(LDA,LDA), FACT(LDA,LDA), DET1, DET2
!
! Set values for A
! A = (1.0 -2.0 1.0)
! (-2.0 3.0 -2.0)
! (1.0 -2.0 3.0)
!
 DATA A/1.0, -2.0, 1.0, -2.0, 3.0, -2.0, 1.0, -2.0, 3.0/
! Factor A
 CALL LFTSF (A, FACT, IPVT)
! Compute the determinant
 CALL LFDSF (FACT, IPVT, DET1, DET2)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0)
 END

Output

The determinant of A is -2.000 * 10**0.

Description
Routine LFDSF computes the determinant of a real symmetric indefinite coefficient matrix. To
compute the determinant, the coefficient matrix must first undergo a U DUT factorization. This
may be done by calling either LFCSF, page 162, or LFTSF, page 164. Since det U = �1, the
formula det A = det U det D det UT = det D is used to compute the determinant. Next det D is
computed as the product of the determinants of its blocks.

LFDSF is based on the LINPACK routine SSIDI; see Dongarra et al. (1979).

LSADH
Solves a Hermitian positive definite system of linear equations with iterative refinement.

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the Hermitian positive

definite linear system. (Input)
Only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution of the linear system. (Output)

174 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSADH (A, B, X [,…])

Specific: The specific interface names are S_LSADH and D_LSADH.

FORTRAN 77 Interface
Single: CALL LSADH (N, A, LDA, B, X)

Double: The double precision name is DLSADH.

Example
A system of five linear equations is solved. The coefficient matrix has complex positive definite
form and the right-hand-side vector b has five elements.

 USE LSADH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=5, N=5)
 COMPLEX A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
! (10.0+0.0i 0.0+4.0i 0.0+0.0i)
! (6.0+0.0i 1.0+1.0i)
! (9.0+0.0i)
!
! B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)
!
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&
 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),&
 (25.0,16.0)/
!
 CALL LSADH (A, B, X)
! Print results

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 175

 CALL WRCRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
 5
(3.000, 2.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ADH/DL2ADH. The

reference is:

CALL L2ADH (N, A, LDA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — N � N work array containing the RH R factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2ADH the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSADH.
Additional memory allocation for FACT and option value restoration are done
automatically in LSADH. Users directly calling L2ADH can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSADH or L2ADH. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

176 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSADH temporarily replaces IVAL(2) by IVAL(1). The
routine L2CDH computes the condition number if IVAL(2) = 2. Otherwise L2CDH
skips this computation. LSADH restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSADH solves a system of linear algebraic equations having a complex Hermitian
positive definite coefficient matrix. It first uses the routine LFCDH, page 179, to compute an
RH R Cholesky factorization of the coefficient matrix and to estimate the condition number of
the matrix. The matrix R is upper triangular. The solution of the linear system is then found
using the iterative refinement routine LFIDH, page 187.

LSADH fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if
the iterative refinement algorithm fails to converge. These errors occur only if A either is very
close to a singular matrix or is a matrix that is not positive definite.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSADH solves
the problem that is represented in the computer; however, this problem may differ from the
problem whose solution is desired.

LSLDH
Solves a complex Hermitian positive definite system of linear equations without iterative
refinement.

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the Hermitian positive

definite linear system. (Input)
Only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 177

FORTRAN 90 Interface
Generic: CALL LSLDH (A, B, X [,…])

Specific: The specific interface names are S_LSLDH and D_LSLDH.

FORTRAN 77 Interface
Single: CALL LSLDH (N, A, LDA, B, X)

Double: The double precision name is DLSLDH.

Example
A system of five linear equations is solved. The coefficient matrix has complex Hermitian
positive definite form and the right-hand-side vector b has five elements.

 USE LSLDH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=5, N=5)
 COMPLEX A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
! (10.0+0.0i 0.0+4.0i 0.0+0.0i)
! (6.0+0.0i 1.0+1.0i)
! (9.0+0.0i)
!
! B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)
!
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&
 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B /(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),&
 (25.0,16.0)/
!
 CALL LSLDH (A, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
 5
(3.000, 2.000)

178 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LDH/ DL2LDH. The

reference is:

CALL L2LDH (N, A, LDA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — N � N work array containing the RH R factorization of A on output. If A is not
needed, A can share the same storage locations as FACT.

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LDH the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLDH.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLDH. Users directly calling L2LDH can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLDH or L2LDH. Default values for the option are IVAL(*)
= 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSLDH temporarily replaces IVAL(2) by IVAL(1). The
routine L2CDH computes the condition number if IVAL(2) = 2. Otherwise L2CDH
skips this computation. LSLDH restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSLDH solves a system of linear algebraic equations having a complex Hermitian
positive definite coefficient matrix. It first uses the routine LFCDH, page 179, to compute an RH
R Cholesky factorization of the coefficient matrix and to estimate the condition number of the

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 179

matrix. The matrix R is upper triangular. The solution of the linear system is then found using
the routine LFSDH, page 185.

LSLDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that
LSADH, page 173, be used.

LFCDH
Computes the RH R factorization of a complex Hermitian positive definite matrix and estimate its
L� condition number.

Required Arguments
A — Complex N by N Hermitian positive definite matrix to be factored. (Input) Only the

upper triangle of A is referenced.

FACT — Complex N by N matrix containing the upper triangular matrix R of the factorization
of A in the upper triangle. (Output)
Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share
the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT --- Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCDH (A, FACT, RCOND [,…])

Specific: The specific interface names are S_LFCDH and D_LFCDH.

180 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL LFCDH (N, A, LDA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCDH.

Example
The inverse of a 5 � 5 Hermitian positive definite matrix is computed. LFCDH is called to factor
the matrix and to check for nonpositive definiteness or ill-conditioning. LFIDH (page 187) is
called to determine the columns of the inverse.

 USE LFCDH_INT
 USE LFIDH_INT
 USE UMACH_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NOUT
 PARAMETER (LDA=5, LDFACT=5, N=5)
 REAL RCOND
 COMPLEX A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT),&
 RES(N), RJ(N)
!
! Set values for A
!
! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
! (10.0+0.0i 0.0+4.0i 0.0+0.0i)
! (6.0+0.0i 1.0+1.0i)
! (9.0+0.0i)
!
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&
 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
! Factor the matrix A
 CALL LFCDH (A, FACT, RCOND)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = (0.0E0, 0.0E0)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
! RJ is the J-th column of the identity
! matrix so the following LFIDH
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFIDH (A, FACT, RJ, AINV(:,J), RES)
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
 CALL WRCRN (’AINV’, AINV)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 181

!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.067
L1 Condition number = 14.961

 AINV
 1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)
4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)
5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)
 5
1 (0.0092,-0.0046)
2 (0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 (0.1175, 0.0000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CDH/DL2CDH. The

reference is:

CALL L2CDH (N, A, LDA, FACT, LDFACT, RCOND, WK)

The additional argument is

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.
4 4 The input matrix is not Hermitian.
4 2 The input matrix is not positive definite. It has a diagonal entry with

an imaginary part.

Description

Routine LFCDH computes an RH R Cholesky factorization and estimates the condition number
of a complex Hermitian positive definite coefficient matrix. The matrix R is upper triangular.

182 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LFCDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The RH R factors are returned in a form that is compatible with routines LFIDH, page 187,
LFSDH, page 185, and LFDDH, page 190. To solve systems of equations with multiple right-
hand-side vectors, use LFCDH followed by either LFIDH or LFSDH called once for each right-
hand side. The routine LFDDH can be called to compute the determinant of the coefficient matrix
after LFCDH has performed the factorization.

LFCDH is based on the LINPACK routine CPOCO; see Dongarra et al. (1979).

LFTDH
Computes the RH R factorization of a complex Hermitian positive definite matrix.

Required Arguments
A — Complex N by N Hermitian positive definite matrix to be factored. (Input) Only the

upper triangle of A is referenced.

FACT — Complex N by N matrix containing the upper triangular matrix R of the factorization
of A in the upper triangle. (Output)
Only the upper triangle of FACT will be used. If A is not needed, A and FACT can share
the same storage locations.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 183

FORTRAN 90 Interface
Generic: CALL LFTDH (A, FACT, [,…])

Specific: The specific interface names are S_LFTDH and D_LFTDH.

FORTRAN 77 Interface
Single: CALL LFTDH (N, A, LDA, FACT, LDFACT)

Double: The double precision name is DLFTDH.

Example
The inverse of a 5 � 5 matrix is computed. LFTDH is called to factor the matrix and to check for
nonpositive definiteness. LFSDH (page 185) is called to determine the columns of the inverse.

 USE LFTDH_INT
 USE LFSDH_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N
 PARAMETER (LDA=5, LDFACT=5, N=5)
 COMPLEX A(LDA,LDA), AINV(LDA,LDA), FACT(LDFACT,LDFACT), RJ(N)
!
! Set values for A
!
! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
! (10.0+0.0i 0.0+4.0i 0.0+0.0i)
! (6.0+0.0i 1.0+1.0i)
! (9.0+0.0i)
!
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&
 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
! Factor the matrix A
 CALL LFTDH (A, FACT)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = (0.0E0,0.0E0)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
! RJ is the J-th column of the identity
! matrix so the following LFSDH
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFSDH (FACT, RJ, AINV(:,J))
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
! Print the results

184 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL WRCRN (’AINV’, AINV, ITRING=1)
!
 END

Output

 AINV
 1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (0.1797, 0.0000) (0.0000,-0.1244)
4 (0.2592, 0.0000)
 5
1 (0.0092,-0.0046)
2 (0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 (0.1175, 0.0000)

Comments
Informational errors

Type Code

3 4 The input matrix is not Hermitian. It has a diagonal entry with
a small imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal entry with

an imaginary part.

Description

Routine LFTDH computes an RH R Cholesky factorization of a complex Hermitian positive
definite coefficient matrix. The matrix R is upper triangular.

LFTDH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The RH R factors are returned in a form that is compatible with routines LFIDH, page 187,
LFSDH, page 185, and LFDDH, page 190. To solve systems of equations with multiple right-
hand-side vectors, use LFCDH followed by either LFIDH or LFSDH called once for each right-
hand side. The IMSL routine LFDDH can be called to compute the determinant of the coefficient
matrix after LFCDH has performed the factorization.

LFTDH is based on the LINPACK routine CPOFA; see Dongarra et al. (1979).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 185

LFSDH
Solves a complex Hermitian positive definite system of linear equations given the RH R
factorization of the coefficient matrix.

Required Arguments
FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as

output from routine LFCDH/DLFCDH or LFTDH/DLFTDH. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFSDH (FACT, B, X [,…])

Specific: The specific interface names are S_LFSDH and D_LFSDH.

FORTRAN 77 Interface
Single: CALL LFSDH (N, FACT, LDFACT, B, X)

Double: The double precision name is DLFSDH.

Example
A set of linear systems is solved successively. LFTDH (page 182) is called to factor the
coefficient matrix. LFSDH is called to compute the four solutions for the four right-hand sides. In
this case, the coefficient matrix is assumed to be well-conditioned and correctly scaled.
Otherwise, it would be better to call LFCDH (page 179) to perform the factorization, and LFIDH
(page 187) to compute the solutions.

 USE LFSDH_INT
 USE LFTDH_INT
 USE WRCRN_INT

186 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Declare variables
 INTEGER LDA, LDFACT, N
 PARAMETER (LDA=5, LDFACT=5, N=5)
 COMPLEX A(LDA,LDA), B(N,3), FACT(LDFACT,LDFACT), X(N,3)

! Set values for A and B
!
! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
! (10.0+0.0i 0.0+4.0i 0.0+0.0i)
! (6.0+0.0i 1.0+1.0i)
! (9.0+0.0i)
!
! B = (3.0+3.0i 4.0+0.0i 29.0-9.0i)
! (5.0-5.0i 15.0-10.0i -36.0-17.0i)
! (5.0+4.0i -12.0-56.0i -15.0-24.0i)
! (9.0+7.0i -12.0+10.0i -23.0-15.0i)
! (-22.0+1.0i 3.0-1.0i -23.0-28.0i)

 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&
 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),&
 (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),&
 (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),&
 (-23.0,-15.0), (-23.0,-28.0)/

! Factor the matrix A
 CALL LFTDH (A, FACT)
! Compute the solutions
 DO 10 I=1, 3
 CALL LFSDH (FACT, B(:,I), X(:,I))
 10 CONTINUE
! Print solutions
 CALL WRCRN (’X’, X)
!
 END

Output

 X
 1 2 3
1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)
2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)
3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)
4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)
5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

Comments
Informational error

Type Code

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 187

4 1 The input matrix is singular.

Description
This routine computes the solution for a system of linear algebraic equations having a complex
Hermitian positive definite coefficient matrix. To compute the solution, the coefficient matrix
must first undergo an RH R factorization. This may be done by calling either LFCDH, page 179,
or LFTDH, page 182. R is an upper triangular matrix.

The solution to Ax = b is found by solving the triangular systems RH y = b and Rx = y.

LFSDH and LFIDH, page 187, both solve a linear system given its RH R factorization. LFIDH
generally takes more time and produces a more accurate answer than LFSDH. Each iteration of
the iterative refinement algorithm used by LFIDH calls LFSDH.

LFSDH is based on the LINPACK routine CPOSL; see Dongarra et al. (1979).

LFIDH
Uses iterative refinement to improve the solution of a complex Hermitian positive definite system
of linear equations.

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the linear system. (Input)

Only the upper triangle of A is referenced.

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as
output from routine LFCDH/DLFCDH or LFTDH/DLFTDH. (Input)
Only the upper triangle of FACT is used.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.
(Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

188 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFIDH (A, FACT, B, X, RES [,…])

Specific: The specific interface names are S_LFIDH and D_LFIDH.

FORTRAN 77 Interface
Single: CALL LFIDH (N, A, LDA, FACT, LDFACT, B, X, RES)

Double: The double precision name is DLFIDH.

Example
A set of linear systems is solved successively. The right-hand-side vector is perturbed by adding
(1 + i)/2 to the second element after each call to LFIDH.

 USE LFIDH_INT
 USE LFCDH_INT
 USE UMACH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, LDFACT, N
 PARAMETER (LDA=5, LDFACT=5, N=5)
 REAL RCOND
 COMPLEX A(LDA,LDA), B(N), FACT(LDFACT,LDFACT), RES(N,3), X(N,3)
!
! Set values for A and B
!
! A = (2.0+0.0i -1.0+1.0i 0.0+0.0i 0.0+0.0i 0.0+0.0i)
! (4.0+0.0i 1.0+2.0i 0.0+0.0i 0.0+0.0i)
! (10.0+0.0i 0.0+4.0i 0.0+0.0i)
! (6.0+0.0i 1.0+1.0i)
! (9.0+0.0i)
!
! B = (3.0+3.0i 5.0-5.0i 5.0+4.0i 9.0+7.0i -22.0+1.0i)
!
 DATA A /(2.0,0.0), 4*(0.0,0.0), (-1.0,1.0), (4.0,0.0),&
 4*(0.0,0.0), (1.0,2.0), (10.0,0.0), 4*(0.0,0.0),&
 (0.0,4.0), (6.0,0.0), 4*(0.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B /(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/
! Factor the matrix A
 CALL LFCDH (A, FACT, RCOND)
! Print the estimated condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Compute the solutions, then perturb B
 DO 10 I=1, 3

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 189

 CALL LFIDH (A, FACT, B, X(:,I), RES(:,I))
 B(2) = B(2) + (0.5E0,0.5E0)
 10 CONTINUE
! Print solutions and residuals
 CALL WRCRN (’X’, X)
 CALL WRCRN (’RES’, RES)
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.067
L1 Condition number = 14.961

 X
 1 2 3
1 (1.000, 0.000) (1.217, 0.000) (1.433, 0.000)
2 (1.000,-2.000) (1.217,-1.783) (1.433,-1.567)
3 (2.000, 0.000) (1.910, 0.030) (1.820, 0.060)
4 (2.000, 3.000) (1.979, 2.938) (1.959, 2.876)
5 (-3.000, 0.000) (-2.991, 0.005) (-2.982, 0.009)

 RES
 1 2 3
1 (1.192E-07, 0.000E+00) (6.592E-08, 1.686E-07) (1.318E-07, 2.010E-14)
2 (1.192E-07,-2.384E-07) (-5.329E-08,-5.329E-08) (1.318E-07,-2.258E-07)
3 (2.384E-07, 8.259E-08) (2.390E-07,-3.309E-08) (2.395E-07, 1.015E-07)
4 (-2.384E-07, 2.814E-14) (-8.240E-08,-8.790E-09) (-1.648E-07,-1.758E-08)
5 (-2.384E-07,-1.401E-08) (-2.813E-07, 6.981E-09) (-3.241E-07,-2.795E-08)

Comments
Informational error

Type Code

3 3 The input matrix is too ill-conditioned for iterative refinement to be
effective.

Description
Routine LFIDH computes the solution of a system of linear algebraic equations having a
complex Hermitian positive definite coefficient matrix. Iterative refinement is performed on the
solution vector to improve the accuracy. Usually almost all of the digits in the solution are
accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an RH R factorization. This
may be done by calling either LFCDH, page 179, or LFTDH, page 182.

Iterative refinement fails only if the matrix is very ill-conditioned.

190 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFIDH, page 187, and LFSDH, page 185, both solve a linear system given its RH R factorization.
LFIDH generally takes more time and produces a more accurate answer than LFSDH. Each
iteration of the iterative refinement algorithm used by LFIDH calls LFSDH.

LFDDH
Uses iterative refinement to improve the solution of a complex Hermitian positive definite system
of linear equations.

Required Arguments

FACT — Complex N by N matrix containing the RT R factorization of the coefficient matrix A
as output from routine LFCDH/DLFCDH or LFTDH/DLFTDH. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFDDH (FACT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDDH and D_LFDDH.

FORTRAN 77 Interface
Single: CALL LFDDH (N, FACT, LDFACT, DET1, DET2)

Double: The double precision name is DLFDDH.

Example
The determinant is computed for a complex Hermitian positive definite 3 � 3 matrix.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 191

 USE LFDDH_INT
 USE LFTDH_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDFACT, NOUT
 PARAMETER (LDA=3, LDFACT=3)
 REAL DET1, DET2
 COMPLEX A(LDA,LDA), FACT(LDFACT,LDFACT)
!
! Set values for A
!
! A = (6.0+0.0i 1.0-1.0i 4.0+0.0i)
! (1.0+1.0i 7.0+0.0i -5.0+1.0i)
! (4.0+0.0i -5.0-1.0i 11.0+0.0i)
!
 DATA A /(6.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (7.0,0.0),&
 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (11.0,0.0)/
! Factor the matrix
 CALL LFTDH (A, FACT)
! Compute the determinant
 CALL LFDDH (FACT, DET1, DET2)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
!
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0)
 END

Output

The determinant of A is 1.400 * 10**2.

Description
Routine LFDDH computes the determinant of a complex Hermitian positive definite coefficient
matrix. To compute the determinant, the coefficient matrix must first undergo an RH R
factorization. This may be done by calling either LFCDH, page 179, or LFTDH, page 182. The
formula det A = det RH det R = (det R)� is used to compute the determinant. Since the
determinant of a triangular matrix is the product of the diagonal elements,

1
det N

iii
R R

�

��

(The matrix R is stored in the upper triangle of FACT.)

LFDDH is based on the LINPACK routine CPODI; see Dongarra et al. (1979).

LSAHF
Solves a complex Hermitian system of linear equations with iterative refinement.

192 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)
Only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSAHF (A, B, X [,…])

Specific: The specific interface names are S_LSAHF and D_LSAHF.

FORTRAN 77 Interface
Single: CALL LSAHF (N, A, LDA, B, X)

Double: The double precision name is DLSAHF.

Example
A system of three linear equations is solved. The coefficient matrix has complex Hermitian form
and the right-hand-side vector b has three elements.

 USE LSAHF_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 COMPLEX A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
! (1.0+1.0i 2.0+0.0i -5.0+1.0i)
! (4.0+0.0i -5.0-1.0i -2.0+0.0i)
!
! B = (7.0+32.0i -39.0-21.0i 51.0+9.0i)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 193

!
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&
 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/
!
 CALL LSAHF (A, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3
(2.00, 1.00) (-10.00, -1.00) (3.00, 5.00)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2AHF/DL2AHF. The

reference is:

CALL L2AHF (N, A, LDA, B, X, FACT, IPVT, CWK)

The additional arguments are as follows:

FACT — Complex work vector of length N2 containing information about the
U DUH factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting information for the
factorization of A on output.

CWK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.
4 2 The input matrix singular.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2AHF the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAHF.
Additional memory allocation for FACT and option value restoration are done

194 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

automatically in LSAHF. Users directly calling L2AHF can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSAHF or L2AHF. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSAHF temporarily replaces IVAL(2) by IVAL(1). The
routine L2CHF computes the condition number if IVAL(2) = 2. Otherwise L2CHF
skips this computation. LSAHF restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSAHF solves systems of linear algebraic equations having a complex Hermitian
indefinite coefficient matrix. It first uses the routine LFCHF, page 197 to compute a U DUH
factorization of the coefficient matrix and to estimate the condition number of the matrix. D is a
block diagonal matrix with blocks of order 1 or 2 and U is a matrix composed of the product of
a permutation matrix and a unit upper triangular matrix. The solution of the linear system is then
found using the iterative refinement routine LFIHF, page 204.

LSAHF fails if a block in D is singular or if the iterative refinement algorithm fails to converge.
These errors occur only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSAHF solves
the problem that is represented in the computer; however, this problem may differ from the
problem whose solution is desired.

LSLHF
Solves a complex Hermitian system of linear equations without iterative refinement.

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)
Only the upper triangle of A is referenced.

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 195

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSLHF (A, B, X [,…])

Specific: The specific interface names are S_LSLHF and D_LSLHF.

FORTRAN 77 Interface
Single: CALL LSLHF (N, A, LDA, B, X)

Double: The double precision name is DLSLHF.

Example
A system of three linear equations is solved. The coefficient matrix has complex Hermitian form
and the right-hand-side vector b has three elements.

 USE LSLHF_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 COMPLEX A(LDA,LDA), B(N), X(N)
!
! Set values for A and B
!
! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
! (1.0+1.0i 2.0+0.0i -5.0+1.0i)
! (4.0+0.0i -5.0-1.0i -2.0+0.0i)
!
! B = (7.0+32.0i -39.0-21.0i 51.0+9.0i)
!
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&
 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/
!
 CALL LSLHF (A, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3
(2.00, 1.00) (-10.00, -1.00) (3.00, 5.00)

196 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LHF/DL2LHF. The

reference is:

CALL L2LHF (N, A, LDA, B, X, FACT, IPVT, CWK)

The additional arguments are as follows:

FACT — Complex work vector of length N� containing information about the UDUH
factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting information for the
factorization of A on output.

CWK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.
4 2 The input matrix singular.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LHF the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLHF.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLHF. Users directly calling L2LHF can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLHF or L2LHF. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSLHF temporarily replaces IVAL(2) by IVAL(1). The
routine L2CHF computes the condition number if IVAL(2) = 2. Otherwise L2CHF
skips this computation. LSLHF restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSLHF solves systems of linear algebraic equations having a complex Hermitian
indefinite coefficient matrix. It first uses the routine LFCHF, page 200, to compute a UDUH

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 197

factorization of the coefficient matrix. D is a block diagonal matrix with blocks of order 1 or 2
and U is a matrix composed of the product of a permutation matrix and a unit upper triangular
matrix.

The solution of the linear system is then found using the routine LFSHF, page 202. LSLHF fails
if a block in D is singular. This occurs only if A is singular or very close to a singular matrix. If
the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that LSAHF,
page 191 be used.

LFCHF
Computes the UDUH factorization of a complex Hermitian matrix and estimate its L� condition
number.

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)
Only the upper triangle of A is referenced.

FACT — Complex N by N matrix containing the information about the factorization of the
Hermitian matrix A. (Output)
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the
same storage locations.

IPVT — Vector of length N containing the pivoting information for the factorization.
(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCHF (A, FACT, IPVT, RCOND [,…])

198 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Specific: The specific interface names are S_LFCHF and D_LFCHF.

FORTRAN 77 Interface
Single: CALL LFCHF (N, A, LDA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCHF.

Example
The inverse of a 3 � 3 complex Hermitian matrix is computed. LFCHF is called to factor the
matrix and to check for singularity or ill-conditioning. LFIHF (page 204) is called to determine
the columns of the inverse.

 USE LFCHF_INT
 USE UMACH_INT
 USE LFIHF_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL RCOND
 COMPLEX A(LDA,LDA), AINV(LDA,N), FACT(LDA,LDA), RJ(N), RES(N)
! Set values for A
!
! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
! (1.0+1.0i 2.0+0.0i -5.0+1.0i)
! (4.0+0.0i -5.0-1.0i -2.0+0.0i)
!
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&
 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
! Set output unit number
 CALL UMACH (2, NOUT)
! Factor A and return the reciprocal
! condition number estimate
 CALL LFCHF (A, FACT, IPVT, RCOND)
! Print the estimate of the condition
! number
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = (0.0E0,0.0E0)
 DO 10 J=1, N
 RJ(J) = (1.0E0, 0.0E0)
! RJ is the J-th column of the identity
! matrix so the following LFIHF
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFIHF (A, FACT, IPVT, RJ, AINV(:,J), RES)
 RJ(J) = (0.0E0, 0.0E0)
 10 CONTINUE
! Print the inverse

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 199

 CALL WRCRN (’AINV’, AINV)
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.240
L1 Condition number = 4.175

 AINV
 1 2 3
1 (0.2000, 0.0000) (0.1200, 0.0400) (0.0800,-0.0400)
2 (0.1200,-0.0400) (0.1467, 0.0000) (-0.1267,-0.0067)
3 (0.0800, 0.0400) (-0.1267, 0.0067) (-0.0267, 0.0000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CHF/DL2CHF. The

reference is:

CALL L2CHF (N, A, LDA, FACT, LDFACT, IPVT, RCOND, CWK)

The additional argument is:

CWK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.
4 2 The input matrix is singular.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

Description

Routine LFCHF performs a U DUH factorization of a complex Hermitian indefinite coefficient
matrix. It also estimates the condition number of the matrix. The U DUH factorization is called
the diagonal pivoting factorization.

The L� condition number of the matrix A is defined to be �(A) = ||A||�||A||�. Since it is expensive
to compute ||A||�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

200 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFCHF fails if A is singular or very close to a singular matrix.

The U DUH factors are returned in a form that is compatible with routines LFIHF, page 204,
LFSHF, page 202, and LFDHF, page 207. To solve systems of equations with multiple right-
hand-side vectors, use LFCHF followed by either LFIHF or LFSHF called once for each right-
hand side. The routine LFDHF can be called to compute the determinant of the coefficient matrix
after LFCHF has performed the factorization.

LFCHF is based on the LINPACK routine CSICO; see Dongarra et al. (1979).

LFTHF
Computes the U DUH factorization of a complex Hermitian matrix.

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)
Only the upper triangle of A is referenced.

FACT — Complex N by N matrix containing the information about the factorization of the
Hermitian matrix A. (Output)
Only the upper triangle of FACT is used. If A is not needed, A and FACT can share the
same storage locations.

IPVT — Vector of length N containing the pivoting information for the factorization.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFTHF (A, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTHF and D_LFTHF.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 201

FORTRAN 77 Interface
Single: CALL LFTHF (N, A, LDA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTHF.

Example
The inverse of a 3 � 3 matrix is computed. LFTHF is called to factor the matrix and check for
singularity. LFSHF is called to determine the columns of the inverse.

 USE LFTHF_INT
 USE LFSHF_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N)
 COMPLEX A(LDA,LDA), AINV(LDA,N), FACT(LDA,LDA), RJ(N)
!
! Set values for A
!
! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
! (1.0+1.0i 2.0+0.0i -5.0+1.0i)
! (4.0+0.0i -5.0-1.0i -2.0+0.0i)
!
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&
 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
! Factor A
 CALL LFTHF (A, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = (0.0E0,0.0E0)
 DO 10 J=1, N
 RJ(J) = (1.0E0, 0.0E0)
! RJ is the J-th column of the identity
! matrix so the following LFSHF
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFSHF (FACT, IPVT, RJ, AINV(:,J))
 RJ(J) = (0.0E0, 0.0E0)
 10 CONTINUE
! Print the inverse
 CALL WRCRN (’AINV’, AINV)
 END

Output

 AINV
 1 2 3
1 (0.2000, 0.0000) (0.1200, 0.0400) (0.0800,-0.0400)
2 (0.1200,-0.0400) (0.1467, 0.0000) (-0.1267,-0.0067)
3 (0.0800, 0.0400) (-0.1267, 0.0067) (-0.0267, 0.0000)

202 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments
Informational errors

 Type Code

3 4 The input matrix is not Hermitian. It has a diagonal entry with a small
 imaginary part.
4 2 The input matrix is singular.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an imaginary

part.

Description

Routine LFTHF performs a U DUH factorization of a complex Hermitian indefinite coefficient
matrix. The U DUH factorization is called the diagonal pivoting factorization.

LFTHF fails if A is singular or very close to a singular matrix.

The U DUH factors are returned in a form that is compatible with routines LFIHF, page 204,
LFSHF, page 202, and LFDHF, page 207. To solve systems of equations with multiple right-
hand-side vectors, use LFTHF followed by either LFIHF or LFSHF called once for each right-
hand side. The routine LFDHF can be called to compute the determinant of the coefficient matrix
after LFTHF has performed the factorization.

LFTHF is based on the LINPACK routine CSIFA; see Dongarra et al. (1979).

LFSHF
Solves a complex Hermitian system of linear equations given the U DUH factorization of the
coefficient matrix.

Required Arguments
FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)
Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as
output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 203

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFSHF (FACT, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSHF and D_LFSHF.

FORTRAN 77 Interface
Single: CALL LFSHF (N, FACT, LDFACT, IPVT, B, X)

Double: The double precision name is DLFSHF.

Example
A set of linear systems is solved successively. LFTHF (page 200) is called to factor the
coefficient matrix. LFSHF is called to compute the three solutions for the three right-hand sides.
In this case the coefficient matrix is assumed to be well-conditioned and correctly scaled.
Otherwise, it would be better to call LFCHF (page 197) to perform the factorization, and LFIHF
(page 204) to compute the solutions.

 USE LFSHF_INT
 USE WRCRN_INT
 USE LFTHF_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), I
 COMPLEX A(LDA,LDA), B(N,3), X(N,3), FACT(LDA,LDA)
!
! Set values for A and B
!
! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
! (1.0+1.0i 2.0+0.0i -5.0+1.0i)
! (4.0+0.0i -5.0-1.0i -2.0+0.0i)
!
! B = (7.0+32.0i -6.0+11.0i -2.0-17.0i)
! (-39.0-21.0i -5.5-22.5i 4.0+10.0i)
! (51.0+ 9.0i 16.0+17.0i -2.0+12.0i)
!
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&
 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0), (-6.0,11.0),&

204 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 (-5.5,-22.5), (16.0,17.0), (-2.0,-17.0), (4.0,10.0),&
 (-2.0,12.0)/
! Factor A
 CALL LFTHF (A, FACT, IPVT)
! Solve for the three right-hand sides
 DO 10 I=1, 3
 CALL LFSHF (FACT, IPVT, B(:,I), X(:,I))
 10 CONTINUE
! Print results
 CALL WRCRN (’X’, X)
 END

Output

 X
 1 2 3
1 (2.00, 1.00) (1.00, 0.00) (0.00, -1.00)
2 (-10.00, -1.00) (-3.00, -4.00) (0.00, -2.00)
3 (3.00, 5.00) (-0.50, 3.00) (0.00, -3.00)

Description
Routine LFSHF computes the solution of a system of linear algebraic equations having a
complex Hermitian indefinite coefficient matrix.

To compute the solution, the coefficient matrix must first undergo a U DUH factorization. This
may be done by calling either LFCHF, page 197, or LFTHF, page 200.

LFSHF and LFIHF, page 204, both solve a linear system given its U DUH factorization. LFIHF
generally takes more time and produces a more accurate answer than LFSHF. Each iteration of
the iterative refinement algorithm used by LFIHF calls LFSHF.

LFSHF is based on the LINPACK routine CSISL; see Dongarra et al. (1979).

LFIHF
Uses iterative refinement to improve the solution of a complex Hermitian system of linear
equations.

Required Arguments
A — Complex N by N matrix containing the coefficient matrix of the Hermitian linear system.

(Input)
Only the upper triangle of A is referenced.

FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as
output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)
Only the upper triangle of FACT is used.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 205

IPVT — Vector of length N containing the pivoting information for the factorization of A as
output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.
(Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFIHF (A, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFIHF and D_LFIHF.

FORTRAN 77 Interface
Single: CALL LFIHF (N, A, LDA, FACT, LDFACT, IPVT, B, X, RES)

Double: The double precision name is DLFIHF.

Example
A set of linear systems is solved successively. The right-hand-side vector is perturbed after
solving the system each of the first two times by adding 0.2 + 0.2i to the second element.

 USE LFIHF_INT
 USE UMACH_INT
 USE LFCHF_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL RCOND

206 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 COMPLEX A(LDA,LDA), B(N), X(N), FACT(LDA,LDA), RES(N)
!
!
! Set values for A and B
!
! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
! (1.0+1.0i 2.0+0.0i -5.0+1.0i)
! (4.0+0.0i -5.0-1.0i -2.0+0.0i)
!
! B = (7.0+32.0i -39.0-21.0i 51.0+9.0i)
!
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&
 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
 DATA B/(7.0,32.0), (-39.0,-21.0), (51.0,9.0)/
! Set output unit number
 CALL UMACH (2, NOUT)
! Factor A and compute the estimate
! of the reciprocal condition number
 CALL LFCHF (A, FACT, IPVT, RCOND)
 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND
! Solve, then perturb right-hand side
 DO 10 I=1, 3
 CALL LFIHF (A, FACT, IPVT, B, X, RES)
! Print results
 WRITE (NOUT,99999) I
 CALL WRCRN (’X’, X, 1, N, 1)
 CALL WRCRN (’RES’, RES, 1, N, 1)
 B(2) = B(2) + (0.2E0, 0.2E0)
 10 CONTINUE
!
99998 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
99999 FORMAT (//,’ For problem ’, I1)
 END

Output

RCOND = 0.240
L1 Condition number = 4.175
For problem 1
 X
 1 2 3
(2.00, 1.00) (-10.00, -1.00) (3.00, 5.00)

 RES
 1 2 3
(2.384E-07,-4.768E-07) (0.000E+00,-3.576E-07) (-1.421E-14, 1.421E-14)

For problem 2
 X
 1 2 3
(2.016, 1.032) (-9.971,-0.971) (2.973, 4.976)

 RES
 1 2 3
(2.098E-07,-1.764E-07) (6.231E-07,-1.518E-07) (1.272E-07, 4.005E-07)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 207

For problem 3
 X
 1 2 3
(2.032, 1.064) (-9.941,-0.941) (2.947, 4.952)

 RES
 1 2 3
(4.196E-07,-3.529E-07) (2.925E-07,-3.632E-07) (2.543E-07, 3.242E-07)

Comments
Informational error

 Type Code

3 3 The input matrix is too ill-conditioned for iterative refinement to be
 effective.

Description
Routine LFIHF computes the solution of a system of linear algebraic equations having a
complex Hermitian indefinite coefficient matrix.

Iterative refinement is performed on the solution vector to improve the accuracy. Usually almost
all of the digits in the solution are accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo a U DUH factorization. This
may be done by calling either LFCHF, page 197, or LFTHF, page 200.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIHF and LFSHF, page 202, both solve a linear system given its U DUH factorization. LFIHF
generally takes more time and produces a more accurate answer than LFSHF. Each iteration of
the iterative refinement algorithm used by LFIHF calls LFSHF.

LFDHF
Computes the determinant of a complex Hermitian matrix given the U DUH factorization of the
matrix.

Required Arguments
FACT — Complex N by N matrix containing the factorization of the coefficient matrix A as

output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)
Only the upper triangle of FACT is used.

IPVT — Vector of length N containing the pivoting information for the factorization of A as
output from routine LFCHF/DLFCHF or LFTHF/DLFTHF. (Input)

208 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 � |DET1| < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFDHF (FACT, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDHF and D_LFDHF.

FORTRAN 77 Interface
Single: CALL LFDHF (N, FACT, LDFACT, IPVT, DET1, DET2)

Double: The double precision name is DLFDHF.

Example
The determinant is computed for a complex Hermitian 3 � 3 matrix.

 USE LFDHF_INT
 USE LFTHF_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
 INTEGER IPVT(N), NOUT
 REAL DET1, DET2
 COMPLEX A(LDA,LDA), FACT(LDA,LDA)
!
! Set values for A
!
! A = (3.0+0.0i 1.0-1.0i 4.0+0.0i)
! (1.0+1.0i 2.0+0.0i -5.0+1.0i)
! (4.0+0.0i -5.0-1.0i -2.0+0.0i)
!
 DATA A/(3.0,0.0), (1.0,1.0), (4.0,0.0), (1.0,-1.0), (2.0,0.0),&
 (-5.0,-1.0), (4.0,0.0), (-5.0,1.0), (-2.0,0.0)/
! Factor A

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 209

 CALL LFTHF (A, FACT, IPVT)
! Compute the determinant
 CALL LFDHF (FACT, IPVT, DET1, DET2)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
!
99999 FORMAT (’ The determinant is’, F5.1, ’ * 10**’, F2.0)
 END

Output

The determinant is -1.5 * 10**2.

Description
Routine LFDHF computes the determinant of a complex Hermitian indefinite coefficient matrix.
To compute the determinant, the coefficient matrix must first undergo a U DUH factorization.
This may be done by calling either LFCHF, page 197, or LFTHF, page 200 Since det U = �1, the
formula det A = det U det D det UH = det D is used to compute the determinant. det D is
computed as the product of the determinants of its blocks.

LFDHF is based on the LINPACK routine CSIDI; see Dongarra et al. (1979).

LSLTR
Solves a real tridiagonal system of linear equations.

Required Arguments
C — Vector of length N containing the subdiagonal of the tridiagonal matrix in C(2) through

C(N). (Input/Output)
On output C is destroyed.

D — Vector of length N containing the diagonal of the tridiagonal matrix. (Input/Output)
On output D is destroyed.

E — Vector of length N containing the superdiagonal of the tridiagonal matrix in E(1) through
E(N � 1). (Input/Output)
On output E is destroyed.

B — Vector of length N containing the right-hand side of the linear system on entry and the
solution vector on return. (Input/Output)

Optional Arguments
N — Order of the tridiagonal matrix. (Input)

Default: N = size (C,1).

210 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL LSLTR (C, D, E, B [,…])

Specific: The specific interface names are S_LSLTR and D_LSLTR.

FORTRAN 77 Interface
Single: CALL LSLTR (N, C, D, E, B)

Double: The double precision name is DLSLTR.

Example
A system of n = 4 linear equations is solved.

 USE LSLTR_INT
 USE WRRRL_INT

! Declaration of variables
 INTEGER N
 PARAMETER (N=4)
!
 REAL B(N), C(N), D(N), E(N)
 CHARACTER CLABEL(1)*6, FMT*8, RLABEL(1)*4
!
 DATA FMT/’(E13.6)’/
 DATA CLABEL/’NUMBER’/
 DATA RLABEL/’NONE’/
! C(*), D(*), E(*), and B(*)
! contain the subdiagonal, diagonal,
! superdiagonal and right hand side.
 DATA C/0.0, 0.0, -4.0, 9.0/, D/6.0, 4.0, -4.0, -9.0/
 DATA E/-3.0, 7.0, -8.0, 0.0/, B/48.0, -81.0, -12.0, -144.0/
!
!
 CALL LSLTR (C, D, E, B)
! Output the solution.
 CALL WRRRL (’Solution:’, B, RLABEL, CLABEL, 1, N, 1, FMT=FMT)
 END

Output

Solution:
 1 2 3 4
0.400000E+01 -0.800000E+01 -0.700000E+01 0.900000E+01

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 211

Comments
Informational error

 Type Code

4 2 An element along the diagonal became exactly zero during execution.

Description
Routine LSLTR factors and solves the real tridiagonal linear system Ax = b. LSLTR is intended
just for tridiagonal systems. The coefficient matrix does not have to be symmetric. The
algorithm is Gaussian elimination with partial pivoting for numerical stability. See Dongarra
(1979), LINPACK subprograms SGTSL/DGTSL, for details. When computing on vector or
parallel computers the cyclic reduction algorithm, page 211, should be considered as an
alternative method to solve the system.

LSLCR
Computes the L DU factorization of a real tridiagonal matrix A using a cyclic reduction algorithm.

Required Arguments
C — Array of size 2N containing the upper codiagonal of the N by N tridiagonal matrix in the

entries C(1), �, C(N � 1). (Input/Output)

A — Array of size 2N containing the diagonal of the N by N tridiagonal matrix in the entries
A(1), �, A(N). (Input/Output)

B — Array of size 2N containing the lower codiagonal of the N by N tridiagonal matrix in the
entries B(1), �, B(N � 1). (Input/Output)

Y — Array of size 2N containing the right hand side for the system Ax = y in the order Y(1),
�, Y(N). (Input/Output) The vector x overwrites Y in storage.

U — Array of size 2N of flags that indicate any singularities of A. (Output)
A value U(I) = 1. means that a divide by zero would have occurred during the factoring.
Otherwise U(I) = 0.

IR — Array of integers that determine the sizes of loops performed in the cyclic reduction
algorithm. (Output)

IS — Array of integers that determine the sizes of loops performed in the cyclic reduction
algorithm. (Output)
The sizes of IR and IS must be at least log�(N) + 3.

212 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Optional Arguments
N — Order of the matrix. (Input)

N must be greater than zero
Default: N = size (C,1).

IJOB — Flag to direct the desired factoring or solving step. (Input)
Default: IJOB = 1.

IJOB Action

1 Factor the matrix A and solve the system Ax = y, where y is stored in array
 Y.

2 Do the solve step only. Use y from array Y. (The factoring step has already
 been done.)

3 Factor the matrix A but do not solve a system.

4, 5, 6 Same meaning as with the value IJOB = 3. For efficiency, no error checking
 is done on the validity of any input value.

FORTRAN 90 Interface
Generic: CALL LSLCR (C, A, B, Y, U, IR, IS [,…])

Specific: The specific interface names are S_LSLCR and D_LSLCR.

FORTRAN 77 Interface
Single: CALL LSLCR (N, C, A, B, IJOB, Y, U, IR, IS)

Double: The double precision name is DLSLCR.

Example
A system of n = 1000 linear equations is solved. The coefficient matrix is the symmetric matrix
of the second difference operation, and the right-hand-side vector y is the first column of the
identity matrix. Note that an, n= 1. The solution vector will be the first column of the inverse
matrix of A. Then a new system is solved where y is now the last column of the identity matrix.
The solution vector for this system will be the last column of the inverse matrix.

 USE LSLCR_INT
 USE UMACH_INT

! Declare variables
 INTEGER LP, N, N2
 PARAMETER (LP=12, N=1000, N2=2*N)
!
 INTEGER I, IJOB, IR(LP), IS(LP), NOUT
 REAL A(N2), B(N2), C(N2), U(N2), Y1(N2), Y2(N2)
!

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 213

! Define matrix entries:
 DO 10 I=1, N - 1
 C(I) = -1.E0
 A(I) = 2.E0
 B(I) = -1.E0
 Y1(I+1) = 0.E0
 Y2(I) = 0.E0
 10 CONTINUE
 A(N) = 1.E0
 Y1(1) = 1.E0
 Y2(N) = 1.E0
!
! Obtain decomposition of matrix and
! solve the first system:
 IJOB = 1
 CALL LSLCR (C, A, B, Y1, U, IR, IS, IJOB=IJOB)
!
! Solve the second system with the
! decomposition ready:
 IJOB = 2
 CALL LSLCR (C, A, B, Y2, U, IR, IS, IJOB=IJOB)
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The value of n is: ’, N
 WRITE (NOUT,*) ’ Elements 1, n of inverse matrix columns 1 ’//&
 ’and n:’, Y1(1), Y2(N)
 END

Output

The value of n is: 1000
Elements 1, n of inverse matrix columns 1 and n: 1.00000 1000.000

Description
Routine LSLCR factors and solves the real tridiagonal linear system Ax = y. The matrix is
decomposed in the form A = L DU, where L is unit lower triangular, U is unit upper triangular,
and D is diagonal. The algorithm used for the factorization is effectively that described in
Kershaw (1982). More details, tests and experiments are reported in Hanson (1990).

LSLCR is intended just for tridiagonal systems. The coefficient matrix does not have to be
symmetric. The algorithm amounts to Gaussian elimination, with no pivoting for numerical
stability, on the matrix whose rows and columns are permuted to a new order. See Hanson
(1990) for details. The expectation is that LSLCR will outperform either LSLTR, page 209, or
LSLPB, page 237, on vector or parallel computers. Its performance may be inferior for small
values of n, on scalar computers, or high-performance computers with non-optimizing
compilers.

LSARB
Solves a real system of linear equations in band storage mode with iterative refinement.

214 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Required Arguments
A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX= B is solved.
IPATH = 2 means the system ATX = B is solved.
Default: IPATH =1.

FORTRAN 90 Interface
Generic: CALL LSARB (A, NLCA, NUCA, B, X [,…])

Specific: The specific interface names are S_LSARB and D_LSARB.

FORTRAN 77 Interface
Single: CALL LSARB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Double: The double precision name is DLSARB.

Example
A system of four linear equations is solved. The coefficient matrix has real banded form with 1
upper and 1 lower codiagonal. The right-hand-side vector b has four elements.

 USE LSARB_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, N, NLCA, NUCA
 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 215

 REAL A(LDA,N), B(N), X(N)
! Set values for A in band form, and B
!
! A = (0.0 -1.0 -2.0 2.0)
! (2.0 1.0 -1.0 1.0)
! (-3.0 0.0 2.0 0.0)
!
! B = (3.0 1.0 11.0 -2.0)
!
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&
 2.0, 1.0, 0.0/
 DATA B/3.0, 1.0, 11.0, -2.0/
!
 CALL LSARB (A, NLCA, NUCA, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3 4
2.000 1.000 -3.000 4.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ARB/DL2ARB. The

reference is:

CALL L2ARB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — Work vector of length (2 * NLCA + NUCA + 1) � N containing the LU
factorization of A on output.

IPVT — Work vector of length N containing the pivoting information for the LU
factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

216 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2ARB the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSARB.
Additional memory allocation for FACT and option value restoration are done
automatically in LSARB. Users directly calling L2ARB can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSARB or L2ARB. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSARB temporarily replaces IVAL(2) by IVAL(1). The
routine L2CRB computes the condition number if IVAL(2) = 2. Otherwise L2CRB
skips this computation. LSARB restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSARB solves a system of linear algebraic equations having a real banded coefficient
matrix. It first uses the routine LFCRB, page 219, to compute an LU factorization of the
coefficient matrix and to estimate the condition number of the matrix. The solution of the linear
system is then found using the iterative refinement routine LFIRB, page 227.

LSARB fails if U, the upper triangular part of the factorization, has a zero diagonal element or if
the iterative refinement algorithm fails to converge. These errors occur only if A is singular or
very close to a singular matrix.

If the estimated condition number is greater than 1	� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSARB solves
the problem that is represented in the computer; however, this problem may differ from the
problem whose solution is desired.

LSLRB
Solves a real system of linear equations in band storage mode without iterative refinement.

Required Arguments
A — (NLCA + NUCA + 1) by N array containing the N by N banded coefficient matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 217

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX= B is solved.
IPATH = 2 means the system ATX = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSLRB (A, NLCA, NUCA, B, X [,…])

Specific: The specific interface names are S_LSLRB and D_LSLRB.

FORTRAN 77 Interface
Single: CALL LSLRB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Double: The double precision name is DLSLRB.

Example
A system of four linear equations is solved. The coefficient matrix has real banded form with 1
upper and 1 lower codiagonal. The right-hand-side vector b has four elements.

 USE LSLRB_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, N, NLCA, NUCA
 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)
 REAL A(LDA,N), B(N), X(N)
! Set values for A in band form, and B
!
! A = (0.0 -1.0 -2.0 2.0)
! (2.0 1.0 -1.0 1.0)
! (-3.0 0.0 2.0 0.0)
!
! B = (3.0 1.0 11.0 -2.0)
!
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&
 2.0, 1.0, 0.0/
 DATA B/3.0, 1.0, 11.0, -2.0/

218 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

!
 CALL LSLRB (A, NLCA, NUCA, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3 4
2.000 1.000 -3.000 4.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LRB/DL2LRB. The

reference is:

CALL L2LRB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — (2 � NLCA + NUCA + 1) � N containing the LU factorization of A on output. If
A is not needed, A can share the first (NLCA + NUCA + 1) * N storage locations
with FACT.

IPVT — Work vector of length N containing the pivoting information for the LU
factorization of A on output.

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LRB the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLRB.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLRB. Users directly calling L2LRB can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLRB or L2LRB. Default values for the option are
IVAL(*) = 1, 16, 0, 1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 219

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSLRB temporarily replaces IVAL(2) by IVAL(1). The
routine L2CRB computes the condition number if IVAL(2) = 2. Otherwise L2CRB
skips this computation. LSLRB restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSLRB solves a system of linear algebraic equations having a real banded coefficient
matrix. It first uses the routine LFCRB, page 219, to compute an LU factorization of the
coefficient matrix and to estimate the condition number of the matrix. The solution of the linear
system is then found using LFSRB, page 225. LSLRB fails if U, the upper triangular part of the
factorization, has a zero diagonal element. This occurs only if A is singular or very close to a
singular matrix. If the estimated condition number is greater than 1/� (where � is machine
precision), a warning error is issued. This indicates that very small changes in A can cause very
large changes in the solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is
recommended that LSARB, page 213, be used.

LFCRB
Computes the LU factorization of a real matrix in band storage mode and estimate its L� condition
number.

Required Arguments
A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage mode to be

factored. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A.
(Output)
If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT.

IPVT — Vector of length N containing the pivoting information for the LU factorization.
(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

220 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCRB and D_LFCRB.

FORTRAN 77 Interface
Single: CALL LFCRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCRB.

Example
The inverse of a 4 � 4 band matrix with one upper and one lower codiagonal is computed.
LFCRB is called to factor the matrix and to check for singularity or ill-conditioning. LFIRB (page
227) is called to determine the columns of the inverse.

 USE LFCRB_INT
 USE UMACH_INT
 USE LFIRB_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)

 INTEGER IPVT(N)
 REAL A(LDA,N), AINV(N,N), FACT(LDFACT,N), RCOND, RJ(N), RES(N)
! Set values for A in band form
! A = (0.0 -1.0 -2.0 2.0)
! (2.0 1.0 -1.0 1.0)
! (-3.0 0.0 2.0 0.0)
!
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&
 2.0, 1.0, 0.0/
!
 CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND)
! Print the reciprocal condition number
! and the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = 0.0E0

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 221

 DO 10 J=1, N
 RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFIRB
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, RJ, AINV(:,J), RES)
 RJ(J) = 0.0E0
 10 CONTINUE
! Print results
 CALL WRRRN (’AINV’, AINV)
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.065
L1 Condition number = 15.351

 AINV
 1 2 3 4
1 -1.000 -1.000 0.400 -0.800
2 -3.000 -2.000 0.800 -1.600
3 0.000 0.000 -0.200 0.400
4 0.000 0.000 0.400 0.200

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CRB/DL2CRB. The

reference is:

CALL L2CRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.

4 2 The input matrix is singular.

Description
Routine LFCRB performs an LU factorization of a real banded coefficient matrix. It also
estimates the condition number of the matrix. The LU factorization is done using scaled partial
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the
same as if each row were scaled to have the same �-norm.

222 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

The L� condition number of the matrix A is defined to be �(A) =

A

�

A

�. Since it is expensive
to compute

A

�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LSCRB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A is singular or very close to a singular matrix. The LU factors are returned in
a form that is compatible with routines LFIRB, page 227, LFSRB, page 225, and LFDRB, page
230. To solve systems of equations with multiple right-hand-side vectors, use LFCRB followed
by either LFIRB or LFSRB called once for each right-hand side. The routine LFDRB can be called
to compute the determinant of the coefficient matrix after LFCRB has performed the
factorization.

Let F be the matrix FACT, let ml= NLCA and let mu = NUCA. The first ml+ mu + 1 rows of F
contain the triangular matrix U in band storage form. The lower ml rows of F contain the
multipliers needed to reconstruct L�� .

LFCRB is based on the LINPACK routine SGBCO; see Dongarra et al. (1979). SGBCO uses
unscaled partial pivoting.

LFTRB
Computes the LU factorization of a real matrix in band storage mode.

Required Arguments
A — (NLCA + NUCA + 1) by N array containing the N by N matrix in band storage mode to be

factored. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A.
(Output)
If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT.

IPVT — Vector of length N containing the pivoting information for the LU factorization.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 223

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFTRB (A, NLCA, NUCA, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTRB and D_LFTRB.

FORTRAN 77 Interface
Single: CALL LFTRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTRB.

Example
A linear system with multiple right-hand sides is solved. LFTRB is called to factor the coefficient
matrix. LFSRB (page 225,) is called to compute the two solutions for the two right-hand sides. In
this case the coefficient matrix is assumed to be appropriately scaled. Otherwise, it may be
better to call routine LFCRB (page 219) to perform the factorization, and LFIRB (page 227) to
compute the solutions.

 USE LFTRB_INT
 USE LFSRB_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL A(LDA,N), B(N,2), FACT(LDFACT,N), X(N,2)
! Set values for A in band form, and B
!
! A = (0.0 -1.0 -2.0 2.0)
! (2.0 1.0 -1.0 1.0)
! (-3.0 0.0 2.0 0.0)
!
! B = (12.0 -17.0)
! (-19.0 23.0)
! (6.0 5.0)
! (8.0 5.0)
!
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&
 2.0, 1.0, 0.0/
 DATA B/12.0, -19.0, 6.0, 8.0, -17.0, 23.0, 5.0, 5.0/
! Compute factorization

224 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL LFTRB (A, NLCA, NUCA, FACT, IPVT)
! Solve for the two right-hand sides
 DO 10 J=1, 2
 CALL LFSRB (FACT, NLCA, NUCA, IPVT, B(:,J), X(:,J))
 10 CONTINUE
! Print results
 CALL WRRRN (’X’, X)
!
 END

Output

 X
 1 2
1 3.000 -8.000
2 -6.000 1.000
3 2.000 1.000
4 4.000 3.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TRB/DL2TRB. The

reference is:

CALL L2TRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, WK)

The additional argument is:

WK — Work vector of length N used for scaling.

2 Informational error
Type Code

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

21 The performance of the LU factorization may improve on high-performance
computers if the blocking factor, NB, is increased. The current version of the
routine allows NB to be reset to a value no larger than 32. Default value is NB =
1.

Description
The routine LFTRB performs an LU factorization of a real banded coefficient matrix using
Gaussian elimination with partial pivoting. A failure occurs if U, the upper triangular factor, has
a zero diagonal element. This can happen if A is close to a singular matrix. The LU factors are
returned in a form that is compatible with routines LFIRB, page 227, LFSRB, page 225, and
LFDRB, page 230. To solve systems of equations with multiple right-hand-side vectors, use
LFTRB followed by either LFIRB or LFSRB called once for each right-hand side. The routine

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 225

LFDRB can be called to compute the determinant of the coefficient matrix after LFTRB has
performed the factorization

Let ml = NLCA, and let mu = NUCA. The first ml + mu + 1 rows of FACT contain the triangular
matrix U in band storage form. The next ml rows of FACT contain the multipliers needed to
produce L.

The routine LFTRB is based on the the blocked LU factorization algorithm for banded linear
systems given in Du Croz, et al. (1990). Level-3 BLAS invocations were replaced by in-line
loops. The blocking factor nb has the default value 1 in LFTRB. It can be reset to any positive
value not exceeding 32.

LFSRB
Solves a real system of linear equations given the LU factorization of the coefficient matrix in
band storage mode.

Required Arguments
FACT — (2 � NLCA + NUCA + 1) by N array containing the LU factorization of the coefficient

matrix A as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A
as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system ATX = B is solved.
Default: IPATH = 1.

226 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL LFSRB (FACT, NLCA, NUCA, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSRB and D_LFSRB.

FORTRAN 77 Interface
Single: CALL LFSRB (N, FACT, LDFACT, NLCA, NUCA, IPVT, B, IPATH, X)

Double: The double precision name is DLFSRB.

Example
The inverse is computed for a real banded 4 � 4 matrix with one upper and one lower codiagonal.
The input matrix is assumed to be well-conditioned, hence LFTRB (page 222) is used rather than
LFCRB.

 USE LFSRB_INT
 USE LFTRB_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N)
! Set values for A in band form
! A = (0.0 -1.0 -2.0 2.0)
! (2.0 1.0 -1.0 1.0)
! (-3.0 0.0 2.0 0.0)
!
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&
 2.0, 1.0, 0.0/
!
 CALL LFTRB (A, NLCA, NUCA, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = 0.0E0
 DO 10 J=1, N
 RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFSRB
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFSRB (FACT, NLCA, NUCA, IPVT, RJ, AINV(:,J))
 RJ(J) = 0.0E0
 10 CONTINUE
! Print results
 CALL WRRRN (’AINV’, AINV)
!
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 227

Output

 AINV
 1 2 3 4
1 -1.000 -1.000 0.400 -0.800
2 -3.000 -2.000 0.800 -1.600
3 0.000 0.000 -0.200 0.400
4 0.000 0.000 0.400 0.200

Description
Routine LFSRB computes the solution of a system of linear algebraic equations having a real
banded coefficient matrix. To compute the solution, the coefficient matrix must first undergo an
LU factorization. This may be done by calling either LFCRB, page 219, or LFTRB, page 222. The
solution to Ax = b is found by solving the banded triangular systems Ly = b and Ux = y. The
forward elimination step consists of solving the system Ly = b by applying the same
permutations and elimination operations to b that were applied to the columns of A in the
factorization routine. The backward substitution step consists of solving the banded triangular
system Ux = y for x.

LFSRB, page 225 and LFIRB, page 227, both solve a linear system given its LU factorization.
LFIRB generally takes more time and produces a more accurate answer than LFSRB. Each
iteration of the iterative refinement algorithm used by LFIRB calls LFSRB.

LFSRB is based on the LINPACK routine SGBSL; see Dongarra et al. (1979).

LFIRB
Uses iterative refinement to improve the solution of a real system of linear equations in band
storage mode.

Required Arguments
A — (NUCA +NLCA +1) by N array containing the N by N banded coefficient matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — (2 * NLCA +NUCA +1) by N array containing the LU factorization of the matrix A as
output from routines LFCRB/DLFCRB or LFTRB/DLFTRB. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A
as output from routine LFCRB/DLFCRB or LFTRB/DLFTRB. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

228 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

RES — Vector of length N containing the residual vector at the improved
solution . (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system ATX = B is solved.
Default: IPATH =1.

FORTRAN 90 Interface
Generic: CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, B, X, RES [,…])

Specific: The specific interface names are S_LFIRB and D_LFIRB.

FORTRAN 77 Interface
Single: CALL LFIRB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, B, IPATH, X,

RES)

Double: The double precision name is DLFIRB.

Example
A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving
the system each of the first two times by adding 0.5 to the second element.

 USE LFIRB_INT
 USE LFCRB_INT
 USE UMACH_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL A(LDA,N), B(N), FACT(LDFACT,N), RCOND, RES(N), X(N)
! Set values for A in band form, and B

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 229

!
! A = (0.0 -1.0 -2.0 2.0)
! (2.0 1.0 -1.0 1.0)
! (-3.0 0.0 2.0 0.0)
!
! B = (3.0 5.0 7.0 -9.0)
!
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&
 2.0, 1.0, 0.0/
 DATA B/3.0, 5.0, 7.0, -9.0/
!
 CALL LFCRB (A, NLCA, NUCA, FACT, IPVT, RCOND)
! Print the reciprocal condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Solve the three systems
 DO 10 J=1, 3
 CALL LFIRB (A, NLCA, NUCA, FACT, IPVT, B, X, RES)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
! Perturb B by adding 0.5 to B(2)
 B(2) = B(2) + 0.5E0
 10 CONTINUE
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.065
L1 Condition number = 15.351
 X
 1 2 3 4
2.000 1.000 -5.000 1.000

 X
 1 2 3 4
1.500 0.000 -5.000 1.000

 X
 1 2 3 4
1.000 -1.000 -5.000 1.000

Comments
Informational error

 Type Code

3 2 The input matrix is too ill-conditioned for iterative refinement to be
effective

230 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Description
Routine LFIRB computes the solution of a system of linear algebraic equations having a real
banded coefficient matrix. Iterative refinement is performed on the solution vector to improve
the accuracy. Usually almost all of the digits in the solution are accurate, even if the matrix is
somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This
may be done by calling either LFCRB, page 219, or LFTRB, page 222.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIRB, page 227, and LFSRB, page 225, both solve a linear system given its LU factorization.
LFIRB generally takes more time and produces a more accurate answer than LFSRB. Each
iteration of the iterative refinement algorithm used by LFIRB calls LFSRB.

LFDRB
Computes the determinant of a real matrix in band storage mode given the LU factorization of the
matrix.

Required Arguments
FACT — (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the matrix A as

output from routine LFTRB/DLFTRB or LFCRB/DLFCRB. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization as
output from routine LFTRB/DLFTRB or LFCRB/DLFCRB. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 �
DET1
 < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 231

FORTRAN 90 Interface
Generic: CALL LFDRB (FACT, NLCA, NUCA, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDRB and D_LFDRB.

FORTRAN 77 Interface
Single: CALL LFDRB (N, FACT, LDFACT, NLCA, NUCA, IPVT, DET1, DET2)

Double: The double precision name is DLFDRB.

Example
The determinant is computed for a real banded 4 � 4 matrix with one upper and one lower
codiagonal.

 USE LFDRB_INT
 USE LFTRB_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL A(LDA,N), DET1, DET2, FACT(LDFACT,N)
! Set values for A in band form
! A = (0.0 -1.0 -2.0 2.0)
! (2.0 1.0 -1.0 1.0)
! (-3.0 0.0 2.0 0.0)
!
 DATA A/0.0, 2.0, -3.0, -1.0, 1.0, 0.0, -2.0, -1.0, 2.0,&
 2.0, 1.0, 0.0/
!
 CALL LFTRB (A, NLCA, NUCA, FACT, IPVT)
! Compute the determinant
 CALL LFDRB (FACT, NLCA, NUCA, IPVT, DET1, DET2)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
99999 FORMAT (’ The determinant of A is ’, F6.3, ’ * 10**’, F2.0)
 END

Output

The determinant of A is 5.000 * 10**0.

Description
Routine LFDRB computes the determinant of a real banded coefficient matrix. To compute the
determinant, the coefficient matrix must first undergo an LU factorization. This may be done by
calling either LFCRB, page 219, or LFTRB, page 222. The formula det A = det L det U is used to

232 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

compute the determinant. Since the determinant of a triangular matrix is the product of the
diagonal elements,

1
det N

i iiU U
�

��

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FACT as a banded matrix.) Since
L is the product of triangular matrices with unit diagonals and of permutation matrices,
det L = (�1)k, where k is the number of pivoting interchanges.

LFDRB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979).

LSAQS
Solves a real symmetric positive definite system of linear equations in band symmetric storage
mode with iterative refinement.

Required Arguments
A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in

band symmetric storage mode. (Input)

NCODA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSAQS (A, NCODA, B, X [,…])

Specific: The specific interface names are S_LSAQS and D_LSAQS.

FORTRAN 77 Interface
Single: CALL LSAQS (N, A, LDA, NCODA, B, X)

Double: The double precision name is DLSAQS.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 233

Example
A system of four linear equations is solved. The coefficient matrix has real positive definite
band form, and the right-hand-side vector b has four elements.

 USE LSAQS_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, N, NCODA
 PARAMETER (LDA=3, N=4, NCODA=2)
 REAL A(LDA,N), B(N), X(N)
!
! Set values for A in band symmetric form, and B
!
! A = (0.0 0.0 -1.0 1.0)
! (0.0 0.0 2.0 -1.0)
! (2.0 4.0 7.0 3.0)
!
! B = (6.0 -11.0 -11.0 19.0)
!
 DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/
 DATA B/6.0, -11.0, -11.0, 19.0/
! Solve A*X = B
 CALL LSAQS (A, NCODA, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3 4
 4.000 -6.000 2.000 9.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2AQS/DL2AQS. The

reference is:

CALL L2AQS (N, A, LDA, NCODA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — Work vector of length NCODA + 1 by N containing the RT R factorization of A
in band symmetric storage form on output.

WK — Work vector of length N.

2. Informational errors
Type Code

234 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2AQS the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAQS.
Additional memory allocation for FACT and option value restoration are done
automatically in LSAQS.

 Users directly calling L2AQS can allocate additional space for FACT and set
IVAL(3) and IVAL(4) so that memory bank conflicts no longer cause
inefficiencies. There is no requirement that users change existing applications
that use LSAQS or L2AQS. Default values for the option are IVAL(*) = 1, 16, 0,
1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSAQS temporarily replaces IVAL(2) by IVAL(1). The
routine L2CQS computes the condition number if IVAL(2) = 2. Otherwise L2CQS
skips this computation. LSAQS restores the option. Default values for the option
are IVAL(*) = 1,2.

Description
Routine LSAQS solves a system of linear algebraic equations having a real symmetric positive
definite band coefficient matrix. It first uses the routine LFCQS, page 240, to compute an RTR
Cholesky factorization of the coefficient matrix and to estimate the condition number of the
matrix. R is an upper triangular band matrix. The solution of the linear system is then found
using the iterative refinement routine LFIQS, page 247.

LSAQS fails if any submatrix of R is not positive definite, if R has a zero diagonal element or if
the iterative refinement algorithm fails to converge. These errors occur only if A is very close to
a singular matrix or to a matrix which is not positive definite.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSAQS solves
the problem that is represented in the computer; however, this problem may differ from the
problem whose solution is desired.

LSLQS
Solves a real symmetric positive definite system of linear equations in band symmetric storage
mode without iterative refinement.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 235

Required Arguments
A — NCODA + 1 by N array containing the N by N positive definite band symmetric coefficient

matrix in band symmetric storage mode. (Input)

NCODA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSLQS (A, NCODA, B, X [,…])

Specific: The specific interface names are S_LSLQS and D_LSLQS.

FORTRAN 77 Interface
Single: CALL LSLQS (N, A, LDA, NCODA, B, X)

Double: The double precision name is DLSLQS.

Example
A system of four linear equations is solved. The coefficient matrix has real positive definite band
form and the right-hand-side vector b has four elements.

 USE LSLQS_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, N, NCODA
 PARAMETER (LDA=3, N=4, NCODA=2)
 REAL A(LDA,N), B(N), X(N)
!
! Set values for A in band symmetric form, and B
!
! A = (0.0 0.0 -1.0 1.0)
! (0.0 0.0 2.0 -1.0)
! (2.0 4.0 7.0 3.0)
!

236 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! B = (6.0 -11.0 -11.0 19.0)
!
 DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/
 DATA B/6.0, -11.0, -11.0, 19.0/
! Solve A*X = B
 CALL LSLQS (A, NCODA, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3 4
 4.000 -6.000 2.000 9.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LQS/DL2LQS. The

reference is:

CALL L2LQS (N, A, LDA, NCODA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — NCODA + 1 by N work array containing the RTR factorization of A in band
symmetric form on output. If A is not needed, A and FACT can share the same
storage locations.

WK — Work vector of length N.

2. Informational errors
Type Code

 3 1 The input matrix is too ill-conditioned. The solution might not be
accurate.

 4 2 The input matrix is not positive definite.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LQS the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLQS.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLQS. Users directly calling L2LQS can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLQS or L2LQS. Default values for the option are IVAL(*)
= 1,16,0,1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 237

17 This option has two values that determine if the L��condition number is to be
computed. Routine LSLQS temporarily replaces IVAL(2) by IVAL(1). The
routine L2CQS computes the condition number if IVAL(2) = 2. Otherwise L2CQS
skips this computation. LSLQS restores the option. Default values for the option
are IVAL(*) = 1,2.

Description
Routine LSLQS solves a system of linear algebraic equations having a real symmetric positive
definite band coefficient matrix. It first uses the routine LFCQS, page 240, to compute an RTR
Cholesky factorization of the coefficient matrix and to estimate the condition number of the
matrix. R is an upper triangular band matrix. The solution of the linear system is then found
using the routine LFSQS, page 245.

LSLQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that
LSAQS, page 232, be used.

LSLPB
Computes the RTDR Cholesky factorization of a real symmetric positive definite matrix A in
codiagonal band symmetric storage mode. Solve a system Ax = b.

Required Arguments
A — Array containing the N by N positive definite band coefficient matrix and right hand

side in codiagonal band symmetric storage mode. (Input/Output)
The number of array columns must be at least NCODA + 2. The number of column is
not an input to this subprogram.

On output, A contains the solution and factors. See Comments section for details.

NCODA — Number of upper codiagonals of matrix A. (Input)
Must satisfy NCODA � 0 and NCODA < N.

U — Array of flags that indicate any singularities of A, namely loss of positive-definiteness of
a leading minor. (Output)
A value U(I) = 0. means that the leading minor of dimension I is not positive-definite.
Otherwise, U(I) = 1.

238 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Optional Arguments
N — Order of the matrix. (Input)

Must satisfy N > 0.
Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Must satisfy LDA � N + NCODA.
Default: LDA = size (A,1).

IJOB — Flag to direct the desired factorization or solving step. (Input)
Default: IJOB = 1.

IJOB Meaning

1 factor the matrix A and solve the system Ax = b, where b is stored in column
NCODA + 2 of array A. The vector x overwrites b in storage.

2 solve step only. Use b as column NCODA + 2 of A. (The factorization step has
already been done.) The vector x overwrites b in storage.

3 factor the matrix A but do not solve a system.

4,5,6 same meaning as with the value IJOB - 3. For efficiency, no error checking is
done on values LDA, N, NCODA, and U(*).

FORTRAN 90 Interface
Generic: CALL LSLPB (A, NCODA, U [,…])

Specific: The specific interface names are S_LSLPB and D_LSLPB.

FORTRAN 77 Interface
Single: CALL LSLPB (N, A, LDA, NCODA, IJOB, U)

Double: The double precision name is DLSLPB.

Example
A system of four linear equations is solved. The coefficient matrix has real positive definite
codiagonal band form and the right-hand-side vector b has four elements.

 USE LSLPB_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, N, NCODA
 PARAMETER (N=4, NCODA=2, LDA=N+NCODA)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 239

!
 INTEGER IJOB
 REAL A(LDA,NCODA+2), U(N)
 REAL R(N,N), RT(N,N), D(N,N), WK(N,N), AA(N,N)
!
!
! Set values for A and right side in
! codiagonal band symmetric form:
!
! A = (* * * *)
! (* * * *)
! (2.0 * * 6.0)
! (4.0 0.0 * -11.0)
! (7.0 2.0 -1.0 -11.0)
! (3.0 -1.0 1.0 19.0)
!
 DATA ((A(I+NCODA,J),I=1,N),J=1,NCODA+2)/2.0, 4.0, 7.0, 3.0, 0.0,&
 0.0, 2.0, -1.0, 0.0, 0.0, -1.0, 1.0, 6.0, -11.0, -11.0,&
 19.0/
 DATA R/16*0.0/, D/16*0.0/, RT/16*0.0/
! Factor and solve A*x = b.
 CALL LSLPB(A, NCODA, U)
! Print results
 CALL WRRRN ('X', A((NCODA+1):,(NCODA+2):), NRA=1, NCA=N, LDA=1)

 END

Output
 X

 1 2 3 4

 4.000 -6.000 2.000 9.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LPB/DL2LPB. The

reference is:

CALL L2LPB (N, A, LDA, NCODA, IJOB, U, WK)

The additional argument is:

WK — Work vector of length NCODA.

2. If IJOB=1, 3, 4, or 6, A contains the factors R and D on output. These are stored in
codiagonal band symmetric storage mode. Column 1 of A contains the reciprocal of
diagonal matrix D. Columns 2 through NCODA+1 contain the upper diagonal values for
upper unit diagonal matrix R. If IJOB=1,2, 4, or 5, the last column of A contains the
solution on output, replacing b.

240 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

3. Informational error
Type Code

4 2 The input matrix is not positive definite.

Description
Routine LSLPB factors and solves the symmetric positive definite banded linear system Ax = b.
The matrix is factored so that A = RTDR, where R is unit upper triangular and D is diagonal. The
reciprocals of the diagonal entries of D are computed and saved to make the solving step more
efficient. Errors will occur if D has a non-positive diagonal element. Such events occur only if A
is very close to a singular matrix or is not positive definite.

LSLPB is efficient for problems with a small band width. The particular cases NCODA = 0, 1, 2
are done with special loops within the code. These cases will give good performance. See
Hanson (1989) for details. When solving tridiagonal systems, NCODA = 1 , the cyclic reduction
code LSLCR, page 211, should be considered as an alternative. The expectation is that LSLCR
will outperform LSLPB on vector or parallel computers. It may be inferior on scalar computers
or even parallel computers with non-optimizing compilers.

LFCQS
Computes the RT R Cholesky factorization of a real symmetric positive definite matrix in band
symmetric storage mode and estimate its L� condition number.

Required Arguments
A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in

band symmetric storage mode to be factored. (Input)

NCODA — Number of upper codiagonals of A. (Input)

FACT — NCODA + 1 by N array containing the RTR factorization of the matrix A in band
symmetric form. (Output)
If A is not needed, A and FACT can share the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L�condition number of A.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 241

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCQS (A, NCODA, FACT, RCOND [,…])

Specific: The specific interface names are S_LFCQS and D_LFCQS.

FORTRAN 77 Interface
Single: CALL LFCQS (N, A, LDA, NCODA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCQS.

Example
The inverse of a 4 � 4 symmetric positive definite band matrix with one codiagonal is computed.
LFCQS is called to factor the matrix and to check for nonpositive definiteness or ill-conditioning.
LFIQS (page 247) is called to determine the columns of the inverse.

 USE LFCQS_INT
 USE LFIQS_INT
 USE UMACH_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NCODA, NOUT
 PARAMETER (LDA=2, LDFACT=2, N=4, NCODA=1)
 REAL A(LDA,N), AINV(N,N), RCOND, FACT(LDFACT,N),&
 RES(N), RJ(N)
!
! Set values for A in band symmetric form
!
! A = (0.0 1.0 1.0 1.0)
! (2.0 2.5 2.5 2.0)
!
 DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/
! Factor the matrix A
 CALL LFCQS (A, NCODA, FACT, RCOND)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = 0.0E0
 DO 10 J=1, N
 RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFIQS
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFIQS (A, NCODA, FACT, RJ, AINV(:,J), RES)
 RJ(J) = 0.0E0

242 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 10 CONTINUE
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
 CALL WRRRN (’AINV’, AINV)
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.160
L1 Condition number = 6.239
 AINV
 1 2 3 4
 1 0.6667 -0.3333 0.1667 -0.0833
 2 -0.3333 0.6667 -0.3333 0.1667
 3 0.1667 -0.3333 0.6667 -0.3333
 4 -0.0833 0.1667 -0.3333 0.6667

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CQS/DL2CQS. The

reference is:

CALL L2CQS (N, A, LDA, NCODA, FACT, LDFACT, RCOND, WK)

The additional argument is:

WK — Work vector of length N.

2. Informational errors
Type Code

3 3 The input matrix is algorithmically singular.
4 2 The input matrix is not positive definite.

Description

Routine LFCQS computes an RTR Cholesky factorization and estimates the condition number of
a real symmetric positive definite band coefficient matrix. R is an upper triangular band matrix.

The L� condition number of the matrix A is defined to be �(A) =

A

�

A

�. Since it is expensive
to compute

A

�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 243

LFCQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The RTR factors are returned in a form that is compatible with routines LFIQS, page 247,
LFSQS, page 245, and LFDQS, page 250. To solve systems of equations with multiple right-
hand-side vectors, use LFCQS followed by either LFIQS or LFSQS called once for each right-
hand side. The routine LFDQS can be called to compute the determinant of the coefficient matrix
after LFCQS has performed the factorization.

LFCQS is based on the LINPACK routine SPBCO; see Dongarra et al. (1979).

LFTQS
Computes the RTR Cholesky factorization of a real symmetric positive definite matrix in band
symmetric storage mode.

Required Arguments
A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in

band symmetric storage mode to be factored. (Input)

NCODA — Number of upper codiagonals of A. (Input)

FACT — NCODA + 1 by N array containing the RT R factorization of the matrix A. (Output)
If A s not needed, A and FACT can share the same storage locations.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFTQS (A, NCODA, FACT [,…])

Specific: The specific interface names are S_LFTQS and D_LFTQS.

244 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL LFTQS (N, A, LDA, NCODA, FACT, LDFACT)

Double: The double precision name is DLFTQS.

Example
The inverse of a 3 � 3 matrix is computed. LFTQS is called to factor the matrix and to check for
nonpositive definiteness. LFSQS (page 245) is called to determine the columns of the inverse.

 USE LFTQS_INT
 USE WRRRN_INT
 USE LFSQS_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NCODA
 PARAMETER (LDA=2, LDFACT=2, N=4, NCODA=1)
 REAL A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N)
!
! Set values for A in band symmetric form
!
! A = (0.0 1.0 1.0 1.0)
! (2.0 2.5 2.5 2.0)
!
 DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/
! Factor the matrix A
 CALL LFTQS (A, NCODA, FACT)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = 0.0E0
 DO 10 J=1, N
 RJ(J) = 1.0E0
! RJ is the J-th column of the identity
! matrix so the following LFSQS
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFSQS (FACT, NCODA, RJ, AINV(:,J))
 RJ(J) = 0.0E0
 10 CONTINUE
! Print the results
 CALL WRRRN (’AINV’, AINV, ITRING=1)
 END

Output

 AINV
 1 2 3 4
1 0.6667 -0.3333 0.1667 -0.0833
2 0.6667 -0.3333 0.1667
3 0.6667 -0.3333
4 0.6667

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 245

Comments
Informational error

Type Code

4 2 The input matrix is not positive definite.

Description

Routine LFTQS computes an RT R Cholesky factorization of a real symmetric positive definite
band coefficient matrix. R is an upper triangular band matrix.

LFTQS fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A is very close to a singular matrix or to a matrix which is not
positive definite.

The RT R factors are returned in a form that is compatible with routines LFIQS, page 247,
LFSQS, page 245, and LFDQS, page 250. To solve systems of equations with multiple right
hand-side vectors, use LFTQS followed by either LFIQS or LFSQS called once for each right-
hand side. The routine LFDQS can be called to compute the determinant of the coefficient matrix
after LFTQS has performed the factorization.

LFTQS is based on the LINPACK routine CPBFA; see Dongarra et al. (1979).

LFSQS
Solves a real symmetric positive definite system of linear equations given the factorization of the
coefficient matrix in band symmetric storage mode.

Required Arguments

FACT — NCODA + 1 by N array containing the RT R factorization of the positive definite band
matrix A in band symmetric storage mode as output from subroutine LFCQS/DLFCQS or
LFTQS/DLFTQS. (Input)

NCODA — Number of upper codiagonals of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X an share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

246 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFSQS (FACT, NCODA, B, X [,…])

Specific: The specific interface names are S_LFSQS and D_LFSQS.

FORTRAN 77 Interface
Single: CALL LFSQS (N, FACT, LDFACT, NCODA, B, X)

Double: The double precision name is DLFSQS.

Example
A set of linear systems is solved successively. LFTQS (page 243) is called to factor the coefficient
matrix. LFSQS is called to compute the four solutions for the four right-hand sides. In this case the
coefficient matrix is assumed to be well-conditioned and correctly scaled. Otherwise, it would be
better to call LFCQS (page 240) to perform the factorization, and LFIQS (page 247) to compute the
solutions.

 USE LFSQS_INT
 USE LFTQS_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NCODA
 PARAMETER (LDA=3, LDFACT=3, N=4, NCODA=2)
 REAL A(LDA,N), B(N,4), FACT(LDFACT,N), X(N,4)
!
!
! Set values for A in band symmetric form, and B
!
! A = (0.0 0.0 -1.0 1.0)
! (0.0 0.0 2.0 -1.0)
! (2.0 4.0 7.0 3.0)
!
! B = (4.0 -3.0 9.0 -1.0)
! (6.0 10.0 29.0 3.0)
! (15.0 12.0 11.0 6.0)
! (-7.0 1.0 14.0 2.0)
!
 DATA A/2*0.0, 2.0, 2*0.0, 4.0, -1.0, 2.0, 7.0, 1.0, -1.0, 3.0/
 DATA B/4.0, 6.0, 15.0, -7.0, -3.0, 10.0, 12.0, 1.0, 9.0, 29.0,&
 11.0, 14.0, -1.0, 3.0, 6.0, 2.0/
! Factor the matrix A
 CALL LFTQS (A, NCODA, FACT)
! Compute the solutions
 DO 10 I=1, 4
 CALL LFSQS (FACT, NCODA, B(:,I), X(:,I))

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 247

 10 CONTINUE
! Print solutions
 CALL WRRRN (’X’, X)
!
 END

Output

 X
 1 2 3 4
1 3.000 -1.000 5.000 0.000
2 1.000 2.000 6.000 0.000
3 2.000 1.000 1.000 1.000
4 -2.000 0.000 3.000 1.000

Comments
Informational error

Type Code

 4 1 The factored matrix is singular.

Description
This routine computes the solution for a system of linear algebraic equations having a real
symmetric positive definite band coefficient matrix. To compute the solution, the coefficient
matrix must first undergo an RT R factorization. This may be done by calling either LFCQS, page
240, or LFTQS, page 243. R is an upper triangular band matrix.

The solution to Ax = b is found by solving the triangular systems RTy = b and Rx = y.

LFSQS and LFIQS, page 247, both solve a linear system given its RT R factorization. LFIQS
generally takes more time and produces a more accurate answer than LFSQS. Each iteration of
the iterative refinement algorithm used by LFIQS calls LFSQS.

LFSQS is based on the LINPACK routine SPBSL; see Dongarra et al. (1979).

LFIQS
Uses iterative refinement to improve the solution of a real symmetric positive definite system of
linear equations in band symmetric storage mode.

Required Arguments
A — NCODA + 1 by N array containing the N by N positive definite band coefficient matrix in

band symmetric storage mode. (Input)

NCODA — Number of upper codiagonals of A. (Input)

248 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FACT — NCODA + 1 by N array containing the RT R factorization of the matrix A from routine
LFCQS/DLFCQS or LFTQS/DLFTQS. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the system. (Output)

RES — Vector of length N containing the residual vector at the improved solution. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFIQS (A, NCODA, FACT, B, X, RES [,…])

Specific: The specific interface names are S_LFIQS and D_LFIQS.

FORTRAN 77 Interface
Single: CALL LFIQS (N, A, LDA, NCODA, FACT, LDFACT, B, X, RES)

Double: The double precision name is DLFIQS.

Example
A set of linear systems is solved successively. The right-hand-side vector is perturbed after solving
the system each of the first two times by adding 0.5 to the second element.

 USE LFIQS_INT
 USE UMACH_INT
 USE LFCQS_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NCODA, NOUT
 PARAMETER (LDA=2, LDFACT=2, N=4, NCODA=1)
 REAL A(LDA,N), B(N), RCOND, FACT(LDFACT,N), RES(N,3),&
 X(N,3)
!

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 249

! Set values for A in band symmetric form, and B
!
! A = (0.0 1.0 1.0 1.0)
! (2.0 2.5 2.5 2.0)
!
! B = (3.0 5.0 7.0 4.0)
!
 DATA A/0.0, 2.0, 1.0, 2.5, 1.0, 2.5, 1.0, 2.0/
 DATA B/3.0, 5.0, 7.0, 4.0/
! Factor the matrix A
 CALL LFCQS (A, NCODA, FACT, RCOND)
! Print the estimated condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Compute the solutions
 DO 10 I=1, 3
 CALL LFIQS (A, NCODA, FACT, B, X(:,I), RES(:,I))
 B(2) = B(2) + 0.5E0
 10 CONTINUE
! Print solutions and residuals
 CALL WRRRN (’X’, X)
 CALL WRRRN (’RES’, RES)
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.160
L1 Condition number = 6.239
 X
 1 2 3
1 1.167 1.000 0.833
2 0.667 1.000 1.333
3 2.167 2.000 1.833
4 0.917 1.000 1.083

 RES
 1 2 3
1 7.947E-08 0.000E+00 9.934E-08
2 7.947E-08 0.000E+00 3.974E-08
3 7.947E-08 0.000E+00 1.589E-07
4 -3.974E-08 0.000E+00 -7.947E-08

Comments
Informational error

Type Code

3 4 The input matrix is too ill-conditioned for iterative refinement to be
effective.

250 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Description
Routine LFIQS computes the solution of a system of linear algebraic equations having a real
symmetric positive-definite band coefficient matrix. Iterative refinement is performed on the
solution vector to improve the accuracy. Usually almost all of the digits in the solution are
accurate, even if the matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an RT R factorization. This
may be done by calling either IMSL routine LFCQS, page 240, or LFTQS, page 243.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFIQS, page 247 and LFSQS, page 245, both solve a linear system given its RT R factorization.
LFIQS generally takes more time and produces a more accurate answer than LFSQS. Each
iteration of the iterative refinement algorithm used by LFIQS calls LFSQS.

LFDQS
Computes the determinant of a real symmetric positive definite matrix given the RTR Cholesky
factorization of the band symmetric storage mode.

Required Arguments

FACT — NCODA + 1 by N array containing the RT R factorization of the positive definite band
matrix, A, in band symmetric storage mode as output from subroutine LFCQS/DLFCQS
or LFTQS/DLFTQS. (Input)

NCODA — Number of upper codiagonals of A. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 �
DET1
 < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det(A) = DET1 * 10DET2.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFDQS (FACT, NCODA, DET1, DET2 [,…])

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 251

Specific: The specific interface names are S_LFDQS and D_LFDQS.

FORTRAN 77 Interface
Single: CALL LFDQS (N, FACT, LDFACT, NCODA, DET1, DET2)

Double: The double precision name is DLFDQS.

Example
The determinant is computed for a real positive definite 4 � 4 matrix with 2 codiagonals.

 USE LFDQS_INT
 USE LFTQS_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NCODA, NOUT
 PARAMETER (LDA=3, N=4, LDFACT=3, NCODA=2)
 REAL A(LDA,N), DET1, DET2, FACT(LDFACT,N)
!
! Set values for A in band symmetric form
!
! A = (0.0 0.0 1.0 -2.0)
! (0.0 2.0 1.0 3.0)
! (7.0 6.0 6.0 8.0)
!
 DATA A/2*0.0, 7.0, 0.0, 2.0, 6.0, 1.0, 1.0, 6.0, -2.0, 3.0, 8.0/
! Factor the matrix
 CALL LFTQS (A, NCODA, FACT)
! Compute the determinant
 CALL LFDQS (FACT, NCODA, DET1, DET2)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
!
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0)
 END

Output

The determinant of A is 1.186 * 10**3.

Description
Routine LFDQS computes the determinant of a real symmetric positive-definite band coefficient
matrix. To compute the determinant, the coefficient matrix must first undergo an RT R
factorization. This may be done by calling either IMSL routine LFCQS, page 240, or LFTQS,
page 243. The formula det A = det RT det R = (det R�� is used to compute the determinant. Since
the determinant of a triangular matrix is the product of the diagonal elements,

252 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

1
det N

i iiR R
�

��

LFDQS is based on the LINPACK routine SPBDI; see Dongarra et al. (1979).

LSLTQ
Solves a complex tridiagonal system of linear equations.

Required Arguments
C — Complex vector of length N containing the subdiagonal of the tridiagonal matrix in C(2)

through C(N). (Input/Output)
On output C is destroyed.

D — Complex vector of length N containing the diagonal of the tridiagonal matrix.
(Input/Output)
On output D is destroyed.

E — Complex vector of length N containing the superdiagonal of the tridiagonal matrix in
E(1) through E(N � 1). (Input/Output)
On output E is destroyed.

B — Complex vector of length N containing the right-hand side of the linear system on entry
and the solution vector on return. (Input/Output)

Optional Arguments
N — Order of the tridiagonal matrix. (Input)

Default: N = size (C,1).

FORTRAN 90 Interface
Generic: CALL LSLTQ (C, D, E, B [,…])

Specific: The specific interface names are S_LSLTQ and D_LSLTQ.

FORTRAN 77 Interface
Single: CALL LSLTQ (N, C, D, E, B)

Double: The double precision name is DLSLTQ.

Example
A system of n = 4 linear equations is solved.

 USE LSLTQ_INT
 USE WRCRL_INT

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 253

! Declaration of variables
 INTEGER N
 PARAMETER (N=4)
!
 COMPLEX B(N), C(N), D(N), E(N)
 CHARACTER CLABEL(1)*6, FMT*8, RLABEL(1)*4
!
 DATA FMT/’(E13.6)’/
 DATA CLABEL/’NUMBER’/
 DATA RLABEL/’NONE’/
! C(*), D(*), E(*) and B(*)
! contain the subdiagonal,
! diagonal, superdiagonal and
! right hand side.
 DATA C/(0.0,0.0), (-9.0,3.0), (2.0,7.0), (7.0,-4.0)/
 DATA D/(3.0,-5.0), (4.0,-9.0), (-5.0,-7.0), (-2.0,-3.0)/
 DATA E/(-9.0,8.0), (1.0,8.0), (8.0,3.0), (0.0,0.0)/
 DATA B/(-16.0,-93.0), (128.0,179.0), (-60.0,-12.0), (9.0,-108.0)/
!
!
 CALL LSLTQ (C, D, E, B)
! Output the solution.
 CALL WRCRL (’Solution:’, B, RLABEL, CLABEL, 1, N, 1, FMT=FMT)
 END

Output

Solution:
 1 2
(-0.400000E+01,-0.700000E+01) (-0.700000E+01, 0.400000E+01)
 3 4
(0.700000E+01,-0.700000E+01) (0.900000E+01, 0.200000E+01)

Comments
Informational error

 Type Code

4 2 An element along the diagonal became exactly zero during execution.

Description
Routine LSLTQ factors and solves the complex tridiagonal linear system Ax = b. LSLTQ is
intended just for tridiagonal systems. The coefficient matrix does not have to be symmetric. The
algorithm is Gaussian elimination with pivoting for numerical stability. See Dongarra et al.
(1979), LINPACK subprograms CGTSL/ZGTSL, for details. When computing on vector or
parallel computers the cyclic reduction algorithm, page 254, should be considered as an
alternative method to solve the system.

254 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LSLCQ
Computes the LDU factorization of a complex tridiagonal matrix A using a cyclic reduction
algorithm.

Required Arguments
C — Complex array of size 2N containing the upper codiagonal of the N by N tridiagonal

matrix in the entries C(1), �, C(N � 1). (Input/Output)

A — Complex array of size 2N containing the diagonal of the N by N tridiagonal matrix in the
entries A(1), �, A(N � 1). (Input/Output)

B — Complex array of size 2N containing the lower codiagonal of the N by N tridiagonal
matrix in the entries B(1), �, B(N � 1). (Input/Output)

Y — Complex array of size 2N containing the right-hand side of the system Ax = y in the order
Y(1),�,Y(N). (Input/Output)
The vector x overwrites Y in storage.

U — Real array of size 2N of flags that indicate any singularities of A. (Output)
A value U(I) = 1. means that a divide by zero would have occurred during the
factoring. Otherwise U(I) = 0.

IR — Array of integers that determine the sizes of loops performed in the cyclic reduction
algorithm. (Output)

IS — Array of integers that determine the sizes of loops performed in the cyclic reduction
algorithm. (Output)
The sizes of these arrays must be at least log�(N) + 3.

Optional Arguments
N — Order of the matrix. (Input)

N must be greater than zero.
Default: N = size (C,1).

IJOB — Flag to direct the desired factoring or solving step. (Input)
Default: IJOB =1.

IJOB Action

1 Factor the matrix A and solve the system Ax = y, where y is stored in
array Y.

2 Do the solve step only. Use y from array Y. (The factoring step has
already been done.)

3 Factor the matrix A but do not solve a system.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 255

4 Same meaning as with the value IJOB = 3. For efficiency, no error
checking is done on the validity of any input value.

FORTRAN 90 Interface
Generic: CALL LSLCQ (C, A, B, Y, U, IR, IS [,…])

Specific: The specific interface names are S_LSLCQ and D_LSLCQ.

FORTRAN 77 Interface
Single: CALL LSLCQ (N, C, A, B, IJOB, Y, U, IR, IS)

Double: The double precision name is DLSLCQ.

Example
A real skew-symmetric tridiagonal matrix, A, of dimension n = 1000 is given by ck = �k, ak = 0,
and bk = k, k = 1, �, n � 1, an = 0. This matrix will have eigenvalues that are purely imaginary.
The eigenvalue closest to the imaginary unit is required. This number is obtained by using inverse
iteration to approximate a complex eigenvector y. The eigenvalue is approximated by
 = yH Ay/yH y. (This example is contrived in the sense that the given tridiagonal skew-symmetric
matrix eigenvalue problem is essentially equivalent to the tridiagonal symmetic eigenvalue
problem where the ck = k and the other data are unchanged.)

 USE LSLCQ_INT
 USE UMACH_INT
! Declare variables
 INTEGER LP, N, N2
 PARAMETER (LP=12, N=1000, N2=2*N)
!
 INTEGER I, IJOB, IR(LP), IS(LP), K, NOUT
 REAL AIMAG, U(N2)
 COMPLEX A(N2), B(N2), C(N2), CMPLX, CONJG, S, T, Y(N2)
 INTRINSIC AIMAG, CMPLX, CONJG
! Define entries of skew-symmetric
! matrix, A:
 DO 10 I=1, N - 1
 C(I) = -I
! This amounts to subtracting the
! positive imaginary unit from the
! diagonal. (The eigenvalue closest
! to this value is desired.)
 A(I) = CMPLX(0.E0,-1.0E0)
 B(I) = I
! This initializes the approximate
! eigenvector.
 Y(I) = 1.E0
 10 CONTINUE
 A(N) = CMPLX(0.E0,-1.0E0)
 Y(N) = 1.E0
! First step of inverse iteration

256 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! follows. Obtain decomposition of
! matrix and solve the first system:
 IJOB = 1
 CALL LSLCQ (C, A, B, Y, U, IR, IS, N=N, IJOB=IJOB)
!
! Next steps of inverse iteration
! follow. Solve the system again with
! the decomposition ready:
 IJOB = 2
 DO 20 K=1, 3
 CALL LSLCQ (C, A, B, Y, U, IR, IS, N=N, IJOB=IJOB)
 20 CONTINUE
!
! Compute the Raleigh quotient to
! estimate the eigenvalue closest to
! the positive imaginary unit. After
! the approximate eigenvector, y, is
! computed, the estimate of the
! eigenvalue is ctrans(y)*A*y/t,
! where t = ctrans(y)*y.
 S = -CONJG(Y(1))*Y(2)
 T = CONJG(Y(1))*Y(1)
 DO 30 I=2, N - 1
 S = S + CONJG(Y(I))*((I-1)*Y(I-1)-I*Y(I+1))
 T = T + CONJG(Y(I))*Y(I)
 30 CONTINUE
 S = S + CONJG(Y(N))*(N-1)*Y(N-1)
 T = T + CONJG(Y(N))*Y(N)
 S = S/T
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’ The value of n is: ’, N
 WRITE (NOUT,*) ’ Value of approximate imaginary eigenvalue:’,&
 AIMAG(S)
 STOP
 END

Output

The value of n is: 1000
Value of approximate imaginary eigenvalue: 1.03811

Description
Routine LSLCQ factors and solves the complex tridiagonal linear system Ax = y. The matrix is
decomposed in the form A = LDU, where L is unit lower triangular, U is unit upper triangular,
and D is diagonal. The algorithm used for the factorization is effectively that described in
Kershaw (1982). More details, tests and experiments are reported in Hanson (1990).

LSLCQ is intended just for tridiagonal systems. The coefficient matrix does not have to be
Hermitian. The algorithm amounts to Gaussian elimination, with no pivoting for numerical
stability, on the matrix whose rows and columns are permuted to a new order. See Hanson
(1990) for details. The expectation is that LSLCQ will outperform either LSLTQ, page 252, or
LSLQB, page 282, on vector or parallel computers. Its performance may be inferior for small

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 257

values of n, on scalar computers, or high-performance computers with non-optimizing
compilers.

LSACB
Solves a complex system of linear equations in band storage mode with iterative refinement.

Required Arguments
A — Complex NLCA + NUCA + 1 by N array containing the N by N banded coefficient matrix in

band storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system AHX = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSACB (A, NLCA, NUCA, B, X [,…])

Specific: The specific interface names are S_LSACB and D_LSACB.

FORTRAN 77 Interface
Single: CALL LSACB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Double: The double precision name is DLSACB.

258 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example
A system of four linear equations is solved. The coefficient matrix has complex banded form
with one upper and one lower codiagonal. The right-hand-side vector b has four elements.

 USE LSACB_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, N, NLCA, NUCA
 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)
 COMPLEX A(LDA,N), B(N), X(N)
!
! Set values for A in band form, and B
!
! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
!
! B = (-10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i)
!
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&
 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&
 (1.0,-1.0), (0.0,0.0)/
 DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/
! Solve A*X = B
 CALL LSACB (A, NLCA, NUCA, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3 4
(3.000, 0.000) (-1.000, 1.000) (3.000, 0.000) (-1.000, 1.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ACB/DL2ACB The

reference is:

CALL L2ACB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — Complex work vector of length (2 * NLCA + NUCA + 1) * N containing the
LU factorization of A on output.

IPVT — Integer work vector of length N containing the pivoting information for the
LU factorization of A on output.

WK — Complex work vector of length N.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 259

2. Informational errors
Type Code

3 3 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2ACB the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSACB.
Additional memory allocation for FACT and option value restoration are done
automatically in LSACB. Users directly calling L2ACB can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSACB or L2ACB. Default values for the option are IVAL(*)
= 1,16,0,1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSACB temporarily replaces IVAL(2) by IVAL(1). The
routine L2CCB computes the condition number if IVAL(2) = 2. Otherwise
L2CCB skips this computation. LSACB restores the option. Default values for
the option are IVAL(*) = 1,2.

Description
Routine LSACB solves a system of linear algebraic equations having a complex banded
coefficient matrix. It first uses the routine LFCCB, page 262, to compute an LU factorization of
the coefficient matrix and to estimate the condition number of the matrix. The solution of the
linear system is then found using the iterative refinement routine LFICB, page 271.

LSACB fails if U, the upper triangular part of the factorization, has a zero diagonal element or if
the iterative refinement algorithm fails to converge. These errors occur only if A is singular or
very close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSACB solves
the problem that is represented in the computer; however, this problem may differ from the
problem whose solution is desired.

LSLCB
Solves a complex system of linear equations in band storage mode without iterative refinement.

260 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Required Arguments
A — Complex NLCA + NUCA + 1 by N array containing the N by N banded coefficient matrix in

band storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, then B and X may share the same storage locations)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system AHX = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSLCB (A, NLCA, NUCA, B, X [,…])

Specific: The specific interface names are S_LSLCB and D_LSLCB.

FORTRAN 77 Interface
Single: CALL LSLCB (N, A, LDA, NLCA, NUCA, B, IPATH, X)

Double: The double precision name is DLSLCB.

Example
A system of four linear equations is solved. The coefficient matrix has complex banded form with
one upper and one lower codiagonal. The right-hand-side vector b has four elements.

 USE LSLCB_INT
 USE WRCRN_INT

! Declare variables

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 261

 INTEGER LDA, N, NLCA, NUCA
 PARAMETER (LDA=3, N=4, NLCA=1, NUCA=1)
 COMPLEX A(LDA,N), B(N), X(N)
!
! Set values for A in band form, and B
!
! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
!
! B = (-10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i)
!
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&
 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&
 (1.0,-1.0), (0.0,0.0)/
 DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/
! Solve A*X = B
 CALL LSLCB (A, NLCA, NUCA, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3 4
(3.000, 0.000) (-1.000, 1.000) (3.000, 0.000) (-1.000, 1.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LCB/DL2LCB The

reference is:

CALL L2LCB (N, A, LDA, NLCA, NUCA, B, IPATH, X, FACT, IPVT, WK)

The additional arguments are as follows:

FACT — (2 * NLCA + NUCA + 1) × N complex work array containing the LU
factorization of A on output. If A is not needed, A can share the first
(NLCA + NUCA + 1) * N locations with FACT.

IPVT — Integer work vector of length N containing the pivoting information for the
LU factorization of A on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 3 The input matrix is too ill-conditioned. The solution might not be
accurate.

4 2 The input matrix is singular.

262 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LCB the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLCB.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLCB. Users directly calling L2LCB can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLCB or L2LCB. Default values for the option are
IVAL(*) = 1,16,0,1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSLCB temporarily replaces IVAL(2) by IVAL(1). The
routine L2CCB computes the condition number if IVAL(2) = 2. Otherwise L2CCB
skips this computation. LSLCB restores the option. Default values for the option
are IVAL(*) = 1,2.

Description
Routine LSLCB solves a system of linear algebraic equations having a complex banded
coefficient matrix. It first uses the routine LFCCB, page 262, to compute an LU factorization of
the coefficient matrix and to estimate the condition number of the matrix. The solution of the
linear system is then found using LFSCB, page 268.

LSLCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
occurs only if A is singular or very close to a singular matrix.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. If the coefficient matrix is ill-conditioned or poorly scaled, it is recommended that
LSACB, page 257, be used.

LFCCB
Computes the LU factorization of a complex matrix in band storage mode and estimate its L�
condition number.

Required Arguments
A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band storage

mode to be factored. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 263

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the
matrix A. (Output)
If A is not needed, A can share the first (NLCA + NUCA + 1) * N locations with FACT .

IPVT — Vector of length N containing the pivoting information for the LU factorization.
(Output)

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND [,…])

Specific: The specific interface names are S_LFCCB and D_LFCCB.

FORTRAN 77 Interface
Single: CALL LFCCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND)

Double: The double precision name is DLFCCB.

Example
The inverse of a 4 � 4 band matrix with one upper and one lower codiagonal is computed.
LFCCB is called to factor the matrix and to check for singularity or ill-conditioning. LFICB is
called to determine the columns of the inverse.

 USE LFCCB_INT
 USE UMACH_INT
 USE LFICB_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)

264 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 REAL RCOND
 COMPLEX A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N), RES(N)
!
! Set values for A in band form
!
! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
! (0.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
! (6.0+1.0i 4.0+1.0i 0.0+2.0i 0.0+0.0i)
!
 DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&
 (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&
 (1.0,-1.0), (0.0,0.0)/
!
 CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND)
! Print the reciprocal condition number
! and the L1 condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = (0.0E0,0.0E0)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
! RJ is the J-th column of the identity
! matrix so the following LFICB
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFICB (A, NLCA, NUCA, FACT, IPVT, RJ, AINV(:,J), RES)
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
! Print results
 CALL WRCRN (’AINV’, AINV)
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 condition number = ’,F6.3)
 END

Output

RCOND = 0.022
L1 condition number = 45.933
 AINV
 1 2 3 4
 1 (0.562, 0.170) (0.125, 0.260) (-0.385,-0.135) (-0.239,-1.165)
 2 (0.122, 0.421) (-0.195, 0.094) (0.101,-0.289) (0.874,-0.179)
 3 (0.034, 0.904) (-0.437, 0.090) (-0.153,-0.527) (1.087,-1.172)
 4 (0.938, 0.870) (-0.347, 0.527) (-0.679,-0.374) (0.415,-1.759)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 265

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CCB/DL2CCB. The

reference is:

CALL L2CCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, RCOND, WK)

The additional argument is

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.
4 2 The input matrix is singular.

Description
Routine LFCCB performs an LU factorization of a complex banded coefficient matrix. It also
estimates the condition number of the matrix. The LU factorization is done using scaled partial
pivoting. Scaled partial pivoting differs from partial pivoting in that the pivoting strategy is the
same as if each row were scaled to have the same �-norm.

The L� condition number of the matrix A is defined to be �(A) =

A

�

A

�� Since it is expensive
to compute

A

�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LFCCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with IMSL routines LFICB, page 271,
LFSCB, page 268, and LFDCB, page 274. To solve systems of equations with multiple right-
hand-side vectors, use LFCCB followed by either LFICB or LFSCB called once for each right-
hand side. The routine LFDCB can be called to compute the determinant of the coefficient matrix
after LFCCB has performed the factorization.

Let F be the matrix FACT, let ml = NLCA and let mu = NUCA. The first ml + mu + 1 rows of F
contain the triangular matrix U in band storage form. The lower ml rows of F contain the
multipliers needed to reconstruct L.

LFCCB is based on the LINPACK routine CGBCO; see Dongarra et al. (1979). CGBCO uses
unscaled partial pivoting.

LFTCB
Computes the LU factorization of a complex matrix in band storage mode.

266 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Required Arguments
A — Complex NLCA + NUCA + 1 by N array containing the N by N matrix in band storage

mode to be factored. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the
matrix A. (Output)
If A is not needed, A can share the first (NLCA + NUCA + 1) � N locations with FACT.

IPVT — Integer vector of length N containing the pivoting information for the LU
factorization. (Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFTCB (A, NLCA, NUCA, FACT, IPVT [,…])

Specific: The specific interface names are S_LFTCB and D_LFTCB.

FORTRAN 77 Interface
Single: CALL LFTCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT)

Double: The double precision name is DLFTCB.

Example
A linear system with multiple right-hand sides is solved. LFTCB is called to factor the coefficient
matrix. LFSCB (page 268), is called to compute the two solutions for the two right-hand sides. In
this case the coefficient matrix is assumed to be well-conditioned and correctly scaled.
Otherwise, it would be better to call LFCCB (page 262) to perform the factorization, and LFICB
(page 271) to compute the solutions.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 267

 USE LFTCB_INT
 USE LFSCB_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 COMPLEX A(LDA,N), B(N,2), FACT(LDFACT,N), X(N,2)
!
! Set values for A in band form, and B
!
! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
! (0.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
! (6.0+1.0i 4.0+1.0i 0.0+2.0i 0.0+0.0i)
!
! B = (-4.0-5.0i 16.0-4.0i)
! (9.5+5.5i -9.5+19.5i)
! (9.0-9.0i 12.0+12.0i)
! (0.0+8.0i -8.0-2.0i)
!
 DATA A/(0.0,0.0), (0.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&
 (4.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&
 (1.0,-1.0), (0.0,0.0)/
 DATA B/(-4.0,-5.0), (9.5,5.5), (9.0,-9.0), (0.0,8.0),&
 (16.0,-4.0), (-9.5,19.5), (12.0,12.0), (-8.0,-2.0)/
!
 CALL LFTCB (A, NLCA, NUCA, FACT, IPVT)
! Solve for the two right-hand sides
 DO 10 J=1, 2
 CALL LFSCB (FACT, NLCA, NUCA, IPVT, B(:,J), X(:,J))
 10 CONTINUE
! Print results
 CALL WRCRN (’X’, X)
!
 END

Output

 X
 1 2
1 (3.000, 0.000) (0.000, 4.000)
2 (-1.000, 1.000) (1.000,-1.000)
3 (3.000, 0.000) (0.000, 4.000)
4 (-1.000, 1.000) (1.000,-1.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TCB/DL2TCB The

reference is:

CALL L2TCB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, WK)

268 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

The additional argument is:

WK — Complex work vector of length N used for scaling.

2. Informational error
Type Code

4 2 The input matrix is singular.

Description
Routine LFTCB performs an LU factorization of a complex banded coefficient matrix. The LU
factorization is done using scaled partial pivoting. Scaled partial pivoting differs from partial
pivoting in that the pivoting strategy is the same as if each row were scaled to have the same �-
norm.

LFTCB fails if U, the upper triangular part of the factorization, has a zero diagonal element. This
can occur only if A is singular or very close to a singular matrix.

The LU factors are returned in a form that is compatible with routines LFICB, page 271, LFSCB,
page 268, and LFDCB, page 274. To solve systems of equations with multiple right-hand-side
vectors, use LFTCB followed by either LFICB or LFSCB called once for each right-hand side.
The routine LFDCB can be called to compute the determinant of the coefficient matrix after
LFTCB has performed the factorization.

Let F be the matrix FACT, let ml = NLCA and let mu = NUCA. The first ml + mu + 1 rows of F
contain the triangular matrix U in band storage form. The lower ml rows of F contain the
multipliers needed to reconstruct L��. LFTCB is based on the LINPACK routine CGBFA; see
Dongarra et al. (1979). CGBFA uses unscaled partial pivoting.

LFSCB
Solves a complex system of linear equations given the LU factorization of the coefficient matrix in
band storage mode.

Required Arguments
FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the

coefficient matrix A as output from subroutine LFCCB/DLFCCB or LFTCB/DLFTCB.
(Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A
as output from subroutine LFCCB/DLFCCB or LFTCB/DLFTCB. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 269

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system AHX = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LFSCB (FACT, NLCA, NUCA, IPVT, B, X [,…])

Specific: The specific interface names are S_LFSCB and D_LFSCB.

FORTRAN 77 Interface
Single: CALL LFSCB (N, FACT, LDFACT, NLCA, NUCA, IPVT, B, IPATH, X)

Double: The double precision name is DLFSCB.

Example
The inverse is computed for a real banded 4 � 4 matrix with one upper and one lower
codiagonal. The input matrix is assumed to be well-conditioned; hence LFTCB (page 265) is
used rather than LFCCB.

 USE LFSCB_INT
 USE LFTCB_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 COMPLEX A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N)
!
! Set values for A in band form
!
! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)

270 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
!
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&
 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&
 (1.0,-1.0), (0.0,0.0)/
!
 CALL LFTCB (A, NLCA, NUCA, FACT, IPVT)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = (0.0E0,0.0E0)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
! RJ is the J-th column of the identity
! matrix so the following LFSCB
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFSCB (FACT, NLCA, NUCA, IPVT, RJ, AINV(:,J))
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
! Print results
 CALL WRCRN (’AINV’, AINV)
!
 END

Output

 1 2 3 4
1 (0.165,-0.341) (0.376,-0.094) (-0.282, 0.471) (-1.600, 0.000)
2 (0.588,-0.047) (0.259, 0.235) (-0.494, 0.024) (-0.800,-1.200)
3 (0.318, 0.271) (0.012, 0.247) (-0.759,-0.235) (-0.550,-2.250)
4 (0.588,-0.047) (0.259, 0.235) (-0.994, 0.524) (-2.300,-1.200)

Description
Routine LFSCB computes the solution of a system of linear algebraic equations having a
complex banded coefficient matrix. To compute the solution, the coefficient matrix must first
undergo an LU factorization. This may be done by calling either LFCCB, page 262, or LFTCB,
page 265. The solution to Ax = b is found by solving the banded triangular systems Ly = b and
Ux = y. The forward elimination step consists of solving the system Ly = b by applying the same
permutations and elimination operations to b that were applied to the columns of A in the
factorization routine. The backward substitution step consists of solving the banded triangular
system Ux = y for x.

LFSCB and LFICB, page 271, both solve a linear system given its LU factorization. LFICB
generally takes more time and produces a more accurate answer than LFSCB. Each iteration of
the iterative refinement algorithm used by LFICB calls LFSCB.

LFSCB is based on the LINPACK routine CGBSL; see Dongarra et al. (1979).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 271

LFICB
Uses iterative refinement to improve the solution of a complex system of linear equations in band
storage mode.

Required Arguments
A — Complex NLCA + NUCA + 1 by N array containing the N by N coefficient matrix in band

storage mode. (Input)

NLCA — Number of lower codiagonals of A. (Input)

NUCA — Number of upper codiagonals of A. (Input)

FACT — Complex 2 * NLCA + NUCA + 1 by N array containing the LU factorization of the
matrix A as output from routine LFCCB/DLFCCB or LFTCB/DLFTCB. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization of A
as output from routine LFCCB/DLFCCB or LFTCB/DLFTCB. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.
(Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system AX = B is solved.
IPATH = 2 means the system AHX = B is solved.
Default: IPATH = 1.

272 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL LFICB (A, NLCA, NUCA, FACT, IPVT, B, X, RES[,…])

Specific: The specific interface names are S_LFICB and D_LFICB.

FORTRAN 77 Interface
Single: CALL LFICB (N, A, LDA, NLCA, NUCA, FACT, LDFACT, IPVT, B, IPATH, X,

RES)

Double: The double precision name is DLFICB.

Example
A set of linear systems is solved successively. The right-hand-side vector is perturbed after
solving the system each of the first two times by adding (1 + i)/2 to the second element.

 USE LFICB_INT
 USE LFCCB_INT
 USE WRCRN_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL RCOND
 COMPLEX A(LDA,N), B(N), FACT(LDFACT,N), RES(N), X(N)
!
! Set values for A in band form, and B
!
! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
!
! B = (-10.0-5.0i 9.5+5.5i 12.0-12.0i 0.0+8.0i)
!
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&
 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&
 (1.0,-1.0), (0.0,0.0)/
 DATA B/(-10.0,-5.0), (9.5,5.5), (12.0,-12.0), (0.0,8.0)/
!
 CALL LFCCB (A, NLCA, NUCA, FACT, IPVT, RCOND)
! Print the reciprocal condition number
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99998) RCOND, 1.0E0/RCOND
! Solve the three systems
 DO 10 J=1, 3
 CALL LFICB (A, NLCA, NUCA, FACT, IPVT, B, X, RES)
! Print results
 WRITE (NOUT, 99999) J

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 273

 CALL WRCRN (’X’, X, 1, N, 1)
 CALL WRCRN (’RES’, RES, 1, N, 1)
! Perturb B by adding 0.5+0.5i to B(2)
 B(2) = B(2) + (0.5E0,0.5E0)
 10 CONTINUE
!
99998 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
99999 FORMAT (//,’ For system ’,I1)
 END

Output

RCOND = 0.014
L1 Condition number = 72.414

For system 1
 X
 1 2 3 4
(3.000, 0.000) (-1.000, 1.000) (3.000, 0.000) (-1.000, 1.000)

 RES
 1 2 3
(0.000E+00, 0.000E+00) (0.000E+00, 0.000E+00) (0.000E+00, 5.684E-14)
 4
(3.494E-22,-6.698E-22)

For system 2
 X
 1 2 3 4
(3.235, 0.141) (-0.988, 1.247) (2.882, 0.129) (-0.988, 1.247)

 RES
 1 2 3
(-1.402E-08, 6.486E-09) (-7.012E-10, 4.488E-08) (-1.122E-07, 7.188E-09)
 4
(-7.012E-10, 4.488E-08)

For system 3
 X
 1 2 3 4
(3.471, 0.282) (-0.976, 1.494) (2.765, 0.259) (-0.976, 1.494)

 RES
 1 2 3
(-2.805E-08, 1.297E-08) (-1.402E-09,-2.945E-08) (1.402E-08, 1.438E-08)
 4
(-1.402E-09,-2.945E-08)

Comments
Informational error

Type Code

274 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

3 3 The input matrix is too ill-conditioned for iterative refinement be effective.

Description
Routine LFICB computes the solution of a system of linear algebraic equations having a
complex banded coefficient matrix. Iterative refinement is performed on the solution vector to
improve the accuracy. Usually almost all of the digits in the solution are accurate, even if the
matrix is somewhat ill-conditioned.

To compute the solution, the coefficient matrix must first undergo an LU factorization. This
may be done by calling either LFCCB, page 262, or LFTCB, page 265.

Iterative refinement fails only if the matrix is very ill-conditioned.

LFICB and LFSCB, page 268, both solve a linear system given its LU factorization. LFICB
generally takes more time and produces a more accurate answer than LFSCB. Each iteration of
the iterative refinement algorithm used by LFICB calls LFSCB.

LFDCB
Computes the determinant of a complex matrix given the LU factorization of the matrix in band
storage mode.

Required Arguments
FACT — Complex (2 * NLCA + NUCA + 1) by N array containing the LU factorization of the

matrix A as output from routine LFTCB/DLFTCB or LFCCB/DLFCCB. (Input)

NLCA — Number of lower codiagonals in matrix A. (Input)

NUCA — Number of upper codiagonals in matrix A. (Input)

IPVT — Vector of length N containing the pivoting information for the LU factorization as
output from routine LFTCB/DLFTCB or LFCCB/DLFCCB. (Input)

DET1 — Complex scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 �
DET1
 < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det (A) = DET1 * 10DET2.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 275

FORTRAN 90 Interface
Generic: CALL LFDCB (FACT, NLCA, NUCA, IPVT, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDCB and D_LFDCB.

FORTRAN 77 Interface
Single: CALL LFDCB (N, FACT, LDFACT, NLCA, NUCA, IPVT, DET1, DET2)

Double: The double precision name is DLFDCB.

Example
The determinant is computed for a complex banded 4 � 4 matrix with one upper and one lower
codiagonal.

 USE LFDCB_INT
 USE LFTCB_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NLCA, NUCA, NOUT
 PARAMETER (LDA=3, LDFACT=4, N=4, NLCA=1, NUCA=1)
 INTEGER IPVT(N)
 REAL DET2
 COMPLEX A(LDA,N), DET1, FACT(LDFACT,N)
!
! Set values for A in band form
!
! A = (0.0+0.0i 4.0+0.0i -2.0+2.0i -4.0-1.0i)
! (-2.0-3.0i -0.5+3.0i 3.0-3.0i 1.0-1.0i)
! (6.0+1.0i 1.0+1.0i 0.0+2.0i 0.0+0.0i)
!
 DATA A/(0.0,0.0), (-2.0,-3.0), (6.0,1.0), (4.0,0.0), (-0.5,3.0),&
 (1.0,1.0), (-2.0,2.0), (3.0,-3.0), (0.0,2.0), (-4.0,-1.0),&
 (1.0,-1.0), (0.0,0.0)/
!
 CALL LFTCB (A, NLCA, NUCA, FACT, IPVT)
! Compute the determinant
 CALL LFDCB (FACT, NLCA, NUCA, IPVT, DET1, DET2)
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
!
99999 FORMAT (’ The determinant of A is (’, F6.3, ’,’, F6.3, ’) * 10**’,&
 F2.0)
 END

Output

The determinant of A is (2.500,-1.500) * 10**1.

276 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Description
Routine LFDCB computes the determinant of a complex banded coefficient matrix. To compute
the determinant, the coefficient matrix must first undergo an LU factorization. This may be done
by calling either LFCCB, page 262, or LFTCB, page 265. The formula det A = det L det U is used
to compute the determinant. Since the determinant of a triangular matrix is the product of the
diagonal elements,

1
det N

i iiU U
�

��

(The matrix U is stored in the upper NUCA + NLCA + 1 rows of FACT as a banded matrix.) Since
L is the product of triangular matrices with unit diagonals and of permutation matrices, det
L = (�1)k, where k is the number of pivoting interchanges.

LFDCB is based on the LINPACK routine CGBDI; see Dongarra et al. (1979).

LSAQH
Solves a complex Hermitian positive definite system of linear equations in band Hermitian storage
mode with iterative refinement.

Required Arguments
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

coefficient matrix in band Hermitian storage mode. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSAQH (A, NCODA, B, X [,…])

Specific: The specific interface names are S_LSAQH and D_LSAQH.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 277

FORTRAN 77 Interface
Single: CALL LSAQH (N, A, LDA, NCODA, B, X)

Double: The double precision name is DLSAQH.

Example
A system of five linear equations is solved. The coefficient matrix has complex Hermitian positive
definite band form with one codiagonal and the right-hand-side vector b has five elements.

 USE LSAQH_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, N, NCODA
 PARAMETER (LDA=2, N=5, NCODA=1)
 COMPLEX A(LDA,N), B(N), X(N)
!
! Set values for A in band Hermitian form, and B
!
! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
!
! B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)
!
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&
 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),&
 (25.0,16.0)/
! Solve A*X = B
 CALL LSAQH (A, NCODA, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)
 5
(3.000, 2.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2AQH/DL2AQH The

reference is:

CALL L2AQH (N, A, LDA, NCODA, B, X, FACT, WK)

278 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

The additional arguments are as follows:

FACT — Complex work vector of length (NCODA + 1) * N containing the RH R
factorization of A in band Hermitian storage form on output.

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 3 The input matrix is too ill-conditioned. The solution might not be
accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2AQH the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSAQH.
Additional memory allocation for FACT and option value restoration are done
automatically in LSAQH. Users directly calling L2AQH can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSAQH or L2AQH. Default values for the option are IVAL(*)
= 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSAQH temporarily replaces IVAL(2) by IVAL(1). The
routine L2CQH computes the condition number if IVAL(2) = 2. Otherwise L2CQH
skips this computation. LSAQH restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSAQH solves a system of linear algebraic equations having a complex Hermitian
positive definite band coefficient matrix. It first uses the IMSL routine LFCQH, page 290, to
compute an RH R Cholesky factorization of the coefficient matrix and to estimate the condition
number of the matrix. R is an upper triangular band matrix. The solution of the linear system is
then found using the iterative refinement IMSL routine LFIQH, page 292.

LSAQH fails if any submatrix of R is not positive definite, if R has a zero diagonal element, or if
the iterative refinement agorithm fails to converge. These errors occur only if the matrix A either
is very close to a singular matrix or is a matrix that is not positive definite.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 279

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system. LSAQH solves
the problem that is represented in the computer; however, this problem may differ from the
problem whose solution is desired.

LSLQH
Solves a complex Hermitian positive definite system of linear equations in band Hermitian storage
mode without iterative refinement.

Required Arguments
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

coefficient matrix in band Hermitian storage mode. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL LSLQH (A, NCODA, B, X [,…])

Specific: The specific interface names are S_LSLQH and D_LSLQH.

FORTRAN 77 Interface
Single: CALL LSLQH (N, A, LDA, NCODA, B, X)

Double: The double precision name is DLSLQH.

280 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example
A system of five linear equations is solved. The coefficient matrix has complex Hermitian
positive definite band form with one codiagonal and the right-hand-side vector b has five
elements.

 USE LSLQH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER N, NCODA, LDA
 PARAMETER (N=5, NCODA=1, LDA=NCODA+1)
 COMPLEX A(LDA,N), B(N), X(N)
!
! Set values for A in band Hermitian form, and B
!
! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
!
! B = (1.0+5.0i 12.0-6.0i 1.0-16.0i -3.0-3.0i 25.0+16.0i)
!
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&
 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B/(1.0,5.0), (12.0,-6.0), (1.0,-16.0), (-3.0,-3.0),&
 (25.0,16.0)/
! Solve A*X = B
 CALL LSLQH (A, NCODA, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3 4
(2.000, 1.000) (3.000, 0.000) (-1.000,-1.000) (0.000,-2.000)

 5
(3.000, 2.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LQH/DL2LQH The

reference is:

CALL L2LQH (N, A, LDA, NCODA, B, X, FACT, WK)

The additional arguments are as follows:

FACT — (NCODA + 1) � N complex work array containing the RH R factorization of A
in band Hermitian storage form on output. If A is not needed, A and FACT can
share the same storage locations.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 281

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 3 The input matrix is too ill-conditioned. The solution might not be
accurate.

3 4 The input matrix is not Hermitian. It has a diagonal entry with a
small imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2LQH the leading dimension of FACT is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSLQH.
Additional memory allocation for FACT and option value restoration are done
automatically in LSLQH. Users directly calling L2LQH can allocate additional
space for FACT and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSLQH or L2LQH. Default values for the option are IVAL(*)
= 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSLQH temporarily replaces IVAL(2) by IVAL(1). The
routine L2CQH computes the condition number if IVAL(2) = 2. Otherwise L2CQH
skips this computation. LSLQH restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSLQH solves a system of linear algebraic equations having a complex Hermitian
positive definite band coefficient matrix. It first uses the routine LFCQH, page 290, to compute
an RH R Cholesky factorization of the coefficient matrix and to estimate the condition number
of the matrix. R is an upper triangular band matrix. The solution of the linear system is then
found using the routine LFSQH, page 290.

LSLQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A either is very close to a singular matrix or is a matrix that is not
positive definite.

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. If the coefficient matrix is ill-conditioned or poorly sealed, it is recommended that
LSAQH, page 276, be used.

282 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LSLQB
Computes the RH DR Cholesky factorization of a complex Hermitian positive-definite matrix A in
codiagonal band Hermitian storage mode. Solve a system Ax = b.

Required Arguments
A — Array containing the N by N positive-definite band coefficient matrix and the right hand

side in codiagonal band Hermitian storage mode. (Input/Output)
The number of array columns must be at least 2 * NCODA + 3. The number of columns
is not an input to this subprogram.

NCODA — Number of upper codiagonals of matrix A. (Input)
Must satisfy NCODA � 0 and NCODA < N.

U — Array of flags that indicate any singularities of A, namely loss of positive-definiteness of
a leading minor. (Output)
A value U(I) = 0. means that the leading minor of dimension I is not positive-definite.
Otherwise, U(I) = 1.

Optional Arguments
N — Order of the matrix. (Input)

Must satisfy N > 0.
Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Must satisfy LDA � N + NCODA.
Default: LDA = size (A,1).

IJOB — flag to direct the desired factorization or solving step. (Input)
Default: IJOB =1.

IJOB Meaning

1 factor the matrix A and solve the system Ax = b; where the real part of b is
stored in column 2 * NCODA + 2 and the imaginary part of b is stored in column
2 * NCODA + 3 of array A. The real and imaginary parts of b are overwritten by
the real and imaginary parts of x.

2 solve step only. Use the real part of b as column 2 * NCODA + 2 and the
imaginary part of b as column 2 * NCODA + 3 of A. (The factorization step has
already been done.) The real and imaginary parts of b are overwritten by the real
and imaginary parts of x.

3 factor the matrix A but do not solve a system.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 283

4,5,6 same meaning as with the value IJOB = 3. For efficiency, no error checking is
done on values LDA, N, NCODA, and U(*).

FORTRAN 90 Interface
Generic: CALL LSLQB (A, NCODA, U [,…])

Specific: The specific interface names are S_LSLQB and D_LSLQB.

FORTRAN 77 Interface
Single: CALL LSLQB (N, A, LDA, NCODA, IJOB, U)

Double: The double precision name is DLSLQB.

Example
A system of five linear equations is solved. The coefficient matrix has real positive definite
codiagonal Hermitian band form and the right-hand-side vector b has five elements.

 USE LSLQB_INT
 USE WRRRN_INT

 INTEGER LDA, N, NCODA
 PARAMETER (N=5, NCODA=1, LDA=N+NCODA)
!
 INTEGER I, IJOB, J
 REAL A(LDA,2*NCODA+3), U(N)
!
! Set values for A and right hand side
! in codiagonal band Hermitian form:
!
! (* * * * *)
! (2.0 * * 1.0 5.0)
! A = (4.0 -1.0 1.0 12.0 -6.0)
! (10.0 1.0 2.0 1.0 -16.0)
! (6.0 0.0 4.0 -3.0 -3.0)
! (9.0 1.0 1.0 25.0 16.0)
!
 DATA ((A(I+NCODA,J),I=1,N),J=1,2*NCODA+3)/2.0, 4.0, 10.0, 6.0,&
 9.0, 0.0, -1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 2.0, 4.0, 1.0,&
 1.0, 12.0, 1.0, -3.0, 25.0, 5.0, -6.0, -16.0, -3.0, 16.0/
!
! Factor and solve A*x = b.
!
 IJOB = 1
 CALL LSLQB (A, NCODA, U)
!
! Print results
!
 CALL WRRRN (’REAL(X)’, A((NCODA+1):,(2*NCODA+2):), 1, N, 1)
 CALL WRRRN (’IMAG(X)’, A((NCODA+1):,(2*NCODA+3):), 1, N, 1)
 END

284 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output

 REAL(X)
 1 2 3 4 5
2.000 3.000 -1.000 0.000 3.000

 IMAG(X)
 1 2 3 4 5
1.000 0.000 -1.000 -2.000 2.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LQB/DL2LQB The

reference is:

CALL L2LQB (N, A, LDA, NCODA, IJOB, U, WK1, WK2)

The additional arguments are as follows:

WK1 — Work vector of length NCODA.

WK2 — Work vector of length NCODA.

2. Informational error
Type Code

4 2 The input matrix is not positive definite.

Description
Routine LSLQB factors and solves the Hermitian positive definite banded linear system Ax = b.
The matrix is factored so that A = RH DR, where R is unit upper triangular and D is diagonal
and real. The reciprocals of the diagonal entries of D are computed and saved to make the
solving step more efficient. Errors will occur if D has a nonpositive diagonal element. Such
events occur only if A is very close to a singular matrix or is not positive definite.

LSLQB is efficient for problems with a small band width. The particular cases NCODA = 0, 1 are
done with special loops within the code. These cases will give good performance. See Hanson
(1989) for more on the algorithm. When solving tridiagonal systems, NCODA = 1, the cyclic
reduction code LSLCQ (page 254) should be considered as an alternative. The expectation is that
LSLCQ will outperform LSLQB on vector or parallel computers. It may be inferior on scalar
computers or even parallel computers with non-optimizing compilers.

LFCQH
Computes the RH R factorization of a complex Hermitian positive definite matrix in band
Hermitian storage mode and estimate its L� condition number.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 285

Required Arguments
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

matrix to be factored in band Hermitian storage mode. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the matrix A.
(Output)
If A is not needed, A and FACT can share the same storage locations.

RCOND — Scalar containing an estimate of the reciprocal of the L� condition number of A.
(Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFCQH (A, NCODA, FACT, RCOND [,…])

Specific: The specific interface names are S_LFCQH and D_LFCQH.

FORTRAN 77 Interface
Single: CALL LFCQH (N, A, LDA, NCODA, FACT, LDFACT, RCOND)

Double: The double precision name is DLFCQH.

Example
The inverse of a 5 � 5 band Hermitian matrix with one codiagonal is computed. LFCQH is called
to factor the matrix and to check for nonpositive definiteness or ill-conditioning. LFIQH (page
292,) is called to determine the columns of the inverse.

 USE LFCQH_INT
 USE LFIQH_INT

286 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 USE UMACH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER N, NCODA, LDA, LDFACT, NOUT
 PARAMETER (N=5, NCODA=1, LDA=NCODA+1, LDFACT=LDA)
 REAL RCOND
 COMPLEX A(LDA,N), AINV(N,N), FACT(LDFACT,N), RES(N), RJ(N)
!
! Set values for A in band Hermitian form
!
! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
!
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0), &
 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
! Factor the matrix A
 CALL LFCQH (A, NCODA, FACT, RCOND)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = (0.0E0,0.0E0)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
! RJ is the J-th column of the identity
! matrix so the following LFIQH
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFIQH (A, NCODA, FACT, RJ, AINV(:,J), RES)
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
! Print the results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) RCOND, 1.0E0/RCOND
 CALL WRCRN (’AINV’, AINV)
!
99999 FORMAT (’ RCOND = ’,F5.3,/,’ L1 Condition number = ’,F6.3)
 END

Output

RCOND = 0.067
L1 Condition number = 14.961

 AINV
 1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)
4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)
5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)
 5
1 (0.0092,-0.0046)
2 (0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 287

5 (0.1175, 0.0000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CQH/DL2CQH. The

reference is:

CALL L2CQH (N, A, LDA, NCODA, FACT, LDFACT, RCOND, WK)

The additional argument is:

WK — Complex work vector of length N.

2. Informational errors
Type Code

3 1 The input matrix is algorithmically singular.
3 4 The input matrix is not Hermitian. It has a diagonal entry with a

small imaginary part.
4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an

imaginary part

Description

Routine LFCQH computes an RH R Cholesky factorization and estimates the condition number
of a complex Hermitian positive definite band coefficient matrix. R is an upper triangular band
matrix.

The L� condition number of the matrix A is defined to be �(A) =

A

�

A

�. Since it is expensive
to compute

A

�, the condition number is only estimated. The estimation algorithm is the same
as used by LINPACK and is described by Cline et al. (1979).

If the estimated condition number is greater than 1/� (where � is machine precision), a warning
error is issued. This indicates that very small changes in A can cause very large changes in the
solution x. Iterative refinement can sometimes find the solution to such a system.

LFCQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A either is very close to a singular matrix or is a matrix which is not
positive definite.

The RH R factors are returned in a form that is compatible with routines LFIQH, page 292,
LFSQH, page 290, and LFDQH, page 295. To solve systems of equations with multiple right-
hand-side vectors, use LFCQH followed by either LFIQH or LFSQH called once for each right-
hand side. The routine LFDQH can be called to compute the determinant of the coefficient matrix
after LFCQH has performed the factorization.

LFCQH is based on the LINPACK routine CPBCO; see Dongarra et al. (1979).

288 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LFTQH
Computes the RH R factorization of a complex Hermitian positive definite matrix in band
Hermitian storage mode.

Required Arguments
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

matrix to be factored in band Hermitian storage mode. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the matrix A.
(Output)
If A is not needed, A and FACT can share the same storage locations.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFTQH (A, NCODA, FACT [,…])

Specific: The specific interface names are S_LFTQH and D_LFTQH.

FORTRAN 77 Interface
Single: CALL LFTQH (N, A, LDA, NCODA, FACT, LDFACT)

Double: The double precision name is DLFTQH.

Example
The inverse of a 5 � 5 band Hermitian matrix with one codiagonal is computed. LFTQH is called
to factor the matrix and to check for nonpositive definiteness. LFSQH is called to determine the
columns of the inverse.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 289

 USE LFTQH_INT
 USE LFSQH_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NCODA
 PARAMETER (LDA=2, LDFACT=2, N=5, NCODA=1)
 COMPLEX A(LDA,N), AINV(N,N), FACT(LDFACT,N), RJ(N)
!
! Set values for A in band Hermitian form
!
! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
!
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&
 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
! Factor the matrix A
 CALL LFTQH (A, NCODA, FACT)
! Set up the columns of the identity
! matrix one at a time in RJ
 RJ = (0.0E0,0.0E0)
 DO 10 J=1, N
 RJ(J) = (1.0E0,0.0E0)
! RJ is the J-th column of the identity
! matrix so the following LFSQH
! reference places the J-th column of
! the inverse of A in the J-th column
! of AINV
 CALL LFSQH (FACT, NCODA, RJ, AINV(:,J))
 RJ(J) = (0.0E0,0.0E0)
 10 CONTINUE
! Print the results
 CALL WRCRN (’AINV’, AINV)
!
 END

Output

 AINV
 1 2 3 4
1 (0.7166, 0.0000) (0.2166,-0.2166) (-0.0899,-0.0300) (-0.0207, 0.0622)
2 (0.2166, 0.2166) (0.4332, 0.0000) (-0.0599,-0.1198) (-0.0829, 0.0415)
3 (-0.0899, 0.0300) (-0.0599, 0.1198) (0.1797, 0.0000) (0.0000,-0.1244)
4 (-0.0207,-0.0622) (-0.0829,-0.0415) (0.0000, 0.1244) (0.2592, 0.0000)
5 (0.0092, 0.0046) (0.0138,-0.0046) (-0.0138,-0.0138) (-0.0288, 0.0288)
 5
1 (0.0092,-0.0046)
2 (0.0138, 0.0046)
3 (-0.0138, 0.0138)
4 (-0.0288,-0.0288)
5 (0.1175, 0.0000)

290 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Comments
Informational errors

Type Code

3 4 The input matrix is not Hermitian. It has a diagonal entry with a small
imaginary part.

4 2 The input matrix is not positive definite.
4 4 The input matrix is not Hermitian. It has a diagonal entry with an imaginary

part.

Description

Routine LFTQH computes an RHR Cholesky factorization of a complex Hermitian positive
definite band coefficient matrix. R is an upper triangular band matrix.

LFTQH fails if any submatrix of R is not positive definite or if R has a zero diagonal element.
These errors occur only if A either is very close to a singular matrix or is a matrix which is not
positive definite.

The RH R factors are returned in a form that is compatible with routines LFIQH, page 292,
LFSQH, page 290, and LFDQH, page 295. To solve systems of equations with multiple right-
hand-side vectors, use LFTQH followed by either LFIQH or LFSQH called once for each right-
hand side. The routine LFDQH can be called to compute the determinant of the coefficient matrix
after LFTQH has performed the factorization.

LFTQH is based on the LINPACK routine SPBFA; see Dongarra et al. (1979).

LFSQH
Solves a complex Hermitian positive definite system of linear equations given the factorization of
the coefficient matrix in band Hermitian storage mode.

Required Arguments

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the Hermitian
positive definite band matrix A. (Input)
FACT is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH .

NCODA — Number of upper or lower codiagonals of A. (Input)

B — Complex vector of length N containing the right-hand-side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)
If B is not needed, B and X can share the same storage locations.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 291

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFSQH (FACT, NCODA, B, X [,…])

Specific: The specific interface names are S_LFSQH and D_LFSQH.

FORTRAN 77 Interface
Single: CALL LFSQH (N, FACT, LDFACT, NCODA, B, X)

Double: The double precision name is DLFSQH.

Example
A set of linear systems is solved successively. LFTQH, page 288, is called to factor the
coefficient matrix. LFSQH is called to compute the three solutions for the three right-hand sides.
In this case the coefficient matrix is assumed to be well-conditioned and correctly scaled.
Otherwise, it would be better to call LFCQH, page 290, to perform the factorization, and LFIQH,
page 292, to compute the solutions.

 USE LFSQH_INT
 USE LFTQH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, LDFACT, N, NCODA
 PARAMETER (LDA=2, LDFACT=2, N=5, NCODA=1)
 COMPLEX A(LDA,N), B(N,3), FACT(LDFACT,N), X(N,3)
!
! Set values for A in band Hermitian form, and B
!
! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
!
! B = (3.0+3.0i 4.0+0.0i 29.0-9.0i)
! (5.0-5.0i 15.0-10.0i -36.0-17.0i)
! (5.0+4.0i -12.0-56.0i -15.0-24.0i)
! (9.0+7.0i -12.0+10.0i -23.0-15.0i)
! (-22.0+1.0i 3.0-1.0i -23.0-28.0i)
!
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&
 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
 DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0),&

292 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 (4.0,0.0), (15.0,-10.0), (-12.0,-56.0), (-12.0,10.0),&
 (3.0,-1.0), (29.0,-9.0), (-36.0,-17.0), (-15.0,-24.0),&
 (-23.0,-15.0), (-23.0,-28.0)/
! Factor the matrix A
 CALL LFTQH (A, NCODA, FACT)
! Compute the solutions
 DO 10 I=1, 3
 CALL LFSQH (FACT, NCODA, B(:,I), X(:,I))
 10 CONTINUE
! Print solutions
 CALL WRCRN (’X’, X)
 END

Output

 X
 1 2 3
1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)
2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)
3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)
4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)
5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

Comments
Informational error
 Type Code

4 1 The factored matrix has a diagonal element close to zero.

Description
This routine computes the solution for a system of linear algebraic equations having a complex
Hermitian positive definite band coefficient matrix. To compute the solution, the coefficient
matrix must first undergo an RH R factorization. This may be done by calling either IMSL
routine LFCQH, page 290, or LFTQH, page 288. R is an upper triangular band matrix.

The solution to Ax = b is found by solving the triangular systems RH y = b and Rx = y.

LFSQH and LFIQH, page 292, both solve a linear system given its RH R factorization. LFIQH
generally takes more time and produces a more accurate answer than LFSQH. Each iteration of
the iterative refinement algorithm used by LFIQH calls LFSQH.

LFSQH is based on the LINPACK routine CPBSL; see Dongarra et al. (1979).

LFIQH
Uses iterative refinement to improve the solution of a complex Hermitian positive definite system
of linear equations in band Hermitian storage mode.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 293

Required Arguments
A — Complex NCODA + 1 by N array containing the N by N positive definite band Hermitian

coefficient matrix in band Hermitian storage mode. (Input)

NCODA — Number of upper or lower codiagonals of A. (Input)

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the matrix A as
output from routine LFCQH/DLFCQH or LFTQH/DLFTQH. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

RES — Complex vector of length N containing the residual vector at the improved solution.
(Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LFIQH (A, NCODA, FACT, B, X, RES [,…])

Specific: The specific interface names are S_LFIQH and D_LFIQH.

FORTRAN 77 Interface
Single: CALL LFIQH (N, A, LDA, NCODA, FACT, LDFACT, B, X, RES)

Double: The double precision name is DLFIQH.

Example
A set of linear systems is solved successively. The right-hand side vector is perturbed after
solving the system each of the fisrt two times by adding (1 + i)/2 to the second element.

 use imsl_libraries

294 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Declare variables

 INTEGER LDA, LDFACT, N, NCODA

 PARAMETER (LDA=2, LDFACT=2, N=5, NCODA=1)

 REAL RCOND

 COMPLEX A(LDA,N), B(N), FACT(LDFACT,N), RES(N,3), X(N,3)

!

! Set values for A in band Hermitian form, and B

!

! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)

! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)

!

! B = (3.0+3.0i 5.0-5.0i 5.0+4.0i 9.0+7.0i -22.0+1.0i)

!

 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&

 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/

 DATA B/(3.0,3.0), (5.0,-5.0), (5.0,4.0), (9.0,7.0), (-22.0,1.0)/

! Factor the matrix A

 CALL LFCQH (A, NCODA, FACT, RCOND=RCOND)

! Print the estimated condition number

 CALL UMACH (2, NOUT)

 WRITE (NOUT, 99999) RCOND, 1.0E0/RCOND

! Compute the solutions

 DO 10 I=1, 3

 CALL LFIQH (A, NCODA, FACT, B, X(:,I), RES(:,I))

 B(2) = B(2) + (0.5E0, 0.5E0)

 10 CONTINUE

! Print solutions

 CALL WRCRN ('X', X)

 CALL WRCRN ('RES', RES)

99999 FORMAT (' RCOND = ', F5.3, /, ' L1 Condition number = ', F6.3)

 END

Output

 X
 1 2 3
1 (1.00, 0.00) (3.00, -1.00) (11.00, -1.00)
2 (1.00, -2.00) (2.00, 0.00) (-7.00, 0.00)
3 (2.00, 0.00) (-1.00, -6.00) (-2.00, -3.00)
4 (2.00, 3.00) (2.00, 1.00) (-2.00, -3.00)
5 (-3.00, 0.00) (0.00, 0.00) (-2.00, -3.00)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 295

Comments
Informational error

Type Code

 4 1 The factored matrix has a diagonal element close to zero.

Description
This routine computes the solution for a system of linear algebraic equations having a complex
Hermitian positive definite band coefficient matrix. To compute the solution, the coefficient
matrix must first undergo an RH R factorization. This may be done by calling either IMSL
routine LFCQH, page 290, or LFTQH, page 288. R is an upper triangular band matrix.

The solution to Ax = b is found by solving the triangular systems RH y = b and Rx = y.

LFSQH and LFIQH, page 292, both solve a linear system given its RH R factorization. LFIQH
generally takes more time and produces a more accurate answer than LFSQH. Each iteration of
the iterative refinement algorithm used by LFIQH calls LFSQH.

LFDQH
Computes the determinant of a complex Hermitian positive definite matrix given the RT R
Cholesky factorization in band Hermitian storage mode.

Required Arguments

FACT — Complex NCODA + 1 by N array containing the RH R factorization of the Hermitian
positive definite band matrix A. (Input)
FACT is obtained as output from routine LFCQH/DLFCQH or LFTQH/DLFTQH.

NCODA — Number of upper or lower codiagonals of A. (Input)

DET1 — Scalar containing the mantissa of the determinant. (Output)
The value DET1 is normalized so that 1.0 �
DET1
 < 10.0 or DET1 = 0.0.

DET2 — Scalar containing the exponent of the determinant. (Output)
The determinant is returned in the form det (A) = DET1 * 10DET2.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (FACT,2).

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

296 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL LFDQH (FACT, NCODA, DET1, DET2 [,…])

Specific: The specific interface names are S_LFDQH and D_LFDQH.

FORTRAN 77 Interface
Single: CALL LFDQH (N, FACT, LDFACT, NCODA, DET1, DET2)

Double: The double precision name is DLFDQH.

Example
The determinant is computed for a 5 � 5 complex Hermitian positive definite band matrix with
one codiagonal.

 USE LFDQH_INT
 USE LFTQH_INT
 USE UMACH_INT
! Declare variables
 INTEGER LDA, LDFACT, N, NCODA, NOUT
 PARAMETER (LDA=2, N=5, LDFACT=2, NCODA=1)
 REAL DET1, DET2
 COMPLEX A(LDA,N), FACT(LDFACT,N)
!
! Set values for A in band Hermitian form
!
! A = (0.0+0.0i -1.0+1.0i 1.0+2.0i 0.0+4.0i 1.0+1.0i)
! (2.0+0.0i 4.0+0.0i 10.0+0.0i 6.0+0.0i 9.0+0.0i)
!
 DATA A/(0.0,0.0), (2.0,0.0), (-1.0,1.0), (4.0, 0.0), (1.0,2.0),&
 (10.0,0.0), (0.0,4.0), (6.0,0.0), (1.0,1.0), (9.0,0.0)/
! Factor the matrix
 CALL LFTQH (A, NCODA, FACT)
! Compute the determinant
 CALL LFDQH (FACT, NCODA, DET1, DET2)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) DET1, DET2
!
99999 FORMAT (’ The determinant of A is ’,F6.3,’ * 10**’,F2.0)
 END

Output

The determinant of A is 1.736 * 10**3.

Description
Routine LFDQH computes the determinant of a complex Hermitian positive definite band
coefficient matrix. To compute the determinant, the coefficient matrix must first undergo an

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 297

RH R factorization. This may be done by calling either LFCQH, page 290, or LFTQH, page 288.
The formula det A = det RH det R = (det R)� is used to compute the determinant. Since the
determinant of a triangular matrix is the product of the diagonal elements,

1
det N

i iiR R
�

��

LFDQH is based on the LINPACK routine CPBDI; see Dongarra et al. (1979).

LSLXG
Solves a sparse system of linear algebraic equations by Gaussian elimination.

Required Arguments
A — Vector of length NZ containing the nonzero coefficients of the linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in
A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (B,1).

NZ — The number of nonzero coefficients in the linear system. (Input)
Default: NZ = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system Ax = b is solved.
IPATH = 2 means the system ATx = b is solved.
Default: IPATH = 1.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM.
Default: IPARAM(1) = 0.
See Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

298 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL LSLXG (A, IROW, JCOL, B, X [,…])

Specific: The specific interface names are S_LSLXG and D_LSLXG.

FORTRAN 77 Interface
Single: CALL LSLXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X)

Double: The double precision name is DLSLXG.

Example
As an example consider the 6 � 6 linear system:

10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� �� �
� �� � �
� �
� �� �� �

Let xT = (1, 2, 3, 4, 5, 6) so that Ax = (10, 7, 45, 33,�34, 31)T. The number of nonzeros in A is
nz = 15. The sparse coordinate form for A is given by:

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4
jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1

a 6 10 15 3 10 1 1 3 5 1 10 1 2 1 2� � � � � � � � �

 USE LSLXG_INT
 USE WRRRN_INT
 USE L4LXG_INT
 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
!
 INTEGER IPARAM(6), IROW(NZ), JCOL(NZ)
 REAL A(NZ), B(N), RPARAM(5), X(N)
!
 DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,&
 -2., -1., -2./
 DATA B/10., 7., 45., 33., -34., 31./
 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/
 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
!
! Change a default parameter
 CALL L4LXG (IPARAM, RPARAM)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 299

 IPARAM(5) = 203
! Solve for X
 CALL LSLXG (A, IROW, JCOL, B, X, IPARAM=IPARAM)
!
 CALL WRRRN (’ x ’, X, 1, N, 1)
 END

Output

 x
 1 2 3 4 5 6
1.000 2.000 3.000 4.000 5.000 6.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LXG/DL2LXG. The

reference is:

CALL L2LXG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X, WK, LWK, IWK,
LIWK)

The additional arguments are as follows:

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N + MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK-2N, INT(0.25(LIWK-17N)))

2. Informational errors
Type Code

3 1 The coefficient matrix is numerically singular.
3 2 The growth factor is too large to continue.
3 3 The matrix is too ill-conditioned for iterative refinement.

3. If the default parameters are desired for LSLXG, then set IPARAM(1) to zero and call the
routine LSLXG. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM. then the following steps should be taken before calling LSLXG.

 CALL L4LXG (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LXG will set IPARAM and RPARAM to their default values, so only
nondefault values need to be set above.

300 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy
IPARAM(2) Action
1 Markowitz row search
2 Markowitz column search
3 Symmetric Markowitz search
Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero elements that
will be searched for a pivotal element.
Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage of the
Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.
IPARAM(5) Action
0 Default limit, see Comment 1.

 integer This integer value replaces the default workspace limit.
When L2LXG is called, the values of LWK and LIWK are used
instead of IPARAM(5).

Default: 0.

IPARAM(6) = Iterative refinement is done when this is nonzero.
Default: 0.

RPARAM — Real vector of length 5.
RPARAM(1) = The upper limit on the growth factor. The computation stops when the
growth factor exceeds the limit.
Default: 10��.

RPARAM(2) = The stability factor. The absolute value of the pivotal element must be
bigger than the largest element in absolute value in its row divided by
RPARAM(2).
Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L will be
removed if its absolute value becomes smaller than the drop-tolerance at any
stage of the Gaussian elimination.
Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in absolute value
in A at any stage of the Gaussian elimination divided by the largest element in

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 301

absolute value in the original A matrix. (Output)
Large value of the growth factor indicates that an appreciable error in the
computed solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value. (Output)

 If double precision is required, then DL4LXG is called and RPARAM is declared double
precision.

Description
Consider the linear equation

Ax = b

where A is a n � n sparse matrix. The sparse coordinate format for the matrix A requires one real
and two integer vectors. The real array a contains all the nonzeros in A. Let the number of
nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and
column numbers for these entries in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

with all other entries in A zero.

The routine LSLXG solves a system of linear algebraic equations having a real sparse coefficient
matrix. It first uses the routine LFTXG (page 301) to perform an LU factorization of the
coefficient matrix. The solution of the linear system is then found using LFSXG (page 306).

The routine LFTXG by default uses a symmetric Markowitz strategy (Crowe et al. 1990) to
choose pivots that most likely would reduce fill-ins while maintaining numerical stability.
Different strategies are also provided as options for row oriented or column oriented problems.
The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

LFTXG
Computes the LU factorization of a real general sparse matrix..

Required Arguments
A — Vector of length NZ containing the nonzero coefficients of the linear system. (Input)

302 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

IROW — Vector of length NZ containing the row numbers of the corresponding elements in
A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in A. (Input)

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal
elements. (Output)

NFAC — On input, the dimension of vector FACT. (Input/Output)
On output, the number of nonzero coefficients in the triangular matrix L and U.

FACT — Vector of length NFAC containing the nonzero elements of L (excluding the
diagonals) in the first NL locations and the nonzero elements of U in NL + 1
to NFAC locations. (Output)

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements
in FACT. (Output)

JCFAC — Vector of length NFAC containing the column numbers of the corresponding
elements in FACT. (Output)

IPVT — Vector of length N containing the row pivoting information for the LU factorization.
(Output)

JPVT — Vector of length N containing the column pivoting information for the LU
factorization. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (IPVT,1).

NZ — The number of nonzero coefficients in the linear system. (Input)
Default: NZ = size (A,1).

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM.
Default: IPARAM(1) = 0.
See Comment 3.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

FORTRAN 90 Interface
Generic: CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT

[,…])

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 303

Specific: The specific interface names are S_LFTXG and D_LFTXG.

FORTRAN 77 Interface
Single: CALL LFTXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT,

IRFAC, JCFAC, IPVT, JPVT)

Double: The double precision name is DLFTXG.

Example
As an example, consider the 6 � 6 matrix of a linear system:

10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� �� �
� �� � �
� �
� �� �� �

The sparse coordinate form for A is given by:

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4
jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1
a 6 10 15 3 10 1 1 3 5 1 10 1 2 1 2� � � � � � � � �

 USE LFTXG_INT
 USE WRRRN_INT
 USE WRIRN_INT

 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
 INTEGER IROW(NZ), JCOL(NZ), NFAC, NL,&
 IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N)
 REAL A(NZ), FACT(3*NZ)
!
 DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,&
 -2., -1., -2./
 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/
 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
!
 NFAC = 3*NZ
! Use default options
 CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT)
!
 CALL WRRRN (’ fact ’, FACT, 1, NFAC, 1)
 CALL WRIRN (’ irfac ’, IRFAC, 1, NFAC, 1)
 CALL WRIRN (’ jcfac ’, JCFAC, 1, NFAC, 1)
 CALL WRIRN (’ p ’, IPVT, 1, N, 1)
 CALL WRIRN (’ q ’, JPVT, 1, N, 1)

304 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

!
 END

Output

 fact
 1 2 3 4 5 6 7 8 9 10
-0.10 -5.00 -0.20 -0.10 -0.10 -1.00 -0.20 4.90 -5.10 1.00
 11 12 13 14 15 16
-1.00 30.00 6.00 -2.00 10.00 15.00

 irfac
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 4 4 5 5 6 6 6 5 5 4 4 3 3 2 1

 jcfac
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 1 4 2 5 2 6 6 5 6 4 4 3 2 1

 p
1 2 3 4 5 6
3 1 6 2 5 4

 q
1 2 3 4 5 6
3 1 2 6 5 4

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TXG/DL2TXG. The

reference is:

CALL L2TXG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, IRFAC,
JCFAC, IPVT, JPVT, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 4 � MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N)))

2. Informational errors
Type Code

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 305

3 1 The coefficient matrix is numerically singular.
3 2 The growth factor is too large to continue.

3. If the default parameters are desired for LFTXG, then set IPARAM(1) to zero and call the
routine LFTXG. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling LFTXG.

CALL L4LXG (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LXG will set IPARAM and RPARAM to their default values, so only
nondefault values need to be set above.

The arguments are as follows:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy.
IPARAM(2) Action
1 Markowitz row search
2 Markowitz column search
3 Symmetric Markowitz search
Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero elements that
will be searched for a pivotal element.
Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage of the
Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.
IPARAM(5) Action
0 Default limit, see Comment 1.
integer This integer value replaces the default workspace limit.
 When L2TXG is called, the values of LWK and LIWK are used

 instead of IPARAM(5).

IPARAM(6) = Not used in LFTXG.

RPARAM — Real vector of length 5.

RPARAM(1) = The upper limit on the growth factor. The computation stops when the
growth factor exceeds the limit.
Default: 10.

RPARAM(2) = The stability factor. The absolute value of the pivotal element must be
bigger than the largest element in absolute value in its row divided by RPARAM(2).
Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L will be
removed if its absolute value becomes smaller than the drop-tolerance at any stage of

306 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

the Gaussian elimination.
Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in absolute value
in A at any stage of the Gaussian elimination divided by the largest element in absolute
value in the original A matrix. (Output)
Large value of the growth factor indicates that an appreciable error in the computed
solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value. (Output)

If double precision is required, then DL4LXG is called and RPARAM is declared double
precision.

Description
Consider the linear equation

Ax = b

where A is a n � n sparse matrix. The sparse coordinate format for the matrix A requires one real
and two integer vectors. The real array a contains all the nonzeros in A. Let the number of
nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and
column numbers for these entries in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

with all other entries in A zero.

The routine LFTXG performs an LU factorization of the coefficient matrix A. It by default uses a
symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would
reduce fillins while maintaining numerical stability. Different strategies are also provided as
options for row oriented or column oriented problems. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained using LFSXG (page 306) by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

LFSXG
Solves a sparse system of linear equations given the LU factorization of the coefficient matrix..

Required Arguments
NFAC — The number of nonzero coefficients in FACT as output from subroutine

LFTXG/DLFTXG. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 307

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal
elements as output from subroutine LFTXG/DLFTXG. (Input)

FACT — Vector of length NFAC containing the nonzero elements of L (excluding the
diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC
locations as output from subroutine LFTXG/DLFTXG. (Input)

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements
in FACT as output from subroutine LFTXG/DLFTXG. (Input)

JCFAC — Vector of length NFAC containing the column numbers of the corresponding
elements in FACT as output from subroutine LFTXG/DLFTXG. (Input)

IPVT — Vector of length N containing the row pivoting information for the LU factorization
as output from subroutine LFTXG/DLFTXG. (Input)

JPVT — Vector of length N containing the column pivoting information for the LU
factorization as output from subroutine LFTXG/DLFTXG. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (B,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system Ax = B is solved.
IPATH = 2 means the system ATx = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LFSXG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, X [,…])

Specific: The specific interface names are S_LFSXG and D_LFSXG.

FORTRAN 77 Interface
Single: CALL LFSXG (N, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, IPATH, X)

Double: The double precision name is DLFSXG.

308 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example
As an example, consider the 6 � 6 linear system:

10 0 0 0 0 0
0 10 3 1 0 0
0 0 15 0 0 0
2 0 0 10 1 0
1 0 0 5 1 3
1 2 0 0 0 6

A

� �
� �� �� �
� �

� � �
� �� �
� �� � �
� �
� �� �� �

Let

� �1 1, 2,3, 4,5,6Tx �

so that Ax� = (10, 7, 45, 33,�34, 31)T, and

� �2 6,5, 4,3,2,1Tx �

so that Ax� = (60, 35, 60, 16, �22, 10)T. The sparse coordinate form for A is given by:

irow 6 2 3 2 4 4 5 5 5 5 1 6 6 2 4
jcol 6 2 3 3 4 5 1 6 4 5 1 1 2 4 1
a 6 10 15 3 10 1 1 3 5 1 10 1 2 1 2� � � � � � � � �

 USE LFSXG_INT
 USE WRRRL_INT
 USE LFTXG_INT

 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
 INTEGER IPATH, IROW(NZ), JCOL(NZ), NFAC,&
 NL, IRFAC(3*NZ), JCFAC(3*NZ), IPVT(N), JPVT(N)
 REAL X(N), A(NZ), B(N,2), FACT(3*NZ)
 CHARACTER TITLE(2)*2, RLABEL(1)*4, CLABEL(1)*6
 DATA RLABEL(1)/’NONE’/, CLABEL(1)/’NUMBER’/
!
 DATA A/6., 10., 15., -3., 10., -1., -1., -3., -5., 1., 10., -1.,&
 -2., -1., -2./
 DATA B/10., 7., 45., 33., -34., 31.,&
 60., 35., 60., 16., -22., -10./
 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/
 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
 DATA TITLE/’x1’, ’x2’/
!
 NFAC = 3*NZ
! Perform LU factorization
 CALL LFTXG (A, IROW, JCOL, NL, NFAC, FACT, IRFAC, JCFAC, IPVT, JPVT)
!
 DO 10 I = 1, 2
! Solve A * X(i) = B(i)
 CALL LFSXG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B(:,I), X)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 309

!
 CALL WRRRL (TITLE(I), X, RLABEL, CLABEL, 1, N, 1)
 10 CONTINUE
 END

Output

 x1
 1 2 3 4 5 6
1.0 2.0 3.0 4.0 5.0 6.0

 x2
 1 2 3 4 5 6
6.0 5.0 4.0 3.0 2.0 1.0

Description
Consider the linear equation

Ax = b

where A is a n � n sparse matrix. The sparse coordinate format for the matrix A requires one real
and two integer vectors. The real array a contains all the nonzeros in A. Let the number of
nonzeros be nz. The two integer arrays irow and jcol, each of length nz, contain the row and
column numbers for these entries in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

with all other entries in A zero. The routine LFSXG computes the solution of the linear equation
given its LU factorization. The factorization is performed by calling LFTXG (page 301). The
solution of the linear system is then found by the forward and backward substitution. The
algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.
Finally, the solution x is obtained by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

For more details, see Crowe et al. (1990).

LSLZG
Solves a complex sparse system of linear equations by Gaussian elimination.

310 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Required Arguments
A — Complex vector of length NZ containing the nonzero coefficients of the linear system.

(Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in
A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (B,1).

NZ — The number of nonzero coefficients in the linear system. (Input)
Default: NZ = size (A,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system Ax = b is solved.
IPATH = 2 means the system AH x = b is solved.
Default: IPATH =1.

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 3.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3

FORTRAN 90 Interface
Generic: CALL LSLZG (A, IROW, JCOL, B, X [,…])

Specific: The specific interface names are S_LSLZG and D_LSLZG.

FORTRAN 77 Interface
Single: CALL LSLZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X)

Double: The double precision name is DLSLZG.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 311

Example
As an example, consider the 6 � 6 linear system:

10 7 0 0 0 0 0
0 3 2 3 0 1 2 0 0
0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0
5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i
i i i

i
A

i i i
i i i i
i i i

�� �
� �� � � � �� �
� ��

� � �
� � � � �� �

� �� � � � � � �
� �
� � � � �� �� 	

Let

xT = (1 + i, 2 + 2i, 3 + 3i, 4 + 4i, 5 + 5i, 6 + 6i)

so that

Ax = (3 + 17i, �19 + 5i, 6 + 18i, �38 + 32i, �63 + 49i, �57 + 83i)T

The number of nonzeros in A is nz = 15. The sparse coordinate form for A is given by:

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5
jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6

 USE LSLZG_INT
 USE WRCRN_INT

 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
!
 INTEGER IROW(NZ), JCOL(NZ)
 COMPLEX A(NZ), B(N), X(N)
!
 DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),&
 (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),&
 (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/
 DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),&
 (-63.0,49.0), (-57.0,83.0)/
 DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/
 DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/
!
! Use default options
 CALL LSLZG (A, IROW, JCOL, B, X)
!
 CALL WRCRN (’X’, X)
 END

Output

 X
1 (1.000, 1.000)
2 (2.000, 2.000)
3 (3.000, 3.000)
4 (4.000, 4.000)

312 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

5 (5.000, 5.000)
6 (6.000, 6.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LZG/DL2LZG. The

reference is:

CALL L2LZG (N, NZ, A, IROW, JCOL, B, IPATH, IPARAM, RPARAM, X, WK, LWK, IWK,
LIWK)

The additional arguments are as follows:

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N+ MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 17N + 4 * MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ � MIN0(LWK-2N, INT(0.25(LIWK-17N)))

2. Informational errors
Type Code

3 1 The coefficient matrix is numerically singular.
3 2 The growth factor is too large to continue.
3 3 The matrix is too ill-conditioned for iterative refinement.

3. If the default parameters are desired for LSLZG, then set IPARAM(1) to zero and call the
routine LSLZG. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM. then the following steps should be taken before calling LSLZG.

CALL L4LZG (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LZG will set IPARAM and RPARAM to their default values, so
only nondefault values need to be set above. The arguments are as follows:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy.
IPARAM(2) Action
1 Markowitz row search
2 Markowitz column search

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 313

3 Symmetric Markowitz search
Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero elements that
will be searched for a pivotal element.
Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage of the
Gaussian elimination. (Output)

IPARAM(5) = The workspace limit.

IPARAM(5) Action
0 Default limit, see Comment 1.
integer This integer value replaces the default workspace limit.

When L2LZG is called, the values of LWK and LIWK are used instead
of IPARAM(5).

Default: 0.

IPARAM(6) = Iterative refinement is done when this is nonzero.
Default: 0.

RPARAM — Real vector of length 5.

RPARAM(1) = The upper limit on the growth factor. The computation stops when the
growth factor exceeds the limit.
Default: 10.

RPARAM(2) = The stability factor. The absolute value of the pivotal element must be
bigger than the largest element in absolute value in its row divided by RPARAM(2).
Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in A will be removed if its absolute value
becomes smaller than the drop-tolerance at any stage of the Gaussian elimination.
Default: 0.0.

RPARAM(4) = The growth factor. It is calculated as the largest element in absolute
value in A at any stage of the Gaussian elimination divided by the largest element in
absolute value in the original A matrix. (Output)
Large value of the growth factor indicates that an appreciable error in the computed
solution is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value. (Output)

If double precision is required, then DL4LZG is called and RPARAM is declared double
precision.

Description
Consider the linear equation

Ax = b

where A is a n � n complex sparse matrix. The sparse coordinate format for the matrix A
requires one complex and two integer vectors. The complex array a contains all the nonzeros in

314 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

A. Let the number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz,
contain the row and column numbers for these entries in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

with all other entries in A zero.

The subroutine LSLZG solves a system of linear algebraic equations having a complex sparse
coefficient matrix. It first uses the routine LFTZG (page 314) to perform an LU factorization of
the coefficient matrix. The solution of the linear system is then found using LFSZG (page 309).
The routine LFTZG by default uses a symmetric Markowitz strategy (Crowe et al. 1990) to
choose pivots that most likely would reduce fill-ins while maintaining numerical stability.
Different strategies are also provided as options for row oriented or column oriented problems.
The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.
Finally, the solution x is obtained by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

LFTZG
Computes the LU factorization of a complex general sparse matrix.

Required Arguments
A — Complex vector of length NZ containing the nonzero coefficients of the linear system.

(Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in
A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in A. (Input)

NFAC — On input, the dimension of vector FACT. (Input/Output)
On output, the number of nonzero coefficients in the triangular matrix L and U.

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal
elements. (Output)

FACT — Complex vector of length NFAC containing the nonzero elements of L (excluding
the diagonals) in the first NL locations and the nonzero elements of U in NL + 1 to NFAC
locations. (Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 315

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements
in FACT. (Output)

JCFAC — Vector of length NFAC containing the column numbers of the corresponding
elements in FACT. (Output)

IPVT — Vector of length N containing the row pivoting information for the LU factorization.
(Output)

JPVT — Vector of length N containing the column pivoting information for the LU
factorization. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (IPVT,1).

NZ — The number of nonzero coefficients in the linear system. (Input)
Default: NZ = size (A,1).

IPARAM — Parameter vector of length 6. (Input/Output)
Set IPARAM(1) to zero for default values of IPARAM and RPARAM. See Comment 3.
Default: IPARAM = 0.

RPARAM — Parameter vector of length 5. (Input/Output)
See Comment 3.

FORTRAN 90 Interface
Generic: CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT

[,…])

Specific: The specific interface names are S_LFTZG and D_LFTZG.

FORTRAN 77 Interface
Single: CALL LFTZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT,

IRFAC, JCFAC, IPVT, JPVT)

Double: The double precision name is DLFTZG.

Example
As an example, the following 6 � 6 matrix is factorized, and the outcome is printed:

316 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

10 7 0 0 0 0 0
0 3 2 3 0 1 2 0 0
0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0
5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i
i i i

i
A

i i i
i i i i
i i i

�� �
� �� � � � �� �
� ��

� � �
� � � � �� �

� �� � � � � � �
� �
� � � � �� �� 	

The sparse coordinate form for A is given by:

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5
jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6

 USE LFTZG_INT
 USE WRCRN_INT
 USE WRIRN_INT

 INTEGER N, NFAC, NZ
 PARAMETER (N=6, NZ=15)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IPVT(N), IRFAC(45), IROW(NZ), JCFAC(45),&
 JCOL(NZ), JPVT(N), NL
 COMPLEX A(NZ), FAC(45)
!
 DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),&
 (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),&
 (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/
 DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/
 DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/
 DATA NFAC/45/
! Use default options
 CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT)
!
 CALL WRCRN (’fact’,FACT, 1, NFAC, 1)
 CALL WRIRN (’ irfac ’,IRFAC, 1, NFAC, 1)
 CALL WRIRN (’ jcfac ’,JCFAC, 1, NFAC, 1)
 CALL WRIRN (’ p ’,IPVT, 1, N, 1)
 CALL WRIRN (’ q ’,JPVT, 1, N, 1)
!
 END

Output

 fact
 1 (0.50, 0.85)
 2 (0.15, -0.41)
 3 (-0.60, 0.30)
 4 (2.23, -1.97)
 5 (-0.15, 0.50)
 6 (-0.04, 0.26)
 7 (-0.32, -0.17)
 8 (-0.92, 7.46)
 9 (-6.71, -6.42)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 317

10 (12.00, 2.00)
11 (-1.00, 2.00)
12 (-3.32, 0.21)
13 (3.00, 7.00)
14 (-2.00, 8.00)
15 (10.00, 7.00)
16 (4.00, 2.00)

 irfac
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 4 4 5 5 6 6 6 5 5 4 4 3 3 2 1

 jcfac
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 3 1 4 2 5 2 6 6 5 6 4 4 3 2 1

 p
1 2 3 4 5 6
3 1 6 2 5 4

 q
1 2 3 4 5 6
3 1 2 6 5 4

Comments
1. Workspace may be explicitly provided, if desired, by use of L2TZG/DL2TZG. The

reference is:

CALL L2TZG (N, NZ, A, IROW, JCOL, IPARAM, RPARAM, NFAC, NL, FACT, IRFAC,
JCFAC, IPVT, JPVT, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least MAXNZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 4 * MAXNZ.

The workspace limit is determined by MAXNZ, where

MAXNZ = MIN0(LWK, INT(0.25(LIWK-15N)))

2. Informational errors
Type Code

3 1 The coefficient matrix is numerically singular.

318 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

3 2 The growth factor is too large to continue.

3. If the default parameters are desired for LFTZG, then set IPARAM(1) to zero and call the
routine LFTZG. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM. then the following steps should be taken before calling LFTZG:

CALL L4LZG (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LZG will set IPARAM and RPARAM to their default values so only
nondefault values need to be set above. The arguments are as follows:

IPARAM — Integer vector of length 6.

IPARAM(1) = Initialization flag.

IPARAM(2) = The pivoting strategy.
IPARAM(2) Action
1 Markowitz row search
2 Markowitz column search
3 Symmetric Markowitz search
Default: 3.

IPARAM(3) = The number of rows which have least numbers of nonzero elements that will be
searched for a pivotal element.
Default: 3.

IPARAM(4) = The maximal number of nonzero elements in A at any stage of the Gaussian
elimination. (Output)

IPARAM(5) = The workspace limit.
IPARAM(5) Action
0 Default limit, see Comment 1.
integer This integer value replaces the default workspace limit.

When L2TZG is called, the values of LWK and LIWK are used instead of
IPARAM(5).

Default: 0.

IPARAM(6) = Not used in LFTZG.

RPARAM — Real vector of length 5.

RPARAM(1) = The upper limit on the growth factor. The computation stops when the growth
factor exceeds the limit.
Default: 10.

RPARAM(2) = The stability factor. The absolute value of the pivotal element must be bigger
than the largest element in absolute value in its row divided by RPARAM(2).
Default: 10.0.

RPARAM(3) = Drop-tolerance. Any element in the lower triangular factor L will be removed if
its absolute value becomes smaller than the drop-tolerance at any stage of the Gaussian
elimination.
Default: 0.0.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 319

RPARAM(4) = The growth factor. It is calculated as the largest element in absolute value in A at
any stage of the Gaussian elimination divided by the largest element in absolute value in the
original A matrix. (Output)
Large value of the growth factor indicates that an appreciable error in the computed solution
is possible.

RPARAM(5) = The value of the smallest pivotal element in absolute value. (Output)

If double precision is required, then DL4LZG is called and RPARAM is declared double
precision.

Description
Consider the linear equation

Ax = b

where A is a complex n � n sparse matrix. The sparse coordinate format for the matrix A
requires one complex and two integer vectors. The complex array a contains all the nonzeros in
A. Let the number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz,
contain the row and column indices for these entries in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

with all other entries in A zero.

The routine LFTZG performs an LU factorization of the coefficient matrix A. It uses by default a
symmetric Markowitz strategy (Crowe et al. 1990) to choose pivots that most likely would
reduce fill-ins while maintaining numerical stability. Different strategies are also provided as
options for row oriented or column oriented problems. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained using LFSZG (page 319) by the following calculations:

1) Lz = Pb

2) Uy = z

3) x = Qy

LFSZG
Solves a complex sparse system of linear equations given the LU factorization of the coefficient
matrix.

Required Arguments
NFAC — The number of nonzero coefficients in FACT as output from subroutine

LFTZG/DLFTZG. (Input)

320 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

NL — The number of nonzero coefficients in the triangular matrix L excluding the diagonal
elements as output from subroutine LFTZG/DLFTZG. (Input)

FACT — Complex vector of length NFAC containing the nonzero elements of L (excluding
the diagonals) in the first NL locations and the nonzero elements of U in NL+ 1 to NFAC
locations as output from subroutine LFTZG/DLFTZG. (Input)

IRFAC — Vector of length NFAC containing the row numbers of the corresponding elements
in FACT as output from subroutine LFTZG/DLFTZG. (Input)

JCFAC — Vector of length NFAC containing the column numbers of the corresponding
elements in FACT as output from subroutine LFTZG/DLFTZG. (Input)

IPVT — Vector of length N containing the row pivoting information for the LU factorization
as output from subroutine LFTZG/DLFTZG. (Input)

JPVT — Vector of length N containing the column pivoting information for the LU
factorization as output from subroutine LFTZG/DLFTZG. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (B,1).

IPATH — Path indicator. (Input)
IPATH = 1 means the system Ax = b is solved.
IPATH = 2 means the system AH x = b is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LFSZG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, X [,…])

Specific: The specific interface names are S_LFSZG and D_LFSZG.

FORTRAN 77 Interface
Single: CALL LFSZG (N, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT, B, IPATH, X)

Double: The double precision name is DLFSZG.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 321

Example
As an example, consider the 6 � 6 linear system:

10 7 0 0 0 0 0
0 3 2 3 0 1 2 0 0
0 0 4 2 0 0 0

2 4 0 0 1 6 1 3 0
5 4 0 0 5 0 12 2 7 7

1 12 2 8 0 0 0 3 7

i
i i i

i
A

i i i
i i i i
i i i

�� �
� �� � � � �� �
� ��

� � �
� � � � �� �

� �� � � � � � �
� �
� � � � �� �� 	

Let

� �1 1 ,2 2 ,3 3 ,4 4 ,5 5 ,6 6Tx i i i i i i� � � � � � �

so that

Ax� = (3 + 17i, �19 + 5i, 6 + 18i, �38 + 32i, �63 + 49i, �57 + 83i)T

and

� �2 6 6 ,5 5 ,4 4 ,3 3 ,2 2 ,1Tx i i i i i i� � � � � � �

so that

Ax� = (18 + 102i, �16 + 16i, 8 + 24i, �11 �11i, �63 + 7i, �132 + 106i)T

The sparse coordinate form for A is given by:

irow 6 2 2 4 3 1 5 4 6 5 5 6 4 2 5
jcol 6 2 3 5 3 1 1 4 1 4 5 2 1 4 6

 USE LFSZG_INT
 USE WRCRN_INT
 USE LFTZG_INT
 INTEGER N, NZ
 PARAMETER (N=6, NZ=15)
!
 INTEGER IPATH, IPVT(N), IRFAC(3*NZ), IROW(NZ),&
 JCFAC(3*NZ), JCOL(NZ), JPVT(N), NFAC, NL
 COMPLEX A(NZ), B(N,2), FACT(3*NZ), X(N)
 CHARACTER TITLE(2)*2
!
 DATA A/(3.0,7.0), (3.0,2.0), (-3.0,0.0), (-1.0,3.0), (4.0,2.0),&
 (10.0,7.0), (-5.0,4.0), (1.0,6.0), (-1.0,12.0), (-5.0,0.0),&
 (12.0,2.0), (-2.0,8.0), (-2.0,-4.0), (-1.0,2.0), (-7.0,7.0)/
 DATA B/(3.0,17.0), (-19.0,5.0), (6.0,18.0), (-38.0,32.0),&
 (-63.0,49.0), (-57.0,83.0), (18.0,102.0), (-16.0,16.0),&
 (8.0,24.0), (-11.0,-11.0), (-63.0,7.0), (-132.0,106.0)/
 DATA IROW/6, 2, 2, 4, 3, 1, 5, 4, 6, 5, 5, 6, 4, 2, 5/
 DATA JCOL/6, 2, 3, 5, 3, 1, 1, 4, 1, 4, 5, 2, 1, 4, 6/
 DATA TITLE/’x1’,’x2’/
!
 NFAC = 3*NZ

322 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Perform LU factorization
 CALL LFTZG (A, IROW, JCOL, NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT)
!
 IPATH = 1
 DO 10 I = 1,2
! Solve A * X(i) = B(i)
 CALL LFSZG (NFAC, NL, FACT, IRFAC, JCFAC, IPVT, JPVT,&
 B(:,I), X)
 CALL WRCRN (TITLE(I), X)
 10 CONTINUE
!
 END

Output

 x1
1 (1.000, 1.000)
2 (2.000, 2.000)
3 (3.000, 3.000)
4 (4.000, 4.000)
5 (5.000, 5.000)
6 (6.000, 6.000)

 x2
1 (6.000, 6.000)
2 (5.000, 5.000)
3 (4.000, 4.000)
4 (3.000, 3.000)
5 (2.000, 2.000)
6 (1.000, 1.000)

Description
Consider the linear equation

Ax = b

where A is a complex n � n sparse matrix. The sparse coordinate format for the matrix A
requires one complex and two integer vectors. The complex array a contains all the nonzeros in
A. Let the number of nonzeros be nz. The two integer arrays irow and jcol, each of length nz,
contain the row and column numbers for these entries in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

with all other entries in A zero.

The routine LFSZG computes the solution of the linear equation given its LU factorization. The
factorization is performed by calling LFTZG (page 314). The solution of the linear system is then
found by the forward and backward substitution. The algorithm can be expressed as

P AQ = LU

where P and Q are the row and column permutation matrices determined by the Markowitz
strategy (Duff et al. 1986), and L and U are lower and upper triangular matrices, respectively.

Finally, the solution x is obtained by the following calculations:

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 323

1) Lz = Pb

2) Uy = z

3) x = Qy

For more details, see Crowe et al. (1990).

LSLXD
Solves a sparse system of symmetric positive definite linear algebraic equations by Gaussian
elimination.

Required Arguments
A — Vector of length NZ containing the nonzero coefficients in the lower triangle of the linear

system. (Input)
The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to NZ, and
at this location the sparse matrix has value A(i).

IROW — Vector of length NZ containing the row numbers of the corresponding elements in
the lower triangle of A. (Input)
Note IROW(i) � JCOL(i), since we are only indexing the lower triangle.

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in the lower triangle of A. (Input)

B — Vector of length N containing the right-hand side of the linear system. (Input)

X — Vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (B,1).

NZ — The number of nonzero coefficients in the lower triangle of the linear system. (Input)
Default: NZ = size (A,1).

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero.
Default: ITWKSP = 0.

FORTRAN 90 Interface
Generic: CALL LSLXD (A, IROW, JCOL, B, X [,…])

Specific: The specific interface names are S_LSLXD and D_LSLXD.

324 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL LSLXD (N, NZ, A, IROW, JCOL, B, ITWKSP, X)

Double: The double precision name is DLSLXD.

Example
As an example consider the 5 � 5 linear system:

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

A

� �
� �
� �
� ��
� �
� �
� �� �

Let xT = (1, 2, 3, 4, 5) so that Ax = (23, 55, 107, 197, 278)T. The number of nonzeros in the
lower triangle of A is nz = 10. The sparse coordinate form for the lower triangle of A is given
by:

irow 1 2 3 3 4 4 5 5 5 5
jcol 1 2 1 3 3 4 1 2 4 5
a 10 20 1 30 4 40 2 3 5 50

or equivalently by

irow 4 5 5 5 1 2 3 3 4 5
jcol 4 1 2 4 1 2 1 3 3 5
a 40 2 3 5 10 20 1 30 4 50

 USE LSLXD_INT
 USE WRRRN_INT
 INTEGER N, NZ
 PARAMETER (N=5, NZ=10)
!
 INTEGER IROW(NZ), JCOL(NZ)
 REAL A(NZ), B(N), X(N)
!
 DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./
 DATA B/23., 55., 107., 197., 278./
 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/
 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
! Solve A * X = B
 CALL LSLXD (A, IROW, JCOL, B, X)
! Print results
 CALL WRRRN (’ x ’, X, 1, N, 1)
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 325

Output

 x
 1 2 3 4 5
1.000 2.000 3.000 4.000 5.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LXD/DL2LXD. The

reference is:

CALL L2LXD (N, NZ, A, IROW, JCOL, B, X, IPER, IPARAM, RPARAM, WK, LWK, IWK,
LIWK)

The additional arguments are as follows:

IPER — Vector of length N containing the ordering.

IPARAM — Integer vector of length 4. See Comment 3.

RPARAM — Real vector of length 2. See Comment 3.

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N + 6NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors
Type Code

4 1 The coefficient matrix is not positive definite.
4 2 A column without nonzero elements has been found in the coefficient

matrix.

3. If the default parameters are desired for L2LXD, then set IPARAM(1) to zero and call the
routine L2LXD. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling L2LXD.

CALL L4LXD (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LXD will set IPARAM and RPARAM to their default values, so only
nondefault values need to be set above. The arguments are as follows:

IPARAM — Integer vector of length 4.

326 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPARAM(1) = Initialization flag.

IPARAM(2) = The numerical factorization method.
IPARAM(2) Action
0 Multifrontal
1 Sparse column
Default: 0.

IPARAM(3) = The ordering option.
IPARAM(3) Action
0 Minimum degree ordering
1 User’s ordering specified in IPER
Default: 0.

IPARAM(4) = The total number of nonzeros in the factorization matrix.

RPARAM — Real vector of length 2.

RPARAM(1) = The value of the largest diagonal element in the Cholesky factorization.

RPARAM(2) = The value of the smallest diagonal element in the Cholesky factorization.

If double precision is required, then DL4LXD is called and RPARAM is declared double
precision.

Description
Consider the linear equation

Ax = b

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix
A requires one real and two integer vectors. The real array a contains all the nonzeros in the
lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer
arrays irow and jcol, each of length nz, contain the row and column indices for these entries
in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

irow(i) � jcol(i) i = 1, �, nz

with all other entries in the lower triangle of A zero.

The subroutine LSLXD solves a system of linear algebraic equations having a real, sparse and
positive definite coefficient matrix. It first uses the routine LSCXD (page 327) to compute a
symbolic factorization of a permutation of the coefficient matrix. It then calls LNFXD (page 331)
to perform the numerical factorization. The solution of the linear system is then found using
LFSXD (page 336).

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set
up the sparse data structure for the Cholesky factor, L. Then the routine LNFXD produces the
numerical entries in L so that we have

P APT= LLT

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 327

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs
the factorization using a multifrontal technique. This option requires more storage but in certain
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse compressed
storage scheme.

Finally, the solution x is obtained by the following calculations:

1) Ly� = Pb

2) LTy� = y�

3) x = PTy�

The routine LFSXD accepts b and the permutation vector which determines P. It then returns x.

LSCXD/DLSCXD
Performs the symbolic Cholesky factorization for a sparse symmetric matrix using a minimum
degree ordering or a user-specified ordering, and set up the data structure for the numerical
Cholesky factorization

Required Arguments
IROW — Vector of length NZ containing the row subscripts of the nonzeros in the lower

triangular part of the matrix including the nonzeros on the diagonal. (Input)

JCOL — Vector of length NZ containing the column subscripts of the nonzeros in the lower
triangular part of the matrix including the nonzeros on the diagonal. (Input)
(IROW (K), JCOL(K)) gives the row and column indices of the k-th nonzero element of
the matrix stored in coordinate form. Note, IROW(K) � JCOL(K).

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal
nonzeros in the Cholesky factor in compressed format. (Output)

INZSUB — Vector of length N + 1 containing pointers for NZSUB. The row subscripts for the
off-diagonal nonzeros in column J are stored in NZSUB from location INZSUB (J) to
INZSUB(J � (ILNZ (J �1) �ILNZ(J) � 1). (Output)

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor. (Output)

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor. The off-diagonal
nonzeros in column J of the factor are stored from location ILNZ (J) to
ILNZ(J + 1) � 1. (Output)
(ILNZ, NZSUB, INZSUB) sets up the data structure for the off-diagonal nonzeros of the
Cholesky factor in column ordered form using compressed subscript format.

328 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

INVPER — Vector of length N containing the inverse permutation. (Output)
INVPER (K) = I indicates that the original row K is the new row I.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (INVPER,1).

NZ — Total number of the nonzeros in the lower triangular part of the symmetric matrix,
including the nonzeros on the diagonal. (Input)
Default: NZ = size (IROW,1).

IJOB — Integer parameter selecting an ordering to permute the matrix symmetrically.
(Input)
IJOB = 0 selects the user ordering specified in IPER and reorders it so that the
multifrontal method can be used in the numerical factorization.
IJOB = 1 selects the user ordering specified in IPER.
IJOB = 2 selects a minimum degree ordering.
IJOB = 3 selects a minimum degree ordering suitable for the multifrontal method in the
numerical factorization.
Default: IJOB = 3.

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero.
Default: ITWKSP = 0.

MAXSUB — Number of subscripts contained in array NZSUB. (Input/Output)
On input, MAXSUB gives the size of the array NZSUB.
Note that when default workspace (ITWKSP = 0) is used, set MAXSUB = 3 * NZ.
Otherwise (ITWKSP > 0), set MAXSUB = (ITWKSP � 10 * N � 7) 	 4. On output, MAXSUB
gives the number of subscripts used by the compressed subscript format.
Default: MAXSUB = 3*NZ.

IPER — Vector of length N containing the ordering specified by IJOB. (Input/Output)
IPER (I) = K indicates that the original row K is the new row I.

ISPACE — The storage space needed for stack of frontal matrices. (Output)

FORTRAN 90 Interface
Generic: Because the Fortran compiler cannot determine the precision desired from the
required arguments, there is no generic Fortran 90 Interface for this routine. The specific
Fortran 90 Interfaces are:

Single: CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])

Or

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 329

 CALL S_LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])

Double: CALL DLSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])

Or

 CALL D_LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER [,…])

FORTRAN 77 Interface
Single: CALL LSCXD (N, NZ, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB, INZSUB,

MAXNZ, ILNZ, IPER, INVPER, ISPACE)

Double: The double precision name is DLSCXD.

Example
As an example, the following matrix is symbolically factorized, and the result is printed:

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

A

� �
� �
� �
� ��
� �
� �
� �� �

The number of nonzeros in the lower triangle of A is nz= 10. The sparse coordinate form for the
lower triangle of A is given by:

irow 1 2 3 3 4 4 5 5 5 5

jcol 1 2 1 3 3 4 1 2 4 5

or equivalently by

irow 4 5 5 5 1 2 3 3 4 5

jcol 4 1 2 4 1 2 1 3 3 5
 USE LSCXD_INT
 USE WRIRN_INT
 INTEGER N, NZ
 PARAMETER (N=5, NZ=10)
!
 INTEGER ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&
 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,&
 NZSUB(3*NZ)
!
 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/
 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
 MAXSUB = 3 * NZ

330 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER,&
 MAXSUB=MAXSUB, IPER=IPER)
! Print results
 CALL WRIRN (’ iper ’, IPER, 1, N, 1)
 CALL WRIRN (’ invper ’,INVPER, 1, N, 1)
 CALL WRIRN (’ nzsub ’, NZSUB, 1, MAXSUB, 1)
 CALL WRIRN (’ inzsub ’, INZSUB, 1, N+1, 1)
 CALL WRIRN (’ ilnz ’, ILNZ, 1, N+1, 1)
 END

Output

 iper
1 2 3 4 5
2 1 5 4 3

 invper
1 2 3 4 5
2 1 5 4 3

 nzsub
1 2 3 4
3 5 4 5

 inzsub
1 2 3 4 5 6
1 1 3 4 4 4

 ilnz
1 2 3 4 5 6
1 2 4 6 7 7

Comments
1. Workspace may be explicitly provided, if desired, by use of L2CXD. The reference is:

CALL L2CXD (N, NZ, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ,
IPER, INVPER, ISPACE, LIWK, IWK)

The additional arguments are as follows:

LIWK — The length of IWK, LIWK should be at least 10N + 12NZ + 7. Note that the
argument MAXSUB should be set to (LIWK � 10N � 7)/4.

IWK — Integer work vector of length LIWK.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors
Type Code

4 1 The matrix is structurally singular.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 331

Description
Consider the linear equation

Ax = b

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix
A requires one real and two integer vectors. The real array a contains all the nonzeros in the
lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer
arrays irow and jcol, each of length nz, contain the row and column indices for these entries
in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

irow(i) � jcol(i) i = 1, �, nz

with all other entries in the lower triangle of A zero.

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set
up the sparse data structure for the Cholesky factor, L. Then the routine LNFXD (page 331)
produces the numerical entries in L so that we have

P APT= LLT

Here, P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs
the factorization using a multifrontal technique. This option requires more storage but in certain
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse compressed
storage scheme.

LNFXD
Computes the numerical Cholesky factorization of a sparse symmetrical matrix A.

Required Arguments
A — Vector of length NZ containing the nonzero coefficients of the lower triangle of the

linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in
the lower triangle of A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in the lower triangle of A. (Input)

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine
LSCXD/DLSCXD. (Input)

332 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

NZSUB — Vector of length MAXSUB containing the row subscripts for the nonzeros in the
Cholesky factor in compressed format as output from subroutine LSCXD/DLSCXD.
(Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine
LSCXD/DLSCXD. (Input)
The row subscripts for the nonzeros in column J are stored from location INZSUB (J)
to INZSUB(J + 1) � 1.

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD. (Input)

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as output from
subroutine LSCXD/DLSCXD. (Input)
The row subscripts for the nonzeros in column J of the factor are stored from location
ILNZ(J) to ILNZ(J + 1) � 1. (ILNZ, NZSUB, INZSUB) sets up the compressed data
structure in column ordered form for the Cholesky factor.

IPER — Vector of length N containing the permutation as output from subroutine
LSCXD/DLSCXD. (Input)

INVPER — Vector of length N containing the inverse permutation as output from subroutine
LSCXD/DLSCXD. (Input)

ISPACE — The storage space needed for the stack of frontal matrices as output from
subroutine LSCXD/DLSCXD. (Input)

DIAGNL — Vector of length N containing the diagonal of the factor. (Output)

RLNZ — Vector of length MAXNZ containing the strictly lower triangle nonzeros of the
Cholesky factor. (Output)

RPARAM — Parameter vector containing factorization information. (Output)
RPARAM(1) = smallest diagonal element.
RPARAM(2) = largest diagonal element.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (IPER,1).

NZ — The number of nonzero coefficients in the linear system. (Input)
Default: NZ = size (A,1).

IJOB — Integer parameter selecting factorization method. (Input)
IJOB = 1 yields factorization in sparse column format.
IJOB = 2 yields factorization using multifrontal method.
Default: IJOB = 1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 333

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero.
Default: ITWKSP = 0.

FORTRAN 90 Interface
Generic: CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, IPER,

INVPER, ISPACE, DIAGNL, RLNZ, RPARAM [,…])

Specific: The specific interface names are S_LNFXD and D_LNFXD.

FORTRAN 77 Interface
Single: CALL LNFXD (N, NZ, A, IROW, JCOL, IJOB, ITWKSP, MAXSUB, NZSUB, INZSUB,

MAXNZ, ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAGNL, RLNZ, RPARAM)

Double: The double precision name is DLNFXD.

Example
As an example, consider the 5 � 5 linear system:

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

A

� �
� �
� �
� ��
� �
� �
� �� �

The number of nonzeros in the lower triangle of A is nz = 10. The sparse coordinate form for
the lower triangle of A is given by:

irow 1 2 3 3 4 4 5 5 5 5
jcol 1 2 1 3 3 4 1 2 4 5
a 10 20 1 30 4 40 2 3 5 50

or equivalently by

irow 4 5 5 5 1 2 3 3 4 5
jcol 4 1 2 4 1 2 1 3 3 5
a 40 2 3 5 10 20 1 30 4 50

We first call LSCXD, page 327, to produce the symbolic information needed to pass on to LNFXD.
Then call LNFXD to factor this matrix. The results are displayed below.

 USE LNFXD_INT
 USE LSCXD_INT
 USE WRRRN_INT
 INTEGER N, NZ, NRLNZ

334 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 PARAMETER (N=5, NZ=10, NRLNZ=10)

!

 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&

 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,&

 NZSUB(3*NZ)

 REAL A(NZ), DIAGNL(N), RLNZ(NRLNZ), RPARAM(2) , R(N,N)

!

 DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./

 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/

 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/

! Select minimum degree ordering

! for multifrontal method

 IJOB = 3

! Use default workspace

 MAXSUB = 3*NZ

 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, &

 MAXSUB=MAXSUB)

! Check if NRLNZ is large enough

 IF (NRLNZ .GE. MAXNZ) THEN

! Choose multifrontal method

 IJOB = 2

 CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, &
 ILNZ,IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, &

 IJOB=IJOB)
! Print results

 CALL WRRRN (' diagnl ', DIAGNL, NRA=1, NCA=N, LDA=1)

 CALL WRRRN (' rlnz ', RLNZ, NRA= 1, NCA= MAXNZ, LDA= 1)

 END IF

!

! Construct L matrix
 DO I=1,N
! Diagonal
 R(I,I) = DIAG(I)
 IF (ILNZ(I) .GT. MAXNZ) GO TO 50
! Find elements of RLNZ for this column
 ISTRT = ILNZ(I)
 ISTOP = ILNZ(I+1) - 1
! Get starting index for NZSUB
 K = INZSUB(I)
 DO J=ISTRT, ISTOP
! NZSUB(K) is the row for this element of
 RLNZ
 R((NZSUB(K)),I) = RLNZ(J)
 K = K + 1

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 335

 END DO
 END DO
 50 CONTINUE
 CALL WRRRN ('L', R, NRA=N, NCA=N)

 END

Output
 diagnl
 1 2 3 4 5
4.472 3.162 7.011 6.284 5.430

 rlnz

 1 2 3 4 5 6

0.6708 0.6325 0.3162 0.7132 -0.0285 0.6398

 L
 1 2 3 4 5
 1 4.472 0.000 0.000 0.000 0.000
 2 0.000 3.162 0.000 0.000 0.000
 3 0.671 0.632 7.011 0.000 0.000
 4 0.000 0.000 0.713 6.284 0.000
 5 0.000 0.316 -0.029 0.640 5.430

Comments
1. Workspace may be explicitly provided by use of L2FXD/DL2FXD . The reference is:

CALL L2FXD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ,
IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

WK — Real work vector of length LWK.

LWK — The length of WK, LWK should be at least N + 3NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 2N.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors
Type Code

4 1 The coefficient matrix is not positive definite.
4 2 A column without nonzero elements has been found in the coefficient

matrix.

336 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Description
Consider the linear equation

Ax = b

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix
A requires one real and two integer vectors. The real array a contains all the nonzeros in the
lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer
arrays irow and jcol, each of length nz, contain the row and column indices for these entries
in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

irow(i) � jcol(i) i = 1, �, nz

with all other entries in the lower triangle of A zero. The routine LNFXD produces the Cholesky
factorization of P APTgiven the symbolic factorization of A which is computed by LSCXD (page
327). That is, this routine computes L which satisfies

P APT= LLT

The diagonal of L is stored in DIAGNL and the strictly lower triangular part of L is stored in
compressed subscript form in R = RLNZ as follows. The nonzeros in the j-th column of L are
stored in locations R(i), �, R(i + k) where i = ILNZ(j) and k = ILNZ(j + 1) � ILNZ(j) � 1. The
row subscripts are stored in the vector NZSUB from locations INZSUB(j) to INZSUB(j) + k.

The numerical computations can be carried out in one of two ways. The first method (when
IJOB = 2) performs the factorization using a multifrontal technique. This option requires more
storage but in certain cases will be faster. The multifrontal method is based on the routines in
Liu (1987). For detailed description of this method, see Liu (1990), also Duff and Reid (1983,
1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method (when
IJOB = 1) is fully described in George and Liu (1981). This is just the standard factorization
method based on the sparse compressed storage scheme.

LFSXD
Solves a real sparse symmetric positive definite system of linear equations, given the Cholesky
factorization of the coefficient matrix.

Required Arguments
N — Number of equations. (Input)

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine
LSCXD/DLSCXD. (Input)

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal
nonzeros in the factor as output from subroutine LSCXD/DLSCXD. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 337

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine
LSCXD/DLSCXD. (Input)
The row subscripts of column J are stored from location INZSUB(J) to INZSUB(J + 1)
� 1.

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as output from
subroutine LSCXD/DLSCXD. (Input)

RLNZ — Vector of length MAXNZ containing the off-diagonal nonzeros in the factor in
column ordered format as output from subroutine LNFXD/DLNFXD. (Input)

ILNZ — Vector of length N + 1 containing pointers to RLNZ as output from subroutine
LSCXD/DLSCXD. The nonzeros in column J of the factor are stored from location
ILNZ(J) to ILNZ(J + 1) � 1. (Input)
The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the factor
in a compressed subscript data format.

DIAGNL — Vector of length N containing the diagonals of the Cholesky factor as output
from subroutine LNFXD/DLNFXD. (Input)

IPER — Vector of length N containing the ordering as output from subroutine
LSCXD/DLSCXD. (Input)
IPER(I) = K indicates that the original row K is the new row I.

B — Vector of length N containing the right-hand side. (Input)

X — Vector of length N containing the solution. (Output)

FORTRAN 90 Interface
Generic: CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,

IPER, B, X)

Specific: The specific interface names are S_LFSXD and D_LFSXD.

FORTRAN 77 Interface
Single: CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,

IPER, B, X)

Double: The double precision name is DLFSXD.

Example
As an example, consider the 5 � 5 linear system:

338 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

10 0 1 0 2
0 20 0 0 3
1 0 30 4 0
0 0 4 40 5
2 3 0 5 50

A

� �
� �
� �
� ��
� �
� �
� �� �

Let

� �1 1, 2,3, 4,5Tx �

so that Ax� = (23, 55, 107, 197, 278)T, and

� �2 5,4,3,2,1Tx �

so that Ax� = (55, 83, 103, 97, 82)T. The number of nonzeros in the lower triangle of A is
nz = 10. The sparse coordinate form for the lower triangle of A is given by:

irow 1 2 3 3 4 4 5 5 5 5
jcol 1 2 1 3 3 4 1 2 4 5
a 10 20 1 30 4 40 2 3 5 50

or equivalently by

irow 4 5 5 5 1 2 3 3 4 5
jcol 4 1 2 4 1 2 1 3 3 5
a 40 2 3 5 10 20 1 30 4 50

 USE LFSXD_INT
 USE LNFXD_INT
 USE LSCXD_INT
 USE WRRRN_INT

 INTEGER N, NZ, NRLNZ
 PARAMETER (N=5, NZ=10, NRLNZ=10)
!
 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&
 IROW(NZ), ISPACE, ITWKSP, JCOL(NZ), MAXNZ, MAXSUB,&
 NZSUB(3*NZ)
 REAL A(NZ), B1(N), B2(N), DIAGNL(N), RLNZ(NRLNZ), RPARAM(2),&
 X(N)
!
 DATA A/10., 20., 1., 30., 4., 40., 2., 3., 5., 50./
 DATA B1/23., 55., 107., 197., 278./
 DATA B2/55., 83., 103., 97., 82./
 DATA IROW/1, 2, 3, 3, 4, 4, 5, 5, 5, 5/
 DATA JCOL/1, 2, 1, 3, 3, 4, 1, 2, 4, 5/
! Select minimum degree ordering
! for multifrontal method
 IJOB = 3
! Use default workspace
 ITWKSP = 0
 MAXSUB = 3*NZ

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 339

 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, &
 MAXSUB=MAXSUB, IPER=IPER, ISPACE=ISPACE)
! Check if NRLNZ is large enough
 IF (NRLNZ .GE. MAXNZ) THEN
! Choose multifrontal method
 IJOB = 2

 CALL LNFXD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ,&
 IPER, INVPER,ISPACE, DIAGNL, RLNZ, RPARAM, IJOB=IJOB)

! Solve A * X1 = B1
 CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,&
 IPER, B1, X)
! Print X1
 CALL WRRRN (’ x1 ’, X, 1, N, 1)
! Solve A * X2 = B2
 CALL LFSXD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, &
 DIAGNL, IPER, B2, X)
! Print X2
 CALL WRRRN (’ x2 ’ X, 1, N, 1)
 END IF
!
 END

Output

 x1
 1 2 3 4 5
1.000 2.000 3.000 4.000 5.000

 x2
 1 2 3 4 5
5.000 4.000 3.000 2.000 1.000

Comments
Informational error

Type Code

4 1 The input matrix is numerically singular.

Description
Consider the linear equation

Ax = b

where A is sparse, positive definite and symmetric. The sparse coordinate format for the matrix
A requires one real and two integer vectors. The real array a contains all the nonzeros in the
lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two integer
arrays irow and jcol, each of length nz, contain the row and column indices for these entries
in A. That is

Airowi�,icol�i� = a(i), i = 1, �, nz

340 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

irow(i) � jcol(i) i = 1, �, nz

with all other entries in the lower triangle of A zero.

The routine LFSXD computes the solution of the linear system given its Cholesky factorization.
The factorization is performed by calling LSCXD (page 327) followed by LNFXD (page 331). The
routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set up
the sparse data structure for the Cholesky factor, L. Then the routine LNFXD produces the
numerical entries in L so that we have

P APT= LLT

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs
the factorization using a multifrontal technique. This option requires more storage but in certain
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse compressed
storage scheme.

Finally, the solution x is obtained by the following calculations:

1) Ly� = Pb

2) LTy� = y�

3) x = PTy��

LSLZD
Solves a complex sparse Hermitian positive definite system of linear equations by Gaussian
elimination.

Required Arguments
A — Complex vector of length NZ containing the nonzero coefficients in the lower triangle of

the linear system. (Input)
The sparse matrix has nonzeroes only in entries (IROW (i), JCOL(i)) for i = 1 to NZ, and
at this location the sparse matrix has value A(i).

IROW — Vector of length NZ containing the row numbers of the corresponding elements in
the lower triangle of A. (Input)
Note IROW(i) � JCOL(i), since we are only indexing the lower triangle.

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in the lower triangle of A. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 341

X — Complex vector of length N containing the solution to the linear system. (Output)

Optional Arguments
N — Number of equations. (Input)

Default: N = size (B,1).

NZ — The number of nonzero coefficients in the lower triangle of the linear system. (Input)
Default: NZ = size (A,1).

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero.
Default: ITWKSP = 0.

FORTRAN 90 Interface
Generic: CALL LSLZD (A, IROW, JCOL, B, X [,…])

Specific: The specific interface names are S_LSLZD and D_LSLZD.

FORTRAN 77 Interface
Single: CALL LSLZD (N, NZ, A, IROW, JCOL, B, ITWKSP, X)

Double: The double precision name is DLSLZD.

Example
As an example, consider the 3 � 3 linear system:

2 0 1 0
1 4 0 1 2

0 1 2 10 0

i i
A i i i

i i

� � �� �
� �� � � � �� �
� �� �� 	

Let xT = (1 + i� 2 + 2i, 3 + 3i) so that Ax = (�2 + 2i, 5 + 15i, 36 + 28i)T. The number of
nonzeros in the lower triangle of A is nz = 5. The sparse coordinate form for the lower triangle
of A is given by:

irow 1 2 3 2 3
jcol 1 2 3 1 2
a 2 0 4 0 10 0 1 1 2i i i i i� � � � � �

or equivalently by

irow 3 2 3 1 2
jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i� � � � � �

342 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 USE LSLZD_INT
 USE WRCRN_INT

 INTEGER N, NZ
 PARAMETER (N=3, NZ=5)
!
 INTEGER IROW(NZ), JCOL(NZ)
 COMPLEX A(NZ), B(N), X(N)
!
 DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/
 DATA B/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/
 DATA IROW/1, 2, 3, 2, 3/
 DATA JCOL/1, 2, 3, 1, 2/
! Solve A * X = B
 CALL LSLZD (A, IROW, JCOL, B, X)
! Print results
 CALL WRCRN (’ x ’, X, 1, N, 1)
 END

Output

 x
 1 2 3
(1.000, 1.000) (2.000, 2.000) (3.000, 3.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LZD/DL2LZD. The

reference is:

CALL L2LZD (N, NZ, A, IROW, JCOL, B, X, IPER, IPARAM, RPARAM, WK, LWK, IWK,
LIWK)

The additional arguments are as follows:

IPER — Vector of length N containing the ordering.

IPARAM — Integer vector of length 4. See Comment 3.

RPARAM — Real vector of length 2. See Comment 3.

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least 2N + 6NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 15N + 15NZ + 9.

Note that the parameter ITWKSP is not an argument for this routine.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 343

2. Informational errors
Type Code

4 1 The coefficient matrix is not positive definite.
4 2 A column without nonzero elements has been found in the coefficient

matrix.

3. If the default parameters are desired for L2LZD, then set IPARAM(1) to zero and call the
routine L2LZD. Otherwise, if any nondefault parameters are desired for IPARAM or
RPARAM, then the following steps should be taken before calling L2LZD.

CALL L4LZD (IPARAM, RPARAM)
Set nondefault values for desired IPARAM, RPARAM elements.

Note that the call to L4LZD will set IPARAM and RPARAM to their default values, so only
nondefault values need to be set above. The arguments are as follows:

IPARAM — Integer vector of length 4.
IPARAM(1) = Initialization flag.

IPARAM(2) = The numerical factorization method.
IPARAM(2) Action
0 Multifrontal
1 Sparse column
Default: 0.

IPARAM(3) = The ordering option.
IPARAM(3) Action
0 Minimum degree ordering
1 User’s ordering specified in IPER
Default: 0.

IPARAM(4) = The total number of nonzeros in the factorization matrix.

RPARAM — Real vector of length 2.
RPARAM(1) = The absolute value of the largest diagonal element in the Cholesky
factorization.
RPARAM(2) = The absolute value of the smallest diagonal element in the Cholesky
factorization.

If double precision is required, then DL4LZD is called and RPARAM is declared double
precision.

Description
Consider the linear equation

Ax = b

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix
A requires one complex and two integer vectors. The complex array a contains all the nonzeros
in the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two
integer arrays irow and jcol, each of length nz, contain the row and column indices for these
entries in A. That is

344 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Airow�i�,icol�i� = a(i), i = 1, �, nz

irow(i) � jcol(i) i = 1, �, nz

with all other entries in the lower triangle of A zero.

The routine LSLZD solves a system of linear algebraic equations having a complex, sparse,
Hermitian and positive definite coefficient matrix. It first uses the routine LSCXD (page 327) to
compute a symbolic factorization of a permutation of the coefficient matrix. It then calls LNFZD
(page 344) to perform the numerical factorization. The solution of the linear system is then
found using LFSZD (page 349).

The routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set
up the sparse data structure for the Cholesky factor, L. Then the routine LNFZD produces the
numerical entries in L so that we have

P APT= LLH

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs
the factorization using a multifrontal technique. This option requires more storage but in certain
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse compressed
storage scheme.

Finally, the solution x is obtained by the following calculations:

1) Ly� = Pb

2) LH y� = y�

3) x = PT y�

The routine LFSZD accepts b and the permutation vector which determines P . It then returns x.

LNFZD
Computes the numerical Cholesky factorization of a sparse Hermitian matrix A.

Required Arguments
A — Complex vector of length NZ containing the nonzero coefficients of the lower triangle of

the linear system. (Input)

IROW — Vector of length NZ containing the row numbers of the corresponding elements in
the lower triangle of A. (Input)

JCOL — Vector of length NZ containing the column numbers of the corresponding elements
in the lower triangle of A. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 345

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine
LSCXD/DLSCXD. (Input)

NZSUB — Vector of length MAXSUB containing the row subscripts for the nonzeros in the
Cholesky factor in compressed format as output from subroutine LSCXD/DLSCXD.
(Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine
LSCXD/DLSCXD. (Input)
The row subscripts for the nonzeros in column J are stored from location INZSUB(J) to
INZSUB(J + 1) � 1.

MAXNZ — Length of RLNZ as output from subroutine LSCXD/DLSCXD. (Input)

ILNZ — Vector of length N + 1 containing pointers to the Cholesky factor as output from
subroutine LSCXD/DLSCXD. (Input)
The row subscripts for the nonzeros in column J of the factor are stored from location
ILNZ(J) to ILNZ(J + 1) � 1.
(ILNZ , NZSUB, INZSUB) sets up the compressed data structure in column ordered form
for the Cholesky factor.

IPER — Vector of length N containing the permutation as output from subroutine
LSCXD/DLSCXD. (Input)

INVPER — Vector of length N containing the inverse permutation as output from subroutine
LSCXD/DLSCXD. (Input)

ISPACE — The storage space needed for the stack of frontal matrices as output from
subroutine LSCXD/DLSCXD. (Input)

DIAGNL — Complex vector of length N containing the diagonal of the factor. (Output)

RLNZ — Complex vector of length MAXNZ containing the strictly lower triangle nonzeros of
the Cholesky factor. (Output)

RPARAM — Parameter vector containing factorization information. (Output)
RPARAM (1) = smallest diagonal element in absolute value.
RPARAM (2) = largest diagonal element in absolute value.

Optional Arguments
N — Number of equations. (Input)

Default: N = size (IPER,1).

NZ — The number of nonzero coefficients in the linear system. (Input)
Default: NZ = size (A,1).

346 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

IJOB — Integer parameter selecting factorization method. (Input)
IJOB = 1 yields factorization in sparse column format.
IJOB = 2 yields factorization using multifrontal method.
Default: IJOB = 1.

ITWKSP — The total workspace needed. (Input)
If the default is desired, set ITWKSP to zero. See Comment 1 for the default.
Default: ITWKSP = 0.

FORTRAN 90 Interface
Generic: CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ, IPER,

 INVPER, ISPACE, DIAGNL, RLNZ, RPARAM [,…])

Specific: The specific interface names are S_LNFZD and D_LNFZD.

FORTRAN 77 Interface
Single: CALL LNFZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ,

ILNZ, IPER, INVPER, ISPACE, ITWKSP, DIAGNL, RLNZ, RPARAM)

Double: The double precision name is DLNFZD.

Example
As an example, consider the 3 � 3 linear system:

2 0 1 0
1 4 0 1 2

0 1 2 10 0

i i
A i i i

i i

� � �� �
� �� � � � �� �
� �� �� 	

The number of nonzeros in the lower triangle of A is nz = 5. The sparse coordinate form for the
lower triangle of A is given by:

irow 1 2 3 2 3
jcol 1 2 3 1 2

a 2 0 4 0 10 0 1 1 2i i i i i� � � � � �

or equivalently by

irow 3 2 3 1 2
jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i� � � � � �

We first call LSCXD to produce the symbolic information needed to pass on to LNFZD. Then call
LNFZD to factor this matrix. The results are displayed below.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 347

 USE LNFZD_INT
 USE LSCXD_INT
 USE WRCRN_INT

 INTEGER N, NZ, NRLNZ
 PARAMETER (N=3, NZ=5, NRLNZ=5)
!
 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&
 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,&
 NZSUB(3*NZ)
 REAL RPARAM(2)
 COMPLEX A(NZ), DIAGNL(N), RLNZ(NRLNZ)
!
 DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/
 DATA IROW/1, 2, 3, 2, 3/
 DATA JCOL/1, 2, 3, 1, 2/
! Select minimum degree ordering
! for multifrontal method
 IJOB = 3
 MAXSUB = 3*NZ
 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, &
 IJOB=IJOB, MAXSUB=MAXSUB)
! Check if NRLNZ is large enough
 IF (NRLNZ .GE. MAXNZ) THEN
! Choose multifrontal method
 IJOB = 2

 CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB, MAXNZ, &
 ILNZ, IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, &
 IJOB=IJOB)
! Print results
 CALL WRCRN (’ diagnl ’, DIAGNL, 1, N, 1)
 CALL WRCRN (’ rlnz ’, RLNZ, 1, MAXNZ, 1)
 END IF
!
 END

Output

 diagnl
 1 2 3
(1.414, 0.000) (1.732, 0.000) (2.887, 0.000)

 rlnz
 1 2
(-0.707,-0.707) (0.577,-1.155)

Comments
1. Workspace may be explicitly provided by use of L2FZD/DL2FZD. The reference is:

CALL L2FZD (N, NZ, A, IROW, JCOL, IJOB, MAXSUB, NZSUB, INZSUB, MAXNZ, ILNZ,
IPER, INVPER, ISPACE, DIAGNL, RLNZ, RPARAM, WK, LWK, IWK, LIWK)

The additional arguments are as follows:

348 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

WK — Complex work vector of length LWK.

LWK — The length of WK, LWK should be at least N + 3NZ.

IWK — Integer work vector of length LIWK.

LIWK — The length of IWK, LIWK should be at least 2N.

Note that the parameter ITWKSP is not an argument to this routine.

2. Informational errors
Type Code

 4 1 The coefficient matrix is not positive definite.
 4 2 A column without nonzero elements has been found in the coefficient

matrix.

Description
Consider the linear equation

Ax = b

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix
A requires one complex and two integer vectors. The complex array a contains all the nonzeros
in the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two
integer arrays irow and jcol, each of length nz, contain the row and column indices for these
entries in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

irow(i) � jcol(i) i = 1, �, nz

with all other entries in the lower triangle of A zero.

The routine LNFZD produces the Cholesky factorization of P APT given the symbolic
factorization of A which is computed by LSCXD (page 327). That is, this routine computes L
which satisfies

P APT= LLH

The diagonal of L is stored in DIAGNL and the strictly lower triangular part of L is stored in
compressed subscript form in R = RLNZ as follows. The nonzeros in the jth column of L are
stored in locations R(i), �, R(i + k) where i = ILNZ(j) and k = ILNZ(j + 1) � ILNZ(j) � 1. The
row subscripts are stored in the vector NZSUB from locations INZSUB(j) to INZSUB(j) + k.

The numerical computations can be carried out in one of two ways. The first method (when
IJOB = 2) performs the factorization using a multifrontal technique. This option requires more
storage but in certain cases will be faster. The multifrontal method is based on the routines in
Liu (1987). For detailed description of this method, see Liu (1990), also Duff and Reid (1983,
1984), Ashcraft (1987), Ashcraft et al. (1987), and Liu (1986, 1989). The second method (when

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 349

IJOB = 1) is fully described in George and Liu (1981). This is just the standard factorization
method based on the sparse compressed storage scheme.

LFSZD
Solves a complex sparse Hermitian positive definite system of linear equations, given the
Cholesky factorization of the coefficient matrix.

Required Arguments
N — Number of equations. (Input)

MAXSUB — Number of subscripts contained in array NZSUB as output from subroutine
LSCXD/DLSCXD. (Input)

NZSUB — Vector of length MAXSUB containing the row subscripts for the off-diagonal
nonzeros in the factor as output from subroutine LSCXD/DLSCXD. (Input)

INZSUB — Vector of length N + 1 containing pointers for NZSUB as output from subroutine
LSCXD/DLSCXD. (Input)
The row subscripts of column J are stored from location INZSUB(J) to INZSUB
(J + 1) � 1.

MAXNZ — Total number of off-diagonal nonzeros in the Cholesky factor as output from
subroutine LSCXD/DLSCXD. (Input)

RLNZ — Complex vector of length MAXNZ containing the off-diagonal nonzeros in the factor
in column ordered format as output from subroutine LNFZD/DLNFZD. (Input)

ILNZ — Vector of length N +1 containing pointers to RLNZ as output from subroutine
LSCXD/DLSCXD. The nonzeros in column J of the factor are stored from location
ILNZ(J) to ILNZ(J + 1) � 1. (Input)
The values (RLNZ, ILNZ, NZSUB, INZSUB) give the off-diagonal nonzeros of the factor
in a compressed subscript data format.

DIAGNL — Complex vector of length N containing the diagonals of the Cholesky factor as
output from subroutine LNFZD/DLNFZD. (Input)

IPER — Vector of length N containing the ordering as output from subroutine
LSCXD/DLSCXD. (Input)
IPER(I) = K indicates that the original row K is the new row I.

B — Complex vector of length N containing the right-hand side. (Input)

X — Complex vector of length N containing the solution. (Output)

350 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL LFSZD (N, MAXZUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,

 IPER, B, X)

Specific: The specific interface names are S_LFSZD and D_LFSZD.

FORTRAN 77 Interface
Single: CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ,

DIAGNL, IPER, B, X)

Double: The double precision name is DLFSZD.

Example
As an example, consider the 3 � 3 linear system:

2 0 1 0
1 4 0 1 2

0 1 2 10 0

i i
A i i i

i i

� � �� �
� �� � � � �� �
� �� �� 	

Let

� �1 1 ,2 2 ,3 3Tx i i i� � � �

so that Ax� = (�2 + 2i, 5 + 15i, 36 + 28i)T, and

� �2 3 3 ,2 2 ,1 1Tx i i i� � � �

so that Ax� = (2 + 6i, 7 � 5i, 16 + 8i)T. The number of nonzeros in the lower triangle of A is
nz = 5. The sparse coordinate form for the lower triangle of A is given by:

irow 1 2 3 2 3
jcol 1 2 3 1 2

a 2 0 4 0 10 0 1 1 2i i i i i� � � � � �

or equivalently by

irow 3 2 3 1 2
jcol 3 1 2 1 2

a 10 0 1 1 2 2 0 4 0i i i i i� � � � � �

 USE IMSL_LIBRARIES

 INTEGER N, NZ, NRLNZ
 PARAMETER (N=3, NZ=5, NRLNZ=5)
!
 INTEGER IJOB, ILNZ(N+1), INVPER(N), INZSUB(N+1), IPER(N),&
 IROW(NZ), ISPACE, JCOL(NZ), MAXNZ, MAXSUB,&

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 351

 NZSUB(3*NZ)
 COMPLEX A(NZ), B1(N), B2(N), DIAGNL(N), RLNZ(NRLNZ), X(N)
 REAL RPARAM(2)
!
 DATA A/(2.0,0.0), (4.0,0.0), (10.0,0.0), (-1.0,-1.0), (1.0,-2.0)/
 DATA B1/(-2.0,2.0), (5.0,15.0), (36.0,28.0)/
 DATA B2/(2.0,6.0), (7.0,5.0), (16.0,8.0)/
 DATA IROW/1, 2, 3, 2, 3/
 DATA JCOL/1, 2, 3, 1, 2/
! Select minimum degree ordering
! for multifrontal method
 IJOB = 3
! Use default workspace
 MAXSUB = 3*NZ
 CALL LSCXD (IROW, JCOL, NZSUB, INZSUB, MAXNZ, ILNZ, INVPER, &
 IJOB=IJOB, MAXSUB=MAXSUB, IPER=IPER, ISPACE=ISPACE)
! Check if NRLNZ is large enough
 IF (NRLNZ .GE. MAXNZ) THEN
! Choose multifrontal method
 IJOB = 2
 CALL LNFZD (A, IROW, JCOL, MAXSUB, NZSUB, INZSUB,&
 MAXNZ, ILNZ, IPER, INVPER, ISPACE, DIAGNL,&
 RLNZ, RPARAM, IJOB=IJOB)
! Solve A * X1 = B1
 CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,&
 IPER, B1, X)
! Print X1
 CALL WRCRN (’ x1 ’, X, 1, N,1)
! Solve A * X2 = B2
 CALL LFSZD (N, MAXSUB, NZSUB, INZSUB, MAXNZ, RLNZ, ILNZ, DIAGNL,&
 IPER, B2, X)
! Print X2
 CALL WRCRN (’ x2 ’, X, 1, N,1)
 END IF
!
 END

Output

 x1
 1 2 3
(1.000, 1.000) (2.000, 2.000) (3.000, 3.000)

 x2
 1 2 3
(3.000, 3.000) (2.000, 2.000) (1.000, 1.000)

Comments
Informational error

Type Code

4 1 The input matrix is numerically singular.

352 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Description
Consider the linear equation

Ax = b

where A is sparse, positive definite and Hermitian. The sparse coordinate format for the matrix
A requires one complex and two integer vectors. The complex array a contains all the nonzeros
in the lower triangle of A including the diagonal. Let the number of nonzeros be nz. The two
integer arrays irow and jcol, each of length nz, contain the row and column indices for these
entries in A. That is

Airow�i�,icol�i� = a(i), i = 1, �, nz

irow(i) � jcol(i) i = 1, �, nz

with all other entries in the lower triangle of A zero.

The routine LFSZD computes the solution of the linear system given its Cholesky factorization.
The factorization is performed by calling LSCXD (page 327) followed by LNFZD (page 344). The
routine LSCXD computes a minimum degree ordering or uses a user-supplied ordering to set up
the sparse data structure for the Cholesky factor, L. Then the routine LNFZD produces the
numerical entries in L so that we have

P APT = LLH

Here P is the permutation matrix determined by the ordering.

The numerical computations can be carried out in one of two ways. The first method performs
the factorization using a multifrontal technique. This option requires more storage but in certain
cases will be faster. The multifrontal method is based on the routines in Liu (1987). For detailed
description of this method, see Liu (1990), also Duff and Reid (1983, 1984), Ashcraft (1987),
Ashcraft et al. (1987), and Liu (1986, 1989). The second method is fully described in George
and Liu (1981). This is just the standard factorization method based on the sparse compressed
storage scheme. Finally, the solution x is obtained by the following calculations:

1) Ly� = Pb

 2) LH y� = y�

3) x = PT y��

LSLTO
Solves a complex sparse Hermitian positive definite system of linear equations, given the
Cholesky factorization of the coefficient matrix.

Required Arguments
A — Real vector of length 2N � 1 containing the first row of the coefficient matrix followed

by its first column beginning with the second element. (Input)
See Comment 2.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 353

B — Real vector of length N containing the right-hand side of the linear system. (Input)

X — Real vector of length N containing the solution of the linear system. (Output)
If B is not needed then B and X may share the same storage locations.

Optional Arguments
N — Order of the matrix represented by A. (Input)

Default: N = (size (A,1) +1)/2

IPATH — Integer flag. (Input)
IPATH = 1 means the system Ax = B is solved.
IPATH = 2 means the system AT x = B is solved.
Default: IPATH =1.

FORTRAN 90 Interface
Generic: CALL LSLTO (A, B, X [,…])

Specific: The specific interface names are S_LSLTO and D_LSLTO.

FORTRAN 77 Interface
Single: CALL LSLTO (N, A, B, IPATH, X)

Double: The double precision name is DLSLTO.

Example
A system of four linear equations is solved. Note that only the first row and column of the
matrix A are entered.

 USE LSLTO_INT
 USE WRRRN_INT

! Declare variables
 INTEGER N
 PARAMETER (N=4)
 REAL A(2*N-1), B(N), X(N)
! Set values for A, and B
!
! A = (2 -3 -1 6)
! (1 2 -3 -1)
! (4 1 2 -3)
! (3 4 1 2)
!
! B = (16 -29 -7 5)
!
 DATA A/2.0, -3.0, -1.0, 6.0, 1.0, 4.0, 3.0/
 DATA B/16.0, -29.0, -7.0, 5.0/
! Solve AX = B

354 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL LSLTO (A, B, X)
! Print results
 CALL WRRRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3 4
-2.000 -1.000 7.000 4.000

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LTO/DL2LTO. The

reference is:

CALL L2LTO (N, A, B, IPATH, X, WK)

The additional argument is:

WK — Work vector of length 2N � 2.

2. Because of the special structure of Toeplitz matrices, the first row and the first column
of a Toeplitz matrix completely characterize the matrix. Hence, only the elements
A(1, 1), �, A(1, N), A(2, 1), �, A(N, 1) need to be stored.

Description
Toeplitz matrices have entries that are constant along each diagonal, for example,

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

p p p p
p p p p

A
p p p p
p p p p

�

� �

� � �

� �
� �
� ��
� �
� �
� �� �

The routine LSLTO is based on the routine TSLS in the TOEPLITZ package, see Arushanian et
al. (1983). It is based on an algorithm of Trench (1964). This algorithm is also described by
Golub and van Loan (1983), pages 125�133.

LSLTC
Solves a complex Toeplitz linear system.

Required Arguments
A — Complex vector of length 2N � 1 containing the first row of the coefficient matrix

followed by its first column beginning with the second element. (Input)
See Comment 2.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 355

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

X — Complex vector of length N containing the solution of the linear system. (Output)

Optional Arguments
N — Order of the matrix represented by A. (Input)

Default: N = size (A,1).

IPATH — Integer flag. (Input)
IPATH = 1 means the system Ax = B is solved.
IPATH = 2 means the system ATx = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSLTC (A, B, X [,…])

Specific: The specific interface names are S_LSLTC and D_LSLTC.

FORTRAN 77 Interface
Single: CALL LSLTC (N, A, B, IPATH, X)

Double: The double precision name is DLSLTC.

Example
A system of four complex linear equations is solved. Note that only the first row and column of
the matrix A are entered.

 USE LSLTC_INT
 USE WRCRN_INT

! Declare variables
 PARAMETER (N=4)
 COMPLEX A(2*N-1), B(N), X(N)
! Set values for A and B
!
! A = (2+2i -3 1+4i 6-2i)
! (i 2+2i -3 1+4i)
! (4+2i i 2+2i -3)
! (3-4i 4+2i i 2+2i)
!
! B = (6+65i -29-16i 7+i -10+i)
!
 DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0), (0.0,1.0),&
 (4.0,2.0), (3.0,-4.0)/
 DATA B/(6.0,65.0), (-29.0,-16.0), (7.0,1.0), (-10.0,1.0)/
! Solve AX = B
 CALL LSLTC (A, B, X)

356 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
 END

Output

 X
 1 2 3 4
(-2.000, 0.000) (-1.000,-5.000) (7.000, 2.000) (0.000, 4.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LTC/DL2LTC. The

reference is:

CALL L2LTC (N, A, B, IPATH, X, WK)

The additional argument is

WK — Complex work vector of length 2N � 2.

2. Because of the special structure of Toeplitz matrices, the first row and the first column
of a Toeplitz matrix completely characterize the matrix. Hence, only the elements A(1,
1), �, A(1, N), A(2, 1), �, A(N, 1) need to be stored.

Description
Toeplitz matrices have entries which are constant along each diagonal, for example,

0 1 2 4

1 0 1 2

2 1 0 1

3 2 1 0

p p p p
p p p p

A
p p p p
p p p p

�

� �

� � �

� �
� �
� ��
� �
� �
� �� �

The routine LSLTC is based on the routine TSLC in the TOEPLITZ package, see Arushanian et
al. (1983). It is based on an algorithm of Trench (1964). This algorithm is also described by
Golub and van Loan (1983), pages 125�133.�

LSLCC
Solves a complex circulant linear system.

Required Arguments
A — Complex vector of length N containing the first row of the coefficient matrix. (Input)

B — Complex vector of length N containing the right-hand side of the linear system. (Input)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 357

X — Complex vector of length N containing the solution of the linear system. (Output)

Optional Arguments
N — Order of the matrix represented by A. (Input)

Default: N = size (A,1).

IPATH — Integer flag. (Input)
IPATH = 1 means the system Ax = B is solved.
IPATH = 2 means the system ATx = B is solved.
Default: IPATH = 1.

FORTRAN 90 Interface
Generic: CALL LSLCC (A, B, X [,…])

Specific: The specific interface names are S_LSLCC and D_LSLCC.

FORTRAN 77 Interface
Single: CALL LSLCC (N, A, B, IPATH, X)

Double: The double precision name is DLSLCC.

Example
A system of four linear equations is solved. Note that only the first row of the matrix A is
entered.

 USE LSLCC_INT
 USE WRCRN_INT

! Declare variables
 INTEGER N
 PARAMETER (N=4)
 COMPLEX A(N), B(N), X(N)
! Set values for A, and B
!
! A = (2+2i -3+0i 1+4i 6-2i)
!
! B = (6+65i -41-10i -8-30i 63-3i)
!
 DATA A/(2.0,2.0), (-3.0,0.0), (1.0,4.0), (6.0,-2.0)/
 DATA B/(6.0,65.0), (-41.0,-10.0), (-8.0,-30.0), (63.0,-3.0)/
! Solve AX = B (IPATH = 1)
 CALL LSLCC (A, B, X)
! Print results
 CALL WRCRN (’X’, X, 1, N, 1)
 END

358 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Output

 1 2 3 4
(-2.000, 0.000) (-1.000,-5.000) (7.000, 2.000) (0.000, 4.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LCC/DL2LCC. The

reference is:

CALL L2LCC (N, A, B, IPATH, X, ACOPY, WK)

The additional arguments are as follows:

ACOPY — Complex work vector of length N. If A is not needed, then A and ACOPY
may be the same.

WK — Work vector of length 6N + 15.

2. Informational error
Type Code

4 2 The input matrix is singular.

3. Because of the special structure of circulant matrices, the first row of a circulant matrix
completely characterizes the matrix. Hence, only the elements A(1, 1), �, A(1, N) need
to be stored.

Description
Circulant matrices have the property that each row is obtained by shifting the row above it one
place to the right. Entries that are shifted off at the right re-enter at the left. For example,

1 2 3 4

4 1 2 3

3 4 1 2

2 3 4 1

p p p p
p p p p

A
p p p p
p p p p

� �
� �
� ��
� �
� �
� �� �

If qk = p�k and the subscripts on p and q are interpreted modulo N, then

1 1
1 1

() ()
N N

j i j i j i i i
i i

Ax p x q x q x
� � � �

� �

� � � �� �

where q * x is the convolution of q and x. By the convolution theorem, if q * x = b, then

ˆˆ ˆ ˆ, where q x b q� �

is the discrete Fourier transform of q as computed by the IMSL routine FFTCF and � denotes
elementwise multiplication. By division,

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 359

ˆˆ ˆx b q� �

where � denotes elementwise division. The vector x is recovered from

x̂

through the use of IMSL routine FFTCB.

To solve AT x = b, use the vector p instead of q in the above algorithm.

PCGRC
Solves a real symmetric definite linear system using a preconditioned conjugate gradient method
with reverse communication.

Required Arguments
IDO — Flag indicating task to be done. (Input/Output)

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set Z = AP,
where A is the matrix, and call PCGRC again. If the routine returns with IDO = 2, then
set Z to the solution of the system MZ = R, where M is the preconditioning matrix, and
call PCGRC again. If the routine returns with IDO = 3, then the iteration has converged
and X contains the solution.

X — Array of length N containing the solution. (Input/Output)
On input, X contains the initial guess of the solution. On output, X contains the solution
to the system.

P — Array of length N. (Output)
Its use is described under IDO.

R — Array of length N. (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it
contains the residual.

Z — Array of length N. (Input)
When IDO = 1, it contains AP, where A is the linear system. When IDO = 2, it contains
the solution of MZ = R, where M is the preconditioning matrix. When
IDO = 0, it is ignored. Its use is described under IDO.

Optional Arguments
N — Order of the linear system. (Input)

Default: N = size (X,1).

RELERR — Relative error desired. (Input)
Default: RELERR = 1.e-5 for single precision and 1.d-10 for double precision.

360 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

ITMAX — Maximum number of iterations allowed. (Input)
Default: ITMAX = N.

FORTRAN 90 Interface
Generic: CALL PCGRC (IDO, X, P, R, Z [,…])

Specific: The specific interface names are S_PCGRC and D_LPCGRC.

FORTRAN 77 Interface
Single: CALL PCGRC (IDO, N, X, P, R, Z, RELERR, ITMAX)

Double: The double precision name is DPCGRC.

Example
In this example, the solution to a linear system is found. The coefficient matrix A is stored as a
full matrix. The preconditioning matrix is the diagonal of A. This is called the Jacobi
preconditioner. It is also used by the IMSL routine JCGRC on page 365.

 USE PCGRC_INT
 USE MURRV_INT
 USE WRRRN_INT
 USE SCOPY_INT

 INTEGER LDA, N
 PARAMETER (N=3, LDA=N)
!
 INTEGER IDO, ITMAX, J
 REAL A(LDA,N), B(N), P(N), R(N), X(N), Z(N)
! (1, -3, 2)
! A = (-3, 10, -5)
! (2, -5, 6)
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
! B = (27.0, -78.0, 64.0)
 DATA B/27.0, -78.0, 64.0/
! Set R to right side
 CALL SCOPY (N, B, 1, R, 1)
! Initial guess for X is B
 CALL SCOPY (N, B, 1, X, 1)
!
 ITMAX = 100
 IDO = 0
 10 CALL PCGRC (IDO, X, P, R, Z, ITMAX=ITMAX)
 IF (IDO .EQ. 1) THEN
! Set z = Ap
 CALL MURRV (A, P, Z)
 GO TO 10
 ELSE IF (IDO .EQ. 2) THEN
! Use diagonal of A as the
! preconditioning matrix M
! and set z = inv(M)*r

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 361

 DO 20 J=1, N
 Z(J) = R(J)/A(J,J)
 20 CONTINUE
 GO TO 10
 END IF
! Print the solution
 CALL WRRRN (’Solution’, X)
!
 END

Output

Solution
1 1.001
2 -4.000
3 7.000

Comments
1. Workspace may be explicitly provided, if desired, by use of P2GRC/DP2GRC. The

reference is:

CALL P2GRC (IDO, N, X, P, R, Z, RELERR, ITMAX, TRI, WK, IWK)

The additional arguments are as follows:

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix (in band
symmetric form) whose largest eigenvalue is approximately the same as the
largest eigenvalue of the iteration matrix. The workspace arrays TRI, WK and
IWK should not be changed between the initial call with IDO = 0 and
PCGRC/DPCGRC returning with IDO = 3.

WK — Workspace of length 5 * ITMAX.

IWK — Workspace of length ITMAX.

2. Informational errors
Type Code

4 1 The preconditioning matrix is singular.
4 2 The preconditioning matrix is not definite.
4 3 The linear system is not definite.
4 4 The linear system is singular.
4 5 No convergence after ITMAX iterations.

Description
Routine PCGRC solves the symmetric definite linear system Ax = b using the preconditioned
conjugate gradient method. This method is described in detail by Golub and Van Loan (1983,
Chapter 10), and in Hageman and Young (1981, Chapter 7).

362 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

The preconditioning matrix, M, is a matrix that approximates A, and for which the linear system
Mz = r is easy to solve. These two properties are in conflict; balancing them is a topic of much
current research.

The number of iterations needed depends on the matrix and the error tolerance RELERR. As a
rough guide, ITMAX = N��� is often sufficient when N >> 1. See the references for further
information.

Let M be the preconditioning matrix, let b, p, r, x and z be vectors and let � be the desired
relative error. Then the algorithm used is as follows.

 = �1

p� = x�

r� = b � Ap

For k = 1, �, itmax

 zk = M��rk

 If k = 1 then

 �k = 1

 pk = zk

Else

 1 1/T T
k k k k kz r z r�

� �

�

 k k k kp z p�� �

 End if

 1 1 /
k

T T
k k k k k

k k k k

k k k k

z Ap

z r z p
x x p
r r z

�

�

�

� �

�

�

� �

� �

 If (||zk||� � �(1 �)||xk||�) Then
 Recompute

 If (||zk||� � �(1 �)||xk||�) Exit

 End if end loop

Here is an estimate of 	(G), the largest eigenvalue of the iteration matrix G = I � M�� A.
The stopping criterion is based on the result (Hageman and Young, 1981, pages 148�151)

max

1
1 ()

k M k M

M k M

x x z
x G x�

�

�

�

Where

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 363

2 T
Mx x Mx�

It is known that

� � � � � �max 1 max 2 max 1T T G� � �� � � ��

where the Tn are the symmetric, tridiagonal matrices

1 2

2 2 3

3 3 4
nT

� �

� � �

� � �

� �
� �
� ��
� �
� �
� �� �� � �

with

1 1 11 / 1/ , 1 1/k k k k� � � � � �
�

� � � � �

and

1/k k k� � �
�

�

The largest eigenvalue of Tk is found using the routine EVASB. Usually this eigenvalue
computation is needed for only a few of the iterations.

Example 2
In this example, a more complicated preconditioner is used to find the solution of a linear
system which occurs in a finite-difference solution of Laplace’s equation on a 4 � 4 grid. The
matrix is

4 1 0 1
1 4 1 0 1

0 1 4 1 0 1
1 0 1 4 1 0 1

1 0 1 4 1 0 1
1 0 1 4 1 0 1

1 0 1 4 1 0
1 0 1 4 1

1 0 1 4

A

� �� �
� �� � �� �
� �� � �
� �
� � � �� �
� �� � � � �
� �

� � � �� �
� �� � �
� �

� � �� �
� �

� �� �� �

The preconditioning matrix M is the symmetric tridiagonal part of A,

364 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

4 1
1 4 1

1 4 1
1 4 1

1 4 1
1 4 1

1 4 1
1 4 1

1 4

M

�� �
� �� �� �
� �� �
� �

� �� �
� �� � �
� �

� �� �
� �� �
� �

� �� �
� �

�� �� �

Note that M, called PRECND in the program, is factored once.
 USE IMSL_LIBRARIES
 INTEGER LDA, LDPRE, N, NCODA, NCOPRE
 PARAMETER (N=9, NCODA=3, NCOPRE=1, LDA=2*NCODA+1,&
 LDPRE=NCOPRE+1)
!
 INTEGER IDO, ITMAX
 REAL A(LDA,N), P(N), PRECND(LDPRE,N), PREFAC(LDPRE,N),&
 R(N), RCOND, RELERR, X(N), Z(N)
! Set A in band form
 DATA A/3*0.0, 4.0, -1.0, 0.0, -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0,&
 -1.0, 2*0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0,&
 4.0, -1.0, 0.0, -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0,&
 -1.0, -1.0, 0.0, -1.0, 4.0, -1.0, 0.0, -1.0, -1.0, 0.0,&
 -1.0, 4.0, -1.0, 2*0.0, -1.0, 0.0, -1.0, 4.0, -1.0, 2*0.0,&
 -1.0, 0.0, -1.0, 4.0, 3*0.0/
! Set PRECND in band symmetric form
 DATA PRECND/0.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0,&
 -1.0, 4.0, -1.0, 4.0, -1.0, 4.0, -1.0, 4.0/
! Right side is (1, ..., 1)
 R = 1.0E0
! Initial guess for X is 0
 X = 0.0E0
! Factor the preconditioning matrix
 CALL LFCQS (PRECND, NCOPRE, PREFAC, RCOND)
!
 ITMAX = 100
 RELERR = 1.0E-4
 IDO = 0
 10 CALL PCGRC (IDO, X, P, R, Z, RELERR=RELERR, ITMAX=ITMAX)
 IF (IDO .EQ. 1) THEN
! Set z = Ap
 CALL MURBV (A, NCODA, NCODA, P, Z)
 GO TO 10
 ELSE IF (IDO .EQ. 2) THEN
! Solve PRECND*z = r for r
 CALL LSLQS (PREFAC, NCOPRE, R, Z)
 GO TO 10
 END IF
! Print the solution
 CALL WRRRN (’Solution’, X)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 365

!
 END

Output

Solution
1 0.955
2 1.241
3 1.349
4 1.578
5 1.660
6 1.578
7 1.349
8 1.241
9 0.955

JCGRC
Solves a real symmetric definite linear system using the Jacobi-preconditioned conjugate gradient
method with reverse communication.

Required Arguments
IDO — Flag indicating task to be done. (Input/Output)

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set
Z = A � P, where A is the matrix, and call JCGRC again. If the routine returns with IDO =
2, then the iteration has converged and X contains the solution.

DIAGNL — Vector of length N containing the diagonal of the matrix. (Input)
Its elements must be all strictly positive or all strictly negative.

X — Array of length N containing the solution. (Input/Output)
On input, X contains the initial guess of the solution. On output, X contains the solution
to the system.

P — Array of length N. (Output)
Its use is described under IDO.

R — Array of length N. (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it
contains the residual.

Z — Array of length N. (Input)
When IDO = 1, it contains AP, where A is the linear system. When IDO = 0, it is
ignored. Its use is described under IDO.

366 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Optional Arguments
N — Order of the linear system. (Input)

Default: N = size (X,1).

RELERR — Relative error desired. (Input)
Default: RELERR = 1.e-5 for single precision and 1.d-10 for double precision.

ITMAX — Maximum number of iterations allowed. (Input)
Default: ITMAX = 100.

FORTRAN 90 Interface
Generic: CALL JCGRC (IDO, DIAGNL, X, P, R, Z [,…])

Specific: The specific interface names are S_JCGRC and D_JPCGRC.

FORTRAN 77 Interface
Single: CALL JCGRC (IDO, N, DIAGNL, X, P, R, Z, RELERR, ITMAX)

Double: The double precision name is DJCGRC.

Example
In this example, the solution to a linear system is found. The coefficient matrix A is stored as a
full matrix.

 USE IMSL_LIBRARIES

 INTEGER LDA, N
 PARAMETER (LDA=3, N=3)
!
 INTEGER IDO, ITMAX
 REAL A(LDA,N), B(N), DIAGNL(N), P(N), R(N), X(N), &
 Z(N)
! (1, -3, 2)
! A = (-3, 10, -5)
! (2, -5, 6)
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
! B = (27.0, -78.0, 64.0)
 DATA B/27.0, -78.0, 64.0/
! Set R to right side
 CALL SCOPY (N, B, 1, R, 1)
! Initial guess for X is B
 CALL SCOPY (N, B, 1, X, 1)
! Copy diagonal of A to DIAGNL
 CALL SCOPY (N, A(:, 1), LDA+1, DIAGNL, 1)
! Set parameters
 ITMAX = 100
 IDO = 0
 10 CALL JCGRC (IDO, DIAGNL, X, P, R, Z, ITMAX=ITMAX)
 IF (IDO .EQ. 1) THEN

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 367

! Set z = Ap
 CALL MURRV (A, P, Z)
 GO TO 10
 END IF
! Print the solution
 CALL WRRRN (’Solution’, X)
!
 END

Output

Solution
1 1.001
2 -4.000
3 7.000

Comments
1. Workspace may be explicitly provided, if desired, by use of J2GRC/DJ2GRC. The

reference is:

CALL J2GRC (IDO, N, DIAGNL, X, P, R, Z, RELERR, ITMAX, TRI, WK, IWK)

The additional arguments are as follows:

TRI — Workspace of length 2 * ITMAX containing a tridiagonal matrix (in band
symmetric form) whose largest eigenvalue is approximately the same as the
largest eigenvalue of the iteration matrix. The workspace arrays TRI, WK and
IWK should not be changed between the initial call with IDO = 0 and
JCGRC/DJCGRC returning with IDO = 2.

WK — Workspace of length 5 * ITMAX.

IWK — Workspace of length ITMAX.

2. Informational errors
Type Code

4 1 The diagonal contains a zero.
4 2 The diagonal elements have different signs.
4 3 No convergence after ITMAX iterations.
4 4 The linear system is not definite.
4 5 The linear system is singular.

Description
Routine JCGRC solves the symmetric definite linear system Ax = b using the Jacobi conjugate
gradient method. This method is described in detail by Golub and Van Loan (1983, Chapter 10),
and in Hageman and Young (1981, Chapter 7).

368 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

This routine is a special case of the routine PCGRC, with the diagonal of the matrix A used as the
preconditioning matrix. For details of the algorithm see PCGRC, page 359.

The number of iterations needed depends on the matrix and the error tolerance RELERR. As a
rough guide, ITMAX = N is often sufficient when N » 1. See the references for further
information.

GMRES
Uses the Generalized Minimal Residual Method with reverse communication to generate an
approximate solution of Ax = b.

Required Arguments
IDO— Flag indicating task to be done. (Input/Output)

On the initial call IDO must be 0. If the routine returns with IDO = 1, then set Z = AP,
where A is the matrix, and call GMRES again. If the routine returns with IDO = 2, then
set Z to the solution of the system MZ = P, where M is the preconditioning matrix, and
call GMRES again. If the routine returns with IDO = 3, set Z = AM-1P, and call GMRES
again. If the routine returns with IDO = 4, the iteration has converged, and X contains
the approximate solution to the linear system.

X — Array of length N containing an approximate solution. (Input/Output)
On input, X contains an initial guess of the solution. On output, X contains the
approximate solution.

P — Array of length N. (Output)
Its use is described under IDO.

R — Array of length N. (Input/Output)
On initial input, it contains the right-hand side of the linear system. On output, it
contains the residual, b � Ax.

Z — Array of length N. (Input)
When IDO = 1, it contains AP, where A is the coefficient matrix. When IDO = 2, it
contains M-1P. When IDO = 3, it contains AM-1P. When IDO = 0, it is ignored.

TOL — Stopping tolerance. (Input/Output)
The algorithm attempts to generate a solution x such that |b � Ax| � TOL*|b|. On output,
TOL contains the final residual norm.

Optional Arguments
N — Order of the linear system. (Input)

Default: N = size (X,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 369

FORTRAN 90 Interface
Generic: CALL GMRES (IDO, X, P, R, Z, TOL [,…])

Specific: The specific interface names are S_GMRES and D_GMRES.

FORTRAN 77 Interface
Single: CALL GMRES (IDO, N, X, P, R, Z, TOL)

Double: The double precision name is DGMRES.

Example 1
This is a simple example of GMRES usage. A solution to a small linear system is found. The
coefficient matrix A is stored as a full matrix, and no preconditioning is used. Typically,
preconditioning is required to achieve convergence in a reasonable number of iterations.

 USE IMSL_LIBRARIES
! Declare variables
 INTEGER LDA, N
 PARAMETER (N=3, LDA=N)
! Specifications for local variables
 INTEGER IDO, NOUT
 REAL P(N), TOL, X(N), Z(N)
 REAL A(LDA,N), R(N)
 SAVE A, R
! Specifications for intrinsics
 INTRINSIC SQRT
 REAL SQRT
! (33.0 16.0 72.0)
! A = (-24.0 -10.0 -57.0)
! (18.0 -11.0 7.0)
!
! B = (129.0 -96.0 8.5)
!
 DATA A/33.0, -24.0, 18.0, 16.0, -10.0, -11.0, 72.0, -57.0, 7.0/
 DATA R/129.0, -96.0, 8.5/
!
 CALL UMACH (2, NOUT)
!
! Initial guess = (0 ... 0)
!
 X = 0.0E0
! Set stopping tolerance to
! square root of machine epsilon
 TOL = AMACH(4)
 TOL = SQRT(TOL)
 IDO = 0
 10 CONTINUE
 CALL GMRES (IDO, X, P, R, Z, TOL)
 IF (IDO .EQ. 1) THEN
! Set z = A*p
 CALL MURRV (A, P, Z)

370 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 GO TO 10
 END IF
!
 CALL WRRRN ('Solution', X, 1, N, 1)
 WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL
 END

Output

 Solution
 1 2 3
1.000 1.500 1.000
Residual = 0.29746E-05

Comments
1. Workspace may be explicitly provided, if desired, by use of G2RES/DG2RES. The

reference is:

CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, USRNPR, USRNRM, WORK)

The additional arguments are as follows:

INFO — Integer vector of length 10 used to change parameters of GMRES.
(Input/Output).

For any components INFO(1) ... INFO(7) with value zero on input, the default value
is used.
INFO(1) = IMP, the flag indicating the desired implementation.

IMP Action
1 first Gram-Schmidt implementation
2 second Gram-Schmidt implementation
3 first Householder implementation
4 second Householder implementation
Default: IMP = 1

INFO(2) = KDMAX, the maximum Krylor subspace dimension, i.e., the maximum
allowable number of GMRES iterations before restarting. It must satisfy
1 � KDMAX � N.
Default: KDMAX = min(N, 20)

INFO(3) = ITMAX, the maximum number of GMRES iterations allowed.
Default: ITMAX = 1000

INFO(4) = IRP, the flag indicating whether right preconditioning is used.
If IRP = 0, no right preconditioning is performed. If IRP = 1, right
preconditioning is performed. If IRP = 0, then IDO = 2 or 3 will not occur.
Default: IRP = 0

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 371

INFO(5) = IRESUP, the flag that indicates the desired residual vector updating prior to
restarting or on termination.

IRESUP Action

1 update by linear combination, restarting only

2 update by linear combination, restarting and termination

3 update by direct evaluation, restarting only

4 update by direct evaluation, restarting and termination

Updating by direct evaluation requires an otherwise unnecessary matrix-vector
product. The alternative is to update by forming a linear combination of various
available vectors. This may or may not be cheaper and may be less reliable if the
residual vector has been greatly reduced. If IRESUP = 2 or 4, then the residual vector
is returned in WORK(1), ..., WORK(N). This is useful in some applications but costs
another unnecessary residual update. It is recommended that IRESUP = 1 or 2 be used,
unless matrix-vector products are inexpensive or great residual reduction is required.
In this case use IRESUP = 3 or 4. The meaning of “inexpensive” varies with IMP as
follows:
IMP �

1 (KDMAX + 1) *N flops

2 N flops

3 (2*KDMAX + 1) *N flops

4 (2*KDMAX + 1) *N flops

“Great residual reduction” means that TOL is only a few orders of magnitude larger
than machine epsilon.
Default: IRESUP = 1

INFO(6) = flag for indicating the inner product and norm used in the Gram-Schmidt
implementations. If INFO(6) = 0, sdot and snrm2, from BLAS, are used. If
INFO(6) = 1, the user must provide the routines, as specified under arguments
USRNPR and USRNRM.
Default: INFO(6) = 0

INFO(7) = IPRINT, the print flag. If IPRINT = 0, no printing is performed. If
IPRINT = 1, print the iteration numbers and residuals.
Default: IPRINT = 0

INFO(8) = the total number of GMRES iterations on output.

INFO(9) = the total number of matrix-vector products in GMRES on output.

INFO(10) = the total number of right preconditioner solves in GMRES on output if
IRP = 1.

USRNPR — User-supplied FUNCTION to use as the inner product in the Gram-
Schmidt implementation, if INFO(6) = 1. If INFO(6) = 0, the dummy function
G8RES/DG8RES may be used. The usage is

372 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

REAL FUNCTION USRNPR (N, SX, INCX, SY, INCY)

N — Length of vectors X and Y. (Input)

SX — Real vector of length MAX(N*IABS(INCX),1). (Input)

INCX — Displacement between elements of SX. (Input)
X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or
SX(1+(I-N)*INCX) if INCX is less than 0.

SY — Real vector of length MAX(N*IABS(INXY),1). (Input)

INCY — Displacement between elements of SY. (Input)
Y(I) is defined to be SY(1+(I-1)*INCY) if INCY is greater than 0, or
SY(1+(I-N)*INCY) if INCY is less than zero.
USRNPR must be declared EXTERNAL in the calling program.

USRNRM — User-supplied FUNCTION to use as the norm ||X|| in the Gram-Schmidt
implementation, if INFO(6) = 1. If INFO(6) = 0, the dummy function
G9RES/DG9RES may be used.The usage is
REAL FUNCTION USRNRM (N, SX, INCX)

N — Length of vectors X and Y. (Input)

SX — Real vector of length MAX(N*IABS(INCX),1). (Input)

INCX — Displacement between elements of SX. (Input)
X(I) is defined to be SX(1+(I-1)*INCX) if INCX is greater than 0, or
SX(1+(I-N)*INCX) if INCX is less than 0.
USRNRM must be declared EXTERNAL in the calling program.

WORK — Work array whose length is dependent on the chosen implementation.

IMP length of WORK
1 N*(KDMAX + 2) + KDMAX**2 + 3 *KDMAX + 2

2 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 1

3 N*(KDMAX + 2) + 3 *KDMAX + 2

4 N*(KDMAX + 2) + KDMAX**2 + 2 *KDMAX + 2

Description
The routine GMRES implements restarted GMRES with reverse communication to generate an
approximate solution to Ax = b. It is based on GMRESD by Homer Walker.

There are four distinct GMRES implementations, selectable through the parameter vector INFO.
The first Gram-Schmidt implementation, INFO(1) = 1, is essentially the original algorithm by
Saad and Schultz (1986). The second Gram-Schmidt implementation, developed by Homer
Walker and Lou Zhou, is simpler than the first implementation. The least squares problem is
constructed in upper-triangular form and the residual vector updating at the end of a GMRES
cycle is cheaper. The first Householder implementation is algorithm 2.2 of Walker (1988), but
with more efficient correction accumulation at the end of each GMRES cycle. The second
Householder implementation is algorithm 3.1 of Walker (1988). The products of Householder

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 373

transformations are expanded as sums, allowing most work to be formulated as large scale
matrix-vector operations. Although BLAS are used wherever possible, extensive use of Level 2
BLAS in the second Householder implementation may yield a performance advantage on
certain computing environments.

The Gram-Schmidt implementations are less expensive than the Householder, the latter
requiring about twice as much arithmetic beyond the coefficient matrix/vector products.
However, the Householder implementations may be more reliable near the limits of residual
reduction. See Walker (1988) for details. Issues such as the cost of coefficient matrix/vector
products, availability of effective preconditioners, and features of particular computing
environments may serve to mitigate the extra expense of the Householder implementations.

Additional Examples

Example 2
This example solves a linear system with a coefficient matrix stored in coordinate form, the
same problem as in the document example for LSLXG, page 297. Jacobi preconditioning is used,
i.e. the preconditioning matrix M is the diagonal matrix with Mii = Aii, for i = 1, �, n.

 USE IMSL_LIBRARIES
 INTEGER N, NZ

 PARAMETER (N=6, NZ=15)

! Specifications for local variables
 INTEGER IDO, INFO(10), NOUT
 REAL P(N), TOL, WORK(1000), X(N), Z(N)
 REAL DIAGIN(N), R(N)
! Specifications for intrinsics
 INTRINSIC SQRT
 REAL SQRT
! Specifications for subroutines
 EXTERNAL AMULTP
! Specifications for functions
 EXTERNAL G8RES, G9RES
!
 DATA DIAGIN/0.1, 0.1, 0.0666667, 0.1, 1.0, 0.16666667/
 DATA R/10.0, 7.0, 45.0, 33.0, -34.0, 31.0/
!
 CALL UMACH (2, NOUT)
! Initial guess = (1 ... 1)
 X = 1.0E0
! Set up the options vector INFO
! to use preconditioning
 INFO = 0
 INFO(4) = 1
! Set stopping tolerance to
! square root of machine epsilon
 TOL = AMACH(4)
 TOL = SQRT(TOL)
 IDO = 0
 10 CONTINUE
 CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)

374 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 IF (IDO .EQ. 1) THEN
! Set z = A*p
 CALL AMULTP (P, Z)
 GO TO 10
 ELSE IF (IDO .EQ. 2) THEN
!
! Set z = inv(M)*p
! The diagonal of inv(M) is stored
! in DIAGIN
!
 CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1)
 GO TO 10
 ELSE IF (IDO .EQ. 3) THEN
!
! Set z = A*inv(M)*p
!
 CALL SHPROD (N, DIAGIN, 1, P, 1, Z, 1)
 P = Z

 CALL AMULTP (P, Z)
 GO TO 10
 END IF
!
 CALL WRRRN ('Solution', X)
 WRITE (NOUT,'(A11, E15.5)') 'Residual = ', TOL
 END
!
 SUBROUTINE AMULTP (P, Z)
 USE IMSL_LIBRARIES
 INTEGER NZ
 PARAMETER (NZ=15)
! SPECIFICATIONS FOR ARGUMENTS
 REAL P(*), Z(*)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER N
 PARAMETER (N=6)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I
 INTEGER IROW(NZ), JCOL(NZ)
 REAL A(NZ)
 SAVE A, IROW, JCOL
! SPECIFICATIONS FOR SUBROUTINES
! Define the matrix A
!
 DATA A/6.0, 10.0, 15.0, -3.0, 10.0, -1.0, -1.0, -3.0, -5.0, 1.0, &
 10.0, -1.0, -2.0, -1.0, -2.0/
 DATA IROW/6, 2, 3, 2, 4, 4, 5, 5, 5, 5, 1, 6, 6, 2, 4/
 DATA JCOL/6, 2, 3, 3, 4, 5, 1, 6, 4, 5, 1, 1, 2, 4, 1/
!
 CALL SSET(N, 0.0, Z, 1)
! Accumulate the product A*p in z
 DO 10 I=1, NZ
 Z(IROW(I)) = Z(IROW(I)) + A(I)*P(JCOL(I))
 10 CONTINUE
 RETURN
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 375

Output
 Solution
1 1.000
2 2.000
3 3.000
4 4.000
5 5.000
6 6.000
Residual = 0.25882E-05

Example 3
The coefficient matrix in this example corresponds to the five-point discretization of the 2-d
Poisson equation with the Dirichlet boundary condition. Assuming the natural ordering of the
unknowns, and moving all boundary terms to the right hand side, we obtain the block
tridiagonal matrix

T I
I

A
I

I T

�� �
� ��� ��
� ��
� �

�� �� �

� �

� �

where

4 1
1

1
1 4

T

�� �
� ��� ��
� ��
� �

�� �� �

� �

� �

and I is the identity matrix. Discretizing on a k � k grid implies that T and I are both k � k, and
thus the coefficient matrix A is k2 � k2.

The problem is solved twice, with discretization on a 50 � 50 grid. During both solutions, use
the second Householder implementation to take advantage of the large scale matrix/vector
operations done in Level 2 BLAS. Also choose to update the residual vector by direct evaluation
since the small tolerance will require large residual reduction.

The first solution uses no preconditioning. For the second solution, we construct a block
diagonal preconditioning matrix

T
M

T

� �
� �� � �
� �� �

�

M is factored once, and these factors are used in the forward solves and back substitutions
necessary when GMRES returns with IDO = 2 or 3.

Timings are obtained for both solutions, and the ratio of the time for the solution with no
preconditioning to the time for the solution with preconditioning is printed. Though the exact

376 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

results are machine dependent, we see that the savings realized by faster convergence from
using a preconditioner exceed the cost of factoring M and performing repeated forward and back
solves.

 USE IMSL_LIBRARIES
 INTEGER K, N
 PARAMETER (K=50, N=K*K)
! Specifications for local variables
 INTEGER IDO, INFO(10), IR(20), IS(20), NOUT
 REAL A(2*N), B(2*N), C(2*N), G8RES, G9RES, P(2*N), R(N), &
 TNOPRE, TOL, TPRE, U(2*N), WORK(100000), X(N), &
 Y(2*N), Z(2*N)
! Specifications for subroutines
 EXTERNAL AMULTP, G8RES, G9RES
! Specifications for functions
 CALL UMACH (2, NOUT)
! Right hand side and initial guess
! to (1 ... 1)
 R = 1.0E0
 X = 1.0E0
! Use the 2nd Householder
! implementation and update the
! residual by direct evaluation
 INFO = 0
 INFO(1) = 4
 INFO(5) = 3
 TOL = AMACH(4)

 TOL = 100.0*TOL
 IDO = 0
! Time the solution with no
! preconditioning
 TNOPRE = CPSEC()
 10 CONTINUE
 CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)
 IF (IDO .EQ. 1) THEN
!
! Set z = A*p
!
 CALL AMULTP (K, P, Z)
 GO TO 10
 END IF
 TNOPRE = CPSEC() - TNOPRE
!
 WRITE (NOUT,'(A32, I4)') 'Iterations, no preconditioner = ', &
 INFO(8)
!
! Solve again using the diagonal blocks
! of A as the preconditioning matrix M
 R = 1.0E0
 X = 1.0E0
! Define M
 CALL SSET (N-1, -1.0, B, 1)
 CALL SSET (N-1, -1.0, C, 1)
 CALL SSET (N, 4.0, A, 1)
 INFO(4) = 1

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 377

 TOL = AMACH(4)
 TOL = 100.0*TOL
 IDO = 0
 TPRE = CPSEC()
! Compute the LDU factorization of M
!
 CALL LSLCR (C, A, B, Y, U, IR, IS, IJOB=6)
 20 CONTINUE
 CALL G2RES (IDO, N, X, P, R, Z, TOL, INFO, G8RES, G9RES, WORK)
 IF (IDO .EQ. 1) THEN
!
! Set z = A*p
!
 CALL AMULTP (K, P, Z)
 GO TO 20
 ELSE IF (IDO .EQ. 2) THEN
!
! Set z = inv(M)*p
!
 CALL SCOPY (N, P, 1, Z, 1)
 CALL LSLCR (C, A, B, Z, U, IR, IS, IJOB=5)
 GO TO 20
 ELSE IF (IDO .EQ. 3) THEN
!
! Set z = A*inv(M)*p
!
 CALL LSLCR (C, A, B, P, U, IR, IS, IJOB=5)
 CALL AMULTP (K, P, Z)
 GO TO 20
 END IF
 TPRE = CPSEC() - TPRE
 WRITE (NOUT,'(A35, I4)') 'Iterations, with preconditioning = ',&
 INFO(8)
 WRITE (NOUT,'(A45, F10.5)') '(Precondition time)/(No '// &
 'precondition time) = ', TPRE/TNOPRE
!
 END
!
 SUBROUTINE AMULTP (K, P, Z)
 USE IMSL_LIBRARIES
! Specifications for arguments
 INTEGER K
 REAL P(*), Z(*)
! Specifications for local variables
 INTEGER I, N
!
 N = K*K
! Multiply by diagonal blocks
!
 CALL SVCAL (N, 4.0, P, 1, Z, 1)
 CALL SAXPY (N-1, -1.0, P(2:(N-1)), 1, Z, 1)
 CALL SAXPY (N-1, -1.0, P, 1, Z(2:(N-1)), 1)
!
! Correct for terms not properly in
! block diagonal

378 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 DO 10 I=K, N - K, K
 Z(I) = Z(I) + P(I+1)
 Z(I+1) = Z(I+1) + P(I)
 10 CONTINUE
! Do the super and subdiagonal blocks,
! the -I's
!
 CALL SAXPY (N-K, -1.0, P((K+1):(N-K)), 1, Z, 1)
 CALL SAXPY (N-K, -1.0, P, 1, Z((K+1):(N-K)), 1)
!
 RETURN
 END

Output
Iterations, no preconditioner = 329
Iterations, with preconditioning = 192
(Precondition time)/(No precondition time) = 0.66278

LSQRR
Solves a linear least-squares problem without iterative refinement.

Required Arguments
A — NRA by NCA matrix containing the coefficient matrix of the least-squares system to be

solved. (Input)

B — Vector of length NRA containing the right-hand side of the least-squares system. (Input)

X — Vector of length NCA containing the solution vector with components corresponding to
the columns not used set to zero. (Output)

RES — Vector of length NRA containing the residual vector B � A * X. (Output)

KBASIS — Scalar containing the number of columns used in the solution.

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 379

TOL — Scalar containing the nonnegative tolerance used to determine the subset of columns
of A to be included in the solution. (Input)
If TOL is zero, a full complement of min(NRA, NCA) columns is used. See Comments.
Default: TOL = 0.0

FORTRAN 90 Interface
Generic: CALL LSQRR (A, B, X, RES, KBASIS [,…])

Specific: The specific interface names are S_LSQRR and D_LSQRR.

FORTRAN 77 Interface
Single: CALL LSQRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS)

Double: The double precision name is DLSQRR.

Example
Consider the problem of finding the coefficients ci in

f(x) = c� + c�x + c�x�

given data at x = 1, 2, 3 and 4, using the method of least squares. The row of the matrix A
contains the value of 1, x and x� at the data points. The vector b contains the data, chosen such
that c� � 1, c� � 2 and c� � 0. The routine LSQRR solves this least-squares problem.

 USE LSQRR_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (NRA=4, NCA=3, LDA=NRA)
 REAL A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL
!
! Set values for A
!
! A = (1 2 4)
! (1 4 16)
! (1 6 36)
! (1 8 64)
!
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
!
! Set values for B
!
 DATA B/ 4.999, 9.001, 12.999, 17.001 /
!
! Solve the least squares problem
 TOL = 1.0E-4
 CALL LSQRR (A, B, X, RES, KBASIS, TOL=TOL)
! Print results
 CALL UMACH (2, NOUT)

380 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 WRITE (NOUT,*) ’KBASIS = ’, KBASIS
 CALL WRRRN (’X’, X, 1, NCA, 1)
 CALL WRRRN (’RES’, RES, 1, NRA, 1)
!
 END

Output

KBASIS = 3

 X
 1 2 3
0.999 2.000 0.000

 RES
 1 2 3 4
-0.000400 0.001200 -0.001200 0.000400

Comments
1. Workspace may be explicitly provided, if desired, by use of L2QRR/DL2QRR. The

reference is:

CALL L2QRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS, QR, QRAUX, IPVT, WORK)

The additional arguments are as follows:

QR — Work vector of length NRA * NCA representing an NRA by NCA matrix that
contains information from the QR factorization of A. If A is not needed, QR can
share the same storage locations as A.

QRAUX — Work vector of length NCA containing information about the orthogonal
factor of the QR factorization of A.

IPVT — Integer work vector of length NCA containing the pivoting information for the
QR factorization of A.

WORK — Work vector of length 2 * NCA � 1.

2. Routine LSQRR calculates the QR decomposition with pivoting of a matrix A and tests
the diagonal elements against a user-supplied tolerance TOL. The first integer
KBASIS = k is determined for which

1, 1 11TOL *k kr r
� �

�

In effect, this condition implies that a set of columns with a condition number approximately
bounded by 1.0/TOL is used. Then, LQRSL performs a truncated fit of the first KBASIS
columns of the permuted A to an input vector B. The coefficient of this fit is unscrambled to
correspond to the original columns of A, and the coefficients corresponding to unused

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 381

columns are set to zero. It may be helpful to scale the rows and columns of A so that the error
estimates in the elements of the scaled matrix are roughly equal to TOL.

3. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2QRR the leading dimension of QR is increased by IVAL(3)
when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSQRR.
Additional memory allocation for QR and option value restoration are done
automatically in LSQRR. Users directly calling L2QRR can allocate additional
space for QR and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSQRR or L2QRR. Default values for the option are IVAL(*)
= 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSQRR temporarily replaces IVAL(2) by IVAL(1). The
routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG
skips this computation. LSQRR restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSQRR solves the linear least-squares problem. The routine LQRRR, page 392, is first
used to compute the QR decomposition of A. Pivoting, with all rows free, is used. Column k is
in the basis if

11kkR R��

with � = TOL. The truncated least-squares problem is then solved using IMSL routine LQRSL,
page 398. Finally, the components in the solution, with the same index as columns that are not
in the basis, are set to zero; and then, the permutation determined by the pivoting in IMSL
routine LQRRR is applied.

LQRRV
Computes the least-squares solution using Householder transformations applied in blocked form.

Required Arguments
A — Real LDA by (NCA + NUMEXC) array containing the matrix and right-hand sides. (Input)

The right-hand sides are input in A(1 : NRA, NCA + j), j = 1, �, NUMEXC. The array A
is preserved upon output. The Householder factorization of the matrix is computed and
used to solve the systems.

X — Real LDX by NUMEXC array containing the solution. (Output)

382 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Optional Arguments
NRA — Number of rows in the matrix. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in the matrix. (Input)
Default: NCA = size (A,2) - NUMEXC.

NUMEXC — Number of right-hand sides. (Input)
Default: NUMEXC = size (X,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDX — Leading dimension of the solution array X exactly as specified in the dimension
statement of the calling program. (Input)
Default: LDX = size (X,1).

FORTRAN 90 Interface
Generic: CALL LQRRV (A, X, [,…])

Specific: The specific interface names are S_LQRRV and D_LQRRV.

FORTRAN 77 Interface
Single: CALL LQRRV (NRA, NCA, NUMEXC, A, LDA, X, LDX)

Double: The double precision name is DLQRRV.

Example
Given a real m � k matrix B it is often necessary to compute the k least-squares solutions of the
linear system AX = B, where A is an m � n real matrix. When m > n the system is considered
overdetermined. A solution with a zero residual normally does not exist. Instead the
minimization problem

2
min

n
j

j j
x

Ax b
�

�

R

is solved k times where xj, bj are the j-th columns of the matrices X, B respectively. When A is of
full column rank there exits a unique solution XLS that solves the above minimization problem.
By using the routine LQRRV, XLS is computed.

 USE LQRRV_INT
 USE WRRRN_INT
 USE SGEMM_INT

! Declare variables
 INTEGER LDA, LDX, NCA, NRA, NUMEXC

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 383

 PARAMETER (NCA=3, NRA=5, NUMEXC=2, LDA=NRA, LDX=NCA)
! SPECIFICATIONS FOR LOCAL VARIABLES
 REAL X(LDX,NUMEXC)
! SPECIFICATIONS FOR SAVE VARIABLES
 REAL A(LDA,NCA+NUMEXC)
 SAVE A
! SPECIFICATIONS FOR SUBROUTINES
!
! Set values for A and the
! righthand sides.
!
! A = (1 2 4 | 7 10)
! (1 4 16 | 21 10)
! (1 6 36 | 43 9)
! (1 8 64 | 73 10)
! (1 10 100 | 111 10)
!
 DATA A/5*1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 4.0, 16.0, 36.0, 64.0, &
 100.0, 7.0, 21.0, 43.0, 73.0, 111.0, 2*10., 9., 2*10./
!
!
! QR factorization and solution
 CALL LQRRV (A, X)
 CALL WRRRN (’SOLUTIONS 1-2’, X)
! Compute residuals and print
 CALL SGEMM (’N’, ’N’, NRA, NUMEXC, NCA, 1.E0, A, LDA, X, LDX, &
 -1.E0, A(1:,(NCA+1):),LDA)
 CALL WRRRN (’RESIDUALS 1-2’, A(1:,(NCA+1):))
!
 END

Output

 SOLUTIONS 1-2
 1 2
1 1.00 10.80
2 1.00 -0.43
3 1.00 0.04

 RESIDUALS 1-2
 1 2
1 0.0000 0.0857
2 0.0000 -0.3429
3 0.0000 0.5143
4 0.0000 -0.3429
5 0.0000 0.0857

Comments
1. Workspace may be explicitly provided, if desired, by use of L2RRV/DL2RRV. The

reference is:

CALL L2RRV (NRA, NCA, NUMEXC, A, LDA, X, LDX, FACT, LDFACT, WK)

384 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

The additional arguments are as follows:

FACT — LDFACT � (NCA + NUMEXC) work array containing the Householder
factorization of the matrix on output. If the input data is not needed, A and FACT
can share the same storage locations.

LDFACT — Leading dimension of the array FACT exactly as specified in the
dimension statement of the calling program. (Input)
If A and FACT are sharing the same storage, then LDA = LDFACT is required.

WK — Work vector of length (NCA + NUMEXC + 1) * (NB + 1) . The default value is NB
= 1. This value can be reset. See item 3 below.

2. Informational errors
Type Code

4 1 The input matrix is singular.

3. Integer Options with Chapter 11 Options Manager

5 This option allows the user to reset the blocking factor used in computing the
factorization. On some computers, changing IVAL(*) to a value larger than 1
will result in greater efficiency. The value IVAL(*) is the maximum value to use.
(The software is specialized so that IVAL(*) is reset to an “optimal” used value
within routine L2RRV.) The user can control the blocking by resetting IVAL(*)
to a smaller value than the default. Default values are IVAL(*) = 1, IMACH(5).

6 This option is the vector dimension where a shift is made from in-line level-2
loops to the use of level-2 BLAS in forming the partial product of Householder
transformations. Default value is IVAL(*) = IMACH(5).

10 This option allows the user to control the factorization step. If the value is 1 the
Householder factorization will be computed. If the value is 2, the factorization
will not be computed. In this latter case the decomposition has already been
computed. Default value is IVAL(*) = 1.

11 This option allows the user to control the solving steps. The rules for IVAL(*)
are:
1. Compute b � QTb, and x � R�b.
2. Compute b � QTb.
3. Compute b � Qb.
4. Compute x � R�b.
Default value is IVAL (*) = 1. Note that IVAL (*) = 2 or 3 may only be set when
calling L2RRV/DL2RRV.

Description
Routine LSQRR solves the linear least-squares problem. The routine LQRRR, page 392, is first
used to compute the QR decomposition of A. Pivoting, with all rows free, is used. Column k is
in the basis if

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 385

11kkR R��

with � = TOL. The truncated least-squares problem is then solved using IMSL routine LQRSL,
page 398. Finally, the components in the solution, with the same index as columns that are not
in the basis, are set to zero; and then, the permutation determined by the pivoting in IMSL
routine LQRRR is applied.

LSBRR
Solves a linear least-squares problem with iterative refinement.

Required Arguments
A — Real NRA by NCA matrix containing the coefficient matrix of the least-squares system to

be solved. (Input)

B — Real vector of length NRA containing the right-hand side of the least-squares system.
(Input)

X — Real vector of length NCA containing the solution vector with components corresponding
to the columns not used set to zero. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

TOL — Real scalar containing the nonnegative tolerance used to determine the subset of
columns of A to be included in the solution. (Input)
If TOL is zero, a full complement of min(NRA, NCA) columns is used. See Comments.
Default: TOL = 0.0

RES — Real vector of length NRA containing the residual vector B � AX. (Output)

KBASIS — Integer scalar containing the number of columns used in the solution. (Output)

FORTRAN 90 Interface
Generic: CALL LSBRR (A, B, X, [,…])

386 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Specific: The specific interface names are S_LSBRR and D_LSBRR.

FORTRAN 77 Interface
Single: CALL LSBRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS)

Double: The double precision name is DLSBRR.

Example
This example solves the linear least-squares problem with A, an 8 � 4 matrix. Note that the
second and fourth columns of A are identical. Routine LSBRR determines that there are three
columns in the basis.

 USE LSBRR_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 PARAMETER (NRA=8, NCA=4, LDA=NRA)
 REAL A(LDA,NCA), B(NRA), X(NCA), RES(NRA), TOL
!
! Set values for A
!
! A = (1 5 15 5)
! (1 4 17 4)
! (1 7 14 7)
! (1 3 18 3)
! (1 1 15 1)
! (1 8 11 8)
! (1 3 9 3)
! (1 4 10 4)
!
 DATA A/8*1, 5., 4., 7., 3., 1., 8., 3., 4., 15., 17., 14., &
 18., 15., 11., 9., 10., 5., 4., 7., 3., 1., 8., 3., 4. /
!
! Set values for B
!
 DATA B/ 30., 31., 35., 29., 18., 35., 20., 22. /
!
! Solve the least squares problem
 TOL = 1.0E-4
 CALL LSBRR (A, B, X, TOL=TOL, RES=RES, KBASIS=KBASIS)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’KBASIS = ’, KBASIS
 CALL WRRRN (’X’, X, 1, NCA, 1)
 CALL WRRRN (’RES’, RES, 1, NRA, 1)
!
 END

Output

KBASIS = 3

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 387

 X
 1 2 3 4
 0.636 2.845 1.058 0.000

 RES
 1 2 3 4 5 6 7 8
 -0.733 0.996 -0.365 0.783 -1.353 -0.036 1.306 -0.597

Comments
1. Workspace may be explicitly provided, if desired, by use of L2BRR/DL2BRR. The

reference is:

CALL L2BRR (NRA, NCA, A, LDA, B, TOL, X, RES, KBASIS, QR, BRRUX, IPVT, WK)

The additional arguments are as follows:

QR — Work vector of length NRA * NCA representing an NRA by NCA matrix that
contains information from the QR factorization of A. See LQRRR for details.

BRRUX — Work vector of length NCA containing information about the orthogonal
factor of the QR factorization of A. See LQRRR for details.

IPVT — Integer work vector of length NCA containing the pivoting information for the
QR factorization of A. See LQRRR for details.

WK — Work vector of length NRA + 2 * NCA � 1.

2. Informational error
Type Code

 4 1 The data matrix is too ill-conditioned for iterative refinement to be
effective.

3. Routine LSBRR calculates the QR decomposition with pivoting of a matrix A and tests
the diagonal elements against a user-supplied tolerance TOL. The first integer
KBASIS = k is determined for which

1, 1 11TOL*k kr r
� �

�

 In effect, this condition implies that a set of columns with a condition number
approximately bounded by 1.0/TOL is used. Then, LQRSL performs a truncated fit of the
first KBASIS columns of the permuted A to an input vector B. The coefficient of this fit
is unscrambled to correspond to the original columns of A, and the coefficients
corresponding to unused columns are set to zero. It may be helpful to scale the rows
and columns of A so that the error estimates in the elements of the scaled matrix are
roughly equal to TOL. The iterative refinement method of Björck is then applied to this
factorization.

388 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

4. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2BRR the leading dimension of QR is increased by IVAL(3)
when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSBRR.
Additional memory allocation for QR and option value restoration are done
automatically in LSBRR. Users directly calling L2BRR can allocate additional
space for QR and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSBRR or L2BRR. Default values for the option are IVAL(*)
= 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSBRR temporarily replaces IVAL(2) by IVAL(1). The
routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG
skips this computation. LSBRR restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
Routine LSBRR solves the linear least-squares problem using iterative refinement. The iterative
refinement algorithm is due to Björck (1967, 1968). It is also described by Golub and Van Loan
(1983, pages 182�183).

LCLSQ
Solves a linear least-squares problem with linear constraints.

Required Arguments
A — Matrix of dimension NRA by NCA containing the coefficients of the NRA least squares

equations. (Input)

B — Vector of length NRA containing the right-hand sides of the least squares equations.
(Input)

C — Matrix of dimension NCON by NCA containing the coefficients of the NCON constraints.
(Input)
If NCON = 0, C is not referenced.

BL — Vector of length NCON containing the lower limit of the general constraints. (Input)
If there is no lower limit on the I-th constraint, then BL(I) will not be referenced.

BU — Vector of length NCON containing the upper limit of the general constraints. (Input)
If there is no upper limit on the I-th constraint, then BU(I) will not be referenced. If
there is no range constraint, BL and BU can share the same storage locations.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 389

IRTYPE — Vector of length NCON indicating the type of constraints exclusive of simple
bounds, where IRTYPE(I) = 0, 1, 2, 3 indicates .EQ., .LE., .GE., and range
constraints respectively. (Input)

XLB — Vector of length NCA containing the lower bound on the variables. (Input)
If there is no lower bound on the I-th variable, then XLB(I) should be set to 1.0E30.

XUB — Vector of length NCA containing the upper bound on the variables. (Input)
If there is no upper bound on the I-th variable, then XUB(I) should be set to
�1.0E30.

X — Vector of length NCA containing the approximate solution. (Output)

Optional Arguments
NRA — Number of least-squares equations. (Input)

Default: NRA = size (A,1).

NCA — Number of variables. (Input)
Default: NCA = size (A,2).

NCON — Number of constraints. (Input)
Default: NCON = size (C,1).

LDA — Leading dimension of A exactly as specified in the dimension statement of the
calling program. (Input)
LDA must be at least NRA.
Default: LDA = size (A,1).

LDC — Leading dimension of C exactly as specified in the dimension statement of the calling
program. (Input)
LDC must be at least NCON.
Default: LDC = size (C,1).

RES — Vector of length NRA containing the residuals B � AX of the least-squares equations at
the approximate solution. (Output)

FORTRAN 90 Interface
Generic: CALL LCLSQ (A, B, C, BL, BU, IRTYPE, XLB, XUB, X [,…])

Specific: The specific interface names are S_LCLSQ and D_LCLSQ.

FORTRAN 77 Interface
Single: CALL LCLSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL, BU, IRTYPE, XLB, XUB,

 X, RES)

390 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Double: The double precision name is DLCLSQ.

Example
A linear least-squares problem with linear constraints is solved.

 USE LCLSQ_INT
 USE UMACH_INT
 USE SNRM2_INT

!
! Solve the following in the least squares sense:
! 3x1 + 2x2 + x3 = 3.3
! 4x1 + 2x2 + x3 = 2.3
! 2x1 + 2x2 + x3 = 1.3
! x1 + x2 + x3 = 1.0
!
! Subject to: x1 + x2 + x3 <= 1
! 0 <= x1 <= .5
! 0 <= x2 <= .5
! 0 <= x3 <= .5
!
! --
! Declaration of variables
!
 INTEGER NRA, NCA, MCON, LDA, LDC
 PARAMETER (NRA=4, NCA=3, MCON=1, LDC=MCON, LDA=NRA)
!
 INTEGER IRTYPE(MCON), NOUT
 REAL A(LDA,NCA), B(NRA), BC(MCON), C(LDC,NCA), RES(NRA), &
 RESNRM, XSOL(NCA), XLB(NCA), XUB(NCA)
! Data initialization!
 DATA A/3.0E0, 4.0E0, 2.0E0, 1.0E0, 2.0E0, &
 2.0E0, 2.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0, 1.0E0/, &
 B/3.3E0, 2.3E0, 1.3E0, 1.0E0/, &
 C/3*1.0E0/, &
 BC/1.0E0/, IRTYPE/1/, XLB/3*0.0E0/, XUB/3*.5E0/
!
! Solve the bounded, constrained
! least squares problem.
!
 CALL LCLSQ (A, B, C, BC, BC, IRTYPE, XLB, XUB, XSOL, RES=RES)
! Compute the 2-norm of the residuals.
 RESNRM = SNRM2 (NRA, RES, 1)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT, 999) XSOL, RES, RESNRM
!
 999 FORMAT (’ The solution is ’, 3F9.4, //, ’ The residuals ’, &
 ’evaluated at the solution are ’, /, 18X, 4F9.4, //, &
 ’ The norm of the residual vector is ’, F8.4)
!
 END

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 391

Output

The solution is 0.5000 0.3000 0.2000
The residuals evaluated at the solution are
 -1.0000 0.5000 0.5000 0.0000

The norm of the residual vector is 1.2247

Comments
1. Workspace may be explicitly provided, if desired, by use of L2LSQ/DL2LSQ. The

reference is:

CALL L2LSQ (NRA, NCA, NCON, A, LDA, B, C, LDC, BL, BU, IRTYPE, XLB, XUB, X, RES,
WK, IWK)

The additional arguments are as follows:

WK — Real work vector of length (NCON + MAXDIM) * (NCA + NCON + 1) + 10 * NCA +
9 * NCON + 3.

IWK — Integer work vector of length 3 * (NCON + NCA).

2. Informational errors
Type Code

3 1 The rank determination tolerance is less than machine precision.
4 2 The bounds on the variables are inconsistent.
4 3 The constraint bounds are inconsistent.
4 4 Maximum number of iterations exceeded.

3. Integer Options with Chapter 11 Options Manager

13 Debug output flag. If more detailed output is desired, set this option to the value
1. Otherwise, set it to 0. Default value is 0.

14 Maximum number of add/drop iterations. If the value of this option is zero, up to
5 * max(nra, nca) iterations will be allowed. Otherwise set this option to the
desired iteration limit. Default value is 0.

4. Floating Point Options with Chapter 11 Options Manager

2 The value of this option is the relative rank determination tolerance to be used.
Default value is sqrt(AMACH (4)).

5 The value of this option is the absolute rank determination tolerance to be used.
Default value is sqrt(AMACH (4)).

Description
The routine LCLSQ solves linear least-squares problems with linear constraints. These are
systems of least-squares equations of the form Ax � b

392 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

subject to

bl � Cx � bu

xl � x � xu

Here, A is the coefficient matrix of the least-squares equations, b is the right-hand side, and C is
the coefficient matrix of the constraints. The vectors bl, bu, xl and xu are the lower and upper
bounds on the constraints and the variables, respectively. The system is solved by defining
dependent variables y � Cx and then solving the least squares system with the lower and upper
bounds on x and y. The equation Cx � y = 0 is a set of equality constraints. These constraints are
realized by heavy weighting, i.e. a penalty method, Hanson, (1986, pages 826�834).

LQRRR
Computes the QR decomposition, AP = QR, using Householder transformations.

Required Arguments
A — Real NRA by NCA matrix containing the matrix whose QR factorization is to be

computed. (Input)

QR — Real NRA by NCA matrix containing information required for the QR factorization.
(Output)
The upper trapezoidal part of QR contains the upper trapezoidal part of R with its
diagonal elements ordered in decreasing magnitude. The strict lower trapezoidal part of
QR contains information to recover the orthogonal matrix Q of the factorization.
Arguments A and QR can occupy the same storage locations. In this case, A will not be
preserved on output.

QRAUX — Real vector of length NCA containing information about the orthogonal part of the
decomposition in the first min(NRA, NCA) position. (Output)

Optional Arguments
NRA — Number of rows of A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns of A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

PIVOT — Logical variable. (Input)
PIVOT = .TRUE. means column pivoting is enforced.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 393

PIVOT = .FALSE. means column pivoting is not done.
Default: PIVOT = .TRUE.

IPVT — Integer vector of length NCA containing information that controls the final order of
the columns of the factored matrix A. (Input/Output)
On input, if IPVT(K) > 0, then the K-th column of A is an initial column. If IPVT(K) = 0,
then the K-th column of A is a free column. If IPVT(K) < 0, then the K-th column of A is
a final column. See Comments.
On output, IPVT(K) contains the index of the column of A that has been interchanged
into the K-th column. This defines the permutation matrix P. The array IPVT is
referenced only if PIVOT is equal to .TRUE.
Default: IPVT = 0.

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the
calling program. (Input)
Default: LDQR = size (QR,1).

CONORM — Real vector of length NCA containing the norms of the columns of the input
matrix. (Output)
If this information is not needed, CONORM and QRAUX can share the same storage
locations.

FORTRAN 90 Interface
Generic: CALL LQRRR (A, QR, QRAUX [,…])

Specific: The specific interface names are S_LQRRR and D_LQRRR.

FORTRAN 77 Interface
Single: CALL LQRRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX,

CONORM)

Double: The double precision name is DLQRRR.

Example

In various statistical algorithms it is necessary to compute q = xT(AT A)��x, where A is a
rectangular matrix of full column rank. By using the QR decomposition, q can be computed
without forming AT A. Note that

AT A = (QRP��)T (QRP��) = P���RT (QT Q)RP�� = P RT RPT

since Q is orthogonal (QTQ = I) and P is a permutation matrix. Let

1

0
T R

Q AP R
� �

� � � �
� �

394 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

where R� is an upper triangular nonsingular matrix. Then

� �
1 1 1 1 2

1 1 1 2
T T T T Tx A A x x PR R P x R P x

�

� � � � �

� �

In the following program, first the vector t = P�� x is computed. Then

1: Tt R t�

�

Finally,
2q t�

 USE IMSL_LIBRARIES
! Declare variables
 INTEGER LDA, LDQR, NCA, NRA
 PARAMETER (NCA=3, NRA=4, LDA=NRA, LDQR=NRA)
! SPECIFICATIONS FOR PARAMETERS
 INTEGER LDQ
 PARAMETER (LDQ=NRA)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER IPVT(NCA), NOUT
 REAL CONORM(NCA), Q, QR(LDQR,NCA), QRAUX(NCA), T(NCA)
 LOGICAL PIVOT
 REAL A(LDA,NCA), X(NCA)
!
! Set values for A
!
! A = (1 2 4)
! (1 4 16)
! (1 6 36)
! (1 8 64)
!
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
!
! Set values for X
!
! X = (1 2 3)
 DATA X/1.0, 2.0, 3.0/
!
! QR factorization
 PIVOT = .TRUE.
 IPVT=0
 CALL LQRRR (A, QR, QRAUX, PIVOT=PIVOT, IPVT=IPVT)
! Set t = inv(P)*x
 CALL PERMU (X, IPVT, T, IPATH=1)
! Compute t = inv(trans(R))*t
 CALL LSLRT (QR, T, T, IPATH=4)
! Compute 2-norm of t, squared.
 Q = SDOT(NCA,T,1,T,1)
! Print result
 CALL UMACH (2, NOUT)
 WRITE (NOUT,*) ’Q = ’, Q

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 395

!
 END

Output

Q = 0.840624

Comments
1. Workspace may be explicitly provided, if desired, by use of L2RRR/DL2RRR. The

reference is:

CALL L2RRR (NRA, NCA, A, LDA, PIVOT, IPVT, QR, LDQR, QRAUX, CONORM, WORK)

The additional argument is

WORK — Work vector of length 2NCA � 1. Only NCA � 1 locations of WORK are
referenced if PIVOT = .FALSE. .

2. LQRRR determines an orthogonal matrix Q, permutation matrix P, and an upper
trapezoidal matrix R with diagonal elements of nonincreasing magnitude, such that AP
= QR. The Householder transformation for column k, k = 1, �, min(NRA, NCA) is of the
form

1 T
kI u uu�

�

where u has zeros in the first k � 1 positions. If the explicit matrix Q is needed, the user can
call routine LQERR (page 396) after calling LQRRR. This routine accumulates Q from its
factored form.

3. Before the decomposition is computed, initial columns are moved to the beginning and
the final columns to the end of the array A. Both initial and final columns are not
moved during the computation. Only free columns are moved. Pivoting, if requested, is
done on the free columns of largest reduced norm.

4. When pivoting has been selected by having entries of IPVT initialized to zero, an
estimate of the condition number of A can be obtained from the output by computing
the magnitude of the number QR(1, 1)/QR(K, K), where K = MIN(NRA, NCA). This
estimate can be used to select the number of columns, KBASIS, used in the solution
step computed with routine LQRSL (page 398).

Description
The routine LQRRR computes the QR decomposition of a matrix using Householder
transformations. It is based on the LINPACK routine SQRDC; see Dongarra et al. (1979).

LQRRR determines an orthogonal matrix Q, a permutation matrix P, and an upper trapezoidal
matrix R with diagonal elements of nonincreasing magnitude, such that AP = QR. The
Householder transformation for column k is of the form

396 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

T
k k

k

u u
I

p
�

for k = 1, 2, �, min(NRA, NCA), where u has zeros in the first k � 1 positions. The matrix Q is
not produced directly by LQRRR . Instead the information needed to reconstruct the Householder
transformations is saved. If the matrix Q is needed explicitly, the subroutine LQERR, described
on page 396, can be called after LQRRR. This routine accumulates Q from its factored form.

Before the decomposition is computed, initial columns are moved to the beginning of the array
A and the final columns to the end. Both initial and final columns are frozen in place during the
computation. Only free columns are pivoted. Pivoting, when requested, is done on the free
columns of largest reduced norm.

LQERR
Accumulates the orthogonal matrix Q from its factored form given the QR factorization of a
rectangular matrix A.

Required Arguments
QR — Real NRQR by NCQR matrix containing the factored form of the matrix Q in the first

min(NRQR, NCQR) columns of the strict lower trapezoidal part of QR as output from
subroutine LQRRR/DLQRRR. (Input)

QRAUX — Real vector of length NCQR containing information about the orthogonal part of
the decomposition in the first min(NRQR, NCQR) position as output from routine
LQRRR/DLQRRR. (Input)

Q — Real NRQR by NRQR matrix containing the accumulated orthogonal matrix Q; Q and QR
can share the same storage locations if QR is not needed. (Output)

Optional Arguments
NRQR — Number of rows in QR. (Input)

Default: NRQR = size (QR,1).

NCQR — Number of columns in QR. (Input)
Default: NCQR = size (QR,2).

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the
calling program. (Input)
Default: LDQR = size (QR,1).

LDQ — Leading dimension of Q exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDQ = size (Q,1).

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 397

FORTRAN 90 Interface
Generic: CALL LQERR (QR, QRAUX, Q [,…])

Specific: The specific interface names are S_LQERR and D_LQERR.

FORTRAN 77 Interface
Single: CALL LQERR (NRQR, NCQR, QR, LDQR, QRAUX, Q, LDQ)

Double: The double precision name is DLQERR.

Example
In this example, the orthogonal matrix Q in the QR decomposition of a matrix A is computed.
The product X = QR is also computed. Note that X can be obtained from A by reordering the
columns of A according to IPVT.

 USE IMSL_LIBRARIES
! Declare variables
 INTEGER LDA, LDQ, LDQR, NCA, NRA
 PARAMETER (NCA=3, NRA=4, LDA=NRA, LDQ=NRA, LDQR=NRA)
!
 INTEGER IPVT(NCA), J
 REAL A(LDA,NCA), CONORM(NCA), Q(LDQ,NRA), QR(LDQR,NCA), &
 QRAUX(NCA), R(NRA,NCA), X(NRA,NCA)
 LOGICAL PIVOT
!
! Set values for A
!
! A = (1 2 4)
! (1 4 16)
! (1 6 36)
! (1 8 64)
!
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
!
! QR factorization
! Set IPVT = 0 (all columns free)
 IPVT = 0
 PIVOT = .TRUE.
 CALL LQRRR (A, QR, QRAUX, IPVT=IPVT, PIVOT=PIVOT)
! Accumulate Q
 CALL LQERR (QR, QRAUX, Q)
! R is the upper trapezoidal part of QR
 R = 0.0E0
 DO 10 J=1, NRA
 CALL SCOPY (J, QR(:,J), 1, R(:,J), 1)
 10 CONTINUE
! Compute X = Q*R
 CALL MRRRR (Q, R, X)
! Print results
 CALL WRIRN (’IPVT’, IPVT, 1, NCA, 1)
 CALL WRRRN (’Q’, Q)

398 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL WRRRN (’R’, R)
 CALL WRRRN (’X = Q*R’, X)
!
 END

Output

 IPVT
 1 2 3
 3 2 1
 Q
 1 2 3 4
1 -0.0531 -0.5422 0.8082 -0.2236
2 -0.2126 -0.6574 -0.2694 0.6708
3 -0.4783 -0.3458 -0.4490 -0.6708
4 -0.8504 0.3928 0.2694 0.2236

 R
 1 2 3
1 -75.26 -10.63 -1.59
2 0.00 -2.65 -1.15
3 0.00 0.00 0.36
4 0.00 0.00 0.00

 X = Q*R
 1 2 3
1 4.00 2.00 1.00
2 16.00 4.00 1.00
3 36.00 6.00 1.00
4 64.00 8.00 1.00

Comments
1. Workspace may be explicitly provided, if desired, by use of L2ERR/DL2ERR. The

reference is:

CALL L2ERR (NRQR, NCQR, QR, LDQR, QRAUX, Q, LDQ, WK)

The additional argument is

WK — Work vector of length 2 * NRQR.

Description
The routine LQERR accumulates the Householder transformations computed by IMSL routine
LQRRR, page 392, to produce the orthogonal matrix Q.

LQRSL
Computes the coordinate transformation, projection, and complete the solution of the least-squares
problem Ax = b.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 399

Required Arguments
KBASIS — Number of columns of the submatrix Ak of A. (Input)

The value KBASIS must not exceed min(NRA, NCA), where NCA is the number of
columns in matrix A. The value NCA is an argument to routine LQRRR (page 392). The
value of KBASIS is normally NCA unless the matrix is rank-deficient. The user must
analyze the problem data and determine the value of KBASIS. See Comments.

QR — NRA by NCA array containing information about the QR factorization of A as output
from routine LQRRR/DLQRRR. (Input)

QRAUX — Vector of length NCA containing information about the QR factorization of A as
output from routine LQRRR/DLQRRR. (Input)

B — Vector b of length NRA to be manipulated. (Input)

IPATH — Option parameter specifying what is to be computed. (Input)
The value IPATH has the decimal expansion IJKLM, such that:
I � 0 means compute Qb;
J � 0 means compute QTb;
K � 0 means compute QTb and x;
L � 0 means compute QTb and b � Ax;
M � 0 means compute QTb and Ax.

 For example, if the decimal number IPATH = 01101, then I = 0, J = 1, K = 1,
L= 0, and M= 1.

Optional Arguments
NRA — Number of rows of matrix A. (Input)

Default: NRA = size (QR,1).

LDQR — Leading dimension of QR exactly as specified in the dimension statement of the
calling program. (Input)
Default: LDQR = size (QR,1).

QB — Vector of length NRA containing Qb if requested in the option IPATH. (Output)

QTB — Vector of length NRA containing QTb if requested in the option IPATH. (Output)

X — Vector of length KBASIS containing the solution of the least-squares problem Akx = b,
if this is requested in the option IPATH. (Output)
If pivoting was requested in routine LQRRR/DLQRRR, then the J-th entry of X will be
associated with column IPVT(J) of the original matrix A. See Comments.

400 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

RES — Vector of length NRA containing the residuals (b � Ax) of the least-squares problem if
requested in the option IPATH. (Output)
This vector is the orthogonal projection of b onto the orthogonal complement of the
column space of A.

AX — Vector of length NRA containing the least-squares approximation Ax if requested in the
option IPATH. (Output)
This vector is the orthogonal projection of b onto the column space of A.

FORTRAN 90 Interface
Generic: CALL LQRSL (KBASIS, QR, QRAUX, B, IPATH[,…])

Specific: The specific interface names are S_LQRSL and D_LQRSL.

FORTRAN 77 Interface
Single: CALL LQRSL (NRA, KBASIS, QR, LDQR, QRAUX, B, IPATH, QB, QTB, X,

RES, AX)

Double: The double precision name is DLQRSL.

Example
Consider the problem of finding the coefficients ci in

f(x) = c� + c�x + c�x�

given data at xi = 2i, � = 1, 2, 3, 4, using the method of least squares. The row of the matrix A
contains the value of 1, xi and

2
ix

at the data points. The vector b contains the data. The routine LQRRR is used to compute the QR
decomposition of A. Then LQRSL is then used to solve the least-squares problem and compute
the residual vector.

 USE IMSL_LIBRARIES

! Declare variables
 PARAMETER (NRA=4, NCA=3, KBASIS=3, LDA=NRA, LDQR=NRA)
 INTEGER IPVT(NCA)
 REAL A(LDA,NCA), QR(LDQR,NCA), QRAUX(NCA), CONORM(NCA), &
 X(KBASIS), QB(1), QTB(NRA), RES(NRA), &
 AX(1), B(NRA)
 LOGICAL PIVOT
!
! Set values for A
!
! A = (1 2 4)
! (1 4 16)
! (1 6 36)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 401

! (1 8 64)
!
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
!
! Set values for B
!
! B = (16.99 57.01 120.99 209.01)
 DATA B/ 16.99, 57.01, 120.99, 209.01 /
!
! QR factorization
 PIVOT = .TRUE.
 IPVT = 0
 CALL LQRRR (A, QR, QRAUX, PIVOT=PIVOT, IPVT=IPVT)
! Solve the least squares problem
 IPATH = 00110
 CALL LQRSL (KBASIS, QR, QRAUX, B, IPATH, X=X, RES=RES)
! Print results
 CALL WRIRN (’IPVT’, IPVT, 1, NCA, 1)
 CALL WRRRN (’X’, X, 1, KBASIS, 1)
 CALL WRRRN (’RES’, RES, 1, NRA, 1)
!
 END

Output

 IPVT
 1 2 3
 3 2 1

 X
 1 2 3
3.000 2.002 0.990

 RES
 1 2 3 4
-0.00400 0.01200 -0.01200 0.00400

Note that since IPVT is (3, 2, 1) the array X contains the solution coefficients ci in reverse order.

Comments
1. Informational error

Type Code

4 1 Computation of the least-squares solution of AK * X = B is requested, but the
upper triangular matrix R from the QR factorization is singular.

2. This routine is designed to be used together with LQRRR. It assumes that LQRRR/DLQRR
has been called to get QR, QRAUX and IPVT. The submatrix Ak mentioned above is
actually equal to Ak = (A(IPVT(1)), A(IPVT(2)), �, A(IPVT (KBASIS))), where
A(IPVT(I)) is the IPVT(I)-th column of the original matrix.

402 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Description
Routine LQRSL is based on the LINPACK routine SQRSL, see Dongarra et al. (1979).

The most important use of LQRSL is for solving the least-squares problem Ax = b, with
coefficient matrix A and data vector b. This problem can be formulated, using the normal
equations method, as AT Ax = AT b. Using LQRRR (page 392) the QR decomposition of A,
AP = QR, is computed. Here P is a permutation matrix (P = P), Q is an orthogonal matrix
(Q = QT) and R is an upper trapezoidal matrix. The normal equations can then be written as

(PRT)(QTQ)R(PTx) = (PRT)QT b

If ATA is nonsingular, then R is also nonsingular and the normal equations can be written as
R(PTx) = QT b. LQRSL can be used to compute QT b and then solve for PT x. Note that the
permuted solution is returned.

The routine LQRSL can also be used to compute the least-squares residual, b � Ax. This is the
projection of b onto the orthogonal complement of the column space of A. It can also compute
Qb, QTb and Ax, the orthogonal projection of x onto the column space of A.

LUPQR
Computes an updated QR factorization after the rank-one matrix �xyT is added.

Required Arguments
ALPHA — Scalar determining the rank-one update to be added. (Input)

W — Vector of length NROW determining the rank-one matrix to be added. (Input)
The updated matrix is A + �xyT. If I = 0 then W contains the vector x. If I = 1 then W
contains the vector QTx.

Y — Vector of length NCOL determining the rank-one matrix to be added. (Input)

R — Matrix of order NROW by NCOL containing the R matrix from the QR factorization.
(Input)
Only the upper trapezoidal part of R is referenced.

IPATH — Flag used to control the computation of the QR update. (Input)
IPATH has the decimal expansion IJ such that: I = 0 means W contains the vector x.
I= 1 means W contains the vector QTx.
J = 0 means do not update the matrix Q. J = 1 means update the matrix Q. For example,
if IPATH = 10 then, I = 1 and J = 0.

RNEW — Matrix of order NROW by NCOL containing the updated R matrix in the QR
factorization. (Output)
Only the upper trapezoidal part of RNEW is updated. R and RNEW may be the same.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 403

Optional Arguments
NROW — Number of rows in the matrix A = Q * R. (Input)

Default: NROW = size (W,1).

NCOL — Number of columns in the matrix A = Q * R. (Input)
 Default: NCOL = size (Y,1).

Q — Matrix of order NROW containing the Q matrix from the QR factorization. (Input)
Ignored if IPATH = 0.
Default: Q is 1x1 and un-initialized.

LDQ — Leading dimension of Q exactly as specified in the dimension statement of the calling
program. (Input)
Ignored if IPATH = 0.
Default: LDQ = size (Q,1).

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDR = size (R,1).

QNEW — Matrix of order NROW containing the updated Q matrix in the QR factorization.
(Output)
Ignored if J = 0, see IPATH for definition of J.

LDQNEW — Leading dimension of QNEW exactly as specified in the dimension statement of
the calling program. (Input)
Ignored if J = 0; see IPATH for definition of J.
Default: LDQNEW = size (QNEW,1).

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDRNEW = size (RNEW,1).

FORTRAN 90 Interface
Generic: CALL LUPQR (ALPHA, W, Y, R, IPATH, RNEW [,…])

Specific: The specific interface names are S_LUPQR and D_LUPQR.

FORTRAN 77 Interface
Single: CALL LUPQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH, QNEW,

LDQNEW, RNEW, LDRNEW)

Double: The double precision name is DLUPQR.

404 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

Example

The QR factorization of A is found. It is then used to find the QR factorization of A + xyT. Since
pivoting is used, the QR factorization routine finds AP = QR, where P is a permutation matrix
determined by IPVT. We compute

� �� �TTAP xy A x Py P QR� �� � � �
� �

The IMSL routine PERMU (See Chapter 11, Utilities) is used to compute Py. As a check

QR� �

is computed and printed. It can also be obtained from A + xyT by permuting its columns using
the order given by IPVT.

 USE IMSL_LIBRARIES
! Declare variables
 INTEGER LDA, LDAQR, LDQ, LDQNEW, LDQR, LDR, LDRNEW, NCOL, NROW
 PARAMETER (NCOL=3, NROW=4, LDA=NROW, LDAQR=NROW, LDQ=NROW, &
 LDQNEW=NROW, LDQR=NROW, LDR=NROW, LDRNEW=NROW)
!
 INTEGER IPATH, IPVT(NCOL), J, MIN0
 REAL A(LDA,NCOL), ALPHA, AQR(LDAQR,NCOL), CONORM(NCOL), &
 Q(LDQ,NROW), QNEW(LDQNEW,NROW), QR(LDQR,NCOL), &
 QRAUX(NCOL), R(LDR,NCOL), RNEW(LDRNEW,NCOL), W(NROW), &
 Y(NCOL)
 LOGICAL PIVOT
 INTRINSIC MIN0
!
! Set values for A
!
! A = (1 2 4)
! (1 4 16)
! (1 6 36)
! (1 8 64)
!
 DATA A/4*1.0, 2.0, 4.0, 6.0, 8.0, 4.0, 16.0, 36.0, 64.0/
! Set values for W and Y
 DATA W/1., 2., 3., 4./
 DATA Y/3., 2., 1./
!
! QR factorization
! Set IPVT = 0 (all columns free)
 IPVT = 0
 PIVOT = .TRUE.
 CALL LQRRR (A, QR, QRAUX, IPVT=IPVT, PIVOT=PIVOT)
! Accumulate Q
 CALL LQERR (QR, QRAUX, Q)
! Permute Y
 CALL PERMU (Y, IPVT, Y)
! R is the upper trapezoidal part of QR
 R = 0.0E0
 DO 10 J=1, NCOL
 CALL SCOPY (MIN0(J,NROW), QR(:,J), 1, R(:,J), 1)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 405

 10 CONTINUE
! Update Q and R
 ALPHA = 1.0
 IPATH = 01
 CALL LUPQR (ALPHA, W, Y, R, IPATH, RNEW, Q=Q, QNEW=QNEW)
! Compute AQR = Q*R
 CALL MRRRR (QNEW, RNEW, AQR)
! Print results
 CALL WRIRN (’IPVT’, IPVT, 1, NCOL,1)
 CALL WRRRN (’QNEW’, QNEW)
 CALL WRRRN (’RNEW’, RNEW)
 CALL WRRRN (’QNEW*RNEW’, AQR)
 END

Output

 IPVT
 1 2 3
 3 2 1

 QNEW
 1 2 3 4
1 -0.0620 -0.5412 0.8082 -0.2236
2 -0.2234 -0.6539 -0.2694 0.6708
3 -0.4840 -0.3379 -0.4490 -0.6708
4 -0.8438 0.4067 0.2694 0.2236

 RNEW
 1 2 3
1 -80.59 -21.34 -17.62
2 0.00 -4.94 -4.83
3 0.00 0.00 0.36
4 0.00 0.00 0.00

 QNEW*RNEW
 1 2 3
1 5.00 4.00 4.00
2 18.00 8.00 7.00
3 39.00 12.00 10.00
4 68.00 16.00 13.00

Comments
1. Workspace may be explicitly provided, if desired, by use of L2PQR/DL2PQR. The

reference is:

CALL L2PQR (NROW, NCOL, ALPHA, W, Y, Q, LDQ, R, LDR, IPATH, QNEW, LDQNEW,
RNEW, LDRNEW, Z, WORK)

The additional arguments are as follows:

Z — Work vector of length NROW.

406 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

WORK — Work vector of length MIN(NROW � 1, NCOL).

Description
Let A be an m � n matrix and let A = QR be its QR decomposition. (In the program, m is called
NROW and n is called NCOL) Then

A + �xyT = QR + �xyT = Q(R + �QTxyT) = Q(R + �wyT)

where w = QT x. An orthogonal transformation J can be constructed, using a sequence of m � 1
Givens rotations, such that Jw = �e�, where � = �||w||� and e� = (1, 0, �, 0)T. Then

A + �xyT = (QJT)(JR + ��e�yT)

Since JR is an upper Hessenberg matrix, H = JR + ��e�yT is also an upper Hessenberg matrix.
Again using m � 1 Givens rotations, an orthogonal transformation G can be constructed such
that GH is an upper triangular matrix. Then

, where T T TA xy QR Q QJ G�� � �
� ��

is orthogonal and

R GH�
�

is upper triangular.

If the last k components of w are zero, then the number of Givens rotations needed to construct
J or G is m � k � 1 instead of m � 1.

For further information, see Dennis and Schnabel (1983, pages 55�58 and 311�313), or Golub
and Van Loan (1983, pages 437�439).

LCHRG
Computes the Cholesky decomposition of a symmetric positive semidefinite matrix with optional
column pivoting.

Required Arguments
A — N by N symmetric positive semidefinite matrix to be decomposed. (Input)

Only the upper triangle of A is referenced.

FACT — N by N matrix containing the Cholesky factor of the permuted matrix in its upper
triangle. (Output)
If A is not needed, A and FACT can share the same storage locations.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 407

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

PIVOT — Logical variable. (Input)
PIVOT = .TRUE. means column pivoting is done. PIVOT = .FALSE. means no
pivoting is done.
Default: PIVOT = .TRUE.

IPVT — Integer vector of length N containing information that controls the selection of the
pivot columns. (Input/Output)
On input, if IPVT(K) > 0, then the K-th column of A is an initial column; if
IPVT(K) = 0, then the K-th column of A is a free column; if IPVT(K) < 0, then the K-th
column of A is a final column. See Comments. On output, IPVT(K) contains the index
of the diagonal element of A that was moved into the K-th position. IPVT is only
referenced when PIVOT is equal to .TRUE..

LDFACT — Leading dimension of FACT exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFACT = size (FACT,1).

FORTRAN 90 Interface
Generic: CALL LCHRG (A, FACT [,…])

Specific: The specific interface names are S_LCHRG and D_LCHRG.

FORTRAN 77 Interface
Single: CALL LCHRG (N, A, LDA, PIVOT, IPVT, FACT, LDFACT)

Double: The double precision name is DLCHRG.

Example
Routine LCHRG can be used together with the IMSL routines PERMU (see Chapter 11) and LFSDS
(page 148) to solve a positive definite linear system Ax = b. Since A = PRT RP, the system
Ax = b is equivalent to RT R(Px) = Pb. LFSDS is used to solve RT Ry = Pb for y. The routine
PERMU is used to compute both Pb and x = Py.

408 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 USE IMSL_LIBRARIES

! Declare variables
 PARAMETER (N=3, LDA=N, LDFACT=N)
 INTEGER IPVT(N)
 REAL A(LDA,N), FACT(LDFACT,N), B(N), X(N)
 LOGICAL PIVOT
!
! Set values for A and B
!
! A = (1 -3 2)
! (-3 10 -5)
! (2 -5 6)
!
! B = (27 -78 64)
!
 DATA A/1.,-3.,2.,-3.,10.,-5.,2.,-5.,6./
 DATA B/27.,-78.,64./
! Pivot using all columns
 PIVOT = .TRUE.
 IPVT = 0
! Compute Cholesky factorization
 CALL LCHRG (A, FACT, PIVOT=PIVOT, IPVT=IPVT)
! Permute B and store in X
 CALL PERMU (B, IPVT, X, IPATH=1)
! Solve for X
 CALL LFSDS (FACT, X, X)
! Inverse permutation
 CALL PERMU (X, IPVT, X, IPATH=2)
! Print X
 CALL WRRRN (’X’, X, 1, N, 1)
!
 END

Output

 X
 1 2 3
1.000 -4.000 7.000

Comments
1. Informational error

Type Code

 4 1 The input matrix is not positive semidefinite.

2. Before the decomposition is computed, initial elements are moved to the leading part
of A and final elements to the trailing part of A. During the decomposition only rows
and columns corresponding to the free elements are moved. The result of the
decomposition is an upper triangular matrix R and a permutation matrix P that satisfy
PT AP = RT R, where P is represented by IPVT.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 409

3. LCHRG can be used together with subroutines PERMU and LSLDS to solve the positive
semidefinite linear system AX = B with the solution X overwriting the right-hand side B
as follows:

 CALL ISET (N, 0, IPVT, 1)
CALL LCHRG (A, FACT, N, LDA, .TRUE, IPVT, LDFACT)
CALL PERMU (B, IPVT, B, N, 1)
CALL LSLDS (FACT, B, B, N, LDFACT)
CALL PERMU (B, IPVT, B, N, 2)

Description
Routine LCHRG is based on the LINPACK routine SCHDC; see Dongarra et al. (1979).

Before the decomposition is computed, initial elements are moved to the leading part of A and
final elements to the trailing part of A. During the decomposition only rows and columns
corresponding to the free elements are moved. The result of the decomposition is an upper
triangular matrix R and a permutation matrix P that satisfy PT AP = RT R, where P is
represented by IPVT.

LUPCH
Updates the RT R Cholesky factorization of a real symmetric positive definite matrix after a rank-
one matrix is added.

Required Arguments
R — N by N upper triangular matrix containing the upper triangular factor to be updated.

(Input)
Only the upper triangle of R is referenced.

X — Vector of length N determining the rank-one matrix to be added to the factorization
RT R. (Input)

RNEW — N by N upper triangular matrix containing the updated triangular factor of
RT R + XXT. (Output)
Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can share
the same storage locations.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (R,2).

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDR = size (R,1).

410 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDRNEW = size (RNEW,1).

CS — Vector of length N containing the cosines of the rotations. (Output)

SN — Vector of length N containing the sines of the rotations. (Output)

FORTRAN 90 Interface
Generic: CALL LUPCH (R, X, RNEW [,…])

Specific: The specific interface names are S_LUPCH and D_LUPCH.

FORTRAN 77 Interface
Single: CALL LUPCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN)

Double: The double precision name is DLUPCH.

Example
A linear system Az = b is solved using the Cholesky factorization of A. This factorization is then
updated and the system (A + xxT) z = b is solved using this updated factorization.

 USE IMSL_LIBRARIES
! Declare variables
 INTEGER LDA, LDFACT, N
 PARAMETER (LDA=3, LDFACT=3, N=3)
 REAL A(LDA,LDA), FACT(LDFACT,LDFACT), FACNEW(LDFACT,LDFACT), &
 X(N), B(N), CS(N), SN(N), Z(N)
!
! Set values for A
! A = (1.0 -3.0 2.0)
! (-3.0 10.0 -5.0)
! (2.0 -5.0 6.0)
!
 DATA A/1.0, -3.0, 2.0, -3.0, 10.0, -5.0, 2.0, -5.0, 6.0/
!
! Set values for X and B
 DATA X/3.0, 2.0, 1.0/
 DATA B/53.0, 20.0, 31.0/
! Factor the matrix A
 CALL LFTDS (A, FACT)
! Solve the original system
 CALL LFSDS (FACT, B, Z)
! Print the results
 CALL WRRRN (’FACT’, FACT, ITRING=1)
 CALL WRRRN (’Z’, Z, 1, N, 1)
! Update the factorization

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 411

 CALL LUPCH (FACT, X, FACNEW)
! Solve the updated system
 CALL LFSDS (FACNEW, B, Z)
! Print the results
 CALL WRRRN (’FACNEW’, FACNEW, ITRING=1)
 CALL WRRRN (’Z’, Z, 1, N, 1)
!
 END

Output

 FACT
 1 2 3
1 1.000 -3.000 2.000
2 1.000 1.000
3 1.000
 Z
 1 2 3
1860.0 433.0 -254.0

 FACNEW
 1 2 3
1 3.162 0.949 1.581
2 3.619 -1.243
3 -1.719

 Z
 1 2 3
4.000 1.000 2.000

Description
The routine LUPCH is based on the LINPACK routine SCHUD; see Dongarra et al. (1979).

The Cholesky factorization of a matrix is A = RT R, where R is an upper triangular matrix.
Given this factorization, LUPCH computes the factorization

T TA xx R R� �
� �

In the program

R�

is called RNEW.

LUPCH determines an orthogonal matrix U as the product GN�G��of Givens rotations, such that

0T

R R
U

x
� �� �

� � �� �
� � � �

�

By multiplying this equation by its transpose, and noting that UT U = I, the desired result
T T TR R xx R R� �

� �

412 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

is obtained.

Each Givens rotation, Gi, is chosen to zero out an element in xT. The matrix
Gi is (N + 1) � (N + 1) and has the form

1 0 0 0
0 0
0 0 0
0 0

i

i i
i

N i

i i

I
c s

G
I

s c

�

�

� �
� �
� ��
� �
� �

�� �� �

where Ik is the identity matrix of order k and ci = cos�i = CS(I), si = sin�i = SN(I) for some �i.

LDNCH
Downdates the RT R Cholesky factorization of a real symmetric positive definite matrix after a
rank-one matrix is removed.

Required Arguments
R — N by N upper triangular matrix containing the upper triangular factor to be downdated.

(Input)
Only the upper triangle of R is referenced.

X — Vector of length N determining the rank-one matrix to be subtracted from the
factorization RT R. (Input)

RNEW — N by N upper triangular matrix containing the downdated triangular factor of
RT R � X XT. (Output)
Only the upper triangle of RNEW is referenced. If R is not needed, R and RNEW can share
the same storage locations.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (R,2).

LDR — Leading dimension of R exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDR = size (R,1).

LDRNEW — Leading dimension of RNEW exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDRNEW = size (RNEW,1).

CS — Vector of length N containing the cosines of the rotations. (Output)

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 413

SN — Vector of length N containing the sines of the rotations. (Output)

FORTRAN 90 Interface
Generic: CALL LDNCH (R, X, RNEW [,…])

Specific: The specific interface names are S_LDNCH and D_LDNCH.

FORTRAN 77 Interface
Single: CALL LDNCH (N, R, LDR, X, RNEW, LDRNEW, CS, SN)

Double: The double precision name is DLDNCH.

Example
A linear system Az = b is solved using the Cholesky factorization of A. This factorization is then
downdated, and the system (A � xxT)z = b is solved using this downdated factorization.

 USE LDNCH_INT
 USE LFTDS_INT
 USE LFSDS_INT
 USE WRRRN_INT
! Declare variables
 INTEGER LDA, LDFACT, N
 PARAMETER (LDA=3, LDFACT=3, N=3)
 REAL A(LDA,LDA), FACT(LDFACT,LDFACT), FACNEW(LDFACT,LDFACT), &
 X(N), B(N), CS(N), SN(N), Z(N)
!
! Set values for A
! A = (10.0 3.0 5.0)
! (3.0 14.0 -3.0)
! (5.0 -3.0 7.0)
!
 DATA A/10.0, 3.0, 5.0, 3.0, 14.0, -3.0, 5.0, -3.0, 7.0/
!
! Set values for X and B
 DATA X/3.0, 2.0, 1.0/
 DATA B/53.0, 20.0, 31.0/
! Factor the matrix A
 CALL LFTDS (A, FACT)
! Solve the original system
 CALL LFSDS (FACT, B, Z)
! Print the results
 CALL WRRRN (’FACT’, FACT, ITRING=1)
 CALL WRRRN (’Z’, Z, 1, N, 1)
! Downdate the factorization
 CALL LDNCH (FACT, X, FACNEW)
! Solve the updated system
 CALL LFSDS (FACNEW, B, Z)
! Print the results
 CALL WRRRN (’FACNEW’, FACNEW, ITRING=1)

414 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 CALL WRRRN (’Z’, Z, 1, N, 1)
!
 END

Output
 FACT
 1 2 3
1 3.162 0.949 1.581
2 3.619 -1.243
3 1.719
 Z
 1 2 3
 4.000 1.000 2.000

 FACNEW
 1 2 3
1 1.000 -3.000 2.000
2 1.000 1.000
3 1.000

 Z
 1 2 3
1859.9 433.0 -254.0

Comments
Informational error

Type Code
 4 1 RTR � X XT is not positive definite. R cannot be downdated.

Description
The routine LDNCH is based on the LINPACK routine SCHDD; see Dongarra et al. (1979).

The Cholesky factorization of a matrix is A = RT R, where R is an upper triangular matrix.
Given this factorization, LDNCH computes the factorization

T TA xx R R� �
� �

In the program

R�

is called RNEW. This is not always possible, since A � xxT may not be positive definite.

LDNCH determines an orthogonal matrix U as the product GN �G�of Givens rotations, such that

0 T
R R

U x
� �� �

� � �� �
� �� � � �

�

By multiplying this equation by its transpose and noting that UT U = I, the desired result

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 415

T T TR R xx R R� �
� �

is obtained.

Let a be the solution of the linear system RT a = x and let

2

2
1 a� � �

The Givens rotations, Gi, are chosen such that

1

0
1N

a
G G �

� � � �
�� � � �

� � � �
�

The Gi, are (N + 1) � (N + 1) matrices of the form

1 0 0 0
0 0
0 0 0
0 0

i

i i
i

N i

i i

I
c s

G
I

s c

�

�

� �
� ��� ��
� �
� �
� �� �

where Ik is the identity matrix of order k; and ci= cos�i = CS(I), si= sin�i = SN(I) for some �i.

The Givens rotations are then used to form

1,
0 TN

R R
R G G x

� �� �
� � �� �
� �� � � �

�
� �

�

The matrix

R�

is upper triangular and

x x��

because

� � � � � �
0

0 0 1
T T T Ta a

x R R U U R x x
� �

� � � � � �
� � � �� � � � � �

� � � � � �

� � �

LSVRR
Computes the singular value decomposition of a real matrix.

Required Arguments
A — NRA by NCA matrix whose singular value decomposition is to be computed. (Input)

IPATH — Flag used to control the computation of the singular vectors. (Input)
IPATH has the decimal expansion IJ such that:

416 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

I = 0 means do not compute the left singular vectors;
I = 1 means return the NCA left singular vectors in U;
I = 2 means return only the min(NRA, NCA) left singular vectors in U;
J = 0 means do not compute the right singular vectors,
J = 1 means return the right singular vectors in V.

For example, IPATH = 20 means I = 2 and J = 0.

S — Vector of length min(NRA + 1, NCA) containing the singular values of A in descending
order of magnitude in the first min(NRA, NCA) positions. (Output)

Optional Arguments
NRA — Number of rows in the matrix A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in the matrix A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

TOL — Scalar containing the tolerance used to determine when a singular value is negligible.
(Input)
If TOL is positive, then a singular value �i considered negligible if �i � TOL . If TOL is
negative, then a singular value �i considered negligible if �i � |TOL| * ||A||�. In this
case, |TOL| generally contains an estimate of the level of the relative error in the data.
Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision.

IRANK — Scalar containing an estimate of the rank of A. (Output)

U — NRA by NCU matrix containing the left singular vectors of A. (Output)
NCU must be equal to NRA if I is equal to 1. NCU must be equal to min(NRA, NCA) if I is
equal to 2. U will not be referenced if I is equal to zero. If NRA is less than or equal to
NCU, then U can share the same storage locations as A. See Comments.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDU = size (U,1).

V — NCA by NCA matrix containing the right singular vectors of A. (Output)
V will not be referenced if J is equal to zero. V can share the same storage location as
A, however, U and V cannot both coincide with A simultaneously.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 417

LDV — Leading dimension of V exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDV = size (V,1).

FORTRAN 90 Interface
Generic: CALL LSVRR (A, IPATH, S [,…])

Specific: The specific interface names are S_LSVRR and D_LSVRR.

FORTRAN 77 Interface
Single: CALL LSVRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV)

Double: The double precision name is DLSVRR.

Example
This example computes the singular value decomposition of a 6 � 4 matrix A. The matrices U
and V containing the left and right singular vectors, respectively, and the diagonal of �,
containing singular values, are printed. On some systems, the signs of some of the columns of U
and V may be reversed.

 USE IMSL_LIBRARIES
! Declare variables
 PARAMETER (NRA=6, NCA=4, LDA=NRA, LDU=NRA, LDV=NCA)
 REAL A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA)
!
! Set values for A
!
! A = (1 2 1 4)
! (3 2 1 3)
! (4 3 1 4)
! (2 1 3 1)
! (1 5 2 2)
! (1 2 2 3)
!
 DATA A/1., 3., 4., 2., 1., 1., 2., 2., 3., 1., 5., 2., 3*1., &
 3., 2., 2., 4., 3., 4., 1., 2., 3./
!
! Compute all singular vectors
 IPATH = 11
 TOL = AMACH(4)
 TOL = 10.*TOL
 CALL LSVRR(A, IPATH, S, TOL=TOL, IRANK=IRANK, U=U, V=V)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT, *) ’IRANK = ’, IRANK
 CALL WRRRN (’U’, U)
 CALL WRRRN (’S’, S, 1, NCA, 1)
 CALL WRRRN (’V’, V)
!

418 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 END

Output

IRANK = 4
 U
 1 2 3 4 5 6
1 -0.3805 0.1197 0.4391 -0.5654 0.0243 -0.5726
2 -0.4038 0.3451 -0.0566 0.2148 0.8089 0.1193
3 -0.5451 0.4293 0.0514 0.4321 -0.5723 0.0403
4 -0.2648 -0.0683 -0.8839 -0.2153 -0.0625 -0.3062
5 -0.4463 -0.8168 0.1419 0.3213 0.0621 -0.0799
6 -0.3546 -0.1021 -0.0043 -0.5458 -0.0988 0.7457

 S
 1 2 3 4
 11.49 3.27 2.65 2.09

 V
 1 2 3 4
1 -0.4443 0.5555 -0.4354 0.5518
2 -0.5581 -0.6543 0.2775 0.4283
3 -0.3244 -0.3514 -0.7321 -0.4851
4 -0.6212 0.3739 0.4444 -0.5261

Comments
1. Workspace may be explicitly provided, if desired, by use of L2VRR/DL2VRR. The

reference is:

CALL L2VRR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV, ACOPY, WK)

The additional arguments are as follows:

ACOPY — NRA � NCA work array for the matrix A. If A is not needed, then A and
ACOPY may share the same storage locations.

WK — Work vector of length NRA + NCA + max(NRA, NCA) � 1.

2. Informational error
Type Code

4 1 Convergence cannot be achieved for all the singular values and their
corresponding singular vectors.

3. When NRA is much greater than NCA, it might not be reasonable to store the whole
matrix U. In this case, IPATH with I = 2 allows a singular value factorization of A to be
computed in which only the first NCA columns of U are computed, and in many
applications those are all that are needed.

4. Integer Options with Chapter 11 Options Manager

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 419

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2VRR the leading dimension of ACOPY is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSVRR.
Additional memory allocation for ACOPY and option value restoration are done
automatically in LSVRR. Users directly calling L2VRR can allocate additional
space for ACOPY and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSVRR or L2VRR. Default values for the option are IVAL(*)
= 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSVRR temporarily replaces IVAL(2) by IVAL(1). The
routine L2CRG computes the condition number if IVAL(2) = 2. Otherwise L2CRG
skips this computation. LSVRR restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
The routine LSVRR is based on the LINPACK routine SSVDC; see Dongarra et al. (1979).

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in A). For any n
� p matrix A, there exists an n � n orthogonal matrix U and a p � p orthogonal matrix V such
that

� �

if 0

0 if

T
n p

U AV
n p

� �� �
��� �

	
 ��
� � �

where � = diag(��, �, �m), and m = min(n, p). The scalars �� � �� � � � �m � 0 are called the
singular values of A. The columns of U are called the left singular vectors of A. The columns of
V are called the right singular vectors of A.

The estimated rank of A is the number of �k that is larger than a tolerance �. If � is the
parameter TOL in the program, then

if > 0
if < 0A

� �
�

� �
�

��
� �
��

LSVCR
Computes the singular value decomposition of a complex matrix.

Required Arguments
A — Complex NRA by NCA matrix whose singular value decomposition is to be computed.

(Input)

420 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

IPATH — Integer flag used to control the computation of the singular vectors. (Input)
IPATH has the decimal expansion IJ such that:

I=0 means do not compute the left singular vectors;
I=1 means return the NCA left singular vectors in U;
I=2 means return only the min(NRA, NCA) left singular vectors in U;
J=0 means do not compute the right singular vectors;
J=1 means return the right singular vectors in V.

For example, IPATH = 20 means I = 2 and J = 0.

S — Complex vector of length min(NRA + 1, NCA) containing the singular values of A in
descending order of magnitude in the first min(NRA, NCA) positions. (Output)

Optional Arguments
NRA — Number of rows in the matrix A. (Input)

Default: NRA = size (A,1).

NCA --- Number of columns in the matrix A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

TOL — Real scalar containing the tolerance used to determine when a singular value is
negligible. (Input)
If TOL is positive, then a singular value SI is considered negligible if SI � TOL . If TOL
is negative, then a singular value SI is considered negligible if
SI �
TOL
*(Infinity norm of A). In this case
TOL
 should generally contain an estimate
of the level of relative error in the data.
Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision.

IRANK — Integer scalar containing an estimate of the rank of A. (Output)

U — Complex NRA by NRA if I = 1 or NRA by min(NRA, NCA) if I = 2 matrix containing the
left singular vectors of A. (Output)
U will not be referenced if I is equal to zero. If NRA is less than or equal to NCA or
IPATH = 2, then U can share the same storage locations as A.

LDU — Leading dimension of U exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDU = size (U,1).

V — Complex NCA by NCA matrix containing the right singular vectors of A. (Output)
V will not be referenced if J is equal to zero. If NCA is less than or equal to NRA, then V

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 421

can share the same storage locations as A; however U and V cannot both coincide with A
simultaneously.

LDV — Leading dimension of V exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDV = size (V,1).

FORTRAN 90 Interface
Generic: CALL LSVCR (A, IPATH, S [,�])

Specific: The specific interface names are S_LSVCR and D_LSVCR.

FORTRAN 77 Interface
Single: CALL LSVCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV)

Double: The double precision name is DLSVCR.

Example
This example computes the singular value decomposition of a 6 � 3 matrix A. The matrices U
and V containing the left and right singular vectors, respectively, and the diagonal of �,
containing singular values, are printed. On some systems, the signs of some of the columns of U
and V may be reversed.

 USE IMSL_LIBRARIES
! Declare variables
 PARAMETER (NRA=6, NCA=3, LDA=NRA, LDU=NRA, LDV=NCA)
 COMPLEX A(LDA,NCA), U(LDU,NRA), V(LDV,NCA), S(NCA)
!
! Set values for A
!
! A = (1+2i 3+2i 1-4i)
! (3-2i 2-4i 1+3i)
! (4+3i -2+1i 1+4i)
! (2-1i 3+0i 3-1i)
! (1-5i 2-5i 2+2i)
! (1+2i 4-2i 2-3i)
!
 DATA A/(1.0,2.0), (3.0,-2.0), (4.0,3.0), (2.0,-1.0), (1.0,-5.0), &
 (1.0,2.0), (3.0,2.0), (2.0,-4.0), (-2.0,1.0), (3.0,0.0), &
 (2.0,-5.0), (4.0,-2.0), (1.0,-4.0), (1.0,3.0), (1.0,4.0), &
 (3.0,-1.0), (2.0,2.0), (2.0,-3.0)/
!
! Compute all singular vectors
 IPATH = 11
 TOL = AMACH(4)
 TOL = 10. * TOL
 CALL LSVCR(A, IPATH, S, TOL = TOL, IRANK=IRANK, U=U, V=V)
! Print results
 CALL UMACH (2, NOUT)

422 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

 WRITE (NOUT, *) ’IRANK = ’, IRANK
 CALL WRCRN (’U’, U)
 CALL WRCRN (’S’, S, 1, NCA, 1)
 CALL WRCRN (’V’, V)
!
 END

Output

IRANK = 3
 U
 1 2 3 4
1 (0.1968, 0.2186) (0.5011, 0.0217) (-0.2007,-0.1003) (-0.2036, 0.0405)
2 (0.3443,-0.3542) (-0.2933, 0.0248) (0.1155,-0.2338) (-0.2316, 0.0287)
3 (0.1457, 0.2307) (-0.5424, 0.1381) (-0.4361,-0.4407) (0.0281,-0.3088)
4 (0.3016,-0.0844) (0.2157, 0.2659) (-0.0523,-0.0894) (0.8617, 0.0223)
5 (0.2283,-0.6008) (-0.1325, 0.1433) (0.3152,-0.0090) (-0.0392,-0.0145)
6 (0.2876,-0.0350) (0.4377,-0.0400) (0.0458,-0.6205) (-0.2303, 0.0924)

 5 6
1 (0.4132,-0.0985) (-0.6017, 0.1612)
2 (-0.5061, 0.0198) (-0.5380,-0.0317)
3 (0.2043,-0.1853) (0.1012, 0.2132)
4 (-0.1272,-0.0866) (-0.0808,-0.0266)
5 (0.6482,-0.1033) (0.0995,-0.0837)
6 (-0.1412, 0.1121) (0.4897,-0.0436)

 S
 1 2 3
(11.77, 0.00) (9.30, 0.00) (4.99, 0.00)

 V
 1 2 3
1 (0.6616, 0.0000) (-0.2651, 0.0000) (-0.7014, 0.0000)
2 (0.7355, 0.0379) (0.3850,-0.0707) (0.5482, 0.0624)
3 (0.0507,-0.1317) (0.1724, 0.8642) (-0.0173,-0.4509)

Comments
1. Workspace may be explicitly provided, if desired, by use of L2VCR/DL2VCR. The

reference is

CALL L2VCR (NRA, NCA, A, LDA, IPATH, TOL, IRANK, S, U, LDU, V, LDV, ACOPY, WK)

The additional arguments are as follows:

ACOPY — NRA * NCA complex work array of length for the matrix A. If A is not
needed, then A and ACOPY can share the same storage locations.

WK — Complex work vector of length NRA + NCA + max(NRA, NCA) 1.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 423

2. Informational error
Type Code

4 1 Convergence cannot be achieved for all the singular values and their
corresponding singular vectors.

3. When NRA is much greater than NCA, it might not be reasonable to store the whole
matrix U. In this case IPATH with I = 2 allows a singular value factorization of A to be
computed in which only the first NCA columns of U are computed, and in many
applications those are all that are needed.

4. Integer Options with Chapter 11 Options Manager

16 This option uses four values to solve memory bank conflict (access inefficiency)
problems. In routine L2VCR the leading dimension of ACOPY is increased by
IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and IVAL(4) are
temporarily replaced by IVAL(1) and IVAL(2), respectively, in LSVCR.
Additional memory allocation for ACOPY and option value restoration are done
automatically in LSVCR. Users directly calling L2VCR can allocate additional
space for ACOPY and set IVAL(3) and IVAL(4) so that memory bank conflicts no
longer cause inefficiencies. There is no requirement that users change existing
applications that use LSVCR or L2VCR. Default values for the option are IVAL(*)
= 1, 16, 0, 1.

17 This option has two values that determine if the L� condition number is to be
computed. Routine LSVCR temporarily replaces IVAL(2) by IVAL(1). The
routine L2CCG computes the condition number if IVAL(2) = 2. Otherwise L2CCG
skips this computation. LSVCR restores the option. Default values for the option
are IVAL(*) = 1, 2.

Description
The IMSL routine LSVCR is based on the LINPACK routine CSVDC; see Dongarra et al. (1979).

Let n = NRA (the number of rows in A) and let p = NCA (the number of columns in A).For any
n � p matrix A there exists an n � n orthogonal matrix U and a p � p orthogonal matrix V such
that

� �

if 0

0 if

T
n p

U AV
n p

� �� �
��� �

	
 ��
� � �

where � = diag(�����, �m), and m = min(n, p). The scalars �� � �� � � � 0 are called the
singular values of A. The columns of U are called the left singular vectors of A. The columns of
V are called the right singular vectors of A.

The estimated rank of A is the number of �k which are larger than a tolerance �. If � is the
parameter TOL in the program, then

424 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

if > 0
if < 0A

� �
�

� �
�

��
� �
��

LSGRR
Computes the generalized inverse of a real matrix.

Required Arguments
A — NRA by NCA matrix whose generalized inverse is to be computed. (Input)

GINVA — NCA by NRA matrix containing the generalized inverse of A. (Output)

Optional Arguments
NRA — Number of rows in the matrix A. (Input)

Default: NRA = size (A,1).

NCA — Number of columns in the matrix A. (Input)
Default: NCA = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

TOL — Scalar containing the tolerance used to determine when a singular value (from the
singular value decomposition of A) is negligible. (Input)
If TOL is positive, then a singular value �i considered negligible if �i � TOL . If TOL is
negative, then a singular value �i considered negligible if �i � |TOL| * ||A||�. In this
case, |TOL| generally contains an estimate of the level of the relative error in the data.
Default: TOL = 1.0e-5 for single precision and 1.0d-10 for double precision.

IRANK — Scalar containing an estimate of the rank of A. (Output)

LDGINV — Leading dimension of GINVA exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDGINV = size (GINV,1).

FORTRAN 90 Interface
Generic: CALL LSGRR (A, GINVA [,…])

Specific: The specific interface names are S_LSGRR and D_LSGRR.

IMSL MATH/LIBRARY Chapter 1: Linear Systems � 425

FORTRAN 77 Interface
Single: CALL LSGRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA, LDGINV)

Double: The double precision name is DLSGRR.

Example
This example computes the generalized inverse of a 3 � 2 matrix A. The rank k = IRANK and the
inverse

† GINVA �

are printed.
 USE IMSL_LIBRARIES
! Declare variables
 PARAMETER (NRA=3, NCA=2, LDA=NRA, LDGINV=NCA)
 REAL A(LDA,NCA), GINV(LDGINV,NRA)
!
! Set values for A
!
! A = (1 0)
! (1 1)
! (100 -50)
!
 DATA A/1., 1., 100., 0., 1., -50./
!
! Compute generalized inverse
 TOL = AMACH(4)
 TOL = 10.*TOL
 CALL LSGRR (A, GINV,TOL=TOL, IRANK=IRANK)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT, *) ’IRANK = ’, IRANK
 CALL WRRRN (’GINV’, GINV)
!
 END

Output

IRANK = 2
 GINV
 1 2 3
1 0.1000 0.3000 0.0060
2 0.2000 0.6000 -0.0080

Comments
1. Workspace may be explicitly provided, if desired, by use of L2GRR/DL2GRR. The

reference is:

CALL L2GRR (NRA, NCA, A, LDA, TOL, IRANK, GINVA, LDGINV, WKA, WK)

426 � Chapter 1: Linear Systems IMSL MATH/LIBRARY

The additional arguments are as follows:

WKA — Work vector of length NRA * NCA used as workspace for the matrix A. If A is
not needed, WKA and A can share the same storage locations.

WK — Work vector of length LWK where LWK is equal to NRA� + NCA� + min(NRA + 1,
NCA) + NRA + NCA + max(NRA, NCA) � 2.

2. Informational error
Type Code

4 1 Convergence cannot be achieved for all the singular values and their
corresponding singular vectors.

Description
Let k = IRANK, the rank of A; let n = NRA, the number of rows in A; let p = NCA, the number of
columns in A; and let

† GINVA �

be the generalized inverse of A.

To compute the Moore-Penrose generalized inverse, the routine LSVRR (page 415) is first used
to compute the singular value decomposition of A. A singular value decomposition of A
consists of an n � n orthogonal matrix U, a p � p orthogonal matrix V and a diagonal matrix
� = diag(����, �m), m = min(n, p), such that UT AV = [�, 0] if n � p and UT AV = [�, 0]T if
n � p. Only the first p columns of U are computed. The rank k is estimated by counting the
number of nonnegligible �i.

The matrices U and V can be partitioned as U = (U�, U�) and V = (V�, V�) where both U� and V�
are k � k matrices. Let �� = diag(��, �, �k). The Moore-Penrose generalized inverse of A is

† 1
1 1 1V TA U�

� �

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 427

Chapter 2: Eigensystem Analysis

Routines
2.1. Eigenvalue Decomposition

2.1.1 Computes the eigenvalues of a self-adjoint
matrix, A...LIN_EIG_SELF 432

2.1.2 Computes the eigenvalues of an n � n matrix, A LIN_EIG_GEN 439

2.1.3 Computes the generalized eigenvalues of an n � n
matrix pencil, Av = �Bv ...LIN_GEIG_GEN 448

2.2. Eigenvalues and (Optionally) Eigenvectors of Ax = �x
2.2.1 Real General Problem Ax = �x

All eigenvalues .. EVLRG 455
All eigenvalues and eigenvectorsEVCRG 457
Performance index..EPIRG 460

2.2.2 Complex General Problem Ax = �x
All eigenvalues .. EVLCG 462
All eigenvalues and eigenvectorsEVCCG 464
Performance index..EPICG 467

2.2.3 Real Symmetric Problem Ax = �x
All eigenvalues ... EVLSF 469
All eigenvalues and eigenvectors ..EVCSF 471
Extreme eigenvalues ...EVASF 473
Extreme eigenvalues and their eigenvectors.......................EVESF 475
Eigenvalues in an interval ..EVBSF 478
Eigenvalues in an interval and their eigenvectors EVFSF 480
Performance index.. EPISF 483

2.2.4 Real Band Symmetric Matrices in Band Storage Mode
All eigenvalues ... EVLSB 485
All eigenvalues and eigenvectors EVCSB 487
Extreme eigenvalues ...EVASB 490
Extreme eigenvalues and their eigenvectors.......................EVESB 492
Eigenvalues in an interval ..EVBSB 495
Eigenvalues in an interval and their eigenvectorsEVFSB 498

428 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Performance index ..EPISB 501

2.2.5 Complex Hermitian Matrices
All eigenvalues ...EVLHF 502
All eigenvalues and eigenvectors.. EVCHF 505
Extreme eigenvalues... EVAHF 508
Extreme eigenvalues and their eigenvectors EVEHF 510
Eigenvalues in an interval ... EVBHF 513
Eigenvalues in an interval and their eigenvectors................EVFHF 515
Performance index ..EPIHF 518

2.2.6 Real Upper Hessenberg Matrices
All eigenvalues .. EVLRH 520
All eigenvalues and eigenvectors..EVCRH 522

2.2.7 Complex Upper Hessenberg Matrices
All eigenvalues .. EVLCH 525
All eigenvalues and eigenvectors..EVCCH 526

2.3. Eigenvalues and (Optionally) Eigenvectors of Ax = �Bx
2.3.1 Real General Problem Ax = �Bx

All eigenvalues ..GVLRG 529
All eigenvalues and eigenvectors....................................... GVCRG 531
Performance index ...GPIRG 535

2.3.2 Complex General Problem Ax = �Bx
All eigenvalues ..GVLCG 537
All eigenvalues and eigenvectors....................................... GVCCG 540
Performance index ...GPICG 542

2.3.3 Real Symmetric Problem Ax = �Bx
All eigenvalues .. GVLSP 544
All eigenvalues and eigenvectors..GVCSP 547
Performance index ... GPISP 549

Usage Notes
This chapter includes routines for linear eigensystem analysis. Many of these are for matrices with
special properties. Some routines compute just a portion of the eigensystem. Use of the appropriate
routine can substantially reduce computing time and storage requirements compared to computing a
full eigensystem for a general complex matrix.

An ordinary linear eigensystem problem is represented by the equation Ax = �x where A denotes an
n � n matrix. The value � is an eigenvalue and x � 0 is the corresponding eigenvector. The
eigenvector is determined up to a scalar factor. In all routines, we have chosen this factor so that x has
Euclidean length with value one, and the component of x of smallest index and largest magnitude is
positive. In case x is a complex vector, this largest component is real and positive.

Similar comments hold for the use of the remaining Level 1 routines in the following tables in those
cases where the second character of the Level 2 routine name is no longer the character "2".

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 429

A generalized linear eigensystem problem is represented by Ax = �Bx where A and B are n � n
matrices. The value � is an eigenvalue, and x is the corresponding eigenvector. The eigenvectors are
normalized in the same manner as for the ordinary eigensystem problem. The linear eigensystem
routines have names that begin with the letter “E”. The generalized linear eigensystem routines have
names that begin with the letter “G”. This prefix is followed by a two-letter code for the type of
analysis that is performed. That is followed by another two-letter suffix for the form of the coefficient
matrix. The following tables summarize the names of the eigensystem routines.

Symmetric and Hermitian Eigensystems

 Symmet
ric
Full

Symmetric
Band

Hermitian
Full

All eigenvalues EVLSF
p. 469

EVLSB
p. 485

EVLHF
p. 502

All eigenvalues
and eigenvectors

EVCSF
p. 471

EVCSB
p. 487

EVCHF
p. 505

Extreme eigenvalues EVASF
p. 473

EVASB
p. 490

EVAHF
p. 508

Extreme eigenvalues
and eigenvectors

EVESF
p. 475

EVESB
p. 492

EVEHF
p.510

Eigenvalues in
an interval

EVBSF
p. 478

EVBSB
p. 495

EVBHF
p. 513

Eigenvalues and
eigevectors in an interval

EVFSF
p. 480

EVFSB
p. 498

EVFHF
p 515

Performance index EPISF
p. 483

EPISB
p. 501

EPIHF
p. 518

General Eigensystems

 Real
General

Complex
General

Real
Hessenberg

Complex
Hessenberg

All eigenvalues EVLRG
p. 455

EVLCG
p. 462

EVLRH
p. 455

EVLCH
p. 525

All eigenvalues
and eigenvectors

EVCRG
p. 457

EVCCG
p. 464

EVCRH
p. 522

EVCCH
p. 526

Performance
index

EPIRG
p. 460

EPICG
p. 467

EPIRG
p. 460

EPICG
p. 467

430 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Generalized Eigensystems Ax = �Bx
 Real

General
Complex
General

A Symmetric
B Positive

Definite
All eigenvalues GVLRG

p. 529
GVLCG
p. 537

GVLSP
p. 544

All eigenvalues and
eigenvectors

GVCRG
p. 531

GVCCG
p. 540

GVCSP
p. 547

Performance index GPIRG
p. 535

GPICG
p. 542

GPISP
p. 549

Error Analysis and Accuracy
The remarks in this section are for the ordinary eigenvalue problem. Except in special cases, routines
will not return the exact eigenvalue-eigenvector pair for the ordinary eigenvalue problem Ax = �x.
The computed pair

,x ���

is an exact eigenvector-eigenvalue pair for a “nearby” matrix A + E. Information about E is known
only in terms of bounds of the form || E||� � �(n) ||A||� �. The value of �(n) depends on the algorithm
but is typically a small fractional power of n. The parameter � is the machine precision. By a theorem
due to Bauer and Fike (see Golub and Van Loan [1989, page 342],

� � � �2
min for all in AX E� � � � �� ��

where � (A) is the set of all eigenvalues of A (called the spectrum of A), X is the matrix of
eigenvectors, || � ||� is the 2-norm, and 	(X) is the condition number of X defined as
	(X) = || X ||� || X��||�. If A is a real symmetric or complex Hermitian matrix, then its eigenvector
matrix X is respectively orthogonal or unitary. For these matrices,	(X) = 1.

The eigenvalues

j�
�

and eigenvectors

jx�

computed by EVC** can be checked by computing their performance index
 using EPI**. The
performance index is defined by Smith et al. (1976, pages 124�126) to be

1

1
1 1

max
10

j j j

j n
j

Ax x

n A x

�

�
�� �

�

�

�� �

�

No significance should be attached to the factor of 10 used in the denominator. For a real vector x, the
symbol || x ||� represents the usual 1-norm of x. For a complex vector x, the symbol || x ||� is defined by

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 431

� �1
1

N

k k
k

x x x
�

� � � ��

The performance index
 is related to the error analysis because

2 2j j j jEx Ax x�� �
�� � ��

where E is the “nearby” matrix discussed above.

While the exact value of
 is machine and precision dependent, the performance of an eigensystem
analysis routine is defined as excellent if
 < 1, good if 1 �
 � 100, and poor if
 > 100. This is an
arbitrary definition, but large values of
 can serve as a warning that there is a blunder in the
calculation. There are also similar routines GPI** to compute the performance index for generalized
eigenvalue problems.

If the condition number 	(X) of the eigenvector matrix X is large, there can be large errors in the
eigenvalues even if
 is small. In particular, it is often difficult to recognize near multiple eigenvalues
or unstable mathematical problems from numerical results. This facet of the eigenvalue problem is
difficult to understand: A user often asks for the accuracy of an individual eigenvalue. This can be
answered approximately by computing the condition number of an individual eigenvalue. See Golub
and Van Loan (1989, pages 344-345). For matrices A such that the computed array of normalized
eigenvectors X is invertible, the condition number of �j is 	j � the Euclidean length of row j of the
inverse matrix X�� . Users can choose to compute this matrix with routine LINCG, see Chapter 1,
Linear Systems. An approximate bound for the accuracy of a computed eigenvalue is then given by
	j � || A || To compute an approximate bound for the relative accuracy of an eigenvalue, divide this
bound by | �j |.

Reformulating Generalized Eigenvalue Problems
The generalized eigenvalue problem Ax = �Bx is often difficult for users to analyze because it is
frequently ill-conditioned. There are occasionally changes of variables that can be performed on the
given problem to ease this ill-conditioning. Suppose that B is singular but A is nonsingular. Define the
reciprocal = ���. Then, the roles of A and B are interchanged so that the reformulated problem
Bx = Ax is solved. Those generalized eigenvalues j = 0 correspond to eigenvalues
�j = �. The remaining

1
j j� � �

�

The generalized eigenvectors for �j correspond to those for j. Other reformulations can be made: If B
is nonsingular, the user can solve the ordinary eigenvalue problem Cx � B�� Ax = �x. This is not
recommended as a computational algorithm for two reasons. First, it is generally less efficient than
solving the generalized problem directly. Second, the matrix C will be subject to perturbations due to
ill-conditioning and rounding errors when computing B��A. Computing the condition numbers of the
eigenvalues for C may, however, be helpful for analyzing the accuracy of results for the generalized
problem.

There is another method that users can consider to reduce the generalized problem to an alternate
ordinary problem. This technique is based on first computing a matrix decomposition B = PQ, where
both P and Q are matrices that are “simple” to invert. Then, the given generalized problem is

432 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

equivalent to the ordinary eigenvalue problem Fy = �y. The matrix F � P��AQ��. The unnormalized
eigenvectors of the generalized problem are given by x = Q��y. An example of this reformulation is
used in the case where A and B are real and symmetric with B positive definite. The IMSL routines
GVLSP, page 544, and GVCSP, page 547, use P = RT and Q = R where R is an upper triangular matrix
obtained from a Cholesky decomposition, B = RTR. The matrix F = R�� AR�� is symmetric and real.
Computation of the eigenvalue-eigenvector expansion for F is based on routine EVCSF, page 471.

LIN_EIG_SELF
Computes the eigenvalues of a self-adjoint (i.e. real symmetric or complex Hermitian) matrix, A.
Optionally, the eigenvectors can be computed. This gives the decomposition A = VDVT , where V is
an n � n orthogonal matrix and D is a real diagonal matrix.

Required Arguments
A — Array of size n � n containing the matrix. (Input [/Output])

D — Array of size n containing the eigenvalues. The values are in order of decreasing absolute
value. (Output)

Optional Arguments
NROWS = n (Input)

Uses array A(1:n, 1:n) for the input matrix.
Default: n = size(A, 1)

v = v(:,:) (Output)
Array of the same type and kind as A(1:n, 1:n). It contains the n � n orthogonal matrix V.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix; used for passing optional
data to the routine. The options are as follows:

Packaged Options for LIN_EIG_SELF
Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ Lin_eig_self_set_small 1

s_, d_, c_, z_ Lin_eig_self_overwrite_input 2

s_, d_, c_, z_ Lin_eig_self_scan_for_NaN 3

s_, d_, c_, z_ Lin_eig_self_use_QR 4

s_, d_, c_, z_ Lin_eig_self_skip_Orth 5

s_, d_, c_, z_ Lin_eig_self_use_Gauss_elim 6

s_, d_, c_, z_ Lin_eig_self_set_perf_ratio 7

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 433

iopt(IO) = ?_options(?_lin_eig_self_set_small, Small)
If a denominator term is smaller in magnitude than the value Small, it is replaced by Small.
Default: the smallest number that can be reciprocated safely

iopt(IO) = ?_options(?_lin_eig_self_overwrite_input, ?_dummy)
Do not save the input array A(:, :).

iopt(IO) = ?_options(?_lin_eig_self_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

 isNaN(a(i,j)) == .true.

 See the isNaN() function, Chapter 10.
Default: The array is not scanned for NaNs.

iopt(IO) = ?_options(?_lin_eig_use_QR, ?_dummy)
Uses a rational QR algorithm to compute eigenvalues. Accumulate the eigenvectors using
this algorithm.
Default: the eigenvectors computed using inverse iteration

iopt(IO) = ?_options(?_lin_eig_skip_Orth, ?_dummy)
If the eigenvalues are computed using inverse iteration, skips the final orthogonalization of
the vectors. This will result in a more efficient computation but the eigenvectors, while a
complete set, may be far from orthogonal.
Default: the eigenvectors are normally orthogonalized if obtained using inverse iteration.

iopt(IO) = ?_options(?_lin_eig_use_Gauss_elim, ?_dummy)
If the eigenvalues are computed using inverse iteration, uses standard elimination with
partial pivoting to solve the inverse iteration problems.
Default: the eigenvectors computed using cyclic reduction

iopt(IO) = ?_options(?_lin_eig_self_set_perf_ratio, perf_ratio)
Uses residuals for approximate normalized eigenvectors if they have a performance index
no larger than perf_ratio. Otherwise an alternate approach is taken and the eigenvectors
are computed again: Standard elimination is used instead of cyclic reduction, or the
standard QR algorithm is used as a backup procedure to inverse iteration. Larger values of
perf_ratio are less likely to cause these exceptions.
Default: perf_ratio = 4

FORTRAN 90 Interface
Generic: CALL LIN_EIG_SELF (A, D [,…])

 Specific: The specific interface names are S_LIN_EIG_SELF, D_LIN_EIG_SELF,
C_LIN_EIG_SELF, and Z_LIN_EIG_SELF.

434 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Example 1: Computing Eigenvalues

The eigenvalues of a self-adjoint matrix are computed. The matrix A = C+CT is used, where C is ran-
dom. The magnitudes of eigenvalues of A agree with the singular values of A. Also, see
operator_ex25, Chapter 10.

 use lin_eig_self_int
 use lin_sol_svd_int
 use rand_gen_int

 implicit none

! This is Example 1 for LIN_EIG_SELF.

 integer, parameter :: n=64
 real(kind(1e0)), parameter :: one=1e0
 real(kind(1e0)) :: A(n,n), b(n,0), D(n), S(n), x(n,0), y(n*n)

! Generate a random matrix and from it
! a self-adjoint matrix.
 call rand_gen(y)
 A = reshape(y,(/n,n/))
 A = A + transpose(A)

! Compute the eigenvalues of the matrix.
 call lin_eig_self(A, D)

! For comparison, compute the singular values.
 call lin_sol_svd(A, b, x, nrhs=0, s=S)

! Check the results: Magnitude of eigenvalues should equal
! the singular values.

 if (sum(abs(abs(D) - S)) <= &
 sqrt(epsilon(one))*S(1)) then
 write (*,*) 'Example 1 for LIN_EIG_SELF is correct.'
 end if
 end

Output

Example 1 for LIN_EIG_SELF is correct.

Description
Routine LIN_EIG_SELF is an implementation of the QR algorithm for self-adjoint matrices. An
orthogonal similarity reduction of the input matrix to self-adjoint tridiagonal form is performed. Then,
the eigenvalue-eigenvector decomposition of a real tridiagonal matrix is calculated. The expansion of
the matrix as AV = VD results from a product of these matrix factors. See Golub and Van Loan (1989,
Chapter 8) for details.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 435

Additional Examples

Example 2: Eigenvalue-Eigenvector Expansion of a Square Matrix
A self-adjoint matrix is generated and the eigenvalues and eigenvectors are computed. Thus,
A = VDVT, where V is orthogonal and D is a real diagonal matrix. The matrix V is obtained using an
optional argument. Also, see operator_ex26, Chapter 10.

 use lin_eig_self_int
 use rand_gen_int

 implicit none
! This is Example 2 for LIN_EIG_SELF.

 integer, parameter :: n=8
 real(kind(1e0)), parameter :: one=1e0
 real(kind(1e0)) :: a(n,n), d(n), v_s(n,n), y(n*n)

! Generate a random self-adjoint matrix.
 call rand_gen(y)
 a = reshape(y,(/n,n/))
 a = a + transpose(a)
! Compute the eigenvalues and eigenvectors.
 call lin_eig_self(a, d, v=v_s)
! Check the results for small residuals.
 if (sum(abs(matmul(a,v_s)-v_s*spread(d,1,n)))/d(1) <= &
 sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_EIG_SELF is correct.'
 end if
 end

Output

Example 2 for LIN_EIG_SELF is correct.

Example 3: Computing a few Eigenvectors with Inverse Iteration

A self-adjoint n � n matrix is generated and the eigenvalues, � �id , are computed. The eigenvectors
associated with the first k of these are computed using the self-adjoint solver, lin_sol_self, and
inverse iteration. With random right-hand sides, these systems are as follows:

� �A d I v bi i i� �

The solutions are then orthogonalized as in Hanson et al. (1991) to comprise a partial decomposition
AV = VD where V is an n � k matrix resulting from the orthogonalized � �iv and D is the k � k diagonal
matrix of the distinguished eigenvalues. It is necessary to suppress the error message when the matrix is
singular. Since these singularities are desirable, it is appropriate to ignore the exceptions and not print
the message text. Also, see operator_ex27, Chapter 10.

436 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 use lin_eig_self_int
 use lin_sol_self_int
 use rand_gen_int
 use error_option_packet

 implicit none

! This is Example 3 for LIN_EIG_SELF.

 integer i, j
 integer, parameter :: n=64, k=8
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) big, err
 real(kind(1d0)) :: a(n,n), b(n,1), d(n), res(n,k), temp(n,n), &
 v(n,k), y(n*n)
 type(d_options) :: iopti(2)=d_options(0,zero)

! Generate a random self-adjoint matrix.
 call rand_gen(y)
 a = reshape(y,(/n,n/))
 a = a + transpose(a)

! Compute just the eigenvalues.
 call lin_eig_self(a, d)

 do i=1, k

! Define a temporary array to hold the matrices A - eigenvalue*I.
 temp = a
 do j=1, n
 temp(j,j) = temp(j,j) - d(i)
 end do

! Use packaged option to reset the value of a small diagonal.
 iopti(1) = d_options(d_lin_sol_self_set_small,&
 epsilon(one)*abs(d(i)))

! Use packaged option to skip singularity messages.
 iopti(2) = d_options(d_lin_sol_self_no_sing_mess,&
 zero)
 call rand_gen(b(1:n,1))
 call lin_sol_self(temp, b, v(1:,i:i),&
 iopt=iopti)
 end do

! Orthogonalize the eigenvectors.
 do i=1, k
 big = maxval(abs(v(1:,i)))
 v(1:,i) = v(1:,i)/big
 v(1:,i) = v(1:,i)/sqrt(sum(v(1:,i)**2))
 if (i == k) cycle
 v(1:,i+1:k) = v(1:,i+1:k) + &
 spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &
 spread(v(1:,i),2,k-i)
 end do

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 437

 do i=k-1, 1, -1
 v(1:,i+1:k) = v(1:,i+1:k) + &
 spread(-matmul(v(1:,i),v(1:,i+1:k)),1,n)* &
 spread(v(1:,i),2,k-i)
 end do

! Check the results for both orthogonality of vectors and small
! residuals.
 res(1:k,1:k) = matmul(transpose(v),v)
 do i=1,k
 res(i,i)=res(i,i)-one
 end do
 err = sum(abs(res))/k**2
 res = matmul(a,v) - v*spread(d(1:k),1,n)
 if (err <= sqrt(epsilon(one))) then
 if (sum(abs(res))/abs(d(1)) <= sqrt(epsilon(one))) then
 write (*,*) 'Example 3 for LIN_EIG_SELF is correct.'
 end if
 end if
 end

Output

Example 3 for LIN_EIG_SELF is correct.

Example 4: Analysis and Reduction of a Generalized Eigensystem
A generalized eigenvalue problem is Ax = �Bx, where A and B are n � n self-adjoint matrices. The
matrix B is positive definite. This problem is reduced to an ordinary self-adjoint eigenvalue problem
Cy = �y by changing the variables of the generalized problem to an equivalent form. The eigenvalue-
eigenvector decomposition B = VSVT is first computed, labeling an eigenvalue too small if it is less
than epsilon(1.d0). The ordinary self-adjoint eigenvalue problem is
Cy = �y provided that the rank of B, based on this definition of Small, has the value n. In that case,

TC DV AVD�

where
1/ 2D S �

�

The relationship between x and y is summarized as X = VDY, computed after the ordinary eigenvalue
problem is solved for the eigenvectors Y of C. The matrix X is normalized so that each column has
Euclidean length of value one. This solution method is nonstandard for any but the most ill-
conditioned matrices B. The standard approach is to compute an ordinary self-adjoint problem
following computation of the Cholesky decomposition

TB R R�

where R is upper triangular. The computation of C can also be completed efficiently by exploiting its
self-adjoint property. See Golub and Van Loan (1989, Chapter 8) for more information. Also, see
operator_ex28, Chapter 10.

438 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 use lin_eig_self_int
 use rand_gen_int
 implicit none

! This is Example 4 for LIN_EIG_SELF.

 integer i
 integer, parameter :: n=64
 real(kind(1e0)), parameter :: one=1d0
 real(kind(1e0)) b_sum
 real(kind(1e0)), dimension(n,n) :: A, B, C, D(n), lambda(n), &
 S(n), vb_d, X, ytemp(n*n), res

! Generate random self-adjoint matrices.
 call rand_gen(ytemp)
 A = reshape(ytemp,(/n,n/))
 A = A + transpose(A)

 call rand_gen(ytemp)
 B = reshape(ytemp,(/n,n/))
 B = B + transpose(B)

 b_sum = sqrt(sum(abs(B**2))/n)

! Add a scalar matrix so B is positive definite.
 do i=1, n
 B(i,i) = B(i,i) + b_sum
 end do

! Get the eigenvalues and eigenvectors for B.

 call lin_eig_self(B, S, v=vb_d)

! For full rank problems, convert to an ordinary self-adjoint
! problem. (All of these examples are full rank.)
 if (S(n) > epsilon(one)) then

 D = one/sqrt(S)

 C = spread(D,2,n)*matmul(transpose(vb_d), &
 matmul(A,vb_d))*spread(D,1,n)

! Get the eigenvalues and eigenvectors for C.
 call lin_eig_self(C, lambda, v=X)

! Compute the generalized eigenvectors.
 X = matmul(vb_d,spread(D,2,n)*X)

! Normalize the eigenvectors for the generalized problem.
 X = X * spread(one/sqrt(sum(X**2,dim=2)),1,n)

 res = matmul(A,X) - &
 matmul(B,X)*spread(lambda,1,n)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 439

! Check the results.
 if (sum(abs(res))/(sum(abs(A))+sum(abs(B))) <= &
 sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_EIG_SELF is correct.'
 end if
end if
end

Output

Example 4 for LIN_EIG_SELF is correct.

Fatal, Terminal, and Warning Error Messages
See the messages.gls file for error messages for lin_eig_self. These error messages are numbered
81�90; 101�110; 121�129; 141�149.

LIN_EIG_GEN
Computes the eigenvalues of an n � n matrix, A. Optionally, the eigenvectors of A or AT are com-
puted. Using the eigenvectors of A gives the decomposition AV = VE, where V is an n � n complex
matrix of eigenvectors, and E is the complex diagonal matrix of eigenvalues. Other options include
the reduction of A to upper triangular or Schur form, reduction to block upper triangular form with
2 � 2 or unit sized diagonal block matrices, and reduction to upper Hessenberg form.

Required Arguments
A — Array of size n � n containing the matrix. (Input [/Output])

E — Array of size n containing the eigenvalues. These complex values are in order of
decreasing absolute value. The signs of imaginary parts of the eigenvalues are in no
predictable order. (Output)

Optional Arguments
NROWS = n (Input)

Uses array A(1:n, 1:n) for the input matrix.
Default: n = size(A, 1)

v = V(:,:) (Output)
Returns the complex array of eigenvectors for the matrix A.

v_adj = U(:,:) (Output)
Returns the complex array of eigenvectors for the matrix AT. Thus the residuals

TS A U UE� �
are small.

440 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

tri = T(:,:) (Output)
Returns the complex upper-triangular matrix T associated with the reduction of the matrix
A to Schur form. Optionally a unitary matrix W is returned in array V(:,:) such that the
residuals Z = AW � WT are small.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for passing optional
data to the routine. The options are as follows:

Packaged Options for LIN_EIG_GEN
Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_eig_gen_set_small 1

s_, d_, c_, z_ lin_eig_gen_overwrite_input 2

s_, d_, c_, z_ lin_eig_gen_scan_for_NaN 3

s_, d_, c_, z_ lin_eig_gen_no_balance 4

s_, d_, c_, z_ lin_eig_gen_set_iterations 5

s_, d_, c_, z_ lin_eig_gen_in_Hess_form 6

s_, d_, c_, z_ lin_eig_gen_out_Hess_form 7

s_, d_, c_, z_ lin_eig_gen_out_block_form 8

s_, d_, c_, z_ lin_eig_gen_out_tri_form 9

s_, d_, c_, z_ lin_eig_gen_continue_with_V 10

s_, d_, c_, z_ lin_eig_gen_no_sorting 11

iopt(IO) = ?_options(?_lin_eig_gen_set_small, Small)
This is the tolerance used to declare off-diagonal values effectively zero compared with the
size of the numbers involved in the computation of a shift.
Default: Small = epsilon(), the relative accuracy of arithmetic

iopt(IO) = ?_options(?_lin_eig_gen_overwrite_input, ?_dummy)
Does not save the input array A(:, :).
Default: The array is saved.

iopt(IO) = ?_options(?_lin_eig_gen_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) == .true.

See the isNaN() function, Chapter 10.
Default: The array is not scanned for NaNs.

iopt(IO) = ?_options(?_lin_eig_no_balance, ?_dummy)
The input matrix is not preprocessed searching for isolated eigenvalues followed by
rescaling. See Golub and Van Loan (1989, Chapter 7) for references. With some optional
uses of the routine, this option flag is required.
Default: The matrix is first balanced.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 441

iopt(IO) = ?_options(?_lin_eig_gen_set_iterations, ?_dummy)
Resets the maximum number of iterations permitted to isolate each diagonal block matrix.
Default: The maximum number of iterations is 52.

iopt(IO) = ?_options(?_lin_eig_gen_in_Hess_form, ?_dummy)
The input matrix is in upper Hessenberg form. This flag is used to avoid the initial
reduction phase which may not be needed for some problem classes.
Default: The matrix is first reduced to Hessenberg form.

iopt(IO) = ?_options(?_lin_eig_gen_out_Hess_form, ?_dummy)
The output matrix is transformed to upper Hessenberg form, 1H . If the optional argument
“v=V(:,:)” is passed by the calling program unit, then the array V(:,:) contains an
orthogonal matrix 1Q such that

1 1 1 0AQ Q H� �

Requires the simultaneous use of option ?_lin_eig_no_balance.
Default: The matrix is reduced to diagonal form.

iopt(IO) = ?_options(?_lin_eig_gen_out_block_form, ?_dummy)
The output matrix is transformed to upper Hessenberg form, 2H , which is block upper
triangular. The dimensions of the blocks are either 2 � 2 or unit sized. Nonzero
subdiagonal values of 2H determine the size of the blocks. If the optional argument
“v=V(:,:)” is passed by the calling program unit, then the array V(:,:) contains an
orthogonal matrix 2Q such that

2 2 2 0AQ Q H� �

Requires the simultaneous use of option ?_lin_eig_no_balance.
Default: The matrix is reduced to diagonal form.

iopt(IO) = ?_options(?_lin_eig_gen_out_tri_form, ?_dummy)
The output matrix is transformed to upper-triangular form, T. If the optional argument
“v=V(:,:)” is passed by the calling program unit, then the array V(:,:) contains a
unitary matrix W such that
AW � WT � 0. The upper triangular matrix T is returned in the optional argument
“tri=T(:,:)”. The eigenvalues of A are the diagonal entries of the matrix T . They are
in no particular order. The output array E(:)is blocked with NaNs using this option. This
option requires the simultaneous use of option ?_lin_eig_no_balance.
Default: The matrix is reduced to diagonal form.

iopt(IO) = ?_options(?_lin_eig_gen_continue_with_V, ?_dummy)
As a convenience or for maintaining efficiency, the calling program unit sets the optional
argument “v=V(:,:)” to a matrix that has transformed a problem to the similar matrix,
A� . The contents of V(:,:) are updated by the transformations used in the algorithm.

Requires the simultaneous use of option ?_lin_eig_no_balance.
Default: The array V(:,:) is initialized to the identity matrix.

442 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

iopt(IO) = ?_options(?_lin_eig_gen_no_sorting, ?_dummy)
Does not sort the eigenvalues as they are isolated by solving the 2 � 2 or unit sized blocks.
This will have the effect of guaranteeing that complex conjugate pairs of eigenvalues are
adjacent in the array E(:).
Default: The entries of E(:) are sorted so they are non-increasing in absolute value.

FORTRAN 90 Interface
Generic: CALL LIN_EIG_GEN (A, E [,…])

 Specific: The specific interface names are S_LIN_EIG_GEN, D_LIN_EIG_GEN,
C_LIN_EIG_GEN, and Z_LIN_EIG_GEN.

Example 1: Computing Eigenvalues
The eigenvalues of a random real matrix are computed. These values define a complex diagonal
matrix E. Their correctness is checked by obtaining the eigenvector matrix V and verifying that the
residuals R = AV � VE are small. Also, see operator_ex29, Chapter 10.

 use lin_eig_gen_int
 use rand_gen_int

 implicit none

! This is Example 1 for LIN_EIG_GEN.

 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) A(n,n), y(n*n), err
 complex(kind(1d0)) E(n), V(n,n), E_T(n)
 type(d_error) :: d_epack(16) = d_error(0,0d0)

! Generate a random matrix.
 call rand_gen(y)
 A = reshape(y,(/n,n/))

! Compute only the eigenvalues.
 call lin_eig_gen(A, E)

! Compute the decomposition, A*V = V*values,
! obtaining eigenvectors.
 call lin_eig_gen(A, E_T, v=V)

! Use values from the first decomposition, vectors from the
! second decomposition, and check for small residuals.
 err = sum(abs(matmul(A,V) - V*spread(E,DIM=1,NCOPIES=n))) &
 / sum(abs(E))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_EIG_GEN is correct.'
 end if

 end

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 443

Output

Example 1 for LIN_EIG_GEN is correct.

Description
The input matrix A is first balanced. The resulting similar matrix is transformed to upper Hessenberg
form using orthogonal transformations. The double-shifted QR algorithm transforms the Hessenberg
matrix so that 2 � 2 or unit sized blocks remain along the main diagonal. Any off-diagonal that is
classified as “small” in order to achieve this block form is set to the value zero. Next the block upper
triangular matrix is transformed to upper triangular form with unitary rotations. The eigenvectors of
the upper triangular matrix are computed using back substitution. Care is taken to avoid overflows
during this process. At the end, eigenvectors are normalized to have Euclidean length one, with the
largest component real and positive. This algorithm follows that given in Golub and Van Loan, (1989,
Chapter 7), with some novel organizational details for additional options, efficiency and robustness.

Additional Examples

Example 2: Complex Polynomial Equation Roots
The roots of a complex polynomial equation,

� �
1

0
n

n k n
k

k

f z b z z�

�

� � ��

are required. This algebraic equation is formulated as a matrix eigenvalue problem. The equivalent
matrix eigenvalue problem is solved using the upper Hessenberg matrix which has the value zero
except in row number 1 and along the first subdiagonal. The entries in the first row are given by
a1,j = �bj, i = 1, �, n, while those on the first subdiagonal have the value one. This is a companion
matrix for the polynomial. The results are checked by testing for small values of |f(ei)|, i = 1, �, n, at
the eigenvalues of the matrix, which are the roots of f(z). Also, see operator_ex30,
Chapter 10.

 use lin_eig_gen_int
 use rand_gen_int

 implicit none
! This is Example 2 for LIN_EIG_GEN.

 integer i
 integer, parameter :: n=12
 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
 real(kind(1d0)) err, t(2*n)
 type(d_options) :: iopti(1)=d_options(0,zero)
 complex(kind(1d0)) a(n,n), b(n), e(n), f(n), fg(n)

call rand_gen(t)
 b = cmplx(t(1:n),t(n+1:),kind(one))

! Define the companion matrix with polynomial coefficients
! in the first row.

444 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 a = zero

 do i=2, n
 a(i,i-1) = one
 end do

 a(1,1:n) = -b

! Note that the input companion matrix is upper Hessenberg.
 iopti(1) = d_options(z_lin_eig_gen_in_Hess_form,zero)

! Compute complex eigenvalues of the companion matrix.

 call lin_eig_gen(a, e, iopt=iopti)

 f=one; fg=one

! Use Horner's method for evaluation of the complex polynomial
! and size gauge at all roots.

 do i=1, n
 f = f*e + b(i)
 fg = fg*abs(e) + abs(b(i))
 end do

! Check for small errors at all roots.

 err = sum(abs(f/fg))/n
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_EIG_GEN is correct.'
 end if
 end

Output

Example 2 for LIN_EIG_GEN is correct.

Example 3: Solving Parametric Linear Systems with a Scalar Change
The efficient solution of a family of linear algebraic equations is required. These systems are
(A + hI)x = b. Here A is an n � n real matrix, I is the identity matrix, and b is the right-hand side
matrix. The scalar h is such that the coefficient matrix is nonsingular. The method is based on the
Schur form for matrix A: AW = WT, where W is unitary and T is upper triangular. This provides an
efficient solution method for several values of h, once the Schur form is computed. The solution steps
solve, for y, the upper triangular linear system

� � TT hI y W b� �

Then, x = x(h) = Wy. This is an efficient and accurate method for such parametric systems provided
the expense of computing the Schur form has a pay-off in later efficiency. Using the Schur form in
this way, it is not required to compute an LU factorization of A + hI with each new value of h. Note
that even if the data A, h, and b are real, subexpressions for the solution may involve complex
intermediate values, with x(h) finally a real quantity. Also, see operator_ex31, Chapter 10.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 445

 use lin_eig_gen_int
 use lin_sol_gen_int
 use rand_gen_int

 implicit none

! This is Example 3 for LIN_EIG_GEN.

 integer i
 integer, parameter :: n=32, k=2
 real(kind(1e0)), parameter :: one=1.0e0, zero=0.0e0
 real(kind(1e0)) a(n,n), b(n,k), x(n,k), temp(n*max(n,k)), h, err
 type(s_options) :: iopti(2)
 complex(kind(1e0)) w(n,n), t(n,n), e(n), z(n,k)

 call rand_gen(temp)
 a = reshape(temp,(/n,n/))

 call rand_gen(temp)
 b = reshape(temp,(/n,k/))

 iopti(1) = s_options(s_lin_eig_gen_out_tri_form,zero)
 iopti(2) = s_options(s_lin_eig_gen_no_balance,zero)

! Compute the Schur decomposition of the matrix.

 call lin_eig_gen(a, e, v=w, tri=t, &
 iopt=iopti)

! Choose a value so that A+h*I is non-singular.
 h = one

! Solve for (A+h*I)x=b using the Schur decomposition.

 z = matmul(conjg(transpose(w)),b)

! Solve intermediate upper-triangular system with implicit
! additive diagonal, h*I. This is the only dependence on
! h in the solution process.
 do i=n,1,-1
 z(i,1:k) = z(i,1:k)/(t(i,i)+h)
 z(1:i-1,1:k) = z(1:i-1,1:k) + &
 spread(-t(1:i-1,i),dim=2,ncopies=k)* &
 spread(z(i,1:k),dim=1,ncopies=i-1)
 end do

! Compute the solution. It should be the same as x, but will not be
! exact due to rounding errors. (The quantity real(z,kind(one)) is
! the real-valued answer when the Schur decomposition method is used.)

 z = matmul(w,z)

! Compute the solution by solving for x directly.
 do i=1, n

446 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 a(i,i) = a(i,i) + h
 end do

 call lin_sol_gen(a, b, x)

! Check that x and z agree approximately.
 err = sum(abs(x-z))/sum(abs(x))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 3 for LIN_EIG_GEN is correct.'
 end if

 end

Output

Example 3 for LIN_EIG_GEN is correct.

Example 4: Accuracy Estimates of Eigenvalues Using Adjoint
and Ordinary Eigenvectors
A matrix A has entries that are subject to uncertainty. This is expressed as the realization that A can be
replaced by the matrix A + �B, where the value � is “small” but still significantly larger than machine
precision. The matrix B satisfies ||B|| � ||A||. A variation in eigenvalues is estimated using analysis
found in Golub and Van Loan, (1989, Chapter 7, p. 344). Each eigenvalue and eigenvector is
expanded in a power series in �. With

� �i i ie e e� � �� � �

and normalized eigenvectors, the bound

| |i
i i

A
e

u v�
��

is satisfied. The vectors and i iu v are the ordinary and adjoint eigenvectors associated respectively
with ie and its complex conjugate. This gives an upper bound on the size of the change to each ie
due to changing the matrix data. The reciprocal

1

i iu v
�

�

is defined as the condition number of ie . Also, see operator_ex32, Chapter 10.

 use lin_eig_gen_int
 use rand_gen_int

 implicit none

! This is Example 4 for LIN_EIG_GEN.

 integer i
 integer, parameter :: n=17

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 447

 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) a(n,n), c(n,n), variation(n), y(n*n), temp(n), &
 norm_of_a, eta
 complex(kind(1d0)), dimension(n,n) :: e(n), d(n), u, v

! Generate a random matrix.
 call rand_gen(y)
 a = reshape(y,(/n,n/))

! Compute the eigenvalues, left- and right- eigenvectors.
 call lin_eig_gen(a, e, v=v, v_adj=u)

! Compute condition numbers and variations of eigenvalues.
 norm_of_a = sqrt(sum(a**2)/n)
 do i=1, n
 variation(i) = norm_of_a/abs(dot_product(u(1:n,i), &
 v(1:n,i)))
 end do

! Now perturb the data in the matrix by the relative factors
! eta=sqrt(epsilon) and solve for values again. Check the
! differences compared to the estimates. They should not exceed
! the bounds.

 eta = sqrt(epsilon(one))
 do i=1, n
 call rand_gen(temp)
 c(1:n,i) = a(1:n,i) + (2*temp - 1)*eta*a(1:n,i)
 end do

 call lin_eig_gen(c,d)

! Looking at the differences of absolute values accounts for
! switching signs on the imaginary parts.
 if (count(abs(d)-abs(e) > eta*variation) == 0) then
 write (*,*) 'Example 4 for LIN_EIG_GEN is correct.'
 end if

 end

Output

Example 4 for LIN_EIG_GEN is correct.

Fatal, Terminal, and Warning Error Messages
See the messages.gls file for error messages for lin_eig_gen. These error messages are numbered
841�858; 861�878; 881�898; 901�918.

448 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

LIN_GEIG_GEN
Computes the generalized eigenvalues of an n � n matrix pencil, Av = �Bv. Optionally, the gen-
eralized eigenvectors are computed. If either of A or B is nonsingular, there are diagonal matrices �
and �, and a complex matrix V, all computed such that AV� = BV�.

Required Arguments
A — Array of size n � n containing the matrix A. (Input [/Output])

B — Array of size n � n containing the matrix B. (Input [/Output])

ALPHA — Array of size n containing diagonal matrix factors of the generalized eigenvalues.
These complex values are in order of decreasing absolute value. (Output)

BETAV — Array of size n containing diagonal matrix factors of the generalized eigenvalues.
These real values are in order of decreasing value. (Output)

Optional Arguments

NROWS = n (Input)
Uses arrays A(1:n, 1:n) and B(1:n, 1:n) for the input matrix pencil.
Default: n = size(A, 1)

v = V(:,:) (Output)
Returns the complex array of generalized eigenvectors for the matrix pencil.

iopt = iopt(:) (Input)
Derived type array with the same precision as the input matrix. Used for passing optional
data to the routine. The options are as follows:

Packaged Options for lin_geig_gen

Option Prefix = ? Option Name Option Value

s_, d_, c_, z_ lin_geig_gen_set_small 1

s_, d_, c_, z_ lin_geig_gen_overwrite_input 2

s_, d_, c_, z_ lin_geig_gen_scan_for_NaN 3

s_, d_, c_, z_ lin_geig_gen_self_adj_pos 4

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_self 5

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_self 6

s_, d_, c_, z_ lin_geig_gen_for_lin_sol_lsq 7

s_, d_, c_, z_ lin_geig_gen_for_lin_eig_gen 8

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 449

iopt(IO) = ?_options(?_lin_geig_gen_set_small, Small)
This tolerance, multiplied by the sum of absolute value of the matrix B, is used to define a
small diagonal term in the routines lin_sol_lsq and lin_sol_self. That value can be
replaced using the option flags lin_geig_gen_for_lin_sol_lsq, and
lin_geig_gen_for_lin_sol_self.
Default: Small = epsilon(.), the relative accuracy of arithmetic

iopt(IO) = ?_options(?_lin_geig_gen_overwrite_input, ?_dummy)
Does not save the input arrays A(:, :) and B(:, :).
Default: The array is saved.

iopt(IO) = ?_options(?_lin_geig_gen_scan_for_NaN, ?_dummy)
Examines each input array entry to find the first value such that

isNaN(a(i,j)) .or. isNaN(b(i,j)) == .true.

See the isNaN() function, Chapter 10.
Default: The arrays are not scanned for NaNs.

iopt(IO) = ?_options(?_lin_geig_gen_self_adj_pos, ?_dummy)
If both matrices A and B are self-adjoint and additionally B is positive-definite, then the
Cholesky algorithm is used to reduce the matrix pencil to an ordinary self-adjoint
eigenvalue problem.

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_self, ?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_sol_self), ?_dummy)
The options for lin_sol_self follow as data in iopt().

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_self, ?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_eig_self), ?_dummy)
The options for lin_eig_self follow as data in iopt().

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_sol_lsq, ?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_sol_lsq), ?_dummy)
The options for lin_sol_lsq follow as data in iopt().

iopt(IO) = ?_options(?_lin_geig_gen_for_lin_eig_gen, ?_dummy)

iopt(IO+1) = ?_options((k=size of options for lin_eig_gen), ?_dummy)
The options for lin_eig_gen follow as data in iopt().

FORTRAN 90 Interface
Generic: CALL LIN_GEIG_GEN (A, B, ALPHA, BETAV [,…])

 Specific: The specific interface names are S_LIN_GEIG_GEN, D_LIN_GEIG_GEN,
C_LIN_GEIG_GEN, and Z_LIN_GEIG_GEN.

450 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Example 1: Computing Generalized Eigenvalues
The generalized eigenvalues of a random real matrix pencil are computed. These values are checked
by obtaining the generalized eigenvectors and then showing that the residuals

1AV BV�� �

�

are small. Note that when the matrix B is nonsingular � = I, the identity matrix. When B is singular
and A is nonsingular, some diagonal entries of � are essentially zero. This corresponds to “infinite
eigenvalues” of the matrix pencil. This random matrix pencil example has all finite eigenvalues. Also,
see operator_ex33, Chapter 10.

 use lin_geig_gen_int
 use rand_gen_int

 implicit none

! This is Example 1 for LIN_GEIG_GEN.

 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1d0
 real(kind(1d0)) A(n,n), B(n,n), betav(n), beta_t(n), err, y(n*n)
 complex(kind(1d0)) alpha(n), alpha_t(n), V(n,n)

! Generate random matrices for both A and B.
 call rand_gen(y)
 A = reshape(y,(/n,n/))
 call rand_gen(y)
 B = reshape(y,(/n,n/))

! Compute the generalized eigenvalues.
 call lin_geig_gen(A, B, alpha, betav)

! Compute the full decomposition once again, A*V = B*V*values.
 call lin_geig_gen(A, B, alpha_t, beta_t, &
 v=V)

! Use values from the first decomposition, vectors from the
! second decomposition, and check for small residuals.
 err = sum(abs(matmul(A,V) - &
 matmul(B,V)*spread(alpha/betav,DIM=1,NCOPIES=n))) / &
 sum(abs(a)+abs(b))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 1 for LIN_GEIG_GEN is correct.'
 end if

 end

Output
Example 1 for LIN_GEIG_GEN is correct.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 451

Description
Routine lin_geig_gen implements a standard algorithm that reduces a generalized eigenvalue or
matrix pencil problem to an ordinary eigenvalue problem. An orthogonal decomposition is computed

TBP HR�

The orthogonal matrix H is the product of n � 1 row permutations, each followed by a Householder
transformation. Column permutations, P, are chosen at each step to maximize the Euclidian length of
the pivot column. The matrix R is upper triangular. Using the default tolerance
 = �||B||, where � is
machine relative precision, each diagonal entry of R exceeds
 in value. Otherwise, R is singular. In
that case A and B are interchanged and the orthogonal decomposition is computed one more time. If
both matrices are singular the problem is declared singular and is not solved. The interchange of A
and B is accounted for in the output diagonal matrices � and �. The ordinary eigenvalue problem is
Cx = �x, where

1T TC H AP R�

�

and

RPv = x

If the matrices A and B are self-adjoint and if, in addition, B is positive-definite, then a more efficient
reduction than the default algorithm can be optionally used to solve the problem: A Cholesky
decomposition is obtained, RTR R = PBPT. The matrix R is upper triangular and P is a permutation
matrix. This is equivalent to the ordinary self-adjoint eigenvalue problem Cx = �x, where RPv = x and

1T TC R PAP R� �

�

The self-adjoint eigenvalue problem is then solved.

Additional Examples

Example 2: Self-Adjoint, Positive-Definite Generalized Eigenvalue Problem
This example illustrates the use of optional flags for the special case where A and B are complex self-
adjoint matrices, and B is positive-definite. For purposes of maximum efficiency an option is passed
to routine lin_sol_self so that pivoting is not used in the computation of the Cholesky
decomposition of matrix B. This example does not require that secondary option. Also, see
operator_ex34, Chapter 10.

 use lin_geig_gen_int
 use lin_sol_self_int
 use rand_gen_int

 implicit none

! This is Example 2 for LIN_GEIG_GEN.

 integer i
 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
 real(kind(1d0)) betav(n), temp_c(n,n), temp_d(n,n), err

452 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 type(d_options) :: iopti(4)=d_options(0,zero)
 complex(kind(1d0)), dimension(n,n) :: A, B, C, D, V, alpha(n)

! Generate random matrices for both A and B.
 do i=1, n
 call rand_gen(temp_c(1:n,i))
 call rand_gen(temp_d(1:n,i))
 end do
 c = temp_c; d = temp_c
 do i=1, n
 call rand_gen(temp_c(1:n,i))
 call rand_gen(temp_d(1:n,i))
 end do
 c = cmplx(real(c),temp_c,kind(one))
 d = cmplx(real(d),temp_d,kind(one))

 a = conjg(transpose(c)) + c
 b = matmul(conjg(transpose(d)),d)

! Set option so that the generalized eigenvalue solver uses an
! efficient method for well-posed, self-adjoint problems.
 iopti(1) = d_options(z_lin_geig_gen_self_adj_pos,zero)
 iopti(2) = d_options(z_lin_geig_gen_for_lin_sol_self,zero)

! Number of secondary optional data items and the options:
 iopti(3) = d_options(1,zero)
 iopti(4) = d_options(z_lin_sol_self_no_pivoting,zero)

 call lin_geig_gen(a, b, alpha, betav, v=v, &
 iopt=iopti)

! Check that residuals are small. Use the real part of alpha
! since the values are known to be real.
 err = sum(abs(matmul(a,v) - matmul(b,v)* &
 spread(real(alpha,kind(one))/betav,dim=1,ncopies=n))) / &
 sum(abs(a)+abs(b))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 2 for LIN_GEIG_GEN is correct.'
 end if

 end

Output

Example 2 for LIN_GEIG_GEN is correct.

Example 3: A Test for a Regular Matrix Pencil
In the classification of Differential Algebraic Equations (DAE), a system with linear constant coef-
ficients is given by A x� + Bx = f. Here A and B are n � n matrices, and f is an n-vector that is not part
of this example. The DAE system is defined as solvable if and only if the quantity
det(A + B) does not vanish identically as a function of the dummy parameter . A sufficient con-
dition for solvability is that the generalized eigenvalue problem Av = �Bv is nonsingular. By con-

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 453

structing A and B so that both are singular, the routine flags nonsolvability in the DAE by returning
NaN for the generalized eigenvalues. Also, see operator_ex35, Chapter 10.

 use lin_geig_gen_int
 use rand_gen_int
 use error_option_packet
 use isnan_int

 implicit none

! This is Example 3 for LIN_GEIG_GEN.

 integer, parameter :: n=6
 real(kind(1d0)), parameter :: one=1.0d0, zero=0.0d0
 real(kind(1d0)) a(n,n), b(n,n), betav(n), y(n*n)
 type(d_options) iopti(1)
 type(d_error) epack(1)
 complex(kind(1d0)) alpha(n)

! Generate random matrices for both A and B.
 call rand_gen(y)
 a = reshape(y,(/n,n/))

 call rand_gen(y)
 b = reshape(y,(/n,n/))

! Make columns of A and B zero, so both are singular.
 a(1:n,n) = 0; b(1:n,n) = 0

! Set internal tolerance for a small diagonal term.
 iopti(1) = d_options(d_lin_geig_gen_set_small,sqrt(epsilon(one)))

! Compute the generalized eigenvalues.
 call lin_geig_gen(a, b, alpha, betav, &
 iopt=iopti,epack=epack)

! See if singular DAE system is detected.
! (The size of epack() is too small for the message, so
! output is blocked with NaNs.)
 if (isnan(alpha)) then
 write (*,*) 'Example 3 for LIN_GEIG_GEN is correct.'
 end if

 end

Output

Example 3 for LIN_GEIG_GEN is correct.

Example 4: Larger Data Uncertainty than Working Precision

Data values in both matrices A and B are assumed to have relative errors that can be as large as 1/ 2
�

where � is the relative machine precision. This example illustrates the use of an optional flag that

454 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

resets the tolerance used in routine lin_sol_lsq for determining a singularity of either matrix. The
tolerance is reset to the new value 1/ 2 B� and the generalized eigenvalue problem is solved. We
anticipate that B might be singular and detect this fact. Also, see operator_ex36, Chapter 10.

 use lin_geig_gen_int
 use lin_sol_lsq_int
 use rand_gen_int
 use isNaN_int

 implicit none

! This is Example 4 for LIN_GEIG_GEN.

 integer, parameter :: n=32
 real(kind(1d0)), parameter :: one=1d0, zero=0d0
 real(kind(1d0)) a(n,n), b(n,n), betav(n), y(n*n), err
 type(d_options) iopti(4)
 type(d_error) epack(1)
 complex(kind(1d0)) alpha(n), v(n,n)

! Generate random matrices for both A and B.

 call rand_gen(y)
 a = reshape(y,(/n,n/))

 call rand_gen(y)
 b = reshape(y,(/n,n/))

! Set the option, a larger tolerance than default for lin_sol_lsq.
 iopti(1) = d_options(d_lin_geig_gen_for_lin_sol_lsq,zero)

! Number of secondary optional data items
 iopti(2) = d_options(2,zero)
 iopti(3) = d_options(d_lin_sol_lsq_set_small,sqrt(epsilon(one))*&
 sqrt(sum(b**2)/n))
 iopti(4) = d_options(d_lin_sol_lsq_no_sing_mess,zero)

! Compute the generalized eigenvalues.
 call lin_geig_gen(A, B, alpha, betav, v=v, &
 iopt=iopti, epack=epack)

 if(.not. isNaN(alpha)) then

! Check the residuals.
 err = sum(abs(matmul(A,V)*spread(betav,dim=1,ncopies=n) - &
 matmul(B,V)*spread(alpha,dim=1,ncopies=n))) / &
 sum(abs(a)+abs(b))
 if (err <= sqrt(epsilon(one))) then
 write (*,*) 'Example 4 for LIN_GEIG_GEN is correct.'

 end if
 end if
 end

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 455

Output

Example 4 for LIN_GEIG_GEN is correct.

Fatal, Terminal, and Warning Error Messages
See the messages.gls file for error messages for lin_geig_gen. These error messages are numbered
921�936; 941�956; 961�976; 981�996.

EVLRG
Computes all of the eigenvalues of a real matrix.

Required Arguments
A — Real full matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of
magnitude. (Output)

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVLRG (A, EVAL [,…])

 Specific: The specific interface names are S_EVLRG and D_EVLRG.

FORTRAN 77 Interface
Single: CALL EVLRG (N, A, LDA, EVAL)

Double: The double precision name is DEVLRG.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 85). The eigenvalues of this real matrix are computed and printed. The exact eigenvalues are
known to be {4, 3, 2, 1}.

456 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 USE EVLRG_INT
 USE WRCRN_INT
! Declare variables
 INTEGER LDA, N
 PARAMETER (N=4, LDA=N)
!
 REAL A(LDA,N)
 COMPLEX EVAL(N)
! Set values of A
!
! A = (-2.0 2.0 2.0 2.0)
! (-3.0 3.0 2.0 2.0)
! (-2.0 0.0 4.0 2.0)
! (-1.0 0.0 0.0 5.0)
 DATA A/-2.0, -3.0, -2.0, -1.0, 2.0, 3.0, 0.0, 0.0, 2.0, 2.0, &
 4.0, 0.0, 2.0, 2.0, 2.0, 5.0/
!
! Find eigenvalues of A
 CALL EVLRG (A, EVAL)
! Print results
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 END

Output
 EVAL
 1 2 3 4
(4.000, 0.000) (3.000, 0.000) (2.000, 0.000) (1.000, 0.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of E3LRG/DE3LRG. The

reference is:

CALL E3LRG (N, A, LDA, EVAL, ACOPY, WK, IWK)

The additional arguments are as follows:

ACOPY — Real work array of length N�. A and ACOPY may be the same, in which case the
first N� elements of A will be destroyed.

WK — Floating-point work array of size 4N.

IWK — Integer work array of size 2N.

2. Informational error
Type Code

 4 1 The iteration for an eigenvalue failed to converge.

3. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access inefficiency)
problems. In routine E3LRG, the internal or working leading dimension of ACOPY is

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 457

increased by IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and
IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2), respectively, in routine
EVLRG . Additional memory allocation and option value restoration are
automatically done in EVLRG. There is no requirement that users change existing
applications that use EVLRG or E3LRG. Default values for the option are
IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized
eigenvalue problem and are not used in EVLRG.

Description
Routine EVLRG computes the eigenvalues of a real matrix. The matrix is first balanced. Elementary
or Gauss similarity transformations with partial pivoting are used to reduce this balanced matrix to a
real upper Hessenberg matrix. A hybrid double�shifted LR�QR algorithm is used to compute the
eigenvalues of the Hessenberg matrix, Watkins and Elsner (1990).

The balancing routine is based on the EISPACK routine BALANC. The reduction routine is based on
the EISPACK routine ELMHES. See Smith et al. (1976) for the EISPACK routines. The LR�QR
algorithm is based on software work of Watkins and Haag. Further details, some timing data, and
credits are given in Hanson et al. (1990).

EVCRG
Computes all of the eigenvalues and eigenvectors of a real matrix.

Required Arguments
A — Floating-point array containing the matrix. (Input)

EVAL — Complex array of size N containing the eigenvalues of A in decreasing order of
magnitude. (Output)

EVEC — Complex array containing the matrix of eigenvectors. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

458 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL EVCRG (A, EVAL, EVEC [,…])

 Specific: The specific interface names are S_EVCRG and D_EVCRG.

FORTRAN 77 Interface
Single: CALL EVCRG (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCRG.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 82). The eigenvalues and eigenvectors of this real matrix are computed and printed. The
performance index is also computed and printed. This serves as a check on the computations. For
more details, see IMSL routine EPIRG, page 460.

 USE EVCRG_INT
 USE EPIRG_INT
 USE UMACH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDEVEC=N)
 INTEGER NOUT
 REAL PI
 COMPLEX EVAL(N), EVEC(LDEVEC,N)
 REAL A(LDA,N)

! Define values of A:
!
! A = (8.0 -1.0 -5.0)
! (-4.0 4.0 -2.0)
! (18.0 -5.0 -7.0)
!
 DATA A/8.0, -4.0, 18.0, -1.0, 4.0, -5.0, -5.0, -2.0, -7.0/
!
! Find eigenvalues and vectors of A
 CALL EVCRG (A, EVAL, EVEC)
! Compute performance index
 PI = EPIRG(N,A,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 CALL WRCRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 459

Output
 EVAL
 1 2 3
(2.000, 4.000) (2.000,-4.000) (1.000, 0.000)

 EVEC
 1 2 3
1 (0.3162, 0.3162) (0.3162,-0.3162) (0.4082, 0.0000)
2 (0.0000, 0.6325) (0.0000,-0.6325) (0.8165, 0.0000)
3 (0.6325, 0.0000) (0.6325, 0.0000) (0.4082, 0.0000)

Performance index = 0.026

Comments
1. Workspace may be explicitly provided, if desired, by use of E8CRG/DE8CRG. The

reference is:

CALL E8CRG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY,
 ECOPY WK,IWK)

The additional arguments are as follows:

ACOPY — Floating-point work array of size N by N. The arrays A and ACOPY may be the
same, in which case the first N� elements of A will be destroyed. The array ACOPY
can have its working row dimension increased from N to a larger value. An optional
usage is required. See Item 3 below for further details.

ECOPY — Floating-point work array of default size N by N + 1. The working, leading
dimension of ECOPY is the same as that for ACOPY. To increase this value, an
optional usage is required. See Item 3 below for further details.

WK — Floating-point work array of size 6N.

IWK — Integer work array of size N.

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues failed to converge. No eigenvalues or
eigenvectors are computed.

3. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access inefficiency)
problems. In routine E8CRG, the internal or working leading dimensions of ACOPY
and ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The
values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in routine EVCRG. Additional memory allocation and option value
restoration are automatically done in EVCRG. There is no requirement that users
change existing applications that use EVCRG or E8CRG. Default values for the option

460 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized
eigenvalue problem and are not used in EVCRG.

Description
Routine EVCRG computes the eigenvalues and eigenvectors of a real matrix. The matrix is first
balanced. Orthogonal similarity transformations are used to reduce the balanced matrix to a real
upper Hessenberg matrix. The implicit double�shifted QR algorithm is used to compute the
eigenvalues and eigenvectors of this Hessenberg matrix. The eigenvectors are normalized such that
each has Euclidean length of value one. The largest component is real and positive.

The balancing routine is based on the EISPACK routine BALANC. The reduction routine is based on
the EISPACK routines ORTHES and ORTRAN. The QR algorithm routine is based on the EISPACK
routine HQR2. See Smith et al. (1976) for the EISPACK routines. Further details, some timing data,
and credits are given in Hanson et al. (1990).

EPIRG
This function computes the performance index for a real eigensystem.

Function Return Value
EPIRG — Performance index. (Output)

Required Arguments
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index

computation is based. (Input)

A — Matrix of order N. (Input)

EVAL — Complex vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — Complex N by NEVAL array containing eigenvectors of A. (Input)
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column of
EVEC.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 461

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: EPIRG (NEVAL, A, EVAL, EVEC[,…])

 Specific: The specific interface names are S_EPIRG and D_EPIRG.

FORTRAN 77 Interface
Single: EPIRG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPIRG.

Example
For an example of EPIRG, see IMSL routine EVCRG, page 457.

Comments
1. Workspace may be explicitly provided, if desired, by use of E2IRG/DE2IRG. The

reference is:

E2IRG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, CWK)

The additional argument is:

CWK — Complex work array of length N.

2. Informational errors
Type Code

 3 1 The performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

Description
Let M = NEVAL, � = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let � be the machine
precision given by AMACH(4). The performance index,
, is defined to be

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

�

�
�� �

�

�

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

462 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

� �1
1

N

i i
i

v v v
�

� � � ��

While the exact value of
 is highly machine dependent, the performance of EVCSF is considered
excellent if
 < 1, good if 1 �
 � 100, and poor if
 > 100.

The performance index was first developed by the EISPACK project at Argonne National
Laboratory; see Smith et al. (1976, pages 124�125).

EVLCG
Computes all of the eigenvalues of a complex matrix.

Required Arguments
A — Complex matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of
magnitude. (Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVLCG (A, EVAL [,…])

Specific: The specific interface names are S_EVLCG and D_EVLCG.

FORTRAN 77 Interface
Single: CALL EVLCG (N, A, LDA, EVAL, 1, N, 1)

Double: The double precision name is EVLCG.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 115). The program computes the eigenvalues of this matrix.

 USE EVLCG_INT

 USE WRCRN_INT

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 463

! Declare variables
 INTEGER LDA, N
 PARAMETER (N=3, LDA=N)
!
 COMPLEX A(LDA,N), EVAL(N)
! Set values of A
!
! A = (1+2i 3+4i 21+22i)
! (43+44i 13+14i 15+16i)
! (5+6i 7+8i 25+26i)
!
 DATA A/(1.0,2.0), (43.0,44.0), (5.0,6.0), (3.0,4.0), &
 (13.0,14.0), (7.0,8.0), (21.0,22.0), (15.0,16.0), &
 (25.0,26.0)/
!
! Find eigenvalues of A
 CALL EVLCG (A, EVAL)
! Print results
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 END

Output
 EVAL
 1 2 3
(39.78, 43.00) (6.70, -7.88) (-7.48, 6.88)

Comments
1. Workspace may be explicitly provided, if desired, by use of E3LCG/DE3LCG. The

reference is:

CALL E3LCG (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N�. A and ACOPY may be the same, in which
case the first N� elements of A will be destroyed.

RWK — Work array of length N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational error
Type Code

 4 1 The iteration for an eigenvalue failed to converge.

3. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access inefficiency)
problems. In routine E3LCG, the internal or working, leading dimension of ACOPY is

464 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

increased by IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and
IVAL (4) are temporarily replaced by IVAL(1) and IVAL(2), respectively, in routine
EVLCG . Additional memory allocation and option value restoration are
automatically done in EVLCG. There is no requirement that users change existing
applications that use EVLCG or E3LCG. Default values for the option are IVAL(*) =
1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized eigenvalue
problem and are not used in EVLCG.

Description
Routine EVLCG computes the eigenvalues of a complex matrix. The matrix is first balanced. Unitary
similarity transformations are used to reduce this balanced matrix to a complex upper Hessenberg
matrix. The shifted QR algorithm is used to compute the eigenvalues of this Hessenberg matrix.

The balancing routine is based on the EISPACK routine CBAL. The reduction routine is based on
the EISPACK routine CORTH. The QR routine used is based on the EISPACK routine COMQR2. See
Smith et al. (1976) for the EISPACK routines.

EVCCG
Computes all of the eigenvalues and eigenvectors of a complex matrix.

Required Arguments
A — Complex matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of
magnitude. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 465

FORTRAN 90 Interface
Generic: CALL EVCCG (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCCG and D_EVCCG.

FORTRAN 77 Interface
Single: CALL EVCCG (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCCG.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 116). Its eigenvalues are known to be {1 + 5i, 2 + 6i, 3 + 7i, 4 + 8i}. The program computes
the eigenvalues and eigenvectors of this matrix. The performance index is also computed and
printed. This serves as a check on the computations; for more details, see IMSL routine EPICG,
page 467.

 USE EVCCG_INT
 USE EPICG_INT
 USE WRCRN_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=4, LDA=N, LDEVEC=N)
!
 INTEGER NOUT
 REAL PI
 COMPLEX A(LDA,N), EVAL(N), EVEC(LDEVEC,N)
! Set values of A
!
! A = (5+9i 5+5i -6-6i -7-7i)
! (3+3i 6+10i -5-5i -6-6i)
! (2+2i 3+3i -1+3i -5-5i)
! (1+i 2+2i -3-3i 4i)
!
 DATA A/(5.0,9.0), (3.0,3.0), (2.0,2.0), (1.0,1.0), (5.0,5.0), &
 (6.0,10.0), (3.0,3.0), (2.0,2.0), (-6.0,-6.0), (-5.0,-5.0), &
 (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0), &
 (-5.0,-5.0), (0.0,4.0)/
!
! Find eigenvalues and vectors of A
 CALL EVCCG (A, EVAL, EVEC)
! Compute performance index
 PI = EPICG(N,A,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 CALL WRCRN (’EVEC’, EVEC)

 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI

466 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 END

Output
 EVAL
 1 2 3 4
(4.000, 8.000) (3.000, 7.000) (2.000, 6.000) (1.000, 5.000)

 EVEC
 1 2 3 4
1 (0.5774, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) (0.7559, 0.0000)
2 (0.5774, 0.0000) (0.5773, 0.0000) (0.7559, 0.0000) (0.3780, 0.0000)
3 (0.5774, 0.0000) (0.0000, 0.0000) (0.3780, 0.0000) (0.3780, 0.0000)
4 (0.0000, 0.0000) (0.5774, 0.0000) (0.3780, 0.0000) (0.3780, 0.0000)

Performance index = 0.016

Comments
1. Workspace may be explicitly provided, if desired, by use of E6CCG/DE6CCG. The

reference is:

CALL E6CCG (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY,
 RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N�. The arrays A and ACOPY may be the same,
in which case the first N� elements of A will be destroyed.

RWK — Work array of length N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues failed to converge. No eigenvalues or
eigenvectors are computed.

3. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access inefficiency)
problems. In routine E6CCG, the internal or working leading dimensions of ACOPY
and ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The
values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in routine EVCCG. Additional memory allocation and option value
restoration are automatically done in EVCCG. There is no requirement that users
change existing applications that use EVCCG or E6CCG. Default values for the option

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 467

are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized
eigenvalue problem and are not used in EVCCG.

Description
Routine EVCCG computes the eigenvalues and eigenvectors of a complex matrix. The matrix is first
balanced. Unitary similarity transformations are used to reduce this balanced matrix to a complex
upper Hessenberg matrix. The QR algorithm is used to compute the eigenvalues and eigenvectors of
this Hessenberg matrix. The eigenvectors of the original matrix are computed by transforming the
eigenvectors of the complex upper Hessenberg matrix.

The balancing routine is based on the EISPACK routine CBAL. The reduction routine is based on
the EISPACK routine CORTH. The QR algorithm routine used is based on the EISPACK routine
COMQR2. The back transformation routine is based on the EISPACK routine CBABK2 . See Smith et
al. (1976) for the EISPACK routines.

EPICG
This function computes the performance index for a complex eigensystem.

Function Return Value
EPICG — Performance index. (Output)

Required Arguments
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index

computation is based. (Input)

A — Complex matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A. (Input)

EVEC — Complex matrix of order N containing the eigenvectors of A. (Input)
The J-th eigenvalue/eigenvector pair should be in EVAL(J) and in the J-th column of
EVEC.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

468 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: EPICG (NEVAL, A, EVAL, EVEC[,…])

Specific: The specific interface names are S_EPICG and D_EPICG.

FORTRAN 77 Interface
Single: EPICG (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPICG.

Example
For an example of EPICG, see IMSL routine EVCCG on page 464.

Comments
1. Workspace may be explicitly provided, if desired, by use of E2ICG/DE2ICG. The

reference is:

E2ICG(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK)

The additional argument is:

WK — Complex work array of length N.

2. Informational errors
Type Code

 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

Description
Let M = NEVAL, � = EVAL, xj = EVEC(*, J), the j-th column of EVEC. Also, let � be the machine
precision given by AMACH(4). The performance index,
, is defined to be

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

�

�
�� �

�

�

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

� �1
1

N

i i
i

v v v
�

� � � ��

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 469

While the exact value of
 is highly machine dependent, the performance of EVCSF (page 471) is
considered excellent if
 < 1, good if 1 �
 � 100, and poor if
 > 100. The performance index was
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976,
pages 124�125).

EVLSF
Computes all of the eigenvalues of a real symmetric matrix.

Required Arguments
A — Real symmetric matrix of order N. (Input)

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of
magnitude. (Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVLSF (A, EVAL [,…])

Specific: The specific interface names are S_EVLSF and D_EVLSF.

FORTRAN 77 Interface
Single: CALL EVLSF (N, A, LDA, EVAL)

Double: The double precision name is DEVLSF.

Example
In this example, the eigenvalues of a real symmetric matrix are computed and printed. This matrix
is given by Gregory and Karney (1969, page 56).

 USE EVLSF_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (N=4, LDA=N)
!

470 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 REAL A(LDA,N), EVAL(N)
! Set values of A
!
! A = (6.0 4.0 4.0 1.0)
! (4.0 6.0 1.0 4.0)
! (4.0 1.0 6.0 4.0)
! (1.0 4.0 4.0 6.0)
!
 DATA A /6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0, &
 4.0, 1.0, 4.0, 4.0, 6.0 /
!
! Find eigenvalues of A
 CALL EVLSF (A, EVAL)
! Print results
 CALL WRRRN (’EVAL’, EVAL, 1, N, 1)
 END

Output
 EVAL
 1 2 3 4
15.00 5.00 5.00 -1.00

Comments
1. Workspace may be explicitly provided, if desired, by use of E4LSF/DE4LSF. The

reference is:

CALL E4LSF (N, A, LDA, EVAL,WORK, IWORK)

The additional arguments are as follows:

WORK — Work array of length 2N.

IWORK — Integer array of length N.

2. Informational error
Type Code

 3 1 The iteration for the eigenvalue failed to converge in 100 iterations
before deflating.

Description
Routine EVLSF computes the eigenvalues of a real symmetric matrix. Orthogonal similarity
transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. Then,
an implicit rational QR algorithm is used to compute the eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The
rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169). Further
details, some timing data, and credits are given in Hanson et al. (1990).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 471

EVCSF
Computes all of the eigenvalues and eigenvectors of a real symmetric matrix.

Required Arguments
A — Real symmetric matrix of order N. (Input)

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of
magnitude. (Output)

EVEC — Real matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL EVCSF (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCSF and D_EVCSF.

FORTRAN 77 Interface
Single: CALL EVCSF (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCSF.

Example
The eigenvalues and eigenvectors of this real symmetric matrix are computed and printed. The
performance index is also computed and printed. This serves as a check on the computations. For
more details, see EPISF on page 483.

 USE EVCSF_INT
 USE EPISF_INT

472 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDEVEC=N)
!
 INTEGER NOUT
 REAL A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI
!
! Set values of A
!
! A = (7.0 -8.0 -8.0)
! (-8.0 -16.0 -18.0)
! (-8.0 -18.0 13.0)
!
 DATA A/7.0, -8.0, -8.0, -8.0, -16.0, -18.0, -8.0, -18.0, 13.0/
!
! Find eigenvalues and vectors of A
 CALL EVCSF (A, EVAL, EVEC)
! Compute performance index
 PI = EPISF (N, A, EVAL, EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, EVAL, 1, N, 1)
 CALL WRRRN (’EVEC’, EVEC)

 WRITE (NOUT, ’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
 -27.90 22.68 9.22

 EVEC
 1 2 3
1 0.2945 -0.2722 0.9161
2 0.8521 -0.3591 -0.3806
3 0.4326 0.8927 0.1262

Performance index = 0.019

Comments
1. Workspace may be explicitly provided, if desired, by use of E5CSF/DE5CSF. The

reference is:

CALL E5CSF (N, A, LDA, EVAL, EVEC, LDEVEC, WORK, IWK)

The additional argument is:

WORK — Work array of length 3N.

IWK — Integer array of length N.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 473

2. Informational error
Type Code

 3 1 The iteration for the eigenvalue failed to converge in 100 iterations
before deflating.

Description
Routine EVCSF computes the eigenvalues and eigenvectors of a real symmetric matrix. Orthogonal
similarity transformations are used to reduce the matrix to an equivalent symmetric tridiagonal
matrix. These transformations are accumulated. An implicit rational QR algorithm is used to
compute the eigenvalues of this tridiagonal matrix. The eigenvectors are computed using the
eigenvalues as perfect shifts, Parlett (1980, pages 169, 172). The reduction routine is based on the
EISPACK routine TRED2. See Smith et al. (1976) for the EISPACK routines. Further details, some
timing data, and credits are given in Hanson et al. (1990).

EVASF
Computes the largest or smallest eigenvalues of a real symmetric matrix.

Required Arguments
NEVAL — Number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL
eigenvalues are computed.

EVAL — Real vector of length NEVAL containing the eigenvalues of A in decreasing order of
magnitude. (Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVASF (NEVAL, A, SMALL, EVAL [,…])

Specific: The specific interface names are S_EVASF and D_EVASF.

474 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL EVASF (N, NEVAL, A, LDA, SMALL, EVAL)

Double: The double precision name is DEVASF.

Example
In this example, the three largest eigenvalues of the computed Hilbert matrix aij = 1/(i + j �1) of
order N = 10 are computed and printed.

 USE EVASF_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, N, NEVAL
 PARAMETER (N=10, NEVAL=3, LDA=N)
!
 INTEGER I, J
 REAL A(LDA,N), EVAL(NEVAL), REAL
 LOGICAL SMALL
 INTRINSIC REAL
! Set up Hilbert matrix
 DO 20 J=1, N
 DO 10 I=1, N
 A(I,J) = 1.0/REAL(I+J-1)
 10 CONTINUE
 20 CONTINUE
! Find the 3 largest eigenvalues
 SMALL = .FALSE.
 CALL EVASF (NEVAL, A, SMALL, EVAL)
! Print results
 CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1)

 END

Output
 EVAL
 1 2 3
1.752 0.343 0.036

Comments
1. Workspace may be explicitly provided, if desired, by use of E4ASF/DE4ASF. The

reference is:

CALL E4ASF (N, NEVAL, A, LDA, SMALL, EVAL, WORK, IWK)

WORK — Work array of length 4N.

IWK — Integer work array of length N.

2. Informational error
Type Code

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 475

 3 1 The iteration for an eigenvalue failed to converge. The best estimate will
be returned.

Description
Routine EVASF computes the largest or smallest eigenvalues of a real symmetric matrix. Orthogonal
similarity transformations are used to reduce the matrix to an equivalent symmetric tridiagonal
matrix. Then, an implicit rational QR algorithm is used to compute the eigenvalues of this
tridiagonal matrix.

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The
rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169).

EVESF
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real symmetric
matrix.

Required Arguments
NEVEC — Number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVEC eigenvalues are computed. If .FALSE., the largest NEVEC
eigenvalues are computed.

EVAL — Real vector of length NEVEC containing the eigenvalues of A in decreasing order of
magnitude. (Output)

EVEC — Real matrix of dimension N by NEVEC. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

476 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL EVESF (NEVEC, A, SMALL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVESF and D_EVESF.

FORTRAN 77 Interface
Single: CALL EVESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVESF.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 55). The largest two eigenvalues and their eigenvectors are computed and printed. The
performance index is also computed and printed. This serves as a check on the computations. For
more details, see IMSL routine EPISF on page 483.

 USE EVESF_INT
 USE EPISF_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=4, LDA=N, LDEVEC=N)
!
 INTEGER NEVEC, NOUT
 REAL A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI
 LOGICAL SMALL
!
! Set values of A
!
! A = (5.0 4.0 1.0 1.0)
! (4.0 5.0 1.0 1.0)
! (1.0 1.0 4.0 2.0)
! (1.0 1.0 2.0 4.0)
!
 DATA A/5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0, 1.0, 1.0, 4.0, &
 2.0, 1.0, 1.0, 2.0, 4.0/
!
! Find eigenvalues and vectors of A
 NEVEC = 2
 SMALL = .FALSE.
 CALL EVESF (NEVEC, A, SMALL, EVAL, EVEC)
! Compute performance index
 PI = EPISF(NEVEC,A,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, EVAL, 1, NEVEC, 1)
 CALL WRRRN (’EVEC’, EVEC, N, NEVEC, LDEVEC)

 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 477

 END

Output
 EVAL
 1 2
 10.00 5.00

 EVEC
 1 2
 1 0.6325 -0.3162
 2 0.6325 -0.3162
 3 0.3162 0.6325
 4 0.3162 0.6325

 Performance index = 0.026

Comments
1. Workspace may be explicitly provided, if desired, by use of E5ESF/DE5ESF. The

reference is:

CALL E5ESF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 9N.

IWK — Integer array of length N.

2. Informational errors
Type Code

 3 1 The iteration for an eigenvalue failed to converge. The best estimate will
be returned.

 3 2 Inverse iteration did not converge. Eigenvector is not correct for the
specified eigenvalue.

 3 3 The eigenvectors have lost orthogonality.

Description
Routine EVESF computes the largest or smallest eigenvalues and the corresponding eigenvectors of
a real symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to an
equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm is used to
compute the eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the
eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of these vectors. The
eigenvectors of the original matrix are computed by back transforming those of the tridiagonal
matrix.

The reduction routine is based on the EISPACK routine TRED2. See Smith et al. (1976). The
rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page 169). The
inverse iteration and orthogonalization computation is discussed in Hanson et al. (1990). The back
transformation routine is based on the EISPACK routine TRBAK1.

478 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVBSF
Computes selected eigenvalues of a real symmetric matrix.

Required Arguments
MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,
EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVBSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL [,…])

Specific: The specific interface names are S_EVBSF and D_EVBSF.

FORTRAN 77 Interface
Single: CALL EVBSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL)

Double: The double precision name is DEVBSF.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 56). The eigenvalues of A are known to be �1, 5, 5 and 15. The eigenvalues in the interval
[1.5, 5.5] are computed and printed. As a test, this example uses MXEVAL = 4. The routine EVBSF
computes NEVAL, the number of eigenvalues in the given interval. The value of NEVAL is 2.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 479

 USE EVBSF_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, MXEVAL, N
 PARAMETER (MXEVAL=4, N=4, LDA=N)
!
 INTEGER NEVAL, NOUT
 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL)
!
! Set values of A
!
! A = (6.0 4.0 4.0 1.0)
! (4.0 6.0 1.0 4.0)
! (4.0 1.0 6.0 4.0)
! (1.0 4.0 4.0 6.0)
!
 DATA A/6.0, 4.0, 4.0, 1.0, 4.0, 6.0, 1.0, 4.0, 4.0, 1.0, 6.0, &
 4.0, 1.0, 4.0, 4.0, 6.0/
!
! Find eigenvalues of A
 ELOW = 1.5
 EHIGH = 5.5
 CALL EVBSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I2)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1)
 END

Output
NEVAL = 2

 EVAL
 1 2
5.000 5.000

Comments
1. Workspace may be explicitly provided, if desired, by use of E5BSF/DE5BSF. The

reference is

CALL E5BSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 5N.

IWK — Integer work array of length 1N.

2. Informational error
Type Code

480 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 3 1 The number of eigenvalues in the specified interval exceeds MXEVAL.
NEVAL contains the number of eigenvalues in the interval. No
eigenvalues will be returned.

Description
Routine EVBSF computes the eigenvalues in a given interval for a real symmetric matrix.
Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric
tridiagonal matrix. Then, an implicit rational QR algorithm is used to compute the eigenvalues of
this tridiagonal matrix. The reduction step is based on the EISPACK routine TRED1. See Smith et
al. (1976). The rational QR algorithm is called the PWK algorithm. It is given in Parlett (1980, page
169).

EVFSF
Computes selected eigenvalues and eigenvectors of a real symmetric matrix.

Required Arguments
MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Real symmetric matrix of order N. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval
(ELOW, EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

EVEC — Real matrix of dimension N by MXEVAL. (Output)
The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column. Only the first
NEVAL columns of EVEC are significant. Each vector is normalized to have Euclidean
length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 481

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL EVFSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVFSF and D_EVFSF.

FORTRAN 77 Interface
Single: CALL EVFSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL,

 EVEC, LDEVEC)

Double: The double precision name is DEVFSF.

Example
In this example, A is set to the computed Hilbert matrix. The eigenvalues in the interval [0.001, 1]
and their corresponding eigenvectors are computed and printed. This example uses MXEVAL = 3.
The routine EVFSF computes the number of eigenvalues NEVAL in the given interval. The value of
NEVAL is 2. The performance index is also computed and printed. For more details, see IMSL
routine EPISF on page 483.

 USE EVFSF_INT
 USE EPISF_INT
 USE WRRRN_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDEVEC, MXEVAL, N
 PARAMETER (MXEVAL=3, N=3, LDA=N, LDEVEC=N)
!
 INTEGER NEVAL, NOUT
 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL), &
 EVEC(LDEVEC,MXEVAL), PI
! Compute Hilbert matrix
 DO 20 J=1,N
 DO 10 I=1,N
 A(I,J) = 1.0/FLOAT(I+J-1)
 10 CONTINUE
 20 CONTINUE
! Find eigenvalues and vectors
 ELOW = 0.001
 EHIGH = 1.0
 CALL EVFSF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC, LDEVEC)
! Compute performance index
 PI = EPISF(NEVAL,A,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I2)’) ’ NEVAL = ’, NEVAL

482 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 CALL WRRRN (’EVAL’, EVAL, 1, NEVAl, 1)
 CALL WRRRN (’EVEC’, EVEC, N, NEVAL, LDEVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
NEVAL = 2

 EVAL
 1 2
0.1223 0.0027

 EVEC
 1 2
1 -0.5474 -0.1277
2 0.5283 0.7137
3 0.6490 -0.6887

Performance index = 0.008

Comments
1. Workspace may be explicitly provided, if desired, by use of E3FSF/DE3FSF. The

reference is:

 ALL E3FSF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, VAL, EVEC,
LDEVEC, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 9N.

IWK — Integer work array of length N.

2. Informational errors
Type Code

 3 1 The number of eigenvalues in the specified range exceeds MXEVAL.
NEVAL contains the number of eigenvalues in the range. No eigenvalues
will be computed.

 3 2 Inverse iteration did not converge. Eigenvector is not correct for the
specified eigenvalue.

 3 3 The eigenvectors have lost orthogonality.

Description
Routine EVFSF computes the eigenvalues in a given interval and the corresponding eigenvectors of
a real symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to an
equivalent symmetric tridiagonal matrix. Then, an implicit rational QR algorithm is used to
compute the eigenvalues of this tridiagonal matrix. Inverse iteration is used to compute the
eigenvectors of the tridiagonal matrix. This is followed by orthogonalization of these vectors. The

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 483

eigenvectors of the original matrix are computed by back transforming those of the tridiagonal
matrix.

The reduction step is based on the EISPACK routine TRED1. The rational QR algorithm is called
the PWK algorithm. It is given in Parlett (1980, page 169). The inverse iteration and
orthogonalization processes are discussed in Hanson et al. (1990). The transformation back to the
users’s input matrix is based on the EISPACK routine TRBAK1. See Smith et al. (1976) for the
EISPACK routines.

EPISF
This function computes the performance index for a real symmetric eigensystem.

Function Return Value
EPISF — Performance index. (Output)

Required Arguments
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index

computation is based on. (Input)

A — Symmetric matrix of order N. (Input)

EVAL — Vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — N by NEVAL array containing eigenvectors of A. (Input)
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column of
EVEC.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

484 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: EPISF (NEVAL, A, EVAL, EVEC[,…])

Specific: The specific interface names are S_EPISF and D_EPISF.

FORTRAN 77 Interface
Single: EPISF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPISF.

Example
For an example of EPISF, see routine EVCSF, on page 471.

Comments
1. Workspace may be explicitly provided, if desired, by use of E2ISF/DE2ISF. The

reference is:

E2ISF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WORK)

The additional argument is:

WORK — Work array of length N.

E2ISF — Performance Index.

2. Informational errors
Type Code

 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

Description
Let M = NEVAL, � = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let � be the machine
precision, given by AMACH(4) (see the Reference chapter). The performance index,
, is defined to
be

�

�

�

�

�

� �

max
1

1

1 1
10j M

j j j

j

Ax x

N A x

While the exact value of
 is highly machine dependent, the performance of EVCSF (page 471) is
considered excellent if
 < 1, good if 1 �
 � 100, and poor if
 > 100. The performance index was
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976,
pages 124�125).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 485

EVLSB
Computes all of the eigenvalues of a real symmetric matrix in band symmetric storage mode.

Required Arguments
A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

EVAL — Vector of length N containing the eigenvalues of A in decreasing order of magnitude.
(Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVLSB (A, NCODA, EVAL [,…])

Specific: The specific interface names are S_EVLSB and D_EVLSB.

FORTRAN 77 Interface
Single: CALL EVLSB (N, A, LDA, NCODA, EVAL)

Double: The double precision name is DEVLSB.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 77). The eigenvalues of this matrix are given by

2

1 2cos 3
1k

k
N
�

�
� �

� � �� �
�� 	

Since the eigenvalues returned by EVLSB are in decreasing magnitude, the above formula for
k = 1, �, N gives the the values in a different order. The eigenvalues of this real band symmetric
matrix are computed and printed.

 USE EVLSB_INT
 USE WRRRN_INT

486 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

! Declare variables
 INTEGER LDA, LDEVEC, N, NCODA
 PARAMETER (N=5, NCODA=2, LDA=NCODA+1, LDEVEC=N)
!
 REAL A(LDA,N), EVAL(N)
! Define values of A:
! A = (-1 2 1)
! (2 0 2 1)
! (1 2 0 2 1)
! (1 2 0 2)
! (1 2 -1)
! Represented in band symmetric
! form this is:
! A = (0 0 1 1 1)
! (0 2 2 2 2)
! (-1 0 0 0 -1)
!
 DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, &
 0.0, 1.0, 2.0, -1.0/
!
 CALL EVLSB (A, NCODA, EVAL)
! Print results
 CALL WRRRN (’EVAL’, EVAL, 1, N, 1)
 END

Output
 EVAL
 1 2 3 4 5
4.464 -3.000 -2.464 -2.000 1.000

Comments
1. Workspace may be explicitly provided, if desired, by use of E3LSB/DE3LSB. The

reference is:

CALL E3LSB (N, A, LDA, NCODA, EVAL, ACOPY, WK)

The additional arguments are as follows:

ACOPY — Work array of length N(NCODA + 1). The arrays A and ACOPY may be the
same, in which case the first N(NCODA + 1) elements of A will be destroyed.

WK — Work array of length N.

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues failed to converge.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 487

Description
Routine EVLSB computes the eigenvalues of a real band symmetric matrix. Orthogonal similarity
transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. The
implicit QL algorithm is used to compute the eigenvalues of the resulting tridiagonal matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QL
routine is based on the EISPACK routine IMTQL1; see Smith et al. (1976).

EVCSB
Computes all of the eigenvalues and eigenvectors of a real symmetric matrix in band symmetric
storage mode.

Required Arguments
A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

EVAL — Vector of length N containing the eigenvalues of A in decreasing order of magnitude.
(Output)

EVEC — Matrix of order N containing the eigenvectors. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL EVCSB (A, NCODA, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCSB and D_EVCSB.

488 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL EVCSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCSB.

Example
In this example, a DATA statement is used to set A to a band matrix given by Gregory and Karney
(1969, page 75). The eigenvalues, �k, of this matrix are given by

416sin
2 2k

k
N
�

�
� �

� � �
�	

The eigenvalues and eigenvectors of this real band symmetric matrix are computed and printed. The
performance index is also computed and printed. This serves as a check on the computations; for
more details, see IMSL routine EPISB, page 501.

 USE EVCSB_INT
 USE EPISB_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDEVEC, N, NCODA
 PARAMETER (N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N)
!
 INTEGER NOUT
 REAL A(LDA,N), EVAL(N), EVEC(LDEVEC,N), PI
! Define values of A:
! A = (5 -4 1)
! (-4 6 -4 1)
! (1 -4 6 -4 1)
! (1 -4 6 -4 1)
! (1 -4 6 -4)
! (1 -4 5)
! Represented in band symmetric
! form this is:
! A = (0 0 1 1 1 1)
! (0 -4 -4 -4 -4 -4)
! (5 6 6 6 6 5)
!
 DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, &
 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/
!
! Find eigenvalues and vectors
 CALL EVCSB (A, NCODA, EVAL, EVEC)
! Compute performance index
 PI = EPISB(N,A,NCODA,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, EVAL, 1, N, 1)
 CALL WRRRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 489

Output
 EVAL
 1 2 3 4 5 6
14.45 10.54 5.98 2.42 0.57 0.04

 EVEC
 1 2 3 4 5 6
1 -0.2319 -0.4179 -0.5211 0.5211 -0.4179 0.2319
2 0.4179 0.5211 0.2319 0.2319 -0.5211 0.4179
3 -0.5211 -0.2319 0.4179 -0.4179 -0.2319 0.5211
4 0.5211 -0.2319 -0.4179 -0.4179 0.2319 0.5211
5 -0.4179 0.5211 -0.2319 0.2319 0.5211 0.4179
6 0.2319 -0.4179 0.5211 0.5211 0.4179 0.2319

Performance index = 0.029

Comments
1. Workspace may be explicitly provided, if desired, by use of E4CSB/DE4CSB. The

reference is:

CALL E4CSB (N, A, LDA, NCODA, EVAL, EVEC, LDEVEC, COPY, WK,IWK)

The additional arguments are as follows:

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the same, in which
case the first N * NCODA elements of A will be destroyed.

WK — Work array of length N.

IWK — Integer work array of length N.

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues failed to converge.

3. The success of this routine can be checked using EPISB (page 501).

Description
Routine EVCSB computes the eigenvalues and eigenvectors of a real band symmetric matrix.
Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric
tridiagonal matrix. These transformations are accumulated. The implicit QL algorithm is used to
compute the eigenvalues and eigenvectors of the resulting tridiagonal matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QL
routine is based on the EISPACK routine IMTQL2; see Smith et al. (1976).

490 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVASB
Computes the largest or smallest eigenvalues of a real symmetric matrix in band symmetric storage
mode.

Required Arguments
NEVAL — Number of eigenvalues to be computed. (Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL
eigenvalues are computed.

EVAL — Vector of length NEVAL containing the computed eigenvalues in decreasing order of
magnitude. (Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVASB (NEVAL, A, NCODA, SMALL, EVAL [,…])

Specific: The specific interface names are S_EVASB and D_EVASB.

FORTRAN 77 Interface
Single: CALL EVASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL)

Double: The double precision name is DEVASB.

Example
The following example is given in Gregory and Karney (1969, page 63). The smallest four
eigenvalues of the matrix

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 491

5 2 1 1
2 6 3 1 1
1 3 6 3 1 1
1 1 3 6 3 1 1

1 1 3 6 3 1 1
1 1 3 6 3 1 1

1 1 3 6 3 1 1
1 1 3 6 3 1 1

1 1 3 6 3 1
1 1 3 6 2

1 1 2 5

A

� �
� �
� �
� �
� �
� �
� �
� �

� � �
� �
� �
� �
� �
� �
� �
� �
� �� �

are computed and printed.
 USE EVASB_INT
 USE WRRRN_INT
 USE SSET_INT

! Declare variables
 INTEGER LDA, N, NCODA, NEVAL
 PARAMETER (N=11, NCODA=3, NEVAL=4, LDA=NCODA+1)
!
 REAL A(LDA,N), EVAL(NEVAL)
 LOGICAL SMALL
! Set up matrix in band symmetric
! storage mode
 CALL SSET (N, 6.0, A(4:,1), LDA)
 CALL SSET (N-1, 3.0, A(3:,2), LDA)
 CALL SSET (N-2, 1.0, A(2:,3), LDA)
 CALL SSET (N-3, 1.0, A(1:,4), LDA)
 CALL SSET (NCODA, 0.0, A(1:,1), 1)
 CALL SSET (NCODA-1, 0.0, A(1:,2), 1)
 CALL SSET (NCODA-2, 0.0, A(1:,3), 1)
 A(4,1) = 5.0
 A(4,N) = 5.0
 A(3,2) = 2.0
 A(3,N) = 2.0
! Find the 4 smallest eigenvalues
 SMALL = .TRUE.
 CALL EVASB (NEVAL, A, NCODA, SMALL, EVAL)
! Print results
 CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1)
 END

Output
 EVAL
 1 2 3 4
4.000 3.172 1.804 0.522

492 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of E3ASB/DE3ASB. The

reference is:

CALL E3ASB (N, NEVAL, A, LDA, NCODA, SMALL, EVAL,
 ACOPY, WK)

The additional arguments are as follows:

ACOPY — Work array of length N(NCODA + 1). A and ACOPY may be the same, in which
case the first N(NCODA + 1) elements of A will be destroyed.

WK — Work array of length 3N.

2. Informational error
Type Code

 3 1 The iteration for an eigenvalue failed to converge. The best estimate will
be returned.

Description
Routine EVASB computes the largest or smallest eigenvalues of a real band symmetric matrix.
Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric
tridiagonal matrix. The rational QR algorithm with Newton corrections is used to compute the
extreme eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1978). The QR
routine is based on the EISPACK routine RATQR; see Smith et al. (1976).

EVESB
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a real
symmetric matrix in band symmetric storage mode.

Required Arguments
NEVEC — Number of eigenvectors to be calculated. (Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

SMALL — Logical variable. (Input)
If .TRUE. , the smallest NEVEC eigenvectors are computed. If .FALSE. , the largest NEVEC
eigenvectors are computed.

EVAL — Vector of length NEVEC containing the eigenvalues of A in decreasing order of
magnitude. (Output)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 493

EVEC — Real matrix of dimension N by NEVEC. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL EVESB (NEVEC, A, NCODA, SMALL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVESB and D_EVESB.

FORTRAN 77 Interface
Single: CALL EVESB (N, NEVEC, A, LDA, NCODA, SMALL, EVAL, EVEC,

 LDEVEC)

Double: The double precision name is DEVESB.

Example
The following example is given in Gregory and Karney (1969, page 75). The largest three
eigenvalues and the corresponding eigenvectors of the matrix are computed and printed.

 USE EVESB_INT
 USE EPISB_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDEVEC, N, NCODA, NEVEC
 PARAMETER (N=6, NCODA=2, NEVEC=3, LDA=NCODA+1, LDEVEC=N)
!
 INTEGER NOUT
 REAL A(LDA,N), EVAL(NEVEC), EVEC(LDEVEC,NEVEC), PI
 LOGICAL SMALL
! Define values of A:
! A = (5 -4 1)
! (-4 6 -4 1)
! (1 -4 6 -4 1)

494 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

! (1 -4 6 -4 1)
! (1 -4 6 -4)
! (1 -4 5)
! Represented in band symmetric
! form this is:
! A = (0 0 1 1 1 1)
! (0 -4 -4 -4 -4 -4)
! (5 6 6 6 6 5)
!
 DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, &
 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/
!
! Find the 3 largest eigenvalues
! and their eigenvectors.
 SMALL = .FALSE.
 CALL EVESB (NEVEC, A, NCODA, SMALL, EVAL, EVEC)
! Compute performance index
 PI = EPISB(NEVEC,A,NCODA,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, EVAL, 1, NEVEC, 1)
 CALL WRRRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
14.45 10.54 5.98

 EVEC
 1 2 3
1 0.2319 -0.4179 0.5211
2 -0.4179 0.5211 -0.2319
3 0.5211 -0.2319 -0.4179
4 -0.5211 -0.2319 0.4179
5 0.4179 0.5211 0.2319
6 -0.2319 -0.4179 -0.5211

Performance index = 0.175

Comments
1. Workspace may be explicitly provided, if desired, by use of E4ESB/DE4ESB. The

reference is:

 CALL E4ESB (N,NEVEC, A, LDA, NCODA,SMALL,EVAL, EVEC,
LDEVEC, ACOPY, WK, IWK)

The additional argument is:

ACOPY — Work array of length N(NCODA + 1).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 495

WK — Work array of length N(2NCODA + 5).

IWK — Integer work array of length N.

2. Informational errors
Type Code

 3 1 Inverse iteration did not converge. Eigenvector is not correct for the
specified eigenvalue.

 3 2 The eigenvectors have lost orthogonality.

3. The success of this routine can be checked using EPISB.

Description
Routine EVESB computes the largest or smallest eigenvalues and the corresponding eigenvectors of
a real band symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix
to an equivalent symmetric tridiagonal matrix. The rational QR algorithm with Newton corrections
is used to compute the extreme eigenvalues of this tridiagonal matrix. Inverse iteration and
orthogonalization are used to compute the eigenvectors of the given band matrix. The reduction
routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The QR routine is based
on the EISPACK routine RATQR; see Smith et al. (1976). The inverse iteration and
orthogonalization steps are based on EISPACK routine BANDV using the additional steps given in
Hanson et al. (1990).

EVBSB
Computes the eigenvalues in a given interval of a real symmetric matrix stored in band symmetric
storage mode.

Required Arguments
MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,
EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are set.

496 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVBSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL [,…])

Specific: The specific interface names are S_EVBSB and D_EVBSB.

FORTRAN 77 Interface
Single: CALL EVBSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL,

 EVAL)

Double: The double precision name is DEVBSB.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 77). The eigenvalues in the range (-2.5, 1.5) are computed and printed. As a test, this example
uses MXEVAL = 5. The routine EVBSB computes NEVAL, the number of eigenvalues in the given
range, has the value 3.

 USE EVBSB_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, MXEVAL, N, NCODA
 PARAMETER (MXEVAL=5, N=5, NCODA=2, LDA=NCODA+1)
!
 INTEGER NEVAL, NOUT
 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL)
!
! Define values of A:
! A = (-1 2 1)
! (2 0 2 1)
! (1 2 0 2 1)
! (1 2 0 2)
! (1 2 -1)
! Representedin band symmetric
! form this is:
! A = (0 0 1 1 1)
! (0 2 2 2 2)
! (-1 0 0 0 -1)
 DATA A/0.0, 0.0, -1.0, 0.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, &

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 497

 0.0, 1.0, 2.0, -1.0/
!
 ELOW = -2.5
 EHIGH = 1.5
 CALL EVBSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I1)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, EVAL, 1, NEVAl, 1)
 END

Output
NEVAL = 3

 EVAL
 1 2 3
-2.464 -2.000 1.000

Comments
1. Workspace may be explicitly provided, if desired, by use of E3BSB/DE3BSB. The

reference is:

CALL E3BSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL,EVAL,
ACOPY, WK)

The additional arguments are as follows:

ACOPY — Work matrix of size NCODA + 1 by N. A and ACOPY may be the same, in which
case the first N(NCODA + 1) elements of A will be destroyed.

WK — Work array of length 5N.

2. Informational error
Type Code

 3 1 The number of eigenvalues in the specified interval exceeds MXEVAL.
NEVAL contains the number of eigenvalues in the interval. No
eigenvalues will be returned.

Description
Routine EVBSB computes the eigenvalues in a given range of a real band symmetric matrix.
Orthogonal similarity transformations are used to reduce the matrix to an equivalent symmetric
tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues of the tridiagonal
matrix in a given range.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The
bisection routine is based on the EISPACK routine BISECT; see Smith et al. (1976).

498 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVFSB
Computes the eigenvalues in a given interval and the corresponding eigenvectors of a real symmetric
matrix stored in band symmetric storage mode.

Required Arguments
MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,
EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

EVEC — Real matrix containing in its first NEVAL columns the eigenvectors associated with the
eigenvalues found and stored in EVAL. Eigenvector J corresponds to eigenvalue J for J = 1
to NEVAL. Each vector is normalized to have Euclidean length equal to the value one.
(Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL EVFSB (MXEVEL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL,

 EVEC [,…])

Specific: The specific interface names are S_EVFSB and D_EVFSB.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 499

FORTRAN 77 Interface
Single: CALL EVFSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL,

 EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVFSB.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 75). The eigenvalues in the range [1, 6] and their corresponding eigenvectors are computed
and printed. As a test, this example uses MXEVAL = 4. The routine EVFSB computes NEVAL, the
number of eigenvalues in the given range has the value 2. As a check on the computations, the
performance index is also computed and printed. For more details, see IMSL routine EPISB on
page 501.

 USE EVFSB_INT
 USE EPISB_INT
 USE WRRRN_INT
 USE UMACH_INT

! Declare variables
 INTEGER LDA, LDEVEC, MXEVAL, N, NCODA
 PARAMETER (MXEVAL=4, N=6, NCODA=2, LDA=NCODA+1, LDEVEC=N)
!
 INTEGER NEVAL, NOUT
 REAL A(LDA,N), EHIGH, ELOW, EVAL(MXEVAL), &
 EVEC(LDEVEC,MXEVAL), PI
! Define values of A:
! A = (5 -4 1)
! (-4 6 -4 1)
! (1 -4 6 -4 1)
! (1 -4 6 -4 1)
! (1 -4 6 -4)
! (1 -4 5)
! Represented in band symmetric
! form this is:
! A = (0 0 1 1 1 1)
! (0 -4 -4 -4 -4 -4)
! (5 6 6 6 6 5)
 DATA A/0.0, 0.0, 5.0, 0.0, -4.0, 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, &
 6.0, 1.0, -4.0, 6.0, 1.0, -4.0, 5.0/
!
! Find eigenvalues and vectors
 ELOW = 1.0
 EHIGH = 6.0
 CALL EVFSB (MXEVAL, A, NCODA, ELOW, EHIGH, NEVAL, EVAL, EVEC)
! Compute performance index
 PI = EPISB(NEVAL,A,NCODA,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I1)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1)
 CALL WRRRN (’EVEC’, EVEC, N, NEVAL, LDEVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI

500 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 END

Output
NEVAL = 2

 EVAL
 1 2
5.978 2.418

 EVEC
 1 2
1 0.5211 0.5211
2 -0.2319 0.2319
3 -0.4179 -0.4179
4 0.4179 -0.4179
5 0.2319 0.2319
6 -0.5211 0.5211

 Performance index = 0.083

Comments
1. Workspace may be explicitly provided, if desired, by use of E3FSB/DE3FSB. The

reference is:

CALL E3FSB (N, MXEVAL, A, LDA, NCODA, ELOW, EHIGH, NEVAL, EVAL,
EVEC, LDEVEC, ACOPY, WK1, WK2, IWK)

The additional arguments are as follows:

ACOPY — Work matrix of size NCODA + 1 by N.

WK1 — Work array of length 6N.

WK2 — Work array of length 2N * NCODA + N

IWK — Integer work array of length N.

2. Informational errors
Type Code

 3 1 The number of eigenvalues in the specified interval exceeds MXEVAL.
NEVAL contains the number of eigenvalues in the interval. No
eigenvalues will be returned.

 3 2 Inverse iteration did not converge. Eigenvector is not correct for the
specified eigenvalue.

 3 3 The eigenvectors have lost orthogonality.

Description
Routine EVFSB computes the eigenvalues in a given range and the corresponding eigenvectors of a
real band symmetric matrix. Orthogonal similarity transformations are used to reduce the matrix to

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 501

an equivalent tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues of the
tridiagonal matrix in the required range. Inverse iteration and orthogonalization are used to compute
the eigenvectors of the given band symmetric matrix.

The reduction routine is based on the EISPACK routine BANDR; see Garbow et al. (1977). The
bisection routine is based on the EISPACK routine BISECT; see Smith et al. (1976). The inverse
iteration and orthogonalization steps are based on the EISPACK routine BANDV using remarks from
Hanson et al. (1990).

EPISB
This function computes the performance index for a real symmetric eigensystem in band symmetric
storage mode.

Required Arguments
EPISB — Performance index. (Output)

Required Arguments
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance is based. (Input)

A — Band symmetric matrix of order N. (Input)

NCODA — Number of codiagonals in A. (Input)

EVAL — Vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — N by NEVAL array containing eigenvectors of A. (Input)
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column of
EVEC.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: EPISB (NEVAL, A, NCODA, EVAL, EVEC[,…])

502 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Specific: The specific interface names are S_EPISB and D_EPISB.

FORTRAN 77 Interface
Single: EPISB(N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPISB.

Example
For an example of EPISB, see IMSL routine EVCSB on page 487.

Comments
1. Workspace may be explicitly provided, if desired, by use of E2ISB/DE2ISB. The

reference is:

E2ISB(N, NEVAL, A, LDA, NCODA, EVAL, EVEC, LDEVEC, WK)

The additional argument is:

WK — Work array of length N.

2. Informational errors
Type Code

 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

Description
Let M = NEVAL, � = EVAL, xj = EVEC(*,J), the j-th column of EVEC. Also, let � be the machine
precision, given by AMACH(4), see the Reference chapter of the manual. The performance index,
,
is defined to be

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

�

�
�� �

�

�

While the exact value of
 is highly machine dependent, the performance of EVCSF (page 471) is
considered excellent if
 < 1, good if 1 �
 � 100, and poor if
 > 100. The performance index was
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976,
pages 124�125).

EVLHF
Computes all of the eigenvalues of a complex Hermitian matrix.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 503

Required Arguments
A — Complex Hermitian matrix of order N. (Input)

Only the upper triangle is used.

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order
of magnitude. (Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVLHF (A, EVAL [,…])

Specific: The specific interface names are S_EVLHF and D_EVLHF.

FORTRAN 77 Interface
Single: CALL EVLHF (N, A, LDA, EVAL)

Double: The double precision name is DEVLHF.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 114). The eigenvalues of this complex Hermitian matrix are computed and printed.

 USE EVLHF_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (N=2, LDA=N)
!
 REAL EVAL(N)
 COMPLEX A(LDA,N)
! Set values of A
!
! A = (1 -i)
! (i 1)
!
 DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/
!
! Find eigenvalues of A

504 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 CALL EVLHF (A, EVAL)
! Print results
 CALL WRRRN (’EVAL’, EVAL, 1, N, 1)
 END

Output
 EVAL
 1 2
2.000 0.000

Comments
1. Workspace may be explicitly provided, if desired, by use of E3LHF/DE3LHF. The

reference is:

CALL E3LHF (N, A, LDA, EVAL, ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N�. A and ACOPY may be the same in which case
A will be destroyed.

RWK — Work array of length N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational errors
Type Code

 3 1 The matrix is not Hermitian. It has a diagonal entry with a small
imaginary part.

 4 1 The iteration for an eigenvalue failed to converge.
 4 2 The matrix is not Hermitian. It has a diagonal entry with an imaginary

part.

3. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access inefficiency)
problems. In routine E3LHF, the internal or working leading dimensions of ACOPY and
ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The values
IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2), respectively, in
routine EVLHF. Additional memory allocation and option value restoration are
automatically done in EVLHF. There is no requirement that users change existing
applications that use EVLHF or E3LHF. Default values for the option are IVAL(*) = 1, 16,
0, 1, 1, 16, 0, 1. Items 5 � 8 in IVAL(*) are for the generalized eigenvalue problem and are
not used in EVLHF.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 505

Description
Routine EVLHF computes the eigenvalues of a complex Hermitian matrix. Unitary similarity
transformations are used to reduce the matrix to an equivalent real symmetric tridiagonal matrix.
The implicit QL algorithm is used to compute the eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The QL routine is based on the
EISPACK routine IMTQL1. See Smith et al. (1976) for the EISPACK routines.

EVCHF
Computes all of the eigenvalues and eigenvectors of a complex Hermitian matrix.

Required Arguments
A — Complex Hermitian matrix of order N. (Input)

Only the upper triangle is used.

EVAL — Real vector of length N containing the eigenvalues of A in decreasing order of
magnitude. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL EVCHF (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCHF and D_EVCHF.

FORTRAN 77 Interface
Single: CALL EVCHF (N, A, LDA, EVAL, EVEC, LDEVEC)

506 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Double: The double precision name is DEVCHF.

Example
In this example, a DATA statement is used to set A to a complex Hermitian matrix. The eigenvalues
and eigenvectors of this matrix are computed and printed. The performance index is also computed
and printed. This serves as a check on the computations; for more details, see routine EPIHF on
page 518.

 USE IMSL_libraries

! Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDEVEC=N)
!
 INTEGER NOUT
 REAL EVAL(N), PI
 COMPLEX A(LDA,N), EVEC(LDEVEC,N)
! Set values of A
!
! A = ((1, 0) (1,-7i) (0,- i))
! ((1,7i) (5, 0) (10,-3i))
! ((0, i) (10, 3i) (-2, 0))
!
 DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0), &
 (10.0, 3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/
!
! Find eigenvalues and vectors of A
 CALL EVCHF (A, EVAL, EVEC)
! Compute performance index
 PI = EPIHF(N,A,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, EVAL, 1, N, 1)
 CALL WRCRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
15.38 -10.63 -0.75

 EVEC
 1 2 3
1 (0.0631,-0.4075) (-0.0598,-0.3117) (0.8539, 0.0000)
2 (0.7703, 0.0000) (-0.5939, 0.1841) (-0.0313,-0.1380)
3 (0.4668, 0.1366) (0.7160, 0.0000) (0.0808,-0.4942)

Performance index = 0.093

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 507

 Comments
1. Workspace may be explicitly provided, if desired, by use of E5CHF/DE5CHF. The

reference is:

CALL E5CHF (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N�. A and ACOPY may be the same, in which
case A will be destroyed.

RWK — Work array of length N� + N.

CWK — Complex work array of length 2N.

IWK — Integer work array of length N.

2. Informational error
Type Code

 3 1 The matrix is not Hermitian. It has a diagonal entry with a small
imaginary part.

 4 1 The iteration for an eigenvalue failed to converge.
 4 2 The matrix is not Hermitian. It has a diagonal entry with an imaginary

part.

3. The success of this routine can be checked using EPIHF (page 518).

4. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access inefficiency)
problems. In routine E5CHF, the internal or working leading dimensions of ACOPY
and ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The
values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in routine EVCHF. Additional memory allocation and option value
restoration are automatically done in EVCHF. There is no requirement that users
change existing applications that use EVCHF or E5CHF. Default values for the option
are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the generalized
eigenvalue problem and are not used in EVCHF.

Description
Routine EVCHF computes the eigenvalues and eigenvectors of a complex Hermitian matrix. Unitary
similarity transformations are used to reduce the matrix to an equivalent real symmetric tridiagonal
matrix. The implicit QL algorithm is used to compute the eigenvalues and eigenvectors of this
tridiagonal matrix. These eigenvectors and the transformations used to reduce the matrix to
tridiagonal form are combined to obtain the eigenvectors for the user’s problem. The reduction
routine is based on the EISPACK routine HTRIDI. The QL routine is based on the EISPACK
routine IMTQL2. See Smith et al. (1976) for the EISPACK routines.

508 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVAHF
Computes the largest or smallest eigenvalues of a complex Hermitian matrix.

Required Arguments
NEVAL — Number of eigenvalues to be calculated. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVAL eigenvalues are computed. If .FALSE., the largest NEVAL
eigenvalues are computed.

EVAL — Real vector of length NEVAL containing the eigenvalues of A in decreasing order of
magnitude. (Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVAHF (NEVAL, A, SMALL, EVAL [,…])

Specific: The specific interface names are S_EVAHF and D_EVAHF.

FORTRAN 77 Interface
Single: CALL EVAHF (N, NEVAL, A, LDA, SMALL, EVAL)

Double: The double precision name is DEVAHF.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 114). Its largest eigenvalue is computed and printed.

 USE EVAHF_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, N

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 509

 PARAMETER (N=2, LDA=N)
!
 INTEGER NEVAL
 REAL EVAL(N)
 COMPLEX A(LDA,N)
 LOGICAL SMALL
! Set values of A
!
! A = (1 -i)
! (i 1)
!
 DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/
!
! Find the largest eigenvalue of A
 NEVAL = 1
 SMALL = .FALSE.
 CALL EVAHF (NEVAL, A, SMALL, EVAL)
! Print results
 CALL WRRRN (’EVAL’, EVAL, 1, NEVAl, 1)
 END

Output
EVAL
2.000

Comments
1. Workspace may be explicitly provided, if desired, by use of E3AHF/DE3AHF. The

reference is

CALL E3AHF (N, NEVAL, A, LDA, SMALL, EVAL, ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N�. A and ACOPY may be the same in which case
A will be destroyed.

RWK — Work array of length 2N.

CWK — Complex work array of length 2N.

IWK — Work array of length N.

2. Informational errors
Type Code

 3 1 The iteration for an eigenvalue failed to converge. The best estimate will
be returned.

 3 2 The matrix is not Hermitian. It has a diagonal entry with a small
imaginary part.

 4 2 The matrix is not Hermitian. It has a diagonal entry with an imaginary
part.

510 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Description
Routine EVAHF computes the largest or smallest eigenvalues of a complex Hermitian matrix.
Unitary transformations are used to reduce the matrix to an equivalent symmetric tridiagonal
matrix. The rational QR algorithm with Newton corrections is used to compute the extreme
eigenvalues of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine is based on the
EISPACK routine RATQR. See Smith et al. (1976) for the EISPACK routines.

EVEHF
Computes the largest or smallest eigenvalues and the corresponding eigenvectors of a complex
Hermitian matrix.

Required Arguments
NEVEC — Number of eigenvectors to be computed. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

SMALL — Logical variable. (Input)
If .TRUE., the smallest NEVEC eigenvectors are computed. If .FALSE., the largest NEVEC
eigenvectors are computed.

EVAL — Real vector of length NEVEC containing the eigenvalues of A in decreasing order of
magnitude. (Output)

EVEC — Complex matrix of dimension N by NEVEC. (Output)
The J-th eigenvector corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 511

FORTRAN 90 Interface
Generic: CALL EVEHF (NEVEC, A, SMALL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVEHF and D_EVEHF.

FORTRAN 77 Interface
Single: CALL EVEHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVEHF.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 115). The smallest eigenvalue and its corresponding eigenvector is computed and printed. The
performance index is also computed and printed. This serves as a check on the computations. For
more details, see IMSL routine EPIHF on page 518.

 USE IMSL_LIBRARIES
! Declare variables
 INTEGER LDA, LDEVEC, N, NEVEC
 PARAMETER (N=3, NEVEC=1, LDA=N, LDEVEC=N)
!
 INTEGER NOUT
 REAL EVAL(N), PI
 COMPLEX A(LDA,N), EVEC(LDEVEC,NEVEC)
 LOGICAL SMALL
! Set values of A
!
! A = (2 -i 0)
! (i 2 0)
! (0 0 3)
!
 DATA A/(2.0,0.0), (0.0,1.0), (0.0,0.0), (0.0,-1.0), (2.0,0.0), &
 (0.0,0.0), (0.0,0.0), (0.0,0.0), (3.0,0.0)/
!
! Find smallest eigenvalue and its
! eigenvectors
 SMALL = .TRUE.
 CALL EVEHF (NEVEC, A, SMALL, EVAL, EVEC)
! Compute performance index
 PI = EPIHF(NEVEC,A,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, EVAL, 1, NEVEC, 1)
 CALL WRCRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
EVAL
1.000

512 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 EVEC
1 (0.0000, 0.7071)
2 (0.7071, 0.0000)
3 (0.0000, 0.0000)

Performance index = 0.031

Comments
1. Workspace may be explicitly provided, if desired, by use of E3EHF/DE3EHF. The

reference is:

CALL E3EHF (N, NEVEC, A, LDA, SMALL, EVAL, EVEC, LDEVEC, ACOPY,
RW1, RW2, CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N�. A and ACOPY may be the same, in which
case A will be destroyed.

RW1 — Work array of length N * NEVEC. Used to store the real eigenvectors of a
symmetric tridiagonal matrix.

RW2 — Work array of length 8N.

CWK — Complex work array of length 2N.

IWK — Work array of length N.

2. Informational errors
Type Code

 3 1 The iteration for an eigenvalue failed to converge. The best estimate will
be returned.

 3 2 The iteration for an eigenvector failed to converge. The eigenvector will
be set to 0.

 3 3 The matrix is not Hermitian. It has a diagonal entry with a small
imaginary part.

 4 2 The matrix is not Hermitian. It has a diagonal entry with an imaginary
part.

3. The success of this routine can be checked using EPIHF (page 518).

Description
Routine EVEHF computes the largest or smallest eigenvalues and the corresponding eigenvectors of
a complex Hermitian matrix. Unitary transformations are used to reduce the matrix to an equivalent
real symmetric tridiagonal matrix. The rational QR algorithm with Newton corrections is used to
compute the extreme eigenvalues of the tridiagonal matrix. Inverse iteration is used to compute the

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 513

eigenvectors of the tridiagonal matrix. Eigenvectors of the original matrix are found by back
transforming the eigenvectors of the tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The QR routine used is based on
the EISPACK routine RATQR. The inverse iteration routine is based on the EISPACK routine
TINVIT. The back transformation routine is based on the EISPACK routine HTRIBK. See Smith et
al. (1976) for the EISPACK routines.

EVBHF
Computes the eigenvalues in a given range of a complex Hermitian matrix.

Required Arguments
MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,
EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVBHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL [,…])

Specific: The specific interface names are S_EVBHF and D_EVBHF.

FORTRAN 77 Interface
Single: CALL EVBHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL)

514 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Double: The double precision name is DEVBHF.

Example
In this example, a DATA statement is used to set A to a matrix given by Gregory and Karney (1969,
page 114). The eigenvalues in the range [1.5, 2.5] are computed and printed. This example allows a
maximum number of eigenvalues MXEVAL = 2. The routine computes that there is one eigenvalue in
the given range. This value is returned in NEVAL.

 USE EVBHF_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, MXEVAL, N
 PARAMETER (MXEVAL=2, N=2, LDA=N)
!
 INTEGER NEVAL, NOUT
 REAL EHIGH, ELOW, EVAL(MXEVAL)
 COMPLEX A(LDA,N)
! Set values of A
!
! A = (1 -i)
! (i 1)
!
 DATA A/(1.0,0.0), (0.0,1.0), (0.0,-1.0), (1.0,0.0)/
!
! Find eigenvalue
 ELOW = 1.5
 EHIGH = 2.5
 CALL EVBHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL)
!
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I3)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1)
 END

Output
NEVAL = 1

EVAL
2.000

Comments
1. Workspace may be explicitly provided, if desired, by use of E3BHF/DE3BHF. The

reference is:

CALL E3BHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL,
 EVAL, ACOPY, RWK, CWK, IWK)

The additional arguments are as follows:

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 515

ACOPY — Complex work matrix of size N by N. A and ACOPY may be the same, in which
case the first N� elements of A will be destroyed.

RWK — Work array of length 5N.

CWK — Complex work array of length 2N.

IWK — Work array of length MXEVAL.

2. Informational errors
Type Code

 3 1 The number of eigenvalues in the specified range exceeds MXEVAL.
NEVAL contains the number of eigenvalues in the range. No eigenvalues
will be computed.

 3 2 The matrix is not Hermitian. It has a diagonal entry with a small
imaginary part.

 4 2 The matrix is not Hermitian. It has a diagonal entry with an imaginary
part.

Description
Routine EVBHF computes the eigenvalues in a given range of a complex Hermitian matrix. Unitary
transformations are used to reduce the matrix to an equivalent symmetric tridiagonal matrix. A
bisection algorithm is used to compute the eigenvalues in the given range of this tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The bisection routine used is
based on the EISPACK routine BISECT. See Smith et al. (1976) for the EISPACK routines.

EVFHF
Computes the eigenvalues in a given range and the corresponding eigenvectors of a complex
Hermitian matrix.

Required Arguments
MXEVAL — Maximum number of eigenvalues to be computed. (Input)

A — Complex Hermitian matrix of order N. (Input)
Only the upper triangle is used.

ELOW — Lower limit of the interval in which the eigenvalues are sought. (Input)

EHIGH — Upper limit of the interval in which the eigenvalues are sought. (Input)

NEVAL — Number of eigenvalues found. (Output)

516 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

EVAL — Real vector of length MXEVAL containing the eigenvalues of A in the interval (ELOW,
EHIGH) in decreasing order of magnitude. (Output)
Only the first NEVAL elements of EVAL are significant.

EVEC — Complex matrix containing in its first NEVAL columns the eigenvectors associated with
the eigenvalues found stored in EVAL. Each vector is normalized to have Euclidean length
equal to the value one. (Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL EVFHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVFHF and D_EVFHF.

FORTRAN 77 Interface
Single: CALL EVFHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL, EVAL,

 EVEC, LDEVEC)

Double: The double precision name is DEVHFH.

Example
In this example, a DATA statement is used to set A to a complex Hermitian matrix. The eigenvalues
in the range [�15, 0] and their corresponding eigenvectors are computed and printed. As a test, this
example uses MXEVAL = 3. The routine EVFHF computes the number of eigenvalues in the given
range. That value, NEVAL, is two. As a check on the computations, the performance index is also
computed and printed. For more details, see routine EPIHF on page 518.

 USE IMSL_LIBRARIES

! Declare variables
 INTEGER LDA, LDEVEC, MXEVAL, N
 PARAMETER (MXEVAL=3, N=3, LDA=N, LDEVEC=N)
!

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 517

 INTEGER NEVAL, NOUT
 REAL EHIGH, ELOW, EVAL(MXEVAL), PI
 COMPLEX A(LDA,N), EVEC(LDEVEC,MXEVAL)
! Set values of A
!
! A = ((1, 0) (1,-7i) (0,- i))
! ((1,7i) (5, 0) (10,-3i))
! ((0, i) (10, 3i) (-2, 0))
!
 DATA A/(1.0,0.0), (1.0,7.0), (0.0,1.0), (1.0,-7.0), (5.0,0.0), &
 (10.0,3.0), (0.0,-1.0), (10.0,-3.0), (-2.0,0.0)/
!
! Find eigenvalues and vectors
 ELOW = -15.0
 EHIGH = 0.0
 CALL EVFHF (MXEVAL, A, ELOW, EHIGH, NEVAL, EVAL, EVEC)
! Compute performance index
 PI = EPIHF(NEVAL,A,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 WRITE (NOUT,’(/,A,I3)’) ’ NEVAL = ’, NEVAL
 CALL WRRRN (’EVAL’, EVAL, 1, NEVAL, 1)
 CALL WRCRN (’EVEC’, EVEC, N, NEVAL, LDEVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
NEVAL = 2

 EVAL
 1 2
-10.63 -0.75

 EVEC
 1 2
1 (-0.0598,-0.3117) (0.8539, 0.0000)
2 (-0.5939, 0.1841) (-0.0313,-0.1380)
3 (0.7160, 0.0000) (0.0808,-0.4942)

 Performance index = 0.057

Comments
1. Workspace may be explicitly provided, if desired, by use of E3FHF/DE3FHF. The

reference is:

CALL E3FHF (N, MXEVAL, A, LDA, ELOW, EHIGH, NEVAL,EVAL,
EVEC,LDEVEC, ACOPY, ECOPY, RWK,CWK, IWK)

The additional arguments are as follows:

ACOPY — Complex work matrix of size N by N. A and ACOPY may be the same, in which
case the first N� elements of A will be destroyed.

518 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

ECOPY — Work matrix of size N by MXEVAL. Used to store eigenvectors of a real
tridiagonal matrix.

RWK — Work array of length 8N.

CWK — Complex work array of length 2N.

IWK — Work array of length MXEVAL.

2. Informational errors
Type Code

 3 1 The number of eigenvalues in the specified range exceeds MXEVAL.
NEVAL contains the number of eigenvalues in the range. No eigenvalues
will be computed.

 3 2 The iteration for an eigenvector failed to converge. The eigenvector will
be set to 0.

 3 3 The matrix is not Hermitian. It has a diagonal entry with a small
imaginary part.

 4 2 The matrix is not Hermitian. It has a diagonal entry with an imaginary
part.

Description
Routine EVFHF computes the eigenvalues in a given range and the corresponding eigenvectors of a
complex Hermitian matrix. Unitary transformations are used to reduce the matrix to an equivalent
symmetric tridiagonal matrix. A bisection algorithm is used to compute the eigenvalues in the given
range of this tridiagonal matrix. Inverse iteration is used to compute the eigenvectors of the
tridiagonal matrix. The eigenvectors of the original matrix are computed by back transforming the
eigenvectors of the tridiagonal matrix.

The reduction routine is based on the EISPACK routine HTRIDI. The bisection routine is based on
the EISPACK routine BISECT. The inverse iteration routine is based on the EISPACK routine
TINVIT. The back transformation routine is based on the EISPACK routine HTRIBK. See Smith et
al. (1976) for the EISPACK routines.

EPIHF
This function computes the performance index for a complex Hermitian eigensystem.

Function Return Value
EPIHF — Performance index. (Output)

Required Arguments
NEVAL — Number of eigenvalue/eigenvector pairs on which the performance index

computation is based. (Input)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 519

A — Complex Hermitian matrix of order N. (Input)

EVAL — Vector of length NEVAL containing eigenvalues of A. (Input)

EVEC — Complex N by NEVAL array containing eigenvectors of A. (Input)
The eigenvector corresponding to the eigenvalue EVAL(J) must be in the J-th column of
EVEC.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: EPIHF (NEVAL, A, EVAL, EVEC[,…])

Specific: The specific interface names are S_EPIHF and D_EPIHF.

FORTRAN 77 Interface
Single: EPIHF (N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision function name is DEPIHF.

Example
For an example of EPIHF, see IMSL routine EVCHF, page 505.

Comments
1. Workspace may be explicitly provided, if desired, by use of E2IHF/DE2IHF. The

reference is:

E2IHF(N, NEVAL, A, LDA, EVAL, EVEC, LDEVEC, WK)

The additional argument is

WK — Complex work array of length N.

520 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

2. Informational errors
Type Code

 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix is zero.

Description
Let M = NEVAL, � = EVAL, xj = EVEC(*, J), the j-th column of EVEC. Also, let � be the machine
precision, given by AMACH(4), see the Reference chapter of this manual. The performance index,
,
is defined to be

1

1
1 1

max
10

j j j

j M
j

Ax x

N A x

�

�
�� �

�

�

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

� �1
1

N

i i
i

v v v
�

� � � ��

While the exact value of
 is highly machine dependent, the performance of EVCSF (page 471) is
considered excellent if
 < 1, good if 1 �
 � 100, and poor if
 > 100. The performance index was
first developed by the EISPACK project at Argonne National Laboratory; see Smith et al. (1976,
pages 124�125).

EVLRH
Computes all of the eigenvalues of a real upper Hessenberg matrix.

Required Arguments
A — Real upper Hessenberg matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues in decreasing order of
magnitude. (Output)

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 521

FORTRAN 90 Interface
Generic: CALL EVLRH (A, EVAL [,…])

Specific: The specific interface names are S_EVLRH and D_EVLRH.

FORTRAN 77 Interface
Single: CALL EVLRH (N, A, LDA, EVAL)

Double: The double precision name is DEVLRH.

Example
In this example, a DATA statement is used to set A to an upper Hessenberg matrix of integers. The
eigenvalues of this matrix are computed and printed.

 USE EVLRH_INT
 USE UMACH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (N=4, LDA=N)
!
 INTEGER NOUT
 REAL A(LDA,N)
 COMPLEX EVAL(N)
! Set values of A
!
! A = (2.0 1.0 3.0 4.0)
! (1.0 0.0 0.0 0.0)
! (1.0 0.0 0.0)
! (1.0 0.0)
!
 DATA A/2.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 3.0, 0.0, 0.0, &
 1.0, 4.0, 0.0, 0.0, 0.0/
!
! Find eigenvalues of A
 CALL EVLRH (A, EVAL)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 END

Output
 EVAL

 1 2 3 4

(2.878, 0.000) (0.011, 1.243) (0.011,-1.243) (-0.900, 0.000)

522 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of E3LRH/DE3LRH. The

reference is:

CALL E3LRH (N, A, LDA, EVAL, ACOPY, WK, IWK)

The additional arguments are as follows:

ACOPY — Real N by N work matrix.

WK — Real vector of length 3n.

IWK — Integer vector of length n.

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues failed to converge.

Description
Routine EVLRH computes the eigenvalues of a real upper Hessenberg matrix by using the QR
algorithm. The QR Algorithm routine is based on the EISPACK routine HQR, Smith et al. (1976).

EVCRH
Computes all of the eigenvalues and eigenvectors of a real upper Hessenberg matrix.

Required Arguments
A — Real upper Hessenberg matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues in decreasing order of
magnitude. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 523

LDA — Leading dimension of A exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL EVCRH (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCRH and D_EVCRH.

FORTRAN 77 Interface
Single: CALL EVCRH (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCRH.

Example
In this example, a DATA statement is used to set A to a Hessenberg matrix with integer entries. The
values are returned in decreasing order of magnitude. The eigenvalues, eigenvectors and
performance index of this matrix are computed and printed. See routine EPIRG on page 460 for
details.

 USE EVCRH_INT
 USE EPIRG_INT
 USE UMACH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=4, LDA=N, LDEVEC=N)
!
 INTEGER NOUT
 REAL A(LDA,N), PI
 COMPLEX EVAL(N), EVEC(LDEVEC,N)
! Define values of A:
!
! A = (-1.0 -1.0 -1.0 -1.0)
! (1.0 0.0 0.0 0.0)
! (1.0 0.0 0.0)
! (1.0 0.0)
!
 DATA A/-1.0, 1.0, 0.0, 0.0, -1.0, 0.0, 1.0, 0.0, -1.0, 0.0, 0.0, &
 1.0, -1.0, 0.0, 0.0, 0.0/
!
! Find eigenvalues and vectors of A
 CALL EVCRH (A, EVAL, EVEC)
! Compute performance index

524 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 PI = EPIRG(N,A,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 CALL WRCRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3 4
 (-0.8090, 0.5878) (-0.8090,-0.5878) (0.3090, 0.9511) (0.3090,-0.9511)

 EVEC
 1 2 3 4
 1 (-0.4045, 0.2939) (-0.4045,-0.2939) (-0.4045,-0.2939) (-0.4045, 0.2939)
 2 (0.5000, 0.0000) (0.5000, 0.0000) (-0.4045, 0.2939) (-0.4045,-0.2939)
 3 (-0.4045,-0.2939) (-0.4045, 0.2939) (0.1545, 0.4755) (0.1545,-0.4755)
 4 (0.1545, 0.4755) (0.1545,-0.4755) (0.5000, 0.0000) (0.5000, 0.0000)

 Performance index = 0.098

Comments
1. Workspace may be explicitly provided, if desired, by use of E6CRH/DE6CRH. The

reference is:

CALL E6CRH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, ECOPY,RWK,IWK)

The additional arguments are as follows:

ACOPY — Real N by N work matrix.

ECOPY — Real N by N work matrix.

RWK — Real array of length 3N.

IWK — Integer array of length N.

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues failed to converge.

Description
Routine EVCRH computes the eigenvalues and eigenvectors of a real upper Hessenberg matrix by
using the QR algorithm. The QR algorithm routine is based on the EISPACK routine HQR2; see
Smith et al. (1976).

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 525

EVLCH
Computes all of the eigenvalues of a complex upper Hessenberg matrix.

Required Arguments
A — Complex upper Hessenberg matrix of order N. (Input)

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of
magnitude. (Output)

Required Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

FORTRAN 90 Interface
Generic: CALL EVLCH (A, EVAL [,…])

Specific: The specific interface names are S_EVLCH and D_EVLCH.

FORTRAN 77 Interface
Single: CALL EVLCH (N, A, LDA, EVAL)

Double: The double precision name is DEVLCH.

Example
In this example, a DATA statement is used to set the matrix A. The program computes and prints the
eigenvalues of this matrix.

 USE EVLCH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, N
 PARAMETER (N=4, LDA=N)
 COMPLEX A(LDA,N), EVAL(N)
! Set values of A
!
! A = (5+9i 5+5i -6-6i -7-7i)
! (3+3i 6+10i -5-5i -6-6i)
! (0 3+3i -1+3i -5-5i)

526 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

! (0 0 -3-3i 4i)
!
 DATA A /(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0), &
 (5.0,5.0), (6.0,10.0), (3.0,3.0), (0.0,0.0), &
 (-6.0,-6.0), (-5.0,-5.0), (-1.0,3.0), (-3.0,-3.0), &
 (-7.0,-7.0), (-6.0,-6.0), (-5.0,-5.0), (0.0,4.0)/
!
! Find the eigenvalues of A
 CALL EVLCH (A, EVAL)
! Print results
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 END

Output
 EVAL
 1 2 3 4
(8.22, 12.22) (3.40, 7.40) (1.60, 5.60) (-3.22, 0.78)

Comments
1. Workspace may be explicitly provided, if desired, by use of E3LCH/DE3LCH. The

reference is:

CALL E3LCH (N, A, LDA, EVAL, ACOPY, RWK, IWK)

The additional arguments are as follows:

ACOPY — Complex N by N work array. A and ACOPY may be the same, in which case A is
destroyed.

RWK — Real work array of length N.

IWK — Integer work array of length N.

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues failed to converge.

Description
Routine EVLCH computes the eigenvalues of a complex upper Hessenberg matrix using the QR
algorithm. This routine is based on the EISPACK routine COMQR2; see Smith et al. (1976).

EVCCH
Computes all of the eigenvalues and eigenvectors of a complex upper Hessenberg matrix.

Required Arguments
A — Complex upper Hessenberg matrix of order N. (Input)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 527

EVAL — Complex vector of length N containing the eigenvalues of A in decreasing order of
magnitude. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrix A. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL EVCCH (A, EVAL, EVEC [,…])

Specific: The specific interface names are S_EVCCH and D_EVCCH.

FORTRAN 77 Interface
Single: CALL EVCCH (N, A, LDA, EVAL, EVEC, LDEVEC)

Double: The double precision name is DEVCCH.

Example
In this example, a DATA statement is used to set the matrix A. The program computes the
eigenvalues and eigenvectors of this matrix. The performance index is also computed and printed.
This serves as a check on the computations; for more details, see IMSL routine EPICG, page 467.
The zeros in the lower part of the matrix are not referenced by EVCCH, but they are required by
EPICG (page 467).

 USE EVCCH_INT
 USE EPICG_INT
 USE UMACH_INT
 USE WRCRN_INT

! Declare variables
 INTEGER LDA, LDEVEC, N
 PARAMETER (N=4, LDA=N, LDEVEC=N)
!
 INTEGER NOUT

528 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

 REAL PI
 COMPLEX A(LDA,N), EVAL(N), EVEC(LDEVEC,N)
! Set values of A
!
! A = (5+9i 5+5i -6-6i -7-7i)
! (3+3i 6+10i -5-5i -6-6i)
! (0 3+3i -1+3i -5-5i)
! (0 0 -3-3i 4i)
!
 DATA A/(5.0,9.0), (3.0,3.0), (0.0,0.0), (0.0,0.0), (5.0,5.0), &
 (6.0,10.0), (3.0,3.0), (0.0,0.0), (-6.0,-6.0), (-5.0,-5.0), &
 (-1.0,3.0), (-3.0,-3.0), (-7.0,-7.0), (-6.0,-6.0), &
 (-5.0,-5.0), (0.0,4.0)/
!
! Find eigenvalues and vectors of A
 CALL EVCCH (A, EVAL, EVEC)
! Compute performance index
 PI = EPICG(N,A,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 CALL WRCRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3 4
(8.22, 12.22) (3.40, 7.40) (1.60, 5.60) (-3.22, 0.78)

 EVEC
 1 2 3 4
1 (0.7167, 0.0000) (-0.0704, 0.0000) (-0.3678, 0.0000) (0.5429, 0.0000)
2 (0.6402, 0.0000) (-0.0046, 0.0000) (0.6767, 0.0000) (0.4298, 0.0000)
3 (0.2598, 0.0000) (0.7477, 0.0000) (-0.3005, 0.0000) (0.5277, 0.0000)
4 (-0.0948, 0.0000) (-0.6603, 0.0000) (0.5625, 0.0000) (0.4920, 0.0000)

Performance index = 0.020

Comments
1. Workspace may be explicitly provided, if desired, by use of E4CCH/DE4CCH. The

reference is:

CALL E4CCH (N, A, LDA, EVAL, EVEC, LDEVEC, ACOPY, CWORK, RWK,IWK)

The additional arguments are as follows:

ACOPY — Complex N by N work array. A and ACOPY may be the same, in which case A is
destroyed.

CWORK — Complex work array of length 2N.

RWK — Real work array of length N.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 529

IWK — Integer work array of length N.

2 Informational error
Type Code

 4 1 The iteration for the eigenvalues failed to converge.

3. The results of EVCCH can be checked using EPICG (page 467). This requires that the
matrix A explicitly contains the zeros in A(I, J) for (I � 1) > J which are assumed by
EVCCH.

Description
Routine EVCCH computes the eigenvalues and eigenvectors of a complex upper Hessenberg matrix
using the QR algorithm. This routine is based on the EISPACK routine COMQR2; see Smith et al.
(1976).

GVLRG
Computes all of the eigenvalues of a generalized real eigensystem Az = �Bz.

Required Arguments
A — Real matrix of order N. (Input)

B — Real matrix of order N. (Input)

ALPHA — Complex vector of size N containing scalars �i, i = 1, �, n. If �i � 0, �i = �i / �i the
eigenvalues of the system in decreasing order of magnitude. (Output)

BETAV — Vector of size N containing scalars �i. (Output)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL GVLRG (A, B, ALPHA, BETAV [,…])

530 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Specific: The specific interface names are S_GVLRG and D_GVLRG.

FORTRAN 77 Interface
Single: CALL GVLRG (N, A, LDA, B, LDB, ALPHA, BETAV)

Double: The double precision name is DGVLRG.

Example
In this example, DATA statements are used to set A and B. The eigenvalues are computed and
printed.

 USE IMSL_LIBRARIES
 INTEGER LDA, LDB, N
 PARAMETER (N=3, LDA=N, LDB=N)
!
 INTEGER I
 REAL A(LDA,N), B(LDB,N), BETAV(N)
 COMPLEX ALPHA(N), EVAL(N)
!
! Set values of A and B
! A = (1.0 0.5 0.0)
! (-10.0 2.0 0.0)
! (5.0 1.0 0.5)
!
! B = (0.5 0.0 0.0)
! (3.0 3.0 0.0)
! (4.0 0.5 1.0)
!
! Declare variables
 DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/
 DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/
!
 CALL GVLRG (A, B, ALPHA, BETAV)
! Compute eigenvalues
 DO 10 I=1, N
 EVAL(I) = ALPHA(I)/BETAV(I)
 10 CONTINUE
! Print results
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 END

Output
 EVAL
 1 2 3
(0.833, 1.993) (0.833,-1.993) (0.500, 0.000)

Comments
1. Workspace may be explicitly provided, if desired, by use of G3LRG/DG3LRG. The

reference is:

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 531

CALL G3LRG (N, A, LDA, B, LDB, ALPHA, BETAV, ACOPY, BCOPY,
RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Work array of size N� . The arrays A and ACOPY may be the same, in which
case the first N� elements of A will be destroyed.

BCOPY — Work array of size N� . The arrays B and BCOPY may be the same, in which
case the first N� elements of B will be destroyed.

RWK — Real work array of size N.

CWK — Complex work array of size N.

IWK — Integer work array of size N.

2. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access inefficiency)
problems. In routine G3LRG, the internal or working leading dimension of ACOPY is
increased by IVAL(3) when N is a multiple of IVAL(4). The values IVAL(3) and
IVAL (4) are temporarily replaced by IVAL(1) and IVAL(2), respectively, in routine
GVLRG . Analogous comments hold for BCOPY and the values IVAL(5) � IVAL(8) .
Additional memory allocation and option value restoration are automatically done
in GVLRG. There is no requirement that users change existing applications that use
GVLRG or G3LRG. Default values for the option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1.

Description
Routine GVLRG computes the eigenvalues of the generalized eigensystem Ax = �Bx where A and B
are real matrices of order N. The eigenvalues for this problem can be infinite; so instead of returning
�, GVLRG returns � and �. If � is nonzero, then � = �/�.

The first step of the QZ algorithm is to simultaneously reduce A to upper Hessenberg form and B to
upper triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-
triangular form while keeping B upper triangular. The generalized eigenvalues are then computed.

The routine GVLRG uses the QZ algorithm due to Moler and Stewart (1973), as implemented by the
EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977).

GVCRG
Computes all of the eigenvalues and eigenvectors of a generalized real eigensystem Az = �Bz.

Required Arguments
A — Real matrix of order N. (Input)

532 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

B — Real matrix of order N. (Input)

ALPHA — Complex vector of size N containing scalars �i. If
�i � 0, �i = �i / �i, i = 1, �, n are the eigenvalues of the system.

BETAV — Vector of size N containing scalars �i. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to �J, is stored in the J-th column. Each vector is
normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDB = size (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL GVCRG (A, B, ALPHA, BETAV, EVEC [,…])

Specific: The specific interface names are S_GVCRG and D_GVCRG.

FORTRAN 77 Interface
Single: CALL GVCRG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC)

Double: The double precision name is DGVCRG.

Example
In this example, DATA statements are used to set A and B. The eigenvalues, eigenvectors and
performance index are computed and printed for the systems Ax = �Bx and Bx = Ax where
 = ����. For more details about the performance index, see routine GPIRG (page 535).

 USE IMSL_LIBRARIES

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 533

 INTEGER LDA, LDB, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDB=N, LDEVEC=N)
!
 INTEGER I, NOUT
 REAL A(LDA,N), B(LDB,N), BETAV(N), PI
 COMPLEX ALPHA(N), EVAL(N), EVEC(LDEVEC,N)
!
! Define values of A and B:
! A = (1.0 0.5 0.0)
! (-10.0 2.0 0.0)
! (5.0 1.0 0.5)
!
! B = (0.5 0.0 0.0)
! (3.0 3.0 0.0)
! (4.0 0.5 1.0)
!
! Declare variables
 DATA A/1.0, -10.0, 5.0, 0.5, 2.0, 1.0, 0.0, 0.0, 0.5/
 DATA B/0.5, 3.0, 4.0, 0.0, 3.0, 0.5, 0.0, 0.0, 1.0/
!
 CALL GVCRG (A, B, ALPHA, BETAV, EVEC)
! Compute eigenvalues
 DO 10 I=1, N
 EVAL(I) = ALPHA(I)/BETAV(I)
 10 CONTINUE
! Compute performance index
 PI = GPIRG(N,A,B,ALPHA,BETAV,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 CALL WRCRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
! Solve for reciprocals of values
 CALL GVCRG (B, A, ALPHA, BETAV, EVEC)

! Compute reciprocals
 DO 20 I=1, N
 EVAL(I) = ALPHA(I)/BETAV(I)
 20 CONTINUE
! Compute performance index
 PI = GPIRG(N,B,A,ALPHA,BETAV,EVEC)
! Print results
 CALL WRCRN (’EVAL reciprocals’, EVAL, 1, N, 1)
 CALL WRCRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
(0.833, 1.993) (0.833,-1.993) (0.500, 0.000)

 EVEC
 1 2 3
1 (-0.197, 0.150) (-0.197,-0.150) (0.000, 0.000)

534 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

2 (-0.069,-0.568) (-0.069, 0.568) (0.000, 0.000)
3 (0.782, 0.000) (0.782, 0.000) (1.000, 0.000)

Performance index = 0.384

 EVAL reciprocals
 1 2 3
(2.000, 0.000) (0.179, 0.427) (0.179,-0.427)

 EVEC
 1 2 3
1 (0.000, 0.000) (-0.197,-0.150) (-0.197, 0.150)
2 (0.000, 0.000) (-0.069, 0.568) (-0.069,-0.568)
3 (1.000, 0.000) (0.782, 0.000) (0.782, 0.000)

Performance index = 0.283

Comments
1. Workspace may be explicitly provided, if desired, by use of G8CRG/DG8CRG. The

reference is:

CALL G8CRG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC, ACOPY,
BCOPY, ECOPY, RWK, CWK, IWK)

The additional arguments are as follows:

ACOPY — Work array of size N�. The arrays A and ACOPY may be the same, in which case
the first N� elements of A will be destroyed.

BCOPY — Work array of size N�. The arrays B and BCOPY may be the same, in which case
the first N� elements of B will be destroyed.

ECOPY — Work array of size N�.

RWK — Work array of size N.

CWK — Complex work array of size N.

IWK — Integer work array of size N.

2. Integer Options with Chapter 11 Options Manager

1 This option uses eight values to solve memory bank conflict (access inefficiency)
problems. In routine G8CRG, the internal or working leading dimensions of ACOPY
and ECOPY are both increased by IVAL(3) when N is a multiple of IVAL(4). The
values IVAL(3) and IVAL(4) are temporarily replaced by IVAL(1) and IVAL(2),
respectively, in routine GVCRG. Analogous comments hold for the array BCOPY and
the option values IVAL(5) � IVAL(8). Additional memory allocation and option
value restoration are automatically done in GVCRG. There is no requirement that

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 535

users change existing applications that use GVCRG or G8CRG. Default values for the
option are IVAL(*) = 1, 16, 0, 1, 1, 16, 0, 1. Items 5�8 in IVAL(*) are for the
generalized eigenvalue problem and are not used in GVCRG.

Description
Routine GVCRG computes the complex eigenvalues and eigenvectors of the generalized eigensystem
Ax = �Bx where A and B are real matrices of order N. The eigenvalues for this problem can be
infinite; so instead of returning �, GVCRG returns complex numbers � and real numbers �. If � is
nonzero, then � = �/�. For problems with small ��� users can choose to solve the mathematically
equivalent problem Bx = Ax where = ���.

The first step of the QZ algorithm is to simultaneously reduce A to upper Hessenberg form and B to
upper triangular form. Then, orthogonal transformations are used to reduce A to quasi-upper-
triangular form while keeping B upper triangular. The generalized eigenvalues and eigenvectors for
the reduced problem are then computed.

The routine GVCRG is based on the QZ algorithm due to Moler and Stewart (1973), as implemented
by the EISPACK routines QZHES, QZIT and QZVAL; see Garbow et al. (1977).

GPIRG
This function computes the performance index for a generalized real eigensystem Az = �Bz.

Function Return Value
GPIRG — Performance index. (Output)

Required Arguments
NEVAL — Number of eigenvalue/eigenvector pairs performance index computation is based on.

(Input)

A — Real matrix of order N. (Input)

B — Real matrix of order N. (Input)

ALPHA — Complex vector of length NEVAL containing the numerators of eigenvalues. (Input)

BETAV — Real vector of length NEVAL containing the denominators of eigenvalues. (Input)

EVEC — Complex N by NEVAL array containing the eigenvectors. (Input)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

536 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDB = size (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: GPIRG (NEVAL, A, B, ALPHA, BETAV, EVEC, GPIRG [,…])

Specific: The specific interface names are S_GPIRG and D_GPIRG.

FORTRAN 77 Interface
Single: GPIRG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC)

Double: The double precision function name is DGPIRG.

Example
For an example of GPIRG, see routine GVCRG on page 531.

Comments
1. Workspace may be explicitly provided, if desired, by use of G2IRG/DG2IRG. The

reference is:

G2IRG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC,LDEVEC, WK)

The additional argument is:

WK — Complex work array of length 2N.

2. Informational errors
Type Code

 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix A is zero.
 3 4 The matrix B is zero.

3. The J-th eigenvalue should be ALPHA(J)/BETAV(J), its eigenvector should be in the J-th
column of EVEC.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 537

Description
Let M = NEVAL, xj = EVEC(*,J) , the j-th column of EVEC. Also, let � be the machine precision
given by AMACH(4), see the Reference chapter of this manual. The performance index,
, is defined
to be

� �
1

1
1 1 1

max j j j j

j M
j j j

Ax Bx

A B x

� �
�

� � �� �

�

�

�

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

� �1
1

N

i i
i

v v v
�

� � � ��

While the exact value of
 is highly machine dependent, the performance of EVCSF (page 471) is
considered excellent if
 < 1, good if 1 �
 � 100, and poor if
 > 100. The performance index was
first developed by the EISPACK project at Argonne National Laboratory; see Garbow et al. (1977,
pages 77�79).

GVLCG
Computes all of the eigenvalues of a generalized complex eigensystem Az = �Bz.

Required Arguments
A — Complex matrix of order N. (Input)

B — Complex matrix of order N. (Input)

ALPHA — Complex vector of length N. Ultimately, alpha(i)/betav(i) (for i = 1, n), will be the
eigenvalues of the system in decreasing order of magnitude. (Output)

BETAV — Complex vector of length N. (Output)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDB = size (B,1).

538 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL GVLCG (A, B, ALPHA, BETAV [,…])

Specific: The specific interface names are S_GVLCG and D_GVLCG.

FORTRAN 77 Interface
Single: CALL GVLCG (N, A, LDA, B, LDB, ALPHA, BETAV)

Double: The double precision name is DGVLCG.

Example
In this example, DATA statements are used to set A and B. Then, the eigenvalues are computed and
printed.

 USE GVLCG_INT
 USE WRCRN_INT

! Declaration of variables
 INTEGER LDA, LDB, N
 PARAMETER (N=5, LDA=N, LDB=N)
!
 INTEGER I
 COMPLEX A(LDA,N), ALPHA(N), B(LDB,N), BETAV(N), EVAL(N)
!
! Define values of A and B
!
 DATA A/(-238.0,-344.0), (76.0,152.0), (118.0,284.0), &
 (-314.0,-160.0), (-54.0,-24.0), (86.0,178.0), &
 (-96.0,-128.0), (55.0,-182.0), (132.0,78.0), &
 (-205.0,-400.0), (164.0,240.0), (40.0,-32.0), &
 (-13.0,460.0), (114.0,296.0), (109.0,148.0), &
 (-166.0,-308.0), (60.0,184.0), (34.0,-192.0), &
 (-90.0,-164.0), (158.0,312.0), (56.0,158.0), &
 (-60.0,-136.0), (-176.0,-214.0), (-424.0,-374.0), &
 (-38.0,-96.0)/
 DATA B/(388.0,94.0), (-304.0,-76.0), (-658.0,-136.0), &
 (-640.0,-10.0), (-162.0,-72.0), (-386.0,-122.0), &
 (384.0,64.0), (-73.0,100.0), (204.0,-42.0), (631.0,158.0), &
 (-250.0,-14.0), (-160.0,16.0), (-109.0,-250.0), &
 (-692.0,-90.0), (131.0,52.0), (556.0,130.0), &
 (-240.0,-92.0), (-118.0,100.0), (288.0,66.0), &
 (-758.0,-184.0), (-396.0,-62.0), (240.0,68.0), &
 (406.0,96.0), (-192.0,154.0), (278.0,76.0)/
!
 CALL GVLCG (A, B, ALPHA, BETAV)
! Compute eigenvalues
 EVAL = ALPHA/BETAV

! Print results
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 539

 STOP
 END

Output
 EVAL
 1 2 3 4
(-1.000,-1.333) (0.765, 0.941) (-0.353, 0.412) (-0.353,-0.412)

 5
(-0.353,-0.412)

Comments
1. Workspace may be explicitly provided, if desired, by use of G3LCG/DG3LCG. The

reference is:

CALL G3LCG (N, A, LDA, B, LDB, ALPHA, BETAV, ACOPY, BCOPY, CWK, WK,
IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N�. A and ACOPY may be the same, in which
case A will be destroyed.

BCOPY — Complex work array of length N�. B and BCOPY may be the same, in which
case B will be destroyed.

CWK — Complex work array of length N.

WK — Real work array of length N.

IWK — Integer work array of length N.

2. Informational error
Type Code

 4 1 The iteration for the eigenvalues failed to converge.

Description
Routine GVLCG computes the eigenvalues of the generalized eigensystem
Ax = �Bx, where A and B are complex matrices of order n. The eigenvalues for this problem can be
infinite; so instead of returning �, GVLCG returns � and �. If � is nonzero, then � = �/�. If the
eigenvectors are needed, then use GVCCG. See page 540.

The routine GVLCG is based on routines for the generalized complex eigenvalue problem by Garbow
(1978). The QZ algorithm is described by Moler and Stewart (1973). Some timing information is
given in Hanson et al. (1990).

540 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

GVCCG
Computes all of the eigenvalues and eigenvectors of a generalized complex eigensystem
Az = �Bz.

Required Arguments
A — Complex matrix of order N. (Input)

B — Complex matrix of order N. (Input)

ALPHA — Complex vector of length N. Ultimately, alpha(i)/betav(i) (for i = 1, �, n), will be the
eigenvalues of the system in decreasing order of magnitude. (Output)

BETAV — Complex vector of length N. (Output)

EVEC — Complex matrix of order N. (Output)
The J-th eigenvector, corresponding to ALPHA(J)/BETAV (J), is stored in the
J-th column. Each vector is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement of the calling
program. (Input)
Default: LDB = size (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL GVCCG (A, B, ALPHA, BETAV, EVEC [,…])

Specific: The specific interface names are S_GVCCG and D_GVCCG.

FORTRAN 77 Interface
Single: CALL GVCCG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC, LDEVEC)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 541

Double: The double precision name is DGVCCG.

Example
In this example, DATA statements are used to set A and B. The eigenvalues and eigenvectors are
computed and printed. The performance index is also computed and printed. This serves as a check
on the computations. For more details, see routine GPICG on page 542.

 USE IMSL_LIBRARIES

 INTEGER LDA, LDB, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDB=N, LDEVEC=N)
!
 INTEGER I, NOUT
 REAL PI
 COMPLEX A(LDA,N), ALPHA(N), B(LDB,N), BETAV(N), EVAL(N), &
 EVEC(LDEVEC,N)
!
! Define values of A and B
! A = (1+0i 0.5+i 0+5i)
! (-10+0i 2+i 0+0i)
! (5+i 1+0i 0.5+3i)
!
! B = (0.5+0i 0+0i 0+0i)
! (3+3i 3+3i 0+i)
! (4+2i 0.5+i 1+i)
!
! Declare variables
 DATA A/(1.0,0.0), (-10.0,0.0), (5.0,1.0), (0.5,1.0), (2.0,1.0), &
 (1.0,0.0), (0.0,5.0), (0.0,0.0), (0.5,3.0)/
 DATA B/(0.5,0.0), (3.0,3.0), (4.0,2.0), (0.0,0.0), (3.0,3.0), &
 (0.5,1.0), (0.0,0.0), (0.0,1.0), (1.0,1.0)/
! Compute eigenvalues
 CALL GVCCG (A, B, ALPHA, BETAV, EVEC)

 EVAL = ALPHA/BETAV
! Compute performance index
 PI = GPICG(N,A,B,ALPHA,BETAV,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRCRN (’EVAL’, EVAL, 1, N, 1)
 CALL WRCRN (’EVEC’, EVEC)
 WRITE (NOUT, ’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
(-8.18,-25.38) (2.18, 0.61) (0.12, -0.39)
 EVEC
 1 2 3
1 (-0.3267,-0.1245) (-0.3007,-0.2444) (0.0371, 0.1518)
2 (0.1767, 0.0054) (0.8959, 0.0000) (0.9577, 0.0000)

542 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

3 (0.9201, 0.0000) (-0.2019, 0.0801) (-0.2215, 0.0968)

Performance index = 0.709

Comments
1. Workspace may be explicitly provided, if desired, by use of G6CCG/DG6CCG. The

reference is:

CALL G6CCG (N, A, LDA, B, LDB, ALPHA, BETAV, EVEC,
 LDEVEC, ACOPY, BCOPY, CWK, WK, IWK)

The additional arguments are as follows:

ACOPY — Complex work array of length N�. A and ACOPY may be the same in which case
the first N� elements of A will be destroyed.

BCOPY — Complex work array of length N�. B and BCOPY may be the same in which case
the first N� elements of B will be destroyed.

CWK — Complex work array of length N.

WK — Real work array of length N.

IWK — Integer work array of length N.

2. Informational error
Type Code

 4 1 The iteration for an eigenvalue failed to converge.

3. The success of this routine can be checked using GPICG (page 542).

Description
Routine GVCCG computes the eigenvalues and eigenvectors of the generalized eigensystem Ax =
�Bx. Here, A and B, are complex matrices of order n. The eigenvalues for this problem can be
infinite; so instead of returning �, GVCCG returns � and �. If � is nonzero, then � = � / �.

The routine GVCCG uses the QZ algorithm described by Moler and Stewart (1973). The
implementation is based on routines of Garbow (1978). Some timing results are given in Hanson et
al. (1990).

GPICG
This function computes the performance index for a generalized complex eigensystem Az = �Bz.

Function Return Value
GPICG — Performance index. (Output)

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 543

Required Arguments
NEVAL — Number of eigenvalue/eigenvector pairs performance index computation is based on.

(Input)

A — Complex matrix of order N. (Input)

B — Complex matrix of order N. (Input)

ALPHA — Complex vector of length NEVAL containing the numerators of eigenvalues. (Input)

BETAV — Complex vector of length NEVAL containing the denominators of eigenvalues.
(Input)

EVEC — Complex N by NEVAL array containing the eigenvectors. (Input)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDB = size (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: GPICG (NEVAL, A, B, ALPHA, BETAV, EVEC [,…])

Specific: The specific interface names are S_GPICG and D_GPICG.

FORTRAN 77 Interface
Single: GPICG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC,

 LDEVEC)

Double: The double precision name is DGPICG.

544 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Example
For an example of GPICG, see routine GVCCG on page 540.

Comments
1. Workspace may be explicitly provided, if desired, by use of G2ICG/DG2ICG. The

reference is:

G2ICG(N, NEVAL, A, LDA, B, LDB, ALPHA, BETAV, EVEC,
 LDEVEC, WK)

The additional argument is:

WK — Complex work array of length 2N.

2. Informational errors
Type Code

 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix A is zero.
 3 4 The matrix B is zero.

3. The J-th eigenvalue should be ALPHA(J)/BETAV (J), its eigenvector should be in the J-th
column of EVEC.

Algorithm
Let M = NEVAL, xj = EVEC(*, J) , the j-th column of EVEC. Also, let � be the machine precision
given by AMACH(4). The performance index,
, is defined to be

� �
1

1
1 1 1

max j j j j

j M
j j j

Ax Bx

A B x

� �
�

� � �� �

�

�

�

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

� �1
1

N

i i
i

v v v
�

� � � ��

While the exact value of
 is highly machine dependent, the performance of EVCSF (page 471) is
considered excellent if
 < 1, good if 1 �
 � 100, and poor if
 > 100.

The performance index was first developed by the EISPACK project at Argonne National
Laboratory; see Garbow et al. (1977, pages 77�79).

GVLSP
Computes all of the eigenvalues of the generalized real symmetric eigenvalue problem Az = �Bz,
with B symmetric positive definite.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 545

Required Arguments
A — Real symmetric matrix of order N. (Input)

B — Positive definite symmetric matrix of order N. (Input)

EVAL — Vector of length N containing the eigenvalues in decreasing order of magnitude.
(Output)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDB = size (B,1).

FORTRAN 90 Interface
Generic: CALL GVLSP (A, B, EVAL [,…])

Specific: The specific interface names are S_GVLSP and D_GVLSP.

FORTRAN 77 Interface
Single: CALL GVLSP (N, A, LDA, B, LDB, EVAL)

Double: The double precision name is DGVLSP.

Example
In this example, a DATA statement is used to set the matrices A and B. The eigenvalues of the system
are computed and printed.

 USE GVLSP_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDB, N
 PARAMETER (N=3, LDA=N, LDB=N)
!
 REAL A(LDA,N), B(LDB,N), EVAL(N)
! Define values of A:
! A = (2 3 5)
! (3 2 4)

546 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

! (5 4 2)
 DATA A/2.0, 3.0, 5.0, 3.0, 2.0, 4.0, 5.0, 4.0, 2.0/
!
! Define values of B:
! B = (3 1 0)
! (1 2 1)
! (0 1 1)
 DATA B/3.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 1.0/
!
! Find eigenvalues
 CALL GVLSP (A, B, EVAL)
! Print results
 CALL WRRRN (’EVAL’, EVAL, 1, N, 1)
 END

Output
 EVAL
 1 2 3
-4.717 4.393 -0.676

Comments
1. Workspace may be explicitly provided, if desired, by use of G3LSP/DG3LSP. The

reference is:

CALL G3LSP (N, A, LDA, B, LDB, EVAL, IWK, WK1, WK2)

The additional arguments are as follows:

IWK — Integer work array of length N.

WK1 — Work array of length 2N.

WK2 — Work array of length N� + N.

2. Informational errors
Type Code

 4 1 The iteration for an eigenvalue failed to converge.
 4 2 Matrix B is not positive definite.

Description
Routine GVLSP computes the eigenvalues of Ax = �Bx with A symmetric and B symmetric positive
definite. The Cholesky factorization B = RT R, with R a triangular matrix, is used to transform the
equation Ax = �Bx to

(R�T AR��)(Rx) = � (Rx)

The eigenvalues of C = R�T AR��� are then computed. This development is found in Martin and
Wilkinson (1968). The Cholesky factorization of B is computed based on IMSL routine LFTDS, (see

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 547

Chapter 1, Linear Systems);. The eigenvalues of C are computed based on routine EVLSF, page 469.
Further discussion and some timing results are given Hanson et al. (1990).

GVCSP
Computes all of the eigenvalues and eigenvectors of the generalized real symmetric eigenvalue
problem Az = �Bz, with B symmetric positive definite.

Required Arguments
A — Real symmetric matrix of order N. (Input)

B — Positive definite symmetric matrix of order N. (Input)

EVAL — Vector of length N containing the eigenvalues in decreasing order of magnitude.
(Output)

EVEC — Matrix of order N. (Output)
The J-th eigenvector, corresponding to EVAL(J), is stored in the J-th column. Each vector
is normalized to have Euclidean length equal to the value one.

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDB = size (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement of the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: CALL GVCSP (A, B, EVAL, EVEC [,…])

Specific: The specific interface names are S_GVCSP and D_GVCSP.

548 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL CALL GVCSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC)

Double: The double precision name is DGVCSP.

Example
In this example, a DATA statement is used to set the matrices A and B. The eigenvalues, eigenvectors
and performance index are computed and printed. For details on the performance index, see IMSL
routine GPISP on page 549.

 USE GVCSP_INT
 USE GPISP_INT
 USE UMACH_INT
 USE WRRRN_INT

! Declare variables
 INTEGER LDA, LDB, LDEVEC, N
 PARAMETER (N=3, LDA=N, LDB=N, LDEVEC=N)
!
 INTEGER NOUT
 REAL A(LDA,N), B(LDB,N), EVAL(N), EVEC(LDEVEC,N), PI
! Define values of A:
! A = (1.1 1.2 1.4)
! (1.2 1.3 1.5)
! (1.4 1.5 1.6)
 DATA A/1.1, 1.2, 1.4, 1.2, 1.3, 1.5, 1.4, 1.5, 1.6/
!
! Define values of B:
! B = (2.0 1.0 0.0)
! (1.0 2.0 1.0)
! (0.0 1.0 2.0)
 DATA B/2.0, 1.0, 0.0, 1.0, 2.0, 1.0, 0.0, 1.0, 2.0/
!
! Find eigenvalues and vectors
 CALL GVCSP (A, B, EVAL, EVEC)
! Compute performance index
 PI = GPISP(N,A,B,EVAL,EVEC)
! Print results
 CALL UMACH (2, NOUT)
 CALL WRRRN (’EVAL’, EVAL)
 CALL WRRRN (’EVEC’, EVEC)
 WRITE (NOUT,’(/,A,F6.3)’) ’ Performance index = ’, PI
 END

Output
 EVAL
 1 2 3
1.386 -0.058 -0.003

 EVEC
 1 2 3
1 0.6431 -0.1147 -0.6817
2 -0.0224 -0.6872 0.7266

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 549

3 0.7655 0.7174 -0.0858

Performance index = 0.417

Comments
1. Workspace may be explicitly provided, if desired, by use of G3CSP/DG3CSP. The

reference is:

CALL G3CSP (N, A, LDA, B, LDB, EVAL, EVEC, LDEVEC, IWK, WK1, WK2)

The additional arguments are as follows:

IWK — Integer work array of length N.

WK1 — Work array of length 3N.

WK2 — Work array of length N� + N.Type Code

2. Informational errors

 4 1 The iteration for an eigenvalue failed to converge.
 4 2 Matrix B is not positive definite.

3. The success of this routine can be checked using GPISP (page 549).

Description
Routine GVLSP (page 544) computes the eigenvalues and eigenvectors of Az = �Bz, with A
symmetric and B symmetric positive definite. The Cholesky factorization B = RTR, with R a
triangular matrix, is used to transform the equation Az = �Bz, to

(R�� AR���)(Rz) = � (Rz)

The eigenvalues and eigenvectors of C = R�� AR��� are then computed. The generalized eigenvectors
of A are given by z = R��� x, where x is an eigenvector of C. This development is found in Martin
and Wilkinson (1968). The Cholesky factorization is computed based on IMSL routine LFTDS, see
Chapter 1, Linear Systems;. The eigenvalues and eigenvectors of C are computed based on routine
EVCSF, page 471. Further discussion and some timing results are given Hanson et al. (1990).

GPISP
This function computes the performance index for a generalized real symmetric eigensystem problem.

Function Return Value
GPISP — Performance index. (Output)

550 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

Required Arguments
NEVAL — Number of eigenvalue/eigenvector pairs that the performance index computation is

based on. (Input)

A — Symmetric matrix of order N. (Input)

B — Symmetric matrix of order N. (Input)

EVAL — Vector of length NEVAL containing eigenvalues. (Input)

EVEC — N by NEVAL array containing the eigenvectors. (Input)

Optional Arguments
N — Order of the matrices A and B. (Input)

Default: N = size (A,2).

LDA — Leading dimension of A exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDA = size (A,1).

LDB — Leading dimension of B exactly as specified in the dimension statement in the calling
program. (Input)
Default: LDB = size (B,1).

LDEVEC — Leading dimension of EVEC exactly as specified in the dimension statement in the
calling program. (Input)
Default: LDEVEC = size (EVEC,1).

FORTRAN 90 Interface
Generic: GPISP (NEVAL, A, B, EVAL, EVEC [,…])

Specific: The specific interface names are S_GPISP and D_GPISP.

FORTRAN 77 Interface
Single: GPISP (N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC)

Double: The double precision name is DGPISP.

Example
For an example of GPISP, see routine GVCSP on page 547.

IMSL MATH/LIBRARY Chapter 2: Eigensystem Analysis � 551

Comments
1. Workspace may be explicitly provided, if desired, by use of G2ISP/DG2ISP. The

reference is:

G2ISP(N, NEVAL, A, LDA, B, LDB, EVAL, EVEC, LDEVEC, WORK)

The additional argument is:

WORK — Work array of length 2 * N.

2. Informational errors
Type Code

 3 1 Performance index is greater than 100.
 3 2 An eigenvector is zero.
 3 3 The matrix A is zero.
 3 4 The matrix B is zero.

3. The J-th eigenvalue should be ALPHA(J)/BETAV(J), its eigenvector should be in the J-th
column of EVEC.

Description
Let M = NEVAL, � = EVAL, xj = EVEC(*, J) , the j-th column of EVEC. Also, let � be the machine
precision given by AMACH(4). The performance index,
, is defined to be

� �
1

1
1 1 1

max j j j

j M
j j

Ax Bx

A B x

�

�

� �� �

�

�

�

The norms used are a modified form of the 1-norm. The norm of the complex vector v is

� �1
1

N

i i
i

v v v
�

� � � ��

While the exact value of
 is highly machine dependent, the performance of EVCSF (page 471) is
considered excellent if
 < 1, good if 1 �
 � 100, and poor if
 > 100. The performance index was
first developed by the EISPACK project at Argonne National Laboratory; see Garbow et al. (1977,
pages 77�79).

552 � Chapter 2: Eigensystem Analysis IMSL MATH/LIBRARY

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 553

Chapter 3: Interpolation and
Approximation

Routines
3.1 Curve and Surface Fitting with Splines

Returns the derived type array result SPLINE_CONSTRAINTS 562
Returns an array result, given an array
of input ..SPLINE_VALUES 563
Weighted least-squares fitting by B-splines to discrete
One-Dimensional data is performed...................SPLINE_FITTING 564
Returns the derived type array result given
optional input.......................................SURFACE_CONSTRAINTS 574
Returns a tensor product array result, given two arrays of
independent variable values SURFACE_VALUES 575
Weighted least-squares fitting by tensor product
B-splines to discrete two-dimensional data
is performed..SURFACE_FITTING 577

3.2. Cubic Spline Interpolation
Easy to use cubic spline routine ... CSIEZ 587
Not-a-knot ... CSINT 590
Derivative end conditions.. CSDEC 593
Hermite ... CSHER 597
Akima .. CSAKM 600
Shape preserving..CSCON 603
Periodic ..CSPER 606

3.3. Cubic Spline Evaluation and Integration
Evaluation .. CSVAL 609
Evaluation of the derivative... CSDER 610
Evaluation on a grid ...CS1GD 613
Integration ...CSITG 616

3.4. B-spline Interpolation
Easy to use spline routine...SPLEZ 618

554 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

One-dimensional interpolation ..BSINT 622
Knot sequence given interpolation data BSNAK 625
Optimal knot sequence given interpolation dataBSOPK 628
Two-dimensional tensor product interpolationBS2IN 631
Three-dimensional tensor product interpolation....................BS3IN 635

3.5. Spline Evaluation, Integration, and Conversion to Piecewise
Polynomial Given the B-spline Representation
Evaluation...BSVAL 641
Evaluation of the derivative ...BSDER 643
Evaluation on a grid... BS1GD 646
One-dimensional integration ...BSITG 649
Two-dimensional evaluation... BS2VL 651
Two-dimensional evaluation of the derivative BS2DR 653
Two-dimensional evaluation on a grid................................. BS2GD 656
Two-dimensional integration ...BS2IG 661
Three-dimensional evaluation .. BS3VL 664
Three-dimensional evaluation of the derivative BS3DR 666
Three-dimensional evaluation on a grid BS3GD 670
Three-dimensional integration...BS3IG 676
Convert B-spline representation to piecewise polynomial .. BSCPP 680

3.6. Piecewise Polynomial
Evaluation...PPVAL 681
Evaluation of the derivative ...PPDER 684
Evaluation on a grid... PP1GD 687
Integration ...PPITG 690

3.7. Quadratic Polynomial Interpolation Routines for Gridded Data
One-dimensional evaluation.. QDVAL 692
One-dimensional evaluation of the derivative QDDER 694
Two-dimensional evaluation...QD2VL 696
Two-dimensional evaluation of the derivativeQD2DR 699
Three-dimensional evaluation ..QD3VL 702
Three-dimensional evaluation of the derivativeQD3DR 705

3.8. Scattered Data Interpolation
Akima’s surface fitting method .. SURF 710

3.9. Least-Squares Approximation
Linear polynomial ..RLINE 713
General polynomial ...RCURV 716
General functions .. FNLSQ 720
Splines with fixed knots ... BSLSQ 725
Splines with variable knot...BSVLS 729
Splines with linear constraints...CONFT 734
Two-dimensional tensor-product splines with fixed knots.... BSLS2 743
Three-dimensional tensor-product splines with fixed knots . BSLS3 748

3.10. Cubic Spline Smoothing
Smoothing by error detection ..CSSED 754

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 555

Smoothing spline ..CSSMH 758
Smoothing spline using cross-validationCSSCV 761

3.11. Rational L� Approximation
Rational Chebyshev...RATCH 764

Usage Notes
The majority of the routines in this chapter produce piecewise polynomial or spline functions that
either interpolate or approximate given data, or are support routines for the evaluation, integration,
and conversion from one representation to another. Two major subdivisions of routines are
provided. The cubic spline routines begin with the letters “CS” and utilize the piecewise
polynomial representation described below. The B-spline routines begin with the letters “BS” and
utilize the B-spline representation described below. Most of the spline routines are based on
routines in the book by de Boor (1978).

Piecewise Polynomials
A univariate piecewise polynomial (function) p is specified by giving its breakpoint sequence
� � Rn, the order k (degree k � 1) of its polynomial pieces, and the k � (n � 1) matrix c of its local
polynomial coefficients. In terms of this information, the piecewise polynomial (pp) function is
given by

� �
� �

� �

1

1
1

for <
1 !

jk
i

ji i i
j

x
p x c x

j
�

� �

�

�

�

�
� �

�
�

The breakpoint sequence � is assumed to be strictly increasing, and we extend the pp function to
the entire real axis by extrapolation from the first and last intervals. The subroutines in this chapter
will consistently make the following identifications for FORTRAN variables:

PPCOEF
BREAK
KORDER
NBREAK

c

k
N

�

�

�

�

�

This representation is redundant when the pp function is known to be smooth. For example, if p is
known to be continuous, then we can compute c1,i+1 from the cji as follows

� �
� �

� �

1

1, 1 1 1 2 1 !

k
i

i i i i i kic p c c c
k
�

� �

�

� �

�
� � � � � �

�
�

where ��i := �i+1 � �i. For smooth pp, we prefer to use the irredundant representation in terms of
the B-(for ‘basis’)-splines, at least when such a function is first to be determined. The above pp
representation is employed for evaluation of the pp function at many points since it is more
efficient.

556 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Splines and B-splines
B-splines provide a particularly convenient and suitable basis for a given class of smooth pp
functions. Such a class is specified by giving its breakpoint sequence, its order, and the required
smoothness across each of the interior breakpoints. The corresponding B-spline basis is specified
by giving its knot sequence t � RM. The specification rule is the following: If the class is to have
all derivatives up to and including the j-th derivative continuous across the interior breakpoint �i,
then the number �i should occur k � j � 1 times in the knot sequence. Assuming that �1, and �n are
the endpoints of the interval of interest, one chooses the first k knots equal to �1 and the last k
knots equal to �n. This can be done since the B-splines are defined to be right continuous near �1
and left continuous near �n.

When the above construction is completed, we will have generated a knot sequence t of length M;
and there will be m := M � k B-splines of order k, say B1 ,�, Bm that span the pp functions on the
interval with the indicated smoothness. That is, each pp function in this class has a unique
representation

p = a1B1 + a2B2 + � + amBm

as a linear combination of B-splines. The B-spline routines will consistently make use of the
following identifiers for FORTRAN variables:

BSCOEF
XKNOT
NCOEF
NKNOT

a

m
M

�

�

�

�

t

A B-spline is a particularly compact pp function. Bi is a nonnegative function that is nonzero only
on the interval [ti, ti + k]. More precisely, the support of the i-th B-spline is [ti, ti + k]. No pp
function in the same class (other than the zero function) has smaller support (i.e., vanishes on
more intervals) than a B-spline. This makes B-splines particularly attractive basis functions since
the influence of any particular B-spline coefficient extends only over a few intervals. When it is
necessary to emphasize the dependence of the B-spline on its parameters, we will use the notation

Bi,k,t

to denote the i-th B-spline of order k for the knot sequence t.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 557

CSAKM

CSINT CSDEC (natural spline)

CSCON

BSINT with K=3 BSINT with K=5

Figure 3-1 Spline Interpolants of the Same Data

Cubic Splines

Cubic splines are smooth (i.e., C 1 or C 2) fourth-order pp functions. For historical and other
reasons, cubic splines are the most heavily used pp functions. Therefore, we provide special
routines for their construction and evaluation. The routines for their determination use yet another
representation (in terms of value and slope at all the breakpoints) but output the pp representation
as described above for general pp functions.

We provide seven cubic spline interpolation routines: CSIEZ (page 587), CSINT (page 590),
CSDEC (page 593), CSHER (page 597), CSAKM (page 600), CSCON (page 603), and CSPER (page
606). The first routine, CSIEZ, is an easy-to-use version of CSINT coupled with CSVAL. The
routine CSIEZ will compute the value of the cubic spline interpolant (to given data using the ‘not-
a-knot’ criterion) on a grid. The routine CSDEC allows the user to specify various endpoint
conditions (such as the value of the first or second derivative at the right and left points). This
means that the natural cubic spline can be obtained using this routine by setting the second

558 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

derivative to zero at both endpoints. If function values and derivatives are available, then the
Hermite cubic interpolant can be computed using CSHER. The two routines CSAKM and CSCON are
designed so that the shape of the curve matches the shape of the data. In particular, CSCON
preserves the convexity of the data while CSAKM attempts to minimize oscillations. If the data is
periodic, then CSPER will produce a periodic interpolant. The routine CONFT (page 734) allows the
user wide latitude in enforcing shapes. This routine returns the B-spline representation.

It is possible that the cubic spline interpolation routines will produce unsatisfactory results. The
adventurous user should consider using the B-spline interpolation routine BSINT that allows one
to choose the knots and order of the spline interpolant.

In Figure 3-1, we display six spline interpolants to the same data. This data can be found in
Example 1 of the IMSL routine CSCON (page 603) Notice the different characteristics of the
interpolants. The interpolation routines CSAKM (page 600) and CSCON are the only two that attempt
to preserve the shape of the data. The other routines tend to have extraneous inflection points, with
the piecewise quartic (k = 5) exhibiting the most oscillation.

Tensor Product Splines
The simplest method of obtaining multivariate interpolation and approximation routines is to take
univariate methods and form a multivariate method via tensor products. In the case of two-
dimensional spline interpolation, the development proceeds as follows: Let tx be a knot sequence
for splines of order kx, and ty be a knot sequence for splines of order ky. Let Nx + kx be the length
of tx, and Ny + ky be the length of ty. Then, the tensor product spline has the form

, , , ,
1 1

() ()
y x

x x y y

N N

nm n k m k
m n

c B x B y
� �

� � t t

Given two sets of points

� � � �1 1
 and x yN N

i ii i
x y

� �

for which the corresponding univariate interpolation problem could be solved, the tensor product
interpolation problem becomes: Find the coefficients cnm so that

, , , ,
1 1

() ()
y x

x x y y

N N

nm n k i m k i ij
m n

c B x B y f
� �

�� � t t

This problem can be solved efficiently by repeatedly solving univariate interpolation problems as
described in de Boor (1978, page 347). Three-dimensional interpolation has analogous behavior.
In this chapter, we provide routines that compute the two-dimensional tensorproduct spline
coefficients given two-dimensional interpolation data (BS2IN, page 631), compute the three-
dimensional tensor-product spline coefficients given three-dimensional interpolation data (BS3IN,
page 635) compute the two-dimensional tensor-product spline coefficients for a tensor-product
least squares problem (BSLS2, page 743), and compute the three-dimensional tensor-product
spline coefficients for a tensor-product least squares problem (BSLS3, page 748). In addition, we
provide evaluation, differentiation, and integration routines for the twoand three-dimensional
tensor-product spline functions. The relevant routines are BS2VL (page 651), BS3VL (page 664),
BS2DR (page 653), BS3DR (page 666), BS2GD (page 656), BS3GD (page 670), BS2IG (page 661),
and BS3IG (page 676).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 559

Quadratic Interpolation
The routines that begin with the letters “QD” in this chapter are designed to interpolate a one-, two-
, or three-dimensional (tensor product) table of values and return an approximation to the value of
the underlying function or one of its derivatives at a given point. These routines are all based on
quadratic polynomial interpolation.

Scattered Data Interpolation
We have one routine, SURF, that will return values of an interpolant to scattered data in the plane.
This routine is based on work by Akima (1978), which utilizes C1 piecewise quintics on a
triangular mesh.

Least Squares
Routines are provided to smooth noisy data: regression using linear polynomials (RLINE),
regression using arbitrary polynomials (RCURV, page 716), and regression using user-supplied
functions (FNLSQ, page 720). Additional routines compute the least-squares fit using splines with
fixed knots (BSLSQ, page 725) or free knots (BSVLS, page 729). These routines can produce cubic-
spline least-squares fit simply by setting the order to 4. The routine CONFT (page 734) computes a
fixed-knot spline weighted least-squares fit subject to linear constraints. This routine is very
general and is recommended if issues of shape are important. The two- and three-dimensional
tensor-product spline regression routines are (BSLS2, page 743) and (BSLS3, page 748).

Smoothing by Cubic Splines
Two “smoothing spline” routines are provided. The routine CSSMH (page 758) returns the cubic
spline that smooths the data, given a smoothing parameter chosen by the user. Whereas, CSSCV
(page 761) estimates the smoothing parameter by cross-validation and then returns the cubic spline
that smooths the data. In this sense, CSSCV is the easier of the two routines to use. The routine
CSSED (page 754) returns a smoothed data vector approximating the values of the underlying
function when the data are contaminated by a few random spikes.

Rational Chebyshev Approximation
The routine RATCH (page 764) computes a rational Chebyshev approximation to a user-supplied
function. Since polynomials are rational functions, this routine can be used to compute best
polynomial approximations.

Using the Univariate Spline Routines
An easy to use spline interpolation routine CSIEZ (page 587) is provided . This routine computes
an interpolant and returns the values of the interpolant on a user-supplied grid. A slightly more
advanced routine SPLEZ (page 618) computes (at the users discretion) one of several interpolants
or least-squares fits and returns function values or derivatives on a user-supplied grid.

For more advanced uses of the interpolation (or least squares) spline routines, one first forms an
interpolant from interpolation (or least-squares) data. Then it must be evaluated, differentiated, or
integrated once the interpolant has been formed. One way to perform these tasks, using cubic

560 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

splines with the ‘not-a-knot’ end condition, is to call CSINT to obtain the local coefficients of the
piecewise cubic interpolant and then call CSVAL to evaluate the interpolant. A more complicated
situation arises if one wants to compute a quadratic spline interpolant and then evaluate it
(efficiently) many times. Typically, the sequence of routines called might be BSNAK (get the
knots), BSINT (returns the B-spline coefficients of the interpolant), BSCPP (convert to pp form),
and PPVAL (evaluate). The last two calls could be replaced by a call to the B-spline grid evaluator
BS1GD, or the last call could be replaced with pp grid evaluator PP1GD. The interconnection of the
spline routines is summarized in Figure 3-2.

CSVAL
CSDER
CSITG

CS1GD

BSNAK
BSOPK

BSINT

BSLSQ
BSVLS
CONFT

BSCPP

BSVAL
BSDER
BSITG
BS1GD

DATA

CSSMH

CSSCV

PPVAL
PPDER
PPITG
PP1GD

OUT

CSINT

CSHER

CSCON
CSPER

CSAKM

CSDEC

Figure 3-2 Interrelation of the Spline Routines

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 561

Choosing an Interpolation Routine
The choice of an interpolation routine depends both on the type of data and on the use of the
interpolant. We provide 18 interpolation routines. These routines are depicted in a decision tree in
Figure 3-3. This figure provides a guide for selecting an appropriate interpolation routine. For
example, if periodic one-dimensional (univariate) data is available, then the path through
univariate to periodic leads to the IMSL routine CSPER, which is the proper routine for this
setting. The general-purpose univariate interpolation routines can be found in the box beginning
with CSINT. Two- and three-dimensional tensor-product interpolation routines are also provided.
For two-dimensional scattered data, the appropriate routine is SURF .

INTERPOLATION

CSPER

CSHER

CSAKM

CSCON
SURF

Scattered
data

BS2IN

QD2VL

QD2DR

BS3IN
QD3VL
QD3DR

 CSIEZ

CSINT

CSDEC
SPLEZ

BSINT

QDVAL

QDDER

univariate multivariate

shape
preserving

periodic

derivatives

2D

3D

tensor
product

Figure 3-3 Choosing an Interplation Routine

562 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

SPLINE_CONSTRAINTS
This function returns the derived type array result, ?_spline_constraints, given optional
input. There are optional arguments for the derivative index, the value applied to the spline, and
the periodic point for any periodic constraint.

The function is used, for entry number j,
?_spline_constraints(j) = &
 spline_constraints([derivative=derivative_index,] &
 point = where_applied, [value=value_applied,], &
 type = constraint_indicator, &
 [periodic_point = value_applied])

The square brackets enclose optional arguments. For each constraint either (but not both) the
‘value =’ or the ‘periodic_point =’ optional arguments must be present.

Required Arguments
point = where_applied (Input)

The point in the data interval where a constraint is to be applied.

type = constraint_indicator (Input)
The indicator for the type of constraint the spline function or its derivatives is to
satisfy at the point: where_applied. The choices are the character strings
‘==’, ‘<=’, ‘>=’, ‘.=.’, and ‘.=-’. They respectively indicate that the
spline value or its derivatives will be equal to, not greater than, not less than,
equal to the value of the spline at another point, or equal to the negative of the
spline value at another point. These last two constraints are called periodic and
negative-periodic, respectively. The alternate independent variable point is
value_applied for either periodic constraint. There is a use of periodic
constraints in .

Optional Arguments
derivative = derivative_index (Input)

This is the number of the derivative for the spline to apply the constraint. The
value 0 corresponds to the function, the value 1 to the first derivative, etc. If this
argument is not present in the list, the value 0 is substituted automatically. Thus
a constraint without the derivative listed applies to the spline function.

periodic_point = value_applied
This optional argument improves readability by automatically identifying the
second independent variable value for periodic constraints.

FORTRAN 90 Interface
Generic: CALL SPLINE_CONSTRAINTS (POINT, TYPE [,…])

Specific: The specific interface names are S_SPLINE_CONSTRAINTS and
D_SPLINE_CONSTRAINTS.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 563

SPLINE_VALUES
This rank-1 array function returns an array result, given an array of input. Use the optional
argument for the covariance matrix when the square root of the variance function is required. The
result will be a scalar value when the input variable is scalar.

Required Arguments
derivative = derivative (Input)

The index of the derivative evaluated. Use non-negative integer values. For the
function itself use the value 0.

variables = variables (Input)
The independent variable values where the spline or its derivatives are
evaluated. Either a rank-1 array or a scalar can be used as this argument.

knots = knots (Input)
The derived type ?_spline_knots, defined as the array COEFFS was obtained
with the function SPLINE_FITTING. This contains the polynomial spline
degree and the number of knots and the knots themselves for this spline
function.

coeffs = c (Input)
The coefficients in the representation for the spline function,

� � � �
1

N

j j
j

f x c B x
�

�� .

These result from the fitting process or array assignment
C=SPLINE_FITTING(...), defined below. The value
 N = size(C) satisfies the identity
N - 1 + spline_degree = size (?_knots), where the two right-most quantities refer
to components of the argument knots.

Optional Arguments
covariance = G (Input)

This argument, when present, results in the evaluation of the square root of the
variance function

� � � � � �� �
1/ 2Te x b x Gb x�

where

� � � � � �1 , ,
T

Nb x B x B x� � �� ��

and G is the covariance matrix associated with the coefficients of the spline

� �1, , T
Nc c c� �

564 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

The argument G is an optional output parameter from the function
spline_fitting, described below. When the square root of the variance
function is computed, the arguments DERIVATIVE and C are not used.

iopt = iopt (Input)
This optional argument, of derived type ?_options, is not used in this
release.

FORTRAN 90 Interface
Generic: CALL SPLINE_VALUES (DERIVATIVE, VARAIBLES, KNOTS, COEFFS [,…])

Specific: The specific interface names are S_SPLINE_VALUES and D_SPLINE_VALUES.

SPLINE_FITTING
Weighted least-squares fitting by B-splines to discrete One-Dimensional data is performed.
Constraints on the spline or its derivatives are optional. The spline function

� � � �
1

N

j j
j

f x c B x
�

��

its derivatives, or the square root of its variance function are evaluated after the fitting.

Required Arguments
data = data(1:3,:) (Input/Output)

An assumed-shape array with size(data,1) = 3. The data are placed in the array:
data(1,i) = ix , data(2,i) = iy , and data(3,i) = i� , 1,...,i ndata� . If the
variances are not known but are proportional to an unknown value, users may set
data(3,i) = 1, 1,...,i ndata� .

knots = knots (Input)
A derived type, ?_spline_knots, that defines the degree of the spline and the
breakpoints for the data fitting interval.

Optional Arguments
constraints = spline_constraints (Input)

A rank-1 array of derived type ?_spline_constraints that give constraints the
output spline is to satisfy.

covariance = G (Output)
An assumed-shape rank-2 array of the same precision as the data. This output is the
covariance matrix of the coefficients. It is optionally used to evaluate the square root
of the variance function.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 565

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for passing optional
data to spline_fitting. The options are as follows:

Packaged Options for spline_fitting
Prefix = None Option Name Option Value

 Spline_fitting_tol_equal 1
 Spline_fitting_tol_least 2

iopt(IO) = ?_options(spline_fitting_tol_equal, ?_value)
This resets the value for determining that equality constraint equations are rank-
deficient. The default is ?_value = 10-4.

iopt(IO) = ?_options(spline_fitting_tol_least, ?_value)
This resets the value for determining that least-squares equations are rank-deficient.
The default is ?_value = 10-4.

FORTRAN 90 Interface
Generic: CALL SPLINE_FITTING (DATA, KNOTS [,…])

Specific: The specific interface names are S_SPLINE_FITTING and D_SPLINE_FITTING.

Example 1: Natural Cubic Spline Interpolation to Data
The function

� � � �2exp / 2g x x� �

is interpolated by cubic splines on the grid of points

� �1 , 1,...,ix i x i ndata� � � �

Those natural conditions are

� � � � � � � �
2 2

2 2, 0,..., ; , 0 and i i i i
d f d gf x g x i ndata x x i ndata
dx dx

� � � �

Our program checks the term .const appearing in the maximum truncation error term
4.error const x� ��

at a finer grid.

 USE spline_fitting_int
 USE show_int
 USE norm_int

566 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 implicit none

! This is Example 1 for SPLINE_FITTING, Natural Spline
! Interpolation using cubic splines. Use the function
! exp(-x**2/2) to generate samples.

 integer :: i
 integer, parameter :: ndata=24, nord=4, ndegree=nord-1, &
 nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord, nvalues=2*ndata
 real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1
 real(kind(1e0)), parameter :: delta_x=0.15, delta_xv=0.4*delta_x
 real(kind(1e0)), target :: xdata(ndata), ydata(ndata), &
 spline_data (3, ndata), bkpt(nbkpt), &
 ycheck(nvalues), coeff(ncoeff), &
 xvalues(nvalues), yvalues(nvalues), diffs

 real(kind(1e0)), pointer :: pointer_bkpt(:)
 type (s_spline_knots) break_points
 type (s_spline_constraints) constraints(2)

 xdata = (/((i-1)*delta_x, i=1,ndata)/)
 ydata = exp(-half*xdata**2)
 xvalues =(/(0.03+(i-1)*delta_xv,i=1,nvalues)/)
 ycheck= exp(-half*xvalues**2)
 spline_data(1,:)=xdata
 spline_data(2,:)=ydata
 spline_data(3,:)=one

! Define the knots for the interpolation problem.
 bkpt(1:ndegree) = (/(i*delta_x, i=-ndegree,-1)/)
 bkpt(nord:nbkpt-ndegree) = xdata
 bkpt(nbkpt-ndegree+1:nbkpt) = &
 (/(xdata(ndata)+i*delta_x, i=1,ndegree)/)

! Assign the degree of the polynomial and the knots.
 pointer_bkpt => bkpt
 break_points=s_spline_knots(ndegree, pointer_bkpt)

! These are the natural conditions for interpolating cubic
! splines. The derivatives match those of the interpolating
! function at the ends.
 constraints(1)=spline_constraints &
 (derivative=2, point=bkpt(nord), type='==', value=-one)
 constraints(2)=spline_constraints &
 (derivative=2,point=bkpt(nbkpt-ndegree), type= '==', &
 value=(-one+xdata(ndata)**2)*ydata(ndata))

 coeff = spline_fitting(data=spline_data, knots=break_points,&
 constraints=constraints)
 yvalues=spline_values(0, xvalues, break_points, coeff)

 diffs=norm(yvalues-ycheck,huge(1))/delta_x**nord

 if (diffs <= one) then
 write(*,*) 'Example 1 for SPLINE_FITTING is correct.'

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 567

 end if
 end

Output

Example 1 for SPLINE_FITTING is correct.

Description
This routine has similar scope to CONFT/DCONFT found in IMSL (2003, pp 734-743). We
provide the square root of the variance function, but we do not provide for constraints on the
integral of the spline. The least-squares matrix problem for the coefficients is banded, with band-
width equal to the spline order. This fact is used to obtain an efficient solution algorithm when
there are no constraints. When constraints are present the routine solves a linear-least squares
problem with equality and inequality constraints. The processed least-squares equations result in a
banded and upper triangular matrix, following accumulation of the spline fitting equations. The
algorithm used for solving the constrained least-squares system will handle rank-deficient
problems. A set of reference are available in Hanson (1995) and Lawson and Hanson (1995). The
CONFT/DCONFT routine uses QPROG (loc cit., p. 959), which requires that the least-squares
equations be of full rank.

Additional Examples

Example 2: Shaping a Curve and its Derivatives
The function

� � � �� �2exp / 2 1g x x noise� � �

is fit by cubic splines on the grid of equally spaced points

� �1 , 1,...,ix i x i ndata� � � �

The term noise is uniform random numbers from the normalized interval
� �,� �� , where 0.01� � . The spline curve is constrained to be convex down for for 0 � x � 1
convex upward for 1< x � 4, and have the second derivative exactly equal to the value zero at
x = 1. The first derivative is constrained with the value zero at x = 0 and is non-negative at the
right and of the interval, x = 4. A sample table of independent variables, second derivatives and
square root of variance function values is printed.

 use spline_fitting_int
 use show_int
 use rand_int
 use norm_int

 implicit none

! This is Example 2 for SPLINE_FITTING. Use 1st and 2nd derivative
! constraints to shape the splines.

 integer :: i, icurv

568 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 integer, parameter :: nbkptin=13, nord=4, ndegree=nord-1, &
 nbkpt=nbkptin+2*ndegree, ndata=21, ncoeff=nbkpt-nord
 real(kind(1e0)), parameter :: zero=0e0, one=1e0, half=5e-1
 real(kind(1e0)), parameter :: range=4.0, ratio=0.02, tol=ratio*half
 real(kind(1e0)), parameter :: delta_x=range/(ndata-1),

delta_b=range/(nbkptin-1)
 real(kind(1e0)), target :: xdata(ndata), ydata(ndata), ynoise(ndata),&
 sddata(ndata), spline_data (3, ndata), bkpt(nbkpt), &
 values(ndata), derivat1(ndata), derivat2(ndata), &
 coeff(ncoeff), root_variance(ndata), diffs
 real(kind(1e0)), dimension(ncoeff,ncoeff) :: sigma_squared

 real(kind(1e0)), pointer :: pointer_bkpt(:)
 type (s_spline_knots) break_points
 type (s_spline_constraints) constraints(nbkptin+2)

 xdata = (/((i-1)*delta_x, i=1,ndata)/)
 ydata = exp(-half*xdata**2)
 ynoise = ratio*ydata*(rand(ynoise)-half)
 ydata = ydata+ynoise
 sddata = ynoise
 spline_data(1,:)=xdata
 spline_data(2,:)=ydata
 spline_data(3,:)=sddata

 bkpt=(/((i-nord)*delta_b, i=1,nbkpt)/)

! Assign the degree of the polynomial and the knots.
 pointer_bkpt => bkpt
 break_points=s_spline_knots(ndegree, pointer_bkpt)

 icurv=int(one/delta_b)+1

! At first shape the curve to be convex down.
 do i=1,icurv-1
 constraints(i)=spline_constraints &
 (derivative=2, point=bkpt(i+ndegree), type='<=', value=zero)
 end do

! Force a curvature change.
 constraints(icurv)=spline_constraints &
 (derivative=2, point=bkpt(icurv+ndegree), type='==', value=zero)

! Finally, shape the curve to be convex up.
 do i=icurv+1,nbkptin
 constraints(i)=spline_constraints &
 (derivative=2, point=bkpt(i+ndegree), type='>=', value=zero)
 end do

! Make the slope zero and value non-negative at right.
 constraints(nbkptin+1)=spline_constraints &
 (derivative=1, point=bkpt(nord), type='==', value=zero)
 constraints(nbkptin+2)=spline_constraints &
 (derivative=0, point=bkpt(nbkptin+ndegree), type='>=', value=zero)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 569

 coeff = spline_fitting(data=spline_data, knots=break_points, &
 constraints=constraints, covariance=sigma_squared)

! Compute value, first two derivatives and the variance.
 values=spline_values(0, xdata, break_points, coeff)
 root_variance=spline_values(0, xdata, break_points, coeff, &
 covariance=sigma_squared)
 derivat1=spline_values(1, xdata, break_points, coeff)
 derivat2=spline_values(2, xdata, break_points, coeff)

 call show(reshape((/xdata, derivat2, root_variance/),(/ndata,3/)),&
"The x values, 2-nd derivatives, and square root of variance.")

! See that differences are relatively small and the curve has
! the right shape and signs.
 diffs=norm(values-ydata)/norm(ydata)
 if (all(values > zero) .and. all(derivat1 < epsilon(zero))&
 .and. diffs <= tol) then
 write(*,*) 'Example 2 for SPLINE_FITTING is correct.'
 end if

 end

Output

Example 2 for SPLINE_FITTING is correct.

Example 3: Splines Model a Random Number Generator
The function

� � � �2exp / 2 , 1 1

0, | | 1

g x x x

x

� � � � �

� �

is an unnormalized probability distribution. This function is similar to the standard Normal
distribution, with specific choices for the mean and variance, except that it is truncated. Our
algorithm interpolates g(x) with a natural cubic spline, f(x). The cumulative distribution is
approximated by precise evaluation of the function

� � � �
1

x
q x f t dt

�

� �

Gauss-Legendre quadrature formulas, IMSL (1994, pp. 621-626), of order two are used on each
polynomial piece of f(t) to evaluate q(x) cheaply. After normalizing the cubic spline so that q(1)
= 1, we may then generate random numbers according to the distribution � � � �f x g x� . The
values of x are evaluated by solving q(x) = u, -1 < x < 1. Here u is a uniform random sample.
Newton’s method, for a vector of unknowns, is used for the solution algorithm. Recalling the
relation

� �� � � � , 1 1d q x u f x x
dx

� � � � �

570 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

we believe this illustrates a method for generating a vector of random numbers according to a
continuous distribution function having finite support.

 use spline_fitting_int
 use linear_operators
 use Numerical_Libraries

 implicit none

! This is Example 3 for SPLINE_FITTING. Use splines to
! generate random (almost normal) numbers. The normal distribution
! function has support (-1,+1), and is zero outside this interval.
! The variance is 0.5.

 integer i, niterat
 integer, parameter :: iweight=1, nfix=0, nord=4, ndata=50
 integer, parameter :: nquad=(nord+1)/2, ndegree=nord-1
 integer, parameter :: nbkpt=ndata+2*ndegree, ncoeff=nbkpt-nord
 integer, parameter :: last=nbkpt-ndegree, n_samples=1000
 integer, parameter :: limit=10
 real(kind(1e0)), dimension(n_samples) :: fn, rn, x, alpha_x, beta_x
 INTEGER LEFT_OF(n_samples)
 real(kind(1e0)), parameter :: one=1e0, half=5e-1, zero=0e0, two=2e0
 real(kind(1e0)), parameter :: delta_x=two/(ndata-1)
 real(kind(1e0)), parameter :: qalpha=zero, qbeta=zero, domain=two
 real(kind(1e0)) qx(nquad), qxi(nquad), qw(nquad), qxfix(nquad)
 real(kind(1e0)) alpha_, beta_, quad(0:ndata-1)
 real(kind(1e0)), target :: xdata(ndata), ydata(ndata),
coeff(ncoeff), &
 spline_data(3, ndata), bkpt(nbkpt)

 real(kind(1e0)), pointer :: pointer_bkpt(:)
 type (s_spline_knots) break_points
 type (s_spline_constraints) constraints(2)

! Approximate the probability density function by splines.
 xdata = (/(-one+(i-1)*delta_x, i=1,ndata)/)
 ydata = exp(-half*xdata**2)

 spline_data(1,:)=xdata
 spline_data(2,:)=ydata
 spline_data(3,:)=one

 bkpt=(/(-one+(i-nord)*delta_x, i=1,nbkpt)/)

! Assign the degree of the polynomial and the knots.
 pointer_bkpt => bkpt
 break_points=s_spline_knots(ndegree, pointer_bkpt)

! Define the natural derivatives constraints:
 constraints(1)=spline_constraints &
 (derivative=2, point=bkpt(nord), type='==', &
 value=(-one+xdata(1)**2)*ydata(1))
 constraints(2)=spline_constraints &

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 571

 (derivative=2, point=bkpt(last), type='==', &
 value=(-one+xdata(ndata)**2)*ydata(ndata))

! Obtain the spline coefficients.
 coeff=spline_fitting(data=spline_data, knots=break_points,&
 constraints=constraints)

! Compute the evaluation points 'qx(*)' and weights 'qw(*)' for
! the Gauss-Legendre quadrature. This will give a precise
! quadrature for polynomials of degree <= nquad*2.
 call gqrul(nquad, iweight, qalpha, qbeta, nfix, qxfix, qx, qw)

! Compute pieces of the accumulated distribution function:
 quad(0)=zero
 do i=1, ndata-1
 alpha_= (bkpt(nord+i)-bkpt(ndegree+i))*half
 beta_ = (bkpt(nord+i)+bkpt(ndegree+i))*half

! Normalized abscissas are stretched to each spline interval.
! Each polynomial piece is integrated and accumulated.
 qxi = alpha_*qx+beta_
 quad(i) = sum(qw*spline_values(0, qxi, break_points,
coeff))*alpha_&
 + quad(i-1)
 end do

! Normalize the coefficients and partial integrals so that the
! total integral has the value one.
 coeff=coeff/quad(ndata-1); quad=quad/quad(ndata-1)
 rn=rand(rn)
 x=zero; niterat=0

 solve_equation: do

! Find the intervals where the x values are located.
 LEFT_OF=NDEGREE; I=NDEGREE
 do
 I=I+1; if(I >= LAST) EXIT
 WHERE(x >= BKPT(I))LEFT_OF = LEFT_OF+1
 end do

! Use Newton's method to solve the nonlinear equation:
! accumulated_distribution_function - random_number = 0.
 alpha_x = (x-bkpt(LEFT_OF))*half
 beta_x = (x+bkpt(LEFT_OF))*half
 FN=QUAD(LEFT_OF-NORD)-RN
 DO I=1,NQUAD
 FN=FN+QW(I)*spline_values(0, alpha_x*QX(I)+beta_x,&
 break_points, coeff)*alpha_x
 END DO

! This is the Newton method update step:
 x=x-fn/spline_values(0, x, break_points, coeff)
 niterat=niterat+1

572 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

! Constrain the values so they fall back into the interval.
! Newton's method may give approximates outside the interval.
 where(x <= -one .or. x >= one) x=zero

 if(norm(fn,1) <= sqrt(epsilon(one))*norm(x,1))&
 exit solve_equation
 end do solve_equation

! Check that Newton's method converges.

 if (niterat <= limit) then
 write (*,*) 'Example 3 for SPLINE_FITTING is correct.'
 end if

 end

Output

Example 3 for SPLINE_FITTING is correct.

Example 4: Represent a Periodic Curve
The curve tracing the edge of a rectangular box, traversed in a counter-clockwise direction, is
parameterized with a spline representation for each coordinate function, (x(t), y(t)). The functions
are constrained to be periodic at the ends of the parameter interval. Since the perimeter arcs are
piece-wise linear functions, the degree of the splines is the value one. Some breakpoints are
chosen so they correspond to corners of the box, where the derivatives of the coordinate functions
are discontinuous. The value of this representation is that for each t the splines representing (x(t),
y(t)) are points on the perimeter of the box. This “eases” the complexity of evaluating the edge of
the box. This example illustrates a method for representing the edge of a domain in two
dimensions, bounded by a periodic curve.

 use spline_fitting_int
 use norm_int

 implicit none

! This is Example 4 for SPLINE_FITTING. Use piecewise-linear
! splines to represent the perimeter of a rectangular box.

 integer i, j
 integer, parameter :: nbkpt=9, nord=2, ndegree=nord-1, &
 ncoeff=nbkpt-nord, ndata=7, ngrid=100, &
 nvalues=(ndata-1)*ngrid
 real(kind(1e0)), parameter :: zero=0e0, one=1e0
 real(kind(1e0)), parameter :: delta_t=one, delta_b=one, delta_v=0.01
 real(kind(1e0)) delta_x, delta_y
 real(kind(1e0)), dimension(ndata) :: sddata=one, &
! These are redundant coordinates on the edge of the box.
 xdata=(/0.0, 1.0, 2.0, 2.0, 1.0, 0.0, 0.0/), &
 ydata=(/0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0/)
 real(kind(1e0)) tdata(ndata), xspline_data(3, ndata), &

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 573

 yspline_data(3, ndata), tvalues(nvalues), &
 xvalues(nvalues), yvalues(nvalues), xcoeff(ncoeff), &
 ycoeff(ncoeff), xcheck(nvalues), ycheck(nvalues), diffs
 real(kind(1e0)), target :: bkpt(nbkpt)
 real(kind(1e0)), pointer :: pointer_bkpt(:)
 type (s_spline_knots) break_points
 type (s_spline_constraints) constraints(1)

 tdata = (/((i-1)*delta_t, i=1,ndata)/)
 xspline_data(1,:)=tdata; yspline_data(1,:)=tdata
 xspline_data(2,:)=xdata; yspline_data(2,:)=ydata
 xspline_data(3,:)=sddata; yspline_data(3,:)=sddata

 bkpt(nord:nbkpt-ndegree)=(/((i-nord)*delta_b, &
 i=nord, nbkpt-ndegree)/)
! Collapse the outside knots.
 bkpt(1:ndegree)=bkpt(nord)
 bkpt(nbkpt-ndegree+1:nbkpt)=bkpt(nbkpt-ndegree)

! Assign the degree of the polynomial and the knots.
 pointer_bkpt => bkpt
 break_points=s_spline_knots(ndegree, pointer_bkpt)

! Make the two parametric curves also periodic.
 constraints(1)=spline_constraints &
 (derivative=0, point=bkpt(nord), type='.=.', &
 value=bkpt(nbkpt-ndegree))

 xcoeff = spline_fitting(data=xspline_data, knots=break_points, &
 constraints=constraints)
 ycoeff = spline_fitting(data=yspline_data, knots=break_points, &
 constraints=constraints)

! Use the splines to compute the coordinates of points along the perimeter.
! Compare them with the coordinates of the edge points.
 tvalues= (/((i-1)*delta_v, i=1,nvalues)/)
 xvalues=spline_values(0, tvalues, break_points, xcoeff)
 yvalues=spline_values(0, tvalues, break_points, ycoeff)
 do i=1, nvalues
 j=(i-1)/ngrid+1
 delta_x=(xdata(j+1)-xdata(j))/ngrid
 delta_y=(ydata(j+1)-ydata(j))/ngrid
 xcheck(i)=xdata(j)+mod(i+ngrid-1,ngrid)*delta_x
 ycheck(i)=ydata(j)+mod(i+ngrid-1,ngrid)*delta_y
 end do

 diffs=norm(xvalues-xcheck,1)/norm(xcheck,1)+&
 norm(yvalues-ycheck,1)/norm(ycheck,1)
 if (diffs <= sqrt(epsilon(one))) then
 write(*,*) 'Example 4 for SPLINE_FITTING is correct.'
 end if

 end

574 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Output

Example 4 for SPLINE_FITTING is correct.

Fatal and Terminal Error Messages
See the messages.gls file for error messages for spline_fitting. These error messages are
numbered 1340�1367.

SURFACE_CONSTRAINTS
To further shape a surface defined by a tensor product of B-splines, the routine suface_fitting
will least squares fit data with equality, inequality and periodic constraints. These can apply to the
surface function or its partial derivatives. Each constraint is packaged in the derived type
?_surface_constraints. This function uses the data consisting of: the place where the
constraint is to hold, the partial derivative indices, and the type of the constraint. This object is
returned as the derived type function result ?_surface_constraints. The function itself has
two required and two optional arguments. In a list of constraints, the j-th item will be:

?_surface_constraints(j) = &
surface_constraints&
 ([derivative=derivative_index(1:2),] &
 point = where_applied(1:2),[value=value_applied,],&
 type = constraint_indicator, &
 [periodic_point = periodic_point(1:2)])

The square brackets enclose optional arguments. For each constraint the arguments ‘value =’
and ‘periodic_point =’ are not used at the same time.

Required Arguments
point = where_applied (Input)

The point in the data domain where a constraint is to be applied. Each point has
an x and y coordinate, in that order.

type = constraint_indicator (Input)
The indicator for the type of constraint the tensor product spline function or its
partial derivatives is to satisfy at the point: where_applied. The choices are
the character strings ‘==’, ‘<=’, ‘>=’, ‘.=.’, and ‘.=-’. They
respectively indicate that the spline value or its derivatives will be equal to, not
greater than, not less than, equal to the value of the spline at another point, or
equal to the negative of the spline value at another point. These last two
constraints are called periodic and negative-periodic, respectively.

Optional Arguments
derivative = derivative_index(1:2) (Input)

These are the number of the partial derivatives for the tensor product spline to
apply the constraint. The array (/0,0/) corresponds to the function, the value

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 575

(/1,0/) to the first partial derivative with respect to x, etc. If this argument is
not present in the list, the value (/0,0/) is substituted automatically. Thus a
constraint without the derivatives listed applies to the tensor product spline
function.

periodic = periodic_point(1:2)
This optional argument improves readability by identifying the second pair of
independent variable values for periodic constraints.

FORTRAN 90 Interface
Generic: CALL SURFACE_CONSTRAINTS (POINT, TYPE [,…])

Specific: The specific interface names are S_SURFACE_CONSTRAINTS and
D_SURFACE_CONSTRAINTS.

SURFACE_VALUES
This rank-2 array function returns a tensor product array result, given two arrays of independent
variable values. Use the optional input argument for the covariance matrix when the square root
of the variance function is evaluated. The result will be a scalar value when the input independent
variable is scalar.

Required Arguments
derivative = derivative(1:2) (Input)

The indices of the partial derivative evaluated. Use non-negative integer values.
For the function itself use the array (/0,0/).

variablesx = variablesx (Input)
The independent variable values in the first or x dimension where the spline or
its derivatives are evaluated. Either a rank-1 array or a scalar can be used as this
argument.

variablesy = variablesy (Input)
The independent variable values in the second or y dimension where the spline
or its derivatives are evaluated. Either a rank-1 array or a scalar can be used as
this argument.

knotsx = knotsx (Input)
The derived type ?_spline_knots, used when the array coeffs(:,:)was
obtained with the function SURFACE_FITTING. This contains the polynomial
spline degree and the number of knots and the knots themselves, in the x
dimension.

knotsy = knotsy (Input)
The derived type ?_spline_knots, used when the array coeffs(:,:) was
obtained with the function SURFACE_FITTING. This contains the polynomial
spline degree and the number of knots and the knots themselves, in the y
dimension.

576 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

coeffs = c (Input)
The coefficients in the representation for the spline function,

� � � � � �
1 1

,
N M

ij i j
j i

f x y c B y B x
� �

���

These result from the fitting process or array assignment
C=SURFACE_FITTING(...), defined below. The values M = size (C,1) and
N = size (C,2) satisfies the respective identities N -1 + spline_degree = size
(?_knotsx), and M -1 + spline_degree = size (?_knotsy) , where the two right-
most quantities in both equations refer to components of the arguments knotsx
and knotsy. The same value of spline_degree must be used for both knotsx and
knotsy.

Optional Arguments
covariance = G (Input)

This argument, when present, results in the evaluation of the square root of the
variance function

� � � � � �� �
1/ 2

, , ,Te x y b x y Gb x y�

where

� � � � � � � � � �1 1 1, , , ,
T

Nb x y B x B y B x B y� � �� �� �

and G is the covariance matrix associated with the coefficients of the spline

� �11 1, , , T
Nc c c� � �

The argument G is an optional output from surface_fitting, described
below. When the square root of the variance function is computed, the
arguments DERIVATIVE and C are not used.

iopt = iopt (Input)
This optional argument, of derived type ?_options, is not used in this
release.

FORTRAN 90 Interface
Generic: CALL SURFACE_VALUES (DERIVATIVE, VARIABLESX, VARIABLESY,

 KNOTSX, KNOTSY, COEFFS [,…])

Specific: The specific interface names are S_SURFACE_VALUES and
 D_SURFACE_VALUES.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 577

SURFACE_FITTING
Weighted least-squares fitting by tensor product B-splines to discrete two-dimensional data is
performed. Constraints on the spline or its partial derivatives are optional. The spline function

� � � � � �
1 1

,
N M

ij i j
j i

f x y c B y B x
� �

��� ,

its derivatives, or the square root of its variance function are evaluated after the fitting.

Required Arguments
data = data(1:4,:) (Input/Output)

An assumed-shape array with size(data,1) = 4. The data are placed in the array:

 data(1,i) = ix ,

 data(2,i) = iy ,

 data(3,i) = iz ,

 data(4,i) = i� , 1,...,i ndata� .

If the variances are not known, but are proportional to an unknown value, use

 data(4,i) = 1, 1,...,i ndata� .

knotsx = knotsx (Input)
A derived type, ?_spline_knots, that defines the degree of the spline and the
breakpoints for the data fitting domain, in the first dimension.

knotsy = knotsy (Input)
A derived type, ?_spline_knots, that defines the degree of the spline and the
breakpoints for the data fitting domain, in the second dimension.

Optional Arguments
constraints = surface_constraints (Input)

A rank-1 array of derived type ?_surface_constraints that defines constraints the
tensor product spline is to satisfy.

covariance = G (Output)
An assumed-shape rank-2 array of the same precision as the data. This output is the
covariance matrix of the coefficients. It is optionally used to evaluate the square root
of the variance function.

iopt = iopt(:) (Input/Output)
Derived type array with the same precision as the input array; used for passing optional
data to surface_fitting. The options are as follows:

578 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Packaged Options for SURFACE_FITTING
Prefix = None Option Name Option Value

 surface_fitting_smallness 1
 surface_fitting_flatness 2
 surface_fitting_tol_equal 3
 surface_fitting_tol_least 4
 surface_fitting_residuals 5
 surface_fitting_print 6
 surface_fitting_thinness 7

iopt(IO) = ?_options&

 (surface_fitting_smallnes, ?_value)
This resets the square root of the regularizing parameter multiplying the squared
integral of the unknown function. The argument ?_value is replaced by the default
value. The default is ?_value = 0.

iopt(IO) = ?_options&

 (surface_fitting_flatness, ?_value)
This resets the square root of the regularizing parameter multiplying the squared
integral of the partial derivatives of the unknown function. The argument ?_value
is replaced by the default value. The default is
?_value = sqrt(epsilon(?_value))*size, where

� �| (3,:) / (4,:) | / 1size data data ndata� �� .

iopt(IO) = ?_options&

 (surface_fitting_tol_equal, ?_value)
This resets the value for determining that equality constraint equations are rank-
deficient. The default is ?_value = 10-4.

iopt(IO) = ?_options&

 (surface_fitting_tol_least, ?_value)
This resets the value for determining that least-squares equations are rank-deficient.
The default is ?_value = 10-4.

iopt(IO) = ?_options&

 (surface_fitting_residuals, dummy)
This option returns the residuals = surface - data, in data(4,:). That row of the

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 579

array is overwritten by the residuals. The data is returned in the order of cell
processing order, or left-to-right in x and then increasing in y. The allocation of a
temporary for data(1:4,:) is avoided, which may be desirable for problems with
large amounts of data. The default is to not evaluate the residuals and to leave
data(1:4,:) as input.

iopt(IO) = ?_options&

 (surface_fitting_print, dummy)
This option prints the knots or breakpoints for x and y, and the count of data points in
cell processing order. The default is to not print these arrays.

iopt(IO) = ?_options&

 (surface_fitting_thinness, ?_value)
This resets the square root of the regularizing parameter multiplying the squared
integral of the second partial derivatives of the unknown function. The argument
?_value is replaced by the default value. The default is ?_value = 10-3 � size,,
where

� �| (3,:) / (4,:) | / 1size data data ndata� �� .

FORTRAN 90 Interface
Generic: CALL SURFACE_FITTING (DATA, KNOTSX, KNOTSX, KNOTSY[,…])

Specific: The specific interface names are S_SURFACE_FITTING and
D_SURFACE_FITTING.

Example 1: Tensor Product Spline Fitting of Data
The function

� � � �2 2, expg x y x y� � �

is least-squares fit by a tensor product of cubic splines on the square

� � � �0,2 0,2�

There are ndata random pairs of values for the independent variables. Each datum is given unit
uncertainty. The grid of knots in both x and y dimensions are equally spaced, in the interior cells,
and identical to each other. After the coefficients are computed a check is made that the surface
approximately agrees with g(x,y) at a tensor product grid of equally spaced values.

 USE surface_fitting_int
 USE rand_int
 USE norm_int

 implicit none

580 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

! This is Example 1 for SURFACE_FITTING, tensor product
! B-splines approximation. Use the function
! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.
! The spline order is "nord" and the number of cells is
! "(ngrid-1)**2". There are "ndata" data values in the square.

 integer :: i
 integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &
 nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100
 real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0
 real(kind(1d0)), parameter :: TOLERANCE=1d-3
 real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &
 coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &
 x(nvalues), y(nvalues), values(nvalues, nvalues)

 real(kind(1d0)), pointer :: pointer_bkpt(:)
 type (d_spline_knots) knotsx, knotsy

! Generate random (x,y) pairs and evaluate the
! example exponential function at these values.
 spline_data(1:2,:)=two*rand(spline_data(1:2,:))
 spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))
 spline_data(4,:)=one

! Define the knots for the tensor product data fitting problem.
 delta = two/(ngrid-1)
 bkpt(1:ndegree) = zero
 bkpt(nbkpt-ndegree+1:nbkpt) = two
 bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.
 pointer_bkpt => bkpt
 knotsx=d_spline_knots(ndegree, pointer_bkpt)
 knotsy=knotsx

! Fit the data and obtain the coefficients.
 coeff = surface_fitting(spline_data, knotsx, knotsy)

! Evaluate the residual = spline - function
! at a grid of points inside the square.
 delta=two/(nvalues+1)
 x=(/(i*delta,i=1,nvalues)/); y=x

 values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))
 values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&
 values

! Compute the R.M.S. error:
 sizev=norm(pack(values, (values == values)))/nvalues

 if (sizev <= TOLERANCE) then
 write(*,*) 'Example 1 for SURFACE_FITTING is correct.'
 end if
 end

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 581

Output

Example 1 for SURFACE_FITTING is correct.

Description
The coefficients are obtained by solving a least-squares system of linear algebraic equations,
subject to linear equality and inequality constraints. The system is the result of the weighted data
equations and regularization. If there are no constraints, the solution is computed using a banded
least-squares solver. Details are found in Hanson (1995).

Additional Examples

Example 2: Parametric Representation of a Sphere
From Struik (1961), the parametric representation of points (x,y,z) on the surface of a sphere of
radius a > 0 is expressed in terms of spherical coordinates,

� � � � � �
� � � � � �

� � � �

, cos cos , 2
, cos sin ,

, sin

x u v a u v u
y u v a u v v

z u v a u

� �

� �

� � � �

� � � �

�

The parameters are radians of latitude (u)and longitude (v). The example program fits the same
ndata random pairs of latitude and longitude in each coordinate. We have covered the sphere
twice by allowing

u� �� � �

for latitude. We solve three data fitting problems, one for each coordinate function. Periodic
constraints on the value of the spline are used for both u and v. We could reduce the
computational effort by fitting a spline function in one variable for the z coordinate. To illustrate
the representation of more general surfaces than spheres, we did not do this. When the surface is
evaluated we compute latitude, moving from the South Pole to the North Pole,

2u� �� � �

Our surface will approximately satisfy the equality
2 2 2 2x y z a� � �

These residuals are checked at a rectangular mesh of latitude and longitude pairs. To illustrate the
use of some options, we have reset the three regularization parameters to the value zero, the least-
squares system tolerance to a smaller value than the default, and obtained the residuals for each
parametric coordinate function at the data points.

 USE surface_fitting_int
 USE rand_int
 USE norm_int
 USE Numerical_Libraries

 implicit none

582 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

! This is Example 2 for SURFACE_FITTING, tensor product
! B-splines approximation. Fit x, y, z parametric functions
! for points on the surface of a sphere of radius “A”.
! Random values of latitude and longitude are used to generate
! data. The functions are evaluated at a rectangular grid
! in latitude and longitude and checked to lie on the surface
! of the sphere.

 integer :: i, j
 integer, parameter :: ngrid=6, nord=6, ndegree=nord-1, &
 nbkpt=ngrid+2*ndegree, ndata =1000, nvalues=50, NOPT=5
 real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0
 real(kind(1d0)), parameter :: TOLERANCE=1d-2
 real(kind(1d0)), target :: spline_data (4, ndata, 3), bkpt(nbkpt), &
 coeff(ngrid+ndegree-1,ngrid+ndegree-1, 3), delta, sizev, &
 pi, A, x(nvalues), y(nvalues), values(nvalues, nvalues), &
 data(4,ndata)

 real(kind(1d0)), pointer :: pointer_bkpt(:)
 type (d_spline_knots) knotsx, knotsy
 type (d_options) OPTIONS(NOPT)
! Get the constant "pi" and a random radius, > 1.
 pi = DCONST((/"pi"/)); A=one+rand(A)

! Generate random (latitude, longitude) pairs and evaluate the
! surface parameters at these points.
 spline_data(1:2,:,1)=pi*(two*rand(spline_data(1:2,:,1))-one)
 spline_data(1:2,:,2)=spline_data(1:2,:,1)
 spline_data(1:2,:,3)=spline_data(1:2,:,1)

! Evaluate x, y, z parametric points.
 spline_data(3,:,1)=A*cos(spline_data(1,:,1))*cos(spline_data(2,:,1))
 spline_data(3,:,2)=A*cos(spline_data(1,:,2))*sin(spline_data(2,:,2))
 spline_data(3,:,3)=A*sin(spline_data(1,:,3))

! The values are equally uncertain.
 spline_data(4,:,:)=one

! Define the knots for the tensor product data fitting problem.
 delta = two*pi/(ngrid-1)
 bkpt(1:ndegree) = -pi
 bkpt(nbkpt-ndegree+1:nbkpt) = pi
 bkpt(nord:nbkpt-ndegree)=(/(-pi+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.
 pointer_bkpt => bkpt
 knotsx=d_spline_knots(ndegree, pointer_bkpt)
 knotsy=knotsx

! Fit a data surface for each coordinate.
! Set default regularization parameters to zero and compute
! residuals of the individual points. These are returned
! in DATA(4,:).
 do j=1,3
 data=spline_data(:,:,j)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 583

OPTIONS(1)=d_options(surface_fitting_thinness,zero)
OPTIONS(2)=d_options(surface_fitting_flatness,zero)
OPTIONS(3)=d_options(surface_fitting_smallness,zero)
OPTIONS(4)=d_options(surface_fitting_tol_least,1d-5)
OPTIONS(5)=surface_fitting_residuals
 coeff(:,:,j) = surface_fitting(data, knotsx, knotsy,&
 IOPT=OPTIONS)
 end do

! Evaluate the function at a grid of points inside the rectangle of
! latitude and longitude covering the sphere just once. Add the
! sum of squares. They should equal "A**2" but will not due to
! truncation and rounding errors.
 delta=pi/(nvalues+1)
 x=(/(-pi/two+i*delta,i=1,nvalues)/); y=two*x
 values=zero
 do j=1,3
 values=values+&
 surface_values((/0,0/), x, y, knotsx, knotsy, coeff(:,:,j))**2
 end do
 values=values-A**2
! Compute the R.M.S. error:

 sizev=norm(pack(values, (values == values)))/nvalues

 if (sizev <= TOLERANCE) then
 write(*,*) "Example 2 for SURFACE_FITTING is correct."
 end if
 end

Output

Example 2 for SURFACE_FITTING is correct.

Example 3: Constraining Some Points using a Spline Surface
This example illustrates the use of discrete constraints to shape the surface. The data fitting
problem of Example 1 is modified by requiring that the surface interpolate the value one at
x = y = 0. The shape is constrained so first partial derivatives in both x and y are zero at x = y = 0.
These constraints mimic some properties of the function g(x,y). The size of the residuals at a grid
of points and the residuals of the constraints are checked.

 USE surface_fitting_int
 USE rand_int
 USE norm_int

 implicit none

! This is Example 3 for SURFACE_FITTING, tensor product
! B-splines approximation, f(x,y). Use the function
! exp(-x**2-y**2) on the square (0, 2) x (0, 2) for samples.
! The spline order is "nord" and the number of cells is

584 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

! "(ngrid-1)**2". There are "ndata" data values in the square.
! Constraints are put on the surface at (0,0). Namely
! f(0,0) = 1, f_x(0,0) = 0, f_y(0,0) = 0.

 integer :: i
 integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &
 nbkpt=ngrid+2*ndegree, ndata = 2000, nvalues=100, NC = 3
 real(kind(1d0)), parameter :: zero=0d0, one=1d0, two=2d0
 real(kind(1d0)), parameter :: TOLERANCE=1d-3
 real(kind(1d0)), target :: spline_data (4, ndata), bkpt(nbkpt), &
 coeff(ngrid+ndegree-1,ngrid+ndegree-1), delta, sizev, &
 x(nvalues), y(nvalues), values(nvalues, nvalues), &
 f_00, f_x00, f_y00

 real(kind(1d0)), pointer :: pointer_bkpt(:)
 type (d_spline_knots) knotsx, knotsy
 type (d_surface_constraints) C(NC)
 LOGICAL PASS

! Generate random (x,y) pairs and evaluate the
! example exponential function at these values.
 spline_data(1:2,:)=two*rand(spline_data(1:2,:))
 spline_data(3,:)=exp(-sum(spline_data(1:2,:)**2,dim=1))
 spline_data(4,:)=one

! Define the knots for the tensor product data fitting problem.
 delta = two/(ngrid-1)
 bkpt(1:ndegree) = zero
 bkpt(nbkpt-ndegree+1:nbkpt) = two
 bkpt(nord:nbkpt-ndegree)=(/(i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots.
 pointer_bkpt => bkpt
 knotsx=d_spline_knots(ndegree, pointer_bkpt)
 knotsy=knotsx

! Define the constraints for the fitted surface.
 C(1)=surface_constraints(point=(/zero,zero/),type='==',value=one)
 C(2)=surface_constraints(derivative=(/1,0/),&
 point=(/zero,zero/),type='==',value=zero)
 C(3)=surface_constraints(derivative=(/0,1/),&
 point=(/zero,zero/),type='==',value=zero)

! Fit the data and obtain the coefficients.

 coeff = surface_fitting(spline_data, knotsx, knotsy,&
 CONSTRAINTS=C)

! Evaluate the residual = spline - function
! at a grid of points inside the square.
 delta=two/(nvalues+1)
 x=(/(i*delta,i=1,nvalues)/); y=x

 values=exp(-spread(x**2,1,nvalues)-spread(y**2,2,nvalues))
 values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)-&

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 585

 values
 f_00 = surface_values((/0,0/), zero, zero, knotsx, knotsy, coeff)
 f_x00= surface_values((/1,0/), zero, zero, knotsx, knotsy, coeff)
 f_y00= surface_values((/0,1/), zero, zero, knotsx, knotsy, coeff)

! Compute the R.M.S. error:
 sizev=norm(pack(values, (values == values)))/nvalues
 PASS = sizev <= TOLERANCE
 PASS = abs (f_00 - one) <= sqrt(epsilon(one)) .and. PASS
 PASS = f_x00 <= sqrt(epsilon(one)) .and. PASS
 PASS = f_y00 <= sqrt(epsilon(one)) .and. PASS

 if (PASS) then
 write(*,*) 'Example 3 for SURFACE_FITTING is correct.'
 end if
 end

Output
Example 3 for SURFACE_FITTING is correct.

Example 4: Constraining a Spline Surface to be non-Negative
The review of interpolating methods by Franke (1982) uses a test data set originally due to James
Ferguson. We use this data set of 25 points, with unit uncertainty for each dependent variable.
Our algorithm does not interpolate the data values but approximately fits them in the least-squares
sense. We reset the regularization parameter values of flatness and thinness, Hanson (1995).
Then the surface is fit to the data and evaluated at a grid of points. Although the surface appears
smooth and fits the data, the values are negative near one corner. Our scenario for the application
assumes that the surface be non-negative at all points of the rectangle containing the independent
variable data pairs. Our algorithm for constraining the surface is simple but effective in this case.
The data fitting is repeated one more time but with positive constraints at the grid of points where
it was previously negative.

 USE surface_fitting_int
 USE rand_int
 USE norm_int

 implicit none

! This is Example 4 for SURFACE_FITTING, tensor product
! B-splines approximation, f(x,y). Use the data set from
! Franke, due to Ferguson. Without constraints the function
! becomes negative in a corner. Constrain the surface
! at a grid of values so it is non-negative.

 integer :: i, j, q
 integer, parameter :: ngrid=9, nord=4, ndegree=nord-1, &
 nbkpt=ngrid+2*ndegree, ndata = 25, nvalues=50
 real(kind(1d0)), parameter :: zero=0d0, one=1d0
 real(kind(1d0)), parameter :: TOLERANCE=1d-3
 real(kind(1d0)), target :: spline_data (4, ndata), bkptx(nbkpt), &
 bkpty(nbkpt),coeff(ngrid+ndegree-1,ngrid+ndegree-1), &
 x(nvalues), y(nvalues), values(nvalues, nvalues), &

586 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 delta
 real(kind(1d0)), pointer :: pointer_bkpt(:)
 type (d_spline_knots) knotsx, knotsy
 type (d_surface_constraints), allocatable :: C(:)

 real(kind(1e0)) :: data (3*ndata) = & ! This is Ferguson's data:
(/2.0 , 15.0 , 2.5 , 2.49 , 7.647, 3.2,&
 2.981 , 0.291, 3.4 , 3.471, -7.062, 3.5,&
 3.961 , -14.418, 3.5 , 7.45 , 12.003, 2.5,&
 7.35 , 6.012, 3.5 , 7.251, 0.018, 3.0,&
 7.151 , -5.973, 2.0 , 7.051, -11.967, 2.5,&
 10.901, 9.015, 2.0 , 10.751, 4.536, 1.925,&
 10.602, 0.06 , 1.85, 10.453, -4.419, 1.576,&
 10.304, -8.895, 1.7 , 14.055, 10.509, 1.5,&
 14.194, 6.783, 1.3 , 14.331, 3.054, 1.7,&
 14.469, -0.672, 2.1 , 14.607, -4.398, 1.75,&
 15.0 , 12.0 , 0.5 , 15.729, 8.067, 0.5,&
 16.457, 4.134, 0.7 , 17.185, 0.198, 1.1,&
 17.914, -3.735, 1.7/)

 spline_data(1:3,:)=reshape(data,(/3,ndata/)); spline_data(4,:)=one

! Define the knots for the tensor product data fitting problem.
! Use the data limits to the knot sequences.
 bkptx(1:ndegree) = minval(spline_data(1,:))
 bkptx(nbkpt-ndegree+1:nbkpt) = maxval(spline_data(1,:))
 delta=(bkptx(nbkpt)-bkptx(ndegree))/(ngrid-1)
 bkptx(nord:nbkpt-ndegree)=(/(bkptx(1)+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots for x.
 pointer_bkpt => bkptx
 knotsx=d_spline_knots(ndegree, pointer_bkpt)
 bkpty(1:ndegree) = minval(spline_data(2,:))
 bkpty(nbkpt-ndegree+1:nbkpt) = maxval(spline_data(2,:))
 delta=(bkpty(nbkpt)-bkpty(ndegree))/(ngrid-1)
 bkpty(nord:nbkpt-ndegree)=(/(bkpty(1)+i*delta,i=0,ngrid-1)/)

! Assign the degree of the polynomial and the knots for y.
 pointer_bkpt => bkpty
 knotsy=d_spline_knots(ndegree, pointer_bkpt)

! Fit the data and obtain the coefficients.
 coeff = surface_fitting(spline_data, knotsx, knotsy)

 delta=(bkptx(nbkpt)-bkptx(1))/(nvalues+1)
 x=(/(bkptx(1)+i*delta,i=1,nvalues)/)
 delta=(bkpty(nbkpt)-bkpty(1))/(nvalues+1)
 y=(/(bkpty(1)+i*delta,i=1,nvalues)/)

! Evaluate the function at a rectangular grid.
! Use non-positive values to a constraint.
 values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)

! Count the number of values <= zero. Then constrain the spline
! so that it is >= TOLERANCE at those points where it was <= zero.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 587

 q=count(values <= zero)
 allocate (C(q))
 DO I=1,nvalues
 DO J=1,nvalues
 IF(values(I,J) <= zero) THEN
 C(q)=surface_constraints(point=(/x(i),y(j)/), type='>=',&
 value=TOLERANCE)
 q=q-1
 END IF
 END DO
 END DO

! Fit the data with constraints and obtain the coefficients.
 coeff = surface_fitting(spline_data, knotsx, knotsy,&
 CONSTRAINTS=C)
 deallocate(C)

! Evaluate the surface at a grid and check, once again, for
! non-positive values. All values should now be positive.
 values=surface_values((/0,0/), x, y, knotsx, knotsy, coeff)
if (count(values <= zero) == 0) then
 write(*,*) 'Example 4 for SURFACE_FITTING is correct.'
 end if

 end

Output

Example 4 for SURFACE_FITTING is correct.

Fatal and Terminal Error Messages
See the messages.gls file for error messages for surface_fitting. These error messages are
numbered 1151-1152, 1161-1162, 1370-1393.

CSIEZ
Computes the cubic spline interpolant with the ‘not-a-knot’ condition and return values of the
interpolant at specified points.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

XVEC — Array of length N containing the points at which the spline is to be evaluated.
(Input)

588 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

VALUE — Array of length N containing the values of the spline at the points in XVEC.
(Output)

Optional Arguments
NDATA — Number of data points. (Input)

NDATA must be at least 2.
Default: NDATA = size (XDATA,1).

N — Length of vector XVEC. (Input)
Default: N = size (XVEC,1).

FORTRAN 90 Interface
Generic: CALL CSIEZ (XDATA, FDATA, XVEC, VALUE [,…])

Specific: The specific interface names are S_CSIEZ and D_CSIEZ.

FORTRAN 77 Interface
Single: CALL CSIEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE)

Double: The double precision name is DCSIEZ.

Example
In this example, a cubic spline interpolant to a function F is computed. The values of this spline
are then compared with the exact function values.

 USE CSIEZ_INT
 USE UMACH_INT
 INTEGER NDATA
 PARAMETER (NDATA=11)
!
 INTEGER I, NOUT
 REAL F, FDATA(NDATA), FLOAT, SIN, VALUE(2*NDATA-1), X,&
 XDATA(NDATA), XVEC(2*NDATA-1)
 INTRINSIC FLOAT, SIN
! Define function
 F(X) = SIN(15.0*X)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
 DO 20 I=1, 2*NDATA - 1
 XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2)
 20 CONTINUE
! Compute cubic spline interpolant
 CALL CSIEZ (XDATA, FDATA, XVEC, VALUE)
! Get output unit number

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 589

 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99998)
99998 FORMAT (13X, ’X’, 9X, ’INTERPOLANT’, 5X, ’ERROR’)
! Print the interpolant and the error
! on a finer grid
 DO 30 I=1, 2*NDATA - 1
 WRITE (NOUT,99999) XVEC(I), VALUE(I), F(XVEC(I)) - VALUE(I)
 30 CONTINUE
99999 FORMAT(’ ’, 2F15.3, F15.6)
 END

Output
 X INTERPOLANT ERROR
0.000 0.000 0.000000
0.050 0.809 -0.127025
0.100 0.997 0.000000
0.150 0.723 0.055214
0.200 0.141 0.000000
0.250 -0.549 -0.022789
0.300 -0.978 0.000000
0.350 -0.843 -0.016246
0.400 -0.279 0.000000
0.450 0.441 0.009348
0.500 0.938 0.000000
0.550 0.903 0.019947
0.600 0.412 0.000000
0.650 -0.315 -0.004895
0.700 -0.880 0.000000
0.750 -0.938 -0.029541
0.800 -0.537 0.000000
0.850 0.148 0.034693
0.900 0.804 0.000000
0.950 1.086 -0.092559
1.000 0.650 0.000000

Comments
Workspace may be explicitly provided, if desired, by use of C2IEZ/DC2IEZ. The reference is:

CALL C2IEZ (NDATA, XDATA, FDATA, N, XVEC, VALUE, IWK, WK1,
WK2)

The additional arguments are as follows:

IWK — Integer work array of length MAX0(N, NDATA) + N.

WK1 — Real work array of length 5 * NDATA.

WK2 — Real work array of length 2 * N.

590 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Description
This routine is designed to let the user easily compute the values of a cubic spline interpolant.
The routine CSIEZ computes a spline interpolant to a set of data points (xi, fi) for i = 1, �,
NDATA. The output for this routine consists of a vector of values of the computed cubic spline.
Specifically, let n = N, v = XVEC, and y = VALUE, then if s is the computed spline we set

yj = s(vj) j = 1, �, n

Additional documentation can be found by referring to the IMSL routines CSINT (page 590) or
SPLEZ (page 618).

CSINT
Computes the cubic spline interpolant with the ‘not-a-knot’ condition.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic
representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.
(Output)

Optional Arguments
NDATA — Number of data points. (Input)

NDATA must be at least 2.
Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface
Generic: CALL CSINT (XDATA, FDATA, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSINT and D_CSINT.

FORTRAN 77 Interface
Single: CALL CSINT (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Double: The double precision name is DCSINT.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 591

Example
In this example, a cubic spline interpolant to a function F is computed. The values of this spline
are then compared with the exact function values.

 USE CSINT_INT
 USE UMACH_INT
 USE CSVAL_INT

! Specifications
 INTEGER NDATA
 PARAMETER (NDATA=11)
!
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), F,&
 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
! Define function
 F(X) = SIN(15.0*X)

! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Compute cubic spline interpolant
 CALL CSINT (XDATA, FDATA, BREAK, CSCOEF)
! Get output unit number.
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
! Print the interpolant and the error
! on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),&
 F(X) - CSVAL(X,BREAK,&
 CSCOEF)
 20 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.809 -0.127025
0.100 0.997 0.000000
0.150 0.723 0.055214
0.200 0.141 0.000000
0.250 -0.549 -0.022789
0.300 -0.978 0.000000
0.350 -0.843 -0.016246
0.400 -0.279 0.000000
0.450 0.441 0.009348
0.500 0.938 0.000000
0.550 0.903 0.019947

592 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

0.600 0.412 0.000000
0.650 -0.315 -0.004895
0.700 -0.880 0.000000
0.750 -0.938 -0.029541
0.800 -0.537 0.000000
0.850 0.148 0.034693
0.900 0.804 0.000000
0.950 1.086 -0.092559
1.000 0.650 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of C2INT/DC2INT. The

reference is:

CALL C2INT (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK)

The additional argument is

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be
evaluated using CSDER (page 610).

3. Note that column NDATA of CSCOEF is used as workspace.

Description

The routine CSINT computes a C 2 cubic spline interpolant to a set of data points (xi, fi) for i = 1,
�, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are
automatically determined by the program. These conditions correspond to the “not-a-knot”
condition (see de Boor 1978), which requires that the third derivative of the spline be
continuous at the second and next-to-last breakpoint. If N is 2 or 3, then the linear or quadratic
interpolating polynomial is computed, respectively.

If the data points arise from the values of a smooth (say C 4) function f, i.e. fi = f(xi), then the
error will behave in a predictable fashion. Let � be the breakpoint vector for the above spline
interpolant. Then, the maximum absolute error satisfies

� �
� �

� �1
1

44
, ,N

N

f s C f
� �

� �
�� �

where

12, ,
: max i ii N

� � �
�

�

� �

�

For more details, see de Boor (1978, pages 55�56).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 593

CSDEC
Computes the cubic spline interpolant with specified derivative endpoint conditions.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input) The data

point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

ILEFT — Type of end condition at the left endpoint. (Input)

ILEFT Condition

 0 “Not-a-knot” condition

 1 First derivative specified by DLEFT

 2 Second derivative specified by DLEFT

DLEFT — Derivative at left endpoint if ILEFT is equal to 1 or 2. (Input)
If ILEFT = 0, then DLEFT is ignored.

IRIGHT — Type of end condition at the right endpoint. (Input)

IRIGHT Condition

 0 “Not-a-knot” condition

 1 First derivative specified by DRIGHT

 2 Second derivative specified by DRIGHT

DRIGHT — Derivative at right endpoint if IRIGHT is equal to 1 or 2. (Input) If IRIGHT = 0
then DRIGHT is ignored.

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic
representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.
(Output)

Optional Arguments
NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

594 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT,

 BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSDEC and D_CSDEC.

FORTRAN 77 Interface
Single: CALL CSDEC (NDATA, XDATA, FDATA, ILEFT, DLEFT, IRIGHT,

 DRIGHT, BREAK, CSCOEF)

Double: The double precision name is DCSDEC.

Example 1
In Example 1, a cubic spline interpolant to a function f is computed. The value of the derivative
at the left endpoint and the value of the second derivative at the right endpoint are specified. The
values of this spline are then compared with the exact function values.

 USE CSDEC_INT
 USE UMACH_INT
 USE CSVAL_INT

 INTEGER ILEFT, IRIGHT, NDATA
 PARAMETER (ILEFT=1, IRIGHT=2, NDATA=11)
!
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), COS, CSCOEF(4,NDATA), DLEFT,&
 DRIGHT, F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)
 INTRINSIC COS, FLOAT, SIN
! Define function
 F(X) = SIN(15.0*X)
! Initialize DLEFT and DRIGHT
 DLEFT = 15.0*COS(15.0*0.0)
 DRIGHT = -15.0*15.0*SIN(15.0*1.0)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Compute cubic spline interpolant
 CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, &
 DRIGHT, BREAK, CSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
! Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),&

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 595

 F(X) - CSVAL(X,BREAK,&
 CSCOEF)
 20 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.675 0.006332
0.100 0.997 0.000000
0.150 0.759 0.019485
0.200 0.141 0.000000
0.250 -0.558 -0.013227
0.300 -0.978 0.000000
0.350 -0.840 -0.018765
0.400 -0.279 0.000000
0.450 0.440 0.009859
0.500 0.938 0.000000
0.550 0.902 0.020420
0.600 0.412 0.000000
0.650 -0.312 -0.007301
0.700 -0.880 0.000000
0.750 -0.947 -0.020391
0.800 -0.537 0.000000
0.850 0.182 0.000497
0.900 0.804 0.000000
0.950 0.959 0.035074
1.000 0.650 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of C2DEC/DC2DEC. The

reference is:

CALL C2DEC (NDATA, XDATA, FDATA, ILEFT, DLEFT,
 IRIGHT, DRIGHT, BREAK, CSCOEF, IWK)

The additional argument is:

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be
evaluated using CSDER (page 610).

3. Note that column NDATA of CSCOEF is used as workspace.

Description

The routine CSDEC computes a C 2 cubic spline interpolant to a set of data points (xi, fi) for i = 1,
�, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are to be
selected by the user. The user may specify not-a-knot, first derivative, or second derivative at
each endpoint (see de Boor 1978, Chapter 4).

596 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

If the data (including the endpoint conditions) arise from the values of a smooth (say C 4)
function f, i.e. fi = f(xi), then the error will behave in a predictable fashion. Let � be the
breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies

� �

� �

� �1 1

44
, ,N N

f s C f
� � � �

�� �

where

12, ,
: i ii N

� � �
�

�

� �

�

For more details, see de Boor (1978, Chapter 4 and 5).

Additional Examples

Example 2
In Example 2, we compute the natural cubic spline interpolant to a function f by forcing the
second derivative of the interpolant to be zero at both endpoints. As in the previous example, we
compare the exact function values with the values of the spline.

 USE CSDEC_INT
 USE UMACH_INT
 INTEGER ILEFT, IRIGHT, NDATA
 PARAMETER (ILEFT=2, IRIGHT=2, NDATA=11)
!
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), DLEFT, DRIGHT,&
 F, FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
! Initialize DLEFT and DRIGHT
 DATA DLEFT/0./, DRIGHT/0./
! Define function
 F(X) = SIN(15.0*X)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Compute cubic spline interpolant
 CALL CSDEC (XDATA, FDATA, ILEFT, DLEFT, IRIGHT, DRIGHT,&
 BREAK, CSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
! Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),&
 F(X) - CSVAL(X,BREAK,&
 CSCOEF)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 597

 20 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.667 0.015027
0.100 0.997 0.000000
0.150 0.761 0.017156
0.200 0.141 0.000000
0.250 -0.559 -0.012609
0.300 -0.978 0.000000
0.350 -0.840 -0.018907
0.400 -0.279 0.000000
0.450 0.440 0.009812
0.500 0.938 0.000000
0.550 0.902 0.020753
0.600 0.412 0.000000
0.650 -0.311 -0.008586
0.700 -0.880 0.000000
0.750 -0.952 -0.015585
0.800 -0.537 0.000000

CSHER
Computes the Hermite cubic spline interpolant.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

DFDATA — Array of length NDATA containing the values of the derivative. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic
representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.
(Output)

Optional Arguments
NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

598 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL CSHER (XDATA, FDATA, DFDATA, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSHER and D_CSHER.

FORTRAN 77 Interface
Single: CALL CSHER (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Double: The double precision name is DCSHER.

Example
In this example, a cubic spline interpolant to a function f is computed. The value of the function
f and its derivative f � are computed on the interpolation nodes and passed to CSHER. The values
of this spline are then compared with the exact function values.

 USE CSHER_INT
 USE UMACH_INT
 USE CSVAL_INT

 INTEGER NDATA
 PARAMETER (NDATA=11)
!
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), COS, CSCOEF(4,NDATA), DF,&
 DFDATA(NDATA), F, FDATA(NDATA), FLOAT, SIN, X,&
 XDATA(NDATA)
 INTRINSIC COS, FLOAT, SIN
! Define function and derivative
 F(X) = SIN(15.0*X)
 DF(X) = 15.0*COS(15.0*X)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 DFDATA(I) = DF(XDATA(I))
 10 CONTINUE
! Compute cubic spline interpolant
 CALL CSHER (XDATA, FDATA, DFDATA, BREAK, CSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
! Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3, F15.6)’) X, CSVAL(X,BREAK,CSCOEF)&
 , F(X) - CSVAL(X,BREAK,&
 CSCOEF)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 599

 20 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.673 0.008654
0.100 0.997 0.000000
0.150 0.768 0.009879
0.200 0.141 0.000000
0.250 -0.564 -0.007257
0.300 -0.978 0.000000
0.350 -0.848 -0.010906
0.400 -0.279 0.000000
0.450 0.444 0.005714
0.500 0.938 0.000000
0.550 0.911 0.011714
0.600 0.412 0.000000
0.650 -0.315 -0.004057
0.700 -0.880 0.000000
0.750 -0.956 -0.012288
0.800 -0.537 0.000000
0.850 0.180 0.002318
0.900 0.804 0.000000
0.950 0.981 0.012616
1.000 0.650 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of C2HER/DC2HER. The

reference is:

CALL C2HER (NDATA, XDATA, FDATA, DFDATA, BREAK,
 CSCOEF, IWK)

The additional argument is:

IWK — Work array of length NDATA.

2. Informational error
Type Code

 4 2 The XDATA values must be distinct.

3. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be
evaluated using CSDER (page 610).

4. Note that column NDATA of CSCOEF is used as workspace.

Description

The routine CSHER computes a C 1 cubic spline interpolant to the set of data points

600 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

� � � �, and ,i i i ix f x f �

for i = 1, �, NDATA = N. The breakpoints of the spline are the abscissas.

If the data points arise from the values of a smooth (say C 4) function f, i.e.,

() and ()i i i if f x f f x� �� �

then the error will behave in a predictable fashion. Let � be the

breakpoint vector for the above spline interpolant. Then, the maximum absolute error satisfies

� �

� �

� �1 1

44
, ,N N

f s C f
� � � �

�� �

where

12, ,
: i ii N

� � �
�

�

� �

�

For more details, see de Boor (1978, page 51).

CSAKM
Computes the Akima cubic spline interpolant.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic
representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.
(Output)

Optional Arguments
NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface
Generic: CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSAKM and D_CSAKM.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 601

FORTRAN 77 Interface
Single: CALL CSAKM (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Double: The double precision name is DCSAKM.

Example
In this example, a cubic spline interpolant to a function f is computed. The values of this spline
are then compared with the exact function values.

 USE CSAKM_INT
 USE UMACH_INT
 USE CSVAL_INT

 INTEGER NDATA
 PARAMETER (NDATA=11)
!
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), F,&
 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
! Define function
 F(X) = SIN(15.0*X)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Compute cubic spline interpolant
 CALL CSAKM (XDATA, FDATA, BREAK, CSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
! Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = FLOAT(I-1)/FLOAT(2*NDATA-2)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),&
 F(X) - CSVAL(X,BREAK,&
 CSCOEF)
 20 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000
0.050 0.818 -0.135988
0.100 0.997 0.000000
0.150 0.615 0.163487
0.200 0.141 0.000000
0.250 -0.478 -0.093376

602 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

0.300 -0.978 0.000000
0.350 -0.812 -0.046447
0.400 -0.279 0.000000
0.450 0.386 0.064491
0.500 0.938 0.000000
0.550 0.854 0.068274
0.600 0.412 0.000000
0.650 -0.276 -0.043288
0.700 -0.880 0.000000
0.750 -0.889 -0.078947
0.800 -0.537 0.000000
0.850 0.149 0.033757
0.900 0.804 0.000000
0.950 0.932 0.061260
1.000 0.650 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of C2AKMD/C2AKM. The

reference is:

CALL C2AKM (NDATA, XDATA, FDATA, BREAK, CSCOEF, IWK)

The additional argument is:

IWK — Work array of length NDATA.

2. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be
evaluated using CSDER (page 610).

3. Note that column NDATA of CSCOEF is used as workspace.

Description

The routine CSAKM computes a C 1 cubic spline interpolant to a set of data points (xi, fi) for i = 1,
�, NDATA = N. The breakpoints of the spline are the abscissas. Endpoint conditions are
automatically determined by the program; see Akima (1970) or de Boor (1978).

If the data points arise from the values of a smooth (say C 4) function f, i.e. fi = f(xi), then the
error will behave in a predictable fashion. Let � be the breakpoint vector for the above spline
interpolant. Then, the maximum absolute error satisfies

� �

� �

� �1 1

22
, ,N N

f s C f
� � � �

�� �

where

12, ,
: max i ii N

� � �
�

�

� �

�

The routine CSAKM is based on a method by Akima (1970) to combat wiggles in the interpolant.
The method is nonlinear; and although the interpolant is a piecewise cubic, cubic polynomials
are not reproduced. (However, linear polynomials are reproduced.)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 603

CSCON
Computes a cubic spline interpolant that is consistent with the concavity of the data.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

IBREAK — The number of breakpoints. (Output)
It will be less than 2 * NDATA.

BREAK — Array of length IBREAK containing the breakpoints for the piecewise cubic
representation in its first IBREAK positions. (Output)
The dimension of BREAK must be at least 2 * NDATA.

CSCOEF — Matrix of size 4 by N where N is the dimension of BREAK. (Output)
The first IBREAK � 1 columns of CSCOEF contain the local coefficients of the cubic
pieces.

Optional Arguments
NDATA — Number of data points. (Input)

NDATA must be at least 3.
Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface
Generic: CALL CSCON (XDATA, FDATA, IBREAK, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSCON and D_CSCON.

FORTRAN 77 Interface
Single: CALL CSCON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF)

Double: The double precision name is DCSCON.

Example
We first compute the shape-preserving interpolant using CSCON, and display the coefficients and
breakpoints. Second, we interpolate the same data using CSINT (page 590) in a program not
shown and overlay the two results. The graph of the result from CSINT is represented by the
dashed line. Notice the extra inflection points in the curve produced by CSINT.

604 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 USE CSCON_INT
 USE UMACH_INT
 USE WRRRL_INT

! Specifications
 INTEGER NDATA
 PARAMETER (NDATA=9)
!
 INTEGER IBREAK, NOUT
 REAL BREAK(2*NDATA), CSCOEF(4,2*NDATA), FDATA(NDATA),&
 XDATA(NDATA)
 CHARACTER CLABEL(14)*2, RLABEL(4)*2
!
 DATA XDATA/0.0, .1, .2, .3, .4, .5, .6, .8, 1./
 DATA FDATA/0.0, .9, .95, .9, .1, .05, .05, .2, 1./
 DATA RLABEL/’ 1’, ’ 2’, ’ 3’, ’ 4’/
 DATA CLABEL/’ ’, ’ 1’, ’ 2’, ’ 3’, ’ 4’, ’ 5’, ’ 6’,&
 ’ 7’, ’ 8’, ’ 9’, ’10’, ’11’, ’12’, ’13’/
! Compute cubic spline interpolant
 CALL CSCON (XDATA, FDATA, IBREAK, BREAK, CSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print the BREAK points and the
! coefficients (CSCOEF) for
! checking purposes.
 WRITE (NOUT,’(1X,A,I2)’) ’IBREAK = ’, IBREAK
 CALL WRRRL (’BREAK’, BREAK, RLABEL, CLABEL, 1, IBREAK, 1, &
 FMT=’(F9.3)’)
 CALL WRRRL (’CSCOEF’, CSCOEF, RLABEL, CLABEL, 4, IBREAK, 4, &
 FMT=’(F9.3)’)
 END

Output
IBREAK = 13
 BREAK
 1 2 3 4 5 6
1 0.000 0.100 0.136 0.200 0.259 0.300

 7 8 9 10 11 12
1 0.400 0.436 0.500 0.600 0.609 0.800

 13
1 1.000

 CSCOEF
 1 2 3 4 5 6
1 0.000 0.900 0.942 0.950 0.958 0.900
2 11.886 3.228 0.131 0.131 0.131 -4.434
3 0.000 -173.170 0.000 0.000 0.000 220.218
4 -1731.699 4841.604 0.000 0.000 -5312.082 4466.875

 7 8 9 10 11 12
1 0.100 0.050 0.050 0.050 0.050 0.200
2 -4.121 0.000 0.000 0.000 0.000 2.356

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 605

3 226.470 0.000 0.000 0.000 0.000 24.664
4 -6222.348 0.000 0.000 0.000 129.115 123.321

 13
1 1.000
2 0.000
3 0.000
4 0.000

Figure 3-4 CSCON vs. CSINT

Comments
1. Workspace may be explicitly provided, if desired, by use of C2CON/DC2CON. The

reference is:

CALL C2CON (NDATA, XDATA, FDATA, IBREAK, BREAK, CSCOEF, ITMAX,
XSRT, FSRT, A, Y, DIVD, ID, WK)

The additional arguments are as follows:

ITMAX — Maximum number of iterations of Newton’s method. (Input)

XSRT — Work array of length NDATA to hold the sorted XDATA values.

FSRT — Work array of length NDATA to hold the sorted FDATA values.

A — Work array of length NDATA.

Y — Work array of length NDATA � 2.

606 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

DIVD — Work array of length NDATA � 2.

ID — Integer work array of length NDATA.

WK — Work array of length 5 * (NDATA � 2).

2 Informational errors
Type Code

 3 16 Maximum number of iterations exceeded, call C2CON/DC2CON to set
a larger number for ITMAX.

 4 3 The XDATA values must be distinct.

3. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be
evaluated using CSDER (page 610).

4. The default value for ITMAX is 25. This can be reset by calling C2CON/DC2CON directly.

Descritpion
The routine CSCON computes a cubic spline interpolant to n = NDATA data points {xi, fi} for i =
1, �, n. For ease of explanation, we will assume that xi < xi + 1, although it is not necessary for
the user to sort these data values. If the data are strictly convex, then the computed spline is
convex, C 2, and minimizes the expression

� �
1

2
nx

x
g ���

over all convex C 1 functions that interpolate the data. In the general case when the data have
both convex and concave regions, the convexity of the spline is consistent with the data and the
above integral is minimized under the appropriate constraints. For more information on this
interpolation scheme, we refer the reader to Micchelli et al. (1985) and Irvine et al. (1986).

One important feature of the splines produced by this subroutine is that it is not possible, a
priori, to predict the number of breakpoints of the resulting interpolant. In most cases, there will
be breakpoints at places other than data locations. The method is nonlinear; and although the
interpolant is a piecewise cubic, cubic polynomials are not reproduced. (However, linear
polynomials are reproduced.) This routine should be used when it is important to preserve the
convex and concave regions implied by the data.

CSPER
Computes the cubic spline interpolant with periodic boundary conditions.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

The data point abscissas must be distinct.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 607

FDATA — Array of length NDATA containing the data point ordinates. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic
representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.
(Output)

 Optional Arguments

NDATA — Number of data points. (Input)
NDATA must be at least 4.
Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface
Generic: CALL CSPER (XDATA, FDATA, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSPER and D_CSPER.

FORTRAN 77 Interface
Single: CALL CSPER (NDATA, XDATA, FDATA, BREAK, CSCOEF)

Double: The double precision name is DCSPER.

Example
In this example, a cubic spline interpolant to a function f is computed. The values of this spline
are then compared with the exact function values.

 USE IMSL_LIBRARIES
 INTEGER NDATA
 PARAMETER (NDATA=11)
!
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), F,&
 FDATA(NDATA), FLOAT, H, PI, SIN, X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
!
! Define function
 F(X) = SIN(15.0*X)
! Set up a grid
 PI = CONST(’PI’)
 H = 2.0*PI/15.0/10.0
 DO 10 I=1, NDATA
 XDATA(I) = H*FLOAT(I-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Round off will cause FDATA(11) to
! be nonzero; this would produce a

608 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

! warning error since FDATA(1) is zero.
! Therefore, the value of FDATA(1) is
! used rather than the value of
! FDATA(11).
 FDATA(NDATA) = FDATA(1)
!
! Compute cubic spline interpolant
 CALL CSPER (XDATA, FDATA, BREAK, CSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
 NINTV = NDATA - 1
 H = H/2.0
! Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA - 1
 X = H*FLOAT(I-1)
 WRITE (NOUT,’(2F15.3,F15.6)’) X, CSVAL(X,BREAK,CSCOEF),&
 F(X) - CSVAL(X,BREAK,&
 CSCOEF)
 20 CONTINUE
 END

Output
 X Interpolant Error

0.000 0.000 0.000000
0.021 0.309 0.000138
0.042 0.588 0.000000
0.063 0.809 0.000362
0.084 0.951 0.000000
0.105 1.000 0.000447
0.126 0.951 0.000000
0.147 0.809 0.000362
0.168 0.588 0.000000
0.188 0.309 0.000138
0.209 0.000 0.000000
0.230 -0.309 -0.000138
0.251 -0.588 0.000000
0.272 -0.809 -0.000362
0.293 -0.951 0.000000
0.314 -1.000 -0.000447
0.335 -0.951 0.000000
0.356 -0.809 -0.000362
0.377 -0.588 0.000000
0.398 -0.309 -0.000138
0.419 0.000 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of C2PER/DC2PER. The

reference is:

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 609

CALL C2PER (NDATA, XDATA, FDATA, BREAK, CSCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 6 * NDATA.

IWK — Work array of length NDATA.

2. Informational error
Type Code

 3 1 The data set is not periodic, i.e., the function values at the smallest
and largest XDATA points are not equal. The value at the smallest
XDATA point is used.

3. The cubic spline can be evaluated using CSVAL (page 609) and its derivative can be
evaluated using CSDER (page 610).

Description

The routine CSPER computes a C2 cubic spline interpolant to a set of data points (xi� fi) for i = 1�
�� NDATA = N. The breakpoints of the spline are the abscissas. The program enforces periodic
endpoint conditions. This means that the spline s satisfies s(a) = s(b)� s�(a) = s�(b)� and s�(a) = s�
(b), where a is the leftmost abscissa and b is the rightmost abscissa. If the ordinate values
corresponding to a and b are not equal, then a warning message is issued. The ordinate value at
b is set equal to the ordinate value at a and the interpolant is computed.

If the data points arise from the values of a smooth (say C 4) periodic function f, i.e. fi = f(xi),
then the error will behave in a predictable fashion. Let � be the breakpoint vector for the above
spline interpolant. Then, the maximum absolute error satisfies

� �

� �

� �1 1

44
, ,N N

f s C f
� � � �

�� �

where

12, ,
: max i ii N

� � �
�

�

� �

�

For more details, see de Boor (1978, pages 320�322).

CSVAL
This function evaluates a cubic spline.

Function Return Value
CSVAL — Value of the polynomial at X. (Output)

610 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Required Arguments
X — Point at which the spline is to be evaluated. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic
representation. (Input)
BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic
pieces. (Input)

Optional Arguments
NINTV — Number of polynomial pieces. (Input)

FORTRAN 90 Interface
Generic: CSVAL (X, BREAK, CSCOEF[,…])

Specific: The specific interface names are S_CSVAL and D_CSVAL.

FORTRAN 77 Interface
Single: CSVAL(X, NINTV, BREAK, CSCOEF)

Double: The double precision function name is DCSVAL.

Example
For an example of the use of CSVAL, see IMSL routine CSINT (page 590).

Description
The routine CSVAL evaluates a cubic spline at a given point. It is a special case of the routine
PPDER (page 684), which evaluates the derivative of a piecewise polynomial. (The value of a
piecewise polynomial is its zero-th derivative and a cubic spline is a piecewise polynomial of
order 4.) The routine PPDER is based on the routine PPVALU in de Boor (1978, page 89).

CSDER
This function evaluates the derivative of a cubic spline.

Function Return Value
CSDER — Value of the IDERIV-th derivative of the polynomial at X. (Output)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 611

Required Arguments
IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the value of the polynomial.

X — Point at which the polynomial is to be evaluated. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic
representation. (Input)
BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic
pieces. (Input)

Optional Arguments
NINTV — Number of polynomial pieces. (Input)

Default: NINTV = size (BREAK,1) – 1.

FORTRAN 90 Interface
Generic: CSDER (IDERIV, X, BREAK, CSCOEF, CSDER [,…])

Specific: The specific interface names are S_CSDER and D_CSDER.

FORTRAN 77 Interface
Single: CSDER(IDERIV, X, NINTV, BREAK, CSCOEF)

Double: The double precision function name is DCSDER.

Example
In this example, we compute a cubic spline interpolant to a function f using IMSL routine
CSINT (page 590). The values of the spline and its first and second derivatives are computed
using CSDER. These values can then be compared with the corresponding values of the
interpolated function.

 USE CSDER_INT
 USE CSINT_INT
 USE UMACH_INT

 INTEGER NDATA
 PARAMETER (NDATA=10)
!
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CDDF, CDF, CF, COS, CSCOEF(4,NDATA),&
 DDF, DF, F, FDATA(NDATA), FLOAT, SIN, X,&
 XDATA(NDATA)
 INTRINSIC COS, FLOAT, SIN
! Define function and derivatives

612 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 F(X) = SIN(15.0*X)
 DF(X) = 15.0*COS(15.0*X)
 DDF(X) = -225.0*SIN(15.0*X)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Compute cubic spline interpolant
 CALL CSINT (XDATA, FDATA, BREAK, CSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
99999 FORMAT (9X, ’X’, 8X, ’S(X)’, 5X, ’Error’, 6X, ’S’’(X)’, 5X,&
 ’Error’, 6X, ’S’’’’(X)’, 4X, ’Error’, /)
 NINTV = NDATA - 1
! Print the interpolant on a finer grid
 DO 20 I=1, 2*NDATA
 X = FLOAT(I-1)/FLOAT(2*NDATA-1)
 CF = CSDER(0,X,BREAK,CSCOEF)
 CDF = CSDER(1,X,BREAK,CSCOEF)
 CDDF = CSDER(2,X,BREAK,CSCOEF)
 WRITE (NOUT,’(F11.3, 3(F11.3, F11.6))’) X, CF, F(X) - CF,&
 CDF, DF(X) - CDF,&
 CDDF, DDF(X) - CDDF
 20 CONTINUE
 END

Output
 X S(X) Error S’(X) Error S’’(X) Error

0.000 0.000 0.000000 26.285 -11.284739 -379.458 379.457794
0.053 0.902 -0.192203 8.841 1.722460 -283.411 123.664734
0.105 1.019 -0.019333 -3.548 3.425718 -187.364 -37.628586
0.158 0.617 0.081009 -10.882 0.146207 -91.317 -65.824875
0.211 -0.037 0.021155 -13.160 -1.837700 4.730 -1.062027
0.263 -0.674 -0.046945 -10.033 -0.355268 117.916 44.391640
0.316 -0.985 -0.015060 -0.719 1.086203 235.999 -11.066727
0.368 -0.682 -0.004651 11.314 -0.409097 154.861 -0.365387
0.421 0.045 -0.011915 14.708 0.284042 -25.887 18.552732
0.474 0.708 0.024292 9.508 0.702690 -143.785 -21.041260
0.526 0.978 0.020854 0.161 -0.771948 -211.402 -13.411087
0.579 0.673 0.001410 -11.394 0.322443 -163.483 11.674103
0.632 -0.064 0.015118 -14.937 -0.045511 28.856 -17.856323
0.684 -0.724 -0.019246 -8.859 -1.170871 163.866 3.435547
0.737 -0.954 -0.044143 0.301 0.554493 184.217 40.417282
0.789 -0.675 0.012143 10.307 0.928152 166.021 -16.939514
0.842 0.027 0.038176 15.015 -0.047344 12.914 -27.575521
0.895 0.764 -0.010112 11.666 -1.819128 -140.193 -29.538193
0.947 1.114 -0.116304 0.258 -1.357680 -293.301 68.905701
1.000 0.650 0.000000 -19.208 7.812407 -446.408 300.092896

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 613

Description
The function CSDER evaluates the derivative of a cubic spline at a given point. It is a special
case of the routine PPDER (page 684), which evaluates the derivative of a piecewise polynomial.
(A cubic spline is a piecewise polynomial of order 4.) The routine PPDER is based on the routine
PPVALU in de Boor (1978, page 89).

CS1GD
Evaluates the derivative of a cubic spline on a grid.

Required Arguments
IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the values of the cubic spline.

XVEC — Array of length N containing the points at which the cubic spline is to be evaluated.
(Input)
The points in XVEC should be strictly increasing.

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic
representation. (Input)
BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic
pieces. (Input)

VALUE — Array of length N containing the values of the IDERIV-th derivative of the cubic
spline at the points in XVEC. (Output)

Optional Arguments
N — Length of vector XVEC. (Input)

Default: N = size (XVEC,1).

NINTV — Number of polynomial pieces. (Input)
Default: NINTV = size (BREAK,1) – 1.

FORTRAN 90 Interface
Generic: CALL CS1GD (IDERIV, XVEC, BREAK, CSCOEF, VALUE [,…])

Specific: The specific interface names are S_CS1GD and D_CS1GD.

FORTRAN 77 Interface
Single: CALL CS1GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF, VALUE)

614 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Double: The double precision name is DCS1GD.

Example
To illustrate the use of CS1GD, we modify the example program for CSINT (page 590). In this
example, a cubic spline interpolant to F is computed. The values of this spline are then
compared with the exact function values. The routine CS1GD is based on the routine PPVALU in
de Boor (1978, page 89).

 USE CS1GD_INT
 USE CSINT_INT
 USE UMACH_INT
 USE CSVAL_INT
! Specifications
 INTEGER NDATA, N
 PARAMETER (NDATA=11, N=2*NDATA-1)
!
 INTEGER I, NINTV, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), F,&
 FDATA(NDATA), FLOAT, SIN, X, XDATA(NDATA),&
 FVALUE(N), VALUE(N), XVEC(N)
 INTRINSIC FLOAT, SIN
! Define function
 F(X) = SIN(15.0*X)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Compute cubic spline interpolant
 CALL CSINT (XDATA, FDATA, BREAK, CSCOEF)
 DO 20 I=1, N
 XVEC(I) = FLOAT(I-1)/FLOAT(2*NDATA-2)
 FVALUE(I) = F(XVEC(I))
 20 CONTINUE
 IDERIV = 0
 NINTV = NDATA - 1
 CALL CS1GD (IDERIV, XVEC, BREAK, CSCOEF, VALUE)
! Get output unit number.
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
99999 FORMAT (13X, ’X’, 9X, ’Interpolant’, 5X, ’Error’)
! Print the interpolant and the error
! on a finer grid
 DO 30 J=1, N
 WRITE (NOUT,’(2F15.3,F15.6)’) XVEC(J), VALUE(J),&
 FVALUE(J)-VALUE(J)
 30 CONTINUE
 END

Output
 X Interpolant Error
0.000 0.000 0.000000

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 615

0.050 0.809 -0.127025
0.100 0.997 0.000000
0.150 0.723 0.055214
0.200 0.141 0.000000
0.250 -0.549 -0.022789
0.300 -0.978 0.000000
0.350 -0.843 -0.016246
0.400 -0.279 0.000000
0.450 0.441 0.009348
0.500 0.938 0.000000
0.550 0.903 0.019947
0.600 0.412 0.000000
0.650 -0.315 -0.004895
0.700 -0.880 0.000000
0.750 -0.938 -0.029541
0.800 -0.537 0.000000
0.850 0.148 0.034693
0.900 0.804 0.000000
0.950 1.086 -0.092559
1.000 0.650 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of C21GD/DC21GD. The

reference is:

CALL C21GD (IDERIV, N, XVEC, NINTV, BREAK, CSCOEF,VALUE, IWK,
WORK1, WORK2)

The additional arguments are as follows:

IWK — Array of length N.

WORK1 — Array of length N.

WORK2 — Array of length N.

2. Informational error
Type Code

 4 4 The points in XVEC must be strictly increasing.

Description
The routine CS1GD evaluates a cubic spline (or its derivative) at a vector of points. That is, given
a vector x of length n satisfying xi < xi + 1 for i = 1, �, n � 1, a derivative value j, and a cubic
spline s that is represented by a breakpoint sequence and coefficient matrix this routine returns
the values

s(j)(xi) i = 1, �, n

in the array VALUE. The functionality of this routine is the same as that of CSDER (page 610)
called in a loop, however CS1GD should be much more efficient.

616 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

CSITG
This function evaluates the integral of a cubic spline.

Function Return Value
CSITG — Value of the integral of the spline from A to B. (Output)

Required Arguments
A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise cubic
representation. (Input)
BREAK must be strictly increasing.

CSCOEF — Matrix of size 4 by NINTV + 1 containing the local coefficients of the cubic
pieces. (Input)

Optional Arguments
NINTV — Number of polynomial pieces. (Input)

Default: NINTV = size (BREAK,1) – 1.

FORTRAN 90 Interface
Generic: CSITG (A, B, BREAK, CSCOEF[,…])

Specific: The specific interface names are S_CSITG and D_CSITG.

FORTRAN 77 Interface
Single: CSITG(A, B, NINTV, BREAK, CSCOEF)

Double: The double precision function name is DCSITG.

Example

This example computes a cubic spline interpolant to the function x2 using CSINT (page 590) and
evaluates its integral over the intervals [0., .5] and [0., 2.]. Since CSINT uses the not-a knot
condition, the interpolant reproduces x2� hence the integral values are 1/24 and 8/3, respectively.

 USE CSITG_INT
 USE UMACH_INT
 USE CSINT_INT

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 617

 INTEGER NDATA
 PARAMETER (NDATA=10)
!
 INTEGER I, NINTV, NOUT
 REAL A, B, BREAK(NDATA), CSCOEF(4,NDATA), ERROR,&
 EXACT, F, FDATA(NDATA), FI, FLOAT, VALUE, X,&
 XDATA(NDATA)
 INTRINSIC FLOAT
! Define function and integral
 F(X) = X*X
 FI(X) = X*X*X/3.0
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Compute cubic spline interpolant
 CALL CSINT (XDATA, FDATA, BREAK, CSCOEF)
! Compute the integral of F over
! [0.0,0.5]
 A = 0.0
 B = 0.5
 NINTV = NDATA - 1
 VALUE = CSITG(A,B,BREAK,CSCOEF)
 EXACT = FI(B) - FI(A)
 ERROR = EXACT - VALUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Print the result
 WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR
! Compute the integral of F over
! [0.0,2.0]
 A = 0.0
 B = 2.0
 VALUE = CSITG(A,B,BREAK,CSCOEF)
 EXACT = FI(B) - FI(A)
 ERROR = EXACT - VALUE
! Print the result
 WRITE (NOUT,99999) A, B, VALUE, EXACT, ERROR
99999 FORMAT (’ On the closed interval (’, F3.1, ’,’, F3.1,&
 ’) we have :’, /, 1X, ’Computed Integral = ’, F10.5, /,&
 1X, ’Exact Integral = ’, F10.5, /, 1X, ’Error ’&
 , ’ = ’, F10.6, /, /)
 END

Output
On the closed interval (0.0,0.5) we have :
Computed Integral = 0.04167
Exact Integral = 0.04167
Error = 0.000000

On the closed interval (0.0,2.0) we have :
Computed Integral = 2.66666
Exact Integral = 2.66667
Error = 0.000006

618 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Description
The function CSITG evaluates the integral of a cubic spline over an interval. It is a special case
of the routine PPITG (page 690), which evaluates the integral of a piecewise polynomial. (A
cubic spline is a piecewise polynomial of order 4.)

SPLEZ
Computes the values of a spline that either interpolates or fits user-supplied data.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissae. (Input)

The data point abscissas must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

XVEC — Array of length N containing the points at which the spline function values are
desired. (Input)
The entries of XVEC must be distinct.

VALUE — Array of length N containing the spline values. (Output)
VALUE (I) = S(XVEC (I)) if IDER = 0� VALUE(I) = S�(XVEC (I)) if IDER = 1� and so
forth, where S is the computed spline.

Optional Arguments
NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

All choices of ITYPE are valid if NDATA is larger than 6. More specifically,

NDATA > ITYPE or ITYPE = 1.

NDATA > 3 for ITYPE = 2, 3.

NDATA > (ITYPE � 3) for ITYPE = 4, 5� 6� 7� 8.

NDATA > 3 for ITYPE = 9� 10� 11� 12.

NDATA > KORDER for ITYPE = 13� 14� 15.

ITYPE — Type of interpolant desired. (Input)
Default: ITYPE = 1.

ITYPE

1 yields CSINT

2 yields CSAKM

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 619

3 yields CSCON

4 yields BSINT-BSNAK K = 2

5 yields BSINT-BSNAK K = 3

6 yields BSINT-BSNAK K = 4

7 yields BSINT-BSNAK K = 5

8 yields BSINT-BSNAK K = 6

9 yields CSSCV

10 yields BSLSQ K = 2

11 yields BSLSQ K = 3

12 yields BSLSQ K = 4

13 yields BSVLS K = 2

14 yields BSVLS K = 3

15 yields BSVLS K = 4

IDER — Order of the derivative desired. (Input)
Default: IDER = 0.

N — Number of function values desired. (Input)
Default: N = size (XVEC,1).

FORTRAN 90 Interface
Generic: CALL SPLEZ (XDATA, FDATA, XVEC, VALUE [,…])

Specific: The specific interface names are S_SPLEZ and D_SPLEZ.

FORTRAN 77 Interface
Single: CALL SPLEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N, XVEC,

 VALUE)

Double: The double precision name is DSPLEZ.

Example
In this example, all the ITYPE parameters are exercised. The values of the spline are then
compared with the exact function values and derivatives.
USE IMSL_LIBRARIES
 INTEGER NDATA, N

 PARAMETER (NDATA=21, N=2*NDATA-1)
! Specifications for local variables
 INTEGER I, IDER, ITYPE, NOUT

620 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 REAL FDATA(NDATA), FPVAL(N), FVALUE(N),&
 VALUE(N), XDATA(NDATA), XVEC(N), EMAX1(15),&
 EMAX2(15)
! Specifications for intrinsics
 INTRINSIC FLOAT, SIN, COS
 REAL FLOAT, SIN, COS
! Specifications for subroutines
!
 REAL F, FP
!
! Define a function
 F(X) = SIN(X*X)
 FP(X) = 2*X*COS(X*X)
!
 CALL UMACH (2, NOUT)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
 DO 20 I=1, N
 XVEC(I) = 3.0*(FLOAT(I-1)/FLOAT(2*NDATA-2))
 FVALUE(I) = F(XVEC(I))
 FPVAL(I) = FP(XVEC(I))
 20 CONTINUE
!
 WRITE (NOUT,99999)
! Loop to call SPLEZ for each ITYPE
 DO 40 ITYPE=1, 15
 DO 30 IDER=0, 1
 CALL SPLEZ (XDATA, FDATA, XVEC, VALUE, ITYPE=ITYPE, &
 IDER=IDER)
! Compute the maximum error
 IF (IDER .EQ. 0) THEN
 CALL SAXPY (N, -1.0, FVALUE, 1, VALUE, 1)
 EMAX1(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1)))
 ELSE
 CALL SAXPY (N, -1.0, FPVAL, 1, VALUE, 1)
 EMAX2(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1)))
 END IF
 30 CONTINUE
 WRITE (NOUT,’(I7,2F20.6)’) ITYPE, EMAX1(ITYPE), EMAX2(ITYPE)
 40 CONTINUE
!
99999 FORMAT (4X, ’ITYPE’, 6X, ’Max error for f’, 5X,&
 ’Max error for f’’’, /)
 END

Output
ITYPE Max error for f Max error for f’

 1 0.014082 0.658018
 2 0.024682 0.897757
 3 0.020896 0.813228
 4 0.083615 2.168083

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 621

 5 0.010403 0.508043
 6 0.014082 0.658020
 7 0.004756 0.228858
 8 0.001070 0.077159
 9 0.020896 0.813228
10 0.392603 6.047916
11 0.162793 1.983959
12 0.045404 1.582624
13 0.588370 7.680381
14 0.752475 9.673786
15 0.049340 1.713031

Comments
1. Workspace may be explicitly provided, if desired, by use of S2LEZ/DS2LEZ. The

reference is:

CALL S2LEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N, XVEC, VALUE,
WRK, IWK)

The additional arguments are as follows:

WRK — Work array of length 32 * NDATA + 4 * N + 22.

IWK — Work array of length MAX0(NDATA N) + N.

2. Informational errors
Type Code

 4 1 XDATA entries are not unique.
 4 2 XVEC entries are not unique.

3. The workspace listed above is the maximum that is needed. Depending on the choice
of ITYPE� the actual amount used may be less. If workspace is a critical resource,
consult the explicit routines listed under ITYPE to see if less workspace can be used.

Description
This routine is designed to let the user experiment with various interpolation and smoothing
routines in the library.

The routine SPLEZ computes a spline interpolant to a set of data points (xi� fi) for i = 1���,
NDATA if ITYPE = 1� �, 8. If ITYPE 	 9, various smoothing or least squares splines are
computed. The output for this routine consists of a vector of values of the computed spline or its
derivatives. Specifically, let i = IDER, n = N, v = XVEC, and y = VALUE, then if s is the computed
spline we set

yj = s(i)(vj) j = 1� �, n

The routines called are listed above under the ITYPE heading. Additional documentation can be
found by referring to these routines.

622 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

BSINT
Computes the spline interpolant, returning the B-spline coefficients.

Required Arguments
NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of length NDATA containing the data point ordinates. (Input)

KORDER — Order of the spline. (Input)
KORDER must be less than or equal to NDATA.

XKNOT — Array of length NDATA + KORDER containing the knot sequence. (Input)
XKNOT must be nondecreasing.

BSCOEF — Array of length NDATA containing the B-spline coefficients. (Output)

FORTRAN 90 Interface
Generic: CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

Specific: The specific interface names are S_BSINT and D_BSINT.

FORTRAN 77 Interface
Single: CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)

Double: The double precision name is DBSINT.

Example
In this example, a spline interpolant s, to

� �f x x�

is computed. The interpolated values are then compared with the exact function values using the
IMSL routine BSVAL (page 641).

 USE BSINT_INT
 USE BSNAK_INT
 USE UMACH_INT
 USE BSVAL_INT
 INTEGER KORDER, NDATA, NKNOT
 PARAMETER (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER)
!
 INTEGER I, NCOEF, NOUT

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 623

 REAL BSCOEF(NDATA), BT, F, FDATA(NDATA), FLOAT,&
 SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT
 INTRINSIC FLOAT, SQRT
! Define function
 F(X) = SQRT(X)
! Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
! Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Print on a finer grid
 NCOEF = NDATA
 XT = XDATA(1)
! Evaluate spline
 BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT, F(XT) - BT
 DO 20 I=2, NDATA
 XT = (XDATA(I-1)+XDATA(I))/2.0
! Evaluate spline
 BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT, F(XT) - BT
 XT = XDATA(I)
! Evaluate spline
 BT = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT, F(XT) - BT
 20 CONTINUE
99998 FORMAT (’ ’, F6.4, 15X, F8.4, 12X, F11.6)
99999 FORMAT (/, 6X, ’X’, 19X, ’S(X)’, 18X, ’Error’, /)
 END

Output
 X S(X) Error
0.0000 0.0000 0.000000
0.1250 0.2918 0.061781
0.2500 0.5000 0.000000
0.3750 0.6247 -0.012311
0.5000 0.7071 0.000000
0.6250 0.7886 0.002013
0.7500 0.8660 0.000000
0.8750 0.9365 -0.001092
1.0000 1.0000 0.000000

624 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of B2INT/DB2INT. The

reference is:

CALL B2INT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF, WK1,
WK2, WK3, IWK)

The additional arguments are as follows:

WK1 — Work array of length (5 * KORDER � 2) * NDATA.

WK2 — Work array of length NDATA.

WK3 — Work array of length NDATA.

IWK — Work array of length NDATA.

2. Informational errors
Type Code

 3 1 The interpolation matrix is ill-conditioned.
 4 3 The XDATA values must be distinct.
 4 4 Multiplicity of the knots cannot exceed the order of the spline.
 4 5 The knots must be nondecreasing.
 4 15 The I-th smallest element of the data point array must be greater than

the Ith knot and less than the (I + KORDER)-th knot.
 4 16 The largest element of the data point array must be greater than the

(NDATA)-th knot and less than or equal to the (NDATA + KORDER)-th
knot.

 4 17 The smallest element of the data point array must be greater than or
equal to the first knot and less than the (KORDER + 1)st knot.

3. The spline can be evaluated using BSVAL (page 641), and its derivative can be evaluated
using BSDER (page 643).

Description
Following the notation in de Boor (1978, page 108), let Bj = Bj,k,t denote the j-th B-spline of
order k with respect to the knot sequence t. Then, BSINT computes the vector a satisfying

� �
1

N

j j i i
j

a B x f
�

��

and returns the result in BSCOEF = a. This linear system is banded with at most k � 1
subdiagonals and k � 1 superdiagonals. The matrix

A = (Bj (xi))

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 625

is totally positive and is invertible if and only if the diagonal entries are nonzero. The routine
BSINT is based on the routine SPLINT by de Boor (1978, page 204).

The routine BSINT produces the coefficients of the B-spline interpolant of order KORDER with
knot sequence XKNOT to the data (xi, fi) for i = 1 to NDATA, where x = XDATA and f = FDATA. Let
t = XKNOT, k = KORDER, and N = NDATA. First, BSINT sorts the XDATA vector and stores the
result in x. The elements of the FDATA vector are permuted appropriately and stored in f,
yielding the equivalent data (xi, fi) for i = 1 to N. The following preliminary checks are
performed on the data. We verify that

1

1

1, , 1
1, ,
1, , 1

i i

i i

i i k

x x i N
i N
i N k

�

�

�

� � �

� �

� � � �

t t
t t

�

�

�

The first test checks to see that the abscissas are distinct. The second and third inequalities
verify that a valid knot sequence has been specified.

In order for the interpolation matrix to be nonsingular, we also check tk
 xi
 tN + 1 for i = 1 to
N. This first inequality in the last check is necessary since the method used to generate the
entries of the interpolation matrix requires that the k possibly nonzero B-splines at xi,

Bj - k +1, �, Bj where j satisfies tj
 xi < tj + 1

be well-defined (that is, j � k + 1 	 1).

General conditions are not known for the exact behavior of the error in spline interpolation�
however, if t and x are selected properly and the data points arise from the values of a smooth
(say C k) function f, i.e. fi = f(xi), then the error will behave in a predictable fashion. The
maximum absolute error satisfies

� �

� �

� �1 1
, ,k N k N

kkf s C f
�

�

� �
t t t t

t

where

1, ,
: max i ii k N �

�

� �t t t
�

For more information on this problem, see de Boor (1978, Chapter 13) and the references
therein. This routine can be used in place of the IMSL routine CSINT (page 590) by calling
BSNAK (page 625) to obtain the proper knots, then calling BSINT yielding the B-spline
coefficients, and finally calling IMSL routine BSCPP (page 680) to convert to piecewise
polynomial form.

BSNAK
Computes the “not-a-knot” spline knot sequence.

Required Arguments
NDATA — Number of data points. (Input)

626 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

XDATA — Array of length NDATA containing the location of the data points. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length NDATA + KORDER containing the knot sequence. (Output)

FORTRAN 90 Interface
Generic: CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

Specific: The specific interface names are S_BSNAK and D_BSNAK.

FORTRAN 77 Interface
Single: CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)

Double: The double precision name is DBSNAK.

Example

In this example, we compute (for k = 3� �, 8) six spline interpolants sk to F(x) = sin(10x3) on
the interval [0,1]. The routine BSNAK is used to generate the knot sequences for sk and then
BSINT (page 622) is called to obtain the interpolant. We evaluate the absolute error

|sk � F|

at 100 equally spaced points and print the maximum error for each k.
 USE IMSL_LIBRARIES
 INTEGER KMAX, KMIN, NDATA
 PARAMETER (KMAX=8, KMIN=3, NDATA=20)
!
 INTEGER I, K, KORDER, NOUT
 REAL ABS, AMAX1, BSCOEF(NDATA), DIF, DIFMAX, F,&
 FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),&
 XKNOT(KMAX+NDATA), XT
 INTRINSIC ABS, AMAX1, FLOAT, SIN
! Define function and tau function
 F(X) = SIN(10.0*X*X*X)
 T(X) = 1.0 - X*X
! Set up data
 DO 10 I=1, NDATA
 XT = FLOAT(I-1)/FLOAT(NDATA-1)
 XDATA(I) = T(XT)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Loop over different orders
 DO 30 K=KMIN, KMAX

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 627

 KORDER = K
! Generate knots
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
! Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
 DIFMAX = 0.0
 DO 20 I=1, 100
 XT = FLOAT(I-1)/99.0
! Evaluate spline
 ST = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF)
 FT = F(XT)
 DIF = ABS(FT-ST)
! Compute maximum difference
 DIFMAX = AMAX1(DIF,DIFMAX)
 20 CONTINUE
! Print maximum difference
 WRITE (NOUT,99998) KORDER, DIFMAX
 30 CONTINUE
!
99998 FORMAT (’ ’, I3, 5X, F9.4)
99999 FORMAT (’ KORDER’, 5X, ’Maximum difference’, /)
 END

Output
KORDER Maximum difference
 3 0.0080
 4 0.0026
 5 0.0004
 6 0.0008
 7 0.0010
 8 0.0004

Comments
1. Workspace may be explicitly provided, if desired, by use of B2NAK/DB2NAK. The

reference is:

CALL B2NAK (NDATA, XDATA, KORDER, XKNOT, XSRT, IWK)

The additional arguments are as follows:

XSRT — Work array of length NDATA to hold the sorted XDATA values. If XDATA is not
needed, XSRT may be the same as XDATA.

IWK — Work array of length NDATA to hold the permutation of XDATA.

2. Informational error
Type Code

 4 4 The XDATA values must be distinct.

3. The first knot is at the left endpoint and the last knot is slightly beyond the last
endpoint. Both endpoints have multiplicity KORDER.

628 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

4. Interior knots have multiplicity one.

Description
Given the data points x = XDATA , the order of the spline k = KORDER, and the number
N = NDATA of elements in XDATA, the subroutine BSNAK returns in t = XKNOT a knot sequence
that is appropriate for interpolation of data on x by splines of order k. The vector t contains the
knot sequence in its first N + k positions. If k is even and we assume that the entries in the input
vector x are increasing, then t is returned as

ti = x1 for i = 1, �, k

ti = xi - k/2 for i = k + 1, �, N

ti = xN + � for i = N + 1, �, N + k

where � is a small positive constant. There is some discussion concerning this selection of knots
in de Boor (1978, page 211). If k is odd, then t is returned as

1 for = 1, , i x i k�t �

1 11
2 2

() / 2 for = + 1, , i k ki i
x x i k N

� �

� � �

� �t �

for = + 1, , + i Nx i N N k�� �t �

It is not necessary to sort the values in x since this is done in the routine BSNAK.

BSOPK
Computes the “optimal” spline knot sequence.

Required Arguments
NDATA — Number of data points. (Input)

XDATA — Array of length NDATA containing the location of the data points. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length NDATA + KORDER containing the knot sequence. (Output)

FORTRAN 90 Interface
Generic: CALL BSOPK (NDATA, XDATA, KORDER, XKNOT)

Specific: The specific interface names are S_BSOPK and D_BSOPK.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 629

FORTRAN 77 Interface
Single: CALL BSOPK (NDATA, XDATA, KORDER, XKNOT)

Double: The double precision name is DBSOPK.

Example

In this example, we compute (for k = 3� �, 8) six spline interpolants sk to F(x) = sin(10x3) on
the interval [0, 1]. The routine BSOPK is used to generate the knot sequences for sk and then
BSINT (page 622) is called to obtain the interpolant. We evaluate the absolute error

| sk � F |

at 100 equally spaced points and print the maximum error for each k.
 USE BSOPK_INT
 USE BSINT_INT
 USE UMACH_INT
 USE BSVAL_INT
 INTEGER KMAX, KMIN, NDATA
 PARAMETER (KMAX=8, KMIN=3, NDATA=20)
!
 INTEGER I, K, KORDER, NOUT
 REAL ABS, AMAX1, BSCOEF(NDATA), DIF, DIFMAX, F,&
 FDATA(NDATA), FLOAT, FT, SIN, ST, T, X, XDATA(NDATA),&
 XKNOT(KMAX+NDATA), XT
 INTRINSIC ABS, AMAX1, FLOAT, SIN
! Define function and tau function
 F(X) = SIN(10.0*X*X*X)
 T(X) = 1.0 - X*X
! Set up data
 DO 10 I=1, NDATA
 XT = FLOAT(I-1)/FLOAT(NDATA-1)
 XDATA(I) = T(XT)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Loop over different orders
 DO 30 K=KMIN, KMAX
 KORDER = K
! Generate knots
 CALL BSOPK (NDATA, XDATA, KORDER, XKNOT)
! Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
 DIFMAX = 0.0
 DO 20 I=1, 100
 XT = FLOAT(I-1)/99.0
! Evaluate spline
 ST = BSVAL(XT,KORDER,XKNOT,NDATA,BSCOEF)
 FT = F(XT)

630 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 DIF = ABS(FT-ST)
! Compute maximum difference
 DIFMAX = AMAX1(DIF,DIFMAX)
 20 CONTINUE
! Print maximum difference
 WRITE (NOUT,99998) KORDER, DIFMAX
 30 CONTINUE
!
99998 FORMAT (’ ’, I3, 5X, F9.4)
99999 FORMAT (’ KORDER’, 5X, ’Maximum difference’, /)
 END

Output
KORDER Maximum difference

 3 0.0096
 4 0.0018
 5 0.0005
 6 0.0004
 7 0.0007
 8 0.0035

Comments
1. Workspace may be explicitly provided, if desired, by use of B2OPK/DB2OPK. The

reference is:

CALL B2OPK (NDATA, XDATA, KORDER, XKNOT, MAXIT, WK, IWK)

The additional arguments are as follows:

MAXIT — Maximum number of iterations of Newton’s Method. (Input) A suggested
value is 10.

WK — Work array of length (NDATA � KORDER) * (3 * KORDER � 2) + 6 *
NDATA + 2 * KORDER + 5.

IWK — Work array of length NDATA.

2. Informational errors
Type Code

 3 6 Newton’s method iteration did not converge.
 4 3 The XDATA values must be distinct.
 4 4 Interpolation matrix is singular. The XDATA values may be too close

together.

3. The default value for MAXIT is 10� this can be overridden by calling B2OPK/DB2OPK
directly with a larger value.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 631

Description
Given the abscissas x = XDATA for an interpolation problem and the order of the spline
interpolant k = KORDER, BSOPK returns the knot sequence t = XKNOT that minimizes the constant
in the error estimate

|| f � s ||
 c || f (k) ||

In the above formula, f is any function in Ck and s is the spline interpolant to f at the abscissas x
with knot sequence t.

The algorithm is based on a routine described in de Boor (1978, page 204), which in turn is
based on a theorem of Micchelli, Rivlin and Winograd (1976).

BS2IN
Computes a two-dimensional tensor-product spline interpolant, returning the tensor-product B-
spline coefficients.

Required Arguments
XDATA — Array of length NXDATA containing the data points in the X-direction. (Input)

XDATA must be strictly increasing.

YDATA — Array of length NYDATA containing the data points in the Y-direction. (Input)
YDATA must be strictly increasing.

FDATA — Array of size NXDATA by NYDATA containing the values to be interpolated.
(Input)
FDATA (I, J) is the value at (XDATA (I)� YDATA(J)).

KXORD — Order of the spline in the X-direction. (Input)
KXORD must be less than or equal to NXDATA.

KYORD — Order of the spline in the Y-direction. (Input)
KYORD must be less than or equal to NYDATA.

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the X-direction.
(Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the Y-direction.
(Input)
YKNOT must be nondecreasing.

BSCOEF — Array of length NXDATA * NYDATA containing the tensor-product B-spline
coefficients. (Output)
BSCOEF is treated internally as a matrix of size NXDATA by NYDATA.

632 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Optional Arguments
NXDATA — Number of data points in the X-direction. (Input)

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the Y-direction. (Input)
Default: NYDATA = size (YDATA,1).

LDF — The leading dimension of FDATA exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDF = size (FDATA,1).

FORTRAN 90 Interface
Generic: CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,

 BSCOEF [,…])

Specific: The specific interface names are S_BS2IN and D_BS2IN.

FORTRAN 77 Interface
Single: CALL BS2IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,

 KXORD, KYORD, XKNOT, YKNOT, BSCOEF)

Double: The double precision name is DBS2IN.

Example
In this example, a tensor product spline interpolant to a function f is computed. The values of the
interpolant and the error on a 4 � 4 grid are displayed.
USE BS2IN_INT
USE BSNAK_INT
USE BS2VL_INT
USE UMACH_INT

! SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NXVEC, NYDATA,&
 NYKNOT, NYVEC
 PARAMETER (KXORD=5, KYORD=2, NXDATA=21, NXVEC=4, NYDATA=6,&
 NYVEC=4, LDF=NXDATA, NXKNOT=NXDATA+KXORD,&
 NYKNOT=NYDATA+KYORD)
!
 INTEGER I, J, NOUT, NXCOEF, NYCOEF
 REAL BSCOEF(NXDATA,NYDATA), F, FDATA(LDF,NYDATA), FLOAT,&
 X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(NXVEC), Y,&
 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(NYVEC),VL
 INTRINSIC FLOAT
! Define function
 F(X,Y) = X*X*X + X*Y
! Set up interpolation points
 DO 10 I=1, NXDATA

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 633

 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
! Generate knot sequence
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
! Set up interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/5.0
 20 CONTINUE
! Generate knot sequence
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
! Generate FDATA
 DO 40 I=1, NYDATA
 DO 30 J=1, NXDATA
 FDATA(J,I) = F(XDATA(J),YDATA(I))
 30 CONTINUE
 40 CONTINUE
! Interpolate
 CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,&
 BSCOEF)
 NXCOEF = NXDATA
 NYCOEF = NYDATA
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Print over a grid of
! [0.0,1.0] x [0.0,1.0] at 16 points.
 DO 50 I=1, NXVEC
 XVEC(I) = FLOAT(I-1)/3.0
 50 CONTINUE
 DO 60 I=1, NYVEC
 YVEC(I) = FLOAT(I-1)/3.0
 60 CONTINUE
! Evaluate spline
 DO 80 I=1, NXVEC
 DO 70 J=1, NYVEC
 VL = BS2VL (XVEC(I), YVEC(J), KXORD, KYORD, XKNOT,&
 YKNOT, NXCOEF, NYCOEF, BSCOEF)

 WRITE (NOUT,’(3F15.4,F15.6)’) XVEC(I), YVEC(J),&
 VL, (F(XVEC(I),YVEC(J))-VL)
 70 CONTINUE
 80 CONTINUE
99999 FORMAT (13X, ’X’, 14X, ’Y’, 10X, ’S(X,Y)’, 9X, ’Error’)
 END

Output
 X Y S(X,Y) Error
0.0000 0.0000 0.0000 0.000000
0.0000 0.3333 0.0000 0.000000
0.0000 0.6667 0.0000 0.000000
0.0000 1.0000 0.0000 0.000000
0.3333 0.0000 0.0370 0.000000
0.3333 0.3333 0.1481 0.000000
0.3333 0.6667 0.2593 0.000000

634 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

0.3333 1.0000 0.3704 0.000000
0.6667 0.0000 0.2963 0.000000
0.6667 0.3333 0.5185 0.000000
0.6667 0.6667 0.7407 0.000000
0.6667 1.0000 0.9630 0.000000
1.0000 0.0000 1.0000 0.000000
1.0000 0.3333 1.3333 0.000000
1.0000 0.6667 1.6667 0.000000
1.0000 1.0000 2.0000 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of B22IN/DB22IN. The

reference is:

CALL B22IN (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD,
KYORD, XKNOT, YKNOT, BSCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work array of length NXDATA * NYDATA + MAX((2 * KXORD �1)
NXDATA (2 * KYORD � 1) * NYDATA) + MAX((3 * KXORD � 2) *
NXDATA (3 * KYORD � 2) * NYDATA) + 2 * MAX(NXDATA NYDATA).

IWK — Work array of length MAX(NXDATA NYDATA).

2. Informational errors
Type Code

 3 1 Interpolation matrix is nearly singular. LU factorization failed.
 3 2 Interpolation matrix is nearly singular. Iterative refinement failed.
 4 6 The XDATA values must be strictly increasing.
 4 7 The YDATA values must be strictly increasing.
 4 13 Multiplicity of the knots cannot exceed the order of the spline.
 4 14 The knots must be nondecreasing.
 4 15 The I-th smallest element of the data point array must be greater

than the I-th knot and less than the (I + K_ORD)-th knot.
 4 16 The largest element of the data point array must be greater than the

(N_DATA)-th knot and less than or equal to the (N_DATA + K_ORD)-th
knot.

 4 17 The smallest element of the data point array must be greater than or
equal to the first knot and less than the (K_ORD + 1)st knot.

Description
The routine BS2IN computes a tensor product spline interpolant. The tensor product spline
interpolant to data {(xi� yj� fij)}, where 1
 i
 Nx and 1
 j
 Ny, has the form

� � � �, , , ,
1

y

x x y y

N

n k m k
m

B x B y
�

� t t

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 635

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in
KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences
(XKNOT and YKNOT). The algorithm requires that

tx(kx)
 xi
 tx(Nx + 1) 1
 i
 Nx

ty(ky)
 yj
 ty(Ny + 1) 1
 j
 Ny

Tensor product spline interpolants in two dimensions can be computed quite efficiently by
solving (repeatedly) two univariate interpolation problems. The computation is motivated by the
following observations. It is necessary to solve the system of equations

� � � �, , , ,
1 1

y x

x x y y

N N

nm n k i m k j ij
m n

c B x B y f
� �

��� t t

Setting

� �, ,1
x

x

N
mi nm n k x in

h c B x
�

�� t

we note that for each fixed i from 1 to Nx, we have Ny linear equations in the same number of
unknowns as can be seen below:

� �, ,
1

y

y y

N

mi m k j ij
m

h B y f
�

�� t

The same matrix appears in all of the equations above:

� �, , 1 ,
y y ym k jB y m j N� � � �� �t

Thus, we need only factor this matrix once and then apply this factorization to the Nx righthand
sides. Once this is done and we have computed hmi, then we must solve for the coefficients cnm
using the relation

� �, ,
1

x

x x

N

nm n k i mi
n

c B x h
�

�� t

for m from 1 to Ny, which again involves one factorization and Ny solutions to the different
right-hand sides. The routine BS2IN is based on the routine SPLI2D by de Boor (1978, page
347).

BS3IN
Computes a three-dimensional tensor-product spline interpolant, returning the tensor-product B-
spline coefficients.

636 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Required Arguments
XDATA — Array of length NXDATA containing the data points in the x-direction. (Input)

XDATA must be increasing.

YDATA — Array of length NYDATA containing the data points in the y-direction. (Input)
YDATA must be increasing.

ZDATA — Array of length NZDATA containing the data points in the z-direction. (Input)
ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to be
interpolated. (Input)
FDATA (I� J� K) contains the value at (XDATA (I)� YDATA(J)� ZDATA(K)).

KXORD — Order of the spline in the x-direction. (Input)
KXORD must be less than or equal to NXDATA.

KYORD — Order of the spline in the y-direction. (Input)
KYORD must be less than or equal to NYDATA.

KZORD — Order of the spline in the z-direction. (Input)
KZORD must be less than or equal to NZDATA.

XKNOT — Array of length NXDATA + KXORD containing the knot sequence in the x-direction.
(Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYDATA + KYORD containing the knot sequence in the y-direction.
(Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length NZDATA + KZORD containing the knot sequence in the z-direction.
(Input)
ZKNOT must be nondecreasing.

BSCOEF — Array of length NXDATA * NYDATA * NZDATA containing the tensor-product B-
spline coefficients. (Output)
BSCOEF is treated internally as a matrix of size NXDATA by NYDATA by NZDATA.

Optional Arguments
NXDATA — Number of data points in the x-direction. (Input)

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)
Default: NYDATA = size (YDATA,1).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 637

NZDATA — Number of data points in the z-direction. (Input)
Default: NZDATA = size (ZDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the
calling program. (Input)
Default: LDF = size (FDATA,1).

MDF — Middle dimension of FDATA exactly as specified in the dimension statement of the
calling program. (Input)
Default: MDF = size (FDATA,2).

FORTRAN 90 Interface
Generic: CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD,

KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF [,…])

Specific: The specific interface names are S_BS3IN and D_BS3IN.

FORTRAN 77 Interface
Single: CALL BS3IN (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA,

FDATA, LDF, MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT,
BSCOEF)

Double: The double precision name is DBS3IN.

Example
In this example, a tensor-product spline interpolant to a function f is computed. The values of
the interpolant and the error on a 4 � 4 � 2 grid are displayed.
USE BS3IN_INT
 USE BSNAK_INT
 USE UMACH_INT
 USE BS3GD_INT

! SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT, NXVEC,&
 NYDATA, NYKNOT, NYVEC, NZDATA, NZKNOT, NZVEC
 PARAMETER (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NXVEC=4,&
 NYDATA=6, NYVEC=4, NZDATA=8, NZVEC=2, LDF=NXDATA,&
 MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,&
 NZKNOT=NZDATA+KZORD)
!
 INTEGER I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF
 REAL BSCOEF(NXDATA,NYDATA,NZDATA), F,&
 FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(NXVEC,NYVEC,NZVEC)&
 , X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(NXVEC), Y,&
 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(NYVEC), Z,&
 ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZVEC)
 INTRINSIC FLOAT
! Define function.

638 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 F(X,Y,Z) = X*X*X + X*Y*Z
! Set up X-interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
! Set up Y-interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE
! Set up Z-interpolation points
 DO 30 I=1, NZDATA
 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)
 30 CONTINUE
! Generate knots
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)
! Generate FDATA
 DO 50 K=1, NZDATA
 DO 40 I=1, NYDATA
 DO 40 J=1, NXDATA
 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))
 40 CONTINUE
 50 CONTINUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Interpolate
 CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, &
 KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF)
!
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 NZCOEF = NZDATA
! Write heading
 WRITE (NOUT,99999)
! Print over a grid of
! [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]
! at 32 points.
 DO 60 I=1, NXVEC
 XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0
 60 CONTINUE
 DO 70 I=1, NYVEC
 YVEC(I) = FLOAT(I-1)/3.0
 70 CONTINUE
 DO 80 I=1, NZVEC
 ZVEC(I) = FLOAT(I-1)
 80 CONTINUE
! Call the evaluation routine.
 CALL BS3GD (0, 0, 0, XVEC, YVEC, ZVEC,&
 KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE)
 DO 110 I=1, NXVEC
 DO 100 J=1, NYVEC
 DO 90 K=1, NZVEC
 WRITE (NOUT,’(4F13.4, F13.6)’) XVEC(I), YVEC(K),&
 ZVEC(K), VALUE(I,J,K),&

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 639

 F(XVEC(I),YVEC(J),ZVEC(K))&
 - VALUE(I,J,K)
 90 CONTINUE
 100 CONTINUE
 110 CONTINUE
99999 FORMAT (10X, ’X’, 11X, ’Y’, 10X, ’Z’, 10X, ’S(X,Y,Z)’, 7X,&
 ’Error’)
 END

Output
 X Y Z S(X,Y,Z) Error
-1.0000 0.0000 0.0000 -1.0000 0.000000
-1.0000 0.3333 1.0000 -1.0000 0.000000
-1.0000 0.0000 0.0000 -1.0000 0.000000
-1.0000 0.3333 1.0000 -1.3333 0.000000
-1.0000 0.0000 0.0000 -1.0000 0.000000
-1.0000 0.3333 1.0000 -1.6667 0.000000
-1.0000 0.0000 0.0000 -1.0000 0.000000
-1.0000 0.3333 1.0000 -2.0000 0.000000
-0.3333 0.0000 0.0000 -0.0370 0.000000
-0.3333 0.3333 1.0000 -0.0370 0.000000
-0.3333 0.0000 0.0000 -0.0370 0.000000
-0.3333 0.3333 1.0000 -0.1481 0.000000
-0.3333 0.0000 0.0000 -0.0370 0.000000
-0.3333 0.3333 1.0000 -0.2593 0.000000
-0.3333 0.0000 0.0000 -0.0370 0.000000
-0.3333 0.3333 1.0000 -0.3704 0.000000
 0.3333 0.0000 0.0000 0.0370 0.000000
 0.3333 0.3333 1.0000 0.0370 0.000000
 0.3333 0.0000 0.0000 0.0370 0.000000
 0.3333 0.3333 1.0000 0.1481 0.000000
 0.3333 0.0000 0.0000 0.0370 0.000000
 0.3333 0.3333 1.0000 0.2593 0.000000
 0.3333 0.0000 0.0000 0.0370 0.000000
 0.3333 0.3333 1.0000 0.3704 0.000000
 1.0000 0.0000 0.0000 1.0000 0.000000
 1.0000 0.3333 1.0000 1.0000 0.000000
 1.0000 0.0000 0.0000 1.0000 0.000000
 1.0000 0.3333 1.0000 1.3333 0.000000
 1.0000 0.0000 0.0000 1.0000 0.000000
 1.0000 0.3333 1.0000 1.6667 0.000000
 1.0000 0.0000 0.0000 1.0000 0.000000
 1.0000 0.3333 1.0000 2.0000 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of B23IN/DB23IN. The

reference is:

CALL B23IN (NXDATA, XDATA, NYDATA, YDATA, NZDAYA, ZDATA, FDATA,
LDF, MDF, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, WK,
IWK)

The additional arguments are as follows:

640 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

WK — Work array of length MAX((2 * KXORD � 1) * NXDATA, (2 * KYORD
� 1) * NYDATA, (2 * KZORD � 1) * NZDATA) + MAX((3 * KXORD �
2) * NXDATA, (3 * KYORD � 2) * NYDATA + (3 * KZORD � 2) *
NZDATA) + NXDATA * NYDATA *NZDATA + 2 * MAX(NXDATA, NYDATA,
NZDATA).

IWK — Work array of length MAX(NXDATA, NYDATA, NZDATA).

2. Informational errors
Type Code

 3 1 Interpolation matrix is nearly singular. LU factorization failed.
 3 2 Interpolation matrix is nearly singular. Iterative refinement failed.
 4 13 Multiplicity of the knots cannot exceed the order of the spline.
 4 14 The knots must be nondecreasing.
 4 15 The I-th smallest element of the data point array must be greater

than the Ith knot and less than the (I + K_ORD)-th knot.
 4 16 The largest element of the data point array must be greater than the

(N_DATA)-th knot and less than or equal to the (N_DATA + K_ORD)-th
knot.

 4 17 The smallest element of the data point array must be greater than or
equal to the first knot and less than the (K_ORD + 1)st knot.

 4 18 The XDATA values must be strictly increasing.
 4 19 The YDATA values must be strictly increasing.
 4 20 The ZDATA values must be strictly increasing.

Description
The routine BS3IN computes a tensor-product spline interpolant. The tensor-product spline
interpolant to data {(xi, yj, zk, fijk)}, where 1 � i � Nx, 1 � j � Ny, and 1 � k � Nz has the form

� � � � � �, , , , , ,
1 1 1

y xz

x x y y z z

N NN

nml n k m k l k
l m n

c B x B y B z
� � �

��� t t t

where kx, ky, and kz are the orders of the splines (these numbers are passed to the subroutine in
KXORD, KYORD, and KZORD, respectively). Likewise, tx, ty, and tz are the corresponding knot
sequences (XKNOT, YKNOT, and ZKNOT). The algorithm requires that

� � � �

� � � �
� � � �

1 1

1 1

1 1

x x i x x x

y y j y y y

z z k z z z

k x N i N

k y N j N

k z N k N

� � � � �

� � � � �

� � � � �

t t

t t

t t

Tensor-product spline interpolants can be computed quite efficiently by solving (repeatedly)
three univariate interpolation problems. The computation is motivated by the following
observations. It is necessary to solve the system of equations

� � � � � �, , , , , ,
1 1 1

y xz

x x y y z z

N NN

nml n k i m k j l k k ijk
l m n

c B x B y B z f
� � �

���� t t t

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 641

Setting

� � � �, , , ,1 1
y x

x x y y

N N
lij nml n k i m k jm n

h c B x B y
� �

�� � t t

we note that for each fixed pair ij we have Nz linear equations in the same number of unknowns
as can be seen below:

� �, ,
1

z

z z

N

lij l k k ijk
l

h B z f
�

�� t

The same interpolation matrix appears in all of the equations above:

� �, , 1 ,
z zl k k zB z l k N� � � �� �t

Thus, we need only factor this matrix once and then apply it to the NxNy right-hand sides. Once
this is done and we have computed hlij, then we must solve for the coefficients cnml using the
relation

� � � �, , , ,
1 1

y x

x x y y

N N

nml n k i m k j lij
m n

c B x B y h
� �

��� t t

that is the bivariate tensor-product problem addressed by the IMSL routine BS2IN (page 631).
The interested reader should consult the algorithm description in the two-dimensional routine if
more detail is desired. The routine BS3IN is based on the routine SPLI2D by de Boor (1978,
page 347).

BSVAL
This function evaluates a spline, given its B-spline representation.

Function Return Value
BSVAL — Value of the spline at X. (Output)

Required Arguments
X — Point at which the spline is to be evaluated. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length KORDER + NCOEF containing the knot sequence. (Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

642 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: BSVAL(X, KORDER, XKNOT, NCOEF, BSCOEF)

Specific: The specific interface names are S_BSVAL and D_BSVAL.

FORTRAN 77 Interface
Single: BSVAL(X, KORDER, XKNOT, NCOEF, BSCOEF)

Double: The double precision function name is DBSVAL.

Example
For an example of the use of BSVAL, see IMSL routine BSINT (page 622).

Comments
1. Workspace may be explicitly provided, if desired, by use of B2VAL/DB2VAL. The

reference is:

 CALL B2VAL(X, KORDER, XKNOT, NCOEF, BSCOEF, WK1, WK2, WK3)

The additional arguments are as follows:

WK1 — Work array of length KORDER.

WK2 — Work array of length KORDER.

WK3 — Work array of length KORDER.

2. Informational errors

Type Code
 4 4 Multiplicity of the knots cannot exceed the order of the spline.
 4 5 The knots must be nondecreasing.

Description
The function BSVAL evaluates a spline (given its B-spline representation) at a specific point. It is
a special case of the routine BSDER (page 643), which evaluates the derivative of a spline given
its B-spline representation. The routine BSDER is based on the routine BVALUE by de Boor
(1978, page 144).

Specifically, given the knot vector t, the number of coefficients N, the coefficient vector a, and a
point x, BSVAL returns the number

� �,
1

N

j j k
j

a B x
�

�

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 643

where Bj,k is the j-th B-spline of order k for the knot sequence t. Note that this function routine
arbitrarily treats these functions as if they were right continuous near XKNOT(KORDER) and left
continuous near XKNOT(NCOEF + 1). Thus, if we have KORDER knots stacked at the left or right
end point, and if we try to evaluate at these end points, then we will get the value of the limit
from the interior of the interval.

BSDER
This function evaluates the derivative of a spline, given its B-spline representation.

Function Return Value
BSDER — Value of the IDERIV-th derivative of the spline at X. (Output)

Required Arguments
IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the value of the spline.

X — Point at which the spline is to be evaluated. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length NCOEF + KORDER containing the knot sequence. (Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

FORTRAN 90 Interface
Generic: BSDER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF)

Specific: The specific interface names are S_BSDER and D_BSDER.

FORTRAN 77 Interface
Single: BSDER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF)

Double: The double precision function name is DBSDER.

Example
A spline interpolant to the function

()f x x�

644 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

is constructed using BSINT (page 622). The B-spline representation, which is returned by the
IMSL routine BSINT, is then used by BSDER to compute the value and derivative of the
interpolant. The output consists of the interpolation values and the error at the data points and
the midpoints. In addition, we display the value of the derivative and the error at these same
points.

 USE BSDER_INT
 USE BSINT_INT
 USE BSNAK_INT
 USE UMACH_INT

 INTEGER KORDER, NDATA, NKNOT
 PARAMETER (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER)
!
 INTEGER I, NCOEF, NOUT
 REAL BSCOEF(NDATA), BT0, BT1, DF, F, FDATA(NDATA),&
 FLOAT, SQRT, X, XDATA(NDATA), XKNOT(NKNOT), XT
 INTRINSIC FLOAT, SQRT
! Define function and derivative
 F(X) = SQRT(X)
 DF(X) = 0.5/SQRT(X)
! Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I)/FLOAT(NDATA)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
! Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Print on a finer grid
 NCOEF = NDATA
 XT = XDATA(1)
! Evaluate spline
 BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1
 DO 20 I=2, NDATA
 XT = (XDATA(I-1)+XDATA(I))/2.0
! Evaluate spline
 BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1
 XT = XDATA(I)
! Evaluate spline
 BT0 = BSDER(0,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 BT1 = BSDER(1,XT,KORDER,XKNOT,NCOEF,BSCOEF)
 WRITE (NOUT,99998) XT, BT0, F(XT) - BT0, BT1, DF(XT) - BT1
 20 CONTINUE
99998 FORMAT (’ ’, F6.4, 5X, F7.4, 3X, F10.6, 5X, F8.4, 3X, F10.6)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 645

99999 FORMAT (6X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 8X, ’S’’(X)’, 8X,&
 ’Error’, /)
 END

Output
 X S(X) Error S’(X) Error

0.2000 0.4472 0.000000 1.0423 0.075738
0.3000 0.5456 0.002084 0.9262 -0.013339
0.4000 0.6325 0.000000 0.8101 -0.019553
0.5000 0.7077 -0.000557 0.6940 0.013071
0.6000 0.7746 0.000000 0.6446 0.000869
0.7000 0.8366 0.000071 0.5952 0.002394
0.8000 0.8944 0.000000 0.5615 -0.002525
0.9000 0.9489 -0.000214 0.5279 -0.000818
1.0000 1.0000 0.000000 0.4942 0.005814

Comments
1. Workspace may be explicitly provided, if desired, by use of B2DER/DB2DER. The

reference is:

CALL B2DER(IDERIV, X, KORDER, XKNOT, NCOEF, BSCOEF, WK1, WK2, WK3)

The additional arguments are as follows:

WK1 — Array of length KORDER.

WK2 — Array of length KORDER.

WK3 — Array of length KORDER.

2. Informational errors

Type Code
 4 4 Multiplicity of the knots cannot exceed the order of the spline.
 4 5 The knots must be nondecreasing.

Description
The function BSDER produces the value of a spline or one of its derivatives (given its B-spline
representation) at a specific point. The function BSDER is based on the routine BVALUE by de
Boor (1978, page 144).

Specifically, given the knot vector t, the number of coefficients N, the coefficient vector a, the
order of the derivative i and a point x, BSDER returns the number

� � � �,
1

N
i

j j k
j

a B x
�

�

where Bj,k is the j-th B-spline of order k for the knot sequence t. Note that this function routine
arbitrarily treats these functions as if they were right continuous near XKNOT(KORDER) and left

646 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

continuous near XKNOT(NCOEF + 1). Thus, if we have KORDER knots stacked at the left or right
end point, and if we try to evaluate at these end points, then we will get the value of the limit
from the interior of the interval.

BS1GD
Evaluates the derivative of a spline on a grid, given its B-spline representation.

Required Arguments
IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the value of the spline.

XVEC — Array of length N containing the points at which the spline is to be evaluated.
(Input)
XVEC should be strictly increasing.

KORDER — Order of the spline. (Input)

XKNOT — Array of length NCOEF + KORDER containing the knot sequence. (Input)
XKNOT must be nondecreasing.

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

VALUE — Array of length N containing the values of the IDERIV-th derivative of the spline
at the points in XVEC. (Output)

Optional Arguments
N — Length of vector XVEC. (Input)

Default: N = size (XVEC,1).

NCOEF — Number of B-spline coefficients. (Input)
Default: NCOEF = size (BSCOEF,1).

FORTRAN 90 Interface
Generic: CALL BS1GD (IDERIV, XVEC, KORDER, XKNOT, BSCOEF, VALUE [,…])

Specific: The specific interface names are S_BS1GD and D_BS1GD.

FORTRAN 77 Interface
Single: CALL BS1GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF, BSCOEF,

 VALUE)

Double: The double precision name is DBS1GD.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 647

Example
To illustrate the use of BS1GD, we modify the example program for BSDER (page 643). In this
example, a quadratic (order 3) spline interpolant to F is computed. The values and derivatives of
this spline are then compared with the exact function and derivative values. The routine BS1GD
is based on the routines BSPLPP and PPVALU in de Boor (1978, page 89).

 USE BS1GD_INT
 USE BSINT_INT
 USE BSNAK_INT
 USE UMACH_INT
 INTEGER KORDER, NDATA, NKNOT, NFGRID
 PARAMETER (KORDER=3, NDATA=5, NKNOT=NDATA+KORDER, NFGRID = 9)
! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, NCOEF, NOUT
 REAL ANS0(NFGRID), ANS1(NFGRID), BSCOEF(NDATA),&
 FDATA(NDATA),&
 X, XDATA(NDATA), XKNOT(NKNOT), XVEC(NFGRID)
! SPECIFICATIONS FOR INTRINSICS
 INTRINSIC FLOAT, SQRT
 REAL FLOAT, SQRT
! SPECIFICATIONS FOR SUBROUTINES
 REAL DF, F
!
 F(X) = SQRT(X)
 DF(X) = 0.5/SQRT(X)
!
 CALL UMACH (2, NOUT)
! Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I)/FLOAT(NDATA)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
! Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
 WRITE (NOUT,99999)
! Print on a finer grid
 NCOEF = NDATA
 XVEC(1) = XDATA(1)
 DO 20 I=2, 2*NDATA - 2, 2
 XVEC(I) = (XDATA(I/2+1)+XDATA(I/2))/2.0
 XVEC(I+1) = XDATA(I/2+1)
 20 CONTINUE
 CALL BS1GD (0, XVEC, KORDER, XKNOT, BSCOEF, ANS0)
 CALL BS1GD (1, XVEC, KORDER, XKNOT, BSCOEF, ANS1)
 DO 30 I=1, 2*NDATA - 1
 WRITE (NOUT,99998) XVEC(I), ANS0(I), F(XVEC(I)) - ANS0(I),&
 ANS1(I), DF(XVEC(I)) - ANS1(I)
 30 CONTINUE
99998 FORMAT (’ ’, F6.4, 5X, F7.4, 5X, F8.4, 5X, F8.4, 5X, F8.4)
99999 FORMAT (6X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 8X, ’S’’(X)’, 8X,&
 ’Error’, /)
 END

648 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Output
 X S(X) Error S’(X) Error

0.2000 0.4472 0.0000 1.0423 0.0757
0.3000 0.5456 0.0021 0.9262 -0.0133
0.4000 0.6325 0.0000 0.8101 -0.0196
0.5000 0.7077 -0.0006 0.6940 0.0131
0.6000 0.7746 0.0000 0.6446 0.0009
0.7000 0.8366 0.0001 0.5952 0.0024
0.8000 0.8944 0.0000 0.5615 -0.0025
0.9000 0.9489 -0.0002 0.5279 -0.0008
1.0000 1.0000 0.0000 0.4942 0.0058

Comments
1. Workspace may be explicitly provided, if desired, by use of B21GD/DB21GD. The

reference is:

CALL B21GD (IDERIV, N, XVEC, KORDER, XKNOT, NCOEF, BSCOEF,
VALUE, RWK1, RWK2, IWK3, RWK4, RWK5, RWK6)

The additional arguments are as follows:

RWK1 — Real array of length KORDER * (NCOEF � KORDER + 1).

RWK2 — Real array of length NCOEF � KORDER + 2.

IWK3 — Integer array of length N.

RWK4 — Real array of length N.

RWK5 — Real array of length N.

RWK6 — Real array of length (KORDER + 3) * KORDER

2. Informational error

Type Code
 4 5 The points in XVEC must be strictly increasing

Description
The routine BS1GD evaluates a B-spline (or its derivative) at a vector of points. That is, given a
vector x of length n satisfying xi < xi + 1 for i = 1, �, n � 1, a derivative value j, and a B-spline s
that is represented by a knot sequence and coefficient sequence, this routine returns the values

� � � � 1, ,j
is x i n� �

in the array VALUE. The functionality of this routine is the same as that of BSDER (page 643)
called in a loop, however BS1GD should be much more efficient. This routine converts the

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 649

B-spline representation to piecewise polynomial form using the IMSL routine BSCPP (page
680), and then uses the IMSL routine PPVAL (page 681) for evaluation.

BSITG
This function evaluates the integral of a spline, given its B-spline representation.

Function Return Value
BSITG — Value of the integral of the spline from A to B. (Output)

Required Arguments
A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

KORDER — Order of the spline. (Input)

XKNOT — Array of length KORDER + NCOEF containing the knot sequence. (Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

FORTRAN 90 Interface
Generic: BSITG (A, B, KORDER, XKNOT, NCOEF, BSCOEF)

Specific: The specific interface names are S_BSITG and D_BSITG.

FORTRAN 77 Interface
Single: BSITG (A, B, KORDER, XKNOT, NCOEF, BSCOEF)

Double: The double precision function name is DBSITG.

Example

We integrate the quartic (k = 5) spline that interpolates x3 at the points
{i/10 : i = �10, �, 10} over the interval [0, 1]. The exact answer is 1/4 since the interpolant
reproduces cubic polynomials.

 USE BSITG_INT
 USE BSNAK_INT

650 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 USE BSINT_INT
 USE UMACH_INT
 INTEGER KORDER, NDATA, NKNOT
 PARAMETER (KORDER=5, NDATA=21, NKNOT=NDATA+KORDER)
!
 INTEGER I, NCOEF, NOUT
 REAL A, B, BSCOEF(NDATA), ERROR, EXACT, F,&
 FDATA(NDATA), FI, FLOAT, VAL, X, XDATA(NDATA),&
 XKNOT(NKNOT)
 INTRINSIC FLOAT
! Define function and integral
 F(X) = X*X*X
 FI(X) = X**4/4.0
! Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-11)/10.0
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
! Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
!
 NCOEF = NDATA
 A = 0.0
 B = 1.0
! Integrate from A to B
 VAL = BSITG(A,B,KORDER,XKNOT,NCOEF,BSCOEF)
 EXACT = FI(B) - FI(A)
 ERROR = EXACT - VAL
! Print results
 WRITE (NOUT,99999) A, B, VAL, EXACT, ERROR
99999 FORMAT (’ On the closed interval (’, F3.1, ’,’, F3.1,&
 ’) we have :’, /, 1X, ’Computed Integral = ’, F10.5, /,&
 1X, ’Exact Integral = ’, F10.5, /, 1X, ’Error ’&
 , ’ = ’, F10.6, /, /)
 END

Output
On the closed interval (0.0,1.0) we have :
Computed Integral = 0.25000
Exact Integral = 0.25000
Error = 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of B2ITG/DB2ITG. The

reference is:

CALL B2ITG(A, B, KORDER, XKNOT, NCOEF, BSCOEF, TCOEF,
AJ, DL, DR)

The additional arguments are as follows:

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 651

TCOEF — Work array of length KORDER + 1.

AJ — Work array of length KORDER + 1.

DL — Work array of length KORDER + 1.

DR — Work array of length KORDER + 1.

2. Informational errors

Type Code
 3 7 The upper and lower endpoints of integration are equal.
 3 8 The lower limit of integration is less than XKNOT(KORDER).
 3 9 The upper limit of integration is greater than XKNOT(NCOEF + 1).
 4 4 Multiplicity of the knots cannot exceed the order of the spline.
 4 5 The knots must be nondecreasing.

Description
The function BSITG computes the integral of a spline given its B-spline representation.
Specifically, given the knot sequence t = XKNOT, the order k = KORDER, the coefficients a =
BSCOEF , n = NCOEF and an interval [a, b], BSITG returns the value

� �, ,
1

nb

i i ka
i

a B x dx
�

�� t

This routine uses the identity (22) on page 151 of de Boor (1978), and it assumes that t1 = � =
tk and tn + 1= � = tn + k.

BS2VL
This function evaluates a two-dimensional tensor-product spline, given its tensor-product B-spline
representation.

Function Return Value
BS2VL — Value of the spline at (X, Y). (Output)

Required Arguments
X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

652 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.
(Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.
(Input)
YKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline
coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

FORTRAN 90 Interface
Generic: BS2VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,

BSCOEF)

Specific: The specific interface names are S_BS2VL and D_BS2VL.

FORTRAN 77 Interface
Single: BS2VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,

BSCOEF)

Double: The double precision function name is DBS2VL.

Example
For an example of the use of BS2VL, see IMSL routine BS2IN (page 631).

Comments
Workspace may be explicitly provided, if desired, by use of B22VL/DB22VL. The reference

is:

CALL B22VL(X, Y, KXORD, KYORD, XKNOT, YKNOT, NXCOEF,
NYCOEF, BSCOEF, WK)

The additional argument is

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 653

Description
The function BS2VL evaluates a bivariate tensor product spline (represented as a linear
combination of tensor product B-splines) at a given point. This routine is a special case of the
routine BS2DR (page 653), which evaluates partial derivatives of such a spline. (The value of a
spline is its zero-th derivative.) For more information see de Boor (1978, pages 351�353).

This routine returns the value of the function s at a point (x, y) given the coefficients c by
computing

� � � � � �, , , ,
1 1

,
y x

x x y y

N N

nm n k m k
m n

s x y c B x B y
� �

��� t t

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in
KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences
(XKNOT and YKNOT).

BS2DR
This function evaluates the derivative of a two-dimensional tensor-product spline, given its tensor-
product B-spline representation.

Function Return Value
BS2DR — Value of the (IXDER, IYDER) derivative of the spline at (X, Y). (Output)

Required Arguments
IXDER — Order of the derivative in the X-direction. (Input)

IYDER — Order of the derivative in the Y-direction. (Input)

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-
direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.
(Input)
YKNOT must be nondecreasing.

654 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline
coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

FORTRAN 90 Interface
Generic: BS2DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT,

 NXCOEF, NYCOEF, BSCOEF)

Specific: The specific interface names are S_BS2DR and D_BS2DR.

FORTRAN 77 Interface
Single: BS2DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT,

 NXCOEF, NYCOEF, BSCOEF)

Double: The double precision function name is DBS2DR.

Example
In this example, a spline interpolant s to a function f is constructed. We use the IMSL routine
BS2IN (page 631) to compute the interpolant and then BS2DR is employed to compute
s(2,1)(x, y). The values of this partial derivative and the error are computed on a 4 � 4 grid and
then displayed.

 USE BS2DR_INT
 USE BSNAK_INT
 USE UMACH_INT
 USE BS2IN_INT
! SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT
 PARAMETER (KXORD=5, KYORD=3, NXDATA=21, NYDATA=6, LDF=NXDATA,&
 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD)
!
 INTEGER I, J, NOUT, NXCOEF, NYCOEF
 REAL BSCOEF(NXDATA,NYDATA), F, F21,&
 FDATA(LDF,NYDATA), FLOAT, S21, X, XDATA(NXDATA),&
 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT)
 INTRINSIC FLOAT

! Define function and (2,1) derivative
 F(X,Y) = X*X*X*X + X*X*X*Y*Y
 F21(X,Y) = 12.0*X*Y
! Set up interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 655

! Generate knot sequence
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
! Set up interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/5.0
 20 CONTINUE
! Generate knot sequence
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
! Generate FDATA
 DO 40 I=1, NYDATA
 DO 30 J=1, NXDATA
 FDATA(J,I) = F(XDATA(J),YDATA(I))
 30 CONTINUE
 40 CONTINUE
! Interpolate
 CALL BS2IN (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, &
 YKNOT, BSCOEF)
 NXCOEF = NXDATA
 NYCOEF = NYDATA
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Print (2,1) derivative over a
! grid of [0.0,1.0] x [0.0,1.0]
! at 16 points.
 DO 60 I=1, 4
 DO 50 J=1, 4
 X = FLOAT(I-1)/3.0
 Y = FLOAT(J-1)/3.0
! Evaluate spline
 S21 = BS2DR(2,1,X,Y,KXORD,KYORD,XKNOT,YKNOT,NXCOEF,NYCOEF,&
 BSCOEF)
 WRITE (NOUT,’(3F15.4, F15.6)’) X, Y, S21, F21(X,Y) - S21
 50 CONTINUE
 60 CONTINUE
99999 FORMAT (39X, ’(2,1)’, /, 13X, ’X’, 14X, ’Y’, 10X, ’S (X,Y)’,&
 5X, ’Error’)
 END

Output
 (2,1)
 X Y S (X,Y) Error
0.0000 0.0000 0.0000 0.000000
0.0000 0.3333 0.0000 0.000000
0.0000 0.6667 0.0000 0.000000
0.0000 1.0000 0.0000 0.000001
0.3333 0.0000 0.0000 0.000000
0.3333 0.3333 1.3333 0.000002
0.3333 0.6667 2.6667 -0.000002
0.3333 1.0000 4.0000 0.000008
0.6667 0.0000 0.0000 0.000006
0.6667 0.3333 2.6667 -0.000011

656 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

0.6667 0.6667 5.3333 0.000028
0.6667 1.0000 8.0001 -0.000134
1.0000 0.0000 -0.0004 0.000439
1.0000 0.3333 4.0003 -0.000319
1.0000 0.6667 7.9996 0.000363
1.0000 1.0000 12.0005 -0.000458

Comments
1. Workspace may be explicitly provided, if desired, by use of B22DR/DB22DR. The

reference is:

CALL B22DR(IXDER, IYDER, X, Y, KXORD, KYORD, XKNOT, YKNOT,
NXCOEF, NYCOEF, BSCOEF, WK)

The additional argument is:

WK — Work array of length 3 * MAX(KXORD, KYORD) + KYORD.

2. Informational errors

Type Code
 3 1 The point X does not satisfy

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1).
 3 2 The point Y does not satisfy

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1).

Description
The routine BS2DR evaluates a partial derivative of a bivariate tensor-product spline
(represented as a linear combination of tensor product B-splines) at a given point; see de Boor
(1978, pages 351�353).

This routine returns the value of s(p,q)at a point (x, y) given the coefficients c by computing

� � � � � � � � � � � �,
, , , ,

1 1

,
y x

x x y y

N N
p q p q

nm n k m k
m n

s x y c B x B y
� �

��� t t

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in
KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences
(XKNOT and YKNOT).

BS2GD
Evaluates the derivative of a two-dimensional tensor-product spline, given its tensor-product
B-spline representation on a grid.

Required Arguments
IXDER — Order of the derivative in the X-direction. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 657

IYDER — Order of the derivative in the Y-direction. (Input)

XVEC — Array of length NX containing the X-coordinates at which the spline is to be
evaluated. (Input)
The points in XVEC should be strictly increasing.

YVEC — Array of length NY containing the Y-coordinates at which the spline is to be
evaluated. (Input)
The points in YVEC should be strictly increasing.

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.
(Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.
(Input)
YKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline
coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

VALUE — Value of the (IXDER, IYDER) derivative of the spline on the NX by NY grid.
(Output)
VALUE (I, J) contains the derivative of the spline at the point (XVEC(I), YVEC(J)).

Optional Arguments
NX — Number of grid points in the X-direction. (Input)

Default: NX = size (XVEC,1).

NY — Number of grid points in the Y-direction. (Input)
Default: NY = size (YVEC,1).

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)
Default: NXCOEF = size (XKNOT,1) – KXORD.

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)
Default: NYCOEF = size (YKNOT,1) – KYORD.

LDVALU — Leading dimension of VALUE exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDVALU = size (VALUE,1).

658 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL BS2GD (IXDER, IDER, XVEC, YVEC, KXORD, KYORD, XKNOT,

YKNOT, BSCOEF, VALUE [,…])

Specific: The specific interface names are S_BS2GD and D_BS2GD.

FORTRAN 77 Interface
Single: CALL BS2GD (IXDER, IYDER, NX, XVEC, NY, YVEC, KXORD, KYORD,

XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE, LDVALU)

Double: The double precision name is DBS2GD.

Example
In this example, a spline interpolant s to a function f is constructed. We use the IMSL routine
BS2IN (page 631) to compute the interpolant and then BS2GD is employed to compute
s(2,1) (x, y) on a grid. The values of this partial derivative and the error are computed on a 4 � 4
grid and then displayed.

 USE BS2GD_INT
 USE BS2IN_INT
 USE BSNAK_INT
 USE UMACH_INT

! SPECIFICATIONS FOR LOCAL VARIABLES
 INTEGER I, J, KXORD, KYORD, LDF, NOUT, NXCOEF, NXDATA,&
 NYCOEF, NYDATA
 REAL DCCFD(21,6), DOCBSC(21,6), DOCXD(21), DOCXK(26),&
 DOCYD(6), DOCYK(9), F, F21, FLOAT, VALUE(4,4),&
 X, XVEC(4), Y, YVEC(4)
 INTRINSIC FLOAT
! Define function and derivative
 F(X,Y) = X*X*X*X + X*X*X*Y*Y
 F21(X,Y) = 12.0*X*Y
! yj Initialize/Setup
 CALL UMACH (2, NOUT)
 KXORD = 5
 KYORD = 3
 NXDATA = 21
 NYDATA = 6
 LDF = NXDATA
! Set up interpolation points
 DO 10 I=1, NXDATA
 DOCXD(I) = FLOAT(I-11)/10.0
 10 CONTINUE
! Set up interpolation points
 DO 20 I=1, NYDATA
 DOCYD(I) = FLOAT(I-1)/5.0
 20 CONTINUE
! Generate knot sequence
 CALL BSNAK (NXDATA, DOCXD, KXORD, DOCXK)
! Generate knot sequence

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 659

 CALL BSNAK (NYDATA, DOCYD, KYORD, DOCYK)
! Generate FDATA
 DO 40 I=1, NYDATA
 DO 30 J=1, NXDATA
 DCCFD(J,I) = F(DOCXD(J),DOCYD(I))
 30 CONTINUE
 40 CONTINUE
! Interpolate
 CALL BS2IN (DOCXD, DOCYD, DCCFD, KXORD, KYORD, &
 DOCXK, DOCYK, DOCBSC)
! Print (2,1) derivative over a
! grid of [0.0,1.0] x [0.0,1.0]
! at 16 points.
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 WRITE (NOUT,99999)
 DO 50 I=1, 4
 XVEC(I) = FLOAT(I-1)/3.0
 YVEC(I) = XVEC(I)
 50 CONTINUE
 CALL BS2GD (2, 1, XVEC, YVEC, KXORD, KYORD, DOCXK, DOCYK,&
 DOCBSC, VALUE)
 DO 70 I=1, 4
 DO 60 J=1, 4
 WRITE (NOUT,’(3F15.4,F15.6)’) XVEC(I), YVEC(J),&
 VALUE(I,J),&
 F21(XVEC(I),YVEC(J)) -&
 VALUE(I,J)
 60 CONTINUE
 70 CONTINUE
99999 FORMAT (39X, ’(2,1)’, /, 13X, ’X’, 14X, ’Y’, 10X, ’S (X,Y)’,&
 5X, ’Error’)
 END

Output
 (2,1)

 X Y S (X,Y) Error
0.0000 0.0000 0.0000 0.000000
0.0000 0.3333 0.0000 0.000000
0.0000 0.6667 0.0000 0.000000
0.0000 1.0000 0.0000 0.000001
0.3333 0.0000 0.0000 -0.000001
0.3333 0.3333 1.3333 0.000001
0.3333 0.6667 2.6667 -0.000004
0.3333 1.0000 4.0000 0.000008
0.6667 0.0000 0.0000 -0.000001
0.6667 0.3333 2.6667 -0.000008
0.6667 0.6667 5.3333 0.000038
0.6667 1.0000 8.0001 -0.000113
1.0000 0.0000 -0.0005 0.000488
1.0000 0.3333 4.0004 -0.000412
1.0000 0.6667 7.9995 0.000488
1.0000 1.0000 12.0002 -0.000244

660 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Comments
1. Workspace may be explicitly provided, if desired, by use of B22GD/DB22GD. The

reference is:

CALL B22GD (IXDER, IYDER, NX, XVEC, NY, YVEC, KXORD, KYORD,
XKNOT, YKNOT, NXCOEF, NYCOEF, BSCOEF, VALUE, LDVALU, LEFTX,
LEFTY, A, B, DBIATX, DBIATY, BX, BY)

The additional arguments are as follows:

LEFTX — Integer work array of length NX.

LEFTY — Integer work array of length NY.

A — Work array of length KXORD * KXORD.

B — Work array of length KYORD * KYORD.

DBIATX — Work array of length KXORD * (IXDER + 1).

DBIATY — Work array of length KYORD * (IYDER + 1).

BX — Work array of length KXORD * NX.

BY — Work array of length KYORD * NY.

2 Informational errors
Type Code

 3 1 XVEC(I) does not satisfy
XKNOT (KXORD) .LE. XVEC(I) .LE. XKNOT(NXCOEF + 1)

 3 2 YVEC(I) does not satisfy
YKNOT (KYORD) .LE. YVEC(I) .LE. YKNOT(NYCOEF + 1)

 4 3 XVEC is not strictly increasing.
 4 4 YVEC is not strictly increasing.

Description
The routine BS2GD evaluates a partial derivative of a bivariate tensor-product spline
(represented as a linear combination of tensor-product B-splines) on a grid of points; see de
Boor (1978, pages 351�353).

This routine returns the values of s(p,q)on the grid (xi, yj) for i = 1, �, nx and j = 1, �, ny given
the coefficients c by computing (for all (x, y) in the grid)

� � � � � � � � � � � �,
, , , ,

1 1

,
y x

x x y y

N N
p q p q

nm n k m k
m n

s x y c B x B y
� �

��� t t

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 661

where kx and ky are the orders of the splines. (These numbers are passed to the subroutine in
KXORD and KYORD, respectively.) Likewise, tx and ty are the corresponding knot sequences
(XKNOT and YKNOT). The grid must be ordered in the sense that xi < xi+1 and yj < yj+1.

BS2IG
This function evaluates the integral of a tensor-product spline on a rectangular domain, given its
tensor-product B-spline representation.

Function Return Value
BS2IG — Integral of the spline over the rectangle (A, B) by (C, D).

(Output)

Required Arguments
A — Lower limit of the X-variable. (Input)

B — Upper limit of the X-variable. (Input)

C — Lower limit of the Y-variable. (Input)

D — Upper limit of the Y-variable. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.
(Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.
(Input)
YKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF * NYCOEF containing the tensor-product B-spline
coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF.

Optional Arguments
NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

Default: NXCOEF = size (XKNOT,1) – KXORD.

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)
Default: NYCOEF = size (YKNOT,1) – KYORD.

662 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: BS2IG (A, B, C, D, KXORD, KYORD, XKNOT, YKNOT,

BSCOEF [,…])

Specific: The specific interface names are S_BS2IG and D_BS2IG.

FORTRAN 77 Interface
Single: BS2IG(A, B, C , D, KXORD, KYORD, XKNOT, YKNOT, NXCOEF,

NYCOEF, BSCOEF)

Double: The double precision function name is DBS2IG.

Example
We integrate the two-dimensional tensor-product quartic (kx = 5) by linear (ky = 2) spline that
interpolates x3 + xy at the points {(i/10, j/5) : i = �10, �, 10 and j = 0, �, 5} over the rectangle
[0, 1] � [.5, 1]. The exact answer is 5/16.

 USE BS2IG_INT
 USE BSNAK_INT
 USE BS2IN_INT
 USE UMACH_INT

! SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, LDF, NXDATA, NXKNOT, NYDATA, NYKNOT
 PARAMETER (KXORD=5, KYORD=2, NXDATA=21, NYDATA=6, LDF=NXDATA,&
 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD)
!
 INTEGER I, J, NOUT, NXCOEF, NYCOEF
 REAL A, B, BSCOEF(NXDATA,NYDATA), C , D, F,&
 FDATA(LDF,NYDATA), FI, FLOAT, VAL, X, XDATA(NXDATA),&
 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT)
 INTRINSIC FLOAT
! Define function and integral
 F(X,Y) = X*X*X + X*Y
 FI(A,B,C ,D) = .25*((B**4-A**4)*(D-C)+(B*B-A*A)*(D*D-C *C))
! Set up interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
! Generate knot sequence
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
! Set up interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/5.0
 20 CONTINUE
! Generate knot sequence
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
! Generate FDATA
 DO 40 I=1, NYDATA
 DO 30 J=1, NXDATA
 FDATA(J,I) = F(XDATA(J),YDATA(I))

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 663

 30 CONTINUE
 40 CONTINUE
! Interpolate
 CALL BS2IN (XDATA, YDATA, FDATA, KXORD,&
 KYORD, XKNOT, YKNOT, BSCOEF)
! Integrate over rectangle
! [0.0,1.0] x [0.0,0.5]
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 A = 0.0
 B = 1.0
 C = 0.5
 D = 1.0
 VAL = BS2IG(A,B,C ,D,KXORD,KYORD,XKNOT,YKNOT,BSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print results
 WRITE (NOUT,99999) VAL, FI(A,B,C ,D), FI(A,B,C ,D) - VAL
99999 FORMAT (’ Computed Integral = ’, F10.5, /, ’ Exact Integral ’&
 , ’= ’, F10.5, /, ’ Error ’&
 , ’= ’, F10.6, /)
 END

Output
Computed Integral = 0.31250
Exact Integral = 0.31250
Error = 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of B22IG/DB22IG. The

reference is:

CALL B22IG(A, B, C , D, KXORD, KYORD, XKNOT, YKNOT,
NXCOEF, NYCOEF, BSCOEF, WK)

The additional argument is:

WK — Work array of length 4 * (MAX(KXORD, KYORD) + 1) + NYCOEF.

2. Informational errors

Type Code
 3 1 The lower limit of the X-integration is less than XKNOT(KXORD).
 3 2 The upper limit of the X-integration is greater than XKNOT(NXCOEF +

1).
 3 3 The lower limit of the Y-integration is less than YKNOT(KYORD).
 3 4 The upper limit of the Y-integration is greater than YKNOT(NYCOEF +

1).
 4 13 Multiplicity of the knots cannot exceed the order of the spline.
 4 14 The knots must be nondecreasing.

664 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Description
The function BS2IG computes the integral of a tensor-product two-dimensional spline given its
B-spline representation. Specifically, given the knot sequence tx = XKNOT, ty = YKNOT, the order
kx = KXORD, ky = KYORD, the coefficients � = BSCOEF, the number of coefficients nx = NXCOEF,
ny = NYCOEF and a rectangle [a, b] by [c, d], BS2IG returns the value

1 1

yx nnb d

ij ija c
i j

B dy dx�
� �

��� �

where

� � � � � �, , , , ,,
x x y yi j i k j kB x y B x B y� t t

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for all knot
sequences) that the first and last k knots are stacked, that is,t1 = � = tk and tn + 1 = � = tn + k,
where k is the order of the spline in the x or y direction.

BS3VL
This function Evaluates a three-dimensional tensor-product spline, given its tensor-product B-
spline representation.

Function Return Value
BS3VL — Value of the spline at (X, Y, Z). (Output)

Required Arguments
X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

Z — Z-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

KZORD — Order of the spline in the Z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.
(Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.
(Input)
YKNOT must be nondecreasing.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 665

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.
(Input)
ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the Z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product
B-spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

FORTRAN 90 Interface
Generic: BS3VL(X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,

 ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

 Specific: The specific interface names are S_BS3VL and D_BS3VL.

FORTRAN 77 Interface
Single: BS3VL(X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,

 ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Double: The double precision function name is DBS3VL.

Example
For an example of the use of BS3VL, see IMSL routine BS3IN (page 635).

Comments
Workspace may be explicitly provided, if desired, by use of B23VL/DB23VL. The reference is:

CALL B23VL(X, Y, Z, KXORD, KYORD, KZORD, XKNOT, YKNOT,
 ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK)

The additional argument is:

WK — Work array of length 3 * MAX(KXORD, KYORD, KZORD) + KYORD * KZORD +
KZORD.

Description
The function BS2IG evaluates a trivariate tensor-product spline (represented as a linear
combination of tensor-product B-splines) at a given point. This routine is a special case of the

666 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

IMSL routine BS3DR (page 666), which evaluates a partial derivative of such a spline. (The
value of a spline is its zero-th derivative.) For more information, see de Boor (1978, pages
351�353).

This routine returns the value of the function s at a point (x, y, z) given the coefficients c by
computing

� � � � � � � �, , , , , ,
1 1 1

, ,
y xz

x x y y z z

N NN

nml n k m k l k
l m n

s x y z c B x B y B z
� � �

���� t t t

where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in
KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot
sequences (XKNOT, YKNOT, and ZKNOT).

BS3DR
This function evaluates the derivative of a three-dimensional tensor-product spline, given its
tensor-product B-spline representation.

Function Return Value
BS3DR — Value of the (IXDER, IYDER, IZDER) derivative of the spline at (X, Y, Z).

(Output)

Required Arguments
IXDER — Order of the X-derivative. (Input)

IYDER — Order of the Y-derivative. (Input)

IZDER — Order of the Z-derivative. (Input)

X — X-coordinate of the point at which the spline is to be evaluated. (Input)

Y — Y-coordinate of the point at which the spline is to be evaluated. (Input)

Z — Z-coordinate of the point at which the spline is to be evaluated. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

KZORD — Order of the spline in the Z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.
(Input)
KNOT must be nondecreasing.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 667

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.
(Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.
(Input)
ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the Z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product
B-spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

FORTRAN 90 Interface
Generic: BS3DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD,

KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Specific: The specific interface names are S_BS3DR and D_BS3DR.

FORTRAN 77 Interface
Single: BS3DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD,

KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Double: The double precision function name is DBS3DR.

Example

In this example, a spline interpolant s to a function f(x, y, z) = x4 + y(xz)3 is constructed using
BS3IN (page 635). Next, BS3DR is used to compute s(2,0,1)(x, y, z). The values of this partial
derivative and the error are computed on a 4 � 4 � 2 grid and then displayed.

 USE BS3DR_INT
 USE BS3IN_INT
 USE BSNAK_INT
 USE UMACH_INT

! SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,&
 NYDATA, NYKNOT, NZDATA, NZKNOT
 PARAMETER (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,&
 NZDATA=8, LDF=NXDATA, MDF=NYDATA,&
 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,&
 NZKNOT=NZDATA+KZORD)

668 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

!
 INTEGER I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF
 REAL BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,&
 FDATA(LDF,MDF,NZDATA), FLOAT, S201, X, XDATA(NXDATA),&
 XKNOT(NXKNOT), Y, YDATA(NYDATA), YKNOT(NYKNOT), Z,&
 ZDATA(NZDATA), ZKNOT(NZKNOT)
 INTRINSIC FLOAT
! Define function and (2,0,1)
! derivative
 F(X,Y,Z) = X*X*X*X + X*X*X*Y*Z*Z*Z
 F201(X,Y,Z) = 18.0*X*Y*Z
! Set up X-interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
! Set up Y-interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE
! Set up Z-interpolation points
 DO 30 I=1, NZDATA
 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)
 30 CONTINUE
! Generate knots
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)
! Generate FDATA
 DO 50 K=1, NZDATA
 DO 40 I=1, NYDATA
 DO 40 J=1, NXDATA
 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))
 40 CONTINUE
 50 CONTINUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Interpolate&

CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT,
YKNOT, ZKNOT, BSCOEF)

!
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 NZCOEF = NZDATA
! Write heading
 WRITE (NOUT,99999)
! Print over a grid of
! [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]
! at 32 points.
 DO 80 I=1, 4
 DO 70 J=1, 4
 DO 60 L=1, 2
 X = 2.0*(FLOAT(I-1)/3.0) - 1.0
 Y = FLOAT(J-1)/3.0
 Z = FLOAT(L-1)
! Evaluate spline

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 669

 S201 = BS3DR(2,0,1,X,Y,Z,KXORD,KYORD,KZORD,XKNOT,YKNOT,&
 ZKNOT,NXCOEF,NYCOEF,NZCOEF,BSCOEF)
 WRITE (NOUT,’(3F12.4,2F12.6)’) X, Y, Z, S201,&
 F201(X,Y,Z) - S201
 60 CONTINUE
 70 CONTINUE
 80 CONTINUE
99999 FORMAT (38X, ’(2,0,1)’, /, 9X, ’X’, 11X,&
 ’Y’, 11X, ’Z’, 4X, ’S (X,Y,Z) Error’)
 END

Output
 (2,0,1)
 X Y Z S (X,Y,Z) Error
-1.0000 0.0000 0.0000 -0.000107 0.000107
-1.0000 0.0000 1.0000 0.000053 -0.000053
-1.0000 0.3333 0.0000 0.064051 -0.064051
-1.0000 0.3333 1.0000 -5.935941 -0.064059
-1.0000 0.6667 0.0000 0.127542 -0.127542
-1.0000 0.6667 1.0000 -11.873034 -0.126966
-1.0000 1.0000 0.0000 0.191166 -0.191166
-1.0000 1.0000 1.0000 -17.808527 -0.191473
-0.3333 0.0000 0.0000 -0.000002 0.000002
-0.3333 0.0000 1.0000 0.000000 0.000000
-0.3333 0.3333 0.0000 0.021228 -0.021228
-0.3333 0.3333 1.0000 -1.978768 -0.021232
-0.3333 0.6667 0.0000 0.042464 -0.042464
-0.3333 0.6667 1.0000 -3.957536 -0.042464
-0.3333 1.0000 0.0000 0.063700 -0.063700
-0.3333 1.0000 1.0000 -5.936305 -0.063694
 0.3333 0.0000 0.0000 -0.000003 0.000003
 0.3333 0.0000 1.0000 0.000000 0.000000
 0.3333 0.3333 0.0000 -0.021229 0.021229
 0.3333 0.3333 1.0000 1.978763 0.021238
 0.3333 0.6667 0.0000 -0.042465 0.042465
 0.3333 0.6667 1.0000 3.957539 0.042462
 0.3333 1.0000 0.0000 -0.063700 0.063700
 0.3333 1.0000 1.0000 5.936304 0.063697
 1.0000 0.0000 0.0000 -0.000098 0.000098
 1.0000 0.0000 1.0000 0.000053 -0.000053
 1.0000 0.3333 0.0000 -0.063855 0.063855
 1.0000 0.3333 1.0000 5.936146 0.063854
 1.0000 0.6667 0.0000 -0.127631 0.127631
 1.0000 0.6667 1.0000 11.873067 0.126933
 1.0000 1.0000 0.0000 -0.191442 0.191442
 1.0000 1.0000 1.0000 17.807940 0.192060

Comments
1. Workspace may be explicitly provided, if desired, by use of B23DR/DB23DR. The

reference is:

CALL B23DR(IXDER, IYDER, IZDER, X, Y, Z, KXORD, KYORD, KZORD,
XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK)

670 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

The additional argument is:

WK — Work array of length 3 * MAX0(KXORD, KYORD, KZORD) + KYORD *
KZORD + KZORD.

2. Informational errors

Type Code
 3 1 The point X does not satisfy

XKNOT(KXORD) .LE. X .LE. XKNOT(NXCOEF + 1).
 3 2 The point Y does not satisfy

YKNOT(KYORD) .LE. Y .LE. YKNOT(NYCOEF + 1).
 3 3 The point Z does not satisfy

ZKNOT (KZORD) .LE. Z .LE. ZKNOT(NZCOEF + 1).

Description
The function BS3DR evaluates a partial derivative of a trivariate tensor-product spline
(represented as a linear combination of tensor-product B-splines) at a given point. For more
information, see de Boor (1978, pages 351�353).

This routine returns the value of the function s(p, q, r) at a point (x, y, z) given the coefficients c
by computing

� � � � � � � � � � � � � � � �, ,
, , , , , ,

1 1 1
, ,

y xz

x x y y z z

N NN
p q r p q r

nml n k m k l k
l m n

s x y z c B x B y B z
� � �

���� t t t

where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in
KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot
sequences (XKNOT, YKNOT, and ZKNOT).

BS3GD
Evaluates the derivative of a three-dimensional tensor-product spline, given its tensor-product B-
spline representation on a grid.

Required Arguments
IXDER — Order of the X-derivative. (Input)

IYDER — Order of the Y-derivative. (Input)

IZDER — Order of the Z-derivative. (Input)

XVEC — Array of length NX containing the x-coordinates at which the spline is to be
evaluated. (Input)
The points in XVEC should be strictly increasing.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 671

YVEC — Array of length NY containing the y-coordinates at which the spline is to be
evaluated. (Input)
The points in YVEC should be strictly increasing.

ZVEC — Array of length NY containing the y-coordinates at which the spline is to be
evaluated. (Input)
The points in YVEC should be strictly increasing.

KXORD — Order of the spline in the x-direction. (Input)

KYORD — Order of the spline in the y-direction. (Input)

KZORD — Order of the spline in the z-direction. (Input)

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the x-direction.
(Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the y-direction.
(Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the z-direction.
(Input)
ZKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product
B-spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

VALUE — Array of size NX by NY by NZ containing the values of the (IXDER, IYDER,
IZDER) derivative of the spline on the NX by NY by NZ grid. (Output)
VALUE(I, J, K) contains the derivative of the spline at the point (XVEC(I), YVEC(J),
ZVEC(K)).

Optional Arguments
NX — Number of grid points in the x-direction. (Input)

Default: NX = size (XVEC,1).

NY — Number of grid points in the y-direction. (Input)
Default: NY = size (YVEC,1).

NZ — Number of grid points in the z-direction. (Input)
Default: NZ = size (ZVEC,1).

NXCOEF — Number of B-spline coefficients in the x-direction. (Input)
Default: NXCOEF = size (XKNOT,1) – KXORD.

672 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

NYCOEF — Number of B-spline coefficients in the y-direction. (Input)
Default: NYCOEF = size (YKNOT,1) – KYORD.

NZCOEF — Number of B-spline coefficients in the z-direction. (Input)
Default: NZCOEF = size (ZKNOT,1) – KZORD.

LDVALU — Leading dimension of VALUE exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDVALU = size (VALUE,1).

MDVALU — Middle dimension of VALUE exactly as specified in the dimension statement of
the calling program. (Input)
Default: MDVALU = size (VALUE,2).

FORTRAN 90 Interface
Generic: CALL BS3GD (IXDER, IYDER, IZDER, XVEC, YVEC, ZVEC, KXORD,

KYORD, KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF,
VALUE [,…])

Specific: The specific interface names are S_BS3GD and D_BS3GD.

FORTRAN 77 Interface
Single: CALL BS3GD (IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ,

ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF,
NYCOEF, NZCOEF, BSCOEF, VALUE, LDVALU, MDVALU)

Double: The double precision name is DBS3GD.

Example

In this example, a spline interpolant s to a function f(x, y, z) = x4 + y(xz)3 is constructed using
BS3IN (page 635). Next, BS3GD is used to compute s(2,0,1)(x, y, z) on the grid. The values of this
partial derivative and the error are computed on a 4 � 4 � 2 grid and then displayed.

 USE BS3GD_INT
 USE BS3IN_INT
 USE BSNAK_INT
 USE UMACH_INT
 INTEGER KXORD, KYORD, KZORD, LDF, LDVAL, MDF, MDVAL, NXDATA,&
 NXKNOT, NYDATA, NYKNOT, NZ, NZDATA, NZKNOT
 PARAMETER (KXORD=5, KYORD=2, KZORD=3, LDVAL=4, MDVAL=4,&
 NXDATA=21, NYDATA=6, NZ=2, NZDATA=8, LDF=NXDATA,&
 MDF=NYDATA, NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,&
 NZKNOT=NZDATA+KZORD)
!
 INTEGER I, J, K, L, NOUT, NXCOEF, NYCOEF, NZCOEF
 REAL BSCOEF(NXDATA,NYDATA,NZDATA), F, F201,&
 FDATA(LDF,MDF,NZDATA), FLOAT, VALUE(LDVAL,MDVAL,NZ),&

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 673

 X, XDATA(NXDATA), XKNOT(NXKNOT), XVEC(LDVAL), Y,&
 YDATA(NYDATA), YKNOT(NYKNOT), YVEC(MDVAL), Z,&
 ZDATA(NZDATA), ZKNOT(NZKNOT), ZVEC(NZ)
 INTRINSIC FLOAT
!
!
!
 F(X,Y,Z) = X*X*X*X + X*X*X*Y*Z*Z*Z
 F201(X,Y,Z) = 18.0*X*Y*Z
!
 CALL UMACH (2, NOUT)
! Set up X interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1)) - 1.0
 10 CONTINUE
! Set up Y interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE
! Set up Z interpolation points
 DO 30 I=1, NZDATA
 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)
 30 CONTINUE
! Generate knots
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)
! Generate FDATA
 DO 50 K=1, NZDATA
 DO 40 I=1, NYDATA
 DO 40 J=1, NXDATA
 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))
 40 CONTINUE
 50 CONTINUE
! Interpolate
 CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD,&
 KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF)
!
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 NZCOEF = NZDATA
! Print over a grid of
! [-1.0,1.0] x [0.0,1.0] x [0.0,1.0]
! at 32 points.
 DO 60 I=1, 4
 XVEC(I) = 2.0*(FLOAT(I-1)/3.0) - 1.0
 60 CONTINUE
 DO 70 J=1, 4
 YVEC(J) = FLOAT(J-1)/3.0
 70 CONTINUE
 DO 80 L=1, 2
 ZVEC(L) = FLOAT(L-1)
 80 CONTINUE
 CALL BS3GD (2, 0, 1, XVEC, YVEC, ZVEC, KXORD, KYORD,&
 KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF, VALUE)

674 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

!
!
 WRITE (NOUT,99999)
 DO 110 I=1, 4
 DO 100 J=1, 4
 DO 90 L=1, 2
 WRITE (NOUT,’(5F13.4)’) XVEC(I), YVEC(J), ZVEC(L),&
 VALUE(I,J,L),&
 F201(XVEC(I),YVEC(J),ZVEC(L)) -&
 VALUE(I,J,L)
 90 CONTINUE
 100 CONTINUE
 110 CONTINUE
99999 FORMAT (44X, ’(2,0,1)’, /, 10X, ’X’, 11X, ’Y’, 10X, ’Z’, 10X,&
 ’S (X,Y,Z) Error’)
 STOP
 END

Output
 (2,0,1)
 X Y Z S (X,Y,Z) Error
 -1.0000 0.0000 0.0000 -0.0005 0.0005
 -1.0000 0.0000 1.0000 0.0002 -0.0002
 -1.0000 0.3333 0.0000 0.0641 -0.0641
 -1.0000 0.3333 1.0000 -5.9360 -0.0640
 -1.0000 0.6667 0.0000 0.1274 -0.1274
 -1.0000 0.6667 1.0000 -11.8730 -0.1270
 -1.0000 1.0000 0.0000 0.1911 -0.1911
 -1.0000 1.0000 1.0000 -17.8086 -0.1914
 -0.3333 0.0000 0.0000 0.0000 0.0000
 -0.3333 0.0000 1.0000 0.0000 0.0000
 -0.3333 0.3333 0.0000 0.0212 -0.0212
 -0.3333 0.3333 1.0000 -1.9788 -0.0212
 -0.3333 0.6667 0.0000 0.0425 -0.0425
 -0.3333 0.6667 1.0000 -3.9575 -0.0425
 -0.3333 1.0000 0.0000 0.0637 -0.0637
 -0.3333 1.0000 1.0000 -5.9363 -0.0637
 0.3333 0.0000 0.0000 0.0000 0.0000
 0.3333 0.0000 1.0000 0.0000 0.0000
 0.3333 0.3333 0.0000 -0.0212 0.0212
 0.3333 0.3333 1.0000 1.9788 0.0212
 0.3333 0.6667 0.0000 -0.0425 0.0425
 0.3333 0.6667 1.0000 3.9575 0.0425
 0.3333 1.0000 0.0000 -0.0637 0.0637
 0.3333 1.0000 1.0000 5.9363 0.0637
 1.0000 0.0000 0.0000 -0.0005 0.0005
 1.0000 0.0000 1.0000 0.0000 0.0000
 1.0000 0.3333 0.0000 -0.0637 0.0637
 1.0000 0.3333 1.0000 5.9359 0.0641
 1.0000 0.6667 0.0000 -0.1273 0.1273
 1.0000 0.6667 1.0000 11.8733 0.1267
 1.0000 1.0000 0.0000 -0.1912 0.1912
 1.0000 1.0000 1.0000 17.8096 0.1904

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 675

Comments
1. Workspace may be explicitly provided, if desired, by use of B23GD/DB23GD. The

reference is:

CALL B23GD ((IXDER, IYDER, IZDER, NX, XVEC, NY, YVEC, NZ,
ZVEC, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF, NYCOEF,
NZCOEF, BSCOEF, VALUE, LDVALU, MDVALU LEFTX, LEFTY, LEFTZ, A, B,
C , DBIATX, DBIATY, DBIATZ, BX, BY, BZ)

The additional arguments are as follows:

LEFTX — Work array of length NX.

LEFTY — Work array of length NY.

LEFTZ — Work array of length NZ.

A — Work array of length KXORD * KXORD.

B — Work array of length KYORD * KYORD.

C — Work array of length KZORD * KZORD.

DBIATX — Work array of length KXORD * (IXDER + 1).

DBIATY — Work array of length KYORD * (IYDER + 1).

DBIATZ — Work array of length KZORD * (IZDER + 1).

BX — Work array of length KXORD * NX.

BY — Work array of length KYORD * NY.

BZ — Work array of length KZORD * NZ.

2. Informational errors

Type Code
 3 1 XVEC(I) does not satisfy XKNOT(KXORD) � XVEC(I) � XKNOT(NXCOEF

+ 1).
 3 2 YVEC(I) does not satisfy YKNOT(KYORD) � YVEC(I) � YKNOT(NYCOEF

+ 1).
 3 3 ZVEC(I) does not satisfy ZKNOT(KZORD) � ZVEC(I) � ZKNOT(NZCOEF

+ 1).
 4 4 XVEC is not strictly increasing.
 4 5 YVEC is not strictly increasing.
 4 6 ZVEC is not strictly increasing.

676 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Description
The routine BS3GD evaluates a partial derivative of a trivariate tensor-product spline
(represented as a linear combination of tensor-product B-splines) on a grid. For more
information, see de Boor (1978, pages 351�353).

This routine returns the value of the function s(p,q,r) on the grid (xi, yj, zk) for i = 1, �, nx, j = 1,
�, ny, and k = 1, �, nz given the coefficients c by computing (for all (x, y, z) on the grid)

� � � � � � � � � � � � � � � �, ,
, , , , , ,

1 1 1
, ,

y xz

x x y y z z

N NN
p q r p q r

nml n k m k l k
l m n

s x y z c B x B y B z
� � �

���� t t t

where kx, ky, and kz are the orders of the splines. (These numbers are passed to the subroutine in
KXORD, KYORD, and KZORD, respectively.) Likewise, tx, ty, and tz are the corresponding knot
sequences (XKNOT, YKNOT, and ZKNOT). The grid must be ordered in the sense that xi < xi + 1, yj
< yj + 1, and zk < zk + 1.

BS3IG
This function evaluates the integral of a tensor-product spline in three dimensions over a three-
dimensional rectangle, given its tensor-product B-spline representation.

Function Return Value
BS3IG — Integral of the spline over the three-dimensional rectangle (A, B) by (C, D) by (E, F).

(Output)

Required Arguments
A — Lower limit of the X-variable. (Input)

B — Upper limit of the X-variable. (Input)

C — Lower limit of the Y-variable. (Input)

D — Upper limit of the Y-variable. (Input)

E — Lower limit of the Z-variable. (Input)

F — Upper limit of the Z-variable. (Input)

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

KZORD — Order of the spline in the Z-direction. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 677

XKNOT — Array of length NXCOEF + KXORD containing the knot sequence in the X-direction.
(Input)
XKNOT must be nondecreasing.

YKNOT — Array of length NYCOEF + KYORD containing the knot sequence in the Y-direction.
(Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length NZCOEF + KZORD containing the knot sequence in the Z-direction.
(Input)
ZKNOT must be nondecreasing.

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)

NZCOEF — Number of B-spline coefficients in the Z-direction. (Input)

BSCOEF — Array of length NXCOEF * NYCOEF * NZCOEF containing the tensor-product B-
spline coefficients. (Input)
BSCOEF is treated internally as a matrix of size NXCOEF by NYCOEF by NZCOEF.

FORTRAN 90 Interface
Generic: BS3IG(A, B, C , D, E, F, KXORD, KYORD, KZORD, XKNOT,

YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Specific: The specific interface names are S_BS3IG and D_BS3IG.

FORTRAN 77 Interface
Single: BS3IG(A, B, C , D, E, F, KXORD, KYORD, KZORD, XKNOT,

YKNOT, ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF)

Double: The double precision function name is DBS3IG.

Example
We integrate the three-dimensional tensor-product quartic (kx = 5) by linear (ky = 2) by
quadratic (kz = 3) spline which interpolates x3 + xyz at the points

� �� �/10, / 5, / 7 : 10, , 10, 0, , 5, and 0, , 7i j m i j m� � � �� � �

over the rectangle [0, 1] � [.5, 1] � [0, .5]. The exact answer is 11/128.

 USE BS3IG_INT
 USE BS3IN_INT

678 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 USE BSNAK_INT
 USE UMACH_INT

! SPECIFICATIONS FOR PARAMETERS
 INTEGER KXORD, KYORD, KZORD, LDF, MDF, NXDATA, NXKNOT,&
 NYDATA, NYKNOT, NZDATA, NZKNOT
 PARAMETER (KXORD=5, KYORD=2, KZORD=3, NXDATA=21, NYDATA=6,&
 NZDATA=8, LDF=NXDATA, MDF=NYDATA,&
 NXKNOT=NXDATA+KXORD, NYKNOT=NYDATA+KYORD,&
 NZKNOT=NZDATA+KZORD)
!
 INTEGER I, J, K, NOUT, NXCOEF, NYCOEF, NZCOEF
 REAL A, B, BSCOEF(NXDATA,NYDATA,NZDATA), C , D, E,&
 F, FDATA(LDF,MDF,NZDATA), FF, FIG, FLOAT, G, H, RI,&
 RJ, VAL, X, XDATA(NXDATA), XKNOT(NXKNOT), Y,&
 YDATA(NYDATA), YKNOT(NYKNOT), Z, ZDATA(NZDATA),&
 ZKNOT(NZKNOT)
 INTRINSIC FLOAT
! Define function
 F(X,Y,Z) = X*X*X + X*Y*Z
! Set up interpolation points
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-11)/10.0
 10 CONTINUE
! Generate knot sequence
 CALL BSNAK (NXDATA, XDATA, KXORD, XKNOT)
! Set up interpolation points
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE
! Generate knot sequence
 CALL BSNAK (NYDATA, YDATA, KYORD, YKNOT)
! Set up interpolation points
 DO 30 I=1, NZDATA
 ZDATA(I) = FLOAT(I-1)/FLOAT(NZDATA-1)
 30 CONTINUE
! Generate knot sequence
 CALL BSNAK (NZDATA, ZDATA, KZORD, ZKNOT)
! Generate FDATA
 DO 50 K=1, NZDATA
 DO 40 I=1, NYDATA
 DO 40 J=1, NXDATA
 FDATA(J,I,K) = F(XDATA(J),YDATA(I),ZDATA(K))
 40 CONTINUE
 50 CONTINUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Interpolate
 CALL BS3IN (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, &
 YKNOT, ZKNOT, BSCOEF)
!
 NXCOEF = NXDATA
 NYCOEF = NYDATA
 NZCOEF = NZDATA
 A = 0.0
 B = 1.0

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 679

 C = 0.5
 D = 1.0
 E = 0.0
 FF = 0.5
! Integrate
 VAL = BS3IG(A,B,C ,D,E,FF,KXORD,KYORD,KZORD,XKNOT,YKNOT,ZKNOT,&
 NXCOEF,NYCOEF,NZCOEF,BSCOEF)
! Calculate integral directly
 G = .5*(B**4-A**4)
 H = (B-A)*(B+A)
 RI = G*(D-C)
 RJ = .5*H*(D-C)*(D+C)
 FIG = .5*(RI*(FF-E)+.5*RJ*(FF-E)*(FF+E))
! Print results
 WRITE (NOUT,99999) VAL, FIG, FIG - VAL
99999 FORMAT (’ Computed Integral = ’, F10.5, /, ’ Exact Integral ’&
 , ’= ’, F10.5,/, ’ Error ’&
 , ’= ’, F10.6, /)
 END

Output
Computed Integral = 0.08594
Exact Integral = 0.08594
Error = 0.000000

Comments
1. Workspace may be explicitly provided, if desired, by use of B23IG/DB23IG. The

reference is:

CALL B23IG(A, B, C , D, E, F, KXORD, KYORD, KZORD, XKNOT, YKNOT,
ZKNOT, NXCOEF, NYCOEF, NZCOEF, BSCOEF, WK)

The additional argument is:

WK — Work array of length 4 * (MAX(KXORD, KYORD, KZORD) + 1) + NYCOEF
+ NZCOEF.

2. Informational errors
Type Code

 3 1 The lower limit of the X-integration is less than XKNOT(KXORD).
 3 2 The upper limit of the X-integration is greater than

XKNOT(NXCOEF + 1).
 3 3 The lower limit of the Y-integration is less than YKNOT(KYORD).
 3 4 The upper limit of the Y-integration is greater than

YKNOT(NYCOEF + 1).
 3 5 The lower limit of the Z- integration is less than ZKNOT(KZORD).
 3 6 The upper limit of the Z-integration is greater than

ZKNOT(NZCOEF + 1).

680 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 4 13 Multiplicity of the knots cannot exceed the order of the spline.
 4 14 The knots must be nondecreasing.

Description
The routine BS3IG computes the integral of a tensor-product three-dimensional spline, given its
B-spline representation. Specifically, given the knot sequence tx = XKNOT, ty = YKNOT,
tz = ZKNOT, the order kx = KXORD, ky = KYORD, kz = KZORD, the coefficients � = BSCOEF, the
number of coefficients nx = NXCOEF, ny = NYCOEF, nz = NZCOEF, and a three-dimensional
rectangle [a, b] by [c, d] by [e, f], BS3IG returns the value

1 1 1

yx znn nb d f

ijm ijma c e
i j m

B dz dy dx�
� � �

���� � �

where

� � � � � � � �, , , , ,, ,
x x y y z zijm i k j k m kB x y z B x B y B z� t t t

This routine uses the identity (22) on page 151 of de Boor (1978). It assumes (for all knot
sequences) that the first and last k knots are stacked, that is, t1 = � = tk and tn + 1 = � = tn + k,
where k is the order of the spline in the x, y, or z direction.

BSCPP
Converts a spline in B-spline representation to piecewise polynomial representation.

Required Arguments
KORDER — Order of the spline. (Input)

XKNOT — Array of length KORDER + NCOEF containing the knot sequence. (Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Input)

NPPCF — Number of piecewise polynomial pieces. (Output)
NPPCF is always less than or equal to NCOEF � KORDER + 1.

BREAK — Array of length (NPPCF + 1) containing the breakpoints of the piecewise
polynomial representation. (Output)
BREAK must be dimensioned at least NCOEF � KORDER + 2.

PPCOEF — Array of length KORDER * NPPCF containing the local coefficients of the
polynomial pieces. (Output)
PPCOEF is treated internally as a matrix of size KORDER by NPPCF.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 681

FORTRAN 90 Interface
Generic: CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK,

 PPCOEF)

Specific: The specific interface names are S_BSCPP and D_BSCPP.

FORTRAN 77 Interface
Single: CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK,

 PPCOEF)

Double: The double precision name is DBSCPP.

Example
For an example of the use of BSCPP, see PPDER (page 684).

Comments
1. Workspace may be explicitly provided, if desired, by use of B2CPP/DB2CPP. The

reference is:

CALL B2CPP (KORDER, XKNOT, NCOEF, BSCOEFF, NPPCF,
 BREAK, PPCOEF, WK)

The additional argument is

WK — Work array of length (KORDER + 3) * KORDER.

2. Informational errors
Type Code

 4 4 Multiplicity of the knots cannot exceed the order of the spline.
 4 5 The knots must be nondecreasing.

Description
The routine BSCPP is based on the routine BSPLPP by de Boor (1978, page 140). This routine is
used to convert a spline in B-spline representation to a piecewise polynomial (pp) representation
which can then be evaluated more efficiently. There is some overhead in converting from the
B-spline representation to the pp representation, but the conversion to pp form is recommended
when 3 or more function values are needed per polynomial piece.

PPVAL
This function evaluates a piecewise polynomial.

682 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Function Return Value
PPVAL — Value of the piecewise polynomial at X. (Output)

Required Arguments
X — Point at which the polynomial is to be evaluated. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints of the piecewise
polynomial representation. (Input)
BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise
polynomial pieces. (Input)
PPCOEF is treated internally as a matrix of size KORDER by NINTV.

Optional Arguments
KORDER — Order of the polynomial. (Input)

Default: KORDER = size (PPCOEF,1).

NINTV — Number of polynomial pieces. (Input)
Default: NINTV = size (PPCOEF,2).

FORTRAN 90 Interface
Generic: PPVAL (X, BREAK, PPCOEF [,…])

Specific: The specific interface names are S_PPVAL and D_PPVAL.

FORTRAN 77 Interface
Single: PPVAL (X, KORDER, NINTV, BREAK, PPCOEF)

Double: The double precision function name is DPPVAL.

Example
In this example, a spline interpolant to a function f is computed using the IMSL routine BSINT
(page 622). This routine represents the interpolant as a linear combination of B-splines. This
representation is then converted to piecewise polynomial representation by calling the IMSL
routine BSCPP (page 680). The piecewise polynomial is evaluated using PPVAL. These values
are compared to the corresponding values of f.

 USE PPVAL_INT
 USE BSNAK_INT
 USE BSCPP_INT
 USE BSINT_INT

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 683

 USE UMACH_INT
 INTEGER KORDER, NCOEF, NDATA, NKNOT
 PARAMETER (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER)
!
 INTEGER I, NOUT, NPPCF
 REAL BREAK(NCOEF), BSCOEF(NCOEF), EXP, F, FDATA(NDATA),&
 FLOAT, PPCOEF(KORDER,NCOEF), S, X, XDATA(NDATA),&
 XKNOT(NKNOT)
 INTRINSIC EXP, FLOAT
! Define function
 F(X) = X*EXP(X)
! Set up interpolation points
 DO 30 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 30 CONTINUE
! Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
! Compute the B-spline interpolant
 CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
! Convert to piecewise polynomial
 CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Print the interpolant on a uniform
! grid
 DO 40 I=1, NDATA
 X = FLOAT(I-1)/FLOAT(NDATA-1)
! Compute value of the piecewise
! polynomial
 S = PPVAL(X,BREAK,PPCOEF)
 WRITE (NOUT,’(2F12.3, E14.3)’) X, S, F(X) - S

 40 CONTINUE
99999 FORMAT (11X, ’X’, 8X, ’S(X)’, 7X, ’Error’)
 END

Output
 X S(X) Error
0.000 0.000 0.000E+00
0.053 0.055 -0.745E-08
0.105 0.117 0.000E+00
0.158 0.185 0.000E+00
0.211 0.260 -0.298E-07
0.263 0.342 0.298E-07
0.316 0.433 0.000E+00
0.368 0.533 0.000E+00
0.421 0.642 0.000E+00
0.474 0.761 0.596E-07
0.526 0.891 0.000E+00
0.579 1.033 0.000E+00
0.632 1.188 0.000E+00

684 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

0.684 1.356 0.000E+00
0.737 1.540 -0.119E-06
0.789 1.739 0.000E+00
0.842 1.955 0.000E+00
0.895 2.189 0.238E-06
0.947 2.443 0.238E-06
1.000 2.718 0.238E-06

Description
The routine PPVAL evaluates a piecewise polynomial at a given point. This routine is a special
case of the routine PPDER (page 684), which evaluates the derivative of a piecewise polynomial.
(The value of a piecewise polynomial is its zero-th derivative.)

The routine PPDER is based on the routine PPVALU in de Boor (1978, page 89).

PPDER
This function evaluates the derivative of a piecewise polynomial.

Function Return Value
PPDER — Value of the IDERIV-th derivative of the piecewise polynomial at X. (Output)

Required Arguments
X — Point at which the polynomial is to be evaluated. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints of the piecewise
polynomial representation. (Input)
BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise
polynomial pieces. (Input)
PPCOEF is treated internally as a matrix of size KORDER by NINTV.

Optional Arguments
IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the value of the polynomial.
Default: IDERIV = 1.

KORDER — Order of the polynomial. (Input)
Default: KORDER = size (PPCOEF,1).

NINTV — Number of polynomial pieces. (Input)
Default: NINTV = size (PPCOEF,2).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 685

FORTRAN 90 Interface
Generic: PPDER (X, BREAK, PPCOEF [,…])

Specific: The specific interface names are S_PPDER and D_PPDER.

FORTRAN 77 Interface
Single: PPDER (IDERIV, X, KORDER, NINTV, BREAK, PPCOEF)

Double: The double precision function name is DPPDER.

Example
In this example, a spline interpolant to a function f is computed using the IMSL routine BSINT
(page 622). This routine represents the interpolant as a linear combination of B-splines. This
representation is then converted to piecewise polynomial representation by calling the IMSL
routine BSCPP (page 680). The piecewise polynomial’s zero-th and first derivative are evaluated
using PPDER. These values are compared to the corresponding values of f.

 USE IMSL_LIBRARIES
 INTEGER KORDER, NCOEF, NDATA, NKNOT
 PARAMETER (KORDER=4, NCOEF=20, NDATA=20, NKNOT=NDATA+KORDER)
!
 INTEGER I, NOUT, NPPCF
 REAL BREAK(NCOEF), BSCOEF(NCOEF), DF, DS, EXP, F,&
 FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), S,&
 X, XDATA(NDATA), XKNOT(NKNOT)
 INTRINSIC EXP, FLOAT
!
 F(X) = X*EXP(X)
 DF(X) = (X+1.)*EXP(X)
! Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
! Compute the B-spline interpolant
 CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
! Convert to piecewise polynomial
 CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Print the interpolant on a uniform
! grid
 DO 20 I=1, NDATA
 X = FLOAT(I-1)/FLOAT(NDATA-1)
! Compute value of the piecewise
! polynomial

686 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 S = PPDER(X,BREAK,PPCOEF, IDERIV=0, NINTV=NPPCF)
! Compute derivative of the piecewise
! polynomial
 DS = PPDER(X,BREAK,PPCOEF, IDERIV=1, NINTV=NPPCF)
 WRITE (NOUT,’(2F12.3,F12.6,F12.3,F12.6)’) X, S, F(X) - S, DS,&
 DF(X) – DS
 20 CONTINUE
99999 FORMAT (11X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 7X, ’S’’(X)’, 7X,&
 ’Error’)
 END

Output
 X S(X) Error S’(X) Error
0.000 0.000 0.000000 1.000 -0.000112
0.053 0.055 0.000000 1.109 0.000030
0.105 0.117 0.000000 1.228 -0.000008
0.158 0.185 0.000000 1.356 0.000002
0.211 0.260 0.000000 1.494 0.000000
0.263 0.342 0.000000 1.643 0.000000
0.316 0.433 0.000000 1.804 -0.000001
0.368 0.533 0.000000 1.978 0.000002
0.421 0.642 0.000000 2.165 0.000001
0.474 0.761 0.000000 2.367 0.000000
0.526 0.891 0.000000 2.584 -0.000001
0.579 1.033 0.000000 2.817 0.000001
0.632 1.188 0.000000 3.068 0.000001
0.684 1.356 0.000000 3.338 0.000001
0.737 1.540 0.000000 3.629 0.000001
0.789 1.739 0.000000 3.941 0.000000
0.842 1.955 0.000000 4.276 -0.000006
0.895 2.189 0.000000 4.636 0.000024
0.947 2.443 0.000000 5.022 -0.000090
1.000 2.718 0.000000 5.436 0.000341

Description
The routine PPDER evaluates the derivative of a piecewise polynomial function f at a given
point. This routine is based on the subroutine PPVALU by de Boor (1978, page 89). In particular,
if the breakpoint sequence is stored in � (a vector of length N = NINTV + 1), and if the
coefficients of the piecewise polynomial representation are stored in c, then the value of the j-th
derivative of f at x in[�i, �i + 1) is

� � � �
� �

� �

1

1, !

m jk
j i

m i
m j

x
f x c

m j
�

�
�

�

�

�

�

�

�

when j = 0 to k � 1 and zero otherwise. Notice that this representation forces the function to be
right continuous. If x is less than �1, then i is set to 1 in the above formula; if x is greater than or
equal to �N , then i is set to N � 1. This has the effect of extending the piecewise polynomial
representation to the real axis by extrapolation of the first and last pieces.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 687

PP1GD
Evaluates the derivative of a piecewise polynomial on a grid.

Required Arguments
XVEC — Array of length N containing the points at which the piecewise polynomial is to be

evaluated. (Input)
The points in XVEC should be strictly increasing.

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise
polynomial representation. (Input)
BREAK must be strictly increasing.

PPCOEF — Matrix of size KORDER by NINTV containing the local coefficients of the
polynomial pieces. (Input)

VALUE — Array of length N containing the values of the IDERIV-th derivative of the
piecewise polynomial at the points in XVEC. (Output)

Optional Arguments
IDERIV — Order of the derivative to be evaluated. (Input)

In particular, IDERIV = 0 returns the values of the piecewise polynomial.
Default: IDERIV = 1.

N — Length of vector XVEC. (Input)
Default: N = size (XVEC,1).

KORDER — Order of the polynomial. (Input)
Default: KORDER = size (PPCOEF,1).

NINTV — Number of polynomial pieces. (Input)
Default: NINTV = size (PPCOEF,2).

FORTRAN 90 Interface
Generic: CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE [,…])

Specific: The specific interface names are S_PP1GD and D_PP1GD.

FORTRAN 77 Interface
Single: CALL PP1GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK, PPCOEF,

 VALUE)

Double: The double precision name is DPP1GD.

688 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Example
To illustrate the use of PP1GD, we modify the example program for PPDER (page 684). In this
example, a piecewise polynomial interpolant to F is computed. The values of this polynomial
are then compared with the exact function values. The routine PP1GD is based on the routine
PPVALU in de Boor (1978, page 89).

 USE IMSL_LIBRARIES

 INTEGER KORDER, N, NCOEF, NDATA, NKNOT
 PARAMETER (KORDER=4, N=20, NCOEF=20, NDATA=20,&
 NKNOT=NDATA+KORDER)
!
 INTEGER I, NINTV, NOUT, NPPCF
 REAL BREAK(NCOEF), BSCOEF(NCOEF), DF, EXP, F,&
 FDATA(NDATA), FLOAT, PPCOEF(KORDER,NCOEF), VALUE1(N),&
 VALUE2(N), X, XDATA(NDATA), XKNOT(NKNOT), XVEC(N)
 INTRINSIC EXP, FLOAT
!
 F(X) = X*EXP(X)
 DF(X) = (X+1.)*EXP(X)
! Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
! Compute the B-spline interpolant
 CALL BSINT (NCOEF, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
! Convert to piecewise polynomial
 CALL BSCPP (KORDER, XKNOT, NCOEF, BSCOEF, NPPCF, BREAK, PPCOEF)
! Compute evaluation points
 DO 20 I=1, N
 XVEC(I) = FLOAT(I-1)/FLOAT(N-1)
 20 CONTINUE
! Compute values of the piecewise
! polynomial
 NINTV = NPPCF
 CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE1, IDERIV=0, NINTV=NINTV)
! Compute the values of the first
! derivative of the piecewise
! polynomial
 CALL PP1GD (XVEC, BREAK, PPCOEF, VALUE2, IDERIV=1, NINTV=NINTV)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99998)
! Print the results on a uniform
! grid
 DO 30 I=1, N
 WRITE (NOUT,99999) XVEC(I), VALUE1(I), F(XVEC(I)) - VALUE1(I)&
 , VALUE2(I), DF(XVEC(I)) - VALUE2(I)
 30 CONTINUE
99998 FORMAT (11X, ’X’, 8X, ’S(X)’, 7X, ’Error’, 7X, ’S’’(X)’, 7X,&
 ’Error’)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 689

99999 FORMAT (’ ’, 2F12.3, F12.6, F12.3, F12.6)
 END

Output

 X S(X) Error S’(X) Error
0.000 0.000 0.000000 1.000 -0.000112
0.053 0.055 0.000000 1.109 0.000030
0.105 0.117 0.000000 1.228 -0.000008
0.158 0.185 0.000000 1.356 0.000002
0.211 0.260 0.000000 1.494 0.000000
0.263 0.342 0.000000 1.643 0.000000
0.316 0.433 0.000000 1.804 -0.000001
0.368 0.533 0.000000 1.978 0.000002
0.421 0.642 0.000000 2.165 0.000001
0.474 0.761 0.000000 2.367 0.000000
0.526 0.891 0.000000 2.584 -0.000001
0.579 1.033 0.000000 2.817 0.000001
0.632 1.188 0.000000 3.068 0.000001
0.684 1.356 0.000000 3.338 0.000001
0.737 1.540 0.000000 3.629 0.000001
0.789 1.739 0.000000 3.941 0.000000
0.842 1.955 0.000000 4.276 -0.000006
0.895 2.189 0.000000 4.636 0.000024
0.947 2.443 0.000000 5.022 -0.000090
1.000 2.718 0.000000 5.436 0.000341

Comments
1. Workspace may be explicitly provided, if desired, by use of P21GD/DP21GD. The

reference is:

CALL P21GD (IDERIV, N, XVEC, KORDER, NINTV, BREAK, PPCOEF,
VALUE, IWK, WORK1, WORK2)

The additional arguments are as follows:

IWK — Array of length N.

WORK1 — Array of length N.

WORK2 — Array of length N.

2. Informational error

Type Code
 4 4 The points in XVEC must be strictly increasing.

Description
The routine PP1GD evaluates a piecewise polynomial function f (or its derivative) at a vector of
points. That is, given a vector x of length n satisfying xi < xi + 1 for i = 1, �, n � 1, a derivative

690 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

value j, and a piecewise polynomial function f that is represented by a breakpoint sequence and
coefficient matrix this routine returns the values

� � � � 1, ,j
if x i n� �

in the array VALUE. The functionality of this routine is the same as that of PPDER (page 684)
called in a loop, however PP1GD is much more efficient.

PPITG
This function evaluates the integral of a piecewise polynomial.

Function Return Value
PPITG — Value of the integral from A to B of the piecewise polynomial. (Output)

Required Arguments
A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

BREAK — Array of length NINTV + 1 containing the breakpoints for the piecewise
polynomial. (Input)
BREAK must be strictly increasing.

PPCOEF — Array of size KORDER * NINTV containing the local coefficients of the piecewise
polynomial pieces. (Input)
PPCOEF is treated internally as a matrix of size KORDER by NINTV.

Optional Arguments
KORDER — Order of the polynomial. (Input)

Default: KORDER = size (PPCOEF,1).

NINTV — Number of piecewise polynomial pieces. (Input)
Default: NINTV = size (PPCOEF,2).

FORTRAN 90 Interface
Generic: PP1TG (A, B, BREAK, PPCOEF [,…])

Specific: The specific interface names are S_PP1TG and D_PP1TG.

FORTRAN 77 Interface
Single: PP1TG (A, B, KORDER, NINTV, BREAK, PPCOEF)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 691

Double: The double precision function name is DPP1TG.

Example

In this example, we compute a quadratic spline interpolant to the function x2 using the IMSL
routine BSINT (page 622). We then evaluate the integral of the spline interpolant over the
intervals [0, 1/2] and [0, 2]. The interpolant reproduces x2, and hence, the values of the integrals
are 1/24 and 8/3, respectively.

 USE IMSL_LIBRARIES
 INTEGER KORDER, NDATA, NKNOT
 PARAMETER (KORDER=3, NDATA=10, NKNOT=NDATA+KORDER)
!
 INTEGER I, NOUT, NPPCF
 REAL A, B, BREAK(NDATA), BSCOEF(NDATA), EXACT, F,&
 FDATA(NDATA), FI, FLOAT, PPCOEF(KORDER,NDATA),&
 VALUE, X, XDATA(NDATA), XKNOT(NKNOT)
 INTRINSIC FLOAT
!
 F(X) = X*X
 FI(X) = X*X*X/3.0
! Set up interpolation points
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA-1)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Generate knot sequence
 CALL BSNAK (NDATA, XDATA, KORDER, XKNOT)
! Interpolate
 CALL BSINT (NDATA, XDATA, FDATA, KORDER, XKNOT, BSCOEF)
! Convert to piecewise polynomial
 CALL BSCPP (KORDER, XKNOT, NDATA, BSCOEF, NPPCF, BREAK, PPCOEF)
! Compute the integral of F over
! [0.0,0.5]
 A = 0.0
 B = 0.5
 VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF)
 EXACT = FI(B) - FI(A)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print the result
 WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE
! Compute the integral of F over
! [0.0,2.0]
 A = 0.0
 B = 2.0
 VALUE = PPITG(A,B,BREAK,PPCOEF,NINTV=NPPCF)
 EXACT = FI(B) - FI(A)
! Print the result
 WRITE (NOUT,99999) A, B, VALUE, EXACT, EXACT - VALUE
99999 FORMAT (’ On the closed interval (’, F3.1, ’,’, F3.1,&
 ’) we have :’, /, 1X, ’Computed Integral = ’, F10.5, /,&
 1X, ’Exact Integral = ’, F10.5, /, 1X, ’Error ’&
 , ’ = ’, F10.6, /, /)

692 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

!
 END

Output
On the closed interval (0.0,0.5) we have :
Computed Integral = 0.04167
Exact Integral = 0.04167
Error = 0.000000

On the closed interval (0.0,2.0) we have :
Computed Integral = 2.66667
Exact Integral = 2.66667
Error = 0.000001

Description
The routine PPITG evaluates the integral of a piecewise polynomial over an interval.

QDVAL
This function evaluates a function defined on a set of points using quadratic interpolation.

Function Return Value
QDVAL — Value of the quadratic interpolant at X. (Output)

Required Arguments
X — Coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NDATA containing the location of the data points. (Input) XDATA
must be strictly increasing.

FDATA — Array of length NDATA containing the function values. (Input)
FDATA(I) is the value of the function at XDATA(I).

Optional Arguments
NDATA — Number of data points. (Input)

NDATA must be at least 3.
Default: NDATA = size (XDATA,1).

CHECK — Logical variable that is .TRUE. if checking of XDATA is required or .FALSE. if
checking is not required. (Input)
Default: CHECK = .TRUE.

FORTRAN 90 Interface
Generic: QDVAL (X, XDATA, FDATA [,…])

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 693

Specific: The specific interface names are S_QDVAL and D_QDVAL.

FORTRAN 77 Interface
Single: QDVAL (X, NDATA, XDATA, FDATA, CHECK)

Double: The double precision name is DQDVAL.

Example
In this example, the value of sin x is approximated at �/4 by using QDVAL on a table of 33
equally spaced values.

 USE IMSL_LIBRARIES
 INTEGER NDATA
 PARAMETER (NDATA=33)
!
 INTEGER I, NOUT
 REAL F, FDATA(NDATA), H, PI, QT, SIN, X,&
 XDATA(NDATA)
 INTRINSIC SIN
! Define function
 F(X) = SIN(X)
! Generate data points
 XDATA(1) = 0.0
 FDATA(1) = F(XDATA(1))
 H = 1.0/32.0
 DO 10 I=2, NDATA
 XDATA(I) = XDATA(I-1) + H
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Get value of PI and set X
 PI = CONST(’PI’)
 X = PI/4.0
! Evaluate at PI/4
 QT = QDVAL(X,XDATA,FDATA)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print results
 WRITE (NOUT,99999) X, F(X), QT, (F(X)-QT)
!
99999 FORMAT (15X, ’X’, 6X, ’F(X)’, 6X, ’QDVAL’, 5X, ’ERROR’, //, 6X,&
 4F10.3, /)
 END

Output
 X F(X) QDVAL ERROR

0.785 0.707 0.707 0.000

694 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Comments
Informational error

Type Code

 4 3 The XDATA values must be strictly increasing.

Description
The function QDVAL interpolates a table of values, using quadratic polynomials, returning an
approximation to the tabulated function. Let (xi, fi) for i = 1, �, n be the tabular data. Given a
number x at which an interpolated value is desired, we first find the nearest interior grid point xi.
A quadratic interpolant q is then formed using the three points (xi-1, fi-1), (xi, fi), and (xi+1, fi+1).
The number returned by QDVAL is q(x).

QDDER
This function evaluates the derivative of a function defined on a set of points using quadratic
interpolation.

Function Return Value
QDDER — Value of the IDERIV-th derivative of the quadratic interpolant at X. (Output)

Required Arguments
IDERIV — Order of the derivative. (Input)

X — Coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NDATA containing the location of the data points. (Input) XDATA
must be strictly increasing.

FDATA — Array of length NDATA containing the function values. (Input)
FDATA(I) is the value of the function at XDATA(I).

Optional Arguments
NDATA — Number of data points. (Input)

NDATA must be at least three.
Default: NDATA = size (XDATA,1).

CHECK — Logical variable that is .TRUE. if checking of XDATA is required or .FALSE. if
checking is not required. (Input)
Default: CHECK = .TRUE.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 695

FORTRAN 90 Interface
Generic: QDDER(IDERIV, X, XDATA, FDATA [,…])

Specific: The specific interface names are S_QDVAL and D_QDVAL.

FORTRAN 77 Interface
Single: QDDER(IDERIV, X, NDATA, XDATA, FDATA, CHECK)

Double: The double precision function name is DQDVAL.

Example
In this example, the value of sin x and its derivatives are approximated at �/4 by using QDDER on
a table of 33 equally spaced values.

 USE IMSL_LIBRARIES
 INTEGER NDATA
 PARAMETER (NDATA=33)
!
 INTEGER I, IDERIV, NOUT
 REAL COS, F, F1, F2, FDATA(NDATA), H, PI,&
 QT, SIN, X, XDATA(NDATA)
 LOGICAL CHECK
 INTRINSIC COS, SIN
! Define function and derivatives
 F(X) = SIN(X)
 F1(X) = COS(X)
 F2(X) = -SIN(X)
! Generate data points
 XDATA(1) = 0.0
 FDATA(1) = F(XDATA(1))
 H = 1.0/32.0
 DO 10 I=2, NDATA
 XDATA(I) = XDATA(I-1) + H
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Get value of PI and set X
 PI = CONST(’PI’)
 X = PI/4.0
! Check XDATA
 CHECK = .TRUE.
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99998)
! Evaluate quadratic at PI/4
 IDERIV = 0
 QT = QDDER(IDERIV,X,XDATA,FDATA, CHECK=CHECK)
 WRITE (NOUT,99999) X, IDERIV, F(X), QT, (F(X)-QT)
 CHECK = .FALSE.
! Evaluate first derivative at PI/4

696 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 IDERIV = 1
 QT = QDDER(IDERIV,X,XDATA,FDATA)
 WRITE (NOUT,99999) X, IDERIV, F1(X), QT, (F1(X)-QT)
! Evaluate second derivative at PI/4
 IDERIV = 2
 QT = QDDER(IDERIV,X,XDATA,FDATA, CHECK=CHECK)
 WRITE (NOUT,99999) X, IDERIV, F2(X), QT, (F2(X)-QT)
!
99998 FORMAT (33X, ’IDER’, /, 15X, ’X’, 6X, ’IDER’, 6X, ’F (X)’,&
 5X, ’QDDER’, 6X, ’ERROR’, //)
99999 FORMAT (7X, F10.3, I8, 3F12.3/)
 END

Output
 IDER
 X IDER F (X) QDDER ERROR

0.785 0 0.707 0.707 0.000

0.785 1 0.707 0.707 0.000

0.785 2 -0.707 -0.704 -0.003

Comments
1. Informational error

Type Code
 4 3 The XDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of the derivative is greater than
two, then the returned value is zero.

Description
The function QDDER interpolates a table of values, using quadratic polynomials, returning an
approximation to the derivative of the tabulated function. Let (xi, fi) for i = 1, �, n be the
tabular data. Given a number x at which an interpolated value is desired, we first find the nearest
interior grid point xi. A quadratic interpolant q is then formed using the three points (xi-1, fi-1)

(xi, fi), and (xi+1, fi+1). The number returned by QDDER is q(j)(x), where j = IDERIV.

QD2VL
This function evaluates a function defined on a rectangular grid using quadratic interpolation.

Function Return Value
QD2VL — Value of the function at (X, Y). (Output)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 697

Required Arguments
X — x-coordinate of the point at which the function is to be evaluated. (Input)

Y — y-coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NXDATA containing the location of the data points in the x-
direction. (Input)
XDATA must be increasing.

YDATA — Array of length NYDATA containing the location of the data points in the y-
direction. (Input)
YDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA containing function values. (Input)
FDATA (I, J) is the value of the function at (XDATA (I), YDATA(J)).

Optional Arguments
NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be at least three.
Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be at least three.
Default: NYDATA = size (YDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the
calling program. (Input)
LDF must be at least as large as NXDATA.
Default: LDF = size (FDATA,1).

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is required or
.FALSE. if checking is not required. (Input)
Default: CHECK = .TRUE.

FORTRAN 90 Interface
Generic: QD2VL(X, Y, XDATA, YDATA, FDATA [,…])

Specific: The specific interface names are S_QD2VL and D_QD2VL.

FORTRAN 77 Interface
Single: QD2VL(X, Y, NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,

 CHECK)

Double: The double precision function name is DQD2VL.

698 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Example
In this example, the value of sin(x + y) at x = y = �/4 is approximated by using QDVAL on a table
of size 21 � 42 equally spaced values on the unit square.

 USE IMSL_LIBRARIES
 INTEGER LDF, NXDATA, NYDATA
 PARAMETER (NXDATA=21, NYDATA=42, LDF=NXDATA)
!
 INTEGER I, J, NOUT
 REAL F, FDATA(LDF,NYDATA), FLOAT, PI, Q, &
 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA)
 INTRINSIC FLOAT, SIN
! Define function
 F(X,Y) = SIN(X+Y)
! Set up X-grid
 DO 10 I=1, NXDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NXDATA-1)
 10 CONTINUE
! Set up Y-grid
 DO 20 I=1, NYDATA
 YDATA(I) = FLOAT(I-1)/FLOAT(NYDATA-1)
 20 CONTINUE
! Evaluate function on grid
 DO 30 I=1, NXDATA
 DO 30 J=1, NYDATA
 FDATA(I,J) = F(XDATA(I),YDATA(J))
 30 CONTINUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Get value for PI and set X and Y
 PI = CONST(’PI’)
 X = PI/4.0
 Y = PI/4.0
! Evaluate quadratic at (X,Y)
 Q = QD2VL(X,Y,XDATA,YDATA,FDATA)
! Print results
 WRITE (NOUT,’(5F12.4)’) X, Y, F(X,Y), Q, (Q-F(X,Y))
99999 FORMAT (10X, ’X’, 11X, ’Y’, 7X, ’F(X,Y)’, 7X, ’QD2VL’, 9X,&
 ’DIF’)
 END

Output
 X Y F(X,Y) QD2VL DIF
0.7854 0.7854 1.0000 1.0000 0.0000

Comments
Informational errors

Type Code

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 699

 4 6 The XDATA values must be strictly increasing.

 4 7 The YDATA values must be strictly increasing.

Description
The function QD2VL interpolates a table of values, using quadratic polynomials, returning an
approximation to the tabulated function. Let (xi, yj, fij) for i = 1, �, nx and j = 1, �, ny be the
tabular data. Given a point (x, y) at which an interpolated value is desired, we first find the
nearest interior grid point (xi, yj). A bivariate quadratic interpolant q is then formed using six
points near (x, y). Five of the six points are (xi, yj), (xi ±1, yj), and (xi, yj ±1). The sixth point is the
nearest point to (x, y) of the grid points (xi±1, yj±1). The value q(x, y) is returned by QD2VL.

QD2DR
This function evaluates the derivative of a function defined on a rectangular grid using quadratic
interpolation.

Function Return Value
QD2DR — Value of the (IXDER, IYDER) derivative of the function at (X, Y). (Output)

Required Arguments
IXDER — Order of the x-derivative. (Input)

IYDER — Order of the y-derivative. (Input)

X — X-coordinate of the point at which the function is to be evaluated. (Input)

Y — Y-coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NXDATA containing the location of the data points in the
x-direction. (Input)
XDATA must be increasing.

YDATA — Array of length NYDATA containing the location of the data points in the
y-direction. (Input)
YDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA containing function values. (Input)
FDATA(I, J) is the value of the function at (XDATA(I), YDATA(J)).

700 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Optional Arguments
NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be at least three.
Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be at least three.
Default: NYDATA = size (YDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the
calling program. (Input)
LDF must be at least as large as NXDATA.
Default: LDF = size (FDATA,1).

CHECK — Logical variable that is .TRUE. if checking of XDATA and YDATA is required or
.FALSE. if checking is not required. (Input)
Default: CHECK = .TRUE.

FORTRAN 90 Interface
Generic: QD2DR (IXDER, IYDER, X, Y, XDATA, YDATA, FDATA [,…])

Specific: The specific interface names are S_QD2DR and D_QD2DR.

FORTRAN 77 Interface
Single: QD2DR(IXDER, IYDER, X, Y, NXDATA, XDATA, NYDATA,

YDATA, FDATA, LDF, CHECK)

Double: The double precision fucntion name is DQD2DR.

Example
In this example, the partial derivatives of sin(x + y) at x = y = �/3 are approximated by using
QD2DR on a table of size 21 � 42 equally spaced values on the rectangle [0, 2] � [0, 2].

 USE IMSL_LIBRARIES

 INTEGER LDF, NXDATA, NYDATA
 PARAMETER (NXDATA=21, NYDATA=42, LDF=NXDATA)
!
 INTEGER I, IXDER, IYDER, J, NOUT
 REAL F, FDATA(LDF,NYDATA), FLOAT, FU, FUNC, PI, Q,&
 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA)
 INTRINSIC FLOAT, SIN
 EXTERNAL FUNC
! Define function
 F(X,Y) = SIN(X+Y)
! Set up X-grid
 DO 10 I=1, NXDATA

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 701

 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))
 10 CONTINUE
! Set up Y-grid
 DO 20 I=1, NYDATA
 YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1))
 20 CONTINUE
! Evaluate function on grid
 DO 30 I=1, NXDATA
 DO 30 J=1, NYDATA
 FDATA(I,J) = F(XDATA(I),YDATA(J))
 30 CONTINUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99998)
! Check XDATA and YDATA
! Get value for PI and set X and Y
 PI = CONST(’PI’)
 X = PI/3.0
 Y = PI/3.0
! Evaluate and print the function
! and its derivatives at X=PI/3 and
! Y=PI/3.
 DO 40 IXDER=0, 1
 DO 40 IYDER=0, 1
 Q = QD2DR(IXDER,IYDER,X,Y,XDATA,YDATA,FDATA)
 FU = FUNC(IXDER,IYDER,X,Y)
 WRITE (NOUT,99999) X, Y, IXDER, IYDER, FU, Q, (FU-Q)
 40 CONTINUE
!
99998 FORMAT (32X, ’(IDX,IDY)’, /, 8X, ’X’, 8X, ’Y’, 3X, ’IDX’, 2X,&
 ’IDY’, 3X, ’F (X,Y)’, 3X, ’QD2DR’, 6X, ’ERROR’)
99999 FORMAT (2F9.4, 2I5, 3X, F9.4, 2X, 2F11.4)
 END
 REAL FUNCTION FUNC (IX, IY, X, Y)
 INTEGER IX, IY
 REAL X, Y
!
 REAL COS, SIN
 INTRINSIC COS, SIN
!
 IF (IX.EQ.0 .AND. IY.EQ.0) THEN
! Define (0,0) derivative
 FUNC = SIN(X+Y)
 ELSE IF (IX.EQ.0 .AND. IY.EQ.1) THEN
! Define (0,1) derivative
 FUNC = COS(X+Y)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.0) THEN
! Define (1,0) derivative
 FUNC = COS(X+Y)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.1) THEN
! Define (1,1) derivative
 FUNC = -SIN(X+Y)
 ELSE
 FUNC = 0.0

702 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 END IF
 RETURN
 END

Output
 (IDX,IDY)
 X Y IDX IDY F (X,Y) QD2DR ERROR
1.0472 1.0472 0 0 0.8660 0.8661 -0.0001
1.0472 1.0472 0 1 -0.5000 -0.4993 -0.0007
1.0472 1.0472 1 0 -0.5000 -0.4995 -0.0005
1.0472 1.0472 1 1 -0.8660 -0.8634 -0.0026

Comments
1. Informational errors

Type Code
 4 6 The XDATA values must be strictly increasing.
 4 7 The YDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of any derivative is greater than
two, then the returned value is zero.

Description
The function QD2DR interpolates a table of values, using quadratic polynomials, returning an
approximation to the tabulated function. Let (xi, yj, fij) for i = 1, �, nx and j = 1, �, ny be the
tabular data. Given a point (x, y) at which an interpolated value is desired, we first find the
nearest interior grid point (xi, yj). A bivariate quadratic interpolant q is then formed using six
points near (x, y). Five of the six points are (xi, yj), (xi±1, yj), and (xi, yj±1). The sixth point is the

nearest point to (x, y) of the grid points (xi±1, yj±1). The value q(p, r) (x, y) is returned by QD2DR,
where p = IXDER and r = IYDER.

QD3VL
This function evaluates a function defined on a rectangular three-dimensional grid using quadratic
interpolation.

Function Return Value
QD3VL — Value of the function at (X, Y, Z). (Output)

Required Arguments
X — x-coordinate of the point at which the function is to be evaluated. (Input)

Y — y-coordinate of the point at which the function is to be evaluated. (Input)

Z — z-coordinate of the point at which the function is to be evaluated. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 703

XDATA — Array of length NXDATA containing the location of the data points in the
x-direction. (Input)
XDATA must be increasing.

YDATA — Array of length NYDATA containing the location of the data points in the y-
direction. (Input)
YDATA must be increasing.

ZDATA — Array of length NZDATA containing the location of the data points in the z-
direction. (Input)
ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function values. (Input)
FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)).

Optional Arguments
NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be at least three.
Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be at least three.
Default: NYDATA = size (YDATA,1).

NZDATA — Number of data points in the z-direction. (Input)
NZDATA must be at least three.
Default: NZDATA = size (ZDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the
calling program. (Input)
LDF must be at least as large as NXDATA.
Default: LDF = size (FDATA,1).

MDF — Middle (second) dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)
MDF must be at least as large as NYDATA.
Default: MDF = size (FDATA,2).

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and ZDATA is
required or .FALSE. if checking is not required. (Input)
Default: CHECK = .TRUE.

FORTRAN 90 Interface
Generic: QD3VL (X, Y, Z, XDATA, YDATA, ZDATA, FDATA [,…])

704 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Specific: The specific interface names are S_QD3VL and D_QD3VL.

FORTRAN 77 Interface
Single: QD3VL(X, Y, Z, NXDATA, XDATA, NYDATA, YDATA, NZDATA,

 ZDATA, FDATA, LDF, MDF, CHECK)

Double: The double precision function name is DQD3VL.

Example
In this example, the value of sin(x + y + z) at x = y = z = �/3 is approximated by using QD3VL on
a grid of size 21 � 42 � 18 equally spaced values on the cube [0, 2]3.

 USE IMSL_LIBRARIES
 INTEGER LDF, MDF, NXDATA, NYDATA, NZDATA
 PARAMETER (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,&
 MDF=NYDATA)
!
 INTEGER I, J, K, NOUT
 REAL F, FDATA(LDF,MDF,NZDATA), FLOAT, PI, Q, &
 SIN, X, XDATA(NXDATA), Y, YDATA(NYDATA), Z,&
 ZDATA(NZDATA)
 INTRINSIC FLOAT, SIN
! Define function
 F(X,Y,Z) = SIN(X+Y+Z)
! Set up X-grid
 DO 10 I=1, NXDATA
 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))
 10 CONTINUE
! Set up Y-grid
 DO 20 J=1, NYDATA
 YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1))
 20 CONTINUE
! Set up Z-grid
 DO 30 K=1, NZDATA
 ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1))
 30 CONTINUE
! Evaluate function on grid
 DO 40 I=1, NXDATA
 DO 40 J=1, NYDATA
 DO 40 K=1, NZDATA
 FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K))
 40 CONTINUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Get value for PI and set values
! for X, Y, and Z
 PI = CONST(’PI’)
 X = PI/3.0
 Y = PI/3.0

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 705

 Z = PI/3.0
! Evaluate quadratic at (X,Y,Z)
 Q = QD3VL(X,Y,Z,XDATA,YDATA,ZDATA,FDATA)
! Print results
 WRITE (NOUT,’(6F11.4)’) X, Y, Z, F(X,Y,Z), Q, (Q-F(X,Y,Z))
99999 FORMAT (10X, ’X’, 10X, ’Y’, 10X, ’Z’, 5X, ’F(X,Y,Z)’, 4X,&
 ’QD3VL’, 6X, ’ERROR’)
 END

Output
 X Y Z F(X,Y,Z) QD3VL ERROR
1.0472 1.0472 1.0472 0.0000 0.0001 0.0001

Comments
Informational errors

Type Code

 4 9 The XDATA values must be strictly increasing.

 4 10 The YDATA values must be strictly increasing.

 4 11 The ZDATA values must be strictly increasing.

Description
The function QD3VL interpolates a table of values, using quadratic polynomials, returning an
approximation to the tabulated function. Let (xi, yj, zk, fijk) for i = 1, �, nx, j = 1, �, ny, and
k = 1, �, nz be the tabular data. Given a point (x, y, z) at which an interpolated value is desired,
we first find the nearest interior grid point (xi, yj, zk,). A trivariate quadratic interpolant q is then
formed. Ten points are needed for this purpose. Seven points have the form

� � � � � � � �1 1 1, , , , , , , , and , ,i j k i j k i j k i j kx y z x y z x y z x y z
� � �

The last three points are drawn from the vertices of the octant containing (x, y, z). There are four
of these vertices remaining, and we choose to exclude the vertex farthest from the center. This
has the slightly deleterious effect of not reproducing the tabular data at the eight exterior corners
of the table. The value q(x, y, z) is returned by QD3VL.

QD3DR
This function evaluates the derivative of a function defined on a rectangular three-dimensional
grid using quadratic interpolation.

Function Return Value
QD3DR — Value of the appropriate derivative of the function at (X, Y, Z). (Output)

706 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Required Arguments
IXDER — Order of the x-derivative. (Input)

IYDER — Order of the y-derivative. (Input)

IZDER — Order of the z-derivative. (Input)

X — x-coordinate of the point at which the function is to be evaluated. (Input)

Y — y-coordinate of the point at which the function is to be evaluated. (Input)

Z — z-coordinate of the point at which the function is to be evaluated. (Input)

XDATA — Array of length NXDATA containing the location of the data points in the
x-direction. (Input)
XDATA must be increasing.

YDATA — Array of length NYDATA containing the location of the data points in the
y-direction. (Input)
YDATA must be increasing.

ZDATA — Array of length NZDATA containing the location of the data points in the
z-direction. (Input)
ZDATA must be increasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing function values. (Input)
FDATA(I, J, K) is the value of the function at (XDATA(I), YDATA(J), ZDATA(K)).

Optional Arguments
NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be at least three.
Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be at least three.
Default: NYDATA = size (YDATA,1).

NZDATA — Number of data points in the z-direction. (Input)
NZDATA must be at least three.
Default: NZDATA = size (ZDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of the
calling program. (Input)
LDF must be at least as large as NXDATA.
Default: LDF = size (FDATA,1).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 707

MDF — Middle (second) dimension of FDATA exactly as specified in the dimension
statement of the calling program. (Input)
MDF must be at least as large as NYDATA.
Default: MDF = size (FDATA,2).

CHECK — Logical variable that is .TRUE. if checking of XDATA, YDATA, and ZDATA is
required or .FALSE. if checking is not required. (Input)
Default: CHECK = .TRUE.

FORTRAN 90 Interface
Generic: QD3DR (IXDER, IYDER, IZDER, X, Y, Z, XDATA, YDATA,

ZDATA, FDATA [,…])

Specific: The specific interface names are S_QD3DR and D_QD3DR.

FORTRAN 77 Interface
Single: QD3DR(IXDER, IYDER, IZDER, X, Y, Z, NXDATA, XDATA, NYDATA,

YDATA, NZDATA, ZDATA, FDATA, LDF, MDF, CHECK)

Double: The double precision function name is DQD3DR.

Example
In this example, the derivatives of sin(x + y + z) at x = y = z = �/5 are approximated by using
QD3DR on a grid of size 21 � 42 � 18 equally spaced values on the cube [0, 2]3.

 USE IMSL_LIBRARIES
 INTEGER LDF, MDF, NXDATA, NYDATA, NZDATA
 PARAMETER (NXDATA=21, NYDATA=42, NZDATA=18, LDF=NXDATA,&
 MDF=NYDATA)
!
 INTEGER I, IXDER, IYDER, IZDER, J, K, NOUT
 REAL F, FDATA(NXDATA,NYDATA,NZDATA), FLOAT, FU,&
 FUNC, PI, Q, SIN, X, XDATA(NXDATA), Y,&
 YDATA(NYDATA), Z, ZDATA(NZDATA)
 INTRINSIC FLOAT, SIN
 EXTERNAL FUNC
! Define function
 F(X,Y,Z) = SIN(X+Y+Z)
! Set up X-grid
 DO 10 I=1, NXDATA
 XDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NXDATA-1))
 10 CONTINUE
! Set up Y-grid
 DO 20 J=1, NYDATA
 YDATA(J) = 2.0*(FLOAT(J-1)/FLOAT(NYDATA-1))
 20 CONTINUE
! Set up Z-grid
 DO 30 K=1, NZDATA

708 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 ZDATA(K) = 2.0*(FLOAT(K-1)/FLOAT(NZDATA-1))
 30 CONTINUE
! Evaluate function on grid
 DO 40 I=1, NXDATA
 DO 40 J=1, NYDATA
 DO 40 K=1, NZDATA
 FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K))
 40 CONTINUE
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Get value for PI and set X, Y, and Z
 PI = CONST(’PI’)
 X = PI/5.0
 Y = PI/5.0
 Z = PI/5.0
! Compute derivatives at (X,Y,Z)
! and print results
 DO 50 IXDER=0, 1
 DO 50 IYDER=0, 1
 DO 50 IZDER=0, 1
 Q = QD3DR(IXDER,IYDER,IZDER,X,Y,Z,XDATA,YDATA,ZDATA,FDATA)
 FU = FUNC(IXDER,IYDER,IZDER,X,Y,Z)
 WRITE (NOUT,99998) X, Y, Z, IXDER, IYDER, IZDER, FU, Q,&
 (FU-Q)
 50 CONTINUE
!
99998 FORMAT (3F7.4, 3I5, 4X, F7.4, 8X, 2F10.4)
99999 FORMAT (39X, ’(IDX,IDY,IDZ)’, /, 6X, ’X’, 6X, ’Y’, 6X,&
 ’Z’, 3X, ’IDX’, 2X, ’IDY’, 2X, ’IDZ’, 2X, ’F ’,&
 ’(X,Y,Z)’, 3X, ’QD3DR’, 5X, ’ERROR’)
 END
!
 REAL FUNCTION FUNC (IX, IY, IZ, X, Y, Z)
 INTEGER IX, IY, IZ
 REAL X, Y, Z
!
 REAL COS, SIN
 INTRINSIC COS, SIN
!
 IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN
! Define (0,0,0) derivative
 FUNC = SIN(X+Y+Z)
 ELSE IF (IX.EQ.0 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN
! Define (0,0,1) derivative
 FUNC = COS(X+Y+Z)
 ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN
! Define (0,1,0,) derivative
 FUNC = COS(X+Y+Z)
 ELSE IF (IX.EQ.0 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN
! Define (0,1,1) derivative
 FUNC = -SIN(X+Y+Z)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.0) THEN
! Define (1,0,0) derivative

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 709

 FUNC = COS(X+Y+Z)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.0 .AND. IZ.EQ.1) THEN
! Define (1,0,1) derivative
 FUNC = -SIN(X+Y+Z)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.0) THEN
! Define (1,1,0) derivative
 FUNC = -SIN(X+Y+Z)
 ELSE IF (IX.EQ.1 .AND. IY.EQ.1 .AND. IZ.EQ.1) THEN
! Define (1,1,1) derivative
 FUNC = -COS(X+Y+Z)
 ELSE
 FUNC = 0.0
 END IF
 RETURN
 END

Output
 (IDX,IDY,IDZ)
 X Y Z IDX IDY IDZ F (X,Y,Z) QD3DR ERROR
0.6283 0.6283 0.6283 0 0 0 0.9511 0.9511 -0.0001
0.6283 0.6283 0.6283 0 0 1 -0.3090 -0.3080 -0.0010
0.6283 0.6283 0.6283 0 1 0 -0.3090 -0.3088 0.0002
0.6283 0.6283 0.6283 0 1 1 -0.9511 -0.9587 0.0077
0.6283 0.6283 0.6283 1 0 0 -0.3090 -0.3078 -0.0012
0.6283 0.6283 0.6283 1 0 1 -0.9511 -0.9348 -0.0162
0.6283 0.6283 0.6283 1 1 0 -0.9511 -0.9613 0.0103
0.6283 0.6283 0.6283 1 1 1 0.3090 0.0000 0.3090

Comments
1. Informational errors

Type Code
 4 9 The XDATA values must be strictly increasing.
 4 10 The YDATA values must be strictly increasing.
 4 11 The ZDATA values must be strictly increasing.

2. Because quadratic interpolation is used, if the order of any derivative is greater than
two, then the returned value is zero.

Description
The function QD3DR interpolates a table of values, using quadratic polynomials, returning an
approximation to the partial derivatives of the tabulated function. Let

(xi, yj, zk, fijk)

for i = 1, �, nx, j = 1, �, ny, and k = 1, �, nz be the tabular data. Given a point (x, y, z) at
which an interpolated value is desired, we first find the nearest interior grid point (xi, yj, zk). A

710 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

trivariate quadratic interpolant q is then formed. Ten points are needed for this purpose. Seven
points have the form

� � � � � � � �1 1 1, , , , , , , , and , ,i j k i j k i j k i j kx y z x y z x y z x y z
� � �

The last three points are drawn from the vertices of the octant containing (x, y, z). There are four
of these vertices remaining, and we choose to exclude the vertex farthest from the center. This
has the slightly deleterious effect of not reproducing the tabular data at the eight exterior corners
of the table. The value q(p,r,t)(x, y, z) is returned by QD3DR, where p = IXDER, r = IYDER, and
t = IZDER.

SURF
Computes a smooth bivariate interpolant to scattered data that is locally a quintic polynomial in
two variables.

Required Arguments
XYDATA — A 2 by NDATA array containing the coordinates of the interpolation points.

(Input)
These points must be distinct. The x-coordinate of the I-th data point is stored in
XYDATA(1, I) and the y-coordinate of the I-th data point is stored in XYDATA(2, I).

FDATA — Array of length NDATA containing the interpolation values. (Input) FDATA(I)
contains the value at (XYDATA(1, I), XYDATA(2, I)).

XOUT — Array of length NXOUT containing an increasing sequence of points. (Input)
These points are the x-coordinates of a grid on which the interpolated surface is to be
evaluated.

YOUT — Array of length NYOUT containing an increasing sequence of points. (Input)
These points are the y-coordinates of a grid on which the interpolated surface is to be
evaluated.

SUR — Matrix of size NXOUT by NYOUT. (Output)
This matrix contains the values of the surface on the XOUT by YOUT grid, i.e. SUR(I, J)
contains the interpolated value at (XOUT(I), YOUT(J)).

Optional Arguments
NDATA — Number of data points. (Input)

NDATA must be at least four.
Default: NDATA = size (FDATA,1).

NXOUT — The number of elements in XOUT. (Input)
Default: NXOUT = size (XOUT,1).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 711

NYOUT — The number of elements in YOUT. (Input)
Default: NYOUT = size (YOUT,1).

LDSUR — Leading dimension of SUR exactly as specified in the dimension statement of the
calling program. (Input)
LDSUR must be at least as large as NXOUT.
Default: LDSUR = size (SUR,1).

FORTRAN 90 Interface
Generic: CALL SURF (XYDATA, FDATA, XOUT, YOUT, SUR [,…])

Specific: The specific interface names are S_SURF and D_SURF.

FORTRAN 77 Interface
Single: CALL SURF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT,

 SUR, LDSUR)

Double: The double precision name is DSURF.

Example
In this example, the interpolant to the linear function 3 + 7x + 2y is computed from 20 data
points equally spaced on the circle of radius 3. We then print the values on a 3 � 3 grid.

 USE IMSL_LIBRARIES
 INTEGER LDSUR, NDATA, NXOUT, NYOUT
 PARAMETER (NDATA=20, NXOUT=3, NYOUT=3, LDSUR=NXOUT)
!
 INTEGER I, J, NOUT
 REAL ABS, COS, F, FDATA(NDATA), FLOAT, PI,&
 SIN, SUR(LDSUR,NYOUT), X, XOUT(NXOUT),&
 XYDATA(2,NDATA), Y, YOUT(NYOUT)
 INTRINSIC ABS, COS, FLOAT, SIN
! Define function
 F(X,Y) = 3.0 + 7.0*X + 2.0*Y
! Get value for PI
 PI = CONST(’PI’)
! Set up X, Y, and F data on a circle
 DO 10 I=1, NDATA
 XYDATA(1,I) = 3.0*SIN(2.0*PI*FLOAT(I-1)/FLOAT(NDATA))
 XYDATA(2,I) = 3.0*COS(2.0*PI*FLOAT(I-1)/FLOAT(NDATA))
 FDATA(I) = F(XYDATA(1,I),XYDATA(2,I))
 10 CONTINUE
! Set up XOUT and YOUT data on [0,1] by
! [0,1] grid.
 DO 20 I=1, NXOUT
 XOUT(I) = FLOAT(I-1)/FLOAT(NXOUT-1)
 20 CONTINUE
 DO 30 I=1, NXOUT
 YOUT(I) = FLOAT(I-1)/FLOAT(NYOUT-1)

712 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 30 CONTINUE
! Interpolate scattered data
 CALL SURF (XYDATA, FDATA, XOUT, YOUT, SUR)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99998)
! Print results
 DO 40 I=1, NYOUT
 DO 40 J=1, NXOUT
 WRITE (NOUT,99999) XOUT(J), YOUT(I), SUR(J,I),&
 F(XOUT(J),YOUT(I)),&
 ABS(SUR(J,I)-F(XOUT(J),YOUT(I)))
 40 CONTINUE
99998 FORMAT (’ ’, 10X, ’X’, 11X, ’Y’, 9X, ’SURF’, 6X, ’F(X,Y)’, 7X,&
 ’ERROR’, /)
99999 FORMAT (1X, 5F12.4)
 END

Output
 X Y SURF F(X,Y) ERROR

0.0000 0.0000 3.0000 3.0000 0.0000
0.5000 0.0000 6.5000 6.5000 0.0000
1.0000 0.0000 10.0000 10.0000 0.0000
0.0000 0.5000 4.0000 4.0000 0.0000
0.5000 0.5000 7.5000 7.5000 0.0000
1.0000 0.5000 11.0000 11.0000 0.0000
0.0000 1.0000 5.0000 5.0000 0.0000
0.5000 1.0000 8.5000 8.5000 0.0000
1.0000 1.0000 12.0000 12.0000 0.0000

Comments
1. Workspace may be explicitly provided, if desired, by use of S2RF/DS2RF. The

reference is:

CALL S2RF (NDATA, XYDATA, FDATA, NXOUT, NYOUT, XOUT, YOUT, SUR,
LDSUR, IWK, WK)

The additional arguments are as follows:

IWK — Work array of length 31 * NDATA + NXOUT * NYOUT.

WK — Work array of length 6 * NDATA.

2. Informational errors

Type Code
 4 5 The data point values must be distinct.
 4 6 The XOUT values must be strictly increasing.
 4 7 The YOUT values must be strictly increasing.

3. This method of interpolation reproduces linear functions.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 713

Description

This routine is designed to compute a C 1 interpolant to scattered data in the plane. Given the
data points

� �� � 3
1

, ,
N

i i i i
x y f in

�

R

SURF returns (in SUR, the user-specified grid) the values of the interpolant s. The computation of
s is as follows: First the Delaunay triangulation of the points

� �� � 1
,

N
i i i

x y
�

is computed. On each triangle T in this triangulation, s has the form

� �
5

, ,T m n
mn

m n
s x y c x y x y T

� �

� � � �

Thus, s is a bivariate quintic polynomial on each triangle of the triangulation. In addition, we
have

s(xi, yi) = fi for i = 1, �, N

and s is continuously differentiable across the boundaries of neighboring triangles. These
conditions do not exhaust the freedom implied by the above representation. This additional
freedom is exploited in an attempt to produce an interpolant that is faithful to the global shape
properties implied by the data. For more information on this routine, we refer the reader to the
article by Akima (1978). The grid is specified by the two integer variables NXOUT, NYOUT that
represent, respectively, the number of grid points in the first (second) variable and by two real
vectors that represent, respectively, the first (second) coordinates of the grid.

RLINE
Fits a line to a set of data points using least squares.

Required Arguments
XDATA — Vector of length NOBS containing the x-values. (Input)

YDATA — Vector of length NOBS containing the y-values. (Input)

B0 — Estimated intercept of the fitted line. (Output)

B1 — Estimated slope of the fitted line. (Output)

Optional Arguments
NOBS — Number of observations. (Input)

Default: NOBS = size (XDATA,1).

STAT — Vector of length 12 containing the statistics described below. (Output)

714 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

I ISTAT(I)

 1 Mean of XDATA
 2 Mean of YDATA
 3 Sample variance of XDATA
 4 Sample variance of YDATA
 5 Correlation
 6 Estimated standard error of B0
 7 Estimated standard error of B1
 8 Degrees of freedom for regression
 9 Sum of squares for regression
 10 Degrees of freedom for error
 11 Sum of squares for error

12 Number of (x, y) points containing NaN (not a number) as either the x or y value

FORTRAN 90 Interface
Generic: CALL RLINE (XDATA, YDATA, B0, B1 [,…])

Specific: The specific interface names are S_RLINE and D_RLINE.

FORTRAN 77 Interface
Single: CALL RLINE (NOBS, XDATA, YDATA, B0, B1, STAT)

Double: The double precision name is DRLINE.

Example
This example fits a line to a set of data discussed by Draper and Smith (1981, Table 1.1, pages
9�33). The response y is the amount of steam used per month (in pounds), and the independent
variable x is the average atmospheric temperature (in degrees Fahrenheit).

 USE RLINE_INT
 USE UMACH_INT
 USE WRRRL_INT
 INTEGER NOBS
 PARAMETER (NOBS=25)
!
 INTEGER NOUT
 REAL B0, B1, STAT(12), XDATA(NOBS), YDATA(NOBS)
 CHARACTER CLABEL(13)*15, RLABEL(1)*4
!
 DATA XDATA/35.3, 29.7, 30.8, 58.8, 61.4, 71.3, 74.4, 76.7, 70.7,&
 57.5, 46.4, 28.9, 28.1, 39.1, 46.8, 48.5, 59.3, 70.0, 70.0,&
 74.5, 72.1, 58.1, 44.6, 33.4, 28.6/
 DATA YDATA/10.98, 11.13, 12.51, 8.4, 9.27, 8.73, 6.36, 8.5,&
 7.82, 9.14, 8.24, 12.19, 11.88, 9.57, 10.94, 9.58, 10.09,&
 8.11, 6.83, 8.88, 7.68, 8.47, 8.86, 10.36, 11.08/
 DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Mean of X’, ’Mean of Y’,&
 ’Variance X’, ’Variance Y’, ’Corr.’, ’Std. Err. B0’,&
 ’Std. Err. B1’, ’DF Reg.’, ’SS Reg.’, ’DF Error’,&

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 715

 ’SS Error’, ’Pts. with NaN’/
!
 CALL RLINE (XDATA, YDATA, B0, B1, STAT=STAT)
!
 CALL UMACH (2, NOUT)
 WRITE (NOUT,99999) B0, B1
99999 FORMAT (’ B0 = ’, F7.2, ’ B1 = ’, F9.5)
 CALL WRRRL (’%/STAT’, STAT, RLABEL, CLABEL, 1, 12, 1, &
 FMT = ’(12W10.4)’)
!
 END

Output
B0 = 13.62 B1 = -0.07983

 STAT
Mean of X Mean of Y Variance X Variance Y Corr. Std. Err. B0
 52.6 9.424 298.1 2.659 -0.8452 0.5815

Std. Err. B1 DF Reg. SS Reg. DF Error SS Error Pts. with NaN
0.01052 1 45.59 23 18.22 0

Figure 3-5 Plot of the Data and the Least Squares Line

Comments
Informational error

716 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Type Code

 4 1 Each (x, y) point contains NaN (not a number). There are no valid data.

Description
Routine RLINE fits a line to a set of (x, y) data points using the method of least squares. Draper
and Smith (1981, pages 1�69) discuss the method. The fitted model is

0 1
ˆ ˆŷ x� �� �

where 0�̂ (stored in B0) is the estimated intercept and 1̂� (stored in B1) is the estimated slope. In
addition to the fit, RLINE produces some summary statistics, including the means, sample
variances, correlation, and the error (residual) sum of squares. The estimated standard errors of

0 1
ˆ ˆand� � are computed under the simple linear regression model. The errors in the model are

assumed to be uncorrelated and with constant variance.

If the x values are all equal, the model is degenerate. In this case, RLINE sets 1̂�

to zero and 0�̂ to the mean of the y values.

RCURV
Fits a polynomial curve using least squares.

Required Arguments
XDATA — Vector of length NOBS containing the x values. (Input)

YDATA — Vector of length NOBS containing the y values. (Input)

B — Vector of length NDEG + 1 containing the coefficients �̂ .
(Output)

The fitted polynomial is

2
0 1 2

ˆ ˆ ˆ ˆˆ k
ky x x x� � � �� � � � ��

Optional Arguments
NOBS — Number of observations. (Input)

Default: NOBS = size (XDATA,1).

NDEG — Degree of polynomial. (Input)
Default: NDEG = size (B,1) – 1.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 717

SSPOLY — Vector of length NDEG + 1 containing the sequential sums of squares. (Output)
SSPOLY(1) contains the sum of squares due to the mean. For i = 1, 2, �, NDEG,
SSPOLY(i + 1) contains the sum of squares due to xi adjusted for the mean, x, x2,�,
and xi-1.

STAT — Vector of length 10 containing statistics described below. (Output)

i Statistics

1 Mean of x

2 Mean of y

3 Sample variance of x

4 Sample variance of y

5 R-squared (in percent)

6 Degrees of freedom for regression

7 Regression sum of squares

8 Degrees of freedom for error

9 Error sum of squares

10 Number of data points (x, y) containing NaN (not a number) as a x or y value

FORTRAN 90 Interface
Generic: CALL RCURV (XDATA, YDATA, B [,…])

Specific: The specific interface names are S_RCURV and D_RCURV.

FORTRAN 77 Interface
Single: CALL RCURV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY, STAT)

Double: The double precision name is DRCURV.

Example
A polynomial model is fitted to data discussed by Neter and Wasserman (1974, pages 279�285).
The data set contains the response variable y measuring coffee sales (in hundred gallons) and the
number of self-service coffee dispensers. Responses for fourteen similar cafeterias are in the
data set.

718 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 USE RCURV_INT
 USE WRRRL_INT
 USE WRRRN_INT
 INTEGER NDEG, NOBS
 PARAMETER (NDEG=2, NOBS=14)
!
 REAL B(NDEG+1), SSPOLY(NDEG+1), STAT(10), XDATA(NOBS),&
 YDATA(NOBS)
 CHARACTER CLABEL(11)*15, RLABEL(1)*4
!
 DATA RLABEL/’NONE’/, CLABEL/’ ’, ’Mean of X’, ’Mean of Y’,&
 ’Variance X’, ’Variance Y’, ’R-squared’,&
 ’DF Reg.’, ’SS Reg.’, ’DF Error’, ’SS Error’,&
 ’Pts. with NaN’/
 DATA XDATA/0., 0., 1., 1., 2., 2., 4., 4., 5., 5., 6., 6., 7.,&
 7./
 DATA YDATA/508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,&
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4/
!
 CALL RCURV (XDATA, YDATA, B, SSPOLY=SSPOLY, STAT=STAT)
!
 CALL WRRRN (’B’, B, 1, NDEG+1, 1)
 CALL WRRRN (’SSPOLY’, SSPOLY, 1, NDEG+1, 1)

 CALL WRRRL (’%/STAT’, STAT, RLABEL, CLABEL, 1, 10, 1, &
 FMT='(2W10.4)')
 END

Output
 B
 1 2 3
503.3 78.9 -4.0

 SSPOLY
 1 2 3
7077152.0 220644.2 4387.7

 STAT
Mean of X Mean of Y Variance X Variance Y R-squared DF Reg.
 3.571 711.0 6.418 17364.8 99.69 2

 SS Reg. DF Error SS Error Pts. with NaN
225031.9 11 710.5 0

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 719

Figure 3-6 Plot of Data and Second Degree Polynomial Fit

Comments
1. Workspace may be explicitly provided, if desired, by use of R2URV/DR2URV. The

reference is:

CALL R2URV (NOBS, XDATA, YDATA, NDEG, B, SSPOLY,
 STAT, WK, IWK)

The additional arguments are as follows:

WK — Work vector of length 11 * NOBS + 11 * NDEG + 5 + (NDEG + 1) *
(NDEG + 3).

IWK — Work vector of length NOBS.

2. Informational errors

 Type Code

 4 3 Each (x, y) point contains NaN (not a number). There are no valid
data.

 4 7 The x values are constant. At least NDEG + 1 distinct x values are
needed to fit a NDEG polynomial.

 3 4 The y values are constant. A zero order polynomial is fit. High order
coefficients are set to zero.

720 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 3 5 There are too few observations to fit the desired degree polynomial.
High order coefficients are set to zero.

 3 6 A perfect fit was obtained with a polynomial of degree less than
NDEG. High order coefficients are set to zero.

3. If NDEG is greater than 10, the accuracy of the results may be questionable.

Description
Routine RCURV computes estimates of the regression coefficients in a polynomial (curvilinear)
regression model. In addition to the computation of the fit, RCURV computes some summary
statistics. Sequential sums of squares attributable to each power of the independent variable
(stored in SSPOLY) are computed. These are useful in assessing the importance of the higher
order powers in the fit. Draper and Smith (1981, pages 101�102) and Neter and Wasserman
(1974, pages 278�287) discuss the interpretation of the sequential sums of squares. The statistic
R2 (stored in STAT(5)) is the percentage of the sum of squares of y about its mean explained by
the polynomial curve. Specifically,

� �

� �

2

2 1
2

1

ˆ
100%

n
ii

n
ii

y y
R

y y
�

�

�

�

�

�

�

where

ˆiy

is the fitted y value at xi and

y

(stored in STAT(2)) is the mean of y. This statistic is useful in assessing the overall fit of the
curve to the data. R2 must be between 0% and 100%, inclusive. R2 = 100% indicates a perfect fit
to the data.

Routine RCURV computes estimates of the regression coefficients in a polynomial model using
orthogonal polynomials as the regressor variables. This reparameterization of the polynomial
model in terms of orthogonal polynomials has the advantage that the loss of accuracy resulting
from forming powers of the x-values is avoided. All results are returned to the user for the
original model.

The routine RCURV is based on the algorithm of Forsythe (1957). A modification to Forsythe’s
algorithm suggested by Shampine (1975) is used for computing the polynomial coefficients. A
discussion of Forsythe’s algorithm and Shampine’s modification appears in Kennedy and Gentle
(1980, pages 342�347).

FNLSQ
Computes a least-squares approximation with user-supplied basis functions.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 721

Required Arguments
F — User-supplied FUNCTION to evaluate basis functions. The form is F(K, X),

where

K – Number of the basis function. (Input)
K may be equal to 1, 2, �, NBASIS.
X – Argument for evaluation of the K-th basis function. (Input)
F – The function value. (Output)
F must be declared EXTERNAL in the calling program. The data FDATA is approximated
by A(1) * F(1, X) + A(2) * F(2, X) +�+ A(NBASIS) * F(NBASIS, X) if INTCEP = 0 and
is approximated by A(1) + A(2) * F(1, X) +�+ A(NBASIS + 1) * F(NBASIS, X) if
INTCEP = 1.

XDATA — Array of length NDATA containing the abscissas of the data points. (Input)

FDATA — Array of length NDATA containing the ordinates of the data points. (Input)

A — Array of length INTCEP + NBASIS containing the coefficients of the approximation.
(Output)
If INTCEP = 1, A(1) contains the intercept. A(INTCEP + I) contains the coefficient of
the I-th basis function.

SSE — Sum of squares of the errors. (Output)

Optional Arguments
INTCEP — Intercept option. (Input)

Default: INTCEP = 0.

INTCEP Action

0 No intercept is automatically included in the model.

1 An intercept is automatically included in the model.

NBASIS — Number of basis functions. (Input)
Default: NBASIS = size (A,1)

NDATA — Number of data points. (Input)
Default: NDATA = size (XDATA,1).

IWT — Weighting option. (Input)
Default: IWT = 0.

722 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

IWT Action

0 Weights of one are assumed.

1 Weights are supplied in WEIGHT.

WEIGHT — Array of length NDATA containing the weights. (Input if IWT = 1)
If IWT = 0, WEIGHT is not referenced and may be dimensioned of length one.

FORTRAN 90 Interface
Generic: CALL FNLSQ (F, XDATA, FDATA, A, SSE [,…])

Specific: The specific interface names are S_FNLSQ and D_FNLSQ.

FORTRAN 77 Interface
Single: CALL FNLSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA, IWT,

 WEIGHT, A, SSE)

Double: The double precision name is DFNLSQ.

Example
In this example, we fit the following two functions (indexed by �)

1 + sin x + 7 sin 3x + �	

where 	 is random uniform deviate over the range [�1, 1], and � is 0 for the first function and 1
for the second. These functions are evaluated at 90 equally spaced points on the interval [0, 6].
We use 4 basis functions, sin kx for k = 1, �, 4, with and without the intercept.

 USE FNLSQ_INT
 USE RNSET_INT
 USE UMACH_INT
 USE RNUNF_INT
 INTEGER NBASIS, NDATA
 PARAMETER (NBASIS=4, NDATA=90)
!
 INTEGER I, INTCEP, NOUT
 REAL A(NBASIS+1), F, FDATA(NDATA), FLOAT, G, RNOISE,&
 SIN, SSE, X, XDATA(NDATA)
 INTRINSIC FLOAT, SIN
 EXTERNAL F
!
 G(X) = 1.0 + SIN(X) + 7.0*SIN(3.0*X)
! Set random number seed
 CALL RNSET (1234579)
! Set up data values
 DO 10 I=1, NDATA
 XDATA(I) = 6.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 FDATA(I) = G(XDATA(I))

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 723

 10 CONTINUE

! Compute least squares fit with no
! intercept
 CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, &
 NBASIS=NBASIS)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99996)
! Write output
 WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS)
!
 INTCEP = 1
! Compute least squares fit with
! intercept
 CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, &
 NBASIS=NBASIS)
! Write output
 WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1)
! Introduce noise
 DO 20 I=1, NDATA
 RNOISE = RNUNF()
 RNOISE = 2.0*RNOISE - 1.0
 FDATA(I) = FDATA(I) + RNOISE
 20 CONTINUE
 INTCEP = 0
! Compute least squares fit with no
! intercept
 CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, &
 NBASIS=NBASIS)
! Write heading
 WRITE (NOUT,99997)
! Write output
 WRITE (NOUT,99999) SSE, (A(I),I=1,NBASIS)
!
 INTCEP = 1
! Compute least squares fit with
! intercept
 CALL FNLSQ (F, XDATA, FDATA, A, SSE, INTCEP=INTCEP, &
 NBASIS=NBASIS)
! Write output
 WRITE (NOUT,99998) SSE, A(1), (A(I),I=2,NBASIS+1)
!
99996 FORMAT (//, ’ Without error introduced we have :’, /,&
 ’ SSE Intercept Coefficients ’, /)
99997 FORMAT (//, ’ With error introduced we have :’, /, ’ SSE ’&
 , ’ Intercept Coefficients ’, /)
99998 FORMAT (1X, F8.4, 5X, F9.4, 5X, 4F9.4, /)
99999 FORMAT (1X, F8.4, 14X, 5X, 4F9.4, /)
 END
 REAL FUNCTION F (K, X)
 INTEGER K
 REAL X
!

724 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 REAL SIN
 INTRINSIC SIN
!
 F = SIN(K*X)
 RETURN
 END

Output
Without error introduced we have :
SSE Intercept Coefficients

89.8776 1.0101 0.0199 7.0291 0.0374
 0.0000 1.0000 1.0000 0.0000 7.0000 0.0000

With error introduced we have :
SSE Intercept Coefficients

112.4662 0.9963 -0.0675 6.9825 0.0133
 30.9831 0.9522 0.9867 -0.0864 6.9548 -0.0223

Comments
1. Workspace may be explicitly provided, if desired, by use of F2LSQ/DF2LSQ. The

reference is:

CALL F2LSQ (F, INTCEP, NBASIS, NDATA, XDATA, FDATA,
 IWT, WEIGHT, A, SSE, WK)

The additional argument is

WK — Work vector of length (INTCEP + NBASIS)**2 + 4 * (INTCEP + NBASIS) +
IWT + 1. On output, the first (INTCEP + NBASIS)**2 elements of WK contain the
R matrix from a QR decomposition of the matrix containing a column of ones (if
INTCEP = 1) and the evaluated basis functions in columns INTCEP + 1 through
INTCEP + NBASIS.

2. Informational errors

Type Code
 3 1 Linear dependence of the basis functions exists. One or more

components of A are set to zero.
 3 2 Linear dependence of the constant function and basis functions

exists. One or more components of A are set to zero.
 4 1 Negative weight encountered.

Description
The routine FNLSQ computes a best least-squares approximation to given univariate data of the
form

� �� � 1
,

N
i i i

x f
�

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 725

by M basis functions

� �
1

M

j j
F

�

(where M = NBASIS). In particular, if INTCEP = 0, this routine returns the error sum of squares
SSE and the coefficients a which minimize

� �
2

1 1

N M

i i j j i
i j

w f a F x
� �

� �
�� �

� �
� �

where w = WEIGHT, N = NDATA, x = XDATA, and, f = FDATA.

If INTCEP = 1, then an intercept is placed in the model; and the coefficients a, returned by
FNLSQ, minimize the error sum of squares as indicated below.

� �
2

1 1
1 1

N M

i i j j i
i j

w f a a F x
�

� �

� �
� �� �

� �
� �

That is, the first element of the vector a is now the coefficient of the function that is identically
1 and the coefficients of the Fj’s are now aj+1.

One additional parameter in the calling sequence for FNLSQ is IWT. If IWT is set to 0, then wi = 1
is assumed. If IWT is set to 1, then the user must supply the weights.

BSLSQ
Computes the least-squares spline approximation, and return the B-spline coefficients.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of length NDATA containing the data point ordinates. (Input)

KORDER — Order of the spline. (Input)
KORDER must be less than or equal to NDATA.

XKNOT — Array of length NCOEF + KORDER containing the knot sequence. (Input)
XKNOT must be nondecreasing.

NCOEF — Number of B-spline coefficients. (Input)
NCOEF cannot be greater than NDATA.

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Output)

726 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Optional Arguments
NDATA — Number of data points. (Input)

Default: NDATA = size(XDATA, 1)

WEIGHT — Array of length NDATA containing the weights. (Input)
Default: WEIGHT = 1.0.

FORTRAN 90 Interface
Generic: CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCOEF [,�])

Specific: The specific interface names are S_BSLSQ and D_BSLSQ.

FORTRAN 77 Interface
Single: CALL BSLSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT,

 NCOEF, BSCOEF)

Double: The double precision name is DBSLSQ.

Example
In this example, we try to recover a quadratic polynomial using a quadratic spline with one
interior knot from two different data sets. The first data set is generated by evaluating the
quadratic at 50 equally spaced points in the interval (0, 1) and then adding uniformly distributed
noise to the data. The second data set includes the first data set, and, additionally, the values at 0
and at 1 with no noise added. Since the first and last data points are uncontaminated by noise,
we have chosen weights equal to 105 for these two points in this second problem. The quadratic,
the first approximation, and the second approximation are then evaluated at 11 equally spaced
points. This example illustrates the use of the weights to enforce interpolation at certain of the
data points.

 USE IMSL_LIBRARIES
 INTEGER KORDER, NCOEF
 PARAMETER (KORDER=3, NCOEF=4)
!
 INTEGER I, NDATA, NOUT
 REAL ABS, BSCOF1(NCOEF), BSCOF2(NCOEF), F,&
 FDATA1(50), FDATA2(52), FLOAT, RNOISE, S1,&
 S2, WEIGHT(52), X, XDATA1(50), XDATA2(52),&
 XKNOT(KORDER+NCOEF), XT, YT
 INTRINSIC ABS, FLOAT
!
 DATA WEIGHT/52*1.0/
! Define function
 F(X) = 8.0*X*(1.0-X)
! Set random number seed
 CALL RNSET (12345679)
 NDATA = 50
! Set up interior knots

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 727

 DO 10 I=1, NCOEF - KORDER + 2
 XKNOT(I+KORDER-1) = FLOAT(I-1)/FLOAT(NCOEF-KORDER+1)
 10 CONTINUE
! Stack knots
 DO 20 I=1, KORDER - 1
 XKNOT(I) = XKNOT(KORDER)
 XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1)
 20 CONTINUE
! Set up data points excluding
! the endpoints 0 and 1.
! The function values have noise
! introduced.
 DO 30 I=1, NDATA
 XDATA1(I) = FLOAT(I)/51.0
 RNOISE = RNUNF()
 RNOISE = RNOISE – 0.5
 FDATA1(I) = F(XDATA1(I)) + RNOISE
 30 CONTINUE
! Compute least squares B-spline
! representation.
 CALL BSLSQ (XDATA1, FDATA1, KORDER, XKNOT, NCOEF, BSCOF1)
! Now use same XDATA values but with
! the endpoints included. These
! points will have large weights.
 NDATA = 52
 CALL SCOPY (50, XDATA1, 1, XDATA2(2:), 1)
 CALL SCOPY (50, FDATA1, 1, FDATA2(2:), 1)
!
 WEIGHT(1) = 1.0E5
 XDATA2(1) = 0.0
 FDATA2(1) = F(XDATA2(1))
 WEIGHT(NDATA) = 1.0E5
 XDATA2(NDATA) = 1.0
 FDATA2(NDATA) = F(XDATA2(NDATA))
! Compute least squares B-spline
! representation.
 CALL BSLSQ (XDATA2, FDATA2, KORDER, XKNOT, NCOEF, BSCOF2, &
 WEIGHT=WEIGHT)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99998)
! Print the two interpolants
! at 11 points.
 DO 40 I=1, 11
 XT = FLOAT(I-1)/10.0
 YT = F(XT)
! Evaluate splines
 S1 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF1)
 S2 = BSVAL(XT,KORDER,XKNOT,NCOEF,BSCOF2)
 WRITE (NOUT,99999) XT, YT, S1, S2, (S1-YT), (S2-YT)
 40 CONTINUE
!
99998 FORMAT (7X, ’X’, 9X, ’F(X)’, 6X, ’S1(X)’, 5X, ’S2(X)’, 7X,&
 ’F(X)-S1(X)’, 7X, ’F(X)-S2(X)’)

728 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

99999 FORMAT (’ ’, 4F10.4, 4X, F10.4, 7X, F10.4)
 END

Output
X F(X) S1(X) S2(X) F(X)-S1(X) F(X)-S2(X)

0.0000 0.0000 0.0515 0.0000 0.0515 0.0000

0.1000 0.7200 0.7594 0.7490 0.0394 0.0290

0.2000 1.2800 1.3142 1.3277 0.0342 0.0477

0.3000 1.6800 1.7158 1.7362 0.0358 0.0562

0.4000 1.9200 1.9641 1.9744 0.0441 0.0544

0.5000 2.0000 2.0593 2.0423 0.0593 0.0423

0.6000 1.9200 1.9842 1.9468 0.0642 0.0268

0.7000 1.6800 1.7220 1.6948 0.0420 0.0148

0.8000 1.2800 1.2726 1.2863 -0.0074 0.0063

0.9000 0.7200 0.6360 0.7214 -0.0840 0.0014

1.0000 0.0000 -0.1878 0.0000 -0.1878 0.0000

Comments
1. Workspace may be explicitly provided, if desired, by use of B2LSQ/DB2LSQ. The

reference is:

CALL B2LSQ (NDATA, XDATA, FDATA, WEIGHT, KORDER, XKNOT,
NCOEF, BSCOEF, WK1, WK2, WK3, WK4, IWK)

The additional arguments are as follows:

WK1 — Work array of length (3 + NCOEF) * KORDER.

WK2 — Work array of length NDATA.

WK3 — Work array of length NDATA.

WK4 — Work array of length NDATA.

IWK — Work array of length NDATA.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 729

2. Informational errors

Type Code
 4 5 Multiplicity of the knots cannot exceed the order of the spline.
 4 6 The knots must be nondecreasing.
 4 7 All weights must be greater than zero.
 4 8 The smallest element of the data point array must be greater than or

equal to the KORDth knot.
 4 9 The largest element of the data point array must be less than or equal

to the (NCOEF + 1)st knot.

3. The B-spline representation can be evaluated using BSVAL (page 641), and its
derivative can be evaluated using BSDER (page 643).

Description
The routine BSLSQ is based on the routine L2APPR by de Boor (1978, page 255). The IMSL
routine BSLSQ computes a weighted discrete L2 approximation from a spline subspace to a given
data set (xi, fi) for i = 1, �, N (where N = NDATA). In other words, it finds B-spline coefficients,
a = BSCOEF, such that

� �
2

1 1

N m

i j j i i
i j

f a B x w
� �

�� �

is a minimum, where m = NCOEF and Bj denotes the j-th B-spline for the given order, KORDER,
and knot sequence, XKNOT. This linear least squares problem is solved by computing and
solving the normal equations. While the normal equations can sometimes cause numerical
difficulties, their use here should not cause a problem because the B-spline basis generally leads
to well-conditioned banded matrices.

The choice of weights depends on the problem. In some cases, there is a natural choice for the
weights based on the relative importance of the data points. To approximate a continuous
function (if the location of the data points can be chosen), then the use of Gauss quadrature
weights and points is reasonable. This follows because BSLSQ is minimizing an approximation
to the integral

2
F s dx��

The Gauss quadrature weights and points can be obtained using the IMSL routine GQRUL (see
Chapter 4, Integration and Differentiation).

BSVLS
Computes the variable knot B-spline least squares approximation to given data.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

730 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

FDATA — Array of length NDATA containing the data point ordinates. (Input)

KORDER — Order of the spline. (Input)
KORDER must be less than or equal to NDATA.

NCOEF — Number of B-spline coefficients. (Input)
NCOEF must be less than or equal to NDATA.

XGUESS — Array of length NCOEF + KORDER containing the initial guess of knots. (Input)
XGUESS must be nondecreasing.

XKNOT — Array of length NCOEF + KORDER containing the (nondecreasing) knot sequence.
(Output)

BSCOEF — Array of length NCOEF containing the B-spline representation. (Output)

SSQ — The square root of the sum of the squares of the error. (Output)

Optonal Arguments
NDATA — Number of data points. (Input)

NDATA must be at least 2.
Default: NDATA = size(XDATA, 1)

WEIGHT — Array of length NDATA containing the weights. (Input)
Default: WEIGHT = 1.0.

FORTRAN 90 Interface
Generic: CALL BSVLS (NDATA, XDATA, FDATA, WEIGHT, KORDER, NCOEF,

 XGUESS, XKNOT, BSCOEF, SSQ)

Specific: The specific interface names are S_BSVLS and D_BSVLS.

FORTRAN 77 Interface
Single: CALL BSVLS (XDATA, FDATA, KORDER, NCOEF, XGUESS, XKNOT,

 BSCOEF, SSQ[,�])

Double: The double precision name is DBSVLS.

Example
In this example, we try to fit the function |x � .33| evaluated at 100 equally spaced points on
[0, 1]. We first use quadratic splines with 2 interior knots initially at .2 and .8. The eventual
error should be zero since the function is a quadratic spline with two knots stacked at .33. As a
second example, we try to fit the same data with cubic splines with three interior knots initially

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 731

located at .1, .2, and, .5. Again, the theoretical error is zero when the three knots are stacked at
.33.

We include a graph of the initial least-squares fit using the IMSL routine BSLSQ (page 725) for
the above quadratic spline example with knots at .2 and .8. This graph overlays the graph of the
spline computed by BSVLS, which is indistinguishable from the data.

 USE BSVLS_INT
 USE UMACH_INT
 INTEGER KORD1, KORD2, NCOEF1, NCOEF2, NDATA
 PARAMETER (KORD1=3, KORD2=4, NCOEF1=5, NCOEF2=7, NDATA=100)
!
 INTEGER I, NOUT
 REAL ABS, BSCOEF(NCOEF2), F, FDATA(NDATA), FLOAT, SSQ,&
 WEIGHT(NDATA), X, XDATA(NDATA), XGUES1(NCOEF1+KORD1),&
 XGUES2(KORD2+NCOEF2), XKNOT(NCOEF2+KORD2)
 INTRINSIC ABS, FLOAT
!
 DATA XGUES1/3*0.0, .2, .8, 3*1.0001/
 DATA XGUES2/4*0.0, .1, .2, .5, 4*1.0001/
 DATA WEIGHT/NDATA*.01/
! Define function
 F(X) = ABS(X-.33)
! Set up data
 DO 10 I=1, NDATA
 XDATA(I) = FLOAT(I-1)/FLOAT(NDATA)
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Compute least squares B-spline
! representation with KORD1, NCOEF1,
! and XGUES1.
 CALL BSVLS (XDATA, FDATA, KORD1, NCOEF1, XGUES1,&
 XKNOT, BSCOEF, SSQ, WEIGHT=WEIGHT)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print heading
 WRITE (NOUT,99998) ’quadratic’
! Print SSQ and the knots
 WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD1+NCOEF1)
! Compute least squares B-spline
! representation with KORD2, NCOEF2,
! and XGUES2.
 CALL BSVLS (XDATA, FDATA, KORD2, NCOEF2, XGUES2,&
 XKNOT, BSCOEF, SSQ, WEIGHT=WEIGHT)
! Print SSQ and the knots
 WRITE (NOUT,99998) ’cubic’
 WRITE (NOUT,99999) SSQ, (XKNOT(I),I=1,KORD2+NCOEF2)
!
99998 FORMAT (’ Piecewise ’, A, /)
99999 FORMAT (’ Square root of the sum of squares : ’, F9.4, /,&
 ’ Knot sequence : ’, /, 1X, 11(F9.4,/,1X))
 END

732 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Output
Piecewise quadratic

Square root of the sum of squares : 0.0008
Knot sequence :
 0.0000
 0.0000
 0.0000
 0.3137
 0.3464
 1.0001
 1.0001
 1.0001

Piecewise cubic

Square root of the sum of squares : 0.0005
Knot sequence :
 0.0000
 0.0000
 0.0000
 0.0000
 0.3167
 0.3273
 0.3464
 1.0001
 1.0001
 1.0001
 1.0001

Figure 3-7 BSVLS vs. BSLSQ

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 733

Comments
1. Workspace may be explicitly provided, if desired, by use of B2VLS/DB2VLS. The

reference is:

CALL B2VLS (NDATA, XDATA, FDATA, WEIGHT, KORDER, NCOEF, XGUESS,
XKNOT, BSCOEF, SSQ, IWK, WK)

The additional arguments are as follows:

IWK — Work array of length NDATA.

WK — Work array of length NCOEF * (6 + 2 * KORDER) + KORDER * (7 � KORDER) + 3
* NDATA + 3.

2. Informational errors

Type Code
 3 12 The knots found to be optimal are stacked more than KORDER. This

indicates fewer knots will produce the same error sum of squares.
The knots have been separated slightly.

 4 9 The multiplicity of the knots in XGUESS cannot exceed the order of
the spline.

 4 10 XGUESS must be nondecreasing.

Description
The routine BSVLS attempts to find the best placement of knots that will minimize the
leastsquares error to given data by a spline of order k = KORDER with N = NCOEF coefficients.
The user provides the order k of the spline and the number of coefficients N. For this problem to
make sense, it is necessary that N > k. We then attempt to find the minimum of the functional

� � � �
2

, ,
1 1

,
M N

i i j j k j
i j

F a w f a B x
� �

� �
� �� �

� �
� �t t

The user must provide the weights w = WEIGHT, the data xi = XDATA and
fi = FDATA, and M = NDATA. The minimum is taken over all admissible knot sequences t.

The technique employed in BSVLS uses the fact that for a fixed knot sequence t the
minimization in a is a linear least-squares problem that can be solved by calling the IMSL
routine BSLSQ (page 725). Thus, we can think of our objective function F as a function of just t
by setting

� � � �min ,
a

G F a�t t

A Gauss-Seidel (cyclic coordinate) method is then used to reduce the value of the new objective
function G. In addition to this local method, there is a global heuristic built into the algorithm
that will be useful if the data arise from a smooth function. This heuristic is based on the routine
NEWNOT of de Boor (1978, pages 184 and 258�261).

734 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

The user must input an initial guess, tg = XGUESS, for the knot sequence. This guess must be a
valid knot sequence for the splines of order k with

1 1 , 1, ,g g g g
k i N N kx i M

� �
� � � � � � �t t t t� � �

with tg nondecreasing, and

1, ,g g
i i k i N

�
� �t t �

The routine BSVLS returns the B-spline representation of the best fit found by the algorithm as
well as the square root of the sum of squares error in SSQ. If this answer is unsatisfactory, you
may reinitialize BSVLS with the return from BSVLS to see if an improvement will occur. We
have found that this option does not usually (substantially) improve the result. In regard to
execution speed, this routine can be several orders of magnitude slower than one call to the
least-squares routine BSLSQ.

CONFT
Computes the least-squares constrained spline approximation, returning the B-spline coefficients.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

FDATA — Array of size NDATA containing the values to be approximated. (Input)
FDATA(I) contains the value at XDATA(I).

XVAL — Array of length NXVAL containing the abscissas at which the fit is to be constrained.
(Input)

NHARD — Number of entries of XVAL involved in the ‘hard’ constraints. (Input)
Note: (0 � NHARD � NXVAL). Setting NHARD to zero always results in a fit, while setting
NHARD to NXVAL forces all constraints to be met. The ‘hard’ constraints must be
satisfied or else the routine signals failure. The ‘soft’ constraints need not be satisfied,
but there will be an attempt to satisfy the ‘soft’ constraints. The constraints must be
ordered in terms of priority with the most important constraints first. Thus, all of the
‘hard’ constraints must preceed the ‘soft’ constraints. If infeasibility is detected among
the soft constraints, we satisfy (in order) as many of the soft constraints as possible.

IDER — Array of length NXVAL containing the derivative value of the spline that is to be
constrained. (Input)
If we want to constrain the integral of the spline over the closed interval (c, d), then we
set IDER(I) = IDER(I + 1) = � 1 and XVAL(I) = c and XVAL(I + 1) = d. For
consistency, we insist that ITYPE(I) = ITYPE(I + 1) .GE. 0 and c .LE. d. Note that
every entry in IDER must be at least � 1.

ITYPE — Array of length NXVAL indicating the types of general constraints. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 735

� � � �
� � � � � �
� � � � � �

� � � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � � � �

ITYPE(I) I-th Constraint

1 BL(I) =

2 BU I

3 BL I

4 BL I BU I

1 1 BL I

1 2 BU I

1 3 BL I

1 4 BL I BU I

10 periodic end conditions
99 disregard this constraint

i

i

i

i

d
i

d
i

d
i

d
i

d

i c
d

i c
d

i c
d

i c

f x

f x

f x

f x

d f t dt

d f t dt

d f t dt

d f t dt

�

�

�� �

� � �

� � �

� � �

� � � �

�

�

�

�

In order to set two point constraints, we must have ITYPE(I) = ITYPE(I + 1) and ITYPE(I)
must be negative.

� �

� � � � � �
� �

� �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � �

1

1

1

1

1

1

1

1

ITYPE I I th Contraint

1 BL I

2 BU I

3 BL I

4 BL I BU I

di
i

i i

i i

i i

d
i i

d d
i i

d d
i i

d d
i i

f x f x

f x f x

f x f x

f x f x

�

�

�

�

�

�

�

�

�

� � �

� � �

� � �

� � � �

BL — Array of length NXVAL containing the lower limit of the general constraints, if there is
no lower limit on the I-th constraint, then BL(I) is not referenced. (Input)

BU — Array of length NXVAL containing the upper limit of the general constraints, if there is
no upper limit on the I-th constraint, then BU(I) is not referenced; if there is no range
constraint, BL and BU can share the same storage locations. (Input)
If the I-th constraint is an equality constraint, BU(I) is not referenced.

KORDER — Order of the spline. (Input)

XKNOT — Array of length NCOEF + KORDER containing the knot sequence. (Input)
The entries of XKNOT must be nondecreasing.

BSCOEF — Array of length NCOEF containing the B-spline coefficients. (Output)

736 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Optional Arguments
NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

WEIGHT — Array of length NDATA containing the weights. (Input)
Default: WEIGHT = 1.0.

NXVAL — Number of points in the vector XVAL. (Input)
Default: NXVAL = size (XVAL,1).

NCOEF — Number of B-spline coefficients. (Input)
Default: NCOEF = size (BSCOEF,1).

FORTRAN 90 Interface
Generic: CALL CONFT (XDATA, FDATA, XVAL,NHARD, IDER, ITYPE,

BL, BU, KORDER, XKNOT, BSCOEF [,…])

Specific: The specific interface names are S_CONFT and D_CONFT.

FORTRAN 77 Interface
Single: CALL CONFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL,

 NHARD, IDER, ITYPE, BL, BU, KORDER, XKNOT, NCOEF, BSCOEF)

Double: The double precision name is DCONFT.

Example 1
This is a simple application of CONFT. We generate data from the function

sin
2 2
x x� �
� � �

� �

contaminated with random noise and fit it with cubic splines. The function is increasing so we
would hope that our least-squares fit would also be increasing. This is not the case for the
unconstrained least squares fit generated by BSLSQ (page 725). We then force the derivative to
be greater than 0 at NXVAL = 15 equally spaced points and call CONFT. The resulting curve is
monotone. We print the error for the two fits averaged over 100 equally spaced points.

 USE IMSL_LIBRARIES
 INTEGER KORDER, NCOEF, NDATA, NXVAL
 PARAMETER (KORDER=4, NCOEF=8, NDATA=15, NXVAL=15)
!
 INTEGER I, IDER(NXVAL), ITYPE(NXVAL), NHARD, NOUT
 REAL ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA), &
 BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,&
 GRDSIZ, SIN, WEIGHT(NDATA), X, XDATA(NDATA),&
 XKNOT(KORDER+NDATA), XVAL(NXVAL)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 737

 INTRINSIC ABS, FLOAT, SIN
!
 F1(X) = .5*X + SIN(.5*X)
! Initialize random number generator
! and get output unit number.
 CALL RNSET (234579)
 CALL UMACH (2, NOUT)
! Use default weights of one.
!
! Compute original XDATA and FDATA
! with random noise.
 GRDSIZ = 10.0
 DO 10 I=1, NDATA
 XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1)))
 FDATA(I) = RNUNF()
 FDATA(I) = F1(XDATA(I)) + (FDATA(I)-.5)
 10 CONTINUE
! Compute knots
 DO 20 I=1, NCOEF - KORDER + 2
 XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))&
)
 20 CONTINUE
 DO 30 I=1, KORDER - 1
 XKNOT(I) = XKNOT(KORDER)
 XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1)
 30 CONTINUE
!
! Compute BSLSQ fit.
 CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCLSQ)
! Construct the constraints for
! CONFT.
 DO 40 I=1, NXVAL
 XVAL(I) = GRDSIZ*FLOAT(I-1)/FLOAT(NXVAL-1)
 ITYPE(I) = 3
 IDER(I) = 1
 BL(I) = 0.0
 40 CONTINUE
! Call CONFT
 NHARD = 0
 CALL CONFT (XDATA, FDATA, XVAL, NHARD, IDER, ITYPE, BL, BU, KORDER,&
 XKNOT, BSCNFT, NCOEF=NCOEF)
! Compute the average error
! of 100 points in the interval.
 ERRLSQ = 0.0
 ERRNFT = 0.0
 DO 50 I=1, 100
 X = GRDSIZ*FLOAT(I-1)/99.0
 ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)&
)
 ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)&
)
 50 CONTINUE
! Print results
 WRITE (NOUT,99998) ERRLSQ/100.0
 WRITE (NOUT,99999) ERRNFT/100.0

738 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

!
99998 FORMAT (’ Average error with BSLSQ fit: ’, F8.5)
99999 FORMAT (’ Average error with CONFT fit: ’, F8.5)
 END

Output
Average error with BSLSQ fit: 0.20250
Average error with CONFT fit: 0.14334

Figure 3-8 CONFT vs. BSLSQ Forcing Monotonicity

Comments
1. Workspace may be explicitly provided, if desired, by use of C2NFT/DC2NFT. The

reference is:

CALL C2NFT (NDATA, XDATA, FDATA, WEIGHT, NXVAL, XVAL, NHARD,
IDER, ITYPE, BL, BU, KORDER, XKNOT, NCOEF, BSCOEF, H, G, A,
RHS, WK, IPERM, IWK)

The additional arguments are as follows:

H — Work array of size NCOEF by NCOEF. Upon output, H contains the Hessian matrix
of the objective function used in the call to QPROG (see Chapter 8,
Optimization).

G — Work array of size NCOEF. Upon output, G contains the coefficients of the linear
term used in the call to QPROG.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 739

A — Work array of size (2 * NXVAL + KORDER) by (NCOEF + 1). Upon output, A
contains the constraint matrix used in the call QPROG. The last column of A is
used to keep record of the original order of the constraints.

RHS — Work array of size 2 * NXVAL + KORDER . Upon output, RHS contains the right
hand side of the constraint matrix A used in the call to QPROG.

WK — Work array of size (KORDER + 1) * (2 * KORDER + 1) + (3 * NCOEF * NCOEF +
13 * NCOEF)/2 + (2 * NXVAL + KORDER +30)*(2*NXVAL + KORDER) + NDATA +
1.

IPERM — Work array of size NXVAL. Upon output, IPERM contains the permutaion of
the original constraints used to generate the matrix A.

IWK — Work array of size NDATA + 30 * (2 * NXVAL + KORDER) + 4 * NCOEF.

2. Informational errors

Type Code
 3 11 Soft constraints had to be removed in order to get a fit.
 4 12 Multiplicity of the knots cannot exceed the order of the spline.
 4 13 The knots must be nondecreasing.
 4 14 The smallest element of the data point array must be greater than or

equal to the KORD-th knot.
 4 15 The largest element of the data point array must be less than or equal

to the (NCOEF + 1)st knot.
 4 16 All weights must be greater than zero.
 4 17 The hard constraints could not be met.
 4 18 The abscissas of the constrained points must lie within knot interval.
 4 19 The upperbound must be greater than or equal to the lowerbound for

a range constaint.
 4 20 The upper limit of integration must be greater than the lower limit of

integration for constraints involving the integral of the
approximation.

Description
The routine CONFT produces a constrained, weighted least-squares fit to data from a spline
subspace. Constraints involving one point, two points, or integrals over an interval are allowed.
The types of constraints supported by the routine are of four types.

� � � � � �
� � � � � � � �

� �

1

1

1or

or

or periodic end conditions

p

p p

p

p

j
p p

j j
p p

y

y

E f f y

f y f y

f t dt

�

�

�

�

� �

�

�

�

740 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

An interval, Ip, (which may be a point, a finite interval , or semi-infinite interval) is associated
with each of these constraints.

The input for this routine consists of several items, first, the data set (xi, fi) for i = 1, �, N
(where N = NDATA), that is the data which is to be fit. Second, we have the weights to be used in
the least squares fit (w = WEIGHT). The vector XVAL of length NXVAL contains the abscissas of
the points involved in specifying the constraints. The algorithm tries to satisfy all the
constraints, but if the constraints are inconsistent then it will drop constraints, in the reverse
order specified, until either a consistent set of constraints is found or the “hard” constraints are
determined to be inconsistent (the “hard” constraints are those involving XVAL(1), �,
XVAL(NHARD)). Thus, the algorithm satisfies as many constraints as possible in the order
specified by the user. In the case when constraints are dropped, the user will receive a message
explaining how many constraints had to be dropped to obtain the fit. The next several arguments
are related to the type of constraint and the constraint interval. The last four arguments
determine the spline solution. The user chooses the spline subspace (KORDER, XKNOT, and
NCOEF), and the routine returns the B-spline coefficients in BSCOEF.

Let nf denote the number of feasible constraints as described above. Then, the routine solves the
problem.

� �
2

1 1

1
subject to 1, ,

N m

i j j i i
i j

m

p j j p f
j

f a B x w

E a B I p n

� �

�

�

� �
� �� �

� 	

� �

� �

This linearly constrained least-squares problem is treated as a quadratic program and is solved
by invoking the IMSL routine QPROG (see Chapter 8, Optimization).

The choice of weights depends on the data uncertainty in the problem. In some cases, there is a
natural choice for the weights based on the estimates of errors in the data points.

Determining feasibility of linear constraints is a numerically sensitive task. If you encounter
difficulties, a quick fix would be to widen the constraint intervals Ip.

Additional Examples

Example 2
We now try to recover the function

4

1
1 x�

from noisy data. We first try the unconstrained least-squares fit using BSLSQ (page 725).
Finding that fit somewhat unsatisfactory, we apply several constraints using CONFT. First, notice
that the unconstrained fit oscillates through the true function at both ends of the interval. This is
common for flat data. To remove this oscillation, we constrain the cubic spline to have zero
second derivative at the first and last four knots. This forces the cubic spline to reduce to a linear
polynomial on the first and last three knot intervals. In addition, we constrain the fit (which we
will call s) as follows:

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 741

� �

� �

� � � �

7

7

7 0

2.3

7 7

s

s x dx

s s
�

� �

�

� �

�

Notice that the last constraint was generated using the periodic option (requiring only the
zeroeth derivative to be periodic). We print the error for the two fits averaged over 100 equally
spaced points.

 USE IMSL_LIBRARIES
 INTEGER KORDER, NCOEF, NDATA, NXVAL
 PARAMETER (KORDER=4, NCOEF=13, NDATA=51, NXVAL=12)
!
 INTEGER I, IDER(NXVAL), ITYPE(NXVAL), NHARPT, NOUT
 REAL ABS, BL(NXVAL), BSCLSQ(NDATA), BSCNFT(NDATA),&
 BU(NXVAL), ERRLSQ, ERRNFT, F1, FDATA(NDATA), FLOAT,&
 GRDSIZ, WEIGHT(NDATA), X, XDATA(NDATA),&
 XKNOT(KORDER+NDATA), XVAL(NXVAL)
 INTRINSIC ABS, FLOAT
!
 F1(X) = 1.0/(1.0+X**4)
! Initialize random number generator
! and get output unit number.
 CALL UMACH (2, NOUT)
 CALL RNSET (234579)
! Use deafult weights of one.
!
! Compute original XDATA and FDATA
! with random noise.
 GRDSIZ = 14.0
 DO 10 I=1, NDATA
 XDATA(I) = GRDSIZ*((FLOAT(I-1)/FLOAT(NDATA-1))) - GRDSIZ/2.0
 FDATA(I) = RNUNF()
 FDATA(I) = F1(XDATA(I)) + 0.125*(FDATA(I)-.5)
 10 CONTINUE
! Compute KNOTS
 DO 20 I=1, NCOEF - KORDER + 2
 XKNOT(I+KORDER-1) = GRDSIZ*((FLOAT(I-1)/FLOAT(NCOEF-KORDER+1))&
) - GRDSIZ/2.0
 20 CONTINUE
 DO 30 I=1, KORDER - 1
 XKNOT(I) = XKNOT(KORDER)
 XKNOT(I+NCOEF+1) = XKNOT(NCOEF+1)
 30 CONTINUE
! Compute BSLSQ fit
 CALL BSLSQ (XDATA, FDATA, KORDER, XKNOT, NCOEF, BSCLSQ)
! Construct the constraints for
! CONFT
 DO 40 I=1, 4
 XVAL(I) = XKNOT(KORDER+I-1)
 XVAL(I+4) = XKNOT(NCOEF-3+I)
 ITYPE(I) = 1
 ITYPE(I+4) = 1
 IDER(I) = 2

742 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 IDER(I+4) = 2
 BL(I) = 0.0
 BL(I+4) = 0.0
 40 CONTINUE
!
 XVAL(9) = -7.0
 ITYPE(9) = 3
 IDER(9) = 0
 BL(9) = 0.0
!
 XVAL(10) = -7.0
 ITYPE(10) = 2
 IDER(10) = -1
 BU(10) = 2.3
!
 XVAL(11) = 7.0
 ITYPE(11) = 2
 IDER(11) = -1
 BU(11) = 2.3
!
 XVAL(12) = -7.0
 ITYPE(12) = 10
 IDER(12) = 0
! Call CONFT
 CALL CONFT (XDATA, FDATA, XVAL, NHARPT, IDER, ITYPE, BL, BU,&
 KORDER, XKNOT, BSCNFT, NCOEF=NCOEF)
! Compute the average error
! of 100 points in the interval.
 ERRLSQ = 0.0
 ERRNFT = 0.0
 DO 50 I=1, 100
 X = GRDSIZ*FLOAT(I-1)/99.0 - GRDSIZ/2.0
 ERRNFT = ERRNFT + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCNFT)&
)
 ERRLSQ = ERRLSQ + ABS(F1(X)-BSVAL(X,KORDER,XKNOT,NCOEF,BSCLSQ)&
)
 50 CONTINUE
! Print results
 WRITE (NOUT,99998) ERRLSQ/100.0
 WRITE (NOUT,99999) ERRNFT/100.0
!
99998 FORMAT (’ Average error with BSLSQ fit: ’, F8.5)
99999 FORMAT (’ Average error with CONFT fit: ’, F8.5)
 END

Output
Average error with BSLSQ fit: 0.01783
Average error with CONFT fit: 0.01339

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 743

Figure 3-9 CONFT vs. BSLSQ Approximating 1/(1 + x4)

BSLS2
Computes a two-dimensional tensor-product spline approximant using least squares, returning the
tensor-product B-spline coefficients.

Required Arguments
XDATA — Array of length NXDATA containing the data points in the X-direction. (Input)

XDATA must be nondecreasing.

YDATA — Array of length NYDATA containing the data points in the Y-direction. (Input)
YDATA must be nondecreasing.

FDATA — Array of size NXDATA by NYDATA containing the values on the X � Y grid to be
interpolated. (Input)
FDATA(I, J) contains the value at (XDATA(I), YDATA(I)).

KXORD — Order of the spline in the X-direction. (Input)

KYORD — Order of the spline in the Y-direction. (Input)

XKNOT — Array of length KXORD + NXCOEF containing the knots in the X-direction. (Input)
XKNOT must be nondecreasing.

744 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

YKNOT — Array of length KYORD + NYCOEF containing the knots in the Y-direction. (Input)
YKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF * NYCOEF that contains the tensor product B-spline
coefficients. (Output)
BSCOEF is treated internally as an array of size NXCOEF by NYCOEF.

Optional Arguments
NXDATA — Number of data points in the X-direction. (Input)

Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the Y-direction. (Input)
Default: NYDATA = size (YDATA,1).

LDF — Leading dimension of FDATA exactly as specified in the dimension statement of
calling program. (Input)
Default: LDF = size (FDATA,1).

NXCOEF — Number of B-spline coefficients in the X-direction. (Input)
Default: NXCOEF = size (XKNOT,1) – KXORD.

NYCOEF — Number of B-spline coefficients in the Y-direction. (Input)
Default: NYCOEF = size (YKNOT,1) – KYORD.

XWEIGH — Array of length NXDATA containing the positive weights of XDATA. (Input)
Default: XWEIGH = 1.0.

YWEIGH — Array of length NYDATA containing the positive weights of YDATA. (Input)
Default: YWEIGH = 1.0.

FORTRAN 90 Interface
Generic: CALL BSLS2 (XDATA, YDATA, FDATA, KXORD, KYORD, XKNOT, YKNOT,

 BSCOEF [,…])

Specific: The specific interface names are S_BSLS2 and D_BSLS2.

FORTRAN 77 Interface
Single: CALL BSLS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF,

 KXORD, KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF,
 XWEIGH, YWEIGH, BSCOEF)

Double: The double precision name is DBSLS2.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 745

Example

The data for this example arise from the function ex sin(x + y) + 	 on the rectangle
[0, 3] � [0, 5]. Here, 	 is a uniform random variable with range [�1, 1]. We sample this function
on a 100 � 50 grid and then try to recover it by using cubic splines in the x variable and
quadratic splines in the y variable. We print out the values of the function ex sin(x + y) on a
3 � 5 grid and compare these values with the values of the tensor-product spline that was
computed using the IMSL routine BSLS2.

 USE IMSL_LIBRARIES
 INTEGER KXORD, KYORD, LDF, NXCOEF, NXDATA, NXVEC, NYCOEF,&
 NYDATA, NYVEC
 PARAMETER (KXORD=4, KYORD=3, NXCOEF=15, NXDATA=100, NXVEC=4,&
 NYCOEF=7, NYDATA=50, NYVEC=6, LDF=NXDATA)
!
 INTEGER I, J, NOUT
 REAL BSCOEF(NXCOEF,NYCOEF), EXP, F, FDATA(NXDATA,NYDATA),&
 FLOAT, RNOISE, SIN, VALUE(NXVEC,NYVEC), X,&
 XDATA(NXDATA), XKNOT(NXCOEF+KXORD), XVEC(NXVEC),&
 XWEIGH(NXDATA), Y, YDATA(NYDATA),&
 YKNOT(NYCOEF+KYORD), YVEC(NYVEC), YWEIGH(NYDATA)
 INTRINSIC EXP, FLOAT, SIN
! Define function
 F(X,Y) = EXP(X)*SIN(X+Y)
! Set random number seed
 CALL RNSET (1234579)
! Set up X knot sequence.
 DO 10 I=1, NXCOEF - KXORD + 2
 XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1))
 10 CONTINUE
 XKNOT(NXCOEF+1) = XKNOT(NXCOEF+1) + 0.001
! Stack knots.
 DO 20 I=1, KXORD - 1
 XKNOT(I) = XKNOT(KXORD)
 XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1)
 20 CONTINUE
! Set up Y knot sequence.
 DO 30 I=1, NYCOEF - KYORD + 2
 YKNOT(I+KYORD-1) = 5.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1))
 30 CONTINUE
 YKNOT(NYCOEF+1) = YKNOT(NYCOEF+1) + 0.001
! Stack knots.
 DO 40 I=1, KYORD - 1
 YKNOT(I) = YKNOT(KYORD)
 YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1)
 40 CONTINUE
! Set up X-grid.
 DO 50 I=1, NXDATA
 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1))
 50 CONTINUE
! Set up Y-grid.
 DO 60 I=1, NYDATA
 YDATA(I) = 5.0*(FLOAT(I-1)/FLOAT(NYDATA-1))
 60 CONTINUE

746 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

! Evaluate function on grid and
! introduce random noise in [1,-1].
 DO 70 I=1, NYDATA
 DO 70 J=1, NXDATA
 RNOISE = RNUNF()
 RNOISE = 2.0*RNOISE - 1.0
 FDATA(J,I) = F(XDATA(J),YDATA(I)) + RNOISE
 70 CONTINUE
! Use default weights equal to 1.
!
! Compute least squares approximation.
 CALL BSLS2 (XDATA, YDATA, FDATA, KXORD, KYORD, &
 XKNOT, YKNOT, BSCOEF)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Print interpolated values
! on [0,3] x [0,5].
 DO 80 I=1, NXVEC
 XVEC(I) = FLOAT(I-1)
 80 CONTINUE
 DO 90 I=1, NYVEC
 YVEC(I) = FLOAT(I-1)
 90 CONTINUE
! Evaluate spline
 CALL BS2GD (0, 0, XVEC, YVEC, KXORD, KYORD, XKNOT,&
 YKNOT, BSCOEF, VALUE)
 DO 110 I=1, NXVEC
 DO 100 J=1, NYVEC
 WRITE (NOUT,’(5F15.4)’) XVEC(I), YVEC(J),&
 F(XVEC(I),YVEC(J)), VALUE(I,J),&
 (F(XVEC(I),YVEC(J))-VALUE(I,J))
 100 CONTINUE
 110 CONTINUE
99999 FORMAT (13X, ’X’, 14X, ’Y’, 10X, ’F(X,Y)’, 9X, ’S(X,Y)’, 10X,&
 ’Error’)
 END

Output
 X Y F(X,Y) S(X,Y) Error
0.0000 0.0000 0.0000 0.2782 -0.2782
0.0000 1.0000 0.8415 0.7762 0.0653
0.0000 2.0000 0.9093 0.8203 0.0890
0.0000 3.0000 0.1411 0.1391 0.0020
0.0000 4.0000 -0.7568 -0.5705 -0.1863
0.0000 5.0000 -0.9589 -1.0290 0.0701
1.0000 0.0000 2.2874 2.2678 0.0196
1.0000 1.0000 2.4717 2.4490 0.0227
1.0000 2.0000 0.3836 0.4947 -0.1111
1.0000 3.0000 -2.0572 -2.0378 -0.0195
1.0000 4.0000 -2.6066 -2.6218 0.0151
1.0000 5.0000 -0.7595 -0.7274 -0.0321
2.0000 0.0000 6.7188 6.6923 0.0265
2.0000 1.0000 1.0427 0.8492 0.1935

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 747

2.0000 2.0000 -5.5921 -5.5885 -0.0035
2.0000 3.0000 -7.0855 -7.0955 0.0099
2.0000 4.0000 -2.0646 -2.1588 0.0942
2.0000 5.0000 4.8545 4.7339 0.1206
3.0000 0.0000 2.8345 2.5971 0.2373
3.0000 1.0000 -15.2008 -15.1079 -0.0929
3.0000 2.0000 -19.2605 -19.1698 -0.0907
3.0000 3.0000 -5.6122 -5.5820 -0.0302
3.0000 4.0000 13.1959 12.6659 0.5300
3.0000 5.0000 19.8718 20.5170 -0.6452

Comments
1. Workspace may be explicitly provided, if desired, by use of B2LS2/DB2LS2. The

reference is:

CALL B2LS2 (NXDATA, XDATA, NYDATA, YDATA, FDATA, LDF, KXORD,
KYORD, XKNOT, YKNOT, NXCOEF, NYCOEF, XWEIGH, YWEIGH, BSCOEF, WK)

The additional argument is:

WK — Work array of length (NXCOEF + 1) * NYDATA + KXORD * NXCOEF + KYORD *
NYCOEF + 3 * MAX(KXORD, KYORD).

2. Informational errors

Type Code
 3 14 There may be less than one digit of accuracy in the least squares fit.

Try using higher precision if possible.
 4 5 Multiplicity of the knots cannot exceed the order of the spline.
 4 6 The knots must be nondecreasing.
 4 7 All weights must be greater than zero.
 4 9 The data point abscissae must be nondecreasing.
 4 10 The smallest element of the data point array must be greater than or

equal to the K_ORDth knot.
 4 11 The largest element of the data point array must be less than or equal

to the (N_COEF + 1)st knot.

Description
The routine BSLS2 computes the coefficients of a tensor-product spline least-squares
approximation to weighted tensor-product data. The input for this subroutine consists of data
vectors to specify the tensor-product grid for the data, two vectors with the weights, the values
of the surface on the grid, and the specification for the tensor-product spline. The grid is
specified by the two vectors x = XDATA and y = YDATA of length n = NXDATA and m = NYDATA,
respectively. A two-dimensional array f = FDATA contains the data values that are to be fit. The
two vectors wx = XWEIGH and wy = YWEIGH contain the weights for the weighted least-squares
problem. The information for the approximating tensor-product spline must also be provided.
This information is contained in kx = KXORD, tx = XKNOT, and N = NXCOEF for the spline in the
first variable, and in ky = KYORD , ty = YKNOT and M = NYCOEF for the spline in the second
variable. The coefficients of the resulting tensor-product spline are returned in c = BSCOEF,

748 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

which is an N * M array. The procedure computes coefficients by solving the normal equations
in tensor-product form as discussed

in de Boor (1978, Chapter 17). The interested reader might also want to study the paper by E.
Grosse (1980).

The final result produces coefficients c minimizing

� � � � � �
2

1 1 1 1
,

n m N M

x y kl kl i j ij
i j k l

w i w j c B x y f
� � � �

� �
�� �

� �
�� ��

where the function Bkl is the tensor-product of two B-splines of order kx and ky. Specifically, we
have

� � � � � �, , , ,,
x x y ykl k k l kB x y B x B y� t t

The spline

1 1

N M

kl kl
k l

c B
� �

��

can be evaluated using BS2VL (page 651) and its partial derivatives can be evaluated using
BS2DR (page 653).

BSLS3
Computes a three-dimensional tensor-product spline approximant using least squares, returning
the tensor-product B-spline coefficients.

Required Arguments
XDATA — Array of length NXDATA containing the data points in the x-direction. (Input)

XDATA must be nondecreasing.

YDATA — Array of length NYDATA containing the data points in the y-direction. (Input)
YDATA must be nondecreasing.

ZDATA — Array of length NZDATA containing the data points in the z-direction. (Input)
ZDATA must be nondecreasing.

FDATA — Array of size NXDATA by NYDATA by NZDATA containing the values to be
interpolated. (Input)
FDATA(I, J, K) contains the value at (XDATA(I), YDATA(J), ZDATA(K)).

KXORD — Order of the spline in the x-direction. (Input)

KYORD — Order of the spline in the y-direction. (Input)

KZORD — Order of the spline in the z-direction. (Input)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 749

XKNOT — Array of length KXORD + NXCOEF containing the knots in the x-direction. (Input)
XKNOT must be nondecreasing.

YKNOT — Array of length KYORD + NYCOEF containing the knots in the y-direction. (Input)
YKNOT must be nondecreasing.

ZKNOT — Array of length KZORD + NZCOEF containing the knots in the z-direction. (Input)
ZKNOT must be nondecreasing.

BSCOEF — Array of length NXCOEF*NYCOEF*NZCOEF that contains the tensor product
B-spline coefficients. (Output)

Optional Arguments
NXDATA — Number of data points in the x-direction. (Input)

NXDATA must be greater than or equal to NXCOEF.
Default: NXDATA = size (XDATA,1).

NYDATA — Number of data points in the y-direction. (Input)
NYDATA must be greater than or equal to NYCOEF.
Default: NYDATA = size (YDATA,1).

NZDATA — Number of data points in the z-direction. (Input)
NZDATA must be greater than or equal to NZCOEF.
Default: NZDATA = size (ZDATA,1).

LDFDAT — Leading dimension of FDATA exactly as specified in the dimension statement of
the calling program. (Input)
Default: LDFDAT = size (FDATA,1).

MDFDAT — Second dimension of FDATA exactly as specified in the dimension statement of
the calling program. (Input)
Default: MDFDAT = size (FDATA,2).

NXCOEF — Number of B-spline coefficients in the x-direction. (Input)
Default: NXCOEF = size (XKNOT,1) – KXORD.

NYCOEF — Number of B-spline coefficients in the y-direction. (Input)
Default: NYCOEF = size (YKNOT,1) – KYORD.

NZCOEF — Number of B-spline coefficients in the z-direction. (Input)
Default: NZCOEF = size (ZKNOT,1) – KZORD.

XWEIGH — Array of length NXDATA containing the positive weights of XDATA. (Input)
Default: XWEIGH = 1.0.

750 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

YWEIGH — Array of length NYDATA containing the positive weights of YDATA. (Input)
Default: YWEIGH = 1.0.

ZWEIGH — Array of length NZDATA containing the positive weights of ZDATA. (Input)
Default: ZWEIGH = 1.0.

FORTRAN 90 Interface
Generic: CALL BSLS3 (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD,

KZORD, XKNOT, YKNOT, ZKNOT, BSCOEF [,…])

Specific: The specific interface names are S_BSLS3 and D_BSLS3.

FORTRAN 77 Interface
Single: CALL BSLS3 (NXDATA, XDATA, NYDATA, YDATA, NZDATA, ZDATA,

FDATA, LDFDAT, MDFDAT, KXORD, KYORD, KZORD, XKNOT, YKNOT,
ZKNOT, NXCOEF, NYCOEF, NZCOEF, XWEIGH, YWEIGH, ZWEIGH,
BSCOEF)

Double: The double precision name is DBSLS3.

Example

The data for this example arise from the function e(y-z) sin(x + y) + 	 on the rectangle
[0, 3] � [0, 2] � [0, 1]. Here, 	 is a uniform random variable with range [�.5, .5]. We sample this
function on a 4 � 3 � 2 grid and then try to recover it by using tensor-product cubic splines in all
variables. We print out the values of the function e(y-z) sin(x + y) on a 4 � 3 � 2 grid and
compare these values with the values of the tensor-product spline that was computed using the
IMSL routine BSLS3.

 USE BSLS3_INT
 USE RNSET_INT
 USE RNUNF_INT
 USE UMACH_INT
 USE BS3GD_INT
 INTEGER KXORD, KYORD, KZORD, LDFDAT, MDFDAT, NXCOEF, NXDATA,&

 NXVAL, NYCOEF, NYDATA, NYVAL, NZCOEF, NZDATA, NZVAL
 PARAMETER (KXORD=4, KYORD=4, KZORD=4, NXCOEF=8, NXDATA=15,&
 NXVAL=4, NYCOEF=8, NYDATA=15, NYVAL=3, NZCOEF=8,&
 NZDATA=15, NZVAL=2, LDFDAT=NXDATA, MDFDAT=NYDATA)
!
 INTEGER I, J, K, NOUT
 REAL BSCOEF(NXCOEF,NYCOEF,NZCOEF), EXP, F,&
 FDATA(NXDATA,NYDATA,NZDATA), FLOAT, RNOISE,&
 SIN, SPXYZ(NXVAL,NYVAL,NZVAL), X, XDATA(NXDATA),&
 XKNOT(NXCOEF+KXORD), XVAL(NXVAL), XWEIGH(NXDATA), Y,&
 YDATA(NYDATA), YKNOT(NYCOEF+KYORD), YVAL(NYVAL),&
 YWEIGH(NYDATA), Z, ZDATA(NZDATA),&
 ZKNOT(NZCOEF+KZORD), ZVAL(NZVAL), ZWEIGH(NZDATA)

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 751

 INTRINSIC EXP, FLOAT, SIN
! Define a function
 F(X,Y,Z) = EXP(Y-Z)*SIN(X+Y)
!
 CALL RNSET (1234579)
 CALL UMACH (2, NOUT)
! Set up knot sequences
! X-knots
 DO 10 I=1, NXCOEF - KXORD + 2
 XKNOT(I+KXORD-1) = 3.0*(FLOAT(I-1)/FLOAT(NXCOEF-KXORD+1))
 10 CONTINUE
 DO 20 I=1, KXORD - 1
 XKNOT(I) = XKNOT(KXORD)
 XKNOT(I+NXCOEF+1) = XKNOT(NXCOEF+1)
 20 CONTINUE
! Y-knots
 DO 30 I=1, NYCOEF - KYORD + 2
 YKNOT(I+KYORD-1) = 2.0*(FLOAT(I-1)/FLOAT(NYCOEF-KYORD+1))
 30 CONTINUE
 DO 40 I=1, KYORD - 1
 YKNOT(I) = YKNOT(KYORD)
 YKNOT(I+NYCOEF+1) = YKNOT(NYCOEF+1)
 40 CONTINUE
! Z-knots
 DO 50 I=1, NZCOEF - KZORD + 2
 ZKNOT(I+KZORD-1) = 1.0*(FLOAT(I-1)/FLOAT(NZCOEF-KZORD+1))
 50 CONTINUE
 DO 60 I=1, KZORD - 1
 ZKNOT(I) = ZKNOT(KZORD)
 ZKNOT(I+NZCOEF+1) = ZKNOT(NZCOEF+1)
 60 CONTINUE
! Set up X-grid.
 DO 70 I=1, NXDATA
 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NXDATA-1))
 70 CONTINUE
! Set up Y-grid.
 DO 80 I=1, NYDATA
 YDATA(I) = 2.0*(FLOAT(I-1)/FLOAT(NYDATA-1))
 80 CONTINUE
! Set up Z-grid
 DO 90 I=1, NZDATA
 ZDATA(I) = 1.0*(FLOAT(I-1)/FLOAT(NZDATA-1))
 90 CONTINUE
! Evaluate the function on the grid
! and add noise.
 DO 100 I=1, NXDATA
 DO 100 J=1, NYDATA
 DO 100 K=1, NZDATA
 RNOISE = RNUNF()
 RNOISE = RNOISE – 0.5
 FDATA(I,J,K) = F(XDATA(I),YDATA(J),ZDATA(K)) + RNOISE
 100 CONTINUE
! Use default weights equal to 1.0
!
! Compute least-squares

752 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 CALL BSLS3 (XDATA, YDATA, ZDATA, FDATA, KXORD, KYORD, KZORD, XKNOT, &
 YKNOT, ZKNOT, BSCOEF)
! Set up grid for evaluation.
 DO 110 I=1, NXVAL
 XVAL(I) = FLOAT(I-1)
 110 CONTINUE
 DO 120 I=1, NYVAL
 YVAL(I) = FLOAT(I-1)
 120 CONTINUE
 DO 130 I=1, NZVAL
 ZVAL(I) = FLOAT(I-1)
 130 CONTINUE
! Evaluate on the grid.
 CALL BS3GD (0, 0, 0, XVAL, YVAL, ZVAL, KXORD, KYORD, KZORD, XKNOT, &
 YKNOT, ZKNOT, BSCOEF, SPXYZ)
! Print results.
 WRITE (NOUT,99998)
 DO 140 I=1, NXVAL
 DO 140 J=1, NYVAL
 DO 140 K=1, NZVAL
 WRITE (NOUT,99999) XVAL(I), YVAL(J), ZVAL(K),&
 F(XVAL(I),YVAL(J),ZVAL(K)),&
 SPXYZ(I,J,K), F(XVAL(I),YVAL(J),ZVAL(K)&
) - SPXYZ(I,J,K)
 140 CONTINUE
99998 FORMAT (8X, ’X’, 9X, ’Y’, 9X, ’Z’, 6X, ’F(X,Y,Z)’, 3X,&
 ’S(X,Y,Z)’, 4X, ’Error’)
99999 FORMAT (’ ’, 3F10.3, 3F11.4)
 END

Output
 X Y Z F(X,Y,Z) S(X,Y,Z) Error
0.000 0.000 0.000 0.0000 0.1987 -0.1987
0.000 0.000 1.000 0.0000 0.1447 -0.1447
0.000 1.000 0.000 2.2874 2.2854 0.0019
0.000 1.000 1.000 0.8415 1.0557 -0.2142
0.000 2.000 0.000 6.7188 6.4704 0.2484
0.000 2.000 1.000 2.4717 2.2054 0.2664
1.000 0.000 0.000 0.8415 0.8779 -0.0365
1.000 0.000 1.000 0.3096 0.2571 0.0524
1.000 1.000 0.000 2.4717 2.4015 0.0703
1.000 1.000 1.000 0.9093 0.8995 0.0098
1.000 2.000 0.000 1.0427 1.1330 -0.0902
1.000 2.000 1.000 0.3836 0.4951 -0.1115
2.000 0.000 0.000 0.9093 0.8269 0.0824
2.000 0.000 1.000 0.3345 0.3258 0.0087
2.000 1.000 0.000 0.3836 0.3564 0.0272
2.000 1.000 1.000 0.1411 0.1905 -0.0494
2.000 2.000 0.000 -5.5921 -5.5362 -0.0559
2.000 2.000 1.000 -2.0572 -1.9659 -0.0913
3.000 0.000 0.000 0.1411 0.4841 -0.3430
3.000 0.000 1.000 0.0519 -0.4257 0.4776
3.000 1.000 0.000 -2.0572 -1.9710 -0.0862
3.000 1.000 1.000 -0.7568 -0.8479 0.0911

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 753

3.000 2.000 0.000 -7.0855 -7.0957 0.0101
3.000 2.000 1.000 -2.6066 -2.1650 -0.4416

Comments
1. Workspace may be explicitly provided, if desired, by use of B2LS3/DB2LS3. The

reference is:

CALL B2LS3 (NXDATA, XDATA, NYDATA, NZDATA, ZDATA, YDATA, FDATA,
LDFDAT, KXORD, KYORD, KZORD, XKNOT, YKNOT, ZKNOT, NXCOEF,
NYCOEF, NZCOEF, XWEIGH, YWEIGH, ZWEIGH, BSCOEF,
WK)

The additional argument is:

WK — Work array of length NYCOEF * (NZDATA + KYORD + NZCOEF) + NZDATA * (1 +
NYDATA) + NXCOEF * (KXORD + NYDATA * NZDATA) + KZORD * NZCOEF + 3 *
MAX0(KXORD, KYORD, KZORD).

2. Informational errors

Type Code
 3 13 There may be less than one digit of accuracy in the least squares fit.

Try using higher precision if possible.
 4 7 Multiplicity of knots cannot exceed the order of the spline.
 4 8 The knots must be nondecreasing.
 4 9 All weights must be greater than zero.
 4 10 The data point abscissae must be nondecreasing.
 4 11 The smallest element of the data point array must be greater than or

equal to the K_ORDth knot.
 4 12 The largest element of the data point array must be less than or equal

to the (N_COEF + 1)st knot.

Description
The routine BSLS3 computes the coefficients of a tensor-product spline least-squares
approximation to weighted tensor-product data. The input for this subroutine consists of data
vectors to specify the tensor-product grid for the data, three vectors with the weights, the values
of the surface on the grid, and the specification for the tensor-product spline. The grid is
specified by the three vectors x = XDATA, y = YDATA, and z = ZDATA of length k = NXDATA,
l = NYDATA , and m = NYDATA, respectively. A three-dimensional array f = FDATA contains the
data values which are to be fit. The three vectors wx = XWEIGH, wy = YWEIGH, and wz = ZWEIGH
contain the weights for the weighted least-squares problem. The information for the
approximating tensor-product spline must also be provided. This information is contained in
kx = KXORD, tx = XKNOT, and K = NXCOEF for the spline in the first variable, in ky = KYORD,
ty = YKNOT and L = NYCOEF for the spline in the second variable, and in kz = KZORD, tz = ZKNOT
and M = NZCOEF for the spline in the third variable.

The coefficients of the resulting tensor product spline are returned in c = BSCOEF, which is an
K � L � M array. The procedure computes coefficients by solving the normal equations in

754 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

tensor-product form as discussed in de Boor (1978, Chapter 17). The interested reader might
also want to study the paper by E. Grosse (1980).

The final result produces coefficients c minimizing

� � � � � � � �
2

1 1 1 1 1
, ,

k l m K L M

x y z stu stu i j p ijp
i l j p s t u

w i w j w p c B x y z f
� � � � � �

� �
�� �

� �
��� ���

where the function Bstu is the tensor-product of three B-splines of order kx, ky, and kz.
Specifically, we have

� � � � � � � �, , , , , ,, ,
x x y y z zstu s k t k u kB x y z B x B y B z� t t t

The spline

1 1 1

K L M

stu stu
s t u

c B
� � �

���

can be evaluated at one point using BS3VL (page 664) and its partial derivatives can be
evaluated using BS3DR (page 666). If the values on a grid are desired then we recommend
BS3GD (page 670).

CSSED
Smooths one-dimensional data by error detection.

Required Arguments
XDATA — Array of length NDATA containing the abscissas of the data points. (Input)

FDATA — Array of length NDATA containing the ordinates (function values) of the data
points. (Input)

DIS — Proportion of the distance the ordinate in error is moved to its interpolating curve.
(Input)
It must be in the range 0.0 to 1.0. A suggested value for DIS is one.

SC — Stopping criterion. (Input)
SC should be greater than or equal to zero. A suggested value for SC is zero.

MAXIT — Maximum number of iterations allowed. (Input)

SDATA — Array of length NDATA containing the smoothed data. (Output)

Optional Arguments
NDATA — Number of data points. (Input)

Default: NDATA = size (XDATA,1).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 755

FORTRAN 90 Interface
Generic: CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA [,…])

Specific: The specific interface names are S_CSSED and D_CSSED.

FORTRAN 77 Interface
Single: CALL CSSED (NDATA, XDATA, FDATA, DIS, SC, MAXIT, SDATA)

Double: The double precision name is DCSSED.

Example

We take 91 uniform samples from the function 5 + (5 + t2 sin t)/t on the interval [1, 10]. Then,
we contaminate 10 of the samples and try to recover the original function values.

 USE CSSED_INT
 USE UMACH_INT
 INTEGER NDATA
 PARAMETER (NDATA=91)
!
 INTEGER I, MAXIT, NOUT, ISB(10)
 REAL DIS, F, FDATA(91), SC, SDATA(91), SIN, X, XDATA(91),&
 RNOISE(10)
 INTRINSIC SIN
!
 DATA ISB/6, 17, 26, 34, 42, 49, 56, 62, 75, 83/
 DATA RNOISE/2.5, -3.0, -2.0, 2.5, 3.0, -2.0, -2.5, 2.0, -2.0, 3.0/
!
 F(X) = (X*X*SIN(X)+5.0)/X + 5.0
! EX. #1; No specific information
! available
 DIS = 0.5
 SC = 0.56
 MAXIT = 182
! Set values for XDATA and FDATA
 XDATA(1) = 1.0
 FDATA(1) = F(XDATA(1))
 DO 10 I=2, NDATA
 XDATA(I) = XDATA(I-1) + .1
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Contaminate the data
 DO 20 I=1, 10
 FDATA(ISB(I)) = FDATA(ISB(I)) + RNOISE(I)
 20 CONTINUE
! Smooth data
 CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99997)

756 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

! Write data
 DO 30 I=1, 10
 WRITE (NOUT,99999) F(XDATA(ISB(I))), FDATA(ISB(I)),&
 SDATA(ISB(I))
 30 CONTINUE
! EX. #2; Specific information
! available
 DIS = 1.0
 SC = 0.0
 MAXIT = 10
! A warning message is produced
! because the maximum number of
! iterations is reached.
!
! Smooth data
 CALL CSSED (XDATA, FDATA, DIS, SC, MAXIT, SDATA)
! Write heading
 WRITE (NOUT,99998)
! Write data
 DO 40 I=1, 10
 WRITE (NOUT,99999) F(XDATA(ISB(I))), FDATA(ISB(I)),&
 SDATA(ISB(I))
 40 CONTINUE
!
99997 FORMAT (’ Case A - No specific information available’, /,&
 ’ F(X) F(X)+NOISE SDATA(X)’, /)
99998 FORMAT (’ Case B - Specific information available’, /,&
 ’ F(X) F(X)+NOISE SDATA(X)’, /)
99999 FORMAT (’ ’, F7.3, 8X, F7.3, 11X, F7.3)
 END

Output
Case A - No specific information available
 F(X) F(X)+NOISE SDATA(X)

 9.830 12.330 9.870
 8.263 5.263 8.215
 5.201 3.201 5.168
 2.223 4.723 2.264
 1.259 4.259 1.308
 3.167 1.167 3.138
 7.167 4.667 7.131
10.880 12.880 10.909
12.774 10.774 12.708
 7.594 10.594 7.639

 *** WARNING ERROR 1 from CSSED. Maximum number of iterations limit MAXIT
 *** =10 exceeded. The best answer found is returned.
Case B - Specific information available
 F(X) F(X)+NOISE SDATA(X)

 9.830 12.330 9.831
 8.263 5.263 8.262
 5.201 3.201 5.199

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 757

 2.223 4.723 2.225
 1.259 4.259 1.261
 3.167 1.167 3.170
 7.167 4.667 7.170
10.880 12.880 10.878
12.774 10.774 12.770
 7.594 10.594 7.592

Comments
1. Workspace may be explicitly provided, if desired, by use of C2SED/DC2SED. The

reference is:

CALL C2SED (NDATA, XDATA, FDATA, DIS, SC, MAXIT,
 DATA, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 4 * NDATA + 30.

IWK — Work array of length 2 * NDATA.

2. Informational error

Type Code
 3 1 The maximum number of iterations allowed has been reached.

3. The arrays FDATA and SDATA may the the same.

Description
The routine CSSED is designed to smooth a data set that is mildly contaminated with isolated
errors. In general, the routine will not work well if more than 25% of the data points are in error.
The routine CSSED is based on an algorithm of Guerra and Tapia (1974).

Setting NDATA = n, FDATA = f, SDATA = s and XDATA = x, the algorithm proceeds as follows.
Although the user need not input an ordered XDATA sequence, we will assume that x is
increasing for simplicity. The algorithm first sorts the XDATA values into an increasing sequence
and then continues. A cubic spline interpolant is computed for each of the 6-point data sets
(initially setting s = f)

(xj, sj) j = i � 3, �, i + 3 j
 i,

where i = 4, �, n � 3 using CSAKM (page 600). For each i the interpolant, which we will call Si,
is compared with the current value of si, and a ‘point energy’ is computed as

pei = Si(xi) � si

Setting sc = SC, the algorithm terminates either if MAXIT iterations have taken place or if

� �3 3 / 6 4, , 3i i ipe sc x x i n
� �

� � � ��

758 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

If the above inequality is violated for any i, then we update the i-th element of s by setting
si = si + d(pei), where d = DIS. Note that neither the first three nor the last three data points are
changed. Thus, if these points are inaccurate, care must be taken to interpret the results.

The choice of the parameters d, sc and MAXIT are crucial to the successful usage of this
subroutine. If the user has specific information about the extent of the contamination, then he
should choose the parameters as follows: d = 1, sc = 0 and MAXIT to be the number of data
points in error. On the other hand, if no such specific information is available, then choose
d = .5, MAXIT � 2n, and

� �1

max min.5
n

s ssc
x x

�
�

�

In any case, we would encourage the user to experiment with these values.

CSSMH
Computes a smooth cubic spline approximation to noisy data.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input)

XDATA must be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

SMPAR — A nonnegative number which controls the smoothing. (Input)
The spline function S returned is such that the sum from I = 1 to NDATA of
((S(XDATA(I))FDATA(I)) / WEIGHT(I))**2 is less than or equal to SMPAR. It is
recommended that SMPAR lie in the confidence interval of this sum, i.e.,
NDATA � SQRT(2 * NDATA).LE. SMPAR.LE. NDATA + SQRT(2 * NDATA).

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic
representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.
(Output)

Optional Arguments
NDATA — Number of data points. (Input)

NDATA must be at least 2.
Default: NDATA = size (XDATA,1).

WEIGHT — Array of length NDATA containing estimates of the standard deviations of
FDATA. (Input)
All elements of WEIGHT must be positive.
Default: WEIGHT = 1.0.

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 759

FORTRAN 90 Interface
Generic: CALL CSSMH (XDATA, FDATA, SMPAR, BREAK,

 CSCOEF [,…])

Specific: The specific interface names are S_CSSMH and D_CSSMH.

FORTRAN 77 Interface
Single: CALL CSSMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR, BREAK,

 CSCOEF)

Double: The double precision name is DCSSMH.

Example
In this example, function values are contaminated by adding a small “random” amount to the
correct values. The routine CSSMH is used to approximate the original, uncontaminated data.

 USE IMSL_LIBRARIES
 INTEGER NDATA
 PARAMETER (NDATA=300)
!
 INTEGER I, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), ERROR, F,&
 FDATA(NDATA), FLOAT, FVAL, SDEV, SMPAR, SQRT,&
 SVAL, WEIGHT(NDATA), X, XDATA(NDATA), XT
 INTRINSIC FLOAT, SQRT
!
 F(X) = 1.0/(.1+(3.0*(X-1.0))**4)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Set the random number seed
 CALL RNSET (1234579)
! Contaminate the data
 DO 20 I=1, NDATA
 RN = RNUNF()
 FDATA(I) = FDATA(I) + 2.0*RN - 1.0
 20 CONTINUE
! Set the WEIGHT vector
 SDEV = 1.0/SQRT(3.0)
 CALL SSET (NDATA, SDEV, WEIGHT, 1)
 SMPAR = NDATA
! Smooth the data
 CALL CSSMH (XDATA, FDATA, SMPAR, BREAK, CSCOEF, WEIGHT=WEIGHT)
! Get output unit number
 CALL UMACH (2, NOUT)
! Write heading
 WRITE (NOUT,99999)
! Print 10 values of the function.

760 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 DO 30 I=1, 10
 XT = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1))
! Evaluate the spline
 SVAL = CSVAL(XT,BREAK,CSCOEF)
 FVAL = F(XT)
 ERROR = SVAL - FVAL
 WRITE (NOUT,’(4F15.4)’) XT, FVAL, SVAL, ERROR
 30 CONTINUE
!
99999 FORMAT (12X, ’X’, 9X, ’Function’, 7X, ’Smoothed’, 10X,&
 ’Error’)
 END

Output
 X Function Smoothed Error
 0.0000 0.0123 0.1118 0.0995
 0.3010 0.0514 0.0646 0.0131
 0.6020 0.4690 0.2972 -0.1718
 0.9030 9.3312 8.7022 -0.6289
 1.2040 4.1611 4.7887 0.6276
 1.5050 0.1863 0.2718 0.0856
 1.8060 0.0292 0.1408 0.1116
 2.1070 0.0082 0.0826 0.0743
 2.4080 0.0031 0.0076 0.0045
 2.7090 0.0014 -0.1789 -0.1803

Comments
1. Workspace may be explicitly provided, if desired, by use of C2SMH/DC2SMH. The

reference is:

CALL C2SMH (NDATA, XDATA, FDATA, WEIGHT, SMPAR,
BREAK, CSCOEF, WK, IWK)

The additional arguments are as follows:

WK — Work array of length 8 * NDATA + 5.

IWK — Work array of length NDATA.

2. Informational errors

Type Code
 3 1 The maximum number of iterations has been reached. The best

approximation is returned.
 4 3 All weights must be greater than zero.

3. The cubic spline can be evaluated using CSVAL (page 609); its derivative can be
evaluated using CSDER (page 610).

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 761

Description

The routine CSSMH is designed to produce a C2 cubic spline approximation to a data set in which
the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline
with knots at all the data abscissas x = XDATA, but it does not interpolate the data (xi, fi). The
smoothing spline S is the unique C2 function which minimizes

� �
2b

a
S x dx���

subject to the constraint

� �
2

1

N
i i

i i

S x f
w

�

�

�
��

where w = WEIGHT, � = SMPAR is the smoothing parameter, and N = NDATA.

Recommended values for � depend on the weights w. If an estimate for the standard deviation
of the error in the value fi is available, then wi should be set to this value and the smoothing
parameter � should be chosen in the confidence interval corresponding to the left side of the
above inequality. That is,

2 2N N N N�� � � �

The routine CSSMH is based on an algorithm of Reinsch (1967). This algorithm is also discussed
in de Boor (1978, pages 235�243).

CSSCV
Computes a smooth cubic spline approximation to noisy data using cross-validation to estimate the
smoothing parameter.

Required Arguments
XDATA — Array of length NDATA containing the data point abscissas. (Input) XDATA must

be distinct.

FDATA — Array of length NDATA containing the data point ordinates. (Input)

IEQUAL — A flag alerting the subroutine that the data is equally spaced. (Input)

BREAK — Array of length NDATA containing the breakpoints for the piecewise cubic
representation. (Output)

CSCOEF — Matrix of size 4 by NDATA containing the local coefficients of the cubic pieces.
(Output)

762 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Optional Arguments
NDATA — Number of data points. (Input)

NDATA must be at least 3.
Default: NDATA = size (XDATA,1).

FORTRAN 90 Interface
Generic: CALL CSSCV (XDATA, FDATA, IEQUAL, BREAK, CSCOEF [,…])

Specific: The specific interface names are S_CSSCV and D_CSSCV.

FORTRAN 77 Interface
Single: CALL CSSCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF)

Double: The double precision name is DCSSCV.

Example
In this example, function values are computed and are contaminated by adding a small
“random” amount. The routine CSSCV is used to try to reproduce the original, uncontaminated
data.

 USE IMSL_LIBRARIES
 INTEGER NDATA
 PARAMETER (NDATA=300)
!
 INTEGER I, IEQUAL, NOUT
 REAL BREAK(NDATA), CSCOEF(4,NDATA), ERROR, F,&
 FDATA(NDATA), FLOAT, FVAL, SVAL, X,&
 XDATA(NDATA), XT, RN
 INTRINSIC FLOAT
!
 F(X) = 1.0/(.1+(3.0*(X-1.0))**4)
!
 CALL UMACH (2, NOUT)
! Set up a grid
 DO 10 I=1, NDATA
 XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 FDATA(I) = F(XDATA(I))
 10 CONTINUE
! Introduce noise on [-.5,.5]
! Contaminate the data
 CALL RNSET (1234579)
 DO 20 I=1, NDATA
 RN = RNUNF ()
 FDATA(I) = FDATA(I) + 2.0*RN - 1.0
 20 CONTINUE
!
! Set IEQUAL=1 for equally spaced data
 IEQUAL = 1

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 763

! Smooth data
 CALL CSSCV (XDATA, FDATA, IEQUAL, BREAK, CSCOEF)
! Print results
 WRITE (NOUT,99999)
 DO 30 I=1, 10
 XT = 90.0*(FLOAT(I-1)/FLOAT(NDATA-1))
 SVAL = CSVAL(XT,BREAK,CSCOEF)
 FVAL = F(XT)
 ERROR = SVAL - FVAL
 WRITE (NOUT,’(4F15.4)’) XT, FVAL, SVAL, ERROR
 30 CONTINUE
99999 FORMAT (12X, ’X’, 9X, ’Function’, 7X, ’Smoothed’, 10X,&
 ’Error’)
 END

Output
 X Function Smoothed Error
 0.0000 0.0123 0.2528 0.2405
 0.3010 0.0514 0.1054 0.0540
 0.6020 0.4690 0.3117 -0.1572
 0.9030 9.3312 8.9461 -0.3850
 1.2040 4.1611 4.6847 0.5235
 1.5050 0.1863 0.3819 0.1956
 1.8060 0.0292 0.1168 0.0877
 2.1070 0.0082 0.0658 0.0575
 2.4080 0.0031 0.0395 0.0364
 2.7090 0.0014 -0.2155 -0.2169

Comments
1. Workspace may be explicitly provided, if desired, by use of C2SCV/DC2SCV. The

reference is:

CALL C2SCV (NDATA, XDATA, FDATA, IEQUAL, BREAK, CSCOEF,
WK, SDWK, IPVT)

The additional arguments are as follows:

WK — Work array of length 7 * (NDATA + 2).

SDWK — Work array of length 2 * NDATA.

IPVT — Work array of length NDATA.

2. Informational error

Type Code
 4 2 Points in the data point abscissas array, XDATA, must be distinct.

764 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

Description

The routine CSSCV is designed to produce a C2 cubic spline approximation to a data set in which
the function values are noisy. This spline is called a smoothing spline. It is a natural cubic spline
with knots at all the data abscissas x = XDATA, but it does not interpolate the data (xi, fi). The
smoothing spline Ss is the unique C2 function that minimizes

� �
2b

a
S x dx
�
���

subject to the constraint

� �
2

1

N

i i
i

S x f
�

�

�

� ��

where � is the smoothing parameter and N = NDATA. The reader should consult Reinsch (1967)
for more information concerning smoothing splines. The IMSL subroutine CSSMH (see page
758) solves the above problem when the user provides the smoothing parameter �. This routine
attempts to find the ‘optimal’ smoothing parameter using the statistical technique known as
cross-validation. This means that (in a very rough sense) one chooses the value of � so that the
smoothing spline (Ss) best approximates the value of the data at xi, if it is computed using all the
data except the i-th; this is true for all i = 1, �, N. For more information on this topic, we refer
the reader to Craven and Wahba (1979).

RATCH
Computes a rational weighted Chebyshev approximation to a continuous function on an interval.

Required Arguments
F — User-supplied FUNCTION to be approximated. The form is F(X), where

 X – Independent variable. (Input)
F – The function value. (Output)

 F must be declared EXTERNAL in the calling program.

PHI — User-supplied FUNCTION to supply the variable transformation which must be
continuous and monotonic. The form is PHI(X), where

X – Independent variable. (Input)

PHI – The function value. (Output)

PHI must be declared EXTERNAL in the calling program.

WEIGHT — User-supplied FUNCTION to scale the maximum error. It must be continuous
and nonvanishing on the closed interval (A, B). The form is WEIGHT(X), where

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 765

 X – Independent variable. (Input)
WEIGHT – The function value. (Output)

 WEIGHT must be declared EXTERNAL in the calling program.

A — Lower end of the interval on which the approximation is desired. (Input)

B — Upper end of the interval on which the approximation is desired. (Input)

P — Vector of length N + 1 containing the coefficients of the numerator polynomial.
(Output)

Q — Vector of length M + 1 containing the coefficients of the denominator polynomial.
(Output)

ERROR — Min-max error of approximation. (Output)

Optional Arguments
N — The degree of the numerator. (Input)

Default: N = size (P,1) – 1.

M — The degree of the denominator. (Input)
Default: M = size (Q,1) – 1.

FORTRAN 90 Interface
Generic: CALL RATCH (F, PHI, WEIGHT, A, B, P, Q, ERROR [,…])

Specific: The specific interface names are S_RATCH and D_RATCH.

FORTRAN 77 Interface
Single: CALL RATCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR)

Double: The double precision name is DRATCH.

Example
In this example, we compute the best rational approximation to the gamma function, �, on the
interval [2, 3] with weight function w = 1 and N = M = 2. We display the maximum error and
the coefficients. This problem is taken from the paper of Cody, Fraser, and Hart (1968). We
compute in double precision due to the conditioning of this problem.

 USE RATCH_INT
 USE UMACH_INT
 INTEGER M, N
 PARAMETER (M=2, N=2)
!

766 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

 INTEGER NOUT
 DOUBLE PRECISION A, B, ERROR, F, P(N+1), PHI, Q(M+1), WEIGHT
 EXTERNAL F, PHI, WEIGHT
!
 A = 2.0D0
 B = 3.0D0
! Compute double precision rational
! approximation
 CALL RATCH (F, PHI, WEIGHT, A, B, P, Q, ERROR)
! Get output unit number
 CALL UMACH (2, NOUT)
! Print P, Q and min-max error
 WRITE (NOUT,’(1X,A)’) ’In double precision we have:’
 WRITE (NOUT,99999) ’P = ’, P
 WRITE (NOUT,99999) ’Q = ’, Q
 WRITE (NOUT,99999) ’ERROR = ’, ERROR
99999 FORMAT (’ ’, A, 5X, 3F20.12, /)
 END
! ---
!
 DOUBLE PRECISION FUNCTION F (X)
 DOUBLE PRECISION X
!
 DOUBLE PRECISION DGAMMA
 EXTERNAL DGAMMA
!
 F = DGAMMA(X)
 RETURN
 END
! ---
!
 DOUBLE PRECISION FUNCTION PHI (X)
 DOUBLE PRECISION X
!
 PHI = X
 RETURN
 END
! ---
!
 DOUBLE PRECISION FUNCTION WEIGHT (X)
 DOUBLE PRECISION X
!
 DOUBLE PRECISION DGAMMA
 EXTERNAL DGAMMA
!
 WEIGHT = DGAMMA(X)
 RETURN
 END

IMSL MATH/LIBRARY Chapter 3: Interpolation and Approximation � 767

Output
In double precision we have:
P = 1.265583562487 -0.650585004466 0.197868699191

Q = 1.000000000000 -0.064342721236 -0.028851461855

ERROR = -0.000026934190

Comments
1. Workspace may be explicitly provided, if desired, by use of R2TCH/DR2TCH. The

reference is:

CALL R2TCH (F, PHI, WEIGHT, A, B, N, M, P, Q, ERROR,
ITMAX, IWK, WK)

The additional arguments are as follows:

ITMAX — Maximum number of iterations. (Input)
The default value is 20.

IWK — Workspace vector of length (N + M + 2). (Workspace)

WK — Workspace vector of length (N + M + 8) * (N + M + 2). (Workspace)

2. Informational errors

Type Code
 3 1 The maximum number of iterations has been reached. The routine

R2TCH may be called directly to set a larger value for ITMAX.
 3 2 The error was reduced as far as numerically possible. A good

approximation is returned in P and Q, but this does not necessarily
give the Chebyshev approximation.

 4 3 The linear system that defines P and Q was found to be
algorithmically singular. This indicates the possibility of a
degenerate approximation.

 4 4 A sequence of critical points that was not monotonic generated. This
indicates the possibility of a degenerate approximation.

 4 5 The value of the error curve at some critical point is too large. This
indicates the possibility of poles in the rational function.

 4 6 The weight function cannot be zero on the closed interval (A, B).

Description
The routine RATCH is designed to compute the best weighted L¥ (Chebyshev) approximant to a
given function. Specifically, given a weight function w = WEIGHT, a monotone function
 = PHI, and a function f to be approximated on the interval [a, b], the subroutine RATCH returns
the coefficients (in P and Q) for a rational approximation to f on [a, b]. The user must supply the
degree of the numerator N and the degree of the denominator M of the rational function

768 � Chapter 3: Interpolation and Approximation IMSL MATH/LIBRARY

N
MR

The goal is to produce coefficients which minimize the expression

� �

� �
� �

� �

� �

1 1
1
1 1

1
,

max:

N i
ii

M iN
iiM

x a b

P x
f x

Q xf R
w w x

�

�

�
�

�

�
�

�

�

�

�

�

�

�

Notice that setting (x) = x yields ordinary rational approximation. A typical use of the function
 occurs when one wants to approximate an even function on a symmetric interval, say [�a, a]
using ordinary rational functions. In this case, it is known that the answer must be an even
function. Hence, one can set (x) = x2, only approximate on [0, a], and decrease by one half the
degrees in the numerator and denominator.

The algorithm implemented in this subroutine is designed for fast execution. It assumes that the
best approximant has precisely N + M + 2 equi-oscillations. That is, that there exist N + M + 2
points t1 < � < tN+M+2 satisfying

� � � �1

N
M

i i
f R

e e
w�

�
� � � �t t

Such points are called alternants. Unfortunately, there are many instances in which the best
rational approximant to the given function has either fewer alternants or more alternants. In this
case, it is not expected that this subroutine will perform well. For more information on rational
Chebyshev approximation, the reader can consult Cheney (1966). The subroutine is based on
work of Cody, Fraser, and Hart (1968).

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 769

Chapter 4: Integration and
Differentiation

Routines
4.1. Univariate Quadrature

Adaptive general-purpose endpoint singularities................QDAGS 772
Adaptive general purpose... QDAG 775
Adaptive general-purpose points of singularity...................QDAGP 779
Adaptive general-purpose infinite interval QDAGI 782
Adaptive weighted oscillatory (trigonometric)QDAWO 785
Adaptive weighted Fourier (trigonometric)..........................QDAWF 789
Adaptive weighted algebraic endpoint singularities........... QDAWS 793
Adaptive weighted Cauchy principal value QDAWC 796
Nonadaptive general purpose... QDNG 799

4.2. Multidimensional Quadrature
Two-dimensional quadrature (iterated integral)................. TWODQ 801
Adaptive N-dimensional quadrature
over a hyper-rectangle...QAND 806
Integrates a function over a hyperrectangle using a
quasi-Monte Carlo method ..QMC 809

4.3. Gauss Rules and Three-term Recurrences
Gauss quadrature rule for classical weights....................... GQRUL 811
Gauss quadrature rule from recurrence coefficientsGQRCF 815
Recurrence coefficients for classical weightsRECCF 818
Recurrence coefficients from quadrature ruleRECQR 821
Fejer quadrature rule ...FQRUL 824

4.4. Differentiation
Approximation to first, second, or third derivative.................DERIV 827

770 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Usage Notes
Univariate Quadrature
The first nine routines described in this chapter are designed to compute approximations to
integrals of the form

� � � �
b

a
f x w x dx�

The weight function w is used to incorporate known singularities (either algebraic or logarithmic),
to incorporate oscillations, or to indicate that a Cauchy principal value is desired. For general
purpose integration, we recommend the use of QDAGS (page 772) (even if no endpoint singularities
are present). If more efficiency is desired, then the use of QDAG (page 775) (or QDAG*) should be
considered. These routines are organized as follows:
� w = 1

� QDAGS

� QDAG

� QDAGP

� QDAGI

� QDNG

� w(x) = sin �x or w(x) = cos �x

� QDAWO (for a finite interval)

� QDAWF (for an infinite interval)

� w(x) = (x � a)�(b � x)� ln(x � a) ln(b �x), where the ln factors are optional

� QDAWS
� w(x) = 1/(x �c) Cauchy principal value

� QDAWC

The calling sequences for these routines are very similar. The function to be integrated is always
F; the lower and upper limits are, respectively, A and B. The requested absolute error � is ERRABS,
while the requested relative error � is ERRREL. These quadrature routines return two numbers of
interest, namely, RESULT and ERREST, which are the approximate integral R and the error estimate
E, respectively. These numbers are related as follows:

� � � � � � � �� �max ,
b b

a a
f x w x dx R E f x w x dx� �� � �� �

One situation that occasionally arises in univariate quadrature concerns the approximation of
integrals when only tabular data are given. The routines described above do not directly address
this question. However, the standard method for handling this problem is first to interpolate the
data and then to integrate the interpolant. This can be accomplished by using the IMSL spline

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 771

interpolation routines described in Chapter 3, “Interpolation and Apprximation”, with one of the
integration routines CSINT, BSINT, or PPITG.

Multivariate Quadrature
Two routines are described in this chapter that are of use in approximating certain multivariate
integrals. In particular, the routine TWODQ returns an approximation to an iterated two-dimensional
integral of the form

� �
� �

� �
,

b h x

a g x
f x y dy dx� �

The second routine, QAND, returns an approximation to the integral of a function of n variables
over a hyper-rectangle

� �
1

1
1 1, ,n

n

b b

n na a
f x x dx dx� �� � �

If one has two- or three-dimensional tensor-product tabular data, use the IMSL spline interpolation
routines BS2IN or BS3IN , followed by the IMSL spline integration routines BS2IG and BS3IG
that are described in Chapter 3, Interpolation and Approximation.

Gauss rules and three-term recurrences
The routines described in this section deal with the constellation of problems encountered in
Gauss quadrature. These problems arise when quadrature formulas, which integrate polynomials
of the highest degree possible, are computed. Once a member of a family of seven weight
functions is specified, the routine GQRUL (page 811) produces the points {xi} and weights {wi} for
i = 1, �, N that satisfy

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���

for all functions f that are polynomials of degree less than 2N. The weight functions w may be
selected from the following table:

� �

� �

� �

� �

� �

� � � � � �

� �

� � � �

2

2

2

1 1,1 Legendre

1/ 1- 1,1 Chebyshev 1st kind

1 1,1 Chebyshev 2nd kind

, Hermite

1 1 1,1 Jacobi
0, Generalized Laguerre

1/ cosh Hyperbolic cosine

x

x

w x

x

x

e

x x
e x

x

� �

�

�

�

�

�

� �

�� �

� � �

�

�� �

Interval Name

Where permissible, GQRUL will also compute Gauss-Radau and Gauss-Lobatto quadrature rules.
The routine RECCF (page 818) produces the three-term recurrence relation for the monic
orthogonal polynomials with respect to the above weight functions.

772 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Another routine, GQRCF (page 815), produces the Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule from the three-term recurrence relation. This means Gauss rules for general weight
functions may be obtained if the three-term recursion for the orthogonal polynomials is known.
The routine RECQR (page 821) is an inverse to GQRCF in the sense that it produces the recurrence
coefficients given the Gauss quadrature formula.

The last routine described in this section, FQRUL (page 824), generates the Fejér quadrature rules
for the following family of weights:

� �

� � � �

� � � � � �

� � � � � � � �

� � � � � � � �

1

1/

ln

ln

w x

w x x

w x b x x a

w x b x x a x a

w x b x x a b x

� �

� �

� �

�

�

� �

� � �

� � � �

� � � �

Numerical differentiation
We provide one routine, DERIV (page 827), for numerical differentiation. This routine provides an
estimate for the first, second, or third derivative of a user-supplied function.

QDAGS
Integrates a function (which may have endpoint singularities).

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(X), where

 X � Independent variable. (Input)
 F � The function value. (Output)
F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Required Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 773

FORTRAN 90 Interface
Generic: CALL QDAGS (F, A, B, RESULT [,…])

Specific: The specific interface names are S_QDAGS and D_QDAGS.

FORTRAN 77 Interface
Single: CALL QDAGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST)

Double: The double precision name is DQDAGS.

Example
The value of

� �
1 1/ 2

0
ln 4x x dx�

� ��

is estimated. The values of the actual and estimated error are machine dependent.
 USE QDAGS_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL A, ABS, B, ERRABS, ERREST, ERROR, ERRREL, EXACT, F, &
 RESULT
 INTRINSIC ABS
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
! Set limits of integration
 A = 0.0
 B = 1.0
! Set error tolerances
 ERRABS = 0.0
 CALL QDAGS (F, A, B, RESULT, ERRABS=ERRABS, ERREST=ERREST)
! Print results
 EXACT = -4.0
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, &
 ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
!
 REAL FUNCTION F (X)
 REAL X
 REAL ALOG, SQRT
 INTRINSIC ALOG, SQRT
 F = ALOG(X)/SQRT(X)
 RETURN
 END

774 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Output
Computed = -4.000 Exact = -4.000

Error estimate = 1.519E-04 Error = 2.098E-05

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2AGS/DQ2AGS. The

reference is

CALL Q2AGS (F, A, B, ERRABS, ERRREL, RESULT, ERREST, MAXSUB,
NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 500 is used by QDAGS.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.
(Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.
(Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals
over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values
in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let k be
NSUBIN if NSUBIN � (MAXSUB/2 + 2);
MAXSUB + 1 � NSUBIN otherwise.
The first k locations contain pointers to the error estimates over the subintervals
such that ELIST(IORD(1)), �, ELIST(IORD(k)) form a decreasing sequence.

2. Informational errors

Type Code
 4 1 The maximum number of subintervals allowed has been reached.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 775

 3 2 Roundoff error, preventing the requested tolerance from being
achieved, has been detected.

 3 3 A degradation in precision has been detected.
 3 4 Roundoff error in the extrapolation table, preventing the requested

tolerance from being achieved, has been detected.
 4 5 Integral is probably divergent or slowly convergent.

3. If EXACT is the exact value, QDAGS attempts to find RESULT such that
|EXACT � RESULT| � max(ERRABS, ERRREL * |EXACT|). To specify only a relative
error, set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to
zero.

Description
The routine QDAGS is a general-purpose integrator that uses a globally adaptive scheme to
reduce the absolute error. It subdivides the interval [A, B] and uses a 21-point Gauss-Kronrod
rule to estimate the integral over each subinterval. The error for each subinterval is estimated by
comparison with the 10-point Gauss quadrature rule. This routine is designed to handle
functions with endpoint singularities. However, the performance on functions, which are well-
behaved at the endpoints, is quite good also. In addition to the general strategy described in
QDAG (page 775), this routine uses an extrapolation procedure known as the �-algorithm. The
routine QDAGS is an implementation of the routine QAGS, which is fully documented by Piessens
et al. (1983). Should QDAGS fail to produce acceptable results, then either IMSL routines QDAG
or QDAG* may be appropriate. These routines are documented in this chapter.

QDAG
Integrates a function using a globally adaptive scheme based on Gauss-Kronrod rules.

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(X), where

 X � Independent variable. (Input)
 F � The function value. (Output)
F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

776 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

ERRREL — Relative accuracy desired. (Input)
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

IRULE — Choice of quadrature rule. (Input)
Default: IRULE = 2.
The Gauss-Kronrod rule is used with the following points:

 IRULE Points

1 7-15

2 10-21

3 15-31

4 20-41

5 25-51

6 30-61

IRULE = 2 is recommended for most functions. If the function has a peak singularity, use
IRULE = 1. If the function is oscillatory, use IRULE = 6.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface
Generic: CALL QDAG (F, A, B, RESULT [,…])

Specific: The specific interface names are S_QDAG and D_QDAG.

FORTRAN 77 Interface
Single: CALL QDAG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST)

Double: The double precision name is DQDAG.

Example
The value of

2 2

0
1xxe dx e� ��

is estimated. Since the integrand is not oscillatory, IRULE = 1 is used. The values of the actual
and estimated error are machine dependent.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 777

 USE QDAG_INT
 USE UMACH_INT
 INTEGER IRULE, NOUT
 REAL A, ABS, B, ERRABS, ERREST, ERROR, EXACT, EXP, &
 F, RESULT
 INTRINSIC ABS, EXP
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
! Set limits of integration
 A = 0.0
 B = 2.0
! Set error tolerances
 ERRABS = 0.0
! Parameter for non-oscillatory
! function
 IRULE = 1
 CALL QDAG (F, A, B, RESULT, ERRABS=ERRABS, IRULE=IRULE, ERREST=ERREST)
! Print results
 EXACT = 1.0 + EXP(2.0)
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, &
 ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
!
 REAL FUNCTION F (X)
 REAL X
 REAL EXP
 INTRINSIC EXP
 F = X*EXP(X)
 RETURN
 END

Output
Computed = 8.389 Exact = 8.389

Error estimate = 5.000E-05 Error = 9.537E-07

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2AG/DQ2AG. The

reference is:

CALL Q2AG (F, A, B, ERRABS, ERRREL, IRULE, RESULT, ERREST,
MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 500 is used by QDAG.

NEVAL — Number of evaluations of F. (Output)

778 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.
(Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.
(Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals
over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values
in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 � NSUBIN
otherwise. The first K locations contain pointers to the error estimates over the
corresponding subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K))
form a decreasing sequence.

2. Informational errors

Type Code
 4 1 The maximum number of subintervals allowed has been reached.
 3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.
 3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, QDAG attempts to find RESULT such that ABS(EXACT �
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error,
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero.

Description
The routine QDAG is a general-purpose integrator that uses a globally adaptive scheme in order
to reduce the absolute error. It subdivides the interval [A, B] and uses a (2k + 1)-point Gauss-
Kronrod rule to estimate the integral over each subinterval. The error for each subinterval is
estimated by comparison with the k-point Gauss quadrature rule. The subinterval with the
largest estimated error is then bisected and the same procedure is applied to both halves. The
bisection process is continued until either the error criterion is satisfied, roundoff error is
detected, the subintervals become too small, or the maximum number of subintervals allowed is
reached. The routine QDAG is based on the subroutine QAG by Piessens et al. (1983).

Should QDAG fail to produce acceptable results, then one of the IMSL routines QDAG* may be
appropriate. These routines are documented in this chapter.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 779

QDAGP
Integrates a function with singularity points given.

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(X), where

 X � Independent variable. (Input)
 F � The function value. (Output)
F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

POINTS — Array of length NPTS containing breakpoints in the range of integration. (Input)
Usually these are points where the integrand has singularities.

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments
NPTS — Number of break points given. (Input)

Default: NPTS = size (POINTS,1).

ERRABS — Absolute accuracy desired. (Input)
Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface
Generic: CALL QDAGP (F, A, B, POINTS, RESULT [,…])

Specific: The specific interface names are S_QDAGP and D_QDAGP.

FORTRAN 77 Interface
Single: CALL QDAGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT,

 ERREST)

Double: The double precision name is DQDAGP.

780 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Example
The value of

� �� �
3 3 2 2

0

77ln 1 2 61 ln 2 ln 7 27
4

x x x dx� � � � ��

is estimated. The values of the actual and estimated error are machine dependent. Note that this
subroutine never evaluates the user-supplied function at the user-supplied breakpoints.

 USE QDAGP_INT
 USE UMACH_INT
 INTEGER NOUT, NPTS
 REAL A, ABS, ALOG, B, ERRABS, ERREST, ERROR, ERRREL, &
 EXACT, F, POINTS(2), RESULT, SQRT
 INTRINSIC ABS, ALOG, SQRT
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
! Set limits of integration
 A = 0.0
 B = 3.0
! Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.01
! Set singularity parameters
 NPTS = 2
 POINTS(1) = 1.0
 POINTS(2) = SQRT(2.0)
 CALL QDAGP (F, A, B, POINTS, RESULT, ERRABS=ERRABS, ERRREL=ERRREL, &
 ERREST=ERREST)
! Print results
 EXACT = 61.0*ALOG(2.0) + 77.0/4.0*ALOG(7.0) - 27.0
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, &
 ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
!
 END
!
 REAL FUNCTION F (X)
 REAL X
 REAL ABS, ALOG
 INTRINSIC ABS, ALOG
 F = X**3*ALOG(ABS((X*X-1.0)*(X*X-2.0)))
 RETURN
 END

Output
Computed = 52.741 Exact = 52.741

Error estimate = 5.062E-01 Error = 6.104E-04

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 781

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2AGP/DQ2AGP. The

reference is:

CALL Q2AGP (F, A, B, NPTS, POINTS, ERRABS, ERRREL, RESULT,
ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD,
LEVEL, WK, IWK)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 450 is used by QDAGP.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.
(Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.
(Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals
over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values
in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 � NSUBIN
otherwise. The first K locations contain pointers to the error estimates over the
subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K)) form a decreasing
sequence.

LEVEL — Array of length MAXSUB, containing the subdivision levels of the
subinterval. (Output)
That is, if (AA, BB) is a subinterval of (P1, P2) where P1 as well as P2 is a
user-provided break point or integration limit, then (AA, BB) has level L if
ABS(BB � AA) = ABS(P2 � P1) * 2**(�L).

WK — Work array of length NPTS + 2.

IWK — Work array of length NPTS + 2.

2. Informational errors

Type Code

782 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 4 1 The maximum number of subintervals allowed has been reached.
 3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.
 3 3 A degradation in precision has been detected.
 3 4 Roundoff error in the extrapolation table, preventing the requested

tolerance from being achieved, has been detected.
 4 5 Integral is probably divergent or slowly convergent.

3. If EXACT is the exact value, QDAGP attempts to find RESULT such that ABS(EXACT �
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error,
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero.

Description
The routine QDAGP uses a globally adaptive scheme in order to reduce the absolute error. It
initially subdivides the interval [A, B] into NPTS + 1 user-supplied subintervals and uses a 21-
point Gauss-Kronrod rule to estimate the integral over each subinterval. The error for each
subinterval is estimated by comparison with the 10-point Gauss quadrature rule. This routine is
designed to handle endpoint as well as interior singularities. In addition to the general strategy
described in the IMSL routine QDAG (page 775), this routine employs an extrapolation procedure
known as the �-algorithm. The routine QDAGP is an implementation of the subroutine QAGP,
which is fully documented by Piessens et al. (1983).

QDAGI
Integrates a function over an infinite or semi-infinite interval.

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is

F(X), where
 X � Independent variable. (Input)
 F � The function value. (Output)
F must be declared EXTERNAL in the calling program.

BOUND — Finite bound of the integration range. (Input)
Ignored if INTERV = 2.

INTERV — Flag indicating integration interval. (Input)

INTERV Interval

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 783

�1 (��, BOUND)

1 (BOUND, + �)

2 (��, + �)

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface
Generic: CALL QDAGI (F, BOUND, INTERV, RESULT [,…])

Specific: The specific interface names are S_QDAGI and D_QDAGI.

FORTRAN 77 Interface
Single: CALL QDAGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT,

ERREST)

Double: The double precision name is DQDAGI.

Example
The value of

� �

� �

� �
20

ln ln 10
201 10

x
dx

x

�� �

�

�
�

is estimated. The values of the actual and estimated error are machine dependent. Note that we
have requested an absolute error of 0 and a relative error of .001. The effect of these requests, as
documented in Comment 3 above, is to ignore the absolute error requirement.

 USE QDAGI_INT
 USE UMACH_INT
 USE CONST_INT
 INTEGER INTERV, NOUT
 REAL ABS, ALOG, BOUND, ERRABS, ERREST, ERROR, &
 ERRREL, EXACT, F, PI, RESULT
 INTRINSIC ABS, ALOG

784 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
! Set limits of integration
 BOUND = 0.0
 INTERV = 1
! Set error tolerances
 ERRABS = 0.0
 CALL QDAGI (F, BOUND, INTERV, RESULT, ERRABS=ERRABS, &
 ERREST=ERREST)
! Print results
 PI = CONST(’PI’)
 EXACT = -PI*ALOG(10.)/20.
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3//’ Error ’, &
 ’estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
!
 REAL FUNCTION F (X)
 REAL X
 REAL ALOG
 INTRINSIC ALOG
 F = ALOG(X)/(1.+(10.*X)**2)
 RETURN
 END

Output
Computed = -0.362 Exact = -0.362

Error estimate = 2.652E-06 Error = 5.960E-08

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2AGI/DQ2AGI. The

reference is

CALL Q2AGI (F, BOUND, INTERV, ERRABS, ERRREL, RESULT, ERREST,
MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 500 is used by QDAGI.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.
(Output)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 785

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.
(Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals
over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values
in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN .LE.(MAXSUB/2 + 2), MAXSUB + 1 �
NSUBIN otherwise. The first K locations contain pointers to the error estimates
over the subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K))
form a decreasing sequence.

2. Informational errors

Type Code
 4 1 The maximum number of subintervals allowed has been reached.
 3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.
 3 3 A degradation in precision has been detected.
 3 4 Roundoff error in the extrapolation table, preventing the requested

tolerance from being achieved, has been detected.
 4 5 Integral is divergent or slowly convergent.

3. If EXACT is the exact value, QDAGI attempts to find RESULT such that ABS(EXACT �
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error,
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero.

Description
The routine QDAGI uses a globally adaptive scheme in an attempt to reduce the absolute error. It
initially transforms an infinite or semi-infinite interval into the finite interval [0, 1]. Then,
QDAGI uses a 21-point Gauss-Kronrod rule to estimate the integral and the error. It bisects any
interval with an unacceptable error estimate and continues this process until termination. This
routine is designed to handle endpoint singularities. In addition to the general strategy described
in QDAG (page 775), this subroutine employs an extrapolation procedure known as the �-
algorithm. The routine QDAGI is an implementation of the subroutine QAGI, which is fully
documented by Piessens et al. (1983).

QDAWO
Integrates a function containing a sine or a cosine.

786 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(X), where

 X � Independent variable. (Input)
 F � The function value. (Output)
F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

IWEIGH — Type of weight function used. (Input)

IWEIGH Weight

1 COS(OMEGA * X)

2 SIN(OMEGA * X)

OMEGA — Parameter in the weight function. (Input)

RESULT — Estimate of the integral from A to B of F * WEIGHT. (Output)

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface
Generic: CALL QDAWO (F, A, B, IWEIGH, OMEGA, RESULT [,…])

Specific: The specific interface names are S_QDAWO and D_QDAWO.

FORTRAN 77 Interface
Single: CALL QDAWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL, RESULT,

 ERREST)

Double: The double precision name is DQDAWO.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 787

Description
The routine QDAWO uses a globally adaptive scheme in an attempt to reduce the absolute error.
This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is
either cos �x or sin �x. Depending on the length of the subinterval in relation to the size of �,
either a modified Clenshaw-Curtis procedure or a Gauss-Kronrod 7/15 rule is employed to
approximate the integral on a subinterval. In addition to the general strategy described for the
IMSL routine QDAG (page 775), this subroutine uses an extrapolation procedure known as the �-
algorithm. The routine QDAWO is an implementation of the subroutine QAWO, which is fully
documented by Piessens et al. (1983).

Example
The value of

� � � �
1

0
ln sin 10x x dx��

is estimated. The values of the actual and estimated error are machine dependent. Notice that the
log function is coded to protect for the singularity at zero.

 USE QDAWO_INT
 USE UMACH_INT
 USE CONST_INT

 INTEGER IWEIGH, NOUT
 REAL A, ABS, B, ERRABS, ERREST, ERROR, &
 EXACT, F, OMEGA, PI, RESULT
 INTRINSIC ABS
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
! Set limits of integration
 A = 0.0
 B = 1.0
! Weight function = sin(10.*pi*x)
 IWEIGH = 2
 PI = CONST(’PI’)
 OMEGA = 10.*PI
! Set error tolerances
 ERRABS = 0.0
 CALL QDAWO (F, A, B, IWEIGH, OMEGA, RESULT, ERRABS=ERRABS, &
 ERREST=ERREST)
! Print results
 EXACT = -0.1281316
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, &
 ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
!
 REAL FUNCTION F (X)
 REAL X
 REAL ALOG

788 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 INTRINSIC ALOG
 IF (X .EQ. 0.) THEN
 F = 0.0
 ELSE
 F = ALOG(X)
 END IF
 RETURN
 END

Output
Computed = -0.128 Exact = -0.128

Error estimate = 7.504E-05 Error = 5.260E-06

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2AWO/DQ2AWO. The

reference is:

CALL Q2AWO (F, A, B, IWEIGH, OMEGA, ERRABS, ERRREL, RESULT,
ERREST, MAXSUB, MAXCBY, NEVAL, NSUBIN, ALIST, BLIST, RLIST,
ELIST, IORD, NNLOG, WK)

The additional arguments are as follows:

MAXSUB — Maximum number of subintervals allowed. (Input)
A value of 390 is used by QDAWO.

MAXCBY — Upper bound on the number of Chebyshev moments which can be
stored. That is, for the intervals of lengths ABS(B � A) * 2**(�L), L = 0,
1, �, MAXCBY � 2, MAXCBY.GE.1. The routine QDAWO uses 21. (Input)

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.
(Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.
(Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals
over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values
in RLIST. (Output)

IORD — Array of length MAXSUB. Let K be NSUBIN if NSUBIN.LE. (MAXSUB/2 +
2), MAXSUB + 1 � NSUBIN otherwise. The first K locations contain pointers

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 789

to the error estimates over the subintervals, such that ELIST(IORD(1)), �,
ELIST(IORD(K)) form a decreasing sequence. (Output)

NNLOG — Array of length MAXSUB containing the subdivision levels of the
subintervals, i.e. NNLOG(I) = L means that the subinterval numbered I is of
length ABS(B � A) * (1� L). (Output)

WK — Array of length 25 * MAXCBY. (Workspace)

2. Informational errors

Type Code
 4 1 The maximum number of subintervals allowed has been reached.
 3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.
 3 3 A degradation in precision has been detected.
 3 4 Roundoff error in the extrapolation table, preventing the requested

tolerances from being achieved, has been detected.
 4 5 Integral is probably divergent or slowly convergent.

3. If EXACT is the exact value, QDAWO attempts to find RESULT such that ABS(EXACT �
RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error,
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero.

QDAWF
Computes a Fourier integral.

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(X), where

 X � Independent variable. (Input)
 F � The function value. (Output)
F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

IWEIGH — Type of weight function used. (Input)

IWEIGH Weight

1 COS(OMEGA * X)

2 SIN(OMEGA * X)

OMEGA — Parameter in the weight function. (Input)

RESULT — Estimate of the integral from A to infinity of F * WEIGHT. (Output)

790 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)
Default: ERREST = 1.e-3 for single precision and 1.d-8 for double precision.

FORTRAN 90 Interface
Generic: CALL QDAWF (F, A, IWEIGH, OMEGA, RESULT [,…])

Specific: The specific interface names are S_QDAWF and D_QDAWF.

FORTRAN 77 Interface
Single: CALL QDAWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST)

Double: The double precision name is DQDAWF.

Example
The value of

� �1/ 2

0
cos / 2 1x x dx�

�
�

��

is estimated. The values of the actual and estimated error are machine dependent. Notice that F
is coded to protect for the singularity at zero.

 USE QDAWF_INT
 USE UMACH_INT
 USE CONST_INT

 INTEGER IWEIGH, NOUT
 REAL A, ABS, ERRABS, ERREST, ERROR, EXACT, F, &
 OMEGA, PI, RESULT
 INTRINSIC ABS
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
! Set lower limit of integration
 A = 0.0
! Select weight W(X) = COS(PI*X/2)
 IWEIGH = 1
 PI = CONST(’PI’)
 OMEGA = PI/2.0
! Set error tolerance
 CALL QDAWF (F, A, IWEIGH, OMEGA, RESULT, ERREST=ERREST)
! Print results
 EXACT = 1.0
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 791

99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, &
 ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
!
 REAL FUNCTION F (X)
 REAL X
 REAL SQRT
 INTRINSIC SQRT
 IF (X .GT. 0.0) THEN
 F = 1.0/SQRT(X)
 ELSE
 F = 0.0
 END IF
 RETURN
 END

Output
Computed = 1.000 Exact = 1.000

Error estimate = 6.267E-04 Error = 2.205E-06

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2AWF/DQ2AWF. The

reference is:

CALL Q2AWF (F, A, IWEIGH, OMEGA, ERRABS, RESULT, ERREST, MAXCYL,
MAXSUB, MAXCBY, NEVAL, NCYCLE, RSLIST, ERLIST, IERLST, NSUBIN,
WK, IWK)

The additional arguments are as follows:

MAXSUB — Maximum number of subintervals allowed. (Input)
A value of 365 is used by QDAWF.

MAXCYL — Maximum number of cycles allowed. (Input)
MAXCYL must be at least 3. QDAWF uses 50.

MAXCBY — Maximum number of Chebyshev moments allowed. (Input)
QDAWF uses 21.

NEVAL — Number of evaluations of F. (Output)

NCYCLE — Number of cycles used. (Output)

RSLIST — Array of length MAXCYL containing the contributions to the integral over
the interval (A + (k � 1) * C, A + k * C), for k = 1, �, NCYCLE. (Output)
C = (2 * INT(ABS(OMEGA)) + 1) * PI/ABS(OMEGA).

ERLIST — Array of length MAXCYL containing the error estimates for the intervals
defined in RSLIST. (Output)

792 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

IERLST — Array of length MAXCYL containing error flags for the intervals defined in
RSLIST. (Output)

IERLST(K) Meaning

1 The maximum number of subdivisions (MAXSUB) has been
 achieved on the K-th cycle.

2 Roundoff error prevents the desired accuracy from being
 achieved on the K-th cycle.

3 Extremely bad integrand behavior occurs at some points
 of the K-th cycle.

 4 Integration procedure does not converge (to the desired
 accuracy) due to roundoff in the extrapolation procedure
 on the K-th cycle. It is assumed that the result on this
 interval is the best that can be obtained.

5 Integral over the K-th cycle is divergent or slowly
 convergent.

NSUBIN — Number of subintervals generated. (Output)

WK — Work array of length 4 * MAXSUB + 25 * MAXCBY.

IWK — Work array of length 2 * MAXSUB.

2. Informational errors

Type Code
 3 1 Bad integrand behavior occurred in one or more cycles.
 4 2 Maximum number of cycles allowed has been reached.
 3 3 Extrapolation table constructed for convergence acceleration of the

series formed by the integral contributions of the cycles does not
converge to the requested accuracy.

3. If EXACT is the exact value, QDAWF attempts to find RESULT such that ABS(EXACT �
RESULT) .LE. ERRABS.

Description
The routine QDAWF uses a globally adaptive scheme in an attempt to reduce the absolute error.
This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is
either cos �x or sin �x. The integration interval is always semi-infinite of the form [A, �].
These Fourier integrals are approximated by repeated calls to the IMSL routine QDAWO (page
785) followed by extrapolation. The routine QDAWF is an implementation of the subroutine
QAWF, which is fully documented by Piessens et al. (1983).

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 793

QDAWS
Integrates a function with algebraic-logarithmic singularities.

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(X), where

 X � Independent variable. (Input)
 F � The function value. (Output)
F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)
B must be greater than A

IWEIGH — Type of weight function used. (Input)

IWEIGH Weight

1 (X � A)**ALPHA * (B � X)**BETAW

2 (X � A)**ALPHA * (B � X)**BETAW * LOG(X � A)

3 (X � A)**ALPHA * (B � X)**BETAW * LOG(B � X)

4 (X � A)**ALPHA * (B � X)**BETAW * LOG (X � A) * LOG (B � X)

ALPHA — Parameter in the weight function. (Input)
ALPHA must be greater than �1.0.

BETAW — Parameter in the weight function. (Input)
BETAW must be greater than �1.0.

RESULT — Estimate of the integral from A to B of F * WEIGHT. (Output)

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

794 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

FORTRAN 90 Interface
Generic: CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, RESULT[,…])

Specific: The specific interface names are S_QDAWS and D_QDAWS.

FORTRAN 77 Interface
Single: CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, ERRABS, ERRREL,

 RESULT, ERREST)

Double: The double precision name is DQDAWS.

Example
The value of

� �� � � �
� �1/ 21

0

3ln 2 4
1 1 ln

9
x x x x dx

�
� � �� �� ��

is estimated. The values of the actual and estimated error are machine dependent.
 USE QDAWS_INT
 USE UMACH_INT
 INTEGER IWEIGH, NOUT
 REAL A, ABS, ALOG, ALPHA, B, BETAW, ERRABS, ERREST, ERROR, &
 EXACT, F, RESULT
 INTRINSIC ABS, ALOG
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
! Set limits of integration
 A = 0.0
 B = 1.0
! Select weight
 ALPHA = 1.0
 BETAW = 0.5
 IWEIGH = 2
! Set error tolerances
 ERRABS = 0.0
 CALL QDAWS (F, A, B, IWEIGH, ALPHA, BETAW, RESULT, &
 ERRABS=ERRABS, ERREST=ERREST)
! Print results
 EXACT = (3.*ALOG(2.)-4.)/9.
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, &
 ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
!
 REAL FUNCTION F (X)
 REAL X
 REAL SQRT
 INTRINSIC SQRT

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 795

 F = SQRT(1.0+X)
 RETURN
 END

Output
Computed = -0.213 Exact = -0.213

Error estimate = 1.261E-08 Error = 2.980E-08

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2AWS/DQ2AWS. The

reference is

CALL Q2AWS (F, A, B, IWEIGH, ALPHA, BETAW, ERRABS, ERRREL,
RESULT, ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST,
ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Maximum number of subintervals allowed. (Input)
A value of 500 is used by QDAWS.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.
(Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.
(Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals
over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values
in RLIST. (Output)

IORD — Array of length MAXSUB. Let K be NSUBIN if NSUBIN.LE. (MAXSUB/2 +
2), MAXSUB + 1 � NSUBIN otherwise. The first K locations contain pointers to
the error estimates over the subintervals, such that ELIST(IORD(1)), �,
ELIST(IORD(K)) form a decreasing sequence. (Output)

2. Informational errors

Type Code
4 1 The maximum number of subintervals allowed has been reached.
3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.

796 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, QDAWS attempts to find RESULT such that ABS(EXACT �
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error,
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero.

Description
The routine QDAWS uses a globally adaptive scheme in an attempt to reduce the absolute error.
This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) is
a weight function described above. A combination of modified Clenshaw-Curtis and Gauss-
Kronrod formulas is employed. In addition to the general strategy described for the IMSL
routine QDAG (page 775), this routine uses an extrapolation procedure known as the �-algorithm.
The routine QDAWS is an implementation of the routine QAWS, which is fully documented by
Piessens et al. (1983).

QDAWC
Integrates a function F(X)/(X � C) in the Cauchy principal value sense.

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(X), where

 X � Independent variable. (Input)
 F � The function value. (Output)
F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

C — Singular point. (Input)
C must not equal A or B.

RESULT — Estimate of the integral from A to B of F(X)/(X � C). (Output)

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)
Default: ERREL =1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 797

FORTRAN 90 Interface
Generic: CALL QDAWC (F, A, B, C, RESULT [,…])

Specific: The specific interface names are S_QDAWC and D_QDAWC.

FORTRAN 77 Interface
Single: CALL QDAWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST)

Double: The double precision name is DQDAWC.

Example
The Cauchy principal value of

� �
� �5

31

ln 125 / 6311
185 6

dx
x x�

�

�
�

is estimated. The values of the actual and estimated error are machine dependent.
 USE QDAWC_INT
 USE UMACH_INT
 INTEGER NOUT
 REAL A, ABS, ALOG, B, C, ERRABS, ERREST, ERROR, EXACT, &
 F, RESULT
 INTRINSIC ABS, ALOG
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
! Set limits of integration and C
 A = -1.0
 B = 5.0
 C = 0.0
! Set error tolerances
 ERRABS = 0.0
 CALL QDAWC (F, A, B, C, RESULT, ERRABS=ERRABS, ERREST=ERREST)
! Print results
 EXACT = ALOG(125./631.)/18.
 ERROR = 2*ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, &
 ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
!
 REAL FUNCTION F (X)
 REAL X
 F = 1.0/(5.*X**3+6.0)
 RETURN
 END

798 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Output
Computed = -0.090 Exact = -0.090

Error estimate = 2.022E-06 Error = 2.980E-08

Comments
1. Workspace may be explicitly provided, if desired, by use of Q2AWC/DQ2AWC. The

reference is:

CALL Q2AWC (F, A, B, C, ERRABS, ERRREL, RESULT, ERREST, MAXSUB,
NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST, IORD)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 500 is used by QDAWC.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints.
(Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints.
(Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals
over the intervals defined by ALIST, BLIST. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values
in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 � NSUBIN
otherwise. The first K locations contain pointers to the error estimates over the
subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K)) form a decreasing
sequence.

2. Informational errors

Type Code
 4 1 The maximum number of subintervals allowed has been reached.
 3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.
 3 3 A degradation in precision has been detected.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 799

3. If EXACT is the exact value, QDAWC attempts to find RESULT such that ABS(EXACT �
RESULT) .LE. MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error,
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero.

Description
The routine QDAWC uses a globally adaptive scheme in an attempt to reduce the absolute error.
This routine computes integrals whose integrands have the special form w(x) f(x), where w(x) =
1/(x � c). If c lies in the interval of integration, then the integral is interpreted as a Cauchy
principal value. A combination of modified Clenshaw-Curtis and Gauss-Kronrod formulas are
employed. In addition to the general strategy described for the IMSL routine QDAG (page 775),
this routine uses an extrapolation procedure known as the �-algorithm. The routine QDAWC is an
implementation of the subroutine QAWC, which is fully documented by Piessens et al. (1983).

QDNG
Integrates a smooth function using a nonadaptive rule.

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(X), where

 X – Independent variable. (Input)
 F – The function value. (Output)
F must be declared EXTERNAL in the calling program.

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface
Generic: CALL QDNG (F, A, B, RESULT [,…])

Specific: The specific interface names are S_QDNG and D_QDNG.

800 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

FORTRAN 77 Interface
Single: CALL QDNG (F, A, B, ERRABS, ERRREL, RESULT, ERREST)

Double: The double precision name is DQDNG.

Example
The value of

2 2

0
1xxe dx e� ��

is estimated. The values of the actual and estimated error are machine dependent.
 USE QDNG_INT

 USE UMACH_INT
 INTEGER NOUT
 REAL A, ABS, B, ERRABS, ERREST, ERROR, EXACT, EXP, &
 F, RESULT
 INTRINSIC ABS, EXP
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
! Set limits of integration
 A = 0.0
 B = 2.0
! Set error tolerances
 ERRABS = 0.0
 CALL QDNG (F, A, B, RESULT, ERRABS=ERRABS, ERREST=ERREST)
! Print results
 EXACT = 1.0 + EXP(2.0)
 ERROR = ABS(RESULT-EXACT)
 WRITE (NOUT,99999) RESULT, EXACT, ERREST, ERROR
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Exact =’, F8.3, /, /, &
 ’ Error estimate =’, 1PE10.3, 6X, ’Error =’, 1PE10.3)
 END
!
 REAL FUNCTION F (X)
 REAL X
 REAL EXP
 INTRINSIC EXP
 F = X*EXP(X)
 RETURN
 END

Output
Computed = 8.389 Exact = 8.389

Error estimate = 5.000E-05 Error = 9.537E-07

Comments
1. Informational error

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 801

Type Code
 4 1 The maximum number of steps allowed have been taken. The

integral is too difficult for QDNG.

2. If EXACT is the exact value, QDNG attempts to find RESULT such that ABS(EXACT �
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error,
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero.

3. This routine is designed for efficiency, not robustness. If the above error is
encountered, try QDAGS.

Description
The routine QDNG is designed to integrate smooth functions. This routine implements a
nonadaptive quadrature procedure based on nested Paterson rules of order 10, 21, 43, and 87.
These rules are positive quadrature rules with degree of accuracy 19, 31, 64, and 130,
respectively. The routine QDNG applies these rules successively, estimating the error, until either
the error estimate satisfies the user-supplied constraints or the last rule is applied. The routine
QDNG is based on the routine QNG by Piessens et al. (1983).

This routine is not very robust, but for certain smooth functions it can be efficient. If QDNG
should not perform well, we recommend the use of the IMSL routine QDAGS (page 772).

TWODQ
Computes a two-dimensional iterated integral.

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(X, Y), where

 X – First argument of F. (Input)
 Y – Second argument of F. (Input)
 F – The function value. (Output)
F must be declared EXTERNAL in the calling program.

A — Lower limit of outer integral. (Input)

B — Upper limit of outer integral. (Input)

G — User-supplied FUNCTION to evaluate the lower limits of the inner integral.
The form is G(X), where
 X – Only argument of G. (Input)
 G – The function value. (Output)
G must be declared EXTERNAL in the calling program.

H — User-supplied FUNCTION to evaluate the upper limits of the inner integral. The form is
H(X), where
 X – Only argument of H. (Input)

802 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 H – The function value. (Output)
H must be declared EXTERNAL in the calling program.

RESULT — Estimate of the integral from A to B of F. (Output)

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

IRULE --- Choice of quadrature rule. (Input)
Default: IRULE = 2.
The Gauss-Kronrod rule is used with the following points:

IRULE Points
1 7-15
2 10-21
3 15-31
4 20-41
5 25-51
6 30-61

If the function has a peak singularity, use IRULE = 1. If the function is oscillatory, use
IRULE = 6.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface
Generic: CALL TWODQ (F, A, B, G, H, RESULT [,…])

Specific: The specific interface names are S_TWODQ and D_TWODQ.

FORTRAN 77 Interface
Single: CALL TWODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT,

 ERREST)

Double: The double precision name is DTWODQ.

Example 1
In this example, we approximate the integral

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 803

� �
1 3 2

0 1
cosy x y dy dx�� �

The value of the error estimate is machine dependent.
 USE TWODQ_INT

 USE UMACH_INT
 INTEGER IRULE, NOUT
 REAL A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT
 EXTERNAL F, G, H
! Get output unit number
 CALL UMACH (2, NOUT)
! Set limits of integration
 A = 0.0
 B = 1.0
! Set error tolerances
 ERRABS = 0.0
 ERRREL = 0.01
! Parameter for oscillatory function
 IRULE = 6
 CALL TWODQ (F, A, B, G, H, RESULT, ERRABS, ERRREL, IRULE, ERREST)
! Print results
 WRITE (NOUT,99999) RESULT, ERREST
99999 FORMAT (’ Result =’, F8.3, 13X, ’ Error estimate = ’, 1PE9.3)
 END
!
 REAL FUNCTION F (X, Y)
 REAL X, Y
 REAL COS
 INTRINSIC COS
 F = Y*COS(X+Y*Y)
 RETURN
 END
!
 REAL FUNCTION G (X)
 REAL X
 G = 1.0
 RETURN
 END
!
 REAL FUNCTION H (X)
 REAL X
 H = 3.0
 RETURN
 END

Output
Result = -0.514 Error estimate = 3.065E-06

Comments
1. Workspace may be explicitly provided, if desired, by use of T2ODQ/DT2ODQ. The

reference is:

804 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

CALL T2ODQ (F, A, B, G, H, ERRABS, ERRREL, IRULE, RESULT,
ERREST, MAXSUB, NEVAL, NSUBIN, ALIST, BLIST, RLIST, ELIST,
IORD, WK, IWK)

The additional arguments are as follows:

MAXSUB — Number of subintervals allowed. (Input)
A value of 250 is used by TWODQ.

NEVAL — Number of evaluations of F. (Output)

NSUBIN — Number of subintervals generated in the outer integral. (Output)

ALIST — Array of length MAXSUB containing a list of the NSUBIN left endpoints for
the outer integral. (Output)

BLIST — Array of length MAXSUB containing a list of the NSUBIN right endpoints for
the outer integral. (Output)

RLIST — Array of length MAXSUB containing approximations to the NSUBIN integrals
over the intervals defined by ALIST, BLIST, pertaining only to the outer
integral. (Output)

ELIST — Array of length MAXSUB containing the error estimates of the NSUBIN values
in RLIST. (Output)

IORD — Array of length MAXSUB. (Output)
Let K be NSUBIN if NSUBIN.LE.(MAXSUB/2 + 2), MAXSUB + 1 � NSUBIN
otherwise. Then the first K locations contain pointers to the error estimates over
the corresponding subintervals, such that ELIST(IORD(1)), �, ELIST(IORD(K))
form a decreasing sequence.

WK — Work array of length 4 * MAXSUB, needed to evaluate the inner integral.

IWK — Work array of length MAXSUB, needed to evaluate the inner integral.

2. Informational errors

Type Code
 4 1 The maximum number of subintervals allowed has been reached.
 3 2 Roundoff error, preventing the requested tolerance from being

achieved, has been detected.
 3 3 A degradation in precision has been detected.

3. If EXACT is the exact value, TWODQ attempts to find RESULT such that ABS(EXACT �
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error,
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 805

Description
The routine TWODQ approximates the two-dimensional iterated integral

� �
� �

� �
,

b h x

a g x
f x y dy dx� �

with the approximation returned in RESULT. An estimate of the error is returned in ERREST. The
approximation is achieved by iterated calls to QDAG (page 775). Thus, this algorithm will share
many of the characteristics of the routine QDAG. As in QDAG, several options are available. The
absolute and relative error must be specified, and in addition, the Gauss-Kronrod pair must be
specified (IRULE). The lower-numbered rules are used for less smooth integrands while the
higher-order rules are more efficient for smooth (oscillatory) integrands.

Additional Examples

Example 2
We modify the above example by assuming that the limits for the inner integral depend on x
and, in particular, are g(x) = �2x and h(x) = 5x. The integral now becomes

� �
1 5 2

0 2
cos

x

x
y x y dy dx

�

�� �

The value of the error estimate is machine dependent.
 USE TWODQ_INT

 USE UMACH_INT
! Declare F, G, H
 INTEGER IRULE, NOUT
 REAL A, B, ERRABS, ERREST, ERRREL, F, G, H, RESULT
 EXTERNAL F, G, H
!
 CALL UMACH (2, NOUT)
! Set limits of integration
 A = 0.0
 B = 1.0
! Set error tolerances
 ERRABS = 0.001
 ERRREL = 0.0
! Parameter for oscillatory function
 IRULE = 6
 CALL TWODQ (F, A, B, G, H, RESULT, ERRABS, ERRREL, IRULE, ERREST)
! Print results
 WRITE (NOUT,99999) RESULT, ERREST
99999 FORMAT (’ Computed =’, F8.3, 13X, ’ Error estimate = ’, 1PE9.3)
 END
 REAL FUNCTION F (X, Y)
 REAL X, Y
!
 REAL COS
 INTRINSIC COS
!
 F = Y*COS(X+Y*Y)
 RETURN

806 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 END
 REAL FUNCTION G (X)
 REAL X
!
 G = -2.0*X
 RETURN
 END
 REAL FUNCTION H (X)
 REAL X
!
 H = 5.0*X
 RETURN
 END

Output
Computed = -0.083 Error estimate = 2.095E-06

QAND
Integrates a function on a hyper-rectangle.

Required Arguments
F — User-supplied FUNCTION to be integrated. The form is F(N, X), where

 N – The dimension of the hyper-rectangle. (Input)
 X – The independent variable of dimension N. (Input)
 F – The value of the integrand at X. (Output)
F must be declared EXTERNAL in the calling program.

N — The dimension of the hyper-rectangle. (Input)
N must be less than or equal to 20.

A — Vector of length N. (Input)
Lower limits of integration.

B — Vector of length N. (Input)
Upper limits of integration.

RESULT — Estimate of the integral from A to B of F. (Output)
The integral of F is approximated over the N-dimensional hyper-rectangle
A.LE.X.LE.B.

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: ERRABS = 1.e-3 for single precision and 1.d-8 for double precision.

ERRREL — Relative accuracy desired. (Input)
Default: ERRREL = 1.e-3 for single precision and 1.d-8 for double precision.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 807

MAXFCN — Approximate maximum number of function evaluations to be permitted.
(Input)
MAXFCN cannot be greater than 256� or IMACH(5) if N is greater than 3.
Default: MAXFCN = 32**n.

ERREST — Estimate of the absolute value of the error. (Output)

FORTRAN 90 Interface
Generic: CALL QAND (F, N, A, B, RESULT [,…])

Specific: The specific interface names are S_QAND and D_QAND.

FORTRAN 77 Interface
Single: CALL QAND (F, N, A, B, ERRABS, ERRREL, MAXFCN, RESULT,

 ERREST)

Double: The double precision name is DQAND.

Example 1
In this example, we approximate the integral of

� �2 2 2
1 2 3x x xe� � �

on an expanding cube. The values of the error estimates are machine dependent. The exact
integral over

3 3 / 2is �R

 USE QAND_INT
 USE UMACH_INT
 INTEGER I, J, MAXFCN, N, NOUT
 REAL A(3), B(3), CNST, ERRABS, ERREST, ERRREL, F, RESULT
 EXTERNAL F
! Get output unit number
 CALL UMACH (2, NOUT)
!
 N = 3
 MAXFCN = 100000
! Set error tolerances
 ERRABS = 0.0001
 ERRREL = 0.001
!
 DO 20 I=1, 6
 CNST = I/2.0
! Set limits of integration
! As CNST approaches infinity, the
! answer approaches PI**1.5
 DO 10 J=1, 3
 A(J) = -CNST

808 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 B(J) = CNST
 10 CONTINUE
 CALL QAND (F, N, A, B, RESULT, ERRABS, ERRREL, MAXFCN, ERREST)
 WRITE (NOUT,99999) CNST, RESULT, ERREST
 20 CONTINUE
99999 FORMAT (1X, ’For CNST = ’, F4.1, ’, result = ’, F7.3, ’ with ’, &
 ’error estimate ’, 1PE10.3)
 END
!
 REAL FUNCTION F (N, X)
 INTEGER N
 REAL X(N)
 REAL EXP
 INTRINSIC EXP
 F = EXP(-(X(1)*X(1)+X(2)*X(2)+X(3)*X(3)))
 RETURN
 END

Output
For CNST = 0.5, result = 0.785 with error estimate 3.934E-06
For CNST = 1.0, result = 3.332 with error estimate 2.100E-03
For CNST = 1.5, result = 5.021 with error estimate 1.192E-05
For CNST = 2.0, result = 5.491 with error estimate 2.413E-04
For CNST = 2.5, result = 5.561 with error estimate 4.232E-03
For CNST = 3.0, result = 5.568 with error estimate 2.580E-04

Comments
1. Informational errors

Type Code
 3 1 MAXFCN was set greater than 256N.
 4 2 The maximum number of function evaluations has been reached, and

convergence has not been attained.

2. If EXACT is the exact value, QAND attempts to find RESULT such that ABS(EXACT �
RESULT).LE.MAX(ERRABS, ERRREL * ABS(EXACT)). To specify only a relative error,
set ERRABS to zero. Similarly, to specify only an absolute error, set ERRREL to zero.

Description
The routine QAND approximates the n-dimensional iterated integral

� �
1

1
1 1, ,n

n

b b

n na a
f x x dx dx� �� � �

with the approximation returned in RESULT. An estimate of the error is returned in ERREST. The
approximation is achieved by iterated applications of product Gauss formulas. The integral is
first estimated by a two-point tensor product formula in each direction. Then for i = 1, �, n the

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 809

routine calculates a new estimate by doubling the number of points in the i-th direction, but
halving the number immediately afterwards if the new estimate does not change appreciably.
This process is repeated until either one complete sweep results in no increase in the number of
sample points in any dimension, or the number of Gauss points in one direction exceeds 256, or
the number of function evaluations needed to complete a sweep would exceed MAXFCN.

QMC
Integrates a function over a hyper rectangle using a quasi-Monte Carlo method.

Required Arguments
FCN — User-supplied function to be integrated. The form is FCN(X), where

 X - The independent variable. (Input)
FCN – The value of the integrand at X. (Output)

FCN must be declared EXTERNAL in the calling program.

A — Vector containing lower limits of integration. (Input)

B — Vector containing upper limits of integration. (Input)

RESULT — The value of

� �
1

1
1 1, ,n

n

b b

n na a
f x x dx dx� �� � �

is returned, where n is the dimension of X. If no value can be computed, then NaN is
returned. (Output)

Optional Arguments
ERRABS — Absolute accuracy desired. (Input)

Default: 1.0e-2.

ERRREL — Relative accuracy desired. (Input)
Default: 1.0e-2.

ERREST — Estimate of the absolute value of the error. (Output)

MAXEVALS — Number of evaluations allowed. (Input)
Default: No limit.

BASE — The base of the Faure sequence. (Input)
Default: The smallest prime number greater than or equal to the number of dimensions
(length of a and b).

810 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

SKIP — The number of points to be skipped at the beginning of the Faure sequence. (Input)
Default: basem/2 1� , where m � log / log B base and B is the largest representable
integer.

FORTRAN 90 Interface
Generic: CALL QMC (FCN, A, B, RESULT [,…])

Specific: The specific interface names are S_QMC and D_QMC.

Example
This example evaluates the n-dimensional integral

� �
1

1 1

0 0
1 1

1 11 1
3 2

niw
i

j n
i j

x dx dx
� �

� �� �
� � � � �� �	

� �� � �
��� �� �

with n=10.

 use qmc_int
 implicit none
 integer, parameter :: ndim=10
 real(kind(1d0)) :: a(ndim)
 real(kind(1d0)) :: b(ndim)
 real(kind(1d0)) :: result
 integer :: I
 external fcn

 a = 0.d0
 b = 1.d0

 call qmc(fcn, a, b, result)
 write (*,*) 'result = ', result
 end

 real(kind(1d0)) function fcn(x)
 implicit none
 real(kind(1d0)), dimension(:) :: x
 integer :: i, j
 real(kind(1d0)) :: prod, sum, sign

 sign = -1.d0
 sum = 0.d0
 do i=1, size(x)
 prod = 1.d0
 prod = product(x(1:i))
 sum = sum + (sign * prod)
 sign = -sign
 end do
 fcn = sum
 end function fcn

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 811

Output
 result = -0.3334789

Description
Integration of functions over hyper rectangle by direct methods, such as qand, is practical only
for fairly low dimensional hypercubes. This is because the amount of work required increases
exponentially as the dimension increases.

An alternative to direct methods is QMC, in which the integral is evaluated as the value of the
function averaged over a sequence of randomly chosen points. Under mild assumptions on the
function, this method will converge like

1/ k

 where k is the number of points at which the function is evaluated.

It is possible to improve on the performance of QMC by carefully choosing the points at which
the function is to be evaluated. Randomly distributed points tend to be non-uniformly
distributed. The alternative to a sequence of random points is a low-discrepancy sequence. A
low-discrepancy sequence is one that is highly uniform.

This function is based on the low-discrepancy Faure sequence as computed by faure_next,
see Stat Library, Chapter 18, Random Number Generation.

GQRUL
Computes a Gauss, Gauss-Radau, or Gauss-Lobatto quadrature rule with various classical weight
functions.

Required Arguments
N — Number of quadrature points. (Input)

QX — Array of length N containing quadrature points. (Output)

QW — Array of length N containing quadrature weights. (Output)

Optional Arguments
IWEIGH — Index of the weight function. (Input)

Default: IWEIGH = 1.

812 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

� �

� �

� �

� �

� �

� � � � � �

� �

� � � �

2

2

2

1 1 1, 1 Legendre

2 1/ 1 1, 1 Chebyshev 1st kind

3 1 1, 1 Chebyshev 2nd kind

4 , Hermite

5 1 1 1, 1 Jacobi

Generalized6 0, Laguerre

7 1/ cosh , COSH

X

X

X

X

e

X X

e X

X

� �

�

�

�

� �

� � �

� � �

�� ��

� � � �

��

�� ��

Interval NameIWEIGH WT X

ALPHA — Parameter used in the weight function with some values of IWEIGH, otherwise it
is ignored. (Input)
Default: ALPHA = 2.0.

BETAW — Parameter used in the weight function with some values of IWEIGH, otherwise it
is ignored. (Input)
Default: BETAW = 2.0.

NFIX — Number of fixed quadrature points. (Input)
NFIX = 0, 1 or 2. For the usual Gauss quadrature rules, NFIX = 0.
Default: NFIX = 0.

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset quadrature
point(s). (Input)

FORTRAN 90 Interface
Generic: CALL GQRUL (N, QX, QW [,…])

Specific: The specific interface names are S_GQRUL and D_GQRUL.

FORTRAN 77 Interface
Single: CALL GQRUL (N, IWEIGH, ALPHA, BETAW, NFIX, QXFIX, QX, QW)

Double: The double precision name is DGQRUL.

Example 1
In this example, we obtain the classical Gauss-Legendre quadrature formula, which is accurate
for polynomials of degree less than 2N, and apply this when N = 6 to the function x� on the
interval [�1, 1]. This quadrature rule is accurate for polynomials of degree less than 12.

 USE GQRUL_INT
 USE UMACH_INT

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 813

 PARAMETER (N=6)
 INTEGER I, NOUT
 REAL ANSWER, QW(N), QX(N), SUM
! Get output unit number
 CALL UMACH (2, NOUT)
!
! Get points and weights from GQRUL
 CALL GQRUL (N, QX, QW)
! Write results from GQRUL
 WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N)
99998 FORMAT (6(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/))
! Evaluate the integral from these
! points and weights
 SUM = 0.0
 DO 10 I=1, N
 SUM = SUM + QX(I)**8*QW(I)
 10 CONTINUE
 ANSWER = SUM
 WRITE (NOUT,99999) ANSWER
99999 FORMAT (/, ’ The quadrature result making use of these ’, &
 ’points and weights is ’, 1PE10.4, ’.’)
 END

Output
QX(1) = -0.9325 QW(1) = 0.17132
QX(2) = -0.6612 QW(2) = 0.36076
QX(3) = -0.2386 QW(3) = 0.46791
QX(4) = 0.2386 QW(4) = 0.46791
QX(5) = 0.6612 QW(5) = 0.36076
QX(6) = 0.9325 QW(6) = 0.17132

The quadrature result making use of these points and weights is 2.2222E-01.

Comments
1. Workspace may be explicitly provided, if desired, by use of G2RUL/DG2RUL. The

reference is

CALL G2RUL (N, IWEIGH, ALPHA, BETAW, NFIX, QXFIX, QX,
 QW, WK)

The additional argument is

WK — Work array of length N.

2. If IWEIGH specifies the weight WT(X) and the interval (a, b), then approximately

� � � � � �� � � �
1

*
Nb

a
I

F X WT X dX F QX I QW I
�

��� *

814 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

3. Gaussian quadrature is always the method of choice when the function F(X) behaves
like a polynomial. Gaussian quadrature is also useful on infinite intervals (with
appropriate weight functions), because other techniques often fail.

4. The weight function 1/cosh(X) behaves like a polynomial near zero and like e|X| far
from zero.

Description
The routine GQRUL produces the points and weights for the Gauss, Gauss-Radau, or Gauss-
Lobatto quadrature formulas for some of the most popular weights. In fact, it is slightly more
general than this suggests because the extra one or two points that may be specified do not have
to lie at the endpoints of the interval. This routine is a modification of the subroutine
GAUSSQUADRULE (Golub and Welsch 1969).

In the simple case when NFIX = 0, the routine returns points in x = QX and weights in w = QW so
that

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���

for all functions f that are polynomials of degree less than 2N.

If NFIX = 1, then one of the above xi equals the first component of QXFIX. Similarly, if NFIX =
2, then two of the components of x will equal the first two components of QXFIX. In general, the
accuracy of the above quadrature formula degrades when NFIX increases. The quadrature rule
will integrate all functions f that are polynomials of degree less than 2N � NFIX.

Additional Examples

Example 2
We modify Example 1 by requiring that both endpoints be included in the quadrature formulas
and again apply the new formulas to the function x� on the interval [�1, 1]. This quadrature rule
is accurate for polynomials of degree less than 10.

 USE GQRUL_INT

 USE UMACH_INT
 PARAMETER (N=6)
 INTEGER I, IWEIGH, NFIX, NOUT
 REAL ALPHA, ANSWER, BETAW, QW(N), QX(N), QXFIX(2), SUM
! Get output unit number
 CALL UMACH (2, NOUT)
!
 IWEIGH = 1
 ALPHA = 0.0
 BETAW = 0.0
 NFIX = 2
 QXFIX(1) = -1.0
 QXFIX(2) = 1.0
! Get points and weights from GQRUL

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 815

 CALL GQRUL (N, QX, QW, ALPHA=ALPHA, BETAW=BETAW, NFIX=NFIX, &
 QXFIX=QXFIX)
! Write results from GQRUL
 WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N)
99998 FORMAT (6(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/))
! Evaluate the integral from these
! points and weights
 SUM = 0.0
 DO 10 I=1, N
 SUM = SUM + QX(I)**8*QW(I)
 10 CONTINUE
 ANSWER = SUM
 WRITE (NOUT,99999) ANSWER
99999 FORMAT (/, ’ The quadrature result making use of these ’, &
 ’points and weights is ’, 1PE10.4, ’.’)
 END

Output
QX(1) = -1.0000 QW(1) = 0.06667
QX(2) = -0.7651 QW(2) = 0.37847
QX(3) = -0.2852 QW(3) = 0.55486
QX(4) = 0.2852 QW(4) = 0.55486
QX(5) = 0.7651 QW(5) = 0.37847
QX(6) = 1.0000 QW(6) = 0.06667

The quadrature result making use of these points and weights is 2.2222E-01.

GQRCF
Computes a Gauss, Gauss-Radau or Gauss-Lobatto quadrature rule given the recurrence
coefficients for the monic polynomials orthogonal with respect to the weight function.

Required Arguments
N — Number of quadrature points. (Input)

B — Array of length N containing the recurrence coefficients. (Input)
See Comments for definitions.

C — Array of length N containing the recurrence coefficients. (Input)
See Comments for definitions.

QX — Array of length N containing quadrature points. (Output)

QW — Array of length N containing quadrature weights. (Output)

816 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Optional Arguments
NFIX — Number of fixed quadrature points. (Input)

NFIX = 0, 1 or 2. For the usual Gauss quadrature rules NFIX = 0.
Default: NFIX = 0.

QXFIX — Array of length NFIX (ignored if NFIX = 0) containing the preset quadrature
point(s). (Input)

FORTRAN 90 Interface
Generic: CALL GQRCF (N, B, C, QX, QW [,…])

Specific: The specific interface names are S_GQRCF and D_GQRCF.

FORTRAN 77 Interface
Single: CALL GQRCF (N, B, C, NFIX, QXFIX, QX, QW)

Double: The double precision name is DGQRCF.

Example
We compute the Gauss quadrature rule (with N = 6) for the Chebyshev weight, (1 + x�)������,
from the recurrence coefficients. These coefficients are obtained by a call to the IMSL routine
RECCF (page 818).

 USE GQRCF_INT
 USE UMACH_INT
 USE RECCF_INT
 PARAMETER (N=6)
 INTEGER I, NFIX, NOUT
 REAL B(N), C(N), QW(N), QX(N), QXFIX(2)
! Get output unit number
 CALL UMACH (2, NOUT)
! Recursion coefficients will come from
! routine RECCF.
! The call to RECCF finds recurrence
! coefficients for Chebyshev
! polynomials of the 1st kind.
 CALL RECCF (N, B, C)
!
! The call to GQRCF will compute the
! quadrature rule from the recurrence
! coefficients determined above.
 CALL GQRCF (N, B, C, QX, QW)
 WRITE (NOUT,99999) (I,QX(I),I,QW(I),I=1,N)
99999 FORMAT (6(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/))
!
 END

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 817

Output
QX(1) = -0.9325 QW(1) = 0.17132
QX(2) = -0.6612 QW(2) = 0.36076
QX(3) = -0.2386 QW(3) = 0.46791
QX(4) = 0.2386 QW(4) = 0.46791
QX(5) = 0.6612 QW(5) = 0.36076
QX(6) = 0.9325 QW(6) = 0.17132

Comments
1. Workspace may be explicitly provided, if desired, by use of G2RCF/DG2RCF. The

reference is:

CALL G2RCF (N, B, C, NFIX, QXFIX, QX, QW, WK)

The additional argument is:

WK — Work array of length N.

2. Informational error

Type Code
 4 1 No convergence in 100 iterations.

3. The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation
P(I) = (X � B(I + 1)) * P(I � 1) � C(I + 1) * P(I � 2). C(1) contains the zero-th
moment

()WT X dX�

of the weight function. Each element of C must be greater than zero.

4. If WT(X) is the weight specified by the coefficients and the interval is (a, b), then
approximately

� � � � � �� � � �
1

* *
Nb

a
I

F X WT X dX F QX I QW I
�

���

5. Gaussian quadrature is always the method of choice when the function F(X) behaves
like a polynomial. Gaussian quadrature is also useful on infinite intervals (with
appropriate weight functions) because other techniques often fail.

Description
The routine GQRCF produces the points and weights for the Gauss, Gauss-Radau, or Gauss-
Lobatto quadrature formulas given the three-term recurrence relation for the orthogonal
polynomials. In particular, it is assumed that the orthogonal polynomials are monic, and hence,
the three-term recursion may be written as

� � � � � � � �1 2 for =1, ,i i i i ip x x b p x c p x i N
� �

� � � �

818 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

where p� = 1 and p�� = 0. It is obvious from this representation that the degree of pi is i and that
pi is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials
(with respect to a nonnegative measure), it is necessary and sufficient that ci > 0. This routine is
a modification of the subroutine GAUSSQUADRULE (Golub and Welsch 1969). In the simple case
when NFIX = 0, the routine returns points in x = QX and weights in w = QW so that

� � � � � �
1

Nb

i ia
i

f x w x dx f x w
�

���

for all functions f that are polynomials of degree less than 2N. Here, w is any weight function for
which the above recurrence produces the orthogonal polynomials pi on the interval [a, b] and w
is normalized by

� � 1

b

a
w x dx c��

If NFIX = 1, then one of the above xi equals the first component of QXFIX. Similarly, if NFIX =
2, then two of the components of x will equal the first two components of QXFIX. In general, the
accuracy of the above quadrature formula degrades when NFIX increases. The quadrature rule
will integrate all functions f that are polynomials of degree less than 2N � NFIX.

RECCF
Computes recurrence coefficients for various monic polynomials.

Required Arguments
N — Number of recurrence coefficients. (Input)

B — Array of length N containing recurrence coefficients. (Output)

C — Array of length N containing recurrence coefficients. (Output)

Optional Arguments
IWEIGH — Index of the weight function. (Input)

Default: IWEIGH = 1.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 819

� �

� �

� �

� �

� �

� � � � � �

� �

� � � �

2

2

2

1 1 1, 1 Legendre

2 1/ 1 1, 1 Chebyshev 1st kind

3 1 1, 1 Chebyshev 2nd kind

4 , Hermite

5 1 1 1, 1 Jacobi

Generalized6 0, Laguerre

7 1/ cosh , COSH

X

X

X

X

e

X X

e X

X

� �

�

�

�

� �

� � �

� � �

�� ��

� � � �

��

�� ��

Interval NameIWEIGH WT X

ALPHA — Parameter used in the weight function with some values of IWEIGH, otherwise it
is ignored. (Input)
Default: ALPHA=1.0.

BETAW — Parameter used in the weight function with some values of IWEIGH, otherwise it
is ignored. (Input)
Default: BETAW=1.0.

FORTRAN 90 Interface
Generic: CALL RECCF (N, B, C [,…])

Specific: The specific interface names are S_RECCF and D_RECCF.

FORTRAN 77 Interface
Single: CALL RECCF (N, IWEIGH, ALPHA, BETAW, B, C)

Double: The double precision name is DRECCF.

Example
Here, we obtain the well-known recurrence relations for the first six monic Legendre
polynomials, Chebyshev polynomials of the first kind, and Laguerre polynomials.

 USE RECCF_INT
 USE UMACH_INT
 PARAMETER (N=6)
 INTEGER I, IWEIGH, NOUT
 REAL ALPHA, B(N), C(N)
! Get output unit number
 CALL UMACH (2, NOUT)
!
 CALL RECCF (N, B, C)
 WRITE (NOUT,99996)
 WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N)

820 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

!
 IWEIGH = 2
 CALL RECCF (N, B, C, IWEIGH=IWEIGH)
 WRITE (NOUT,99997)
 WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N)
!
 IWEIGH = 6
 ALPHA = 0.0
 BETAW = 0.0
 CALL RECCF (N, B, C, IWEIGH=IWEIGH, ALPHA=ALPHA)
 WRITE (NOUT,99998)
 WRITE (NOUT,99999) (I,B(I),I,C(I),I=1,N)
!
99996 FORMAT (1X, ’Legendre’)
99997 FORMAT (/, 1X, ’Chebyshev, first kind’)
99998 FORMAT (/, 1X, ’Laguerre’)
99999 FORMAT (6(6X,’B(’,I1,’) = ’,F8.4,7X,’C(’,I1,’) = ’,F8.5,/))
 END

Output
Legendre
B(1) = 0.0000 C(1) = 2.00000
B(2) = 0.0000 C(2) = 0.33333
B(3) = 0.0000 C(3) = 0.26667
B(4) = 0.0000 C(4) = 0.25714
B(5) = 0.0000 C(5) = 0.25397
B(6) = 0.0000 C(6) = 0.25253

Chebyshev, first kind
B(1) = 0.0000 C(1) = 3.14159
B(2) = 0.0000 C(2) = 0.50000
B(3) = 0.0000 C(3) = 0.25000
B(4) = 0.0000 C(4) = 0.25000
B(5) = 0.0000 C(5) = 0.25000
B(6) = 0.0000 C(6) = 0.25000

Laguerre
B(1) = 1.0000 C(1) = 1.00000
B(2) = 3.0000 C(2) = 1.00000
B(3) = 5.0000 C(3) = 4.00000
B(4) = 7.0000 C(4) = 9.00000
B(5) = 9.0000 C(5) = 16.00000
B(6) = 11.0000 C(6) = 25.00000

Comments
The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation P(I) =
(X � B(I + 1)) * P(I � 1) � C(I + 1) * P(I � 2). The zero-th moment

� �()WT X dX�

of the weight function is returned in C(1).

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 821

Description
The routine RECCF produces the recurrence coefficients for the orthogonal polynomials for
some of the most important weights. It is assumed that the orthogonal polynomials are monic;
hence, the three-term recursion may be written as

� � � � � � � �1 2 for =1, , i i i i ip x x b p x c p x i N
� �

� � � �

where p� = 1 and p�� = 0. It is obvious from this representation that the degree of pi is i and that
pi is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials
(with respect to a nonnegative measure), it is necessary and sufficient that ci > 0.

RECQR
Computes recurrence coefficients for monic polynomials given a quadrature rule.

Required Arguments
QX — Array of length N containing the quadrature points. (Input)

QW — Array of length N containing the quadrature weights. (Input)

B — Array of length NTERM containing recurrence coefficients. (Output)

C — Array of length NTERM containing recurrence coefficients. (Output)

Optional Arguments
N — Number of quadrature points. (Input)

Default: N = size (QX,1).

NTERM — Number of recurrence coefficients. (Input)
NTERM must be less than or equal to N.
Default: NTERM = size (B,1).

FORTRAN 90 Interface
Generic: CALL RECQR (QX, QW, B, C [,…])

Specific: The specific interface names are S_RECQR and D_RECQR.

FORTRAN 77 Interface
Single: CALL RECQR (N, QX, QW, NTERM, B, C)

Double: The double precision name is DRECQR.

822 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Example
To illustrate the use of RECQR, we will input a simple choice of recurrence coefficients, call
GQRCF for the quadrature formula, put this information into RECQR, and recover the recurrence
coefficients.

 USE RECQR_INT
 USE UMACH_INT
 USE GQRCF_INT
 PARAMETER (N=5)
 INTEGER I, J, NFIX, NOUT, NTERM
 REAL B(N), C(N), FLOAT, QW(N), QX(N), QXFIX(2)
 INTRINSIC FLOAT
! Get output unit number
 CALL UMACH (2, NOUT)
 NFIX = 0
! Set arrays B and C of recurrence
! coefficients
 DO 10 J=1, N
 B(J) = FLOAT(J)
 C(J) = FLOAT(J)/2.0
 10 CONTINUE
 WRITE (NOUT,99995)
99995 FORMAT (1X, ’Original recurrence coefficients’)
 WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N)
99996 FORMAT (5(6X,’B(’,I1,’) = ’,F8.4,7X,’C(’,I1,’) = ’,F8.5,/))
!
! The call to GQRCF will compute the
! quadrature rule from the recurrence
! coefficients given above.
!
 CALL GQRCF (N, B, C, QX, QW)
 WRITE (NOUT,99997)
99997 FORMAT (/, 1X, ’Quadrature rule from the recurrence coefficients’ &
)
 WRITE (NOUT,99998) (I,QX(I),I,QW(I),I=1,N)
99998 FORMAT (5(6X,’QX(’,I1,’) = ’,F8.4,7X,’QW(’,I1,’) = ’,F8.5,/))
!
! Call RECQR to recover the original
! recurrence coefficients
 NTERM = N
 CALL RECQR (QX, QW, B, C)
 WRITE (NOUT,99999)
99999 FORMAT (/, 1X, ’Recurrence coefficients determined by RECQR’)
 WRITE (NOUT,99996) (I,B(I),I,C(I),I=1,N)
!
 END

Output
Original recurrence coefficients
B(1) = 1.0000 C(1) = 0.50000
B(2) = 2.0000 C(2) = 1.00000
B(3) = 3.0000 C(3) = 1.50000
B(4) = 4.0000 C(4) = 2.00000
B(5) = 5.0000 C(5) = 2.50000

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 823

Quadrature rule from the recurrence coefficients
QX(1) = 0.1525 QW(1) = 0.25328
QX(2) = 1.4237 QW(2) = 0.17172
QX(3) = 2.7211 QW(3) = 0.06698
QX(4) = 4.2856 QW(4) = 0.00790
QX(5) = 6.4171 QW(5) = 0.00012

Recurrence coefficients determined by RECQR
B(1) = 1.0000 C(1) = 0.50000
B(2) = 2.0000 C(2) = 1.00000
B(3) = 3.0000 C(3) = 1.50000
B(4) = 4.0000 C(4) = 2.00000
B(5) = 5.0000 C(5) = 2.50000

Comments
1. Workspace may be explicitly provided, if desired, by use of R2CQR/DR2CQR. The

reference is:

CALL R2CQR (N, QX, QW, NTERM, B, C, WK)

The additional argument is:

WKWK — Work array of length 2 * N.

2. The recurrence coefficients B(I) and C(I) define the monic polynomials via the relation
P(I) = (X � B(I + 1)) * P(I � 1) � C(I + 1) * P(I � 2). The zero-th moment

� �()WT X dX�

of the weight function is returned in C(1).

Description
The routine RECQR produces the recurrence coefficients for the orthogonal polynomials given
the points and weights for the Gauss quadrature formula. It is assumed that the orthogonal
polynomials are monic; hence the three-term recursion may be written

� � � � � � � �1 2 for =1, , i i i i ip x x b p x c p x i N
� �

� � � �

where p� = 1 and p�� = 0. It is obvious from this representation that the degree of pi is i and that
pi is monic. In order for the recurrence to give rise to a sequence of orthogonal polynomials
(with respect to a nonnegative measure), it is necessary and sufficient that ci > 0.

This routine is an inverse routine to GQRCF (page 815). Given the recurrence coefficients, the
routine GQRCF produces the corresponding Gauss quadrature formula, whereas the routine
RECQR produces the recurrence coefficients given the quadrature formula.

824 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

FQRUL
Computes a Fejér quadrature rule with various classical weight functions.

Required Arguments
N — Number of quadrature points. (Input)

A — Lower limit of integration. (Input)

B — Upper limit of integration. (Input)
B must be greater than A.

QX — Array of length N containing quadrature points. (Output)

QW — Array of length N containing quadrature weights. (Output)

Optional Arguments
IWEIGH — Index of the weight function. (Input)

Default: IWEIGH = 1.

 IWEIGH WT(X)

 1 1

 2 1/(X � ALPHA)

 3 (B � X)��(X � A)�

 4 (B � X)��(X � A)��log(X � A)

 5 (B � X)��(X � A)��log(B � X)

ALPHA — Parameter used in the weight function (except if IWEIGH = 1, it is ignored).
(Input)
If IWEIGH = 2, then it must satisfy A.LT.ALPHA.LT.B. If IWEIGH = 3, 4, or 5, then
ALPHA must be greater than �1.
Default: ALPHA= 0.0.

BETAW — Parameter used in the weight function (ignored if IWEIGH = 1 or 2). (Input)
BETAW must be greater than �1.0.
Default: BETAW= 0.0.

FORTRAN 90 Interface
Generic: CALL FQRUL (N, A, B, QX, QW [,…])

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 825

Specific: The specific interface names are S_FQRUL and D_FQRUL.

FORTRAN 77 Interface
Single: CALL FQRUL (N, A, B, IWEIGH, ALPHA, BETAW, QX, QW)

Double: The double precision name is DFQRUL.

Example
Here, we obtain the Fejér quadrature rules using 10, 100, and 200 points. With these rules, we
get successively better approximations to the integral

� �
1 2

0

1sin 41
41

x x dx�

�

��

 USE FQRUL_INT
 USE UMACH_INT
 USE CONST_INT
 PARAMETER (NMAX=200)
 INTEGER I, K, N, NOUT
 REAL A, ANSWER, B, F, QW(NMAX), &
 QX(NMAX), SIN, SUM, X, PI, ERROR
 INTRINSIC SIN, ABS
!
 F(X) = X*SIN(41.0*PI*X**2)
! Get output unit number
 CALL UMACH (2, NOUT)
!
 PI = CONST(’PI’)
 DO 20 K=1, 3
 IF (K .EQ. 1) N = 10
 IF (K .EQ. 2) N = 100
 IF (K .EQ. 3) N = 200
 A = 0.0
 B = 1.0

! Get points and weights from FQRUL
 CALL FQRUL (N, A, B, QX, QW)
! Evaluate the integral from these
! points and weights
 SUM = 0.0
 DO 10 I=1, N
 SUM = SUM + F(QX(I))*QW(I)
 10 CONTINUE
 ANSWER = SUM
 ERROR = ABS(ANSWER - 1.0/(41.0*PI))
 WRITE (NOUT,99999) N, ANSWER, ERROR
 20 CONTINUE
!
99999 FORMAT (/, 1X, ’When N = ’, I3, ’, the quadrature result making ’ &
 , ’use of these points ’, /, ’ and weights is ’, 1PE11.4, &
 ’, with error ’, 1PE9.2, ’.’)

826 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

 END

Output
When N = 10, the quadrature result making use of these points and weights
is -1.6523E-01, with error 1.73E-01.

When N = 100, the quadrature result making use of these points and weights
is 7.7637E-03, with error 2.79E-08.

When N = 200, the quadrature result making use of these points and weights
is 7.7636E-03, with error 1.40E-08.

Comments
1. Workspace may be explicitly provided, if desired, by use of F2RUL/DF2RUL. The

reference is:

CALL F2RUL (N, A, B, IWEIGH, ALPHA, BETAW, QX, QW, WK)

The additional argument is:

WK — Work array of length 3 * N + 15.

2. If IWEIGH specifies the weight WT(X) and the interval (A, B), then approximately

� � � � � �� � � �
1

* *
NB

A
I

F X WT X dX F QX I QW I
�

���

3. The routine FQRUL uses an FFT, so it is most efficient when N is the product of small
primes.

Description
The routine FQRUL produces the weights and points for the Fejér quadrature rule. Since this
computation is based on a quarter-wave cosine transform, the computations are most efficient
when N, the number of points, is a product of small primes. These quadrature formulas may be
an intermediate step in a more complicated situation, see for instance Gautschi and Milovanofic
(1985).

The Fejér quadrature rules are based on polynomial interpolation. First, choose classical
abscissas (in our case, the Gauss points for the Chebyshev weight function (1 � x�)����), then
derive the quadrature rule for a different weight. In order to keep the presentation simple, we
will describe the case where the interval of integration is [�1, 1] even though FQRUL allows
rescaling to an arbitrary interval [a, b].

We are looking for quadrature rules of the form

� � � �
1

:
N

j j
j

Q f w f x
�

��

where the

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 827

1{ }N
j jx

�

are the zeros of the N-th Chebyshev polynomial (of the first kind) TN (x) = cos(N arccos x). The
weights in the quadrature rule Q are chosen so that, for all polynomials p of degree less than N,

� � � � � � � �
1

1
1

N

j j
j

Q p w p x p x w x dx
�

�

� �� �

for some weight function w. In FQRUL, the user has the option of choosing w from five families
of functions with various algebraic and logarithmic endpoint singularities.

These Fejér rules are important because they can be computed using specialized FFT quarter-
wave transform routines. This means that rules with a large number of abscissas may be
computed efficiently. If we insert Tl for p in the above formula, we obtain

� � � � � � � �
1

1
1

N

l j l j l
j

Q T w T x T x w x dx
�

�

� �� �

for l = 0, �, N � 1. This is a system of linear equations for the unknown weights wj that can be
simplified by noting that

� �2 1
cos 1, ,

2j

j
x j N

N
��

� � �

and hence,

� � � � � �

� �

1

1
1

1

2 1
cos

2

N

l j l j
j

N

j
j

T x w x dx w T x

l j
w

N
�

�

�

�

�

�

�

��

�

The last expression is the cosine quarter-wave forward transform for the sequence

1{ }N
j jw

�

that is implemented in Chapter 6, Transforms under the name QCOSF. More importantly, QCOSF
has an inverse QCOSB. It follows that if the integrals on the left in the last expression can be
computed, then the Fejér rule can be derived efficiently for highly composite integers N utilizing
QCOSB. For more information on this topic, consult Davis and Rabinowitz (1984, pages 84�86)
and Gautschi (1968, page 259).

DERIV
This function computes the first, second or third derivative of a user-supplied function.

828 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Function Return Value
DERIV — Estimate of the first (KORDER = 1), second (KORDER = 2) or third (KORDER = 3)

derivative of FCN at X. (Output)

Required Arguments
FCN — User-supplied FUNCTION whose derivative at X will be computed. The

form is FCN(X), where
 X – Independent variable. (Input)
 FCN – The function value. (Output)
FCN must be declared EXTERNAL in the calling program.

X — Point at which the derivative is to be evaluated. (Input)

Optional Arguments
KORDER — Order of the derivative desired (1, 2 or 3). (Input)

Default: KORDER = 1.

BGSTEP — Beginning value used to compute the size of the interval used in computing the
derivative. (Input)
The interval used is the closed interval (X � 4 * BGSTEP, X + 4 * BGSTEP). BGSTEP
must be positive.
Default: BGSTEP = .01.

TOL — Relative error desired in the derivative estimate. (Input)
Default: TOL = 1.e-2 for single precision and 1.d-4 for double precision.

FORTRAN 90 Interface
Generic: DERIV (FCN, X [,…])

Specific: The specific interface names are S_DERIV and D_DERIV.

FORTRAN 77 Interface
Single: DERIV (FCN, KORDER, X, BGSTEP, TOL)

Double: The double precision function name is DDERIV.

Example 1
In this example, we obtain the approximate first derivative of the function

f(x) = �2 sin(3x/2)

at the point x = 2.

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 829

 USE DERIV_INT
 USE UMACH_INT
 INTEGER KORDER, NCOUNT, NOUT
 REAL BGSTEP, DERV, TOL, X
 EXTERNAL FCN
! Get output unit number
 CALL UMACH (2, NOUT)
!
 X = 2.0
 BGSTEP = 0.2
 NCOUNT = 1
 DERV = DERIV(FCN,X, BGSTEP=BGSTEP)
 WRITE (NOUT,99999) DERV
99999 FORMAT (/, 1X, ’First derivative of FCN is ’, 1PE10.3)
 END
!
 REAL FUNCTION FCN (X)
 REAL X
 REAL SIN
 INTRINSIC SIN
 FCN = -2.0*SIN(1.5*X)
 RETURN
 END

Output
First derivative of FCN is 2.970E+00

Comments
1. Informational errors

Type Code
 3 2 Roundoff error became dominant before estimates converged.

Increase precision and/or increase BGSTEP.
 4 1 Unable to achieve desired tolerance in derivative estimation. Increase

precision, increase TOL and/or change BGSTEP. If this error
continues, the function may not have a derivative at X.

2. Convergence is assumed when

2 D2 D1 TOL
3
� � �

for two successive derivative estimates D1 and D2.

3. The initial step size, BGSTEP, must be chosen small enough that FCN is defined and
reasonably smooth in the interval (X � 4 * BGSTEP, X + 4 * BGSTEP), yet large enough
to avoid roundoff problems.

830 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

Description
DERIV produces an estimate to the first, second, or third derivative of a function. The estimate
originates from first computing a spline interpolant to the input function using values within the
interval (X � 4.0 * BGSTEP, X + 4.0 * BGSTEP), then differentiating the spline at X.

Additional Example

Example 2
In this example, we attempt to approximate in single precision the third derivative of the
function

f(x) = 2x� + 3x

at the point x = 0.75. Although the function is well-behaved near x = 0.75, finding derivatives is
often computationally difficult on 32-bit machines. The difficulty is overcome in double
precision.

 USE IMSL_LIBRARIES
 INTEGER KORDER, NOUT
 REAL BGSTEP, DERV, X
 DOUBLE PRECISION DBGSTE, DDERV, DFCN, DTOL, DX
 EXTERNAL DFCN, FCN
! Get output unit number
 CALL UMACH (2, NOUT)
! Turn off stopping due to error
! condition
 CALL ERSET (0, -1, 0)
!
 X = 0.75
 BGSTEP = 0.1
 KORDER = 3
! In single precision, on a 32-bit
! machine, the following attempt
! produces an error message
 DERV = DERIV(FCN, X, KORDER, BGSTEP,TOL)
! In double precision, we get good
! results
 DX = 0.75D0
 DBGSTE = 0.1D0
 DTOL = 0.01D0
 KORDER = 3
 DDERV = DERIV(DFCN, DX,KORDER, DBGSTE, DTOL)
 WRITE (NOUT,99999) DDERV
99999 FORMAT (/, 1X, ’The third derivative of DFCN is ’, 1PD10.4)
 END
!
 REAL FUNCTION FCN (X)
 REAL X
 FCN = 2.0*X**4 + 3.0*X
 RETURN
 END
!
 DOUBLE PRECISION FUNCTION DFCN (X)

IMSL MATH/LIBRARY Chapter 4: Integration and Differentiation � 831

 DOUBLE PRECISION X
 DFCN = 2.0D0*X**4 + 3.0D0*X
 RETURN
 END

Output
*** FATAL ERROR 1 from DERIV. Unable to achieve desired tolerance.
*** Increase precision, increase TOL = 1.000000E-02 and/or change
*** BGSTEP = 1.000000E-01. If this error continues the function
*** may not have a derivative at X = 7.500000E-01

The third derivative of DFCN is 3.6000D+01

832 � Chapter 4: Integration and Differentiation IMSL MATH/LIBRARY

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-1

Appendix A: GAMS Index

Description
This index lists routines in MATH/LIBRARY by a tree-structured classification scheme known as
GAMS Version 2.0 (Boisvert, Howe, Kahaner, and Springmann (1990). Only the GAMS classes
that contain MATH/LIBRARY routines are included in the index. The page number for the
documentation and the purpose of the routine appear alongside the routine name.

The first level of the full classification scheme contains the following major subject areas:

A. Arithmetic, Error Analysis
B. Number Theory
C. Elementary and Special Functions
D. Linear Algebra
E. Interpolation
F. Solution of Nonlinear Equations
G. Optimization
H. Differentiation and Integration
I. Differential and Integral Equations
J. Integral Transforms
K. Approximation
L. Statistics, Probability
M. Simulation, Stochastic Modeling
N. Data Handling
O. Symbolic Computation
P. Computational Geometry
Q. Graphics
R. Service Routines
S. Software Development Tools
Z. Other

There are seven levels in the classification scheme. Classes in the first level are identified by a
capital letter as is given above. Classes in the remaining levels are identified by alternating letter-
and-number combinations. A single letter (a-z) is used with the odd-numbered levels. A number
(1�26) is used within the even-numbered levels.

A-2 � Appendix A: GAMS Index IMSL MATH/LIBRARY

IMSL MATH/LIBRARY
A...........ARITHMETIC, ERROR ANALYSIS

A3.........Real

A3cExtended precision
DQADD Adds a double-precision scalar to the accumulator in

extended precision.
DQINI Initializes an extended-precision accumulator with a

double-precision scalar.
DQMUL Multiplies double-precision scalars in extended precision.
DQSTO Stores a double-precision approximation to an extended-

precision scalar.

A4.........Complex

A4cExtended precision
ZQADD Adds a double complex scalar to the accumulator in

extended precision.
ZQINI Initializes an extended-precision complex accumulator to a

double complex scalar.
ZQMUL Multiplies double complex scalars using extended

precision.
ZQSTO Stores a double complex approximation to an extended-

precision complex scalar.

A6.........Change of representation

A6cDecomposition, construction
PRIME Decomposes an integer into its prime factors.

B...........NUMBER THEORY
PRIME Decomposes an integer into its prime factors.

C...........ELEMENTARY AND SPECIAL FUNCTIONS

C2.........Powers, roots, reciprocals

HYPOT Computes a without underflow or overflow. b2
�

2

C19.......Other special functions
CONST Returns the value of various mathematical and physical

constants.
CUNIT Converts X in units XUNITS to Y in units YUNITS.

D...........LINEAR ALGEBRA

D1.........Elementary vector and matrix operations

D1a.......Elementary vector operations

D1a1.....Set to constant
CSET Sets the components of a vector to a scalar, all complex.
ISET Sets the components of a vector to a scalar, all integer.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-3

SSET Sets the components of a vector to a scalar, all single
precision.

D1a2.....Minimum and maximum components
ICAMAX Finds the smallest index of the component of a complex

vector having maximum magnitude.
ICAMIN Finds the smallest index of the component of a complex

vector having minimum magnitude.
IIMAX Finds the smallest index of the maximum component of a

integer vector.
IIMIN Finds the smallest index of the minimum of an integer

vector.
ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value.
ISAMIN Finds the smallest index of the component of a single-

precision vector having minimum absolute value.
ISMAX Finds the smallest index of the component of a single-

precision vector having maximum value.
ISMIN Finds the smallest index of the component of a single-

precision vector having minimum value.

D1a3.....Norm

D1a3a ...L� (sum of magnitudes)
DISL1 Computes the 1-norm distance between two points.
SASUM Sums the absolute values of the components of a single-

precision vector.
SCASUM Sums the absolute values of the real part together with the

absolute values of the imaginary part of the components of
a complex vector.

D1a3b...L� (Euclidean norm)
DISL2 Computes the Euclidean (2-norm) distance between two

points.
NORM2,CNORM2 Computes the Euclidean length of a vector or matrix,

avoiding out-of-scale intermediate subexpressions.
MNORM2,CMNORM2 Computes the Euclidean length of a vector or matrix,

avoiding out-of-scale intermediate subexpressions
NRM2, CNRM2 Computes the Euclidean length of a vector or matrix,

avoiding out-of-scale intermediate subexpressions.
SCNRM2 Computes the Euclidean norm of a complex vector.
SNRM2 Computes the Euclidean length or L� norm of a single-

precision vector.

D1a3c ...L� (maximum magnitude)
DISLI Computes the infinity norm distance between two points.
ICAMAX Finds the smallest index of the component of a complex

vector having maximum magnitude.
ISAMAX Finds the smallest index of the component of a single-

precision vector having maximum absolute value.

A-4 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D1a4.....Dot product (inner product)
CDOTC Computes the complex conjugate dot product, x . yT

CDOTU Computes the complex dot product xTy.
CZCDOT Computes the sum of a complex scalar plus a complex

conjugate dot product, a x , using a double-precision
accumulator.

yT
�

CZDOTA Computes the sum of a complex scalar, a complex dot
product and the double-complex accumulator, which is set
to the result ACC � ACC + a + xTy.

CZDOTC Computes the complex conjugate dot product, x , using
a double-precision accumulator.

yT

CZDOTI Computes the sum of a complex scalar plus a complex dot
product using a double-complex accumulator, which is set
to the result ACC � a + xTy.

CZDOTU Computes the complex dot product xTy using a double-
precision accumulator.

CZUDOT Computes the sum of a complex scalar plus a complex dot
product, a + xTy, using a double-precision accumulator.

DSDOT Computes the single-precision dot product xTy using a
double precision accumulator.

SDDOTA Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision
accumulator, which is set to the result
ACC � ACC + a + xTy.

SDDOTI Computes the sum of a single-precision scalar plus a
singleprecision dot product using a double-precision
accumulator, which is set to the result ACC � a + xTy.

SDOT Computes the single-precision dot product xTy.
SDSDOT Computes the sum of a single-precision scalar and a single

precision dot product, a + xTy, using a double-precision
accumulator.

D1a5.....Copy or exchange (swap)
CCOPY Copies a vector x to a vector y, both complex.
CSWAP Interchanges vectors x and y, both complex.
ICOPY Copies a vector x to a vector y, both integer.
ISWAP Interchanges vectors x and y, both integer.
SCOPY Copies a vector x to a vector y, both single precision.
SSWAP Interchanges vectors x and y, both single precision.

D1a6.....Multiplication by scalar
CSCAL Multiplies a vector by a scalar, y � ay, both complex.
CSSCAL Multiplies a complex vector by a single-precision scalar,

y � ay.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-5

CSVCAL Multiplies a complex vector by a single-precision scalar
and store the result in another complex vector, y � ax.

CVCAL Multiplies a vector by a scalar and store the result in
another vector, y � ax, all complex.

SSCAL Multiplies a vector by a scalar, y � ay, both single
precision.

SVCAL Multiplies a vector by a scalar and store the result in
another vector, y � ax, all single precision.

D1a7.....Triad (ax + y for vectors x, y and scalar a)
CAXPY Computes the scalar times a vector plus a vector,

y � ax + y, all complex.
SAXPY Computes the scalar times a vector plus a vector,

y � ax + y, all single precision.

D1a8.....Elementary rotation (Givens transformation) (search also class D1b10)
CSROT Applies a complex Givens plane rotation.
CSROTM Applies a complex modified Givens plane rotation.
SROT Applies a Givens plane rotation in single precision.
SROTM Applies a modified Givens plane rotation in single

precision.

D1a10...Convolutions
RCONV Computes the convolution of two real vectors.
VCONC Computes the convolution of two complex vectors.
VCONR Computes the convolution of two real vectors.

D1a11...Other vector operations
CADD Adds a scalar to each component of a vector, x � x + a, all

complex.
CSUB Subtracts each component of a vector from a scalar,

x � a � x, all complex.
DISL1 Computes the 1-norm distance between two points.
DISL2 Computes the Euclidean (2-norm) distance between two

points.
DISLI Computes the infinity norm distance between two points.
IADD Adds a scalar to each component of a vector, x � x + a, all

integer.
ISUB Subtracts each component of a vector from a scalar,

x � a � x, all integer.
ISUM Sums the values of an integer vector.
SADD Adds a scalar to each component of a vector, x � x + a, all

single precision.
SHPROD Computes the Hadamard product of two single-precision

vectors.
SPRDCT Multiplies the components of a single-precision vector.
SSUB Subtracts each component of a vector from a scalar,

x � a � x, all single precision.
SSUM Sums the values of a single-precision vector.
SXYZ Computes a single-precision xyz product.

A-6 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D1b.......Elementary matrix operations
CGERC Computes the rank-one update of a complex general

matrix:
A A xy T
� �� .

CGERU Computes the rank-one update of a complex general
matrix:

. A A xyT
� ��

CHER Computes the rank-one update of an Hermitian matrix:
A A xx T
� �� with x complex and � real.

CHER2 Computes a rank-two update of an Hermitian matrix:
A A xy yxT T
� � �� � .

CHER2K Computes one of the Hermitian rank 2k operations:
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� ,

where C is an n by n Hermitian matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

CHERK Computes one of the Hermitian rank k operations:
C AA C C A AT T
� � � �� � � or C�

C�

C�

,
where C is an n by n Hermitian matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

CSYR2K Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or

CSYRK Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

CTBSV Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x ,

where A is a triangular matrix in band storage mode.
CTRSM Solves one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e j or

�1 ,

where A is a triangular matrix.
CTRSV Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x ,

where A is a triangular matrix.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-7

HRRRR Computes the Hadamard product of two real rectangular
matrices.

SGER Computes the rank-one update of a real general matrix:
. A A xyT

� ��

SSYR Computes the rank-one update of a real symmetric matrix:
A A xxT
� �� .

SSYR2 Computes the rank-two update of a real symmetric matrix:
. A A xy yxT T

� � �� �

SSYR2K Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

�1

x

SSYRK Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

STBSV Solves one of the triangular systems:

,

where A is a triangular matrix in band storage mode.

x A x x A
T

� �
� �1 1 or e j

STRSM Solves one of the matrix equations:

where B is an m by n matrix and A is a triangular matrix.

B A B B BA B A B B B A
T T

� � � �
� � �

� � � �
1 1 1, , ,e j e jor

STRSV Solves one of the triangular linear systems:

,

where A is a triangular matrix.

x A x x A
T

� �
� �1 1 or e j

D1b2.....Norm
NR1CB Computes the 1-norm of a complex band matrix in band

storage mode.
NR1RB Computes the 1-norm of a real band matrix in band storage

mode.
NR1RR Computes the 1-norm of a real matrix.
NR2RR Computes the Frobenius norm of a real rectangular matrix.
NRIRR Computes the infinity norm of a real matrix.

D1b3.....Transpose
TRNRR Transposes a rectangular matrix.

D1b4 Multiplication by vector
BLINF Computes the bilinear form xTAy.
CGBMV Computes one of the matrix-vector operations:

y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y ,

where A is a matrix stored in band storage mode.

A-8 � Appendix A: GAMS Index IMSL MATH/LIBRARY

CGEMV Computes one of the matrix-vector operations:
y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y

y

y

,
CHBMV Computes the matrix-vector operation

,
where A is an Hermitian band matrix in band Hermitian
storage.

y Ax� �� �

CHEMV Computes the matrix-vector operation
,

where A is an Hermitian matrix.
y Ax� �� �

CTBMV Computes one of the matrix-vector operations:
x Ax x A x x AT T
� � �, , or x ,

where A is a triangular matrix in band storage mode.
CTRMV Computes one of the matrix-vector operations:

x Ax x A x x AT T
� � �, , or x

y

y

y

y

x

x

,
where A is a triangular matrix.

MUCBV Multiplies a complex band matrix in band storage mode by
a complex vector.

MUCRV Multiplies a complex rectangular matrix by a complex
vector.

MURBV Multiplies a real band matrix in band storage mode by a
real vector.

MURRV Multiplies a real rectangular matrix by a vector.
SGBMV Computes one of the matrix-vector operations:

,
where A is a matrix stored in band storage mode.
y Ax y y A xT
� � � �� � � �, or

SGEMV Computes one of the matrix-vector operations:
, y Ax y y A xT

� � � �� � � �, or
SSBMV Computes the matrix-vector operation

,
where A is a symmetric matrix in band symmetric storage
mode.

y Ax� �� �

SSYMV Computes the matrix-vector operation
,

where A is a symmetric matrix.
y Ax� �� �

STBMV Computes one of the matrix-vector operations:

where A is a triangular matrix in band storage mode.
x Ax x AT
� �or ,

STRMV Computes one of the matrix-vector operations:

where A is a triangular matrix.
x Ax x AT
� �or ,

D1b5.....Addition, subtraction
ACBCB Adds two complex band matrices, both in band storage

mode.
ARBRB Adds two band matrices, both in band storage mode.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-9

D1b6.....Multiplication
CGEMM Computes one of the matrix-matrix operations:

C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or

 or

,

C

C

CHEMM Computes one of the matrix-matrix operations:
,

where A is an Hermitian matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

CSYMM Computes one of the matrix-matrix operations:
,

where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

CTRMM Computes one of the matrix-matrix operations:
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or

,

C

where B is an m by n matrix and A is a triangular matrix.
MCRCR Multiplies two complex rectangular matrices, AB.
MRRRR Multiplies two real rectangular matrices, AB.
MXTXF Computes the transpose product of a matrix, ATA.
MXTYF Multiplies the transpose of matrix A by matrix B, ATB.
MXYTF Multiplies a matrix A by the transpose of a matrix B, ABT.
SGEMM Compute one of the matrix-matrix operations:

.
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or
SSYMM Computes one of the matrix-matrix operations:

,
where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

STRMM Computes one of the matrix-matrix operations:
,

where B is an m by n matrix and A is a triangular matrix.
B AB B A B B BA B BAT T
� � � �� � � �, , or

D1b7.....Matrix polynomial
POLRG 1207 Evaluates a real general matrix polynomial.

D1b8.....Copy
CCBCB Copies a complex band matrix stored in complex band

storage mode.
CCGCG Copies a complex general matrix.
CRBRB Copies a real band matrix stored in band storage mode.
CRGRG Copies a real general matrix.

A-10 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D1b9.....Storage mode conversion
CCBCG Converts a complex matrix in band storage mode to a

complex matrix in full storage mode.
CCGCB Converts a complex general matrix to a matrix in complex

band storage mode.
CHBCB Copies a complex Hermitian band matrix stored in band

Hermitian storage mode to a complex band matrix stored
in band storage mode.

CHFCG Extends a complex Hermitian matrix defined in its upper
triangle to its lower triangle.

CRBCB Converts a real matrix in band storage mode to a complex
matrix in band storage mode.

CRBRG Converts a real matrix in band storage mode to a real
general matrix.

CRGCG Copies a real general matrix to a complex general matrix.
CRGRB Converts a real general matrix to a matrix in band storage

mode.
CRRCR Copies a real rectangular matrix to a complex rectangular

matrix.
CSBRB Copies a real symmetric band matrix stored in band

symmetric storage mode to a real band matrix stored in
band storage mode.

CSFRG Extends a real symmetric matrix defined in its upper
triangle to its lower triangle.

D1b10...Elementary rotation (Givens transformation) (search also class D1a8)
SROTG Constructs a Givens plane rotation in single precision.
SROTMG Constructs a modified Givens plane rotation in single

precision.

D2.........Solution of systems of linear equations (including inversion, LU and
related decompositions)

D2a.......Real nonsymmetric matrices
LSLTO Solves a real Toeplitz linear system.

D2a1.....General
LFCRG Computes the LU factorization of a real general matrix and

estimate its L� condition number.
LFIRG Uses iterative refinement to improve the solution of a real

general system of linear equations.
LFSRG Solves a real general system of linear equations given the

LU factorization of the coefficient matrix.
LFTRG Computes the LU factorization of a real general matrix.
LINRG Computes the inverse of a real general matrix.
LSARG Solves a real general system of linear equations with

iterative refinement.
LSLRG Solves a real general system of linear equations without

iterative refinement.
LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using

optional arguments, any of several related computations

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-11

x

B1 ,

can be performed. These extra tasks include computing the
LU factorization of A using partial pivoting, representing
the determinant of A, computing the inverse matrix A-1,
and solving ATx = b or Ax = b given the LU factorization
of A.

D2a2.....Banded
LFCRB Computes the LU factorization of a real matrix in band

storage mode and estimate its L� condition number.
LFIRB Uses iterative refinement to improve the solution of a real

system of linear equations in band storage mode.
LFSRB Solves a real system of linear equations given the LU

factorization of the coefficient matrix in band storage
mode.

LFTRB Computes the LU factorization of a real matrix in band
storage mode.

LSARB Solves a real system of linear equations in band storage
mode with iterative refinement.

LSLRB Solves a real system of linear equations in band storage
mode without iterative refinement.

STBSV Solves one of the triangular systems:

,

where A is a triangular matrix in band storage mode.

x A x x A
T

� �
� �1 1 or e j

D2a2a ...Tridiagonal
LSLCR Computes the LDU factorization of a real tridiagonal

matrix A using a cyclic reduction algorithm.
LSLTR Solves a real tridiagonal system of linear equations.

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1,
�, k. Each matrix Aj is tridiagonal with the same
dimension, n: The default solution method is based on LU
factorization computed using cyclic reduction. An option
is used to select Gaussian elimination with partial pivoting.

TRI_SOLVE A real, tri-diagonal, multiple system solver. Uses both
cyclic reduction and Gauss elimination. Similar in function
to lin_sol_tri.

D2a3.....Triangular
LFCRT Estimates the condition number of a real triangular matrix.
LINRT Computes the inverse of a real triangular matrix.
LSLRT Solves a real triangular system of linear equations.
STRSM Solves one of the matrix equations:

where B is an m by n matrix and A is a triangular matrix.

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor

A-12 � Appendix A: GAMS Index IMSL MATH/LIBRARY

x

STRSV Solves one of the triangular linear systems:

where A is a triangular matrix.

x A x x A
T

� �
� �1 1 or e j

D2a4.....Sparse
LFSXG Solves a sparse system of linear equations given the LU

factorization of the coefficient matrix.
LFTXG Computes the LU factorization of a real general sparse

matrix.
LSLXG Solves a sparse system of linear algebraic equations by

Gaussian elimination.
GMRES Uses restarted GMRES with reverse communication to

generate an approximate solution of Ax = b.

D2b.......Real symmetric matrices

D2b1.....General

D2b1a. ..Indefinite
LCHRG Computes the Cholesky decomposition of a symmetric

positive semidefinite matrix with optional column
pivoting.

LFCSF Computes the U DUT factorization of a real symmetric
matrix and estimate its L� condition number.

LFISF Uses iterative refinement to improve the solution of a real
symmetric system of linear equations.

LFSSF Solves a real symmetric system of linear equations given
the U DUT factorization of the coefficient matrix.

LFTSF Computes the U DUT factorization of a real symmetric
matrix.

LSASF Solves a real symmetric system of linear equations with
iterative refinement.

LSLSF Solves a real symmetric system of linear equations without
iterative refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a
self-adjoint matrix. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using symmetric pivoting, representing the
determinant of A, computing the inverse matrix A-1, or
computing the solution of Ax = b given the factorization of
A. An optional argument is provided indicating that A is
positive definite so that the Cholesky decomposition can
be used.

D2b1b...Positive definite
LCHRG Computes the Cholesky decomposition of a symmetric

positive semidefinite matrix with optional column
pivoting.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-13

LFCDS Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix and estimate its
L�condition number.

LFIDS Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations.

LFSDS Solves a real symmetric positive definite system of linear
equations given the RT R Choleksy factorization of the
coefficient matrix.

LFTDS Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix.

LINDS Computes the inverse of a real symmetric positive definite
matrix.

LSADS Solves a real symmetric positive definite system of linear
equations with iterative refinement.

LSLDS Solves a real symmetric positive definite system of linear
equations without iterative refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a
self-adjoint matrix. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using symmetric pivoting, representing the
determinant of A, computing the inverse matrix A-1, or
computing the solution of Ax = b given the factorization of
A. An optional argument is provided indicating that A is
positive definite so that the Cholesky decomposition can
be used.

D2b2.....Positive definite banded
LFCQS Computes the RT R Cholesky factorization of a real

symmetric positive definite matrix in band symmetric
storage mode and estimate its L� condition number.

LFDQS Computes the determinant of a real symmetric positive
definite matrix given the RT R Cholesky factorization of
the band symmetric storage mode.

LFIQS Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations in
band symmetric storage mode.

LFSQS Solves a real symmetric positive definite system of linear
equations given the factorization of the coefficient matrix
in band symmetric storage mode.

LFTQS Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode.

LSAQS Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode with iterative
refinement.

A-14 � Appendix A: GAMS Index IMSL MATH/LIBRARY

LSLPB Computes the RT DR Cholesky factorization of a real
symmetric positive definite matrix A in codiagonal band
symmetric storage mode. Solve a system Ax = b.

LSLQS Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode without
iterative refinement.

D2b4.....Sparse
JCGRC Solves a real symmetric definite linear system using the

Jacobi preconditioned conjugate gradient method with
reverse communication.

LFSXD Solves a real sparse symmetric positive definite system of
linear equations, given the Cholesky factorization of the
coefficient matrix.

LNFXD Computes the numerical Cholesky factorization of a sparse
symmetrical matrix A.

LSCXD Performs the symbolic Cholesky factorization for a sparse
symmetric matrix using a minimum degree ordering or a
userspecified ordering, and set up the data structure for the
numerical Cholesky factorization.

LSLXD Solves a sparse system of symmetric positive definite
linear algebraic equations by Gaussian elimination.

PCGRC Solves a real symmetric definite linear system using a
preconditioned conjugate gradient method with reverse
communication.

D2c.Complex non-Hermitian matrices
LSLCC Solves a complex circulant linear system.
LSLTC Solves a complex Toeplitz linear system.

D2c1.....General
LFCCG Computes the LU factorization of a complex general

matrix and estimate its L� condition number.
LFICG Uses iterative refinement to improve the solution of a

complex general system of linear equations.
LFSCG Solves a complex general system of linear equations given

the LU factorization of the coefficient matrix.
LFTCG Computes the LU factorization of a complex general

matrix.
LINCG Computes the inverse of a complex general matrix.
LSACG Solves a complex general system of linear equations with

iterative refinement.
LSLCG Solves a complex general system of linear equations

without iterative refinement.
LIN_SOL_GEN Solves a general system of linear equations Ax = b. Using

optional arguments, any of several related computations
can be performed. These extra tasks include computing the
LU factorization of A using partial pivoting, representing
the determinant of A, computing the inverse matrix A-1,

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-15

and solving ATx = b or Ax = b given the LU factorization
of A.

D2c2.....Banded
CTBSV Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
 , or e j e j, ,x

where A is a triangular matrix in band storage mode.
LFCCB Computes the LU factorization of a complex matrix in

band storage mode and estimate its L� condition number.
LFICB Uses iterative refinement to improve the solution of a

complex system of linear equations in band storage mode.
LFSCB Solves a complex system of linear equations given the LU

factorization of the coefficient matrix in band storage
mode.

LFTCB Computes the LU factorization of a complex matrix in
band storage mode.

LSACB Solves a complex system of linear equations in band
storage mode with iterative refinement.

LSLCB Solves a complex system of linear equations in band
storage mode without iterative refinement.

D2c2a ...Tridiagonal
LSLCQ Computes the LDU factorization of a complex tridiagonal

matrix A using a cyclic reduction algorithm.
LSLTQ Solves a complex tridiagonal system of linear equations.

LIN_SOL_TRI Solves multiple systems of linear equations Ajxj = yj, j = 1,
�, k. Each matrix Aj is tridiagonal with the same
dimension, n: The default solution method is based on LU
factorization computed using cyclic reduction. An option
is used to select Gaussian elimination with partial pivoting.

D2c3.....Triangular
CTRSM Solves one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor

�1 ,

where A is a traiangular matrix.
CTRSV Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
 , or e j e j, x

where A is a triangular matrix.
LFCCT Estimates the condition number of a complex triangular

matrix.
LINCT Computes the inverse of a complex triangular matrix.
LSLCT Solves a complex triangular system of linear equations.

A-16 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D2c4.....Sparse
LFSZG Solves a complex sparse system of linear equations given

the LU factorization of the coefficient matrix.
LFTZG Computes the LU factorization of a complex general

sparse matrix.
LSLZG Solves a complex sparse system of linear equations by

Gaussian elimination.

D2d.......Complex Hermitian matrices

D2d1.....General

D2d1a. ..Indefinite
LFCHF Computes the U DUH factorization of a complex

Hermitian matrix and estimate its L� condition number.
LFDHF Computes the determinant of a complex Hermitian matrix

given the U DUH factorization of the matrix.
LFIHF Uses iterative refinement to improve the solution of a

complex Hermitian system of linear equations.
LFSHF Solves a complex Hermitian system of linear equations

given the U DUH factorization of the coefficient matrix.
LFTHF Computes the U DUH factorization of a complex

Hermitian matrix.
LSAHF Solves a complex Hermitian system of linear equations

with iterative refinement.
LSLHF Solves a complex Hermitian system of linear equations

without iterative refinement.
LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a

self-adjoint matrix. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using symmetric pivoting, representing the
determinant of A, computing the inverse matrix A-1, or
computing the solution of Ax = b given the factorization of
A. An optional argument is provided indicating that A is
positive definite so that the Cholesky decomposition can
be used.

D2d1b...Positive definite
LFCDH Computes the RH R factorization of a complex Hermitian

positive definite matrix and estimate its L� condition
number.

LFIDH Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations.

LFSDH Solves a complex Hermitian positive definite system of
linear equations given the RH R factorization of the
coefficient matrix.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-17

LFTDH Computes the RH R factorization of a complex Hermitian
positive definite matrix.

LSADH Solves a Hermitian positive definite system of linear
equations with iterative refinement.

LSLDH Solves a complex Hermitian positive definite system of
linear equations without iterative refinement.

LIN_SOL_SELF Solves a system of linear equations Ax = b, where A is a
self-adjoint matrix. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using symmetric pivoting, representing the
determinant of A, computing the inverse matrix A-1, or
computing the solution of Ax = b given the factorization of
A. An optional argument is provided indicating that A is
positive definite so that the Cholesky decomposition can
be used.

D2d2.....Positive definite banded
LFCQH Computes the RH R factorization of a complex Hermitian

positive definite matrix in band Hermitian storage mode
and estimate its L� condition number.

LFIQH Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations in band Hermitian storage mode.

LFSQH Solves a complex Hermitian positive definite system of
linear equations given the factorization of the coefficient
matrix in band Hermitian storage mode.

LFTQH Computes the RH R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode.

LSAQH Solves a complex Hermitian positive definite system of
linear equations in band Hermitian storage mode with
iterative refinement.

LSLQB Computes the RH DR Cholesky factorization of a complex
hermitian positive-definite matrix A in codiagonal band
hermitian storage mode. Solve a system Ax = b.

LSLQH Solves a complex Hermitian positive definite system of
linearequations in band Hermitian storage mode without
iterative refinement.

D2d4.....Sparse
LFSZD Solves a complex sparse Hermitian positive definite

system of linear equations, given the Cholesky
factorization of the coefficient matrix.

LNFZD Computes the numerical Cholesky factorization of a sparse
Hermitian matrix A.

LSLZD Solves a complex sparse Hermitian positive definite
system of linear equations by Gaussian elimination.

D3.........Determinants

A-18 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D3a.Real nonsymmetric matrices

D3a1.....General
LFDRG Computes the determinant of a real general matrix given

the LU factorization of the matrix.

D3a2.....Banded
LFDRB Computes the determinant of a real matrix in band storage

mode given the LU factorization of the matrix.

D3a3.....Triangular
LFDRT Computes the determinant of a real triangular matrix.

D3b.......Real symmetric matrices

D3b1.....General

D3b1a. ..Indefinite
LFDSF Computes the determinant of a real symmetric matrix

given the U DUT factorization of the matrix.

D3b1b...Positive definite
LFDDS Computes the determinant of a real symmetric positive

definite matrix given the RH R Cholesky factorization of
the matrix.

D3c.Complex non-Hermitian matrices

D3c1.....General
LFDCG Computes the determinant of a complex general matrix

given the LU factorization of the matrix.

D3c2.....Banded
LFDCB Computes the determinant of a complex matrix given the

LU factorization of the matrix in band storage mode.

D3c3.....Triangular
LFDCT Computes the determinant of a complex triangular matrix.

D3d.......Complex Hermitian matrices

D3d1.....General

D3d1b...Positive definite
LFDDH Computes the determinant of a complex Hermitian positive

definite matrix given the RH R Cholesky factorization of
the matrix.

D3d2.....Positive definite banded
LFDQH Computes the determinant of a complex Hermitian positive

definite matrix given the RH R Cholesky factorization in
band Hermitian storage mode.

D4.........Eigenvalues, eigenvectors

D4a.Ordinary eigenvalue problems (Ax = �x)

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-19

D4a1.....Real symmetric
EVASF Computes the largest or smallest eigenvalues of a real

symmetric matrix.
EVBSF Computes selected eigenvalues of a real symmetric matrix.
EVCSF Computes all of the eigenvalues and eigenvectors of a real

symmetric matrix.
EVESF Computes the largest or smallest eigenvalues and the

corresponding eigenvectors of a real symmetric matrix.
EVFSF Computes selected eigenvalues and eigenvectors of a real

symmetric matrix.
EVLSF Computes all of the eigenvalues of a real symmetric

matrix.
LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A.

Optionally, the eigenvectors can be computed. This gives
the decomposition A = VDVT, where V is an n � n
orthogonal matrix and D is a real diagonal matrix.

D4a2.....Real nonsymmetric
EVCRG Computes all of the eigenvalues and eigenvectors of a real

matrix.
EVLRG Computes all of the eigenvalues of a real matrix.

LIN_EIG_GEN Computes the eigenvalues of an n � n matrix, A.
Optionally, the eigenvectors of A or AT are computed.
Using the eigenvectors of A gives the decomposition
AV = VE, where V is an n � n complex matrix of
eigenvectors, and E is the complex diagonal matrix of
eigenvalues. Other options include the reduction of A to
upper triangular or Schur form, reduction to block upper
triangular form with 2 � 2 or unit sized diagonal block
matrices, and reduction to upper Hessenberg form.

D4a3.....Complex Hermitian
EVAHF Computes the largest or smallest eigenvalues of a complex

Hermitian matrix.
EVBHF Computes the eigenvalues in a given range of a complex

Hermitian matrix.
EVCHF Computes all of the eigenvalues and eigenvectors of a

complex Hermitian matrix.
EVEHF Computes the largest or smallest eigenvalues and the

corresponding eigenvectors of a complex Hermitian
matrix.

EVFHF Computes the eigenvalues in a given range and the
corresponding eigenvectors of a complex Hermitian
matrix.

EVLHF Computes all of the eigenvalues of a complex Hermitian
matrix.

LIN_EIG_SELF Computes the eigenvalues of a self-adjoint matrix, A.
Optionally, the eigenvectors can be computed. This gives

A-20 � Appendix A: GAMS Index IMSL MATH/LIBRARY

the decomposition A = VDVT, where V is an n � n
orthogonal matrix and D is a real diagonal matrix.

D4a4.....Complex non-Hermitian
EVCCG Computes all of the eigenvalues and eigenvectors of a

complex matrix.
EVLCG Computes all of the eigenvalues of a complex matrix.

LIN_EIG_GEN Computes the eigenvalues of an n � n matrix, A.
Optionally, the eigenvectors of A or AT are computed.
Using the eigenvectors of A gives the decomposition
AV = VE, where V is an n � n complex matrix of
eigenvectors, and E is the complex diagonal matrix of
eigenvalues. Other options include the reduction of A to
upper triangular or Schur form, reduction to block upper
triangular form with 2 � 2 or unit sized diagonal block
matrices, and reduction to upper Hessenberg form.

D4a6.....Banded
EVASB Computes the largest or smallest eigenvalues of a real

symmetric matrix in band symmetric storage mode.
EVBSB Computes the eigenvalues in a given interval of a real

symmetric matrix stored in band symmetric storage mode.
EVCSB Computes all of the eigenvalues and eigenvectors of a real

symmetric matrix in band symmetric storage mode.
EVESB Computes the largest or smallest eigenvalues and the

corresponding eigenvectors of a real symmetric matrix in
band symmetric storage mode.

EVFSB Computes the eigenvalues in a given interval and the
corresponding eigenvectors of a real symmetric matrix
stored in band symmetric storage mode.

EVLSB Computes all of the eigenvalues of a real symmetric matrix
in band symmetric storage mode.

D4b.......Generalized eigenvalue problems (e.g., Ax = �Bx)

D4b1.....Real symmetric
GVCSP Computes all of the eigenvalues and eigenvectors of the

generalized real symmetric eigenvalue problem Az = �Bz,
with B symmetric positive definite.

GVLSP Computes all of the eigenvalues of the generalized real
symmetric eigenvalue problem Az = �Bz, with B
symmetric positive definite.

LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix
pencil, Av � �Bv. Optionally, the generalized eigenvectors
are computed. If either of A or B is nonsingular, there are
diagonal matrices � and � and a complex matrix V
computed such that AV� = BV�.

D4b2.....Real general

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-21

GVCRG Computes all of the eigenvalues and eigenvectors of a
generalized real eigensystem Az = �Bz.

GVLRG Computes all of the eigenvalues of a generalized real
eigensystem Az = �Bz.

LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix
pencil, Av � �Bv. Optionally, the generalized eigenvectors
are computed. If either of A or B is nonsingular, there are
diagonal matrices � and � and a complex matrix V
computed such that AV� = BV�.

D4b4.....Complex general
GVCCG Computes all of the eigenvalues and eigenvectors of a

generalized complex eigensystem Az = �Bz.
GVLCG Computes all of the eigenvalues of a generalized complex

eigensystem Az = �Bz.
LIN_GEIG_GEN Computes the generalized eigenvalues of an n � n matrix

pencil, Av � �Bv. Optionally, the generalized eigenvectors
are computed. If either of A or B is nonsingular, there are
diagonal matrices � and � and a complex matrix V
computed such that AV� = BV�.

D4c.......Associated operations
BALANC, CBSLANC Balances a general matrix before computing the

eigenvalue-eigenvector decomposition.
EPICG Computes the performance index for a complex

eigensystem.
EPIHF Computes the performance index for a complex Hermitian

eigensystem.
EPIRG Computes the performance index for a real eigensystem.
EPISB Computes the performance index for a real symmetric

eigensystem in band symmetric storage mode.
EPISF Computes the performance index for a real symmetric

eigensystem.
GPICG Computes the performance index for a generalized

complex eigensystem Az = �Bz.
GPIRG Computes the performance index for a generalized real

eigensystem Az = �Bz.
GPISP Computes the performance index for a generalized real

symmetric eigensystem problem.
PERFECT_SHIFT Computes eigenvectors using actual eigenvalue as an

explicit shift. Called by lin_eig_self.
PWK A rational QR algorithm for computing eigenvalues of

real, symmetric tri-diagonal matrices. Called by lin_svd
and lin_eig_self.

D4c2.....Compute eigenvalues of matrix in compact form

D4c2b...Hessenberg
EVCCH Computes all of the eigenvalues and eigenvectors of a

complex upper Hessenberg matrix.

A-22 � Appendix A: GAMS Index IMSL MATH/LIBRARY

EVCRH Computes all of the eigenvalues and eigenvectors of a real
upper Hessenberg matrix.

EVLCH Computes all of the eigenvalues of a complex upper
Hessenberg matrix.

EVLRH Computes all of the eigenvalues of a real upper
Hessenberg matrix.

D5.........QR decomposition, Gram-Schmidt orthogonalization
LQERR Accumulates the orthogonal matrix Q from its factored

form given the QR factorization of a rectangular matrix A.
LQRRR Computes the QR decomposition, AP = QR, using

Householder transformations.
LQRSL Computes the coordinate transformation, projection, and

complete the solution of the least-squares problem Ax = b.
LSBRR Solves a linear least-squares problem with iterative

refinement.
LSQRR Solves a linear least-squares problem without iterative

refinement.

D6.........Singular value decomposition
LSVCR Computes the singular value decomposition of a complex

matrix.
LSVRR Computes the singular value decomposition of a real

matrix.
LIN_SOL_SVD Solves a rectangular least-squares system of linear

equations Ax � b using singular value decomposition,
A = USVT. Using optional arguments, any of several
related computations can be performed. These extra tasks
include computing the rank of A, the orthogonal m � m and
n � n matrices U and V, and the m � n diagonal matrix of
singular values, S.

LIN_SVD Computes the singular value decomposition (SVD) of a
rectangular matrix, A. This gives the decomposition
A = USVT, where V is an n � n orthogonal matrix, U is an
m � m orthogonal matrix, and S is a real, rectangular
diagonal matrix.

D7.........Update matrix decompositions

D7b.......Cholesky
LDNCH Downdates the RTR Cholesky factorization of a real

symmetric positive definite matrix after a rank-one matrix
is removed.

LUPCH Updates the RTR Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix
is added.

D7c.QR

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-23

LUPQR Computes an updated QR factorization after the rank-one
matrix �xyT is added.

D9.........Singular, overdetermined or underdetermined systems of linear
equations, generalized inverses

D9a.......Unconstrained

D9a1.....Least squares (L�) solution
BAND_
ACCUMALATION Accumulatez and solves banded least-squares problem
 using Householder transformations.
BAND_SOLVE Accumulatez and solves banded least-squares problem
 using Householder transformations.
HOUSE_HOLDER Accumulates and solves banded least-squares problem
 using Householder transformations.

LQRRR Computes the QR decomposition, AP = QR, using

Householder transformations.
LQRRV Computes the least-squares solution using Householder

transformations applied in blocked form.
LQRSL Computes the coordinate transformation, projection, and

complete the solution of the least-squares problem Ax = b.
LSBRR Solves a linear least-squares problem with iterative

refinement.
LSQRR Solves a linear least-squares problem without iterative

refinement.
LIN_SOL_LSQ Solves a rectangular system of linear equations Ax � b, in a

least-squares sense. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using column and row pivoting, representing the
determinant of A, computing the generalized inverse
matrix A†, or computing the least-squares solution of
Ax � b or ATy � d given the factorization of A. An optional
argument is provided for computing the following
unscaled covariance matrix: C = (ATA)-1.

LIN_SOL_SVD Solves a rectangular least-squares system of linear
equations Ax � b using singular value decomposition,
A = USVT. Using optional arguments, any of several
related computations can be performed. These extra tasks
include computing the rank of A, the orthogonal m � m and
n � n matrices U and V, and the m � n diagonal matrix of
singular values, S.

D9b.......Constrained

D9b1.....Least squares (L�) solution
LCLSQ Solves a linear least-squares problem with linear

constraints.

A-24 � Appendix A: GAMS Index IMSL MATH/LIBRARY

D9c.Generalized inverses
LSGRR Computes the generalized inverse of a real matrix.

LIN_SOL_LSQ Solves a rectangular system of linear equations Ax � b, in a
least-squares sense. Using optional arguments, any of
several related computations can be performed. These
extra tasks include computing and saving the factorization
of A using column and row pivoting, representing the
determinant of A, computing the generalized inverse
matrix A†, or computing the least-squares solution of
Ax � b or ATy � d given the factorization of A. An optional
argument is provided for computing the following
unscaled covariance matrix: C = (ATA)-1.

EINTERPOLATION

E1Univariate data (curve fitting)

E1aPolynomial splines (piecewise polynomials)
BSINT Computes the spline interpolant, returning the B-spline

coefficients.
CSAKM Computes the Akima cubic spline interpolant.
CSCON Computes a cubic spline interpolant that is consistent with

the concavity of the data.
CSDEC Computes the cubic spline interpolant with specified

derivative endpoint conditions.
CSHER Computes the Hermite cubic spline interpolant.
CSIEZ Computes the cubic spline interpolant with the ‘not-a-knot’

condition and return values of the interpolant at specified
points.

CSINT Computes the cubic spline interpolant with the ‘not-a-knot’
condition.

CSPER Computes the cubic spline interpolant with periodic
boundary conditions.

QDVAL Evaluates a function defined on a set of points using
quadratic interpolation.

SPLEZ Computes the values of a spline that either interpolates or
fits user-supplied data.

SPLINE_FITTING Solves constrained least-squares fitting of one-dimensional
data by B-splines.

SPlINE_SUPPORT B-spline function and derivative evaluation package.

E2Multivariate data (surface fitting)

E2aGridded
BS2IN Computes a two-dimensional tensor-product spline

interpolant, returning the tensor-product B-spline
coefficients.

BS3IN Computes a three-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-25

QD2DR Evaluates the derivative of a function defined on a
rectangular grid using quadratic interpolation.

QD2VL Evaluates a function defined on a rectangular grid using
quadratic interpolation.

QD3DR Evaluates the derivative of a function defined on a
rectangular three-dimensional grid using quadratic
interpolation.

QD3VL Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation.

SURFACE_FITTING Solves constrained least-squares fitting of two-dimensional
data by tensor products of B-splines.

E2bScattered
SURF Computes a smooth bivariate interpolant to scattered data

that is locally a quintic polynomial in two variables.
SURFACE_FAIRING Constrained weighted least-squares fitting of tensor

product B-splines to discrete data, with covariance matrix
and constraints at points.

E3Service routines for interpolation

E3aEvaluation of fitted functions, including quadrature

E3a1Function evaluation
BS1GD Evaluates the derivative of a spline on a grid, given its B-

spline representation.
BS2DR Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline
representation.

BS2GD Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS2VL Evaluates a two-dimensional tensor-product spline, given
its tensor-product B-spline representation.

BS3GD Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS3VL Evaluates a three-dimensional tensor-product spline, given
its tensor-product B-spline representation.

BSVAL Evaluates a spline, given its B-spline representation.
CSVAL Evaluates a cubic spline.
PPVAL Evaluates a piecewise polynomial.
QDDER Evaluates the derivative of a function defined on a set of

points using quadratic interpolation.

E3a2Derivative evaluation
BS1GD Evaluates the derivative of a spline on a grid, given its B-

spline representation.
BS2DR Evaluates the derivative of a two-dimensional tensor-

product spline, given its tensor-product B-spline
representation.

A-26 � Appendix A: GAMS Index IMSL MATH/LIBRARY

BS2GD Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS3DR Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation.

BS3GD Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BSDER Evaluates the derivative of a spline, given its B-spline
representation.

CS1GD Evaluates the derivative of a cubic spline on a grid.
CSDER Evaluates the derivative of a cubic spline.
PP1GD Evaluates the derivative of a piecewise polynomial on a

grid.
PPDER Evaluates the derivative of a piecewise polynomial.
QDDER Evaluates the derivative of a function defined on a set of

points using quadratic interpolation.

E3a3Quadrature
BS2IG Evaluates the integral of a tensor-product spline on a

rectangular domain, given its tensor-product B-spline
representation.

BS3IG Evaluates the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

BSITG Evaluates the integral of a spline, given its B-spline
representation.

CSITG Evaluates the integral of a cubic spline.

E3bGrid or knot generation
BSNAK Computes the ‘not-a-knot’ spline knot sequence.
BSOPK Computes the ‘optimal’ spline knot sequence.

E3cManipulation of basis functions (e.g., evaluation, change of basis)
BSCPP Converts a spline in B-spline representation to piecewise

polynomial representation.

FSOLUTION OF NONLINEAR EQUATIONS

F1Single equation

F1a........Polynomial

F1a1......Real coefficients
ZPLRC Finds the zeros of a polynomial with real coefficients using

Laguerre’s method.
ZPORC Finds the zeros of a polynomial with real coefficients using

the Jenkins-Traub three-stage algorithm.

F1a2......Complex coefficients
ZPOCC Finds the zeros of a polynomial with complex coefficients

using the Jenkins-Traub three-stage algorithm.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-27

F1bNonpolynomial
ZANLY Finds the zeros of a univariate complex function using

Müller’s method.
ZBREN Finds a zero of a real function that changes sign in a given

interval.
ZREAL Finds the real zeros of a real function using Müller’s

method.

F2System of equations
NEQBF Solves a system of nonlinear equations using factored

secant update with a finite-difference approximation to the
Jacobian.

NEQBJ Solves a system of nonlinear equations using factored
secant update with a user-supplied Jacobian.

NEQNF Solves a system of nonlinear equations using a modified
Powell hybrid algorithm and a finite-difference
approximation to the Jacobian.

NEQNJ Solves a system of nonlinear equations using a modified
Powell hybrid algorithm with a user-supplied Jacobian.

G...........OPTIMIZATION (search also classes K, L8)

G1.........Unconstrained

G1a.......Univariate

G1a1.....Smooth function

G1a1a. ..User provides no derivatives
UVMIF Finds the minimum point of a smooth function of a single

variable using only function evaluations.

G1a1b...User provides first derivatives
UVMID Finds the minimum point of a smooth function of a single

variable using both function evaluations and first
derivative evaluations.

G1a2.....General function (no smoothness assumed)
UVMGS Finds the minimum point of a nonsmooth function of a

single variable.

G1b.......Multivariate

G1b1.....Smooth function

G1b1a...User provides no derivatives
UMCGF Minimizes a function of N variables using a conjugate

gradient algorithm and a finite-difference gradient.
UMINF Minimizes a function of N variables using a quasi-New

method and a finite-difference gradient.
UNLSF Solves a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

G1b1b...User provides first derivatives

A-28 � Appendix A: GAMS Index IMSL MATH/LIBRARY

UMCGG Minimizes a function of N variables using a conjugate
gradient algorithm and a user-supplied gradient.

UMIDH Minimizes a function of N variables using a modified
Newton method and a finite-difference Hessian.

UMING Minimizes a function of N variables using a quasi-New
method and a user-supplied gradient.

UNLSJ Solves a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

G1b1c. ..User provides first and second derivatives
UMIAH Minimizes a function of N variables using a modified

Newton method and a user-supplied Hessian.

G1b2.....General function (no smoothness assumed)
UMPOL Minimizes a function of N variables using a direct search

polytope algorithm.

G2.........Constrained

G2a.Linear programming

G2a1.....Dense matrix of constraints
DLPRS Solves a linear programming problem via the revised

simplex algorithm.

G2a2.....Sparse matrix of constraints
SLPRS Solves a sparse linear programming problem via the

revised simplex algorithm.

G2e.Quadratic programming

G2e1.....Positive definite Hessian (i.e., convex problem)
QPROG Solves a quadratic programming problem subject to linear

equality/inequality constraints.

G2h.......General nonlinear programming

G2h1.....Simple bounds

G2h1a. ..Smooth function

G2h1a1 .User provides no derivatives
BCLSF Solves a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a finite-difference Jacobian.

BCONF Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a finite-
difference gradient.

G2h1a2 .User provides first derivatives
BCLSJ Solves a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-29

BCODH Minimizes a function of N variables subject to bounds the
variables using a modified Newton method and a finite-
difference Hessian.

BCONG Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a user-
supplied gradient.

G2h1a3.User provides first and second derivatives
BCOAH Minimizes a function of N variables subject to bounds the

variables using a modified Newton method and a user-
supplied Hessian.

G2h1b...General function (no smoothness assumed)
BCPOL Minimizes a function of N variables subject to bounds the

variables using a direct search complex algorithm.

G2h2.....Linear equality or inequality constraints

G2h2a...Smooth function

G2h2a1.User provides no derivatives
LCONF Minimizes a general objective function subject to linear

equality/inequality constraints.

G2h2a2.User provides first derivatives
LCONG Minimizes a general objective function subject to linear

equality/inequality constraints.

G2h3.....Nonlinear constraints

G2h3b...Equality and inequality constraints
NNLPG Uses a sequential equality constrained QP method.
NNLPF Uses a sequential equality constrained QP method.

G2h3b1.Smooth function and constraints

G2h3b1a. User provides no derivatives

G2h3b1b User provides first derivatives of function and constraints

G4.........Service routines

G4c.......Check user-supplied derivatives
CHGRD Checks a user-supplied gradient of a function.
CHHES Checks a user-supplied Hessian of an analytic function.
CHJAC Checks a user-supplied Jacobian of a system of equations

with M functions in N unknowns.

G4d.......Find feasible point
GGUES Generates points in an N-dimensional space.

G4fOther
CDGRD Approximates the gradient using central differences.
FDGRD Approximates the gradient using forward differences.

A-30 � Appendix A: GAMS Index IMSL MATH/LIBRARY

FDHES Approximates the Hessian using forward differences and
function values.

FDJAC Approximates the Jacobian of M functions in N unknowns
using forward differences.

GDHES Approximates the Hessian using forward differences and a
user-supplied gradient.

H...........DIFFERENTIATION, INTEGRATION

H1.........Numerical differentiation
DERIV Computes the first, second or third derivative of a user-

supplied function.

H2.........Quadrature (numerical evaluation of definite integrals)

H2a.One-dimensional integrals

H2a1.....Finite interval (general integrand)

H2a1a ...Integrand available via user-defined procedure

H2a1a1. Automatic (user need only specify required accuracy)
QDAG Integrates a function using a globally adaptive scheme

based on Gauss-Kronrod rules.
QDAGS Integrates a function (which may have endpoint

singularities).
QDNG Integrates a smooth function using a nonadaptive rule.

H2a2.....Finite interval (specific or special type integrand including weight
functions, oscillating and singular integrands, principal value integrals,
splines, etc.)

H2a2a ...Integrand available via user-defined procedure

H2a2a1 .Automatic (user need only specify required accuracy)
QDAGP Integrates a function with singularity points given.
QDAWC Integrates a function F(X)/(X � C) in the Cauchy principal

value sense.
QDAWO Integrates a function containing a sine or a cosine.
QDAWS Integrates a function with algebraic-logarithmic

singularities.

H2a2b...Integrand available only on grid

H2a2b1.Automatic (user need only specify required accuracy)
BSITG Evaluates the integral of a spline, given its B-spline

representation.

H2a3.....Semi-infinite interval (including e�x weight function)

H2a3a. ..Integrand available via user-defined procedure

H2a3a1. Automatic (user need only specify required accuracy)
QDAGI Integrates a function over an infinite or semi-infinite

interval.
QDAWF Computes a Fourier integral.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-31

H2b.......Multidimensional integrals

H2b1.....One or more hyper-rectangular regions (including iterated integrals)
QMC Integrates a function over a hyperrectangle using a

quasi-Monte Carlo method.

H2b1a... Integrand available via user-defined procedure

H2b1a1.Automatic (user need only specify required accuracy)
QAND Integrates a function on a hyper-rectangle.
TWODQ Computes a two-dimensional iterated integral.

H2b1b... Integrand available only on grid

H2b1b2.Nonautomatic
BS2IG Evaluates the integral of a tensor-product spline on a

rectangular domain, given its tensor-product B-spline
representation.

BS3IG Evaluates the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

H2c.......Service routines (compute weight and nodes for quadrature formulas)
FQRUL Computes a Fejér quadrature rule with various classical

weight functions.
GQRCF Computes a Gauss, Gauss-Radau or Gauss-Lobatto

quadrature rule given the recurrence coefficients for the
monic polynomials orthogonal with respect to the weight
function.

GQRUL Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

RECCF Computes recurrence coefficients for various monic
polynomials.

RECQR Computes recurrence coefficients for monic polynomials
given a quadrature rule.

IDIFFERENTIAL AND INTEGRAL EQUATIONS

I1Ordinary differential equations (ODE’s)

I1a. Initial value problems

I1a1General, nonstiff or mildly stiff

I1a1a.....One-step methods (e.g., Runge-Kutta)
IVMRK Solves an initial-value problem y� = f(t, y) for ordinary

differential equations using Runge-Kutta pairs of various
orders.

IVPRK Solves an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

I1a1b. ...Multistep methods (e.g., Adams predictor-corrector)

A-32 � Appendix A: GAMS Index IMSL MATH/LIBRARY

IVPAG Solves an initial-value problem for ordinary differential
equations using either Adams-Moulton’s or Gear’s BDF
method.

I1a2Stiff and mixed algebraic-differential equations
DASPG Solves a first order differential-algebraic system of

equations, g(t, y, y�) = 0, using Petzold�Gear BDF method.

I1bMultipoint boundary value problems

I1b2Nonlinear
BVPFD Solves a (parameterized) system of differential equations

with boundary conditions at two points, using a variable
order, variable step size finite-difference method with
deferred corrections.

BVPMS Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a multiple-
shooting method.

I1b3Eigenvalue (e.g., Sturm-Liouville)
SLCNT Calculates the indices of eigenvalues of a Sturm-Liouville

problem with boundary conditions (at regular points) in a
specified subinterval of the real line, [�, �].

SLEIG Determines eigenvalues, eigenfunctions and/or spectral
density functions for Sturm-Liouville problems in the form
with boundary conditions (at regular points).

I2Partial differential equations

I2a.Initial boundary value problems

I2a1Parabolic
PDE_1D_MG Integrates an initial-value PDE

 problem with one space variable.

I2a1a.....One spatial dimension
MOLCH Solves a system of partial differential equations of the

form ut = f(x, t, u, ux, uxx) using the method of lines. The
solution is represented with cubic Hermite polynomials.

I2bElliptic boundary value problems

I2b1Linear

I2b1a. ...Second order

I2b1a1...Poisson (Laplace) or Helmholtz equation

I2b1a1a.Rectangular domain (or topologically rectangular in the coordinate
system)

FPS2H Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based on
the HODIE finite-difference scheme on a uni mesh.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-33

FPS3H Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the
HODIE finite-difference scheme on a uniform mesh.

J............ INTEGRAL TRANSFORMS

J1..........Trigonometric transforms including fast Fourier transforms

J1aOne-dimensional

J1a1Real
FFTRB Computes the real periodic sequence from its Fourier

coefficients.
FFTRF Computes the Fourier coefficients of a real periodic

sequence.
FFTRI Computes parameters needed by FFTRF and FFTRB.

J1a2Complex
FAST-DFT Computes the Discrete Fourier Transform (DFT) of a rank-

1 complex array, x.
FFTCB Computes the complex periodic sequence from its Fourier

coefficients.
FFTCF Computes the Fourier coefficients of a complex periodic

sequence.
FFTCI Computes parameters needed by FFTCF and FFTCB.

J1a3Sine and cosine transforms
FCOSI Computes parameters needed by FCOST.
FCOST Computes the discrete Fourier cosine transformation of an

even sequence.
FSINI Computes parameters needed by FSINT.
FSINT Computes the discrete Fourier sine transformation of an

odd sequence.
QCOSB Computes a sequence from its cosine Fourier coefficients

with only odd wave numbers.
QCOSF Computes the coefficients of the cosine Fourier transform

with only odd wave numbers.
QCOSI Computes parameters needed by QCOSF and QCOSB.
QSINB Computes a sequence from its sine Fourier coefficients

with only odd wave numbers.
QSINF Computes the coefficients of the sine Fourier transform

with only odd wave numbers.
QSINI Computes parameters needed by QSINF and QSINB.

J1b........Multidimensional
FFT2B Computes the inverse Fourier transform of a complex

periodic two-dimensional array.
FFT2D Computes Fourier coefficients of a complex periodic two-

dimensional array.
FFT3B Computes the inverse Fourier transform of a complex

periodic three-dimensional array.

A-34 � Appendix A: GAMS Index IMSL MATH/LIBRARY

FFT3F Computes Fourier coefficients of a complex periodic
threedimensional array.

FAST_2DFT Computes the Discrete Fourier Transform (DFT) of a rank-
2 complex array, x.

FAST_3DFT Computes the Discrete Fourier Transform (DFT) of a rank-
3 complex array, x.

J2Convolutions
CCONV Computes the convolution of two complex vectors.
RCONV Computes the convolution of two real vectors.

J3Laplace transforms
INLAP Computes the inverse Laplace transform of a complex

function.
SINLP Computes the inverse Laplace transform of a complex

function.

K...........APPROXIMATION (search also class L8)

K1.........Least squares (L�) approximation

K1a.Linear least squares (search also classes D5, D6, D9)

K1a1.....Unconstrained

K1a1a. ..Univariate data (curve fitting)

K1a1a1 .Polynomial splines (piecewise polynomials)
BSLSQ Computes the least-squares spline approximation, and

return the B-spline coefficients.
BSVLS Computes the variable knot B-spline least squares

approximation to given data.
CONFT Computes the least-squares constrained spline

approximation, returning the B-spline coefficients.
FRENCH_CURVE Constrained weighted least-squares fitting of B-splines to

discrete data, with covariance matrix.and constraints at
points.

K1a1a2 .Polynomials
RCURV Fits a polynomial curve using least squares.

K1a1a3 .Other functions (e.g., trigonometric, user-specified)

FNLSQ Compute a least-squares approximation with user-supplied basis functions.

K1a1b...Multivariate data (surface fitting)
BSLS2 Computes a two-dimensional tensor-product spline

approximant using least squares, returning the tensor-
product B-spline coefficients.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-35

BSLS3 Computes a three-dimensional tensor-product spline
approximant using least squares, returning the tensor-
product B-spline coefficients.

SURFACE_FAIRING Constrained weighted least-squares fitting of tensor
product B-splines to discrete data, with covariance matrix
and constraints at points.

K1a2.....Constrained
LIN_SOL_LSQ_CON Routine for constrained linear-least squares based on a
 least-distance, dual algorithm.
LIN_SOL_LSQ_INQ Routine for constrained linear-least squares based on a
 least-distance, dual algorithm.
LEAST_PROJ_
DISTANCE Routine for constrained linear-least squares based on a
 least-distance, dual algorithm.

PARALLEL_&
NONONEGATIVE_LSQ Solves multiple systems of linear equations
 Ajxj = yj, j = 1, �, k. Each matrix Aj is tridiagonal with
 the same dimension, n: The default solution method is
 based on LU factorization computed using cyclic
 reduction. An option is used to select Gaussian
 elimination with partial pivoting.
PARALLEL_& BOUNDED_LSQ

 Parallel routines for simple bounded constrained linear-
least squares based on a descent algorithm.

K1a2a ...Linear constraints
LCLSQ Solves a linear least-squares problem with linear

constraints.
PARALLEL_
NONNEGATIVE_LSQ Solves a large least-squares system with non-negative
 constraints, using parallel computing.
PARALLEL_
BOUNDED_LSQ Solves a large least-squares system with simple bounds,
 using parallel computing.

K1b.......Nonlinear least squares

K1b1.....Unconstrained

K1b1a...Smooth functions

K1b1a1.User provides no derivatives
UNLSF Solves a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

K1b1a2.User provides first derivatives
UNLSJ Solves a nonlinear least squares problem using a modified

Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

A-36 � Appendix A: GAMS Index IMSL MATH/LIBRARY

K1b2.....Constrained

K1b2a...Linear constraints
BCLSF Solves a nonlinear least squares problem subject to bounds

on the variables using a modified Levenberg-Marquardt
algorithm and a finite-difference Jacobian.

BCLSJ Solves a nonlinear least squares problem subject to bounds
on the variables using a modified Levenberg-Marquardt
algorithm and a user-supplied Jacobian.

BCNLS Solves a nonlinear least-squares problem subject to bounds
on the variables and general linear constraints.

K2.........Minimax (L�) approximation
RATCH Computes a rational weighted Chebyshev approximation

to a continuous function on an interval.

K5.........Smoothing
CSSCV Computes a smooth cubic spline approximation to noisy

data using cross-validation to estimate the smoothing
parameter.

CSSED Smooths one-dimensional data by error detection.
CSSMH Computes a smooth cubic spline approximation to noisy

data.

K6.........Service routines for approximation

K6a.Evaluation of fitted functions, including quadrature

K6a1.....Function evaluation
BSVAL Evaluates a spline, given its B-spline representation.
CSVAL Evaluates a cubic spline.
PPVAL Evaluates a piecewise polynomial.

K6a2.....Derivative evaluation
BSDER Evaluates the derivative of a spline, given its B-spline

representation.
CS1GD Evaluates the derivative of a cubic spline on a grid.
CSDER Evaluates the derivative of a cubic spline.
PP1GD Evaluates the derivative of a piecewise polynomial on a

grid.
PPDER Evaluates the derivative of a piecewise polynomial.

K6a3.....Quadrature
CSITG Evaluates the integral of a cubic spline.
PPITG Evaluates the integral of a piecewise polynomial.

K6c.Manipulation of basis functions (e.g., evaluation, change of basis)
BSCPP Converts a spline in B-spline representation to piecewise

polynomial representation.

LSTATISTICS, PROBABILITY

L1Data summarization

L1c.Multi-dimensional data

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-37

L1c1Raw data

L1c1b. ..Covariance, correlation
CCORL Computes the correlation of two complex vectors.
RCORL Computes the correlation of two real vectors.

L3Elementary statistical graphics (search also class Q)

L3e.Multi-dimensional data

L3e3.Scatter diagrams

L3e3a. ..Superimposed Y vs. X
PLOTP Prints a plot of up to 10 sets of points.

L6Random number generation

L6a.Univariate
RAND_GEN Generates a rank-1 array of random numbers. The output

array entries are positive and less than 1 in value.

L6a21 ...Uniform (continuous, discrete), uniform order statistics
RNUN Generates pseudorandom numbers from a uniform (0, 1)

distribution.
RNUNF Generates a pseudorandom number from a uniform (0, 1)

distribution.

L6bMulitivariate

L6b21 ...Linear L-1 (least absolute value) approximation random numbers
FAURE_INIT Shuffles Faure sequence initialization.
FAURE_FREE Frees the structure containing information about the Faure

sequence.
FAURE_NEXT Computes a shuffled Faure sequence.

L6c.Service routines (e.g., seed)
RNGET Retrieves the current value of the seed used in the IMSL

random number generators.
RNOPT Selects the uniform (0, 1) multiplicative congruential

pseudorandom number generator.
RNSET Initializes a random seed for use in the IMSL random

number generators.
RAND_GEN Generates a rank-1 array of random numbers. The output

array entries are positive and less than 1 in value.

L8Regression (search also classes D5, D6, D9, G, K)

L8a.Simple linear (e.g., y = �� + ��x +) (search also class L8h)

L8a1.Ordinary least squares
FNLSQ Computes a least-squares approximation with user-

supplied basis functions.

L8a1a ...Parameter estimation

L8a1a1. Unweighted data

A-38 � Appendix A: GAMS Index IMSL MATH/LIBRARY

RLINE Fits a line to a set of data points using least squares.

L8b.Polynomial (e.g., y = �� + ��x + ��x
 +) (search also class L8c)

L8b1Ordinary least squares

L8b1b ...Parameter estimation

L8b1b2. Using orthogonal polynomials
RCURV Fits a polynomial curve using least squares.

L8cMultiple linear (e.g., y = �� + ��x� + � + �kxk +)

L8c1Ordinary least squares

L8c1b ...Parameter estimation (search also class L8c1a)

L8c1b1 .Using raw data
LSBRR Solves a linear least-squares problem with iterative

refinement.
LSQRR Solves a linear least-squares problem without iterative

refinement.

N...........DATA HANDLING

N1.........Input, output
PGOPT Sets or retrieves page width and length for printing.
WRCRL Prints a complex rectangular matrix with a given format

and labels.
WRCRN Prints a complex rectangular matrix with integer row and

column labels.
WRIRL Prints an integer rectangular matrix with a given format

and labels.
WRIRN Prints an integer rectangular matrix with integer row and

column labels.
WROPT Sets or retrieves an option for printing a matrix.
WRRRL Prints a real rectangular matrix with a given format and

labels.
WRRRN Prints a real rectangular matrix with integer row and

column labels.
SCALAPACK_READ Reads matrix data from a file and place in a two-

dimensional block-cyclic form on a process grid.
SCALAPACK_WRITE Writes matrix data to a file, starting with a two-

dimensional block-cyclic form on a process grid.
SHOW Prints rank-1 and rank-2 arrays with indexing and text.

N3.........Character manipulation
ACHAR Returns a character given its ASCII value.
CVTSI Converts a character string containing an integer number

into the corresponding integer form.
IACHAR Returns the integer ASCII value of a character argument.
ICASE Returns the ASCII value of a character converted to

uppercase.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-39

IICSR Compares two character strings using the ASCII collating
sequence but without regard to case.

IIDEX Determines the position in a string at which a given
character sequence begins without regard to case.

N4.........Storage management (e.g., stacks, heaps, trees)
IWKCIN Initializes bookkeeping locations describing the character

workspace stack.
IWKIN Initializes bookkeeping locations describing the workspace

stack.
ScaLAPACK_READ Moves data from a file to Block-Cyclic form, for use in

ScaLAPACK.
ScaLAPACK_WRITE Move data from Block-Cyclic form, following use in

ScaLAPACK, to a file.

N5.........Searching

N5b....... Insertion position
ISRCH Searches a sorted integer vector for a given integer and

return its index.
SRCH Searches a sorted vector for a given scalar and return its

index.
SSRCH Searches a character vector, sorted in ascending ASCII

order, for a given string and return its index.

N5c.......On a key
IIDEX Determines the position in a string at which a given

character sequence begins without regard to case.
ISRCH Searches a sorted integer vector for a given integer and

return its index.
SRCH Searches a sorted vector for a given scalar and return its

index.
SSRCH Searches a character vector, sorted in ascending ASCII

order, for a given string and return its index.

N6.........Sorting

N6a....... Internal

N6a1.....Passive (i.e., construct pointer array, rank)

N6a1a ... Integer
SVIBP Sorts an integer array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVIGP Sorts an integer array by algebraically increasing value and

return the permutation that rearranges the array.

N6a1b...Real
SVRBP Sorts a real array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVRGP Sorts a real array by algebraically increasing value and

return the permutation that rearranges the array.

A-40 � Appendix A: GAMS Index IMSL MATH/LIBRARY

LIN_SOL_TRI Sorts a rank-1 array of real numbers x so the y results are
algebraically nondecreasing, y y . yn1 2� ��

N6a2.....Active

N6a2a ...Integer
SVIBN Sorts an integer array by nondecreasing absolute value.
SVIBP Sorts an integer array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVIGN Sorts an integer array by algebraically increasing value.
SVIGP Sorts an integer array by algebraically increasing value and

return the permutation that rearranges the array.

N6a2b...Real
SVRBN Sorts a real array by nondecreasing absolute value.
SVRBP Sorts a real array by nondecreasing absolute value and

return the permutation that rearranges the array.
SVRGN Sorts a real array by algebraically increasing value.
SVRGP Sorts a real array by algebraically increasing value and

return the permutation that rearranges the array.

N8.........Permuting
PERMA Permutes the rows or columns of a matrix.
PERMU Rearranges the elements of an array as specified by a

permutation.

Q...........GRAPHICS (search also classes L3)
PLOTP Prints a plot of up to 10 sets of points.

R...........SERVICE ROUTINES
IDYWK Computes the day of the week for a given date.
IUMAG Sets or retrieves MATH/LIBRARY integer options.
NDAYS Computes the number of days from January 1, 1900, to the

given date.
NDYIN Gives the date corresponding to the number of days since

January 1, 1900.
SUMAG Sets or retrieves MATH/LIBRARY single-precision

options.
TDATE Get stoday’s date.
TIMDY Gets time of day.
VERML Obtains IMSL MATH/LIBRARY-related version, system

and license numbers.

R1.........Machine-dependent constants
AMACH Retrieves single-precision machine constants.
IFNAN Checks if a value is NaN (not a number).
IMACH Retrieves integer machine constants.
ISNAN Detects an IEEE NaN (not-a-number).
NAN Returns, as a scalar function, a value corresponding to the

IEEE 754 Standard format of floating point (ANSI/IEEE
1985) for NaN.

UMACH Sets or retrieves input or output device unit numbers.

IMSL MATH/LIBRARY Appendix A: GAMS Index � A-41

R3.........Error handling
BUILD_ERROR
_STRUCTURE Fills in flags, values and update the data
 structure for error conditions that occur in Library routines.
 Prepares the structure so that calls to routine
 error_post will display the reason for the error.

R3b.......Set unit number for error messages
UMACH Sets or retrieves input or output device unit numbers.

R3cOther utilities
ERROR_POST Prints error messages that are generated by IMSL Library

routines.
ERSET Sets error handler default print and stop actions.
IERCD Retrieves the code for an informational error.
N1RTY Retrieves an error type for the most recently called IMSL

routine.

S.SOFTWARE DEVELOPMENT TOOLS

S3Dynamic program analysis tools
CPSEC Returns CPU time used in seconds.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-1

Appendix B: Alphabetical Summary
of Routines

IMSL MATH/LIBRARY
ACBCB 1441 Adds two complex band matrices, both in band storage

mode.

ACHAR 1624 Returns a character given its ASCII value.

AMACH 1685 Retrieves single-precision machine constants.

ARBRB 1438 Adds two band matrices, both in band storage mode.

BCLSF 1274 Solves a nonlinear least squares problem subject to
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a finite-difference Jacobian.

BCLSJ 1281 Solves a nonlinear least squares problem subject to
bounds on the variables using a modified Levenberg-
Marquardt algorithm and a user-supplied Jacobian.

BCNLS 1288 Solves a nonlinear least-squares problem subject to
bounds on the variables and general linear constraints.

BCOAH 1263 Minimizes a function of N variables subject to bounds the
variables using a modified Newton method and a user-
supplied Hessian.

BCODH 1257 Minimizes a function of N variables subject to bounds the
variables using a modified Newton method and a finite-
difference Hessian.

BCONF 1243 Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a finite-
difference gradient.

BCONG 1249 Minimizes a function of N variables subject to bounds the
variables using a quasi-Newton method and a user-
supplied gradient.

BCPOL 1271 Minimizes a function of N variables subject to bounds the
variables using a direct search complex algorithm.

B-2 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

BLINF 1427 Computes the bilinear form xTAy.

BS1GD 656 Evaluates the derivative of a spline on a grid, given its B-
spline representation.

BS2DR 653 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation.

BS2GD 656 Evaluates the derivative of a two-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS2IG 661 Evaluates the integral of a tensor-product spline on a
rectangular domain, given its tensor-product B-spline
representation.

BS2IN 631 Computes a two-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

BS2VL 651 Evaluates a two-dimensional tensor-product spline, given
its tensor-product B-spline representation.

BS3DR 666 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation.

BS3GD 670 Evaluates the derivative of a three-dimensional tensor-
product spline, given its tensor-product B-spline
representation on a grid.

BS3IG 676 Evaluates the integral of a tensor-product spline in three
dimensions over a three-dimensional rectangle, given its
tensorproduct B-spline representation.

BS3IN 635 Computes a three-dimensional tensor-product spline
interpolant, returning the tensor-product B-spline
coefficients.

BS3VL 664 Evaluates a three-dimensional tensor-product spline,
given its tensor-product B-spline representation.

BSCPP 680 Converts a spline in B-spline representation to piecewise
polynomial representation.

BSDER 643 Evaluates the derivative of a spline, given its B-spline
representation.

BSINT 622 Computes the spline interpolant, returning the B-spline
coefficients.

BSITG 649 Evaluates the integral of a spline, given its B-spline
representation.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-3

BSLS2 743 Computes a two-dimensional tensor-product spline
approximant using least squares, returning the tensor-
product B-spline coefficients.

BSLS3 748 Computes a three-dimensional tensor-product spline
approximant using least squares, returning the tensor-
product B-spline coefficients.

BSLSQ 725 Computes the least-squares spline approximation, and
return the B-spline coefficients.

BSNAK 625 Computes the ‘not-a-knot’ spline knot sequence.

BSOPK 628 Computes the ‘optimal’ spline knot sequence.

BSVAL 641 Evaluates a spline, given its B-spline representation.

BSVLS 729 Computes the variable knot B-spline least squares
approximation to given data.

BVPFD 870 Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a variable
order, variable step size finite-difference method with
deferred corrections.

BVPMS 882 Solves a (parameterized) system of differential equations
with boundary conditions at two points, using a multiple-
shooting method.

CADD 1319 Adds a scalar to each component of a vector, x � x + a,
all complex.

CAXPY 1320 Computes the scalar times a vector plus a vector, y � ax
+ y, all complex.

CCBCB 1393 Copies a complex band matrix stored in complex band
storage mode.

CCBCG 1400 Converts a complex matrix in band storage mode to a
complex matrix in full storage mode.

CCGCB 1398 Converts a complex general matrix to a matrix in
complex band storage mode.

CCGCG 1390 Copies a complex general matrix.

CCONV 1064 Computes the convolution of two complex vectors.

CCOPY 1319 Copies a vector x to a vector y, both complex.

CCORL 1073 Computes the correlation of two complex vectors.

CDGRD 1336 Approximates the gradient using central differences.

CDOTC 1320 Computes the complex conjugate dot product, x . yT

CDOTU 1320 Computes the complex dot product xTy.

B-4 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

CGBMV 1330 Computes one of the matrix-vector operations:
y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y ,

where A is a matrix stored in band storage mode.

CGEMM 1333 Computes one of the matrix-matrix operations:
C AB C C A B C C AB

C C A B C C AB C

C A B C C A B C

C A B C C A B C

T T

T T T

T T T

T T T T

� � � � �

� � � � �

� � � �

� � � �

� � � � �

� � � � �

� � � �

� � � �

, ,

, ,

, ,

,

 or

 or

,

CGEMV 1329 Computes one of the matrix-vector operations:
y Ax y y A x y y AT T
� � � � � �� � � � � �, , or y ,

CGERC 1384 Computes the rank-one update of a complex general
matrix:
A A xy T
� �� .

CGERU 1384 Computes the rank-one update of a complex general
matrix:

. A A xyT
� ��

CHBCB 1411 Copies a complex Hermitian band matrix stored in band
Hermitian storage mode to a complex band matrix stored
in band storage mode.

CHBMV 1381 Computes the matrix-vector operation
,

where A is an Hermitian band matrix in band Hermitian
storage.

y Ax� �� �y

C

y

CHEMM 1385 Computes one of the matrix-matrix operations:
,

where A is an Hermitian matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

CHEMV 1381 Computes the matrix-vector operation
,

where A is an Hermitian matrix.
y Ax� �� �

CHER 1384 Computes the rank-one update of an Hermitian matrix:
A A xx T
� �� with x complex and � real.

CHER2 1384 Computes a rank-two update of an Hermitian matrix:
A A xy yxT T
� � �� � .

CHER2K 1387 Computes one of the Hermitian rank 2k operations:
C AB BA C C A B B AT T T T
� � � � � �� � � � � or C� ,

where C is an n by n Hermitian matrix and A and B are n

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-5

by k matrices in the first case and k by n matrices in the
second case.

CHERK 1386 Computes one of the Hermitian rank k operations:
C AA C C A AT T
� � � �� � � or C� ,

where C is an n by n Hermitian matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

CHFCG 1408 Extends a complex Hermitian matrix defined in its upper
triangle to its lower triangle.

CHGRD 1349 Checks a user-supplied gradient of a function.

CHHES 1352 Checks a user-supplied Hessian of an analytic function.

CHJAC 1355 Checks a user-supplied Jacobian of a system of equations
with M functions in N unknowns.

CHOL 1475 Computes the Cholesky factorization of a positive-
definite, symmetric or self-adjoint matrix, A.

COND 1476 Computes the condition number of a rectangular
matrix, A.

CONFT 734 Computes the least-squares constrained spline
approximation, returning the B-spline coefficients.

CONST 1669 Returns the value of various mathematical and physical
constants.

CPSEC 1631 Returns CPU time used in seconds.

CRBCB 1405 Converts a real matrix in band storage mode to a complex
matrix in band storage mode.

CRBRB 1392 Copies a real band matrix stored in band storage mode.

CRBRG 1397 Converts a real matrix in band storage mode to a real
general matrix.

CRGCG 1402 Copies a real general matrix to a complex general matrix.

CRGRB 1395 Converts a real general matrix to a matrix in band storage
mode.

CRGRG 1389 Copies a real general matrix.

CRRCR 1403 Copies a real rectangular matrix to a complex rectangular
matrix.

CS1GD 602 Evaluates the derivative of a cubic spline on a grid.

CSAKM 500 Computes the Akima cubic spline interpolant.

CSBRB 1409 Copies a real symmetric band matrix stored in band
symmetric storage mode to a real band matrix stored in
band storage mode.

B-6 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

C

CSCAL 1319 Multiplies a vector by a scalar, y � ay, both complex.

CSCON 603 Computes a cubic spline interpolant that is consistent
with the concavity of the data.

CSDEC 593 Computes the cubic spline interpolant with specified
derivative endpoint conditions.

CSDER 610 Evaluates the derivative of a cubic spline.

CSET 1318 Sets the components of a vector to a scalar, all complex.

CSFRG 1406 Extends a real symmetric matrix defined in its upper
triangle to its lower triangle.

CSHER 597 Computes the Hermite cubic spline interpolant.

CSIEZ 587 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition and return values of the interpolant at
specified points.

CSINT 590 Computes the cubic spline interpolant with the ‘not-a-
knot’ condition.

CSITG 616 Evaluates the integral of a cubic spline.

CSPER 506 Computes the cubic spline interpolant with periodic
boundary conditions.

CSROT 1325 Applies a complex Givens plane rotation.

CSROTM 1326 Applies a complex modified Givens plane rotation.

CSSCAL 1319 Multiplies a complex vector by a single-precision scalar,
y � ay.

CSSCV 761 Computes a smooth cubic spline approximation to noisy
data using cross-validation to estimate the smoothing
parameter.

CSSED 754 Smooths one-dimensional data by error detection.

CSSMH 758 Computes a smooth cubic spline approximation to noisy
data.

CSUB 1319 Subtracts each component of a vector from a scalar,
x � a � x, all complex.

CSVAL 609 Evaluates a cubic spline.

CSVCAL 1319 Multiplies a complex vector by a single-precision scalar
and store the result in another complex vector, y � ax.

CSWAP 1320 Interchanges vectors x and y, both complex.

CSYMM 1334 Computes one of the matrix-matrix operations:
,

where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-7

C�

C�

CSYR2K 1335 Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or

CSYRK 1334 Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

CTBMV 1331 Computes one of the matrix-vector operations:
x Ax x A x x AT T
� � �, , or x ,

where A is a triangular matrix in band storage mode.

CTBSV 1332 Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
 , or e j e j, ,x

where A is a triangular matrix in band storage mode.

CTRMM 1335 Computes one of the matrix-matrix operations:
B AB B A B B BA B BA

B A B B BA

T T

T T

� � � �

� �

� � � �

� �

, , ,

,or

,

where B is an m by n matrix and A is a triangular matrix.

CTRMV 1331 Computes one of the matrix-vector operations:
x Ax x A x x AT T
� � �, , or x ,

where A is a triangular matrix.

CTRSM 1336 Solves one of the complex matrix equations:

B A B B BA B A B B B A

B A B B B A

T T

T T

� � � �

� �

� � �

� �

� � � �

� �

1 1 1

1 1

, , ,

,

e j e j

e j e jor

�1 ,

where A is a traiangular matrix.

CTRSV 1331 Solves one of the complex triangular systems:

x A x x A x x A
T T

� � �
� �

�1 1 1
, ,e j e j or x ,

where A is a triangular matrix.

CUNIT 1672 Converts X in units XUNITS to Y in units YUNITS.

CVCAL 1319 Multiplies a vector by a scalar and store the result in
another vector, y � ax, all complex.

CVTSI 1630 Converts a character string containing an integer number
into the corresponding integer form.

B-8 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

CZCDOT 1321 Computes the sum of a complex scalar plus a complex
conjugate dot product, a x , using a double-precision
accumulator.

yT
�

CZDOTA 1321 Computes the sum of a complex scalar, a complex dot
product and the double-complex accumulator, which is
set to the result ACC � ACC + a + xTy.

CZDOTC 1320 Computes the complex conjugate dot product, x , using
a double-precision accumulator.

yT

CZDOTI 1321 Computes the sum of a complex scalar plus a complex
dot product using a double-complex accumulator, which
is set to the result ACC � a + xTy.

CZDOTU 1320 Computes the complex dot product xTy using a double-
precision accumulator.

CZUDOT 1321 Computes the sum of a complex scalar plus a complex
dot product, a + xTy, using a double-precision
accumulator.

DASPG 889 Solves a first order differential-algebraic system of
equations, g(t, y, y�) = 0, using Petzold�Gear BDF
method.

DERIV 827 Computes the first, second or third derivative of a user-
supplied function.

DET 1477 Computes the determinant of a rectangular matrix, A.

DIAG 1479 Constructs a square diagonal matrix from a rank-1 array
or several diagonal matrices from a rank-2 array.

DIAGONALS 1479 Extracts a rank-1 array whose values are the diagonal
terms of a rank-2 array argument.

DISL1 1452 Computes the 1-norm distance between two points.

DISL2 1450 Computes the Euclidean (2-norm) distance between two
points.

DISLI 1454 Computes the infinity norm distance between two points.

DLPRS 1297 Solves a linear programming problem via the revised
simplex algorithm.

DMACH 1686 See AMACH.

DQADD 1460 Adds a double-precision scalar to the accumulator in
extended precision.

DQINI 1460 Initializes an extended-precision accumulator with a
double-precision scalar.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-9

DQMUL 1460 Multiplies double-precision scalars in extended precision.

DQSTO 1460 Stores a double-precision approximation to an extended-
precision scalar.

DSDOT 1371 Computes the single-precision dot product xTy using a
double precision accumulator.

DUMAG 1664 This routine handles MATH/LIBRARY and
STAT/LIBRARY type DOUBLE PRECISION options.

EIG 1480 Computes the eigenvalue-eigenvector decomposition of
an ordinary or generalized eigenvalue problem.

EPICG 467 Computes the performance index for a complex
eigensystem.

EPIHF 518 Computes the performance index for a complex
Hermitian eigensystem.

EPIRG 460 Computes the performance index for a real eigensystem.

EPISB 501 Computes the performance index for a real symmetric
eigensystem in band symmetric storage mode.

EPISF 483 Computes the performance index for a real symmetric
eigensystem.

 ERROR_POST 1568 Prints error messages that are generated by IMSL routines
using EPACK

ERSET 1679 Sets error handler default print and stop actions.

EVAHF 508 Computes the largest or smallest eigenvalues of a
complex Hermitian matrix.

EVASB 490 Computes the largest or smallest eigenvalues of a real
symmetric matrix in band symmetric storage mode.

EVASF 473 Computes the largest or smallest eigenvalues of a real
symmetric matrix.

EVBHF 513 Computes the eigenvalues in a given range of a complex
Hermitian matrix.

EVBSB 495 Computes the eigenvalues in a given interval of a real
symmetric matrix stored in band symmetric storage
mode.

EVBSF 478 Computes selected eigenvalues of a real symmetric
matrix.

EVCCG 464 Computes all of the eigenvalues and eigenvectors of a
complex matrix.

EVCCH 526 Computes all of the eigenvalues and eigenvectors of a
complex upper Hessenberg matrix.

B-10 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

EVCHF 505 Computes all of the eigenvalues and eigenvectors of a
complex Hermitian matrix.

EVCRG 457 Computes all of the eigenvalues and eigenvectors of a
real matrix.

EVCRH 522 Computes all of the eigenvalues and eigenvectors of a
real upper Hessenberg matrix.

EVCSB 487 Computes all of the eigenvalues and eigenvectors of a
real symmetric matrix in band symmetric storage mode.

EVCSF 471 Computes all of the eigenvalues and eigenvectors of a
real symmetric matrix.

EVEHF 510 Computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a complex Hermitian
matrix.

EVESB 492 Computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix in
band symmetric storage mode.

EVESF 475 Computes the largest or smallest eigenvalues and the
corresponding eigenvectors of a real symmetric matrix.

EVFHF 515 Computes the eigenvalues in a given range and the
corresponding eigenvectors of a complex Hermitian
matrix.

EVFSB 498 Computes the eigenvalues in a given interval and the
corresponding eigenvectors of a real symmetric matrix
stored in band symmetric storage mode.

EVFSF 480 Computes selected eigenvalues and eigenvectors of a real
symmetric matrix.

EVLCG 462 Computes all of the eigenvalues of a complex matrix.

EVLCH 525 Computes all of the eigenvalues of a complex upper
Hessenberg matrix.

EVLHF 502 Computes all of the eigenvalues of a complex Hermitian
matrix.

EVLRG 455 Computes all of the eigenvalues of a real matrix.

EVLRH 520 Computes all of the eigenvalues of a real upper
Hessenberg matrix.

EVLSB 485 Computes all of the eigenvalues of a real symmetric
matrix in band symmetric storage mode.

EVLSF 469 Computes all of the eigenvalues of a real symmetric
matrix.

EYE 1481 Creates a rank-2 square array whose diagonals are all the
value one.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-11

FAURE_FREE 1655 Frees the structure containing information about the
Faure sequence.

FAURE_INIT 1655 Shuffled Faure sequence initialization.

FAURE_NEXT 1656 Computes a shuffled Faure sequence.

 FAST_DFT 992 Computes the Discrete Fourier Transform
of a rank-1 complex array, x.

 FAST_2DFT 1000 Computes the Discrete Fourier Transform (2DFT)
of a rank-2 complex array, x.

 FAST_3DFT 1006 Computes the Discrete Fourier Transform (2DFT)
of a rank-3 complex array, x.

FCOSI 1030 Computes parameters needed by FCOST.

FCOST 1028 Computes the discrete Fourier cosine transformation of
an even sequence.

FDGRD 1338 Approximates the gradient using forward differences.

FDHES 1340 Approximates the Hessian using forward differences and
function values.

FDJAC 1346 Approximates the Jacobian of M functions in N unknowns
using forward differences.

FFT 1482 The Discrete Fourier Transform of a complex sequence
and its inverse transform.

FFT_BOX 1482 The Discrete Fourier Transform of several complex or
real sequences.

FFT2B 1048 Computes the inverse Fourier transform of a complex
periodic two-dimensional array.

FFT2D 1045 Computes Fourier coefficients of a complex periodic two-
dimensional array.

FFT3B 1055 Computes the inverse Fourier transform of a complex
periodic three-dimensional array.

FFT3F 1051 Computes Fourier coefficients of a complex periodic
threedimensional array.

FFTCB 1019 Computes the complex periodic sequence from its Fourier
coefficients.

FFTCF 1017 Computes the Fourier coefficients of a complex periodic
sequence.

FFTCI 1022 Computes parameters needed by FFTCF and FFTCB.

FFTRB 1012 Computes the real periodic sequence from its Fourier
coefficients.

B-12 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

FFTRF 1009 Computes the Fourier coefficients of a real periodic
sequence.

FFTRI 1015 Computes parameters needed by FFTRF and FFTRB.

FNLSQ 720 Computes a least-squares approximation with user-
supplied basis functions.

FPS2H 961 Solves Poisson’s or Helmholtz’s equation on a two-
dimensional rectangle using a fast Poisson solver based
on the HODIE finite-difference scheme on a uni mesh.

FPS3H 967 Solves Poisson’s or Helmholtz’s equation on a three-
dimensional box using a fast Poisson solver based on the
HODIE finite-difference scheme on a uniform mesh.

FQRUL 824 Computes a Fejér quadrature rule with various classical
weight functions.

FSINI 1026 Computes parameters needed by FSINT.

FSINT 1024 Computes the discrete Fourier sine transformation of an
odd sequence.

GDHES 1343 Approximates the Hessian using forward differences and
a user-supplied gradient.

GGUES 1359 Generates points in an N-dimensional space.

GMRES 368 Uses restarted GMRES with reverse communication to
generate an approximate solution of Ax = b.

GPICG 542 Computes the performance index for a generalized
complex eigensystem Az = �Bz.

GPIRG 535 Computes the performance index for a generalized real
eigensystem Az = �Bz.

GPISP 549 Computes the performance index for a generalized real
symmetric eigensystem problem.

GQRCF 815 Computes a Gauss, Gauss-Radau or Gauss-Lobatto
quadrature rule given the recurrence coefficients for the
monic polynomials orthogonal with respect to the weight
function.

GQRUL 811 Computes a Gauss, Gauss-Radau, or Gauss-Lobatto
quadrature rule with various classical weight functions.

GVCCG 540 Computes all of the eigenvalues and eigenvectors of a
generalized complex eigensystem Az = �Bz.

GVCRG 531 Computes all of the eigenvalues and eigenvectors of a
generalized real eigensystem Az = �Bz.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-13

GVCSP 547 Computes all of the eigenvalues and eigenvectors of the
generalized real symmetric eigenvalue problem Az = �Bz,
with B symmetric positive definite.

GVLCG 537 Computes all of the eigenvalues of a generalized complex
eigensystem Az = �Bz.

GVLRG 529 Computes all of the eigenvalues of a generalized real
eigensystem Az = �Bz.

GVLSP 544 Computes all of the eigenvalues of the generalized real
symmetric eigenvalue problem Az = �Bz, with B
symmetric positive definite.

HRRRR 1425 Computes the Hadamard product of two real rectangular
matrices.

HYPOT 1675 Computes a without underflow or overflow. b2
�

2

IACHAR 1625 Returns the integer ASCII value of a character argument.

IADD 1319 Adds a scalar to each component of a vector, x � x + a,
all integer.

ICAMAX 1324 Finds the smallest index of the component of a complex
vector having maximum magnitude.

ICAMIN 1323 Finds the smallest index of the component of a complex
vector having minimum magnitude.

ICASE 1626 Returns the ASCII value of a character converted to
uppercase.

ICOPY 1319 Copies a vector x to a vector y, both integer.

IDYWK 1637 Computes the day of the week for a given date.

IERCD 1680 Retrieves the code for an informational error.

IFFT 1483 The inverse of the Discrete Fourier Transform of a
complex sequence.

IFFT_BOX 1484 The inverse Discrete Fourier Transform of several
complex or real sequences.

IFNAN(X) 1686 Checks if a value is NaN (not a number).

IICSR 1627 Compares two character strings using the ASCII collating
sequence but without regard to case.

IIDEX 1629 Determines the position in a string at which a given
character sequence begins without regard to case.

IIMAX 1323 Finds the smallest index of the maximum component of a
integer vector.

IIMIN 1323 Finds the smallest index of the minimum of an integer
vector.

B-14 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

IMACH 1683 Retrieves integer machine constants.

INLAP 1078 Computes the inverse Laplace transform of a complex
function.

ISAMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum absolute value.

ISAMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum absolute value.

ISET 1318 Sets the components of a vector to a scalar, all integer.

ISMAX 1374 Finds the smallest index of the component of a single-
precision vector having maximum value.

ISMIN 1374 Finds the smallest index of the component of a single-
precision vector having minimum value.

ISNAN 1485 This is a generic logical function used to test scalars or
arrays for occurrence of an IEEE 754 Standard format of
floating point (ANSI/IEEE 1985) NaN, or not-a-number.

ISRCH 1620 Searches a sorted integer vector for a given integer and
return its index.

ISUB 1319 Subtracts each component of a vector from a scalar,
x � a � x, all integer.

ISUM 1322 Sums the values of an integer vector.

ISWAP 1320 Interchanges vectors x and y, both integer.

IUMAG 1658 Sets or retrieves MATH/LIBRARY integer options.

IVMRK 844 Solves an initial-value problem y� = f(t, y) for ordinary
differential equations using Runge-Kutta pairs of various
orders.

IVPAG 854 Solves an initial-value problem for ordinary differential
equations using either Adams-Moulton’s or Gear’s BDF
method.

IVPRK 837 Solves an initial-value problem for ordinary differential
equations using the Runge-Kutta-Verner fifth-order and
sixth-order method.

IWKCIN 1701 Initializes bookkeeping locations describing the character
workspace stack.

IWKIN 1700 Initializes bookkeeping locations describing the
workspace stack.

JCGRC 365 Solves a real symmetric definite linear system using the
Jacobi preconditioned conjugate gradient method with
reverse communication.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-15

LCHRG 406 Computes the Cholesky decomposition of a symmetric
positive semidefinite matrix with optional column
pivoting.

LCLSQ 388 Solves a linear least-squares problem with linear
constraints.

LCONF 1310 Minimizes a general objective function subject to linear
equality/inequality constraints.

LCONG 1316 Minimizes a general objective function subject to linear
equality/inequality constraints.

LDNCH 412 Downdates the RTR Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix
is removed.

LFCCB 262 Computes the LU factorization of a complex matrix in
band storage mode and estimate its L� condition number.

LFCCG 108 Computes the LU factorization of a complex general
matrix and estimate its L� condition number.

LFCCT 132 Estimates the condition number of a complex triangular
matrix.

LFCDH 179 Computes the RH R factorization of a complex Hermitian
positive definite matrix and estimate its L� condition
number.

LFCDS 143 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix and estimate its
L�condition number.

LFCHF 197 Computes the U DUH factorization of a complex
Hermitian matrix and estimate its L� condition number.

LFCQH 284 Computes the RH R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode
and estimate its L� condition number.

LFCQS 240 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode and estimate its L� condition number.

LFCRB 219 Computes the LU factorization of a real matrix in band
storage mode and estimate its L� condition number.

LFCRG 89 Computes the LU factorization of a real general matrix
and estimate its L� condition number.

LFCRT 125 Estimates the condition number of a real triangular
matrix.

B-16 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LFCSF 162 Computes the U DUT factorization of a real symmetric
matrix and estimate its L� condition number.

LFDCB 274 Computes the determinant of a complex matrix given the
LU factorization of the matrix in band storage mode.

LFDCG 119 Computes the determinant of a complex general matrix
given the LU factorization of the matrix.

LFDCT 134 Computes the determinant of a complex triangular matrix.

LFDDH 190 Computes the determinant of a complex Hermitian
positive definite matrix given the RH R Cholesky
factorization of the matrix.

LFDDS 153 Computes the determinant of a real symmetric positive
definite matrix given the RH R Cholesky factorization of
the matrix.

LFDHF 207 Computes the determinant of a complex Hermitian matrix
given the U DUH factorization of the matrix.

LFDQH 295 Computes the determinant of a complex Hermitian
positive definite matrix given the RH R Cholesky
factorization in band Hermitian storage mode.

LFDQS 250 Computes the determinant of a real symmetric positive
definite matrix given the RT R Cholesky factorization of
the band symmetric storage mode.

LFDRB 230 Computes the determinant of a real matrix in band
storage mode given the LU factorization of the matrix.

LFDRG 99 Computes the determinant of a real general matrix given
the LU factorization of the matrix.

LFDRT 127 Computes the determinant of a real triangular matrix.

LFDSF 172 Computes the determinant of a real symmetric matrix
given the U DUT factorization of the matrix.

LFICB 270 Uses iterative refinement to improve the solution of a
complex system of linear equations in band storage mode.

LFICG 116 Uses iterative refinement to improve the solution of a
complex general system of linear equations.

LFIDH 187 Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations.

LFIDS 150 Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-17

LFIHF 204 Uses iterative refinement to improve the solution of a
complex Hermitian system of linear equations.

LFIQH 292 Uses iterative refinement to improve the solution of a
complex Hermitian positive definite system of linear
equations in band Hermitian storage mode.

LFIQS 247 Uses iterative refinement to improve the solution of a real
symmetric positive definite system of linear equations in
band symmetric storage mode.

LFIRB 227 Uses iterative refinement to improve the solution of a real
system of linear equations in band storage mode.

LFIRG 96 Uses iterative refinement to improve the solution of a real
general system of linear equations.

LFISF 169 Uses iterative refinement to improve the solution of a real
symmetric system of linear equations.

LFSCB 268 Solves a complex system of linear equations given the LU
factorization of the coefficient matrix in band storage
mode.

LFSCG 114 Solves a complex general system of linear equations
given the LU factorization of the coefficient matrix.

LFSDH 184 Solves a complex Hermitian positive definite system of
linear equations given the RH R factorization of the
coefficient matrix.

LFSDS 148 Solves a real symmetric positive definite system of linear
equations given the RT R Choleksy factorization of the
coefficient matrix.

LFSHF 202 Solves a complex Hermitian system of linear equations
given the U DUH factorization of the coefficient matrix.

LFSQH 290 Solves a complex Hermitian positive definite system of
linear equations given the factorization of the coefficient
matrix in band Hermitian storage mode.

LFSQS 245 Solves a real symmetric positive definite system of linear
equations given the factorization of the coefficient matrix
in band symmetric storage mode.

LFSRB 225 Solves a real system of linear equations given the LU
factorization of the coefficient matrix in band storage
mode.

LFSRG 94 Solves a real general system of linear equations given the
LU factorization of the coefficient matrix.

LFSSF 167 Solves a real symmetric system of linear equations given
the U DUT factorization of the coefficient matrix.

B-18 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LFSXD 336 Solves a real sparse symmetric positive definite system of
linear equations, given the Cholesky factorization of the
coefficient matrix.

LFSXG 306 Solves a sparse system of linear equations given the LU
factorization of the coefficient matrix.

LFSZD 349 Solves a complex sparse Hermitian positive definite
system of linear equations, given the Cholesky
factorization of the coefficient matrix.

LFSZG 319 Solves a complex sparse system of linear equations given
the LU factorization of the coefficient matrix.

LFTCB 265 Computes the LU factorization of a complex matrix in
band storage mode.

LFTCG 111 Computes the LU factorization of a complex general
matrix.

LFTDH 182 Computes the RH R factorization of a complex Hermitian
positive definite matrix.

LFTDS 146 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix.

LFTHF 200 Computes the U DUH factorization of a complex
Hermitian matrix.

LFTQH 288 Computes the RH R factorization of a complex Hermitian
positive definite matrix in band Hermitian storage mode.

LFTQS 243 Computes the RT R Cholesky factorization of a real
symmetric positive definite matrix in band symmetric
storage mode.

LFTRB 222 Computes the LU factorization of a real matrix in band
storage mode.

LFTRG 92 Computes the LU factorization of a real general matrix.

LFTSF 164 Computes the U DUT factorization of a real symmetric
matrix.

LFTXG 301 Computes the LU factorization of a real general sparse
matrix.

LFTZG 314 Computes the LU factorization of a complex general
sparse matrix.

LINCG 121 Computes the inverse of a complex general matrix.

LINCT 136 Computes the inverse of a complex triangular matrix.

LINDS 154 Computes the inverse of a real symmetric positive
definite matrix.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-19

LINRG 101 Computes the inverse of a real general matrix.

LINRT 128 Computes the inverse of a real triangular matrix.

 LIN_EIG_GEN 439 Computes the eigenvalues of a self-adjoint
matrix, A.

 LIN_EIG_SELF 432 Computes the eigenvalues of a self-adjoint
matrix, A.

 LIN_GEIG_SELF 448 Computes the generalized eigenvalues of an n � n
matrix pencil, Av = �Bv.

 LIN_SOL_GEN 9 Solves a general system of linear equations Ax = b.

 LIN_SOL_LSQ 27 Solves a rectangular system of linear equations Ax � b,
in a least-squares sense.

 LIN_SOL_SELF 17 Solves a system of linear equations Ax = b, where A is a
self-adjoint matrix.

 LIN_SOL_SVD 36 Solves a rectangular least-squares system of linear
equations Ax � b using singular value decomposition.

 LIN_SOL_TRI 44 Solves multiple systems of linear equations.

 LIN_SVD 57 Computes the singular value decomposition (SVD) of a
rectangular matrix, A.

LNFXD 331 Computes the numerical Cholesky factorization of a
sparse symmetrical matrix A.

LNFZD 344 Computes the numerical Cholesky factorization of a
sparse Hermitian matrix A.

LQERR 396 Accumulates the orthogonal matrix Q from its factored
form given the QR factorization of a rectangular matrix A.

LQRRR 392 Computes the QR decomposition, AP = QR, using
Householder transformations.

LQRRV 381 Computes the least-squares solution using Householder
transformations applied in blocked form.

LQRSL 398 Computes the coordinate transformation, projection, and
complete the solution of the least-squares problem Ax = b.

LSACB 257 Solves a complex system of linear equations in band
storage mode with iterative refinement.

LSACG 103 Solves a complex general system of linear equations with
iterative refinement.

LSADH 173 Solves a Hermitian positive definite system of linear
equations with iterative refinement.

LSADS 138 Solves a real symmetric positive definite system of linear
equations with iterative refinement.

B-20 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LSAHF 191 Solves a complex Hermitian system of linear equations
with iterative refinement.

LSAQH 276 Solves a complex Hermitian positive definite system of
linear equations in band Hermitian storage mode with
iterative refinement.

LSAQS 232 Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode with iterative
refinement.

LSARB 213 Solves a real system of linear equations in band storage
mode with iterative refinement.

LSARG 83 Solves a real general system of linear equations with
iterative refinement.

LSASF 156 Solves a real symmetric system of linear equations with
iterative refinement.

LSBRR 385 Solves a linear least-squares problem with iterative
refinement.

LSCXD 327 Performs the symbolic Cholesky factorization for a sparse
symmetric matrix using a minimum degree ordering or a
userspecified ordering, and set up the data structure for
the numerical Cholesky factorization.

LSGRR 424 Computes the generalized inverse of a real matrix.

LSLCB 259 Solves a complex system of linear equations in band
storage mode without iterative refinement.

LSLCC 356 Solves a complex circulant linear system.

LSLCG 106 Solves a complex general system of linear equations
without iterative refinement.

LSLCQ 253 Computes the LDU factorization of a complex tridiagonal
matrix A using a cyclic reduction algorithm.

LSLCR 211 Computes the LDU factorization of a real tridiagonal
matrix A using a cyclic reduction algorithm.

LSLCT 130 Solves a complex triangular system of linear equations.

LSLDH 176 Solves a complex Hermitian positive definite system of
linear equations without iterative refinement.

LSLDS 140 Solves a real symmetric positive definite system of linear
equations without iterative refinement.

LSLHF 194 Solves a complex Hermitian system of linear equations
without iterative refinement.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-21

LSLPB 237 Computes the RT DR Cholesky factorization of a real
symmetric positive definite matrix A in codiagonal band
symmetric storage mode. Solve a system Ax = b.

LSLQB 281 Computes the RH DR Cholesky factorization of a
complex hermitian positive-definite matrix A in
codiagonal band hermitian storage mode. Solve a system
Ax = b.

LSLQH 279 Solves a complex Hermitian positive definite system of
linearequations in band Hermitian storage mode without
iterative refinement.

LSLQS 234 Solves a real symmetric positive definite system of linear
equations in band symmetric storage mode without
iterative refinement.

LSLRB 216 Solves a real system of linear equations in band storage
mode without iterative refinement.

LSLRG 85 Solves a real general system of linear equations without
iterative refinement.

LSLRT 123 Solves a real triangular system of linear equations.

LSLSF 159 Solves a real symmetric system of linear equations
without iterative refinement.

LSLTC 354 Solves a complex Toeplitz linear system.

LSLTO 352 Solves a real Toeplitz linear system.

LSLTQ 252 Solves a complex tridiagonal system of linear equations.

LSLTR 209 Solves a real tridiagonal system of linear equations.

LSLXD 323 Solves a sparse system of symmetric positive definite
linear algebraic equations by Gaussian elimination.

LSLXG 297 Solves a sparse system of linear algebraic equations by
Gaussian elimination.

LSLZD 340 Solves a complex sparse Hermitian positive definite
system of linear equations by Gaussian elimination.

LSLZG 309 Solves a complex sparse system of linear equations by
Gaussian elimination.

LSQRR 378 Solves a linear least-squares problem without iterative
refinement.

LSVCR 419 Computes the singular value decomposition of a complex
matrix.

LSVRR 415 Computes the singular value decomposition of a real
matrix.

B-22 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

LUPCH 409 Updates the RTR Cholesky factorization of a real
symmetric positive definite matrix after a rank-one matrix
is added.

LUPQR 402 Computes an updated QR factorization after the rank-one
matrix �xyT is added.

MCRCR 1423 Multiplies two complex rectangular matrices, AB.

MOLCH 946 Solves a system of partial differential equations of the
form ut = f(x, t, u, ux, uxx) using the method of lines. The
solution is represented with cubic Hermite polynomials.

MRRRR 1421 Multiplies two real rectangular matrices, AB.

MUCBV 1436 Multiplies a complex band matrix in band storage mode
by a complex vector.

MUCRV 1435 Multiplies a complex rectangular matrix by a complex
vector.

MURBV 1433 Multiplies a real band matrix in band storage mode by a
real vector.

MURRV 1431 Multiplies a real rectangular matrix by a vector.

MXTXF 1415 Computes the transpose product of a matrix, ATA.

MXTYF 1416 Multiplies the transpose of matrix A by matrix B, ATB.

MXYTF 1418 Multiplies a matrx A by the transpose of a matrix B, ABT.

NAN 1486 Returns, as a scalar function, a value corresponding to the
IEEE 754 Standard format of floating point (ANSI/IEEE
1985) for NaN. .

N1RTY 1680 Retrieves an error type for the most recently called IMSL
routine.

NDAYS 1634 Computes the number of days from January 1, 1900, to
the given date.

NDYIN 1636 Gives the date corresponding to the number of days since
January 1, 1900.

NEQBF 1169 Solves a system of nonlinear equations using factored
secant update with a finite-difference approximation to
the Jacobian.

NEQBJ 1174 Solves a system of nonlinear equations using factored
secant update with a user-supplied Jacobian.

NEQNF 1162 Solves a system of nonlinear equations using a modified
Powell hybrid algorithm and a finite-difference
approximation to the Jacobian.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-23

NEQNJ 1165 Solves a system of nonlinear equations using a modified
Powell hybrid algorithm with a user-supplied Jacobian.

NNLPF 1323 Uses a sequential equality constrained QP method.

NNLPG 1329 Uses a sequential equality constrained QP method.

NORM 1487 Computes the norm of a rank-1 or rank-2 array. For rank-
3 arrays, the norms of each rank-2 array, in dimension 3,
are computed.

NR1CB 1449 Computes the 1-norm of a complex band matrix in band
storage mode.

NR1RB 1447 Computes the 1-norm of a real band matrix in band
storage mode.

NR1RR 1444 Computes the 1-norm of a real matrix.

NR2RR 1446 Computes the Frobenius norm of a real rectangular
matrix.

NRIRR 1443 Computes the infinity norm of a real matrix.

 OPERATOR: .h. 1472 Computes transpose and conjugate transpose of a matrix.

OPERATOR: .hx. 1471 Computes matrix-vector and matrix-matrix products.

OPERATOR:.i. 1473 Computes the inverse matrix, for square non-singular
matrices.

 OPERATOR:.ix. 1474 Computes the inverse matrix times a vector or matrix for
square non-singular matrices.

 OPERATOR:..t. 1472 Computes transpose and conjugate transpose of a matrix.

 OPERATOR:.tx. 1471 Computes matrix-vector and matrix-matrix products.

 OPERATOR:.x. 1471 Computes matrix-vector and matrix-matrix products..

 OPERATOR:..xh. 1471 Computes matrix-vector and matrix-matrix products.

 OPERATOR:..xi. 1474 Computes the inverse matrix times a vector or matrix for
square non-singular matrices.

 OPERATORS:.xt. 1471 Computes matrix-vector and matrix-matrix products.

ORTH 1488 Orthogonalizes the columns of a rank-2 or rank-3 array.

PCGRC 359 Solves a real symmetric definite linear system using a
preconditioned conjugate gradient method with reverse
communication.

PARALLEL_NONNEGATIVE_LSQ 67 Solves a linear, non-negative constrained least-squares
system.

 PARALLEL_BOUNDED_LSQ 75 Solves a linear least-squares system with bounds on
the unknowns.

 PDE_1D_MG 913 Method of lines with Variable Griddings.

B-24 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

PERMA 1602 Permutes the rows or columns of a matrix.

PERMU 1600 Rearranges the elements of an array as specified by a
permutation.

PGOPT 1599 Sets or retrieves page width and length for printing.

PLOTP 1664 Prints a plot of up to 10 sets of points.

POLRG 1429 Evaluates a real general matrix polynomial.

PP1GD 687 Evaluates the derivative of a piecewise polynomial on a
grid.

PPDER 684 Evaluates the derivative of a piecewise polynomial.

PPITG 690 Evaluates the integral of a piecewise polynomial.

PPVAL 681 Evaluates a piecewise polynomial.

PRIME 1668 Decomposes an integer into its prime factors.

QAND 806 Integrates a function on a hyper-rectangle.

QCOSB 1041 Computes a sequence from its cosine Fourier coefficients
with only odd wave numbers.

QCOSF 1039 Computes the coefficients of the cosine Fourier transform
with only odd wave numbers.

QCOSI 1043 Computes parameters needed by QCOSF and QCOSB.

QD2DR 699 Evaluates the derivative of a function defined on a
rectangular grid using quadratic interpolation.

QD2VL 696 Evaluates a function defined on a rectangular grid using
quadratic interpolation.

QD3DR 705 Evaluates the derivative of a function defined on a
rectangular three-dimensional grid using quadratic
interpolation.

QD3VL 702 Evaluates a function defined on a rectangular three-
dimensional grid using quadratic interpolation.

QDAG 775 Integrates a function using a globally adaptive scheme
based on Gauss-Kronrod rules.

QDAGI 782 Integrates a function over an infinite or semi-infinite
interval.

QDAGP 779 Integrates a function with singularity points given.

QDAGS 772 Integrates a function (which may have endpoint
singularities).

QDAWC 796 Integrates a function F(X)/(X � C) in the Cauchy principal
value sense.

QDAWF 789 Computes a Fourier integral.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-25

QDAWO 785 Integrates a function containing a sine or a cosine.

QDAWS 793 Integrates a function with algebraic-logarithmic
singularities.

QDDER 694 Evaluates the derivative of a function defined on a set of
points using quadratic interpolation.

QDNG 799 Integrates a smooth function using a nonadaptive rule.

QDVAL 692 Evaluates a function defined on a set of points using
quadratic interpolation.

QMC 809 Integrates a function over a hyperrectangle using a
quasi-Monte Carlo method.

 QPROG 1307 Solves a quadratic programming problem subject to linear
equality/inequality constraints.

 QSINB 1034 Computes a sequence from its sine Fourier coefficients
with only odd wave numbers.

 QSINF 1032 Computes the coefficients of the sine Fourier transform
with only odd wave numbers.

 QSINI 1037 Computes parameters needed by QSINF and QSINB.

 RAND 1489 Computes a scalar, rank-1, rank-2 or rank-3 array of
random numbers.

 RAND_GEN 1639 Generates a rank-1 array of random numbers.

 RANK 1490 Computes the mathematical rank of a rank-2 or rank-3
array.

RATCH 764 Computes a rational weighted Chebyshev approximation
to a continuous function on an interval.

RCONV 1059 Computes the convolution of two real vectors.

RCORL 1068 Computes the correlation of two real vectors.

RCURV 716 Fits a polynomial curve using least squares.

RECCF 818 Computes recurrence coefficients for various monic
polynomials.

RECQR 821 Computes recurrence coefficients for monic polynomials
given a quadrature rule.

RLINE 713 Fits a line to a set of data points using least squares.

RNGET 1648 Retrieves the current value of the seed used in the IMSL
random number generators.

RNOPT 1650 Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

RNSET 1649 Initializes a random seed for use in the IMSL random
number generators.

B-26 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

y

RNUN 1653 Generates pseudorandom numbers from a uniform (0, 1)
distribution.

RNUNF 1651 Generates a pseudorandom number from a uniform (0, 1)
distribution.

SADD 1370 Adds a scalar to each component of a vector, x � x + a,
all single precision.

SASUM 1373 Sums the absolute values of the components of a single-
precision vector.

SAXPY 1370 Computes the scalar times a vector plus a vector,
y � ax + y, all single precision.

ScaLaPACK_READ 1545 Reads matrix data from a file and transmits it into the
two-dimensional block-cyclic form required by
ScaLAPACK routines.

ScaLaPACK_WRITE 1547 Writes the matrix data to a file.

SCASUM 1322 Sums the absolute values of the real part together with the
absolute values of the imaginary part of the components
of a complex vector.

SCNRM2 1322 Computes the Euclidean norm of a complex vector.

SCOPY 1369 Copies a vector x to a vector y, both single precision.

SDDOTA 1321 Computes the sum of a single-precision scalar, a single-
precision dot product and the double-precision
accumulator, which is set to the result ACC � ACC + a +
xTy.

SDDOTI 1372 Computes the sum of a single-precision scalar plus a
singleprecision dot product using a double-precision
accumulator, which is set to the result ACC � a + xTy.

SDOT 1370 Computes the single-precision dot product xTy.

SDSDOT 1371 Computes the sum of a single-precision scalar and a
single precision dot product, a + xTy, using a double-
precision accumulator.

SGBMV 1381 Computes one of the matrix-vector operations:
,

where A is a matrix stored in band storage mode.
y Ax y y A xT
� � � �� � � �, or

SGEMM 1385 Computes one of the matrix-matrix operations:

.
C AB C C A B C C AB

C C A B C

T T

T T

� � � � �

� � �

� � � � �

� � �

, ,

, or

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-27

y
SGEMV 1381 Computes one of the matrix-vector operations:

, y Ax y y A xT
� � � �� � � �, or

SGER 1383 Computes the rank-one update of a real general matrix:
. A A xyT

� ��

SHOW 1571 Prints rank-1 or rank-2 arrays of numbers in a readable
format.

SHPROD 1372 Computes the Hadamard product of two single-precision
vectors.

SINLP 1081 Computes the inverse Laplace transform of a complex
function.

SLCNT 986 Calculates the indices of eigenvalues of a Sturm-Liouville
problem with boundary conditions (at regular points) in a
specified subinterval of the real line, [�, �].

SLEIG 973 Determines eigenvalues, eigenfunctions and/or spectral
density functions for Sturm-Liouville problems in the
form with boundary conditions (at regular points).

SLPRS 1301 Solves a sparse linear programming problem via the
revised simplex algorithm.

SNRM2 1373 Computes the Euclidean length or L� norm of a single-
precision vector.

 SORT_REAL 1604 Sorts a rank-1 array of real numbers x so the y results are
algebraically nondecreasing, y1 � y2 � � yn.

SPLEZ 618 Computes the values of a spline that either interpolates or
fits user-supplied data.

 SPLINE_CONSTRAINTS 562 Returns the derived type array result.

 SPLINE_FITTING 564 Weighted least-squares fitting by B-splines to discrete
One-Dimensional data is performed.

 SPLINE_VALUES 563 Returns an array result, given an array
of input

SPRDCT 1373 Multiplies the components of a single-precision vector.

 SRCH 1618 Searches a sorted vector for a given scalar and return its
index.

 SROT 1375 Applies a Givens plane rotation in single precision.

SROTG 1374 Constructs a Givens plane rotation in single precision.

SROTM 1377 Applies a modified Givens plane rotation in single
precision.

SROTMG 1376 Constructs a modified Givens plane rotation in single
precision.

B-28 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

y

C

y

SSBMV 1382 Computes the matrix-vector operation
,

where A is a symmetric matrix in band symmetric storage
mode.

y Ax� �� �

SSCAL 1369 Multiplies a vector by a scalar, y � ay, both single
precision.

 SSET 1369 Sets the components of a vector to a scalar, all single
precision.

 SSRCH 1622 Searches a character vector, sorted in ascending ASCII
order, for a given string and return its index.

SSUB 1370 Subtracts each component of a vector from a scalar,
x � a � x, all single precision.

SSUM 1372 Sums the values of a single-precision vector.

SSWAP 1370 Interchanges vectors x and y, both single precision.

SSYMM 1385 Computes one of the matrix-matrix operations:
,

where A is a symmetric matrix and B and C are m by n
matrices.

C AB C C BA� � �� � � � or +

SSYMV 1382 Computes the matrix-vector operation
,

where A is a symmetric matrix.
y Ax� �� �

SSYR 1384 Computes the rank-one update of a real symmetric
matrix:
A A xxT
� �� .

SSYR2 1384 Computes the rank-two update of a real symmetric
matrix:

. A A xy yxT T
� � �� �

SSYR2K 1386 Computes one of the symmetric rank 2k operations:
,

where C is an n by n symmetric matrix and A and B are n
by k matrices in the first case and k by n matrices in the
second case.

C AB BA C C A B B AT T T T
� � � � � �� � � � � or C�

C�

x

SSYRK 1386 Computes one of the symmetric rank k operations:
,

where C is an n by n symmetric matrix and A is an n by k
matrix in the first case and a k by n matrix in the second
case.

C AA C C A AT T
� � � �� � � or

STBMV 1382 Computes one of the matrix-vector operations:

where A is a triangular matrix in band storage mode.
x Ax x AT
� �or ,

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-29

x

x

B1 ,

x

STBSV 1383 Solves one of the triangular systems:

,

where A is a triangular matrix in band storage mode.

x A x x A
T

� �
� �1 1 or e j

STRMM 1387 Computes one of the matrix-matrix operations:
,

where B is an m by n matrix and A is a triangular matrix.
B AB B A B B BA B BAT T
� � � �� � � �, , or

STRMV 1382 Computes one of the matrix-vector operations:

where A is a triangular matrix.
x Ax x AT
� �or ,

STRSM 1387 Solves one of the matrix equations:

where B is an m by n matrix and A is a triangular matrix.

B A B B BA B A

B B A

T

T

� � �

�

� � �

�

� � �

�

1 1

1

, , e j

e jor

STRSV 1383 Solves one of the triangular linear systems:

where A is a triangular matrix.

x A x x A
T

� �
� �1 1 or e j

SUMAG 1664 Sets or retrieves MATH/LIBRARY single-precision
options.

 SURF 710 Computes a smooth bivariate interpolant to scattered data
that is locally a quintic polynomial in two variables.

SURFACE_CONSTRAINTS 574 Returns the derived type array result given
optional input.

 SURFACE_FITTING 577 Weighted least-squares fitting by tensor product
B-splines to discrete two-dimensional data
is performed.

 SURFACE_VALUES 575 Returns a tensor product array result, given two arrays of
independent variable values.

SVCAL 1369 Multiplies a vector by a scalar and store the result in
another vector, y � ax, all single precision.

SVD 1491 Computes the singular value decomposition of a rank-2 or
rank-3 array, TA USV� .

SVIBN 1615 Sorts an integer array by nondecreasing absolute value.

SVIBP 1617 Sorts an integer array by nondecreasing absolute value
and returns the permutation that rearranges the array.

SVIGN 1610 Sorts an integer array by algebraically increasing value.

B-30 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

SVIGP 1611 Sorts an integer array by algebraically increasing value
and returns the permutation that rearranges the array.

SVRBN 1612 Sorts a real array by nondecreasing absolute value.

SVRBP 1614 Sorts a real array by nondecreasing absolute value and
returns the permutation that rearranges the array.

SVRGN 1607 Sorts a real array by algebraically increasing value.

SVRGP 1608 Sorts a real array by algebraically increasing value and
returns the permutation that rearranges the array.

SXYZ 1372 Computes a single-precision xyz product.

TDATE 1633 Gets today’s date.

TIMDY 1632 Gets time of day.

TRNRR 1413 Transposes a rectangular matrix.

TWODQ 801 Computes a two-dimensional iterated integral.

UMACH 1688 Sets or retrieves input or output device unit numbers.

UMAG 1661 Handles MATH/LIBRARY and STAT/LIBRARY type
REAL and double precision options.

UMCGF 1219 Minimizes a function of N variables using a conjugate
gradient algorithm and a finite-difference gradient.

UMCGG 1223 Minimizes a function of N variables using a conjugate
gradient algorithm and a user-supplied gradient.

UMIAH 1213 Minimizes a function of N variables using a modified
Newton method and a user-supplied Hessian.

UMIDH 1208 Minimizes a function of N variables using a modified
Newton method and a finite-difference Hessian.

UMINF 1196 Minimizes a function of N variables using a quasi-New
method and a finite-difference gradient.

UMING 1202 Minimizes a function of N variables using a quasi-New
method and a user-supplied gradient.

UMPOL 1227 Minimizes a function of N variables using a direct search
polytope algorithm.

UNIT 1492 Normalizes the columns of a rank-2 or rank-3 array so
each has Euclidean length of value one.

UNLSF 1231 Solves a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a finite-difference
Jacobian.

UNLSJ 1237 Solves a nonlinear least squares problem using a modified
Levenberg-Marquardt algorithm and a user-supplied
Jacobian.

IMSL MATH/LIBRARY Appendix B: Alphabetical Summary of Routines � B-31

UVMGS 1193 Finds the minimum point of a nonsmooth function of a
single variable.

UVMID 1189 Finds the minimum point of a smooth function of a single
variable using both function evaluations and first
derivative evaluations.

UVMIF 1186 Finds the minimum point of a smooth function of a single
variable using only function evaluations.

VCONC 1457 Computes the convolution of two complex vectors.

VCONR 1455 Computes the convolution of two real vectors.

VERML 1638 Obtains IMSL MATH/LIBRARY-related version, system
and license numbers.

WRCRL 1588 Prints a complex rectangular matrix with a given format
and labels.

WRCRN 1586 Prints a complex rectangular matrix with integer row and
column labels.

WRIRL 1583 Prints an integer rectangular matrix with a given format
and labels.

WRIRN 1581 Prints an integer rectangular matrix with integer row and
column labels.

WROPT 1591 Sets or retrieves an option for printing a matrix.

WRRRL 1577 Prints a real rectangular matrix with a given format and
labels.

WRRRN 1575 Prints a real rectangular matrix with integer row and
column labels.

ZANLY 1153 Finds the zeros of a univariate complex function using
Müller’s method.

ZBREN 1156 Finds a zero of a real function that changes sign in a
given interval.

ZPLRC 1148 Finds the zeros of a polynomial with real coefficients
using Laguerre’s method.

ZPOCC 1152 Finds the zeros of a polynomial with complex coefficients
using the Jenkins-Traub three-stage algorithm.

ZPORC 1150 Finds the zeros of a polynomial with real coefficients
using the Jenkins-Traub three-stage algorithm.

ZQADD 1460 Adds a double complex scalar to the accumulator in
extended precision.

ZQINI 1460 Initializes an extended-precision complex accumulator to
a double complex scalar.

B-32 � Appendix B: Alphabetical Summary of Routines IMSL MATH/LIBRARY

ZQMUL 1460 Multiplies double complex scalars using extended
precision.

ZQSTO 1460 Stores a double complex approximation to an extended-
precision complex scalar.

ZREAL 1159 Finds the real zeros of a real function using Müller’s
method.

IMSL MATH/LIBRARY Appendix C: References � C-1

Appendix C: References

Aird and Howell
Aird, Thomas J., and Byron W. Howell (1991), IMSL Technical Report 9103, IMSL, Houston.

Aird and Rice
Aird, T.J., and J.R. Rice (1977), Systematic search in high dimensional sets, SIAM Journal on
Numerical Analysis, 14, 296�312.

Akima
Akima, H. (1970), A new method of interpolation and smooth curve fitting based on local
procedures, Journal of the ACM, 17, 589�602.

Akima, H. (1978), A method of bivariate interpolation and smooth surface fitting for irregularly
distributed data points, ACM Transactions on Mathematical Software, 4, 148�159.

Arushanian et al.
Arushanian, O.B., M.K. Samarin, V.V. Voevodin, E.E. Tyrtyshikov, B.S. Garbow, J.M. Boyle,
W.R. Cowell, and K.W. Dritz (1983), The TOEPLITZ Package Users’ Guide, Argonne National
Laboratory, Argonne, Illinois.

Ashcraft
Ashcraft, C. (1987), A vector implementation of the multifrontal method for large sparse,
symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering
Technology Applications Division, Boeing Computer Services, Seattle, Washington.

Ashcraft et al.
Ashcraft, C., R.Grimes, J. Lewis, B. Peyton, and H. Simon (1987), Progress in sparse matrix
methods for large linear systems on vector supercomputers. Intern. J. Supercomputer Applic.,
1(4), 10�29.

Atkinson
Atkinson, Ken (1978), An Introduction to Numerical Analysis, John Wiley & Sons, New York.

C-2 � Appendix C: References IMSL MATH/LIBRARY

Atchison and Hanson
Atchison, M.A., and R.J. Hanson (1991), An Options Manager for the IMSL Fortran 77 Libraries,
Technical Report 9101, IMSL, Houston.

Bischof et al.
Bischof, C., J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, D. Sorensen
(1988), LAPACK Working Note #5: Provisional Contents, Argonne National Laboratory Report
ANL-88-38, Mathematics and Computer Science.

Bjorck
Bjorck, Ake (1967), Iterative refinement of linear least squares solutions I, BIT, 7, 322�337.

Bjorck, Ake (1968), Iterative refinement of linear least squares solutions II, BIT, 8, 8�30.

Boisvert (1984)
Boisvert, Ronald (1984), A fourth order accurate fast direct method for the Helmholtz equation,
Elliptic Problem Solvers II, (edited by G. Birkhoff and A. Schoenstadt), Academic Press, Orlando,
Florida, 35�44.

Boisvert, Howe, and Kahaner
Boisvert, Ronald F., Sally E. Howe, and David K. Kahaner (1985), GAMS: A framework for the
management of scientific software, ACM Transactions on Mathematical Software, 11, 313�355.

Boisvert, Howe, Kahaner, and Springmann
Boisvert, Ronald F., Sally E. Howe, David K. Kahaner, and Jeanne L. Springmann (1990), Guide
to Available Mathematical Software, NISTIR 90-4237, National Institute of Standards and Tech-
nology, Gaithersburg, Maryland.

Brankin et al.
Brankin, R.W., I. Gladwell, and L.F. Shampine, RKSUITE: a Suite of Runge-Kutta Codes for the
Initial Value Problem for ODEs, Softreport 91-1, Mathematics Department, Southern Methodist
University, Dallas, Texas, 1991.

Brenan, Campbell, and Petzold
Brenan, K.E., S.L. Campbell, L.R. Petzold (1989), Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations, Elseview Science Publ. Co.

Brenner
Brenner, N. (1973), Algorithm 467: Matrix transposition in place [F1], Communication of ACM,
16, 692�694.

IMSL MATH/LIBRARY Appendix C: References � C-3

Brent
Brent, R.P. (1971), An algorithm with guaranteed convergence for finding a zero of a function,
The Computer Journal, 14, 422�425.

Brent, Richard P. (1973), Algorithms for Minimization without Derivatives, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey.

Brigham
Brigham, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, New
Jersey.

Cheney
Cheney, E.W. (1966), Introduction to Approximation Theory, McGraw-Hill, New York.

Cline et al.
Cline, A.K., C.B. Moler, G.W. Stewart, and J.H. Wilkinson (1979), An estimate for the condition
number of a matrix, SIAM Journal of Numerical Analysis, 16, 368�375.

Cody, Fraser, and Hart
Cody, W.J., W. Fraser, and J.F. Hart (1968), Rational Chebyshev approximation using linear
equations, Numerische Mathematik, 12, 242�251.

Cohen and Taylor
Cohen, E. Richard, and Barry N. Taylor (1986), The 1986 Adjustment of the Fundamental
Physical Constants, Codata Bulletin, Pergamon Press, New York.

Cooley and Tukey
Cooley, J.W., and J.W. Tukey (1965), An algorithm for the machine computation of complex
Fourier series, Mathematics of Computation, 19, 297�301.

Courant and Hilbert
Courant, R., and D. Hilbert (1962), Methods of Mathematical Physics, Volume II, John Wiley &
Sons, New York, NY.

Craven and Wahba
Craven, Peter, and Grace Wahba (1979), Smoothing noisy data with spline functions, Numerische
Mathematik, 31, 377�403.

Crowe et al.
Crowe, Keith, Yuan-An Fan, Jing Li, Dale Neaderhouser, and Phil Smith (1990), A direct sparse
linear equation solver using linked list storage, IMSL Technical Report 9006, IMSL, Houston.

C-4 � Appendix C: References IMSL MATH/LIBRARY

Crump
Crump, Kenny S. (1976), Numerical inversion of Laplace transforms using a Fourier series
approximation, Journal of the Association for Computing Machinery, 23, 89�96.

Davis and Rabinowitz
Davis, Philip F., and Philip Rabinowitz (1984), Methods of Numerical Integration, Academic
Press, Orlando, Florida.

de Boor
de Boor, Carl (1978), A Practical Guide to Splines, Springer-Verlag, New York.

de Hoog, Knight, and Stokes
de Hoog, F.R., J.H. Knight, and A.N. Stokes (1982), An improved method for numerical inversion
of Laplace transforms. SIAM Journal on Scientific and Statistical Computing, 3, 357�366.

Dennis and Schnabel
Dennis, J.E., Jr., and Robert B. Schnabel (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Dongarra et al.
Dongarra, J.J., and C.B. Moler, (1977) EISPACK � A package for solving matrix eigenvalue
problems, Argonne National Laboratory, Argonne, Illinois.

Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart (1979), LINPACK Users’ Guide, SIAM,
Philadelphia.

Dongarra, J.J., J. DuCroz, S. Hammarling, R. J. Hanson (1988), An Extended Set of Fortran basic
linear algebra subprograms, ACM Transactions on Mathematical Software, 14 , 1�17.

Dongarra, J.J., J. DuCroz, S. Hammarling, I. Duff (1990), A set of level 3 basic linear algebra
subprograms, ACM Transactions on Mathematical Software, 16 , 1�17.

Draper and Smith
Draper, N.R., and H. Smith (1981), Applied Regression Analysis, second edition, John Wiley &
Sons, New York.

Du Croz et al.
Du Croz, Jeremy, P. Mayes, G. and Radicati (1990), Factorization of band matrices using Level-3
BLAS, Proceedings of CONPAR 90 VAPP IV, Lecture Notes in Computer Science, Springer,
Berlin, 222.

Duff and Reid
Duff, I.S., and J.K. Reid (1983), The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Transactions on Mathematical Software, 9, 302�325.

IMSL MATH/LIBRARY Appendix C: References � C-5

Duff, I.S., and J.K. Reid (1984), The multifrontal solution of unsymmetric sets of linear equations.
SIAM Journal on Scientific and Statistical Computing, 5, 633�641.

Duff et al.
Duff, I.S., A.M. Erisman, and J.K. Reid (1986), Direct Methods for Sparse Matrices, Clarendon
Press, Oxford.

Enright and Pryce
Enright, W.H., and J.D. Pryce (1987), Two FORTRAN packages for assessing initial value
methods, ACM Transactions on Mathematical Software, 13, 1�22.

Forsythe
Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data with a digital
computer, SIAM Journal on Applied Mathematics, 5, 74�88.

Fox, Hall, and Schryer
Fox, P.A., A.D. Hall, and N.L. Schryer (1978), The PORT mathematical subroutine library, ACM
Transactions on Mathematical Software, 4, 104�126.

Garbow
Garbow, B.S. (1978) CALGO Algorithm 535: The QZ algorithm to solve the generalized eigenvalue
problem for complex matrices, ACM Transactions on Mathematical Software, 4, 404�410.

Garbow et al.
Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1972), Matrix eigensystem Routines:
EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., J.M. Boyle, J.J. Dongarra, and C.B. Moler (1977), Matrix Eigensystem Routines�
EISPACK Guide Extension, Springer-Verlag, New York.

Garbow, B.S., G. Giunta, J.N. Lyness, and A. Murli (1988), Software for an implementation of
Weeks’ method for the inverse Laplace transform problem, ACM Transactions of Mathematical
Software, 14, 163�170.

Gautschi
Gautschi, Walter (1968), Construction of Gauss-Christoffel quadrature formulas, Mathematics of
Computation, 22, 251�270.

Gautschi and Milovanofic
Gautschi, Walter, and Gradimir V. Milovanofic (1985), Gaussian quadrature involving Einstein
and Fermi functions with an application to summation of series, Mathematics of Computation, 44,
177�190.

C-6 � Appendix C: References IMSL MATH/LIBRARY

Gay
Gay, David M. (1981), Computing optimal locally constrained steps, SIAM Journal on Scientific
and Statistical Computing, 2, 186�197.

Gay, David M. (1983), Algorithm 611: Subroutine for unconstrained minimization using a
model/trust-region approach, ACM Transactions on Mathematical Software, 9, 503� 524.

Gear
Gear, C.W. (1971), Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, New Jersey.

Gear and Petzold
Gear, C.W., and Linda R. Petzold (1984), ODE methods for the solutions of differential/algebraic
equations, SIAM Journal Numerical Analysis, 21, #4, 716.

George and Liu
George, A., and J.W.H. Liu (1981), Computer Solution of Large Sparse Positive-definite Systems,
Prentice-Hall, Englewood Cliffs, New Jersey.

Gill et al.
Gill, Philip E., and Walter Murray (1976), Minimization subject to bounds on the variables, NPL
Report NAC 72, National Physical Laboratory, England.

Gill, Philip E., Walter Murray, and Margaret Wright (1981), Practical Optimization, Academic
Press, New York.

Gill, P.E., W. Murray, M.A. Saunders, and M.H. Wright (1985), Model building and practical
aspects of nonlinear programming, in Computational Mathematical Programming, (edited by K.
Schittkowski), NATO ASI Series, 15, Springer-Verlag, Berlin, Germany.

Goldfarb and Idnani
Goldfarb, D., and A. Idnani (1983), A numerically stable dual method for solving strictly convex
quadratic programs, Mathematical Programming, 27, 1�33.

Golub
Golub, G.H. (1973), Some modified matrix eigenvalue problems, SIAM Review, 15, 318�334.

Golub and Van Loan
Golub, Gene H., and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins
University Press, Baltimore, Maryland.

Golub, Gene H., and Charles F. Van Loan (1989), Matrix Computations, 2d ed., Johns Hopkins
University Press, Baltimore, Maryland.

IMSL MATH/LIBRARY Appendix C: References � C-7

Golub and Welsch
Golub, G.H., and J.H. Welsch (1969), Calculation of Gaussian quadrature rules, Mathematics of
Computation, 23, 221�230.

Gregory and Karney
Gregory, Robert, and David Karney (1969), A Collection of Matrices for Testing Computational
Algorithms, Wiley-Interscience, John Wiley & Sons, New York.

Griffin and Redish
Griffin, R., and K.A. Redish (1970), Remark on Algorithm 347: An efficient algorithm for sorting
with minimal storage, Communications of the ACM, 13, 54.

Grosse
Grosse, Eric (1980), Tensor spline approximation, Linear Algebra and its Applications, 34, 29�41.

Guerra and Tapia
Guerra, V., and R. A. Tapia (1974), A local procedure for error detection and data smoothing,
MRC Technical Summary Report 1452, Mathematics Research Center, University of Wisconsin,
Madison.

Hageman and Young
Hageman, Louis A., and David M.Young (1981), Applied Iterative Methods, Academic Press,
New York.

Hanson
Hanson, Richard J. (1986), Least squares with bounds and linear constraints, SIAM Journal Sci.
Stat. Computing, 7, #3.

Hanson, Richard.J. (1990), A cyclic reduction solver for the IMSL Mathematics Library, IMSL
Technical Report 9002, IMSL, Houston.

Hanson et al.
Hanson, Richard J., R. Lehoucq, J. Stolle, and A. Belmonte (1990), Improved performance of
certain matrix eigenvalue computations for the IMSL/MATH Library, IMSL Technical Report
9007, IMSL, Houston.

Hartman
Hartman, Philip (1964) Ordinary Differential Equations, John Wiley and Sons, New York, NY.

Hausman
Hausman, Jr., R.F. (1971), Function Optimization on a Line Segment by Golden Section,
Lawrence Radiation Laboratory, University of California, Livermore.

C-8 � Appendix C: References IMSL MATH/LIBRARY

Hindmarsh
Hindmarsh, A.C. (1974), GEAR: Ordinary differential equation system solver, Lawrence
Livermore Laboratory Report UCID�30001, Revision 3.

Hull et al.
Hull, T.E., W.H. Enright, and K.R. Jackson (1976), User’s guide for DVERK � A subroutine for
solving non-stiff ODEs, Department of Computer Science Technical Report 100, University of
Toronto.

IEEE
ANSI/IEEE Std 754-1985 (1985), IEEE Standard for Binary Floating-Point Arithmetic, The
IEEE, Inc., New York.

IMSL (1991)
IMSL (1991), IMSL STAT/LIBRARY User’s Manual, Version 2.0, IMSL, Houston.

Irvine et al.
Irvine, Larry D., Samuel P. Marin, and Philip W. Smith (1986), Constrained interpolation and
smoothing, Constructive Approximation, 2, 129�151.

Jenkins
Jenkins, M.A. (1975), Algorithm 493: Zeros of a real polynomial, ACM Transactions on
Mathematical Software, 1, 178�189.

Jenkins and Traub
Jenkins, M.A., and J.F. Traub (1970), A three-stage algorithm for real polynomials using quadratic
iteration, SIAM Journal on Numerical Analysis, 7, 545�566.

Jenkins, M.A., and J.F. Traub (1970), A three-stage variable-shift iteration for polynomial zeros
and its relation to generalized Rayleigh iteration, Numerische Mathematik, 14, 252�263.

Jenkins, M.A., and J.F. Traub (1972), Zeros of a complex polynomial, Communications of the
ACM, 15, 97�99.

Kennedy and Gentle
Kennedy, William J., Jr., and James E. Gentle (1980), Statistical Computing, Marcel Dekker, New
York.

Kershaw
Kershaw, D. (1982), Solution of tridiagonal linear systems and vectorization of the ICCG
algorithm on the Cray-1, Parallel Computations, Academic Press, Inc., 85-99.

IMSL MATH/LIBRARY Appendix C: References � C-9

Knuth
Knuth, Donald E. (1973), The Art of Computer Programming, Volume 3: Sorting and Searching,
Addison-Wesley Publishing Company, Reading, Mass.

Lawson et al.
Lawson, C.L., R.J. Hanson, D.R. Kincaid, and F.T. Krogh (1979), Basic linear algebra
subprograms for Fortran usage, ACM Transactions on Mathematical Software, 5, 308� 323.

Leavenworth
Leavenworth, B. (1960), Algorithm 25: Real zeros of an arbitrary function, Communications of the
ACM, 3, 602.

Levenberg
Levenberg, K. (1944), A method for the solution of certain problems in least squares, Quarterly of
Applied Mathematics, 2, 164�168.

Lewis et al.
Lewis, P.A. W., A.S. Goodman, and J.M. Miller (1969), A pseudo-random number generator for
the System/360, IBM Systems Journal, 8, 136�146.

Liepman
Liepman, David S. (1964), Mathematical constants, in Handbook of Mathematical Functions,
Dover Publications, New York.

Liu
Liu, J.W.H. (1986), On the storage requirement in the out-of-core multifrontal method for sparse
factorization. ACM Transactions on Mathematical Software, 12, 249�264.

Liu, J.W.H. (1987), A collection of routines for an implementation of the multifrontal method,
Technical Report CS-87-10, Department of Computer Science, York University, North York,
Ontario, Canada.

Liu, J.W.H. (1989), The multifrontal method and paging in sparse Cholesky factorization. ACM
Transactions on Mathematical Software, 15, 310�325.

Liu, J.W.H. (1990), The multifrontal method for sparse matrix solution: theory and practice,
Technical Report CS-90-04, Department of Computer Science, York University, North York,
Ontario, Canada.

Liu and Ashcraft
Liu, J., and C. Ashcraft (1987), A vector implementation of the multifrontal method for large
sparse, symmetric positive definite linear systems, Technical Report ETA-TR-51, Engineering
Technology Applications Division, Boeing Computer Services, Seattle, Washington.

C-10 � Appendix C: References IMSL MATH/LIBRARY

Lyness and Giunta
Lyness, J.N. and G. Giunta (1986), A modification of the Weeks Method for numerical inversion
of the Laplace transform, Mathmetics of Computation, 47, 313�322.

Madsen and Sincovec
Madsen, N.K., and R.F. Sincovec (1979), Algorithm 540: PDECOL, General collocation software
for partial differential equations, ACM Transactions on Mathematical Software, 5, #3, 326-351.

Marquardt
Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear parameters, SIAM
Journal on Applied Mathematics, 11, 431�441.

Martin and Wilkinson
Martin, R.S., and J.W. Wilkinson (1968), Reduction of the symmetric eigenproblem Ax = �Bx and
related problems to standard form, Numerische Mathematik, 11, 99�119.

Micchelli et al.
Micchelli, C.A., T.J. Rivlin, and S. Winograd (1976), The optimal recovery of smooth functions,
Numerische Mathematik, 26, 279�285

Micchelli, C.A., Philip W. Smith, John Swetits, and Joseph D. Ward (1985), Constrained Lp
approximation, Constructive Approximation, 1, 93�102.

Moler and Stewart
Moler, C., and G.W. Stewart (1973), An algorithm for generalized matrix eigenvalue problems,
SIAM Journal on Numerical Analysis, 10, 241�256.

More et al.
More, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User guide for MINPACK-1,
Argonne National Labs Report ANL-80-74, Argonne, Illinois.

Muller
Muller, D.E. (1956), A method for solving algebraic equations using an automatic computer,
Mathematical Tables and Aids to Computation, 10, 208�215.

Murtagh
Murtagh, Bruce A. (1981), Advanced Linear Programming: Computation and Practice, McGraw-
Hill, New York.

Murty
Murty, Katta G. (1983), Linear Programming, John Wiley and Sons, New York.

IMSL MATH/LIBRARY Appendix C: References � C-11

Nelder and Mead
Nelder, J.A., and R. Mead (1965), A simplex method for function minimization, Computer
Journal 7, 308�313.

Neter and Wasserman
Neter, John, and William Wasserman (1974), Applied Linear Statistical Models, Richard D. Irwin,
Homewood, Ill.

Park and Miller
Park, Stephen K., and Keith W. Miller (1988), Random number generators: good ones are hard to
find, Communications of the ACM, 31, 1192�1201.

Parlett
Parlett, B.N. (1980), The Symmetric Eigenvalue Problem, Prentice�Hall, Inc., Englewood Cliffs,
New Jersey.

Pereyra
Pereyra, Victor (1978), PASVA3: An adaptive finite-difference FORTRAN program for first
order nonlinear boundary value problems, in Lecture Notes in Computer Science, 76, Springer-
Verlag, Berlin, 67�88.

Petro
Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with minimal
storage, Communications of the ACM, 13, 624.

Petzold
Petzold, L.R. (1982), A description of DASSL: A differential/ algebraic system solver,
Proceedings of the IMACS World Congress, Montreal, Canada.

Piessens et al.
Piessens, R., E. deDoncker-Kapenga, C.W. Uberhuber, and D.K. Kahaner (1983), QUADPACK,
Springer-Verlag, New York.

Powell
Powell, M.J.D. (1977), Restart procedures for the conjugate gradient method, Mathematical
Programming, 12, 241�254.

Powell, M.J.D. (1978), A fast algorithm for nonlinearly constrained optimization calculations, in
Numerical Analysis Proceedings, Dundee 1977, Lecture Notes in Mathematics, (edited by G.A.
Watson), 630, Springer-Verlag, Berlin, Germany, 144�157.

Powell, M.J.D. (1983), ZQPCVX a FORTRAN subroutine for convex quadratic programming,
DAMTP Report NA17, Cambridge, England.

C-12 � Appendix C: References IMSL MATH/LIBRARY

Powell, M.J.D. (1985), On the quadratic programming algorithm of Goldfarb and Idnani,
Mathematical Programming Study, 25, 46-61.

Powell, M.J.D. (1988), A tolerant algorithm for linearly constrained optimization calculations,
DAMTP Report NA17, University of Cambridge, England.

Powell, M.J.D. (1989), TOLMIN: A fortran package for linearly constrained optimization
calculations, DAMTP Report NA2, University of Cambridge, England.

Pruess and Fulton
Pruess, S. and C.T. Fulton (1993), Mathematical Software for Sturm-Liouville Problems, ACM
Transactions on Mathematical Software, 17, 3, 360�376.

Reinsch
Reinsch, Christian H. (1967), Smoothing by spline functions, Numerische Mathematik, 10,
177�183.

Rice
Rice, J.R. (1983), Numerical Methods, Software, and Analysis, McGraw-Hill, New York.

Saad and Schultz
Saad, Y., and M.H. Schultz (1986), GMRES: a generalized minimal residual residual algorithm
for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856�869.

Schittkowski
Schittkowski, K. (1987), More test examples for nonlinear programming codes, SpringerVerlag,
Berlin, 74.

Schnabel
Schnabel, Robert B. (1985), Finite Difference Derivatives � Theory and Practice, Report, National
Bureau of Standards, Boulder, Colorado.

Schreiber and Van Loan
Schreiber, R., and C. Van Loan (1989), A Storage�Efficient WY Representation for Products of
Householder Transformations, SIAM J. Sci. Stat. Comp., Vol. 10, No. 1, pp. 53-57, January
(1989).

Scott et al.
Scott, M.R., L.F. Shampine, and G.M. Wing (1969), Invariant Embedding and the Calculation of
Eigenvalues for Sturm-Liouville Systems, Computing, 4, 10�23.

IMSL MATH/LIBRARY Appendix C: References � C-13

Sewell
Sewell, Granville (1982), IMSL software for differential equations in one space variable, IMSL
Technical Report 8202, IMSL, Houston.

Shampine
Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of the ACM, 18,
179�180.

Shampine and Gear
Shampine, L.F. and C.W. Gear (1979), A user’s view of solving stiff ordinary differential
equations, SIAM Review, 21, 1�17.

Sincovec and Madsen
Sincovec, R.F., and N.K. Madsen (1975), Software for nonlinear partial differential equations,
ACM Transactions on Mathematical Software, 1, #3, 232-260.

Singleton
Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal storage,
Communications of the ACM, 12, 185�187.

Smith
Smith, B.T. (1967), ZERPOL, A Zero Finding Algorithm for Polynomials Using Laguerre’s
Method, Department of Computer Science, University of Toronto.

Smith et al.
Smith, B.T., J.M. Boyle, J.J. Dongarra, B.S. Garbow, Y. Ikebe, V.C. Klema, and C.B. Moler
(1976), Matrix Eigensystem Routines � EISPACK Guide, Springer-Verlag, New York.

Spang
Spang, III, H.A. (1962), A review of minimization techniques for non-linear functions, SIAM
Review, 4, 357�359.

Stewart
Stewart, G.W. (1973), Introduction to Matrix Computations, Academic Press, New York.

Stewart, G.W. (1976), The economical storage of plane rotations, Numerische Mathematik, 25,
137�139.

Stoer
Stoer, J. (1985), Principles of sequential quadratic programming methods for solving nonlinear
programs, in Computational Mathematical Programming, (edited by K. Schittkowski), NATO
ASI Series, 15, Springer-Verlag, Berlin, Germany.

C-14 � Appendix C: References IMSL MATH/LIBRARY

Stroud and Secrest
Stroud, A.H., and D.H. Secrest (1963), Gaussian Quadrature Formulae, Prentice-Hall,
Englewood Cliffs, New Jersey.

Titchmarsh
Titchmarsh, E. Eigenfunction Expansions Associated with Second Order Differential Equations,
Part I, 2d Ed., Oxford University Press, London, 1962.

Trench
Trench, W.F. (1964), An algorithm for the inversion of finite Toeplitz matrices, Journal of the
Society for Industrial and Applied Mathematics, 12, 515�522.

Walker
Walker, H.F. (1988), Implementation of the GMRES method using Householder transformations,
SIAM J. Sci. Stat. Comput., 9, 152�163.

Washizu
Washizu, K. (1968), Variational Methods in Elasticity and Plasticity, Pergamon Press, New York.

Watkins and Elsner
Watkins, D.S., and L. Elsner (1990), Convergence of algorithms of decomposition type for the
eigenvalue problem, Linear Algebra and Applications (to appear).

Weeks
Weeks, W.T. (1966), Numerical inversion of Laplace transforms using Laguerre functions, J.
ACM, 13, 419�429.

Wilkinson
Wilkinson, J.H. (1965),The Algebraic Eigenvalue Problem, Oxford University Press, London,
635.

IMSL MATH LIBRARY Product Support � i

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of the IMSL
Libraries. Visual Numerics can consult on the following topics:

 Clarity of documentation

 Possible Visual Numerics-related programming problems

 Choice of IMSL Libraries functions or procedures for a particular problem

 Evolution of the IMSL Libraries

Not included in these consultation topics are mathematical/statistical consulting and debugging of
your program.

Consultation
Contact Visual Numerics Product Support by faxing 713/781-9260 or by emailing:

 support@houston.vni.com.

The following describes the procedure for consultation with Visual Numerics.

1. Include your serial (or license) number

2. Include the product name and version number: IMSL Fortran Library Version 5.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description of the
problem

ii � Product Support IMSL MATH LIBRARY

IMSL MATH/LIBRARY Index � iii

Index

1

1-norm 1444, 1447, 1449, 1452

2

2DFT (Discrete Fourier Transform)
989, 1000, 11

3

3DFT (Discrete Fourier Transform)
989, 11

A

Aasen' s method 19, 21
accuracy estimates of eigenvalues,

example 446
Adams xiii
Adams-Moulton's method 854
adjoint eigenvectors, example 446
adjoint matrix xvi
ainv= optional argument xviii
Akima interpolant 600
algebraic-logarithmic singularities

793
ANSI xiii, 1485, 1486, 14, 22
arguments, optional subprogram

xviii
array permutation 1600
ASCII collating sequence 1627
ASCII values 1624, 1625, 1626

B

band Hermitian storage mode 276,
279, 284, 288, 290, 292, 295,
1693

band storage mode 213, 216, 219,
227, 230, 257, 259, 262, 271,

274, 1392, 1393, 1395, 1397,
1398, 1400, 1405, 1411, 1433,
1436, 1438, 1441, 1447, 1449,
1691

band symmetric storage mode 232,
234, 240, 243, 245, 247, 250,
252, 254, 257, 259, 262, 265,
268, 271, 274, 276, 279, 282,
284, 288, 290, 292, 295, 297,
301, 306, 485, 487, 490, 492,
495, 498, 501, 1409, 1692

band triangular storage mode 1694
Basic Linear Algebra Subprograms

1366
basis functions 720
bidiagonal matrix 60
bilinear form 1427
BLACS 1555
BLAS 1366, 1367, 1377, 1378, 1379

Level 1 1366, 1367
Level 2 1377, 1378, 1379
Level 3 1377, 1378, 1379

block-cyclic decomposition
reading, writing utility 1555

Blocking Output 1486
boundary conditions 870
boundary value problem 53
Brenan 54
Broyden’s update 1148
B-spline coefficients 622, 725, 734
B-spline representation 641, 643,

646, 649, 680
B-splines 556

C

Campbell 54
Cauchy principal value 770, 796
central differences 1336
changing messages 1570
character arguments 1625
character sequence 1629
character string 1630
character workspace 1701
Chebyshev approximation 559, 764
Chebyshev polynomials 30
Cholesky

algorithm 21
decomposition 18, 437, 451
factorization 1475, 5
method 22

Cholesky decomposition 406
Cholesky factorization 143, 146,

148, 153, 237, 240, 243, 250,

iv � Contents IMSL MATH/LIBRARY

282, 295, 327, 331, 336, 344,
349, 352, 409, 412

circulant linear system 356
circulant matrices 8
classical weight functions 811, 824
codiagonal band hermitian storage

mode 282
codiagonal band Hermitian storage

mode 1696
codiagonal band symmetric storage

mode 237, 1695
coefficient matrix 225, 245, 268,

290, 306, 309, 314, 319, 323,
327, 331, 336, 340, 349, 352,
354, 356, 359, 365, 368, 378,
381, 385, 388, 392, 396, 398,
402, 406, 409, 415, 419, 424

coefficients 1032, 1039
column pivoting 406
companion matrix 443
complex function 1078, 1081
complex periodic sequence 1017,

1019
complex sparse Hermitian positive

definite system 340, 349, 352
complex sparse system 309, 319
complex triangular system 130
complex tridiagonal system 252
complex vectors 1064, 1073
computing

eigenvalues, example 434
the rank of A 36
the SVD 59

computing eigenvalues, example 442
condition number 125, 132, 446
conjugate gradient algorithm 1219,

1223
conjugate gradient method 359, 365
continuous Fourier transform 991
continuous function 764
convolution 1059, 1064, 1455, 1457
convolutions, real or complex

periodic sequences 998
coordinate transformation 398
correlation 1068, 1073
cosine 785
cosine Fourier coefficients 1041
cosine Fourier transform 1039
covariance matrix 22, 27, 28
CPU time 1631
crossvalidation 761
cross-validation with weighting,

example 64
cubic spline 609, 610, 613, 616
cubic spline approximation 758, 761

cubic spline interpolant 587, 590,
593, 597, 600, 603, 606

cubic splines 557
cyclic reduction 44, 47, 48
cyclic reduction algorithm 254
cyclical 2D data, linear trend 1002
cyclical data, linear trend 995

D

DASPG routine 54
data fitting

polynomial 30
two dimensional 33

data points 713
data, optional xviii
date 1633, 1634, 1636, 1637
decomposition, singular value 1, 36,

19
degree of accuracy 1677
deprecated routines 1701
determinant 1477, 8
determinant of A 9
determinants 99, 119, 127, 128, 153,

172, 207, 230, 250, 274, 295
determinants 7
DFT (Discrete Fourier Transform)

992
differential algebraic equations 834
Differential Algebraic Equations 452
differential equations 833, 870
differential-algebraic solver 54
diffusion equation 53
direct- access message file 1570
direct search complex algorithm

1271
direct search polytope algorithm

1227
discrete Fourier cosine

transformation 1028
discrete Fourier sine transformation

1024
discrete Fourier transform 991, 1482,

1484, 11, 13
inverse 1483, 13

dot product 1370, 1371, 1372
double precision xiii, 1460
DOUBLE PRECISION types xv

E

efficient solution method 444
eigensystem

complex 467, 537, 540, 542

IMSL MATH/LIBRARY Index � v

Hermitian 518
real 460, 483, 529, 531, 535

symmetric 501, 549
eigenvalue 1480, 9
eigenvalue-eigenvector

decomposition 434, 437, 1480, 9
expansion (eigenexpansion) 435

eigenvalues 455, 457, 462, 464, 469,
471, 473, 475, 478, 480, 485,
487, 490, 492, 495, 498, 502,
505, 508, 510, 513, 515, 520,
522, 525, 526, 529, 531, 537,
540, 544, 547

eigenvalues, self-adjoint matrix 23,
427, 432, 439, 18

eigenvectors 50, 432, 435, 437, 439,
457, 464, 471, 475, 480, 487,
492, 498, 505, 510, 515, 522,
526, 531, 540, 547

endpoint singularities 772
equality constraint, least squares 35
error detection 754
error handling xix, 1680
errors 1677, 1678, 1679

alert 1678
detection 1677
fatal 1678
informational 1678
multiple 1677
note 1678
printing error messages 1568
severity 1677
terminal 1677, 1679
warning 1678

Euclidean (2-norm) distance 1450
Euclidean length 1492, 30
even sequence 1028
example

least-squares, by rows
distributed 70

linear constraints
distributed 77

linear inequalities
distributed 69

linear system
distributed, ScaLAPACK 1566

matrix product
distributed, PBLAS 1563

Newton's Method
distributed 77

transposing matrix
distributed 1560

examples
accuracy estimates of eigenvalues

446

accurate least-squares solution
with iterative refinement 25

analysis and reduction of a
generalized eigensystem 437

complex polynomial equation
Roots 443

computing eigenvalues 434, 442
computing eigenvectors with

inverse iteration 435
computing generalized eigenvalues

450
computing the SVD 59
constraining a spline surface to be

non-negative interpolation to
data 585

constraining points using spline
surface 583

convolution with Fourier
Transform 998

cross-validation with weighting 64
cyclical 2D data with a linear trend

1002
cyclical data with a linear trend

995
eigenvalue-eigenvector expansion

of a square matrix 435
evaluating the matrix exponential

14, 16
Generalized Singular Value

Decomposition 62
generating strategy with a

histogram 1644
generating with a Cosine

distribution 1646
internal write of an array 1574
iterative refinement and use of

partial pivoting 48
Laplace transform solution 41
larger data uncertainty 453
least squares with an equality

constraint 35
least-squares solution of a

rectangular system 38
linear least squares with a

quadratic constraint 60
matrix inversion and determinant

13
natural cubic spline interpolation

to data 565
parametric representation of a

sphere 581
periodic curves 572
polar decomposition of a square

matrix 39
printing an array 1573

vi � Contents IMSL MATH/LIBRARY

reduction of an array of black and
white 40

ridge regression 64
running mean and variance 1641
seeding, using, and restoring the

generator 1643
selected eigenvectors of tridiagonal

matrices 50
self-adjoint, positive definite

generalized eigenvalue
problem 451

several 2D transforms with
initialization 1004

several transforms with
initialization 997

shaping a curve and its derivatives
567

solution of multiple tridiagonal
systems 47

solving a linear least squares
system of equations 20, 29

solving a linear system of
equations 12

solving parametric linear systems
with scalar change 444

sort and final move with a
permutation 1606

sorting an array 1605
splines model a random number

generator 569
system solving with Cholesky

method 22
system solving with the

generalized inverse 31
tensor product spline fitting of data

579
test for a regular matrix pencil 452
transforming array of random

complex numbers 994, 1002,
1008

tridiagonal matrix solving 53
two-dimensional data fitting 33
using inverse iteration for an

eigenvector 23
examples list

operator 1494
parallel 1528

exclusive OR 1642
extended precision arithmetic 1460

F

factored secant update 1169, 1174
factorization, LU 9

Fast Fourier Transforms 990
Faure 1655, 1657, 37, 11
Faure sequence 1554, 1655, 1656,

37, 11
Fejer quadrature rule 824
FFT (Fast Fourier Transform) 995,

1002, 1009
finite difference gradient 1323
finite-difference approximation

1162, 1169
finite-difference gradient 1196,

1219, 1243
finite-difference Hessian 1208
finite-difference Jacobian 1231
first derivative 827
first derivative evaluations 1189
first order differential 889
FORTRAN 77

combining with Fortran 90 xiii
Fortran 90

language xiii
rank-2 array xviii
real-time clock 1642

forward differences 1338, 1340,
1343, 1346

Fourier coefficients 1009, 1012,
1017, 1019, 1045, 1051

Fourier integral 789
Fourier transform 1048, 1055
Frobenius norm 1446
full storage mode 1400
Fushimi 1641, 1643

G

Galerkin principle 54
Gauss quadrature 771
Gauss quadrature rule 811, 815
Gaussian elimination 297, 301, 306,

309, 323, 340, 344
Gauss-Kronrod rules 775
Gauss-Lobatto quadrature rule 811,

815
Gauss-Radau quadrature rule 811,

815
Gear’s BDF method 854
generalized

eigenvalue 437, 450, 1480, 9
feedback shift register (GFSR)

1640
inverse

matrix 27, 28, 31
generalized inverse

system solving 31

IMSL MATH/LIBRARY Index � vii

generator 1643, 1646
getting started xvii
GFSR algorithm 1642
Givens plane rotation 1374
Givens transformations 1376, 1377
globally adaptive scheme 775
Golub 13, 21, 31, 35, 60, 62, 64, 434,

437, 443
gradient 1336, 1338, 1343, 1349
Gray code 1658
GSVD 62

H

Hadamard product 1372, 1425
Hanson 434
harmonic series 995, 1002
Helmholtz’s equation 961
Helmholtz's equation 967
Hermite interpolant 597
Hermite polynomials 946
Hermitian positive definite system

173, 176, 185, 187, 190, 276,
279, 290, 292

Hermitian system 191, 194, 202, 204
Hessenberg matrix, upper 439, 443
Hessian 1213, 1257, 1263, 1340,

1343, 1352
High Performance Fortran

HPF 1555
histogram 1644
Horner's scheme 1431
Householder 451
Householder transformations 381,

392
hyper-rectangle 806

I
IEEE 1485, 1486, 14, 22
infinite eigenvalues 450
infinite interval 782
infinity norm 1443
infinity norm distance 1454
informational errors 1678
initialization, several 2D transforms

1004
initialization, several transforms 997
initial-value problem 837, 844, 854
integer options 1658
INTEGER types xv
integrals 616
integration 772, 775, 779, 782, 785,

793, 796, 799, 806

interface block xiii
internal write 1574
interpolation 561

cubic spline 587, 590
quadratic 559
scattered data 559

inverse 9
iteration, computing eigenvectors

23, 51, 435
matrix xviii, 10, 18, 22

generalized 27, 28
transform 993, 1000, 1006

inverse matrix 9
isNaN 1486
ISO xiii
iterated integral 801
iterative refinement xviii, 6, 7, 48,

83, 96, 116, 138, 140, 143,
146, 148, 150, 153, 154, 156,
159, 169, 187, 190, 204, 227,
247, 271, 276, 292, 378, 385

IVPAG routine 54

J

Jacobian 1148, 1162, 1165, 1169,
1174, 1237, 1274, 1281, 1346,
1355

Jenkins-Traub three-stage algorithm
1150

K

Kershaw 48

L

Laguerre’s method 1148
Laplace transform 1078, 1081
Laplace transform solution 41
larger data uncertainty, example 453
LDU factorization 254
least squares 1, 20, 27, 33, 35, 36,

41, 42, 559, 713, 716, 734,
995, 1003, 19

least-squares approximation 720, 729
least-squares problem 398
least-squares solution 381
Lebesque measure 1657
Level 1 BLAS 1366, 1367
Level 2 BLAS 1377, 1378, 1379
Level 3 BLAS 1377, 1378, 1379
Levenberg-Marquardt algorithm

1182, 1231, 1237, 1274, 1281

viii � Contents IMSL MATH/LIBRARY

library subprograms xvi
linear algebraic equations 297, 323
linear constraints 388
linear equality/inequality constraints

1310, 1316
linear equations 17

solving 83, 85, 94, 103, 106, 114,
130, 138, 140, 148, 150, 156,
159, 167, 169, 173, 176, 185,
187, 190, 191, 194, 202, 204,
209, 213, 216, 225, 227, 232,
234, 245, 247, 252, 271, 276,
279, 290, 292, 306, 309, 319,
323, 336, 340, 349, 352, 359

linear least-squares problem 378,
385, 388

linear least-squares with non-
negativity constraints 67, 69,
75

linear programming problem 1297,
1301

linear solutions
packaged options 11

linear trend, cyclical 2D data 1002
linear trend, cyclical data 995
low-discrepancy 1658
LU factorization 89, 92, 94, 99, 108,

111, 114, 119, 219, 222, 225,
230, 262, 265, 268, 274, 301,
306, 314, 319

LU factorization of A 9, 10, 11, 1471

M

machine-dependent constants 1683
mathematical constants 1669
matrices 1389, 1390, 1392, 1393,

1395, 1397, 1398, 1400, 1402,
1403, 1405, 1409, 1411, 1413,
1421, 1423, 1431, 1433, 1435,
1441, 1446, 1447, 1449, 1575,
1577, 1581, 1583, 1586, 1588,
1591

adjoint xvi
complex 262, 265, 274, 419, 462,

464, 1400, 1405
band 1393, 1436, 1441, 1449
general 108, 119, 121, 1390,

1398, 1402
general sparse 314
Hermitian 179, 182, 197, 200,

207, 282, 284, 288, 295, 502,
505, 508, 510, 513, 515, 1408,
1411

rectangular 1403, 1423, 1435,
1586, 1588

sparse 6
tridiagonal 254
upper Hessenberg 525, 526

copying 1389, 1390, 1392, 1393,
1402, 1403, 1409, 1411

covariance 22, 27, 28
general 1689
Hermitian 1690
inverse xviii, 9, 10, 18, 22

generalized 27, 28, 31
inversion and determinant 13
multiplying 1418, 1421, 1423,

1431, 1433, 1435
orthogonal xvi
permutation 1602
poorly conditioned 38
printing 1575, 1577, 1581, 1583,

1586, 1588, 1591
real 219, 222, 230, 424, 455, 457,

1397, 1405
band 1392, 1433, 1447
general 89, 92, 99, 101, 1389,

1395, 1402
general sparse 301
rectangular 1403, 1421, 1425,

1431, 1446, 1575, 1577
sparse 6
symmetric 143, 146, 153, 154,

162, 164, 172, 237, 240, 243,
250, 409, 412, 469, 471, 473,
475, 478, 480, 485, 487, 490,
492, 495, 498, 1406, 1409

tridiagonal 211
upper Hessenberg 520, 522

rectangular 1413, 1689
sparse

Hermitian 344
symmetric 327
symmetrical 331

symmetric 406, 1690
transposing 1413, 1415, 1416
triangular 1690
unitary xvi
upper Hessenberg 443

matrix
inversion 7
types 5

matrix pencil 450, 452
matrix permutation 1602
matrix storage modes 1689
matrix/vector operations 1388
matrix-matrix multiply 1385, 1387
matrix-matrix solve 1387

IMSL MATH/LIBRARY Index � ix

matrix-vector multiply 1381, 1382,
1383

means 1641
message file

building new direct-access
message file 1570

changing messages 1570
management 1569
private message files 1571

Metcalf xiii
method of lines 54, 946
minimization 1182, 1183, 1184,

1186, 1189, 1193, 1196, 1202,
1208, 1213, 1219, 1223, 1227,
1243, 1249, 1257, 1263, 1271,
1274, 1297, 1310, 1316, 1323,
1329, 1336, 1338, 1340, 1343,
1346, 1349, 1352, 1355, 1359

minimum degree ordering 327
minimum point 1186, 1189, 1193
mistake

missing argument 1556
Type, Kind or Rank

TKR 1556
Modified Gram-Schmidt algorithm

1488
modified Powell hybrid algorithm

1162, 1165
monic polynomials 818, 821
Moore-Penrose 1473, 1474
MPI 1467

parallelism 1467
Muller’s method 1148, 1153
multiple right sides 7
multivariate functions 1182
multivariate quadrature 771

N

naming conventions xv
NaN (Not a Number) 1486

quiet 1485
signaling 1485

Newton algorithm 1182
Newton method 1208, 1213, 1257,

1263
Newton' s method 42, 60
noisy data 758, 761
nonadaptive rule 799
nonlinear equations 1162, 1165,

1169, 1174
nonlinear least-squares problem

1182, 1231, 1237, 1274, 1281,
1288

nonlinear programming 1323, 1329
norm 1487, 22
normalize 1492, 30
not-a-knot condition 587, 590
numerical differentiation 772

O

object-oriented 1464
odd sequence 1024
odd wave numbers 1032, 1034,

1039, 1041
optional argument xviii
optional data xvii, xviii
optional subprogram arguments

xviii
ordinary differential equations 833,

834, 837, 844, 854
ordinary eigenvectors, example 446
orthogonal

decomposition 60
factorization 31
matrix xvi

orthogonal matrix 396
orthogonalized 51, 435
overflow xvii

P

page length 1599
page width 1599
parameters 1015, 1022, 1026, 1030,

1037, 1043
parametric linear systems with scalar

change 444
parametric systems 444
partial differential equations 834,

835, 946
partial pivoting 44, 48
PBLAS 1555
performance index 460, 467, 483,

501, 518, 535, 542, 549
periodic boundary conditions 606
permutation 1606
Petzold 54, 889
physical constants 1669
piecewise polynomial 555, 680, 681,

684, 687, 690
piecewise-linear Galerkin 54
pivoting

partial 9, 13, 19
row and column 27, 31
symmetric 18

plane rotation 1375

x � Contents IMSL MATH/LIBRARY

plots 1664
Poisson solver 961, 967
Poisson's equation 961, 967
polar decomposition 39, 48
polynomial 1429
polynomial curve 716
prime factors 1668
printing 1599, 1664, 1679
printing an array, example 1573
printing arrays 1571
printing results xx
private message files 1571
programming conventions xvii
pseudorandom number generators

1650
pseudorandom numbers 1651, 1653
PV_WAVE 920

Q

QR algorithm 60, 434
double-shifted 443

QR decomposition 8, 392, 1477
QR factorization 396, 402
quadratic interpolation 692, 694,

696, 699, 702, 705
quadratic polynomial interpolation

559
quadrature formulas 771
quadrature rule 821
quadruple precision 1460
quasi-Monte Carlo 809
quasi-Newton method 1196, 1202,

1243, 1249
quintic polynomial 710

R

radial-basis functions 33
random complex numbers,

transforming an array 994,
1002, 1008

random number generators 1648,
1649

random numbers 1554, 1639, 25
rank-2k update 1386, 1387
rank-k update 1386
rank-one matrix 402, 409, 412
rank-one matrix update 1383, 1384
rank-two matrix update 1384
rational weighted Chebyshev

approximation 764
real numbers, sorting 1604
real periodic sequence 1009, 1012

real sparse symmetric positive
definite system 336

real symmetric definite linear system
359, 365

real symmetric positive definite
system 138, 140, 148, 150,
232, 234, 245, 247

real symmetric system 156, 159, 167,
169

real triangular system 123
real tridiagonal system 209
REAL types xv
real vectors 1059, 1068
record keys, sorting 1606
rectangular domain 661
rectangular grid 696, 699, 702, 705
recurrence coefficients 815, 818, 821
reduction

array of black and white 40
regularizing term 48
Reid xiii
required arguments xviii
reserved names 1698
reverse communication 54
ridge regression 64

cross-validation
example 64

Rodrigue 48
row and column pivoting 27, 31
row vector, heavily weighted 35
Runge-Kutta-order method 844
Runge-Kutta-Verner fifth-order

method 837
Runge-Kutta-Verner sixth-order

method 837

S

ScaLAPACK
contents 1555
data types 1555
definition of library 1555
interface modules 1556
reading utility

block-cyclic distributions 1557,
26

scattered data 710
scattered data interpolation 559
Schur form 439, 444
search 1618, 1620, 1622
second derivative 827
self-adjoint

eigenvalue problem 437
linear system 25

IMSL MATH/LIBRARY Index � xi

matrix 1, 17, 21, 434, 435, 437, 19
eigenvalues 23, 427, 432, 439,

18
tridiagonal 21

semi-infinite interval 782
sequence 1034, 1041
serial number 1638
simplex algorithm 1297, 1301
sine 785
sine Fourier coefficients 1034
sine Fourier transform 1032
single precision xiii
SINGLE PRECISION options 1661
Single Program, Multiple Data

SPMD 1555
singular value decomposition 419
singular value decomposition (SVD)

1, 36, 1491, 19, 29
singularity 8
singularity points 779
smooth bivariate interpolant 710
smoothing 754
smoothing formulas 31
smoothing spline routines 559
solvable 452
solving

general system 9
linear equations 17

rectangular
least squares 36
system 27

solving linear equations 5
sorting 1607, 1608, 1610, 1611,

1612, 1614, 1615, 1617, 1618,
1620, 1622

sorting an array, example 1605
sparse linear programming 1301
sparse matrix storage mode 1697
sparse system 297, 306
spline approximation 725, 734
spline interpolant 622, 631
spline knot sequence 625, 628
splines 559, 618, 641, 643, 646, 649

cubic 557
tensor product 558

square matrices
eigenvalue-eigenvector expansion

435
polar decomposition 39, 48

square root 1675
Sturm-Liouville problem 973, 986
subprograms

library xvi
optional arguments xviii

SVD 1, 57, 62, 19
SVRGN 1606
symmetric Markowitz strategy 306

T

tensor product splines 558
tensor-product B-spline coefficients

631, 635, 743, 748
tensor-product B-spline

representation 651, 653, 656,
661, 664, 666, 670, 676

tensor-product spline 651, 653, 656,
661, 664, 666, 670, 676

tensor-product spline approximant
743, 748

tensor-product spline interpolant 635
terminal errors 1677
third derivative 827
time 1632
Toeplitz linear system 354
Toeplitz matrices 8
traceback 1682
transfer 1487
transpose 1472, 23
tridiagonal 44

matrix 48
matrix solving, example 53

triple inner product 1372
two-dimensional data fitting 33

U

unconstrained minimization 1182
underflow xvii
uniform (0, 1) distribution 1651,

1653
uniform mesh 967
unitary matrix xvi
univariate functions 1182
univariate quadrature 770
upper Hessenberg matrix 443
user errors 1677
user interface xiii
user-supplied function 827
user-supplied gradient 1223, 1249,

1329
using library subprograms xvi

V

Van Loan 13, 21, 31, 35, 60, 62, 64,
434, 437, 443

variable knot B-spline 729

xii � Contents IMSL MATH/LIBRARY

variable order 870
variances 1641
variational equation 53
vectors 1369, 1370, 1372, 1373,

1381, 1435, 1436, 1455, 1457
complex 1457
real 1455

version 1638

W

workspace allocation 1699, 1700
World Wide Web

URL for ScaLAPACK User's
Guide 1555

Z

zero of a real function 1156
zeros of a polynomial 1148, 1150,

1152
zeros of a univariate complex

function 1153
zeros of the polynomial 1147

	IMSL MATH/LIBRARY Volume 1
	Table of Contents
	Introduction
	The IMSL Fortran Library
	User Background
	Getting Started
	Finding the Right Routine
	Organization of the Documentation
	Naming Conventions
	Using Library Subprograms
	Programming Conventions
	Module Usage
	Programming Tips
	Optional Subprogram Arguments
	Optional Data
	Error Handling
	Printing Results
	Fortran 90 Constructs
	Using IMSL Fortran Library on Shared-Memory Multiprocessors
	Using Operators and Generic Functions

	Chapter 1: Linear Systems
	Routines
	Usage Notes
	Matrix Types
	Solution of Linear Systems
	Multiple Right Sides
	Determinants
	Iterative Refinement
	Matrix Inversion
	Singularity
	Special Linear Systems
	Iterative Solution of Linear Systems
	QR Decomposition

	LIN_SOL_GEN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Solving a Linear System of Equations
	Output
	Description
	Additional Examples
	Example 2: Matrix Inversion and Determinant
	Output
	Example 3: Solving a System with Iterative Refinement
	Output
	Example 4: Evaluating the Matrix Exponential
	Output
	Fatal and Terminal Error Messages

	LIN_SOL_SELF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Solving a Linear Least-squares System
	Output
	Description
	Additional Examples
	Example 2: System Solving with Cholesky Method
	Output
	Example 3: Using Inverse Iteration for an Eigenvector
	Output
	Example 4: Accurate Least-squares Solution with Iterative Refinement
	Output
	Fatal and Terminal Error Messages

	LIN_SOL_LSQ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Solving a Linear Least-squares System
	Output
	Description
	Additional Examples
	Example 2: System Solving with the Generalized Inverse
	Output
	Example 3: Two-Dimensional Data Fitting
	Output
	Example 4: Least-squares with an Equality Constraint
	Output
	Fatal and Terminal Error Messages

	LIN_SOL_SVD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Least-squares solution of a Rectangular System
	Output
	Description
	Additional Examples
	Example 2: Polar Decomposition of a Square Matrix
	Output
	Example 3: Reduction of an Array of Black and White
	Output
	Example 4: Laplace Transform Solution
	Output
	Fatal, Terminal, and Warning Error Messages

	LIN_SOL_TRI
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Solution of Multiple Tridiagonal Systems
	Output
	Description
	Additional Examples
	Example 2: Iterative Refinement and Use of Partial Pivoting
	Output
	Example 3: Selected Eigenvectors of Tridiagonal Matrices
	Output
	Example 4: Tridiagonal Matrix Solving within Diffusion Equations
	Output
	Fatal, Terminal, and Warning Error Messages

	LIN_SVD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Computing the SVD
	Output
	Description
	Additional Examples
	Example 2: Linear Least Squares with a Quadratic Constraint
	Output
	Example 3: Generalized Singular Value Decomposition
	Example 4: Ridge Regression as Cross-Validation with Weighting
	Output
	Fatal, Terminal, and Warning Error Messages

	Parallel Constrained Least-Squares Solvers
	Solving Constrained Least-Squares Systems

	PARALLEL_NONNEGATIVE_LSQ
	
	Usage Notes
	Required Arguments
	Optional Argument
	FORTRAN 90 Interface
	Example 1: Distributed Linear Inequality Constraint Solver
	Output
	Description
	Additional Examples
	Example 2: Distributed Non-negative Least-Squares
	Output

	PARALLEL_BOUNDED_LSQ
	
	Usage Notes
	Required Arguments

	Optional Argument
	FORTRAN 90 Interface
	Example 1: Distributed Equality and Inequality Constraint Solver
	Output
	Description
	Additional Examples
	Example 2: Distributed Newton-Raphson Method with Step Control

	LSARG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Example
	Output

	LFCRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LFIRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LINRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSACG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LFICG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LINCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLRT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LFCRT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDRT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LINRT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSLCT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCCT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDCT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	LINCT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSADS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLDS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCDS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTDS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSDS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFIDS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDDS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LINDS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSASF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LFISF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSADH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLDH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCDH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTDH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSDH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFIDH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDDH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSAHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LFIHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSLTR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLCR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSARB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LFIRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDRB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSAQS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLQS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLPB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCQS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTQS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSQS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFIQS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDQS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSLTQ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLCQ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSACB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LFICB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDCB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSAQH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLQH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLQB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFCQH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTQH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSQH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFIQH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFDQH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSLXG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTXG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSXG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSLZG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFTZG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSZG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LSLXD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSCXD/DLSCXD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LNFXD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSXD
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLZD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LNFZD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LFSZD
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLTO
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLTC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSLCC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	PCGRC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description
	Example 2
	Output

	JCGRC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GMRES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Examples
	Example 2
	Output
	Example 3
	Output

	LSQRR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LQRRV
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSBRR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LCLSQ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LQRRR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LQERR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LQRSL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LUPQR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LCHRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LUPCH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	LDNCH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSVRR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSVCR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	LSGRR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	Chapter 2: Eigensystem Analysis
	Routines
	Usage Notes
	
	Error Analysis and Accuracy

	Reformulating Generalized Eigenvalue Problems

	LIN_EIG_SELF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Computing Eigenvalues
	Output
	Description
	Additional Examples
	Example 2: Eigenvalue-Eigenvector Expansion of a Square Matrix
	Output
	Example 3: Computing a few Eigenvectors with Inverse Iteration
	Output
	Example 4: Analysis and Reduction of a Generalized Eigensystem
	Output
	Fatal, Terminal, and Warning Error Messages

	LIN_EIG_GEN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Computing Eigenvalues
	Output
	Description
	Additional Examples
	Example 2: Complex Polynomial Equation Roots
	Output
	Example 3: Solving Parametric Linear Systems with a Scalar Change
	Output
	Example 4: Accuracy Estimates of Eigenvalues Using Adjoint �and Ordinary Eigenvectors
	Output
	Fatal, Terminal, and Warning Error Messages

	LIN_GEIG_GEN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Computing Generalized Eigenvalues
	Output
	Description
	Additional Examples
	Example 2: Self-Adjoint, Positive-Definite Generalized Eigenvalue Problem
	Output
	Example 3: A Test for a Regular Matrix Pencil
	Output
	Example 4: Larger Data Uncertainty than Working Precision
	Output
	Fatal, Terminal, and Warning Error Messages

	EVLRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVCRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EPIRG
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	EVLCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVCCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EPICG
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	EVLSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVCSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVASF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVESF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVBSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVFSF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EPISF
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	EVLSB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVCSB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVASB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVESB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVBSB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVFSB
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EPISB
	
	Required Arguments
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	EVLHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVCHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVAHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVEHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVBHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVFHF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EPIHF
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	EVLRH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVCRH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVLCH
	
	Required Arguments
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	EVCCH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GVLRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GVCRG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GPIRG
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	GVLCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GVCCG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GPICG
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Algorithm

	GVLSP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GVCSP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	GPISP
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	Chapter 3: Interpolation and Approximation
	Routines
	Usage Notes
	Piecewise Polynomials
	Splines and B-splines
	Cubic Splines
	Tensor Product Splines
	Quadratic Interpolation
	Scattered Data Interpolation
	Least Squares
	Smoothing by Cubic Splines
	Rational Chebyshev Approximation
	Using the Univariate Spline Routines
	Choosing an Interpolation Routine

	SPLINE_CONSTRAINTS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	SPLINE_VALUES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	SPLINE_FITTING
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Natural Cubic Spline Interpolation to Data
	Output
	Description
	Additional Examples
	Example 2: Shaping a Curve and its Derivatives
	Output
	Example 3: Splines Model a Random Number Generator
	Output
	Example 4: Represent a Periodic Curve
	Output
	Fatal and Terminal Error Messages

	SURFACE_CONSTRAINTS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	SURFACE_VALUES
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface

	SURFACE_FITTING
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example 1: Tensor Product Spline Fitting of Data
	Output
	Description
	Additional Examples
	Example 2: Parametric Representation of a Sphere
	Output
	Example 3: Constraining Some Points using a Spline Surface
	Output
	Example 4: Constraining a Spline Surface to be non-Negative
	Output
	Fatal and Terminal Error Messages

	CSIEZ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CSINT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CSDEC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Examples
	Example 2
	Output

	CSHER
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CSAKM
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CSCON
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Descritpion

	CSPER
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CSVAL
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Description

	CSDER
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	CS1GD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CSITG
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	SPLEZ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSINT
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSNAK
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSOPK
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BS2IN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BS3IN
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSVAL
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	BSDER
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BS1GD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSITG
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BS2VL
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	BS2DR
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BS2GD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BS2IG
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BS3VL
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	BS3DR
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BS3GD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BS3IG
	
	Function Return Value
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSCPP
	
	Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Comments
	Description

	PPVAL
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	PPDER
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	PP1GD
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	PPITG
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Description

	QDVAL
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QDDER
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QD2VL
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QD2DR
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QD3VL
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QD3DR
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	SURF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	RLINE
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	RCURV
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FNLSQ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSLSQ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSVLS
	
	Required Arguments
	Optonal Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CONFT
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Examples
	Example 2
	Output

	BSLS2
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	BSLS3
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CSSED
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CSSMH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	CSSCV
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	RATCH
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	Chapter 4: Integration and Differentiation
	Routines
	Usage Notes
	Univariate Quadrature
	Multivariate Quadrature
	Gauss rules and three-term recurrences
	Numerical differentiation

	QDAGS
	
	Required Arguments
	Optional Required Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QDAG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QDAGP
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QDAGI
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QDAWO
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Description
	Example
	Output
	Comments

	QDAWF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QDAWS
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QDAWC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	QDNG
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	TWODQ
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Examples
	Example 2
	Output

	QAND
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description

	QMC
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	Example
	Output
	Description

	GQRUL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Examples
	Example 2
	Output

	GQRCF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	RECCF
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	RECQR
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	FQRUL
	
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example
	Output
	Comments
	Description

	DERIV
	
	Function Return Value
	Required Arguments
	Optional Arguments
	FORTRAN 90 Interface
	FORTRAN 77 Interface
	Example 1
	Output
	Comments
	Description
	Additional Example
	Example 2
	Output

	Appendix A: GAMS Index
	Description
	IMSL MATH/LIBRARY

	Appendix B: Alphabetical Summary of Routines
	IMSL MATH/LIBRARY

	Appendix C: References
	
	
	Aird and Howell
	Aird and Rice
	Akima
	Arushanian et al.
	Ashcraft
	Ashcraft et al.
	Atkinson
	Atchison and Hanson
	Bischof et al.
	Bjorck
	Boisvert (1984)
	Boisvert, Howe, and Kahaner
	Boisvert, Howe, Kahaner, and Springmann
	Brankin et al.
	Brenan, Campbell, and Petzold
	Brenner
	Brent
	Brigham
	Cheney
	Cline et al.
	Cody, Fraser, and Hart
	Cohen and Taylor
	Cooley and Tukey
	Courant and Hilbert
	Craven and Wahba
	Crowe et al.
	Crump
	Davis and Rabinowitz
	de Boor
	de Hoog, Knight, and Stokes
	Dennis and Schnabel
	Dongarra et al.
	Draper and Smith
	Du Croz et al.
	Duff and Reid
	Duff et al.
	Enright and Pryce
	Forsythe
	Fox, Hall, and Schryer
	Garbow
	Garbow et al.
	Gautschi
	Gautschi and Milovanofic
	Gay
	Gear
	Gear and Petzold
	George and Liu
	Gill et al.
	Goldfarb and Idnani
	Golub
	Golub and Van Loan
	Golub and Welsch
	Gregory and Karney
	Griffin and Redish
	Grosse
	Guerra and Tapia
	Hageman and Young
	Hanson
	Hanson et al.
	Hartman
	Hausman
	Hindmarsh
	Hull et al.
	IEEE
	IMSL (1991)
	Irvine et al.
	Jenkins
	Jenkins and Traub
	Kennedy and Gentle
	Kershaw
	Knuth
	Lawson et al.
	Leavenworth
	Levenberg
	Lewis et al.
	Liepman
	Liu
	Liu and Ashcraft
	Lyness and Giunta
	Madsen and Sincovec
	Marquardt
	Martin and Wilkinson
	Micchelli et al.
	Moler and Stewart
	More et al.
	Muller
	Murtagh
	Murty
	Nelder and Mead
	Neter and Wasserman
	Park and Miller
	Parlett
	Pereyra
	Petro
	Petzold
	Piessens et al.
	Powell
	Pruess and Fulton
	Reinsch
	Rice
	Saad and Schultz
	Schittkowski
	Schnabel
	Schreiber and Van Loan
	Scott et al.
	Sewell
	Shampine
	Shampine and Gear
	Sincovec and Madsen
	Singleton
	Smith
	Smith et al.
	Spang
	Stewart
	Stoer
	Stroud and Secrest
	Titchmarsh
	Trench
	Walker
	Washizu
	Watkins and Elsner
	Weeks
	Wilkinson

	Product Support
	Contacting Visual Numerics Support
	Consultation

	Index

