
V E R S I O N 6 . 0

User’s Guide
VOLUME 2 o f 2 : C Stat Library™C Numerical Library

™

IMSLTM C Numerical Library Version 6.0
Volume 2 of 2: C Stat Library User's Guide

Trusted for Over 30 Years

Visual Numerics, Inc. United States
Corporate Headquarters
12657 Alcosta Boulevard, Suite 450
San Ramon, CA 94583

PHONE: 925.415.8300
FAX: 925.415.9500
e-mail: info@vni.com

Westminster, Colorado
10955 Westmoor Drive, Suite 400
Westminster, CO, 80021

PHONE: 303.379.3040
FAX: 303.379.2140
e-mail: info@vni.com

Houston, Texas
2500 Wilcrest, Suite 200
Houston, TX 77042

PHONE: 713.784.3131
FAX: 713.781.9260
e-mail: info@vni.com

Visual Numerics
International Ltd.
SoanePoint
6-8 Market Place
Reading, Berkshire RG1 2EG
UNITED KINGDOM

PHONE: +44 118.925.5910
FAX: +44 118.925.5912
e-mail: info@vniuk.co.uk

Visual Numerics, Inc.
7/F, #510, Sect. 5
Chung Hsiao E. Road
Taipei, Taiwan 110
ROC
PHONE: +88 622-727-2255
FAX: +88 622-727-6798
e-mail: info@vni.com.tw

Visual Numerics Korea, Inc.
HANSHIN BLDG. Room 801
136-1, MAPO-DONG, MAPO-GU
SEOUL, 121-050
KOREA SOUTH

PHONE: +82-2-3273-2632 or 2633
FAX: +82-2-3273--2634
e-mail: info@vni.co.kr

Visual Numerics SARL
Immeuble le Wilson 1
70, avenue du General de Gaulle
92058 Paris La Defense, Cedex
FRANCE

PHONE: +33-1-46-93-94-20
FAX: +33-1-46-93-94-39
e-mail: info@vni.paris.fr

Visual Numerics S. A. de C. V.
Florencia 57 Piso 10-01
Col. Juarez
Mexico D. F. C. P. 06600
MEXICO

PHONE: +52-55-5514 9730 or 9628
FAX: +52-55-5514-5880
e-mail:avadillo@mail.internet.com.mx

Visual Numerics International GmbH
Zettachring 10
D-70567Stuttgart
GERMANY

PHONE: +49-711-13287-0
FAX: +49-711-13287-99
e-mail: vni@visual-numerics.de

Visual Numerics Japan, Inc.
GOBANCHO HIKARI BLDG. 4TH Floor
14 GOBAN-CHO CHIYODA-KU
TOKYO, JAPAN 102-0076

PHONE: +81-3-5211-7760
FAX: +81-3-5211-7769
e-mail: vnijapan@vnij.co.jp

COPYRIGHT NOTICE: Copyright © 1970-2006 by Visual Numerics, Inc. All rights reserved. Unpublished–rights reserved under the copyright
laws of the United States.
Printed in the USA.

The information contained in this document is subject to change without notice.

VISUAL NUMERICS, INC., MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT
LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Visual Numerics,
Inc., shall not be liable for errors contained herein or for incidental, consequential, or other indirect damages in connection with the furnishing,
performance or use of this material.

IMSL, PV- WAVE, and Visual Numerics are registered in the U.S. Patent and Trademark Office by, and PV- WAVE Advantage is a trademark
of, Visual Numerics, Inc.

TRADEMARK NOTICE: The following are trademarks or registered trademarks of their respective owners, as follows: Microsoft, Windows,
Windows 95, Windows NT, Internet Explorer — Microsoft Corporation; Motif — The Open Systems Foundation, Inc.; PostScript — Adobe
Systems, Inc.; UNIX — X/Open Company, Limited; X Window System, X11 — Massachusetts Institute of Technology; RISC System/6000 and
IBM — International Business Machines Corporation; Sun, Java, JavaBeans — Sun Microsystems, Inc.; JavaScript, Netscape Communicator —
Netscape, Inc.; HPGL and PCL — Hewlett Packard Corporation; DEC, VAX, VMS, OpenVMS — Compaq Information Technologies Group,
L.P./Hewlett Packard Corporation; Tektronix 4510 Rasterizer — Tektronix, Inc.; IRIX, TIFF — Silicon Graphics, Inc.; SPARCstation — SPARC
International, licensed exclusively to Sun Microsystems, Inc.; HyperHelp — Bristol Technology, Inc. Other products and company names
mentioned herein may be trademarks of their respective owners.

Use of this document is governed by a Visual Numerics Software License Agreement. This document contains confidential and proprietary
information constituting valuable trade secrets. No part of this document may be reproduced or transmitted in any form without the prior written
consent of Visual Numerics.

RESTRICTED RIGHTS NOTICE: This documentation is provided with RESTRICTED RIGHTS. Use, duplication or disclosure by the US
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFAR 252.227-7013, and in subparagraphs (a) through (d) of the Commercial Computer software — Restricted Rights clause at FAR 52.227-19,
and in similar clauses in the NASA FAR Supplement, when applicable. Contractor/Manufacturer is Visual Numerics, Inc., 2500 Wilcrest Drive,
Suite 200, Houston, TX 77042-2759.

IMSL Fortran, C, and Java
Application Development Tools

IMSL C Stat Library Table of Contents • i

Table of Contents

Introduction ix
IMSL C Stat Library ...ix
Getting Started ..ix

ANSI C vs. Non-ANSI C..ix
The imsls.h File ...x

Thread Safe Usage ...x
Signal Handling ...x
Routines that Produce Output ...xi
Input Arguments ...xi

Matrix Storage Modes...xi
General Mode ... xii
Rectangular Mode... xii
Symmetric Mode .. xii

Memory Allocation for Output Arrays.. xii
Finding the Right Function ... xii
Organization of the Documentation ... xiii
Naming Conventions...xiv
Error Handling, Underflow, and Overflow ...xiv
Printing Results ..xv
Missing Values...xv
Passing Data to User-Supplied Functions ..xv

Chapter 1: Basic Statistics 1
Routines ...1
Usage Notes ...1
simple_statistics ...1
normal_one_sample ...7
normal_two_sample ...11
table_oneway ...17
table_twoway ...22
sort_data...26
ranks...34

Chapter 2: Regression 43
Routines ...43
Usage Notes ...44

Simple and Multiple Linear Regression ..44

ii • Table of Contents IMSL C Stat Library

No Intercept Model ..44
Variable Selection..45
Polynomial Model..45
Specification of X for the General Linear Model ..45
Functions for Fitting the Model ...48
Linear Dependence and the R Matrix ..48
Nonlinear Regression Model ...49
Weighted Least Squares...50
Summary Statistics ..50
Tests for Lack-of-Fit ..52
Transformations ...54
Alternatives to Least Squares...54
Missing Values ..55

regressors_for_glm...55
regression ...64
regression_summary ..76
regression_prediction ...84
hypothesis_partial ..95
hypothesis_scph ...100
hypothesis_test ...105
regression_selection ...112
regression_stepwise..122
poly_regression ..130
poly_prediction ..137
nonlinear_regression ..147
nonlinear_optimization ..157
Lnorm_regression ..166

Chapter 3: Correlation and Covariance 185
Routines ...185
Usage Notes ...185
covariances...185
partial_covariances...192
pooled_covariances ..197
robust_covariances...203

Chapter 4: Analysis of Variance and Designed Experiments 215
Routines ...215
Usage Notes ...216

Completely Randomized Experiments...216
Factorial Experiments ..217
Blocking...218
Multiple Locations...221
Split-Plot Designs – Nesting and Restricted Randomization...................................221
Strip-Plot Designs ..223
Split-Split Plot and Strip-Split Plot Experiments...225
Validating Key Assumptions in Anova..226
Missing Observations...227

IMSL C Stat Library Table of Contents • iii

anova_oneway..228
anova_factorial...237
anova_nested..245
anova_balanced..254
crd_factorial ...266
rcbd_factorial ...277
latin_square ..287
lattice..296
split_plot ..314
split_split_plot..326
strip_plot ..342
strip_split_plot ...353
homogeneity...376
multiple_comparisons ..383
yates ...388

Chapter 5: Categorical and Discrete Data Analysis 401
Routines ...401
Usage Notes ...401
contingency_table ..402
exact_enumeration ...414
exact_network ..416
categorical_glm..422

Chapter 6: Nonparametric Statistics 437
Routines ...437
Usage Notes ...437
sign_test ...438
wilcoxon_sign_rank ...441
noether_cyclical_trend ...444
cox_stuart_trends_test..448
tie_statistics..453
wilcoxon_rank_sum...455
kruskal_wallis_test...459
friedmans_test ..462
cochran_q_test ...466
k_trends_test ..469

Chapter 7: Tests of Goodness of Fit 475
Routines ...475
Usage Notes ...475
chi_squared_test...475
normality_test ..483
kolmogorov_one ..487
kolmogorov_two ..490
multivar_normality_test ...493
randomness_test ...497

iv • Table of Contents IMSL C Stat Library

Chapter 8: Time Series and Forecasting 509
Routines ...509
Usage Notes ...510
arma..511
max_arma...521
arma_forecast ...527
auto_uni_ar...532
ts_outlier_identification ...537
ts_outlier_forecast ..547
auto_arima..555
difference ...572
seasonal_fit...576
box_cox_transform ..584
autocorrelation ...588
crosscorrelation ..593
multi_crosscorrelation..599
partial_autocorrelation ...608
lack_of_fit ..611
estimate_missing..614
garch...621
kalman..626

Chapter 9: Multivariate Analysis 639
Routines ...639
Usage Notes ...639

Cluster Analysis ...639
Principal Components..640
Factor Analysis ..640

dissimilarities ...641
cluster_hierarchical ..645
cluster_number...649
cluster_k_means...653
principal_components ..657
factor_analysis ...663
discriminant_analysis ...682

Chapter 10: Survival and Reliability Analysis 707
Routines ...707
Usage Notes ...707
kaplan_meier_estimates ...708
prop_hazards_gen_lin ..713
survival_glm...727
survival_estimates ..750
nonparam_hazard_rate ...756
life_tables ...764

IMSL C Stat Library Table of Contents • v

Chapter 11: Probability Distribution Functions and Inverses 771
Routines ...771
Usage Notes ...772

Continuous Distributions ...773
binomial_cdf ..774
binomial_pdf ..775
hypergeometric_cdf ...777
hypergeometric_pdf ...778
poisson_cdf ..779
poisson_pdf ..781
beta_cdf..783
beta_inverse_cdf ..785
bivariate_normal_cdf ...786
chi_squared_cdf ...788
chi_squared_inverse_cdf..789
non_central_chi_sq ..791
non_central_chi_sq_inv ...793
F_cdf ..794
F_inverse_cdf...796
gamma_cdf...798
gamma_inverse_cdf ...799
normal_cdf ...801
normal_inverse_cdf..802
t_cdf ...804
t_inverse_cdf..805
non_central_t_cdf ..807
non_central_t_inv_cdf ...809

Chapter 12: Random Number Generation 811
Routines ...811
Usage Notes ...813

Overview of Random Number Generation ..813
Basic Uniform Generators ...814
The Multiplicative Congruential Generators ...814
Shuffled Generators ...814
The Generalized Feedback Shift Register Generator...815
Setting the Seed ...815
Timing Considerations...815
Distributions Other than the Uniform..815
Tests...816

random_binomial ...816
random_geometric ...818
random_hypergeometric ..819
random_logarithmic ...822
random_neg_binomial ...823
random_poisson ...825
random_uniform_discrete ..826
random_general_discrete ...828

vi • Table of Contents IMSL C Stat Library

discrete_table_setup ...832
random_beta...837
random_cauchy ..838
random_chi_squared ..840
random_exponential ...841
random_exponential_mix...843
random_gamma..845
random_lognormal ...846
random_normal ..848
random_stable ..850
random_student_t...852
random_triangular ..853
random_uniform...854
random_von_mises ..856
random_weibull ...857
random_general_continuous ..859
continuous_table_setup ..862
random_normal_multivariate ...864
random_orthogonal_matrix..866
random_mvar_from_data ...868
random_multinomial ..871
random_sphere ...873
random_table_twoway ...875
random_order_normal..876
random_order_uniform ..878
random_arma ...880
random_npp ...884
random_permutation ..887
random_sample_indices ...889
random_sample ..890
random_option ...894
random_option_get ..895
random_seed_get..896
random_substream_seed_get ...897
random_seed_set ..899
random_table_set ...900
random_table_get...900
random_GFSR_table_set ...901
random_GFSR_table_get ...902
random_MT32_init ..905
random_MT32_table_get ...905
random_MT32_table_set ...907
random_MT64_init ..908
random_MT64_table_get ...908
random_MT64_table_set ...910
faure_next_point ..911

IMSL C Stat Library Table of Contents • vii

Chapter 13: Neural Networks 915
Routines ...915
Usage Notes ...915

Neural Networks – An Overview ..915
Neural Networks – History and Terminology..918
Network Applications ..922

Multilayer Feedforward Neural Networks ...925
Neural Network Error Calculations ...927

mlff_network..934
mlff_network_trainer ...944
mlff_network_forecast ...954
scale_filter..960
time_series_filter..966
time_series_class_filter ..969
unsupervised_nominal_filter..973
unsupervised_ordinal_filter..976

Chapter 14: Printing Functions 981
Routines ...981
write_matrix...981
page..986
write_options..987

Chapter 15: Utilities 993
Routines ...993
output_file ..993
version..997
error_options ..998
error_code ..1004
machine (integer) ...1005
machine (float) ...1007
data_sets...1009
mat_mul_rect ...1012
permute_vector ..1015
permute_matrix ..1017
binomial_coefficient ..1018
beta...1020
beta_incomplete ...1021
log_beta..1022
gamma..1023
gamma_incomplete ..1025
log_gamma...1027
ctime...1029

Reference Material 1031
User Errors ...1031

viii • Table of Contents IMSL C Stat Library

What Determines Error Severity..1031
Kinds of Errors and Default Actions..1031
Errors in Lower-level Functions ..1032
Functions for Error Handling...1032
Threads and Error Handling...1033
Use of Informational Error to Determine Program Action1033
Additional Examples..1033

Product Support 1035
Contacting Visual Numerics Support...1035

Appendix A: References 1037

Appendix B: Alphabetical Summary of Routines 1065
Routines ...1065

Index 1079

Introduction IMSL C Stat Library • ix

Introduction

IMSL C Stat Library
The IMSL C Stat Library is a library of C functions useful in scientific programming.
Each function is designed and documented to be used in research activities as well as
by technical specialists. A number of the example programs also show graphs of
resulting output.

Getting Started
To use any of the C Stat Library functions, you must first write a program in C to call
the function. Each function conforms to established conventions in programming and
documentation. First priority in development is given to efficient algorithms, clear
documentation, and accurate results. The uniform design of the functions makes it easy
to use more than one function in a given application. Also, you will find that the design
consistency enables you to apply your experience with one C Stat Library function to
all other C functions that you use.

ANSI C vs. Non-ANSI C
All of the examples in this documentation conform to ANSI C. If you are not using
ANSI C, you will need to modify your examples in functions that are declared or in
those arrays that are initialized as type float.
Non-ANSI C does not allow for automatic aggregate initialization, and thus, all auto
arrays that are initialized as type float in ANSI C must be initialized as type static float
in non-ANSI C. The following program contains arrays that are initialized as type float
and also a user-defined function:

1 #include <imsls.h>
2
3 float fcn(int, float[], int, float[]);
4
5 main()
6 {
7 int n_observations = 3,
8 n_parameters = 1,
9 n_independent = 1;
10 float *theta_hat;
11 float x[3] = {1.0, 2.0, 3.0};

x • Thread Safe Usage IMSL C Stat Library

12 float y[3] = {2.0, 4.0, 3.0};
13 /* Evaluate the integral */
14 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
15 n_observations, n_independent, x, y, 0);
16 /* Print the result and the exact answer */
17 imsls_f_write_matrix("estimated coefficient", 1, 1, theta_hat, 0);
18 }
19 float fcn(int n_independent, float x[], int n_parameters,
20 float theta[])
21 {
22 return exp(theta[0]*x[0]);
23 }

If using non-ANSI C, you will need to modify lines 3, 11, 12, 19, and 20 as follows:
3 float fcn(); /* Function is not prototyped */
 .
 .
 .
11 static float x[3] = {1.0, 2.0, 3.0};
12 static float y[3] = {2.0, 4.0, 3.0};
 .
 .
 .
19 float fcn(n_independent, x, n_parameters,
20 theta) /*Declaration of variable names*/
20a int n_independent;
20b float x[];
20c int n_parameters;
20d float theta[]; /*Type definitions of variables*/

The imsls.h File
The include file <imsls.h> is used in all the examples in this manual. This file
contains prototypes for all IMSL-defined functions; the structures, Imsls_f_regression,
Imsls_d_regression, Imsls_f_poly_regression, Imsls_d_poly_regression, Imsls_f_arma,
and Imsls_d_arma; and the enumerated data types,
Imsls_arma_method,Imsls_permute, Imsls_dummy_method, Imsls_write_options,
Imsls_page_options, and Imsls_error.

Thread Safe Usage
On systems that support either POSIX threads or WIN32 threads, C Stat Library can be
safely called from a multithreaded application. When C Stat Library is used in a
multithreaded application, the calling program must adhere to a few important
guidelines. In particular, IMSL C Stat Library's implementation of signal handling, error
handling, and I/O must be understood.

Signal Handling
When calling C Stat Library from a multithreaded application it is necessary to turn
C Stat Library’ signal-handling capability off. This is accomplished by making a
single call to imsls_error_options before any calls are made to C Stat Library. For

Introduction Matrix Storage Modes • xi

an example of turning off C Stat Library’ internal-signal handling , see Chapter 15,
“Utilities”, Example 3 of imsls_error_options.
C Stat Library 's error handling in a multithreaded application behaves similarly to how
it behaves in a single-threaded application. The major difference is that an error stack
exists for each thread calling C Stat Library functions. The result of separate error
stacks for each thread is greater control of the error handler options for each thread.
Each thread can set its own options for the C Stat Library error handler using
imsls_error_options. For an example of setting error handler options for separate
threads, see Chapter 15, “Utilities”, Example 3 of imsls_error_options.

Routines that Produce Output
A number of routines in C Stat Library can be used to produce output. The function
imsls_output_file can be used to control which file the output is directed. In an
application with a single thread of execution, a single call to imsls_output_file
can be used to set the file to which the output will be directed. In a multithreaded
application each thread must call imsls_output_file to change the default setting
of where output will be directed. See Chapter 15, “Utilities”, Example 2 of
imsls_output_ file for more details.

Input Arguments
In a multithreaded application attention must be given to the data sent to C Stat
Library. Some arguments that may appear to be input-only are temporarily modified
during the call and restored before returning to the caller. Care must be used to avoid
usage of the same data space in separate threads calling functions in C Stat Library.

Matrix Storage Modes
In this section, the word matrix is used to refer to a mathematical object and the word
array is used to refer to its representation as a C data structure. In the following list
of array types, the C Stat Library functions require input consisting of matrix
dimension values and all values for the matrix entries. These values are stored in
row-major order in the arrays.

Each function processes the input array and typically returns a pointer to a “result.” For
example, in solving linear regression, the pointer points to the estimated coefficients.
Normally, the input array values are not changed by the functions.
In the C Stat Library, an array is a pointer to a contiguous block of data. An array is not
a pointer to a pointer to the rows of the matrix. Typical declarations are as follows:
 float *a = {1, 2, 3, 4};
 float b[2][2] = {1, 2, 3, 4};
 float c[] = {1, 2, 3, 4};

Note: If you are using non-ANSI C and the variables are of type auto, the above
declarations would need to be declared as type static float.

xii • Memory Allocation for Output Arrays IMSL C Stat Library

General Mode
A general matrix is a square n × n matrix. The data type of a general array can be int,
float, or double.

Rectangular Mode
A rectangular matrix is an m × n matrix. The data type of a rectangular array can be
int, float, or double.

Symmetric Mode

A symmetric matrix is a square n × n matrix A, such that AT = A. (The matrix
AT is the transpose of A.) The data type of a symmetric array can be int, float, or
double.

Memory Allocation for Output Arrays
Many functions return a pointer to an array containing the computed answers. If the
function invocation uses the optional arguments
IMSLS_RETURN_USER, float a[]
then the computed answers are stored in the user-provided array a, and the pointer
returned by the function is set to point to the user-provided array a. If an invocation
does not use IMSLS_RETURN_USER, then a pointer to the function is internally
initialized (through a memory allocation request to malloc) and stores the answers
there. (To release this space, free can be used. Both malloc and free are standard C
library functions declared in the header.) In this way, the allocation of space for the
computed answers can be made either by the user or internally by the function.
Similarly, other optional arguments specify whether additional computed output arrays
are allocated by the user or are to be allocated internally by the function. For example,
in many functions, the optional arguments
IMSLS_ANOVA_TABLE, float **anova_table (Output)
IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
specify two mutually exclusive optional arguments. If the first option is chosen,
float **anova_table refers to the address of a pointer to an internally allocated array
containing the analysis of variance statistics. On return, the pointer is initialized
(through a memory allocation request to malloc), and the array is stored there.
Typically, float *anova_table is declared, &anova_table is used as an argument to
this function, and free(anova_table) is used to release the space. In the second
option, the analysis of variance statistics are stored in the user-provided array
anova_table.

Finding the Right Function
The C Stat Library documentation is organized into chapters; each chapter contains
functions with similar computational or analytical capabilities. To locate the right

Introduction Organization of the Documentation • xiii

function for a given problem, use either the table of contents located in each chapter
introduction or the alphabetical summary at the end of this manual.
Often, the quickest way to use the C Stat Library is to find an example similar to your
problem, then mimic the example. Each function documented has at least one example
demonstrating its application.

Organization of the Documentation
This manual contains a concise description of each function with at least one example
demonstrating the use of each function, including sample input and results. All
information pertaining to a particular function is in one place within a chapter.
Each chapter begins with an introduction followed by a table of contents listing the
functions included in the chapter. Documentation of the functions consists of the
following information:
• Section Name: Usually, the common root for the type float and type double

versions of the function.
• Purpose: A statement of the purpose of the function.
• Synopsis: The form for referencing the subprogram with required arguments

listed.
Required Arguments: A description of the required arguments in the order of their
occurrence.
Input: Argument must be initialized; it is not changed by the function.
Input/Output: Argument must be initialized; the function returns output through this
argument. The argument cannot be a constant or an expression.
Output: No initialization is necessary. The argument cannot be a constant or an
expression; the function returns output through this argument.

• Return Value: The value returned by the function.
• Synopsis with Optional Arguments: The form for referencing the function

with both required and optional arguments listed.
• Optional Arguments: A description of the optional arguments in the order of

their occurrence.
• Description: A description of the algorithm and references to detailed

information. In many cases, other IMSL functions with similar or
complementary functions are noted.

• Examples: At least one application of this function showing input and optional
arguments.

• Errors: Listing of any errors that may occur with a particular function. A
discussion on error types is given in the “User Errors” section of the Reference
Material. The errors are listed by their type as follows:

Informational Errors: List of informational errors that may occur with the function.
Alert Errors: List of alert errors that may occur with the function.
Warning Errors: List of warning errors that may occur with the function.

xiv • Naming Conventions IMSL C Stat Library

Fatal Errors: List of fatal errors that may occur with the function.
References: References are listed alphabetically by author.

Naming Conventions
Most functions are available in both a type float and a type double version, with names
of the two versions sharing a common root. Some functions are also available in type
int. The following list is of each type and the corresponding prefix of the function.
name in which multiple type versions exist:

Type Prefix
float imsls_f_

double imsls_d_

int imsls_i_

The section names for the functions contain only the common root to make finding the
functions easier. For example, the functions imsls_f_simple_statistics and
imsls_d_simple_statistics can be found in Chapter 1, Basic Statistics, in the
“simple_statistics” section.
Where appropriate, the same variable name is used consistently throughout the C Stat
Library. For example, anova_table denotes the array containing the analysis of
variance statistics and y denotes a vector of responses for a dependent variable.
When writing programs accessing the C Stat Library, choose C names that do not
conflict with IMSL external names. The careful user can avoid any conflicts with
IMSL names if, in choosing names, the following rule is observed:

• Do not choose a name beginning with “imsls_” in any combination of
uppercase or lowercase characters.

Error Handling, Underflow, and Overflow
The functions in the C Stat Library attempt to detect and report errors and invalid
input. This error-handling capability provides automatic protection for the user without
requiring the user to make any specific provisions for the treatment of error conditions.
Errors are classified according to severity and are assigned a code number. By default,
errors of moderate or higher severity result in messages being automatically printed by
the function. Moreover, errors of highest severity cause program execution to stop. The
severity level, as well as the general nature of the error, is designated by an “error type”
with symbolic names IMSLS_FATAL, IMSLS_WARNING, etc. See the section “User
Errors” in the Reference Material for further details.
In general, the C Stat Library codes are written so that computations are not affected by
underflow, provided the system (hardware or software) replaces an underflow with the
value 0. Normally, system error messages indicating underflow can be ignored.
IMSL codes also are written to avoid overflow. A program that produces system error
messages indicating overflow should be examined for programming errors such as
incorrect input data, mismatch of argument types, or improper dimensions.

Introduction Printing Results • xv

In many cases, the documentation for a function points out common pitfalls that can
lead to failure of the algorithm.

Printing Results
Most functions in the C Stat Library do not print any of the results; the output is
returned in C variables. The C Stat Library does contain some special functions just for
printing arrays. For example, IMSL function imsls_f_write_matrix is convenient
for printing matrices of type float. See Chapter 13, “Printing Functions,” for detailed
descriptions of these functions.

Missing Values
Some of the functions in the C Stat Library allow the data to contain missing values.
These functions recognize as a missing value the special value referred to as “Not a
Number” or NaN. The actual value is different on different computers, but it can be
obtained by reference to the function imsls_f_machine, described in Chapter 15,
“Utilities”.
The way that missing values are treated depends on the individual function and is
described in the documentation for the function.

Passing Data to User-Supplied Functions
In some cases it may be advantageous to pass problem-specific data to a user-supplied
function through the IMSL C Stat Library interface. This ability can be useful if a user-
supplied function requires data that is local to the user's calling function, and the user
wants to avoid using global data to allow the user-supplied function to access the data.
Functions in IMSL C Stat Library that accept user-supplied functions have an optional
argument(s) that will accept an alternative user-supplied function, along with a pointer to
the data, that allows user-specified data to be passed to the function. The example below
demonstrates this feature using the IMSL C Stat Library function
imsls_f_kolmogorov_one and optional argument IMSLS_FCN_W_DATA.

#include <imsls.h>
#include <stdio.h>
float cdf_w_data(float, void *data_ptr);
float cdf(float);
void main()
{
 float *statistics=NULL, *diffs = NULL, *x=NULL;
 int nobs = 100, nmiss;
 float usr_data[] = {0.5, .2886751};

 imsls_random_seed_set(123457);
 x = imsls_f_random_uniform(nobs, 0);

 statistics = imsls_f_kolmogorov_one(cdf, nobs, x,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_DIFFERENCES, &diffs,

xvi • Passing Data to User-Supplied Functions IMSL C Stat Library

 IMSLS_FCN_W_DATA, cdf_w_data, usr_data,
 0);
 printf("D = %8.4f\n", diffs[0]);
 printf("D+ = %8.4f\n", diffs[1]);
 printf("D- = %8.4f\n", diffs[2]);
 printf("Z = %8.4f\n", statistics[0]);
 printf("Prob greater D one sided = %8.4f\n", statistics[1]);
 printf("Prob greater D two sided = %8.4f\n", statistics[2]);
 printf("N missing = %d\n", nmiss);
}
/*
 * User function that accepts additional data in a (void*) pointer.
 * This (void*) pointer can be cast to any type and dereferenced to
 * get at any sort of data-type or structure that is needed.
 * For example, to get at the data in this example
 * *((float*)data_ptr) contains the value 0.5
 * *((float*)data_ptr+1) contains the value 0.2886751.
 */
float cdf_w_data(float x, void *data_ptr)
{
 float mean, std, z;
 mean = *((float*)data_ptr);
 std = *((float*)data_ptr+1);

 z = (x-mean)/std;
 return(imsls_f_normal_cdf(z));
}
/* Dummy function to satisfy C prototypes. */
float cdf(float x)
{
 return;
}

Chapter 1: Basic Statistics Routines • 1

Chapter 1: Basic Statistics

Routines
Simple Summary Statistics

Univariate summary statistics simple_statistics 1
Mean and variance inference
for a single normal population normal_one_sample 7
Inferences for two normal populations normal_two_sample 11

Tabulate, Sort, and Rank
Tally observations into a one-way frequency table table_oneway 17
Tally observations into a two-way frequency table table_twoway 22
Sort data with options to tally cases
into a multi-way frequency table sort_data 26
Ranks, normal scores, or exponential scores ranks 34

Usage Notes
The functions for computations of basic statistics generally have relatively simple
arguments. In most cases, the first required argument is the number of observations.
The data are input in either a one- or two-dimensional array. As usual, when a two-
dimensional array is used, the rows contain observations and the columns represent
variables. Most of the functions in this chapter allow for missing values. Missing value
codes can be set by using function imsls_f_machine, described in Chapter 15,
“Utilities”.
Several functions in this chapter perform statistical tests. These functions generally
return a “p-value” for the test, often as the return value for the C function. The p-value
is between 0 and 1 and is the probability of observing data that would yield a test
statistic as extreme or more extreme under the assumption of the null hypothesis.
Hence, a small p-value is evidence for the rejection of the null hypothesis.

simple_statistics
Computes basic univariate statistics.

Synopsis
#include <imsls.h>

2 • simple_statistics IMSL C Stat Library

float *imsls_f_simple_statistics (int n_observations, int n_variables,
float x[], ..., 0)

The type double function is imsls_d_simple_statistics.

Required Arguments

int n_observations (Input)
Number of observations.

int n_variables (Input)
Number of variables.

float x[] (Input)
Array of size n_observations × n_variables containing the data matrix.

Return Value
A pointer to an array containing some simple statistics for each of the columns in x. If
IMSLS_MEDIAN and IMSLS_MEDIAN_AND_SCALE are not used as optional arguments,
the size of the matrix is 14 × n_variables. The columns of this matrix correspond to
the columns of x, and the rows contain the following statistics:

Row Statistic
0 mean

1 variance

2 standard deviation

3 coefficient of skewness

4 coefficient of excess (kurtosis)

5 minimum value

6 maximum value

7 range

8 coefficient of variation (when defined)
If the coefficient of variation is not defined, 0 is returned.

9 number of observations (the counts)

10 lower confidence limit for the mean (assuming normality)
The default is a 95-percent confidence interval.

11 upper confidence limit for the mean (assuming normality)

12 lower confidence limit for the variance (assuming normality)
The default is a 95-percent confidence interval.

13 upper confidence limit for the variance (assuming normality))

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_simple_statistics (int n_observations, int n_variables,

float x[],

Chapter 1: Basic Statistics simple_statistics • 3

IMSLS_CONFIDENCE_MEANS, float confidence_means,
IMSLS_CONFIDENCE_VARIANCES, float confidence_variances,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_STAT_COL_DIM, int stat_col_dim,
IMSLS_MEDIAN, or
IMSLS_MEDIAN_AND_SCALE,
IMSLS_MISSING_LISTWISE, or
IMSLS_MISSING_ELEMENTWISE,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_RETURN_USER, float simple_statistics[],
0)

Optional Arguments

IMSLS_CONFIDENCE_MEANS, float confidence_means (Input)
Confidence level for a two-sided interval estimate of the means (assuming
normality) in percent. Argument confidence_means must be between 0.0
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval
with confidence level c, set confidence_means = 100.0 − 2(100 − c). If
IMSLS_CONFIDENCE_MEANS is not specified, a 95-percent confidence
interval is computed.

IMSLS_CONFIDENCE_VARIANCES, float confidence_variances (Input)
The confidence level for a two-sided interval estimate of the variances
(assuming normality) in percent. The confidence intervals are symmetric in
probability (rather than in length). For a one-sided confidence interval with
confidence level c, set confidence_means = 100.0 − 2(100 − c). If
IMSLS_CONFIDENCE_VARIANCES is not specified, a 95-percent confidence
interval is computed.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of array x.
Default: x_col_dim = n_variables

IMSLS_STAT_COL_DIM, int stat_col_dim (Input)
Column dimension of the returned value array, or if IMSLS_RETURN_USER is
specified, the column dimension of array simple_statistics.
Default: stat_col_dim = n_variables

IMSLS_MEDIAN, or
IMSLS_MEDIAN_AND_SCALE

Exactly one of these optional arguments can be specified in order to indicate
the additional simple robust statistics to be computed. If IMSLS_MEDIAN is
specified, the medians are computed and stored in one additional row (row
number 14) in the returned matrix of simple statistics. If
IMSLS_MEDIAN_AND_SCALE is specified, the medians, the medians of the
absolute deviations from the medians, and a simple robust estimate of scale
are computed, then stored in three additional rows (rows 14, 15, and 16) in the
returned matrix of simple statistics.

4 • simple_statistics IMSL C Stat Library

IMSLS_MISSING_LISTWISE, or
IMSLS_MISSING_ELEMENTWISE

If IMSLS_MISSING_ELEMENTWISE is specified, all non missing data for any
variable is used in computing the statistics for that variable. If
IMSLS_MISSING_LISTWISE is specified and if an observation (row of x)
contains a missing value, the observation is excluded from computations for all
variables. The default is IMSLS_MISSING_LISTWISE. In either case, if weights
and/or frequencies are specified and the value of the weight and/or frequency is
missing, the observation is excluded from computations for all variables.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation.
Default: Each observation has a frequency of 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each
observation.
Default: Each observation has a weight of 1

IMSLS_RETURN_USER, float simple_statistics[] (Output)
User-supplied array containing the matrix of statistics. If neither
IMSLS_MEDIAN nor IMSLS_MEDIAN_AND_SCALE is specified, the matrix is
14 × n_variables. If IMSLS_MEDIAN is specified, the matrix is 15 ×
 n_variables. If IMSLS_MEDIAN_AND_SCALE is specified, the matrix is
17 × n_variables.

Description
For the data in each column of x, imsls_f_simple_statistics computes the
sample mean, variance, minimum, maximum, and other basic statistics. This function
also computes confidence intervals for the mean and variance (under the hypothesis
that the sample is from a normal population).
Frequencies are interpreted as multiple occurrences of the other values in the
observations. In other words, a row of x with a frequency variable having a value of 2
has the same effect as two rows with frequencies of 1. The total of the frequencies is
used in computing all the statistics based on moments (mean, variance, skewness, and
kurtosis). Weights are not viewed as replication factors. The sum of the weights is used
only in computing the mean (the weighted mean is used in computing the central
moments). Both weights and frequencies can be 0, but neither can be negative. In
general, a 0 frequency means that the row is to be eliminated from the analysis; no
further processing or error checking is done on the row. A weight of 0 results in the
row being counted, and updates are made of the statistics.
The definitions of some of the statistics are given below in terms of a single variable x
of which the i-th datum is xi.

Chapter 1: Basic Statistics simple_statistics • 5

Mean

x
f w x

f w
w

i i i

i i

= ∑
∑

Variance

s
f w x x

nw
i i i w2

2

1
=

−

−
∑ b g

Skewness

f w x x n

f w x x n

i i i w

i i i w

−

−

∑
∑

b g
b g

3

2 3 2

/

/
/

Excess or Kurtosis

f w x x n

f w x x n

i i i w

i i i w

−

−
−∑

∑
b g
b g

4

2 2 3
/

/

Minimum

x ximin min= b g

Maximum

x ximax max= b g

Range

x xmax min−

Coefficient of Variation

s
x

xw

w
wfor ≠ 0

6 • simple_statistics IMSL C Stat Library

Median

median
middle after sorting if is odd
average of middle two ' s if is even

x
x n

x ni
i

i
l q = RST

Median Absolute Deviation

MAD = median {|xi − median {xj}|}

Simple Robust Estimate of Scale

MAD/Φ-1(3/4)

where Φ-1(3/4) ≈ 0.6745 is the inverse of the standard normal distribution function
evaluated at 3/4. This standardizes MAD in order to make the scale estimate consistent
at the normal distribution for estimating the standard deviation (Huber 1981, pp.
107−108).

Example
Data from Draper and Smith (1981) are used in this example, which includes
5 variables and 13 observations.

#include <imsls.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 13

main()
{
 float *simple_statistics;
 float x[] = {
 7., 26., 6., 60., 78.5,
 1., 29., 15., 52., 74.3,
 11., 56., 8., 20., 104.3,
 11., 31., 8., 47., 87.6,
 7., 52., 6., 33., 95.9,
 11., 55., 9., 22., 109.2,
 3., 71., 17., 6., 102.7,
 1., 31., 22., 44., 72.5,
 2., 54., 18., 22., 93.1,
 21., 47., 4., 26., 115.9,
 1., 40., 23., 34., 83.8,
 11., 66., 9., 12., 113.3,
 10., 68., 8., 12., 109.4};
 char *row_labels[] = {
 "means", "variances", "std. dev", "skewness", "kurtosis",
 "minima", "maxima", "ranges", "C.V.", "counts", "lower mean",
 "upper mean", "lower var", "upper var"};

 simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS,

Chapter 1: Basic Statistics normal_one_sample • 7

 N_VARIABLES, x, 0);

 imsls_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES,
 simple_statistics,
 IMSLS_ROW_LABELS, row_labels,
 IMSLS_WRITE_FORMAT, "%7.3f", 0);
}

Output
 * * * Statistics * * *

 1 2 3 4 5
means 7.462 48.154 11.769 30.000 95.423
variances 34.603 242.141 41.026 280.167 226.314
std. dev 5.882 15.561 6.405 16.738 15.044
skewness 0.688 -0.047 0.611 0.330 -0.195
kurtosis 0.075 -1.323 -1.079 -1.014 -1.342
minima 1.000 26.000 4.000 6.000 72.500
maxima 21.000 71.000 23.000 60.000 115.900
ranges 20.000 45.000 19.000 54.000 43.400
C.V. 0.788 0.323 0.544 0.558 0.158
counts 13.000 13.000 13.000 13.000 13.000
lower mean 3.907 38.750 7.899 19.885 86.332
upper mean 11.016 57.557 15.640 40.115 104.514
lower var 17.793 124.512 21.096 144.065 116.373
upper var 94.289 659.817 111.792 763.434 616.688

normal_one_sample
Computes statistics for mean and variance inferences using a sample from a normal
population.

Synopsis
#include <imsls.h>
float imsls_f_normal_one_sample (int n_observations, float x[], ..., 0)
The type double function is imsls_d_normal_one_sample.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations.

Return Value
The mean of the sample.

Synopsis with Optional Arguments
#include <imsls.h>

8 • normal_one_sample IMSL C Stat Library

float imsls_f_normal_one_sample (int n_observations, float x[],
IMSLS_CONFIDENCE_MEAN, float confidence_mean,
IMSLS_CI_MEAN, float *lower_limit, float *upper_limit,
IMSLS_STD_DEV, float *std_dev,
IMSLS_T_TEST, int *df, float *t, float *p_value,
IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
 float *p_value,
IMSLS_CHI_SQUARED_TEST_NULL,
 float variance_hypothesis_value,
0)

Optional Arguments

IMSLS_CONFIDENCE_MEAN, float confidence_mean (Input)
Confidence level (in percent) for two-sided interval estimate of the mean.
Argument confidence_mean must be between 0.0 and 100.0 and is often
90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level
c (at least 50 percent), set confidence_mean = 100.0 − 2.0 × (100.0 − c). If
IMSLS_CONFIDENCE_MEAN is not specified, a 95-percent confidence interval
is computed.

IMSLS_CI_MEAN, float *lower_limit, float *upper_limit (Output)
Argument lower_limit contains the lower confidence limit for the mean,
and argument upper_limit contains the upper confidence limit for the
mean.

IMSLS_STD_DEV, float *std_dev (Output)
Standard deviation of the sample.

IMSLS_T_TEST, int *df, float *t, float *p_value (Output)
Argument df is the degrees of freedom associated with the t test for the mean,
t is the test statistic, and p_value is the probability of a larger
t in absolute value. The t test is a test, against a two-sided alternative, of the
hypothesis μ = μ0, where μ0 is the null hypothesis value as described in
IMSLS_T_TEST_NULL.

IMSLS_T_TEST_NULL, float mean_hypothesis_value (Input)
Null hypothesis value for t test for the mean.
Default: mean_hypothesis_value = 0.0

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance (Input)
Confidence level (in percent) for two-sided interval estimate of the variances.
Argument confidence_variance must be between 0.0 and 100.0 and is
often 90.0, 95.0, 99.0. For a one-sided confidence interval with confidence
level c (at least 50 percent), set confidence_variance = 100.0 − 2.0 ×
(100.0 − c). If this option is not used, a 95-percent confidence interval is
computed.

Chapter 1: Basic Statistics normal_one_sample • 9

IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit (Output)
Contains the lower and upper confidence limits for the variance.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value
(Output)
Argument df is the degrees of freedom associated with the chi-squared test
for variances, chi_squared is the test statistic, and p_value is the
probability of a larger chi-squared. The chi-squared test is a test of the
hypothesis σ σ σ2

0
2

0
2= where

is the null hypothesis value as described in

IMSLS_CHI_SQUARED_TEST_NULL.

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value (Input)
Null hypothesis value for the chi-squared test.
Default: variance_hypothesis_value = 1.0

Description
Statistics for mean and variance inferences using a sample from a normal population
are computed, including confidence intervals and tests for both mean and variance. The
definitions of mean and variance are given below. The summation in each case is over
the set of valid observations, based on the presence of missing values in the data.

Mean, return value

x
x

n
i

= ∑

Standard deviation, std_dev

s
x x

n
i

=
−

−
∑ b g2

1

The t statistic for the two-sided test concerning the population mean is given by

t
x
s n

=
− μ0

/

where s and x are given above. This quantity has a T distribution with n − 1 degrees of
freedom.
The chi-squared statistic for the two-sided test concerning the population variance is
given by

χ
σ

2
2

0
2

1
=

−n sb g

10 • normal_one_sample IMSL C Stat Library

where s is given above. This quantity has a χ2 distribution with n − 1 degrees of
freedom.

Examples

Example 1
This example uses data from Devore (1982, p. 335), which is based on data published
in the Journal of Materials. There are 15 observations; the mean is the only output.

#include <imsls.h>

main()
{
#define N_OBSERVATIONS 15

 float mean;
 float x[N_OBSERVATIONS] = {
 26.7, 25.8, 24.0, 24.9, 26.4,
 25.9, 24.4, 21.7, 24.1, 25.9,
 27.3, 26.9, 27.3, 24.8, 23.6};

 /* Perform analysis */
 mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x, 0);

 /* Print results */
 printf("Sample Mean = %5.2f", mean);
}

Output
Sample Mean = 25.3

Example 2
This example uses the same data as the initial example. The hypothesis H0: μ = 20.0 is
tested. The extremely large t value and the correspondingly
small p-value provide strong evidence to reject the null hypothesis.

#include <imsls.h>

main()
{
#define N_OBSERVATIONS 15

 int df;
 float mean, s, lower_limit, upper_limit, t, p_value;
 static float x[N_OBSERVATIONS] = {
 26.7, 25.8, 24.0, 24.9, 26.4,
 25.9, 24.4, 21.7, 24.1, 25.9,
 27.3, 26.9, 27.3, 24.8, 23.6};

 /* Perform analysis +*/
 mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x,
 IMSLS_STD_DEV, &s,
 IMSLS_CI_MEAN, &lower_limit, &upper_limit,
 IMSLS_T_TEST_NULL, 20.0,

Chapter 1: Basic Statistics normal_two_sample • 11

 IMSLS_T_TEST, &df, &t, &p_value,
 0);

 /* Print results */
 printf("Sample Mean = %5.2f\n", mean);
 printf("Sample Standard Deviation = %5.2f\n", s);
 printf("95%% CI for the mean is (%5.2f,%5.2f)\n", lower_limit,
 upper_limit);
 printf("df = %3d\n", df);
 printf("t = %5.2f\n", t);
 printf("p-value = %8.5f\n", p_value);
}

Output
Sample Mean = 25.31
Sample Standard Deviation = 1.58
95% CI for the mean is (24.44,26.19)
df = 14
t = 13.03
p-value = 0.00000

normal_two_sample
Computes statistics for mean and variance inferences using samples from two normal
populations.

Synopsis
#include <imsls.h>
float imsls_f_normal_two_sample (int n1_observations, float x1[],

int n2_observations, float x2[], ..., 0)
The type double function is imsls_d_normal_two_sample.

Required Arguments

int n1_observations (Input)
Number of observations in the first sample, x1.

float x1[] (Input)
Array of length n1_observations containing the first sample.

int n2_observations (Input)
Number of observations in the second sample, x2.

float x2[] (Input)
Array of length n2_observations containing the second sample.

Return Value
Difference in means, x1_mean − x2_mean.

Synopsis with Optional Arguments
#include <imsls.h>

12 • normal_two_sample IMSL C Stat Library

float imsls_f_normal_two_sample (int n1_observations, float x1[],
int n2_observations, float x2[],
IMSLS_MEANS, float *x1_mean, float *x2_mean,
IMSLS_CONFIDENCE_MEAN, float confidence_mean,
IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit,
 float *upper_limit,
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit,
 float *upper_limit
IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value,
IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t,
 float *p_value,
IMSLS_T_TEST_NULL, float mean_hypothesis_value,
IMSLS_POOLED_VARIANCE, float *pooled_variance,
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance,
IMSLS_CI_COMMON_VARIANCE, float *lower_limit,
 float *upper_limit,
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
 float *p_value,
IMSLS_CHI_SQUARED_TEST_NULL,
 float variance_hypothesis_value,
IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev,
IMSLS_CI_RATIO_VARIANCES, float *lower_limit,
 float *upper_limit,
IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F,
float *p_value,
0)

Optional Arguments

IMSLS_MEANS, float *x1_mean, float *x2_mean (Output)
Means of the first and second samples.

IMSLS_CONFIDENCE_MEAN, float confidence_mean (Input)
Confidence level for two-sided interval estimate of the mean of x1 minus the
mean of x2, in percent. Argument confidence_mean must be between 0.0
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval
with confidence level c (at least 50 percent), set
confidence_mean = 100.0 − 2.0 × (100.0 − c).
Default: confidence_mean = 95.0

IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit, float *upper_limit
(Output)
Argument lower_limit contains the lower confidence limit, and
upper_limit contains the upper limit for the mean of the first population
minus the mean of the second, assuming equal variances.

IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit,
float *upper_limit (Output)
Argument lower_limit contains the approximate lower confidence limit,

Chapter 1: Basic Statistics normal_two_sample • 13

and upper_limit contains the approximate upper limit for the mean of the
first population minus the mean of the second, assuming unequal variances.

IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value (Output)
A t test for μ1 − μ2 = c, where c is the null hypothesis value. (See the
description of IMSLS_T_TEST_NULL.) Argument df contains the degrees of
freedom, argument t contains the t value, and argument p_value contains the
probability of a larger t in absolute value, assuming equal means. This test
assumes equal variances.

IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_value
(Output)
A t test for μ1 − μ2 = c, where c is the null hypothesis value. (See the
description of IMSLS_T_TEST_NULL.) Argument df contains the degrees of
freedom for Satterthwaite’s approximation, argument t contains the t value,
and argument p_value contains the approximate probability of a larger t in
absolute value, assuming equal means. This test does not assume equal
variances.

IMSLS_T_TEST_NULL, float mean_hypothesis_value (Input)
Null hypothesis value for the t test.
Default: mean_hypothesis_value = 0.0

IMSLS_POOLED_VARIANCE, float *pooled_variance (Output)
Pooled variance for the two samples.

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance (Input)
Confidence level for inference on variances. Under the assumption of equal
variances, the pooled variance is used to obtain a two-sided
confidence_variance percent confidence interval for the common
variance if IMSLS_CI_COMMON_VARIANCE is specified. Without making the
assumption of equal variances, the ratio of the variances is of interest. A two-
sided confidence_variance percent confidence interval for the ratio of the
variance of the first sample to that of the second sample is computed and is
returned if IMSLS_CI_RATIO_VARIANCES is specified. The confidence
intervals are symmetric in probability.
Default: confidence_variance = 95.0

IMSLS_CI_COMMON_VARIANCE, float *lower_limit, float *upper_limit
(Output)
Argument lower_limit contains the lower confidence limit, and
upper_limit contains the upper limit for the common, or pooled, variance.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value
(Output)
The chi-squared test for σ σ σ2

0
2 2= where

is the common, or pooled,

variance, and σ0
2

is the null hypothesis value. (See description of

IMSLS_CHI_SQUARED_TEST_NULL.) Argument df contains the degrees of
freedom, argument chi_squared contains the chi-squared value, and

14 • normal_two_sample IMSL C Stat Library

argument p_value contains the probability of a larger chi-squared in absolute
value, assuming equal means.

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value (Input)
Null hypothesis value for the chi-squared test.
Default: variance_hypothesis_value = 1.0

IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev (Output)
Standard deviations of the first and second samples.

IMSLS_CI_RATIO_VARIANCES, float *lower_limit, float *upper_limit
(Output)
Argument lower_limit contains the approximate lower confidence limit,
and upper_limit contains the approximate upper limit for the ratio of the
variance of the first population to the second.

IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F,
float *p_value (Output)
The F test for equality of variances. Argument df_numerator and
df_denominator contain the numerator degrees of freedom, argument F
contains the F test value, and argument p_value contains the probability of a
larger F in absolute value, assuming equal variances.

Description
Function imsls_f_normal_two_sample computes statistics for making inferences
about the means and variances of two normal populations, using independent samples
in x1 and x2. For inferences concerning parameters of a single normal population, see
function imsls_normal_one_sample.

Let μ1 and σ1
2 be the mean and variance of the first population, and let μ2 and σ2

2 be
the corresponding quantities of the second population. The function contains test
confidence intervals for difference in means, equality of variances, and the pooled
variance.
The means and variances for the two samples are as follows:

x x n x x ni i1 1 1 2 2 2= =∑ ∑(/), () /

and

s x x n s x x ni i1
2

1 1
2

1 2
2

2 2
2

21 1= − − = − −∑ ∑() / , /b g b g b g

Inferences about the Means
The test that the difference in means equals a certain value, for example, μ0, depends
on whether or not the variances of the two populations can be considered equal. If the
variances are equal and mean_hypothesis_value equals 0, the test is the two-

Chapter 1: Basic Statistics normal_two_sample • 15

sample t test, which is equivalent to an analysis-of-variance test. The pooled variance
for the difference-in-means test is as follows:

s
n s n s

n n
2 1 1 2 2

1 2

1 1
2

=
− + −

+ −
b g b g

The t statistic is as follows:

t x x
s n n

=
− −

+
1 2 0

1 21 1
μ

/ /b g b g

Also, the confidence interval for the difference in means can be obtained by specifying
IMSLS_CI_DIFF_FOR_EQUAL_VARS.
If the population variances are not equal, the ordinary t statistic does not have a
t distribution and several approximate tests for the equality of means have been
proposed. (See, for example, Anderson and Bancroft 1952, and Kendall and Stuart
1979.) One of the earliest tests devised for this situation is the Fisher-Behrens test,
based on Fisher’s concept of fiducial probability. A procedure used if
IMSLS_T_TEST_FOR_UNEQUAL_VARS and/or IMSLS_CI_DIFF_FOR_UNEQUAL_VARS
are specified is the Satterthwaite’s procedure, as suggested by H.F. Smith and modified
by F.E. Satterthwaite (Anderson and Bancroft 1952, p. 83).
The test statistic is

′ = − −t x x sd1 2 0μb g /

where

s s n s nd = +1
2

1 2
2

2/ /e j e j

Under the null hypothesis of μ1 − μ2 = c, this quantity has an approximate t distribution
with degrees of freedom df (in IMSLS_T_TEST_FOR_UNEQUAL_VARS), given by the
following equation:

df =

−
+

−

s

s n

n

s n

n

d
4

1
2

1
2

1

2
2

2
2

21 1

/ /e j e j

Inferences about Variances

The F statistic for testing the equality of variances is given by F s s= max min/2 2 , where

smax
2 is the larger of s1

2 and s2
2 . If the variances are equal, this quantity has an F

distribution with n1 − 1 and n2 − 1 degrees of freedom.

16 • normal_two_sample IMSL C Stat Library

It is generally not recommended that the results of the F test be used to decide whether
to use the regular t test or the modified t′ on a single set of data. The modified t′
(Satterthwaite’s procedure) is the more conservative approach to use if there is doubt
about the equality of the variances.

Examples

Example 1
This example, taken from Conover and Iman (1983, p. 294), involves scores on
arithmetic tests of two grade-school classes. The question is whether a group taught by
an experimental method has a higher mean score. Only the difference in means is
output. The data are shown below.
Scores for Standard Group Scores for Experimental Group

72 111
75 118
77 128
80 138
104 140
110 150
125 163

 164
 169

#include <imsls.h>

main()
{
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9

 float diff_means;
 float x1[N1_OBSERVATIONS] = {
 72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};
 float x2[N2_OBSERVATIONS] = {
 111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
 164.0, 169.0};

 /* Perform analysis */
 diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,
 N2_OBSERVATIONS, x2, 0);

 /* Print results */
 printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);
}

Output
x1_mean - x2_mean = -50.48

Chapter 1: Basic Statistics table_oneway • 17

Example 2
The same data is used for this example as for the initial example. Here, the results of
the t test are output. The variances of the two populations are assumed to be equal. It is
seen from the output that there is strong reason to believe that the two means are
different (t value of −4.804). Since the lower 97.5-percent confidence limit does not
include 0, the null hypothesis is that μ1 ≤ μ2 would be rejected at the 0.05 significance
level. (The closeness of the values of the sample variances provides some qualitative
substantiation of the assumption of equal variances.)

#include <imsls.h>

main()
{
#define N1_OBSERVATIONS 7
#define N2_OBSERVATIONS 9

 int df;
 float diff_means, lower_limit, upper_limit, t, p_value, sp2;
 float x1[N1_OBSERVATIONS] = {
 72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0};
 float x2[N2_OBSERVATIONS] = {
 111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,
 164.0, 169.0};

 /* Perform analysis */
 diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,
 N2_OBSERVATIONS, x2,
 IMSLS_POOLED_VARIANCE, &sp2,
 IMSLS_CI_DIFF_FOR_EQUAL_VARS, &lower_limit, &upper_limit,
 IMSLS_T_TEST_FOR_EQUAL_VARS, &df, &t, &p_value,
 0);

 /* Print results */
 printf("\nx1_mean - x2_mean = %5.2f\n", diff_means);
 printf("Pooled variance = %5.2f\n", sp2);
 printf("95%% CI for x1_mean - x2_mean is (%5.2f,%5.2f)\n",
 lower_limit, upper_limit);
 printf("df = %3d\n", df);
 printf("t = %5.2f\n", t);
 printf("p-value = %8.5f\n", p_value);
}

Output
x1_mean - x2_mean = -50.48
Pooled variance = 434.63
95% CI for x1_mean - x2_mean is (-73.01,-27.94)
df = 14
t = -4.80
p-value = 0.00028

table_oneway
Tallies observations into a one-way frequency table.

18 • table_oneway IMSL C Stat Library

Synopsis
#include <imsls.h>
float *imsls_f_table_oneway (int n_observations, float x[],

int n_intervals, ..., 0)
The type double function is imsls_d_table_oneway.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the observations.

int n_intervals (Input)
Number of intervals (bins).

Return Value
Pointer to an array of length n_intervals containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_table_oneway (int n_observations, float x[],

int n_intervals,
IMSLS_DATA_BOUNDS, float *minimum, float *maximum, or
IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound, or
IMSLS_CUTPOINTS, float cutpoints[], or
IMSLS_CLASS_MARKS, float class_marks[],
IMSLS_RETURN_USER, float table[],
0)

Optional Arguments

IMSLS_DATA_BOUNDS, float *minimum, float *maximum (Output)
If none is specified or if IMSLS_DATA_BOUNDS is specified, n_intervals
intervals of equal length are used with the initial interval starting with the
minimum value in x and the last interval ending with the maximum value in x.
The initial interval is closed on the left and right. The remaining intervals are
open on the left and closed on the right. When IMSLS_DATA_BOUNDS is
explicitly specified, the minimum and maximum values in x are output in
minimum and maximum. With this option, each interval is of length
(maximum − minimum)/n_intervals.

 or

IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSLS_KNOWN_BOUNDS is specified, two semi-infinite intervals are used as
the initial and last intervals. The initial interval is closed on the right and
includes lower_bound as its right endpoint. The last interval is open on the

Chapter 1: Basic Statistics table_oneway • 19

left and includes all values greater than upper_bound. The remaining
n_intervals − 2 intervals are each of length

upper_bound lower_bound

n_intervals

-
 − 2

and are open on the left and closed on the right. Argument n_intervals
must be greater than or equal to 3 for this option.
or

IMSLS_CUTPOINTS, float cutpoints[] (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be provided in
the array cutpoints of length n_intervals − 1. This option allows
unequal interval lengths. The initial interval is closed on the right and includes
the initial cutpoint as its right endpoint. The last interval is open on the left
and includes all values greater than the last cutpoint. The remaining
n_intervals − 2 intervals are open on the left and closed on the right.
Argument n_interval must be greater than or equal to 3 for this option.

 or

IMSLS_CLASS_MARKS, float class_marks[] (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in ascending
order must be provided in the array class_marks of length n_intervals.
The class marks are the midpoints of each of the n_intervals. Each interval
is assumed to have length class_marks [1] − class_marks [0]. Argument
n_intervals must be greater than or equal to 2 for this option.

None or exactly one of the four optional arguments described above can be
specified in order to define the intervals or bins for the one-way table.

IMSLS_RETURN_USER, float table[] (Output)
Counts are stored in the array table of length n_intervals, which is
provided by the user.

Examples

Example 1
The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981).
The measurements (in inches) are for precipitation in Minneapolis/St. Paul during the
month of March for 30 consecutive years.

#include <imsls.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 float *table;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};

20 • table_oneway IMSL C Stat Library

 table = imsls_f_table_oneway (n_observations, x, n_intervals, 0);
 imsls_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output
 counts
 1 2 3 4 5 6
 4 8 5 5 3 1

 7 8 9 10
 3 0 0 1

Example 2
In this example, IMSLS_KNOWN_BOUNDS is used, and lower_bound = 0.5 and
upper_bound = 4.5 are set so that the eight interior intervals each have width
(4.5 − 0.5)/(10 − 2) = 0.5. The 10 intervals are (−∞, 0.5], (0.5, 1.0], …, (4.0, 4.5], and
(4.5, ∞].

#include <imsls.h>
main()
{
 int n_observations=30;
 int n_intervals=10;
 float *table;
 float lower_bound=0.5, upper_bound=4.5;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 table = imsls_f_table_oneway (n_observations, x, n_intervals,
 IMSLS_KNOWN_BOUNDS, lower_bound,
 upper_bound,
 0);
 imsls_f_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2

 7 8 9 10
 2 0 0 1

Example 3
In this example, 10 class marks, 0.25, 0.75, 1.25, ..., 4.75, are input. This defines the
class intervals (0.0, 0.5], (0.5, 1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike the
previous example, the initial and last intervals are the same length as the remaining
intervals.

#include <imsls.h>
main()
{

Chapter 1: Basic Statistics table_oneway • 21

 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,1.89,
 0.90, 2.05};
 double class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25,
 2.75, 3.25,3.75, 4.25, 4.75};
 table = imsls_d_table_oneway (n_observations, x, n_intervals,
 IMSLS_CLASS_MARKS, class_marks,
 0);
 imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
 }

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2

 7 8 9 10
 2 0 0 1

Example 4
In this example, cutpoints, 0.5, 1.0, 1.5, 2.0, ..., 4.5, are input to define the same 10
intervals as in Example 2. Here again, the initial and last intervals are semi-infinite
intervals.

#include <imsls.h>
main()
{
 int n_intervals=10;
 int n_observations=30;
 double *table;
 double x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,
 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,
 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81,
 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89,
 0.90, 2.05};
 double cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5,
 3.0, 3.5, 4.0, 4.5};
 table = imsls_d_table_oneway (n_observations, x, n_intervals,
 IMSLS_CUTPOINTS, cutpoints,
 0);
 imsls_d_write_matrix("counts", 1, n_intervals, table, 0);
 }

22 • table_twoway IMSL C Stat Library

Output
 counts
 1 2 3 4 5 6
 2 7 6 6 4 2
 7 8 9 10
 2 0 0 1

table_twoway
Tallies observations into two-way frequency table.

Synopsis
#include <imsls.h>

float *imsls_f_table_twoway (int n_observations, float x[], float y[],
int nx, int ny, ..., 0)

The type double function is imsls_d_table_twoway.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the data for the first variable.

float y[] (Input)
Array of length n_observations containing the data for the second variable.

int nx (Input)
Number of intervals (bins) for variable x.

int nx (Input)
Number of intervals (bins) for variable y.

Return Value
Pointer to an array of size nx by ny containing the counts.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_table_twoway (int n_observations, float x[], float y[],

int nx, int ny,
IMSLS_DATA_BOUNDS, float *xmin, float *xmax, float *ymin, float
*ymax, or
IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi, or
IMSLS_CUTPOINTS, float cx[], float cy[], or
IMSLS_CLASS_MARKS, float cx[], float cy[],
IMSLS_RETURN_USER, float table[],
0)

Chapter 1: Basic Statistics table_twoway • 23

Optional Arguments

IMSLS_DATA_BOUNDS, float *xlo, float *xhi, float *ylo, float *yhi (Output)
If none is specified or if IMSLS_DATA_BOUNDS is specified, n_intervals
intervals of equal length are used. Let xmin and xmax be the minimum and
maximum values in x, respectively, with similar meanings for ymin and
ymax. Then, table[0] is the tally of observations with the x value less than
or equal to
xmin + (xmax − xmin)/nx, and the y value less than or equal to
ymin + (ymax − ymin)/ny. When IMSLS_DATA_BOUNDS is explicitly
specified, the minimum and maximum values in x and y are output in xmin,
xmax, ymin, and ymax.

or
IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi (Input)

Intervals of equal lengths are used just as in the case of
IMSLS_DATA_BOUNDS, except the upper and lower bounds are taken as the
user supplied variables xlo, xhi, ylo, and yhi, instead of the actual minima
and maxima in the data. Therefore, the first and last intervals for both
variables are semi-infinite in length. Arguments nx and ny must be greater
than or equal to 3.

or

IMSLS_CUTPOINTS, float cx[], float cy[] (Input)
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be provided in
the arrays cx and cy, of length (nx-1) and (ny-1) respectively. The tally in
table[0] is the number of observations for which the x value is less than or
equal to cx[0], and the y value is less than or equal to cy[0]. This option
allows unequal interval lengths. Arguments nx and ny must be greater than or
equal to 2.

or

IMSLS_CLASS_MARKS, float cx[], float cy[] (Input)
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in
ascending order must be provided in the arrays cx and cy. The class marks
are the midpoints of each interval. Each interval is taken to have length cx[1]
− cx[0] in the x direction and cy[1] − cy[0] in the y direction. The total
number of elements in table may be less than n_observations.
Arguments nx and ny must be greater than or equal to 2.

None or exactly one of the four optional arguments described above can be specified in
order to define the intervals or bins for the one-way table.

IMSLS_RETURN_USER, float table[] (Output)
Counts are stored in the array table of size nx by ny, which is provided by the
user.

24 • table_twoway IMSL C Stat Library

Examples

Example 1
The data for x in this example are the same as those used in the examples for
table_oneway. The data for y were created by adding small integers to the data in x.
This example uses the default tally method, IMSLS_DATA_BOUNDS, which may be
appropriate when the range of the data is unknown.

#include <imsls.h>
main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

Output
 counts
 0 1 2 3 4 5
0 4 2 4 2 0 0
1 0 4 3 2 1 0
2 0 0 1 2 0 1
3 0 0 0 0 1 2
4 0 0 0 0 0 1

Example 2
In this example, xlo, xhi, ylo, and yhi are chosen so that the intervals will be 0 to 1,
1 to 2, and so on for x, and 1 to 2, 2 to 3, and so on for y.

#include <imsls.h>
main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float xlo = 1.0;
 float xhi = 4.0;
 float ylo = 2.0;
 float yhi = 6.0;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};

Chapter 1: Basic Statistics table_twoway • 25

 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
 IMSLS_KNOWN_BOUNDS, xlo, xhi, ylo, yhi, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

Output
 counts
 0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Example 3
In this example, the class boundaries are input in cx and cy. The same intervals are
chosen as in Example 2, where the first element of cx and cy specify the first cutpoint
between classes.

#include <imsls.h>
main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float cmx[] = {0.5, 1.5, 2.5, 3.5, 4.5};
 float cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5};
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
 IMSLS_CLASS_MARKS, cmx, cmy, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

26 • sort_data IMSL C Stat Library

Output

 counts
 0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

Example 4
This example, uses the IMSLS_CUTPOINTS tally option with cutpoints such that the
intervals are specified as in the previous examples.

#include <imsls.h>
main()
{
 int nx = 5;
 int ny = 6;
 int n_observations=30;
 float *table;
 float cpx[] = {1, 2, 3, 4};
 float cpy[] = {2, 3, 4, 5, 6};
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,
 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,
 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,
 1.89, 0.90, 2.05};
 float y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37,
 3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32,
 1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96,
 2.89, 2.90, 5.05};
 table = imsls_f_table_twoway (n_observations, x, y, nx, ny,
 IMSLS_CUTPOINTS, cpx, cpy, 0);
 imsls_f_write_matrix("counts", nx, ny, table,
 IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0);
 }

Output

 counts
 0 1 2 3 4 5
0 3 2 4 0 0 0
1 0 5 5 2 0 0
2 0 0 1 3 2 0
3 0 0 0 0 0 2
4 0 0 0 0 1 0

sort_data
Sorts observations by specified keys, with option to tally cases into a multi-way
frequency table.

Chapter 1: Basic Statistics sort_data • 27

Synopsis
#include <imsls.h>
void imsls_f_sort_data (int n_observations, int n_variables, float x[],

int n_keys, ..., 0)
The type double function is imsls_d_sort_data.

Required Arguments

int n_observations (Input)
Number of observations (rows) in x.

int n_variables (Input)
Number of variables (columns) in x.

float x[] (Input/Output)
An n_observations × n_variables matrix containing the observations to
be sorted. The sorted matrix is returned in x (exception: see optional argument
IMSLS_PASSIVE).

int n_keys (Input)
Number of columns of x on which to sort. The first n_keys columns of x are
used as the sorting keys (exception: see optional argument
IMSLS_INDICES_KEYS).

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_sort_data (int n_observations, int n_variables,

float x[], int n_keys,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_INDICES_KEYS, int indices_keys[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_ASCENDING, or
IMSLS_DESCENDING,
IMSLS_ACTIVE, or
IMSLS_PASSIVE,
IMSLS_PERMUTATION, int **permutation,
IMSLS_PERMUTATION_USER, int permutation[],
IMSLS_TABLE, int **n_values, float **values, float **table,
IMSLS_TABLE_USER, int n_values[], float values[],
 float table[],
IMSLS_LIST_CELLS, int *n_cells, float **list_cells,
 float **table_unbalanced,
IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[],
 float table_unbalanced[],
IMSLS_N, int *n_cells, int **n,
IMSLS_N_USER, int *n_cells, int n[],
0)

28 • sort_data IMSL C Stat Library

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_variables

IMSLS_INDICES_KEYS, int indices_keys[] (Input)
Array of length n_keys giving the column numbers of x which are to be used
in the sort.
Default: indices_keys [] = 0, 1, …, n_keys − 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation in x.
Default: frequencies [] = 1

IMSLS_ASCENDING, or

IMSLS_DESCENDING
By default, or if IMSLS_ASCENDING is specified, the sort is in ascending
order. If IMSLS_DESCENDING is specified, the sort is in descending order.

IMSLS_ACTIVE, or

IMSLS_PASSIVE
By default, or if IMSLS_ACTIVE is specified, the sorted matrix is returned in
x. If IMSLS_PASSIVE is specified, x is unchanged by imsls_f_sort_data
(i.e., x becomes input only).

IMSLS_PERMUTATION, int **permutation (Output)
Address of a pointer to an internally allocated array of length
n_observations specifying the rearrangement (permutation) of the
observations (rows).

IMSLS_PERMUTATION_USER, int permutation[] (Output)
Storage for array permutation is provided by the user. See
IMSLS_PERMUTATION.

IMSLS_TABLE, int **n_values, float **values, float **table (Output)
Argument n_values is the address of a pointer to an internally allocated
array of length n_keys containing in its i-th element
(i = 0, 1, …, n_keys − 1), the number of levels or categories of the
i-th classification variable (column).

Argument values is the address of a pointer to an internally allocated array
of length
n_values [0] + n_values [1] + … + n_values [n_keys − 1] containing
the values of the classification variables. The first n_values [0] elements of
values contain the values for the first classification variable. The next
n_values [1] contain the values for the second variable. The last
n_values [n_keys − 1] positions contain the values for the last classification
variable.

Chapter 1: Basic Statistics sort_data • 29

Argument table is the address of a pointer to an internally allocated array of
length n_values [0] × n_values [1] × … × n_values [n_keys − 1]
containing the frequencies in the cells of the table to be fit.

Empty cells are included in table, and each element of table is
nonnegative. The cells of table are sequenced so that the first variable cycles
through its n_values [0] categories one time, the second variable cycles
through its n_values [1] categories n_values [0] times, the third variable
cycles through its n_values [2] categories n_values [0] × n_values [1]
times, etc., up to the n_keys-th variable, which cycles through its
n_values [n_keys − 1] categories n_values [0] × n_values [1] × … ×
 n_values [n_keys − 2] times.

IMSLS_TABLE_USER, int n_values[], float values[], float table[] (Output)
Storage for arrays n_values, values, and table is provided by the user. If
the length of table is not known in advance, the upper bound for this length
can be taken to be the product of the number of distinct values taken by all of
the classification variables (since table includes the empty cells).

IMSLS_LIST_CELLS, int *n_cells, float **list_cells,
float **table_unbalanced (Output)
Number of nonempty cells is returned by n_cells. Argument list_cells
is an internally allocated array of size
n_cells × n_keys containing, for each row, a list of the levels of n_keys
corresponding classification variables that describe a cell.

Argument table_unbalanced is the address of a pointer to an array of
length n_cells containing the frequency for each cell.

IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[],
float table_unbalanced[] (Output)
Storage for arrays list_cells and table_unbalanced is provided by the
user. See IMSLS_LIST_CELLS.

IMSLS_N, int *n_cells, int **n (Output)
The integer n_cells returns the number of groups of different observations.
A group contains observations (rows) in x that are equal with respect to the
method of comparison.

Argument n is the address of the pointer to an internally allocated array of
length n_cells containing the number of observations (rows) in each group.

The first n [0] rows of the sorted x are group number 1. The next n [1]rows of
the sorted x are group number 2, etc. The last
n [n_cells − 1] rows of the sorted x are group number n_cells.

IMSLS_N_USER, int *n_cells, int n[] (Output)
Storage for array n_cells is provided by the user. If the value of n_cells is
not known, n_observations can be used as an upper bound for the length of
n. See IMSLS_N.

30 • sort_data IMSL C Stat Library

Description
Function imsls_f_sort_data can perform both a key sort and/or tabulation of
frequencies into a multi-way frequency table.

Sorting
Function imsls_f_sort_datasorts the rows of real matrix x using a particular row in
x as the keys. The sort is algebraic with the first key as the most significant, the second
key as the next most significant, etc. When x is sorted in ascending order, the resulting
sorted array is such that the following is true:

• For i = 0, 1, …, n_observations − 2,
x [i] [indices_keys [0]] ≤ x [i + 1] [indices_keys [0]]

• For k = 1, …, n_keys − 1, if
x [i] [indices_keys [j]] = x [i + 1] [indices_keys [j]] for
j = 0, 1, …, k − 1, then
x [i] [indices_keys [k]] = x [i + 1] [indices_keys [k]]

The observations also can be sorted in descending order.
The rows of x containing the missing value code NaN in at least one of the specified
columns are considered as an additional group. These rows are moved to the end of the
sorted x.
The sorting algorithm is based on a quicksort method given by Singleton (1969) with
modifications by Griffen and Redish (1970) and Petro (1970).

Frequency Tabulation
Function imsls_f_sort_data determines the distinct values in multivariate data and
computes frequencies for the data. This function accepts the data in the matrix x, but
performs computations only for the variables (columns) in the first n_keys columns of
x (Exception: see optional argument IMSLS_INDICES_KEYS). In general, the variables
for which frequencies should be computed are discrete; they should take on a relatively
small number of different values. Variables that are continuous can be grouped first.
The imsls_f_table_oneway function can be used to group variables and determine
the frequencies of groups.
When IMSLS_TABLE is specified, imsls_f_sort_data fills the vector values with
the unique values of the variables and tallies the number of unique values of each
variable in the vector table. Each combination of one value from each variable forms
a cell in a multi-way table. The frequencies of these cells are entered in table so that
the first variable cycles through its values exactly once, and the last variable cycles
through its values most rapidly. Some cells cannot correspond to any observations in
the data; in other words, “missing cells” are included in table and have a value of 0.
When IMSLS_LIST_CELLS is specified, the frequency of each cell is entered in
table_unbalanced so that the first variable cycles through its values exactly once
and the last variable cycles through its values most rapidly. All cells have a frequency
of at least 1, i.e., there is no “missing cell.” The array list_cells can be considered
“parallel” to table_unbalanced because row i of list_cells is the set of n_keys

Chapter 1: Basic Statistics sort_data • 31

values that describes the cell for which row i of table_unbalanced contains the
corresponding frequency.

Examples

Example 1
The rows of a 10 × 3 matrix x are sorted in ascending order using Columns 0 and 1 as
the keys. There are two missing values (NaNs) in the keys. The observations
containing these values are moved to the end of the sorted array.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES 3
main()
{
 int n_keys=2;
 float x[N_OBSERVATIONS][N_VARIABLES] = {1.0, 1.0, 1.0,
 2.0, 1.0, 2.0,
 1.0, 1.0, 3.0,
 1.0, 1.0, 4.0,
 2.0, 2.0, 5.0,
 1.0, 2.0, 6.0,
 1.0, 2.0, 7.0,
 1.0, 1.0, 8.0,
 2.0, 2.0, 9.0,
 1.0, 1.0, 9.0};
 x[4][1]=imsls_f_machine(6);
 x[6][0]=imsls_f_machine(6);
 imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES, x, n_keys, 0);
 imsls_f_write_matrix("sorted x", N_OBSERVATIONS, N_VARIABLES,
 (float *)x, 0);
 }

Output
 sorted x
 1 2 3
 1 1 1 1
 2 1 1 9
 3 1 1 3
 4 1 1 4
 5 1 1 8
 6 1 2 6
 7 2 1 2
 8 2 2 9
 9 2 7
10 2 5

Example 2
This example uses the same data as the previous example. The permutation of the rows
is output in the array permutation.

#include <imsls.h>
#define N_OBSERVATIONS 10
#define N_VARIABLES 3
MAIN()

32 • sort_data IMSL C Stat Library

{
 int n_keys=2;
 int n_cells;
 int *n;
 int *permutation;
 float x[N_OBSERVATIONS][N_VARIABLES]={1.0, 1.0, 1.0,
 2.0, 1.0, 2.0,
 1.0, 1.0, 3.0,
 1.0, 1.0, 4.0,
 2.0, 2.0, 5.0,
 1.0, 2.0, 6.0,
 1.0, 2.0, 7.0,
 1.0, 1.0, 8.0,
 2.0. 2.0, 9.0,
 1.0, 1.0, 9.0};
 x[4][1]=imsls_f_machine(6);
 x[6][0]=imsls_f_machine(6);
 imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES,
 (float *)x, n_keys,
 IMSLS_PASSIVE,
 IMSLS_PERMUTATION, &permutation,
 IMSLS_N, &n_cells, &n, 0};
 imsls_f_write_matrix("unchanged x ", N_OBSERVATIONS, N_VARIABLES,
 (float *)x, 0);
 imsls_i_write_matrix("permutation", 1, N_OBSERVATIONS, permutation,
 0);
 imsls_i_write_matrix("n", 1, n_cells, n, 0);
 }

Output
 unchanged x
 1 2 3
 1 1 1 1
 2 2 1 2
 3 1 1 3
 4 1 1 4
 5 2 5
 6 1 2 6
 7 2 7
 8 1 1 8
 9 2 2 9
10 1 1 9

 permutation
 1 2 3 4 5 6 7 8 9 10
 0 9 2 3 7 5 1 8 6 4

 n
 1 2 3 4
 5 1 1 1

Example 3
The table of frequencies for a data matrix of size 30 × 2 is output in the array table.

Chapter 1: Basic Statistics sort_data • 33

#include <imsls.h>
main()
{
 int n_observations=30;
 int n_variables=2;
 int n_keys=2;
 int *n_values;
 int n_rows, n_columns;
 float *values;
 float *table;
 float x[] = {0.5, 1.5,
 1.5, 3.5,
 0.5, 3.5,
 1.5, 2.5,
 1.5, 3.5,
 1.5, 4.5,
 0.5, 1.5,
 1.5, 3.5,
 3.5, 6.5,
 2.5, 3.5,
 2.5, 4.5,
 3.5, 6.5,
 1.5, 2.5,
 2.5, 4.5,
 0.5, 3.5,
 1.5, 2.5,
 1.5, 3.5,
 0.5, 3.5,
 0.5, 1.5,
 0.5, 2.5,
 2.5, 5.5,
 1.5, 2.5,
 1.5, 3.5,
 1.5, 4.5,
 4.5, 5.5,
 2.5, 4.5,
 0.5, 3.5,
 1.5, 2.5,
 0.5, 2.5,
 2.5, 5.5};

 imsls_f_sort_data (n_observations, n_variables, x, n_keys,
 IMSLS_PASSIVE,
 IMSLS_TABLE, &n_values, &values, &table,
 0);
 imsls_f_write_matrix("unchanged x", n_observations, n_variables,
 x, 0);
 n_rows = n_values[0];
 n_columns = n_values[1];
 imsls_f_write_matrix("row values", 1, n_rows, values, 0);
 imsls_f_write_matrix("column values", 1, n_columns, &values[n_rows],
 0);
 imsls_f_write_matrix("table", n_rows, n_columns, table, 0);
 }

34 • ranks IMSL C Stat Library

Output
 unchanged x
 1 2
 1 0.5 1.5
 2 1.5 3.5
 3 0.5 3.5
 4 1.5 2.5
 5 1.5 3.5
 6 1.5 4.5
 7 0.5 1.5
 8 1.5 3.5
 9 3.5 6.5
10 2.5 3.5
11 2.5 4.5
12 3.5 6.5
13 1.5 2.5
14 2.5 4.5
15 0.5 3.5
16 1.5 2.5
17 1.5 3.5
18 0.5 3.5
19 0.5 1.5
20 0.5 2.5
21 2.5 5.5
22 1.5 2.5
23 1.5 3.5
24 1.5 4.5
25 4.5 5.5
26 2.5 4.5
27 0.5 3.5
28 1.5 2.5
29 0.5 2.5
30 2.5 5.5

 row values
 1 2 3 4 5
 0.5 1.5 2.5 3.5 4.5

 column values
 1 2 3 4 5 6
 1.5 2.5 3.5 4.5 5.5 6.5

 table
 1 2 3 4 5 6
1 3 2 4 0 0 0
2 0 5 5 2 0 0
3 0 0 1 3 2 0
4 0 0 0 0 0 2
5 0 0 0 0 1 0

ranks
Computes the ranks, normal scores, or exponential scores for a vector of observations.

Chapter 1: Basic Statistics ranks • 35

Synopsis
#include <imsls.h>
float *imsls_f_ranks (int n_observations, float x[], ..., 0)
The type double function is imsls_d_ranks.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the observations to be ranked.

Return Value
A pointer to a vector of length n_observations containing the rank (or optionally, a
transformation of the rank) of each observation.

Synopsis with Optional Arguments
#include <imsl.h>
float* imsls_f_ranks (int n_observations, float x[],

IMSLS_AVERAGE_TIE, or
IMSLS_HIGHEST, or
IMSLS_LOWEST, or
IMSLS_RANDOM_SPLIT,
IMSLS_FUZZ, float fuzz_value,
IMSLS_RANKS, or
IMSLS_BLOM_SCORES, or
IMSLS_TUKEY_SCORES, or
IMSLS_VAN_DER_WAERDEN_SCORES, or
IMSLS_EXPECTED_NORMAL_SCORES, or
IMSLS_SAVAGE_SCORES,
IMSLS_RETURN_USER, float ranks[],
0)

Optional Arguments

IMSLS_AVERAGE_TIE, or
IMSLS_HIGHEST, or
IMSLS_LOWEST, or
IMSLS_RANDOM_SPLIT

Exactly one of these optional arguments can be used to change the method
used to assign a score to tied observations.

36 • ranks IMSL C Stat Library

Argument Method
IMSLS_AVERAGE_TIE average of the scores of the tied

observations (default)
IMSLS_HIGHEST highest score in the group of ties
IMSLS_LOWEST lowest score in the group of ties
IMSLS_RANDOM_SPLIT tied observations are randomly split using

a random number generator

IMSLS_FUZZ, float fuzz_value (Input)
Value used to determine when two items are tied. If abs(x [i] − x [j]) is less
than or equal to fuzz_value, then x[i] and x[j] are said to be tied.
Default: fuzz_value = 0.0

IMSLS_RANKS, or
IMSLS_BLOM_SCORES, or
IMSLS_TUKEY_SCORES, or
IMSLS_VAN_DER_WAERDEN_SCORES, or
IMSLS_EXPECTED_NORMAL_SCORES, or
IMSLS_SAVAGE_SCORES

Exactly one of these optional arguments can be used to specify the type of
values returned.

Argument Result
IMSLS_RANKS ranks (default)
IMSLS_BLOM_SCORES Blom version of normal scores
IMSLS_TUKEY_SCORES Tukey version of normal scores
IMSLS_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal

scores
IMSLS_EXPECTED_NORMAL_SCORES expected value of normal order statistics

(for tied observations, the average of the
expected normal scores)

IMSLS_SAVAGE_SCORES Savage scores (the expected value of
exponential order statistics)

IMSLS_RETURN_USER, float ranks[] (Output)
If specified, the ranks are returned in the user-supplied array ranks.

Description

Ties
In data without ties, the output values are the ordinary ranks (or a transformation of the
ranks) of the data in x. If x[i] has the smallest value among the values in x and there
is no other element in x with this value, then ranks [i] = 1. If both x[i] and x[j] have
the same smallest value, the output value depends on the option used to break ties.

Chapter 1: Basic Statistics ranks • 37

Argument Result
IMSLS_AVERAGE_TIE ranks[i] = ranks[j] = 1.5
IMSLS_HIGHEST ranks[i] = ranks[j] = 2.0
IMSLS_LOWEST ranks[i] = ranks[j] = 1.0
IMSLS_RANDOM_SPLIT ranks[i] = 1.0 and ranks[j] = 2.0

or, randomly,

ranks[i] = 2.0 and ranks[j] = 1.0

When the ties are resolved randomly, function imsls_f_random_uniform (Chapter
12) is used to generate random numbers. Different results may occur from different
executions of the program unless the “seed” of the random number generator is set
explicitly by use of the function imsls_f_random_seed_set (Chapter 12).

Scores
As an option, normal and other functions of the ranks can be returned. Normal scores
can be defined as the expected values, or approximations to the expected values, of
order statistics from a normal distribution. The simplest approximations are obtained
by evaluating the inverse cumulative normal distribution function, function
imsls_f_normal_inverse_cdf (Chapter 11), at the ranks scaled into the open
interval (0, 1). In the Blom version (see Blom 1958), the scaling transformation for the
rank ri (1 ≤ ri ≤ n, where n is the sample size, n_observations) is (ri − 3/8)/(n + 1/4).
The Blom normal score corresponding to the observation with rank ri is

Φ− −
+
F
HG

I
KJ

1 3 8
1 4

r
n
i /

/

where Φ(·) is the normal cumulative distribution function.
Adjustments for ties are made after the normal score transformation. That is, if x [i]
equals x [j] (within fuzz_value) and their value is the k-th smallest in the data set,
the Blom normal scores are determined for ranks of k and k + 1. Then, these normal
scores are averaged or selected in the manner specified. (Whether the transformations
are made first or ties are resolved first makes no difference except when
IMSLS_AVERAGE_TIE is specified.)
In the Tukey version (see Tukey 1962), the scaling transformation for the rank
ri is (ri − 1/3)/(n + 1/3). The Tukey normal score corresponding to the observation with
rank ri is as follows:

Φ− −
+
F
HG

I
KJ

1 1 3
1 3

r
n
i /

/

Ties are handled in the same way as for the Blom normal scores.

38 • ranks IMSL C Stat Library

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation
for the rank ri is ri/(n + 1). The Van der Waerden normal score corresponding to the
observation with rank ri is as follows:

Φ−

+
F
HG
I
KJ

1

1
r

n
i

Ties are handled in the same way as for the Blom normal scores.
When option IMSLS_EXPECTED_NORMAL_SCORES is used, the output values are the
expected values of the normal order statistics from a sample of size n_observations.
If the value in x[i] is the k-th smallest, the value output in ranks [i] is E(zk), where
E(·) is the expectation operator and zk is the k-th order statistic in a sample of size
n_observations from a standard normal distribution. Ties are handled in the same
way as for the Blom normal scores.
Savage scores are the expected values of the exponential order statistics from a sample
of size n_observations. These values are called Savage scores because of their use
in a test discussed by Savage 1956 (see also Lehmann 1975). If the value in x[i] is the
k-th smallest, the value output in ranks [i] is E(yk), where yk is the k-th order statistic
in a sample of size n_observations from a standard exponential distribution. The
expected value of the k-th order statistic from an exponential sample of size n
(n_observations) is as follows:

1 1
1

1
1n n n k

+
−

+ +
− +

…

Ties are handled in the same way as for the Blom normal scores.

Examples

Example 1
The data for this example, from Hinkley (1977), contains 30 observations. Note that
the fourth and sixth observations are tied and that the third and twentieth observations
are tied.

#include <imsls.h>

#define N_OBSERVATIONS 30

main()
{
 float *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};

 ranks = imsls_f_ranks(N_OBSERVATIONS, x, 0);
 imsls_f_write_matrix("Ranks", 1, N_OBSERVATIONS, ranks, 0);
}

Chapter 1: Basic Statistics ranks • 39

Output
 Ranks
 1 2 3 4 5 6
 5.0 18.0 6.5 11.5 21.0 11.5

 7 8 9 10 11 12
 2.0 15.0 29.0 24.0 27.0 28.0

 13 14 15 16 17 18
 16.0 23.0 3.0 17.0 13.0 1.0

 19 20 21 22 23 24
 4.0 6.5 26.0 19.0 10.0 14.0

 25 26 27 28 29 30
 30.0 25.0 9.0 20.0 8.0 22.0

Example 2
This example uses all the score options with the same data set, which contains some
ties. Ties are handled in several different ways in this example.

#include <imsls.h>

#define N_OBSERVATIONS 30

void main()
{
 float fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks;
 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43,
 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62,
 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35,
 4.75, 2.48, 0.96, 1.89, 0.90, 2.05};
 char *row_labels[] = {"Blom", "Tukey", "Van der Waerden",
 "Expected Value"};

 /* Blom scores using largest ranks */
 /* for ties */
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_HIGHEST,
 IMSLS_BLOM_SCORES,
 IMSLS_RETURN_USER, &score[0][0],
 0);
 /* Tukey normal scores using smallest */
 /* ranks for ties */
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_LOWEST,
 IMSLS_TUKEY_SCORES,
 IMSLS_RETURN_USER, &score[1][0],
 0);
 /* Van der Waerden scores using */
 /* randomly resolved ties */
 imsls_random_seed_set(123457);
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_RANDOM_SPLIT,

40 • ranks IMSL C Stat Library

 IMSLS_VAN_DER_WAERDEN_SCORES,
 IMSLS_RETURN_USER, &score[2][0],
 0);
 /* Expected value of normal order */
 /* statistics using averaging to */
 /* break ties */
 imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_EXPECTED_NORMAL_SCORES,
 IMSLS_RETURN_USER, &score[3][0],
 0);
 imsls_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,
 (float *)score,
 IMSLS_ROW_LABELS, row_labels,
 IMSLS_WRITE_FORMAT, "%9.3f",
 0);
 /* Savage scores using averaging */
 /* to break ties */
 ranks = imsls_f_ranks(N_OBSERVATIONS, x,
 IMSLS_SAVAGE_SCORES,
 0);
 imsls_f_write_matrix("Expected values of exponential order "
 "statistics", 1,
 N_OBSERVATIONS, ranks,
 0);
}

Output
 Normal Order Statistics
 1 2 3 4 5
Blom -1.024 0.209 -0.776 -0.294 0.473
Tukey -1.020 0.208 -0.890 -0.381 0.471
Van der Waerden -0.989 0.204 -0.753 -0.287 0.460
Expected Value -1.026 0.209 -0.836 -0.338 0.473

 6 7 8 9 10
Blom -0.294 -1.610 -0.041 1.610 0.776
Tukey -0.381 -1.599 -0.041 1.599 0.773
Van der Waerden -0.372 -1.518 -0.040 1.518 0.753
Expected Value -0.338 -1.616 -0.041 1.616 0.777

 11 12 13 14 15
Blom 1.176 1.361 0.041 0.668 -1.361
Tukey 1.171 1.354 0.041 0.666 -1.354
Van der Waerden 1.131 1.300 0.040 0.649 -1.300
Expected Value 1.179 1.365 0.041 0.669 -1.365

 16 17 18 19 20
Blom 0.125 -0.209 -2.040 -1.176 -0.776
Tukey 0.124 -0.208 -2.015 -1.171 -0.890
Van der Waerden 0.122 -0.204 -1.849 -1.131 -0.865
Expected Value 0.125 -0.209 -2.043 -1.179 -0.836

 21 22 23 24 25
Blom 1.024 0.294 -0.473 -0.125 2.040
Tukey 1.020 0.293 -0.471 -0.124 2.015
Van der Waerden 0.989 0.287 -0.460 -0.122 1.849

Chapter 1: Basic Statistics ranks • 41

Expected Value 1.026 0.294 -0.473 -0.125 2.043

 26 27 28 29 30
Blom 0.893 -0.568 0.382 -0.668 0.568
Tukey 0.890 -0.566 0.381 -0.666 0.566
Van der Waerden 0.865 -0.552 0.372 -0.649 0.552
Expected Value 0.894 -0.568 0.382 -0.669 0.568

 Expected values of exponential order statistics
 1 2 3 4 5 6
 0.179 0.892 0.240 0.474 1.166 0.474

 7 8 9 10 11 12
 0.068 0.677 2.995 1.545 2.162 2.495

 13 14 15 16 17 18
 0.743 1.402 0.104 0.815 0.555 0.033

 19 20 21 22 23 24
 0.141 0.240 1.912 0.975 0.397 0.614

 25 26 27 28 29 30
 3.995 1.712 0.350 1.066 0.304 1.277

Chapter 2: Regression Routines • 43

Chapter 2: Regression

Routines
Multivariate Linear Regression—Model Fitting

Generate regressors for a general
linear model regressors_for_glm 55
Fit a multivariate linear regression model regression 64

Multivariate Linear Regression—Statistical
Inference and Diagnostics
Produce summary statistics for
a regression model regression_summary 76
Compute predicted values,
confidence intervals, and diagnostics regression_prediction 84
Construction of a completely
testable hypothesis hypothesis_partial 95
Sums of cross products for a
multivariate hypothesis hypothesis_scph 100
Tests for the multivariate linear hypothesis hypothesis_test 105

Variable Selection
All best regressions regression_selection 112
Stepwise regression regression_stepwise 122

Polynomial and Nonlinear Regression
Fit a polynomial regression model poly_regression 130
Compute predicted values, confidence intervals,
and diagnostics poly_prediction 137
Fit a nonlinear regression model. nonlinear_regression 147
Fit a nonlinear regression model using
Powell's algorithm nonlinear_optimization 157

Alternatives to Least Squares Regression
LAV, Lpnorm, and LMV criteria regression Lnorm_regression 166

44 • Usage Notes IMSL C Stat Library

Usage Notes
The regression models in this chapter include the simple and multiple linear regression
models, the multivariate general linear model, the polynomial model, and the nonlinear
regression model. Functions for fitting regression models, computing summary
statistics from a fitted regression, computing diagnostics, and computing confidence
intervals for individual cases are provided. This chapter also provides methods for
building a model from a set of candidate variables.

Simple and Multiple Linear Regression
The simple linear regression model is

yi = β0 + β1xi + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the xi’s are the settings of the independent (explanatory) variable,
β0 and β1 are the intercept and slope parameters (respectively) and the εi’s are
independently distributed normal errors, each with mean 0 and variance σ2.
The multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable; the xi1’s, xi2’s, ..., xik’s are the settings of the k independent
(explanatory) variables; β0, β1, ..., βk are the regression coefficients; and the εi’s are
independently distributed normal errors, each with mean 0 and variance σ2.
Function imsls_f_regression fits both the simple and multiple linear regression
models using a fast Given’s transformation and includes an option for excluding the
intercept β0. The responses are input in array y, and the independent variables are input
in array x, where the individual cases correspond to the rows and the variables
correspond to the columns.
After the model has been fitted using imsls_f_regression, function
imsls_f_regression_summary computes summary statistics and
imsls_f_regression_prediction computes predicted values, confidence intervals, and
case statistics for the fitted model. The information about the fit is communicated from
imsls_f_regression to imsls_f_regression_summary and
imsls_f_regression_prediction by passing an
argument of structure type Imsls_f_regression.

No Intercept Model
Several functions provide the option for excluding the intercept from a model. In most
practical applications, the intercept should be included in the model. For functions that
use the sums of squares and crossproducts matrix as input, the no-intercept case can be
handled by using the raw sums of squares and crossproducts matrix as input in place of

Chapter 2: Regression Usage Notes • 45

the corrected sums of squares and crossproducts. The raw sums of squares and
crossproducts matrix can be computed as
(x1, x2, ..., xk, y)T (x1, x2, ..., xk, y).

Variable Selection
Variable selection can be performed by imsls_f_regression_selection, which
computes all best-subset regressions, or by imsls_f_regression_stepwise, which
computes stepwise regression. The method used by
imsls_f_regression_selection is generally preferred over that used by
imsls_f_regression_stepwise because imsls_f_regression_selection
implicitly examines all possible models in the search for a model that optimizes some
criterion while stepwise does not examine all possible models. However, the computer
time and memory requirements for imsls_f_regression_selection can be much
greater than that for imsls_f_regression_stepwise when the number of
candidate variables is large.

Polynomial Model
The polynomial model is

2
0 1 2 ... 1, 2, ...,k

i i i k i iy x x x i nβ β β β ε= + + + + + =

where the observed values of the yi’s constitute the responses or values of the
dependent variable; the xi’s are the settings of the independent (explanatory) variable;
β0, β1, ..., βk are the regression coefficients; and the εi’s are independently distributed
normal errors each with mean 0 and variance σ2.
Function imsls_f_poly_regression fits a polynomial regression model with the
option of determining the degree of the model and also produces summary information.
Function imsls_f_poly_prediction computes predicted values, confidence
intervals, and case statistics for the model fit by imsls_f_poly_regression.
The information about the fit is communicated from imsls_f_poly_regression to
imsls_f_poly_prediction by passing an argument of structure type
Imsls_f_poly_regression.

Specification of X for the General Linear Model
Variables used in the general linear model are either continuous or classification
variables. Typically, multiple regression models use continuous variables, whereas
analysis of variance models use classification variables. Although the notation used to
specify analysis of variance models and multiple regression models may look quite
different, the models are essentially the same. The term “general linear model”
emphasizes that a common notational scheme is used for specifying a model that may
contain both continuous and classification variables.
A general linear model is specified by its effects (sources of variation). An effect is
referred to in this text as a single variable or a product of variables. (The term “effect”

46 • Usage Notes IMSL C Stat Library

is often used in a narrower sense, referring only to a single regression coefficient.) In
particular, an “effect” is composed of one of the following:

1. a single continuous variable

2. a single classification variable

3. several different classification variables

4. several continuous variables, some of which may be the same

5. continuous variables, some of which may be the same, and classification
variables, which must be distinct

Effects of the first type are common in multiple regression models. Effects of the
second type appear as main effects in analysis of variance models. Effects of the third
type appear as interactions in analysis of variance models. Effects of the fourth type
appear in polynomial models and response surface models as powers and crossproducts
of some basic variables. Effects of the fifth type appear in one-way analysis of
covariance models as regression coefficients that indicate lack of parallelism of a
regression function across the groups.
The analysis of a general linear model occurs in two stages. The first stage calls
function imsls_f_regressors_for_glm to specify all regressors except the
intercept. The second stage calls imsls_f_regression, at which point the model
will be specified as either having (default) or not having an intercept.
For this discussion, define a variable INTCEP as follows:

Option INTCEP Action
IMSLS_NO_INTERCEPT

IMSLS_INTERCEPT (default)
0
1

An intercept is not in the model.
An intercept is in the model.

The remaining variables (n_continuous, n_class, x_class_columns,
n_effects, n_var_effects, and indices_effects) are defined for function
imsls_f_regressors_for_glm. All these variables have defaults except for
n_continuous and n_class, both of which must be specified.
(See the documentation for imsls_f_regressors_for_glm for a discussion of the
defaults.) The meaning of each of these arguments is as follows:

n_continuous (Input)
Number of continuous variables.

n_class (Input)
Number of classification variables.

x_class_columns (Input)
Index vector of length n_class containing the column numbers of
x that are the classification variables.

n_effects (Input)
Number of effects (sources of variation) in the model, excluding error.

Chapter 2: Regression Usage Notes • 47

n_var_effects (Input)
Vector of length n_effects containing the number of variables associated
with each effect in the model.

indices_effects (Input)
Index vector of length n_var_effects(0) + n_var_effects(1) + ... +
n_var_effects (n_effects – 1). The first n_var_effects(0) elements
give the column numbers of x for each variable in the first effect; the next
n_var_effects(1) elements give the column numbers for each variable in
the second effect; and finally, the last n_var_effects (n_effects – 1)
elements give the column numbers for each variable in the last effect.

Suppose the data matrix has as its first four columns two continuous variables in
Columns 0 and 1 and two classification variables in Columns 2 and 3. The data might
appear as follows:

Column 0 Column 1 Column 2 Column 3
11.23 1.23 1.0 5.0
12.12 2.34 1.0 4.0
12.34 1.23 1.0 4.0
4.34 2.21 1.0 5.0
5.67 4.31 2.0 4.0
4.12 5.34 2.0 1.0
4.89 9.31 2.0 1.0
9.12 3.71 2.0 1.0

Each distinct value of a classification variable determines a level. The classification
variable in Column 2 has two levels. The classification variable in Column 3 has three
levels. (Integer values are recommended, but not required, for values of the
classification variables. The values of the classification variables corresponding to the
same level must be identical.) Some examples of regression functions and their
specifications are as follows:

 INTCEP n_class x_class_columns

β0 + β1x1 1 0

2
0 1 1 2 1x xβ β β+ + 1 0

μ + αI 1 1 2

μ + αi + βj + γij 1 2 2, 3

μij 0 2 2, 3

β0 + β1x1 + β2x2 + β3x1x2 1 0

μ + αi + βx1i + βix1i 1 1 2

48 • Usage Notes IMSL C Stat Library

 n_effects n_var_effects Indices_effects

β0 + β1x1 1 1 0

2
0 1 1 2 1x xβ β β+ + 2 1, 2 0, 0, 0

μ + αI 1 1 2

μ + αi + βj + γij 3 1, 1, 2 2, 3, 2, 3

μij 1 2 2, 3

β0 + β1x1 + β2x2 + β
3x1x2

3 1, 1, 2 0, 1, 0, 1

μ + αi + βx1i + βix1i 3 1, 1, 2 2, 0, 0, 2

Functions for Fitting the Model
Function imsls_f_regression fits a multivariate general linear model, where
regressors for the general linear model have been generated using function
imsls_f_regressors_for_glm.

Linear Dependence and the R Matrix
Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapter are
designed to handle linear dependence of the regressors; i.e., the n × p matrix X (the
matrix of regressors) in the general linear model can have rank less than p. Often, the
models are referred to as non-full rank models.
As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of the
fitted non-full rank regression model for estimation and hypothesis testing. In the non-
full rank case, not all linear combinations of the regression coefficients can be
estimated. Those linear combinations that can be estimated are called “estimable
functions.” If the functions are used to attempt to estimate linear combinations that
cannot be estimated, error messages are issued. A good general discussion of estimable
functions is given by Searle (1971, pp. 180–188).
The check used by functions in this chapter for linear dependence is sequential. The j-
th regressor is declared linearly dependent on the preceding j − 1 regressors if

()
2

1,2, , 1...1 j jR −−

is less than or equal to tolerance. Here,

()1,2,..., 1j jR −

is the multiple correlation coefficient of the j-th regressor with the first j − 1
regressors. When a function declares the j-th regressor to be linearly dependent on the
first j − 1, the j-th regression coefficient is set to 0. Essentially, this removes the j-th
regressor from the model.

Chapter 2: Regression Usage Notes • 49

The reason a sequential check is used is that practitioners frequently include the
preferred variables to remain in the model first. Also, the sequential check is based on
many of the computations already performed as this does not degrade the overall
efficiency of the functions. There is no perfect test for linear dependence when finite
precision arithmetic is used. The optional argument IMSLS_TOLERANCE allows the
user some control over the check for linear dependence. If a model is full rank, input
tolerance = 0.0. However, tolerance should be input as approximately 100 times
the machine epsilon. The machine epsilon is imsls_f_machine(4) in single precision
and imsls_d_machine(4) in double precision. (See functions imsls_f_machine
and imsls_d_machine in Chapter 15, “Utilities.”)
Functions performing least squares are based on QR decomposition of X or on a
Cholesky factorization RTR of XTX. Maindonald (1984, Chapters 1−5) discusses these
methods extensively. The R matrix used by the regression function is a
p × p upper-triangular matrix, i.e., all elements below the diagonal are 0. The signs of
the diagonal elements of R are used as indicators of linearly dependent regressors and
as indicators of parameter restrictions imposed by fitting a restricted model. The rows
of R can be partitioned into three classes by the sign of the corresponding diagonal
element:

1. A positive diagonal element means the row corresponds to data.

2. A negative diagonal element means the row corresponds to a linearly
independent restriction imposed on the regression parameters by AB = Z in a
restricted model.

3. A zero diagonal element means a linear dependence of the regressors was
declared. The regression coefficients in the corresponding row of B̂ are set to
0. This represents an arbitrary restriction that is imposed to obtain a solution
for the regression coefficients. The elements of the corresponding row of R
also are set to 0.

Nonlinear Regression Model
The nonlinear regression model is

yi = f(xi;θ) + εi i = 1, 2, …, n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the xi’s are the known vectors of values of the independent
(explanatory) variables, f is a known function of an unknown regression parameter
vector θ, and the εi’s are independently distributed normal errors each with mean 0 and
variance σ2.
Function imsls_f_nonlinear_regression performs the least-squares fit to the
data for this model.

50 • Usage Notes IMSL C Stat Library

Weighted Least Squares
Functions throughout the chapter generally allow weights to be assigned to the
observations. The vector weights is used throughout to specify the weighting for each
row of X.
Computations that relate to statistical inference—e.g., t tests, F tests, and confidence
intervals—are based on the multiple regression model except that the variance of εi is
assumed to equal σ2 times the reciprocal of the corresponding weight.
If a single row of the data matrix corresponds to ni observations, the vector
frequencies can be used to specify the frequency for each row of X. Degrees of
freedom for error are affected by frequencies but are unaffected by weights.

Summary Statistics
Function imsls_f_regression_summary can be used to compute and print statistics
related to a regression for each of the q dependent variables fitted by
imsls_f_regression. The summary statistics include the model analysis of variance
table, sequential sums of squares and F-statistics, coefficient estimates, estimated
standard errors, t-statistics, variance inflation factors, and estimated variance-
covariance matrix of the estimated regression coefficients. Function
imsls_f_poly_regression includes most of the same functionality for polynomial
regressions.
The summary statistics are computed under the model y = Xβ + ε, where y is the n × 1
vector of responses, X is the n × p matrix of regressors with rank (X) = r, β is the p × 1
vector of regression coefficients, and ε is the n × 1 vector of errors whose elements are
independently normally distributed with mean 0 and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the
weights), most of the computed summary statistics are output in the following
variables:

anova_table
One-dimensional array usually of length 15. In
imsls_f_regression_stepwise, anova_table is of length 13 because
the last two elements of the array cannot be computed from the input. The
array contains statistics related to the analysis of variance. The sources of
variation examined are the regression, error, and total. The first 10 elements of
anova_table and the notation frequently used for these is described in the
following table (here, AOV replaces anova_table):

Model Analysis of Variance Table
Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean Square

F

p-value

Regression DFR = AOV[0] SSR = AOV[3] MSR = AOV[6] AOV[8] AOV[9]
Error DFE = AOV[1] SSE = AOV[4] s2 = AOV[7]

Total DFT = AOV[2] SST = AOV[5]

Chapter 2: Regression Usage Notes • 51

If the model has an intercept (default), the total sum of squares is the sum of
squares of the deviations of yi from its (weighted) mean y — the so-called
corrected total sum of squares, denoted by the following:

()2

1

SST
n

i i
i

w y y
=

= −∑

If the model does not have an intercept (IMSLS_NO_INTERCEPT), the total
sum of squares is the sum of squares of yi—the so-called uncorrected total
sum of squares, denoted by the following:

2

1

SST
n

i i
i

w y
=

= ∑

The error sum of squares is given as follows:

()2

1

ˆSSE
n

i i i
i

w y y
=

= −∑

The error degrees of freedom is defined by DFE = n – r.

The estimate of σ2 is given by s2 = SSE/DFE, which is the error mean square.

The computed F statistic for the null hypothesis, H0:β1 = β2 = ... = βk = 0,
versus the alternative that at least one coefficient is nonzero is given by
F = MSR/s2. The p-value associated with the test is the probability of an F
larger than that computed under the assumption of the model and the null
hypothesis. A small p-value (less than 0.05) is customarily used to indicate
there is sufficient evidence from the data to reject the null hypothesis.

The remaining five elements in anova_table frequently are displayed
together with the actual analysis of variance table. The quantities
R-squared (R2 = anova_table[10]) and adjusted R-squared

[]()2 11aR = anova_table

are expressed as a percentage and are defined as follows:

R2 = 100(SSR/SST) = 100(1 – SSE/SST)

2
2 100max 0, 1

SST/DFTa
sR

⎧ ⎫
= −⎨ ⎬

⎩ ⎭

The square root of s2(s = anova_table[12]) is frequently referred to as the
estimated standard deviation of the model error.

52 • Usage Notes IMSL C Stat Library

The overall mean of the responses y is output in anova_table[13].

The coefficient of variation (CV = anova_table[14]) is expressed as a
percentage and defined by CV = 100s/ y .

coef_t_tests
Two-dimensional matrix containing the regression coefficient vector β̂ as
one column and associated statistics (estimated standard error, t statistic and
p-value) in the remaining columns.

coef_covariances
Estimated variance-covariance matrix of the estimated regression coefficients.

Tests for Lack-of-Fit
Tests for lack-of-fit are computed for the polynomial regression by the function
imsls_f_poly_regression. The output array ssq_lof contains the lack-of-fit F
tests for each degree polynomial 1, 2, ..., k, that is fit to the data. These tests are used to
indicate the degree of the polynomial required to fit the data well.

Diagnostics for Individual Cases
Diagnostics for individual cases (observations) are computed by two functions in the
regression chapter: imsls_f_regression_prediction for linear and nonlinear
regressions and imsls_f_poly_prediction for polynomial regressions.
Statistics computed include predicted values, confidence intervals, and diagnostics for
detecting outliers and cases that greatly influence the fitted regression.
The diagnostics are computed under the model y = Xβ + ε, where y is the n × 1 vector
of responses, X is the n × p matrix of regressors with rank (X) = r, β is the p × 1 vector
of regression coefficients, and ε is the n × 1 vector of errors whose elements are
independently normally distributed with mean 0 and variance σ2/wi.

Given the results of a weighted least-squares fit of this model (with the wi’s as the
weights), the following five diagnostics are computed:

1. leverage

2. standardized residual

3. jackknife residual

4. Cook’s distance

5. DFFITS
The definition of these terms is given in the discussion that follows:
Let xi be a column vector containing the elements of the i-th row of X. A case can be
unusual either because of xi or because of the response yi. The leverage
hi is a measure of uniqueness of the xi. The leverage is defined by

()[]T T
i i i ih x X WX x w

−
=

Chapter 2: Regression Usage Notes • 53

where W = diag(w1, w2, …, wn) and (XTWX)- denotes a generalized inverse of XTWX.
The average value of the hi’s is r/n. Regression functions declare
xi unusual if hi > 2r/n. Hoaglin and Welsch (1978) call a data point highly influential
(i.e., a leverage point) when this occurs.
Let ei denote the residual

ˆi iy y−

for the i-th case. The estimated variance of ei is (1 – hi)s2/wi, where s2 is the residual
mean square from the fitted regression. The i-th standardized residual (also called the
internally studentized residual) is by definition

()2 1
i

i i
i

w
r e

s h
=

−

and ri follows an approximate standard normal distribution in large samples.

The i-th jackknife residual or deleted residual involves the difference between
yi and its predicted value, based on the data set in which the i-th case is deleted. This
difference equals ei/(1 − hi). The jackknife residual is obtained by standardizing this
difference. The residual mean square for the regression in which the i-th case is deleted
is as follows:

() ()2 2
2 / 1

1
i i i

i

n r s w e h
s

n r
− − −

=
− −

The jackknife residual is defined as

()2 1
i

i i
i i

w
t e

s h
=

−

and ti follows a t distribution with n – r − 1 degrees of freedom.

Cook’s distance for the i-th case is a measure of how much an individual case affects
the estimated regression coefficients. It is given as follows:

()

2

22 1
i i i

i
i

w h e
D

rs h
=

−

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n − r)
distribution, it should be considered large. (This value is about 1. This statistic does not
have an F distribution.)
DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case,
DFFITS is computed by the formula below.

54 • Usage Notes IMSL C Stat Library

()22
DFFITS

1
i i

i i
i i

w h
e

s h
=

−

Hoaglin and Welsch (1978) suggest that DFFITS greater than

2 /r n

is large.

Transformations
Transformations of the independent variables are sometimes useful in order to satisfy
the regression model. The inclusion of squares and crossproducts of the variables

()2 2
1 2 1 2 1 2, , , ,x x x x x x

is often needed. Logarithms of the independent variables are used also. (See
Draper and Smith 1981, pp. 218−222; Box and Tidwell 1962; Atkinson 1985, pp. 177−
180; Cook and Weisberg 1982, pp. 78−86.)
When the responses are described by a nonlinear function of the parameters, a
transformation of the model equation often can be selected so that the transformed
model is linear in the regression parameters. For example, by taking natural logarithms
on both sides of the equation, the exponential model

0 1 1xy eβ β ε+=

can be transformed to a model that satisfies the linear regression model provided the
εi’s have a log-normal distribution (Draper and Smith, pp. 222−225).

When the responses are nonnormal and their distribution is known, a transformation of
the responses can often be selected so that the transformed responses closely satisfy the
regression model, assumptions. The square-root transformation for counts with a
Poisson distribution and the arc-sine transformation for binomial proportions are
common examples (Snedecor and Cochran 1967, pp. 325−330; Draper and Smith, pp.
237−239).

Alternatives to Least Squares
The method of least squares has desirable characteristics when the errors are normally
distributed, e.g., a least-squares solution produces maximum likelihood estimates of the
regression parameters. However, when errors are not normally distributed, least
squares may yield poor estimators. Function imsls_f_lnorm_regression offers
three alternatives to least squares methodology, Least Absolute Value , Lp Norm , and
Least Maximum Value.
The least absolute value (LAV, L1) criterion yields the maximum likelihood estimate
when the errors follow a Laplace distribution. Option IMSLS_METHOD_LAV is often

Chapter 2: Regression regressors_for_glm • 55

used when the errors have a heavy tailed distribution or when a fit is needed that is
resistant to outliers.
A more general approach, minimizing the Lp norm (p ≤ 1), is given by option
IMSLS_METHOD_LLP. Although the routine requires about 30 times the CPU time for
the case p = 1 than would the use of IMSLS_METHOD_LAV, the generality of
IMSLS_METHOD_LLP allows the user to try several choices for p ≥ 1 by simply
changing the input value of p in the calling program. The CPU time decreases as p gets
larger. Generally, choices of p between 1 and 2 are of interest. However, the Lp norm
solution for values of p larger than 2 can also be computed.
The minimax (LMV, L∞, Chebyshev) criterion is used by IMSLS_METHOD_LMV. Its
estimates are very sensitive to outliers, however, the minimax estimators are quite
efficient if the errors are uniformly distributed.

Missing Values
NaN (Not a Number) is the missing value code used by the regression functions. Use
function imsls_f_machine(6), Chapter 15, “Utilities” (or function
imsls_d_machine(6) with double-precision regression functions) to retrieve NaN.
Any element of the data matrix that is missing must be set to imsls_f_machine(6)
(or imsls_d_machine(6) for double precision). In fitting regression models, any
observation containing NaN for the independent, dependent, weight, or frequency
variables is omitted from the computation of the regression parameters.

regressors_for_glm
Generates regressors for a general linear model.

Synopsis
#include <imsls.h>
int imsls_f_regressors_for_glm (int n_observations, float x[],

int n_class, int n_continuous, ..., 0)
The type double function is imsls_d_regressors_for_glm.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
An n_observations × (n_class + n_continuous) array containing the
data. The columns must be ordered such that the first n_class columns
contain the class variables and the next n_continuous columns contain the
continuous variables. (Exception: see optional argument
IMSLS_X_CLASS_COLUMNS.)

int n_class (Input)
Number of classification variables.

56 • regressors_for_glm IMSL C Stat Library

int n_continuous (Input)
Number of continuous variables.

Return Value
An integer (n_regressors) indicating the number of regressors generated.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_regressors_for_glm (int n_observations, float x[],

int n_class, int n_continuous,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_CLASS_COLUMNS, int x_class_columns[],
IMSLS_MODEL_ORDER, int model_order,
IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[],
IMSLS_DUMMY, Imsls_dummy_method dummy_method,
IMSLS_REGRESSORS, float **regressors,
IMSLS_REGRESSORS_USER, float regressors[],
IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim,
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_class + n_continuous

IMSLS_X_CLASS_COLUMNS, int x_class_columns[] (Input)
Index array of length n_class containing the column numbers of x that are
the classification variables. The remaining variables are assumed to be
continuous.
Default: x_class_columns = 0, 1, ..., n_class − 1

IMSLS_MODEL_ORDER, int model_order (Input)
Order of the model. Model order can be specified as 1 or 2. Use optional
argument IMSLS_INDICES_EFFECTS to specify more complicated models.
Default: model_order = 1
or

IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[] (Input)
Variable n_effects is the number of effects (sources of variation) in the
model. Variable n_var_effects is an array of length n_effects
containing the number of variables associated with each effect in the model.
Argument indices_effects is an index array of length
n_var_effects[0] + n_var_effects[1] + … + n_var_effects
(n_effects − 1). The first n_var_effects[0] elements give the column
numbers of x for each variable in the first effect. The next
n_var_effects[1] elements give the column numbers for each variable in

Chapter 2: Regression regressors_for_glm • 57

the second effect. … The last n_var_effects [n_effects − 1] elements
give the column numbers for each variable in the last effect.

IMSLS_DUMMY, Imsls_dummy_method dummy_method (Input)
Dummy variable option. Indicator variables are defined for each class variable
as described in the “Description” section.

 Dummy variables are then generated from the n indicator variables in one of
the following three ways:

dummy_method Method
IMSLS_ALL The n indicator variables are the dummy variables

(default).
IMSLS_LEAVE_OUT_LAST The dummies are the first n − 1 indicator variables.
IMSLS_SUM_TO_ZERO The n − 1 dummies are defined in terms of the

indicator variables so that for balanced data, the
usual summation restrictions are imposed on the
regression coefficients.

IMSLS_REGRESSORS, float **regressors (Output)
Address of a pointer to the internally allocated array of size
n_observations × n_regressors containing the regressor variables
generated from x.

IMSLS_REGRESSORS_USER, float regressors[] (Output)
Storage for array regressors is provided by the user. See
IMSLS_REGRESSORS.

IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim (Input)
Column dimension of regressors.
Default: regressors_col_dim = n_regressors

Description
Function imsls_f_regressors_for_glm generates regressors for a general linear
model from a data matrix. The data matrix can contain classification variables as well
as continuous variables. Regressors for effects composed solely of continuous variables
are generated as powers and crossproducts. Consider a data matrix containing
continuous variables as Columns 3 and 4. The effect indices (3, 3) generate a regressor
whose i-th value is the square of the i-th value in Column 3. The effect indices (3, 4)
generates a regressor whose i-th value is the product of the i-th value in Column 3 with
the i-th value in Column 4.
Regressors for an effect (source of variation) composed of a single classification
variable are generated using indicator variables. Let the classification variable A take
on values a1, a2, ..., an. From this classification variable,
imsls_f_regressors_for_glm creates n indicator variables. For
k = 1, 2, ..., n, we have

1 if
0 otherwise

k
k

A a
I

=⎧
= ⎨

⎩

58 • regressors_for_glm IMSL C Stat Library

For each classification variable, another set of variables is created from the indicator
variables. These new variables are called dummy variables. Dummy variables are
generated from the indicator variables in one of three manners:

1. The dummies are the n indicator variables.

2. The dummies are the first n – 1 indicator variables.

3. The n – 1 dummies are defined in terms of the indicator variables so that for
balanced data, the usual summation restrictions are imposed on the regression
coefficients.

In particular, for dummy_method = IMSLS_ALL, the dummy variables are
Ak = Ik(k = 1, 2, ..., n). For dummy_method = IMSLS_LEAVE_OUT_LAST, the dummy
variables are Ak = Ik(k = 1, 2, ..., n − 1). For dummy_method = IMSLS_SUM_TO_ZERO,
the dummy variables are Ak = Ik − In(k = 1, 2, ..., n − 1). The regressors generated for
an effect composed of a single-classification variable are the associated dummy
variables.
Let mj be the number of dummies generated for the j-th classification variable. Suppose
there are two classification variables A and B with dummies

11 2, , ..., mA A A

and

21 2, , ..., mB B B

The regressors generated for an effect composed of two classification variables
A and B are

() ()1 2

2

2 1 1 1 2

1 2 1 2

1 1 1 2 1 2 1 2 2

2 1 2

, , ..., , , ...,

(, , ..., , , , ...,

, ..., , , ...,)

m m

m

m m m m m

A B A A A B B B

A B A B A B A B A B

A B A B A B A B

⊗ = ⊗

=

More generally, the regressors generated for an effect composed of several
classification variables and several continuous variables are given by the Kronecker
products of variables, where the order of the variables is specified in
indices_effects. Consider a data matrix containing classification variables in
Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these four
columns A, B, X1, and X2. The regressors generated by the effect indices
(0, 1, 2, 2, 3) are A ⊗ B ⊗ X1X1X2.

Remarks
Let the data matrix x = (A, B, X1), where A and B are classification variables and X1 is a
continuous variable. The model containing the effects A, B, AB, X1, AX1, BX1, and
ABX1 is specified as follows (use optional keyword IMSLS_INDICES_EFFECTS):

n_class = 2

Chapter 2: Regression regressors_for_glm • 59

n_continuous = 1

n_effects = 7

n_var_effects = (1, 1, 2, 1, 2, 2, 3)

indices_effects = (0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2)

For this model, suppose that variable A has two levels, A1 and A2, and that variable B
has three levels, B1, B2, and B3. For each dummy_method option, the regressors in their
order of appearance in regressors are given below.

dummy_method regressors

IMSLS_ALL A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2, A2B3,
X1, A1X1, A2X1, B1X1, B2X1, B3X1, A1B1X1, A1B2X1,
A1B3X1, A2B1X1, A2B2X1, A2B3X1

IMSLS_LEAVE_OUT_LAST A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1, A1B1X1,
A1B2X1

IMSLS_SUM_TO_ZERO A1 − A2, B1 − B3, B2 − B3, (A1 − A2) (B1 − B2), (A1 −
A2) (B2 − B3), X1, (A1 − A2) X1,
(B1 − B3)X1, (B2 − B3)X1, (A1 − A2) (B1 − B2)X1, (A1 −
A2) (B2 − B3)X1

Within a group of regressors corresponding to an interaction effect, the indicator
variables composing the regressors vary most rapidly for the last classification
variable, next most rapidly for the next to last classification variable, etc.
By default, imsls_f_regressors_for_glm internally generates values for
n_effects, n_var_effects, and indices_effects, which correspond to a first
order model with NEF = n_continuous + n_class. The variables then are used to
create the regressor variables. The effects are ordered such that the first effect
corresponds to the first column of x, the second effect corresponds to the second
column of x, etc. A second order model corresponding to the columns (variables) of x
is generated if IMSLS_MODEL_ORDER with model_order = 2 is specified.
There are

NVAR
NEF= + 2 +

2
⎛ ⎞

∗ ⎜ ⎟
⎝ ⎠

n_class n_continuous

effects, where NVAR = n_continuous + n_class. The first NVAR effects
correspond to the columns of x, such that the first effect corresponds to the first column
of x, the second effect corresponds to the second column of x, ..., the NVAR-th effect
corresponds to the NVAR-th column of x (i.e. x[NVAR − 1]). The next
n_continuous effects correspond to squares of the continuous variables. The last

60 • regressors_for_glm IMSL C Stat Library

()NVAR
2

effects correspond to the two-variable interactions.

• Let the data matrix x = (A, B, X1), where A and B are classification variables
and X1 is a continuous variable. The effects generated and order of appearance
is

2
1 1 1 1, , , , , ,A B X X AB AX BX

• Let the data matrix x = (A, X1, X2), where A is a classification variable and X1
and X2 are continuous variables. The effects generated and order of
appearance is

2 2
1 2 1 2 1 2 1 2, , , , , , ,A X X X X AX AX X X

• Let the data matrix x = (X1, A, X2) (see IMSLS_CLASS_COLUMNS), where A is
a classification variable and X1 and X2 are continuous variables. The effects
generated and order of appearance is

2 2
1 2 1 2 1 1 2 2, , , , , , ,X A X X X X A X X AX

Higher-order and more complicated models can be specified using
IMSLS_INDICES_EFFECTS.

Examples

Example 1
In the following example, there are two classification variables, A and B, with two and
three values, respectively. Regressors for a one-way model (the default model order)
are generated using the IMSLS_ALL dummy method (the default dummy method). The
five regressors generated are A1, A2, B1, B2, and B3.

#include <imsls.h>
void main() {
 int n_observations = 6;
 int n_class = 2;
 int n_cont = 0;
 int n_regressors;
 float x[12] = {
 10.0, 5.0,
 20.0, 15.0,
 20.0, 10.0,
 10.0, 10.0,
 10.0, 15.0,
 20.0, 5.0};

 n_regressors = imsls_f_regressors_for_glm (n_observations, x,
 n_class, n_cont, 0);

Chapter 2: Regression regressors_for_glm • 61

 printf("Number of regressors = %3d\n", n_regressors);
}

Output
Number of regressors = 5

Example 2
In this example, a two-way analysis of covariance model containing all the interaction
terms is fit. First, imsls_f_regressors_for_glm is called to produce a matrix of
regressors, regressors, from the data x. Then, regressors is used as the input
matrix into imsls_f_regression to produce the final fit. The regressors, generated
using dummy_method = IMSLS_LEAVE_OUT_LAST, are the model whose mean
function is

μ + αi + βj + ϒij + δxij + ζixij + ηjxij + θijxij i = 1, 2; j = 1, 2, 3

where α2 = β3 = ϒ21 = ϒ22 = ϒ23 = ζ2 = η3 = θ21 = θ22 = θ23 = 0.
#include <imsls.h>
void main() {
#define N_OBSERVATIONS 18
 int n_class = 2;
 int n_cont = 1;
 float anova[15], *regressors;
 int n_regressors;
 float x[54] = {
 1.0, 1.0, 1.11,
 1.0, 1.0, 2.22,
 1.0, 1.0, 3.33,
 1.0, 2.0, 1.11,
 1.0, 2.0, 2.22,
 1.0, 2.0, 3.33,
 1.0, 3.0, 1.11,
 1.0, 3.0, 2.22,
 1.0, 3.0, 3.33,
 2.0, 1.0, 1.11,
 2.0, 1.0, 2.22,
 2.0, 1.0, 3.33,
 2.0, 2.0, 1.11,
 2.0, 2.0, 2.22,
 2.0, 2.0, 3.33,
 2.0, 3.0, 1.11,
 2.0, 3.0, 2.22,
 2.0, 3.0, 3.33};
 float y[N_OBSERVATIONS] = {
 1.0, 2.0, 2.0, 4.0, 4.0, 6.0,
 3.0, 3.5, 4.0, 4.5, 5.0, 5.5,
 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
 int class_col[2] = {0,1};
 int n_effects = 7;
 int n_var_effects[7] = {1, 1, 2, 1, 2, 2, 3};
 int indices_effects[12] = {0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2};
 float *coef;
 char *reg_labels[] = {
 " ", "Alpha1", "Beta1", "Beta2", "Gamma11", "Gamma12",

62 • regressors_for_glm IMSL C Stat Library

 "Delta", "Zeta1", "Eta1", "Eta2", "Theta11", "Theta12"};
 char *labels[] = {
 "degrees of freedom for the model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for the model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square", "error mean square",
 "F-statistic", "p-value",
 "R-squared (in percent)","adjusted R-squared (in percent)",
 "est. standard deviation of the model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 n_regressors = imsls_f_regressors_for_glm (N_OBSERVATIONS, x,
 n_class, n_cont,
 IMSLS_X_CLASS_COLUMNS, class_col,
 IMSLS_DUMMY, IMSLS_LEAVE_OUT_LAST,
 IMSLS_INDICES_EFFECTS, n_effects, n_var_effects, indices_effects,
 IMSLS_REGRESSORS, ®ressors,
 0);

 printf("Number of regressors = %3d", n_regressors);

 imsls_f_write_matrix ("regressors", N_OBSERVATIONS, n_regressors,
 regressors,
 IMSLS_COL_LABELS, reg_labels,
 0);

 coef = imsls_f_regression (N_OBSERVATIONS, n_regressors, regressors,
 y,
 IMSLS_ANOVA_TABLE_USER, anova,
 0);

 imsls_f_write_matrix ("* * * Analysis of Variance * * *\n", 15, 1,
 anova,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

}

Output
Number of regressors = 11
 regressors
 Alpha1 Beta1 Beta2 Gamma11 Gamma12 Delta
 1 1.00 1.00 0.00 1.00 0.00 1.11
 2 1.00 1.00 0.00 1.00 0.00 2.22
 3 1.00 1.00 0.00 1.00 0.00 3.33
 4 1.00 0.00 1.00 0.00 1.00 1.11
 5 1.00 0.00 1.00 0.00 1.00 2.22
 6 1.00 0.00 1.00 0.00 1.00 3.33
 7 1.00 0.00 0.00 0.00 0.00 1.11

Chapter 2: Regression regressors_for_glm • 63

 8 1.00 0.00 0.00 0.00 0.00 2.22
 9 1.00 0.00 0.00 0.00 0.00 3.33
10 0.00 1.00 0.00 0.00 0.00 1.11
11 0.00 1.00 0.00 0.00 0.00 2.22
12 0.00 1.00 0.00 0.00 0.00 3.33
13 0.00 0.00 1.00 0.00 0.00 1.11
14 0.00 0.00 1.00 0.00 0.00 2.22
15 0.00 0.00 1.00 0.00 0.00 3.33
16 0.00 0.00 0.00 0.00 0.00 1.11
17 0.00 0.00 0.00 0.00 0.00 2.22
18 0.00 0.00 0.00 0.00 0.00 3.33

 Zeta1 Eta1 Eta2 Theta11 Theta12
 1 1.11 1.11 0.00 1.11 0.00
 2 2.22 2.22 0.00 2.22 0.00
 3 3.33 3.33 0.00 3.33 0.00
 4 1.11 0.00 1.11 0.00 1.11
 5 2.22 0.00 2.22 0.00 2.22
 6 3.33 0.00 3.33 0.00 3.33
 7 1.11 0.00 0.00 0.00 0.00
 8 2.22 0.00 0.00 0.00 0.00
 9 3.33 0.00 0.00 0.00 0.00
10 0.00 1.11 0.00 0.00 0.00
11 0.00 2.22 0.00 0.00 0.00
12 0.00 3.33 0.00 0.00 0.00
13 0.00 0.00 1.11 0.00 0.00
14 0.00 0.00 2.22 0.00 0.00
15 0.00 0.00 3.33 0.00 0.00
16 0.00 0.00 0.00 0.00 0.00
17 0.00 0.00 0.00 0.00 0.00
18 0.00 0.00 0.00 0.00 0.00

 * * * Analysis of Variance * * *

degrees of freedom for the model 11.0000
degrees of freedom for error 6.0000
total (corrected) degrees of freedom 17.0000
sum of squares for the model 43.9028
sum of squares for error 0.8333
total (corrected) sum of squares 44.7361
model mean square 3.9912
error mean square 0.1389
F-statistic 28.7364
p-value 0.0003
R-squared (in percent) 98.1372
adjusted R-squared (in percent) 94.7221
est. standard deviation of the model error 0.3727
overall mean of y 3.9722
coefficient of variation (in percent) 9.3821

64 • regression IMSL C Stat Library

regression
Fits a multivariate linear regression model using least squares.

Synopsis
#include <imsls.h>
float *imsls_f_regression (int n_rows, int n_independent, float x[], float

y[], ..., 0)
The type double function is imsls_d_regression.

Required Arguments

int n_rows (Input)
Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

float x[] (Input)
Array of size n_rows × n_independent containing the independent
(explanatory) variables(s). The i-th column of x contains the i-th independent
variable.

float y[] (Input)
Array of size n_rows × n_dependent containing the dependent (response)
variables(s). The i-th column of y contains the i-th dependent variable. See
optional argument IMSLS_N_DEPENDENT to set the value of n_dependent.

Return Value
If the optional argument IMSLS_NO_INTERCEPT is not used, regression returns a
pointer to an array of length n_dependent × (n_independent + 1) containing a
least-squares solution for the regression coefficients. The estimated intercept is the
initial component of each row, where the i-th row contains the regression coefficients
for the i-th dependent variable.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regresssion (int n_rows, int n_independent,

float x[], float y[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,
IMSLS_N_DEPENDENT, int n_dependent,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq, int iwt,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE,
IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,

Chapter 2: Regression regression • 65

IMSLS_TOLERANCE, float tolerance,
IMSLS_RANK, int *rank,
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_X_MEAN, float **x_mean,
IMSLS_X_MEAN_USER, float x_mean[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_SCPE, float **scpe[],
IMSLS_SCPE_USER, float scpe_user[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_independent

IMSLS_Y_COL_DIM, int y_col_dim (Input)
Column dimension of y.
Default: y_col_dim = n_dependent

IMSLS_N_DEPENDENT, int n_dependent (Input)
Number of dependent variables. Input matrix y must be declared of size
n_rows by n_dependent, where column i of y contains the i-th dependent
variable.
Default: n_dependent = 1

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data
(independent, dependent, frequencies, and weights) is all stored in the data
matrix x. Argument y, and keywords IMSLS_FREQUENCIES and
IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers of x
in which particular types of data are stored. Columns are numbered 0 …
x_col_dim − 1.

Parameter indind contains the indices of the independent variables..

Parameter inddep contains the indices of the dependent variables.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will
be no column for frequencies. Set iwt = −1 if there will be no column for

66 • regression IMSL C Stat Library

weights. Weights are rounded to the nearest integer. Negative weights are not
allowed.

Note that required input argument y is not referenced, and can be declared a
vector of length 1.

IMSLS_IDO, int ido (Input)
Processing option.

Ido Action
0 This is the only invocation; all the data are input at once. (Default)
1 This is the first invocation with this data; additional calls will be made.

Initialization and updating for the n_rows observations of x will be
performed.

2 This is an intermediate invocation; updating for the n_rows observations
of x will be performed.

3 This is the final invocation of this function. Updating for the data in x and
wrap-up computations are performed. Workspace is released. No further
call to regression with ido greater than 1 should be made without first
calling regression with ido = 1

Default: ido = 0
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE

By default (or if IMSLS_ROWS_ADD is specified), the observations in x are
added to the discriminant statistics. If IMSLS_ROWS_DELETE is specified, then
the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if there
is only one invocation).

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT

IMSLS_INTERCEPT is the default where the fitted value for observation i is

0 1 1
ˆ ˆ ˆ... k kx xβ β β+ + +

 where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the
intercept term

()0β̂

is omitted from the model and the return value from regression is a pointer to
an array of length n_dependent × n_independent.

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence. For regression,
tolerance = 100 × imsls_f_machine(4) is the default choice. For

Chapter 2: Regression regression • 67

imsls_d_regression, tolerance = 100 × imsls_d_machine(4) is the
default. (See imsls_f_machine Chapter 15, Utilities.)

IMSLS_RANK, int *rank (Output)
Rank of the fitted model is returned in *rank.

IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
Address of a pointer to the n_dependent × m × m internally allocated array
containing the estimated variances and covariances of the estimated regression
coefficients. Here, m is the number of regression coefficients in the model. If
IMSLS_NO_INTERCEPT is specified, n = n_independent; otherwise,
m = n_independent + 1.

The first m × m elements contain the matrix for the first dependent variable,
the next m × m elements contain the matrix for the next dependent variable, ...
and so on.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for arrays coef_covariances is provided by the user. See
IMSLS_COEF_COVARIANCES.

IMSLS_COV_COL_DIM, int cov_col_dim (Input)
Column dimension of array coef_covariances.
Default: cov_col_dim = m, where m is the number of regression coefficients
in the model

IMSLS_X_MEAN, float **x_mean (Output)
Address of a pointer to the internally allocated array containing the estimated
means of the independent variables.

IMSLS_X_MEAN_USER, float x_mean[] (Output)
Storage for array x_mean is provided by the user.
See IMSLS_X_MEAN.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the internally allocated array of size n_rows by
n_dependent containing the residuals. Residuals may not be requested if
ido > 0.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user.
See IMSLS_RESIDUAL.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array of size
15 × n_dependent containing the analysis of variance table for each
dependent variable. The i-th column corresponds to the analysis for the i-th
dependent variable.

 The analysis of variance statistics are given as follows:

68 • regression IMSL C Stat Library

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value
10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

The anova statistics may not be requested if ido > 0.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_SCPE, float **scpe (Output)
The address of a pointer to an internally allocated array of size n_dependent
x n_dependent containing the error (residual) sums of squares and
crossproducts. scpe [m][n] contains the sum of crossproducts for the m-th
and n-th dependent variables.

IMSLS_SCPE_USER, float scpe[] (Output)
Storage for array scpe is provided by the user. See IMSLS_SCPE.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each observation.
Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each observation.
Default: weights[] = 1

IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info (Output)
Address of the pointer to an internally allocated structure of type
Imsls_f_regression containing information about the regression fit. This
structure is required as input for functions
imsls_f_regression_prediction and
imsls_f_regression_summary.

Chapter 2: Regression regression • 69

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored
in array coefficients provided by the user. If IMSLS_NO_INTERCEPT is
specified, the array requires n_dependent × n units of memory, where
n = n_independent; otherwise, n = n_independent + 1.

Description
Function imsls_f_regression fits a multivariate multiple linear regression model
with or without an intercept. The multiple linear regression model is

yi = β0 + β1xi1 + β2xi2 + … + βkxik + εi i = 1, 2, …, n

where the observed values of the yi’s are the responses or values of the dependent
variable; the xi1’s, xi2’s, …, xik’s are the settings of the k (input in n_independent)
independent variables; β0, β1, …, βk are the regression coefficients whose estimated
values are to be output by imsls_f_regression; and the εi’s are independently
distributed normal errors each with mean 0 and variance s2. Here, n is the sum of the
frequencies for all nonmissing observations, i.e.,

1

0
i

i

n f
−

=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑

n_rows

where fi is equal to frequencies[i] if optional argument IMSLS_FREQUENCIES is
specified and equal to 1.0 otherwise. Note that by default, β0 is included in the model.

More generally, imsls_f_regression fits a multivariate regression model. See the
chapter introduction for a description of the multivariate model.
Function imsls_f_regression computes estimates of the regression coefficients by
minimizing the sum of squares of the deviations of the observed response yi from the
fitted response

ˆiy

for the n observations. This minimum sum of squares (the error sum of squares) is
output as one of the analysis of variance statistics if IMSLS_ANOVA_TABLE (or
IMSLS_ANOVA_TABLE_USER) is specified and is computed as follows:

()2

1
ˆ

n

i i i
i

SSE w y y
=

= −∑

Another analysis of variance statistic is the total sum of squares. By default, the total
sum of squares is the sum of squares of the deviations of yi from its mean

y

the so-called corrected total sum of squares. This statistic is computed as follows:

70 • regression IMSL C Stat Library

()2

1
i i

n

i
SST w y y

=
= −∑

When IMSLS_NO_INTERCEPT is specified, the total sum of squares is the sum of
squares of yi, the so-called uncorrected total sum of squares. This is computed as
follows:

2

1

SST
n

i i
i

w y
=

= ∑

See Draper and Smith (1981) for a good general treatment of the multiple linear
regression model, its analysis, and many examples.
In order to compute a least-squares solution, imsls_f_regression performs an
orthogonal reduction of the matrix of regressors to upper-triangular form. The
reduction is based on one pass through the rows of the augmented matrix (x, y) using
fast Givens transformations. (See Golub and Van Loan 1983, pp. 156–162; Gentleman
1974.) This method has the advantage that the loss of accuracy resulting from forming
the crossproduct matrix used in the normal equations is avoided.
By default, the current means of the dependent and independent variables are used to
internally center the data for improved accuracy. Let xi be a column vector containing
the j-th row of data for the independent variables. Let xi represent the mean vector for
the independent variables given the data for rows 1, 2, …, i. The current mean vector is
defined as follows:

1

1

i

j j j
j

i i

j j
j

w f x
x

w f

=

=

=
∑

∑

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data has

ix

subtracted from it and is multiplied by

1

i
i i

i

a
w f

a −

where

1

i

i j j
j

a w f
=

= ∑

Chapter 2: Regression regression • 71

Although a crossproduct matrix is not computed, the validity of this centering
operation can be seen from the following formula for the sum of squares and
crossproducts matrix:

()() ()()
1 2 1

n n
T Ti

i i i n i n i i i i i i
i i i

a
w f x x x x w f x x x x

a= = −

− − = − −∑ ∑

An orthogonal reduction on the centered matrix is computed. When the final
computations are performed, the intercept estimate and the first row and column of the
estimated covariance matrix of the estimated coefficients are updated (if
IMSLS_COEF_COVARIANCES or IMSLS_COEF_COVARIANCES_USER is specified) to
reflect the statistics for the original (uncentered) data. This means that the estimate of
the intercept is for the uncentered data.
As part of the final computations, imsls_f_regression checks for linearly
dependent regressors. In particular, linear dependence of the regressors is declared if
any of the following three conditions are satisfied:

• A regressor equals 0.

• Two or more regressors are constant.

2
1,2,..., 11 i iR ⋅ −−

is less than or equal to tolerance. Here,

1,2,..., 1i iR ⋅ −

is the multiple correlation coefficient of the i-th independent variable with the
first i – 1 independent variables. If no intercept is in the model, the multiple
correlation coefficient is computed without adjusting for the mean.

On completion of the final computations, if the i-th regressor is declared to be linearly
dependent upon the previous i − 1 regressors, the i-th coefficient estimate and all
elements in the i-th row and i-th column of the estimated variance-covariance matrix of
the estimated coefficients (if IMSLS_COEF_COVARIANCES or
IMSLS_COEF_COVARIANCES_USER is specified) are set to 0. Finally, if a linear
dependence is declared, an informational (error) message, code
IMSLS_RANK_DEFICIENT, is issued indicating the model is not full rank.

Examples

Example 1
A regression model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi i = 1, 2, …, 9

is fitted to data taken from Maindonald (1984, pp. 203–204).

72 • regression IMSL C Stat Library

#include <imsls.h>

#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9

main()
{
 float *coefficients;
 float x[][N_INDEPENDENT] = {7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0};
 float y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0};

 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y, 0);
 imsls_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,
 coefficients,
 IMSLS_COL_NUMBER_ZERO,
 0);
}

Output
 Least-Squares Coefficients
 0 1 2 3
 7.733 -0.200 2.333 -1.667

Example 2
A weighted least-squares fit is computed using the model

yi = β0 + β1xi1 + β2xi2 + εi i = 1, 2, …, 4

and weights 1/i2 discussed by Maindonald (1984, pp. 67−68).
In the example, IMSLS_WEIGHTS is specified. The minimum sum of squares for error
in terms of the original untransformed regressors and responses for this weighted
regression is

()
4

2

=1

ˆSSE= i i i
i

w y y−∑

where wi = 1/i2, represented in the C code as array w.
#include <imsls.h>
#include <math.h>

Chapter 2: Regression regression • 73

#define N_INDEPENDENT 2
#define N_COEFFICIENTS N_INDEPENDENT + 1
#define N_OBSERVATIONS 4

main()
{
 int i;
 float *coefficients, w[N_OBSERVATIONS], anova_table[15],
 power;
 float x[][N_INDEPENDENT] = {
 -2.0, 0.0,
 -1.0, 2.0,
 2.0, 5.0,
 7.0, 3.0};
 float y[] = {-3.0, 1.0, 2.0, 6.0};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 /* Calculate weights */
 power = 0.0;
 for (i = 0; i < N_OBSERVATIONS; i++) {
 power += 1.0;
 w[i] = 1.0 / (power*power);
 }

 /*Perform analysis */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *) x, y,
 IMSLS_WEIGHTS, w,
 IMSLS_ANOVA_TABLE_USER, anova_table,
 0);

 /* Print results */
 imsls_f_write_matrix("Least Squares Coefficients", 1,
 N_COEFFICIENTS, coefficients, 0);
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_WRITE_FORMAT, "%10.2f",
 0);
}

74 • regression IMSL C Stat Library

Output
 Least Squares Coefficients
 1 2 3
 -1.431 0.658 0.748

 * * * Analysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedom for error 1.00
total (uncorrected) degrees of freedom 3.00
sum of squares for regression 7.68
sum of squares for error 1.01
total (uncorrected) sum of squares 8.69
regression mean square 3.84
error mean square 1.01
F-statistic 3.79
p-value 0.34
R-squared (in percent) 88.34
adjusted R-squared (in percent) 65.03
est. standard deviation of model error 1.01
overall mean of y -1.51
coefficient of variation (in percent) -66.55

Example 3
A multivariate regression is performed for a data set with two dependent variables.
Also, usage of the keyword IMSLS_X_INDICES is demonstrated. Note that the
required input variable y is not referenced and is declared as a pointer to a float.

#include <imsls.h>

#define INTERCEPT 1
#define N_INDEPENDENT 3
#define N_DEPENDENT 2
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_OBSERVATIONS 9

main()
{
 float coefficients[N_DEPENDENT*N_COEFFICIENTS];
 float *dummy;
 float scpe[N_DEPENDENT*N_DEPENDENT];
 float anova_table[15*N_DEPENDENT];
 static float x[] = { 7.0, 5.0, 6.0, 7.0, 1.0,
 2.0,-1.0, 6.0, -5.0, 4.0,
 7.0, 3.0, 5.0, 6.0, 10.0,
 -3.0, 1.0, 4.0, 5.0, 5.0,
 2.0,-1.0, 0.0, 5.0, -2.0,
 2.0, 1.0, 7.0, -2.0, 4.0,
 -3.0,-1.0, 3.0, 0.0, -6.0,
 2.0, 1.0, 1.0, 8.0, 2.0,
 2.0, 1.0, 4.0, 3.0, 0.0};
 int ifrq = -1, iwt=-1;
 static int indind[N_INDEPENDENT] = {0, 1, 2};

Chapter 2: Regression regression • 75

 static int inddep[N_DEPENDENT] = {3, 4};
 char *fmt = "%10.4f";
 char *anova_row_labels[] = {
 "d.f. regression",
 "d.f. error",
 "d.f. total (uncorrected)",
 "ssr",
 "sse",
 "sst (uncorrected)",
 "msr",
 "mse", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adj. R-squared (in percent)",
 "est. s.t.d. of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *) x, dummy,
 IMSLS_X_COL_DIM, N_INDEPENDENT+N_DEPENDENT,
 IMSLS_N_DEPENDENT, N_DEPENDENT,
 IMSLS_X_INDICES, indind, inddep, ifrq, iwt,
 IMSLS_SCPE_USER, scpe,
 IMSLS_ANOVA_TABLE_USER, anova_table,
 IMSLS_RETURN_USER, coefficients,
 0);

 imsls_f_write_matrix("Least Squares Coefficients", N_DEPENDENT,
 N_COEFFICIENTS, coefficients,
 IMSLS_COL_NUMBER_ZERO, 0);

 imsls_f_write_matrix("SCPE", N_DEPENDENT, N_DEPENDENT, scpe,
 IMSLS_WRITE_FORMAT, "%10.4f", 0);

 imsls_f_write_matrix("* * * Analysis of Variance * * *\n",
 15, N_DEPENDENT,
 anova_table,
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_WRITE_FORMAT, "%10.2f",
 0);

}

Output
 Least Squares Coefficients
 0 1 2 3
1 7.733 -0.200 2.333 -1.667
2 -1.633 0.400 0.167 0.667

 SCPE
 1 2
1 4.0000 20.0000
2 20.0000 110.0000

 * * * Analysis of Variance * * *

76 • regression_summary IMSL C Stat Library

 1 2
d.f. regression 3.00 3.00
d.f. error 5.00 5.00
d.f. total (uncorre 8.00 8.00
 cted)
ssr 152.00 56.00
sse 4.00 110.00
sst (uncorrected) 156.00 166.00
msr 50.67 18.67
mse 0.80 22.00
F-statistic 63.33 0.85
p-value 0.00 0.52
R-squared (in 97.44 33.73
 percent)
adj. R-squared 95.90 0.00
 (in percent)
est. s.t.d. of 0.89 4.69
 model error
overall mean of y 3.00 2.00
coefficient of 29.81 234.52
 variation (in
 percent)

Warning Errors

IMSLS_RANK_DEFICIENT The model is not full rank. There is not a unique
least-squares solution.

Fatal Errors

IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be performed by
making a call to function regression with “ido” = 1.

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin until the
previous analysis is terminated by a call to function
regression with “ido” = 3.

regression_summary
Produces summary statistics for a regression model given the information from the fit.

Synopsis
#include <imsls.h>
void imsls_f_regression_summary (Imsls_f_regression *regression_info,

..., 0)
The type double function is imsls_d_regression_summary.

Chapter 2: Regression regression_summary • 77

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information about
the regression fit. See imsls_f_regression.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_summary (Imsls_f_regression *regression_info,

IMSLS_INDEX_REGRESSION, int idep,
IMSLS_COEF_T_TESTS, float **coef_t_tests
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_COL_DIM, int coef_col_dim,
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_SQSS, float **sqss,
IMSLS_SQSS_USER, float sqss[],
0)

Optional Arguments

IMSLS_INDEX_REGRESSION, int idep (Input)
Given a multivariate regression fit, this option allows the user to specify for
which regression summary statistics will be computed.
Default: idep = 0

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address of a pointer to the npar × 4 array containing statistics relating to the
regression coefficients, where npar is equal to the number of parameters in the
model.

 Each row (for each dependent variable) corresponds to a coefficient in the
model, where npar is the number of parameters in the model. Row i + intcep
corresponds to the i-th independent variable, where intcep is equal to 1 if an
intercept is in the model and 0 otherwise, for
i = 0, 1, 2, …, npar – 1.

78 • regression_summary IMSL C Stat Library

The statistics in the columns are as follows:
Column Description

0 coefficient estimate
1 estimated standard error of the coefficient estimate
2 t-statistic for the test that the coefficient is 0
3 p-value for the two-sided t test

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See
IMSLS_COEF_T_TESTS.

IMSLS_COEF_COL_DIM, int coef_col_dim (Input)
Column dimension of coef_t_tests.
Default: coef_col_dim = 4

IMSLS_COEF_VIF, float **coef_vif (Output)
Address of a pointer to an internally allocated array of length npar containing
the variance inflation factor, where npar is the number of parameters. The
i + intcep-th column corresponds to the i-th independent variable, where i = 0,
1, 2, …, npar – 1, and intcep is equal to 1 if an intercept is in the model and 0
otherwise.

The square of the multiple correlation coefficient for the i-th regressor after all
others can be obtained from coef_vif by

1.01.0
[]i

−
coef_vif

If there is no intercept, or there is an intercept and j = 0, the multiple
correlation coefficient is not adjusted for the mean.

IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_t_tests is provided by the user. See
IMSLS_COEF_VIF.

IMSLS_COEF_COVARIANCES, float **coef_covariances (Output)
An npar by npar (where npar is equal to the number of parameters in the
model) array that is the estimated variance-covariance matrix of the estimated
regression coefficients when R is nonsingular and is from an unrestricted
regression fit. See “Remarks” for an explanation of coef_covariances
when R is singular and is from a restricted regression fit.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[] (Output)
Storage for coef_covariances is provided by the user. See
IMSLS_COEF_COVARIANCES.

IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim (Input)
Column dimension of coef_covariances.
Default: coef_cov_col_dim = the number of parameters in the model

Chapter 2: Regression regression_summary • 79

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the array of size 15 containing the analysis of variance
table.

Row Analysis of Variance Statistic
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2(in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

If the model has an intercept, the regression and total are corrected for the
mean; otherwise, the regression and total are not corrected for the mean, and
anova_table[13] and anova_table[14] are set to NaN.

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_SQSS, float **sqss (Output)
Address of a pointer to an internally allocated array of size npar by 4, where
npar is equal to the numbers of parameters in the model, containing in
columns 1 through 4 the sequential degrees of freedom, sum of squares,
F-statistic, and p-value. Each row corresponds to an effect. Row i + intcep
corresponds to the i-th independent variable, where intcep is equal to 1 if an
intercept is in the model and 0 otherwise, for i =0. 1, 2, …, npar – 1.

IMSLS_SQSS_USER, float sqss[] (Output)
Storage for sqss is provided by the user. See IMSLS_SQSS.

Description
Function imsls_f_regression_summary computes summary statistics from a fitted
general linear model. The model is y = Xβ + ε, where y is the n × 1 vector of responses,
X is the n × p matrix of regressors, β is the p × 1 vector of regression coefficients, and ε
is the n × 1 vector of errors whose elements are each independently distributed with
mean 0 and variance σ2. Function regression can be used to compute the fit of the

80 • regression_summary IMSL C Stat Library

model. Next, imsls_f_regression_summary uses the results of this fit to compute
summary statistics, including analysis of variance, sequential sum of squares,
t tests, and an estimated variance-covariance matrix of the estimated regression
coefficients.
Some generalizations of the general linear model are allowed. If the i-th element of ε
has variance of

2

iw
σ

and the weights wi are used in the fit of the model, imsls_f_regression_summary
produces summary statistics from the weighted least-squares fit. More generally, if the
variance-covariance matrix of ε is σ2V, imsls_f_regression_summary can be used
to produce summary statistics from the generalized least-squares fit. Function
regression can be used to perform a generalized least-squares fit, by regressing y* on
X* where y* = (T-1)Ty, X* = (T-1)TX and T satisfies TTT = V.
The sequential sum of squares for the i-th regression parameter is given by

()2ˆ
i

Rβ

The regression sum of squares is given by the sum of the sequential sums of squares. If
an intercept is in the model, the regression sum of squares is adjusted for the mean, i.e.,

()2

0
ˆRβ

is not included in the sum.

The estimate of σ2 is s2 (stored in anova_table[7]) that is computed as SSE/DFE.
If R is nonsingular, the estimated variance-covariance matrix of

β̂

(stored in coef_covariances) is computed by s2R-1(R-1)T.
If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a
matrix G to be a gi (i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy conditions j
(for j ≤ i) for the Moore-Penrose inverse but generally must fail conditions k (for k > i).
The four conditions for G to be a Moore-Penrose inverse of A are as follows:
1. AGA = A
2. GAG = G
3. AG is symmetric
4. GA is symmetric

Chapter 2: Regression regression_summary • 81

In the case where R is singular, the method for obtaining coef_covariances follows
the discussion of Maindonald (1984, pp. 101–103). Let Z be the diagonal matrix with
diagonal elements defined by the following:

1 if 0
0 if 0

ii
ii

ii

r
z

r
≠⎧

= ⎨ =⎩

Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G to 0.

Argument coef_covariances is set to s2GGT. (G is a g3 inverse of R, represented
by,

3gR

the result

3 3
Tg gR R

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.)

Note that argument coef_covariances can be used only to get variances and
covariances of estimable functions of the regression coefficients, i.e., nonestimable
functions (linear combinations of the regression coefficients not in the space spanned
by the nonzero rows of R) must not be used. See, for example, Maindonald (1984, pp.
166–168) for a discussion of estimable functions.
The estimated standard errors of the estimated regression coefficients (stored in
Column 1 of coef_t_tests) are computed as square roots of the corresponding
diagonal entries in coef_covariances.

For the case where an intercept is in the model, put R equal to the matrix R with the
first row and column deleted. Generally, the variance inflation factor (VIF) for the i-th
regression coefficient is computed as the product of the i-th diagonal element of RTR
and the i-th diagonal element of its computed inverse. If an intercept is in the model,
the VIF for those coefficients not corresponding to the intercept uses the diagonal
elements of TR R (see Maindonald 1984, p. 40).

Remarks
When R is nonsingular and comes from an unrestricted regression fit,
coef_covariances is the estimated variance-covariance matrix of the estimated
regression coefficients, and coef_covariances = (SSE/DFE) (RTR). Otherwise,
variances and covariances of estimable functions of the regression coefficients can be
obtained using coef_covariances, and coef_covariances = (SSE/DFE) (GDGT).
Here, D is the diagonal matrix with diagonal elements equal to 0 if the corresponding
rows of R are restrictions and with diagonal elements equal to 1 otherwise. Also, G is a
particular generalized inverse of R.

82 • regression_summary IMSL C Stat Library

Example
#include <imsls.h>

main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1

 Imsls_f_regression *regression_info;
 float *anova_table, *coef_t_tests, *coef_vif,
 *coefficients, *coef_covariances;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 char *anova_row_labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (uncorrected) degrees of freedom",
 "sum of squares for regression",
 "sum of squares for error",
 "total (uncorrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);

 /* Generate summary statistics */
 imsls_f_regression_summary (regression_info,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_COEF_T_TESTS, &coef_t_tests,

Chapter 2: Regression regression_summary • 83

 IMSLS_COEF_VIF, &coef_vif,
 IMSLS_COEF_COVARIANCES, &coef_covariances,
 0);

 /* Print results */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, anova_row_labels,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);

 imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",
 N_COEFFICIENTS, 4, coef_t_tests,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);

 imsls_f_write_matrix("* * * Variance Inflation Factors * * *\n",
 N_COEFFICIENTS, 1, coef_vif,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);

 imsls_f_write_matrix("* * * Variance-Covariance Matrix * * *\n",
 N_COEFFICIENTS, N_COEFFICIENTS,
 coef_covariances,
 IMSLS_WRITE_FORMAT, "%10.2f", 0);
}

Output
 * * * Analysis of Variance * * *
degrees of freedom for regression 4.00
degrees of freedom for error 8.00
total (uncorrected) degrees of freedom 12.00
sum of squares for regression 2667.90
sum of squares for error 47.86
total (uncorrected) sum of squares 2715.76
regression mean square 666.97
error mean square 5.98
F-statistic 111.48
p-value 0.00
R-squared (in percent) 98.24
adjusted R-squared (in percent) 97.36
est. standard deviation of model error 2.45
overall mean of y 95.42
coefficient of variation (in percent) 2.56

 * * * Inference on Coefficients * * *

 1 2 3 4
1 62.41 70.07 0.89 0.40
2 1.55 0.74 2.08 0.07
3 0.51 0.72 0.70 0.50
4 0.10 0.75 0.14 0.90
5 -0.14 0.71 -0.20 0.84

* * * Variance Inflation Factors * * *

 1 10668.53
 2 38.50

84 • regression_prediction IMSL C Stat Library

 3 254.42
 4 46.87
 5 282.51

 * * * Variance-Covariance Matrix * * *

 1 2 3 4 5
1 4909.95 -50.51 -50.60 -51.66 -49.60
2 -50.51 0.55 0.51 0.55 0.51
3 -50.60 0.51 0.52 0.53 0.51
4 -51.66 0.55 0.53 0.57 0.52
5 -49.60 0.51 0.51 0.52 0.50

regression_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a
regression model.

Synopsis
#include <imsls.h>
float *imsls_f_regression_prediction

(Imsls_f_regression *regression_info, int n_predict, float x[], ..., 0)
The type double function is imsls_d_regression_prediction.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information about
the regression fit. See imsls_f_regression.

int n_predict (Input)
Number of rows in x.

float x[] (Input)
Array of size n_predict by the number of independent variables containing
the combinations of independent variables in each row for which calculations
are to be performed.

Return Value
Pointer to an internally allocated array of length n_predict containing the predicted
values.

Synopsis with Optional Arguments

#include <imsls.h>

float *imsls_f_regression_prediction
(Imsls_f_regression *regression_info, int n_predict, float x[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Y_COL_DIM, int y_col_dim,

Chapter 2: Regression regression_prediction • 85

IMSLS_INDEX_REGRESSION, int idep,
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq,
 int iwt,
IMSLS_WEIGHTS, float weights[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_SCHEFFE_CI, float **lower_limit,
 float **upper_limit,
IMSLS_SCHEFFE_CI_USER, float lower_limit[],
 float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,
 float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
 float upper_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
 float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER,
 float lower_limit[], float upper_limit[],
IMSLS_LEVERAGE, float **leverage,
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL,
 float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER,
 float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Number of columns in x.
Default: x_col_dim is equal to the number of independent variables, which is
input from the structure regression_info

IMSLS_Y_COL_DIM, int y_col_dim (Input)
Number of columns in y.
Default: y_col_dim = 1

IMSLS_INDEX_REGRESSION, int idep (Input)
Given a multivariate regression fit, this option allows the user to specify for

86 • regression_prediction IMSL C Stat Library

which regression statistics will be computed.
Default: idep = 0

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt (Input)
This argument allows an alternative method for data specification. Data
(independent, dependent, frequencies, and weights) is all stored in the data
matrix x. Argument y, and keyword IMSLS_WEIGHTS are ignored.

Each of the four arguments contains indices indicating column numbers of x
in which particular types of data are stored. Columns are numbered 0, …,
x_col_dim − 1.

Parameter indind contains the indices of the independent variables.

Parameter inddep contains the indices of the dependent variables. If there is
to be no dependent variable, this must be indicated by setting the first element
of the vector to −1.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will
be no column for frequencies. Set iwt = −1 if there will be no column for
weights. Weights are rounded to the nearest integer. Negative weights are not
allowed.

Note that frequencies are not referenced by function
regression_prediction, and is included here only for the sake of
keyword consistency.

Finally, note that IMSLS_X_INDICES and IMSLS_Y are mutually exclusive
keywords, and may not be specified in the same call to
regression_prediction.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x. The
computed prediction interval uses SSE/(DFE*weights[i]) for the estimated
variance of a future response.
Default: weights[] = 1

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for both two-sided interval estimates on the mean and for
two-sided prediction intervals, in percent. Argument confidence must be in
the range [0.0, 100.0). For one-sided intervals with confidence level onecl,
where 50.0 ≤ onecl < 100.0, set confidence = 100.0 − 2.0* (100.0 −
 onecl).
Default: confidence = 95.0

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array
of length n_predict containing the lower confidence limits of Scheffé
confidence intervals corresponding to the rows of x. Array upper_limit is
the address of a pointer to an internally allocated array of length n_predict

Chapter 2: Regression regression_prediction • 87

containing the upper confidence limits of Scheffé confidence intervals
corresponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]
(Output)
Storage for arrays lower_limit and upper_limit is provided by the user.
See IMSLS_SCHEFFE_CI.

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit
(Output)
Array lower_limit is the address of a pointer to an internally allocated array
of length n_predict containing the lower-confidence limits of the
confidence intervals for two-sided interval estimates of the means,
corresponding to the rows of x. Array upper_limit is the address of a
pointer to an internally allocated array of length n_predict containing the
upper-confidence limits of the confidence intervals for two-sided interval
estimates of the means, corresponding to the rows of x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the user.
See IMSLS_POINTWISE_CI_POP_MEAN.

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array
of length n_predict containing the lower-confidence limits of the
confidence intervals for two-sided prediction intervals, corresponding to the
rows of x. Array upper_limit is the address of a pointer to an internally
allocated array of length n_predict containing the upper-confidence limits
of the confidence intervals for two-sided prediction intervals, corresponding to
the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the user.
See IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See IMSLS_LEVERAGE.

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict array
contains the predicted values.

IMSLS_Y, float y[] (Input)
Array of length n_predict containing the observed responses.

88 • regression_prediction IMSL C Stat Library

Note: IMSLS_Y (or IMSLS_X_INDICES) must be specified if any of the following
optional arguments are specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the standardized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]
(Output)
Storage for array standardized_residual is provided by the user. See
IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the deleted residuals.

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the Cook’s D statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the DFFITS statistics.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

Description
The general linear model used by function imsls_f_regression_prediction is

y = Xβ + ε

where y is the n × 1 vector of responses, X is the n × p matrix of regressors,
β is the p × 1 vector of regression coefficients, and ε is the n × 1 vector of errors whose
elements are independently normally distributed with mean 0 and the variance below.

2

iw
σ

Chapter 2: Regression regression_prediction • 89

From a general linear model fit using the wi’s as the weights, function
imsls_f_regression_prediction computes confidence intervals and statistics for
the individual cases that constitute the data set. Let xi be a column vector containing
elements of the i-th row of X. Let W = diag (w1, w2, …, wn). The leverage is defined as

()()T T
i i i ih x X WX x w

−
=

Put D = diag (d1, d2, …, dn) with dj = 1 if the j-th diagonal element of R is positive and

0 otherwise. The leverage is computed as hi = (aTDa) wi where

a is a solution to RTa = xi. The estimated variance of

ˆˆ T
iy x B=

is given by the following:
2

i

i

h s
w

where

2 SSE
DFE

s =

The computation of the remainder of the case statistics follow easily from their
definitions. For a detailed discussion, see case diagnostics.
Informational errors can occur if the input matrix x is not consistent with the
information from the fit (contained in regression_info), or if excess rounding has
occurred. The warning error IMSLS_NONESTIMABLE arises when x contains a row not
in the space spanned by the rows of R. An examination of the model that was fitted and
the x for which diagnostics are to be computed is required in order to ensure that only
linear combinations of the regression coefficients that can be estimated from the fitted
model are specified in x. For further details, see the discussion of estimable functions
given in Maindonald (1984, pp. 166−168) and Searle (1971, pp. 180−188).
Often predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit. This can
be accomplished by defining a new data matrix. Since the information about the model
fit is input in regression_info, it is not necessary to send in the data set used for the
original calculation of the fit, i.e., only variable combinations for which predictions are
desired need be entered in x.

90 • regression_prediction IMSL C Stat Library

Examples

Example 1
#include <imsls.h>

main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1

 float *y_hat, *coefficients;
 Imsls_f_regression *regression_info;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);

 /* Generate case statistics */
 y_hat = imsls_f_regression_prediction(regression_info,
 N_OBSERVATIONS, (float*)x, 0);

 /* Print results */
 imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,
 y_hat, 0);
}

Output
 Predicted Responses
 1 2 3 4 5 6
 78.5 72.8 106.0 89.3 95.6 105.3

 7 8 9 10 11 12
 104.1 75.7 91.7 115.6 81.8 112.3

Chapter 2: Regression regression_prediction • 91

 13
 111.7

Example 2
#include <imsls.h>

main()
{
#define INTERCEPT 1
#define N_INDEPENDENT 4
#define N_OBSERVATIONS 13
#define N_COEFFICIENTS (INTERCEPT + N_INDEPENDENT)
#define N_DEPENDENT 1

 float *y_hat, *leverage, *residual, *standardized_residual,
 *deleted_residual, *dffits, *cooksd, *mean_lower_limit,
 *mean_upper_limit, *new_sample_lower_limit,
 *new_sample_upper_limit, *scheffe_lower_limit,
 *scheffe_upper_limit, *coefficients;
 Imsls_f_regression *regression_info;
 float x[][N_INDEPENDENT] = {
 7.0, 26.0, 6.0, 60.0,
 1.0, 29.0, 15.0, 52.0,
 11.0, 56.0, 8.0, 20.0,
 11.0, 31.0, 8.0, 47.0,
 7.0, 52.0, 6.0, 33.0,
 11.0, 55.0, 9.0, 22.0,
 3.0, 71.0, 17.0, 6.0,
 1.0, 31.0, 22.0, 44.0,
 2.0, 54.0, 18.0, 22.0,
 21.0, 47.0, 4.0, 26.0,
 1.0, 40.0, 23.0, 34.0,
 11.0, 66.0, 9.0, 12.0,
 10.0, 68.0, 8.0, 12.0};
 float y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,
 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

 /* Fit the regression model */
 coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,
 (float *)x, y,
 IMSLS_REGRESSION_INFO, ®ression_info,
 0);

 /* Generate the case statistics */
 y_hat = imsls_f_regression_prediction(regression_info,
 N_OBSERVATIONS, (float*)x,
 IMSLS_Y, y,
 IMSLS_LEVERAGE, &leverage,
 IMSLS_RESIDUAL, &residual,
 IMSLS_STANDARDIZED_RESIDUAL, &standardized_residual,
 IMSLS_DELETED_RESIDUAL, &deleted_residual,
 IMSLS_COOKSD, &cooksd,
 IMSLS_DFFITS, &dffits,
 IMSLS_POINTWISE_CI_POP_MEAN, &mean_lower_limit,

92 • regression_prediction IMSL C Stat Library

 &mean_upper_limit,
 IMSLS_POINTWISE_CI_NEW_SAMPLE, &new_sample_lower_limit,
 &new_sample_upper_limit,
 IMSLS_SCHEFFE_CI, &scheffe_lower_limit,
 &scheffe_upper_limit,
 0);

 /* Print results */
 imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,
 y_hat, 0);
 imsls_f_write_matrix("Residuals", 1, N_OBSERVATIONS, residual, 0);
 imsls_f_write_matrix("Standardized Residuals", 1, N_OBSERVATIONS,
 standardized_residual, 0);
 imsls_f_write_matrix("Leverages", 1, N_OBSERVATIONS, leverage, 0);
 imsls_f_write_matrix("Deleted Residuals", 1, N_OBSERVATIONS,
 deleted_residual, 0);
 imsls_f_write_matrix("Cooks D", 1, N_OBSERVATIONS, cooksd, 0);
 imsls_f_write_matrix("DFFITS", 1, N_OBSERVATIONS, dffits, 0);
 imsls_f_write_matrix("Scheffe Lower Limit", 1, N_OBSERVATIONS,
 scheffe_lower_limit, 0);
 imsls_f_write_matrix("Scheffe Upper Limit", 1, N_OBSERVATIONS,
 scheffe_upper_limit, 0);
 imsls_f_write_matrix("Population Mean Lower Limit", 1,
 N_OBSERVATIONS, mean_lower_limit, 0);
 imsls_f_write_matrix("Population Mean Upper Limit", 1,
 N_OBSERVATIONS, mean_upper_limit, 0);
 imsls_f_write_matrix("New Sample Lower Limit", 1, N_OBSERVATIONS,
 new_sample_lower_limit, 0);
 imsls_f_write_matrix("New Sample Upper Limit", 1, N_OBSERVATIONS,
 new_sample_upper_limit, 0);
}

Output
 Predicted Responses
 1 2 3 4 5 6
 78.5 72.8 106.0 89.3 95.6 105.3

 7 8 9 10 11 12
 104.1 75.7 91.7 115.6 81.8 112.3

 13
 111.7

 Residuals
 1 2 3 4 5 6
 0.005 1.511 -1.671 -1.727 0.251 3.925

 7 8 9 10 11 12
 -1.449 -3.175 1.378 0.282 1.991 0.973

 13
 -2.294

 Standardized Residuals
 1 2 3 4 5 6
 0.003 0.757 -1.050 -0.841 0.128 1.715

Chapter 2: Regression regression_prediction • 93

 7 8 9 10 11 12
 -0.744 -1.688 0.671 0.210 1.074 0.463

 13
 -1.124

 Leverages
 1 2 3 4 5 6
 0.5503 0.3332 0.5769 0.2952 0.3576 0.1242

 7 8 9 10 11 12
 0.3671 0.4085 0.2943 0.7004 0.4255 0.2630

 13
 0.3037

 Deleted Residuals
 1 2 3 4 5 6
 0.003 0.735 -1.058 -0.824 0.120 2.017

 7 8 9 10 11 12
 -0.722 -1.967 0.646 0.197 1.086 0.439

 13
 -1.146

 Cooks D
 1 2 3 4 5 6
 0.0000 0.0572 0.3009 0.0593 0.0018 0.0834

 7 8 9 10 11 12
 0.0643 0.3935 0.0375 0.0207 0.1708 0.0153

 13
 0.1102

 DFFITS
 1 2 3 4 5 6
 0.003 0.519 -1.236 -0.533 0.089 0.759

 7 8 9 10 11 12
 -0.550 -1.635 0.417 0.302 0.935 0.262

 13
 -0.757
 Scheffe Lower Limit
 1 2 3 4 5 6
 70.7 66.7 98.0 83.6 89.4 101.6

 7 8 9 10 11 12
 97.8 69.0 86.0 106.8 75.0 106.9

 13
 105.9

94 • regression_prediction IMSL C Stat Library

 Scheffe Upper Limit
 1 2 3 4 5 6
 86.3 78.9 113.9 95.0 101.9 109.0

 7 8 9 10 11 12
 110.5 82.4 97.4 124.4 88.7 117.7

 13
 117.5

 Population Mean Lower Limit
 1 2 3 4 5 6
 74.3 69.5 101.7 86.3 92.3 103.3

 7 8 9 10 11 12
 100.7 72.1 88.7 110.9 78.1 109.4

 13
 108.6

 Population Mean Upper Limit
 1 2 3 4 5 6
 82.7 76.0 110.3 92.4 99.0 107.3

 7 8 9 10 11 12
 107.6 79.3 94.8 120.3 85.5 115.2

 13
 114.8

 New Sample Lower Limit
 1 2 3 4 5 6
 71.5 66.3 98.9 82.9 89.1 99.3

 7 8 9 10 11 12
 97.6 69.0 85.3 108.3 75.1 106.0

 13
 105.3

 New Sample Upper Limit
 1 2 3 4 5 6
 85.5 79.3 113.1 95.7 102.2 111.3

 7 8 9 10 11 12
 110.7 82.4 98.1 123.0 88.5 118.7

 13
 118.1

Warning Errors

IMSLS_NONESTIMABLE Within the preset tolerance, the linear
combination of regression coefficients is
nonestimable.

Chapter 2: Regression hypothesis_partial • 95

IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than 1.0 is
computed. It is set to 1.0.

IMSLS_DEL_MSE_LT_0 A deleted residual mean square
(= #) much less than 0 is computed. It is set
to 0.

Fatal Errors

IMSLS_NONNEG_WEIGHT_REQUEST_2 The weight for row # was #. Weights must
be nonnegative.

hypothesis_partial
Constructs an equivalent completely testable multivariate general linear hypothesis
HβU = G from a partially testable hypothesis HpβU = Gp.

Synopsis
#include <imsls.h>

int imsls_f_hypothesis_partial (Imsls_f_regression *regression_info, int
nhp, float hp[], ..., 0)

The type double function is imsls_d_hypothesis_partial.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information about
the regression fit. See function imsls_f_regression.

int nhp (Input)
Number of rows in the hypothesis matrix, hp.

float hp[] (Input)
The Hp array of size nhp by n_coefficients with each row corresponding to a
row in the hypothesis and containing the constants that specify a linear
combination of the regression coefficients. Here, n_coefficients is the number
of coefficients in the fitted regression model.

Return Value
Number of rows in the completely testable hypothesis, nh. This value is also the
degrees of freedom for the hypothesis. The value nh classifies the hypothesis
HpβU = Gp as nontestable (nh = 0), partially testable (0 < nh < rank_hp) or
completely testable (0 < nh = rank_hp), where rank_hp is the rank of Hp (see
keyword IMSLS_RANK_HP).

Synopsis with Optional Arguments
#include <imsls.h>

96 • hypothesis_partial IMSL C Stat Library

int imsls_f_hypothesis_partial (Imsls_f_regression *regression_info, int
nhp, float hp[],
IMSLS_GP, float gp[],
IMSLS_U, int nu, float u[],
IMSLS_RANK_HP, int rank_hp
IMSLS_H_MATRIX, float **h,
IMSLS_H_MATRIX_USER, float h[],
IMSLS_G, float **g,
IMSLS_G_USER, float g[],
0)

Optional Arguments

IMSLS_GP, float gp[] (Input)
Array of size nhp by nu containing the Gp matrix, the null hypothesis values.
By default, each value of Gp is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent variables
to be considered. The value nu must be greater than 0 and less than or equal to
n_dependent.

Argument u contains the n_dependent by nu U matrix for the test HpBU = Gp.
This argument is not referenced by imsls_f_hypothesis_partial and is
included only for consistency with functions imsls_f_hypothesis_scph
and imsls_f_hypothesis_test. A dummy array of length 1 may be
substituted for this argument.
Default: nu = n_dependent and u is the identity matrix.

IMSLS_RANK_HP, int*rank_hp (Output)
Rank of Hp.

IMSLS_H_MATRIX, float **h (Output)
Address of a pointer to the internally allocated array of size nhp by
n_parameters containing the H matrix. Each row of h corresponds to a row in
the completely testable hypothesis and contains the constants that specify an
estimable linear combination of the regression coefficients.

IMSLS_H_MATRIX_USER, float h[] (Output)
Storage for array h is provided by the user. See IMSLS_H.

IMSLS_G, float **g (Output)
Address of a pointer to the internally allocated array of size nph ny
n_dependent containing the G matrix. The elements of g contain the null
hypothesis values for the completely testable hypothesis.

IMSLS_G_USER, float g[] (Output)
Storage for array g is provided by the user. See IMSLS_G.

Description
Once a general linear model y = Xβ + ε is fitted, particular hypothesis tests are
frequently of interest. If the matrix of regressors X is not full rank (as evidenced by the

Chapter 2: Regression hypothesis_partial • 97

fact that some diagonal elements of the R matrix output from the fit are equal to zero),
methods that use the results of the fitted model to compute the hypothesis sum of
squares (see function imsls_f_hypothesis_scph) require specification in the
hypothesis of only linear combinations of the regression parameters that are estimable.
A linear combination of regression parameters cTβ is estimable if there exists some
vector a such that cT = aTX, i.e., cT is in the space spanned by the rows of X. For a
further discussion of estimable functions, see Maindonald (1984, pp. 166−168) and
Searle (1971, pp. 180−188). Function imsls_f_hypothesis_partial is only useful
in the case of non-full rank regression models, i.e., when the problem of estimability
arises.
Peixoto (1986) noted that the customary definition of testable hypothesis in the context
of a general linear hypothesis test Hβ = g is overly restrictive. He extended the notion
of a testable hypothesis (a hypothesis composed of estimable functions of the
regression parameters) to include partially testable and completely testable hypothesis.
A hypothesis Hβ = g is partially testable if the intersection of the row space H
(denoted by ℜ(H)) and the row space of
X (ℜ(X)) is not essentially empty and is a proper subset of ℜ(H), i.e.,
{0} ⊂ ℜ(H) ∩ ℜ(X) ⊂ ℜ(H). A hypothesis Hβ = g is completely testable if
{0} ⊂ ℜ(H) ∩ ℜ(H) ⊂ ℜ(X). Peixoto also demonstrated a method for converting a
partially testable hypothesis to one that is completely testable so that the usual method
for obtaining sums of squares for the hypothesis from the results of the fitted model can
be used. The method replaces Hp in the partially testable hypothesis Hpβ = gp by a
matrix H whose rows are a basis for the intersection of the row space of Hp and the row
space of X. A corresponding conversion of the null hypothesis values from gp to g is
also made. A sum of squares for the completely testable hypothesis can then be
computed (see function imsls_f_hypothesis_scph). The sum of squares that is
computed for the hypothesis Hβ = g equals the difference in the error sums of squares
from two fitted models—the restricted model with the partially testable hypothesis
Hpβ = gp and the unrestricted model.

For the general case of the multivariate model Y = Xβ + ε with possible linear equality
restrictions on the regression parameters, imsls_f_hypothesis_partial converts
the partially testable hypothesis Hpβ = gp to a completely testable hypothesis HβU = G.
For the case of the linear model with linear equality restrictions, the definitions of the
estimable functions, nontestable hypothesis, partially testable hypothesis, and
completely testable hypothesis are similar to those previously given for the unrestricted
model with the exception that ℜ(X) is replaced by ℜ(R) where R is the upper triangular
matrix based on the linear equality restrictions. The nonzero rows of R form a basis for
the rowspace of the matrix (XT, AT)T. The rows of H form an orthonormal basis for the
intersection of two subspaces—the subspace spanned by the rows of Hp and the
subspace spanned by the rows of R. The algorithm used for computing the intersection
of these two subspaces is based on an algorithm for computing angles between linear
subspaces due to Björk and Golub (1973). (See also Golub and Van Loan 1983, pp.
429−430). The method is closely related to a canonical correlation analysis discussed
by Kennedy and Gentle (1980, pp. 561−565). The algorithm is as follows:

98 • hypothesis_partial IMSL C Stat Library

1. Compute a QR factorization of
T
PH

 with column permutations so that

1 1 1
T T
PH Q R P=

Here, P1 is the associated permutation matrix that is also an orthogonal
matrix. Determine the rank of Hp as the number of nonzero diagonal elements
of R1, for example n1. Partition Q1 = (Q11, Q12) so that Q11 is the first n1
column of Q1. Set rank_hp = n.

2. Compute a QR factorization of the transpose of the R matrix (input through
regression_info) with column permuations so that

2 2 2
T TR Q R P=

Determine the rank of R from the number of nonzero diagonal elements of R,
for example n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2 columns of
Q2.

3. Form

11 21
TA Q Q=

4. Compute the singular values of A

()1 21 2 min ,... n nσ σ σ≥ ≥ ≥

and the left singular vectors W of the singular value decomposition of A so
that

()()1 21 min ,diag ,...T
n nW AV σ σ=

If σ1 < 1, then the dimension of the intersection of the two subspaces is s = 0.
Otherwise, assume the dimension of the intersection to be
s if σs = 1 > σs+1. Set nh = s.

5. Let W1 be the first s columns of W. Set H = (Q1W1)T.

6. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If
nhp < n_parameters, R11 equals the first nhp rows of R1. Otherwise,
R11 contains R1 in its first n_parameters rows and zeros in the remaining rows.
Compute a solution Z to the linear system

Chapter 2: Regression hypothesis_partial • 99

11 1
T T

pR Z P G=

If this linear system is delcared inconsistent, an error message with error code
equal to 2 is issued.

7. Partition

()1 2,T T TZ Z Z=

so that Z1 is the first n1 rows of Z. Set

1 1
TG W Z=

The degrees of freedom (nh) classify the hypothesis HpβU =Gp as nontestable
(nh = 0), partially testable (0 < nh < rank_hp), or completely testable
(0 < nh = rank_hp).

For further details concerning the algorithm, see Sallas and Lionti (1988).

Example
A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to data.
The model is

yii = μ + αi + εii (i, j) = (1, 1) (2, 1) (2, 2)

The model is fitted using function imsls_f_regression. The partially testable
hypothesis

1

2

5
0 3:H α

α
=
=

is converted to a completely testable hypothesis.
#include <imsls.h>
#define N_ROWS 3
#define N_INDEPENDENT 1
#define N_DEPENDENT 1
#define N_PARAMETERS 3
#define NHP 2

main() {
 Imsls_f_regression *info;
 int n_class = 1;
 int n_continuous = 0;
 int nh, nreg, rank_hp;
 float *coefficients, *x, *g, *h;
 static float z[N_ROWS*N_INDEPENDENT] = { 1, 2, 2 };
 static float y[] = {17.3, 24.1, 26.3};
 static float gp[] = {5, 3};
 static float hp[NHP*N_PARAMETERS] = {0, 1, 0,
 0, 0, 1};

100 • hypothesis_scph IMSL C Stat Library

 nreg = imsls_f_regressors_for_glm(N_ROWS, z,
 n_class, n_continuous,
 IMSLS_REGRESSORS, &x, 0);

 coefficients = imsls_f_regression(N_ROWS, nreg, x, y,
 IMSLS_N_DEPENDENT, N_DEPENDENT,
 IMSLS_REGRESSION_INFO, &info,
 0);

 nh = imsls_f_hypothesis_partial(info, NHP, hp,
 IMSLS_GP, gp,
 IMSLS_H_MATRIX, &h,
 IMSLS_G, &g,
 IMSLS_RANK_HP, &rank_hp, 0);

 if (nh == 0) {
 printf("Nontestable Hypothesis\n");
 } else if (nh < rank_hp) {
 printf("Partially Testable Hypothesis\n");
 } else {
 printf("Completely Testable Hypothesis\n");
 }

 imsls_f_write_matrix("H Matrix", nh, N_PARAMETERS, h, 0);

 imsls_f_write_matrix("G", nh, N_DEPENDENT, g, 0);

 free(coefficients);
 free(info);
 free(x);
 free(h);
 free(g);
}

Output
Partially Testable Hypothesis

 H Matrix
 1 2 3
 0.0000 0.7071 -0.7071

 G
 1.414

Warning Errors

IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the computed
tolerance.

hypothesis_scph
Computes the matrix of sums of squares and crossproducts for the multivariate general
linear hypothesis HβU = G given the regression fit.

Chapter 2: Regression hypothesis_scph • 101

Synopsis
#include <imsls.h>
float *imsls_f_hypothesis_scph (Imsls_f_regression *regression_info, int

nh, float h[], float *dfh, ..., 0)
The type double function is imsls_d_hypothesis_scph.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information about
the regression fit. See function imsls_f_regression.

int nh (Input)
Number of rows in the hypothesis matrix, h.

float h[] (Input)
The H array of size nh by n_coefficients with each row corresponding to a
row in the hypothesis and containing the constants that specify a linear
combination of the regression coefficients. Here, n_coefficients is the number
of coefficients in the fitted regression model.

float *dfh (Output)
Degrees of freedom for the sums of squares and crossproducts matrix. This is
equal to the rank of input matrix h.

Return Value
Array of size nu by nu containing the sums of squares and crossproducts attributable to
the hypothesis.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_regression_scph (Imsls_f_regression *regression_info,

int nh, float h[], float *dfh,
IMSLS_G, float g[],
IMSLS_U, int nu, float u[],
IMSLS_RETURN_USER, scph[],
0)

Optional Arguments

IMSLS_G, float g[] (Input)
Array of size nh by nu containing the G matrix, the null hypothesis values. By
default, each value of G is equal to 0.

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent variables
to be considered. The value nu must be greater than 0 and less than or equal to
n_dependent.

Argument u contains the n_dependent by nu U matrix for the test HpβU = Gp.

102 • hypothesis_scph IMSL C Stat Library

Default: nu = n_dependent and u is the identity matrix

IMSLS_RETURN_USER, float scph[] (Output)
If specified, the sums of squares and crossproducts matrix is stored in array
scph provided by the user, where scph is of size nu by nu.

Description
Function imsls_f_hypothesis_scph computes the matrix of sums of squares and
crossproducts for the general linear hypothesis HβU = G for the multivariate general
linear model Y = Xβ + ε.
The rows of H must be linear combinations of the rows of R, i.e., Hβ = G must be
completely testable. If the hypothesis is not completely testable, function
imsls_f_hypothesis_partial can be used to construct an equivalent completely
testable hypothesis.
Computations are based on an algorithm discussed by Kennedy and Gentle (1980, p.
317) that is extended by Sallas and Lionti (1988) for mulitvariate non-full rank models
with possible linear equality restrictions. The algorithm is as follows:

1. Form ˆW H U Gβ= − .

2. Find C as the solution of RTC = HT. If the equations are declared inconsistent
within a computed tolerance, a warning error message is issued that the
hypothesis is not completely testable.

3. For all rows of R corresponding to restrictions, i.e., containing negative
diagonal elements from a restricted least-squares fit, zero out the
corresponding rows of C, i.e., from DC.

4. Decompose DC using Householder transformations and column pivoting to
yield a square, upper triangular matrix T with diagonal elements of
nonincreasing magnitude and permutation matrix P such that

0
T

DCP Q ⎡ ⎤
= ⎢ ⎥

⎣ ⎦

where Q is an orthogonal matrix.

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank of T
is r if

| trr | > | t11 | ε ≥ | tr + 1, r + 1 |

where ε = 10.0 × imsls_f_machine(4)
(10.0 × imsls_d_machine(4) for the double-precision version).

Then, zero out all rows of T below r. Set the degrees of freedom for the
hypothesis, dfh, to r.

Chapter 2: Regression hypothesis_scph • 103

6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a
warning error message is issued that the hypothesis is inconsistent within a
computed tolerance, i.e., the linear system

HβU = G

Aβ = Z

does not have a solution for β.

Form VTV, which is the required matrix of sum of squares and crossproducts,
scph.

In general, the two warning errors described above are serious user errors that
require the user to correct the hypothesis before any meaningful sums of
squares from this function can be computed. However, in some cases, the user
may know the hypothesis is consistent and completely testable, but the checks
in imsls_f_hypothesis_scph are too tight. For this reason,
imsls_f_hypothesis_scph continues with the calculations.

Function imsls_f_hypothesis_scph gives a matrix of sums of squares
and crossproducts that could also be obtained from separate fittings of the two
models:

Y¹ = Xβ¹ + ε¹ (1)

Aβ¹ = Z¹

Hβ¹ = G

and

Y¹ = Xβ¹ + ε¹ (2)

Aβ¹ = Z¹

where Y¹ = YU, β¹ = βU, ε¹ = εU, and Z¹ = ZU. The error sum of squares and
crossproducts matrix for (1) minus that for (2) is the matrix sum of squares
and crossproducts output in scph. Note that this approach avoids the question
of testability.

Example
The data for this example are from Maindonald (1984, pp. 203−204). A multivariate
regression model containing two dependent variables and three independent variables
is fit using function imsls_f_regression and the results stored in the structure info.
The sum of squares and crossproducts matrix, scph, is then computed by calling

104 • hypothesis_scph IMSL C Stat Library

imsls_f_hypothesis_scph for the test that the third independent variable is in the
model (determined by the specification of h). The degrees of freedom for scph also is
computed.

#include <imsls.h>
main()
{
 Imsls_f_regression *info;
 float *coefficients, *scph;
 float dfh;
 float x[] = { 7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0 };
 float y[] = { 7.0, 1.0,
 -5.0, 4.0,
 6.0, 10.0,
 5.0, 5.0,
 5.0, -2.0,
 -2.0, 4.0,
 0.0, -6.0,
 8.0, 2.0,
 3.0, 0.0 };
 int n_observations = 9;
 int n_independent = 3;
 int n_dependent = 2;
 int nh = 1;
 float h[] = { 0, 0, 0, 1 };

 coefficients = imsls_f_regression(n_observations, n_independent,
 x, y,
 IMSLS_N_DEPENDENT, n_dependent,
 IMSLS_REGRESSION_INFO, &info,
 0);

 scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0);

 printf("Degrees of Freedom Hypothesis = %4.0f\n", dfh);

 imsls_f_write_matrix("Sum of Squares and Crossproducts",
 n_dependent, n_dependent, scph,
 IMSLS_NO_COL_LABELS, IMSLS_NO_ROW_LABELS,
 0);

}

Output
Degrees of Freedom Hypothesis = 1

Sum of Squares and Crossproducts

Chapter 2: Regression hypothesis_test • 105

 100 -40
 -40 16

Warning Errors

IMSLS_HYP_NOT_TESTABLE The hypothesis is not completely testable within the
computed tolerance. Each row of “h” must be a linear
combination of the rows of “r”.

IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the computed
tolerance.

hypothesis_test
Performs tests for a multivariate general linear hypothesis HβU = G given the
hypothesis sums of squares and crossproducts matrix SH.

Synopsis
#include <imsls.h>

float imsls_f_hypothesis_test (Imsls_f_regression *regression_info, float
dfh, float *scph, ..., 0)

The type double function is imsls_d_hypothesis_test.

Required Argument

Imsls_f_regression *regression_info (Input)
Pointer to a structure of type Imsls_f_regression containing information about
the regression fit. See function imsls_f_regression.

float dfh (Input)
Degrees of freedom for the sums of squares and crossproducts matrix.

float *scph (Input)
Array of size nu by nu containing SH, the sums of squares and crossproducts
attributable to the hypothesis.

Return Value
The p-value corresponding to Wilks’ lambda test.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_hypothesis_test (Imsls_f_regression *regression_info, float

dfh, float *scph,
IMSLS_U, int nu, float u[],
IMSLS_WILK_LAMBDA, float *value, float *p_value,
IMSLS_ROY_MAX_ROOT, float *value, float *p_value,
IMSLS_HOTELLING_TRACE, float *value, float *p_value,
IMSLS_PILLAI_TRACE, float *value, float *p_value,
0)

106 • hypothesis_test IMSL C Stat Library

Optional Arguments

IMSLS_U, int nu, float u[] (Input)
Argument nu is the number of linear combinations of the dependent variables
to be considered. The value nu must be greater than 0 and less than or equal to
n_dependent. Argument u contains the n_dependent by nu U matrix for the
test HpβU = Gp.
Default: nu = n_dependent and u is the identity matrix

IMSLS_WILK_LAMBDA, float *value, float *p_value (Output)
Wilk’s lamda and p-value.

IMSLS_ROY_MAX_ROOT, float *value, float *p_value (Output)
Roy’s maximum root criterion and p-value.

IMSLS_HOTELLING_TRACE, float *value, float *p_value (Output)
Hotelling’s trace and p-value.

IMSLS_PILLAI_TRACE, float *value, float *p_value (Output)
Pillai’s trace and p-value.

Description
Function imsls_f_hypothesis_test computes test statistics and p-values for the
general linear hypothesis HβU = G for the multivariate general linear model.
The hypothesis sum of squares and crossproducts matrix input in scph is

() () ()ˆ ˆT T
HS H U G C DC H U Gβ β

−
= − −

where C is a solution to RTC = H and where D is a diagonal matrix with diagonal
elements

1 if 0
0 otherwise

ii
ii

r
d

>⎧
= ⎨

⎩

See the section “Linear Dependence and the R Matrix” in the Introduction.
The error sum of squares and crossproducts matrix for the model Y = Xβ + ε is

() ()ˆ ˆT
Y X Y Xβ β− −

which is input in regression_info. The error sum of squares and crossproducts
matrix for the hypothesis HβU = G computed by imsls_f_hypothesis_test is

() ()ˆ ˆTT
ES U Y X Y X Uβ β= − −

Let p equal the order of the matrices SE and SH, i.e.,

Chapter 2: Regression hypothesis_test • 107

NU if NU 0
NDEP otherwise

p
>⎧ ⎫

= ⎨ ⎬
⎩ ⎭

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input in
regression_info) be the degrees of freedom for error. Function
imsls_f_hypothesis_test computed three test statistics based on eigenvalues λi
(i = 1, 2, …, p) of the generalized eigenvalue problem SHx = λSEx. These test statistics
are as follows:

Wilk’s lambda

()
() 1

det 1
det 1

p
E

iH E i

S
S S λ=

Λ = =
+ +∏

The associated p-value is based on an approximation discussed by Rao (1973, p. 556).
The statistic

1/

1/

/ 2 11 s

s

ms pqF
pq

− + − Λ
=

Λ

has an approximate F distribution with pq and ms − pq / 2 + 1 numerator and
denominator degrees of freedom, respectively, where

2 2

2 2

1 if 1 or 1

4 otherwise
5

p q

s p q
p q

= =⎧
⎪

= ⎨ −
⎪ + −⎩

and

()1
2

p q
m υ

+ −
= −

The F test is exact if min (p, q) ≤ 2 (Kshirsagar, 1972, Theorem 4, p. 299−300).
Roy’s maximum root

c = max λi over all i

where c is output as value. The p-value is based on the approximation

q sF c
s

υ + −
=

108 • hypothesis_test IMSL C Stat Library

where s = max (p, q) has an approximate F distribution with s and υ + q − s numerator
and denominator degrees of freedom, respectively. The F test is exact if s = 1; the
p-value is also exact. In general, the value output in p_value is lower bound on the
actual p-value.

Hotelling’s trace

()1

1
tr

p

i
i

U HE λ−

=

= = ∑

U is output as value. The p-value is based on the approximation of McKeon (1974)
that supersedes the approximation of Hughes and Saw (1972). McKeon’s
approximation is also discussed by Seber (1984, p. 39). For

()()
()()

24
1 1

3

pqb
q p

p p
υ υ
υ υ

+
= +

+ − − −
− − −

the p-value is based on the result that

()
()

1
2

b p
F U

b pq
υ − −

=
−

has an approximate F distribution with pq and b degrees of freedom. The test is exact if
min (p, q) = 1. For υ ≤ p + 1, the approximation is not valid, and p_value is set to
NaN.
These three test statistics are valid when SE is positive definite. A necessary condition
for SE to be positive definite is υ ≥ p. If SE is not positive definite, a warning error
message is issued, and both value and p_value are set to NaN.

Because the requirement υ ≥ p can be a serious drawback,
imsls_f_hypothesis_test computes a fourth test statistic based on eigenvalues θi
(i = 1, 2, …, p) of the generalized eigenvalue problem SHw = θ(SH + SE) w. This test
statistic requires a less restrictive assumption—SH + SE is positive definite. A
necessary condition for SH + SE to be positive definite is υ + q ≥ p. If SE is positive
definite, imsls_f_hypothesis_test avoids the computation of the generalized
eigenvalue problem from scratch. In this case, the eigenvalues θi are obtained from λi
by

1
i

i
i

λ
θ

λ
=

+

Chapter 2: Regression hypothesis_test • 109

The fourth test statistic is as follows:
Pillai’s trace

() 1

1
tr

p

H H E i
i

V S S S θ−

=

⎡ ⎤= + =⎣ ⎦ ∑

V is output as value. The p-value is based on an approximation discussed by Pillai
(1985). The statistic

2 1
2 1

n s VF
m s s V

+ +
=

+ + −

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator and
denominator degrees of freedom, respectively, where

s = min (p, q)

m = ½(|p − q| −1)

n = ½(υ − p − 1)

The F test is exact if min (p, q) = 1.

Examples

Example 1
The data for this example are from Maindonald (1984, p. 203−204). A multivariate
regression model containing two dependent variables and three independent variables
is fit using function imsls_f_regression and the results stored in the structure
regression_info. The sum of squares and crossproducts matrix, scph, is then
computed with a call to imsls_f_hypothesis_scph for the test that the third
independent variable is in the model (determined by specification of h). Finally, func-
tion imsls_f_hypothesis_test is called to compute the p-value for the test statistic
(Wilk’s lambda).

#include <imsls.h>
main()
{
 Imsls_f_regression *info;
 float *coefficients, *scph;
 float dfh, p_value;
 float x[] = { 7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,

110 • hypothesis_test IMSL C Stat Library

 2.0, 1.0, 4.0 };
 float y[] = { 7.0, 1.0,
 -5.0, 4.0,
 6.0, 10.0,
 5.0, 5.0,
 5.0, -2.0,
 -2.0, 4.0,
 0.0, -6.0,
 8.0, 2.0,
 3.0, 0.0 };
 int n_observations = 9;
 int n_independent = 3;
 int n_dependent = 2;
 int nh = 1;
 float h[] = { 0, 0, 0, 1 };

 coefficients = imsls_f_regression(n_observations, n_independent,
 x, y,
 IMSLS_N_DEPENDENT, n_dependent,
 IMSLS_REGRESSION_INFO, &info,
 0);

 scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0);

 p_value = imsls_f_hypothesis_test(info, dfh, scph, 0);

 printf("P-value = %10.6f\n", p_value);

}

Output
P-value = 0.000010

Example 2
This example is the same as the first example, but more statistics are computed. Also,
the U matrix, u, is explicitly specified as the identity matrix (which is the same default
configuration of U).

#include <imsls.h>
main()
{
 Imsls_f_regression *info;
 float *coefficients, *scph;
 float dfh, p_value;
 float x[] = { 7.0, 5.0, 6.0,
 2.0,-1.0, 6.0,
 7.0, 3.0, 5.0,
 -3.0, 1.0, 4.0,
 2.0,-1.0, 0.0,
 2.0, 1.0, 7.0,
 -3.0,-1.0, 3.0,
 2.0, 1.0, 1.0,
 2.0, 1.0, 4.0 };
 float y[] = { 7.0, 1.0,
 -5.0, 4.0,

Chapter 2: Regression hypothesis_test • 111

 6.0, 10.0,
 5.0, 5.0,
 5.0, -2.0,
 -2.0, 4.0,
 0.0, -6.0,
 8.0, 2.0,
 3.0, 0.0 };
 int n_observations = 9;
 int n_independent = 3;
 int n_dependent = 2;
 int nh = 1;
 float h[] = { 0, 0, 0, 1 };
 int nu = 2;
 float u[4]={1, 0, 0, 1};
 float v1, v2, v3, v4, p1, p2, p3, p4;

 coefficients = imsls_f_regression(n_observations, n_independent,
 x, y,
 IMSLS_N_DEPENDENT, n_dependent,
 IMSLS_REGRESSION_INFO, &info,
 0);

 scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0);

 p_value = imsls_f_hypothesis_test(info, dfh, scph,
 IMSLS_U, nu, u,
 IMSLS_WILK_LAMBDA, &v1, &p1,
 IMSLS_ROY_MAX_ROOT, &v2, &p2,
 IMSLS_HOTELLING_TRACE, &v3, &p3,
 IMSLS_PILLAI_TRACE, &v4, &p4,
 0);

 printf("Wilk value = %10.6f p-value = %10.6f\n", v1, p1);
 printf("Roy value = %10.6f p-value = %10.6f\n", v2, p2);
 printf("Hotelling value = %10.6f p-value = %10.6f\n", v3, p3);
 printf("Pillai value = %10.6f p-value = %10.6f\n", v4, p4);
}

Output
Wilk value = 0.003149 p-value = 0.000010
Roy value = 316.600861 p-value = 0.000010
Hotelling value = 316.600861 p-value = 0.000010
Pillai value = 0.996851 p-value = 0.000010

Warning Errors

IMSLS_SINGULAR_1 “u”*“scpe”*“u” is singular. Only Pillai’s trace can be
computed. Other statistics are set to NaN.

Fatal Errors

IMSLS_NO_STAT_1 “scpe” + “scph” is singular. No tests can be
computed.

112 • regression_selection IMSL C Stat Library

IMSLS_NO_STAT_2 No statistics can be computed. Iterations for
eigenvalues for the generalized eigenvalue problem
“scph”*x = (lambda)*(“scph”+“scpe”)*x failed to
converge.

IMSLS_NO_STAT_3 No statistics can be computed. Iterations
for eigenvalues for the generalized
eigenvalue problem “scph”
x = (lambda)(“scph”+“u”*“scpe”*“u”)*x failed to
converge.

IMSLS_SINGULAR_2 “u”*“scpe”*“u” + “scph” is singular. No tests can be
computed.

IMSLS_SINGULAR_TRI_MATRIX The input triangular matrix is singular.
The index of the first zero diagonal element is equal
to #.

regression_selection
Selects the best multiple linear regression models.

Synopsis
#include <imsls.h>
void imsls_f_regression_selection (int n_rows, int n_candidate,

float x[], float y[], ..., 0)
The type double function is imsls_d_regression_selection.

Required Arguments

int n_rows (Input)
Number of observations or rows in x and y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x.
n_candidate must be greater than 2.

float x[] (Input)
Array of size n_rows × n_candidate containing the data for the candidate
variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent variable.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_selection (int n_rows, int n_candidate, float

x[], float y[],
IMSLS_X_COL_DIM, int x_col_dim,

Chapter 2: Regression regression_selection • 113

IMSLS_PRINT, or
IMSLS_NO_PRINT,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_R_SQUARED, int max_subset_size, or
IMSLS_ADJ_R_SQUARED, or
IMSLS_MALLOWS_CP,
IMSLS_MAX_N_BEST, int max_n_best,
IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved,
IMSLS_CRITERIONS, int **index_criterions,
 float **criterions,
IMSLS_CRITERIONS_USER, int index_criterions[],
 float criterions[],
IMSLS_INDEPENDENT_VARIABLES, int **index_variables,
 int **independent_variables,
IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[],
 int independent_variables[],
IMSLS_COEF_STATISTICS, int **index_coefficients,
 float **coefficients,
IMSLS_COEF_STATISTICS_USER, int index_coefficients[],
 float coefficients[],
IMSLS_INPUT_COV, int n_observations, float cov[],
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
The column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_PRINT
Printing is performed. This is the default.
or

IMSLS_NO_PRINT
Printing is not performed.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_R_SQUARED, int max_subset_size (Input)
The R2 criterion is used, where subset sizes
1, 2, ..., max_subset_size are examined.
This option is the default with max_subset_size = n_candidate.
or

114 • regression_selection IMSL C Stat Library

IMSLS_ADJ_R_SQUARED
The adjusted R2 criterion is used, where subset sizes
1, 2, ..., n_candidate are examined.
or

IMSLS_MALLOWS_CP
Mallows Cp criterion is used, where subset sizes
1, 2, ..., n_candidate are examined.

IMSLS_MAX_N_BEST, int max_n_best (Input)
Number of best regressions to be found. If the R2 criterions are selected, the
max_n_best best regressions for each subset size examined are found. If the
adjusted R2 or Mallows Cp criterion is selected, the max_n_best overall
regressions are found.
Default: max_n_best = 1

IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved (Input)
Maximum number of good regressions of each subset size to be saved in
finding the best regressions. Argument max_n_good_saved must be greater
than or equal to max_n_best. Normally, max_n_good_saved should be less
than or equal to 10. It doesn't ever need to be larger than the maximum
number of subsets for any subset size. Computing time required is inversely
related to max_n_good_saved.
Default: max_n_good_saved = 10

IMSLS_CRITERIONS, int **index_criterions, float **criterions (Output)
Argument index_criterions is the address of a pointer to the internally
allocated array of length nsize + 1(where nsize is equal to max_subset_size
if optional argument IMSLS_R_SQUARED is specified; otherwise, nsize is
equal to n_candidate) containing the locations in criterions of the first
element for each subset size. For I = 0, 1, ..., nsize −1, element numbers
index_criterions[I], index_criterions[I] + 1, ...,
index_criterions[I + 1] − 1 of criterions correspond to the (I + 1)-st
subset size. Argument criterions is the address of a pointer to the
internally allocated array of length max (index_criterions [nsize] − 1 ,
n_candidate) containing in its first index_criterions [nsize] − 1
elements the criterion values for each subset considered, in increasing subset
size order.

IMSLS_CRITERIONS_USER, int index_criterions[], float criterions[]
(Output)
Storage for arrays index_criterions and criterions is provided by the
user. An upper bound on the length of criterions is
max(max_n_good_saved × nsize, n_candidate). See
IMSLS_CRITERIONS.

IMSLS_INDEPENDENT_VARIABLES, int **index_variables,
int **independent_variables (Output)
Argument index_variables is the address of a pointer to the internally
allocated array of length nsize + 1 (where nsize is equal to

Chapter 2: Regression regression_selection • 115

max_subset_size if optional argument IMSLS_R_SQUARED is specified;
otherwise, nsize is equal to n_candidate) containing the locations in
independent_variables of the first element for each subset size. For
I = 0, 1, ..., nsize − 1, element numbers index_variables[I],
index_variables[I] + 1, ..., index_variables[I + 1] − 1 of
independent_variables correspond to the (I+1)-st subset size. Argument
independent_variables is the address of a pointer to the internally
allocated array of length index_variables [nsize] − 1 containing the
variable numbers for each subset considered and in the same order as in
criterions.

IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[],
int independent_variables[] (Output)
Storage for arrays index_variables and independent_variables is
provided by the user. An upper bound for the length of
independent_variables is as follows:

(1)
2

nsize nsize× × +max_n_good_saved

where nsize is equal to max_subset_size.

See IMSLS_INDEPENDENT_VARIABLES.

IMSLS_COEF_STATISTICS, int **index_coefficients, float **coefficients
(Output)
Argument index_coefficients is the address of a pointer to the internally
allocated array of length ntbest + 1 containing the locations in coefficients or
the first row for each of the best regressions. Here, ntbest is the total number of
best regression found and is equal
to max_subset_size × max_n_best if IMSLS_R_SQUARED is specified, equal
to max_n_best if either IMSLS_MALLOWS_CP
or IMSLS_ADJ_R_SQUARED is specified, and equal to
max_n_best × n_candidate, otherwise. For I = 0, 1, ..., ntbest − 1, rows
index_coefficients[I], index_coefficients[I] + 1, ...,
index_coefficients[I + 1] – 1 of coefficients correspond to the
(I + 1)-st regression. Argument coefficients is the address of a pointer to the
internally allocated array of size (index_coefficients [ntbest] − 1)× 5
containing statistics relating to the regression coefficients of the best models.
Each row corresponds to a coefficient for a particular regression. The regressions
are in order of increasing subset size. Within each subset size, the regressions are
ordered so that the better regressions appear first. The statistic in the columns are
as follows (inferences are conditional on the selected model):

116 • regression_selection IMSL C Stat Library

Column Description
0 variable number
1 coefficient estimate
2 estimated standard error of the estimate
3 t-statistic for the test that the coefficient is 0
4 p-value for the two-sided t test

IMSLS_COEF_STATISTICS_USER, int index_coefficients[],
float coefficients[] (Output)
Storage for arrays index_coefficients and coefficients is provided
by the user. See IMSLS_COEF_STATISTICS.

IMSLS_INPUT_COV, int n_observations, float cov[] (Input)
Argument n_observations is the number of observations associated with
array cov. Argument cov is an (n_candidate + 1) by (n_candidate + 1)
array containing a variance-covariance or sum of squares and crossproducts
matrix, in which the last column must correspond to the dependent variable.
Array cov can be computed using imsls_f_covariances. Arguments x
and y, and optional arguments frequencies and weights are not accessed
when this option is specified. Normally, imsls_f_regression_selection
computes cov from the input data matrices x and y. However, there may be
cases when the user will wish to calculate the covariance matrix and
manipulate it before calling imsls_f_regression_selection. See the
description section below for a discussion of such cases.

Description
Function imsls_f_regression_selection finds the best subset regressions for a
regression problem with n_candidate independent variables. Typically, the intercept
is forced into all models and is not a candidate variable. In this case, a sum of squares
and crossproducts matrix for the independent and dependent variables corrected for the
mean is computed internally. There may be cases when it is convenient for the user to
calculate the matrix; see the description of optional argument IMSLS_INPUT_COV.
“Best” is defined, on option, by one of the following three criteria:

• R2 (in percent)

2 SSE
100 (1)

SST
pR = −

• 2
aR (adjusted R2 in percent)

2 SSE1100 1 ()
SST

p
a

nR
n p

⎡ ⎤−
= −⎢ ⎥−⎣ ⎦

Chapter 2: Regression regression_selection • 117

Note that maximizing the criterion is equivalent to minimizing the residual
mean square:

()
SSE p

n p−

• Mallows’ Cp statistic

2

SSE
2p

pC p n
s

= + −
n_candidate

Here, n is equal to the sum of the frequencies (or n_rows if IMSLS_FREQUENCIES is
not specified) and SST is the total sum of squares.
SSEp is the error sum of squares in a model containing p regression parameters
including β0 (or p − 1 of the n_candidate candidate variables). Variable

2sn_candidate

is the error mean square from the model with all n_candidate variables in the model.
Hocking (1972) and Draper and Smith (1981, pp. 296−302) discuss these criteria.
Function imsls_f_regression_selection is based on the algorithm of Furnival
and Wilson (1974). This algorithm finds max_n_good_saved candidate regressions
for each possible subset size. These regressions are used to identify a set of best
regressions. In large problems, many regressions are not computed. They may be
rejected without computation based on results for other subsets; this yields an efficient
technique for considering all possible regressions.
There are cases when the user may want to input the variance-covariance matrix rather
than allow the function imsls_f_regression_selection to calculate it. This can
be accomplished using optional argument IMSLS_INPUT_COV. Three situations in
which the user may want to do this are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum of squares and
crossproducts matrix for the independent and dependent variables is required.
Argument n_observations must be set to 1 greater than the number of
observations. Form ATA, where A = [A, Y], to compute the raw sum of squares
and crossproducts matrix.

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares and
crossproducts matrix for the constant regressor (= 1.0), independent, and
dependent variables is required for cov. In this case, cov contains one
additional row and column corresponding to the constant regressor. This
row/column contains the sum of squares and crossproducts of the constant
regressor with the independent and dependent variables. The remaining
elements in cov are the same as in the previous case. Argument
n_observations must be set to 1 greater than the number of observations.

118 • regression_selection IMSL C Stat Library

3. There are m variables to be forced into the models. A sum of squares and
crossproducts matrix adjusted for the m variables is required (calculated by
regressing the candidate variables on the variables to be forced into the
model). Argument n_observations must be set to m less than the number
of observations.

Programming Notes
Function imsls_f_regression_selection can save considerable CPU time over
explicitly computing all possible regressions. However, the function has some
limitations that can cause unexpected results for users who are unaware of the
limitations of the software.

1. For n_candidate + 1 > −log2 (ε), where ε is imsls_f_machine(4)
(imsls_d_machine(4) for double precision; see Chapter 15, Utilities), some
results can be incorrect. This limitation arises because the possible models
indicated (the model numbers 1, 2, ..., 2n_candidate) are stored as floating-
point values; for sufficiently large n_candidate, the model numbers cannot
be stored exactly. On many computers, this means
imsls_f_regression_selection (for n_candidate > 24) and
imsls_d_regression_selection (for n_candidate > 49) can produce
incorrect results.

2. Function imsls_f_regression_selection eliminates some subsets of
candidate variables by obtaining lower bounds on the error sum of squares
from fitting larger models. First, the full model containing all n_candidate
is fit sequentially using a forward stepwise procedure in which one variable
enters the model at a time, and criterion values and model numbers for all the
candidate variables that can enter at each step are stored. If linearly dependent
variables are removed from the full model, error
IMSLS_VARIABLES_DELETED is issued. If this error is issued, some
submodels that contain variables removed from the full model because of
linear dependency can be overlooked if they have not already been identified
during the initial forward stepwise procedure. If error
IMSLS_VARIABLES_DELETED is issued and you want the variables that were
removed from the full model to be considered in smaller models, you can
rerun the program with a set of linearly independent variables.

Examples

Example 1
This example uses a data set from Draper and Smith (1981, pp. 629−630). Function
imsls_f_regression_selection is invoked to find the best regression for each
subset size using the R2 criterion. By default, the function prints the results.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
main()
{
 float x[N_OBSERVATIONS][N_CANDIDATE] =

Chapter 2: Regression regression_selection • 119

 {7., 26., 6., 60.,
 1., 29., 15., 52.,
 11., 56., 8., 20.,
 11., 31., 8., 47.,
 7., 52., 6., 33.,
 11., 55., 9., 22.,
 3., 71., 17., 6.,
 1., 31., 22., 44.,
 2., 54., 18., 22.,
 21., 47., 4., 26.,
 1., 40., 23., 34.,
 11., 66., 9., 12.,
 10., 68., 8., 12.};
 float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

 imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE, x, y, 0);
}

Output
 Regressions with 1 variable(s) (R-squared)

 Criterion Variables
 67.5 4
 66.6 2
 53.4 1
 28.6 3

 Regressions with 2 variable(s) (R-squared)

 Criterion Variables
 97.9 1 2
 97.2 1 4
 93.5 3 4
 68 2 4
 54.8 1 3

 Regressions with 3 variable(s) (R-squared)

 Criterion Variables
 98.2 1 2 4
 98.2 1 2 3
 98.1 1 3 4
 97.3 2 3 4

 Regressions with 4 variable(s) (R-squared)

 Criterion Variables
 98.2 1 2 3 4

 Best Regression with 1 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value

120 • regression_selection IMSL C Stat Library

 4 -0.7382 0.1546 -4.775 0.0006

 Best Regression with 2 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 1 1.468 0.1213 12.10 0.0000
 2 0.662 0.0459 14.44 0.0000

 Best Regression with 3 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 1 1.452 0.1170 12.41 0.0000
 2 0.416 0.1856 2.24 0.0517
 4 -0.237 0.1733 -1.36 0.2054

 Best Regression with 4 variable(s) (R-squared)
Variable Coefficient Standard Error t-statistic p-value
 1 1.551 0.7448 2.083 0.0708
 2 0.510 0.7238 0.705 0.5009
 3 0.102 0.7547 0.135 0.8959
 4 -0.144 0.7091 -0.203 0.8441

Example 2
This example uses the same data set as the first example, but Mallow’s Cp statistic is
used as the criterion rather than R2. Note that when Mallow’s Cp statistic (or adjusted
R2) is specified, the variable max_n_best indicates the total number of “best”
regressions (rather than indicating the number of best regressions per subset size, as in
the case of the R2 criterion). In this example, the three best regressions are found to be
(1, 2), (1, 2, 4), and (1, 2, 3).

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
main()
{
 float x[N_OBSERVATIONS][N_CANDIDATE] =
 {7., 26., 6., 60.,
 1., 29., 15., 52.,
 11., 56., 8., 20.,
 11., 31., 8., 47.,
 7., 52., 6., 33.,
 11., 55., 9., 22.,
 3., 71., 17., 6.,
 1., 31., 22., 44.,
 2., 54., 18., 22.,
 21., 47., 4., 26.,
 1., 40., 23., 34.,
 11., 66., 9., 12.,
 10., 68., 8., 12.};
 float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,

Chapter 2: Regression regression_selection • 121

 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};
 int max_n_best = 3;

 imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE,
 (float *) x, y,
 IMSLS_MALLOWS_CP,
 IMSLS_MAX_N_BEST, max_n_best,
 0);
}

Output
1

 Regressions with 1 variable(s) (Mallows CP)
 Criterion Variables
 139 4
 142 2
 203 1
 315 3

 Regressions with 2 variable(s) (Mallows CP)

 Criterion Variables
 2.68 1 2
 5.5 1 4
 22.4 3 4
 138 2 4
 198 1 3

 Regressions with 3 variable(s) (Mallows CP)

 Criterion Variables
 3.02 1 2 4
 3.04 1 2 3
 3.5 1 3 4
 7.34 2 3 4

 Regressions with 4 variable(s) (Mallows CP)

 Criterion Variables
 5 1 2 3 4
1

 Best Regression with 2 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
 1 1.468 0.1213 12.10 0.0000
 2 0.662 0.0459 14.44 0.0000

 Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value

122 • regression_stepwise IMSL C Stat Library

 1 1.452 0.1170 12.41 0.0000
 2 0.416 0.1856 2.24 0.0517
 4 -0.237 0.1733 -1.36 0.2054

 2nd Best Regression with 3 variable(s) (Mallows CP)
Variable Coefficient Standard Error t-statistic p-value
 1 1.696 0.2046 8.29 0.0000
 2 0.657 0.0442 14.85 0.0000
 3 0.250 0.1847 1.35 0.2089

Warning Errors

IMSLS_VARIABLES_DELETED At least one variable is deleted from the full model
because the variance-covariance matrix “cov” is
singular.

Fatal Errors

IMSLS_NO_VARIABLES No variables can enter any model.

regression_stepwise
Builds multiple linear regression models using forward selection, backward selection,
or stepwise selection.

Synopsis
#include <imsls.h>
void imsls_f_regression_stepwise (int n_rows, int n_candidate, float

x[], float y[], ..., 0)
The type double function is imsls_d_regression_stepwise.

Required Arguments

int n_rows (Input)
Number of rows in x and the number of elements in y.

int n_candidate (Input)
Number of candidate variables (independent variables) or columns in x.

float x[] (Input)
Array of size n_rows × n_candidate containing the data for the candidate
variables.

float y[] (Input)
Array of length n_rows containing the responses for the dependent variable.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_regression_stepwise (int n_rows, int n_candidate, float

x[], float y[],

Chapter 2: Regression regression_stepwise • 123

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_FIRST_STEP, or
IMSLS_INTERMEDIATE_STEP, or
IMSLS_LAST_STEP, or
IMSLS_ALL_STEPS,
IMSLS_N_STEPS, int n_steps,
IMSLS_FORWARD, or
IMSLS_BACKWARD, or
IMSLS_STEPWISE,
IMSLS_P_VALUE_IN, float p_value_in,
IMSLS_P_VALUE_OUT, float p_value_out,
IMSLS_TOLERANCE, float tolerance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_COEF_T_TESTS, float **coef_t_tests,
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_LEVEL, int level[],
IMSLS_FORCE, int n_force,
IMSLS_IEND, int *iend,
IMSLS_SWEPT_USER, int swept[],
IMSLS_HISTORY_USER, float history[],
IMSLS_COV_SWEPT_USER, float *covs
IMSLS_INPUT_COV, int n_observations, float *cov,
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_candidate

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_rows containing the weight for each row of x.
Default: weights[] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_rows containing the frequency for each row of x.
Default: frequencies[] = 1

IMSLS_FIRST_STEP, or
IMSLS_INTERMEDIATE_STEP, or
IMSLS_LAST_STEP, or
IMSLS_ALL_STEPS

One or none of these options can be specified. If none of these is specified, the
action defaults to IMSLS_ALL_STEPS.

124 • regression_stepwise IMSL C Stat Library

Argument Action
IMSLS_FIRST_STEP This is the first invocation; additional calls

will be made. Initialization and stepping is
performed.

IMSLS_INTERMEDIATE_STEP This is an intermediate invocation.
Stepping is performed.

IMSLS_LAST_STEP This is the final invocation. Stepping and
wrap-up computations are performed.

IMSLS_ALL_STEPS This is the only invocation. Initialization,
stepping, and wrap-up computations are
performed.

IMSLS_N_STEPS, int n_steps (Input)
For nonnegative n_steps, n_steps steps are taken. If n_steps = −1,
stepping continues until completion.

IMSLS_FORWARD, or
IMSLS_BACKWARD, or
IMSLS_STEPWISE

One or none of these options can be specified. If none is specified, the action
defaults to IMSLS_BACKWARD.

Keyword Action
IMSLS_FORWARD An attempt is made to add a variable to the model. A

variable is added if its p-value is less than p_value_in.
During initialization, only the forced variables enter the
model.

IMSLS_BACKWARD An attempt is made to remove a variable from the model. A
variable is removed if its p-value exceeds p_value_out.
During initialization, all candidate independent variables
enter the model.

IMSLS_STEPWISE A backward step is attempted. If a variable is not removed,
a forward step is attempted. This is a stepwise step. Only
the forced variables enter the model during initialization.

IMSLS_P_VALUE_IN, float p_value_in (Input)
Largest p-value for variables entering the model. Variables with p-values less
than p_value_in may enter the model.
Default: p_value_in = 0.05

IMSLS_P_VALUE_OUT, float p_value_out (Input)
Smallest p-value for removing variables. Variables with p_values greater
than p_value_out may leave the model. Argument p_value_out must be
greater than or equal to p_value_in. A common choice for p_value_out is
2*p_value_in.
Default: p_value_out = 0.10

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence.
Default: tolerance = 100*eps, where eps = imsls_f_machine(4) for
single precision and eps = imsls_d_machine(4) for double precision

Chapter 2: Regression regression_stepwise • 125

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the internally allocated array containing the analysis of
variance table. The analysis of variance statistics are as follows:

Element Analysis of Variance Statistic
0 degrees of freedom for regression
1 degrees of freedom for error
2 total degrees of freedom
3 sum of squares for regression
4 sum of squares for error
5 total sum of squares
6 regression mean square
7 error mean square
8 F-statistic
9 p-value
10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_COEF_T_TESTS, float **coef_t_tests (Output)
Address to a pointer to the internally allocated array containing statistics
relating to the regression coefficient for the final model in this invocationing.
The rows correspond to the n_candidate independent variables. The rows
are in the same order as the variables in x (or, if IMSLS_INPUT_COV is
specified, the rows are in the same order as the variables in cov). Each row
corresponding to a variable not in the model contains statistics for a model
which includes the variables of the final model and the variable corresponding
to the row in question.

Column Description
0 coefficient estimate
1 estimated standard error of the coefficient estimate
2 t-statistic for the test that the coefficient is 0
3 p-value for the two-sided t test

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[] (Output)
Storage for array coef_t_tests is provided by the user. See
IMSLS_COEF_T_TESTS.

IMSLS_COEF_VIF, float **coef_vif (Output)
Address to a pointer to the internally allocated array containing variance
inflation factors for the final model in this invocation. The elements
correspond to the n_candidate dependent variables. The elements are in the

126 • regression_stepwise IMSL C Stat Library

same order as the variables in x (or, if IMSLS_INPUT_COV is specified, the
elements are in the same order as the variables in cov). Each element
corresponding to a variable not in the model contains statistics for a model
which includes the variables of the final model and the variables
corresponding to the element in question.

The square of the multiple correlation coefficient for the I-th regressor after all
others can be obtained from coef_vif[I] by the following formula:

1.01.0
VIF

−

IMSLS_COEF_VIF_USER, float coef_vif[] (Output)
Storage for array coef_vif is provided by the user. See IMSLS_COEF_VIF.

IMSLS_LEVEL, int level[] (Input)
Array of length n_candidate + 1 containing levels of priority for variables
entering and leaving the regression. Each variable is assigned a positive value
which indicates its level of entry into the model. A variable can enter the
model only after all variables with smaller nonzero levels of entry have
entered. Similarly, a variable can only leave the model after all variables with
higher levels of entry have left. Variables with the same level of entry
compete for entry (deletion) at each step. Argument level[I] = 0 means the
I-th variable is never to enter the model. Argument level[I] = −1 means the
I-th variable is the dependent variable. Argument level[n_candidate]
must correspond to the dependent variable, except when IMSLS_INPUT_COV
is specified.
Default: 1, 1, ..., 1, −1 where −1 corresponds to level[n_candidate]

IMSLS_FORCE, int n_force (Input)
Variable with levels 1, 2, ..., n_force are forced into the model as
independent variables. See IMSLS_LEVEL.

IMSLS_IEND, int *iend (Output)
Variable which indicates whether additional steps are possible.

Iend Meaning
0 Additional steps may be possible.
1 No additional steps are possible.

IMSLS_SWEPT_USER, int swept[] (Output)
A user-allocated array of length n_candidate + 1 with information to
indicate the independent variables in the model. Argument
swept[n_candidate] usually corresponds to the dependent variable. See
IMSLS_LEVEL.

Chapter 2: Regression regression_stepwise • 127

swept[i] Status of i-th Variable
−1 Variable i is not in model.

1 Variable i is in model.

IMSLS_HISTORY_USER, float history[] (Output)
User-allocated array of length n_candidate + 1 containing the recent history
of the independent variables. Element history[n_candidate] usually
corresponds to the dependent variable. See IMSLS_LEVEL.

history[i] Status of i-th Variable
0.0 Variable has never been added to model.

0.5 Variable was added into the model during initialization.

k > 0.0 Variable was added to the model during the k-th step.

k < 0.0 Variable was deleted from model during the k-th step.

IMSLS_COV_SWEPT_USER, float *covs (Output)
User-allocated array of length
(n_candidate + 1) × (n_candidate + 1) that results after cov has been
swept on the columns corresponding to the variables in the model. The
estimated variance-covariance matrix of the estimated regression coefficients
in the final model can be obtained by extracting the rows and columns of
covs corresponding to the independent variables in the final model and
multiplying the elements of this matrix by anova_table[7].

IMSLS_INPUT_COV, int n_observations float *cov (Input)
An (n_candidate + 1) by (n_candidate + 1) array containing a variance-
covariance or sum of squares and crossproducts matrix, in which the last
column must correspond to the dependent variable. Argument
n_observations is an integer specifying the number of observations
associated with cov. Argument cov can be computed using
imsls_f_covariances. Arguments x, y, weights, and frequencies are
not accessed when this option is specified.

By default, imsls_regression_stepwise computes cov from the input
data matrices x and y.

Description
Function imsls_f_regression_stepwise builds a multiple linear regression model
using forward selection, backward selection, or forward stepwise (with a backward
glance) selection. Function imsls_f_regression_stepwise is designed so the user
can monitor, and perhaps change, the variables added (deleted) to (from) the model
after each step. In this case, multiple calls to imsls_f_regression_stepwise
(using optional arguments IMSLS_FIRST_STEP, IMSLS_INTERMEDIATE_STEP, ...,
IMSLS_LAST_STEP) are made. Alternatively, imsls_f_regression_stepwise can
be invoked once (default, or specify optional argument IMSLS_ALL_STEPS) in order to
perform the stepping until a final model is selected.

128 • regression_stepwise IMSL C Stat Library

Levels of priority can be assigned to the candidate independent variables (use optional
argument IMSLS_LEVEL). All variables with a priority level of 1 must enter the model
before variables with a priority level of 2. Similarly, variables with a level of 2 must
enter before variables with a level of 3, etc. Variables also can be forced into the model
(see optional argument IMSLS_FORCE). Note that specifying optional argument
IMSLS_FORCE without also specifying optional argument IMSLS_LEVEL will result in
all variables being forced into the model.
Typically, the intercept is forced into all models and is not a candidate variable. In this
case, a sum-of-squares and crossproducts matrix for the independent and dependent
variables corrected for the mean is required. Other possibilities are as follows:

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the independent and dependent variables is required
as input in cov (see optional argument IMSLS_INPUT_COV). Argument
n_observations must be set to one greater than the number of observations.

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares and
crossproducts matrix for the constant regressor (=1), independent and
dependent variables are required for cov. In this case, cov contains one
additional row and column corresponding to the constant regressor. This
row/column contains the sum-of-squares and crossproducts of the constant
regressor with the independent and dependent variables. The remaining
elements in cov are the same as in the previous case. Argument
n_observations must be set to one greater than the number of observations.

The stepwise regression algorithm is due to Efroymson (1960). Function
imsls_f_regression_stepwise uses sweeps of the covariance matrix (input in
cov, if optional argument IMSLS_INPUT_COV is specified, or generated internally by
default) to move variables in and out of the model (Hemmerle 1967, Chapter 3). The
SWEEP operator discussed in Goodnight (1979) is used. A description of the stepwise
algorithm is also given by Kennedy and Gentle (1980, pp. 335−340). The advantage of
stepwise model building over all possible regression (see function
imsls_f_regression_selection) is that it is less demanding computationally
when the number of candidate independent variables is very large. However, there is
no guarantee that the model selected will be the best model (highest R2) for any subset
size of independent variables.

Example
This example uses a data set from Draper and Smith (1981, pp. 629−630). Backwards
stepping is performed by default.

#include <imsls.h>
#define N_OBSERVATIONS 13
#define N_CANDIDATE 4
main()
{
 char *labels[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total degrees of freedom",
 "sum of squares for regression",

Chapter 2: Regression regression_stepwise • 129

 "sum of squares for error",
 "total sum of squares",
 "regression mean square",
 "error mean square",
 "F-statistic",
 "p-value",
 "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error"
 };
 char *c_labels[] = {
 "variable",
 "estimate",
 "s.e.",
 "t",
 "prob > t"
 };
 float *aov, *tt;
 float x[N_OBSERVATIONS][N_CANDIDATE] =
 {7., 26., 6., 60.,
 1., 29., 15., 52.,
 11., 56., 8., 20.,
 11., 31., 8., 47.,
 7., 52., 6., 33.,
 11., 55., 9., 22.,
 3., 71., 17., 6.,
 1., 31., 22., 44.,
 2., 54., 18., 22.,
 21., 47., 4., 26.,
 1., 40., 23., 34.,
 11., 66., 9., 12.,
 10., 68., 8., 12.};
 float y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9,
 109.2, 102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

 imsls_f_regression_stepwise(N_OBSERVATIONS, N_CANDIDATE, x, y,
 IMSLS_ANOVA_TABLE, &aov,
 IMSLS_COEF_T_TESTS, &tt,
 0);

 imsls_f_write_matrix("* * * Analysis of Variance * * *\n",
 13, 1, aov,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);

 imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",
 4, 4, tt,
 IMSLS_COL_LABELS, c_labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);

 return;
}

130 • poly_regression IMSL C Stat Library

Output
 * * * Analysis of Variance * * *

degrees of freedom for regression 2.00
degrees of freedom for error 10.00
total degrees of freedom 12.00
sum of squares for regression 2657.86
sum of squares for error 57.90
total sum of squares 2715.76
regression mean square 1328.93
error mean square 5.79
F-statistic 229.50
p-value 0.00
R-squared (in percent) 97.87
adjusted R-squared (in percent) 97.44
est. standard deviation of within error 2.41

 * * * Inference on Coefficients * * *

variable estimate s.e. t prob > t
 1 1.47 0.12 12.10 0.00
 2 0.66 0.05 14.44 0.00
 3 0.25 0.18 1.35 0.21
 4 -0.24 0.17 -1.36 0.21

Warning Errors

IMSLS_LINEAR_DEPENDENCE_1 Based on “tolerance” = #, there are
linear dependencies among the variables to be forced.

Fatal Errors

IMSLS_NO_VARIABLES_ENTERED No variables entered the model. All
elements of “anova_table” are set to NaN.

poly_regression
Performs a polynomial least-squares regression.

Synopsis
#include <imsls.h>
float *imsls_f_poly_regression (int n_observations, float x[], float

y[], int degree, ..., 0)
The type double function is imsls_d_poly_regression.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the independent variable.

Chapter 2: Regression poly_regression • 131

float y[] (Input)
Array of length n_observations containing the dependent variable.

int degree (Input)
Degree of the polynomial.

Return Value
A pointer to the array of size degree + 1 containing the coefficients of the fitted
polynomial. If a fit cannot be computed, NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_poly_regression (int n_observations, float x[],

float y[], int degree,
IMSLS_WEIGHTS, float weights[],
IMSLS_SSQ_POLY, float **ssq_poly,
IMSLS_SSQ_POLY_USER, float ssq_poly[],
IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim,
IMSLS_SSQ_LOF, float **ssq_lof,
IMSLS_SSQ_LOF_USER, float ssq_lof[],
IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim,
IMSLS_X_MEAN, float *x_mean,
IMSLS_X_VARIANCE, float *x_variance,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_DF_PURE_ERROR, int *df_pure_error,
IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_POLY_REGRESSION_INFO,
 Imsls_f_poly_regression **poly_info,
IMSLS_RETURN_USER, float coefficients[],
0)

Optional Arguments

IMSLS_WEIGHTS, float weights[] (Input)
Array with n_observations components containing the array of weights for
the observation.
Default: weights[] = 1

IMSLS_SSQ_POLY, float **ssq_poly (Output)
Address of a pointer to the internally allocated array containing the sequential
sums of squares and other statistics. Row i corresponds to
xi, i = 0, ..., degree − 1, and the columns are described as follows:

132 • poly_regression IMSL C Stat Library

Column Description
0 degrees of freedom
1 sums of squares
2 F-statistic
3 p-value

IMSLS_SSQ_POLY_USER, float ssq_poly[] (Output)
Storage for array ssq_poly is provided by the user. See IMSLS_SSQ_POLY.

IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim (Input)
Column dimension of ssq_poly.
Default: ssq_poly_col_dim = 4

IMSLS_SSQ_LOF, float **ssq_lof (Output)
Address of a pointer to the internally allocated array containing the lack-of-fit
statistics. Row i corresponds to xi, i = 0, ..., degree − 1, and the columns are
described in the following table:

Column Description
0 degrees of freedom
1 lack-of-fit sums of squares
2 F-statistic for testing lack-of-fit for a polynomial

model of degree i
3 p-value for the test

IMSLS_SSQ_LOF_USER, float ssq_lof[] (Output)
Storage for array ssq_lof is provided by the user. See IMSLS_SSQ_LOF.

IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim (Input)
Column dimension of ssq_lof.
Default: ssq_lof_col_dim = 4

IMSLS_X_MEAN, float *x_mean (Output)
Mean of x.

IMSLS_X_VARIANCE, float *x_variance (Output)
Variance of x.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to the array containing the analysis of variance table.

Column Description
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares

Chapter 2: Regression poly_regression • 133

Column Description
6 model mean square
7 error mean square
8 overall F-statistic

9 p-value
10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation

13 overall mean of y
14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_DF_PURE_ERROR, int *df_pure_error (Output)
If specified, the degrees of freedom for pure error are returned in
df_pure_error.

IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error (Output)
If specified, the sums of squares for pure error are returned in
ssq_pure_error.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to the array containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_POLY_REGRESSION_INFO, Imsls_f_poly_regression **poly_info
(Output)
Address of a pointer to an internally allocated structure containing the
information about the polynomial fit required as input for IMSL function
imsls_f_poly_prediction.

IMSLS_RETURN_USER, float coefficients[] (Output)
If specified, the least-squares solution for the regression coefficients is stored
in array coefficients of size degree + 1 provided by the user.

Description
Function imsls_f_poly_regression computes estimates of the regression
coefficients in a polynomial (curvilinear) regression model. In addition to the
computation of the fit, imsls_f_poly_regression computes some summary
statistics. Sequential sums of squares attributable to each power of the independent
variable (stored in ssq_poly) are computed. These are useful in assessing the
importance of the higher order powers in the fit. Draper and Smith (1981, pp. 101−102)
and Neter and Wasserman (1974, pp. 278−287) discuss the interpretation of the

134 • poly_regression IMSL C Stat Library

sequential sums of squares. The statistic R2 is the percentage of the sum of squares of y
about its mean explained by the polynomial curve. Specifically,

()
()

2
2

2

ˆ
100%i i

i i

w y y
R

w y y

−
=

−
∑
∑

where

ˆiy

is the fitted y value at xi and y is the mean of y. This statistic is useful in assessing the

overall fit of the curve to the data. R2 must be between 0 and 100 percent, inclusive.
R2 = 100 percent indicates a perfect fit to the data.
Estimates of the regression coefficients in a polynomial model are computed using
orthogonal polynomials as the regressor variables. This reparameterization of the
polynomial model in terms of orthogonal polynomials has the advantage that the loss
of accuracy resulting from forming powers of the x-values is avoided. All results are
returned to the user for the original model (power form).
Function imsls_f_poly_regression is based on the algorithm of Forsythe (1957).
A modification to Forsythe’s algorithm suggested by Shampine (1975) is used for
computing the polynomial coefficients. A discussion of Forsythe’s algorithm and
Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342−347).

Examples

Example 1
A polynomial model is fitted to data discussed by Neter and Wasserman
(1974, pp. 279−285). The data set contains the response variable y measuring coffee
sales (in hundred gallons) and the number of self-service coffee dispensers. Responses
for 14 similar cafeterias are in the data set. A graph of the results is also given.

#include <imsls.h>

#define DEGREE 2
#define NOBS 14

main()
{
 float *coefficients;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

 coefficients = imsls_f_poly_regression (NOBS, x, y, DEGREE, 0);

 imsls_f_write_matrix("Least-Squares Polynomial Coefficients",
 DEGREE + 1, 1, coefficients,
 IMSLS_ROW_NUMBER_ZERO,

Chapter 2: Regression poly_regression • 135

 0);
}

Output
Least-Squares Polynomial Coefficients
 0 503.3
 1 78.9
 2 -4.0

Figure 2- 1 A Polynomial Fit

Example 2
This example is a continuation of the initial example. Here, many optional arguments
are used.

#include <stdio.h>
#include <imsls.h>

#define DEGREE 2
#define NOBS 14

void main()
{
 int iset = 1, dfpe;
 float *coefficients, *anova_table, sspe, *ssqpoly, *ssqlof;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 char *coef_rlab[2];
 char *coef_clab[] = {" ", "intercept", "linear",
 "quadratic"};
 char *stat_clab[] = {" ", "Degrees of\nFreedom",
 "Sum of\nSquares",
 "\nF-Statistic", "\np-value"};
 char *anova_rlab[] = {
 "degrees of freedom for regression",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",

136 • poly_regression IMSL C Stat Library

 "sum of squares for regression",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "regression mean square",
 "error mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 coefficients = imsls_f_poly_regression(NOBS, x, y, DEGREE,
 IMSLS_SSQ_POLY, &ssqpoly,
 IMSLS_SSQ_LOF, &ssqlof,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_DF_PURE_ERROR, &dfpe,
 IMSLS_SSQ_PURE_ERROR, &sspe,
 0);
 imsls_write_options(-1, &iset);
 imsls_f_write_matrix("Least Squares Polynomial Coefficients",
 1, DEGREE + 1,
 coefficients,
 IMSLS_COL_LABELS, coef_clab,
 0);
 coef_rlab[0] = coef_clab[2];
 coef_rlab[1] = coef_clab[3];
 imsls_f_write_matrix("Sequential Statistics", DEGREE, 4, ssqpoly,
 IMSLS_COL_LABELS, stat_clab,
 IMSLS_ROW_LABELS, coef_rlab,
 IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsls_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, ssqlof,
 IMSLS_COL_LABELS, stat_clab,
 IMSLS_ROW_LABELS, coef_rlab,
 IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f",
 0);
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, anova_rlab,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
}

Output
 Least Squares Polynomial Coefficients
 intercept linear quadratic
 503.3 78.9 -4.0

 Sequential Statistics
 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 1.0 220644.2 3415.8 0.0000
 quadratic 1.0 4387.7 67.9 0.0000

 Lack-of-Fit Statistics

Chapter 2: Regression poly_prediction • 137

 Degrees of Sum of
 Freedom Squares F-Statistic p-value
 linear 5.0 4793.7 22.0 0.0004
 quadratic 4.0 405.9 2.3 0.1548

 * * * Analysis of Variance * * *

 degrees of freedom for regression 2.00
 degrees of freedom for error 11.00
 total (corrected) degrees of freedom 13.00
 sum of squares for regression 225031.94
 sum of squares for error 710.55
 total (corrected) sum of squares 225742.48
 regression mean square 112515.97
 error mean square 64.60
 F-statistic 1741.86
 p-value 0.00
 R-squared (in percent) 99.69
 adjusted R-squared (in percent) 99.63
 est. standard deviation of model error 8.04
 overall mean of y 710.99
 coefficient of variation (in percent) 1.13

Warning Errors

IMSLS_CONSTANT_YVALUES The y values are constant. A zero-order
polynomial is fit. High order coefficients are
set to zero.

IMSLS_FEW_DISTINCT_XVALUES There are too few distinct x values to fit the
desired degree polynomial. High order
coefficients are set to zero.

IMSLS_PERFECT_FIT A perfect fit was obtained with a polynomial
of degree less than degree. High order
coefficients are set to zero.

Fatal Errors

IMSLS_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative.

IMSLS_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN. There are no
valid data.

IMSLS_CONSTANT_XVALUES The x values are constant.

poly_prediction
Computes predicted values, confidence intervals, and diagnostics after fitting a
polynomial regression model.

Synopsis
#include <imsls.h>

138 • poly_prediction IMSL C Stat Library

float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info, int
n_predict, float x[], ..., 0)

The type double function is imsls_d_poly_prediction.

Required Arguments

Imsls_f_poly_regression *poly_info (Input)
Pointer to a structure of type Imsls_f_poly_regression. See function
imsls_f_poly_regression.

int n_predict (Input)
Length of array x.

float x[] (Input)
Array of length n_predict containing the values of the independent variable
for which calculations are to be performed.

Return Value
A pointer to an internally allocated array of length n_predict containing the
predicted values.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info,

int n_predict, float x[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_WEIGHTS, float weights[],
IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit,
IMSLS_SCHEFFE_CI_USER, float lower_limit[],
 float upper_limit[],
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,
 float **upper_limit,
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
 float upper_limit[],
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
 float **upper_limit,
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[],
 float upper_limit[],
IMSLS_LEVERAGE, float **leverage,
IMSLS_LEVERAGE_USER, float leverage[],
IMSLS_RETURN_USER, float y_hat[],
IMSLS_Y, float y[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual,
IMSLS_STANDARDIZED_RESIDUAL_USER,
 float standardized_residual[],
IMSLS_DELETED_RESIDUAL, float **deleted_residual,

Chapter 2: Regression poly_prediction • 139

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[],
IMSLS_COOKSD, float **cooksd,
IMSLS_COOKSD_USER, float cooksd[],
IMSLS_DFFITS, float **dffits,
IMSLS_DFFITS_USER, float dffits[],
0)

Optional Arguments

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for both two-sided interval estimates on the mean and for
two-sided prediction intervals in percent. Argument confidence must be in
the range [0.0, 100.0). For one-sided intervals with confidence level onecl,
where 50.0 ≤ onecl < 100.0, set confidence = 100.0 – 2.0 * (100.0 −
 onecl).
Default: confidence = 95.0

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_predict containing the weight for each row of x. The
computed prediction interval uses SSE/(DFE*weights[i]) for the estimated
variance of a future response.
Default: weights[] = 1

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array
of length n_predict containing the lower confidence limits of Scheffé
confidence intervals corresponding to the rows of x. Array upper_limit is
the address of a pointer to an internally allocated array of length n_predict
containing the upper confidence limits of Scheffé confidence intervals
corresponding to the rows of x.

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]
(Output)
Storage for arrays lower_limit and upper_limit is provided by the user. See
IMSLS_SCHEFFE_CI.

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit
(Output)
Array lower_limit is the address of a pointer to an internally allocated array
of length n_predict containing the lower confidence limits of the
confidence intervals for two-sided interval estimates of the means,
corresponding to the rows of x. Array upper_limit is the address of a
pointer to an internally allocated array of length n_predict containing the
upper confidence limits of the confidence intervals for two-sided interval
estimates of the means, corresponding to the rows
of x.

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the user.
See IMSLS_POINTWISE_CI_POP_MEAN.

140 • poly_prediction IMSL C Stat Library

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,
float **upper_limit (Output)
Array lower_limit is the address of a pointer to an internally allocated array
of length n_predict containing the lower confidence limits of the
confidence intervals for two-sided prediction intervals, corresponding to the
rows of x. Array upper_limit is the address of a pointer to an internally
allocated array of length n_predict containing the upper confidence limits
of the confidence intervals for two-sided prediction intervals, corresponding to
the rows of x.

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[],
float upper_limit[] (Output)
Storage for arrays lower_limit and upper_limit is provided by the user.
See IMSLS_POINTWISE_CI_NEW_SAMPLE.

IMSLS_LEVERAGE, float **leverage (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the leverages.

IMSLS_LEVERAGE_USER, float leverage[] (Output)
Storage for array leverage is provided by the user. See IMSLS_LEVERAGE.

IMSLS_RETURN_USER, float y_hat[] (Output)
Storage for array y_hat is provided by the user. The length n_predict array
contains the predicted values.

IMSLS_Y float y[] (Input)
Array of length n_predict containing the observed responses.

Note: IMSLS_Y must be specified if any of the following optional arguments are
specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the residuals.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the standardized residuals.

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]
(Output)
Storage for array standardized_residual is provided by the user. See
IMSLS_STANDARDIZED_RESIDUAL.

IMSLS_DELETED_RESIDUAL, float **deleted_residual (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the deleted residuals.

Chapter 2: Regression poly_prediction • 141

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[] (Output)
Storage for array deleted_residual is provided by the user. See
IMSLS_DELETED_RESIDUAL.

IMSLS_COOKSD, float **cooksd (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the Cook’s D statistics.

IMSLS_COOKSD_USER, float cooksd[] (Output)
Storage for array cooksd is provided by the user. See IMSLS_COOKSD.

IMSLS_DFFITS, float **dffits (Output)
Address of a pointer to an internally allocated array of length n_predict
containing the DFFITS statistics.

IMSLS_DFFITS_USER, float dffits[] (Output)
Storage for array dffits is provided by the user. See IMSLS_DFFITS.

Description
Function imsls_f_poly_prediction assumes a polynomial model

0 1 ..., 1, 2, ...,k
i i k i iy x x i nβ β β ε= + + + =

where the observed values of the yi’s constitute the response, the xi’s are the settings of
the independent variable, the βj’s are the regression coefficients and the εi’s are the
errors that are independently distributed normal with mean 0 and the following
variance:

2

iw
σ

Given the results of a polynomial regression, fitted using orthogonal polynomials and
weights wi, function imsls_f_poly_prediction produces predicted values,
residuals, confidence intervals, prediction intervals, and diagnostics for outliers and in
influential cases.
Often, a predicted value and confidence interval are desired for a setting of the
independent variable not used in computing the regression fit. This is accomplished by
simply using a different x matrix when calling imsls_f_poly_prediction than was
used for the fit (function imsls_f_poly_regression). See
Example 1.
Results from function imsls_f_poly_prediction, which produces the fit using
orthogonal polynomials, are used for input by the structure poly_info. The fitted
model from imsls_f_poly_regression is

() () ()0 0 1 1ˆ ˆ ˆ ˆ...i i i k k iy p z p z p zα α α= + + +

142 • poly_prediction IMSL C Stat Library

where the zi’s are settings of the independent variable x scaled to the interval

[−2, 2] and the pj (z)’s are the orthogonal polynomials. The XTX matrix for this model
is a diagonal matrix with elements dj. The case statistics are easily computed from this
model and are equal to those from the original polynomial model with βj’s as the
regression coefficients.
The leverage is computed as follows:

()1 2

0

k

i i j j i
j

h w d p z−

=

= ∑

The estimated variance of

ˆiy

is given by the following:
2

i

i

h s
w

The computation of the remainder of the case statistics follows easily from the
definitions. See “Diagnostics for Individual Cases” for the definition of the
case diagnostics.
Often, predicted values and confidence intervals are desired for combinations of
settings of the independent variables not used in computing the regression fit. This can
be accomplished by defining a new data matrix. Since the information about the model
fit is input in poly_info, it is not necessary to send in the data set used for the
original calculation of the fit, i.e., only variable combinations for which predictions are
desired need be entered in x.

Examples

Example 1
A polynomial model is fit to the data discussed by Neter and Wasserman
(1974, pp. 279–285). The data set contains the response variable y measuring coffee
sales (in hundred gallons) and the number of self-service dispensers. Responses for 14
similar cafeterias are in the data set.

#include <imsls.h>

main()
{
 Imsls_f_poly_regression *poly_info;
 float *y_hat, *coefficients;
 int n_observations = 14;
 int degree = 2;
 int n_predict = 8;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};

Chapter 2: Regression poly_prediction • 143

 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};
 float x2[] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};

 /* Generate the polynomial regression fit*/
 coefficients = imsls_f_poly_regression (n_observations, x, y,
 degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);

 /* Compute predicted values */
 y_hat = imsls_f_poly_prediction(poly_info, n_predict, x2, 0);

 /* Print predicted values */
 imsls_f_write_matrix("Predicted Values", 1, n_predict, y_hat, 0);

 free(coefficients);
 free(y_hat);
 return;
}

Output
 Predicted Values
 1 2 3 4 5 6
 503.3 578.3 645.4 704.4 755.6 798.8

 7 8
 834.1 861.4

Example 2
Predicted values, confidence intervals, and diagnostics are computed for the data set
described in the first example.

#include <imsls.h>

main()
{
#define N_PREDICT 14
 Imsls_f_poly_regression *poly_info;
 float *coefficients, y_hat[N_PREDICT],
 lower_ci[N_PREDICT], upper_ci[N_PREDICT],
 lower_pi[N_PREDICT], upper_pi[N_PREDICT],
 s_residual[N_PREDICT], d_residual[N_PREDICT],
 leverage[N_PREDICT], cooksd[N_PREDICT],
 dffits[N_PREDICT], lower_scheffe[N_PREDICT],
 upper_scheffe[N_PREDICT];
 int n_observations = N_PREDICT;
 int degree = 2;
 float x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0,
 4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0};
 float y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3,
 758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4};

 /* Generate the polynomial regression fit*/
 coefficients = imsls_f_poly_regression (n_observations, x, y,
 degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0);

144 • poly_prediction IMSL C Stat Library

 /* Compute predicted values and case statistics */
 imsls_f_poly_prediction(poly_info, N_PREDICT, x,
 IMSLS_RETURN_USER, y_hat,
 IMSLS_POINTWISE_CI_POP_MEAN_USER, lower_ci, upper_ci,
 IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, lower_pi, upper_pi,
 IMSLS_Y, y,
 IMSLS_STANDARDIZED_RESIDUAL_USER, s_residual,
 IMSLS_DELETED_RESIDUAL_USER, d_residual,
 IMSLS_LEVERAGE_USER, leverage,
 IMSLS_COOKSD_USER, cooksd,
 IMSLS_DFFITS_USER, dffits,
 IMSLS_SCHEFFE_CI_USER, lower_scheffe, upper_scheffe,
 0);

 /* Print results */
 imsls_f_write_matrix("Predicted Values", 1, N_PREDICT, y_hat, 0);
 imsls_f_write_matrix("Lower Scheffe CI", 1, N_PREDICT,
 lower_scheffe, 0);
 imsls_f_write_matrix("Upper Scheffe CI", 1, N_PREDICT,
 upper_scheffe, 0);
 imsls_f_write_matrix("Lower CI", 1, N_PREDICT, lower_ci, 0);
 imsls_f_write_matrix("Upper CI", 1, N_PREDICT, upper_ci, 0);
 imsls_f_write_matrix("Lower PI", 1, N_PREDICT, lower_pi, 0);
 imsls_f_write_matrix("Upper PI", 1, N_PREDICT, upper_pi, 0);
 imsls_f_write_matrix("Standardized Residual", 1, N_PREDICT,
 s_residual, 0);
 imsls_f_write_matrix("Deleted Residual", 1, N_PREDICT,
 d_residual, 0);
 imsls_f_write_matrix("Leverage", 1, N_PREDICT, leverage, 0);
 imsls_f_write_matrix("Cooks Distance", 1, N_PREDICT, cooksd, 0);
 imsls_f_write_matrix("DFFITS", 1, N_PREDICT, dffits, 0);

 free(coefficients);
 return;

}

Output
 Predicted Values
 1 2 3 4 5 6
 503.3 503.3 578.3 578.3 645.4 645.4

 7 8 9 10 11 12
 755.6 755.6 798.8 798.8 834.1 834.1

 13 14
 861.4 861.4

 Lower Scheffe CI
 1 2 3 4 5 6
 489.8 489.8 569.5 569.5 636.5 636.5

 7 8 9 10 11 12
 745.7 745.7 790.2 790.2 825.5 825.5

Chapter 2: Regression poly_prediction • 145

 13 14
 847.7 847.7

 Upper Scheffe CI
 1 2 3 4 5 6
 516.9 516.9 587.1 587.1 654.2 654.2

 7 8 9 10 11 12
 765.5 765.5 807.4 807.4 842.7 842.7

 13 14
 875.1 875.1

 Lower CI
 1 2 3 4 5 6
 492.8 492.8 571.5 571.5 638.4 638.4

 7 8 9 10 11 12
 747.9 747.9 792.1 792.1 827.4 827.4

 13 14
 850.7 850.7
 Upper CI
 1 2 3 4 5 6
 513.9 513.9 585.2 585.2 652.3 652.3

 7 8 9 10 11 12
 763.3 763.3 805.5 805.5 840.8 840.8

 13 14
 872.1 872.1

 Lower PI
 1 2 3 4 5 6
 482.8 482.8 559.3 559.3 626.4 626.4

 7 8 9 10 11 12
 736.3 736.3 779.9 779.9 815.2 815.2

 13 14
 840.8 840.8

 Upper PI
 1 2 3 4 5 6
 523.9 523.9 597.3 597.3 664.3 664.3

 7 8 9 10 11 12
 774.9 774.9 817.7 817.7 853.0 853.0

 13 14
 882.1 882.1

 Standardized Residual
 1 2 3 4 5 6

146 • poly_prediction IMSL C Stat Library

 0.737 -0.766 -1.366 -0.137 0.859 1.575

 7 8 9 10 11 12
 -0.041 0.456 -1.507 -0.902 0.982 -0.308

 13 14
 -1.051 1.557

 Deleted Residual
 1 2 3 4 5 6
 0.720 -0.751 -1.429 -0.131 0.848 1.707

 7 8 9 10 11 12
 -0.039 0.439 -1.613 -0.894 0.980 -0.295

 13 14
 -1.056 1.681

 Leverage
 1 2 3 4 5 6
 0.3554 0.3554 0.1507 0.1507 0.1535 0.1535

 7 8 9 10 11 12
 0.1897 0.1897 0.1429 0.1429 0.1429 0.1429

 13 14
 0.3650 0.3650

 Cooks Distance
 1 2 3 4 5 6
 0.0997 0.1080 0.1104 0.0011 0.0446 0.1500

 7 8 9 10 11 12
 0.0001 0.0162 0.1262 0.0452 0.0536 0.0053

 13 14
 0.2116 0.4644

 DFFITS
 1 2 3 4 5 6
 0.535 -0.558 -0.602 -0.055 0.361 0.727

 7 8 9 10 11 12
 -0.019 0.212 -0.659 -0.365 0.400 -0.120

 13 14
 -0.801 1.274

Warning Errors

IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than one is computed.
It is set to 1.0.

IMSLS_DEL_MSE_LT_0 A deleted residual mean square (= #) much less than
zero is computed. It is set to zero.

Chapter 2: Regression nonlinear_regression • 147

Fatal Errors

IMSLS_NEG_WEIGHT “weights[#]” = #. Weights must be nonnegative.

nonlinear_regression
Fits a multivarite nonlinear regression model.

Synopsis
#include <imsls.h>
float *imsls_f_nonlinear_regression (float fcn(), int n_parameters,

int n_observations, int n_independent, float x[], float y[], ..., 0)
The type double function is imsls_d_nonlinear_regression.

Required Arguments

float fcn (int n_independent, float xi[], int n_parameters, float theta[])
User-supplied function to evaluate the function that defines the nonlinear
regression problem where xi is an array of length n_independent at which
point the function is evaluated and theta is an array of length
n_parameters containing the current values of the regression coefficients.
Function fcn returns a predicted value at the point xi. In the following,
f(xi;θ), or just fi, denotes the value of this function at the point xi, for a given
value of θ. (Both xi and θ are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float x[] (Input)
Array of size n_observations by n_independent containing the matrix of
independent (explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response)
variable.

Return Value

A pointer to an array of length n_parameters containing a solution, θ̂ for the
nonlinear regression coefficients. To release this space, use free. If no solution can be
computed, then NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>

148 • nonlinear_regression IMSL C Stat Library

float *imsls_f_nonlinear_regression (float fcn(), int n_parameters,
int n_observations, int n_independent, float x[], float y[],
IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_THETA_SCALE, float theta_scale[],
IMSLS_GRADIENT_EPS, float gradient_eps,
IMSLS_STEP_EPS, float step_eps,
IMSLS_SSE_REL_EPS, float sse_rel_eps,
IMSLS_SSE_ABS_EPS, float sse_abs_eps,
IMSLS_MAX_STEP, float max_step,
IMSLS_INITIAL_TRUST_REGION, float trust_region,
IMSLS_GOOD_DIGIT, int ndigit,
IMSLS_MAX_ITERATIONS, int max_itn,
IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval,
IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian,
IMSLS_TOLERANCE, float tolerance,
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_R, float **r,
IMSLS_R_USER, float r[],
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_R_RANK, int *rank,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_DF, int *df,
IMSLS_SSE, float *sse,
IMSLS_RETURN_USER, float theta_hat[],
IMSLS_FCN_W_DATA, void fcn(),void *data,
IMSLS_JACOBIAN_W_DATA, void jacobian(),void *data,
0)

Optional Arguments

IMSLS_THETA_GUESS, float theta_guess[] (Input)
Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where the
n_independent data values corresponding to the i-th row are input in xi.
Argument theta is an array of length n_parameters containing the
regression coefficients for which the Jacobian is evaluated, fjac is the
computed n_parameters row of the Jacobian for observation i at theta.
Note that each derivative ∂f(xi)/∂θj should be returned in fjac
[j − 1] for j = 1, 2, ..., n_parameters.

Chapter 2: Regression nonlinear_regression • 149

IMSLS_THETA_SCALE, float theta_scale[] (Input)
Array with n_parameters components containing the scaling array for θ.
Array theta_scale is used mainly in scaling the gradient and the distance
between two points. See keywords IMSLS_GRADIENT_EPS and
IMSLS_STEP_EPS for more detail.
Default: theta_scale[] = 1

IMSLS_GRADIENT_EPS, float gradient_eps (Input)
Scaled gradient tolerance. The j-th component of the scaled gradient at θ is
calculated as

()
() 2

2

max , 1/
1
2

j j jg t

F

θ

θ

∗

where g = ∇F(θ), t = theta_scale, and

() ()()
22

12
;n

i ii
F y f xθ θ

=
= −∑

The value F(θ) is the sum of the squared residuals, SSE, at the point θ.
Default:

ε=grad_tol

(3 ε in double, where ε is the machine precision)

IMSLS_STEP_EPS, float step_eps (Input)
Scaled step tolerance. The j-th component of the scaled step from points θ and
θ′ is computed as

()max , 1/
j j

j jt

θ θ

θ

′−

where t = theta_scale
Default: step_eps = ε2/3,where ε is the machine precision

IMSLS_SSE_REL_EPS, float sse_rel_eps (Input)
Relative SSE function tolerance.
Default: sse_rel_eps = max(10-10, ε2/3), max(10-20, ε2/3) in double, where ε
is the machine precision

IMSLS_SSE_ABS_EPS, float sse_abs_eps (Input)
Absolute SSE function tolerance.
Default: sse_abs_eps = max(10-20,ε2), max(10-40, ε2) in double, where ε is
the machine precision

150 • nonlinear_regression IMSL C Stat Library

IMSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size.
Default: max_step = 1000 max (ε1, ε2), where ε1 = (tTθ0)1/2, ε2 = ||t||2,
t = theta_scale, and θ0 = theta_guess

IMSLS_INITIAL_TRUST_REGION, float trust_region (Input)
Size of initial trust region radius. The default is based on the initial scaled
Cauchy step.

IMSLS_GOOD_DIGIT, int ndigit (Input)
Number of good digits in the function.
Default: machine dependent

IMSLS_MAX_ITERATIONS, int max_itn (Input)
Maximum number of iterations.
Default: max_itn = 100

IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval (Input)
Maximum number of SSE function evaluations.
Default: max_sse_eval = 400

IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian (Input)
Maximum number of Jacobian evaluations.
Default: max_jacobian = 400

IMSLS_TOLERANCE, float tolerance (Input)
False convergence tolerance.
Default: tolerance = 100* eps, where eps = imsls_f_machine(4) if single
precision and eps = imsls_d_machine(4) if double precision

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the predicted values at the approximate
solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See
IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_R, float **r (Output)
Address of a pointer to an internally allocated array of size n_parameters ×
 n_parameters containing the R matrix from a QR decomposition of the
Jacobian.

IMSLS_R_USER, float r[] (Output)
Storage for array r is provided by the user. See IMSLS_R.

Chapter 2: Regression nonlinear_regression • 151

IMSLS_R_COL_DIM, int r_col_dim (Input)
Column dimension of array r.
Default: r_col_dim = n_parameters

IMSLS_R_RANK, int *rank (Output)
Rank of r. Argument rank less than n_parameters may indicate the model
is overparameterized.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_independent

IMSLS_DF, int *df (Output)
Degrees of freedom.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated
regression coefficients.

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int
n_parameters, float theta[]), void *data, (Input)
User-supplied function to evaluate the function that defines the nonlinear
regression problem, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function.
See the Introduction, Passing Data to User-Supplied Functions at the
beginning of this manual for more details.

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]), void *data, (Input)
User-supplied function to compute the i-th row of the Jacobian, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the
data to be passed to the user-supplied function. See the Introduction, Passing
Data to User-Supplied Functions at the beginning of this manual for more
details.

Description
Function imsls_f_nonlinear_regression fits a nonlinear regression model using
least squares. The nonlinear regression model is

yi = f(xi; θ) + εi i = 1, 2, ..., n

where the observed values of the yi’s constitute the responses or values of the
dependent variable, the known xi’s are the vectors of the values of the independent
(explanatory) variables, θ is the vector of p regression parameters, and the εi’s are
independently distributed normal errors with mean 0 and variance σ2. For this model, a
least-squares estimate of θ is also a maximum likelihood estimate of θ.
The residuals for the model are as follows:

152 • nonlinear_regression IMSL C Stat Library

ei(θ) = yi – f(xi; θ) i = 1, 2, ..., n

A value of θ that minimizes

()
2

1

n
ii

e θ
=

⎡ ⎤⎣ ⎦∑

is a least-squares estimate of θ. Function imsls_f_nonlinear_regression is
designed so that the values of the function f(xi; θ) are computed one at a time by a user-
supplied function.
Function imsls_f_nonlinear_regression is based on MINPACK routines
LMDIF and LMDER by Moré et al. (1980) that use a modified Levenberg-Marquardt
method to generate a sequence of approximations to a minimum point. Let

ĉθ

be the current estimate of θ. A new estimate is given by

ĉ csθ +

where sc is a solution to the following:

ˆ ˆ ˆ ˆ(() ()) () ()T T
c c c c c cJ J I s J eθ θ μ θ θ+ =

Here

ˆ()cJ θ

is the Jacobian evaluated at

ĉθ

The algorithm uses a “trust region” approach with a step bound of δc. A solution of the
equations is first obtained for

μc = 0. If ||sc||2 < δc

this update is accepted; otherwise, μc is set to a positive value and another solution is
obtained. The method is discussed by Levenberg (1944), Marquardt (1963), and
Dennis and Schnabel (1983, pp. 129−147, 218−338).
If a user-supplied function is specified in IMSLS_JACOBIAN, the Jacobian is computed
analytically; otherwise, forward finite differences are used to estimate the Jacobian
numerically. In the latter case, especially if type float is used, the estimate of the
Jacobian may be so poor that the algorithm terminates at a noncritical point. In such

Chapter 2: Regression nonlinear_regression • 153

instances, the user should either supply a Jacobian function, use type double, or do
both.

Programming Notes
Nonlinear regression allows substantial flexibility over linear regression because the
user can specify the functional form of the model. This added flexibility can cause
unexpected convergence problems for users that are unaware of the limitations of the
software. Also, in many cases, there are possible remedies that may not be immediately
obvious. The following is a list of possible convergence problems and some remedies.
There is not a one-to-one correspondence between the problems and the remedies.
Remedies for some problems also may be relevant for the other problems.

1. A local minimum is found. Try a different starting value. Good starting values
often can be obtained by fitting simpler models. For example, for a nonlinear
function

() 2
1; xf x eθθ θ=

good starting values can be obtained from the estimated linear regression
coefficients

0β̂

and

1̂β

from a simple linear regression of ln y on ln x. The starting values for the
nonlinear regression in this case would be

0
ˆ

1 2 1̂ and eβθ θ β= =

If an approximate linear model is not clear, then simplify the model by
reducing the number of nonlinear regression parameters. For example, some
nonlinear parameters for which good starting values are known could be set to
these values in order to simplify the model for computing starting values for
the remaining parameters.

2. The estimate of θ is incorrectly returned as the same or very close to the initial
estimate. This occurs often because of poor scaling of the problem, which
might result in the residual sum of squares being either very large or very
small relative to the precision of the computer. The optional arguments allow
control of the scaling.

3. The model is discontinuous as a function of θ. (The function f(x;θ) can be a
discontinuous function of x.)

154 • nonlinear_regression IMSL C Stat Library

4. Overflow occurs during the computations. Make sure the user-supplied
functions do not overflow at some value of θ.

5. The estimate of θ is going to infinity. A parameterization of the problem in
terms of reciprocals may help.

6. Some components of θ are outside known bounds. This can sometimes be
handled by making a function that produces artificially large residuals outside
of the bounds (even though this introduces a discontinuity in the model
function).

Examples

Example 1
In this example (Draper and Smith 1981, p. 518), the following nonlinear model is fit:

() ()80.49 XY e βα α ε− −= + − +

#include <math.h>
#include <imsls.h>

float fcn(int, float[], int, float[]);

void main ()
{
#define N_OBSERVATIONS 4
 int n_independent = 1;
 int n_parameters = 2;
 float *theta_hat;
 float x[N_OBSERVATIONS][1] = {10.0, 20.0, 30.0, 40.0};
 float y[N_OBSERVATIONS] = {0.48, 0.42, 0.40, 0.39};

 /* Nonlinear regression */
 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
 N_OBSERVATIONS, n_independent, (float *)x, y, 0);

 /* Print estimates */
 imsls_f_write_matrix("estimated coefficients", 1, n_parameters,
 theta_hat, 0);

} /* End of main */

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return (theta[0] + (0.49 - theta[0])*exp(theta[1]*(x[0] - 8)));
} /* End of fcn */

Output
estimated coefficients
 1 2
 0.3807 -0.0794

Chapter 2: Regression nonlinear_regression • 155

Example 2
Consider the nonlinear regression model and data set discussed by Neter et al. (1983,
pp. 475−478):

2
1

ix
i iy eθθ ε= +

There are two parameters and one independent variable. The data set considered
consists of 15 observations.

#include <math.h>
#include <imsls.h>

float fcn(int, float[], int, float[]);
void jacobian(int, float[], int, float[], float[]);

void main()
{
#define N_OBSERVATIONS 15
 int n_independent=1;
 int n_parameters= 2;
 float *theta_hat, *r, *y_hat;
 float grad_eps = 1.0e-3;
 float theta_guess[2] = {60.0, -0.03};
 float y[N_OBSERVATIONS] = {
 54.0, 50.0, 45.0, 37.0, 35.0,
 25.0, 20.0, 16.0, 18.0, 13.0,
 8.0, 11.0, 8.0, 4.0, 6.0 };
 float x[N_OBSERVATIONS] = {
 2.0, 5.0, 7.0, 10.0, 14.0,
 19.0, 26.0, 31.0, 34.0, 38.0,
 45.0, 52.0, 53.0, 60.0, 65.0 };
 char *fmt="%12.5e";

 /* Nonlinear regression */
 theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,
 N_OBSERVATIONS, n_independent, x, y,
 IMSLS_THETA_GUESS, theta_guess,
 IMSLS_GRADIENT_EPS, grad_eps,
 IMSLS_R, &r,
 IMSLS_PREDICTED, &y_hat,
 IMSLS_JACOBIAN, jacobian,
 0);

 /* Print results */
 imsls_f_write_matrix("Estimated coefficients", 1, n_parameters,
 theta_hat, 0);

 imsls_f_write_matrix("Predicted values", 1, N_OBSERVATIONS,
 y_hat, 0);

 imsls_f_write_matrix("R matrix", n_parameters, n_parameters,
 r, IMSLS_WRITE_FORMAT, "%10.2f", 0);

} /* End of main */

156 • nonlinear_regression IMSL C Stat Library

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return (theta[0]*exp(x[0]*theta[1]));
} /* End of fcn */

void jacobian(int n_independent, float x[], int n_parameters,
 float theta[], float fjac[])
{
 fjac[0] = exp(theta[1]*x[0]);
 fjac[1] = theta[0]*x[0]*exp(theta[1]*x[0]);
}
 /* End of jacobian */

Output
Estimated coefficients
 1 2
 58.61 -0.04

 Predicted values
 1 2 3 4 5 6
 54.15 48.08 44.42 39.45 33.67 27.62

 7 8 9 10 11 12
 20.94 17.18 15.26 13.02 9.87 7.48

 13 14 15
 7.19 5.45 4.47

 R matrix
 1 2
1 1.87 1139.93
2 0.00 1139.80

Informational Errors

IMSLS_STEP_TOLERANCE Scaled step tolerance satisfied. The current
point may be an approximate local solution,
but it is also possible that the algorithm is
making very slow progress and is not near a
solution or that “step_eps” is too big.

Warning Errors

IMSLS_LITTLE_FCN_CHANGE Both the actual and predicted relative
reductions in the function are less than or
equal to the relative function tolerance.

IMSLS_TOO_MANY_ITN Maximum number of iterations exceeded.

IMSLS_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian evaluations
exceeded.

Chapter 2: Regression nonlinear_optimization • 157

IMSLS_UNBOUNDED Five consecutive steps have been taken with
the maximum step length.

IMSLS_FALSE_CONVERGENCE The iterates appear to be converging to a
noncritical point.

Fatal Errors

IMSLS_TOO_MANY_FCN_EVAL Maximum number of function evaluations
exceeded.

nonlinear_optimization
Fits data to a nonlinear model (possibly with linear constraints) using the successive
quadratic programming algorithm (applied to the sum of squared errors, sse = Σ(yi −
 f(xi; θ))2) and either a finite difference gradient or a user-supplied gradient.

Synopsis
#include <imsls.h>
float *imsls_f_nonlinear_optimization (float fcn(), int n_parameters,

int n_observations, int n_independent, float x[], float y[], ..., 0)
The type double function is imsls_d_nonlinear_optimization.

Required Arguments

float fcn (int n_independent, float xi[], int n_parameters, float theta[])
User-supplied function to evaluate the function that defines the nonlinear
regression problem where xi is an array of length n_independent at which
point the function is evaluated and theta is an array of length
n_parameters containing the current values of the regression coefficients.
Function fcn returns a predicted value at the point xi. In the following, f(xi;
θ), or just fi, denotes the value of this function at the point xi, for a given value
of θ. (Both xi and θ are arrays.)

int n_parameters (Input)
Number of parameters to be estimated.

int n_observations (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float *x (Input)
Array of size n_observations by n_independent containing the matrix of
independent (explanatory) variables.

float y[] (Input)
Array of length n_observations containing the dependent (response)
variable.

158 • nonlinear_optimization IMSL C Stat Library

Return Value

A pointer to an array of length n_parameters containing a solution, θ̂ for the
nonlinear regression coefficients. To release this space, use free. If no solution can be
computed, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_nonlinear_optimization (float fcn(),
int n_parameters, int n_observations, int n_independent,
float x[], float y[],
IMSLS_THETA_GUESS, float theta_guess[],
IMSLS_JACOBIAN, void jacobian(),
IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[],
IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[],
IMSLS_LINEAR_CONSTRAINTS, int n_constraints,
 int n_equality, float a[], float b[],
IMSLS_FREQUENCIES, float frequencies,
IMSLS_WEIGHTS, float weights,
IMSLS_ACC, float acc,
IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval,
IMSLS_PRINT_LEVEL, int print_level,
IMSLS_STOP_INFO, int *stop_info,
IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active,
 int **indices_active, float **multiplier,
IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active,
 int indices_active[], float multiplier[],
IMSLS_PREDICTED, float **predicted,
IMSLS_PREDICTED_USER, float predicted[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_SSE, float *sse,
IMSLS_RETURN_USER, float theta_hat[],
IMSLS_FCN_W_DATA, float fcn(), void *data,
IMSLS_JACOBIAN_W_DATA, float jacobian(), void *data,
0)

Optional Arguments

IMSLS_THETA_GUESS, float theta_guess[] (Input)
Array with n_parameters components containing an initial guess.
Default: theta_guess[] = 0

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]) (Input/Output)
User-supplied function to compute the i-th row of the Jacobian, where the
n_independent data values corresponding to the i-th row are input in xi.
Argument theta is an array of length n_parameters containing the
regression coefficients for which the Jacobian is evaluated, fjac is the
computed n_parameters row of the Jacobian for observation i at theta.
Note that each derivative f(xi)/θ should be returned in
fjac[j-1] for i = 1, 2, ..., n_parameters. Further note that in order to
maintain consistency with the other nonlinear solver,

Chapter 2: Regression nonlinear_optimization • 159

nonlinear_regression, the Jacobian values must be specified
as the negative of the calculated derivatives.

IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[] (Input)
Vector of length n_parameters containing the lower bounds on the
parameters; choose a very large negative value if a component should be
unbounded below or set theta_lb[i] = theta_ub[i] to freeze the
i-th variable.
Default: All parameters are bounded below by -106.

IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[] (Input)
Vector of length n_parameters containing the upper bounds on the
parameters; choose a very large value if a component should be unbounded
above or set theta_lb[i] = theta_ub[i] to freeze the
i-th variable.
Default: All parameters are bounded above by 106.

IMSLS_LINEAR_CONSTRAINTS, int n_constraints, int n_equality, float
a[], float b[] (Input)
Argument n_constraints is the total number of linear constraints
(excluding simple bounds). Argument n_equality is the number of these
constraints which are equality constraints; the remaining
n_constraints − n_equality constraints are inequality constraints.
Argument a is a n_constraints by n_parameters array containing the
equality constraint gradients in the first n_equality rows, followed by the
inequality constraint gradients. Argument b is a vector of length
n_constraints containing the right-hand sides of the linear constraints.
Specifically, the constraints on θ are:
ai1 θ1 + ... + aij θj = bi for i = 1, n_equality and j = 1, n_parameter, and
ak1 θ1 + ... + akj θj ≤ bk for k = n_equality + 1, n_constraints and j = 1,
n_parameter.
Default: There are no default linear constraints.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation.
Default: frequencies[] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each
observation.
Default: weights[] = 1

IMSLS_ACC, float acc (Input)
The nonnegative tolerance on the first order conditions at the calculated
solution.

IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval (Input/Output)
On input max_sse_eval is the maximum number of sse evaluations
allowed. On output, max_sse_eval contains the actual number of sse

160 • nonlinear_optimization IMSL C Stat Library

evaluations needed.
Default: max_sse_eval = 400

IMSLS_PRINT_LEVEL, int print_level (Input)
Argument print_level specifies the frequency of printing during execution.
If print_level = 0, there is no printing. Otherwise, after ensuring
feasibility, information is printed every print_level iterations and
whenever an internal tolerance (called tol) is reduced. The printing provides
the values of theta and the sse and gradient at the value of theta. If
print_level is negative, this information is augmented by the current
values of indices_active, multiplier, and reskt, where reskt is the
Kuhn-Tucker residual vector at theta.

IMSLS_STOP_INFO, int *stop_info (Output)
Argument stop_info will have one of the following integer values to
indicate the reason for leaving the routine:

stop_info Reason for leaving routine
1 θ is feasible, and the condition that depends on acc is sat-

isfied.
2 θ is feasible, and rounding errors are preventing further

progress.
3 θ is feasible, but sse fails to decrease although a decrease is

predicted by the current gradient vector.
4 The calculation cannot begin because a contains fewer than

n_constraints constraints or because the lower bound on
a variable is greater than the upper bound.

5 The equality constraints are inconsistent. These constraints
include any components of θ̂ that are frozen by setting
theta_lb[i] equal to theta_ub[i].

6 The equality constraints and the bound on the variables are
found to be inconsistent.

7 There is no possible θ that satisfies all of the constraints.

8 Maximum number of sse evaluations (max_sse_eval) is
exceeded.

9 θ is determined by the equality constraints.

IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active, int **indices_active,
float **multiplier (Output)
Argument n_active returns the final number of active constraints. Argument
indices_active is the address of a pointer to an internally allocated integer
array of length n_active containing the indices of the final active
constraints. Argument multiplier is the address of a pointer to an internally
allocated real array of length n_active containing the Lagrange multiplier
estimates of the final active constraints.

Chapter 2: Regression nonlinear_optimization • 161

IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active,
int indices_active[], float multiplier[] (Output)
Storage for arrays indices_active and multiplier are provided by the
user. The maximum length needed for these arrays is n_constraints. See
IMSLS_ACTIVE_CONSTRAINTS_INFO.

IMSLS_PREDICTED, float **predicted (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the predicted values at the approximate
solution.

IMSLS_PREDICTED_USER, float predicted[] (Output)
Storage for array predicted is provided by the user. See IMSLS_PREDICTED.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to a real internally allocated array of length
n_observations containing the residuals at the approximate solution.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_SSE, float *sse (Output)
Residual sum of squares.

IMSLS_RETURN_USER, float theta_hat[] (Output)
User-allocated array of length n_parameters containing the estimated
regression coefficients.

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int
n_parameters, float theta[]), void *data, (Input)
User-supplied function to evaluate the function that defines the nonlinear
regression problem, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function.
See the Introduction, Passing Data to User-Supplied Functions at the
beginning of this manual for more details.

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float xi[],
int n_parameters, float theta[], float fjac[]), void *data, (Input)
User-supplied function to compute the i-th row of the Jacobian, which also
accepts a pointer to data that is supplied by the user. data is a pointer to the
data to be passed to the user-supplied function. See the Introduction, Passing
Data to User-Supplied Functions at the beginning of this manual for more
details.

Description
Function imsls_f_nonlinear_optimization is based on M.J.D. Powell’s
TOLMIN, which solves linearly constrained optimization problems, i.e., problems of
the form min f(θ), θ ∈ ℜ, subject to

A1θ = b1

162 • nonlinear_optimization IMSL C Stat Library

A2θ ≤ b2

θI ≤ θ ≤ θu

given the vectors b1, b2, θI, and θu and the matrices A1 and A2.

The algorithm starts by checking the equality constaints for inconsistency and
redundancy. If the equality constraints are consistent, the method will revise θ0, the
initial guess provided by the user, to satisfy

A1θ = b1

Next, θ0 is adjusted to satisfy the simple bounds and inequality constraints. This is
done by solving a sequence of quadratic programming subproblems to minimize the
sum of the constraint or bound violations.

Now, for each iteration with a feasible θk, let Jk be the set of indices of inequality
constraints that have small residuals. Here, the simple bounds are treated as inequality
constraints. Let Ik be the set of indices of active constraints. The following quadratic
programming problem

() () 1min
2

k T k T kf d f d B dθ θ+ ∇ +

subject to

ajd = 0 j ∈ Ik

ajd ≤ 0 j ∈ Jk

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1
or A2 or a bound constraint on θ. In the latter case, the aj = ei for the bound constraint
θi ≤ (θu)i and aj = −ei for the constraint θi ≤ (θl)i. Here, ei is a vector with a 1 as the i-th

component, and zeroes elsewhere. λk are the Lagrange multipliers, and Bk is a positive
definite approximation to the second derivative
∇2 f(θk).

After the search direction dk is obtained, a line search is performed to locate a better
point. The new point θk+1 = θk + αkdk has to satisfy the conditions

f (θk + αkdk) ≤ f (θk) + 0.1αk (dk)T∇ f (θk)

and

Chapter 2: Regression nonlinear_optimization • 163

(dk)T∇ f (θk + αkdk) ≥ 0.7 (dk)T∇ f (θk)

The main idea in forming the set Jk is that, if any of the inequality constraints restricts

the step-length αk, then its index is not in Jk. Therefore, small steps are likely to be
avoided.

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if
the condition

(dk)T∇ f (θk + αkdk) − ∇ f (θk) > 0

holds. Let θk ← θk+1, and start another iteration.
The iteration repeats until the stopping criterion

||∇ f (θk) − Akλk||2 ≤ τ

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988,
1989).
Since a finite-difference method is used to estimate the gradient for some single
precision calculations, an inaccurate estimate of the gradient may cause the algorithm
to terminate at a noncritical point. In such cases, high precision arithmetic is
recommended. Also, whenever the exact gradient can be
easily provided, the gradient should be passed to
imsls_f_nonlinear_optimization using the optional argument
IMSLS_JACOBIAN.

Examples

Example 1
In this example, a data set is fitted to the nonlinear model function

()0sini i iy xθ ε= +

#include <imsls.h>
#include <math.h>

float fcn(int n_independent, float x[], int n_parameters, float theta[]);

main()
{
 int n_parameters = 1;
 int n_observations = 11;
 int n_independent = 1;
 float *theta_hat;
 float x[11] = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
 0.7, 0.8, 0.9, 1.0};

164 • nonlinear_optimization IMSL C Stat Library

 float y[15] = {0.05, 0.21, 0.67, 0.72, 0.98, 0.94,
 1.00, 0.73, 0.44, 0.36, 0.02};

 theta_hat =
 imsls_f_nonlinear_optimization(fcn, n_parameters,
 n_observations, n_independent, x, y,
 0);

 imsls_f_write_matrix("Theta Hat", 1, n_parameters, theta_hat, 0);

 free(theta_hat);
}

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return sin(theta[0]*x[0]);
}

Output

 Theta Hat

 3.161

Example 2

Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H. Smith
and S. D. Dubey (1964), "Some reliability problems in the chemical industry",
Industrial Quality Control, 21 (2), 1964, pp. 64−70] A certain product must have 50%
available chlorine at the time of manufacture. When it reaches the customer 8 weeks
later, the level of available chlorine has dropped to 49%. It was known that the level
should stabilize at about 30%. To predict how long the chemical would last at the
customer site, samples were analyzed at different times. It was postulated that the
following nonlinear model should fit the data.

() ()8
0 0.49 ix

i iy e θθ θ ε− −= + − +

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 is 0.30.
Using the last data point (x = 42, y = 0.39) and θ0 = 0.30 and the above nonlinear
equation, an estimate for θ1of 0.02 is obtained.

The constraints that θ0 ≥ = 0 and θ1 ≥ = 0 are also imposed. These are equivalent to
requiring that the level of available chlorine always be positive and never increase with
time.

Chapter 2: Regression nonlinear_optimization • 165

The Jacobian of the nonlinear model equation is also used.
#include <imsls.h>
#include <math.h>

float fcn(int n_independent, float x[], int n_parameters, float theta[]);
void jacobian(int n_independent, float x[], int n_parameters,
 float theta[],
float fjac[]);
main()
{
 int n_parameters = 2;
 int n_observations = 44;
 int n_independent = 1;
 float *theta_hat;
 float x[44] = {
 8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0,
 12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0,
 20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 26.0, 26.0,
 26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, 32.0, 34.0, 36.0,
 36.0, 38.0, 38.0, 40.0, 42.0};
 float y[44] = {
 .49, .49, .48, .47, .48, .47, .46, .46, .45, .43, .45,
 .43, .43, .44, .43, .43, .46, .45, .42, .42, .43, .41, .41,
 .4, .42, .4, .4, .41, .4, .41, .41, .4, .4, .4, .38, .41,
 .4, .4, .41, .38, .4, .4, .39, .39};
 float guess[2] = {0.30, 0.02};
 float xlb[2] = {0.0, 0.0};
 float sse;

 theta_hat =
 imsls_f_nonlinear_optimization(fcn, n_parameters, n_observations,
 n_independent, x, y,
 IMSLS_THETA_GUESS, guess,
 IMSLS_SIMPLE_LOWER_BOUNDS, xlb,
 IMSLS_JACOBIAN, jacobian,
 IMSLS_SSE, &sse,
 0);
 imsls_f_write_matrix("Theta Hat", 1, 2, theta_hat, 0);
 free(theta_hat);
}

float fcn(int n_independent, float x[], int n_parameters, float theta[])
{
 return theta[0] + (0.49-theta[0])*exp(-theta[1]*(x[0]-8.0));
}

void jacobian(int n_independent, float x[], int n_parameters,
 float theta[],
float fjac[])
{
 fjac[0] = -1.0 + exp(-theta[1]*(x[0]-8.0));
 fjac[1] = (0.49-theta[0])*(x[0]-8.0) * exp(-theta[1]*(x[0]-8.0));

166 • Lnorm_regression IMSL C Stat Library

}

Output

 Theta Hat

 1 2

 0.3901 0.1016

Fatal Errors

IMSLS_BAD_CONSTRAINTS_1 The equality constraints are inconsistent.

IMSLS_BAD_CONSTRAINTS_2 The equality constraints and the bounds on
the variables are found to be inconsistent.

IMSLS_BAD_CONSTRAINTS_3 No vector “theta” satisfies all of the
constraints. Specifically, the current active
constraints prevent any change in “theta”
that reduces the sum of constraint violations.

IMSLS_BAD_CONSTRAINTS_4 The variables are determined by the equality
constraints.

IMSLS_TOO_MANY_ITERATIONS_1 Number of function evaluations exceeded
“maxfcn” = #.

Lnorm_regression

Fits a multiple linear regression model using criteria other than least squares. Namely,
imsls_f_Lnorm_regression allows the user to choose Least Absolute Value (L1),
Least Lp norm (Lp), or Least Maximum Value (Minimax
or L∞) method of multiple linear regression.

Synopsis
#include <imsls.h>
float *imsls_f_Lnorm_regression (int n_rows, int n_independent,

float x[], float y[], ..., 0)
The type double function is imsls_d_Lnorm_regression.

Required Arguments

int n_rows (Input)
Number of rows in x.

int n_independent (Input)
Number of independent (explanatory) variables.

Chapter 2: Regression Lnorm_regression • 167

float x[] (Input)
Array of size n_rows × n_independent containing the independent
(explanatory) variables(s). The i-th column of x contains the i-th independent
variable.

float y[] (Input)
Array of size n_rows containing the dependent (response) variable.

Return Value
Function imsls_f_Lnorm_regression returns a pointer to an array of length
n_independent + 1 containing a least absolute value solution for the regression
coefficients. The estimated intercept is the initial component of the array, where the i-
th component contains the regression coefficients for the i-th dependent variable. If the
optional argument IMSLS_NO_INTERCEPT is used then the (i-1)-st component contains
the regression coefficients for the i-th dependent variable.
imsls_f_Lnorm_regression returns the Lp norm or least maximum value solution
for the regression coefficients when appropriately specified in the optional argument
list.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_Lnorm__regression(int n_rows, int n_independent,
 float x[], float y[],

 IMSLS_METHOD_LAV,
 IMSLS_METHOD_LLP, float p,
 IMSLS_METHOD_LMV,
 IMSLS_X_COL_DIM, int x_col_dim,
 IMSLS_INTERCEPT,
 IMSLS_NO_INTERCEPT,
 IMSLS_RANK, int *rank,
 IMSLS_ITERATIONS, int *iterations,
 IMSLS_N_ROWS_MISSING, int *n_rows_missing,
 IMSLS_TOLERANCE, float tolerence,
 IMSLS_SEA, float *sum_lav_error,
 IMSLS_MAX_RESIDUAL, float *max_residual,

 IMSLS_R, float **R_matrix,
 IMSLS_R_USER, float R_matrix[],
 IMSLS_DEGREES_OF_FREEDOM, float df_error,
 IMSLS_RESIDUALS, float **residual,
 IMSLS_RESIDUALS_USER, float residual[],
 IMSLS_SCALE, float *square_of_scale,

168 • Lnorm_regression IMSL C Stat Library

 IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual,
 IMSLS_EPS, float epsilon,
 IMSLS_WEIGHTS, float weights[],
 IMSLS_FREQUENCIES, float frequencies[],
 IMSLS_RETURN_USER, float coefficients[],
 0)

Optional Arguments

IMSLS_METHOD_LAV, or

IMSLS_METHOD_LLP, float p, (Input) or

IMSLS_METHOD_LMV,
By default (or if IMSLS_METHOD_LAV is specified) the function fits a multiple
linear regression model using the least absolute values criterion.

IMSLS_METHOD_LLP requires the argument p, for 1p ≥ , and fits a multiple linear
regression model using the Lp norm criterion.

IMSLS_METHOD_LMV fits a multiple linear regression model using the minimax
criterion.

IMSLS_WEIGHTS, float weights[], (Input)
Array of size n_rows containing the weights for the independent
(explanatory) variable.

IMSLS_FREQUENCIES, float frequencies[], (Input)
Array of size n_rows containing the frequencies for the independent
(explanatory) variable.

IMSLS_X_COL_DIM, int x_col_dim, (Input)
Leading dimension of x exactly as specified in the dimension statement in the
calling program.

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,

IMSLS_INTERCEPT is the default where the fitted value for observation i is

0 1 1
ˆ ˆ ˆ... k kx xβ β β+ + +

 where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the
intercept term

()0β̂

 is omitted from the model and the return value from regression is a pointer to
an array of length n_independent.

Chapter 2: Regression Lnorm_regression • 169

IMSLS_RANK, int *rank, (Output)
Rank of the fitted model is returned in *rank.

IMSLS_ITERATIONS, int *iterations, (Output)
Number of iterations performed.

IMSLS_N_ROWS_MISSING, int *n_rows_missing, (Output)
Number of rows of data containing NaN (not a number) for the dependent or
independent variables. If a row of data contains NaN for any of these
variables, that row is excluded from the computations.

IMSLS_RETURN_USER, float coefficients[] (Output)
Storage for array coefficients is provided by the user.
See Return Value.

If IMSLS_METHOD_LAV is specified:
IMSLS_SEA, float sum_lav_error, (Output)

Sum of the absolute value of the errors.

If IMSLS_METHOD_LMV is specified:
IMSLS_MAX_RESIDUAL, float max_residual, (Output)

Magnitude of the largest residual.

If IMSLS_METHOD_LLP is specified:
IMSLS_TOLERANCE, float tolerence, (Input)

Tolerance used in determining linear dependence.
tolerence = 100 * imsls_f_machine(4) is the default.
For more details see Chapter 14, “Utilities” function imsls_f_machine.

IMSLS_R, float **R_matrix, (Output)
Upper triangular matrix of dimension (number of coeffieciencts
by number of coeffecients) containing the R matrix from a QR decomposition
of the matrix of regressors.

IMSLS_R_USER, float R_matrix[], (Output)
Storage for array R_matrix is provided by the user. See IMSLS_R..

IMSLS_DEGREES_OF_FREEDOM, float df_error, (Output)
Sum of the frequencies minus *rank. In least squares fit (p =2) df_error is
called the degrees of freedom of error.

IMSLS_RESIDUALS, float **residual, (Output)
Address of a pointer to an array (of length equal to the number of
observations) containing the residuals.

IMSLS_RESIDUALS_USER, float residual[], (Output)
Storage for array residual is provided by the user.
See IMSLS_RESIDUALS.

IMSLS_SCALE, float *square_of_scale, (Output)
Square of the scale constant used in an Lp analysis. An estimated asymptotic
variance-covariance matrix of the regression coefficients is
square_of_scale * (RTR)-1.

170 • Lnorm_regression IMSL C Stat Library

 IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual, (Output)
Lp norm of the residuals.

 IMSLS_EPS, float epsilon, (Input)
Convergence criterion. If the maximum relative difference in residuals from
the k-th to (k+1)-st iterations is less than epsilon, convergence is declared.
epsilon = 100 * machine(4) is the default.

Description

Least Absolute Value Criterion
Function imsls_f_Lnorm_regression computes estimates of the regression
coefficients in a multiple linear regression model. For optional argument IMSLS_LAV
(default), the criterion satisfied is the minimization of the sum of the absolute values of
the deviations of the observed response yi from the fitted response

ˆiy

for a set on n observations. Under this criterion, known as the L1 or LAV (least
absolute value) criterion, the regression coefficient estimates minimize

1

0

ˆ
n

i i
i

y y
−

=

−∑

The estimation problem can be posed as a linear programming problem. The special
nature of the problem, however, allows for considerable gains in efficiency by the
modification of the usual simplex algorithm for linear programming. These
modifications are described in detail by Barrodale and Roberts (1973, 1974).
In many cases, the algorithm can be made faster by computing a least-squares solution
prior to the invocation of IMSLS_LAV. This is particularly useful when a least-squares
solution has already been computed. The procedure is as follows:

1. Fit the model using least squares and compute the residuals from
this fit.

2. Fit the residuals from Step 1 on the regressor variables in the model using
IMSLS_LAV.

3 Add the two estimated regression coefficient vectors from Steps 1
and 2. The result is an L1 solution.

When multiple solutions exist for a given problem, option IMSLS_LAV may yield
different estimates of the regression coefficients on different computers, however, the
sum of the absolute values of the residuals should be the same (within rounding
differences). The informational error indicating nonunique solutions may result from
rounding accumulation. Conversely, because of rounding the error may fail to result
even when the problem does have multiple solutions.

Chapter 2: Regression Lnorm_regression • 171

Lp Norm Criterion
Optional argument IMSLS_LLP computes estimates of the regression coefficients in a
multiple linear regression model y = Xβ + ε under the criterion of minimizing the Lp
norm of the deviations for i = 0, …, n-1 of the observed response yi from the fitted
response

ˆiy

for a set on n observations and for p ≥ 1. For the case when IMSLS_WEIGHTS AND
IMSLS_FREQUENCIES are not supplied, the estimated regression coefficient vector,

β̂

(output in coefficients []) minimizes the Lp norm

1/1

0

ˆ
pn

P
i i

i

y y
−

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑

The choice p = 1 yields the maximum likelihood estimate for β when the errors have a
Laplace distribution. The choice p = 2 is best for errors that are normally distributed.
Sposito (1989, pages 36−40) discusses other reasonable alternatives for p based on the
sample kurtosis of the errors.
Weights are useful if the errors in the model have known unequal variances

2
iσ

In this case, the weights should be taken as
21/i iw σ=

Frequencies are useful if there are repetitions of some observations in the data set. If a
single row of data corresponds to ni observations, set the frequency fi = ni.
In general, IMSLS_LLP minimizes the Lp norm

()
1/1

0

ˆ
pn p

i i i i
i

f w y y
−

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑

The asymptotic variance-covariance matrix of the estimated regression coefficients is
given by

2 1ˆasy.var() ()TR Rβ λ −=

172 • Lnorm_regression IMSL C Stat Library

where R is from the QR decomposition of the matrix of regressors (output in
R-Matrix)ere an estimate of λ2 is output in square_of_scale.
In the discussion that follows, we will first present the algorithm with frequencies and
weights all taken to be one. Later, we will present the modifications to handle
frequencies and weights different from one.
Option call IMSLS_LLP uses Newton’s method with a line search for p > 1.25 and,
for p ≤ 1.25, uses a modification due to Ekblom (1973, 1987) in which a series of
perturbed problems are solved in order to guarantee convergence and increase the
convergence rate. The cutoff value of 1.25 as well as some of the other implementation
details given in the remaining discussion were investigated by Sallas (1990) for their
effect on CPU times.
In each case, for the first iteration a least-squares solution for the regression
coefficients is computed using function imsls_f_regression. If p = 2, the
computations are finished. Otherwise, the residuals from the k-th iteration,

() ()ˆk k
i i ie y y= −

are used to compute the gradient and Hessian for the Newton step for the
(k + 1)-st iteration for minimizing the p-th power of the Lp norm. (The exponent 1/p in
the Lp norm can be omitted during the iterations.)

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the gradient
and Hessian at the (k + 1)-st iteration depend upon

()1(1) () ()sign
pk k k

i i iz e e
−+ =

and
2(1) () pk k

i iv e
−+ =

In the case 1.25 < p < 2 and
() ()10,k k
i ie v +=

and the Hessian are undefined; and we follow the recommendation of Merle and Spath
(1974). Specifically, we modify the definition of

(1)k
iv +

to the following:

()

()

2

(1)
2

if 2 and

otherwise

kp
i

k
i pk

i

p e
v

e

τ τ−

+
−

⎧ < <⎪= ⎨
⎪⎩

Chapter 2: Regression Lnorm_regression • 173

where τ equals 100 * imsls_f_machine(4) (or 100.0 * imsls_d_machine(4) for
the double precision version) times the square root of the residual mean square from
the least-squares fit. (See routines imsls_f_machine and imsls_d_machine which
are documented in the section “Machine-Dependent Constants” in Reference Material.)

Let V(k+1) be a diagonal matrix with diagonal entries
(1)k
iv +

and let z(k+1) be a vector with elements
(1)k
iz +

In order to compute the step on the (k + 1)-st iteration, the R from the QR
decomposition of

[V(k+1)]1/2X

 is computed using fast Givens transformations. Let

R(k+1)

 denote the upper triangular matrix from the QR decomposition. The linear system

 [R(k+1)]TR(k+1)d(k+1)= XT z(k+1)

is solved for

d(k+1)

where R(k+1) is from the QR decomposition of V(k+1)]1/2X . The step taken on the
(k + 1)-st iteration is

(1) () (1) (1)1ˆ ˆ
1

k k k kd
p

β β α+ + += +
−

The first attempted step on the (k + 1)-st iteration is with α(k+1) = 1. If all of the
()k
ie

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980, pages
528−529) for further discussion.
If the first attempted step does not lead to a decrease of at least one-tenth of the
predicted decrease in the p-th power of the Lp norm of the residuals, a backtracking
linesearch procedure is used. The backtracking procedure uses a one-dimensional

174 • Lnorm_regression IMSL C Stat Library

quadratic model to estimate the backtrack constant p. The value of p is constrained to
be no less that 0.1. An approximate upper bound for p is 0.5. If after 10 successive
backtrack attempts, α(k) = p1p2… p10 does not produce a step with a sufficient
decrease, then imsls_f_Lnorm_regression issues a message with error code 5. For
further details on the backtrack line-search procedure, see Dennis and Schnabel (1983,
pages 126−127).
Convergence is declared when the maximum relative change in the residuals from one
iteration to the next is less than or equal to epsilon. The relative change

(1)k
iδ +

in the i-th residual from iteration k to iteration k + 1 is computed as follows:
(1) ()

(1)
(1) () () (1)

0 if 0

/ max(e , ,) otherwise

k k
i ik

i k k k k
i i i i

e e

e e e s
δ

+

+
+ +

⎧ = =⎪= ⎨
−⎪⎩

where s is the square root of the residual mean square from the least-squares fit on the
first iteration.
For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous procedure that
incorporate Ekblom’s (1973) results. A sequence of perturbed problems are solved
with a successively smaller perturbation constant c. On the first iteration, the least-
squares problem is solved. This corresponds to an infinite c. For the second problem, c
is taken equal to s, the square root of the residual mean square from the least-squares
fit. Then, for the (j + 1)-st problem, the value of c is computed from the previous value
of c according to

5 4
1 /10 p

j jc c −
+ =

Each problem is stated as
1

2 2 / 2

0

()
n

p
i

i

Minimize e c
−

=

+∑

For each problem, the gradient and Hessian on the (k + 1)-st iteration depend upon
(1) () ()k k k
i i iz e r+ =

and
() 2

(1) ()
() 2 2

(2)()
1

()

k
k ki

i ik
i

p e
v r

e c
+ ⎡ ⎤−

= +⎢ ⎥+⎣ ⎦

where

Chapter 2: Regression Lnorm_regression • 175

(2) / 2() () 2 2()
pk k

i ir e c
−

⎡ ⎤= +⎣ ⎦

The linear system [R(k+1)]TR(k+1)d(k+1)= XTz(k+1) is solved for d(k+1) where
R(k+1) is from the QR decomposition of [V (k+1)]1/2X. The step taken on the
(k + 1)-st iteration is

(1) () (1) (1)ˆ ˆk k k kdβ β α+ + += +

where the first attempted step is with α(k+1) = 1. If necessary, the backtracking line-
search procedure discussed earlier is used.
Convergence for each problem is relaxed somewhat by using a convergence epsilon
equal to max(epsilon, 10−j) where j = 1, 2, 3, … indexes the problems
(j = 0 corresponds to the least-squares problem).
After the convergence of a problem for a particular c, Ekblom’s (1987) extrapolation
technique is used to compute the initial estimate of β for the new problem. Let R(k),

()() , kk
i iv e

and c be from the last iteration of the last problem. Let
()

() 2 2

(2)
()

k
i

i k
i

p v
t

e c
−

=
+

and let t be the vector with elements ti. The initial estimate of β for the new problem
with perturbation constant 0.01c is

(0) ()ˆ ˆ k cdβ β= + Δ

where Δc = (0.01c − c) = −0.99c, and where d is the solution of the linear system
[R(k)]ΤR(k)d = XTt.
Convergence of the sequence of problems is declared when the maximum relative
difference in residuals from the solution of successive problems is less than epsilon.
The preceding discussion was limited to the case for which weights[i] = 1 and
frequencies[i] = 1, i.e., the weights and frequencies are all taken equal to one. The
necessary modifications to the preceding algorithm to handle weights and frequencies
not all equal to one are as follows:

1. Replace
() () by k k
i i ie w e

in the definitions of

176 • Lnorm_regression IMSL C Stat Library

(1) (1) (1), ,k k k
i i iz v δ+ + +

and ti.

2. Replace
() () () ()1 1 1 1(1) (1) by , by , and by k k k kk k
i i i i i i i i i i i iz f w z v f w v t f w t+ + + ++ +

These replacements have the same effect as multiplying the i-th row of X and y by

iw

and repeating the row fi times except for the fact that the residuals returned by
imsls_f_Lnorm_regression are in terms of the original y and X.
Finally, R and an estimate of λ2 are computed. Actually, R is recomputed because on
output it corresponds to the R from the initial QR decomposition for least squares. The
formula for the estimate of λ2 depends on p.
For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987)

2

(DFE 1) ()2

0.975

DFE()ˆ
2

k ke e
z

λ − +
⎡ ⎤−

= ⎢ ⎥
⎢ ⎥⎣ ⎦

� �

with

0.975
DFE DFE

2 4
kk z+

= −

where z0.975 is the 97.5 percentile of the standard normal distribution, and where

() (1, 2,...,)m DFEmε =�

are the ordered residuals where rank zero residuals are excluded. Note that
1

=0 ranki
n
iDFE f−

= −∑

For p = 2, the estimator of λ2 is the customary least-squares estimator given by
1 2
02

1
0 rank

ˆ()n
i i i i i

n
i i

SSE

DFE

f w y y
s

f

−
=

−
=

−
= =

−
∑

∑

For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money 1989)

Chapter 2: Regression Lnorm_regression • 177

2 22
2

2

ˆ
(1)

p
p

p

m

p m
−

−

ω =
⎡ ⎤−⎣ ⎦

with

1
1
0

ˆ()
rn

i i i i i
r n

i i

f w y y
m

f
=

−
=

−
= ∑

∑

Least Minimum Value Criterion (minimax)
Optional call IMSLS_LMV computes estimates of the regression coefficients in a
multiple linear regression model. The criterion satisfied is the minimization of the
maximum deviation of the observed response yi from the fitted response ˆiy for a set on
n observations. Under this criterion, known as the minimax or LMV (least maximum
value) criterion, the regression coefficient estimates minimize

0 1
ˆi ii n

max y y
≤ ≤ −

−

The estimation problem can be posed as a linear programming problem. A dual
simplex algorithm is appropriate, however, the special nature of the problem allows for
considerable gains in efficiency by modification of the dual simplex iterations so as to
move more rapidly toward the optimal solution. The modifications are described in
detail by Barrodale and Phillips (1975).
When multiple solutions exist for a given problem, IMSLS_LMV may yield different
estimates of the regression coefficients on different computers, however, the largest
residual in absolute value should have the same absolute value (within rounding
differences). The informational error indicating nonunique solutions may result from
rounding accumulation. Conversely, because of rounding, the error may fail to result
even when the problem does have multiple solutions.

Example 1
A straight line fit to a data set is computed under the LAV criterion.

#include <imsls.h>
#include <stdio.h>
void main()
{
 float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
 float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
 float sea;
 int irank, iter, nrmiss;

 float *coefficients = NULL;

 coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,
 IMSLS_SEA, &sea,
 IMSLS_RANK, &irank,

178 • Lnorm_regression IMSL C Stat Library

 IMSLS_ITERATIONS, &iter,
 IMSLS_N_ROWS_MISSING, &nrmiss,0);

 printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
 printf("Rank of Regressors Matrix = %3d\n", irank);
 printf("Sum Absolute Value of Error = %8.4f\n", sea);
 printf("Number of Iterations = %3d\n", iter);
 printf("Number of Rows Missing = %3d\n", nrmiss);

}

Output
B = 0.50 0.50
Rank of Regressors Matrix = 2
Sum Absolute Value of Error = 6.00000
Number of Iterations = 2
Number of Rows Missing = 0

Figure 2- 2 Least Squares and Least Absolute Value Fitted Lines

Example 2
Different straight line fits to a data set are computed under the criterion of minimizing
the Lp norm by using p equal to 1, 1.5, 2.0 and 2.5.

#include <imsls.h>
#include <stdio.h>
void main()
{
 float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0};
 float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0};
 float p, tolerance, convergence_eps, square_of_scale, df_error,&
 Lp_norm_residual;
 float R_matrix[4], residuals[8];
 int i, irank, iter, nrmiss;

Chapter 2: Regression Lnorm_regression • 179

 int n_row=2;
 int n_col=2;

 float *coefficients = NULL;

 tolerance = 100*imsls_f_machine(4);
 convergence_eps = 0.001;
 p = 1.0;
 for(i=0; i<4; i++)
 {
 coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy,
 IMSLS_METHOD_LLP, p,

IMSLS_EPS, convergence_eps,
 IMSLS_RANK, &irank,

IMSLS_ITERATIONS, &iter,
IMSLS_N_ROWS_MISSING, &nrmiss,

 IMSLS_R_USER, R_matrix,
 IMSLS_DEGREES_OF_FREEDOM, &df_error,
 IMSLS_RESIDUALS_USER, residuals,
 IMSLS_SCALE, &square_of_scale,
 IMSLS_RESIDUALS_LP_NORM, &Lp_norm_residual,

0);
printf("Coefficients = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
printf("Residuals = %6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\n\n",
 residuals[0], residuals[1], residuals[2], residuals[3],
 residuals[4], residuals[5], residuals[6], residuals[7]);
printf("P = %5.3f\n", p);
printf("Lp norm of the residuals = %5.3f\n", Lp_norm_residual);
printf("Rank of Regressors Matrix = %3d\n", irank);

 printf("Degrees of Freedom Error = %5.3f\n", df_error);
 printf("Number of Iterations = %3d\n", iter);
 printf("Number of Missing Values = %3d\n", nrmiss);
 printf("Square of Scale Constant = %5.3f\n", square_of_scale);

 imsls_f_write_matrix("R Matrix\n", n_row, n_col, R_matrix, 0);
 printf("---\n\n");
 p += 0.5;
 }

}

Output

 Coefficients 0.50 0.50
 Residuals 0.00 2.50 -1.50 0.50 -0.50 0.50 -0.50 0.00

 p 1.00
 Lp norm of the residuals 6.00
 Rank of the matrix of regressors 2
 Degrees of freedom error 6.00
 Number of iterations 8
 Number of missing values 0
 Square of the scale constant 6.25

180 • Lnorm_regression IMSL C Stat Library

 R matrix
 1 2
 1 2.828 8.485
 2 0.000 3.464

 --

 Coefficients 0.39 0.55

 Residuals 0.06 2.39 -1.50 0.50 -0.55 0.45 -0.61 -0.16
 p 1.50
 Lp norm of the residuals 3.71
 Rank of the matrix of regressors 2
 Degrees of freedom error 6.00
 Number of iterations 6
 Number of missing values 0
 Square of the scale constant 1.06

 R matrix
 1 2
 1 2.828 8.485
 2 0.000 3.464

 --

 Coefficients -0.12 0.75
 Residuals 0.38 2.12 -1.38 0.62 -0.62 0.38 -0.88 -0.62

 p 2.00
 Lp norm of the residuals 2.94
 Rank of the matrix of regressors 2
 Degrees of freedom error 6.00
 Number of iterations 1
 Number of missing values 0
 Square of the scale constant 1.44

 R matrix
 1 2
 1 2.828 8.485
 2 0.000 3.464

 --

 Coefficients -0.44 0.87
 Residuals 0.57 1.96 -1.30 0.70 -0.67 0.33 -1.04 -0.91
 p 2.50
 Lp norm of the residuals 2.54
 Rank of the matrix of regressors 2
 Degrees of freedom error 6.00
 Number of iterations 4
 Number of missing values 0
 Square of the scale constant 0.79

 R matrix
 1 2

Chapter 2: Regression Lnorm_regression • 181

 1 2.828 8.485
 2 0.000 3.464

182 • Lnorm_regression IMSL C Stat Library

Figure 2- 3 Various Lp Fitted Lines

Example 3
A straight line fit to a data set is computed under the LMV criterion.

#include <imsls.h>
#include <stdio.h>
void main()
{
 float xx[] = {0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0};
 float yy[] = {0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0};
 float max_residual;
 int irank, iter, nrmiss;

 float *coefficients = NULL;

 coefficients = imsls_f_Lnorm_regression(7, 1, xx, yy,
 IMSLS_METHOD_LMV,
 IMSLS_MAX_RESIDUAL, &max_residual,
 IMSLS_RANK, &irank,

Chapter 2: Regression Lnorm_regression • 183

 IMSLS_ITERATIONS, &iter,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 0);
 printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]);
 printf("Rank of Regressors Matrix = %3d\n", irank);
 printf("Magnitude of Largest Residual = %8.4f\n", max_residual);
 printf("Number of Iterations = %3d\n", iter);
 printf("Number of Rows Missing = %3d\n", nrmiss);

}

Output
 B = 1.00 1.00
 Rank of Regressors Matrix = 2
 Magnitude of Largest Residual = 1.00000
 Number of Iterations = 3
 Number of Rows Missing = 0

5.

Figure 2- 4 Least Squares and Least Maximum Value Fitted Lines

Chapter 3: Correlation and Covariance Routines • 185

Chapter 3: Correlation and
Covariance

Routines
 Variances, Covariances, and Correlations

Variance-covariance or correlation matrix covariances 185
Partial correlations and covariances partial_covariances 192
Pooled covariance matrix pooled_covariances 197
Robust estimate of covariance matrix robust_covariances 203

Usage Notes
This chapter is concerned with measures of correlation for bivariate data as follows:

• The usual multivariate measures of correlation and covariance for continuous
random variables are produced by routine imsls_f_covariances.

• For data grouped by some auxiliary variable, routine
imsls_f_pooled_covariances can be used to compute the pooled
covariance matrix along with the means for each group.
• Partial correlations or covariances are computed by
imsls_f_partial_correlations.
• Function imsls_f_robust_covariances computes robust M-estimates of
the mean and covariance matrix from a matrix of observations.

covariances
Computes the sample variance-covariance or correlation matrix.

Synopsis
#include <imsls.h>
float *imsls_f_covariances (int n_rows, int n_variables, float x[], ...,

0)
The type double function is imsls_d_covariances.

186 • covariances IMSL C Stat Library

Required Arguments

int n_rows (Input)
Number of rows in x.

int n_variables (Input)
Number of variables.

float x[] (Input)
Array of size n_rows × n_variables containing the data.

Return Value
If no optional arguments are used, imsls_f_covariances returns a pointer to an
n_variables × n_variables array containing the sample variance-covariance
matrix of the observations. The rows and columns of this array correspond to the
columns of x.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_covariances (int n_rows, int n_variables, float x[],

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_MISSING_VALUE_METHOD, int missing_value_method,
IMSLS_INCIDENCE_MATRIX, int **incidence_matrix,
IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[],
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_VARIANCE_COVARIANCE_MATRIX, or
IMSLS_CORRECTED_SSCP_MATRIX, or
IMSLS_CORRELATION_MATRIX, or
IMSLS_STDEV_CORRELATION_MATRIX,
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_WEIGHTS, float weights[],
IMSLS_SUM_WEIGHTS, float *sumwt,
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_RETURN_USER, float covariance[],
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of array x.
Default: x_col_dim = n_variables

IMSLS_MISSING_VALUE_METHOD, int missing_value_method (Input)
Method used to exclude missing values in x from the computations, where
NaN is interpreted as the missing value code. See function
imsls_f_machine/imsls_d_machine (Chapter 15, “Utilities”). The
methods are as follows:

Chapter 3: Correlation and Covariance covariances • 187

Missing_value_method Action
0 The exclusion is listwise. (The entire row of x is

excluded if any of the values of the row is equal to
the missing value code.)

1 Raw crossproducts are computed from all valid pairs
and means, and variances are computed from all
valid data on the individual variables. Corrected
crossproducts, covariances, and correlations are
computed using these quantities.

2 Raw crossproducts, means, and variances are
computed as in the case of
missing_value_method = 1. However, cor-
rected crossproducts and covariances are computed
only from the valid pairs of data. Correlations are
computed using these covariances and the variances
from all valid data.

3 Raw crossproducts, means, variances, and
covariances are computed as in the case of
missing_value_method = 2. Correlations are
computed using these covariances, but the variances
used are computed from the valid pairs of data.

IMSLS_INCIDENCE_MATRIX, int **incidence_matrix (Output)
Address of a pointer to an internally allocated array containing the incidence
matrix. If missing_value_method is 0, incidence_matrix is 1 × 1 and
contains the number of valid observations; otherwise, incidence_matrix is
n_variables × n_variables and contains the number of pairs of valid
observations used in calculating the crossproducts for covariance.

IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[] (Output)
Storage for array incidence_matrix is provided by the user. See
IMSLS_INCIDENCE_MATRIX.

IMSLS_N_OBSERVATIONS, int *n_observations (Output)
Sum of the frequencies. If missing_value_method is 0, observations with
missing values are not included in n_observations; otherwise, all
observations are included except for observations with missing values for the
weight or the frequency.

IMSLS_VARIANCE_COVARIANCE_MATRIX, or
IMSLS_CORRECTED_SSCP_MATRIX, or
IMSLS_CORRELATION_MATRIX, or
IMSLS_STDEV_CORRELATION_MATRIX

Exactly one of these options can be used to specify the type of matrix to be
computed.

188 • covariances IMSL C Stat Library

Keyword Type of Matrix
IMSLS_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix (default)
IMSLS_CORRECTED_SSCP_MATRIX corrected sums of squares and crossproducts matrix
IMSLS_CORRELATION_MATRIX correlation matrix
IMSLS_STDEV_CORRELATION_MATRIX correlation matrix except for the diagonal elements which

are the standard deviations

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the means of
the variables in x. The components of the array correspond to the columns of
x.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim (Input)
Column dimension of array covariance if IMSLS_RETURN_USER is specified;
otherwise, the column dimension of the return value.
Default: covariance_col_dim = n_variables

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency for each
observation.
Default: frequencies [] = 1

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight for each
observation.
Default: weights [] = 1

IMSLS_SUM_WEIGHTS, float *sum_wt (Output)
Sum of the weights of all observations. If missing_value_method is equal
to 0, observations with missing values are not included in sum_wt. Otherwise,
all observations are included except for observations with mssing values for
the weight or the frequency.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Total number of observations that contain any missing values (NaN).

IMSLS_RETURN_USER, float covariance[] (Output)
If specified, the output is stored in the array covariance of size
n_variables × n_variables provided by the user.

Description
Function imsls_f_covariances computes estimates of correlations, covariances, or
sums of squares and crossproducts for a data matrix x. Weights and frequencies are
allowed but not required.
The means, (corrected) sums of squares, and (corrected) sums of crossproducts are
computed using the method of provisional means. Let xki denote the mean based on i
observations for the k-th variable, fi denote the frequency of the i-th observation, wi

Chapter 3: Correlation and Covariance covariances • 189

denote the weight of the i-th observations, and cjki denote the sum of crossproducts (or
sum of squares if j = k) based on i observations. Then the method of provisional means
finds new means and sums of crossproducts as shown in the example below.
The means and crossproducts are initialized as follows:

xk0 = 0.0 for k = 1, …, p

cjk0 = 0.0 for j, k = 1, …, p

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of
observation i + 1, each new observation leads to the following updates for xki and cjki
using the update constant ri+1:

()
()()()

1 1
1 1

1

, 1 , 1 1

, 1 1 1 , 1 , 1 11

i i
i i

l l
l

k i ki k i ki i

jk i jki i i j i ji k i ki i

f w
r

f w

x x x x r

c c f w x x x x r

+ +
+ +

=

+ + +

+ + + + + +

=

= + −

= + − − −

∑

The default value for weights and frequencies is 1. Means and variances are computed
based on the valid data for each variable or, if required, based on all the valid data for
each pair of variables.

Usage Notes
Function imsls_f_covariances defines a sample mean by

1

1

r

n

i i ki
i

k n

i i
i

f w x
x

f w

=

=

=
∑

∑

where n is the number of observations.
The following formula defines the sample covariance, sjk, between variables j and k:

()()
1

1
1

n

i i ji j ki k
i

jk n

i
i

f w x x x x
s

f

=

=

− −
=

−

∑

∑

The sample correlation between variables j and k, rjk, is defined as follows:

190 • covariances IMSL C Stat Library

jk
jk

jj kk

s
r

s s
=

Examples

Example 1
This example illustrates the use of imsls_f_covariances for the first 50
observations in the Fisher iris data (Fisher 1936). Note that the first variable is constant
over the first 50 observations.

#include <imsls.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{
 float *covariances, *means;
 float x[] = {
 1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

 /* Perform analysis */
 covariances = imsls_f_covariances (N_OBSERVATIONS,
 N_VARIABLES, x, 0);

 /* Print results */
 imsls_f_write_matrix ("The default case: variances/covariances",
 N_VARIABLES, N_VARIABLES, covariances,
 IMSLS_PRINT_UPPER, 0);

Chapter 3: Correlation and Covariance covariances • 191

}

Output
 The default case: variances/covariances
 1 2 3 4 5
1 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.1242 0.0992 0.0164 0.0103
3 0.1437 0.0117 0.0093
4 0.0302 0.0061
5 0.0111

Example 2
This example, which uses the first 50 observations in the Fisher iris data, illustrates the
use of optional arguments.

#include <imsls.h>

#define N_VARIABLES 5
#define N_OBSERVATIONS 50

main()
{
 char *title;
 float *means, *correlations;
 float x[] = {
 1.0, 5.1, 3.5, 1.4, .2, 1.0, 4.9, 3.0, 1.4, .2,
 1.0, 4.7, 3.2, 1.3, .2, 1.0, 4.6, 3.1, 1.5, .2,
 1.0, 5.0, 3.6, 1.4, .2, 1.0, 5.4, 3.9, 1.7, .4,
 1.0, 4.6, 3.4, 1.4, .3, 1.0, 5.0, 3.4, 1.5, .2,
 1.0, 4.4, 2.9, 1.4, .2, 1.0, 4.9, 3.1, 1.5, .1,
 1.0, 5.4, 3.7, 1.5, .2, 1.0, 4.8, 3.4, 1.6, .2,
 1.0, 4.8, 3.0, 1.4, .1, 1.0, 4.3, 3.0, 1.1, .1,
 1.0, 5.8, 4.0, 1.2, .2, 1.0, 5.7, 4.4, 1.5, .4,
 1.0, 5.4, 3.9, 1.3, .4, 1.0, 5.1, 3.5, 1.4, .3,
 1.0, 5.7, 3.8, 1.7, .3, 1.0, 5.1, 3.8, 1.5, .3,
 1.0, 5.4, 3.4, 1.7, .2, 1.0, 5.1, 3.7, 1.5, .4,
 1.0, 4.6, 3.6, 1.0, .2, 1.0, 5.1, 3.3, 1.7, .5,
 1.0, 4.8, 3.4, 1.9, .2, 1.0, 5.0, 3.0, 1.6, .2,
 1.0, 5.0, 3.4, 1.6, .4, 1.0, 5.2, 3.5, 1.5, .2,
 1.0, 5.2, 3.4, 1.4, .2, 1.0, 4.7, 3.2, 1.6, .2,
 1.0, 4.8, 3.1, 1.6, .2, 1.0, 5.4, 3.4, 1.5, .4,
 1.0, 5.2, 4.1, 1.5, .1, 1.0, 5.5, 4.2, 1.4, .2,
 1.0, 4.9, 3.1, 1.5, .2, 1.0, 5.0, 3.2, 1.2, .2,
 1.0, 5.5, 3.5, 1.3, .2, 1.0, 4.9, 3.6, 1.4, .1,
 1.0, 4.4, 3.0, 1.3, .2, 1.0, 5.1, 3.4, 1.5, .2,
 1.0, 5.0, 3.5, 1.3, .3, 1.0, 4.5, 2.3, 1.3, .3,
 1.0, 4.4, 3.2, 1.3, .2, 1.0, 5.0, 3.5, 1.6, .6,
 1.0, 5.1, 3.8, 1.9, .4, 1.0, 4.8, 3.0, 1.4, .3,
 1.0, 5.1, 3.8, 1.6, .2, 1.0, 4.6, 3.2, 1.4, .2,
 1.0, 5.3, 3.7, 1.5, .2, 1.0, 5.0, 3.3, 1.4, .2};

 /* Perform analysis */
 correlations = imsls_f_covariances (N_OBSERVATIONS,
 N_VARIABLES-1, x+1,
 IMSLS_STDEV_CORRELATION_MATRIX,

192 • partial_covariances IMSL C Stat Library

 IMSLS_X_COL_DIM, N_VARIABLES,
 IMSLS_MEANS, &means,
 0);

 /* Print results */
 imsls_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0);
 title = "Correlations with Standard Deviations on the Diagonal\n";
 imsls_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,
 correlations, IMSLS_PRINT_UPPER, 0);
}

Output
 Means

 1 2 3 4
 5.006 3.428 1.462 0.246

Correlations with Standard Deviations on the Diagonal

 1 2 3 4
 1 0.3525 0.7425 0.2672 0.2781
 2 0.3791 0.1777 0.2328
 3 0.1737 0.3316
 4 0.1054

Warning Errors

IMSLS_CONSTANT_VARIABLE Correlations are requested, but the
observations on one or more variables are
constant. The corresponding correlations are
set to NaN.

IMSLS_INSUFFICIENT_DATA Variances and covariances are requested, but
fewer than two valid observations are
present for a variable. The pertinent
statistics are set to NaN.

IMSLS_ZERO_SUM_OF_WEIGHTS_2 The sum of the weights is zero. The means,
variances, and covariances are set to NaN.

IMSLS_ZERO_SUM_OF_WEIGHTS_3 The sum of the weights is zero. The means
and correlations are set to NaN.

IMSLS_TOO_FEW_VALID_OBS_CORREL Correlations are requested, but fewer than
two valid observations are present for a
variable. The pertinent correlation
coefficients are set to NaN.

partial_covariances
Computes partial covariances or partial correlations from the covariance or correlation
matrix.

Chapter 3: Correlation and Covariance partial_covariances • 193

Synopsis
#include <imsls.h>

float *imsls_f_partial_covariances (int n_independent,
int n_dependent, float x, ..., 0)

The type double function is imsls_d_partial_covariances.

Required Argument

int n_independent (Input)
Number of “independent” variables to be used in the partial
covariances/correlations. The partial covariances/correlations are the
covariances/correlations between the dependent variables after removing the
linear effect of the independent variables.

int n_dependent (Input)
Number of variables for which partial covariances/correlations are desired
(the number of “dependent” variables).

float x (Input)
The n × n covariance or correlation matrix, where
n = n_independent + n_dependent. The rows/columns must be ordered
such that the first n_independent rows/columns contain the independent
variables, and the last n_dependent row/columns contain the dependent
variables. Matrix x must always be square symmetric.

Return Value
Matrix of size n_dependent by n_dependent containing the partial covariances (the
default) or partial correlations (use keyword IMSLS_PARTIAL_CORR).

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_partial_covariances (int n_independent,

int n_dependent, float x[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int indices[],
IMSLS_PARTIAL_COV, or
IMSLS_PARTIAL_CORR,
IMSLS_TEST, int df, int *df_out, float **p_values,
IMSLS_TEST_USER, int df, int *df_out, float p_values[],
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Row/Column dimension of x.
Default: x_col_dim = n_independent + n_dependent.

194 • partial_covariances IMSL C Stat Library

IMSLS_X_INDICES, int indices[] (Input)
An array of length x_col_dim containing values indicating the status of the
variable as in the following table:

indices[i] Variable is...
−1 not used in analysis

0 dependent variable
1 independent variable

By default, the first n_independent elements of indices are equal to 1,
and the last n_dependent elements are equal to 0.

IMSLS_PARTIAL_COV, or
IMSLS_PARTIAL_CORR,

By default, and if IMSLS_PARTIAL_COV is specified, partial covariances are
calculated. Partial correlations are calculated if IMSLS_PARTIAL_CORR is
specified.

IMSLS_TEST, int df, int *df_out, float **p_values
(Input, Output, Output)
Argument df is an input integer indicating the number of degrees of freedom
associated with input matrix x. If the number of degrees of freedom in x
varies from element to element, then a conservative choice for df is the
minimum degrees of freedom for all elements in x.

Argument df_out contains the number of degrees of freedom in the test that
the partial covariances/correlations are zero. This value will usually be df −
 n_independent, but will be greater than this value if the independent
variables are computationally linearly related.

Argument p_values is the address of a pointer to an internally allocated
array of size n_dependent by n_dependent containing the p-values for
testing the null hypothesis that the associated partial covariance/correlation is
zero. It is assumed that the observations from which x was computed flows a
multivariate normal distribution and that each element in x has df degrees of
freedom.

IMSLS_TEST_USER, int df, int *df_out, float p_values[]
(Input, Output, Output)
Storage for array p_values is provided by the user. See IMSLS_TEST
above.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the partial covariances/correlations. Storage for array c
is provided by the user.

Description
Function imsls_f_partial_covariances computed partial covariances or partial
correlations from an input covariance or correlation matrix. If the “independent”
variables (the linear “effect” of the independent variables is removed in computing the

Chapter 3: Correlation and Covariance partial_covariances • 195

partial covariances/correlations) are linearly related to one another,
imsls_f_partial_covariances detects the linearity and eliminates one or more of
the independent variables from the list of independent variables. The number of
variables eliminated, if any, can be determined from argument df_out.
Given a covariance or correlation matrix Σ partitioned as

11 12

21 22

Σ Σ⎛ ⎞
⎜ ⎟Σ Σ⎝ ⎠

function imsls_f_partial_covariances computed the partial covariances (of the
standardized variables if Σ is a correlation matrix) as

1
22 /1 22 21 11 12

−Σ = Σ − Σ Σ Σ

If partial correlations are desired, these are computed as

() ()1/ 2 1/ 2
22 /1 22 /1 22 /1 22 /1P diag diag

− −
= Σ Σ Σ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

where diag denotes the matrix containing the diagonal of its argument along its
diagonal with zeros off the diagonal. If Σ11 is singular, then as many variables as
required are deleted from Σ11 (and Σ12) in order to eliminate the linear dependencies.
The computations then proceed as above.
The p-value for a partial covariance tests the null hypothesis H0: σij|1 = 0, where σij|1 is
the (i, j) element in matrix Σ22|1. The p-value for a partial correlation tests the null
hypothesis H0: ρij|1 = 0, where ρij|1 is the (i, j) element in matrix P22|1. The p-values are
returned in p_values. If the degrees of freedom for x, df, is not known, the resulting
p-values may be useful for comparison, but they should not by used as an
approximation to the actual probabilities.

Examples

Example 1
The following example computes partial covariances, scaled from a nine-variable
correlation matrix originally given by Emmett (1949). The first three rows and columns
contain the independent variables and the final six rows and columns contain the
dependent variables.

#include <imsls.h>
#include <math.h>

main()
{
 float *pcov;
 float x[9][9] = {
 6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363,
 3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077,
 1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673,
 3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910,

196 • partial_covariances IMSL C Stat Library

 1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687,
 2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754,
 2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309,
 1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458,
 4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400};

 pcov = imsls_f_partial_covariances(3, 6, x, 0);

 imsls_f_write_matrix("Partial Covariances", 6, 6, pcov, 0);

 free(pcov);
 return;
}

Output
 Partial Covariances
 1 2 3 4 5 6
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 5.495 1.895 3.084
5 0.000 0.000 0.000 1.895 1.841 1.476
6 0.000 0.000 0.000 3.084 1.476 3.403

Example 2
The following example computes partial correlations from a 9 variable correlation
matrix originally given by Emmett (1949). The partial correlations between the
remaining variables, after adjusting for variables 1, 3 and 9, are computed. Note in the
output that the row and column labels are numbers, not variable numbers. The
corresponding variable numbers would be 2, 4, 5, 6, 7
and 8, respectively.

#include <imsls.h>

main()
{
 float *pcorr, *pval;
 int df;
 float x[9][9] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, .355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};
 int indices[9] = {1, 0, 1, 0, 0, 0, 0, 0, 1};

 pcorr = imsls_f_partial_covariances(3, 6, &x[0][0],
 IMSLS_PARTIAL_CORR,
 IMSLS_X_INDICES, indices,
 IMSLS_TEST, 30, &df, &pval,

Chapter 3: Correlation and Covariance pooled_covariances • 197

 0);

 printf ("The degrees of freedom are %d\n\n", df);
 imsls_f_write_matrix("Partial Correlations", 6, 6, pcorr, 0);
 imsls_f_write_matrix("P-Values", 6, 6, pval, 0);

 free(pcorr);
 free(pval);
 return;
}

Output
The degrees of freedom are 27

 Partial Correlations
 1 2 3 4 5 6
1 1.000 0.224 0.194 0.211 0.125 -0.061
2 0.224 1.000 0.605 0.720 0.092 0.025
3 0.194 0.605 1.000 0.598 0.123 -0.077
4 0.211 0.720 0.598 1.000 0.035 0.086
5 0.125 0.092 0.123 0.035 1.000 0.062
6 -0.061 0.025 -0.077 0.086 0.062 1.000

 P-Values
 1 2 3 4 5 6
1 0.0000 0.2525 0.3232 0.2801 0.5249 0.7576
2 0.2525 0.0000 0.0006 0.0000 0.6417 0.9000
3 0.3232 0.0006 0.0000 0.0007 0.5328 0.6982
4 0.2801 0.0000 0.0007 0.0000 0.8602 0.6650
5 0.5249 0.6417 0.5328 0.8602 0.0000 0.7532
6 0.7576 0.9000 0.6982 0.6650 0.7532 0.0000

Warning Errors

IMSLS_NO_HYP_TESTS The input matrix “x” has # degrees of freedom, and
the rank of the dependent variables is #. There are not
enough degrees of freedom for hypothesis testing. The
elements of “p_values” are set to NaN (not a number).

Fatal Errors

IMSLS_INVALID_MATRIX_1 The input matrix “x” is incorrectly specified. A com-
puted correlation is greater than 1 for variables # and
#.

IMSLS_INVALID_PARTIAL A computed partial correlation for variables # and # is
greater than 1. The input matrix “x” is not positive
semi-definite.

pooled_covariances
Compute a pooled variance-covariance from the observations.

198 • pooled_covariances IMSL C Stat Library

Synopsis
#include <imsls.h>
float *imsls_f_pooled_covariances (int n_rows, int n_variables, float

*x, int n_groups, ..., 0)
The type double function is imsls_d_pooled_covariances.

Required Argument

int n_rows (Input)
Number of rows observations) in the input matrix x.

int n_variables (Input)
Number of variables to be used in computing the covariance matrix.

float *x (Input)
A n_rows × n_variables + 1 matrix containing the data. The first
n_variables columns correspond to the variables, and the last column
(column n_variables must contain the group numbers).

int n_groups (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of covariances.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_pooled_covariances (int n_rows, int n_variables, float
x[], int n_groups,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD,
IMSLS_ROWS_DELETE,
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[],
IMSLS_SUM_WEIGHTS, float **sum_weights,
IMSLS_SUM_WEIGHTS_USER, float sum_weights[],
IMSLS_MEANS_USER, float means[],
IMSLS_U, float **u,
IMSLS_U_USER, float u[],
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_RETURN_USER, float c[],
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Default: x_col_dim = n_variables + 1

Chapter 3: Correlation and Covariance pooled_covariances • 199

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers of x
in which particular types of data are stored. Columns are numbered 0 ...
x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the group
numbers are stored.

Parameter ind contains the indices of the variables to be used in the analysis.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will
be no column for frequencies. Set iwt = −1 if there will be no column for
weights. Weights are rounded to the nearest integer. Negative weights are not
allowed.

Defaults: igrp = n_variables,
ind[] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1

IMSLS_IDO, int ido (Input)
Processing option.

ido Action
0 This is the only invocation; all the data are input at once. (Default)
1 This is the first invocation with this data; additional calls will be

made. Initialization and updating for the n_rows observations of
x will be performed.

2 This is an intermediate invocation; updating for the n_rows
observations of x will be performed.

3 All statistics are updated for the n_rows observations. The
covariance matrix computed.

Default: ido = 0
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE

By default (or if IMSLS_ROWS_ADD is specified), the observations in x are
added into the analysis. If IMSLS_ROWS_DELETE is specified, the
observations are deleted from the analysis. If ido = 0, these optional
arguments are ignored (data is always added if there is only one invocation).

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing the
number of observations in each group. Array gcounts is updated when ido
is equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See
IMSLS_GROUP_COUNTS.

200 • pooled_covariances IMSL C Stat Library

IMSLS_SUM_WEIGHTS, float **sum_weights (Output)
Address of a pointer to an array of length n_groups containing the sum of the
weights times the frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[] (Output)
Storage for array sum_weights is provided by the user. See
IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups × n_variables. The i-th
row of means contains the group i variable means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_U, float **u (Output)
Address of a pointer to an array of size n_variables ×
n_variables containing the lower matrix U, the lower triangular for the
pooled sample cross-products matrix. U is computed from the
pooled sample covariance matrix, S (See the “Description” section below), as
S = UTU.

IMSLS_U_USER, float u[] (Output)”
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to
imsls_f_pooled_covariances containing missing values (NaN) for any
of the variables used.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is provided
by the user.

Description
Function imsls_f_pooled_covariances computes the pooled variance-covariance
matrix from a matrix of observations. The within-groups means are also computed.
Listwise deletion of missing values is assumed so that all observations used are
complete; in any row of x, if any element of the observation is missing, the row is not
used. Function imsls_f_pooled_covariances should be used whenever the user
suspects that the data has been sampled from populations with different means but
identical variance-covariance matrices. If these assumptions cannot be made, a dif-
ferent variance-covariance matrix should be estimated within each group.
By default, all observations are processed in one call to
imsls_f_pooled_covariances. The computations are the same as if
imsls_f_pooled_covariances were consecutively called with ido equal to 1, 2,
and 3. For brevity, the following discusses the computations with ido > 0.
When ido = 1 variables are initialized, workspace is allocated and input variables are
checked for errrors.

Chapter 3: Correlation and Covariance pooled_covariances • 201

If n_rows ≠ 0 (for any value of ido), the group observation totals, Ti, for i = 1, …, g,
where g is the number of groups, are updated for the n_rows observations in x. The
group totals are computed as:

i ij ij ij
j

T w f x= ∑

where wij is the observation weight, xij is the j-th observation in the i-th group, and fij is
the observation frequency.
Modified Givens rotations are used in computed the Cholesky decomposition of the
pooled sums of squares and crossproducts matrix. (Golub and Van Loan 1983).
The group means and the pooled sample covariance matrix S are computed from the
intermediate results when ido = 3. These quantities are defined by

i
i

i i
j

T
x

w f• =
∑

()()
,

1 T

ij ij ij i ij ii
i jij

ij

S w f x x x x
f g • •= − −

− ∑∑

Examples

Example 1
The following example computes a pooled variance-covariance matrix. The last
column of the data set is the group indicator.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
 int nobs = 6;
 int nvar = 2;
 int n_groups = 2;
 float *cov;
 static float x[6][3] = {
 2.2, 5.6, 1,
 3.4, 2.3, 1,
 1.2, 7.8, 1,
 3.2, 2.1, 2,
 4.1, 1.6, 2,
 3.7, 2.2, 2};

 cov = imsls_f_pooled_covariances(nobs, nvar, &x[0][0], n_groups, 0);

 imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
 free(cov);
}

202 • pooled_covariances IMSL C Stat Library

Output
Pooled Covariance Matrix
 1 2
1 0.708 -1.575
2 -1.575 3.883

Example 2
The following example computes a pooled variance-covariance matrix for the Fisher
iris data. To illustrate the use of the ido argument, multiple calls to
imsls_f_pooled_covariances are made.
The first column of data is the group indicator, requiring either a permuation of the
matrix or the use of the IMSLS_X_INDICES optional keyword. This exampe chooses
the keyword method.

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
 int nobs = 150;
 int nvar = 4;
 int n_groups = 3;
 int igrp = 0;
 static int ind[4] = {1, 2, 3, 4};
 int ifrq = -1;
 int iwt = -1;
 float *x, cov[16];
 float *means;
 int i;

 /* Retrieve the Fisher iris data set */
 x = imsls_f_data_sets(3, 0);

 /* Initialize */
 imsls_f_pooled_covariances(0, nvar, x, n_groups,
 IMSLS_IDO, 1,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 /* Add 10 rows at a time */
 for (i=0;i<15;i++) {
 imsls_f_pooled_covariances(10, nvar, (x+i*50), n_groups,
 IMSLS_IDO, 2,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);
 }

 /* Calculate cov and free internal workspace */
 imsls_f_pooled_covariances(0, nvar, x, n_groups,
 IMSLS_IDO, 3,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt,
 IMSLS_MEANS, &means, 0);

Chapter 3: Correlation and Covariance robust_covariances • 203

 imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0);
 imsls_f_write_matrix("Means", n_groups, nvar, means, 0);

 free(means);
 free(x);
}

Output
 Pooled Covariance Matrix
 1 2 3 4
1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327
3 0.1675 0.0552 0.1852 0.0427
4 0.0384 0.0327 0.0427 0.0419

 Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

Warning Errors

IMSLS_OBSERVATION_IGNORED In call #, row # of the matrix “x” has
group number = #. The group number must be
between 1 and #, the number of groups. This
observation will be ignored.

Fatal Errors

IMSLS_BAD_IDO_4 “ido” = #. Initial allocations must be performed by
making a call to pooled_covariances with “ido”
= 1.

IMSLS_BAD_IDO_5 “ido” = #. A new analysis may not begin until the
previous analysis is terminated by a call to
imsls_f_pooled_covariances with “ido” equal
to 3.

robust_covariances
Computes a robust estimate of a covariance matrix and mean vector.

Synopsis
#include <imsls.h>

float *imsls_f_robust_covariances (int n_rows, int n_variables, float
*x, int n_groups, ..., 0)

204 • robust_covariances IMSL C Stat Library

The type double function is imsls_d_robust_covariances.

Required Argument

int n_rows (Input)
Number of rows observations) in the input matrix x.

int n_variables (Input)
Number of variables to be used in computing the covariance matrix.

float *x (Input)
A n_rows by n_variables + 1 matrix containing the data. The first
n_variables columns correspond to the variables, and the last column
(column n_variables) must contain the group numbers.

int n_groups (Input)
Number of groups in the data.

Return Value
Matrix of size n_variables by n_variables containing the matrix of covariances.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_robust_covariances (int n_rows, int n_variables, float
x[], int n_groups,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_INITIAL_EST_MEAN,
IMSLS_INITIAL_EST_MEDIAN
IMSLS_INITIAL_EST_INPUT, float input_means[],
 float input_cov[],
IMSLS_ESTIMATION_METHOD, int method,
IMSLS_PERCENTAGE, float percentage,
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_TOLERANCE, float tolerance,
IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c,
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[],
IMSLS_SUM_WEIGHTS, float **sum_weights,
IMSLS_SUM_WEIGHTS_USER, float sum_weights[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_U, float **u,
IMSLS_U_USER, float u[],
IMSLS_BETA, float *beta,
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_RETURN_USER, float c[],
0)

Chapter 3: Correlation and Covariance robust_covariances • 205

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Row/Column dimension of x.
Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers of x
in which particular types of data are stored. Columns are numbered 0 …
 x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the group
numbers are stored.

Parameter ind contains the indices of the variables to be used in the analysis.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will
be no column for frequencies. Set iwt = −1 if there will be no column for
weights. Weights are rounded to the nearest integer. Negative weights are not
allowed.

Defaults: igrp = n_variables,
ind [] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1

IMSLS_INITIAL_EST_MEAN, or
IMSLS_INITIAL_EST_MEDIAN, or
IMSLS_INITIAL_EST_INPUT, float *input_mean, float *input_cov (Input)

If IMSLS_INITIAL_EST_MEAN is specified, initial estimates are obtained as
the usual estimate of a mean vector and of a covariance matrix.

If IMSLS_INITIAL_EST_MEDIAN is specified, initial estimates are based
upon the median and interquartile range are used.

If IMSLS_INITIAL_EST_INPUT is specified, the initial estimates are
specified in arrays input_mean and input_cov. Argument input_mean is
an array of size n_groups by n_variables, and input_cov is an array of
size n_variables by n_variables.

Default: IMSLS_INITIAL_EST_MEAN

IMSLS_ESTIMATION_METHOD, int method (Input)
Option parameter giving the algorithm to be used in computing the estimates.

method Method Used
0 Huber’s conjugate-gradient algorithm is used.
1 Stahel’s algorithm is used.

IMSLS_PERCENTAGE, float percentage (Input)
Percentage of gross errors expected in the data. Argument percentage must
be in the range 0.0 to 100.0 and contains the percentage of outliers expected in
the data. If the percentage of gross errors expected in the data is not known, a
reasonable strategy is to choose a value of percentage that is such that

206 • robust_covariances IMSL C Stat Library

larger values do not result in significant changes in the estimates.
Default: percentage = 5.0

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of iterations.
Default: maxit = 30

IMSLS_TOLERANCE, float tolerance (Input)
Convergence criterion. When the maximum absolute change in a location or
covariance estimate is less than tolerance, convergence is assumed.
Default: tolerance = 10-4

IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c (Output)
Arguments a, b, and c contain the values for the parameters of the weighting
function. See the “Description” section.

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing the
number of observations in each group.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See
IMSLS_GROUP_COUNTS.

IMSLS_SUM_WEIGHTS, float **sum_weights (Output)
Address of a pointer to an array of length n_groups containing the sum of the
weights times the frequencies in the groups.

IMSLS_SUM_WEIGHTS_USER, float sum_weights[](Output)
Storage for array sum_weights is provided by the user. See
IMSLS_SUM_WEIGHTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups by n_variables. The i-th
row of means contains the group i variable means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_U, float **u (Output)
Address of a pointer to an array of size n_variables by n_variables
containing the lower matrix U, the lower triangular for the robust sample
cross-products matrix. U is computed from the robust sample covariance
matrix, S (See the “Description” section), as S = UTU.

IMSLS_U_USER, float u[] (Output)
Storage for array u is provided by the user. See IMSLS_U.

IMSLS_BETA, float *beta (Output)
Argument beta contains the constant used to ensure that the estimated
covariance matrix has unbiased expectation (for a given mean vector) for a
multivariate normal density.

Chapter 3: Correlation and Covariance robust_covariances • 207

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to robust_covariances
containing missing values (NaN) for any of the variables used.

IMSLS_RETURN_USER, float c[] (Output)
If specified, c returns the covariance matrix. Storage for array c is provided
by the user.

Description
Function imsls_f_robust_covariances computes robust M-estimates of the mean
and covariance matrix from a matrix of observations. A pooled estimate of the
covariance matrix is computed when multiple groups are present in the input data. M-
estimate weights are obtained using the “minimax” weights of Huber (1981, pp. 231-
235), with percentage expected gross errors. Huber’s (1981) weighting equations are
given by:

()

()

2

2

2

2

1

min 1,

a r a
r

u r a r b
b r b
r

cw r
r

⎧
<⎪

⎪⎪= ≤ ≤⎨
⎪
⎪ >
⎪⎩

⎛ ⎞= ⎜ ⎟
⎝ ⎠

User specified observation weights and frequencies may be given for each row in x.
Listwise deletion of missing values is assumed so that all observations used are
“complete”.
Let f (x;μi, Σ) denote the density of an observation p-vector x in population (group) i

with mean vector μi, for i = 1, …, τ. Let the covariance matrix Σ be such that Σ = RTR.
If

y = R-T (x − μi)

then

() ()1/ 2 ; ,T
i ig y f R y μ μ= Σ + Σ

It is assumed that g(y) is a spherically symmetric density in p-dimensions.
In imsls_f_robust_covariances, Σ and μi are estimated as the solutions

()ˆ ˆ, iμΣ

of the estimation equations

208 • robust_covariances IMSL C Stat Library

()
1

1 0
in

ig ij ij ij
j

f w w r y
n =

=∑

and

()
1 1

1 0
in

T
ij ij ij ij ij p

i j

f w u r y y I
n

τ

β
= =

⎡ ⎤− =⎣ ⎦∑∑

where i indexes the τ groups, ni, is the number of observations in group i, fij is the
frequency for the j-th observation in group i, wij is the observation weight specified in
column iwt of x, Ip is a p × p identity matrix,

T
ij ij ijr y y=

w(r) and u(r) are the weighting functions, and where β is a constant computed by the
program to make the expected weighted Mahalanobis distance (yTy) equal the expected
Mahalanobis distance from a multivariate normal distribution (see Marazzi 1985). The
constant β is described more fully below.
Function imsls_f_robust_covariances uses one of two algorithms for solving the
estimation equations. The first algorithm is discussed in detail in Huber (1981) and is a
variant of the conjugate gradient method. The second algorithm is due to Stahel (1981)
and is discussed in detail by Marazzi (1985). In both algorithms, correction vectors Tki
for the group i means and correction matrix Wk = Ip + Uk for the Cholesky factorization
of Σ are found such that the updated mean vectors are given by

, 1 ,ˆ ˆi k i k kiTμ μ+ = +

and the updated matrix R is given as

1
ˆ ˆ

k k kR W R+ =

where k is the iteration number and

ˆ T
k k kR RΣ =

When all elements of Uk and Tki are less than ε = tolerance, convergence is
assumed.
Three methods for obtaining estimates are allowed. In the first method, the sample
weighted estimate of Σ is computed. In the second method, estimates based upon the
median and the interquartile range are used. Finally, in the last method, the user inputs
initial estimates.
Function imsls_f_robust_covariances computes estimates based on the
“minimax” weights discussed above. The constant β is chosen such that E

Chapter 3: Correlation and Covariance robust_covariances • 209

(u(r)r2) = ρβ where the expectation is with respect to a standard p-variate multivariate
normal distribution. This yields estimates with the correct expectation for the
multivariate normal distribution (for given mean vector). The expectation is computed
via integration of estimated spline function. 200 knots are used on an equally apaced
grid from 0.0 to the 99.999 percentile of

2
pχ

distribution. An error estimate is computed based upon 100 of these knots. If the
estimated relative error is greater than 0.0001, a warning message is issued. If β is not
computed accurately (i.e., if the warning message is issued), the computed esimates are
still optimal, but the scale of the estimated covariance matrix may need to be multiplied
by a constant in order for

Σ̂

to have the correct multivariate normal covariance expectation.

Examples

Example 1
The following example computes a robust variance-covariance matrix. The last column
of the data set is the group indicator.

#include <imsls.h>
#include <stdlib.h>
main()
{
 int nobs = 6;
 int nvar = 2;
 int n_groups = 2;
 float *cov;
 float x[18] = {
 2.2, 5.6, 1,
 3.4, 2.3, 1,
 1.2, 7.8, 1,
 3.2, 2.1, 2,
 4.1, 1.6, 2,
 3.7, 2.2, 2};

 cov = imsls_f_robust_covariances(nobs, nvar, x, n_groups, 0);

 imsls_f_write_matrix("Robust Covariance Matrix", nvar, nvar, cov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO, 0);

 free(cov);
}

210 • robust_covariances IMSL C Stat Library

Output

Robust Covariance Matrix
 0 1
0 0.522 -1.160
1 -1.160 2.862

Example 2
The following example computes estimates of the pooled covariance matrix for the
Fisher’s iris data. For comparison, the estimates are first computed via function
imsls_f_pooled_covariances. Function imsls_f_robust_covariances with
percentage = 2.0 is then used to compute the robust estimates. As can be seen from
the output, the resulting estimates are quite similar.
Next, three observations are made into outliers, and again, estimates are computed
using functions imsls_f_pooled_covariances and
imsls_f_robust_covariances. When outliers are present, the estimates of
imsls_f_pooled_covariances are adversely affected, while the estimates
produced by imsls_f_robust_covariances are close the estimates produced when
no outliers are present.

include <imsls.h>
#include <stdlib.h>
main()
{
 int nobs = 150;
 int nvar = 4;
 int n_groups = 3;
 float percentage = 2.0;
 int igrp = 0;
 int ifrq = -1;
 int iwt = -1;
 int ind[4] = {1, 2, 3, 4};
 float *x, cov[16], rbcov[16];

 x = imsls_f_data_sets(3, 0);

 imsls_f_pooled_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 imsls_f_write_matrix("Pooled Covariance with No Outliers", nvar, nvar,
 cov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);

 imsls_f_robust_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, rbcov,
 IMSLS_PERCENTAGE, percentage,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 imsls_f_write_matrix("Robust Covariance with No Outliers", nvar, nvar,
 rbcov,
 IMSLS_COL_NUMBER_ZERO,

Chapter 3: Correlation and Covariance robust_covariances • 211

 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);

 /* Add Outliers */
 x[1] = 100.0;
 x[19] = 100.0;
 x[497] = -100.0;

 imsls_f_pooled_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, cov,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 imsls_f_write_matrix("Pooled Covariance with Outliers", nvar, nvar,
 cov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);

 imsls_f_robust_covariances(nobs, nvar, x, n_groups,
 IMSLS_RETURN_USER, rbcov,
 IMSLS_PERCENTAGE, percentage,
 IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0);

 imsls_f_write_matrix("Robust Covariance with Outliers", nvar, nvar,
 rbcov,
 IMSLS_COL_NUMBER_ZERO,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_PRINT_UPPER, 0);

 free(x);
}

Output

 Pooled Covariance with No Outliers
 0 1 2 3
0 0.2650 0.0927 0.1675 0.0384
1 0.1154 0.0552 0.0327
2 0.1852 0.0427
3 0.0419

 Robust Covariance with No Outliers
 0 1 2 3
0 0.2474 0.0872 0.1535 0.0360
1 0.1073 0.0538 0.0322
2 0.1705 0.0412
3 0.0401

 Pooled Covariance with Outliers
 0 1 2 3
0 60.43 0.30 0.13 -1.56
1 70.53 0.17 -0.17
2 0.19 0.07

212 • robust_covariances IMSL C Stat Library

3 66.38

 Robust Covariance with Outliers
 0 1 2 3
0 0.2555 0.0876 0.1553 0.0359
1 0.1127 0.0545 0.0322
2 0.1723 0.0412
3 0.0424

Warning Errors

IMSLS_NO_CONVERGE_MAX_ITER Failure to converge within “maxit” = #
iterations for at least one of the “nroot” = #
roots.

Fatal Errors

IMSLS_BAD_GROUP_2 The group number for observation # is equal
to #. It must be greater than or equal to one
and less than or equal to #, the number of
groups.

Chapter 3: Correlation and Covariance robust_covariances • 213

Chapter 4: Analysis of Variance and Designed Experiments Routines • 215

Chapter 4: Analysis of Variance and
Designed Experiments

Routines
General Analysis of Variance

One-way analysis of variance anova_oneway 228
Analysis of variance for fixed effects,
balanced factorial designs anova_factorial 237
Nested random effects analysis of variance anova_nested 245
Analysis of variance for balanced fixed,
random, or mixed models anova_balanced 254

Designed Experiments
Analysis of balanced and unbalanced completely
randomized factorial experiments crd_factorial 266
Analysis of balanced and unbalanced randomized
complete block factorial experiments rcbd_factorial 277

Analysis of latin-square experiments latin_square 287

Analysis of balanced and partially-balanced data from
lattice experiments lattice 296

Analysis of split-plot experiments split_plot 314

Analysis of split-split-plot experiments split_split_plot 326

Analysis of strip-plot experiments strip_plot 342

Analysis of strip-split-plot experiments strip_split_plot 353

Utilities
Bartlett’s and Levene’s tests of the homogeneity
of variance assumption in analysis of variance homogeneity 376

Multiple comparisons of means multiple_comparisons 383

Yates’ method for estimating missing observations in
designed experiments yates 388

216 • Usage Notes IMSL C Stat Library

Usage Notes
The functions in this chapter cover a wide variety of commonly used experimental
designs. They can be categorized, not only based upon the underlying experimental
design that generated the user’s data, but also on whether they provide support for
missing values, factorial treatment structure, blocking and replication of the entire
experiment, or multiple locations.
Typically, responses are stored in the input vector y. For a few functions, such as
imsls_f_anova_oneway and imsls_f_anova_factorial the full set of model
subscripts is not needed to identify each response. They assume the usual pattern,
which requires that the last model subscript change most rapidly, followed by the
model subscript next in line, and so forth, with the first subscript changing at the
slowest rate. This pattern is referred to as lexicographical ordering.
However, for most of the functions in this chapter, one or more arrays are used to
describe the experimental conditions associated with each value in the response input
vector y. The function imsls_f_split_plot for example, requires three additional
input arrays: split, whole and rep. They are used to identify the split-plot, whole-
plot and replicate number associated with each value in y.
Many of the functions described in this chapter permit users to enter missing data
values using NaN (Not a Number) as the missing value code. Use function
imsls_f_machine (or function imsls_d_machine with the double-precision) to
retrieve NaN. Any element of y that is missing must be set to imsls_f_machine(6) or
imsls_d_machine(6) (for double precision). See imsls_f_machine in Chapter 15,
“Utilities ” for a description. Functions imsls_f_anova_factorial,
imsls_f_anova_nested and imsls_f_anova_balanced require complete,
balanced data, and do not accept missing values.
As a diagnostic tool for validating model assumptions, some functions in this chapter
perform a test for lack of fit when replicates are available in each cell of the
experimental design..

Completely Randomized Experiments
Completely randomized experiments are analyzed using some variation of the one-way
analysis of variance (Anova). A completely randomized design (CRD) is the simplest
and most common example of a statistically designed experiment. Researchers using a
CRD are interested in comparing the average effect of two or more treatments. In
agriculture, treatments might be different plant varieties or fertilizers. In industry,
treatments might be different product designs, different manufacturing plants, different
methods for delivering the product, etc. In business, different business processes, such
as different shipping methods or alternate approaches to a product repair process, might
be considered treatments. Regardless of the area, the one thing they have in common is
that random errors in the observations cause variations in differences between
treatment observations, making it difficult to confirm the effectiveness of one treatment
to another.
If observations on these treatments are completely independent then the design is
referred to as a completely randomized design or CRD. The IMSL C Numerical

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes • 217

Library has two routines for analysis of data from CRD: imsls_f_anova_oneway
and imsls_f_crd_factorial.
Both functions allow users to specify observations with missing values, have unequal
group sizes, and output treatment means and standard deviations. The primary
difference between the functions is that:
1. imsls_f_anova_oneway conducts multiple comparisons of treatment

functions; whereas imsls_f_crd_factorial requires users to make a call to
imsls_f_multiple_comparisons to compare treatment means.

2. imsls_f_crd_factorial can analyze treatments with a factorial treatment
structure; whereas imsls_f_anova_oneway does not analyze factorial
structures.

3. imsls_f_crd_factorial can analyze data from CRD experiments that are
replicated across several blocks or locations. This can happen when the same
experiment is repeated at different times or different locations.

Factorial Experiments
In some cases, treatments are identified by a combination of experimental factors. For
example, in an octane study comparing several different gasolines, each gasoline could
be developed using a combination of two additives, denoted below in Table 1, as
Additive A and Additive B.

Treatment Additive A Additive B

1 No No

2 Yes No

3 No Yes

4 Yes Yes

Table 1: 2x2 Factorial Experiment

This is referred to as a 2x2 or 22 factorial experiment. There are 4 treatments involved
in this study. One contains no additives, i.e. Treatment 1. Treatment 2 and 3 contain
only one of the additives and treatment 4 contains both. A one-way anova, such as
found in anova_oneway can analyze these data as four different treatments. Three
functions, imsls_f_crd_factorial, imsls_f_rcbd_factorial and
imsls_f_anova_factorial will analyze these data exploiting the factorial
treatment structure. These functions allow users to answer structural questions about
the treatments such as:
1. Are the average effects of the additives statistically significant? This is referred

to as the factor main effects.
2. Is there an interaction effect between the additives? That is, is the effectiveness

of an additive independent of the other?
Both imsls_f_crd_factorial and imsls_f_rcbd_factorial support analysis
of a factorial experiment with missing values and multiple locations. The function
imsls_f_anova_factorial does not support analysis of experiments with missing
values or experiments replicated over multiple locations. The main difference, as the

218 • Usage Notes IMSL C Stat Library

names imply, between imsls_f_crd_factorial and imsls_f_rcbd_factorial
is that imsls_f_crd_factorial assumes that treatments were completely
randomized to experimental units. The imsls_f_rcbd_factorial routine assumes
that treatments are blocked.

Blocking
Blocking is an important technique for reducing the impact of experimental error on
the ability of the researcher to evaluate treatment differences. Usually this
experimental error is caused by differences in location (spatial differences), differences
in time (temporal differences) or differences in experimental units. Researchers refer to
these as blocking factors. They are identifiable causes known to cause variation in
observations between experimental units.
There are several functions that specifically support blocking in an experiment:
imsls_f_rcbd_factorial, imsls_f_lattice, and imsls_f_latin_square.
The first two functions, imsls_f_rcbd_factorial and imsls_f_lattice, support
blocking on one factor.
A requirement of RCBD experiments is that every block must contain observations on
every treatment. However, when the number of treatments (t) is greater than the block
size (b), it is impossible to have every block contain observations on every treatment.

In this case, when t b> , an incomplete block design must be used instead of a RCBD.
Lattice designs are a type of incomplete block design in which the number of
treatments is equal to the square of an integer such as t = 9, 16, 25, etc. Lattice
designs were originally described by Yates (1936). The function imsls_f_lattice
supports analysis of data from lattice experiments.

Besides the requirement that 2t k= , another characteristic of lattice experiments is that
blocks be grouped into replicates, where each replicate contains one observation for
every treatment. This forces the number of blocks in each replicate to be equal to the
number of observations per block. That is, the number of blocks per replicate and the
number of observations per block are both equal to k t= .
In addition, the number of replicate groups in Lattice experiments is always less than or
equal to 1k + . If it is equal to 1k + then the design is referred to as a Balanced
Lattice. If it is less than 1k + then the design is referred to as a Partially Balanced
Lattice. Tables of these experiments and their analysis are tabulated in Cochran & Cox
(1950).
Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9. Notice that the
number of replicates is 1 4r k= + = . And the number of blocks per replicate and
block size are both 3k = . The total number of blocks is equal to

(1) 1b r k= ⋅ ⋅ − +n_locations . For a balanced-lattice,

(1) (1) 4 3 12b r k k k t t= ⋅ = + ⋅ = + ⋅ = ⋅ = .

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes • 219

Replicate I Replicate II
Block 1 (T1, T2, T3) Block 4 (T1, T4, T7)
Block 2 (T4, T5, T6) Block 5 (T2, T5, T8)
Block 3 (T7, T8, T9) Block 6 (T3, T6, T9)

Replicate III Replicate IV
Block 7 (T1, T5, T9) Block 10 (T1, T6, T8)
Block 8 (T2, T6, T7) Block 11 (T2, T4, T9)
Block 9 (T3, T4, T8) Block 12 (T3, T5, T7)

Table 2 - A 3x3 Balanced-Lattice for Nine Treatments in Four Replicates.

The Anova table for a balanced-lattice experiment, takes the form shared with other
balanced incomplete block experiments. In these experiments, the error term is divided
into two components: the Inter-Block Error and the Intra-Block Error. For single and
multiple locations, the general format of the Anova tables for Lattice experiments is
illustrated in Table 3 and Table 4.

Source DF Sum of Squares Mean Squares
 REPLICATES 1t − SSR MSR

 TREATMENTS(unadj) 1t − SST MST

TREATMENTS(adj) 1t − SSTa MSTa

BLOCKS(adj) (1)r k⋅ − SSBa MSBa

INTRA-BLOCK ERROR (1)(1)k r k k− ⋅ − − SSE MSE

TOTAL 1r t⋅ − SSTot

Table 3 – The Anova Table for a Lattice Experiment at One Location

Table 4 – The Anova Table for a Lattice Experiment at Multiple Locations

Source DF Sum of
Squares

Mean
Squares

LOCATIONS 1p − SSL MSL

REPLICATES WITHIN
LOCATIONS ()1p r − SSR MSR

TREATMENTS(unadj) 1t − SST MST

TREATMENTS(adj) 1t − SSTa MSTa

BLOCKS(adj) (1)p r k⋅ − SSB MSB

INTRA-BLOCK ERROR ()(1) 1p k r k k− ⋅ − − SSE MSE

TOTAL 1p r t⋅ ⋅ − SSTot

220 • Usage Notes IMSL C Stat Library

Latin Square designs are very popular in cases where:
1. two blocking factors are involved
2. the two blocking factors do not interact with treatments, and
3. the number of blocks for each factor is equal to the number of treatments.
Consider an octane study involving 4 test vehicles tested in 4 bays with 4 test
gasolines. This is a natural arrangement for a Latin square experiment. In this case
there are 4 treatments, and two blocking factors, test vehicle and bay, each with 4
levels. The Latin Square for this example would look like the following arrangement.

 Test Vehicle
 1 2 3 4

1 A C B D

2 D B A C

3 C A D B

Test

Bay

4 B D C A
Table 5. A Latin Square Design for t=4 Treatments

As illustrated above in Table 5, the letters A-D are used to denote the four test
gasolines, or treatments. The assignment of each treatment to a particular test vehicle
and test bay is described in Table 5. Gasoline A, for example, is tested in the following
four vehicle/bay combinations: (1/1), (2/3), (3/2), and (4/4).
Notice that each treatment appears exactly once in every row and column. This
balance, together with the assumed absence of interactions between treatments and the
two blocking factors is characteristic of a Latin Square.
The corresponding Anova table for these data contains information on the blocking
factors as well as treatment differences. Notice that the F-test for one of the two
blocking factors, test vehicle, is statistically significant (p = 0.048); whereas the other,
test bay, is not statistically significant (p=0.321).
Some researchers might use this as a basis to remove test bay as a blocking factor. In
that case, the design can then be analyzed as a RCBD experiment since every treatment
is repeated once and only once in every block, i.e., test vehicle.

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes • 221

Source Degrees
of

Freedom

Sum of
Squares

Mean Squares F-Test p-Value

Test Vehicle 3 1.5825 0.5275 4.83 0.048

Test Bay 3 0.0472 0.157 1.44 0.321

Gasoline 3 4.247 1.416 12.97 0.005

Error 6 0.655 0.109

Total 15 6.9575

Table 6 - Latin Square Anova Table for Octane Experiment

Multiple Locations
It is common for a researcher to repeat an experiment and then conduct an analysis of
the data. In agricultural experiments, for example, it is common to repeat an
experiment at several different farms. In other cases, a researcher may want to repeat
an experiment at a specified frequency, such as week, month or year. If these repeated
experiments are independent of one another then we can treat them as multiple
locations.
Several of the functions in this chapter allow for multiple locations:
imsls_f_crd_factorial, imsls_f_rcbd_factorial, imsls_f_lattice,
imsls_f_latin_square, imsls_f_split_plot, imsls_f_split_split_plot,
imsls_f_strip_plot, imsls_f_strip_split_plot. All of these functions allow for
analysis of experiments replicated at multiple locations. By default they all treat locations as
a random factor. Function imsls_f_split_plot also allows users to declare locations as a
fixed effect.

Split-Plot Designs – Nesting and Restricted Randomization
Originally, split-plot designs were developed for testing agricultural treatments, such as
varieties of wheat, different fertilizers or different insecticides. In these original
experiments, growing areas were divided into plots. The major treatment factor, such
as wheat variety, was randomly assigned to these plots. However, in addition to testing
wheat varieties, they wanted to test another treatment factor such as fertilizer. This
could have been done using a CRD or RCBD design. If a CRD design was used then
treatment combinations would need to be randomly assigned to plots, such as shown
below in Table 7.

CRD
W3F2 W1F3 W4F1 W2F1
W2F3 W1F1 W1F3 W1F2

W2F2 W3F1 W2F1 W4F2
W3F2 W1F1 W2F3 W1F2
W4F1 W3F2 W3F2 W4F3
W4F3 W3F1 W2F2 W4F2

Table 7 – Completely Randomized Experiments –Both Factors Randomized

222 • Usage Notes IMSL C Stat Library

In the CRD illustration above, any plot could have any combination of wheat variety
(W1, W2, W3 or W4) and fertilizer (F1, F2 or F3). There is no restriction on
randomization in a CRD. Any of the 4 3 12t = × = treatments can appear in any of the
24 plots.
If a RCBD were used, all t=12 treatment combinations would need to be arranged in
blocks similar to what is described in Table 8, which places one restriction on
randomization.

RCBD
W3F3 W1F3 W4F1 W4F3
W2F3 W1F1 W3F2 W1F2

Block 1

W2F2 W3F1 W2F1 W4F2
W3F2 W1F1 W2F3 W1F2 Block 2
W4F1 W1F3 W3F2 W4F3
Table 8 – Randomized Complete Block Experiments –

Both Factors Randomized Within a Block

The RCBD arrangement is basically a replicated CRD design with a randomization
restriction that treatments are divided into two groups of replicates which are assigned
to a block of land. Randomization of treatments only occurs within each block.
At first glance, a split-plot experiment could be mistaken for a RCBD experiment since
it is also blocked. The split-plot arrangement with only one replicate for this
experiment is illustrated below in Table 9. Notice that it appears as if levels of the
fertilizer factor (F1, F2, and F3) are nested within wheat variety (W1, W2, W3 and
W4), however that is not the case. Varieties were actually randomly assigned to one of
four rows in the field. After randomizing wheat varieties, fertilizer was randomized
within wheat variety.

Split-Plot Design
Block 1 W2 W2F1 W2F3 W2F2

W1 W1F3 W1F1 W1F2
W4 W4F1 W4F3 W4F2

W3 W3F2 W3F1 W3F3
Block 2 W3 W3F2 W3F1 W3F3

W1 W1F3 W1F1 W1F2
W4 W4F1 W4F3 W4F2
W2 W2F1 W2F3 W2F2

Table 9 – A Split-Plot Experiment for Wheat (W) and Fertilizer (F)

The essential distinction between split-plot experiments and completely randomized or
randomized complete block experiments is the presence of a second factor that is
blocked, or nested, within each level of the first factor. This second factor is referred to
as the split-plot factor, and the first is referred to as the whole-plot factor.
Both factors are randomized, but with a restriction on randomization of the second
factor, the split-plot factor. Whole plots (wheat variety) are randomly assigned,

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes • 223

without restriction to plots, or rows in this example. However, the randomization of
split-plots (fertilizer) is restricted. It is restricted to random assignment within whole-
plots.

Strip-Plot Designs
Strip-plot experiments look similar to split-plot experiments. In fact they are easily
confused, resulting in incorrect statistical analyses. The essential distinction between
strip-plot and split-plot experiments is the application of the second factor. In a split-
plot experiment, levels of the second factor are nested within the whole-plot factor (see
Table 11). In strip-plot experiments, the whole-plot factor is completely crossed with
the second factor (see Table 10).
This occurs, for example, when an agricultural field is used as a block and the levels of
the whole-plot factor are applied in vertical strips across the entire field. Levels of the
second factor are assigned to horizontal strips across the same block.

 Whole-Plot Factor
 A2 A1 A4 A3

B3 A2B3 A1B3 A4B3 A3B3
B1 A2B1 A1B1 A4B1 A3B1

Strip
Plot B2 A2B2 A1B2 A4B2 A3B2

Table 10 – Strip-Plot Experiments – Strip-Plots Completely Crossed

Whole Plot Factor
A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B3
A2B3 A1B1 A4B3 A3B1
A2B2 A1B2 A4B2 A3B2

Table 11 – Split-Plot Experiments – Split-Plots Nested within Strip-Plots

As described in the previous section, in a split-plot experiment the second experimental
factor, referred to as the split-plot factor, is nested within the first factor, referred to as
the whole-plot factor.
Consider, for example, the semiconductor experiment described in Figure 1, “Split-Plot
Randomization” below. The wafers from each plater, the whole-plot factor, are
divided into equal size groups and then randomly assigned to an etcher, the split-plot
factor. Wafers from different platers are etched separately from those that went
through another plating machine. Randomization occurred within each level of the
whole-plot factor, i.e., plater.
Graphically, as shown below, this arrangement appears similar to a tree or hierarchical
structure.

224 • Usage Notes IMSL C Stat Library

Figure 1 - Split-Plot Randomization

Notice that although there are only 3 etchers, 12 different runs are made using these
etchers. The wafers randomly assigned to the first plater and first etcher are processed
separately from the wafers assigned to other plating machines.
In a strip-plot experiment, the second randomization of the wafers to etchers occurs
differently, see Figure 2, “Strip-Plot Semiconductor Experiment.” Instead of
randomizing the wafers from each plater to the three etchers and then running them
separately from the wafers from another plater, the wafers from each plater are divided
into three groups and then each randomly assigned to one of the three etchers.
However, the wafers from all four plating machines assigned to the same etcher are run
together.

Figure 2 - Strip-Plot Semiconductor Experiment

Strip-plot experiments can be analyzed using imsls_f_strip_plot. Function
imsls_f_strip_plot returns a strip-plot Anova table with the following general
structure:

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes • 225

Source DF SS MS F-Test p-Value
Blocks 1 0.0005 0.0005 0.955 0.431
Whole-Plots: Plating Machines 2 0.0139 0.0070 64.39 0.015
Whole-Plot Error 2 0.0002 0.0001 0.194 0.838
Strip-Plots: Etchers 1 0.0033 0.0033 100.0 0.060
Strip-Plot Error 1 <0.0001 <0.0001 0.060 0.830
Whole-Plot x Strip-Plot 2 0.0033 0.0017 2.970 0.251
Whole-Plot x Strip-Plot Error 2 0.0011 0.0006
Total 11 0.0225

Table 12 - Strip-Plot Anova Table for Semiconductor Experiment

Split-Split Plot and Strip-Split Plot Experiments
There are hundreds of other designs used in research and industry. The designs
mentioned above are some of the most common. Other frequently used designs
include variations of the split and strip-plot designs:
• Split-Split-Plot Experiments, and
• Strip-Split Plot Experiments.
The essential distinction between split-plot and split-split-plot experiments is the
presence of a third factor that is blocked, or nested, within each level of the whole-plot
and split-plot factors. This third factor is referred to as the sub-plot, factor. A split-
plot experiment, see Table 12, has only two factors, denoted by A and B. The second
factor is nested within the first factor. Randomization of the second factor, the split-
plot factor, occurs within each level of the first factor.

Whole Plot Factor

A2 A1 A4 A3
A2B1 A1B3 A4B1 A3B2
A2B3 A1B1 A4B3 A3B1
A2B2 A1B2 A4B2 A3B3

Table 13 - Split-Plot Experiment – Split-Plot B Nested
within Whole-Plot A

On the other hand, a split-split plot experiment has three factors, illustrated in Table 14
by A, B and C. The second factor is nested within the first factor, and the third factor
is nested within the second.

226 • Usage Notes IMSL C Stat Library

Whole Plot Factor A
A2 A1 A4 A3

A2B3C2
A2B3C1

A1B2C1
A1B2C2

A4B1C2
A4B1C1

A3B3C2
A3B3C1

A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B3C2
A4B3C1

A3B2C2
A3B2C1

A2B2C2
A2B2C1

A1B3C1
A1B3C2

A4B2C1
A4B2C2

A3B1C2
A3B1C1

Table 14 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within
Split-Plot Factor B, Nested Within Whole-Plot Factor A

Contrast the split-split plot experiment to the same experiment run using a strip-split
plot design (see Table 15). In a strip-split plot experiment factor B is applied in strip
across factor A; whereas, in a split-split plot experiment, factor B is randomly assigned
to each level of factor A. In a strip-split plot experiment, the level of factor B is
constant across a row; whereas in a split-split plot experiment, the levels of factor B
change as you go across a row, reflecting the fact that for split-plot experiments, factor
B is randomized within each level of factor A.

 Factor A Strip Plots
 A2 A1 A4 A3

B3 A2B3C2
A2B3C1

A1B3C1
A1B3C2

A4B3C2
A4B3C1

A3B3C2
A3B3C1

B1 A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B1C2
A4B1C1

A3B1C2
A3B1C1

Factor B

Strip
Plots B2 A2B2C2

A2B2C1
A1B2C1
A1B2C2

A4B2C1
A4B2C2

A3B2C2
A3B2C1

Table 15 – Strip-Split Plot Experiment, Split-Plots Nested Within
Strip-Plot Factors A and B

In some studies, split-split-plot or strip-split-plot experiments are replicated at several
locations. Functions imsls_f_split_split_plot and
imsls_f_strip_split_plot can analyze these, even when the number of blocks or
replicates at each location is different.

Validating Key Assumptions in Anova
The key output in the analysis of designed experiments is the F-tests in the Anova table
for that experiment. The validity of these tests relies upon several key assumptions:
1. observational errors are independent of one another,
2. observational errors are Normally distributed, and
3. the variance of observational errors is homogeneous across treatments.
These are referred to as the independence, Normality and homogeneity of variance
assumptions. All of these assumptions are evaluated by examining the properties of
the residuals, which are estimates of the observational error for each observation.

Chapter 4: Analysis of Variance and Designed Experiments Usage Notes • 227

Residuals are calculated by taking the difference between each observed value in the
series and its corresponding estimate. In most cases, the residual is the difference
between the observed value and the mean for that treatment.
The independence assumption can be examined by evaluating the magnitude of the
correlations among the residuals sorted in the order they were collected. The IMSL
function imsls_f_autocorrelation (see Chapter 8, “Times Series and
Forecasting”). can be used to obtain these correlations. The autocorrelations, to a
maximum lag of about 20, can be examined to identify any that are statistically
significant.
Residuals should be independent of one another, which implies that all autocorrelations
with a lag of 1 or higher should be statistically equivalent to zero. If a statistically
significant autocorrelation is found, leading a researcher to conclude that an
autocorrelation is not equal to zero, then this would provide sufficient evidence to
conclude that the observational errors are not independent of one another.
The second major assumption for analysis of variance is the Normality assumption. In
the IMSL C Numerical Library, the function imsls_f_normality_test (see
Chapter 7, “Tests of Goodness of Fit”)can be used to determine whether the residuals
are not Normally distributed. A small p-value from this test provides sufficient
evidence to conclude that the observational errors are not Normally distributed.
The last assumption, homogeneity of variance, is evaluated by comparing treatment
standard errors. This is equivalent to testing whether 1 2 tσ σ σ= = =" , where iσ is
the standard deviation of the observational error for the ith treatment. This test can be
conducted using imsls_f_homogeneity. To conduct this test, the residuals, and
their corresponding treatment identifiers are passed into imsls_f_homogeneity. It
calculates the p-values for both Bartlett’s and Levene’s tests for equal variance. If a p-
value is below the stated significance level, a researcher would conclude that the within
treatment variances are not homogeneous.

Missing Observations
Missing observations create problems with the interpretation and calculation of
F-tests for designed experiments. The approach taken in the functions described in this
chapter is to estimate missing values using the Yates method and then to compute the
Anova table using these estimates.
Essentially the Yates method, implemented in imsls_f_yates, replaces missing
observations with the values that minimize the error sum of squares in the Anova table.
The Anova table is calculated using these estimates, with one modification. The total
degrees of freedom and the error degrees of freedom are both reduced by the number of
missing observations.
For simple cases, in which only one observation is missing, formulas have been
developed for most designs. See Steel and Torrie (1960) and Cochran and Cox (1957)
for a description of these formulas. However for more than one missing observation, a
multivariate optimization is conducted to simultaneously estimate the missing values.
For the simple case with only one missing value, this approach produces estimates
identical to the published formulas for a single missing value.

228 • anova_oneway IMSL C Stat Library

A potential issue arises when the Anova table contains more than one form of error,
such as split-plot and strip-plot designs. In every case, missing values are estimated by
minimizing the last error term in the table.

anova_oneway
Analyzes a one-way classification model.

Synopsis
#include <imsls.h>
float imsls_f_anova_oneway (int n_groups, int n[], float y[], ..., 0)
The type double function is imsls_d_anova_oneway

Required Arguments

int n_groups (Input)
Number of groups.

int n[] (Input)
Array of length n_groups containing the number of responses for each
group.

float y[] (Input)
Array of length n [0] + n [1] + … + n [n_group − 1] containing the responses
for each group.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_anova_oneway (int n_groups, int n[], float y[],

IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_GROUP_MEANS, float **means,
IMSLS_GROUP_MEANS_USER, float means[],
IMSLS_GROUP_STD_DEVS, float **std_devs,
IMSLS_GROUP_STD_DEVS_USER, float std_devs[],
IMSLS_GROUP_COUNTS, int **counts,
IMSLS_GROUP_COUNTS_USER, int counts[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_TUKEY, float **ci_diff_means, or
IMSLS_DUNN_SIDAK, float **ci_diff_means, or
IMSLS_BONFERRONI, float **ci_diff_means, or
IMSLS_SCHEFFE, float **ci_diff_means, or
IMSLS_ONE_AT_A_TIME, float **ci_diff_means,
IMSLS_TUKEY_USER, float ci_diff_means[], or

Chapter 4: Analysis of Variance and Designed Experiments anova_oneway • 229

IMSLS_DUNN_SIDAK_USER, float ci_diff_means[], or
IMSLS_BONFERRONI_USER, float ci_diff_means[], or
IMSLS_SCHEFFE_USER, float ci_diff_means[], or
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[],
0)

Optional Arguments

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to an internally allocated array of size 15 containing the
analysis of variance table. The analysis of variance statistics are as follows:

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square
8 overall F-statistic
9 p-value

10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_GROUP_MEANS, float **means (Output)
Address of a pointer to an internally allocated array of length n_groups
containing the group means.

IMSLS_GROUP_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_GROUP_MEANS.

IMSLS_GROUP_STD_DEVS, float **std_devs (Output)
Address of a pointer to an internally allocated array of length n_groups
containing the group standard deviations.

IMSLS_GROUP_STD_DEVS_USER, float std_devs[] (Output)
Storage for array std_devs is provided by the user. See IMSLS_STD_DEVS.

230 • anova_oneway IMSL C Stat Library

IMSLS_GROUP_COUNTS, int **counts (Output)
Address of a pointer to an internally allocated array of length n_groups
containing the number of nonmissing observations for the groups.

IMSLS_GROUP_COUNTS_USER, int counts[] (Output)
Storage for array counts is provided by the user. See IMSLS_COUNTS.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for the simultaneous interval estimation.
If IMSLS_TUKEY is specified, confidence must be in the range [90.0, 99.0).
Otherwise, confidence is in the range [0.0, 100.0).
Default: confidence = 95.0

IMSLS_TUKEY, float **ci_diff_means (Output), or
IMSLS_DUNN_SIDAK, float **ci_diff_means (Output), or
IMSLS_BONFERRONI, float **ci_diff_means (Output), or
IMSLS_SCHEFFE, float **ci_diff_means (Output), or

IMSLS_ONE_AT_A_TIME, float **ci_diff_means (Output)
Function imsls_f_anova_oneway computes the confidence intervals on all
pairwise differences of means using any one of six methods: Tukey, Tukey-
Kramer, Dunn-Šidák, Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time).
If IMSLS_TUKEY is specified, the Tukey confidence intervals are calculated if
the group sizes are equal; otherwise, the Tukey-Kramer confidence intervals
are calculated.

On return, ci_diff_means contains the address of a pointer to a

()2 5×ngroups

internally allocated array containing the statistics relating to the difference of
means.

Column Description
0 group number for the i-th mean
1 group number for the j-th mean
2 difference of means (i-th mean) − (j-th mean)
3 lower confidence limit for the difference
4 upper confidence limit for the difference

IMSLS_TUKEY_USER, float ci_diff_means[] (Output), or
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[] (Output), or
IMSLS_BONFERRONI_USER, float ci_diff_means[] (Output), or
IMSLS_SCHEFFE_USER, float ci_diff_means[] (Output), or
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[] (Output)

Storage for array ci_diff_means is provided by the user.

Chapter 4: Analysis of Variance and Designed Experiments anova_oneway • 231

Description
Function imsls_f_anova_oneway performs an analysis of variance of responses
from a oneway classification design. The model is

yij = μi + εij i = 1, 2, …, k; j = 1, 2, …, ni

where the observed value yij constitutes the j-th response in the i-th group,
μi denotes the population mean for the i-th group, and the εij arguments are errors that
are identically and independently distributed normal with mean 0 and variance σ2.
Function imsls_f_anova_oneway requires the yij observed responses as input into a
single vector y with responses in each group occupying contiguous locations. The
analysis of variance table is computed along with the group sample means and standard
deviations. A discussion of formulas and interpretations for the one-way analysis of
variance problem appears in most elementary statistics texts, e.g.,
Snedecor and Cochran (1967, Chapter 10).
Function imsls_f_anova_oneway computes simultaneous confidence intervals on all

()1
2

k k
k∗ −

=

pairwise comparisons of k means μ1 μ2, …, μk in the one-way analysis of variance
model. Any of several methods can be chosen. A good review of these methods is
given by Stoline (1981). The methods are also discussed in many elementary statistics
texts, e.g., Kirk (1982, pp. 114−127).

Let s2 be the estimated variance of a single observation. Let v be the degrees of
freedom associated with s2. Let

1
100.0

α = −
confidence

The methods are summarized as follows:
Tukey method: The Tukey method gives the narrowest simultaneous confidence
intervals for all pairwise differences of means μi − μj in balanced
(n1 = n2 = … = nk = n) one-way designs. The method is exact and uses the Studentized
range distribution. The formula for the difference μi − μj is given by

2
1 ; , sk vi j n

y y q α−− ±

where q1-a;k,v is the (1 − α) 100 percentage point of the Studentized range distribution
with parameters k and v.
Tukey-Kramer method: The Tukey-Kramer method is an approximate extension of
the Tukey method for the unbalanced case. (The method simplifies to the Tukey
method for the balanced case.) The method always produces confidence intervals
narrower than the Dunn-Šidák and Bonferroni methods. Hayter (1984) proved that the

232 • anova_oneway IMSL C Stat Library

method is conservative, i.e., the method guarantees a confidence coverage of at least
(1 − α) 100. Hayter’s proof gave further support to earlier recommendations for its use
(Stoline 1981). (Methods that are currently better are restricted to special cases and
only offer improvement in severely unbalanced cases; see, for example, Spurrier and
Isham 1985.) The formula for the difference μi − μj is given by the following:

2 2
1 ; ,

2 2i j

s si j v k
n n

y y q α− +
− ±

Dunn-Šidák method: The Dunn-Šidák method is a conservative method. The method
gives wider intervals than the Tukey-Kramer method. (For large v and small α and k,
the difference is only slight.) The method is slightly better than the Bonferroni method
and is based on an improved Bonferroni (multiplicative) inequality (Miller 1980, pp.
101, 254−255). The method uses the t distribution (see function
imsls_f_t_inverse_cdf, Chapter 11, “Probability Distribution Functions and
Inverses. The formula for the difference μi − μj is given by

()
2 2

1/1 1 1 ;
2 2

k

i j

i j s sv
n n

y y t
α

∗
+ − +

− ±

where tf ;v is the 100f percentage point of the t distribution with ν degrees of freedom.

Bonferroni method: The Bonferroni method is a conservative method based on the
Bonferroni (additive) inequality (Miller, p. 8). The method uses the t distribution. The
formula for the difference μi − μj is given by the following:

2 2
1 ;

2 i j

i j s sv
n nk

y y t
α

∗
− +

− ±

Scheffé method: The Scheffé method is an overly conservative method for
simultaneous confidence intervals on pairwise difference of means. The method is
applicable for simultaneous confidence intervals on all contrasts, i.e., all linear
combinations

1

k

i i
i

c μ
=
∑

where the following is true:

1

0
k

i
i

c
=

=∑

This method can be recommended here only if a large number of confidence intervals
on contrasts in addition to the pairwise differences of means are to be constructed. The
method uses the F distribution (see function imsls_f_F_inverse_cdf, Chapter 11,

Chapter 4: Analysis of Variance and Designed Experiments anova_oneway • 233

“Probabilty and Distribution Functions and Inverses”). The formula for the difference
μi − μj is given by

()
2 2

1 ; 1,1 ()i j k v
i j

s sy y k F
n nα− −− ± − +

where F1-a;(k-1),v is the (1 − α) 100 percentage point of the F distribution with
k − 1 and ν degrees of freedom.
One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is appropriate
for constructing a single confidence interval. The confidence percentage input is
appropriate for one interval at a time. The method has been used widely in conjunction
with the overall test of the null hypothesis
μ1 = μ2 = … = μk by the use of the F statistic. Fisher’s LSD (least significant
difference) test is a two-stage test that proceeds to make pairwise comparisons of
means only if the overall F test is significant. Milliken and Johnson (1984, p. 31)
recommend LSD comparisons after a significant F only if the number of comparisons
is small and the comparisons were planned prior to the analysis. If many unplanned
comparisons are made, they recommend Scheffé’s method. If the F test is insignificant,
a few planned comparisons for differences in means can still be performed by using
either Tukey, Tukey-Kramer, Dunn-Šidák,or Bonferroni methods. Because the F test is
insignificant, Scheffé’s method does not yield any significant differences. The formula
for the difference μi − μj is given by the following:

2 2
1 ;

2 i j

i j s sv
n n

y y t
α

− +
− ±

Examples

Example 1
This example computes a one-way analysis of variance for data discussed by Searle
(1971, Table 5.1, pp. 165−179). The responses are plant weights for six plants of three
different types—three normal, two off-types, and one aberrant. The responses are given
by type of plant in the following table:

Normal Off-Type Aberrant
101 84 32

105 88
94

#include <imsls.h>
main()
{
 int n_groups=3;
 int n[] = {3, 2, 1};
 float y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};

234 • anova_oneway IMSL C Stat Library

 float p_value;
 p_value = imsls_f_anova_oneway (n_groups, n, y, 0);
 printf ("p-value = %6.4f", p_value);
 }

Output
p-value = 0.002

Example 2
The data used in this example is the same as that used in the initial example. Here, the
anova_table is printed.

#include <imsls.h>
main()
{
 int n_groups=3;
 int n[] = {3, 2, 1};
 float y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0};
 float p_value;
 float *anova_table;
 char *labels[] = {
 "degrees of freedom for among groups",
 "degrees of freedom for within groups",
 "total (corrected) degrees of freedom",
 "sum of squares for among groups",
 "sum of squares for within groups",
 "total (corrected) sum of squares",
 "among mean square",
 "within mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 /* Perform analysis */
 p_value = imsls_f_anova_oneway (n_groups, n, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 0);
 /* Print results */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
}

Output
 * * * Analysis of Variance * * *
degrees of freedom for among groups 2.00
degrees of freedom for within groups 3.00
total (corrected) degrees of freedom 5.00
sum of squares for among groups 3480.00
sum of squares for within groups 70.00

Chapter 4: Analysis of Variance and Designed Experiments anova_oneway • 235

total (corrected) sum of squares 3550.00
among mean square 1740.00
within mean square 23.33
F-statistic 74.57
p-value 0.00
R-squared (in percent) 98.03
adjusted R-squared (in percent) 96.71
est. standard deviation of within error 4.83
overall mean of y 84.00
coefficient of variation (in percent) 5.75

Example 3
Simultaneous confidence intervals are generated for the following measurements of
cold-cranking power for five models of automobile batteries. Nelson (1989, pp. 232−
241) provided the data and approach.

Model 1 Model 2 Model 3 Model 4 Model 5
41 42 27 48 28
43 43 26 45 32
42 46 28 51 37
46 38 27 46 25

The Tukey method is chosen for the analysis of pairwise comparisons, with a
confidence level of 99 percent. The means and their confidence limits are output.

#include <imsls.h>

void main()
{

 int n_groups = 5;
 int n[] = {4, 4, 4, 4, 4};
 int permute[] = {2, 3, 4, 0, 1};
 float y[] = {41.0, 43.0, 42.0, 46.0, 42.0,
 43.0, 46.0, 38.0, 27.0, 26.0,
 28.0, 27.0, 48.0, 45.0, 51.0,
 46.0, 28.0, 32.0, 37.0, 25.0};
 float *anova_table, *ci_diff_means, tmp_diff_means[50];
 float confidence = 99.0;
 char *labels[] = {
 "degrees of freedom for among groups",
 "degrees of freedom for within groups",
 "total (corrected) degrees of freedom",
 "sum of squares for among groups",
 "sum of squares for within groups",
 "total (corrected) sum of squares",
 "among mean square",
 "within mean square", "F-statistic",
 "p-value", "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 char *mean_row_labels[] = {

236 • anova_oneway IMSL C Stat Library

 "first and second",
 "first and third",
 "first and fourth",
 "first and fifth",
 "second and third",
 "second and fourth",
 "second and fifth",
 "third and fourth",
 "third and fifth",
 "fourth and fifth"};
 char *mean_col_labels[] = {
 "Means",
 "Difference of means",
 "Lower limit",
 "Upper limit"};
 /* Perform analysis */

 imsls_f_anova_oneway(n_groups, n, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_CONFIDENCE, confidence,
 IMSLS_TUKEY, &ci_diff_means,
 0);
 /* Print anova_table */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15,
 1, anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
 /* Permute ci_diff_means for printing */
 imsls_f_permute_matrix(10, 5, ci_diff_means, permute,
 IMSLS_PERMUTE_COLUMNS,
 IMSLS_RETURN_USER, tmp_diff_means,
 0);
 /* Print ci_diff_means */
 imsls_f_write_matrix("* * * Differences in Means * * *\n", 10,
 3, tmp_diff_means,
 IMSLS_A_COL_DIM, 5,
 IMSLS_ROW_LABELS, mean_row_labels,
 IMSLS_COL_LABELS, mean_col_labels,
 IMSLS_WRITE_FORMAT, "%9.2f",
 0);
}

Output
 * * * Analysis of Variance * * *

degrees of freedom for among groups 4.00
degrees of freedom for within groups 15.00
total (corrected) degrees of freedom 19.00
sum of squares for among groups 1242.20
sum of squares for within groups 150.75
total (corrected) sum of squares 1392.95
among mean square 310.55
within mean square 10.05
F-statistic 30.90

Chapter 4: Analysis of Variance and Designed Experiments anova_factorial • 237

p-value 0.00
R-squared (in percent) 89.18
adjusted R-squared (in percent) 86.29
est. standard deviation of within error 3.17
overall mean of y 38.05
coefficient of variation (in percent) 8.33

 * * * Differences in Means * * *

Means Difference Lower limit Upper limit
 of means
first and second 0.75 -8.05 9.55
first and third 16.00 7.20 24.80
first and fourth -4.50 -13.30 4.30
first and fifth 12.50 3.70 21.30
second and third 15.25 6.45 24.05
second and fourth -5.25 -14.05 3.55
second and fifth 11.75 2.95 20.55
third and fourth -20.50 -29.30 -11.70
third and fifth -3.50 -12.30 5.30
fourth and fifth 17.00 8.20 25.80

anova_factorial
Analyzes a balanced factorial design with fixed effects.

Synopsis
#include <imsls.h>
float imsls_f_anova_factorial (int n_subscripts, int n_levels, float

y[], ..., 0)
The type double function is imsls_d_anova_factorial

Required Arguments

int n_subscripts (Input)
Number of subscripts. Number of factors in the model + 1 (for the error term).

int n_levels (Input)
Array of length n_subscripts containing the number of levels for each of
the factors for the first n_subscripts − 1 elements. n_levels
[n_subscripts − 1] is the number of observations per cell.

float y[] (Input)
Array of length n_levels [0]*n_levels [1]* … *n_levels
[n_subscripts − 1] containing the responses. Argument y must not contain
NaN for any of its elements, i.e., missing values are not allowed.

Return Value
The p-value for the overall F test.

238 • anova_factorial IMSL C Stat Library

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_anova_factorial (int n_subscripts, int n_levels, float

y[],
IMSLS_MODEL_ORDER, int model_order,
IMSLS_PURE_ERROR, or
IMSLS_POOL_INTERACTIONS,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
IMSLS_TEST_EFFECTS, float **test_effects,
IMSLS_TEST_EFFECTS_USER, float test_effects[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
0)

Optional Arguments

IMSLS_MODEL_ORDER, int model_order (Input)
Number of factors to be included in the highest-way interaction in the model.
Argument model_order must be in the interval [1, n_subscripts − 1]. For
example, a model_order of 1 indicates that a main effect model will be
analyzed, and a model_order of 2 indicates that two-way interactions will be
included in the model. Default: model_order = n_subscripts − 1

IMSLS_PURE_ERROR, or
IMSLS_POOL_INTERACTIONS (Input)

IMSLS_PURE_ERROR, the default option, indicates factor n_subscripts is
error. Its main effect and all its interaction effects are pooled into the error
with the other (model_order + 1)-way and higher-way interactions.
IMSLS_POOL_INTERACTIONS indicates factor n_subscripts is not error.
Only (model_order + 1)-way and higher-way interactions are included in the
error.

IMSLS_ANOVA_TABLE, float **anova_table (Output)
Address of a pointer to an internally allocated array of size 15 containing the
analysis of variance table. The analysis of variance statistics are given as
follows:

Element Analysis of Variance Statistics
0 degrees of freedom for the model
1 degrees of freedom for error
2 total (corrected) degrees of freedom
3 sum of squares for the model
4 sum of squares for error
5 total (corrected) sum of squares
6 model mean square
7 error mean square

Chapter 4: Analysis of Variance and Designed Experiments anova_factorial • 239

Element Analysis of Variance Statistics
8 Overall F-statistic
9 p-value
10 R2 (in percent)
11 adjusted R2 (in percent)
12 estimate of the standard deviation
13 overall mean of y
14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user. See
IMSLS_ANOVA_TABLE.

IMSLS_TEST_EFFECTS, float **test_effects (Output)
Address of a pointer to an NEF × 4 internally allocated array containing a
matrix containing statistics relating to the sums of squares for the effects in
the model. Here,

() () ()1 2 min (,| |)NEF n n n
n= + + + model_order…

where n is given by n_subscripts if IMSLS_POOL_INTERACTIONS is
specified; otherwise, n_subscripts − 1.

Suppose the factors are A, B, C, and error. With model_order = 3, rows 0
through NEF − 1 would correspond to A, B, C, AB, AC, BC, and ABC,
respectively. The columns of test_effects are as follows:

Column Description
0 degrees of freedom
1 sum of squares
2 F-statistic
3 p-value

IMSLS_TEST_EFFECTS_USER, float test_effects[] (Output)
Storage for array test_effects is provided by the user. See
IMSLS_TEST_EFFECTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an internally allocated array of length
(n_levels [0] + 1) × (n_levels [1] + 1) × … ×
(n_levels[n − 1] + 1) containing the subgroup means.

See argument IMSLS_TEST_EFFECTS for a definition of n. If the factors are
A, B, C, and error, the ordering of the means is grand mean, A means, B
means, C means, AB means, AC means, BC means, and ABC means.

240 • anova_factorial IMSL C Stat Library

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

Description
Function imsls_f_anova_factorial performs an analysis for an n-way
classification design with balanced data. For balanced data, there must be an equal
number of responses in each cell of the n-way layout. The effects are assumed to be
fixed effects. The model is an extension of the two-way model to include n factors. The
interactions (two-way, three-way, up to n-way) can be included in the model, or some
of the higher-way interactions can be pooled into error. The argument model_order
specifies the number of factors to be included in the highest-way interaction. For
example, if three-way and higher-way interactions are to be pooled into error, set
model_order = 2. (By default, model_order = n_subscripts − 1 with the last
subscript being the error subscript.) Argument IMSLS_PURE_ERROR indicates there are
repeated responses within the n-way cell;
IMSLS_POOL_INTERACTIONS_INTO_ERROR indicates otherwise.
Function imsls_f_anova_factorial requires the responses as input into a single
vector y in lexicographical order, so that the response subscript associated with the first
factor varies least rapidly, followed by the subscript associated with the second factor,
and so forth. Hemmerle (1967, Chapter 5) discusses the computational method.

Examples

Example 1
A two-way analysis of variance is performed with balanced data discussed by
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight gains
(in grams) of rats that were fed diets varying in the source (A) and level (B) of protein.
The model is

1, 2; 1, 2, 3; 1, 2, ...,10ijk i j ij ijky i j k= μ + α + β + γ + ε = = =

where
2 3 2 3

1 1 1 1

0; 0; 0 for 1, 2, 3; and 0i j ij ij
i j i j

jα β γ γ
= = = =

= = = = =∑ ∑ ∑ ∑

for i = 1, 2. The first responses in each cell in the two-way layout are given in the
following table:

 Protein Source (A)
Protein Level (B) Beef Cereal Pork
High 73, 102, 118, 104, 81,

107, 100, 87, 117, 111
98, 74, 56, 111,
95, 88, 82, 77,
86, 92

94, 79, 96, 98, 102, 102,
108, 91, 120, 105

Low 90, 76, 90, 64, 86, 51, 72,
90, 95, 78

107, 95, 97, 80,
98, 74, 74, 67,
89, 58

49, 82, 73, 86, 81, 97,
106, 70, 61, 82

Chapter 4: Analysis of Variance and Designed Experiments anova_factorial • 241

#include <imsls.h>

void main ()
{
 int n_subscripts= 3;
 int n_levels[3] = {3,2,10};
 float p_value;
 float y[60] = {
 73.0, 102.0, 118.0, 104.0, 81.0,
 107.0, 100.0, 87.0, 117.0, 111.0,
 90.0, 76.0, 90.0, 64.0, 86.0,
 51.0, 72.0, 90.0, 95.0, 78.0,
 98.0, 74.0, 56.0, 111.0, 95.0,
 88.0, 82.0, 77.0, 86.0, 92.0,
 107.0, 95.0, 97.0, 80.0, 98.0,
 74.0, 74.0, 67.0, 89.0, 58.0,
 94.0, 79.0, 96.0, 98.0, 102.0,
 102.0, 108.0, 91.0, 120.0, 105.0,
 49.0, 82.0, 73.0, 86.0, 81.0,
 97.0, 106.0, 70.0, 61.0, 82.0};

 p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y, 0);

 printf("P-value = %10.6f",p_value);
}

Output
P-value = 0.00229

Example 2
In this example, the same model and data is fit as in the initial example, but optional
arguments are used for a more complete analysis.

#include <imsls.h>

void main ()
{
 int n_subscripts= 3;
 int n_levels[3] = {3,2,10};
 float p_value;
 float *test_effects, *means, *anova_table;
 float y[60] = {
 73.0, 102.0, 118.0, 104.0, 81.0,
 107.0, 100.0, 87.0, 117.0, 111.0,
 90.0, 76.0, 90.0, 64.0, 86.0,
 51.0, 72.0, 90.0, 95.0, 78.0,
 98.0, 74.0, 56.0, 111.0, 95.0,
 88.0, 82.0, 77.0, 86.0, 92.0,
 107.0, 95.0, 97.0, 80.0, 98.0,
 74.0, 74.0, 67.0, 89.0, 58.0,
 94.0, 79.0, 96.0, 98.0, 102.0,
 102.0, 108.0, 91.0, 120.0, 105.0,
 49.0, 82.0, 73.0, 86.0, 81.0,

242 • anova_factorial IMSL C Stat Library

 97.0, 106.0, 70.0, 61.0, 82.0};
 char *labels[] = {
 "degrees of freedom for the model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for the model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square", "error mean square",
 "F-statistic", "p-value",
 "R-squared (in percent)","Adjusted R-squared (in percent)",
 "est. standard deviation of the model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 char *test_row_labels[] = {"A", "B", "A*B"};
 char *test_col_labels[] = {
 "Source", "DF", "Sum of\nSquares",
 "Mean\nSquare", "Prob. of\nLarger F"};

 char *mean_row_labels[] = {
 "grand mean",
 "A1", "A2", "A3",
 "B1", "B2",
 "A1*B1", "A1*B2", "A2*B1", "A2*B2", "A3*B1", "A3*B2"};
 /* Perform analysis */
 p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_MEANS, &means,
 0);

 printf("P-value = %10.6f",p_value);
 /* Print results */
 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

 imsls_f_write_matrix("* * * Variation Due to the Model * * *", 3, 4,
 test_effects,
 IMSLS_ROW_LABELS, test_row_labels,
 IMSLS_COL_LABELS, test_col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

 imsls_f_write_matrix("* * * Subgroup Means * * *", 12, 1,
 means,
 IMSLS_ROW_LABELS, mean_row_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
}

Chapter 4: Analysis of Variance and Designed Experiments anova_factorial • 243

Output
P-value = 0.002299

 * * * Analysis of Variance * * *

degrees of freedom for the model 5.0000
degrees of freedom for error 54.0000
total (corrected) degrees of freedom 59.0000
sum of squares for the model 4612.9346
sum of squares for error 11585.9990
total (corrected) sum of squares 16198.9336
model mean square 922.5869
error mean square 214.5555
F-statistic 4.3000
p-value 0.0023
R-squared (in percent) 28.4768
Adjusted R-squared (in percent) 21.8543
est. standard deviation of the model error 14.6477
overall mean of y 87.8667
coefficient of variation (in percent) 16.6704

 * * * Variation Due to the Model * * *
Source DF Sum of Mean Prob. of
 Squares Square Larger F
A 2.0000 266.5330 0.6211 0.5411
B 1.0000 3168.2678 14.7667 0.0003
A*B 2.0000 1178.1337 2.7455 0.0732

* * * Subgroup Means * * *
 grand mean 87.8667
 A1 89.6000
 A2 84.9000
 A3 89.1000
 B1 95.1333
 B2 80.6000
 A1*B1 100.0000
 A1*B2 79.2000
 A2*B1 85.9000
 A2*B2 83.9000
 A3*B1 99.5000
 A3*B2 78.7000

Example 3
This example performs a three-way analysis of variance using data discussed by Peter
W.M. John (1971, pp. 91−92). The responses are weights (in grams) of roots of carrots
grown with varying amounts of applied nitrogen (A), potassium (B), and phosphorus
(C). Each cell of the three-way layout has one response. Note that the ABC interactions
sum of squares, which is 186, is given incorrectly by Peter W.M. John (1971, Table
5.2.) The three-way layout is given in the following table:

244 • anova_factorial IMSL C Stat Library

 A0 A1 A2

 B0 B1 B2 B0 B1 B2 B0 B1 B2

C0 88.76 91.41 97.85 94.83 100.49 99.75 99.90 100.23 104.51

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.77 110.94

C2 86.01 104.20 90.09 81.06 120.80 108.77 94.72 118.39 102.87

#include <imsls.h>

void main ()
{
 int n_subscripts= 3;
 int n_levels[3] = {3,3,3};
 float p_value;
 float *test_effects, *anova_table;
 float y[27] = {
 88.76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95.85,
 90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75,
 112.3, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39,
 104.51, 110.94, 102.87};
 char *labels[] = {
 "degrees of freedom for the model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for the model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square", "error mean square",
 "F-statistic", "p-value",
 "R-squared (in percent)","Adjusted R-squared (in percent)",
 "est. standard deviation of the model error",
 "overall mean of y",
 "coefficient of variation (in percent)"};

 char *test_row_labels[] = {"A", "B", "C", "A*B", "A*C", "B*C"};
 char *test_col_labels[] = {
 "Source", "DF", "Sum of\nSquares",
 "Mean\nSquare", "Prob. of\nLarger F"};
 /* Perform analysis */
 p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_POOL_INTERACTIONS,
 0);
 /* Print results */
 printf("P-value = %10.6f",p_value);

 imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,
 anova_table,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

Chapter 4: Analysis of Variance and Designed Experiments anova_nested • 245

 imsls_f_write_matrix("* * * Variation Due to the Model * * *", 6, 4,
 test_effects,
 IMSLS_ROW_LABELS, test_row_labels,
 IMSLS_COL_LABELS, test_col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

}

Output
P-value = 0.008299

 * * * Analysis of Variance * * *

degrees of freedom for the model 18.0000
degrees of freedom for error 8.0000
total (corrected) degrees of freedom 26.0000
sum of squares for the model 2395.7290
sum of squares for error 185.7763
total (corrected) sum of squares 2581.5054
model mean square 133.0961
error mean square 23.2220
F-statistic 5.7315
p-value 0.0083
R-squared (in percent) 92.8036
Adjusted R-squared (in percent) 76.6116
est. standard deviation of the model error 4.8189
overall mean of y 98.9619
coefficient of variation (in percent) 4.8695

 * * * Variation Due to the Model * * *
Source DF Sum of Mean Prob. of
 Squares Square Larger F
A 2.0000 488.3678 10.5152 0.0058
B 2.0000 1090.6559 23.4832 0.0004
C 2.0000 49.1484 1.0582 0.3911
A*B 4.0000 142.5856 1.5350 0.2804
A*C 4.0000 32.3474 0.3482 0.8383
B*C 4.0000 592.6240 6.3800 0.0131

anova_nested
Analyzes a completely nested random model with possibly unequal numbers in the
subgroups.

Synopsis
#include <imsls.h>
float *imsls_f_anova_nested (int n_factors, int equal_option, int

n_levels[], float y[], ..., 0)
The type double function is imsls_d_anova_nested.

246 • anova_nested IMSL C Stat Library

Required Arguments

int n_factors (Input)
Number of factors (number of subscripts) in the model, including error.

int equal_option (Input)
Equal numbers option.

equal_option Description

0 Unequal numbers in the subgroups

1 Equal numbers in the subgroups

int n_levels[] (Input)
Array with the number of levels.

 If equal_option = 1, n_levels is of length n_factors and contains the
number of levels for each of the factors. In this case, the following additional
variables are referred to in the description of anova_nested:

Variable Description

 LNL n_levels[0] + n_levels[0] * n_levels[1] +
... + n_levels[0] * n_levels[1] * ... *
n_levels[n_factors – 2]

 LNLNF n_levels[0] * n_levels[1] * ...*
 n_levels[n_factors – 2]

NOBS The number of observations. NOBS equals n_levels[0] *
n_levels[1] * ... * n_levels[n_factors-1].

If equal_option = 0, n_levels contains the number of levels of each factor at each
level of the factor in which it is nested. In this case, the following additional variables
are referred to in the description of anova_nested:
Variable Description

 LNL Length of n_levels.

 LNLNF Length of the subvector of n_levels for the last factor.

NOBS Number of observations. NOBS equals the sum of the last
LNLNF elements of n_levels.

For example, a random one-way model with two groups, five responses in the first
group and ten in the second group, would have LNL= 3, LNLNF= 2, NOBS = 15,
n_levels[0] = 2, n_levels[1] = 5, and
n_levels[2] = 10.

float y[] (Input)
Array of length NOBS containing the responses. The elements of Y are
ordered lexicographically, i.e., the last model subscript changes most rapidly,
the next to last model subscript changes the next most rapidly, and so forth,
with the first subscript changing the slowest.

Chapter 4: Analysis of Variance and Designed Experiments anova_nested • 247

Return Value
The p-value for the F-statistic, anova_table[9].

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_anova_nested (int n_factors, int equal_option, int

n_levels[], float y[],
 IMSLS_ANOVA_TABLE, float **anova_table,
 IMSLS_ANOVA_TABLE_USER, float anova_table[]

IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[],
IMSLS_EMS, float **expect_mean_sq, IMSLS_EMS_USER, float
expect_mean_sq[], IMSLS_Y_MEANS, float **y_means,
IMSLS_Y_MEANS_USER, float y_means[],
 0)

Optional Arguments

IMSLS_ANOVA_TABLE, float **anova_table, (Output)
Address of a pointer to an internally allocated array of size 15
containing the analysis of variance table. The analysis of variance statistics are
as follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

9 p-value

10 R2 (in percent)

11 Adjusted R2 (in percent)

12 Estimate of the standard deviation

13 Overall mean of y

14 Coefficient of variation (in percent)

248 • anova_nested IMSL C Stat Library

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user.
See IMSLS_ANOVA_TABLE.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for two-sided interval estimates on the variance components,
in percent. confidence percent confidence intervals are computed, hence,
confidence must be in the interval [0.0, 100.0). confidence often
will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence
level ONECL, ONECL in the interval [50.0, 100.0), set
confidence = 100.0 - 2.0 * (100.0 - ONECL).
Default: confidence = 95.0

IMSLS_VARIANCE_COMPONENTS, float **variance_components, (Output)
Address to a pointer to an internally allocated array. variance_components
is an n_factors by 9 matrix containing statistics relating to the particular
variance components in the model. Rows of variance_components
correspond to the n_factors factors. Columns of variance_components
are as follows:

Column Description

 1 Degrees of freedom

 2 Sum of squares

 3 Mean squares

 4 F -statistic

 5 p-value for F test

 6 Variance component estimate

7 Percent of variance of variance explained by variance component

 8 Lower endpoint for a confidence interval on the variance
component

 9 Upper endpoint for a confidence interval on the variance
 component

A test for the error variance equal to zero cannot be performed.
variance_components(n_factors, 4) and
variance_components(n_factors, 5) are set to NaN (not a number).

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[] (Output)
Storage for array variance_components is provided by the user. See
IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **expect_mean_sq, (Output)
Address to a pointer to an internally allocated array of length
with expected mean square coefficients.

Chapter 4: Analysis of Variance and Designed Experiments anova_nested • 249

IMSLS_EMS_USER, float expect_mean_sq[], (Output)
Storage for array expect_mean_sq is provided by the user.
See IMSLS_EMS.

IMSLS_Y_MEANS, float **y_means (Output)
Address to a pointer to an internally allocated array containing the subgroup
means.

Equal options Length of y means

0 1 + n_levels[0] + n_levels[1] + … n_levels[
(LNL - LNLNF)-1] (See the description of argument n_levels
for definitions of LNL and LNLNF.)

1 1 + n_levels[0] + n_levels[0] * n_levels[1]
+ … + n_levels[0]* n_levels[1] * … * n_levels
[n_factors – 2]

If the factors are labeled A, B, C, and error, the ordering of the means is grand mean, A
means, AB means, and then ABC means.

IMSLS_Y_MEANS_USER, float y_means[], Storage for array y_means
is provided by the user. See IMSLS_Y_MEANS

Description
Routine imsls_f_anova_nested analyzes a nested random model with equal or
unequal numbers in the subgroups. The analysis includes an analysis of variance table
and computation of subgroup means and variance component estimates. Anderson and
Bancroft (1952, pages 325−330) discuss the methodology. The analysis of variance
method is used for estimating the variance components. This method solves a linear
system in which the mean squares are set to the expected mean squares. A problem that
Hocking (1985, pages
324−330) discusses is that this method can yield negative variance component
estimates. Hocking suggests a diagnostic procedure for locating the cause of a negative
estimate. It may be necessary to reexamine the assumptions of the model.

Example 1
An analysis of a three-factor nested random model with equal numbers in the
subgroups is performed using data discussed by Snedecor and Cochran (1967, Table
10.16.1, pages 285−288). The responses are calcium concentrations
(in percent, dry basis) as measured in the leaves of turnip greens. Four plants are taken
at random, then three leaves are randomly selected from each plant.
Finally, from each selected leaf two samples are taken to determine calcium
concentration. The model is

yijk = μ + αi + βij + eijk i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the
i-th plant, the αi’s are the plant effects and are taken to be independently distributed

250 • anova_nested IMSL C Stat Library

2(0,)N σ

the βij’s are leaf effects each independently distributed

2(0,)N βσ

and the εijk’s are errors each independently distributed N(0, σ2). The effects are all
assumed to be independently distributed. The data are given in the following table:

Plant Leaf Samples
1 1

2
3

3.28
3.52
2.88

3.09
3.48
2.80

2 1
2
3

2.46
1.87
2.19

2.44
1.92
2.19

3 1
2
3

2.77
3.74
2.55

2.66
3.44
2.55

4 1
2
3

3.78
4.07
3.31

3.87
4.12
3.31

#include <imsls.h>
#include <stdio.h>
#define Mfloat float
void main()
{
 Mfloat pvalue, *aov, *varc, *ymeans, *ems;

Mfloat y[] = {3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87,
 1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78,
 3.87, 4.07, 4.12, 3.31, 3.31};

int n_levels[] = {4, 3, 2};
 char *aov_labels[] = {
 "degrees of freedom for model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square",
 "error mean square",
 "F-statistic",
 "p-value",
 "R-squared (in percent)",

Chapter 4: Analysis of Variance and Designed Experiments anova_nested • 251

 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 char *ems_labels[] = {
 "Effect A and Error",
 "Effect A and Effect B",
 "Effect A and Effect A",
 "Effect B and Error",
 "Effect B and Effect B",
 "Error and Error"};
 char *means_labels[] = {
 "Grand mean",
 " A means 1",
 " A means 2",
 " A means 3",
 " A means 4",
 "AB means 1 1",
 "AB means 1 2",
 "AB means 1 3",
 "AB means 2 1",
 "AB means 2 2",
 "AB means 2 3",
 "AB means 3 1",
 "AB means 3 2",
 "AB means 3 3",
 "AB means 4 1",
 "AB means 4 2",
 "AB means 4 3"};
 char *components_labels[] = {
 "degrees of freedom for A",
 "sum of squares for A",
 "mean square of A",
 "F-statistic for A",
 "p-value for A",
 "Estimate of A",
 "Percent Variation Explained by A",
 "95% Confidence Interval Lower Limit for A",
 "95% Confidence Interval Upper Limit for A",
 "degrees of freedom for B",
 "sum of squares for B",
 "mean square of B",
 "F-statistic for B",
 "p-value for B",
 "Estimate of B",
 "Percent Variation Explained by B",
 "95% Confidence Interval Lower Limit for B",
 "95% Confidence Interval Upper Limit for B",
 "degrees of freedom for Error",
 "sum of squares for Error",
 "mean square of Error",
 "F-statistic for Error",
 "p-value for Error",
 "Estimate of Error",
 "Percent Explained by Error",

252 • anova_nested IMSL C Stat Library

 "95% Confidence Interval Lower Limit for Error",
 "95% Confidence Interval Upper Limit for Error"};

pvalue = imsls_f_anova_nested(3, 1, n_levels, y,
 IMSLS_ANOVA_TABLE, &aov,
 IMSLS_Y_MEANS, &ymeans,
 IMSLS_VARIANCE_COMPONENTS, &varc,
 IMSLS_EMS, &ems,
 0);

 printf("pvalue = %f\n", pvalue);
 imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,
 IMSLS_ROW_LABELS, aov_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);

imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *"
6, 1, ems,

 IMSLS_ROW_LABELS, ems_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);

imsls_f_write_matrix("* * * Means * * *", 17, 1, ymeans,
 IMSLS_ROW_LABELS, means_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);

imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *",
27, 1, varc,

 IMSLS_ROW_LABELS, components_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);
}

Output
pvalue = 0.079854

* * * Analysis of Variance * * *
degrees of freedom for model 11.00000
degrees of freedom for error 12.00000
total (corrected) degrees of freedom 23.00000
sum of squares for model 10.19054
sum of squares for error 0.07985
total (corrected) sum of squares 10.27040
model mean square 0.92641
error mean square 0.00665
F-statistic 139.21599
p-value 0.00000
R-squared (in percent) 99.22248
adjusted R-squared (in percent) 98.50976
est. standard deviation of within error 0.08158
overall mean of y 3.01208
coefficient of variation (in percent) 2.70826

 * * * Expected Mean Square Coefficients * * *
Effect A and Error 1.00
Effect A and Effect B 2.00
Effect A and Effect A 6.00

Chapter 4: Analysis of Variance and Designed Experiments anova_nested • 253

Effect B and Error 1.00
Effect B and Effect B 2.00
Error and Error 1.00

 * * * Means * * *
Grand mean 3.01
A means 1 3.17
A means 2 2.18
A means 3 2.95
A means 4 3.74
AB means 1 1 3.18
AB means 1 2 3.50
AB means 1 3 2.84
AB means 2 1 2.45
AB means 2 2 1.89
AB means 2 3 2.19
AB means 3 1 2.72
AB means 3 2 3.59
AB means 3 3 2.55
AB means 4 1 3.82
AB means 4 2 4.10
AB means 4 3 3.31

 * * Analysis of Variance / Variance Components * *
degrees of freedom for A 3.00000
sum of squares for A 7.56034
mean square of A 2.52011
F-statistic for A 7.66516
p-value for A 0.00973
Estimate of A 0.36522
Percent Variation Explained by A 68.53015
95% Confidence Interval Lower Limit for A 0.03955
95% Confidence Interval Upper Limit for A 5.78674
degrees of freedom for B 8.00000
sum of squares for B 2.63020
mean square of B 0.32878
F-statistic for B 49.40642
p-value for B 0.00000
Estimate of B 0.16106
Percent Variation Explained by B 30.22121
95% Confidence Interval Lower Limit for B 0.06967
95% Confidence Interval Upper Limit for B 0.60042
degrees of freedom for Error 12.00000
sum of squares for Error 0.07985
mean square of Error 0.00665
F-statistic for Error ***********
p-value for Error ***********
Estimate of Error 0.00665
Percent Explained by Error 1.24864
95% Confidence Interval Lower Limit for Error 0.00342
95% Confidence Interval Upper Limit for Error 0.01813

254 • anova_balanced IMSL C Stat Library

anova_balanced
Analyzes a balanced complete experimental design for a fixed, random, or mixed
model.

Synopsis
#include <imsls.h>
float *imsls_f_anova_balanced (int n_factors, int n_levels[], float y[],

int n_random, int index_random_factor[], int n_model_effects, int
n_factors_per_effect[], int index_factor_per_effect[], ..., 0)

The type double function is imsls_d_anova_balanced.

Required Arguments

int n_factors (Input)
Number of factors (number of subscripts) in the model, including error.

 int n_levels[] (Input)
Array of length n_factors containing the number of levels for each of the
factors.

float y[] (Input)
Array of length n_levels[0] * n_levels[1] *. . .*
n_levels[n_factors-1] containing the responses. y[] must not contain
NaN (not a number) for any of its elements, i.e., missing values are not
allowed.

int n_random (Input)
For positive n_random, |n_random| is the number of random factors. For
negative n_random, |n_random| is the number of random effects (sources
of variation).

 int index_random_factor[] (Input)
Index array of length |n_random| containing either the factor numbers to be
considered random (for n_random positive) or containing the effect numbers
to be considered random (for n_random negative). If n_random = 0,
index_random_factor is not referenced.

 int n_model_effects (Input)
Number of effects (sources of variation) due to the model excluding the
overall mean and error.

int n_factors_per_effect[] (Input)
Array of length n_model_effects containing the number of factors
associated with each effect in the model.

int index_factor_per_effect[] (Input)
Index vector of length n_factors_per_efffect[0] +
n_factors_per_effect[1] + . . . +
n_factors_per_effect[n_model_effects-1]. The first

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced • 255

n_factors_per_effect[0] elements give the factor numbers in the first
effect. The next n_factors_per_effect[1] elements give the factor
numbers in the second effect. The last n_factors_per_effect
[n_model_effects-1] elements give the factor numbers in the last effect.
Main effects must appear before their interactions. In general, an effect E
cannot appear after an effect
F if all of the indices for E appear also in F.

Return Value
The p-value for the F-statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_anova_balanced (int n_factors, int n_levels[], float y[],

int n_random, int index_random_factor[], int n_model_effects, int
n_factors_per_effect[], int index_factor_per_effect[],

 IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[]
IMSLS_MODEL, int model,
IMSLS_CONFIDENCE, float confidence,
IMSLS_VARIANCE_COMPONENTS, float **variance_components,
IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[],
IMSLS_EMS, float **ems,
IMSLS_EMS_USER, float ems[],
IMSLS_Y_MEANS, float **y_means,
IMSLS_Y_MEANS_USER, float y_means[],
0)

Optional Arguments

IMSLS_ANOVA_TABLE, float **anova_table, (Output)
Address of a pointer to an internally allocated array of size 15 containing the
analysis of variance table. The analysis of variance statistics are as follows:

Element Analysis of Variance Statistics

0 Degrees of freedom for the model

1 Degrees of freedom for error

2 Total (corrected) degrees of freedom

3 Sum of squares for the model

4 Sum of squares for error

5 Total (corrected) sum of squares

6 Model mean square

7 Error mean square

8 Overall F-statistic

256 • anova_balanced IMSL C Stat Library

Element Analysis of Variance Statistics

9 p-value

10 R2 (in percent)

11 adjusted R2 (in percent)

12 estimate of the standard deviation

13 overall mean of Y

14 coefficient of variation (in percent)

IMSLS_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for array anova_table is provided by the user.
See IMSLS_ANOVA_TABLE.

IMSLS_MODEL, int model, (Input)
Model Option

MODEL Meaning

0 Searle model

1 Scheffe model
For the Scheffe model, effects corresponding to interactions of fixed and random
factors have their sum over the subscripts corresponding to fixed factors equal to zero.
Also, the variance of a random interaction effect involving some fixed factors has a
multiplier for the associated variance component that involves the number of levels in
the fixed factors. The Searle model has no summation restrictions on the random
interaction effects and has a multiplier of one for each variance component. The
default is model = 0.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for two-sided interval estimates on the variance components, in
percent. confidence percent confidence intervals are computed, hence,
confidence must be in the interval [0.0, 100.0). confidence
often will be 90.0, 95.0, or 99.0.
For one-sided intervals with confidence level α, α
in the interval [50.0, 100.0),
set confidence = 100.0 - 2.0 * 100.0 - α).
Default: confidence = 95.0

IMSLS_VARIANCE_COMPONENTS, float **variance_components, (Output)
Address of a pointer to an array, variance_components.
variance_components is an (n_model_effects + 1) by 9 array
containing statistics relating to the particular variance components or effects
in the model and the error. Rows of variance_components correspond to
the n_model_effects effects plus error.

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced • 257

Element Description

 1 Degrees of freedom

 2 Sum of squares

 3 Mean squares

 4 F -statistic

 5 p-value for F test

 6 Variance component estimate

 7 Percent of variance of y explained by random effect

 8 Lower endpoint for a confidence interval on the variance
component

 9 Upper endpoint for a confidence interval on the variance
 component

Elements 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if there is
no variance component to be estimated. If the variance component estimate is negative,
columns 8 and 9 contain NaN.

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[] (Output)
Storage for array variance_components is provided by the user.
See IMSLS_VARIANCE_COMPONENTS.

IMSLS_EMS, float **ems, (Output)
Address of a pointer to an internally allocated array of length
(n_model_effects + 1) * (n_model_effects + 2)/2 containing
expected mean square coefficients. Suppose the effects are
A, B, and AB. The ordering of the coefficients in ems is as follows:

 Error AB B A

A ems[0] ems[1] ems[2] ems[2

B ems[4] ems[5] ems[6]

AB ems[7] ems[8]

Error ems[9]

IMSLS_EMS_USER, float ems[] (Output)
Storage for ems is provided by the user.
See IMSLS_EMS.

258 • anova_balanced IMSL C Stat Library

IMSLS_Y_MEANS, float **y_means (Output)
Address of a pointer to an internally allocated array of length (n_levels(0) +
1) * (n_levels (1) + 1) * . . . *
(n_levels (n-1) + 1) containing the subgroup means. Suppose the factors are
A, B, and C. The ordering of the means is grand mean, A means, B means, C
means, AB means, AC means, BC means, and ABC means.

IMSLS_Y_MEANS_USER, float y_means (Output)
Storage for y_means is provided by the user.
See IMSLS_Y_MEANS.

Description
Function imsls_f_anova_balanced analyzes a balanced complete experimental
design for a fixed, random, or mixed model. The analysis includes an analysis of
variance table, and computation of subgroup means and variance component estimates.
A choice of two parameterizations of the variance components for the model can be
made.

Scheffé (1959, pages 274−289) discusses the parameterization for model = 1. For
example, consider the following model equation with fixed factor A and random factor
B:

yijk = μ + αi + bj + cij + eijk i = 1, 2, …, a; j = 1, 2, …, b; k = 1, 2, …, n

The fixed effects αi’s are subject to the restriction

1 0a
i iα=∑ =

the bj’s are random effects identically and independently distributed
2(0,)BN σ

cij are interaction effects each distributed

21(0,)AB
aN

a
σ−

and are subject to the restrictions

1 0 for 1, 2, ...,a
i ijc j b=∑ = =

and the eijk’s are errors identically and independently distributed N(0, σ2). In general,
interactions of fixed and random factors have sums over subscripts corresponding to
fixed factors equal to zero. Also in general, the variance of a random interaction effect
is the associated variance component times a product of ratios for each fixed factor in
the random interaction term. Each ratio depends on the number of levels in the fixed

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced • 259

factor. In the earlier example, the random interaction AB has the ratio (a −1)/a as a
multiplier of

2
ABσ

and

2 2 21var()ijk B AB
ay

a
σ σ σ−

= + +

In a three-way crossed classification model, an ABC interaction effect with A fixed, B
random, and C fixed would have variance

2(1)(1)
ABC

a c
ac

σ− −

Searle (1971, pages 400−401) discusses the parameterization for model = 0. This
parameterization does not have the summation restrictions on the effects corresponding
to interactions of fixed and random factors. Also, the variance of each random
interaction term is the associated variance component, i.e., without the multiplier. This
parameterization is also used with unbalanced data, which is one reason for its
popularity with balanced data also. In the earlier example,

() 2 2 2var ijk B ABy σ σ σ= + +� �

Searle (1971, pages 400−404) compares these two parameterizations. Hocking (1973)
considers these different parameterizations and concludes they are equivalent because
they yield the same variance-covariance structure for the responses. Differences in
covariances for individual terms, differences in expected mean square coefficients and
differences in F tests are just a consequence of the definition of the individual terms in
the model and are not caused by any fundamental differences in the models. For the
earlier two-way model, Hocking states that the relations between the two
parameterizations of the variance components are

2 2 2

2 2

1
B B AB

AB AB

aσ σ σ

σ σ

= +

=

� �

�

where
2 2and B ABσ σ� �

are the variance components in the parameterization with model = 0.

260 • anova_balanced IMSL C Stat Library

The computations for degrees of freedom and sums of squares are the same regardless
of the option specified by model. imsls_f_anova_balanced first computes degrees
of freedom and sum of squares for a full factorial design. Degrees of freedom for
effects in the factorial design that are missing from the specified model are pooled into
the model effect containing the fewest subscripts but still containing the factorial
effect. If no such model effect exists, the factorial effect is pooled into error. If more
than one such effect exists, a terminal error message is issued indicating a misspecified
model.
The analysis of variance method is used for estimating the variance components.
This method solves a linear system in which the mean squares are set to the
expected mean squares. A problem that Hocking (1985, pages 324−330)
discusses is that this method can yield a negative variance component estimate.
Hocking suggests a diagnostic procedure for locating the cause of the negative
estimate. It may be necessary to re-examine the assumptions of the model.
The percentage of variation explained by each random effect is computed
(output in variance_components element 7) as the variance of the associated
random effect divided by the variance of y. The two parameterizations can lead to
different values because of the different definitions of the individual terms in the
model. For example, the percentage associated with the AB interaction term in the
earlier two-way mixed model is computed for model = 1 using the formula

2

2 2 2

1

% variation(AB|Model=1)
1

AB

B AB

a
a

a
a

σ

σ σ σ

−

=
−

+ +

while for the parameterization model = 0, the percentage is computed using the
formula

2

2 2 2% variation(AB|Model=0) AB

B AB

σ
σ σ σ

=
+ +
�

� �

In each case, the variance components are replaced by their estimates (stored in
variance_components element 6).
Confidence intervals on the variance components are computed using the method
discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620).

Example 1
An analysis of a generalized randomized block design is performed using data
discussed by Kirk (1982, Table 6.10-1, pages 293−297). The model is

yijk = μ + αi + bj + cij + eijk i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2
where yijk is the response for the k-th experimental unit in block j with treatment
i; the αi’s are the treatment effects and are subject to the restriction

2
1 0i iα=∑ =

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced • 261

the bj’s are block effects identically and independently distributed

2(0,)BN σ

cij are interaction effects each distributed

23
4(0,)ABN σ

and are subject to the restrictions
4

1 0 for 1, 2, 3, 4i ijc j=∑ = =

and the eijk’s are errors, identically and independently distributed N(0, σ2). The
interaction effects are assumed to be distributed independently of the errors.

The data are given in the following table:

 Block
Treatment 1 2 3 4

1 3, 6 3, 1 2, 2 3, 2

2 4, 5 4, 2 3, 4 3, 3

3 7, 8 7, 5 6, 5 6, 6

4 7, 8 9, 10 10, 9 8, 11

#include <imsls.h>
#include <stdio.h>

void main()
{
 float pvalue = -99.;
 int n_levels[] = {4, 4, 2};
 int indrf[] = {2, 3};
 int nfef[] = {1, 1, 2};
 int indef[] = {1, 2, 1, 2};
 float y[] = {3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0,
 2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0,
 6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0};
 float *aov=NULL, *y_means, *variance_components, *ems;

 char *aov_labels[] = {
 "degrees of freedom for model",
 "degrees of freedom for error",
 "total (corrected) degrees of freedom",
 "sum of squares for model",
 "sum of squares for error",
 "total (corrected) sum of squares",
 "model mean square",
 "error mean square",

262 • anova_balanced IMSL C Stat Library

 "F-statistic",
 "p-value",
 "R-squared (in percent)",
 "adjusted R-squared (in percent)",
 "est. standard deviation of within error",
 "overall mean of y",
 "coefficient of variation (in percent)"};
 char *ems_labels[] = {
 "Effect A and Error",
 "Effect A and Effect AB",
 "Effect A and Effect B",
 "Effect A and Effect A",
 "Effect B and Error",
 "Effect B and Effect AB",
 "Effect B and Effect B",
 "Effect AB and Error",
 "Effect AB and Effect AB",
 "Error and Error"};
 char *means_labels[] = {
 "Grand mean",
 " A means 1",
 " A means 2",
 " A means 3",
 " A means 4",
 " B means 1",
 " B means 2",
 " B means 3",
 " B means 4",
 "AB means 1 1",
 "AB means 1 2",
 "AB means 1 3",
 "AB means 1 4",
 "AB means 2 1",
 "AB means 2 2",
 "AB means 2 3",
 "AB means 2 4",
 "AB means 3 1",
 "AB means 3 2",
 "AB means 3 3",
 "AB means 3 4",
 "AB means 4 1",
 "AB means 4 2",
 "AB means 4 3",
 "AB means 4 4",};
 char *components_labels[] = {
 "degrees of freedom for A",
 "sum of squares for A",
 "mean square of A",
 "F-statistic for A",
 "p-value for A",
 "Estimate of A",
 "Percent Variation Explained by A",

 "95% Confidence Interval Lower Limit for A",
 "95% Confidence Interval Upper Limit for A",
 "degrees of freedom for B",

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced • 263

 "sum of squares for B",
 "mean square of B",
 "F-statistic for B",
 "p-value for B",

 "Estimate of B",
 "Percent Variation Explained by B",
 "95% Confidence Interval Lower Limit for B",
 "95% Confidence Interval Upper Limit for B",
 "degrees of freedom for AB",

 "sum of squares for AB",
 "mean square of AB",
 "F-statistic for AB",
 "p-value for AB",

 "Estimate of AB",
 "Percent Variation Explained by AB",
 "95% Confidence Interval Lower Limit for AB",
 "95% Confidence Interval Upper Limit for AB",
 "degrees of freedom for Error",

 "sum of squares for Error",
 "mean square of Error",

 "F-statistic for Error",
 "p-value for Error",

 "Estimate of Error",
 "Percent Explained by Error",
 "95% Confidence Interval Lower Limit for Error",
 "95% Confidence Interval Upper Limit for Error"};

pvalue = imsls_f_anova_balanced(3, n_levels, y, 2, indrf, 3, nfef, indef,
 IMSLS_MODEL, 1,
 IMSLS_EMS, &ems,
 IMSLS_VARIANCE_COMPONENTS,
&variance_components,
 IMSLS_Y_MEANS, &y_means,
 IMSLS_ANOVA_TABLE, &aov,
 0);

printf("p value of F statistic = %f\n", pvalue);
imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,
 IMSLS_ROW_LABELS, aov_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);
imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *",

 10, 1, ems,
 IMSLS_ROW_LABELS, ems_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",
 0);
imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *",

 36, 1,
variance_components,

 IMSLS_ROW_LABELS, components_labels,
 IMSLS_WRITE_FORMAT, "%10.5f",
 0);
imsls_f_write_matrix("means", 25, 1, y_means,
 IMSLS_ROW_LABELS, means_labels,
 IMSLS_WRITE_FORMAT, "%6.2f",

264 • anova_balanced IMSL C Stat Library

 0);

}

Output
 p value of F statistic = 0.000005

 * * * Analysis of Variance * * *

 degrees of freedom for model 15.00000
 degrees of freedom for error 16.00000
 total (corrected) degrees of freedom 31.00000

 sum of squares for model 216.50000
 sum of squares for error 19.00000
 total (corrected) sum of squares 235.50000
 model mean square 14.43333
 error mean square 1.18750
 F-statistic 12.15439
 p-value 0.00000
 R-squared (in percent) 91.93206
 adjusted R-squared (in percent) 84.36836
 est. standard deviation of within error 1.08972

 overall mean of y 5.37500
 coefficient of variation (in percent) 20.27395

 * * * Expected Mean Square Coefficients * * *

Effect A and Error 1.00
Effect A and Effect AB 2.00
Effect A and Effect B 0.00
Effect A and Effect A 8.00
Effect B and Error 1.00
Effect B and Effect AB 0.00
Effect B and Effect B 8.00
Effect AB and Error 1.00
Effect AB and Effect AB 2.00
Error and Error 1.00

 * * Analysis of Variance / Variance Components * *
 degrees of freedom for A 3.00000
 sum of squares for A 194.50000
 mean square of A 64.83334
 F-statistic for A 32.87324
 p-value for A 0.00004
 Estimate of A
 Percent Variation Explained by A
 95% Confidence Interval Lower Limit for A
 95% Confidence Interval Upper Limit for A
 degrees of freedom for B 3.00000
 sum of squares for B 4.25000
 mean square of B 1.41667
 F-statistic for B 1.19298
 p-value for B 0.34396
 Estimate of B 0.02865
 Percent Variation Explained by B 1.89655
 95% Confidence Interval Lower Limit for B 0.00000
 95% Confidence Interval Upper Limit for B 2.31682
 degrees of freedom for AB 9.00000

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced • 265

 sum of squares for AB 17.75000
 mean square of AB 1.97222
 F-statistic for AB 1.66082
 p-value for AB 0.18016
 Estimate of AB 0.39236
 Percent Variation Explained by AB 19.48276
 95% Confidence Interval Lower Limit for AB 0.00000
 95% Confidence Interval Upper Limit for AB 2.75803
 degrees of freedom for Error 16.00000
 sum of squares for Error 19.00000
 mean square of Error 1.18750
 F-statistic for Error
 p-value for Error
 Estimate of Error 1.18750
 Percent Explained by Error 78.62069
 95% Confidence Interval Lower Limit for Error 0.65868
 95% Confidence Interval Upper Limit for Error 2.75057

 means
 Grand mean 5.38
 A means 1 2.75
 A means 2 3.50
 A means 3 6.25
 A means 4 9.00
 B means 1 6.00
 B means 2 5.13
 B means 3 5.13
 B means 4 5.25
 AB means 1 1 4.50
 AB means 1 2 2.00
 AB means 1 3 2.00
 AB means 1 4 2.50
 AB means 2 1 4.50
 AB means 2 2 3.00
 AB means 2 3 3.50
 AB means 2 4 3.00
 AB means 3 1 7.50
 AB means 3 2 6.00
 AB means 3 3 5.50
 AB means 3 4 6.00
 AB means 4 1 7.50
 AB means 4 2 9.50
 AB means 4 3 9.50
 AB means 4 4 9.50

266 • crd_factorial IMSL C Stat Library

crd_factorial
Analyzes data from balanced and unbalanced completely randomized experiments.
Funtion crd_factorial does permit a factorial treatment structure. However, unlike
anova_factorial, function crd_factorial allows for missing data, unequal
replication and one or more locations.

Synopsis
#include <imsls.h>

float * imsls_f_crd_factorial (int n_obs, int n_locations,
int n_factors, int n_levels[], int model[], float y[],…, 0)

The type double function is imsls_d_crd_factorial.

Required Arguments

int n_obs (Input)
Number of missing and non-missing experimental observations.

int n_locations (Input)
Number of locations. n_locations must be one or greater.

int n_factors (Input)
Number of factors in the model.

int n_levels[] (Input)
Array of length n_factors+1. The n_levels[0] through
n_levels[n_factors-1] contain the number of levels for each factor. The
last element, n_levels[n_factors], contains the number of replicates for
each treatment combination within a location.

int model[] (Input)
A n_obs by (n_factors+1) array identifying the location and factor levels
associated with each observation in y. The first column must contain the
location identifier and the remaining columns the factor level identifiers in the
same order used in n_levels. If n_locations = 1, the first column is still
required, but its contents are ignored.

float y[] (Input)
An aray of length n_obs containing the experimental observations and any
missing values. Missing values are indicated by placing a NaN (not a
number) in y. The NaN value can be set using either the function
imsls_f_machine(6) or imsls_d_machine(6), depending upon whether
single or double precision is being used, respectively.

Return Value
A pointer to the memory location of a two dimensional, n_anova by 6 array containing
the ANOVA table, where:

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial • 267

1

m
a

ii
= + ∑

=

⎛ ⎞
⎜ ⎟
⎝ ⎠
n_factors

n_anova
,

where

2 if 1
3 if 1 and treatments are not replicated
4 if 1 and treatments are replicated at each location

a
=

= >
=

⎧⎪
⎨
⎪⎩

n_locations

n_locations

n_locations

Each row in this array contains values for one of the effects in the ANOVA table. The
first value in each row, anova_tablei,0 = anova_table[i*6], is the source identifier
which identifies the type of effect associated with values in that row. The remaining
values in a row contain the ANOVA table values using the following convention:

J anova_tablei,j = anova_table[i*6+j]
0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The values for the mean squares, F-statistic and p-value are set to NaN for the
residual and corrected total effects.

The Source Identifiers in the first column of anova_tablei,j are the only
negative values in anova_table. The absolute value of the source identifier
is equal to the order of the effect in that row. Main effects, for example, have
a source identifier of –1. Two-way interactions use a source identifier of –2,
and so on.

Source
Identifier

ANOVA Source

-1 Main Effects †

-2 Two-Way Interactions ‡

-3 Three-Way Interactions ‡

. .

. .

. .

268 • crd_factorial IMSL C Stat Library

Source
Identifier

ANOVA Source

-n_factors (n_factors)-way Interactions ‡

-n_factors-1 Effects Error Term

-n_factors-2 Residual ⇑

-n_factors-3 Corrected Total

Notes: By default, model_order = n_factors when treatments are replicated, or
n_locations >1. However, if treatments are not replicated and n_locations =1,
model_order = n_factors -1.
† The number of main effects is equal to n_factors+1 if n_locations >1, and
n_factors if n_locations =1. The first row of values, anova_table[0] through
anova_table[5] contain the location effect if n_locations >1. If
n_locations=1, then these values are the effects for factor 1.
⇑ The residual term is only provided when treatments are replicated, i.e.,
n_levels[n_factors]>1.
‡ The number of interaction effects for the nth-way interactions is equal to

⎛ ⎞
⎜ ⎟
⎝ ⎠
n_factors

n_way .

The order of these terms is in ascending order by treatment subscript. The interactions
for factor 1 appear first, followed by factor 2, factor 3, and so on.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_crd_factorial (int n_obs, int n_locations,

int n_factors, int n_levels[], int model[], float y[],
IMSLS_RETURN_USER, float anova_table[]
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_FACTOR_MEANS, float **factor_means,
IMSLS_FACTOR_MEANS_USER, float factor_means[],
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err,
IMSLS_FACTOR_STD_ERRORS_USER,

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial • 269

 float factor_std_err[],
IMSLS_TWO_WAY_MEANS,
 float **two_way_means,
IMSLS_TWO_WAY_MEANS_USER,
 float two_way_means[],
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err,
IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err,
IMSLS_TREATMENT_STD_ERROR_USER,
 float treatment_std_err[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 0)

Optional Arguments

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined n_anova by 6 array for the anova_table.

IMSLS_N_MISSING, int *n_missing (Output)
 Number of missing values, if any, found in y. Missing values are denoted
with a NaN (Not a Number) value.

IMSLS_CV, float *cv (Output)
 Coefficient of Variation computed by:

100 MS
CV residual⋅

=
grand_mean

IMSLS_GRAND_MEAN, float *grand_mean (Output)
 Mean of all the data across every location.

IMSLS_FACTOR_MEANS, float **factor_means (Output)
 Address of a pointer to an internally allocated array of length
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1] containing
the factor means.

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output)
Storage for the array factor_means, provided by the user.

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output)
Address of a pointer to an internally allocated n_factors by 2 array
containing factor standard errors and their associated degrees of freedom. The
first column contains the standard errors for comparing two factor means and
the second its associated degrees of freedom.

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output)
Storage for the array factor_std_err, provided by the user.

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output)
Address of a pointer to an internally allocated one-dimensional array

270 • crd_factorial IMSL C Stat Library

containing the two-way means for all two by two combinations of the factors.
The total length of this array when n_factors > 1 is equal to:

1

0 1

where -2[] [],
f f

i j i

i j f
+

= = +

× =∑ ∑ n_levels n_levels n_factors

 If n_factors = 1, NULL is returned. If n_factors>1, the means would first
be produced for all combinations of the first two factors followed by all
combinations of the remaining factors using the subscript order suggested by
the above formula. For example, if the experiment is a 2x2x2 factorial, the 12
two-way means would appear in the following order: A1B1, A1B2, A2B1,
A2B2, A1C1, A1C2, A2C1, A2C2, B1C1, B1C2, B2C1, and B2C2.

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output)
Storage for the array two_way_means, provided by the user.

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output)
Address of a pointer to an internally allocated n_two_way by 2 array
containing factor standard errors and their associated degrees of freedom.,
where

=
⎛ ⎞
⎜ ⎟
⎝ ⎠
n_factors

n_two_way
2

 The first column contains the standard errors for comparing two 2-way interaction
means and the second its associated degrees of freedom. The ordering of the rows
in this array is similar to that used in IMSLS TWO_WAY_MEANS. For example if
n_factors=4, then n_two_way =6 with the order AB, AC, AD, BC, BD, CD.

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output)
Storage for the array two_way_std_err, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size

[0] [1] [1]× × × −n_levels n_levels n_levels n_factors"

 containing the treatment means. The order of the means is organized in
ascending order by the value of the factor identifier. For example, if the
experiment is a 2x2x2 factorial, the 8 means would appear in the following
order: A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1, and
A2B2C2.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err (Output)
The array of length 2 containing standard error for comparing treatments

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial • 271

based upon the average number of replicates per treatment and its associated
degrees of freedom.

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output)
Storage for the array treatment_std_err, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the
labels for each of the n_anova rows of the returned ANOVA table. The
label for the i-th row of the ANOVA table can be printed with
printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single
call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output) Storage
for the anova_row_labels, provided by the user. The amount of space
required will vary depending upon the number of factors and n_anova. An
upperbound on the required memory is
char *anova_row_labels[n_anova* 60].

Description
The function imsls_f_crd_factorial analyzes factorial experiments replicated in
different locations. Unequal replication for each treatment and missing observations
are allowed. All factors are regarded as fixed effects in the analysis. However, if
multiple locations appear in the data, i.e., n_locations > 1, then all effects involving
locations are treated as random effects.
If n_locations = 1, then the residual mean square is used as the error mean square in
calculating the F-tests for all other effects. That is

MS

MS
effectF

residual
=

, when n_locations = 1.

 If n_locations > 1 then the error mean squares for all factor F-tests is the pooled
location interaction. For example, if n_factors = 2 then the error sum of squares,
degrees of freedom and mean squares are calculated by:

SS
df

SS SS SS SS

df df df df

MS error
error

error B LocationsA Locations A B Locations

error B LocationsA Locations A B Locations

error

= + +×× × ×

= + +×× × ×

=

Example
The following example is based upon data from a 3x2x2 completely randomized
design conducted at one location. For demonstration purposes, observation 9 is set to
missing.

272 • crd_factorial IMSL C Stat Library

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void ex_crd_doc(){

 int n_obs = 12;

 int n_locations = 1;

 int n_factors = 3;

 int n_levels[4] ={3, 2, 2, 1};

 int page_width = 132;

 /* model information */

 int model[]={

 1, 1, 1, 1,

 1, 1, 1, 2,

 1, 1, 2, 1,

 1, 1, 2, 2,

 1, 2, 1, 1,

 1, 2, 1, 2,

 1, 2, 2, 1,

 1, 2, 2, 2,

 1, 3, 1, 1,

 1, 3, 1, 2,

 1, 3, 2, 1,

 1, 3, 2, 2

 };

 /* response data */

 float y[] ={

 4.42725419998168950,

 2.12795543670654300,

 2.55254390835762020,

 1.21479606628417970,

 2.47588264942169190,

 5.01306104660034180,

 4.73502767086029050,

 4.58392113447189330,

 5.01421167794615030,

 4.11972457170486450,

 6.51671624183654790,

 4.73365202546119690

 };

 int model_order;

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial • 273

 int i, j, k, l, m, n_missing, i2, j2;

 int n_factor_levels=0, n_treatments=1;

 int n_two_way_means=0, n_two_way_std_err=0;

 int n_two_way_interactions=0;

 int n_subscripts, n_anova_table=2;

 float cv, grand_mean;

 float *anova_table;

 float *two_way_means, *two_way_std_err;

 float *treatment_means, *treatment_std_err;

 float *factor_means;

 float *factor_std_err;

 float aNaN = imsls_f_machine(6);

 char **anova_row_labels;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

 "Mean \nsquares", "\nF-Test", "\np-Value"};

 /*

 * Compute the length of some of the output arrays.

 */

 model_order = n_factors-1;

 for (i=0; i < n_factors; i++){

 n_factor_levels = n_factor_levels + n_levels[i];

 n_treatments = n_treatments*n_levels[i];

 for (j=i+1; j < n_factors; j++){

 n_two_way_interactions++;

 }

 }

 n_two_way_std_err = n_two_way_interactions;

 for (i=0; i < n_factors-1; i++){

 for (j=i+1; j < n_factors; j++){

 n_two_way_means = n_two_way_means + n_levels[i]*n_levels[j];

 }

 }

 n_subscripts = n_factors;

 n_anova_table = 2;

 for (i=1; i <= model_order; i++){

 n_anova_table += (int)imsls_f_binomial_coefficient(n_subscripts, i);

 }

 /* Set observation 9 to missing. */

 y[8] = aNaN;

 anova_table = imsls_f_crd_factorial(n_obs, n_locations, n_factors,

 n_levels, model, y,

274 • crd_factorial IMSL C Stat Library

 IMSLS_N_MISSING, &n_missing,

 IMSLS_CV, &cv,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_FACTOR_MEANS, &factor_means,

 IMSLS_FACTOR_STD_ERRORS,
 &factor_std_err,

 IMSLS_TWO_WAY_MEANS, &two_way_means,

 IMSLS_TWO_WAY_STD_ERRORS,
 &two_way_std_err,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_TREATMENT_STD_ERROR,
&treatment_std_err,

 IMSLS_ANOVA_ROW_LABELS,
&anova_row_labels,

 0) ;

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 n_anova_table, 6, anova_table,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\n\nNumber of Missing Values Estimated: %d", n_missing);

 printf("\nGrand Mean: %7.3f", grand_mean);

 printf("\nCoefficient of Variation: %7.3f", cv);

 m=0;

 /* Print Factor Means. */

 printf("\n\nFactor Means\n");

 for(i=0; i < n_factors; i++){

 printf(" Factor %d: ", i+1);

 for(j=0; j < n_levels[i]; j++){

 printf(" %f ", factor_means[m]);

 m++;

 }

 k = (int)factor_std_err[2*i+1];

 printf("\n std. err.(df): %f(%d) \n",

 factor_std_err[2*i], k);

 }

Chapter 4: Analysis of Variance and Designed Experiments crd_factorial • 275

 /* Print Two-Way Means. */

 printf("\n\nTwo-Way Means");

 m = 0;

 l=0;

 for(i=0; i < n_factors-1; i++){

 for(j=i+1; j < n_factors; j++){

 printf("\n Factor %d by Factor %d: \n", i+1, j+1);

 for(i2=0; i2 < n_levels[i]; i2++){

 for(j2=0; j2 < n_levels[j]; j2++){

 printf(" %f ",two_way_means[m]);

 m++;

 }

 printf("\n");

 }

 k = (int)two_way_std_err[l+1];

 printf(" std. err.(df): = %f(%d) \n", two_way_std_err[l], k);

 l+=2;

 }

 }

 /* Print Treatment Means. */

 printf("\n\nTreatment Means\n");

 m = 0;

 for(i=0; i < n_levels[0]; i++){

 for(j=0; j < n_levels[1]; j++){

 for(k=0; k < n_levels[2]; k++){

 printf(" Treatment[%d][%d][%d] Mean: %f \n",

 i+1, j+1, k+1, treatment_means[m]);

 m++;

 }

 }

 }

 k = (int)treatment_std_err[1];

 printf("\n Treatment Std. Err (df) %f(%d) \n",

 treatment_std_err[0], k);

}

276 • crd_factorial IMSL C Stat Library

Output
 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

[1] -1 2 13.060 6.530 7.843 0.245

[2] -1 1 0.107 0.107 0.129 0.780

[3] -1 1 1.301 1.301 1.563 0.429

[1]x[2] -2 2 3.768 1.884 2.263 0.425

[1]x[3] -2 2 5.253 2.626 3.154 0.370

[2]x[3] -2 1 0.560 0.560 0.672 0.563

Residual -4 1 1.665 1.665

Total -5 10 25.715

Number of Missing Values Estimated: 1

Grand Mean: 3.961

Coefficient of Variation: 32.574

Factor Means

 Factor 1: 2.580637 4.201973 5.101885

 std. err.(df): 0.912459(1)

 Factor 2: 3.866888 4.056109

 std. err.(df): 0.745020(1)

 Factor 3: 4.290812 3.632185

 std. err.(df): 0.745020(1)

Two-Way Means

 Factor 1 by Factor 2:

 3.277605 1.883670

 3.744472 4.659474

 4.578587 5.625184

 std. err.(df): = 1.290412(1)

 Factor 1 by Factor 3:

 3.489899 1.671376

 3.605455 4.798491

 5.777082 4.426688

 std. err.(df): = 1.290412(1)

 Factor 2 by Factor 3:

 3.980195 3.753580

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial • 277

 4.601429 3.510790

 std. err.(df): = 1.053617(1)

Treatment Means

 Treatment[1][1][1] Mean: 4.427254

 Treatment[1][1][2] Mean: 2.127955

 Treatment[1][2][1] Mean: 2.552544

 Treatment[1][2][2] Mean: 1.214796

 Treatment[2][1][1] Mean: 2.475883

 Treatment[2][1][2] Mean: 5.013061

 Treatment[2][2][1] Mean: 4.735028

 Treatment[2][2][2] Mean: 4.583921

 Treatment[3][1][1] Mean: 5.037448

 Treatment[3][1][2] Mean: 4.119725

 Treatment[3][2][1] Mean: 6.516716

 Treatment[3][2][2] Mean: 4.733652

 Treatment Std. Err (df) 1.824919(1)

rcbd_factorial
Analyzes data from balanced and unbalanced randomized complete-block experiments.
Unlike anova_factorial, function rcbd_factorial allows for missing data,
unequal replication and one or more locations.

Synopsis
#include <imsls.h>
float * imsls_f_rcbd_factorial (int n_obs, int n_locations, int n_factors,

int n_levels[],int model[], float y[],…, 0)
The type double function is imsls_d_rcbd_factorial.

Required Arguments

int n_obs (Input)
Number of missing and non-missing experimental observations.

int n_locations (Input)
Number of locations. n_locations must be one or greater.

int n_factors (Input)
Number of factors in the model.

int n_levels[] (Input)
Array of length n_factors+1. The n_levels[0] through
n_levels[n_factors-1] contain the number of levels for each factor. The
last element, n_levels[n_factors], contains the number of blocks at a

278 • rcbd_factorial IMSL C Stat Library

location. There must be at least two blocks and two levels for each factor, i.e.,
n_levels[i] >2 for i=0, 1, …, n_factors.

int model[] (Input)
A n_obs by (n_factors+2) array identifying the location, block and factor
levels associated with each observation in y. The first column must contain
the location identifier and the second column must contain the block identifier
for the observation associated with that row. The remaining columns,
columns 3 through n_factors+2, should contain the factor level identifiers
in the same order used in n_levels. If n_locations =1, the first column
is still required, but its contents are ignored.

float y[] (Input)
An array of length n_obs containing the experimental observations and any
missing values. Missing values are indicated by placing a NaN (not a
number) in y. The NaN value can be set using either the function
imsls_f_machine(6) or imsls_d_machine(6), depending upon whether
single or double precision is being used, respectively.

Return Value
A pointer to the memory location of a two dimensional, n_anova by 6 array containing
the ANOVA table, where:

1

m

i

a
i=

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑

n_factors
n_anova

,

3 if 1
5 if 1

a ⎧= ⎨
⎩

n_locations =

n_locations > ,

and m= model_order = n_factors –1.
Each row in this array contains values for one of the effects in the ANOVA table. The
first value in each row, anova_tablei,0 = anova_table[i*6], is the source
identifier which identifies the type of effect associated with values in that row. The
remaining values in a row contain the ANOVA table values using the following
convention:

j anova_table

i,j
= anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial • 279

j anova_table
i,j

= anova_table[i*6+j]

5 p-value for this F-statistic

The values for the mean squares, F-statistic and p-value are set to NaN for the residual
and corrected total effects.
The Source Identifiers in the first column of anova_tablei,j are the only negative
values in anova_table[]. The absolute value of the source identifier is equal to the
order of the effect in that row. Main effects, for example, have a source identifier
of –1. Two-way interactions use a source identifier of –2, –3 and so on.

Source
Identifier

ANOVA Source

-1 Main Effects †

-2 Two-Way Interactions ‡

-3 Three-Way Interactions ‡

. .

. .

. .
-n_factors (n_factors)-way Interactions ‡

-n_factors-1 Error Term for Factors and Interactions
-n_factors-2 Residual *
-n_factors-3 Corrected Total

Notes: The Effects Error Term is equal to the Residual effect if
n_locations = 1.
† The number of main effects is equal to n_factors+2 if
n_locations > 1, and n_factors +1 if n_locations = 1. The first two rows,
anova_table[0] through anova_table[10] are used to represent the location and
block effects if n_locations > 1. If n_locations=1, then anova_table[0]
through anova_table[5]contain the block effects.
‡ The number of interaction effects for the nth-way interactions is equal to

⎛ ⎞
⎜ ⎟
⎝ ⎠
n_factors

n_way .

The order of these terms is in ascending order by treatment subscript. The interactions
for factor 1 appear first, followed by factor 2, factor 3, and so on.
* The residual term is only produced when there is replication within blocks.

Synopsis with Optional Arguments
#include <imsls.h>

280 • rcbd_factorial IMSL C Stat Library

float * imsls_f_rcbd_factorial (int n_obs, int n_locations,
int n_factors, int n_levels[], int model[],float y[],
IMSLS_RETURN_USER, float anova_table[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_FACTOR_MEANS, float **factor_means,
IMSLS_FACTOR_MEANS_USER, float factor_means[],
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err,
IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[],
IMSLS_TWO_WAY_MEANS, float **two_way_means,
IMSLS_TWO_WAY_MEANS_USER, float two_way_means[],
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err,
IMSLS_TWO_WAY_STD_ERRORS_USER,
 float two_way_std_err[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_TREATMENT_STD_ERROR, *float treatment_std_err,
IMSLS_TREATMENT_STD_ERROR_USER,
 float treatment_std_err[]
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined n_anova by 6 array for the anova_table.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted
with a NaN (Not a Number) value.

IMSLS_CV, float *cv (Output)
Coefficient of Variation computed by:

100 MSresidualCV
⋅

=
grand_mean .

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_FACTOR_MEANS, float **factor_means (Output)
Address of a pointer to an internally allocated array of length
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1] containing
the factor means.

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial • 281

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output)
Storage for the array factor_means, provided by the user.

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output)
Address of a pointer to an internally allocated n_factors by 2 array
containing factor standard errors and their associated degrees of freedom. The
first column contains the standard errors for comparing two factor means and
the second its associated degrees of freedom

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output)
Storage for the array factor_std_err, provided by the user.

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output)
Address of a pointer to an internally allocated one-dimensional array
containing the two-way means for all two by two combinations of the factors.
The total length of this array when n_factors >1 is equal to:

1

0 1

[] []
f f

i j i

i j
+

= = +

×∑ ∑ n_levels n_levels
,

 where

2f = −n_factors

 If n_factors = 1, NULL is returned. If n_factors>1, the means would
first be produced for all combinations of the first two factors followed by all
combinations of the remaining factors using the subscript order suggested by
the above formula. For example, if the experiment is a 2x2x2 factorial, the 12
two-way means would appear in the following order: A1B1, A1B2, A2B1,
A2B2, A1C1, A1C2, A2C1, A2C2, B1C1, B1C2, B2C1, and B2C2.

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output)
Storage for the array two_way_means, provided by the user.

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output)
Address of a pointer to an internally allocated n_two_way by 2 array
containing factor standard errors and their associated degrees of freedom.,
where

⎛ ⎞
⎜ ⎟
⎝ ⎠
n_factors

n_two_way =
2

 The first column contains the standard errors for comparing two 2-way
interaction means and the second its associated degrees of freedom. The
ordering of the rows in this array is similar to that used in

282 • rcbd_factorial IMSL C Stat Library

IMSLS_TWO_WAY_MEANS. For example if n_factors=4, then
n_two_way = 6 with the order AB, AC, AD, BC, BD, CD.

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output)
Storage for the array two_way_std_err, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size

[0] [1] [1]× × × −n_levels n_levels n_levels n_factors"

 containing the treatment means. The order of the means is organized in ascending
order by the value of the factor identifier. For example, if the experiment is a
2x2x2 factorial, the 8 means would appear in the following order: A1B1C1,
A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1, and A2B2C2.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_TREATMENT_STD_ERROR, float *treatment_std_err (Output)
The array of length 2 containing standard error for comparing treatments
based upon the average number of replicates per treatment and its associated
degrees of freedom.

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output)
Storage for the array treatment_std_err, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the
labels for each of the n_anova rows of the returned ANOVA table. The
label for the ith row of the ANOVA table can be printed with
printf("%s", anova_row_labels[i]).

 The memory associated with anova_row_labels can be freed with a single
call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount
of space required will vary depending upon the number of factors and
n_anova. An upperbound on the required memory is
char *anova_row_labels[100*(n_anova+1)].

Description
The function imsls_f_rcbd_factorial is capable of analyzing randomized
complete block factorial experiments replicated in different locations. Missing
observations are estimated using the Yates method. Locations, if used, and blocks are
treated as random factors. All treatment factors are regarded as fixed effects in the
analysis. If n_locations > 1, then blocks are treated as nested within locations and
the number of blocks used at each location must be the same.
If n_locations = 1, then the residual mean square is used as the error mean square in
calculating the F-tests for all other effects. That is

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial • 283

effect
effect

residual

MS
F

MS
= , when n_locations = 1.

In this case, the residual mean square is calculating by pooling all interactions between
treatments and blocks. For example, if treatments are formed from two factors, A and
B, then

residual A Blocks B Blocks A B Blocks

residual A Blocks B Blocks A B Blocks

residual
residual

residual

SS SS SS SS
df df df df

SSMS
df

× × × ×

× × × ×

= + +
= + +

=

When n_locations = 1, then residualMS is also used to calculate the standard errors
between means. For example, in a two factor experiment:

Std Err(A)

Std Err(B)

Std Err(A B)

2

2

2

residual

A

residual

B

residual

A B

MS
N

MS
N

MS
N ×

=

=

× =

⋅

⋅

⋅

,

where

AN
, BN

 and A BN ×

are the number of observations for each level of the effects A, B and their interaction,
respectively.
 If n_locations > 1, then the error mean square is used as the denominator of the
F-test for effects:

effect
effect

error

MS
F

MS
=

.

The error mean square in this calculation is obtained by pooling all interactions
between each factor and locations. For example n_locations > 1 and n_factors=2
then:

284 • rcbd_factorial IMSL C Stat Library

error A Locations B Locations A B Locations

error A Locations B Locations A B Locations

error
error

error

SS SS SS SS
df df df df

SSMS
df

× × × ×

× × × ×

= + +
= + +

=

In this case, n_locations > 1, the standard errors for means are calculated using

instead of error residualMS MS

The F-test for differences between locations is calculated using the mean squares for
blocks within locations:

()

locations
locations

blocks location

MSF
MS

=

Example
This example is based upon data from an agricultural trial conducted by DOW
Agrosciences. This is a three factor, 3x2x2, experiment replicated in two blocks at one
location. For illustration, two observations are set to NaN to simulate missing
observations.

#include <stdio.h>

#include <math.h>

#include "imsls.h"

void main(){

 int n_obs = 24;

 int n_locations = 1;

 int n_factors = 3;

 int n_levels[4] ={3, 2, 2, 2};

 int model[]={

 1, 1, 1, 1, 1,

 1, 2, 1, 1, 1,

 1, 1, 1, 1, 2,

 1, 2, 1, 1, 2,

 1, 1, 1, 2, 1,

 1, 2, 1, 2, 1,

 1, 1, 1, 2, 2,

 1, 2, 1, 2, 2,

 1, 1, 2, 1, 1,

 1, 2, 2, 1, 1,

Chapter 4: Analysis of Variance and Designed Experiments rcbd_factorial • 285

 1, 1, 2, 1, 2,

 1, 2, 2, 1, 2,

 1, 1, 2, 2, 1,

 1, 2, 2, 2, 1,

 1, 1, 2, 2, 2,

 1, 2, 2, 2, 2,

 1, 1, 3, 1, 1,

 1, 2, 3, 1, 1,

 1, 1, 3, 1, 2,

 1, 2, 3, 1, 2,

 1, 1, 3, 2, 1,

 1, 2, 3, 2, 1,

 1, 1, 3, 2, 2,

 1, 2, 3, 2, 2

 };

 float y[] ={

 4.42725419998168950, 2.98526261840015650,

 2.12795543670654300, 4.36357164382934570,

 2.55254390835762020, 2.78596709668636320,

 1.21479606628417970, 2.68143519759178160,

 2.47588264942169190, 4.69543695449829100,

 5.01306104660034180, 3.01919978857040410,

 4.73502767086029050, 0.00000000000000000,

 0.00000000000000000, 5.05780076980590820,

 5.01421167794615030, 3.61517095565795900,

 4.11972457170486450, 4.71947982907295230,

 6.51671624183654790, 4.22036057710647580,

 4.73365202546119690, 4.68545144796371460

 };

 int page_width = 132;

 int model_order;

 int i, n_subscripts, n_anova_table;

 char **aov_labels;

 char *col_labels[] = {" ", "ID", "df", "SS",

 "MS", "F-Test", "P-Value"};

 float *anova_table;

 /* Compute number of rows in the anova table. */

 model_order = n_subscripts = n_factors;

 n_anova_table = 3;

 for (i=1; i <= model_order; i++){

286 • rcbd_factorial IMSL C Stat Library

 n_anova_table += imsls_d_binomial_coefficient(n_subscripts, i);

 }

 /* Set missing observations. */

 y[13] = imsls_d_machine(6);

 y[14] = imsls_d_machine(6);

 anova_table = imsls_f_rcbd_factorial(n_obs, n_locations, n_factors,

 n_levels, model, y,

 IMSLS_ANOVA_ROW_LABELS, &aov_labels,

 0) ;

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /*

 * Print ANOVA table.

 */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 10, 6, anova_table,

 IMSLS_ROW_LABELS, aov_labels,

 IMSLS_COL_LABELS, col_labels,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 0);

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 ID df SS MS F-Test P-Value

Blocks -1 1 0.01 0.01

[1] -1 2 14.73 7.37 5.15 0.032

[2] -1 1 0.24 0.24 0.17 0.692

[3] -1 1 0.15 0.15 0.10 0.756

[1]x[2] -2 2 5.79 2.89 2.02 0.188

[1]x[3] -2 2 1.02 0.51 0.36 0.709

[2]x[3] -2 1 0.20 0.20 0.14 0.719

[1]x[2]x[3] -3 2 0.13 0.07 0.05 0.956

Error -4 9 12.88 1.43

Total -6 21 35.15

Chapter 4: Analysis of Variance and Designed Experiments latin_square • 287

latin_square
Analyzes data from latin-square experiments. Function latin_square also analyzes
latin-square experiments replicated at several locations.

Synopsis
#include <imsls.h>
float * imsls_f_latin_square (int n, int n_locations,

int n_treatments, int row[], int col[], int treatment[],
 float y[], …, 0)

The type double function is imsls_d_latin_square.

Required Arguments

int n (Input)
Number of missing and non-missing experimental observations.
imsls_f_latin_square verifies that:

2n = ⋅n_locations n_treatments

hint n_locations (Input)
Number of locations. n_locations must be one or greater. If
n_locations>1 then the optional array locations[] must be included as
input to imsls_f_latin_square.

int n_treatments (Input)
Number of treatments. n_treatments must be greater than one. In addition
the number of rows and columns must be equal to n_treatments.

int row[] (Input)
An array of length n containing the row identifiers for each observation in y.
Each row must be assigned values from 1 to n_treatments.
imsls_f_latin_square verifies that the number of unique factor A
identifiers is equal to n_treatments.

int col[] (Input)
An array of length n containing the column identifiers for each observation in
y. Each column must be assigned values from 1 to n_treatments.
imsls_f_latin_square verifies that the number of unique column
identifiers is equal to n_treatments.

int treatment[] (Input)
An array of length n containing the treatment identifiers for each observation
in y. Each treatment must be assigned values from 1 to n_treatments.
imsls_f_latin_square verifies that the number of unique treatment
identifiers is equal to n_treatments.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated by

288 • latin_square IMSL C Stat Library

placing a NaN (not a number) in y. The NaN value can be set using either the
function imsls_f_machine(6) or imsls_d_machine((6), depending upon
whether single or double precision is being used, respectively. The location,
row, column, and treatment number for each observation in y are identified
by the corresponding values in the arguments locations, row, col, and
treatment.

Return Value
Address of a pointer to the memory location of a two dimensional, 7 by 6 array
containing the ANOVA table. Each row in this array contains values for one of the
effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated
with values in that row. The remaining values in a row contain the ANOVA table
values using the following convention:

J anova_table
i,j
= anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only negative
values in anova_table[]. Assignments of identifiers to ANOVA sources use the
following coding:

Source
Identifier

ANOVA Source

-1 LOCATIONS †

-2 ROWS

-3 COLUMNS

-4 TREATMENTS

-5 LOCATIONS × TREATMENTS †

-6 ERROR WITHIN LOCATIONS

-7 CORRECTED TOTAL

Notes: † If n_locations=1 rows involving location are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_latin_square (int n, int n_locations, int n_treatments, int

row[], int col[], int treatment[], float y[],

Chapter 4: Analysis of Variance and Designed Experiments latin_square • 289

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

Optional Arguments

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined array of length 42 for storage of the 7 by 6 anova table described
as the return argument for this routine. For a detailed description of the
format for this table, see the previous description of the return arguments for
imsls_f_latin_square.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation in
y. Unique integers must be assigned to each location in the study. This
argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted
with a NaN (Not a Number) value.

IMSLS_CV, float *cv (Output)
The coefficient of variation computed by using the within location standard
deviation.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size n_treatments
containing the treatment means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 2 containing the
standard error and associated degrees of freedom for comparing two
treatment means. std_err[0] contains the standard error and its degrees of
freedom are returned in std_err[1].

290 • latin_square IMSL C Stat Library

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
 Address of a pointer to an internally allocated 3-dimensional array of size
n_locations by 7 by 6 containing the anova tables associated with each
location. For each location, the 7 by 6 dimensional array corresponds to the
anova table for that location. For example,
location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains the value in
the kth column and jth row of the anova-table for the ith location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
 Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the
labels for each of the n_anova rows of the returned ANOVA table. The
label for the ith row of the ANOVA table can be printed with printf("%s",
anova_row_labels[i]).

The memory associated with anova_row_labels can be freed with a single
call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount
of space required will vary depending upon the number of factors and
n_anova. An upperbound on the required memory is
char *anova_row_labels[600].

Description
Function imsls_f_latin_square analyzes latin-square experiments, possibly
replicated at multiple locations. Latin-square experiments block treatments using two
factors: rows and columns. The number of levels associated with rows and columns
must equal the number of treatments. Treatments are blocked by rows and columns in
a balanced arrangement to ensure that every row contain one replicate of every
treatment. The same balance is required for every column, see Table 1. Notice that the
four treatments, T1, T2, T3, and T4, appear exactly once in every column and every
row.

Chapter 4: Analysis of Variance and Designed Experiments latin_square • 291

 Columns

 C1 C2 C3 C4

R1 T1 T2 T3 T4

R2 T2 T3 T4 T1

R3 T3 T4 T1 T2

Rows

R4 T4 T1 T2 T3

Table 1 Latin-Square Experiment with Four Treatments

A necessary assumption in Latin-Square experiments is that there are no interactions
between treatments and the row and column blocking factors. For data collected at a
single location, the Anova table for a Latin-Square experiment is usually organized into
five rows, see Table 2.

SOURCE DF Sum of Squares Mean
Squares

ROWS 1t −
SSR= 2

. ..
1

()
t

i
i

t y y
=

−∑
MSR

COLUMNS 1t −
SSC= 2

. ..
1

()
t

j
j

t y y
=

−∑
MSC

TREATMENTS 1t −
SST= 2

..
1
()

t

k
k

t y y
=

−∑
MST

ERROR (1)(2)t t− − SSE=SSTot-SSR-SSC-SST MSE

TOTAL 2 1t −
SSTot= ()2

..
1 1

t t

ij
i j

y y
= =

−∑∑

Table 2 – The ANOVA Table for a Latin-Square Experiment at one Location

The statistical model used to represent data is from a single location:

() () ()ij k i j k ij ij ky μ ρ γ τ ε= + + + +
,

where

()ij ky is the observation for the kth treatment in the ith row and jth column of the Latin

Square, and, ()k ijτ is the effect associated with the kth treatment. iρ and jγ are the ith

292 • latin_square IMSL C Stat Library

row and jth column effects, respectively, and ()ij kε is the noise associated with this
observation.
If multiple locations are involved, imsls_f_latin_square assumes that treatments
are crossed with locations, but that row and column effects are nested within locations,
see Table 3. The statistical model used to represent these data is:

() () () () () ()lij k l i l j l k ij lk ij lij ky μ α ρ γ τ ατ ε= + + + + + +
,

where

()k ijτ

is the effect associated with the kth treatment, and

()lk ijατ

is the interaction effect between location l and treatment k.

SOURCE DF Sum of Squares Mean
Squares

LOCATIONS 1r −
SSL= 2 2

.. ...
1

()
r

l
l

t y y
=

−∑
MSL

ROWS (1)r t −
SSR= 2

. ..
1 1

()
r t

li l
l i

t y y
= =

−∑∑
MSR

COLUMNS (1)r t −
SSC= 2

. ..
1 1

()
r t

l j l
l j

t y y
= =

−∑∑
MSC

TREATMENTS 1t −
SST= 2

...
1
()

t

k
k

r t y y
=

⋅ −∑
MST

LOCATIONS X
TREATMENTS

(1)(1)r t− − SSLT by difference MSLT

Chapter 4: Analysis of Variance and Designed Experiments latin_square • 293

SOURCE DF Sum of Squares Mean
Squares

ERROR (1)[(1) 1]t r t− − −
SSE=

1

r

l
l

SSE
=
∑

MSE

TOTAL 2 1r t⋅ −
SSTot= ()2

..
1 1 1

r t t

lij
l i j

y y
= = =

−∑∑∑

Table 3 – The ANOVA Table for a Latin-Square Experiment at Multiple Locations

Example
This example uses four treatments organized into a latin square. This example also uses
the function l_print_LSD(), which is defined in the first example for
imsls_f_lattice().

#include <stdio.h>

#include <math.h>

#include "imsls.h"

void l_print_LSD(int n1, int* equalMeans, float *means);

void main()

{

 char **anova_row_labels;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

 "Mean \nsquares", "\nF-Test", "\np-Value"};

 float alpha = 0.05;

 int i, l, page_width = 132;

 int n = 16; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

 int n_treatments = 4; /* Number of rows, columns and treatments */

 int n_aov_rows = 7; /* Number of rows in the latin-square anova table */

 int col[]={1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4};

 int row[]={3, 2, 4, 1, 1, 4, 2, 3, 2, 3, 1, 4, 4, 1, 3, 2};

 int treatment[]={1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};

 float y[]={

 1.167, 1.185, 1.655, 1.345, 1.64, 1.29, 1.665, 1.29,

 1.475, 0.71, 1.425, 0.66, 1.565, 1.29, 1.4, 1.18};

294 • latin_square IMSL C Stat Library

 float grand_mean;

 float cv;

 float *aov;

 float *treatment_means;

 float *std_err;

 int df;

 int *equal_means;

 printf("\n\n*** Experimental Design ***");

 printf("\n===============================");

 printf("\n| COL | 1 | 2 | 3 | 4 |");

 printf("\n===============================");

 printf("\n|ROW 1 | 2 | 4 | 3 | 1 |");

 printf("\n===============================");

 printf("\n|ROW 2 | 3 | 1 | 2 | 4 |");

 printf("\n===============================");

 printf("\n|ROW 3 | 1 | 3 | 4 | 2 |");

 printf("\n===============================");

 printf("\n|ROW 4 | 4 | 2 | 1 | 3 |");

 printf("\n===============================");

 aov = imsls_f_latin_square(n, n_locations, n_treatments, row, col,

 treatment, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table. */

 imsls_f_write_matrix("\n *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\n\nGrand Mean: %7.3f", grand_mean);

Chapter 4: Analysis of Variance and Designed Experiments latin_square • 295

 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);

 l = 0;

 printf("Treatment Means: \n");

 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d] %7.4f \n", i+1,
treatment_means[l++]);

 }

 df = (int)std_err[1];

 printf("\n\nStandard Error for Comparing Two Treatment Means: %f \n(df=%d)\n",

 std_err[0], df);

 equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df,

 std_err[0]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_print_LSD(n_treatments, equal_means, treatment_means);

}

Output

*** Experimental Design ***

===============================

| COL | 1 | 2 | 3 | 4 |

===============================

|ROW 1 | 2 | 4 | 3 | 1 |

===============================

|ROW 2 | 3 | 1 | 2 | 4 |

===============================

|ROW 3 | 1 | 3 | 4 | 2 |

===============================

|ROW 4 | 4 | 2 | 1 | 3 |

===============================

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Locations -1

Rows within Locations -2 3 0.185 0.062 2.064 0.207

Columns within Locations .. -3 3 0.589 0.196 6.579 0.025

Treatments -4 3 0.352 0.117 3.927 0.073

Locations x Treatments -5

Error within Locations -6 6 0.179 0.030

296 • lattice IMSL C Stat Library

Corrected Total -7 15 1.305

Grand Mean: 1.309

Coefficient of Variation: 13.204

Treatment Means:

treatment[1] 1.3380

treatment[2] 1.4712

treatment[3] 1.0675

treatment[4] 1.3587

Standard Error for Comparing Two Treatment Means: 0.122202

(df=6)

[group] Mean LSD Grouping

 [3] 1.067500 *

 [1] 1.338000 * *

 [4] 1.358750 * *

 [2] 1.471250 *

lattice
Analyzes balanced and partially-balanced lattice experiments. In these experiments, a
requirement is that the number of treatments be equal to the square of an integer, such
as 9, 16, or 25 treatments. Function lattice also analyzes repetitions of lattice
experiments.

Synopsis
#include <imsls.h>
float * imsls_f_lattice (int n, int n_locations, int n_reps,

int n_blocks, int n_treatments, int rep[], int block[],
int treatment[], float y[],…, 0)

The type double function is imsls_d_lattice.

Required Arguments

int n (Input)
Number of missing and non-missing experimental observations.
imsls_f_balanced_lattice verifies that:

Chapter 4: Analysis of Variance and Designed Experiments lattice • 297

wheren = n_locations×t×r

andt r= =n_treatments n_reps
.

int n_locations (Input)
Number of locations or repetitions of the lattice experiments. n_locations
must be one or greater. If n_locations>1 then the optional arguments
IMSLS_LOCATIONS must be included as input to imsls_f_lattice.

int n_reps (Input)
Number of replicates per location. Each replicate should consist of
t = n_treatments organized into k t= blocks.

int n_blocks (Input)
Number of blocks per location. For every location, n_blocks must be equal
to n_blocks= r·k, where r = n_reps and .k t=

int n_treatments (Input)
Number of treatments t = n_treatments must be equal to k2.

int rep[] (Input)
An array of length n containing the replicate identifiers for each observation
in y. For a balanced-lattice, the number of replicate identifiers must be equal
to n_reps=(k+1). For a partially-balanced lattice, the number of replicate
identifiers depends upon whether the design is a simple lattice, triple lattice,
etc. imsls_f_lattice verifies that the number of unique replicate
identifiers is equal to n_reps. If multiple locations or repetitions of the
experiment is conducted, i.e., n_locations>1, then the replicate and block
numbers contained in rep and block must agree between repetitions.

int block[] (Input)
An array of length n containing the block identifiers for each observation in
y. imsls_f_lattice verifies that the number of unique block identifiers is
equal to n_blocks. If multiple locations or repetitions of the experiment is
conducted, i.e., n_locations>1, then block numbers must agree between
repetitions. That is, the ith block in every location or repetition must contain
the same treatments.

int treatment[] (Input)
An array of length n containing the treatment identifiers for each observation
in y. Each treatment must be assigned values from 1 to n_treatments.
imsls_f_lattice verifies that the number of unique treatment identifiers is
equal to n_treatments.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated by
placing a NaN (not a number) in y. The NaN value can be set using either the
function imsls_f_machine(6) or imsls_d_machine(6), depending upon

298 • lattice IMSL C Stat Library

whether single or double precision is being used, respectively. The location,
replicate, block, and treatment number for each observation in y are identified
by the corresponding values in the arguments locations, rep, block, and
treatment.

Return Value
Address of a pointer to the memory location of a two dimensional, 7 by 6 array
containing the ANOVA table. Each row in this array contains values for one of the
effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated
with values in that row. The remaining values in a row contain the ANOVA table
values using the following convention:

J anova_table

i,j
= anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only negative
values in anova_table[]. Assignments of identifiers to ANOVA sources use the
following coding:

Source Identifier ANOVA Source

-1 LOCATIONS †

-2 REPLICATES

-3 TREATMENTS(unadjusted)

-4 TREATMENTS(adjusted)

-5 BLOCKS(adjusted)

-6 INTRA-BLOCK ERROR

-7 CORRECTED TOTAL

Notes: † If n_locations=1, all entries in this row are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_lattice(int n, int n_locations, int n_reps,

int n_blocks, int n_treatments, int rep[], int block[],
int treatment[], float y[],
IMSLS_RETURN_USER, float anova_table[]

Chapter 4: Analysis of Variance and Designed Experiments lattice • 299

IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

Optional Arguments

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined array of length 42 for storage of the 7 by 6 anova table described
as the return argument for imsls_f_lattice. For a detailed description of
the format for this table, see the previous description of the return arguments
for imsls_d_lattice.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location or repetition identifiers for each
observation in y. Unique integers must be assigned to each location in the
study. This argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
 Number of missing values, if any, found in y. Missing values are denoted
with a NaN (Not a Number) value.

IMSLS_CV, float *cv (Output)
 The coefficient of variation computed by using the location standard
deviation.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
 The overall adjusted mean averaged over every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size n_treatments
containing the adjusted treatment means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 4 containing the
standard error and associated degrees of freedom for comparing two
treatment means. std_err[0] contains the standard error for comparing
two treatments that appear in the same block at least once. std_err[1]
contains the standard error for comparing two treatments that never appear in

300 • lattice IMSL C Stat Library

the same block together. std_err[2] contains the standard error for
comparing, on average, two treatments from the experiment averaged over
cases in which the treatments do or do not appear in the same block. Finally,
std_err[3] contains the degrees of freedom associated with each of these
standard errors, i.e., std_err[3]= degrees of freedom for intra-block error.

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of size
n_locations by 7 by 6 containing the anova tables associated with each
location or repetition of the lattice experiment. For each location, the 7 by 6
dimensional array corresponds to the anova table for that location.
For example, location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains
the value in the kth column and jth row of the anova-table for the ith location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the
labels for each of the n_anova rows of the returned ANOVA table. The label
for the ith row of the ANOVA table can be printed with printf("%s",
anova_row_labels[i]);
The memory associated with anova_row_labels can be freed with a single
call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount
of space required will vary depending upon the number of factors and
n_anova. An upperbound on the required memory is
char *anova_row_labels[600];

Description
The function imsls_f_lattice analyzes both balanced and partially-balanced lattice
experiments, possibly repeated at multiple locations. These designs were originally
described by Yates (1936). A defining characteristic of these classes of lattice
experiments is that the number of treatments is always the square of an integer, such as
t=9, 16, 25, etc. where t is equal to the number of treatments.
Another characteristic of lattice experiments is that blocks are organized into replicates,
where each replicate contains one observation for each treatment. This requires the
number of blocks in each replicate to be equal to the number of observations per block.
That is, the number of blocks per replicate and the number of observations per block
are both equal to k t= .

For balanced lattice experiments the number of replicates is always 1k + . For
partially-balanced lattice experiments, the number of replicates is less than 1k + .
Tables of balanced-lattice experiments are tabulated in Cochran & Cox (1950) for t=9,
16, 25, 49, 64 and 81.

Chapter 4: Analysis of Variance and Designed Experiments lattice • 301

The analysis of balanced and partially-balanced experiments is detailed in Cochran &
Cox (1950) and Kuehl (2000).
Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9. Notice that the
number of replicates is 4 and the number of blocks per replicate is equal to 3. The total
number of blocks is equal to

(1) 1r k⋅ ⋅ − +n_blocks= n_locations
 .

For a balanced-lattice,

(1) (1) 4 3 12b r k k k t t= = ⋅ = + ⋅ = + ⋅ = ⋅ =n_blocks
.

Replicate I Replicate II
Block 1 (T1, T2, T3) Block 4 (T1, T4, T7)

Block 2 (T4, T5, T6) Block 5 (T2, T5, T8)

Block 3 (T7, T8, T9) Block 6 (T3, T6, T9)

Replicate III Replicate IV
Block 7 (T1, T5, T9) Block 10 (T1, T6, T8)

Block 8 (T2, T6, T7) Block 11 (T2, T4, T9)

Block 9 (T3, T4, T8) Block 12 (T3, T5, T7)

Table 1 A 3x3 Balanced-Lattice for 9 Treatments in Four Replicates.

The analysis of variance for data from a balanced-lattice experiment, takes the form
familiar to other balanced incomplete block experiments. In these experiments, the
error term is divided into two components: the Inter-Block Error and the Intra-Block
Error. For single and multiple locations, the general format of the anova tables is
illustrated in the Tables 2 and 3.

SOURCE DF Sum of

Squares
Mean
Squares

REPLICATES 1r − SSR MSR

TREATMENTS(unadj) 1t − SST MST

TREATMENTS(adj) 1t − SSTa MSTa

BLOCKS(adj) (1)r k⋅ − SSBa MSBa

INTRA-BLOCK ERROR (1)(1)k r k k− ⋅ − − SSI MSI

TOTAL 1r t⋅ − SSTot

Table 2 The ANOVA Table for a Lattice Experiment at one Location

302 • lattice IMSL C Stat Library

SOURCE DF Sum of
Squares

Mean
Squares

LOCATIONS 1p − SSL MSL

REPLICATES WITHIN LOCATIONS (1)p r − SSR MSR

TREATMENTS(unadj) 1t − SST MST

TREATMENTS(adj) 1t − SSTa MSTa

BLOCKS(adj) (1)p r k⋅ − SSB MSB

INTRA-BLOCK ERROR (1)(1)p k r k k⋅ − ⋅ − − SSI MSI

TOTAL 1p r t⋅ ⋅ − SSTot

Table 3 The ANOVA Table for a Lattice Experiment at Multiple Locations

Example 1
This example is a lattice design for 16 treatments conducted at one location. A lattice
design with t=k2=16 treatments is a balanced lattice design with r= k+1=5 replicates
and r·k=5(4)=20 blocks.

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void l_print_LSD(int n1, int* equalMeans, float *means);

void main()

{

 char **anova_row_labels = NULL;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

 "Mean \nsquares", "\nF-Test", "\np-Value"};

 float alpha = 0.05;

 int i, l, page_width = 132;

 int n = 80; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

 int n_treatments =16; /* Number of treatments */

 int n_reps = 5; /* Number of replicates */

 int n_blocks =20; /* Total number of blocks */

 int n_aov_rows = 7; /* Number of rows in the anova table */

 int rep[]={

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

Chapter 4: Analysis of Variance and Designed Experiments lattice • 303

 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,

 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5

 };

 int block[]={

 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,

 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8,

 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12,

 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16,

 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20

 };

 int treatment[]={

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

 1, 5, 9, 13, 10, 2, 14, 6, 7, 15, 3, 11, 16, 8, 12, 4,

 1, 6, 11, 16, 5, 2, 15, 12, 9, 14, 3, 8, 13, 10, 7, 4,

 1, 14, 7, 12, 13, 2, 11, 8, 5, 10, 3, 16, 9, 6, 15, 4,

 1, 10, 15, 8, 9, 2, 7, 16, 13, 6, 3, 12, 5, 14, 11, 4

 };

 float y[] ={

 147, 152, 167, 150, 127, 155, 162, 172,

 147, 100, 192, 177, 155, 195, 192, 205,

 140, 165, 182, 152, 97, 155, 192, 142,

 155, 182, 192, 192, 182, 207, 232, 162,

 155, 132, 177, 152, 182, 130, 177, 165,

 137, 185, 152, 152, 185, 122, 182, 192,

 220, 202, 175, 205, 205, 152, 180, 187,

 165, 150, 200, 160, 155, 177, 185, 172,

 147, 112, 177, 147, 180, 205, 190, 167,

 172, 212, 197, 192, 177, 220, 205, 225

 };

 float grand_mean;

 float cv;

 float *aov;

 float *treatment_means;

 float *std_err;

 int *equal_means;

 int df;

304 • lattice IMSL C Stat Library

 aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,

 n_treatments, rep, block, treatment, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print the ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\n\nAdjusted Grand Mean: %7.3f", grand_mean);

 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);

 l = 0;

 printf("Adjusted Treatment Means: \n");

 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d] %7.4f \n", i+1,
 treatment_means[l++]);

 }

 df = (int)std_err[3];

 printf("\nStandard Error for Comparing Two Adjusted Treatment Means: %f \n(df=%d)\n",

 std_err[2], df);

 equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df,

 std_err[2]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_print_LSD(n_treatments, equal_means, treatment_means);

}

/*

 * Function to display means comparison.

 */

void l_print_LSD(int n, int *equalMeans, float *means){

Chapter 4: Analysis of Variance and Designed Experiments lattice • 305

 float x=0.0;

 int i, j, k;

 int iSwitch;

 int *idx;

 idx = (int *) malloc(n * sizeof (int));

 for (k=0; k < n; k++) {

 idx[k] =k+1;

 }

 /* Sort means in ascending order*/

 iSwitch=1;

 while (iSwitch != 0){

 iSwitch = 0;

 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){

 iSwitch = 1;

 x = means[i];

 means[i] = means[i+1];

 means[i+1] = x;

 j = idx[i];

 idx[i] = idx[i+1];

 idx[i+1] = j;

 }

 }

 }

 printf("[group] \t Mean \t\tLSD Grouping \n");

 for (i=0; i < n; i++){

 printf(" [%d] \t\t%f", idx[i], means[i]);

 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){

 printf("\t *");

 }else{

 if(equalMeans[j-1]>0) printf("\t");

 }

 }

 if (i < n-1 && equalMeans[i]>0) printf("\t *");

 printf("\n");

 }

 free(idx);

306 • lattice IMSL C Stat Library

 idx = NULL;

 return;

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Locations -1

Replicates -2 4 6524.38 1631.10

Treatments (unadjusted) ... -3 15 27297.13 1819.81 4.12 0.000

Treatments (adjusted) -4 15 21271.29 1418.09 4.21 0.000

Blocks (adjusted) -5 15 11339.28 755.95

Intra-Block Error -6 45 15173.09 337.18

Corrected Total -7 79 60333.88

Adjusted Grand Mean: 171.450

Coefficient of Variation: 10.710

Adjusted Treatment Means:

treatment[1] 166.4533

treatment[2] 160.7527

treatment[3] 183.6289

treatment[4] 175.6298

treatment[5] 162.6806

treatment[6] 167.6717

treatment[7] 168.3821

treatment[8] 176.5731

treatment[9] 162.6928

treatment[10] 118.5197

treatment[11] 189.0615

treatment[12] 190.4607

treatment[13] 169.4514

treatment[14] 197.0827

treatment[15] 185.3560

treatment[16] 168.8029

Chapter 4: Analysis of Variance and Designed Experiments lattice • 307

Standard Error for Comparing Two Adjusted Treatment Means: 13.221801

(df=45)

[group] Mean LSD Grouping

 [10] 118.519737

 [2] 160.752731 *

 [5] 162.680649 * *

 [9] 162.692841 * *

 [1] 166.453323 * * *

 [6] 167.671661 * * *

 [7] 168.382111 * * *

 [16] 168.802887 * * *

 [13] 169.451370 * * *

 [4] 175.629776 * * * *

 [8] 176.573090 * * * *

 [3] 183.628906 * * * *

 [15] 185.355988 * * * *

 [11] 189.061508 * * *

 [12] 190.460724 * *

 [14] 197.082703 *

Example 2
This example consists of a 5 × 5 partially-balanced lattice repeated twice. In this case,
the number of replicates is not k+1 = 6, it is only n_reps = 2. Each lattice consists of
total of 50 observations which is repeated twice. The first observation in this
experiment is missing.

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void l_print_LSD(int n1, int* equalMeans, float *means);

void main()

{

 char **anova_row_labels = NULL;

 char **loc_row_labels = NULL;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ ",

 "Mean \nsquares", "\nF-Test", "\np-Value"};

 float alpha = 0.05;

 int i, l, page_width = 132;

 int n = 100; /* Total number of observations */

 int n_locations = 2; /* Number of locations */

 int n_treatments =25; /* Number of treatments */

308 • lattice IMSL C Stat Library

 int n_reps = 2; /* Number of replicates/location */

 int n_blocks =10; /* Total number of blocks/location */

 int n_aov_rows = 7; /* Number of rows in the anova table */

 int rep[]={

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2

 };

 int block[]={

 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3,

 4, 4, 4, 4, 4,

 5, 5, 5, 5, 5,

 6, 6, 6, 6, 6,

 7, 7, 7, 7, 7,

 8, 8, 8, 8, 8,

 9, 9, 9, 9, 9,

 10, 10, 10, 10, 10,

 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3,

 4, 4, 4, 4, 4,

Chapter 4: Analysis of Variance and Designed Experiments lattice • 309

 5, 5, 5, 5, 5,

 6, 6, 6, 6, 6,

 7, 7, 7, 7, 7,

 8, 8, 8, 8, 8,

 9, 9, 9, 9, 9,

 10, 10, 10, 10, 10

 };

 int treatment[]={

 1, 2, 3, 4, 5,

 6, 7, 8, 9, 10,

 11, 12, 13, 14, 15,

 16, 17, 18, 19, 20,

 21, 22, 23, 24, 25,

 1, 6, 11, 16, 21,

 2, 7, 12, 17, 22,

 3, 8, 13, 18, 23,

 4, 9, 14, 19, 24,

 5, 10, 15, 20, 25,

 1, 2, 3, 4, 5,

 6, 7, 8, 9, 10,

 11, 12, 13, 14, 15,

 16, 17, 18, 19, 20,

 21, 22, 23, 24, 25,

 1, 6, 11, 16, 21,

 2, 7, 12, 17, 22,

 3, 8, 13, 18, 23,

 4, 9, 14, 19, 24,

 5, 10, 15, 20, 25

 };

 int location[]={

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

 2, 2, 2, 2, 2, 2, 2, 2, 2, 2

 };

310 • lattice IMSL C Stat Library

 float y[] ={

 6, 7, 5, 8, 6,

 16, 12, 12, 13, 8,

 17, 7, 7, 9, 14,

 18, 16, 13, 13, 14,

 14, 15, 11, 14, 14,

 24, 13, 24, 11, 8,

 21, 11, 14, 11, 23,

 16, 4, 12, 12, 12,

 17, 10, 30, 9, 23,

 15, 15, 22, 16, 19,

 13, 26, 9, 13, 11,

 15, 18, 22, 11, 15,

 19, 10, 10, 10, 16,

 21, 16, 17, 4, 17,

 15, 12, 13, 20, 8,

 16, 7, 20, 13, 21,

 15, 10, 11, 7, 14,

 7, 11, 15, 15, 16,

 19, 14, 20, 6, 16,

 17, 18, 20, 15, 14

 };

 float grand_mean;

 float cv;

 float *aov;

 float *location_anova_table;

 float *loc_anova_table;

 float *treatment_means;

 float *std_err;

 int df;

 int n_missing;

 int *equal_means;

 /* Set first observation to missing. */

 y[0] = imsls_f_machine(6);

 aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,

 n_treatments, rep, block, treatment, y,

 IMSLS_LOCATIONS, location,

 IMSLS_GRAND_MEAN, &grand_mean,

Chapter 4: Analysis of Variance and Designed Experiments lattice • 311

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_LOCATION_ANOVA_TABLE, &location_anova_table,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 IMSLS_N_MISSING, &n_missing,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print the ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 /* Print the location ANOVA tables. */

 for (i=0; i < n_locations; i++){

 printf("\n\n\t\t\t\tLOCATION %d", i+1);

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 7, 6, &(location_anova_table[i*42]),

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 }

 printf("\n\nAdjusted Grand Mean: %7.3f", grand_mean);

 printf("\n\nCoefficient of Variation: %7.3f\n\n", cv);

 l = 0;

 printf("Adjusted Treatment Means: \n");

 for (i=0; i < n_treatments; i++){

 printf("treatment[%2d] %7.4f \n", i+1,
treatment_means[l++]);

 }

 df = std_err[3];

 printf("\nStandard Error for Comparing Two Adjusted Treatment Means: %f \n(df=%d)\n",

 std_err[2], df);

 equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df,

312 • lattice IMSL C Stat Library

 std_err[2]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_print_LSD(n_treatments, equal_means, treatment_means);

 printf("\n\nNumber of missing observations: %d\n", n_missing);

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Locations -1 1 12.19 12.19 0.25 0.622

Replicates within Locations -2 2 203.99 101.99 7.44 0.001

Treatments (unadjusted) ... -3 24 795.46 33.14 0.02 1.000

Treatments (adjusted) -4 24 951.20 39.63 2.89 0.006

Blocks (adjusted) -5 16 770.50 48.16 3.51 0.000

Intra-Block Error -6 55 753.81 13.71

Corrected Total -7 98 2535.95

 LOCATION 1

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Locations -1

Replicates within Locations -2 1 203.67 203.67

Treatments (unadjusted) ... -3 24 567.13 23.63 0.78 0.721

Treatments (adjusted) -4 24 661.08 27.54 2.04 0.078

Blocks (adjusted) -5 8 490.51 61.31

Intra-Block Error -6 15 202.93 13.53

Corrected Total -7 48 1464.24

 LOCATION 2

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F-Test p-Value

Chapter 4: Analysis of Variance and Designed Experiments lattice • 313

Locations -1

Replicates within Locations -2 1 0.32 0.32

Treatments (unadjusted) ... -3 24 622.52 25.94 1.43 0.196

Treatments (adjusted) -4 24 707.51 29.48 2.83 0.018

Blocks (adjusted) -5 8 269.76 33.72

Intra-Block Error -6 16 166.92 10.43

Corrected Total -7 49 1059.52

Adjusted Grand Mean: 14.011

Coefficient of Variation: 26.423

Adjusted Treatment Means:

treatment[1] 17.1507

treatment[2] 19.2200

treatment[3] 11.1261

treatment[4] 14.6230

treatment[5] 12.6543

treatment[6] 11.8133

treatment[7] 11.9045

treatment[8] 11.3106

treatment[9] 9.5576

treatment[10] 11.5889

treatment[11] 22.1321

treatment[12] 12.7233

treatment[13] 13.1293

treatment[14] 17.8763

treatment[15] 18.6576

treatment[16] 14.6568

treatment[17] 11.4980

treatment[18] 13.1540

treatment[19] 5.4010

treatment[20] 12.9323

treatment[21] 15.4108

treatment[22] 17.0020

treatment[23] 13.9081

treatment[24] 17.6550

treatment[25] 13.1864

Standard Error for Comparing Two Adjusted Treatment Means: 4.617277

(df=55)

314 • split_plot IMSL C Stat Library

[group] Mean LSD Grouping

 [19] 5.400988 *

 [9] 9.557555 * *

 [3] 11.126063 * * *

 [8] 11.310598 * * *

 [17] 11.497972 * * *

 [10] 11.588868 * * *

 [6] 11.813338 * * *

 [7] 11.904538 * * *

 [5] 12.654334 * * *

 [12] 12.723251 * * *

 [20] 12.932302 * * * *

 [13] 13.129311 * * * *

 [18] 13.154031 * * * *

 [25] 13.186358 * * * *

 [23] 13.908089 * * * *

 [4] 14.623020 * * * *

 [16] 14.656771 * * *

 [21] 15.410829 * * *

 [22] 17.002029 * * *

 [1] 17.150679 * * *

 [24] 17.655045 * * *

 [14] 17.876268 * * *

 [15] 18.657581 * * *

 [2] 19.220003 * *

 [11] 22.132051 *

Number of missing observations: 1

split_plot
Analyzes a wide variety of split-plot experiments with fixed, mixed or random factors.
The whole-plots can be assigned to experimental units using either a completely
randomized or randomized complete block design. Function split_plot also
analyzes split-plot experiments replicated at several locations.

Synopsis
#include <imsls.h>
float * imsls_f_split_plot (int n, int n_locations, int n_whole,

 int n_split, int rep[], int whole[], int split[], float y[],…, 0)
The type double function is imsls_d_split_plot.

Chapter 4: Analysis of Variance and Designed Experiments split_plot • 315

Required Arguments

int n (Input)
Number of missing and non-missing experimental observations.
imsls_f_split_plot verifies that:

()

1
n i

i
= ⋅ ⋅

=
∑ n_wholen_splitn_blocks

n_locations

int n_locations (Input)
Number of locations. n_locations must be one or greater. If
n_locations>1, then the optional array locations[] must be included as
input to imsls_f_split_plot.

int n_whole (Input)
Number of levels associated with the whole-plot factor. n_whole must be
greater than one.

int n_split (Input)
Number of levels associated with the split-plot factor. n_split must be
greater than one.

int rep[] (Input)
 An array of length n containing the block, or replicate, identifiers for each

observation in y. Locations can have different numbers of blocks or
replicates. Each block or replicate at a single location must be assigned a
different identifier, but different locations can have the same assignments.

int whole[] (Input)
An array of length n containing the whole-plot identifiers for each observation
in y. Each level of the whole-plot factor must be assigned a different integer.
imsls_f_split_plot verifies that the number of unique whole-plot
identifiers is equal to n_whole.

int split[] (Input)
 An array of length n containing the split-plot identifiers for each observation

in y. Each level of the split-plot factor must be assigned a different integer.
imsls_f_split_plot verifies that the number of unique split-plot
identifiers is equal to n_split.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated by
placing a NaN (not a number) in y. The NaN value can be set using either the
function imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively. At a single
location, only one missing value per whole-plot is allowed. The location,
whole-plot and split-plot for each observation in y are identified by the
corresponding values in the arguments locations, whole and split.

316 • split_plot IMSL C Stat Library

Return Value
Address of a pointer to the memory location of a two dimensional, 11 by 6 array
containing the ANOVA table. Each row in this array contains values for one of the
effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated
with values in that row. The remaining values in a row contain the ANOVA table
values using the following convention:

j anova_tablei,j = anova_table[I*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only negative
values in anova_table[]. Assignments of identifiers to ANOVA sources use the
following coding:

Source

Identifier

ANOVA Source
-1 LOCATION†

-2 BLOCK WITHIN LOCATION‡
-3 WHOLE-PLOT
-4 LOCATION × WHOLE-PLOT†
-5 WHOLE-PLOT ERROR

-6 SPLIT-PLOT
-7 LOCATION × SPLIT-PLOT†
-8 WHOLE-PLOT × SPLIT-PLOT
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT†

-10 SPLIT-PLOT ERROR›
-11 CORRECTED TOTAL

Notes: † If n_locations=1 sources involving location are set to missing (NaN).

‡ If IMSLS_CRD is set, entries for block within location are set to missing, and its sum of squares and
degrees of freedom are pooled into the whole-plot error.

› Split-plot error component calculation varies depending upon the settings for
IMSLS_RCBD, IMSLS_LOC_FIXED, IMSLS_WHOLE_FIXED, IMSLS_SPLIT_FIXED, and upon
whether n_locations=1. See the “Description” section below for details.

Chapter 4: Analysis of Variance and Designed Experiments split_plot • 317

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_split_plot (int n, int n_locations, int n_whole,

int n_split, int rep[], int whole[], int split[], float y[],
IMSLS_RETURN_USER, float anova_table[]
IMSLS_LOCATIONS, int locations[],
IMSLS_LOC_RANDOM or IMSLS_LOC_FIXED,
IMSLS_RCBD or IMSLS_CRD,
IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM,
IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means,
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_BLOCK_SS float **block_ss,
IMSLS_BLOCK_SS_USER, float block_ss[],
IMSLS_WHOLE_PLOT_SS float **whole_plot_ss,
IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[],
IMSLS_SPLIT_PLOT_SS float **split_plot_ss,
IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[],
IMSLS_WHOLEXSPLIT_PLOT_SS float **wholexsplit_plot_ss,
IMSLS_WHOLEXSPLIT_PLOT_SS_USER,
 float wholexsplit_plot_ss[],
IMSLS_WHOLE_PLOT_ERROR_SS float **whole_plot_error_ss,
IMSLS_WHOLE_PLOT_ERROR_SS_USER,
 float whole_plot_error_ss[],
IMSLS_SPLIT_PLOT_ERROR_SS float **split_plot_error_ss,
IMSLS_SPLIT_PLOT_ERROR_SS_USER,
 float split_plot_error_ss[],
IMSLS_TOTAL_SS float **total_ss,
IMSLS_TOTAL_SS_USER, float total_ss[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

318 • split_plot IMSL C Stat Library

Optional Arguments
IMSLS_RETURN_USER, float anova_table[] (Output)

User defined array of length 66 for storage of the 11 by 6 Anova table
described as the return argument for imsls_f_split_plot. For a detailed
description of the format for this table, see the previous description of the
return arguments for imsls_f_split_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation
in y. Unique integers must be assigned to each location in the study. This
argument is required when n_locations>1.

IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM (Input)
A characteristic controlling whether the location factor is treated as a fixed or
random effect, when n_locations>1. IMSLS_LOC_FIXED and
IMSLS_LOC_RANDOM imply that the factor is a fixed effect or random effect,
respectively.
Default: IMSLS_LOC_RANDOM

IMSLS_RCBD or

IMSLS_CRD (Input)
Whole-plot randomization characteristic: IMSLS_RCBD implies that whole-
plots are assigned to whole-plot experimental units using a randomized
complete block design. IMSLS_CRD implies that whole-plots are completely
randomized to whole-plot experimental units. Default: IMSLS_RCBD

IMSLS_WHOLE_FIXED or

IMSLS_WHOLE_RANDOM (Input)
Whole-plot characteristic. IMSLS_WHOLE_FIXED implies that the whole-plot
factor is a fixed effect, and IMSLS_WHOLE_RANDOM implies that it is a random
effect.
Default: IMSLS_WHOLE_FIXED

IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM (Input)
Split-plot characteristic. IMSLS_SPLIT_FIXED implies that the split-plot
factor is a fixed effect, and IMSLS_SPLIT_RANDOM implies that it is a random
effect.
Default: IMSLS_SPLIT_FIXED.

IMSLS_N_MISSING, int *n_missing (Output)
 Number of missing values, if any, found in y. Missing values are denoted
with a NaN (Not a Number) value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 2 containing the
whole-plot and split-plot coefficients of variation. cv[0] contains the whole-
plot C.V., and cv[1] contains the split-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

Chapter 4: Analysis of Variance and Designed Experiments split_plot • 319

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output)
Address of a pointer to an internally allocated array of length n_whole
containing the whole-plot means.

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output)
Storage for the array whole_plot_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
Address of a pointer to an internally allocated array of length n_split
containing the split-plot means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
(n_whole * n_split) containing the treatment means. For
i > 0 and j > 0, treatment_meansi,j = treatment_means[(i-1)*n_split+j-
1] contains the mean of the observations, averaged over all locations, blocks
and replicates, for the jth split-plot within the ith whole-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
Address of a pointer to an internally allocated array of length 10 containing
five standard errors and their associated degrees of freedom.

Element
Standard Error for

Comparisons
Between Two

Degrees of
Freedom

std_err[0] Whole-Plot Means std_err[5]

std_err[1] Split-Plot Means std_err[6]

std_err[2] Split-Plots within same
Whole-Plot

std_err[7]

std_err[3] Whole-Plots within same
Split-Plot

std_err[8]

std_err[4] Treatment Means
(same whole-plot, split-
plot and sub-plot)

std_err[9]

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
 Address of a pointer to an internally allocated array of length n_locations
containing the number of blocks, or replicates, at each location.

320 • split_plot IMSL C Stat Library

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_BLOCK_SS, float **block_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size
n_locations by 2 containing the sum of squares for blocks and their
associated degrees of freedom for each location.

IMSLS_BLOCK_SS_USER, float block_ss[] (Output)
Storage for the array block_ss, provided by the user. Address of a pointer to
an internally allocated 2-dimensional array of size n_locations by 2
containing the sum of squares for blocks and their associated degrees of
freedom for each location.

IMSLS_WHOLE_PLOT_SS, float **whole_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size
n_locations by 2 containing the sum of squares for whole-plots and their
associated degrees of freedom for each location.

IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[] (Output)
Storage for the array whole_plot_ss, provided by the user.

IMSLS_SPLIT_PLOT_SS, float **split_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size
n_locations by 2 containing the sum of squares for split-plots and their
associated degrees of freedom for each location.

IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[] (Output)
Storage for the array split_plot_ss, provided by the user.

IMSLS_WHOLEXSPLIT_PLOT_SS, float **wholexsplit_plot_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size
n_locations by 2 containing the sum of squares for whole-plot by split-plot
interaction and their associated degrees of freedom for each location.

IMSLS_WHOLEXSPLIT_PLOT_SS_USER, float wholexsplit_plot_ss[] (Output)
Storage for the array wholexsplit_plot_ss, provided by the user.

IMSLS_WHOLE_PLOT_ERROR_SS, float **whole_plot_error_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size
n_locations by 2 containing the sum of squares for whole-plots and their
associated degrees of freedom for each location.

IMSLS_WHOLE_PLOT_ERROR_SS_USER, float whole_plot_error_ss[] (Output)
Storage for the array whole_plot_error_ss, provided by the user.

IMSLS_SPLIT_PLOT_ERROR_SS, float **split_plot_error_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size
n_locations by 2 containing the sum of squares for split-plots and their
associated degrees of freedom for each location.

IMSLS_SPLIT_PLOT_ERROR_SS_USER, float split_plot_error_ss[] (Output)
Storage for the array split_plot_error_ss, provided by the user.

Chapter 4: Analysis of Variance and Designed Experiments split_plot • 321

IMSLS_TOTAL_SS, float **total_ss (Output)
Address of a pointer to an internally allocated 2-dimensional array of size
n_locations by 2 containing the corrected total sum of squares and their
associated degrees of freedom for each location.

IMSLS_TOTAL_SS_USER, float total_ss[] (Output)
Storage for the array total_ss, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the
labels for each of the n_anova rows of the returned ANOVA table. The label
for the i-th row of the ANOVA table can be printed with printf("%s",
anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single
call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount
of space required will vary depending upon the number of factors and
n_anova. An upperbound on the required memory is
char *anova_row_labels[600].

Description
Function imsls_f_split_plot is capable of analyzing a wide variety of split-plot
experiments. Whole-plot and split-plot factors can each be designated as either fixed
or random, allowing for experiments with fixed, random or mixed treatment effects.
By default, imsls_f_split_plot assumes that all treatment factors are fixed effects,
i.e. IMSLS_WHOLE_FIXED and IMSLS_SPLIT_FIXED are default settings. Whole-plot
or split-plot factors can each be declared as random effects by setting the optional input
arguments IMSLS_WHOLE_RANDOM and IMSLS_SPLIT_RANDOM, respectively.
Split-plot experimental designs can also vary in the assignment of the whole-plot factor
to its experimental units. In some cases, this assignment is completely random. For
example, in a drug study the experimental unit might be the subject receiving a
treatment. The whole-plot factor, possibly different treatments, could be assigned in
one of two ways. Each subject could receive only one treatment or each could receive
all treatments over an appropriate period of time. If each subject received only a single
randomly selected treatment, then this design constitutes a completely randomized
design for the whole-plot factor, and the optional input argument IMSLS_CRD must be
set.
On the other hand, if each subject receives every treatment in random order, then the
subject is a blocking factor, and this sampling scheme constitutes a randomized
complete block design. In this case, it is necessary to assume that there are no carry-
over effects from one treatment to another. This sampling scheme is the default
setting, i.e. IMSLS_RCBD is the default setting.
A similar randomization choice occurs in agricultural field trials. A trial designed to
test different fertilizers and different seed lots can be conducted in one of two ways.
The whole-plot factor, fertilizer, can be applied to different fields, or each can be
applied to sub-divisions of these fields. In either case, a field is the whole-plot

322 • split_plot IMSL C Stat Library

experimental unit. In the first case in which only a single randomly selected fertilizer
is applied to a single field, the whole-plot factor is not blocked and this scheme is
called as a completely randomized design, and the optional input argument IMSLS_CRD
must be set. However, if fertilizers are applied to sub-plots within a field, then the
whole-plot factor is blocked within fields and this assignment is referred to as a
randomized complete block design. By default, this routine assumes that levels of the
whole-plot factor are randomly assigned within blocks, i.e. IMSLS_RCBD is the default
setting for randomizing whole-plots.
The essential distinction between split-plot experiments and completely randomized or
randomized complete block experiments is the presence of a second factor that is
blocked, or nested, within each level of the whole-plot factor. This second factor is
referred to as the split-plot factor, see Figure 1. If levels of this factor were completely
randomized, then two or more treatments with the same split-plot level could be
assigned to the same whole-plot level, see Figure 2.

Whole Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Split-Plot Experiments – Split-Plot B Nested within Whole-Plot A

CRD

A3B2 A1B3 A4B1 A4B3

A2B3 A1B1 A3B2 A1B2

A2B2 A3B1 A2B1 A4B2

 Completely Randomized Experiments – Both Factors Randomized

In some studies, a split-plot experiment is replicated at several locations. Function
imsls_f_split_plot can also analyze split-plot experiments replicated at multiple
locations, even when the number of blocks or replicates at each location are different.
If only a single replicate or block is used at each location, then location should be
treated as a blocking factor, with n_locations set equal to one. If n_locations=1,
it is assumed that the experiment was conducted at a single location with more than one
block or replicate at that location. In this case, the four entries associated with location
in the Anova table will contain missing values.
However, if n_locations>1, it is assumed the experiment was repeated at multiple
locations, with replication or blocking occurring at each location. Although the
number of blocks, or replicates, at each location can be different, the number of levels
for whole-plot and split-plot factors, n_whole and n_split, must be the same at each

Chapter 4: Analysis of Variance and Designed Experiments split_plot • 323

location. The location associated with y[i] is specified in location[i], which is a
required input argument when n_locations>1.
By default, locations are assumed to be random effects. However, they can be
specified as fixed effects by setting the optional argument IMSLS_LOC_FIXED. This
setting changes the calculations of the F-tests for whole-plot and split-plot factors. If
locations are assumed to be fixed effects, then the whole-plot and split-plot errors at
each location are pooled to form the whole-plot and split-plot errors. This can
dramatically increase the degrees of freedom associated with the F-test for the
treatment factors, resulting in smaller p-values. However, pooling the error terms from
different locations requires experimenters to assume that the errors at each location are
approximately the same. This should be verified using a test for homogeneity of
variance, such as Bartlett’s or Levene’s test.
On the other hand, if locations are assumed to be random effects, then tests involving
whole-plots use the interaction between whole-plots and locations as the error term for
testing whether there are statistically significant differences among whole-plot factor
levels. However, this assumes that the interaction of whole-plots and locations is not
statistically significant. A test of this assumption uses the pooled whole-plot error. If
the interaction between whole-plots and locations is statistically significant, then the
nature of that interaction should be explored since it impacts the interpretation of the
significance of the whole-plot treatment factor.
Similarly, when locations are assumed to be random effects, tests involving split-plots
do not use the split-plot errors pooled across locations. Instead, the error term for split
plots is the interaction between locations and split-plots. The split-plot by whole-plot
interaction is tested against the location by split-plot by whole-plot interaction.
Suppose, for example, that a researcher wanted to conduct an agricultural experiment
comparing the effectiveness of 4 fertilizers with 4 seed lots. One replicate of the
experiment is conducted at each of the 3 farms. That is, only a single field at each
location is assigned to this experiment.
The field at each farm is divided into 4 whole-plots and the fertilizers are randomly
assigned to each of the 4 whole-plots. Each whole-plot is then further divided into 4
split-plots, and the seed lots are randomly assigned to these split-plots.
In this case, each farm is a blocking factor, fertilizers are whole-plots and seed lots are
split-plots. The input array rep would contain integers from 1 to the number of farms.
However, if each farm allocated more than a single field for this study, then each farm
would be treated as a different location with n_locations set equal to the number of
farms, and fields would be treated as blocking factor. The array rep would contain
integers from 1 to the number fields used in a farm, and locations[] would contain
integers from 1 to the number of farms.
In summary this routine can analyze 3x2x2x2=24 different experimental situations,
depending upon the settings of:
1. Locations (none, fixed or random): specified by setting n_locations,

locations[] and IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM.
2. Whole-plot sampling (CRD or RCBD): specified by setting IMSLS_CRD or

IMSLS_RCBD.

324 • split_plot IMSL C Stat Library

3. Whole-plot effect (fixed or random): specified by setting either
IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM.

4. Split-plot effect (fixed or random): specified by setting either
IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM.

The default condition depends upon the value for n_locations. If n_locations>1,
locations are assumed to be a random effect. Assignment of experimental units to
whole-plots is assumed to use a RCBD design and both whole-plots and split-plots are
assumed to be fixed effects.

Example
This example uses data from a split-plot design consisting of 2 whole-plots and 4 split-
plots.

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void main()

{

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",

 "Mean\nsquares", "\nF", "\np-value"};

 int i, page_width = 132;

 int n = 24; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

 int n_whole = 2; /* Number of Whole-plots within a location */

 int n_split = 4; /* Number of Split-plots within a location,
Whole_plot */

 int rep[]={

 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3, 3, 3, 3};

 int whole[]={

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2};

 int split[]={

 1, 2, 3, 4, 1, 2, 3, 4,

 1, 2, 3, 4, 1, 2, 3, 4,

 1, 2, 3, 4, 1, 2, 3, 4};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

Chapter 4: Analysis of Variance and Designed Experiments split_plot • 325

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float grand_mean;

 float *aov;

 float *treatment_means;

 float *whole_plot_means;

 float *split_plot_means;

 int *equal_means;

 char **aov_row_labels;

 aov = imsls_f_split_plot(n, n_locations, n_whole, n_split,

 rep, whole, split, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,

 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,

 IMSLS_ANOVA_ROW_LABELS, &aov_row_labels,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table, without first column. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 11, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, aov_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 /* Print the various means. */

 printf("\n\nGrand mean: %f\n", grand_mean);

 imsls_f_write_matrix("Treatment Means", n_whole, n_split,

 treatment_means, 0);

 imsls_f_write_matrix("Whole-plot Means", n_whole, 1,

 whole_plot_means, 0);

 imsls_f_write_matrix("Split-plot Means", n_split, 1,

 split_plot_means, 0);

}

326 • split_split_plot IMSL C Stat Library

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F p-value

Location -1

Block Within Location -2 2 1310.28 655.14 30.82 0.031

Whole-Plot -3 1 858.01 858.01 40.37 0.024

Location x Whole-Plot -4

Whole-Plot Error -5 2 42.51 21.26 2.03 0.173

Split-Plot -6 3 227.73 75.91 7.26 0.005

Location x Split-Plot -7

Whole-Plot x Split-Plot -8 3 13.40 4.47 0.43 0.737

Location x Whole-Plot x -9

 Split-Plot

Split-Plot Error -10 12 125.39 10.45

Corrected Total -11 23 2577.33

Grand mean: 33.870834

 Treatment Means

 1 2 3 4

1 23.83 30.77 28.10 28.87

2 34.20 43.30 38.90 43.00

Whole-plot Means

 1 27.89

 2 39.85

Split-plot Means

 1 29.02

 2 37.03

 3 33.50

 4 35.93

split_split_plot
Analyzes data from split-split-plot experiments. The whole-plots can be assigned to
experimental units using either a completely randomized or randomized complete

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot • 327

block design. Function split_split_plot also analyzes split-split-plot experiments
replicated at several locations.

Synopsis
#include <imsls.h>
float * imsls_f_split_split_plot (int n, int n_locations, int n_whole,

int n_split, int n_sub, int rep[], int whole[], int split[], int sub[],
float y[],…, 0)

The type double function is imsls_d_split_split_plot.

Required Arguments

int n (Input)
Number of missing and non-missing experimental observations.
imsls_f_split_split_plot verifies that:

1
()i

i
n

=

= ∑
n_locations

n_whole×n_split×n_sub×n_blocks

 where n_blocki is equal to the number of blocks or replicates at the ith
location.

int n_locations (Input)
Number of locations. n_locations must be one or greater. If
n_locations>1 then the optional array locations[] must be included as
input. See optional argument IMSLS_LOCATIONS.

int n_whole (Input)
Number of levels associated with the whole-plot factor. n_whole must be
greater than one.

int n_split (Input)
Number of levels associated with the split-plot factor. n_split must be
greater than one.

int n_sub (Input)
Number of levels associated with the sub-plot factor. n_sub must be greater
than one.

int rep[] (Input)
An array of length n containing the block, or replicate, identifiers for each
observation in y. Different locations can have different numbers of blocks or
replicates. Each block or replicate at a single location must be assigned a
different identifier, but different locations can have the same assignments.

int whole[] (Input)
An array of length n containing the whole-plot identifiers for each observation
in y. Each level of the whole-plot factor must be assigned a different integer.

328 • split_split_plot IMSL C Stat Library

imsls_f_split_split_plot verifies that the number of unique whole-plot
identifiers is equal to n_whole.

int split[] (Input)
An array of length n containing the split-plot identifiers for each observation
in y. Each level of the split-plot factor must be assigned a different integer.
imsls_f_split_split_plot verifies that the number of unique split-plot
identifiers is equal to n_split.

int sub[] (Input)
An array of length n containing the sub-plot identifiers for each observation in
y. Each level of the sub-plot factor must be assigned a different integer.
imsls_f_split_split_plot verifies that the number of unique sub-plot
identifiers is equal to n_sub.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are included by
placing a NaN (not a number) in y. The NaN value can be set using either the
function imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively. At a single
location, only one missing value per whole-plot is allowed. The location,
whole-plot, split-plot and sub-plot for each observation in y are identified by
the corresponding values in the arguments locations, whole, split and
sub.

Return Value
Address of a pointer to the memory location of a two dimensional, 20 by 6 array
containing the ANOVA table. Each row in this array contains values for one of the
effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated
with values in that row. The remaining values in a row contain the ANOVA table
values using the following convention:

J anova_table

i,j
= anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only negative
values in anova_table[]. Assignments of identifiers to ANOVA sources use the
following coding:

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot • 329

Source

Identifier

ANOVA Source
-1 LOCATION†
-2 BLOCK WITHIN LOCATION‡
-3 WHOLE-PLOT

-4 LOCATION × WHOLE-PLOT†
-5 WHOLE-PLOT ERROR

-6 SPLIT-PLOT
-7 LOCATION × SPLIT-PLOT†

-8 WHOLE-PLOT × SPLIT-PLOT
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT†
-10 SPLIT-PLOT ERROR›
-11 CORRECTED TOTAL

-12 LOCATION × SUB-PLOT†

-13 WHOLE-PLOT × SUB-PLOT
-14 LOCATION × WHOLE-PLOT × SUB-PLOT†

-15 SPLIT-PLOT × SUB-PLOT

-16 LOCATION × SPLIT-PLOT × SUB-PLOT†
-17 WHOLE-PLOT × SPLIT-PLOT × SUB-PLOT

-18 LOCATION × WHOLE-PLOT × SPLIT-PLOT × SUBPLOT†

-19 SUB-PLOT ERROR
-20 CORRECTED TOTAL

Notes: † If n_locations=1 sources involving location are set to missing (NaN).
 ‡ If IMSLS_CRD is set, entries for blocks within location are set to
 missing, and its sum of squares and degrees of freedom are pooled into the
 whole-plot error.

 * Split-plot error component calculation varies depending upon
 n_locations. See “Description” below for details.

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_split_split_plot (int n, int n_locations, int n_whole, int

n_split, int n_sub, int rep[], int whole[],
 int split[],int sub[], float y[],
IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_RCBD or IMSLS_CRD,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means,
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[],

330 • split_split_plot IMSL C Stat Library

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_SUB_PLOT_MEANS, float **sub_plot_means,
IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[],
IMSLS_WHOLE_SPLIT_PLOT_MEANS,
 float **whole_split_plot_means,
IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER,
 float whole_split_plot_means[],
IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means,
IMSLS_WHOLE_SUB_PLOT_MEANS_USER
 float whole_sub_plot_means[],
IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means,
IMSLS_SPLIT_SUB_PLOT_MEANS_USER,
 float split_sub_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

Optional Arguments

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined array of length 120 for storage of the 20 by 6 anova table
described as the return argument for imsls_f_split_split_plot. For a
detailed description of the format for this table, see the previous description of
the return value for imsls_f_split_split_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation in
y. Unique integers must be assigned to each location in the study. This
argument is required when n_locations>1.

IMSLS_RCBD or IMSLS_CRD (Input)
Whole-plot randomization characteristic: IMSLS_RCBD implies that whole-
plots are assigned to whole-plot experimental units using a randomized
complete block design. IMSLS_CRD implies that whole-plots are completely
randomized to whole-plot experimental units. Default: IMSLS_RCBD

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted with
a NaN (Not a Number) value.

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot • 331

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 3 containing the
whole-plot, split-plot and sub-plot coefficients of variation. cv[0] contains
the whole-plot C.V., cv[1] contains the split-plot C.V., and cv[2] contains the
sub-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_whole
containing the whole-plot means.

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output)
Storage for the array whole_plot_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
Address of a pointer to an internally allocated array of length n_split
containing the split-plot means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_SUB_PLOT_MEANS, float **sub_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_sub
containing the sub-plot means.

IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[] (Output)
Storage for the array sub_plot_means, provided by the user.

IMSLS_WHOLE_SPLIT_PLOT_MEANS, float **whole_split_plot_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size
n_whole by n_split containing the whole-plot by split-plot means.

IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER, float whole_split_plot_means[]
(Output)
Storage for the array whole_split_plot_means, provided by the user.

IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means (Output)
Address of a pointer to an internally allocated 2-dimensional array of size
n_whole by n_sub containing the whole-plot by sub-plot means.

IMSLS_WHOLE_SUB_PLOT_MEANS_USER, float whole_sub_plot_means[] (Output)
Storage for the array whole_sub_plot_means, provided by the user.

IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size
n_split by n_sub containing the split-plot by sub-plot means.

332 • split_split_plot IMSL C Stat Library

IMSLS_SPLIT_SUB_PLOT_MEANS_USER, float split_sub_plot_means[]
(Output)
Storage for the array split_sub_plot_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
(n_whole*n_split*n_sub) containing the treatment means.
For i > 0, j > 0 and k > 0, treatment_meansi,j,k = treatment_means
[(i-1)*n_split*n_sub+(j-1)*n_sub + k-1] contains the mean of the
observations, averaged over all locations, blocks and replicates, for the kth
sub-plot within the jth split-plot within the ith whole-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 8 containing
five standard errors and their associated degrees of freedom. The standard
errors are in the first five elements and their associated degrees of freedom are
reported in std_err[4] through std_err[7].

Element
Standard Error for

Comparisons Between Two
Degrees of

Freedom
std_err[0] Whole-Plot Means std_err[4]

std_err[1] Split-Plot Means std_err[5]

std_err[2] Sub-Plot Means std_err[6]

std_err[3] Treatment Means (same whole-plot, split-
plot and sub-plot)

std_err[7]

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
Address of a pointer to an internally allocated array of length n_locations
containing the number of blocks, or replicates, at each location.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
 Address of a pointer to an internally allocated 3-dimensional array of size
n_locations by 20 by 6 containing the anova tables associated with each
location. For each location, the 20 by 6 dimensional array corresponds to the
anova table for that location. For example, location_anova_table[(i-
1)*120+(j-1)*6 + (k-1)] contains the value in the kth column and jth row of
the returned anova-table for the ith location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot • 333

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the
labels for each of the n_anova rows of the returned ANOVA table. The label
for the ith row of the ANOVA table can be printed with

 printf("%s", anova_row_labels[i]);

 The memory associated with anova_row_labels can be freed with a single
call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount
of space required will vary depending upon the number of factors and
n_anova. An upperbound on the required memory is
char *anova_row_labels[600].

Description
Function imsls_f_split_split_plot is capable of analyzing a wide variety of
split-split-plot experiments.
Split-split-plot experimental designs can vary in the assignment of whole-plot factors
to experimental units. In some cases, this assignment is completely random. For
example, in a drug study the experimental unit might be the subject receiving a
treatment. The whole-plot factor, possibly different treatments, could be assigned in
one of two ways. Each subject could receive only one treatment or each could receive
all treatments over an appropriate period of time. If each subject received only a single
randomly selected treatment, then this design constitutes a completely randomized
design for the whole-plot factor, and the optional input argument IMSLS_CRD must be
set.
On the other hand, if each subject receives every treatment in random order, then the
subject is a blocking factor, and this sampling scheme constitutes a randomized
complete block design. In this case, it is necessary to assume that there are no carry-
over effects from one treatment to another. This sampling scheme is the default
setting, i.e. IMSLS_RCBD is the default setting.
This randomization choice occurs often in agricultural field trials. A trial designed to
test different fertilizers and different seed lots can be conducted in one of two ways.
The whole-plot factor, fertilizer, can be applied to different fields, or each can be
applied to sub-divisions of these fields. In either case, a field, or a sub-division of a
field, is the whole-plot experimental unit. In the first case, in which only one randomly
selected fertilizer is applied to each field, the whole-plot factor is not blocked and this
scheme is called as a completely randomized design, and the optional input argument
IMSLS_CRD must be set. However, if fertilizers are applied to sub-divisions within a
field, then the whole-plot factor is blocked within fields and this assignment is referred
to as a randomized complete block design. By default,
imsls_f_split_split_plot assumes that levels of the whole-plot factor are
randomly assigned within blocks, i.e. IMSLS_RCBD is the default setting for
randomizing whole-plots.

334 • split_split_plot IMSL C Stat Library

The essential distinction between split-plot and split-split-plot experiments is the
presence of a third factor that is blocked, or nested, within each level of the whole-plot
and split-plot factors. This third factor is referred to as the sub-plot factor.

Whole Plot Factor

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Figure 1 – Split-Plot Experiment – Split-Plot B Nested within Whole-Plot A

Whole Plot Factor A
A2 A1 A4 A3

A2B3C2
A2B3C1

A1B2C1
A1B2C2

A4B1C2
A4B1C1

A3B3C2
A3B3C1

A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B3C2
A4B3C1

A3B2C2
A3B2C1

A2B2C2
A2B2C1

A1B3C1
A1B3C2

A4B2C1
A4B2C2

A3B1C2
A3B1C1

Figure 2 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within Split-Plot Factor B, Nested
Within Whole-Plot Factor A

Contrast the split-split plot experiment to the same experiment run using a strip-split
plot design, see Figure 3. In a strip-split plot experiment factor B is applied in strip
across factor A; whereas, in a split-split plot experiment, factor B is randomly assigned
to each level of factor A. In a strip-split plot experiment, the level of factor B is
constant across a row; whereas in a split-split plot experiment, the levels of factor B
change as you go across a row, reflecting the fact that factor B is randomized within
each level of factor A.

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot • 335

 Factor A Strip Plots
 A2 A1 A4 A3

Factor
B

Strip

Plots

B3 A2B3C2
A2B3C1

A1B3C1
A1B3C2

A4B3C2
A4B3C1

A3B3C2
A3B3C1

 B1 A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B1C2
A4B1C1

A3B1C2
A3B1C1

 B2 A2B2C2
A2B2C1

A1B2C1
A1B2C2

A4B2C1
A4B2C2

A3B2C2
A3B2C1

Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A and B

In some studies, a split-split-plot experiment is replicated at several locations.
Function imsls_f_split_split_plot can analyze these, even when the number of
blocks or replicates at each location is different. If only a single replicate or block is
used at each location, then location should be treated as a blocking factor, with
n_locations set equal to one. If n_locations=1, it is assumed that the
experiment was conducted at a single location with more than one block or replicate at
that location. In this case, all entries in the anova table associated with location will
contain missing values.
However, if n_locations>1, it is assumed the experiment was repeated at multiple
locations, with replication or blocking occurring at each location. Although the
number of blocks, or replicates, at each location can be different, the number of levels
for whole-plot and split-plot factors, n_whole and n_split, must be the same at each
location. The locations associated with each of the observations in y are specified in
the argument locations[], which is a required input argument when
n_locations>1.
By default, locations are assumed to be random effects. Tests involving whole-plots
use the interaction between whole-plots and locations as the error term for testing
whether there are statistically significant differences among whole-plot factor levels.
This assumes that the interaction of whole-plots and locations is not statistically
significant. A test of this assumption uses the pooled whole-plot error. If the
interaction between location and whole-plots, split-plots or sub-plot is statistically
significant, then the nature of that interaction should be explored since it impacts the
interpretation of the significance of the treatment factors.
When n_locations >1 are assumed to be random effects, tests involving split-plots
do not use the split-plot errors pooled across locations. Instead, the error term for split
plots is the interaction between locations and split-plots. The split-plot by whole-plot
interaction is tested against the location by split-plot by whole-plot interaction.
Suppose, for example, that a researcher wanted to conduct an agricultural experiment
comparing the effectiveness of 4 fertilizers with 3 rates of application and 2 seed lots.
One replicate of the experiment is conducted at each of the 3 farms. That is, only a
single field at each location is assigned to this experiment.

336 • split_split_plot IMSL C Stat Library

Each field is divided into 4 whole-plots and the fertilizers are randomly assigned to
each of the 4 whole-plots. Each whole-plot is then further sub-divided into 3 split-plots
which are each randomly assigned one of the three fertilizer application rates. Finally,
each of these sub-divisions assigned a particular fertilizer and application rate is sub-
divided into 2 plots and randomly assigned one of the two seed lots.
In this case, each farm is a blocking factor, fertilizers are whole-plots and fertilizer
application rate are split plots, and seed lots are sub-plots. The input array rep would
contain integers from 1 to the number of farms, with n_whole=4, n_split=3 and
n_sub=2.
However, if each farm allocated more than a single field for this study, then each farm
would be treated as a different location with n_locations set equal to the number of
farms, and fields might be treated as blocking factor. The array rep would contain
integers from 1 to the number fields used in a farm, and locations[] would contain
integers from 1 to the number of farms.
In summary imsls_f_split_split_plot can analyze 3x2=6 different experimental
situations, depending upon the settings of:
1. Locations (none, fixed or random): specified by setting n_locations,

locations[] and IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM.
2. Whole-plot sampling (CRD or RCBD): specified by setting IMSLS_CRD or

IMSLS_RCBD.
The default condition depends upon the value for n_locations. If n_locations>1,
locations are assumed to be a random effect. Assignment of experimental units to
whole-plots is assumed to use a RCBD design and whole-plots, split-plots and sub-
plots are all assumed to be fixed effects.

Example
This example uses data from a split-split plot design consisting of 2 whole-plots, 2-
split-plots and 2 sub-plots.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include "imsls.h"

void main()

{

 char **anova_row_labels = NULL;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",

 "Mean\nsquares", "\nF", "\np-value"};

 int i, j, k, l, page_width = 132;

 int n = 24; /* Total number of observations */

 int n_locations = 1;/* Number of locations */

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot • 337

 int n_whole = 2; /* Number of Whole-plots within a location */

 int n_split = 2; /* Number of Split-plots within a location, Whole_plot */

 int n_sub = 2;

 int rep[]={

 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3, 3, 3, 3};

 int whole[]={

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2};

 int split[]={

 1, 1, 2, 2, 1, 1, 2, 2,

 1, 1, 2, 2, 1, 1, 2, 2,

 1, 1, 2, 2, 1, 1, 2, 2};

 int sub[]={

 1, 2, 1, 2, 1, 2, 1, 2,

 1, 2, 1, 2, 1, 2, 1, 2,

 1, 2, 1, 2, 1, 2, 1, 2};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float grand_mean;

 float *cv;

 float *aov;

 float *treatment_means;

 float *whole_plot_means;

 float *split_plot_means;

 float *sub_plot_means;

 float *std_err;

 int *equal_means;

 aov = imsls_f_split_split_plot(n, n_locations, n_whole, n_split, n_sub,

 rep, whole, split, sub, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,

338 • split_split_plot IMSL C Stat Library

 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,

 IMSLS_SUB_PLOT_MEANS, &sub_plot_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 20, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\n\nGrand mean: %7.3f\n", grand_mean);

 printf("Coefficient of Variation ****\n");

 printf(" Whole-Plot: %7.3f\n", cv[0]);

 printf(" Split-Plot: %7.3f\n", cv[1]);

 printf(" Sub-Plot : %7.3f\n", cv[2]);

 l = 0;

 /*

 * Treatment Means

 */

 printf("\n\n***");

 printf("\nTreatment Means: \n");

 for (i=0; i < n_whole; i++){

 for(j=0; j < n_split; j++){

 for(k=0; k < n_sub; k++){

 printf(" treatment[%d][%d][%d] %f \n", i, j, k,

 treatment_means[l++]);

 }

 }

 }

 printf("\n Standard Error for Comparing Two Treatment Means: %f \n (df=%f)\n",

 std_err[3], std_err[7]);

 equal_means = imsls_f_multiple_comparisons(n_whole*n_split*n_sub,

 treatment_means, std_err[7],

 std_err[3]/sqrt(2),

 IMSLS_LSD,

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot • 339

 IMSLS_ALPHA, .05,

 0);

 printf("\n LSD for Treatment Means (alpha=0.05)");

 imsls_i_write_matrix(" Size of Groups of Means", 1, n_whole*n_split*n_sub-1,

 equal_means, 0);

 /*

 * Whole-plot Means

 */

 printf("\n\n***");

 imsls_f_write_matrix("Whole-plot Means", n_whole, 1,

 whole_plot_means, 0);

 printf("\nStandard Error for Comparing Two Whole-Plot Means: %f \n(df=%f)\n",

 std_err[0], std_err[4]);

 equal_means = imsls_f_multiple_comparisons(n_whole, whole_plot_means,

 std_err[4], std_err[0]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 printf("\nLSD for Whole-Plot Means (alpha=0.05) \n");

 imsls_i_write_matrix("Size of Groups of Means", 1, n_whole-1,

 equal_means, 0);

 /*

 * Split-plot Means

 */

 printf("\n\n***");

 imsls_f_write_matrix("Split-plot Means", n_split, 1,

 split_plot_means, 0);

 printf("\nStandard Error for Comparing Two Split-Plot Means: %f \n(df=%f)\n",

 std_err[1], std_err[5]);

 equal_means = imsls_f_multiple_comparisons(n_split, split_plot_means,

 std_err[5], std_err[1]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 printf("\nLSD for Split-Plot Means (alpha=0.05) \n");

 imsls_i_write_matrix("Size of Groups of Means", 1, n_split-1,

 equal_means, 0);

 /*

 * Sub-plot Means

 */

 printf("\n\n***");

 imsls_f_write_matrix("Sub-plot Means", n_sub, 1,

340 • split_split_plot IMSL C Stat Library

 sub_plot_means, 0);

 printf("\nStandard Error for Comparing Two Sub-Plot Means: %f \n(df=%f)\n",

 std_err[2], std_err[6]);

 equal_means = imsls_f_multiple_comparisons(n_sub, sub_plot_means,

 std_err[6], std_err[2]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 printf("\nLSD for Sub-Plot Means (alpha=0.05) \n");

 imsls_i_write_matrix(": Size of Groups of Means", 1, n_sub-1,

 equal_means, 0);

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F p-value

Location -1

Block Within Location -2 2 1310.28 655.14 30.82 0.031

Whole-Plot -3 1 858.01 858.01 40.37 0.024

Location x Whole-Plot -4

Whole-Plot Error -5 2 42.51 21.26 0.86 0.490

Split-Plot -6 1 17.17 17.17 0.69 0.452

Location x Split-Plot -7

Whole-Plot x Split-Plot -8 1 1.55 1.55 0.06 0.815

Location x Whole-Plot x -9

 Split-Plot

Split-Plot Error -10 4 99.32 24.83 7.62 0.008

Sub-Plot -11 1 163.80 163.80 50.27 0.000

Location x Sub-Plot -12

Whole-Plot x Sub-Plot -13 1 11.34 11.34 3.48 0.099

Location x Whole-Plot x Sub-Plot -14

Split-plot x Sub-Plot -15 1 46.76 46.76 14.35 0.005

Location x Split-Plot x Sub-Plot -16

Whole_plot x Split-Plot -17 1 0.51 0.51 0.16 0.703

 x Sub-Plot

Location x Whole-Plot x -18

 Split-Plot x Sub-Plot

Sub-Plot Error -19 8 26.07 3.26

Corrected Total -20 23 2577.33

Chapter 4: Analysis of Variance and Designed Experiments split_split_plot • 341

Grand mean: 33.871

Coefficient of Variation ****

 Whole-Plot: 13.612

 Split-Plot: 14.712

 Sub-Plot : 5.329

Treatment Means:

 treatment[0][0][0] 23.833334

 treatment[0][0][1] 30.766668

 treatment[0][1][0] 28.100000

 treatment[0][1][1] 28.866669

 treatment[1][0][0] 34.200001

 treatment[1][0][1] 43.299999

 treatment[1][1][0] 38.899998

 treatment[1][1][1] 43.000000

 Standard Error for Comparing Two Treatment Means: 1.473846

 (df=8.000000)

 LSD for Treatment Means (alpha=0.05)

 Size of Groups of Means

 1 2 3 4 5 6 7

 0 3 0 0 0 0 2

Whole-plot Means

 1 27.89

 2 39.85

Standard Error for Comparing Two Whole-Plot Means: 2.661792

(df=2.000000)

LSD for Whole-Plot Means (alpha=0.05)

Size of Groups of Means

 0

342 • strip_plot IMSL C Stat Library

Split-plot Means

 1 33.03

 2 34.72

Standard Error for Comparing Two Split-Plot Means: 2.876944

(df=4.000000)

LSD for Split-Plot Means (alpha=0.05)

Size of Groups of Means

 2

Sub-plot Means

1 31.26

2 36.48

Standard Error for Comparing Two Sub-Plot Means: 1.473846

(df=8.000000)

LSD for Sub-Plot Means (alpha=0.05)

: Size of Groups of Means

 0

strip_plot
Analyzes data from strip-plot experiments. Function strip_plot also analyzes strip-
plot experiments replicated at several locations.

Synopsis
#include <imsls.h>
float * imsls_f_strip_plot (int n, int n_locations, int n_strip_a,

int n_strip_b, int block[], int strip_a[], int strip_b[],
float y[],…, 0)

The type double function is imsls_d_strip_plot.

Chapter 4: Analysis of Variance and Designed Experiments strip_plot • 343

Required Arguments
int n (Input)

Number of missing and non-missing experimental observations.
imsls_f_strip_plot verifies that:

1
()i

i
n

=

⋅ ⋅= ∑
n_locations

n_strip_a n_strip n_blocks

int n_locations (Input)
Number of locations. n_locations must be one or greater. If
n_locations>1 then the optional array locations[] must be included as
input to imsls_f_strip_plot. See optional argument IMSLS_LOCATIONS.

int n_strip_a (Input)
Number of levels associated with the strip factor A. n_strip_a must be
greater than one.

int n_strip_b (Input)
Number of levels associated with the strip factor B. n_strip_b must be
greater than one.

int block[] (Input)
 An array of length n containing the block identifiers for each observation in

y. Locations can have different numbers of blocks. Each block at a single
location must be assigned a different identifier, but different locations can
have the same assignments.

int strip_a[] (Input)
An array of length n containing the factor A strip-plot identifiers for each
observation in y. Each level of this factor must be assigned a different
integer. This routine verifies that the number of unique factor A strip-plot
identifiers is equal to n_strip_a.

int strip_b[] (Input)
An array of length n containing the factor B strip-plot identifiers for each
observation in y. Each level of this factor must be assigned a different
integer. This routine verifies that the number of unique factor B strip-plot
identifiers is equal to n_strip_b.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated by
placing a NaN (not a number) in y. The NaN value can be set using either
the function imsls_f_machine(6) or imsls_d_machine(6), depending
upon whether single or double precision is being used, respectively. The
location, strip-plot A, and strip-plot B for each observation in y are identified
by the corresponding values in the arguments locations, strip_a, and
strip_b.

344 • strip_plot IMSL C Stat Library

Return Value
Address of a pointer to the memory location of a two dimensional, 12 by 6 array
containing the ANOVA table. Each row in this array contains values for one of the
effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated
with values in that row. The remaining values in a row contain the ANOVA table
values using the following convention:

j anova_table

i,j
= anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

The Source Identifiers in the first column of anova_tablei,j are the only negative
values in anova_table. Assignments of identifiers to ANOVA sources use the
following coding:

Source
Identifier

ANOVA Source

-1 LOCATION†
-2 BLOCK WITHIN LOCATION
-3 STRIP-PLOT A
-4 LOCATION × STRIP-PLOT A†
-5 STRIP-PLOT A ERROR
-6 STRIP-PLOT B
-7 LOCATION × STRIP-PLOT B†
-8 STRIP-PLOT B ERROR
-9 STRIP-PLOT A × STRIP-PLOT B
-10 LOCATION × STRIP-PLOT A × STRIP-PLOT B †
-11 STRIP-PLOT A × STRIP-PLOT B ERROR
-12 CORRECTED TOTAL

Notes: † If n_locations=1 sources involving location are set to missing (NaN).

Synopsis with Optional Arguments
#include <imsl.h>
float * imsls_f_strip_plot (int n, int n_locations, int n_strip_a, int

n_strip_b, int block[], int strip_a[], int strip_b[], float y[],

Chapter 4: Analysis of Variance and Designed Experiments strip_plot • 345

IMSLS_RETURN_USER, float anova_table[],
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,
IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means,
IMSLS_STRIP_PLOT_A_MEANS_USER,
 float strip_plot_a_means[],
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means,
IMSLS_STRIP_PLOT_B_MEANS_USER,
 float strip_plot_b_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],

 0)

Optional Arguments

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined array of length 72 for storage of the 12 by 6 ANOVA table
described as the return argument for imsls_f_strip_plot. For a detailed
description of the format for this table, see the previous description of the
return arguments for imsls_f_strip_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation
in y. Unique integers must be assigned to each location in the study. This
argument is required when n_locations>1.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted
with a NaN (Not a Number) value.

IMSLS_CV, float **cv (Output)
Address of a pointer to an internally allocated array of length 3 containing the
whole-plot, split-plot and sub-plot coefficients of variation. cv[0] contains
the whole-plot C.V., cv[1] contains the split-plot C.V., and cv[2] contains
the sub-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

346 • strip_plot IMSL C Stat Library

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output)
Address of a pointer to an internally allocated array of length n_strip_a
containing the factor A strip-plot means.

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means [] (Output)
Storage for the array strip_plot_a_means, provided by the user.

IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means (Output)
Address of a pointer to an internally allocated array of length n_strip_b
containing the factor B strip-plot means.

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means [] (Output)
Storage for the array strip_plot_b_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
(n_split_a×n_split_b) containing the treatment means.
For i > 0 and j > 0, treatment_meansi,j = treatment_means
[(i-1)×n_split_a +(j-1)] contains the mean of the observations, averaged over
all locations, blocks and replicates, for the ith level of the factor A strip-plot
and the jth level of the factor B strip-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
Address of a pointer to an internally allocated array of length 10 containing
five standard errors and their associated degrees of freedom. The standard
errors are in the first five elements and their associated degrees of freedom are
reported in std_err[5] through std_err[9].

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

Element Standard Error for
Comparisons Between Two

Degrees of
Freedom

Std_err[0] Factor A Strip-Plot Means std_err[5]

Std_err[1] Factor B Strip-Plot Means std_err[6]

Std_err[2] Factor A Strip-Plot Means at the
same level of Factor B

std_err[7]

Std_err[3] Factor B Strip-Plot Means at the
same level of Factor A

std_err[8]

Std_err[4] Treatment Means (same strip-
plot A and strip-plot B)

std_err[9]

Chapter 4: Analysis of Variance and Designed Experiments strip_plot • 347

IMSLS_N_BLOCKS, int **n_blocks (Output)
Address of a pointer to an internally allocated array of length n_locations
containing the number of blocks, or replicates, at each location.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
Storage for the array n_blocks, provided by the user.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of size
n_locations by 12 by 6 containing the Anova tables associated with each
location. For each location, the 12 by 6 dimensional array corresponds to the
Anova table for that location. For example, location_anova_table[(i-
1)×72+(j-1)×6 + (k-1)] contains the value in the kth column and jth row of the
returned Anova table for the ith location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
Storage for the array location_anova_table, provided by the user.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the
labels for each of the n_anova rows of the returned ANOVA table. The
label for the ith row of the ANOVA table can be printed with

printf("%s", anova_row_labels[i]);

The memory associated with anova_row_labels can be freed with a single
call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount
of space required will vary depending upon the number of factors and
n_anova. An upperbound on the required memory is
char *anova_row_labels[600].

Description
Function imsls_f_strip_plot is capable of analyzing a wide variety of strip-plot
experiments.
The essential distinction between strip-plot and split-plot experiments is the application
of factor B. In a split-plot experiment, levels of Factor B are nested within Factor A,
see Table 2 below. In strip-plot experiments, Factors A and B are completely crossed,
see Table 1 below. This occurs, for example, when an agricultural field is used as a
block and the levels of factor A are applied in vertical strips across the entire field.
Levels of factor B are assigned to horizontal strips across the same block.

348 • strip_plot IMSL C Stat Library

 Strip Plot Factor A

 A2 A1 A4 A3

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

Strip

Plot

Factor B
B2 A2B2 A1B2 A4B2 A3B2

Table 1 – Strip-Plot Experiments – Strip-Plots Completely Crossed

Whole Factor Plot

A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 2 – Split-Plot Experiments – Split-Plot B Nested within Strip-Plot A

In some studies, a strip-plot experiment is replicated at several locations.
imsls_f_strip_plot can analyze strip-plot experiments replicated at multiple
locations, even when the number of blocks or replicates at each location are different.
If only a single replicate or block is used at each location, then location should be
treated as a blocking factor, with n_locations set equal to one. If n_locations=1,
it is assumed that the experiment was conducted at a single location with more than one
block or replicate at that location. In this case, the four entries associated with location
in the ANOVA table will contain missing values.
However, if n_locations>1, it is assumed the experiment was repeated at multiple
locations, with blocking occurring at each location. Although the number of blocks at
each location can be different, the number of levels for the factor A and B strip-plots
must be the same at each location. The locations associated with each of the
observations in y are specified in the argument locations[], which is a required
input argument when n_locations>1.
Locations are assumed to be random effects, then tests involving factor A strip-plots
use the interaction between factor A strip-plots and locations as the error term for
testing whether there are statistically significant differences among the levels of factor
A. However, this assumes that the interaction of factor A and locations is not
statistically significant. A test of this assumption is included in the ANOVA table. If
the interaction between factor A strip-plots and locations is statistically significant,
then the nature of that interaction should be explored since it impacts the interpretation
of the significance of the factor A.

Chapter 4: Analysis of Variance and Designed Experiments strip_plot • 349

Similarly, when locations are assumed to be random effects, tests involving factor B do
not use the strip-plot B errors pooled across locations. Instead, the error term for factor
B is the interaction between locations and factor B.

Example
This example uses data from a strip-plot design with two levels for the first strip and
four for the last strip.

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void main()

{

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",

 "Mean\nsquares", "\nF", "\np-value"};

 char **anova_row_labels = NULL;

 int i, j, k, l, page_width = 132;

 int n = 24; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

 int n_strip_a = 2; /* Number of factor A strip-plots within a location */

 int n_strip_b = 4; /* Number of factor B strip-plots within a location */

 int block[]={

 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3, 3, 3, 3};

 int strip_a[]={

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2};

 int strip_b[]={

 1, 2, 3, 4, 1, 2, 3, 4,

 1, 2, 3, 4, 1, 2, 3, 4,

 1, 2, 3, 4, 1, 2, 3, 4};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float grand_mean=0;

 float *cv;

350 • strip_plot IMSL C Stat Library

 float *aov;

 float *treatment_means;

 float *strip_plot_a_means;

 float *strip_plot_b_means;

 float *std_err;

 int n_missing;

 int *equal_means;

 aov = imsls_f_strip_plot(n, n_locations, n_strip_a, n_strip_b,

 block, strip_a, strip_b, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_N_MISSING, &n_missing,

 IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,

 IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 12, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 printf("\nGrand mean: %f\n", grand_mean);

 /* Print treatment means */

 imsls_f_write_matrix("Treatment Means", n_strip_a, n_strip_b,

 treatment_means, 0);

 printf("\n\nStandard Error for Comparing Two Treatment Means: \n");

 printf(" Same Level of Factor B %f (df=%f)\n",

 std_err[2], std_err[7]);

 printf(" Same Level of Factor A %f (df=%f)\n",

 std_err[3], std_err[8]);

 printf(" Different Factor A and B Levels %f (df=%f)\n\n\n\n",

 std_err[4], std_err[9]);

Chapter 4: Analysis of Variance and Designed Experiments strip_plot • 351

 /* Print factor A means */

 imsls_f_write_matrix("Factor A Means", n_strip_a, 1,

 strip_plot_a_means, 0);

 printf("\nStandard Error for Comparing Two Factor A Means: \n %f (df=%f)\n",

 std_err[0], std_err[5]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a, strip_plot_a_means,
std_err[5],

 std_err[0]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 /* Print multiple comparison results */

 imsls_i_write_matrix("LSD Comparison : Size of Groups of Means", 1, n_strip_a-1,

 equal_means, 0);

 /* Print factor B means */

 imsls_f_write_matrix("\n\nFactor B Means", n_strip_b, 1,

 strip_plot_b_means, 0);

 printf("\nStandard Error for Comparing Two Factor B Means: \n %f (df=%f)\n",

 std_err[1], std_err[6]);

 equal_means = imsls_f_multiple_comparisons(n_strip_b, strip_plot_b_means,
std_err[6],

 std_err[1]/sqrt(2),

 IMSLS_LSD,

 IMSLS_ALPHA, .05,

 0);

 /* Multiple comparison results */

 imsls_i_write_matrix("LSD Comparison : Size of Groups of Means",

 1, n_strip_b-1, equal_means, 0);

}

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F p-value

Location -1

Block Within Location -2 2 1310.28 655.14 19.89 0.009

Strip-Plot A -3 1 858.01 858.01 40.37 0.024

Location x Strip-Plot A -4

Strip-Plot A Error -5 2 42.51 21.26 4.62 0.061

352 • strip_plot IMSL C Stat Library

Strip-Plot B -6 3 227.73 75.91 4.66 0.052

Location x Strip-Plot B -7

Strip-Plot B Error -8 6 97.76 16.29 3.54 0.075

Strip-Plot A x Strip-Plot B -9 3 13.40 4.47 0.97 0.466

Location x Strip-Plot A -10

 x Strip-Plot B

Strip-Plot A x Strip-Plot B Error -11 6 27.63 4.60

Corrected Total -12 23 2577.33

Grand mean: 33.870834

 Treatment Means

 1 2 3 4

1 23.83 30.77 28.10 28.87

2 34.20 43.30 38.90 43.00

Standard Error for Comparing Two Treatment Means:

 Same Level of Factor B 2.417643 (df=4.772558)

 Same Level of Factor A 2.639322 (df=9.140633)

 Different Factor A and B Levels 3.121075 (df=8.405353)

Factor A Means

1 27.89

2 39.85

Standard Error for Comparing Two Factor A Means:

 1.882171 (df=2.000000)

LSD Comparison : Size of Groups of Means

 0

Factor B Means

1 29.02

2 37.03

3 33.50

4 35.93

Standard Error for Comparing Two Factor B Means:

 2.330465 (df=6.000000)

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 353

LSD Comparison : Size of Groups of Means

 1 2 3

 2 3 0

strip_split_plot
Analyzes data from strip-split-plot experiments. Function strip_split_plot also
analyzes strip-split-plot experiments replicated at several locations.

Synopsis
#include <imsls.h>

float * imsls_f_strip_split_plot (int n, int n_locations, int n_strip_a,
int n_strip_b, int n_split, int block[], int strip_a[], int strip_b[],
int split[], float y[],…, 0)

The type double function is imsls_d_strip_split_plot.

Required Arguments

int n (Input)
Number of missing and non-missing experimental observations.
imsls_f_strip_split_plot verifies that:

1
()i

i
n

=

= ∑
n_locations

n_strip_a×n_strip_b×n_split×n_block

 where n_blocksi is the number of blocks at location i.
int n_locations (Input)

Number of locations. n_locations must be one or greater. If
n_locations>1 then the optional array locations[] must be included as
input to imsls_f_strip_split_plot.

int n_strip_a (Input)
Number of levels associated with the strip-plot A factor. n_strip_a must be
greater than one.

int n_strip_b (Input)
Number of levels associated with the strip-plots B factor. n_strip_b must
be greater than one.

int n_split (Input)
Number of levels associated with the split factor. n_split must be greater
than one.

int block[] (Input)
An array of length n containing the block identifiers for each observation in y.
Locations can have different numbers of blocks. Each block at a single

354 • strip_split_plot IMSL C Stat Library

location must be assigned a different identifier, but different locations can
have the same assignments.

int strip_a[] (Input)
An array of length n containing the strip-plot A level identifiers for each
observation in y. Each level of this factor must be assigned a different
integer. imsls_f_strip_split_plot verifies that the number of unique
strip-plot identifiers is equal to n_strip_a.

int strip_b[] (Input)
An array of length n containing the strip-plot B identifiers for each
observation in y. Each level of this factor must be assigned a different
integer. imsls_f_strip_split_plot verifies that the number of unique
strip-plot identifiers is equal to n_strip_b.

int split[] (Input)
An array of length n containing the split-plot level identifiers for each
observation in y. Each level of this factor must be assigned a different
integer. imsls_f_strip_split_plot verifies that the number of unique
split-plot identifiers is equal to n_split.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values cannot be omitted. They are indicated by
placing a NaN (not a number) in y. The NaN value can be set using either the
function imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively. The location,
strip-plot A, strip-plot B and split-plot for each observation in y are identified
by the corresponding values in the argument’s locations, strip_a, strip_b,
and split.

Return Value
Address of a pointer to the memory location of a two dimensional, 22 by 6 array
containing the ANOVA table. Each row in this array contains values for one of the
effects in the ANOVA table. The first value in each row,
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated
with values in that row. The remaining values in a row contain the ANOVA table
values using the following convention:

J anova_tablei,j = anova_table[i*6+j]

0 Source Identifier (values described below)

1 Degrees of freedom

2 Sum of squares

3 Mean squares

4 F-statistic

5 p-value for this F-statistic

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 355

The Source Identifiers in the first column of anova_tablei,j are the only negative
values in anova_table[]. Assignments of identifiers to ANOVA sources use the
following coding:

Source
Identifier

ANOVA Source

-1 LOCATION†

-2 BLOCKs WITHIN LOCATION

-3 STRIP-PLOT A

-4 LOCATION × STRIP-PLOT A †

-5 STRIP-PLOT A ERROR

-6 SPLIT-PLOT

-7 SPLIT-PLOT × STRIP-PLOT A

-8 LOCATION × SPLIT-PLOT †

-9 SPLIT-PLOT ERROR

-10 LOCATION × SPLIT-PLOT × STRIP-PLOT A †

-11 STRIP-PLOT B

-12 LOCATION × STRIP-PLOT B †

-13 STRIP_PLOT B ERROR

-14 STRIP-PLOT A × STRIP-PLOT B

-15 LOCATION × STRIP-PLOT A × STRIP-PLOT B

-16 STRIP-PLOT A × STRIP-PLOT B ERROR

-17 SPLIT-PLOT × STRIP-PLOT B

-18 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT

-19 LOCATION × SPLIT-PLOT × STRIP-PLOT B †

-20 LOCATION × STRIP-PLOT A × STRIP-PLOT B × SPLIT-
PLOT †

-21 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT ERROR

-22 CORRECTED TOTAL

Notes: † If n_locations=1 sources involving location are set to missing (NaN).

Synopsis with Optional Arugments
#include <imsl.h>
float * imsls_f_strip_split_plot (int n, int n_locations,

 int n_strip_a, int n_strip_b, int n_split, int block[],
int strip_a[], int strip_b[],int split[], float y[],
IMSLS_RETURN_USER, float anova_table[]
IMSLS_LOCATIONS, int locations[],
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float **cv,

356 • strip_split_plot IMSL C Stat Library

IMSLS_CV_USER, float cv[],
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means,
IMSLS_STRIP_PLOT_A_MEANS_USER,
 float strip_plot_a_means[],
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means,
IMSLS_STRIP_PLOT_B_MEANS_USER,
 float strip_plot_b_means[],
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means,
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[],
IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means,
IMSLS_STRIP_PLOT_AB_MEANS_USER,
 float strip_plot_ab_means[],
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS,
 float **strip_plot_a_split_plot_means,
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER,
 float strip_plot_a_split_plot_means[],
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS,
 float **strip_plot_b_split_plot_means,
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS_USER,
 float strip_plot_b_split_plot_means[],
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_STD_ERRORS, float **std_err,
IMSLS_STD_ERRORS_USER, float std_err[],
IMSLS_N_BLOCKS int **n_blocks,
IMSLS_N_BLOCKS_USER, int n_blocks[],
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table,
IMSLS_LOCATION_ANOVA_TABLE_USER,
 float location_anova_table[],
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels,
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[],
0)

Optional Arguments

IMSLS_RETURN_USER, float anova_table[] (Output)
User defined array of length 132 for storage of the 22 by 6 anova table
described as the return argument for imsls_f_strip_split_plot. For a
detailed description of the format for this table, see the previous description of
the return arguments for imsls_f_strip_split_plot.

IMSLS_LOCATIONS, int locations[] (Input)
An array of length n containing the location identifiers for each observation in
y. Unique integers must be assigned to each location in the study. This
argument is required when n_locations>1.

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 357

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted
with a NaN (Not a Number) value.

IMSLS_CV, float **cv (Output)
 Address of a pointer to an internally allocated array of length 3 containing
the strip-plots and split-plot coefficients of variation. cv[0] contains the
strip-plot A C.V., cv[1] contains the strip-plot B C.V., and cv[2] contains
the split-plot C.V.

IMSLS_CV_USER, float cv[] (Output)
Storage for the array cv, provided by the user.

IMSLS_GRAND_MEAN, float *grand_mean (Output)
Mean of all the data across every location.

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output)
Address of a pointer to an internally allocated array of length n_strip_a
containing the factor A strip-plot means.

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[] (Output)
Storage for the array strip_plot_a_means, provided by the user.

IMSLS_STRIP_PLOT_B_MEANS, float **split_plot_b_means (Output)

 Address of a pointer to an internally allocated array of length n_split_b
containing the strip-plot B means.

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[] (Output)
Storage for the array split_plot_b_means, provided by the user.

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output)
 Address of a pointer to an internally allocated array of length n_split
containing the strip-plot B means.

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output)
Storage for the array split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, float
**strip_plot_a_split_plot_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size
n_strip_a by n_split containing the means for all combinations of the
factor A strip-plot and split-plots.

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER, float
strip_plot_a_split_plot_means [] (Output)
Storage for the array strip_a_split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, float
**split_plot_b_split_plot_means (Output)
Address of a pointer to an internally allocated 2-dimensional array of size
n_split_b by n_split containing the means for all combinations of strip-
plot B and split-plots.

358 • strip_split_plot IMSL C Stat Library

IMSLS_STRIP_B_PLOT_SPLIT_PLOT_MEANS_USER, float
strip_plot_b_split_plot_means[] (Output)
Storage for the array strip_b_split_plot_means, provided by the user.

IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means (Output)
 Address of a pointer to an internally allocated 2-dimensional array of size
n_strip_a by n_strip_b containing the means for all combinations of
strip-plots.

IMSLS_STRIP_PLOT_AB_MEANS_USER, float strip_plot_ab_means[] (Output)
Storage for the array strip_plot_ab_means, provided by the user.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size
(n_strip_a*n_strip_b*n_split) containing the treatment means. For i >
0 and j> 0, treatment_meansi, j = treatment_means
[(i-1)*n_split +(j-1)] contains the mean of the observations, averaged over
all locations, blocks and replicates, for the ith level of the strip-plot and the
jth level of the split-plot.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_STD_ERRORS, float **std_err (Output)
 Address of a pointer to an internally allocated array of length 20 containing
ten standard errors and their associated degrees of freedom. The standard
errors are in the first 10 elements and their associated degrees of freedom are
reported in std_err[10] through std_err[19].

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 359

Element

Standard Error for
Comparisons Between Two

Degrees of
Freedom

std_err[0] Strip-Plot A Means std_err[10]

std_err[1] Strip-Plot B Means std_err[11]

std_err[2] Split-Plot Means std_err[12]

std_err[3] Strip-Plot A Means at the same level of
split-plots

std_err[13]

std_err[4] Strip-Plot A Means at the same level of
strip-plot B

std_err[14]

std_err[5] Strip-Plot B Means at the same level of
split-plots

std_err[15]

std_err[6] Strip-Plot B Means at the same level of
strip-plot A

std_err[16]

std_err[7] Split-Plot Means at the same level of split-
plot A

std_err[17]

std_err[8] Split-Plot Means at the same level of strip-
plot B

std_err[18]

std_err[9] Treatment Means (same strip-plot A, strip-
plot B and split-plot)

std_err[19]

IMSLS_STD_ERRORS_USER, float std_err[] (Output)
Storage for the array std_err, provided by the user.

IMSLS_N_BLOCKS, int **n_blocks (Output)
 Address of a pointer to an internally allocated array of length n_locations
containing the number of blocks, or replicates, at each location. This value
must be greater than one, n_blocks > 1.

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output)
User provided storage for the array n_blocks.

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output)
Address of a pointer to an internally allocated 3-dimensional array of size
n_locations by 22 by 6 containing the anova tables associated with each
location. For each location, the 22 by 6 dimensional array corresponds to the
anova table for that location. For example, location_anova_table[(i-
1)*132+(j-1)*6 +(k-1)] contains the value in the kth column and jth row
of the returned anova-table for the ith location.

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output)
User provided storage for the array location_anova_table.

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels (Output)
Address of a pointer to a pointer to an internally allocated array containing the
labels for each of the n_anova rows of the returned ANOVA table. The
label for the ith row of the ANOVA table can be printed with

printf("%s", anova_row_labels[i]);

360 • strip_split_plot IMSL C Stat Library

The memory associated with anova_row_labels can be freed with a single
call to free(anova_row_labels).

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[] (Output)
Storage for the array anova_row_labels, provided by the user. The amount
of space required will vary depending upon the number of factors and
n_anova. An upperbound on the required memory is
char *anova_row_labels[800].

Description
Function imsls_f_strip_split_plot is capable of analyzing a wide variety of
strip-split plot experiments, also referred to as strip-strip plot experiments. By default,
imsls_f_strip_split_plot assumes that both strip-plot factors, and split-plots are
fixed effects, and the location effects, if any, are random effects. The nature of
randomization used in an experiment determines analysis of the data. Two popular
forms of randomization in strip-plot and split-plot experiments are illustrated in the
following two figures. In both experiments, the strip-plot factor, factor A, has 4 levels
that are randomly assigned to a block or field in four strips.

Table 1 - Strip-Plot Experiment - Strip-Plots Completely Crossed

In the strip-plot experiment, factor B, has 3 levels that are randomly assigned as strips
across each of the four levels of factor A. In this case, factors A and B are completely
crossed. The randomization applied to factor B is independent of the application of the
strip-plots, factor A.
Contrast this to the randomization depicted in Table 2 below. In this split-plot
experiment, the levels of factor B are nested within each level of factor A whole-plots.
Factor B is randomized independently within each level of factor A. Unlike the strip-
plot experiment, in the split-plot experiment different levels of factor B appear in the
same row.

 Factor A Strip-Plots
 A2 A1 A4 A3

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

Factor B

Strip Plots

B2 A2B2 A1B2 A4B2 A3B2

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 361

Whole-Plot Factor
A2 A1 A4 A3

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 2 – Split-Plot Experiment – Factor B Split-Plots Nested within Factor A Whole-Plots

A strip-split plot experiment is a strip-plot experiment with a third factor randomized
within each level of strip-plot factor A, see Table 3. The third factor, referred to as the
split-plot factor, is randomly assigned to experimental units within each level of strip-
plot factor A, see Figure 3. imsls_f_strip_split_plot analyzes strip-split plot
experiments consisting of two strip-plot factors and one split-plot factor nested within
strip-plot factors A and B.

 Factor A Strip Plots
 A2 A1 A4 A3

B3 A2B3C2
A2B3C1

A1B3C1
A1B3C2

A4B3C2
A4B3C1

A3B3C2
A3B3C1

B1 A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B1C2
A4B1C1

A3B1C2
A3B1C1

Factor
B

Strip

Plots B2 A2B2C2
A2B2C1

A1B2C1
A1B2C2

A4B2C1
A4B2C2

A3B2C2
A3B2C1

Table 3 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A

Strip-split plot experiments are closely related to split-split plot experiments, see Table
4. The main difference between the two is that in strip-split plot experiments, the order
of the levels for factor B are not applied randomly across factor A. Each level of factor
B is constant across any row. In this example, the entire first row is assigned to the
third level of factor B. In the equivalent split-split plot experiment, the levels of factor
B are not constant across any row. The levels are randomized within each level of
factor A.

362 • strip_split_plot IMSL C Stat Library

Whole Plot Factor A
A2 A1 A4 A3

A2B3C2
A2B3C1

A1B2C1
A1B2C2

A4B1C2
A4B1C1

A3B3C2
A3B3C1

A2B1C1
A2B1C2

A1B1C1
A1B1C2

A4B3C2
A4B3C1

A3B2C2
A3B2C1

A2B2C2
A2B2C1

A1B3C1
A1B3C2

A4B2C1
A4B2C2

A3B1C2
A3B1C1

Table 4 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within Split-Plot Factor B,
Nested Within Whole-Plot Factor A

In some studies, a strip-split-plot experiment is replicated at several locations.
Function imsls_f_strip_split_plot can analyze strip-split plot experiments
replicated at multiple locations, even when the number of blocks or replicates at each
location might be different different. If only a single replicate or block is used at each
location, then location should be treated as a blocking factor, with n_locations=1. If
n_locations=1, it is assumed that either the experiment was conducted at multiple
locations, each with a single block, or at a single location with more than one block or
replicate at that location. When n_locations=1, all entries associated with location
in the anova table will contain missing values.
However, if n_locations>1, it is assumed the experiment was repeated at multiple
locations, with blocking occurring at each location. Although the number of blocks at
each location can be different, the number of levels for the strip-plot and split-plot
factors strip-plots must be the same at each location. The locations associated with
each of the observations in y are specified in the argument locations[], which is a
required input argument when n_locations>1.
By default, locations are assumed to be random effects. Tests involving strip-plots use
the interaction between strip-plots and locations as the error term for testing whether
there are statistically significant differences among strip-plots. However, this assumes
that the interaction of strip-plots and locations is not statistically significant. A test of
this assumption is included in the anova table. If any interactions between locations
and strip-plot or split-plot factors are statistically significant, then the nature of these
interactions should be explored since this impacts the interpretation of the significance
of the treatment factors.
Similarly, when locations are assumed to be random effects, tests involving split-plots
do not use the split-plot errors pooled across locations. Instead, the error term for split-
plots is the interaction between locations and split-plots.
Suppose, for example, that a researcher wanted to conduct an agricultural experiment
comparing the effectiveness of 4 fertilizers with 3 seed lots and 3 rates of application.
One replicate of the experiment is conducted at each of the 3 farms. That is, only a
single field at each location is assigned to this experiment.
Each field is divided into 4 vertical strips and 3 horizontal strips. The vertical strips are
randomly assigned to fertilizers and the rows are randomly assigned to application
rates. Fertilizers and application rates represent strip-plot factors A and B respectively.

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 363

Seed lots are randomly assigned to three sub-divisions within each combination of
strip-plots.

 Fertilizer Strip Plots

 F2 F1 F4 F3

R3 F2R3S1
F2R3S2
F2R3S3

F1R3S3
F1R3S2
F1R3S1

F4R3S3
F4R3S2
F4R3S1

F3R3S2
F3R3S1
F3R3S3

R2 F2R1S3
F2R1S1
F2R1S2

F1R1S2
F1R1S3
F1R1S1

F4R1S3
F4R1S1
F4R1S2

F3R1S1
F3R1S2
F3R1S3

Application

Rate
Strip
Plot

R1 F2R2S1
F2R2S2
F2R2S3

F1R2S1
F1R2S3
F1R2S2

F4R2S2
F4R2S3
F4R2S1

F3R2S3
F3R2S1
F3R2S2

Figure 4 – Strip-Split Plot Experiment – Fertilizer Strip-Plots, Application Rate Strip-Plots,
and Seed Lot Split-Plots

In this case, each farm is a blocking factor, fertilizers are factor A strip-plots, fertilizer
application rates are factor B strip-plots, and seed lots are split-plots. The input array
rep would contain integers from 1 to the number of farms.
In summary, imsls_f_strip_split_plot can analyze 2x2x2x2=16 different
experimental situations, depending upon the settings of:

Example
The experiment was conducted using a 2 x 2 strip_split plot arrangement with each of
the four plots divided into 2 sub-divisions that were randomly assigned one of two
split-plot levels. This was replicated 3 times producing an experiment with
n = 2x2x2x3 = 24 observations.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include "imsls.h"

void l_printLSD(int n1, int *equalMeans, float *means);

void l_printLSD2Table(int n1, int n2, int* equalMeans, float *means);

void l_printLSD3Table(int n1, int n2, int n3, int* equalMeans, float *means);

void main()

{

 char **anova_row_labels;

 char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",

364 • strip_split_plot IMSL C Stat Library

 "Mean\nsquares", "\nF", "\np-value"};

 int i, j, k, l, page_width = 132;

 int n = 24; /* Total number of observations */

 int n_locations = 1; /* Number of locations */

 int n_strip_a = 2; /* Number of Factor A strip-plots within a location */

 int n_strip_b = 2; /* Number of Factor B strip-plots within a location */

 int n_split = 2; /* Number of split-plots within each Factor A strip-plot */

 int block[]={

 1, 1, 1, 1, 1, 1, 1, 1,

 2, 2, 2, 2, 2, 2, 2, 2,

 3, 3, 3, 3, 3, 3, 3, 3};

 int strip_a[]={

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2,

 1, 1, 1, 1, 2, 2, 2, 2};

 int strip_b[]={

 1, 1, 2, 2, 1, 1, 2, 2,

 1, 1, 2, 2, 1, 1, 2, 2,

 1, 1, 2, 2, 1, 1, 2, 2};

 int split[]={

 1, 2, 1, 2, 1, 2, 1, 2,

 1, 2, 1, 2, 1, 2, 1, 2,

 1, 2, 1, 2, 1, 2, 1, 2};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float alpha = 0.05;

 float grand_mean = 0;

 float *cv;

 float *aov;

 float *treatment_means;

 float *strip_plot_a_means;

 float *strip_plot_b_means;

 float *split_plot_means;

 float *strip_a_split_plot_means;

 float *strip_b_split_plot_means;

 float *strip_plot_ab_means;

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 365

 float *std_err;

 int *equal_means;

 aov = imsls_f_strip_split_plot(n, n_locations, n_strip_a, n_strip_b, n_split,

 block, strip_a, strip_b, split, y,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,

 IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,

 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,

 IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS,
&strip_a_split_plot_means,

 IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS,
&strip_b_split_plot_means,

 IMSLS_STRIP_PLOT_AB_MEANS, &strip_plot_ab_means,

 IMSLS_STD_ERRORS, &std_err,

 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels,

 0);

 /* Output results. */

 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width);

 /* Print ANOVA table, without first column. */

 imsls_f_write_matrix(" *** ANALYSIS OF VARIANCE TABLE ***",

 22, 6, aov,

 IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f",

 IMSLS_ROW_LABELS, anova_row_labels,

 IMSLS_COL_LABELS, col_labels,

 0);

 /*

 * Print the various means.

 */

 printf("\nGrand mean: %f\n\n", grand_mean);

 printf("Coefficient of Variation\n");

 printf(" Strip-Plot A: %9.4f\n", cv[0]);

 printf(" Strip-Plot B: %9.4f\n", cv[1]);

 printf(" Split-Plot: %9.4f\n\n", cv[2]);

 l = 0;

 /*

 * Print the Treatment Means.

366 • strip_split_plot IMSL C Stat Library

 */

 printf("\n\n***");

 printf("\nTreatment Means\n");

 for (i=0; i < n_strip_a; i++){

 for(j=0; j < n_strip_b; j++){

 for(k=0; k < n_split; k++){

 printf("treatment[%d][%d][%d] %9.4f \n",

 i+1, j+1, k+1, treatment_means[l++]);

 }

 }

 }

 printf("\nStandard Error for Comparing Two Treatment Means: %f \n(df=%f)\n",

 std_err[9], std_err[19]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b*n_split,

 treatment_means, std_err[19],

 std_err[9]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD3Table(n_strip_a, n_strip_b, n_split, equal_means, treatment_means);

 /*

 * Print the Strip-plot A Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-plot A Means", n_strip_a, 1,

 strip_plot_a_means, 0);

 printf("\nStandard Error for Comparing Two Strip-Plot A Means: %f \n(df=%f)\n",

 std_err[0], std_err[10]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a, strip_plot_a_means,

 std_err[10], std_err[0]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD(n_strip_a, equal_means, strip_plot_a_means);

 /*

 * Print Strip-plot B Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-plot B Means", n_strip_b, 1,

 strip_plot_b_means, 0);

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 367

 printf("\nStandard Error for Comparing Two Strip-Plot B Means: %f \n(df=%f)\n",

 std_err[1], std_err[11]);

 equal_means = imsls_f_multiple_comparisons(n_strip_b, strip_plot_b_means,

 std_err[11], std_err[1]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD(n_strip_b, equal_means, strip_plot_b_means);

 /*

 * Print the Split-plot Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Split-plot Means", n_split, 1,

 split_plot_means, 0);

 printf("\nStandard Error for Comparing Two Split-Plot Means: %f \n(df=%f)\n",

 std_err[2], std_err[12]);

 equal_means = imsls_f_multiple_comparisons(n_split, split_plot_means,

 std_err[12], std_err[2]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD(n_split, equal_means, split_plot_means);

 /*

 * Print the Strip-plot A by Split-plot Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-plot A by Split-plot Means", n_strip_a, n_split,

 strip_a_split_plot_means, 0);

 printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",

 std_err[3], std_err[13]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a*n_split,

 strip_a_split_plot_means,

 std_err[13],

 std_err[3]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD2Table(n_strip_a, n_split, equal_means, strip_a_split_plot_means);

 /*

368 • strip_split_plot IMSL C Stat Library

 * Print the Strip-plot A by Strip-plot B Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-plot A by Strip-plot B Means", n_strip_a,

 n_strip_b, strip_plot_ab_means, 0);

 printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",

 std_err[4], std_err[14]);

 equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b,

 strip_plot_ab_means, std_err[14],

 std_err[4]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD2Table(n_strip_a, n_strip_b, equal_means, strip_plot_ab_means);

 /*

 * Print the Strip-Plot B by Split-Plot Means.

 */

 printf("\n\n***");

 imsls_f_write_matrix("Strip-Plot B by Split-Plot Means", n_strip_b, n_split,

 strip_b_split_plot_means, 0);

 printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n",

 std_err[5], std_err[15]);

 equal_means = imsls_f_multiple_comparisons(n_strip_b*n_split,

 strip_b_split_plot_means,

 std_err[15], std_err[5]/sqrt(2.0),

 IMSLS_LSD,

 IMSLS_ALPHA, alpha,

 0);

 l_printLSD2Table(n_strip_b, n_split, equal_means, strip_b_split_plot_means);

}

/*

 * Local functions to output results of means comparisons.

 */

void l_printLSD(int n, int *equalMeans, float *means){

 float x=0.0;

 int i, j, k;

 int iSwitch;

 int *idx;

 idx = (int *) malloc(n * sizeof (int));

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 369

 for (k=0; k < n; k++) {

 idx[k] =k+1;

 }

 /* Sort means in ascending order*/

 iSwitch=1;

 while (iSwitch != 0){

 iSwitch = 0;

 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){

 iSwitch = 1;

 x = means[i];

 means[i] = means[i+1];

 means[i+1] = x;

 j = idx[i];

 idx[i] = idx[i+1];

 idx[i+1] = j;

 }

 }

 }

 printf("[group] \t Mean \t\tLSD Grouping \n");

 for (i=0; i < n; i++){

 printf(" [%d] \t\t%f", idx[i], means[i]);

 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){

 printf("\t *");

 }else{

 if(equalMeans[j-1]>=0) printf("\t");

 }

 }

 if (i < n-1 && equalMeans[i]>0) printf("\t *");

 printf("\n");

 }

 free(idx);

 return;

}

void l_printLSD2Table(int n1, int n2, int *equalMeans, float *means){

 float x=0.0;

 int i, j, k, n;

 int iSwitch;

370 • strip_split_plot IMSL C Stat Library

 int *idx;

 n = n1*n2;

 idx = (int *) malloc(2*n * sizeof (int));

 i = 1;

 j = 1;

 for (k=0; k < n; k++) {

 idx[2*k] = i;

 idx[2*k+1] = j++;

 if (j > n2){

 j = 1;

 i++;

 }

 }

 /* sort means in ascending order*/

 iSwitch=1;

 while (iSwitch != 0){

 iSwitch = 0;

 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){

 iSwitch = 1;

 x = means[i];

 means[i] = means[i+1];

 means[i+1] = x;

 j = idx[2*i];

 idx[2*i] = idx[2*(i+1)];

 idx[2*(i+1)] = j;

 j = idx[2*i+1];

 idx[2*i+1] = idx[2*(i+1)+1];

 idx[2*(i+1)+1] = j;

 }

 }

 }

 printf("[A][B] \tMean \t\tLSD Grouping \n");

 for (i=0; i < n; i++){

 printf("[%d][%d] \t%f", idx[2*i], idx[2*i+1],means[i]);

 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){

 printf("\t*");

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 371

 }else{

 if(equalMeans[j-1]>0) printf("\t");

 }

 }

 if (i < n-1 && equalMeans[i]>0) printf("\t*");

 printf("\n");

 }

 free(idx);

 idx = NULL;

 return;

}

void l_printLSD3Table(int n1, int n2, int n3, int *equalMeans, float *means){

 float x=0.0;

 int i, j, k, m, n;

 int iSwitch;

 int *idx;

 n = n1*n2*n3;

 idx = (int *) malloc(3*n * sizeof (int));

 i = 1;

 j = 1;

 k = 1;

 for (m=0; m < n; m++) {

 idx[3*m] = i;

 idx[3*m+1] = j;

 idx[3*m+2] = k++;

 if (k > n3){

 k = 1;

 j++;

 if (j > n2){

 j = 1;

 i++;

 }

 }

 }

 /* sort means in ascending order*/

 iSwitch=1;

 while (iSwitch != 0){

 iSwitch = 0;

372 • strip_split_plot IMSL C Stat Library

 for (i = 0; i < n-1; i++){

 if (means[i] > means[i+1]){

 iSwitch = 1;

 x = means[i];

 means[i] = means[i+1];

 means[i+1] = x;

 j = idx[3*i];

 idx[3*i] = idx[3*(i+1)];

 idx[3*(i+1)] = j;

 j = idx[3*i+1];

 idx[3*i+1] = idx[3*(i+1)+1];

 idx[3*(i+1)+1] = j;

 j = idx[3*i+2];

 idx[3*i+2] = idx[3*(i+1)+2];

 idx[3*(i+1)+2] = j;

 }

 }

 }

 printf("[A][B][Split] \t Mean \t\t LSD Grouping \n");

 for (i=0; i < n; i++){

 printf("[%d][%d] [%d] \t%f", idx[3*i], idx[3*i+1], idx[3*i+2],
means[i]);

 for (j=1; j < i+1; j++){

 if(equalMeans[j-1] >= i+2-j){

 printf("\t*");

 }else{

 if(equalMeans[j-1]>0) printf("\t");

 }

 }

 if (i < n-1 && equalMeans[i]>0) printf("\t*");

 printf("\n");

 }

 free(idx);

 return;

}

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 373

Output

 *** ANALYSIS OF VARIANCE TABLE ***

 Mean

 ID DF SSQ squares F p-value

Location -1

Blocks -2 2 1310.28 655.14 14.53 0.061

Strip-Plot A -3 1 858.01 858.01 40.37 0.024

Location x A -4

Strip-Plot A Error -5 2 42.51 21.26 1.48 0.385

Split-Plot -6 1 163.80 163.80 41.22 0.003

Split-Plot x A -7 1 11.34 11.34 2.85 0.166

Location x Split-Plot -8

Split-Plot Error -9 4 15.90 3.97 1.56 0.338

Location x Split-Plot x A ... -10

Strip-Plot B -11 1 17.17 17.17 0.47 0.565

Location x B -12

Strip-Plot B Error -13 2 73.51 36.75 2.85 0.260

A x B -14 1 1.55 1.55 0.12 0.762

Location x A x B -15

A x B Error -16 2 25.82 12.91 5.08 0.080

Split-Plot x B -17 1 46.76 46.76 18.39 0.013

Split-Plot x A x B -18 1 0.51 0.51 0.20 0.677

Location x Split-Plot x B ... -19

Location x Split-Plot x A x B -20

Split-Plot x A x B Error -21 4 10.17 2.54

Corrected Total -22 23 2577.33

Grand mean: 33.870834

Coefficient of Variation

 Strip-Plot A: 13.6116

 Strip-Plot B: 17.8986

 Split-Plot: 5.8854

Treatment Means

treatment[1][1][1] 23.8333

treatment[1][1][2] 30.7667

treatment[1][2][1] 28.1000

374 • strip_split_plot IMSL C Stat Library

treatment[1][2][2] 28.8667

treatment[2][1][1] 34.2000

treatment[2][1][2] 43.3000

treatment[2][2][1] 38.9000

treatment[2][2][2] 43.0000

Standard Error for Comparing Two Treatment Means: 1.302029

(df=4.000000)

[A][B][Split] Mean LSD Grouping

[1][1] [1] 23.833334

[1][2] [1] 28.100000 *

[1][2] [2] 28.866669 *

[1][1] [2] 30.766668 * *

[2][1] [1] 34.200001 *

[2][2] [1] 38.899998

[2][2] [2] 43.000000 *

[2][1] [2] 43.299999 *

Strip-plot A Means

 1 27.89

 2 39.85

Standard Error for Comparing Two Strip-Plot A Means: 1.882171

(df=2.000000)

[group] Mean LSD Grouping

 [1] 27.891665

 [2] 39.849998

Strip-plot B Means

 1 33.03

 2 34.72

Standard Error for Comparing Two Strip-Plot B Means: 2.474972

(df=2.000000)

[group] Mean LSD Grouping

 [1] 33.025002 *

 [2] 34.716667 *

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 375

Split-plot Means

 1 31.26

 2 36.48

Standard Error for Comparing Two Split-Plot Means: 0.813813

(df=4.000000)

[group] Mean LSD Grouping

 [1] 31.258331

 [2] 36.483334

Strip-plot A by Split-plot Means

 1 2

 1 25.97 29.82

 2 36.55 43.15

Standard Error for Comparing Two Means: 1.150906

(df=4.000000)

[A][B] Mean LSD Grouping

[1][1] 25.966667

[1][2] 29.816668

[2][1] 36.549999

[2][2] 43.149998

Strip-plot A by Strip-plot B Means

 1 2

 1 27.30 28.48

 2 38.75 40.95

Standard Error for Comparing Two Means: 2.074280

(df=2.000000)

[A][B] Mean LSD Grouping

[1][1] 27.299997 *

[1][2] 28.483335 *

[2][1] 38.750000 *

[2][2] 40.949997 *

376 • homogeneity IMSL C Stat Library

Strip-Plot B by Split-Plot Means

 1 2

 1 29.02 37.03

 2 33.50 35.93

Standard Error for Comparing Two Means: 0.920673

(df=4.000000)

[A][B] Mean LSD Grouping

[1][1] 29.016668

[2][1] 33.500000 *

[2][2] 35.933334 * *

[1][2] 37.033333 *

homogeneity
Conducts Bartlett’s and Levene’s tests of the homogeneity of variance assumption in
analysis of variance.

Synopsis
#include <imsls.h>
float * imsls_f_homogeneity (int n, int n_treatment, int treatment[], float

y[],…, 0)
The type double is imsls_d_homogeneity.

Required Arguments

int n (Input)
Number of experimental observations.

int n_treatment (Input)
Number of treatments. n_treatment must be greater than one.

int treatment[] (Input)
An array of length n containing the treatment identifiers for each observation
in y. Each level of the treatment must be assigned a different integer.
imsls_f_homogeneity verifies that the number of unique treatment
identifiers is equal to n_treatment.

float y[] (Input)
An array of length n containing the experimental observations and any
missing values. Missing values can be included in this array, although they
are ignored in the analysis. They are indicated by placing a NaN (not a
number) in y. The NaN value can be set using either the function
imsls_f_machine(6) or imsls_d_machine(6), depending upon whether
single or double precision is being used, respectively.

Chapter 4: Analysis of Variance and Designed Experiments homogeneity • 377

Return Value
Address of a pointer to the memory location of an array of length 2 containing the p-
values for Bartletts and Levene’s tests.

Synopsis with Optional Arugments
#include <imsl.h>

float * imsls_f_homogeneity (int n, int n_treatment,
int n_treatment[], float y[],
IMSLS_RETURN_USER, float p_value[]
IMSLS_LEVENES_MEAN or IMSLS_LEVENES_MEDIAN,
IMSLS_N_MISSING, int *n_missing,
IMSLS_CV, float *cv,
IMSLS_GRAND_MEAN, float *grand_mean,
IMSLS_TREATMENT_MEANS, float **treatment_means,
IMSLS_TREATMENT_MEANS_USER, float treatment_means[],
IMSLS_RESIDUALS, float **residuals,
IMSLS_RESIDUALS_USER, float residuals[],
IMSLS_STUDENTIZED_RESIDUALS,
 float **studentized_residuals,
IMSLS_STUDENTIZED_RESIDUALS_USER,
 float studentized_residuals[],
IMSLS_STD_DEVS, float **std_devs,
IMSLS_STD_DEVS_USER, float std_devs[],
IMSLS_BARTLETTS, float *bartletts,
IMSLS_LEVENES, float *levenes,
0)

Optional Arguments

IMSLS_RETURN_USER, float p_value[] (Output)
User defined array of length 2 for storage of the p-values from Bartlett’s and
Levene’s tests for homogeneity of variance. The first value returned contains
the p-value for Bartlett’s test and the second value contains the p-value for
Levene’s test.

IMSLS_LEVENES_MEAN or IMSLS_LEVENES_MEDIAN (Input)
Calculates Levene’s test using either the treatment means or medians.
IMSLS_LEVENES_MEAN indicates that Levene’s test is calculated using the
mean, and IMSLS_LEVENES_MEDIAN indicates that it is calculated using the
median.
 Default: IMSLS_LEVENES_MEAN

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values, if any, found in y. Missing values are denoted
with a NaN (Not a Number) value in y. In these analyses, any missing values
are ignored.

378 • homogeneity IMSL C Stat Library

IMSLS_CV, float *cv (Output)
The coefficient of variation computed using the grand mean and pooled within
treatment standard deviation.

IMSLS_GRAND_MEAN, float grand_mean (Output)
Mean of all the data across every location.

IMSLS_TREATMENT_MEANS, float **treatment_means (Output)
Address of a pointer to an internally allocated array of size n_treatment
containing the treatment means.

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output)
Storage for the array treatment_means, provided by the user.

IMSLS_RESIDUALS, float **residuals (Output)
Address of a pointer to an internally allocated array of length n containing the
residuals for non-missing observations. The ordering of the values in this
array corresponds to the ordering of values in y and identified by the values in
treatments.

IMSLS_RESIDUALS_USER, float residuals[] (Output)
Storage for the array residuals, provided by the user.

IMSLS_STUDENTIZED_RESIDUALS, float **studentized_residuals (Output)
Address of a pointer to an internally allocated array of length n containing the
studentized residuals for non-missing observations. The ordering of the
values in this array corresponds to the ordering of values in y and identified
by the values in treatments.

IMSLS_STUDENTIZED_RESIDUALS_USER, float studentized_residuals[]
(Output)
Storage for the array studentized_residuals, provided by the user.

IMSLS_STD_DEVS, float **std_devs (Output)
Address of a pointer to an internally allocated array of length n_treatment
containing the treatment standard deviations.

IMSLS_STD_DEVS_USER, float std_devs[] (Output)
Storage for the array std_devs, provided by the user.

IMSLS_BARTLETTS, float *bartletts (Output)
Test statistic for Bartlett’s test.

IMSLS_LEVENES, float *levenes (Output)
Test statistic for Levene’s test.

Description
Traditional analysis of variance assumes that variances within treatments are equal.
This is referred to as homogeneity of variance. The function imsls_f_homogeneity
conducts both the Bartlett’s and Levene’s tests for this assumption:

: 1 2oH tσ σ σ= = ="

Chapter 4: Analysis of Variance and Designed Experiments homogeneity • 379

 versus

:Ha i jσ σ≠

for at least one pair (i≠j), where t=n_treatments.
Bartlett’s test, Bartlett (1937), uses the test statistic:

2 M
Cχ =

where

2

2 2 2 1

1

1

(1)
ln() ln(), ,

(1)

1 1 11
3(1)

t

i it
i

p i i i p t
i

i
i

i

n S
M N S n S N n S

n

C
t n N

=

=

=

−
= ⋅ − = =

−

⎡ ⎤
= + −⎢ ⎥− ⎣ ⎦

∑
∑ ∑

∑

∑

and 2
iS is the variance of the in non-missing observations in the ith treatment. 2

pS is
referred to as the pooled variance, and it is also known as the error mean squares from
a 1-way analysis of variance.
If the usual assumptions associated with the analysis of variance are valid, then
Bartlett’s test statistic is a chi-squared random variable with degrees of freedom equal
to t-1.
The original Levene’s test, Levene (1960) and Snedecor & Cochran (1967), uses a
different test statistic, F0, equal to:

()

()

2
. ..

1
0

2

.
1 1

/(1)

/()
i

t

i i
i

nt

ij i
i j

n z z t
F

z z N t

=

= =

− −
=

− −

∑

∑∑
,

where

.| |ij ij iz x x= −
,

ijx is the jth observation from the ith treatment and .ix is the mean for the ith treatment.
Conover, Johnson, and Johnson (1981) compared over 50 similar tests for homogeneity
and concluded that one of the best tests was Levene’s test when the treatment mean,

380 • homogeneity IMSL C Stat Library

.ix is replaced with the treatment median, .ix� . This version of Levene’s test can be
requested by setting IMSLS_LEVENES_MEDIAN. In either case, Levene’s test statistic
is treated as a F random variable with numerator degrees of freedom equal to (t-1) and
denominator degrees of freedom (N-t).

The residual for the jth observation within the ith treatment, ije , returned from

IMSLS_RESIDUALS is unstandarized, i.e. ij ij ie x x= − . For investigating problems of
homogeneity of variance, the studentized residuals returned by
IMSLS_STUDENTIZED_RESIDUALS are recommended since they are standarzied by
the standard deviation of the residual. The formula for calculating the studentized
residual is:

2 1(1)
i

ij
ij

p n

e
e

S
=

−
�

,

where the coefficient of variation, returned from IMSLS_CV, is also calculated using
the pooled variance and the grand mean .. ij

i j

x x= ∑∑ :

2100

..

S p
CV

x
=

i

Example
This example applies Bartlett’s and Levene’s test to verify the homogeneity
assumption for a one-way analysis of variance. There are eight treatments, each with 3
replicates for a total of 24 observations. The estimated treatment standard deviations
range from 5.35 to 13.17.
In this case, Bartlett's test is not statistically significant for a stated significance level of
.05; whereas Levene's test is significant with p = 0.006.

#include "imsls.h"

void ex_homog_b()

{

 int i, page_width = 132;

 int n = 24;

 int n_treatment = 8;

 int treatment[]={

 1, 2, 3, 4, 5, 6, 7, 8,

 1, 2, 3, 4, 5, 6, 7, 8,

Chapter 4: Analysis of Variance and Designed Experiments homogeneity • 381

 1, 2, 3, 4, 5, 6, 7, 8};

 float y[] ={

 30.0, 40.0, 38.9, 38.2,

 41.8, 52.2, 54.8, 58.2,

 20.5, 26.9, 21.4, 25.1,

 26.4, 36.7, 28.9, 35.9,

 21.0, 25.4, 24.0, 23.3,

 34.4, 41.0, 33.0, 34.9};

 float bartletts;

 float levenes;

 float grand_mean;

 float cv;

 float *treatment_means=NULL;

 float *residuals=NULL;

 float *studentized_residuals=NULL;

 float *std_devs=NULL;

 int n_missing = 0;

 float *p;

 p = imsls_f_homogeneity(n, n_treatment, treatment, y,

 IMSLS_BARTLETTS, &bartletts,

 IMSLS_LEVENES, &levenes,

 IMSLS_LEVENES_MEDIAN,

 IMSLS_N_MISSING, &n_missing,

 IMSLS_GRAND_MEAN, &grand_mean,

 IMSLS_CV, &cv,

 IMSLS_TREATMENT_MEANS, &treatment_means,

 IMSLS_STD_DEVS, &std_devs,

 0);

 printf("\n\n\n *** Bartlett\'s Test ***\n\n");

 printf("Bartlett\'s p-value = %10.3f\n", p[0]);

 printf("Bartlett\'s test statistic = %10.3f\n", bartletts);

 printf("\n\n\n *** Levene\'s Test ***\n\n");

 printf("Levene\'s p-value = %10.3f\n", p[1]);

 printf("Levene\'s test statistic = %10.3f\n", levenes);

 imsls_f_write_matrix("Treatment means", n_treatment, 1, treatment_means, 0);

 imsls_f_write_matrix("Treatment std devs", n_treatment, 1, std_devs, 0);

 printf("\ngrand_mean = %10.3f\n", grand_mean);

382 • homogeneity IMSL C Stat Library

 printf("cv = %10.3f\n", cv);

 printf("n_missing = %d\n", n_missing);

}

Output

 *** Bartlett's Test ***

Bartlett's p-value = 0.944

Bartlett's test statistic = 2.257

 *** Levene's Test ***

Levene's p-value = 0.994

Levene's test statistic = 0.135

Treatment means

1 23.83

2 30.77

3 28.10

4 28.87

5 34.20

6 43.30

7 38.90

8 43.00

Treatment std devs

 1 5.35

 2 8.03

 3 9.44

 4 8.13

 5 7.70

 6 8.00

 7 13.92

 8 13.17

Chapter 4: Analysis of Variance and Designed Experiments multiple_comparisons • 383

grand_mean = 33.871

cv = 28.378

n_missing = 0

multiple_comparisons
Performs multiple comparisons of means using one of Student-Newman-Keuls, LSD,
Bonferroni, Tukey’s, or Duncan’s MRT procedures.

Synopsis
#include <imsls.h>
int *imsls_f_multiple_comparisons (int n_groups, float means[],

int df, float std_error, ..., 0)
The type double function is imsls_d_multiple_comparisons.

Required Arguments

int n_groups (Input)
Number of groups i.e., means, being compared.

float means[] (Input)
Array of length n_groups containing the means.

int df (Input)
Degrees of freedom associated with std_error.

float std_error (Input)
Effective estimated standard error of a mean. In fixed effects models,
std_error equals the estimated standard error of a mean. For example, in a
one-way model

2s
n

=std_error

where s2 is the estimate of σ2 and n is the number of responses in a sample
mean. In models with random components, use

2
sedif

=std_error

where sedif is the estimated standard error of the difference of two means.

Return Value
Pointer to the array of length n_groups − 1 indicating the size of the groups of means
declared to be equal. Value equal_means [I] = J indicates the I-th smallest mean and

384 • multiple_comparisons IMSL C Stat Library

the next J − 1 larger means are declared equal. Value equal_means [I] = 0 indicates
no group of means starts with the I-th smallest mean.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_multiple_comparisons (int n_groups, float means [], int df,

float std_error,
IMSLS_ALPHA, float alpha,
IMSLS_SNK, or
IMSLS_LSD, or
IMSLS_TUKEY, or
IMSLS_BONFERRONI,
IMSLS_RETURN_USER, int *equal_means,
0)

Optional Arguments

IMSLS_ALPHA, float alpha (Input)
Significance level of test. Argument alpha must be in the interval
[0.01, 0.10].
Default: alpha = 0.01

IMSLS_RETURN_USER, int *equal_means (Output)
If specified, equal_means is an array of length n_groups − 1 specified by
the user. On return, equal_means contains the size of the groups of means
declared to be equal. Value equal_means [I] = J indicates the ith smallest
mean and the next J − 1 larger means are declared equal. Value
equal_means [I] = 0 indicates no group of means starts with the ith smallest
mean.

IMSLS_SNK, or

IMSLS_LSD, or

IMSLS_TUKEY, or

IMSLS_BONFERRONI, or

Chapter 4: Analysis of Variance and Designed Experiments multiple_comparisons • 385

Argument Method

IMSLS_SNK Student-Newman-Keuls (default)

IMSLS_LSD Least significant difference

IMSLS_TUKEY Tukey’s w-procedure, also called the
honestly significant difference procedure.

IMSLS_BONFERRONI Bonferroni t statistic

Description
Function imsls_f_multiple_comparisons performs a multiple comparison
analysis of means using one of Student-Newman-Keuls, LSD, Bonferroni, or Tukey’s
procedures. The null hypothesis is equality of all possible ordered subsets of a set of
means. The methods are discussed in many elementary statistics texts, e.g., Kirk (1982,
pp. 123–125).
The output consists of an array of n_groups –1 integers that describe grouping of
means that are considered not statistically significantly different.
For example, if n_groups=4 and the returned array is equal to {0, 2, 2} then we
conclude that:

1. The smallest mean is significantly different from the others,
2. The second and third smallest means are not significantly different from

one another,
3. The second and fourth means are significantly different
4. The third and fourth means are not significantly different from one

another.
These relationships can be depicted graphically as three groups of means:

Smallest
Mean

Group
1

Group
2

Group
3

1 x
2 x

3 x X

4 X

Examples

Example 1
A multiple-comparisons analysis is performed using data discussed by Kirk (1982, pp.
123−125). The results show that there are three groups of means with three separate
sets of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7).

386 • multiple_comparisons IMSL C Stat Library

In this case, the ordered means are {36.7, 40.3, 43.4, 47.2, 48.7} corresponding to
treatments {1, 5, 3, 4, 2}. Since the output table is:

⎡ ⎤
⎢ ⎥
⎣ ⎦

1 2 3 4

3 3 3 0 ,

we can say that within each of these three groups, means are not significantly different
from one another.

Treatment

Mean Group
1

Group
2

Group
3

1 36.7 x
5 40.3 x x

3 43.4 x x x

4 47.2 x x

2 48.7 x

#include <imsls.h>

void main ()
{
 int n_groups = 5;
 int df = 45;
 float std_error = 1.6970563;
 float means[5] = {36.7, 48.7, 43.4, 47.2, 40.3};
 int *equal_means;
 /* Perform multiple comparisons tests */
 equal_means = imsls_f_multiple_comparisons(n_groups, means, df,
 std_error, 0);
 /* Print results */
 imsls_i_write_matrix("Size of Groups of Means", 1, n_groups-1,
 equal_means, 0);

}

Output
Size of Groups of Means
 1 2 3 4
 3 3 3 0

Example 2
This example uses the same data as the previous example but also uses additional
methods by specifying optional arguments.
Example 2 uses the same data as Example 1: Ordered treatment means correspond to
treatment order {1,5,3,4,2}.

Chapter 4: Analysis of Variance and Designed Experiments multiple_comparisons • 387

The table produced for Bonferroni is:

⎡ ⎤
⎢ ⎥
⎣ ⎦

1 2 3 4

3 4 0 0

Thus, these are two groups of similar means.

Treatment

Mean Group
1

Group
2

1 36.7 x
5 40.3 x x

3 43.4 x X

4 47.2 X

2 48.7 X

#include <imsls.h>
void main()
{
 int n_groups = 5;
 int df = 45;
 float std_error = 1.6970563;
 float means[5] = {36.7, 48.7, 43.4, 47.2, 40.3};
 int equal_means[4];

 /* Student-Newman-Keuls */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_RETURN_USER, equal_means, 0);
 imsls_i_write_matrix("SNK ", 1, n_groups-1, equal_means, 0);

 /* Bonferroni */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_BONFERRONI,
 IMSLS_RETURN_USER, equal_means,
 0);
 imsls_i_write_matrix("Bonferonni ", 1, n_groups-1, equal_means, 0);

 /* Least Significant Difference */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_LSD,
 IMSLS_RETURN_USER, equal_means,
 0);
 imsls_i_write_matrix("LSD ", 1, n_groups-1, equal_means, 0);

 /* Tukey's */
 imsls_f_multiple_comparisons(n_groups, means, df, std_error,
 IMSLS_TUKEY,
 IMSLS_RETURN_USER, equal_means,

388 • yates IMSL C Stat Library

 0);
 imsls_i_write_matrix("Tukey ", 1, n_groups-1, equal_means, 0);

}

Output
SNK
1 2 3 4
3 3 3 0

Bonferonni
1 2 3 4
3 4 0 0

LSD
1 2 3 4
2 2 3 0

Tukey
1 2 3 4
3 3 3 0

yates
Estimates missing observations in designed experiments using Yate’s method.

Synopsis
#include <imsls.h>

int imsls_f_yates(int n, int n_independent, float x[],…, 0)
The type double function is imsls_d_yates.

Required Arguments

int n (Input)
Number of observations.

int n_independent (Input)
Number of independent variables.

float x[] (Input/Output)
A n by (n_independent+1) 2-dimensional array containing the experimental
observations and missing values. The first n_independent columns contain
values for the independent variables and the last column contains the
corresponding observations for the dependent variable or response. The
columns assigned to the independent variables should not contain any missing
values. Missing values are included in this array by placing a NaN (not a
number) in the last column of x. The NaN value can be set using either the
function imsls_f_machine(6) or imsls_d_machine(6), depending upon
whether single or double precision is being used, respectively. Upon

Chapter 4: Analysis of Variance and Designed Experiments yates • 389

successful completion, missing values are replaced with estimates calculated
using Yates’ method.

Return Value
The number of missing values replaced with estimates using the Yates procedure. A
negative return value indicates that the routine was unable to successfully estimate all
missing values. Typically this occurs when all of the observations for a particular
treatment combination are missing. In this case, Yate’s missing value method does not
produce a unique set of missing value estimates.

Synopsis with Optional Arugments
#include <imsls.h>

int imsls_f_yates (int n, int n_independent, float x[],
IMSLS_DESIGN, int design,
IMSLS_INITIAL_ESTIMATES, int n_missing,
 float initial_estimates[],
IMSLS_GET_SS, float get_ss (int n, int n_independent,
 int n_levels[], float dataMatrix[]),
IMSLS_GRAD_TOL, float grad_tol,
IMSLS_STEP_TOL, float step_tol,
IMSLS_MAX_ITN, int **itmax,
IMSLS_MISSING_INDEX, int **missing_index[],
IMSLS_MISSING_INDEX_USER, int missing_index[],
IMSLS_ERROR_SS, float *error_ss,
0)

Optional Arguments

IMSLS_RETURN_USER, int n_missing (Output)
The number of missing values replaced with Yate’s estimates. A negative
return value indicates that the routine was unable to successfully estimate all
missing values.

IMSLS_DESIGN, int design (Input)
An integer indicating whether a custom or standard design is being used. The
association of values for this variable and standard designs is described in the
following table:

Design Description

0

CRD – Completely Randomized Design. The input matrix, x,
is assumed to have only two columns. The first is used to
contain integers identifying the treatments. The second
column should contain corresponding observations for the
dependent variable. In this case, n_independent=1. Default
value when n_independent=1.

390 • yates IMSL C Stat Library

Design Description

1

RCBD – Randomized Complete Block Design. The input
matrix is assumed to have only three columns. The first is
used to contain the treatment identifiers and the second the
block identifiers. The last column contains the corresponding
observations for the dependent variable. In this case,
n_independent=2. This is the default value when
n_independent=2.

2

Another design. In this case, the function get_ss is a
required input. The design matrix is passed to that
routine. Initial values for missing observations are set
to the grand mean of the data, unless initial values are
specified using IMSLS_INITIAL_ESTIMATES.

 Default: design=0 or design=1, depending upon whether
n_independent=1 or 2 respectively. If n_independent>2, then design
must be set to 2, and get_ss must be provided as input to imsls_f_yates.

IMSLS_INITIAL_ESTIMATES, int n_missing,
float initial_estimates[] (Input)
Initial estimates for the missing values. Argument n_missing is the number
of missing values. Argument initial_estimates is an array of length
n_missing containing the initial estimates.
Default: For design=0 and design=1, the initial estimates are calculated
using the Yates formula for those designs. For design=2, the mean of the
non-missing observations is used as the initial estimate for all missing values.

IMSLS_MAX_ITN, int itmax (Input)
Maximum number of iterations in the optimization routine for finding the
missing value estimates that minimize the error sum of squares in the analysis
of variance.
Default: itmax = 500.

IMSLS_GET_SS, float get_ss(int n, int n_independent, int n_levels[], float
dataMatrix[]) (Input/Output)
A user-supplied function that returns the error sum of squares calculated using
the n by (n_independent+1) matrix dataMatrix. imsls_f_yates
calculates the error sum of squares assuming that dataMatrix contains no
missing observations. In general, dataMatrix should be equal to the input
matrix x with missing values replaced by estimates. imsls_f_yates is
required input when design=2. The array n_levels should be of length
n_independent and contain the number of levels associated with each of the
first n_independent columns in the dataMatrix and x arrays.

IMSLS_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance used to determine whether the difference between
the error sum of squares is small enough to stop the search for missing value
estimates.

Chapter 4: Analysis of Variance and Designed Experiments yates • 391

 Default: grad_tol = 2/3ε , where ε is the machine precision.

IMSLS_STEP_TOL, float step_tol (Input)
Scaled step tolerance used to determine whether the difference between
missing value estimates is small enough to stop the search for missing value
estimates.
Default: step_tol = 2/3ε , where ε is the machine precision.

IMSLS_MISSING_INDEX, int *missing_index (Output)
An array of length n_missing containing the indices for the missing values
in x. The number of missing values, n_missing, is the return value of
imsls_f_yates.

IMSLS_MISSING_INDEX_USER, int missing_index[] (Output)
Storage for the array missing_index, provided by the user.

IMSLS_ERROR_SS, float *errr_ss (Output)
The value of the error sum of squares calculated using the missing value
estimates. If design=2 then this is equal to the value returned from get_ss
using the Yates missing value estimates.

Description
Several functions for analysis of variance require balanced experimental data, i.e. data
containing no missing values within a block and an equal number of replicates for each
treatment. If the number of missing observations in an experiment is smaller than the
Yates method as described in Yates (1933) and Steel and Torrie (1960), can be used to
estimate the missing values. Once the missing values are replaced with these
estimates, the data can be passed to an analysis of variance that requires balanced data.
The basic principle behind the Yates method for estimating missing observations is to
replace the missing values with values that minimize the error sum of squares in the
analysis of variance. Since the error sum of squares depends upon the underlying
model for the analysis of variance, the Yates formulas for estimating missing values
vary from anova to anova.
Consider, for example, the model underlying experiments conducted using a
completely randomized design. If ijy is the Ith observation for the ith treatment then
the error sum of squares for a CRD is calculated using the following formula:

()2

. .
1 1

is the th treatment mean.
t r

ij i i
i j

iSSE y y where y
= =

= −∑∑

If an observation ijy is missing then SSE is minimized by replacing that missing
observation with the estimate

.ˆij ix y=
.

For a randomized complete block design (RCBD), the calculation for estimating a
single missing observation can be derived from the RCBD error sum of squares:

392 • yates IMSL C Stat Library

()2

. . ..
1 1

t r

ij i j
i j

SSE y y y y
= =

= − − +∑∑

If only a single observation, ijy , is missing from the jth block and ith treatment, the
estimate for this missing observation can be derived by solving the equation:

. . ..ˆij i jx y y y= + −
.

The solution is referred to as the Yates formula for a RCBD:

. . ..ˆ
(1)(1)

j i
ij

t y r y y
x

r t
⋅ + ⋅ −

=
− − , where

r=n_blocks, t=n_treatments, yi=total of all non-missing observations from the ith
treatment, . jy =total of all non-missing observations from the jth block, and y=total of
all non-missing observations.
If more than one observation is missing, imsls_f_yates minimization procedure is
used to estimate missing values. For a CRD, all missing observations are set equal to
their corresponding treatment means calculated using the non-missing observations.
That is, .ˆij ix y= .

For RCBD designs with more than one missing value, Yate’s formula for estimating a
single missing observation is used to obtain initial estimates for all missing values.
These are passed to a function minimization routine to obtain the values that minimize
SSE.
For other designs, specify design=2 and IMSLS_GET_SS. The function get_ss is
used to obtain the Yates missing value estimates by selecting the estimates that
minimize sum of squares returned by get_ss. When called, get_ss calculates the
error sum of squares at each iteration assuming that the data matrix it receives is
balanced and contains no missing values.

Example
Missing values can occur in any experiment. Estimating missing values via the Yates
method is usually done by minimizing the error sum of squares for that experiment. If
only a single observation is missing and there is an analytical formula for calculating
the error sum of squares then a formula for estimating the missing value is fairly easily
derived. Consider for example a split-plot experiment with a single missing value.

Suppose, for example, that ijkx , the observation for the ith whole-plot, jth split plot and
kth block is missing. Then the estimate for a single missing observation in the ith
whole plot is equal to:

Chapter 4: Analysis of Variance and Designed Experiments yates • 393

. ..

(1)(1)
ij ir W s x x

Y
r s

⋅ + ⋅ −
=

− − , where

 r = number of blocks, s = number of split-plots, W = total of all non-missing values
in same block as the missing observation, .ijx = total of the non-missing observations
across blocks of observations from ith whole-plot factor level and the jth split-plot
level, and ..ix = the total of all observations, across split-plots and blocks of the non-
missing observations for the ith whole plot.
If more than a single observation is missing, then an iterative solution is required to
obtain missing value estimates that minimize the error sum of squares.
Function imsls_f_yates simplifies this procedure. Consider, for example, a split-
plot experiment conducted at a single location using fixed-effects whole and split plots.
If there are no missing values, then the error sum of squares can be calculated from a 3-
way analysis of variance using whole-plot, split-plot and blocks as the 3 factors. For
balanced data without missing values, the errors sum of squares would be equal to the
sum of the 3-way interaction between these factors and the split-plot by block
interaction.
Calculating the error sum of squares using this 3-way analysis of variance is achieved
using the anova_factorial routine.

float get_ss(int n, int n_independent, int *n_levels, float *x)
{
/* This routine assumes that the first three columns of dataMatrix */
/* contain the whole-plot,split-plot and block identifiers in that */
/* order. The last column of this matrix, the fourth column, must */
/* contain the observations from the experiment. It is assumed that */
/* dataMatrix is balanced and does not contain any missing */

 /* observations. */

 int i;
 float errorSS, pValue;
 float *test_effects = NULL;
 float *anova_table = NULL;
 float responses[24];
 /* Copy responses from the last column of x into a 1-D array */
 /* as expected by imsls_f_anova_factorial. */

 for (i=0;i<n;i++) {
 responses[i] = x[i*(n_independent+1)+n_independent];
 }
 /* Compute the error sum of squares. */
 pValue = imsls_f_anova_factorial(n_independent, n_levels, responses,
 IMSLS_TEST_EFFECTS, &test_effects,

394 • yates IMSL C Stat Library

 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_POOL_INTERACTIONS, 0);
 errorSS = anova_table[4] + test_effects[21];

 /* Free memory returned by imsls_f_anova_factorial. */
 if (test_effects != NULL) free(test_effects);
 if (anova_table != NULL) free(anova_table);
 return errorSS;
}

The above function is passed to the imsls_f_yates as an argument, together with a
matrix containing the data for the split-plot experiment. For this example, the following
data matrix obtained from an agricultural experiment will be used. In this experiment,
4 whole plots were randomly assigned to two 2 blocks. Whole-plots were subdivided
into 2 split-plots. The whole-plot factor consisted of 4 different seed lots, and the split-
plot factor consisted of 2 seed protectants. The data matrix of this example is a n=24 by
4 matrix with two missing observations.

Chapter 4: Analysis of Variance and Designed Experiments yates • 395

1 1 1
1 2 1 53.8
1 3 1 49.5
1 1 2 41.6
1 2 2
1 3 2 53.8
2 1 1 53.3
2 2 1 57.6
2 3 1 59.8
2 1 2 69.6
2 2 2 69.6
2 3 2 65.8
3 1 1 62.3
3 2 1 63.4
3 3 1 64.5
3 1 2 58.5
3 2 2 50.4
3 3 2 46.1
4 1 1 75.4
4 2 1 70.3
4 3 1 68.8
4 1 2 65.6
4 2 2 67.3
4 3 2 65.3

NaN

NaN

X

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

= ⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦

The following program uses these data with imsls_f_yates to replace the two
missing values with Yates estimates.

#include <stdlib.h>
#include "imsls.h"

float get_ss(int n, int n_independent, int *n_levels, float *x);

#define N 24
#define N_INDEPENDENT 3

396 • yates IMSL C Stat Library

void main()
{
 char *col_labels[] = {" ", "Whole", "Split", "Block", " "};
 int i;
 int n = N;
 int n_independent = N_INDEPENDENT;
 int whole[N]={1,1,1,1,1,1,
 2,2,2,2,2,2,
 3,3,3,3,3,3,
 4,4,4,4,4,4};
 int split[N]={1,2,3,1,2,3,
 1,2,3,1,2,3,
 1,2,3,1,2,3,
 1,2,3,1,2,3};
 int block[N]={1,1,1,2,2,2,
 1,1,1,2,2,2,
 1,1,1,2,2,2,
 1,1,1,2,2,2};
 float y[N] ={0.0, 53.8, 49.5, 41.6, 0.0, 53.8,
 53.3, 57.6, 59.8, 69.6, 69.6, 65.8,
 62.3, 63.4, 64.5, 58.5, 50.4, 46.1,
 75.4, 70.3, 68.8, 65.6, 67.3, 65.3};

 float x[N][N_INDEPENDENT+1];
 float error_ss;
 int *missing_idx;
 int n_missing;

 /* Set the first and fifth observations to missing values. */
 y[0] = imsls_f_machine(6);
 y[4] = imsls_f_machine(6);

 /* Fill the array x with the classification variables and observations. */
 for (i=0;i<n; i++) {
 x[i][0] = (float)whole[i];
 x[i][1] = (float)split[i];
 x[i][2] = (float)block[i];
 x[i][3] = y[i];
 }
 /* Sort the data since imsls_f_anova_factorial expects sorted data. */
 imsls_f_sort_data(n, n_independent+1, (float*)x, 3, 0);

 n_missing = imsls_f_yates(n, n_independent, (float *)&(x[0][0]),
 IMSLS_DESIGN, 2,
 IMSLS_GET_SS, get_ss,
 IMSLS_ERROR_SS, &error_ss,

Chapter 4: Analysis of Variance and Designed Experiments yates • 397

 IMSLS_MISSING_INDEX, &missing_idx,
 0);
 printf("Returned error sum of squares = %f\n\n", error_ss);
 printf("Missing values replaced: %d\n", n_missing);
 printf("Whole Split Block Estimate\n");
 for (i=0;i<n_missing;i++) {
 printf("%3d %3d %3d %7.3f\n",
 (int)x[missing_idx[i]][0],
 (int)x[missing_idx[i]][1],
 (int)x[missing_idx[i]][2],
 x[missing_idx[i]][n_independent]);
 }
 imsls_f_write_matrix("Sorted x, with estimates", n, n_independent+1,
 (float*)x,
 IMSLS_WRITE_FORMAT, "%-4.0f%-4.0f%-4.0f%5.2f",
 IMSLS_COL_LABELS, col_labels,
 IMSLS_NO_ROW_LABELS, 0);

}

float get_ss(int n, int n_independent, int *n_levels, float *x)
{
 int i;
 float errorSS, pValue;
 float *test_effects = NULL;
 float *anova_table = NULL;
 float responses[24];
 /*
 * Copy responses from the last column of x into a 1-D array
 * as expected by imsls_f_anova_factorial.
 */
 for (i=0;i<n;i++) {
 responses[i] = x[i*(n_independent+1)+n_independent];
 }
 /*
 * Compute the error sum of squares.
 */
 pValue = imsls_f_anova_factorial(n_independent, n_levels, responses,
 IMSLS_TEST_EFFECTS, &test_effects,
 IMSLS_ANOVA_TABLE, &anova_table,
 IMSLS_POOL_INTERACTIONS, 0);
 errorSS = anova_table[4] + test_effects[21];

 /* Free memory returned by imsls_f_anova_factorial. */
 if (test_effects != NULL) free(test_effects);
 if (anova_table != NULL) free(anova_table);

398 • yates IMSL C Stat Library

 return errorSS;
}

After running this code to replace missing values with Yates estimates, it would be followed by a
call to the split-plot analysis of variance:

float *aov_table, y[24];
int expunit[24], whole[24], split[24];
for(int i=0; i < 24; i++){whole[i] = x[i]; split[i] = x[i+24];
 expunit[i]= x[i+48]; y[i] = x[i+72];}
float aov_table = imsls_f_split_plot (24, 1, 4, 3, expunit, whole,
 split, y[], 0);

Output

Returned error sum of squares = 95.620010

Missing values replaced: 2
Whole Split Block Estimate
 1 1 1 37.300
 1 2 2 58.100

 Sorted x, with estimates
 Whole Split Block
 1 1 1 37.30
 1 1 2 41.60
 1 2 1 53.80
 1 2 2 58.10
 1 3 1 49.50
 1 3 2 53.80
 2 1 1 53.30
 2 1 2 69.60
 2 2 1 57.60
 2 2 2 69.60
 2 3 1 59.80
 2 3 2 65.80
 3 1 1 62.30
 3 1 2 58.50
 3 2 1 63.40
 3 2 2 50.40
 3 3 1 64.50
 3 3 2 46.10
 4 1 1 75.40
 4 1 2 65.60
 4 2 1 70.30
 4 2 2 67.30
 4 3 1 68.80

Chapter 4: Analysis of Variance and Designed Experiments yates • 399

 4 3 2 65.30

Chapter 5: Categorical and Discrete Data Analysis Routines • 401

Chapter 5: Categorical and Discrete
Data Analysis

Routines
Statistics in the Two-Way Contingency Table

Two-way contingency table analysis contingency_table 402
Exact probabilities in an r × c table;
total enumeration exact_enumeration 414
Exact probabilities in an r × c table exact_network 416

Generalized Categorical Models
Generalized linear models categorical_glm 422

Usage Notes
Routine imsls_f_contingency_table computes many statistics of interest in a
two-way table. Statistics computed by this routine includes the usual chi-squared
statistics, measures of association, Kappa, and many others. Exact probabilities for
two-way tables can be computed by imsls_f_exact_enumeration, but this routine
uses the total enumeration algorithm and, thus, often uses orders of magnitude more
computer time than imsls_f_exact_network, which computes the same
probabilities by use of the network algorithm (but can still be quite expensive).
The routine imsls_f_categorical_glm in the second section is concerned with
generalized linear models (see McCullagh and Nelder 1983) in discrete data. This
routine can be used to compute estimates and associated statistics in probit, logistic,
minimum extreme value, Poisson, negative binomial (with known number of
successes), and logarithmic models. Classification variables as well as weights,
frequencies and additive constants may be used so that general linear models can be fit.
Residuals, a measure of influence, the coefficient estimates, and other statistics are
returned for each model fit. When infinite parameter estimates are required, extended
maximum likelihood estimation may be used. Log-linear models can be fit in
imsls_f_categorical_glm through the use of Poisson regression models. Results
from Poisson regression models involving structural and sampling zeros will be
identical to the results obtained from the log-linear model routines but will be fit by a
quasi-Newton algorithm rather than through iterative proportional fitting.

402 • contingency_table IMSL C Stat Library

contingency_table
Performs a chi-squared analysis of a two-way contingency table.

Synopsis
#include <imsls.h>

float imsls_f_contingency_table (int n_rows, int n_columns,
float table[], ..., 0)

The type double function is imsls_d_contingency_table.

Required Arguments

int n_rows (Input)
Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in the
contingency table.

Return Value
Pearson chi-squared p-value for independence of rows and columns.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_contingency_table (int n_rows, int n_columns,

float table[],
IMSLS_CHI_SQUARED, int *df, float *chi_squared,
 float *p_value,
IMSLS_LRT, int *df, float *g_squared, float *p_value,
IMSLS_EXPECTED, float **expected,
IMSLS_EXPECTED_USER, float expected[],
IMSLS_CONTRIBUTIONS, float **chi_squared_contributions,
IMSLS_CONTRIBUTIONS_USER,
 float chi_squared_contributions[],
IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats,
IMSLS_CHI_SQUARED_STATS_USER,
 float chi_squared_stats[],
IMSLS_STATISTICS, float **statistics,
IMSLS_STATISTICS_USER, float statistics[],
0)

Optional Arguments

IMSLS_CHI_SQUARED, int *df, float *chi_squared, float *p_value (Output)
Argument df is the degrees of freedom for the chi-squared tests associated

Chapter 5: Categorical and Discrete Data Analysis contingency_table • 403

with the table, chi_squared is the Pearson chi-squared test statistic, and
argument p_value is the probability of a larger Pearson chi-squared.

IMSLS_LRT, int *df, float *g_squared, float *p_value (Output)
Argument df is the degrees of freedom for the chi-squared tests associated
with the table, argument g_squared is the likelihood ratio G2 (chi-squared),
and argument p_value is the probability of a larger G2.

IMSLS_EXPECTED, float **expected (Output)
Address of a pointer to the internally allocated array of size (n_rows + 1) ×
 (n_columns + 1) containing the expected values of each cell in the table,
under the null hypothesis, in the first n_rows rows and n_columns columns.
The marginal totals are in the last row and column.

IMSLS_EXPECTED_USER, float expected[] (Output)
Storage for array expected is provided by the user. See IMSLS_EXPECTED.

IMSLS_CONTRIBUTIONS, float **chi_squared_contributions (Output)
Address of a pointer to an internally allocated array of size (n_rows + 1) ×
 (n_columns + 1) containing the contributions to chi-squared for each cell in
the table in the first n_rows rows and n_columns columns. The last row and
column contain the total contribution to chi-squared for that row or column.

IMSLS_CONTRIBUTIONS_USER, float chi_squared_contributions[] (Output)
Storage for array chi_squared_contributions is provided by the user.
See IMSLS_CONTRIBUTIONS.

IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats (Output)
Address of a pointer to an internally allocated array of length 5 containing chi-
squared statistics associated with this contingency table. The last three
elements are based on Pearson’s chi-square statistic (see
IMSLS_CHI_SQUARED).

 The chi-squared statistics are given as follows:

Element Chi-squared Statistics
0 exact mean
1 exact standard deviation
2 Phi
3 contingency coefficient
4 Cramer’s V

IMSLS_CHI_SQUARED_STATS_USER, float chi_squared_stats[] (Output)
Storage for array chi_squared_stat is provided by the user. See
IMSLS_CHI_SQUARED_STATS.

IMSLS_STATISTICS, float **statistics (Output)
Address of a pointer to an internally allocated array of size 23 × 5 containing
statistics associated with this table. Each row corresponds to a statistic.

404 • contingency_table IMSL C Stat Library

Row Statistic
0 Gamma
1 Kendall’s τb

2 Stuart’s τc

3 Somers’ D for rows (given columns)
4 Somers’ D for columns (given rows)
5 product moment correlation
6 Spearman rank correlation
7 Goodman and Kruskal τ for rows (given columns)
8 Goodman and Kruskal τ for columns (given rows)
9 uncertainty coefficient U (symmetric)
10 uncertainty Ur | c (rows)

11 uncertainty Uc | r (columns)

12 optimal prediction λ (symmetric)
13 optimal prediction λr | c (rows)

14 optimal prediction λc | r (columns)

15 optimal prediction λr | c (rows)

16 optimal prediction λc | r (columns)

17 test for linear trend in row probabilities if n_rows = 2
If n_rows is not 2, a test for linear trend in column
probabilities if n_columns = 2.

18 Kruskal-Wallis test for no row effect

19 Kruskal-Wallis test for no column effect

20 kappa (square tables only)
21 McNemar test of symmetry (square tables only)
22 McNemar one degree of freedom test of symmetry (square

tables only)

If a statistic cannot be computed, or if some value is not relevant for the
computed statistic, the entry is NaN (Not a Number). The columns are as
follows:

Column Value
0 estimated statistic

1 standard error for any parameter value

2 standard error under the null hypothesis

3 t value for testing the null hypothesis

4 p-value of the test in column 3

Chapter 5: Categorical and Discrete Data Analysis contingency_table • 405

In the McNemar tests, column 0 contains the statistic, column 1 contains the
chi-squared degrees of freedom, column 3 contains the exact p-value (1
degree of freedom only), and column 4 contains the chi-squared asymptotic p-
value. The Kruskal-Wallis test is the same except no exact p-value is
computed.

IMSLS_STATISTICS_USER, float statistics[] (Output)
Storage for array statistics provided by the user. See
IMSLS_STATISTICS.

Description
Function imsls_f_contingency_table computes statistics associated with an r × c
(n_rows × n_columns) contingency table. The function computes the chi-squared test
of independence, expected values, contributions to chi-squared, row and column
marginal totals, some measures of association, correlation, prediction, uncertainty, the
McNemar test for symmetry, a test for linear trend, the odds and the log odds ratio, and
the kappa statistic (if the appropriate optional arguments are selected).

Notation
Let xij denote the observed cell frequency in the ij cell of the table and n denote the
total count in the table. Let pij = pi•pj• denote the predicted cell probabilities under the
null hypothesis of independence, where pi• and pj• are the row and column marginal
relative frequencies. Next, compute the expected cell counts as eij = npij.

Also required in the following are auv and buv for u, v = 1, …, n. Let (rs, cs) denote the
row and column response of observation s. Then, auv = 1, 0, or −1, depending on
whether ru < rv, ru = rv, or ru > rv, respectively. The buv are similarly defined in terms
of the cs variables.

Chi-squared Statistic

For each cell in the table, the contribution to χ2 is given as (xij − eij)2/eij. The Pearson
chi-squared statistic (denoted χ2) is computed as the sum of the cell contributions to
chi-squared. It has (r − 1) (c − 1) degrees of freedom and tests the null hypothesis of
independence, i.e., H0:pij = pi•pj•. The null hypothesis is rejected if the computed value
of χ2 is too large.

The maximum likelihood equivalent of χ2, G2 is computed as follows:

()2

,
2 ln /ij ij ij

i j
G x x np= − ∑

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same
degrees of freedom.

406 • contingency_table IMSL C Stat Library

Measures Related to Chi-squared (Phi, Contingency Coefficient, and
Cramer’s V)
There are three measures related to chi-squared that do not depend on sample size:

()
()()

2

2 2

2

phi, = /

contingency coefficient, = /

Cramer's , / min ,

n

P n

V V n r c

φ χ

χ χ

χ

+

=

Since these statistics do not depend on sample size and are large when the hypothesis
of independence is rejected, they can be thought of as measures of association and can
be compared across tables with different sized samples. While both P and V have a
range between 0.0 and 1.0, the upper bound of P is actually somewhat less than 1.0 for
any given table (see Kendall and Stuart 1979, p. 587). The significance of all three
statistics is the same as that of the χ2 statistic, chi_squared.

The distribution of the χ2 statistic in finite samples approximates a chi-squared
distribution. To compute the exact mean and standard deviation of the χ2 statistic,
Haldane (1939) uses the multinomial distribution with fixed table marginals. The exact
mean and standard deviation generally differ little from the mean and standard
deviation of the associated chi-squared distribution.

Standard Errors and p-values for Some Measures of Association
In Columns 1 through 4 of statistics, estimated standard errors and asymptotic
p-values are reported. Estimates of the standard errors are computed in two ways. The
first estimate, in Column 1 of the array statistics, is asymptotically valid for any
value of the statistic. The second estimate, in Column 2 of the array, is only correct
under the null hypothesis of no association. The z-scores in Column 3 of statistics are
computed using this second estimate of the standard errors. The p-values in Column 4
are computed from this z-score. See Brown and Benedetti (1977) for a discussion and
formulas for the standard errors in Column 2.

Measures of Association for Ranked Rows and Columns
The measures of association, φ, P, and V, do not require any ordering of the row and
column categories. Function imsls_f_contingency_table also computes several
measures of association for tables in which the rows and column categories correspond
to ranked observations. Two of these tests, the product-moment correlation and the
Spearman correlation, are correlation coefficients computed using assigned scores for
the row and column categories. The cell indices are used for the product-moment
correlation, while the average of the tied ranks of the row and column marginals is used
for the Spearman rank correlation. Other scores are possible.
Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association that are
computed like a correlation coefficient in the numerator. In all these measures, the
numerator is computed as the “covariance” between the
auv variables and buv variables defined above, i.e., as follows:

Chapter 5: Categorical and Discrete Data Analysis contingency_table • 407

uv uv
u v

a b∑∑

Recall that auv and buv can take values −1, 0, or 1. Since the product auvbuv = 1 only if
auv and buv are both 1 or are both −1, it is easy to show that this ‘‘covariance’’ is twice
the total number of agreements minus the number of disagreements, where a
disagreement occurs when auvbuv = −1.

Kendall’s τb is computed as the correlation between the auv variables and the
buv variables (see Kendall and Stuart 1979, p. 593). In a rectangular table
(r ≠ c), Kendall’s τb cannot be 1.0 (if all marginal totals are positive). For this reason,
Stuart suggested a modification to the denominator of τ in which the denominator
becomes the largest possible value of the “covariance.” This maximizing value is
approximately n2m/(m − 1), where m = min (r, c). Stuart’s τc uses this approximate
value in its denominator. For large n, τc ≈ mτb/(m − 1).

Gamma can be motivated in a slightly different manner. Because the “covariance” of
the auv variables and the buv variables can be thought of as twice the number of
agreements minus the disagreements, 2(A − D), where A is the number of agreements
and D is the number of disagreements, Gamma is motivated as the probability of
agreement minus the probability of disagreement, given that either agreement or
disagreement occurred. This is shown as γ = (A − D)/(A + D).
Two definitions of Somers’ D are possible, one for rows and a second for columns.
Somers’ D for rows can be thought of as the regression coefficient for predicting auv
from buv. Moreover, Somer’s D for rows is the probability of agreement minus the
probability of disagreement, given that the column variable, buv, is not 0. Somers’ D
for columns is defined in a similar manner.
A discussion of all of the measures of association in this section can be found in
Kendall and Stuart (1979, p. 592).

Measures of Prediction and Uncertainty
Optimal Prediction Coefficients: The measures in this section do not require any
ordering of the row or column variables. They are based entirely upon probabilities.
Most are discussed in Bishop et al. (1975, p. 385).
Consider predicting (or classifying) the column for a given row in the table. Under the
null hypothesis of independence, choose the column with the highest column marginal
probability for all rows. In this case, the probability of misclassification for any row is
1 minus this marginal probability. If independence is not assumed within each row,
choose the column with the highest row conditional probability. The probability of
misclassification for the row becomes 1 minus this conditional probability.
Define the optimal prediction coefficient λc | r for predicting columns from rows as the
proportion of the probability of misclassification that is eliminated because the random
variables are not independent. It is estimated by

408 • contingency_table IMSL C Stat Library

()
|

1 (1)

1

m im
i

c r
m

p p

p
λ

•

•

− − −
=

−

∑

where m is the index of the maximum estimated probability in the row (pim) or row
margin (p·m). A similar coefficient is defined for predicting the rows from the columns.
The symmetric version of the optimal prediction λ is obtained by summing the
numerators and denominators of λr | c and λc | r, then dividing. Standard errors for these
coefficients are given in Bishop et al. (1975, p. 388).
A problem with the optimal prediction coefficients λ is that they vary with the marginal
probabilities. One way to correct this is to use row conditional probabilities. The
optimal prediction λ* coefficients are defined as the corresponding λ coefficients in
which first the row (or column) marginals are adjusted to the same number of
observations. This yields

| |

|
|

max max ()

max ()

j j i j j i
i i

c r
j j i

i

p p

R p
λ∗

−
=

−

∑ ∑
∑

where i indexes the rows, j indexes the columns, and pj|i is the (estimated) probability
of column j given row i.

|r cλ∗

is similarly defined.
Goodman and Kruskal τ: A second kind of prediction measure attempts to explain
the proportion of the explained variation of the row (column) measure given the
column (row) measure. Define the total variation in the rows as follows:

()2/ 2 () / 2i
i

n x n•− ∑

Note that this is 1/(2n) times the sums of squares of the auv variables.

With this definition of variation, the Goodman and Kruskal τ coefficient for rows is
computed as the reduction of the total variation for rows accounted for by the columns,
divided by the total variation for the rows. To compute the reduction in the total
variation of the rows accounted for by the columns, note that the total variation for the
rows within column j is defined as follows:

()2/ 2 () / 2j j ij i
i

q x x x• •= − ∑

The total variation for rows within columns is the sum of the qj variables. Consistent
with the usual methods in the analysis of variance, the reduction in the total variation is

Chapter 5: Categorical and Discrete Data Analysis contingency_table • 409

given as the difference between the total variation for rows and the total variation for
rows within the columns.
Goodman and Kruskal’s τ for columns is similarly defined. See Bishop et al. (1975, p.
391) for the standard errors.
Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the
log-likelihood that is achieved by the most general model over the independence
model, divided by the marginal log-likelihood for the rows. This is given by the
following equation:

()
()

,
|

log /

log /

ij i j ij
i j

r c
i i

i

x x x nx
U

x x n

• •

• •

=
∑

∑

The uncertainty coefficient for columns is similarly defined. The symmetric
uncertainty coefficient contains the same numerator as Ur | c and Uc | r but averages the
denominators of these two statistics. Standard errors for U are given in Brown (1983).
Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It tests
the null hypothesis that no row populations are identical, using average ranks for the
column variable. The Kruskal-Wallis statistic for columns is similarly defined.
Conover (1980) discusses the Kruskal-Wallis test.
Test for Linear Trend: When there are two rows, it is possible to test for a linear
trend in the row probabilities if it is assumed that the column variable is monotonically
ordered. In this test, the probabilities for row 1 are predicted by the column index using
weighted simple linear regression. This slope is given by

()()

()

1 1

2

/ /
ˆ

j j j
j

j
j

x x x x n j j

x j j
β

• • •

•

− −
=

−

∑

∑

where

/j
j

j x j n•= ∑

is the average column index. An asymptotic test that the slope is 0 may then be
obtained (in large samples) as the usual regression test of zero slope.
In two-column data, a similar test for a linear trend in the column probabilities is
computed. This test assumes that the rows are monotonically ordered.
Kappa: Kappa is a measure of agreement computed on square tables only. In the
kappa statistic, the rows and columns correspond to the responses of two judges. The
judges agree along the diagonal and disagree off the diagonal. Let

0 /ii
i

p x n= ∑

410 • contingency_table IMSL C Stat Library

denote the probability that the two judges agree, and let

/c ii
i

p e n= ∑

denote the expected probability of agreement under the independence model. Kappa is
then given by (p0 − pc)/(1 − pc).

McNemar Tests: The McNemar test is a test of symmetry in a square contingency
table. In other words, it is a test of the null hypothesis H0:θij = θji. The multiple
degrees-of-freedom version of the McNemar test with r (r − 1)/2 degrees of freedom is
computed as follows:

()
()

2

ij ji

i j ij ji

x x

x x<

−

+
∑

The single degree-of-freedom test assumes that the differences, xij − xji, are all in one
direction. The single degree-of-freedom test will be more powerful than the multiple
degrees-of-freedom test when this is the case. The test statistic is given as follows:

()

()

2

ij ji
i j

ij ji
i j

x x

x x
<

<

⎛ ⎞
−⎜ ⎟

⎝ ⎠
+

∑

∑

The exact probability can be computed by the binomial distribution.

Examples

Example 1
The following example is taken from Kendall and Stuart (1979) and involves the
distance vision in the right and left eyes. Output contains only the p-value.

#include <imsls.h>

void main()
{
 int n_rows = 4;
 int n_columns = 4;
 float table[4][4] = {821, 112, 85, 35,
 116, 494, 145, 27,
 72, 151, 583, 87,
 43, 34, 106, 331};
 float p_value;

 p_value = imsls_f_contingency_table(n_rows, n_columns,
 &table[0][0], 0);
 printf ("P-value = %10.6f.\n", p_value);

}

Chapter 5: Categorical and Discrete Data Analysis contingency_table • 411

Output
P-value = 0.000000.

Example 2
The following example, which illustrates the use of Kappa and McNemar tests, uses
the same distance vision data as the previous example. The available statistics are
output using optional arguments.

#include <imsls.h>

void main()
{
 int n_rows = 4;
 int n_columns = 4;
 int df1, df2;
 float table[16] = {821.0, 112.0, 85.0, 35.0,
 116.0, 494.0, 145.0, 27.0,
 72.0, 151.0, 583.0, 87.0,
 43.0, 34.0, 106.0, 331.0};
 float p_value1, p_value2, chi_squared, g_squared;
 float *expected, *chi_squared_contributions;
 float *chi_squared_stats, *statistics;
 char *labels[] = {
 "Exact mean",
 "Exact standard deviation",
 "Phi",
 "P",
 "Cramer’s V"};
 char *stat_row_labels[] = {"Gamma", "Tau B", "Tau C",
 "D-Row", "D-Column", "Correlation", "Spearman",
 "GK tau rows", "GK tau cols.", "U - sym.", "U - rows",
 "U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.",
 "l-star-rows", "l-star-col.", "Lin. trend",
 "Kruskal row", "Kruskal col.", "Kappa", "McNemar",
 "McNemar df=1"};
 char *stat_col_labels[] = {"","statistic", "standard error",
 "std. error under Ho", "t-value testing Ho",
 "p-value"};

 imsls_f_contingency_table (n_rows, n_columns, table,
 IMSLS_CHI_SQUARED, &df1, &chi_squared, &p_value1,
 IMSLS_LRT, &df2, &g_squared, &p_value2,
 IMSLS_EXPECTED, &expected,
 IMSLS_CONTRIBUTIONS,
 &chi_squared_contributions,
 IMSLS_CHI_SQUARED_STATS, &chi_squared_stats,
 IMSLS_STATISTICS, &statistics,
 0);

 printf("Pearson chi-squared statistic %11.4f\n", chi_squared);
 printf("p-value for Pearson chi-squared %11.4f\n", p_value1);
 printf("degrees of freedom %11d\n", df1);
 printf("G-squared statistic %11.4f\n", g_squared);
 printf("p-value for G-squared %11.4f\n", p_value2);
 printf("degrees of freedom %11d\n", df2);

412 • contingency_table IMSL C Stat Library

 imsls_f_write_matrix("* * * Table Values * * *\n", 4, 4,
 table,
 IMSLS_WRITE_FORMAT, "%11.1f",
 0);

 imsls_f_write_matrix("* * * Expected Values * * *\n", 5, 5,
 expected,
 IMSLS_WRITE_FORMAT, "%11.2f",
 0);
 imsls_f_write_matrix("* * * Contributions to Chi-squared* * *\n",
 5, 5,
 chi_squared_contributions,
 IMSLS_WRITE_FORMAT, "%11.2f",
 0);
 imsls_f_write_matrix("* * * Chi-square Statistics * * *\n",
 5, 1,
 chi_squared_stats,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);
 imsls_f_write_matrix("* * * Table Statistics * * *\n",
 23, 5,
 statistics,
 IMSLS_ROW_LABELS, stat_row_labels,
 IMSLS_COL_LABELS, stat_col_labels,
 IMSLS_WRITE_FORMAT, "%9.4f",
 0);
}

Output
Pearson chi-squared statistic 3304.3682
p-value for Pearson chi-squared 0.0000
degrees of freedom 9
G-squared statistic 2781.0188
p-value for G-squared 0.0000
degrees of freedom 9

 * * * Table Values * * *

 1 2 3 4
1 821.0 112.0 85.0 35.0
2 116.0 494.0 145.0 27.0
3 72.0 151.0 583.0 87.0
4 43.0 34.0 106.0 331.0

 * * * Expected Values * * *

 1 2 3 4 5
1 341.69 256.92 298.49 155.90 1053.00
2 253.75 190.80 221.67 115.78 782.00
3 289.77 217.88 253.14 132.21 893.00
4 166.79 125.41 145.70 76.10 514.00
5 1052.00 791.00 919.00 480.00 3242.00

Chapter 5: Categorical and Discrete Data Analysis contingency_table • 413

 * * * Contributions to Chi-squared* * *

 1 2 3 4 5
1 672.36 81.74 152.70 93.76 1000.56
2 74.78 481.84 26.52 68.08 651.21
3 163.66 20.53 429.85 15.46 629.50
4 91.87 66.63 10.82 853.78 1023.10
5 1002.68 650.73 619.88 1031.08 3304.37

 * * * Chi-square Statistics * * *

Exact mean 9.0028
Exact standard deviation 4.2402
Phi 1.0096
P 0.7105
Cramer’s V 0.5829

 * * * Table Statistics * * *

 statistic standard error std. error t-value testing
 under Ho Ho
Gamma 0.7757 0.0123 0.0149 52.1897
Tau B 0.6429 0.0122 0.0123 52.1897
Tau C 0.6293 0.0121 52.1897
D-Row 0.6418 0.0122 0.0123 52.1897
D-Column 0.6439 0.0122 0.0123 52.1897
Correlation 0.6926 0.0128 0.0172 40.2669
Spearman 0.6939 0.0127 0.0127 54.6614
GK tau rows 0.3420 0.0123
GK tau cols. 0.3430 0.0122
U - sym. 0.3171 0.0110
U - rows 0.3178 0.0110
U - cols. 0.3164 0.0110
Lambda-sym. 0.5373 0.0124
Lambda-row 0.5374 0.0126
Lambda-col. 0.5372 0.0126
l-star-rows 0.5506 0.0136
l-star-col. 0.5636 0.0127
Lin. trend
Kruskal row 1561.4861 3.0000
Kruskal col. 1563.0300 3.0000
Kappa 0.5744 0.0111 0.0106 54.3583
McNemar 4.7625 6.0000
McNemar df=1 0.9487 1.0000 0.3459

 p-value
Gamma 0.0000
Tau B 0.0000
Tau C 0.0000
D-Row 0.0000
D-Column 0.0000
Correlation 0.0000
Spearman 0.0000
GK tau rows
GK tau cols.

414 • exact_enumeration IMSL C Stat Library

U - sym.
U - rows
U - cols.
Lambda-sym.
Lambda-row
Lambda-col.
l-star-rows
l-star-col.
Lin. trend
Kruskal row 0.0000
Kruskal col. 0.0000
Kappa 0.0000
McNemar 0.5746
McNemar df=1 0.3301

Warning Errors

IMSLS_DF_GT_30 The degrees of freedom for
“IMSLS_CHI_SQUARED” are greater than
30. The exact mean, standard deviation, and
the normal distribution function should be
used.

IMSLS_EXP_VALUES_TOO_SMALL Some expected values are less than #. Some
asymptotic p-values may not be good.

IMSLS_PERCENT_EXP_VALUES_LT_5 Twenty percent of the expected values are
calculated less than 5.

exact_enumeration
Computes exact probabilities in a two-way contingency table using the total
enumeration method.

Synopsis
#include <imsls.h>

float imsls_f_exact_enumeration (int n_rows, int n_columns,
float table[], ..., 0)

The type double function is imsls_d_exact_enumeration.

Required Arguments

int n_rows (Input)
Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in the
contingency table.

Chapter 5: Categorical and Discrete Data Analysis exact_enumeration • 415

Return Value
The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where “extreme” is taken in the Neyman-Pearson
sense. The p-value is “two-sided”.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_exact_enumeration (int n_rows, int n_columns, float

table[],
IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_CHECK_NUMERICAL_ERROR, float *check,
0)

Optional Arguments

IMSLS_PROB_TABLE, float *prt (Output)
Probablitity of the observed table occuring, given that the null hypothesis of
independent rows and columns is true.

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value represents
the probability of a more extreme table where “extreme” is taken in the
Neyman-Pearson sense. The p-value is “two-sided”.

The p-value is also returned in functional form (see “Return Value”).

A table is more extreme if its probability (for fixed marginals) is less than or
equal to prt.

IMSLS_CHECK_NUMERICAL_ERROR, float *check (Output)
Sum of the probabilities of all tables with the same marginal totals. Parameter
check should have a value of 1.0. Deviation from 1.0 indicates numerical
error.

Description
Function imsls_f_exact_enumeration computes exact probabilities for an
r × c contingency table for fixed row and column marginals (a marginal is the number
of counts in a row or column), where r = n_rows and c = n_columns. Let fij denote
the count in row i and column j of a table, and let fi• and f•j denote the row and column
marginals. Under the hypothesis of independence, the (conditional) probability of the
fixed marginals of the observed table is given by

1 1

1 1

! !

! !

r c

i j
i j

f r c

ij
i j

f f
P

f f

• •
= =

••
= =

=
∏ ∏

∏∏

416 • exact_network IMSL C Stat Library

where f•• is the total number of counts in the table. Pf corresponds to output argument
prt.
A “more extreme” table X is defined in the probablistic sense as more extreme than the
observed table if the conditional probability computed for table X (for the same
marginal sums) is less than the conditional probability computed for the observed table.
The user should note that this definition can be considered “two-sided” in the cell
counts.
Because imsls_f_exact_enumeration used total enumeration in computing the
probability of a more extreme table, the amount of computer time required increases
very rapidly with the size of the table. Tables with a large total count f•• or a large value
of r × c should not be analyzed using imsls_f_exact_enumeration. In such cases,
try using imsls_f_exact_network.

Example

In this example, the exact conditional probability for the 2 × 2 contingency table

8 12
8 2

⎡ ⎤
⎢ ⎥
⎣ ⎦

is computed.

#include <stdio.h>

#include <imsls.h>

void main()

{
 float p;

 float table[4] = {8, 12,

 8, 2};

 p = imsls_f_exact_enumeration(2, 2, table, 0);

 printf("p-value = %9.4f\n", p);
}

Output
p-value = 0.0577

exact_network
Computes Fisher exact probabilities and a hybrid approximation of the Fisher exact
method for a two-way contingency table using the network algorithm.

Synopsis
#include <imsls.h>

Chapter 5: Categorical and Discrete Data Analysis exact_network • 417

float imsls_f_exact_network (int n_rows, int n_columns, float table[],
..., 0)

The type double function is imsls_d_exact_network.

Required Arguments

int n_rows (Input)
Number of rows in the table.

int n_columns (Input)
Number of columns in the table.

float table[] (Input)
Array of length n_rows × n_columns containing the observed counts in the
contingency table.

Return Value
The p-value for independence of rows and columns. The p-value represents the
probability of a more extreme table where “extreme” is taken in the Neyman-Pearson
sense. The p-value is “two-sided”.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_exact_network (int n_rows, int n_columns, float table[],

IMSLS_PROB_TABLE, float *prt,
IMSLS_P_VALUE, float *p_value,
IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent,
float expected_minimum,
IMSLS_NO_APPROXIMATION,
IMSLS_WORKSPACE, int factor1, int factor2,
 int max_attempts, int *n_attempts,
0)

Optional Arguments

IMSLS_PROB_TABLE, float *prt (Output)
Probability of the observed table occurring given that the null hypothesis of
independent rows and columns is true.

IMSLS_P_VALUE, float *p_value (Output)
The p-value for independence of rows and columns. The p-value represents
the probability of a more extreme table where “extreme” is in the Neyman-
Pearson sense. The p_value is “two-sided”. The p-value is also returned in
functional form (see “Return Value”).

A table is more extreme if its probability (for fixed marginals) is less than or
equal to prt.

IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent,
float expected_minimum. (Input)
Parameter expect is the expected value used in the hybrid approximation to

418 • exact_network IMSL C Stat Library

Fisher’s exact test algorithm for deciding when to use asymptotic probabilities
when computing path lengths. Parameter percent is the percentage of
remaining cells that must have estimated expected values greater than expect
before asymptotic probabilities can be used in computing path lengths.
Parameter expected_minimum is the minimum cell estimated value allowed
for asymptotic chi-squared probabilities to be used.

Asymptotic probabilities are used in computing path lengths whenever
percent or more of the cells in the table have estimated expected values of
expect or more, with no cell having expected value less than
expected_minimum. See the “Description” section for details.

Defaults: expect = 5.0, percent = 80.0, expected_minimum = 1.0
Note that these defaults correspond to the “Cochran” condition.

IMSLS_NO_APPROXIMATION,
The Fisher exact test is used. Arguments expect, percent, and
expected_minimum are ignored.

IMSLS_WORKSPACE, int factor1, int factor2,
int max_attempts, (Input)
int *n_attempts (Output)
The network algorithm requires a large amount of workspace. Some of the
workspace requirements are well-defined, while most of the workspace
requirements can only be estimated. The estimate is based primarily on table
size.

Function imsls_f_exact_enumeration allocates a default amount of
workspace suitable for small problems. If the algorithm determines that this
initial allocation of workspace is inadaquate, the memory is freed, a larger
amount of memory allocated (twice as much as the previous allocation), and
the network algorithm is re-started. The algorithm allows for up to
max_attempts attempts to complete the algorithm.

Because each attempt requires computer time, it is suggested that factor1
and factor2 be set to some large numbers (like 1,000 and 30,000) if the
problem to be solved is large. It is suggested that factor2 be 30 times larger
than factor1. Although imsls_f_exact_enumeration will eventually
work its way up to a large enough memory allocation, it is quicker to allocate
enough memory initially.

The known (well-defined) workspace requirements are as follows: Define
f•• = ΣΣfij equal to the sum of all cell frequencies in the observed table,
nt = f•• + 1, mx = max (n_rows, n_columns),
mn = min (n_rows, n_columns),
t1 = max (800 + 7mx, (5 + 2mx) (n_rows + n_columns + 1)), and
t2 = max (400 + mx, + 1, n_rows + n_columns + 1).

The following amount of integer workspace is allocated: 3mx + 2mn + t1.

The following amount of float (or double, if using
imsls_d_exact_network) workspace is allocated: nt + t2.

Chapter 5: Categorical and Discrete Data Analysis exact_network • 419

The remainder of the workspace that is required must be estimated and
allocated based on factor1 and factor2. The amount of integer workspace
allocated is 6n (factor1 + factor2). The amount of real workspace
allocated is n (6factor1 + 2factor2). Variable n is the index for the
attempt, 1 < n ≤ max_attempts.

Defaults: factor1 = 100, factor2 = 3000, max_attempts = 10

Description
Function imsls_f_exact_network computes Fisher exact probabilities or a hybrid
algorithm approximation to Fisher exact probabilities for an r × c contingency table
with fixed row and column marginals (a marginal is the number of counts in a row or
column), where r = n_rows and c = n_columns. Let fij denote the count in row i and
column j of a table, and let fi and f•j denote the row and column marginals. Under the
hypothesis of independence, the (conditional) probability of the fixed marginals of the
observed table is given by

1 1

1 1

! !

! !

r c

i j
i j

f r c

ij
i j

f f
P

f f

• •
= =

••
= =

=
∏ ∏

∏∏

where f•• is the total number of counts in the table. Pf corresponds to output argument
prt.
A “more extreme” table X is defined in the probablistic sense as more extreme than the
observed table if the conditional probability computed for table X (for the same
marginal sums) is less than the conditional probability computed for the observed table.
The user should note that this definition can be considered “two-sided” in the cell
counts.
See Example 1 for a comparison of execution times for the various algorithms. Note
that the Fisher exact probability and the usual asymptotic chi-squared probability will
usually be different. (The network approximation is often 10 times faster than the
Fisher exact test, and even faster when compared to the total enumeration method.)

Examples

Example 1
The following example demonstrates and compares the various methods of computing
the chi-squared p-value with respect to accuracy and execution time. As seen in the
output of this example, the Fisher exact probability and the usual asymptotic chi-
squared probability (generated using function imsls_f_contingency_table) can
be different. Also, note that the network algorithm with approximation can be up to 10
times faster than the network algorithm without approximation, and up to 100 times
faster than the total enumeration method.

#include <stdio.h>
#include <imsls.h>

void main()

420 • exact_network IMSL C Stat Library

{
 int n_rows = 3;
 int n_columns = 5;
 float p;
 float table[15] = {20, 20, 0, 0, 0,
 10, 10, 2, 2, 1,
 20, 20, 0, 0, 0};
 double a, b;

 printf("Asymptotic Chi-Squared p-value\n");
 p = imsls_f_contingency_table(n_rows, n_columns, table, 0);
 printf("p-value = %9.4f\n", p);

 printf("\nNetwork Algorithm with Approximation\n");
 a = imsls_ctime();
 p = imsls_f_exact_network(n_rows, n_columns, table, 0);
 b = imsls_ctime();
 printf("p-value = %9.4f\n", p);
 printf("Execution time = %10.4f\n", b-a);

 printf("\nNetwork Algoritm without Approximation\n");
 a = imsls_ctime();
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION, 0);
 b = imsls_ctime();
 printf("p-value = %9.4f\n", p);
 printf("Execution time = %10.4f\n", b-a);

 printf("\nTotal Enumeration Method\n");
 a = imsls_ctime();
 p = imsls_f_exact_enumeration(n_rows, n_columns, table, 0);
 b = imsls_ctime();
 printf("p-value = %9.4f\n", p);
 printf("Execution time = %10.4f\n", b-a);

}

Output
Asymptotic Chi-Squared p-value
p-value = 0.0323

Network Algorithm with Approximation
p-value = 0.0601
Execution time = 0.0400

Network Algoritm without Approximation
p-value = 0.0598
Execution time = 0.4300

Total Enumeration Method
p-value = 0.0597
Execution time = 3.1400

Chapter 5: Categorical and Discrete Data Analysis exact_network • 421

Example 2
This document example demonstrates the optional keyword IMSLS_WORKSPACE and
how different workspace settings affect execution time. Setting the workspace
available too low results in poor performance since the algorithm will fail, re-allocate a
larger amount of workspace (a factor of 10 larger) and re-start the calculations (See
Test #3, for which n_attempts is returned with a value of 2). Setting the workspace
available very large will provide no improvement in performance.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_rows = 3;
 int n_columns = 5;
 float p;
 float table[15] = {20, 20, 0, 0, 0,
 10, 10, 2, 2, 1,
 20, 20, 0, 0, 0};
 double a, b;
 int i, n_attempts, simulation_size = 10;

 printf("Test #1, factor1 = 1000, factor2 = 30000\n");
 a = imsls_ctime();
 for (i=0; i<simulation_size; i++) {
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION,
 IMSLS_WORKSPACE, 1000, 30000, 10, &n_attempts, 0);
 }
 b = imsls_ctime();
 printf("n_attempts = %2d\n", n_attempts);
 printf("Execution time = %10.4f\n", b-a);

 printf("\nTest #2, factor1 = 100, factor2 = 3000\n");
 a = imsls_ctime();
 for (i=0; i<simulation_size; i++) {
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION,
 IMSLS_WORKSPACE, 100, 3000, 10, &n_attempts, 0);
 }
 b = imsls_ctime();
 printf("n_attempts = %2d\n", n_attempts);
 printf("Execution time = %10.4f\n", b-a);

 printf("\nTest #3, factor1 = 10, factor2 = 300\n");
 a = imsls_ctime();
 for (i=0; i<simulation_size; i++) {
 p = imsls_f_exact_network(n_rows, n_columns, table,
 IMSLS_NO_APPROXIMATION,
 IMSLS_WORKSPACE, 10, 300, 10, &n_attempts, 0);
 }
 b = imsls_ctime();
 printf("n_attempts = %2d\n", n_attempts);
 printf("Execution time = %10.4f\n", b-a);
}

422 • categorical_glm IMSL C Stat Library

Output
Test #1, factor1 = 1000, factor2 = 30000
n_attempts = 1
Execution time = 4.3700

Test #2, factor1 = 100, factor2 = 3000
n_attempts = 1
Execution time = 4.2900

Test #3, factor1 = 10, factor2 = 300
n_attempts = 2
Execution time = 8.3700

Warning Errors

IMSLS_HASH_TABLE_ERROR_2 The value “ldkey” = # is too small. “ldkey” is calcu-
lated as “factor1”*pow(10,”n_attempt”−1) ending
this execution attempt.

IMSLS_HASH_TABLE_ERROR_3 The value “ldstp” = # is too small. “ldstp” is
calculated as “factor2”*pow(10,”n_attempt”−1)
ending this execution attempt.

Fatal Errors

IMSLS_HASH_TABLE_ERROR_1 The hash table key cannot be computed because the
largest key is larger than the largest representable
integer. The algorithm cannot proceed.

categorical_glm
Analyzes categorical data using logistic, Probit, Poisson, and other generalized linear
models.

Synopsis
#include <imsls.h>
int imsls_f_categorical_glm (int n_observations, int n_class,

int n_continuous, int model, float x[], ..., 0)
The type double function is imsls_d_categorical_glm.

Required Arguments

int n_observations (Input)
Number of observations.

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

Chapter 5: Categorical and Discrete Data Analysis categorical_glm • 423

int model (Input)
Argument model specifies the model used to analyze the data. The six models
are as follows:

Model Relationship* PDF of Response Variable
0 Exponential Poisson
1 Logistic Negative Binomial
2 Logistic Logarithmic
3 Logistic Binomial
4 Probit Binomial
5 Log-log Binomial

Note that the lower bound of the response variable is 1 for model = 3 and is 0
for all other models. See the “Description” section for more information about
these models.

float x[] (Input)
Array of size n_observations by (n_class + n_continuous) + m
containing data for the independent variables, dependent variable, and
optional parameters.

The columns must be ordered such that the first n_class columns contain
data for the class variables, the next n_continuous columns contain data for
the continuous variables, and the next column contains the response variable.
The final (and optional) m − 1 columns contain the optional parameters.

Return Value
An integer value indicating the number of estimated coefficients
(n_coefficients) in the model.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_categorical_glm (int n_observations, int n_class,

int n_continuous, int model, float x[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_DIST_PARAMETER, int ipar,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[],
 int iy,
IMSLS_EPS, float eps,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_INTERCEPT,
IMSLS_NO_INTERCEPT,
IMSLS_EFFECTS, int n_effects, int n_var_effects[],

*Relationship between the parameter, θ or λ, and a linear model of the explanatory variables, X β.

424 • categorical_glm IMSL C Stat Library

 int indices_effects,
IMSLS_INITIAL_EST_INTERNAL,
IMSLS_INITIAL_EST_INPUT, int n_coef_input,
 float estimates[],
IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values,
 float **class_values,
IMSLS_CLASS_INFO_USER, int n_class_values[],
 float class_values[],
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations,
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of input array x.
Default: x_col_dim = n_class + n_continuous +1

IMSLS_X_COL_FREQUENCIES, int ifrq (Input)
Column number ifrg of x containing the frequency of response for each
observation.

IMSLS_X_COL_FIXED_PARAMETER, int ifix (Input)
Column number ifix in x containing a fixed parameter for each observation
that is added to the linear response prior to computing the model parameter.
The ‘fixed’ parameter allows one to test hypothesis about the parameters via
the log-likelihoods.

IMSLS_X_COL_DIST_PARAMETER, int ipar (Input)
Column number ipar in x containing the value of the known distribution
parameter for each observation, where x[i][ipar] is the known distribution
parameter associated with the i-th observation. The meaning of the
distributional parameter depends upon model as follows:

Chapter 5: Categorical and Discrete Data Analysis categorical_glm • 425

model Parameter Meaning of x [i] [ipar]
0 E ln (E) is a fixed intercept to be included in the

linear predictor (i.e., the offset).
1 S Number of successes required for the negative

binomial distribution.
2 - Not used for this model.

3-5 N Number of trials required for the binomial
distribution.

Default: When model ≠ 2, each observation is assumed to have a parameter
value of 1. When model = 2, this parameter is not referenced.

IMSLS_X_COL_VARAIBLES, int iclass[], int icontinuous[], int iy (Input)
This keyword allows specification of the variables to be used in the analysis
and overrides the default ordering of variables described for input argument x.
Columns are numbered 0 to x_col_dim_1. To avoid errors, always specify
the keyword IMSLS_X_COL_DIM when using this keyword.

Argument iclass is an index vector of length n_class containing the
column numbers of x that correspond to classification variables.

Argument icontinuous is an index vector of length n_continuous
containing the column numbers of x that correspond to continuous variables.

Argument iy indicates the column of x which contains the independent
variable.

IMSLS_EPS, float eps (Input)
Argument eps is the convergence criterion. Convergence is assumed when
the maximum relative change in any coefficient estimate is less than eps from
one iteration to the next or when the relative change in the log-likelihood,
criterion, from one iteration to the next is less than eps / 100.0.
Default: eps = 0.001

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. Use max_iterations = 0 to compute the
Hessian, stored in cov, and the Newton step, stored in last_step, at the initial
estimates (The initial estimates must be input. Use keyword
IMSLS_INITIAL_EST_INPUT).
Default: max_iterations = 30

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,

By default, or if IMSLS_INTERCEPT is specified, the intercept is
automatically included in the model. If IMSLS_NO_INTERCEPT is specified,
there is no intercept in the model (unless otherwise provided for by the user).

IMSLS_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[] (Input)
Variable n_effects is the number of effects (sources of variation) in the
model. Variable n_var_effects is an array of length n_effects

426 • categorical_glm IMSL C Stat Library

containing the number of variables associated with each effect in the model.
Argument indices_effects is an index array of length
n_var_effects [0] + n_var_effects [1] + …
+ n_var_effects [n_effects − 1]. The first n_var_effects [0]
elements give the column numbers of x for each variable in the first effect.
The next n_var_effects [1] elements give the column numbers for each
variable in the second effect. The last n_var_effects [n_effects − 1]
elements give the column
numbers for each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[] (Input)

By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted linear
regression is used to obtain initial estimates. If IMSLS_INITIAL_EST_INPUT
is specified, then the n_coef_input elements of estimates contain initial
estimates of the parameters (which requires that the user know the number of
coefficients in the model prior to the call to imsls_f_categorical_glm
which can be obtained by calling imsls_f_regressors_for_glm.

IMSLS_MAX_CLASS, int max_class (Input)
An upper bound on the sum of the number of distinct values taken on by each
classification variable.
Default: max_class = n_observations × n_class

IMSLS_CLASS_INFO, int **n_class_values, float **class_values (Output)
Argument n_class_values the address of a pointer to the internally
allocated array of length n_class containing the number of values taken by
each classification variable; the i-th classification variable has
n_class_values [i] distinct values. Argument class_values is the
address of a pointer to the internally allocated array of length

[]
1

0i
i

−

=
∑

n_class

n_class_values

containing the distinct values of the classification variables in ascending
order. The first n_class_values [0] elements of class_values contain
the values for the first classification variables, the next n_class_values [1]
elements contain the values for the second classification variable, etc.

IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[]
(Output)
Storage for arrays n_class_values and class_values is provided by the
user. See IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics (Output)
Address of a pointer to an internally allocated array of size
n_coefficients × 4 containing the parameter estimates and associated
statistics, where n_coefficients can be computed by calling
imsls_regressors_for_glm.

Chapter 5: Categorical and Discrete Data Analysis categorical_glm • 427

Column Statistic
0 Coefficient Estimate.
1 Estimated standard deviation of the estimated coefficient.
2 Asymptotic normal score for testing that the coefficient is zero.
3 The p-value associated with the normal score in column 2.

IMSLS_COEF_STAT_USER, float coef_statistics[] (Output)
Storage for array coef_statistics is provided by the user. See
IMSLS_COEF_STAT.

IMSLS_CRITERION, float *criterion (Output)
Optimized criterion. The criterion to be maximized is a constant plus the log-
likelihood.

IMSLS_COV, float **cov (Output)
Address of a pointer to the internally allocated array of size
n_coefficients × n_coefficients containing the estimated asymptotic
covariance matrix of the coefficients. For max_iterations = 0, this is the
Hessian computed at the initial parameter estimates, where n_coefficients
can be computed by calling imsls_regressors_for_glm.

IMSLS_COV_USER, float cov[] (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV above.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the means of
the design variables. The array is of length n_coefficients if
IMSLS_NO_INTERCEPT is specified, and of length n_coefficients − 1
otherwise, where n_coefficients can be computed by calling
imsls_regressors_for_glm.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_CASE_ANALYSIS, float **case_analysis (Output)
Address of a pointer to the internally allocated array of size
n_observations × 5 containing the case analysis.

Column Statistic
0 Predicted mean for the observation if model = 0. Otherwise,

contains the probability of success on a single trial.
1 The residual.
2 The estimated standard error of the residual.
3 The estimated influence of the observation.
4 The standardized residual.

Case statistics are computed for all observations except where missing values
prevent their computation.

428 • categorical_glm IMSL C Stat Library

IMSLS_CASE_ANALYSIS_USER, float case_analysis[] (Output)
Storage for array case_analysis is provided by the user. See
IMSLS_CASE_ANALYSIS.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to the internally allocated array of length
n_coefficients containing the last parameter updates (excluding step
halvings). For max_iterations = 0, last_step contains the inverse of the
Hessian times the gradient vector, all computed at the initial parameter
estimates.

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See
IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length
n_observations indicating which observations are included in the extended
likelihood.

Obs_status [i] Status of observation
0 Observation i is in the likelihood
1 Observation i cannot be in the likelihood because it

contains at least one missing value in x.
2 Observation i is not in the likelihood. Its estimated

parameter is infinite.

IMSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_status is provided by the user. See
IMSLS_OBS_STATUS.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data that contain missing values in one or more of the
following arrays or columns of x; ipar, iy, ifrq, ifix, iclass,
icontinuous, or indices_effects.

Remarks

1. Dummy variables are generated for the classification variables as follows: An
ascending list of all distinct values of each classification variable is obtained and
stored in class_values. Dummy variables are then generated for each but the
last of these distinct values. Each dummy variable is zero unless the classification
variable equals the list value corresponding to the dummy variable, in which case
the dummy variable is one. See keyword IMSLS_LEAVE_OUT_LAST for optional
argument IMSLS_DUMMY in routine imsls_f_regressors_for_glm (Chapter
2, “Regression”).

2. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

Chapter 5: Categorical and Discrete Data Analysis categorical_glm • 429

3. The “product” of two classification variables yields dummy variables in the
usual manner. Each dummy variable associated with the first classification
variable multiplies each dummy variable associated with the second
classification variable. The resulting dummy variables are such that the index
of the second classification variable varies fastest.

Description
Function imsls_f_categorical_glm uses iteratively reweighted least squares to
compute (extended) maximum likelihood estimates in some generalized linear models
involving categorized data. One of several models, including the probit, logistic,
Poisson, logarithmic, and negative binomial models, may be fit.
Note that each row vector in the data matrix can represent a single observation; or,
through the use of optional argument IMSLS_X_COL_FREQUENCIES, each row can
represent several observations. Also note that classification variables and their products
are easily incorporated into the models via the usual regression-type specifications.
The models available in imsls_f_categorical_glm are:

Model PDF of the Response
Variable

Parameterization

0 f (y) = (λy exp (−λ)) / y! λ = N × exp (ω + η)

1
() ()

1
11

ySS y
f y y θ θ

+ −⎛ ⎞
= −−⎜ ⎟

⎝ ⎠

()
()

exp
1 exp

ω η
θ

ω η
+

=
+ +

2 f (y) = (1 − θ)y / (yln θ) ()
()

exp
1 exp

ω η
θ

ω η
+

=
+ +

3
() ()1 N yyNf y y θ θ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

()

()
exp

1 exp
ω η

θ
ω η
+

=
+ +

4
() ()1 N yyNf y y θ θ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

θ = Φ (ω + η)

5
() ()1 N yyNf y y θ θ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

θ = 1 − exp (−exp (ω + η))

Here, Φ denotes the cumulative normal distribution, N and S are known distribution
parameters specified for each observation via the optional argument
IMSLS_X_COL_DIST_PARAMETER, and ω is an optional fixed parameter of the linear
response, γi, specified for each observation. (If IMSLS_X_COL_FIXED_PARAMETER is not
specified, then ω is taken to be 0.) Since the log-log model (model = 5) probabilities are
not symmetric with respect to 0.5, quantitatively, as well as qualitatively, different models
result when the definitions of “success” and “failure” are interchanged in this distribution.
In this model and all other models involving θ, θ is taken to be the probability of
a“success.”

430 • categorical_glm IMSL C Stat Library

Computational Details
The computations proceed as follows:

1. The input parameters are checked for consistency and validity.

2. Estimates of the means of the “independent” or design variables are
computed. The frequency or the observation in all but binomial distribution
models is taken from vector frequencies. In binomial distribution models, the
frequency is taken as the product of n = parameter [i] and frequencies [i].
Means are computed as

i i

i

f x
x

f
= ∑

∑

3. By default, and when IMSLS_INITIAL_EST_INTERNAL is specified, initial
estimates of the coefficients are obtained (based upon the observation
intervals) as multiple regression estimates relating transformed observation
probabilities to the observation design vector. For example, in the binomial
distribution models, θ may be estimated as

[] []ˆ i iθ = y parameter

and, when model = 3, the linear relationship is given by

()()ˆ ˆln / 1 Xθ θ β− ≈

while if model = 4, Φ-1 (θ) = Xβ. When computing initial estimates, standard
modifications are made to prevent illegal operations such as division by zero.
Regression estimates are obtained at this point, as well as later, by use of
function imsls_f_regression (Chapter 2, “Regression”).

4. Newton-Raphson iteration for the maximum likelihood estimates is
implemented via iteratively re-weighted least squares. Let

()T
ix βΨ

denote the log of the probability of the i-th observation for coefficients β. In
the least-squares model, the weight of the i-th observation is taken as the
absolute value of the second derivative of

()T
ix βΨ

with respect to
T

i ixγ β=

Chapter 5: Categorical and Discrete Data Analysis categorical_glm • 431

(times the frequency of the observation), and the dependent variable is taken
as the first derivative Ψ with respect to γi, divided by the square root of the
weight times the frequency. The Newton step is given by

() ()1"()T
i i i i ix x x−Ψ Ψ′Δβ = γ γ∑ ∑

where all derivatives are evaluated at the current estimate of γ and
βn+1 = β − Δβ. This step is computed as the estimated regression coefficients
in the least-squares model. Step halving is used when necessary to ensure a
decrease in the criterion.

5. Convergence is assumed when the maximum relative change in any
coefficient update from one iteration to the next is less than eps or when the
relative change in the log-likelihood from one iteration to the next is less than
eps / 100. Convergence is also assumed after maxit iterations or when step
halving leads to a step size of less than 0.0001 with no increase in the log-
likelihood.

6. Residuals are computed according to methods discussed by Pregibon (1981).
Let li (γi) denote the log-likelihood of the i-th observation evaluated at γi.
Then, the standardized residual is computed as

()
()
ˆ

ˆ
i i

i

i i

l
r

l

γ

γ

′
=

′

where

îγ

is the value of γi when evaluated at the optimal

β̂

The denominator of this expression is used as the “standard error of the
residual” while the numerator is “raw” residual. Following Cook and
Weisberg (1982), the influence of the i-th observation is assumed to be

() () ()1ˆ ˆ ˆT
i i i il l lγ γ γ−′ ′′ ′

This quantity is a one-step approximation to the change in the estimates when
the i-th observation is deleted. Here, the partial derivatives are with respect to
β.

Programming Notes

1. Indicator (dummy) variables are created for the classification variables using
function imsls_f_regressors_for_glm

432 • categorical_glm IMSL C Stat Library

(see Chapter 2, “Regression”) using keyword IMSLS_LEAVE_OUT_LAST as
the argument to the IMSLS_DUMMY optional argument.

2. To enhance precision, “centering” of covariates is performed if the model has
an intercept and n_observations − n_rows_missing > 1. In doing so,
the sample means of the design variables are subracted from each observation
prior to its inclusion in the model. On convergence, the intercept, its variance,
and its covariance with the remaining estimates are transformed to the
uncentered estimate values.

3. Two methods for specifying a binomial distribution model are possible. In the
first method, frequencies contains the frequency of the observation while y is
0 or 1 depending upon whether the observation is a success or failure. In this
case, N = parameter [i] is always 1. The model is treated as repeated Bernoulli
trials, and interval observations are not possible. A second method for
specifying binomial models is to use y to represent the number of successes in
parameter [i] trials. In this case, frequencies will usually be 1.

Examples

Example 1
The first example is from Prentice (1976) and involves the mortality of beetles after
five hours exposure to eight different concentrations of carbon disulphide. The table
below lists the number of beetles exposed (N) to each concentration level of carbon
disulphide (x, given as log dosage) and the number of deaths which result (y). The data
is given as follows:

Log Dosage Number of
Beetles Exposed

Number of Deaths

1.690 59 6
1.724 60 13
1.755 62 18
1.784 56 28
1.811 63 52
1.836 59 53
1.861 62 61
1.883 60 60

The number of deaths at each concentration level are fitted as a binomial response
using logit (model = 3), probit (model = 4), and log-log (model = 5) models. Note that
the log-log model yields a smaller absolute log likelihood (14.81) than the logit model
(18.78) or the probit model (18.23). This is to be expected since the response curve of
the log-log model has an asymmetric appearance, but both the logit and probit models
are symmetric about θ = 0.5.

#include <imsls.h>
#include <stdio.h>

Chapter 5: Categorical and Discrete Data Analysis categorical_glm • 433

main ()

{

 static float x[8][3] = { 1.69, 6, 59,
 1.724, 13, 60,
 1.755, 18, 62,
 1.784, 28, 56,
 1.811, 52, 63,
 1.836, 53, 59,
 1.861, 61, 62,
 1.883, 60, 60};

 float *coef_statistics, criterion;
 int n_obs=8, n_class=0, n_continuous=1;
 int n_coef, model=3, ipar=2;
 char *fmt = "%12.4f";
 static char *clabels[] = {"", "coefficients", "s.e", "z", "p"};

 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics,
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 3", n_coef, 4,
 coef_statistics,
 IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,
 clabels,0);
 printf ("\nLog likelihood %f \n", criterion);

 model=4;

 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics,
 IMSLS_CRITERION, &criterion, 0);

 imsls_f_write_matrix ("Coefficient statistics for model 4", n_coef, 4,
 coef_statistics,
 IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,
 clabels,0);
 printf ("\nLog likelihood %f \n", criterion);

 model=5;

 n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_DIST_PARAMETER, ipar,
 IMSLS_COEF_STAT, &coef_statistics,
 IMSLS_CRITERION, &criterion, 0);

434 • categorical_glm IMSL C Stat Library

 imsls_f_write_matrix ("Coefficient statistics for model 5", n_coef, 4,
 coef_statistics,
 IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS,
 clabels,0);
 printf ("\nLog likelihood %f \n", criterion);

}

Output

 Coefficient statistics for model 3
coefficients s.e z p
 -60.7568 5.1876 -11.7118 0.0000
 34.2985 2.9164 11.7607 0.0000

Log likelihood -18.778181

 Coefficient statistics for model 4
coefficients s.e z p
 -34.9441 2.6412 -13.2305 0.0000
 19.7367 1.4852 13.2888 0.0000

Log likelihood -18.232355

 Coefficient statistics for model 5
coefficients s.e z p
 -39.6133 3.2489 -12.1930 0.0000
 22.0685 1.8047 12.2284 0.0000

Log likelihood -14.807850

Example 2
Consider the use of a loglinear model to analyze survival-time data. Laird and Oliver
(1981) investigate patient survival post heart valve replacement surgery. Surveilance
after surgery of the 109 patients included in the study ranged from 3 to 97 months. All
patients were classified by heart valve type (aortic or mitral) and by age (less than 55
years or at least 55 years). The data could be considered as a three-way contingency
table where patients are classified by valve type, age, and survival (yes or no).
However, it would be inappropriate to analyze this data using the standard
methodology associated with contingency tables; since, this methodology ignores
survival time.
Consider a variable, say exposure time (Eij), that is defined as the sum of the length of
times patients of each cross-classification are at risk. The length of time for a patient
that dies is the number of months from surgery until death and for a survivor, the
length of time is the number of months from surgery until the study ends or the patient
withdraws from the study. Now we can model the effect of
A = age and V = valve type on the expected number of deaths conditional on exposure
time. Thus, for the data (shown in the table below), assume the number of deaths are
independent Poisson random variables with means mij and fit the following model,

Chapter 5: Categorical and Discrete Data Analysis categorical_glm • 435

log ij A V
i j

ij

m
u

E
λ λ

⎛ ⎞
= + +⎜ ⎟⎜ ⎟

⎝ ⎠

where u is the overall mean,
A

iλ

is the effect of age, and
V
jλ

is the effect of the valve type.

 Heart Valve Type
Age Aortic (0) Mitral (1)

< 55 years (Age = 0) Deaths 4 1
 Exposure 1259 2082

≥ 55 years (Age = 1) Deaths 7 9

 Exposure 1417 1647

From the coefficient statistics table of the output, note that the risk is estimated to be
e1.22 = 3.39 times higher for older patients in the study. This increase in risk is
significant (p = 0.02). However, the decrease in risk for the mitral valve patients is
estimated to be e-0.33 = 0.72 times that of the aortic valve patients and this risk is not
significant (p = 0.45).

#include <imsls.h>

main ()
{
 int nobs = 4;
 int n_class = 2;
 int n_cont = 0;
 int model = 0;
 float x[16] = {
 4, 1259, 0, 0,
 1, 2082, 0, 1,
 7, 1417, 1, 0,
 9, 1647, 1, 1
 };
 int iclass[2] = {2, 3};
 int icont[1] = {-1};
 int n_coef;
 float *coef;

 char *clabels[5] = {"", "coefficient", "std error", "z-statistic", "p-
 value"};
 char *fmt = "%10.6W";

436 • categorical_glm IMSL C Stat Library

 n_coef = imsls_f_categorical_glm(nobs, n_class, n_cont, model, x,
 IMSLS_COEF_STAT, &coef,
 IMSLS_X_COL_VARIABLES, iclass, icont, 0,
 IMSLS_X_COL_DIST_PARAMETER, 1,
 0);

 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef,
 IMSLS_COL_LABELS, clabels, IMSLS_ROW_NUMBER_ZERO,
 IMSLS_WRITE_FORMAT, fmt, 0);
}

Output

 Coefficient Statistics
 coefficient std error z-statistic p-value
0 -5.4210 0.3456 -15.6837 0.0000
1 -1.2209 0.5138 -2.3763 0.0177
2 0.3299 0.4382 0.7528 0.4517

Warning Errors

IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is assumed.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is assumed.

Fatal Errors

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified and
“n_coef_input” = #. The model specified requires
coefficients.

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the
classification variables exceeds
“max_class” = #.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of distinct
values for each classification variable must be greater
than one.

IMSLS_NMAX_EXCEEDED The number of observations to be deleted has
exceeded “lp_max” = #. Rerun with a different
model or increase the workspace.

Chapter 6: Nonparametric Statistics Routines • 437

Chapter 6: Nonparametric Statistics

Routines
One sample tests - Nonparametric Statistics

Sign test sign_test 438
Wilcoxon rank sum test wilcoxon_sign_rank 441
Noehter’s test for cyclical trend noether_cyclical_trend 444
Cox and Stuarts’ sign test for trends in location
and dispersion cox_stuart_trends_test 448
Tie statistics tie_statistics 453

Two or more samples
Wilcoxon’s rank sum test wilcoxon_rank_sum 455
Kruskal-Wallis test kruskal_wallis_test 459
Friedman’s test friedmans_test 462
Cochran's Q test cochran_q_test 466
K-sample trends test k_trends_test 469

Usage Notes
Much of what is considered nonparametrik_trends_testc statistics is included in other
chapters. Topics of possible interest in other chapters are: nonparametric measures of
location and scale (Chapter 1, “Basic Statistics”), nonparametric measures in a
contingency table (Chapter 5, “Categorical and Discrete Data Analysis”), measures of
correlation in a contingency table (Chapter 3, “Correlation and Covariance”), and tests
of goodness of fit and randomness (Chapter 7, “Tests of Goodness of Fit and
Randomness”).

Missing Values
Most routines described in this chapter automatically handle missing values (NaN,
“Not a Number”; see the introduction of this manual).

Tied Observations
Many of the routines described in this chapter contain an argument IMSLS_FUZZ in the
input. Observations that are within fuzz of each other in absolute value are said to be
tied. Moreover, in some routines, an observation within fuzz of some value is said to
be equal to that value. In routine imsls_f_wilcoxon_sign_rank, for example, such

438 • sign_test IMSL C Stat Library

observations are eliminated from the analysis. If fuzz = 0.0, observations must be
identically equal before they are considered to be tied. Other positive values of fuzz
allow for numerical imprecision or roundoff error.

sign_test
Performs a sign test.

Synopsis
#include <imsls.h>
float imsls_f_sign_test (int n_observations, float x[], ..., 0)
The type double function is imsls_d_sign_test.

Required Arguments

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of length n_observations containing the input data.

Return Value
Binomial probability of n_positive_deviations or more positive differences in
n_observations − n_zero_deviation trials. Call this value probability. If no
option is chosen, the null hypothesis is that the median equals 0.0.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_sign_test (int n_observations, float x[],

IMSLS_PERCENTAGE, float percentage,
IMSLS_PERCENTILE, float percentile,
IMSLS_N_POSITIVE_DEVIATIONS,

int *n_positive_deviations,
IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations,
0)

Optional Arguments

IMSLS_PERCENTAGE, float percentage (Input)
Value in the range (0, 1). Argument percentile is the
100 × percentage percentile of the population.
Default: percentage = 0.5

IMSLS_PERCENTILE, float percentile (Input)
Hypothesized percentile of the population from which x was drawn.
Default: percentile = 0.0

Chapter 6: Nonparametric Statistics sign_test • 439

IMSLS_N_POSITIVE_DEVIATIONS, int *n_positive_deviations (Output)
Number of positive differences x[j − 1] − percentile for
j = 1, 2, …, n_observations.

IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations (Output)
Number of zero differences (ties) x[j − 1] − percentile for
j = 1, 2, …, n_observations.

Description
Function imsls_f_sign_test tests hypotheses about the proportion p of a
population that lies below a value q, where p corresponds to argument percentage
and q corresponds to argument percentile. In continuous distributions, this can be a
test that q is the 100 p-th percentile of the population from which x was obtained. To
carry out testing, imsls_f_sign_test tallies the number of values above q in
n_positive_deviations. The binomial probability of n_positive_deviations
or more values above q is then computed using the proportion p and the sample size
n_observations (adjusted for the missing observations and ties).
Hypothesis testing is performed as follows for the usual null and alternative
hypotheses:

• H0: Pr(x ≤ q) ≥ p (the p-th quantile is at least q)
H1: Pr(x ≤ q) < p
Reject H0 if probability is less than or equal to the significance level

• H0: Pr(x ≤ q) ≤ p (the p-th quantile is at least q)
H1: Pr(x ≤ q) > p
Reject H0 if probability is greater than or equal to 1 minus the significance
level

• H0: Pr (x = q) = p (the p-th quantile is q)
H1: Pr((x ≤ q) < p) or Pr((x ≤ q) > p)
Reject H0 if probability is less than or equal to half the significance level or
greater than or equal to 1 minus half the significance level

The assumptions are as follows:

1. They are independent and identically distributed.

2. Measurement scale is at least ordinal; i.e., an ordering less than, greater
than, and equal to exists in the observations.

Many uses for the sign test are possible with various values of p and q. For example, to
perform a matched sample test that the difference of the medians of y and z is 0.0, let
p = 0.5, q = 0.0, and xi = yi − zi in matched observations y and z. To test that the
median difference is c, let q = c.

Examples

Example 1
This example tests the hypothesis that at least 50 percent of a population is negative.
Because 0.18 < 0.95, the null hypothesis at the 5-percent level of significance is not
rejected.

440 • sign_test IMSL C Stat Library

#include <imsls.h>

void main ()
{
 int n_observations = 19;
 float probability;
 float x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,
 -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,
 45.0, -33.0, -45.0, -12.0};

 probability = imsls_f_sign_test(n_observations, x, 0);

 printf("probability = %10.6f\n", probability);
}

Output
probability = 0.179642

Example 2
This example tests the null hypothesis that at least 75 percent of a population is
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of
significance is rejected.

#include <imsls.h>

void main ()
{
 int n_observations = 19;
 int n_positive_deviations, n_zero_deviations;
 float probability;
 float percentage = 0.75;
 float percentile = 0.0;
 float x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,
 -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,
 45.0, -33.0, -45.0, -12.0};

 probability = imsls_f_sign_test(n_observations, x, IMSLS_PERCENTAGE,
 percentage, IMSLS_PERCENTILE, percentile,
 IMSLS_N_POSITIVE_DEVIATIONS, &n_positive_deviations,
 IMSLS_N_ZERO_DEVIATIONS, &n_zero_deviations, 0);

 printf("probability = %10.6f.\n", probability);
 printf("Number of positive deviations is %d.\n",
 n_positive_deviations);
 printf("Number of ties is %d.\n", n_zero_deviations);
}

Output
probability = 0.922543.
Number of positive deviations is 12.
Number of ties is 0.

Chapter 6: Nonparametric Statistics wilcoxon_sign_rank • 441

wilcoxon_sign_rank
Performs a Wilcoxon signed rank test.

Synopsis
#include <imsls.h>
float *imsls_f_wilcoxon_sign_rank (int n_observations,

float x[], ..., 0)
The type double function is imsls_d_wilcoxon_sign_rank.

Required Arguments

int n_observations (Input)
Number of observations in x.

float x[] (Input)
Array of length n_observations containing the data.

Return Value
Pointer to an array of length two containing the values described below.
The asymptotic probability of not exceeding the standardized (to an asymptotic
variance of 1.0) minimum of (W+, W-) using method 1 under the null hypothesis that
the distribution is symmetric about 0.0.
And, the asymptotic probability of not exceeding the standardized (to an asymptotic
variance of 1.0) minimum of (W+, W-) using method 2 under the null hypothesis that
the distribution is symmetric about 0.0.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_wilcoxon_sign_rank (int n_observations,

float x[],
 IMSLS_FUZZ, float fuzz,

IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
IMSLS_N_MISSING, float *n_missing,
IMSLS_RETURN_USER, float prob[],
0)

Optional Arguments

IMSLS_FUZZ, float fuzz (Input)
Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the combined
sample are within fuzz of each other.
Default value for fuzz is 0.0.

442 • wilcoxon_sign_rank IMSL C Stat Library

IMSLS_STAT, float **stat (Output)
Address of a pointer to an internally allocated array of length
10 containing the following statistics:

Row Statistics
0 The positive rank sum, W+, using method

1 The absolute value of the negative rank sum, W-, using method 1.

2 The standardized (to anasymptotic variance of 1.0) minimum of
(W+, W-) using method

3 The asymptotic probability of not exceeding stat(2) under the
null hypothesis that the distribution is symmetric about 0.0.

4 The positive rank sum, W+, using method 2.

5 The absolute value of the negative rank sum, W-, using method 2.

6 The standardized (to an asymptotic variance of 1.0) minimum of
(W+, W-) using method 2.

7 The asymptotic probability of not exceeding stat(6) under the
null hypothesis that the distribution is symmetric about 0.0.

8 The number of zero observations.

9 The total number of observations that are tied, and that are not
within fuzz of zero.

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, float *n_missing, (Output)
Number of missing values in y.

IMSLS_RETURN_USER, float prob[], (Output)
User allocated storage for return values.
See Return Value.

Description
Function imsls_f_wilcoxon_sign_rank performs a Wilcoxon signed rank
test of symmetry about zero. In one sample, this test can be viewed as a test
that the population median is zero. In matched samples, a test that the medians
of the two populations are equal can be computed by first computing difference scores.
These difference scores would then be used as input to
imsls_f_wilcoxon_sign_rank. A general reference for the methods used is
Conover (1980).
Function imsls_f_wilcoxon_sign_rank computes statistics for two methods for
handling zero and tied observations. In the first method, observations within fuzz of
zero are not counted, and the average rank of tied observations is used. (Observations
within fuzz of each other are said to be tied.) In the second method, observations
within fuzz of zero are randomly assigned a positive or negative sign, and the ranks
of tied observations are randomly permuted.

Chapter 6: Nonparametric Statistics wilcoxon_sign_rank • 443

The W+ and W− statistics are computed as the sums of the ranks of the positive
observations and the sum of the ranks of the negative observations, respectively.
Asymptotic probabilities are computed using standard methods (see, e.g., Conover
1980, page 282).
The W+ and W− statistics may be used to test the following hypotheses about the
median, M. In deciding whether to reject the null hypothesis, use the bracketed statistic
if method 2 for handling ties is preferred. Possible null hypotheses and alternatives are
given as follows:
1. H0 : M ≤ 0 H1 : M > 0

Reject if stat[0] [or stat[4]] is too large.

2. H0 : M ≥ 0 H1 : M < 0
Reject if stat[1] [or stat[5]] is too large.

3. H0 : M = 0 H1 : M ≠ 0
Reject if stat[2][or stat[6]] is too small. Alternatively, if an asymptotic test
is desired, reject if 2 * stat[3] [or 2 * stat[7]] is less than the significance
level.

Tabled values of the test statistic can be found in the references. If possible, tabled
values should be used. If the number of nonzero observations is too large, then the
asymptotic probabilities computed by imsls_f_wilcoxon_sign_rank can be used.
The assumptions required for the hypothesis tests are as follows:

1. The distribution of each Xi is symmetric.

2. The Xi are mutually independent.

3. All Xi’s have the same median.

4. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies that
X1 > X3).

If other assumptions are made, related hypotheses that are more (or less) restrictive can
be tested.

Example
This example illustrates the application of the Wilcoxon signed rank test to a
test on a difference of two matched samples (matched pairs) {X1 = 223, 216, 211, 212,
209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test that the median
difference is 10.0 (rather than 0.0) is performed by subtracting 10.0 from each of the
differences prior to calling wilcoxon_sign_rank. As can be seen from the output,
the null hypothesis is rejected. The warning error will always be printed when the
number of observations is 50 or less unless printing is turned off for warning errors.

#include <imsls.h>

#include <stdio.h>

void main()

{
float *stat=NULL, *result=NULL;
int nobs = 7, nmiss;

444 • noether_cyclical_trend IMSL C Stat Library

float fuzz = .0001;
float x[] = {-25., -21., -19., -15., -13., -11., -8.};
result = imsls_f_wilcoxon_sign_rank(nobs, x,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_FUZZ, fuzz,
 IMSLS_STAT, &stat,
 0);
printf("Statistic\t\t\tMethod 1\tMethod 2\n");
printf("W+\t\t\t\t %3.0f\t\t %3.0f\n", stat[0], stat[4]);
printf("W-\t\t\t\t %3.0f\t\t %3.0f\n", stat[1], stat[5]);
printf("Standardized Minimum\t\t%6.4f\t\t%6.4f\n", stat[2], stat[6]);
printf("p-value\t\t\t\t %6.4f\t\t %6.4f\n\n", stat[3], stat[7]);
printf("Number of zeros\t\t\t%3.0f\n", stat[8]);
printf("Number of ties\t\t\t%3.0f\n", stat[9]);
printf("Number of missing\t\t %d\n", nmiss);

}

Output

*** WARNING ERROR 4 from imsls_f_wilcoxon_sign_rank. NOBS = 7. The number
*** of observations, NOBS, is less than 50, and exact
*** tables should be referenced for probabilities.

Statistic Method 1 Method 2
W+....................... 0 0
W-....................... 28 28
Standardized Minimum..... -2.3664 -2.3664
p-value.................. 0.0090 0.0090

Number of zeros.......... 0
Number of ties........... 0
Number of missing........ 0

noether_cyclical_trend
Performs the Noether test for cyclical trend.

Synopsis
#include <imsls.h>
float *imsls_f_noether_cyclical_trend (int n_observations, float x[],

..., 0)
The type double function is imsls_d_noether_cyclical_trend.

Required Arguments

int n_observations (Input)
Number of observations in x. n_observations must be greater than or
equal to 3.

Chapter 6: Nonparametric Statistics noether_cyclical_trend • 445

float x[] (Input)
Array of length n_observations containing the data in chronological order.

Return Value
Array, p, of length 3 containing the probabilities of stat[1] or more, stat[2] or
more, or stat[3] or more monotonic sequences.
If stat[0] is less than 1, p[0] is set to NaN (not a number).

Synopsis with Optional Arguments
#include <imsls.h>

446 • noether_cyclical_trend IMSL C Stat Library

float *imsls_f_noether_cyclical_trend ((int n_observations, float x[],
 IMSLS_FUZZ, float fuzz,
 IMSLS_STAT, int **stat,
 IMSLS_STAT_USER, int stat[],

IMSLS_N_MISSING, int *n_missing,
 IMSLS_RETURN_USER, float p[],
 0)

Optional Arguments

IMSLS_FUZZ, float fuzz (Input)
Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the combined
sample are within fuzz of each other.
Default value for fuzz is 0.0.

IMSLS_STAT, int **stat (Output)
Address of a pointer to an internally allocated array of length 6 containing the
following statistics:

Row Statistics
Stat[0] The number of consecutive sequences of length three used to detect

cyclical trend when tying middle elements are eliminated from the
sequence, and the next consecutive observation is used.

Stat[1] The number of monotonic sequences of length three in the set defined by
stat[0].

Stat[2] The number of nonmonotonic sequences where tied threesomes are
counted as nonmonotonic.

Stat[3] The number of monotonic sequences where tied threesomes are counted as
monotonic.

Stat[4] The number of middle observations eliminated because they were tied in
forming the stat[0] sequences.

Stat[5] The number of tied sequences found in forming the stat[2] and
stat[3] sequences. A sequence is called a tied sequence if the middle
element is tied with either of the two other elements.

IMSLS_STAT_USER, int stat[] (Output)
Storage for array stat is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values in X.

IMSLS_RETURN_USER, float p[] (Input)
User allocated array of length 3 containing the return values.

Description

Routine imsls_f_noether_cyclical_trend performs the Noether test for cyclical
trend (Noether 1956) for a sequence of measurements. In this test, the observations are

Chapter 6: Nonparametric Statistics noether_cyclical_trend • 447

first divided into sets of three consecutive observations. Each set is then inspected, and
if the set is monotonically increasing or decreasing, the count variable is incremented.
The count variables, stat[1], stat[2], and stat[3], differ in the manner in which
ties are handled. A tie can occur in a set (of size three) only if the middle element is
tied with either of the two ending elements. Tied ending elements are not considered.
In stat[1], tied middle observations are eliminated, and a new set of size 3 is
obtained by using the next observation in the sample. In stat[2], the original set of
size three is used, and tied middle observations are counted as nonmonotonic. In
stat[3], tied middle observations are counted as monotonic.
The probabilities of occurrence of the counts are obtained from the binomial
distribution with p = 1/3, where p is the probability that a random sample of size three
from a continuous distribution is monotonic. The binomial sample size is, of course,
the number of sequences of size three found (adjusted for ties).
Hypothesis test:
H0 : q = Pr(Xi > Xi - 1 > Xi - 2) + Pr(Xi < Xi - 1 < Xi - 2) ≤ 1/3 H1 : q > 1/3
Reject if p[0] (or p[1] or p[2] depending on the method used for handling ties) is
less than the significance level of the test.
Assumption: The observations are independent and are from a continuous distribution.

Example
A test for cyclical trend in a sequence of 1000 randomly generated observations is
performed. Because of the sample used, there are no ties and all three test statistics
yield the same result.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float *pvalue=NULL;

 int nobs = 1000, nmiss, *stat = NULL;

 float *x = NULL;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nobs, 0);

 pvalue = imsls_f_noether_cyclical_trend(nobs, x,

 IMSLS_STAT, &stat,

 IMSLS_N_MISSING, &nmiss,

 0);

 imsls_f_write_matrix("P", 0, 2, pvalue, 0);

 imsls_i_write_matrix("STAT", 0, 5, stat, 0);

 printf("\n n missing = %d\n", nmiss);

}

448 • cox_stuart_trends_test IMSL C Stat Library

Output
P
 0 1 2
0.6979 0.6979 0.6979
STAT
 0 1 2 3 4 5
333 107 107 107 0 0
n missing = 0

cox_stuart_trends_test
Performs the Cox and Stuart sign test for trends in location and dispersion.

Synopsis
#include <imsls.h>
float *imsls_f_cox_stuart_trends_test (int n_observations, float x[],

..., 0)
The type double function is imsls_d_ cox_stuart_trends_test.

Required Arguments

int n_observations (Input)
Number of observations in x. n_observations must be greater
than or equal to 3.

float x[] (Input)
Array of length n_observations containing the data in chronological
order.

Return Value

Array, pstat, of length 8 containing the probabilities. The first four elements of
pstat are computed from two groups of observations.

I pstat[I]

0 Probability of nstat[0] + nstat[2] or more negative signs
(ties are considered negative).

1 Probability of obtaining nstat[1] or more positive signs (ties are
considered negative).

2 Probability of nstat[0] + nstat[2] or more negative signs (ties are
considered positive).

3 Probability of obtaining nstat[1] or more positive signs (ties are considered
positive).

The last four elements of pstat are computed from three groups of observations.

Chapter 6: Nonparametric Statistics cox_stuart_trends_test • 449

4 Probability of nstat[0] + nstat[2] or more negative signs (ties are
considered negative).

5 Probability of obtaining nstat[1] or more positive signs (ties are
considered negative).

6 Probability of nstat[0] + nstat[2] or more negative signs (ties are
considered positive).

7 Probability of obtaining nstat[1] or more positive signs (ties are
considered positive).

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_cox_stuart_trends_test (int n_observations, float x[],
 IMSLS_DISPERSION, int k, int ids,

IMSLS_FUZZ, float fuzz,
 IMSLS_STAT, int **nstat,
 IMSLS_STAT_USER, int nstat[],
 IMSLS_N_MISSING, int *n_missing,
 IMSLS_RETURN_USER, float pstat[],
 0)

Optional Arguments

IMSLS_DISPERSION, int k, int ids, (Input)
If IMSLS_DISPERSION is called, the Cox and Stuart tests for trends in
dispersion are computed. Otherwise, as default, the Cox and Stuart tests for
trends in location are computed. k is the number of consecutive x elements
to be used to measure dispersion.
If ids is zero, the range is used as a measure of dispersion.
Otherwise, the centered sum of squares is used.

IMSLS_FUZZ, float fuzz (Input)
Value used to determine when elements in x are tied.
If |x[i] – x[j]| is less than or equal to fuzz, x[i] and x[j] are
said to be tied. fuzz must be nonnegative. Default value for fuzz is 0.0.

IMSLS_STAT, int **nstat (Output)
Address of a pointer to an internally allocated array of length 8 containing the
following statistics:

I nstat[I]

0 Number of negative differences (two groups)

1 Number of positive differences (two groups)

2 Number of zero differences (two groups)

450 • cox_stuart_trends_test IMSL C Stat Library

3 Number of differences used to calculate pstat[0] through
pstat[3] (two groups).

4 Number of negative differences (three groups)

5 Number of positive differences (three groups)

6 Number of zero differences (three groups)

7 Number of differences used to calculate pstat
[4] through pstat[7] (three groups).

IMSLS_STAT_USER, int nstat[] (Output)
Storage for array nstat is provided by the user.
See IMSLS_STAT.

IMSLS_N_MISSING, int *n_missing (Output)
Number of missing values in X.

IMSLS_RETURN_USER, float pstat[] (Input)
User allocated array of length 8 containing the return values.

Description
Function imsls_f_cox_stuart_trends_test tests for trends in dispersion or
location in a sequence of random variables depending upon the call of
IMSLS_DISPERSION. A derivative of the sign test is used (see Cox and Stuart 1955).

Location Test
For the location test (Default) with two groups, the observations are first divided into
two groups with the middle observation thrown out if there are an odd number of
observations. Each observation in group one is then compared with the observation in
group two that has the same lexicographical order. A count is made of the number of
times a group-one observation is less than (nstat[0]), greater than (nstat[1]), or
equal to (nstat[2]), its counterpart in group two. Two observations are counted as
equal if they are within fuzz of one another.
In the three-group test, the observations are divided into three groups, with the center
group losing observations if the division is not exact. The first and third groups are
then compared as in the two-group case, and the counts are stored in nstat[4]
through nstat[6].
Probabilities in pstat are computed using the binomial distribution with sample size
equal to the number of observations in the first group (nstat[3] or nstat[7]), and
binomial probability p = 0.5.

Dispersion Test
The dispersion tests (when optional argument IMSLS_DISPERSION is called) proceed
exactly as with the tests for location, but using one of two derived dispersion measures.
The input value k is used to define n_observations/k groups of consecutive
observations starting with observation 1. The first k observations define the first group,
the next k observations define the second group, etc., with the last observations omitted
if n_observations is not evenly divisible by k. A dispersion score is then computed

Chapter 6: Nonparametric Statistics cox_stuart_trends_test • 451

for each group as either the range (ids = 0), or a multiple of the variance (ids ≠ 0) of
the observations in the group. The dispersion scores form a derived sample. The tests
proceed on the derived sample as above.

Ties
Ties are defined as occurring when a group one observation is within fuzz of its last
group counterpart. Ties imply that the probability distribution of X is not strictly
continuous, which means that Pr(X1 > X2) ≠ 0.5 under the null hypothesis of no trend
(and the assumption of independent identically distributed observations). When ties are
present, the computed binomial probabilities are not exact, and the hypothesis tests will
be conservative.

Hypothesis Tests
In the following, i indexes an observation from group 1, while j indexes the
corresponding observation in group 2 (two groups) or group 3 (three groups).

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) < Pr(Xi < Xj)
Hypothesis of upward trend. Reject if pstat[2] (or pstat[6])is less than
the significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) > Pr(Xi < Xj)
Hypothesis of downward trend. Reject if pstat[1] (or pstat[5]) is less
than the significance level.

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5
H1 : Pr(Xi > Xj) ≠ Pr(Xi < Xj)
Two tailed test. Reject if 2 max(pstat[1], pstat[2]) (or 2 max(pstat[5],
pstat[6]) is less than the significance level.

Assumptions

1. The observations are a random sample; i.e., the observations are
independently and identically distributed.

2. The distribution is continuous.

Example
This example illustrates both the location and dispersion tests. The data, which are
taken from Bradley (1968), page 176, give the closing price of AT&T on the New
York stock exchange for 36 days in 1965. Tests for trends in location (Default), and
for trends in dispersion (IMSLS_DISPERSION) are performed. Trends in location are
found.

#include <imsls.h>

#include <stdio.h>

void main()

{

452 • cox_stuart_trends_test IMSL C Stat Library

float *pstat=NULL;

int nobs = 36, ids = 0, k = 2, nmiss, *stat = NULL;

float fuzz = 0.001;

float x[] = {9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, 8.25,
8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, 7.75,7.75, 7.75, 8.0, 7.5,
7.5, 7.125, 7.25, 7.25, 7.125, 6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625,
7.125, 7.75};

pstat = imsls_f_cox_stuart_trends_test(nobs, x,

 IMSLS_FUZZ, fuzz,

 IMSLS_STAT, &stat,

 IMSLS_N_MISSING, &nmiss,

 0);

imsls_i_write_matrix("nstat", 1, 8, stat, 0);

imsls_f_write_matrix("pstat", 1, 8, pstat,

 IMSLS_WRITE_FORMAT, "%10.5f", 0);

printf("n missing = %d\n", nmiss);

 pstat = imsls_f_cox_stuart_trends_test(nobs, x,

 IMSLS_DISPERSION, k, ids,

 IMSLS_FUZZ, fuzz,

 IMSLS_STAT, &stat,

 IMSLS_N_MISSING, &nmiss,

 0);

imsls_i_write_matrix("nstat", 0, 7, stat, 0);

imsls_f_write_matrix("pstat", 0, 7, pstat, 0);

printf("n missing = %d\n", nmiss);

}

Output
*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is
detected in X.

 NSTAT
0 1 2 3 4 5 6 7
0 17 1 18 0 12 0 12

 PSTAT
 0 1 2 3 4
1.00000 0.00007 1.00000 0.00000 1.00000

 5 6 7
0.00024 1.00000 0.00024

 n missing = 0

*** WARNING Error from imsls_cox_stuart_trends_test. At least one tie is
detected in X.

Chapter 6: Nonparametric Statistics tie_statistics • 453

 NSTAT
0 1 2 3 4 5 6 7
4 3 2 9 4 2 0 6

 PSTAT
 0 1 2 3 4
0.253906 0.910156 0.746094 0.500000 0.343750

 5 6 7
0.890625 0.343750 0.890625

 n missing = 0

tie_statistics
Compute tie statistics for a sample of observations.

Synopsis
#include <imsls.h>
float *imsls_f_tie_statistics (int n_oservations, float x[], ..., 0)
The type double function is imsls_d_tie_statistics.

Required Arguments

int n_observations (Input)
Number of observations in x.

float x[] (Input)
Array of length n_observations containing the observations.

x must be ordered monotonically increasing with all missing values removed.

Return Value
Array of length 4 containing the tie statistics.

()

()()

()()

()()

1

1

1

1

ties[0] 1 / 2

ties[1] 1 1 /12

ties[2] 1 2 5

ties[3] 1 2

j j
j

j j j
j

j j j
j

j j j
j

t t

t t t

t t t

t t t

τ

τ

τ

τ

=

=

=

=

⎡ ⎤= −⎣ ⎦

⎡ ⎤= − +⎣ ⎦

= − +

= − −

∑

∑

∑

∑

454 • tie_statistics IMSL C Stat Library

where tj is the number of ties in the j-th group (rank) of ties, and τ is the number of tie
groups in the sample.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_tie_statistics (int n_oservations, float x[],

IMSLS_FUZZ, float fuzz, IMSLS_RETURN_USER,
float ties[],
0)

Optional Arguments

IMSLS_FUZZ, float fuzz, (Input)
Value used to determine ties.
Observations i and j are tied if the successive differences
x[k + 1] – x[k] between observations i and j, inclusive, are all
less than fuzz. fuzz must be nonnegative. Default: fuzz = 0.0

IMSLS_RETURN_USER, float ties[], (Output)
If specified ties[] returns the tie statistics. Storage for ties[]
is provided by the user. See Return Value.

Description
Function imsls_f_tie_statistics computes tie statistics for a monotonically
increasing sample of observations. “Tie statistics” are statistics that may be used to
correct a continuous distribution theory nonparametric test for tied observations in the
data. Observations i and j are tied if the successive differences X(k + 1) − X(k),
inclusive, are all less than fuzz. Note that if each of the monotonically increasing
observations is equal to its predecessor plus a constant, if that constant is less than
fuzz, then all observations are contained in one tie group. For example, if
fuzz = 0.11, then the following observations are all in one tie group.

0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00

Example
We want to compute tie statistics for a sample of length 7.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float *ties=NULL;

 int nobs = 7;

 float fuzz = .001;

 float x[] = {1.0, 1.0001, 1.0002, 2., 3., 3., 4.};

 ties = imsls_f_tie_statistics(nobs, x,

 IMSLS_FUZZ, fuzz,

 0);

Chapter 6: Nonparametric Statistics wilcoxon_rank_sum • 455

 imsls_f_write_matrix("TIES\n", 0, 3, ties,

 IMSLS_WRITE_FORMAT, "%5.2f",

 0);

 }

Output
TIES
0 1 2 3
4.00 2.50 84.00 6.00

wilcoxon_rank_sum
Performs a Wilcoxon rank sum test.

Synopsis
#include <imsls.h>
float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],

int n2_observations, float x2[], ..., 0)
The type double function is imsls_d_wilcoxon_rank_sum.

Required Arguments

int n1_observations (Input)
Number of observations in the first sample.

float x1[] (Input)
Array of length n1_observations containing the first sample.

int n2_observations (Input)
Number of observations in the second sample.

float x2[] (Input)
Array of length n2_observations containing the second sample.

Return Value
The two-sided p-value for the Wilcoxon rank sum statistic that is computed with
average ranks used in the case of ties.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],

int n2_observations, float x2[],
IMSLS_FUZZ, float fuzz,
IMSLS_STAT, float **stat,
IMSLS_STAT_USER, float stat[],
0)

456 • wilcoxon_rank_sum IMSL C Stat Library

Optional Arguments

IMSLS_FUZZ, float fuzz (Input)
Nonnegative constant used to determine ties in computing ranks in the
combined samples. A tie is declared when two observations in the combined
sample are within fuzz of each other.
Default: fuzz = 100 × imsls_f_machine(4) × max {|xi1|, |xj2|}

IMSLS_STAT, float **stat (Output)
Address of a pointer to an internally allocated array of length 10 containing
the following statistics:

Row Statistics

0 Wilcoxon W statistic (the sum of the ranks of the x
observations) adjusted for ties in such a manner that W is
as small as possible

1 2 × E(W) − W, where E(W) is the expected value of W
2 probability of obtaining a statistic less than or equal to

min{W, 2 × E(W) − W}
3 W statistic adjusted for ties in such a manner that W is as

large as possible
4 2 × E(W) − W, where E(W) is the expected value of W,

adjusted for ties in such a manner that W is as large as
possible

5 probability of obtaining a statistic less than or equal to
min{W, 2 × E(W) − W}, adjusted for ties in such a manner
that W is as large as possible

6 W statistic with average ranks used in case of ties
7 estimated standard error of stat [6] under the null

hypothesis of no difference
8 standard normal score associated with stat [6]
9 two-sided p-value associated with stat[8]

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

Description
Function imsls_f_wilcoxon_rank_sum performs the Wilcoxon rank sum test for
identical population distribution functions. The Wilcoxon test is a linear transformation
of the Mann-Whitney U test. If the difference between the two populations can be
attributed solely to a difference in location, then the Wilcoxon test becomes a test of
equality of the population means (or medians) and is the nonparametric equivalent of
the two-sample t-test. Function imsls_f_wilcoxon_rank_sum obtains ranks in the
combined sample after first eliminating missing values from the data. The rank sum
statistic is then computed as the sum of the ranks in the x1 sample. Three methods for

Chapter 6: Nonparametric Statistics wilcoxon_rank_sum • 457

handling ties are used. (A tie is counted when two observations are within fuzz of
each other.) Method 1 uses the largest possible rank for tied observations in the
smallest sample, while Method 2 uses the smallest possible rank for these observations.
Thus, the range of possible rank sums is obtained.
Method 3 for handling tied observations between samples uses the average rank of the
tied observations. Asymptotic standard normal scores are computed for the W score
(based on a variance that has been adjusted for ties) when average ranks are used (see
Conover 1980, p. 217), and the probability associated with the two-sided alternative is
computed.

Hypothesis Tests
In each of the following tests, the first line gives the hypothesis (and its alternative)
under the assumptions 1 to 3 below, while the second line gives the hypothesis when
assumption 4 is also true. The rejection region is the same for both hypotheses and is
given in terms of Method 3 for handling ties. Another output statistic should be used,
(stat[0] or stat[3]), if another method for handling ties is desired.

Test Null Hypothesis Alternative
Hypothesis

Action

1 H0:Pr(x1 < x2) = 0.5 H1:Pr(x1 < x2) ≠ 0.5 Reject if stat [9] is less than the
significance level of the test.
Alternatively,

 H0:E(x1) = E(x2) H1:E(x1) ≠ E(x2) reject the null hypothesis if stat
[6] is too large or too small.

2 H0:Pr(x1 < x2) ≤ 0.5 H1:Pr(x1 < x2) > 0.5 Reject if stat [6] is too small
 H0:E(x1) ≥ E(x2) H1:E(x1) < E(x2)

3 H0:Pr(x1 < x2) ≥ 0.5 H1:Pr(x1 < x2) < 0.5 Reject if stat [6] is too large
 Ho:E(x1) ≤ E(x2)) H1:E(x1) > E(x2)

Assumptions

1. Arguments x1 and x2 contain random samples from their respective
populations.

2. All observations are mutually independent.

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater
than, or equal to exists among the observations).

4. If f(x) and g(y) are the distribution functions of x and y, then g(y) = f(x + c) for
some constant c(i.e., the distribution of y is, at worst, a translation of the
distribution of x).

The p-value is calculated using the large-sample normal approximation. This
approximate calculation is only valid when the size of one or both samples is greater
than 50. For smaller samples, see the exact tables for the Wilcoxon Rank Sum Test.

458 • wilcoxon_rank_sum IMSL C Stat Library

Examples

Example 1
The following example is taken from Conover (1980, p. 224). It involves the mixing
time of two mixing machines using a total of 10 batches of a certain kind of batter, five
batches for each machine. The null hypothesis is not rejected at the 5-percent level of
significance. The warning error is always printed when one or more ties are detected,
unless printing for warning errors is turned off. See function imsls_error_options
(Chapter 15, “Utilties”).

#include <imsls.h>

void main()
{
 int n1_observations = 5;
 int n2_observations = 5;
 float x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2};
 float x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1};
 float p_value;

 p_value = imsls_f_wilcoxon_rank_sum(n1_observations, x1,
 n2_observations, x2, 0);
 printf("p-value = %11.4f\n", p_value);

}

Output
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
*** At least one tie is detected between the samples.

p-value = 0.1412

Example 2
The following example uses the same data as the previous example. Now, all the
statistics are output in the array stat.

#include <imsls.h>

void main()
{
 int n1_observations = 5;
 int n2_observations = 5;
 float x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2};
 float x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1};
 float *stat;
 char *labels[10] = {"Wilcoxon W statistic",
 "2*E(W) - W",
 "p-value",
 "Adjusted Wilcoxon statistic",
 "Adjusted 2*E(W) - W",
 "Adjusted p-value",
 "W statistics for averaged ranks............",
 "Standard error of W (averaged ranks)",
 "Standard normal score of W (averaged ranks)",

Chapter 6: Nonparametric Statistics kruskal_wallis_test • 459

 "Two-sided p-value of W (averaged ranks"};
 imsls_f_wilcoxon_rank_sum(n1_observations, x1,
 n2_observations, x2,
 IMSLS_STAT, &stat,
 0);
 imsls_f_write_matrix("statistics", 10, 1, stat,
 IMSLS_ROW_LABELS, labels,
 IMSLS_WRITE_FORMAT, "%7.3f",
 0);
}

Output
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum.
*** At least one tie is detected between the samples.

 statistics
Wilcoxon W statistic 34.000
2*E(W) - W 21.000
p-value 0.110
Adjusted Wilcoxon statistic 35.000
Adjusted 2*E(W) - W 20.000
Adjusted p-value 0.075
W statistics for averaged ranks............ 34.500
Standard error of W (averaged ranks) 4.758
Standard normal score of W (averaged ranks) 1.471
Two-sided p-value of W (averaged ranks 0.141

Warning Errors

IMSLS_NOBSX_NOBSY_TOO_SMALL “n1_observations” = # and
“n2_observations” = #. Both sample sizes,
“n1_observations” and “n2_observations”,
are less than 25. Significance levels should
be obtained from tabled values.

IMSLS_AT_LEAST_ONE_TIE At least one tie is detected between the
samples.

Fatal Errors

IMSLS_ALL_X_Y_MISSING Each element of “x1” and/or “x2” is a
missing (NaN, Not a Number) value.

kruskal_wallis_test
Performs a Kruskal-Wallis test for identical population medians.

Synopsis
#include <imsls.h>
float *imsls_f_kruskal_wallis_test (int n_groups, int ni[],

float y[], ..., 0)
The type double function is imsls_d_kruskal_wallis_test.

460 • kruskal_wallis_test IMSL C Stat Library

Required Arguments

int n_groups (Input)
Number of groups.

int ni[] (Input)
Array of length n_groups containing the number of responses for each of the
n_groups groups.

float y[] (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the
responses for each of the n_groups groups. y must be sorted by group, with
the ni[0] observations in group 1 coming first, the ni[1] observations in
group two coming second, and so on.

Return Value
Array of length 4 containing the Kruskal-Wallis statistics.

I stat[I]

0 Kruskal-Wallis H statistic.

1 Asymptotic probability of a larger H under the null hypothesis of identical
population medians.

2 H corrected for ties.

3 Asymptotic probability of a larger H (corrected for ties) under the null
hypothesis of identical populations

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_kruskal_wallis_test (int n_groups, int ni, float y[],
IMSLS_FUZZ, float fuzz,
IMSLS_RETURN_USER, float stat[],
0)

Optional Arguments

IMSLS_FUZZ, float fuzz (Input)
Constant used to determine ties in y. If (after sorting)
|y[i] – y[i + 1]| is less than or equal to fuzz, then a tie
is counted. fuzz must be nonnegative.

IMSLS_RETURN_USER, float stat[] (Output)
User defined array for storage of Kruskal-Wallis statistics.

Description
The function imsls_f_kruskal_wallis_test generalizes the Wilcoxon two-
sample test computed by routine imsls_f_wilcoxon_rank_sum to more than two
populations. It computes a test statistic for testing that the population distribution
functions in each of K populations are identical. Under appropriate assumptions, this is
a nonparametric analogue of the one-way analysis of variance. Since more than two

Chapter 6: Nonparametric Statistics kruskal_wallis_test • 461

samples are involved, the alternative is taken as the analogue of the usual analysis of
variance alternative, namely that the populations are not identical.
The calculations proceed as follows: All observations are ranked regardless of the
population to which they belong. Average ranks are used for tied observations
(observations within fuzz of each other). Missing observations (observations equal to
NaN, not a number) are not included in the ranking. Let Ri denote the sum of the ranks
in the i-th population. The test statistic H is defined as:

()()22

2

11
4

1

i

i

K N NR
nS

i

H +

=

= −∑

where N is the total of the sample sizes, ni is the number of observations in the
i-th sample, and S2 is computed as the (bias corrected) sample variance of the Ri.

The null hypothesis is rejected when stat[3] (or stat[1]) is less than the
significance level of the test. If the null hypothesis is rejected, then the procedures
given in Conover (1980, page 231) may be used for multiple comparisons. The routine
imsls_f_kruskal_wallis_test computes asymptotic probabilities using the chi-
squared distribution when the number of groups is 6 or greater, and a Beta
approximation (see Wallace 1959) when the number of groups is 5 or less. Tables
yielding exact probabilities in small samples may be obtained from Owen (1962).

Example
The following example is taken from Conover (1980, page 231). The data represents
the yields per acre of four different methods for raising corn. Since
H = 25.5, the four methods are clearly different. The warning error is always printed
when the Beta approximation is used, unless printing for warning errors is turned off.

#include <imsls.h>
void main()
{
 int ngroup = 4, ni[] = {9, 10, 7, 8};

float y[] = {83., 91., 94., 89., 89., 96., 91., 92., 90., 91., 90.,
 81., 83., 84., 83., 88., 91., 89., 84., 101., 100., 91.,
 93., 96., 95., 94., 78., 82., 81., 77., 79., 81., 80.,
 81.};

 float fuzz = .001, stat[4];
 char *rlabel[] = {"H (no ties) =",
 "Prob (no ties) =",
 "H (ties) =",
 "Prob (ties) ="};
 imsls_f_kruskal_wallis_test(ngroup, ni, y,
 IMSLS_FUZZ, fuzz,
 IMSLS_RETURN_USER, stat,
 0);
 imsls_f_write_matrix(" ", 4, 1, stat,
 IMSLS_ROW_LABELS, rlabel,
 0);

462 • friedmans_test IMSL C Stat Library

}

Output
*** WARNING ERROR from imsls_kruskal_wallis_test. The chi-squared degrees
*** of freedom are less than 5, so the Beta approximation is used.

H (no ties) = 25.46
Prob (no ties) = 0.00
H (ties) = 25.63
Prob (ties) = 0.00

friedmans_test
Performs Friedman’s test for a randomized complete block design.

Synopsis
#include <imsls.h>
float imsls_f_friedmans_test (int n_blocks, int n_treatments,

float y[], ..., 0)
The type double function is imsls_d_friedmans_test.

Required Arguments

int n_blocks (Input)
Number of blocks.

int n_treatments (Input)
Number of treatments.

float y[] (Input)
Array of size n_blocks * n_treatments containing the observations.
The first n_treatments positions of y[] contain the observations on
treatments 1, 2, …, n_treatments in the first block. The second
n_treatments positions contain the observations in the second block, etc.,
and so on.

Return Value
The Chi-squared approximation of the asymptotic p-value for Friedman’s
two-sided test statistic.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_friedmans_test (int n_blocks, int n_treatments,

float y[],
IMSLS_FUZZ, float fuzz,
IMSLS_ALPHA, float alpha,
IMSLS_STAT, float **stat,

Chapter 6: Nonparametric Statistics friedmans_test • 463

IMSLS_STAT_USER, float stat[],
IMSLS_SUM_RANK, int **sum_ranks,

 IMSLS_SUM_RANK_USER, int sum_rank[]
IMSLS_DIFFERENCE, float *difference,

 0)

Optional Arguments

IMSLS_FUZZ, float fuzz (Input)
Constant used to determine ties. In the ordered observations, if
|y[i] –y[i + 1]| is less than or equal to fuzz, then
y[i] and y[i + 1] are said to be tied.
Default value is 0.0.

IMSLS_ALPHA, float alpha (Input)
Critical level for multiple comparisons. alpha should be between 0 and 1
exclusive. Default value is 0.05.

 IMSLS_STAT, float **stat (Output)
Address of a pointer to an array of length 6 containing the Friedman statistics.
Probabilities reported are computed under the appropriate null hypothesis.

I stat(I)

0 Friedman two-sided test statistic.

1 Approximate F value for stat[0].

2 Page test statistic for testing the ordered alternative that the median of
treatment i is less than or equal to the median of treatment i + 1, with strict
inequality holding for some i.

3 Asymptotic p-value for stat[0]. Chi-squared approximation.

4. Asymptotic p-value for stat[1]. F approximation.

5. Asymptotic p-value for stat[2]. Normal approximation.

IMSLS_STAT_USER, float stat[] (Output)
Storage for array stat is provided by the user. See IMSLS_STAT.

IMSLS_SUM_RANK, float **sum_rank, (Output)
Address of a pointer to an array of length n_treatments
containing the sum of the ranks of each treatment.

IMSLS_SUM_RANK_USER, float sum_rank[], (Output)
Storage for array sum_rank is provided by the user.
See IMSLS_SUM_RANK.

IMSLS_DIFFERENCE, float *difference, (Output
Minimum absolute difference in two elements of sum_rank to infer at the
alpha level of significance that the medians of the corresponding treatments
are different.

464 • friedmans_test IMSL C Stat Library

Description
Function imsls_f_friedmans_test may be used to test the hypothesis of equality
of treatment effects within each block in a randomized block design. No missing values
are allowed. Ties are handled by using the average ranks. The test statistic is the
nonparametric analogue of an analysis of variance F test statistic.
The test proceeds by first ranking the observations within each block. Let A denote the
sum of the squared ranks, i.e., let

()2

1 1
Rank

k b

ij
i j

A Y
= =

= ∑∑

where Rank(Yij) is the rank of the i-th observation within the j-th block, b = NB is the
number of blocks, and k = NT is the number of treatments. Let

2

1

1 k

i
i

B R
b =

= ∑

where

()
1
Rank

b

i ij
j

R Y
=

= ∑

The Friedman test statistic (stat[0]) is given by:

() ()()
()

22

2

1 1 / 4

1 / 4

k bB b k k
T

A bk k

− − +
=

− +

that, under the null hypothesis, has an approximate chi-squared distribution with
k − 1 degrees of freedom. The asymptotic probability of obtaining a larger chi-squared
random variable is returned in stat[3].
If the F distribution is used in place of the chi-squared distribution, then the usual
oneway analysis of variance F-statistic computed on the ranks is used. This statistic,
reported in stat[1], is given by

()
()

1
1

b T
F

b k T
−

=
− −

and asymptotically follows an F distribution with (k − 1) and (b − 1)(k − 1) degrees of
freedom under the null hypothesis. stat[4] is the asymptotic probability of obtaining
a larger F random variable. (If A = B, stat[0] and stat[1] are set to machine
infinity, and the significance levels are reported as k!/(k!)b, unless this computation

Chapter 6: Nonparametric Statistics friedmans_test • 465

would cause underflow, in which case the significance levels are reported as zero.)
Iman and Davenport (1980) discuss the relative advantages of the chi-squared and F
approximations. In general, the F approximation is considered best.
The Friedman T statistic is related both to the Kendall coefficient of concordance and
to the Spearman rank correlation coefficient. See Conover (1980) for a discussion of
the relationships.

If, at the α = alpha level of significance, the Friedman test results in rejection of the
null hypothesis, then an asymptotic test that treatments i and j are different is given by:
reject H0 if |Ri − Rj| > D, where

() ()()()1 / 2D 2 / 1 1t b A B b kα−= − − −

where t has (b − 1)(k − 1) degrees of freedom. Page’s statistic (stat[2]) is used to test
the same null hypothesis as the Friedman test but is sensitive to a monotonic increasing
alternative. The Page test statistic is given by

1

k

i
i

Q jR
=

= ∑

It is largest (and thus most likely to reject) when the Ri are monotonically increasing.

Assumptions
The assumptions in the Friedman test are as follows:

1. The k-vectors of responses within each of the b blocks are mutually
independent (i.e., the results within one block have no effect on the results
within another block).

2. Within each block, the observations may be ranked.
The hypothesis tested is that each ranking of the random variables within each block is
equally likely. The alternative is that at least one of the treatments tends to have larger
values than one or more of the other treatments. The Friedman test is a test for the
equality of treatment means or medians.

Example
The following example is taken from Bradley (1968), page 127, and tests the
hypothesis that 4 drugs have the same effects upon a person’s visual acuity.
Five subjects were used.

#include <imsls.h>

void main()

{

int n_blocks = 5, n_treatments = 4;

float y[20] = {.39,.55,.33,.41,.21,.28,.19,.16,.73,.69,.64,

 .62,.41,.57,.28,.35,.65,.57,.53,.60};

float fuzz = .001,

466 • cochran_q_test IMSL C Stat Library

alpha = .05;

float pvalue, *sum_rank, stat[6], difference;

pvalue = imsls_f_friedmans_test(n_blocks,

 n_treatments, y,

 IMSLS_SUM_RANK, &sum_rank,

 IMSLS_STAT_USER, stat,

 IMSLS_DIFFERENCE, &difference,

 0);

printf("\np value for Friedman's T = %f\n\n", pvalue);

printf("Friedman's T = %4.2f\n", stat[0]);

printf("Friedman's F = %4.2f\n", stat[1]);

printf("Page Test =%5.2f\n", stat[2]);

printf("Prob Friedman's T = %7.5f\n", stat[3]);

printf("Prob Friedman's F = %7.5f\n", stat[4]);

printf("Prob Page Test = %7.5f\n", stat[5]);

printf("Sum of Ranks = %4.2f %4.2f %4.2 %4.2f\n"

 sum_rank[0], sum_rank[1], sum_rank[2], sum_rank[3]);

printf("difference = %7.5f\n", difference);

}

Output
P value for Friedman’s T = 0.040566

Friedman T......... 8.28
Friedman F......... 4.93
Page test.......... 111.00
Prob Friedman T.... 0.04057
Prob Friedman F.... 0.01859
Prob Page test..... 0.98495
Sum of Ranks....... 16.00 17.00 7.00 10.00
D.................. 6.65638

The Friedman null hypothesis is rejected at the α = .05 while the Page null hypothesis
is not. (A Page test with a monotonic decreasing alternative would be rejected,
however.) Using sum_rank and difference, one can conclude that treatment 3 is
different from treatments 1 and 2, and that treatment 4 is different from treatment 2, all
at the α = .05 level of significance.

cochran_q_test
Performs a Cochran Q test for related observations.

Synopsis
#include <imsls.h>

Chapter 6: Nonparametric Statistics cochran_q_test • 467

float imsls_f_cochran_q_test (int n_observations, int n_variables,
float *x, ..., 0)

The type double function is imsls_d_cochran_q_test.

Required Arguments

int n_observations (Input)
Number of blocks for each treatment.

int n_variables (Input)
Number of treatments.

float *x (Input)
Array of size n_observations × n_variables containing the matrix of
dichotomized data. There are n_observations readings of zero or one on
each of the n_variables treatments.

Return Value
The p-value, p_value, for the Cochran Q statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float imsls_f_cochran_q_test (int n_observations, int n_variables,
float *x,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_Q_STATISTIC, float *q,
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Number of columns in x.
Default: x_col_dim = n_variables

IMSLS_Q_STATISTIC, float *q (Output)
Cochran’s Q statistic.

Description
Function imsls_f_cochran_q_test computes the Cochran Q test statistic that may
be used to determine whether or not M matched sets of responses differ significantly
among themselves. The data may be thought of as arising out of a randomized block
design in which the outcome variable must be success or failure, coded as 1.0 and 0.0,
respectively. Within each block, a multivariate vector of 1’s of 0’s is observed. The
hypothesis is that the probability of success within a block does not depend upon the
treatment.

Assumptions

1. The blocks are a random sample from the population of all possible blocks.

2. The outcome of each treatment is dichotomous.

468 • cochran_q_test IMSL C Stat Library

Hypothesis

The hypothesis being tested may be stated in at least two ways.

1. H0 : All treatments have the same effect.
H1 : The treatments do not all have the same effect.

2. Let pij denote the probability of outcome 1.0 in block i, treatment j.
H0:pi1 = pi2 = … = pic for each i.
H1:pij ≠ pik for some i, and some j ≠ k.
where c (equal to n_variables) is the number of treatments.

The null hypothesis is rejected if Cochrans’s Q statistic is too large.

Remarks

1. The input data must consist of zeros and ones only. For example, the data may
be pass-fail information on n_variables questions asked of
n_observations people or the test responses of n_observations
individuals to n_variables different conditions.

2. The resulting statistic is distributed approximately as chi-squared with
n_variables − 1 degrees of freedom if n_observations is not too small.
n_observations greater than or equal to 5 × n_variables is a
conservative recommendation.

Example
The following example is taken from Siegal (1956, p. 164). It measures the responses
of 18 women to 3 types of interviews.

#include <imsls.h>
main()
{
 float pq;
 float x[54] = {
 0.0, 0.0, 0.0,
 1.0, 1.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 0.0, 0.0,
 1.0, 0.0, 0.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 0.0, 1.0, 0.0,
 1.0, 0.0, 0.0,
 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 1.0,
 1.0, 1.0, 0.0,
 1.0, 1.0, 0.0};

 pq = imsls_f_cochran_q_test(18, 3, x, 0);

Chapter 6: Nonparametric Statistics k_trends_test • 469

 printf("pq = %9.5f\n", pq);
 return;

}

Output
pq = 0.00024

Warning Errors

IMSLS_ALL_0_OR_1 “x” consists of either all ones or all zeros. “q” is set
to NaN (not a number). “pq” is set to 1.0.

Fatal Errors

IMSLS_INVALID_X_VALUES “x[#][#]” = #. “x” must consist of zeros and ones
only.

k_trends_test
Performs a k-sample trends test against ordered alternatives.

Synopsis
#include <imsls.h>
float *imsls_f_ k_trends_test (int n_groups, int ni[], float y[], ..., 0)
The type double function is imsls_d_ k_trends_test.

Required Arguments

int n_groups (Input)
Number of groups. Must be greater than or equal to 3.

int ni[] (Input)
Array of length n_groups containing the number of responses for each of the
n_groups groups.

float y[] (Input)
Array of length ni[0] + ... + ni[n_groups-1] that contains the
responses for each of the n_groups groups. y must be sorted by group, with
the ni[0] observations in group 1 coming first, the ni[1] observations in
group two coming second, and so on.

Return Value
Array of length 17 containing the test results.

I stat[I]

0 Test statistic (ties are randomized).

1 Conservative test statistic with ties counted in favor of the null hypothesis.

2 p-value associated with stat[0].

470 • k_trends_test IMSL C Stat Library

3 p-value associated with stat[1].

4 Continuity corrected stat[2].

5 Continuity corrected stat [3].

6 Expected mean of the statistic.

7 Expected kurtosis of the statistic. (The expected skewness is zero.)

8 Total sample size.

9 Coefficient of rank correlation based upon stat[0].

10 Coefficient of rank correlation based upon stat[1].

11 Total number of ties between samples.

12 The t-statistic associated with stat [2].

13 The t-statistic associated with stat[3].

14 The t-statistic associated with stat [4].

15 The t-statistic associated with stat[5].

16 Degrees of freedom for each t-statistic.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_k_trends_test (int n_groups, int ni, float y[],
IMSLS_RETURN_USER, float stat[],
0)

Optional Arguments

IMSLS_RETURN_USER, float stat[] (Output)
User defined array for storage of test results.

Description
Function imsls_f_k_trends_test performs a k-sample trends test against ordered
alternatives. The alternative to the null hypothesis of equality is that
F1(X) < F2(X) < … Fk(X), where F1, F2, etc., are cumulative distribution functions, and
the operator < implies that the less than relationship holds for all values of X. While the
trends test used in k_trends_test requires that the background populations be
continuous, ties occurring within a sample have no effect on the test statistic or
associated probabilities. Ties between samples are important, however. Two methods
for handling ties between samples are used. These are:

1. Ties are randomly split (stat[0]).

2. Ties are counted in a manner that is unfavorable to the alternative hypothesis
(stat[1]).

Computational Procedure
Consider the matrices

Chapter 6: Nonparametric Statistics k_trends_test • 471

() 2 if

0 otherwise
ki mjkm km

ij

X X
M m

<⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

where Xki is the i-th observation in the k-th population, Xmj is the j-th observation in the

m-th population, and each matrix Mkm is nk by nm where ni = ni(i). Let Skm denote the

sum of all elements in Mkm. Then, stat[1] is computed as the sum over all elements
in Skm, minus the expected value of this sum (computed as

k mk m n n<∑

when there are no ties and the distributions in all populations are equal). In stat[0],
ties are broken randomly, and the element in the summation is taken as 2.0 or 0.0
depending upon the result of breaking the tie.
stat[2] and stat[3] are computed using the t distribution. The probabilities
reported are asymptotic approximations based upon the t statistics in stat[12] and
stat[13], which are computed as in Jonckheere (1954, page 141).
Similarly, stat[4] and stat[5] give the probabilities for stat[14] and stat[15],
the continuity corrected versions of stat[2] and stat[3]. The degrees of freedom
for each t statistic (stat[16]) are computed so as to make
the t distribution selected as close as possible to the actual distribution of the statistic
(see Jonckheere 1954, page 141).
stat[6], the variance of the test statistic stat[0], and stat[7], the kurtosis of the
test statistic, are computed as in Jonckheere (1954, page 138). The coefficients of rank
correlation in stat[8] and stat[9] reduce to the
Kendall τ statistic when there are just two groups.
Exact probabilities in small samples can be obtained from tables in Jonckheere (1954).
Note, however, that the t approximation appears to be a good one.

Assumptions

1. The Xmi for each sample are independently and identically distributed
according to a single continuous distribution.

2. The samples are independent.

Hypothesis tests
H0 : F1(X) ≥ F2(X) ≥ … ≥ Fk(X)
H1 : F1(X) < F2(X) < … < Fk(X)
Reject if stat[2] (or stat[3], or stat[4] or stat[5], depending upon the
method used) is too large.

Example
The following example is taken from Jonckheere (1954, page 135). It involves four
observations in four independent samples.

 #include <imsls.h>

472 • k_trends_test IMSL C Stat Library

 #include <stdio.h>

 void main()

 {

 float *stat;

 int n_groups = 4;

 int ni[] = {4, 4, 4, 4};

 char *fmt = "%9.5f";

 char *rlabel[] = {

 "stat[0] - Test Statistic (random)",

 "stat[1] - Test Statistic (null hypothesis) ...",

 "stat[2] - p-value for stat[0]",

"stat[3] - p-value for stat[1]",

"stat[4] - Continuity corrected for stat[2]",

 "stat[5] - Continuity corrected for stat[3]",

 "stat[6] - Expected mean",

 "stat[7] - Expected kurtosis",

 "stat[8] - Total sample size",

 "stat[9] - Rank corr. coef. based on stat[0] ...",

 "stat[10]- Rank corr. coef. based on stat[1] ...",

 "stat[11]- Total number of ties",

 "stat[12]- t-statistic associated w/stat[2]",

 "stat[13]- t-statistic asscoiated w/stat[3]",

 "stat[14]- t-statistic associated w/stat[4]",

 "stat[15]- t-statistic asscoiated w/stat[5]",

"stat[16]- Degrees of freedom"};

 float y[] = {19., 20., 60., 130., 21., 61., 80., 129.,

 40., 99., 100., 149., 49., 110., 151., 160.};

 stat = imsls_f_k_trends_test(n_groups, ni, y, 0);

 imsls_f_write_matrix("stat", 17, 1, stat,

 IMSLS_WRITE_FORMAT, fmt,

 IMSLS_ROW_LABELS, rlabel,

 0);

}

Output
stat(0) - Test statistic (random) 46.00000
stat(1) - Test statistic (null hypothesis) .. 46.00000
stat(2) - p-value for stat(0) 0.01483
stat(3) - p-value for stat(1) 0.01483

Chapter 6: Nonparametric Statistics k_trends_test • 473

stat(4) - Continuity corrected stat(2) 0.01683
stat(5) - Continuity corrected stat(3) 0.01683
stat(6) - Expected mean 458.66666
stat(7) - Expected kurtosis -0.15365
stat(8) - Total sample size 16.00000
stat(9)- Rank corr. coef. based on stat(0) . 0.47917
stat(10)- Rank corr. coef. based on stat(1) . 0.47917
stat(11)- Total number of ties 0.00000
stat(12)- t-statistic associated w/stat(2) .. 2.26435
stat(13)- t-statistic associated w/stat(3) .. 2.26435
stat(14)- t-statistic associated w/stat(4) .. 2.20838
stat(15)- t-statistic associated w/stat(5) .. 2.20838
stat(16)- Degrees of freedom 36.04963

474 • k_trends_test IMSL C Stat Library

Chapter 7: Tests of Goodness of Fit Routines • 475

Chapter 7: Tests of Goodness of Fit

Routines
General Goodness-of-fit tests

Chi-squared goodness-of-fit test chi_squared_test 475
Shapiro-Wilk W test for normality normality_test 483
One-sample continuous data
Kolmogorov-Smirnov kolmogorov_one 487
Two-sample continuous data
Kolmogorov-Smirnov kolmogorov_two 490
Mardia’s test for multivariate
normality multivar_normality_test 493

Tests for Randomness
Runs test, Paris-serial test, d2 test or triplets
tests randomness_test 497

Usage Notes
The routines in this chapter are used to test for goodness of fit and randomness. The
goodness-of-fit tests are described in Conover (1980). There are two goodness-of-fit
tests for general distributions, a Kolmogorov-Smirnov test and a chi-squared test. The
user supplies the hypothesized cumulative distribution function for these two tests.
There are three routines that can be used to test specifically for the normal or
exponential distributions.
The tests for randomness are often used to evaluate the adequacy of pseudorandom
number generators. These tests are discussed in Knuth (1981).
The Kolmogorov-Smirnov routines in this chapter compute exact probabilities
in small to moderate sample sizes. The chi-squared goodness-of-fit test may be used
with discrete as well as continuous distributions.
The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for
missing values (NaN, not a number) in the input data. The routines that test for
randomness do not allow for missing values.

chi_squared_test
Performs a chi-squared goodness-of-fit test.

476 • chi_squared_test IMSL C Stat Library

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_test (float user_proc_cdf(),

int n_observations, int n_categories, float x[], ..., 0)
The type double function is imsls_d_chi_squared_test.

Required Arguments

float user_proc_cdf (float y) (Input)
User-supplied function that returns the hypothesized, cumulative distribution
function at the point y.

int n_observations (Input)
Number of data elements input in x.

int n_categories (Input)
Number of cells into which the observations are to be tallied.

float x[] (Input)
Array with n_observations components containing the vector of data
elements for this test.

Return Value
The p-value for the goodness-of-fit chi-squared statistic.

Synopsis with Optional Arguments

#include <imsls.h>
float imsls_f_chi_squared_test (float user_proc_cdf(),

int n_observations, int n_categories, float x[],
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters,
IMSLS_CUTPOINTS, float **cutpoints,
IMSLS_CUTPOINTS_USER, float cutpoints[],
IMSLS_CUTPOINTS_EQUAL,
IMSLS_CHI_SQUARED, float *chi_squared,
IMSLS_DEGREES_OF_FREEDOM, float *df,
IMSLS_FREQUENCIES, float frequencies[],
IMSLS_BOUNDS, float lower_bound, float upper_bound,
IMSLS_CELL_COUNTS, float **cell_counts,
IMSLS_CELL_COUNTS_USER, float cell_counts[],
IMSLS_CELL_EXPECTED, float **cell_expected,
IMSLS_CELL_EXPECTED_USER, float cell_expected[],
IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared,
IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[],
IMSLS_FCN_W_DATA, float fcn(), void *data,
0)

Chapter 7: Tests of Goodness of Fit chi_squared_test • 477

Optional Arguments

IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters (Input)
Number of parameters estimated in computing the cumulative distribution
function.

IMSLS_CUTPOINTS, float **cutpoints (Output)
Address of a pointer to an internally allocated array of length
n_categories − 1 containing the vector of cutpoints defining the cell
intervals. The intervals defined by the cutpoints are such that the lower
endpoint is not included and the upper endpoint is included in any interval. If
IMSLS_CUTPOINTS_EQUAL is specified, equal probability cutpoints are
computed and returned in cutpoints.

IMSLS_CUTPOINTS_USER, float cutpoints [] (Input/Output)
Storage for array cutpoints is provided by the user. See
IMSLS_CUTPOINTS.

IMSLS_CUTPOINTS_EQUAL
If IMSLS_CUTPOINTS_USER is specified, then equal probability cutpoints can
still be used if, in addition, the IMSLS_CUTPOINTS_EQUAL option is
specified. If IMSLS_CUTPOINTS_USER is not specified, equal probability
cutpoints are used by default.

IMSLS_CHI_SQUARED, float *chi_squared (Output)
If specified, the chi-squared test statistic is returned in *chi_squared.

IMSLS_DEGREES_OF_FREEDOM, float *df (Output)
If specified, the degrees of freedom for the chi-squared goodness-of-fit test is
returned in *df.

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array with n_observations components containing the vector frequencies
for the observations stored in x.

IMSLS_BOUNDS, float lower_bound, float upper_bound (Input)
If IMSLS_BOUNDS is specified, then lower_bound is the lower bound of the
range of the distribution and upper_bound is the upper bound of this range.
If lower_bound = upper_bound, a range on the whole real line is used (the
default). If the lower and upper endpoints are different, points outside the
range of these bounds are ignored. Distributions conditional on a range can be
specified when IMSLS_BOUNDS is used. By convention, lower_bound is
excluded from the first interval, but upper_bound is included in the last
interval.

IMSLS_CELL_COUNTS, float **cell_counts (Output)
Address of a pointer to an internally allocated array of length n_categories
containing the cell counts. The cell counts are the observed frequencies in
each of the n_categories cells.

478 • chi_squared_test IMSL C Stat Library

IMSLS_CELL_COUNTS_USER, float cell_counts[] (Output)
Storage for array cell_counts is provided by the user. See
IMSLS_CELL_COUNTS.

IMSLS_CELL_EXPECTED, float **cell_expected (Output)
Address of a pointer to an internally allocated array of length n_categories
containing the cell expected values. The expected value of a cell is the
expected count in the cell given that the hypothesized distribution is correct.

IMSLS_CELL_EXPECTED_USER, float cell_expected[] (Output)
Storage for array cell_expected is provided by the user. See
IMSLS_CELL_EXPECTED.

IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared (Output)
Address of a pointer to an internally allocated array of length n_categories
containing the cell contributions to chi-squared.

IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[] (Output)
Storage for array cell_chi_squared is provided by the user. See
IMSLS_CELL_CHI_SQUARED.

IMSLS_FCN_W_DATA, float user_proc_cdf (float y), void *data, (Input)
User-supplied function that returns the hypothesized, cumulative distribution
function, which also accepts a pointer to data that is supplied by the user.
data is a pointer to the data to be passed to the user-supplied function. See
the Introduction, Passing Data to User-Supplied Functions at the beginning of
this manual for more details.

Description
Function imsls_f_chi_squared_test performs a chi-squared goodness-of-fit test
that a random sample of observations is distributed according to a specified theoretical
cumulative distribution. The theoretical distribution, which can be continuous, discrete,
or a mixture of discrete and continuous distributions, is specified by the user-defined
function user_proc_cdf. Because the user is allowed to give a range for the
observations, a test that is conditional on the specified range is performed.
Argument n_categories gives the number of intervals into which the observations
are to be divided. By default, equiprobable intervals are computed by
imsls_f_chi_squared_test, but intervals that are not equiprobable can be
specified through the use of optional argument IMSLS_CUTPOINTS.
Regardless of the method used to obtain the cutpoints, the intervals are such that the
lower endpoint is not included in the interval, while the upper endpoint is always
included. If the cumulative distribution function has discrete elements, then user-
provided cutpoints should always be used since imsls_f_chi_squared_test
cannot determine the discrete elements in discrete distributions.
By default, the lower and upper endpoints of the first and last intervals are
−∞ and +∞, respectively. If IMSLS_BOUNDS is specified, the endpoints are user-defined
by the two arguments lower_bound and upper_bound.
A tally of counts is maintained for the observations in x as follows:

Chapter 7: Tests of Goodness of Fit chi_squared_test • 479

1. If the cutpoints are specified by the user, the tally is made in the interval to
which xi belongs, using the user-specified endpoints.

2. If the cutpoints are determined by imsls_f_chi_squared_test, then the
cumulative probability at xi, F(xi), is computed by the function
user_proc_cdf.

The tally for xi is made in interval number ⎣mF(xi) + 1⎦, where m = n_categories
and ⎣·⎦ is the function that takes the greatest integer that is no larger than the argument
of the function. Thus, if the computer time required to calculate the cumulative
distribution function is large, user-specified cutpoints may be preferred to reduce the
total computing time.
If the expected count in any cell is less than 1, then the chi-squared approximation may
be suspect. A warning message to this effect is issued in this case, as well as when an
expected value is less than 5.

Examples

Example 1
This example illustrates the use of imsls_f_chi_squared_test on a randomly
generated sample from the normal distribution. One-thousand randomly generated
observations are tallied into 10 equiprobable intervals. The null hypothesis, that the
sample is from a normal distribution, is specified by use of imsls_f_normal_cdf
(Chapter 11, Probability Distribution Functions and Inverses) as the hypothesized
distribution function. In this example, the null hypothesis is not rejected.

#include <imsls.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{
 float *x, p_value;

 imsls_random_seed_set(SEED);
 /* Generate Normal deviates */
 x = imsls_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 p_value = imsls_f_chi_squared_test (imsls_f_normal_cdf,
 N_OBSERVATIONS,
 N_CATEGORIES, x, 0);
 /* Print results */
 printf ("p-value = %7.4f\n", p_value);
}

Output
p-value = 0.1546

Example 2
In this example, optional arguments are used for the data in the initial example.

480 • chi_squared_test IMSL C Stat Library

#include <imsls.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_OBSERVATIONS 1000

main()
{
 float *cell_counts, *cutpoints, *cell_chi_squared;
 float chi_squared_statistics[3], *x;
 char *stat_row_labels[] = {"chi-squared",
 "degrees of freedom","p-value"};
 imsls_random_seed_set(SEED);
 /* Generate normal deviates */
 x = imsls_f_random_normal (N_OBSERVATIONS, 0);
 /* Perform chi squared test */
 chi_squared_statistics[2] =
 imsls_f_chi_squared_test (imsls_f_normal_cdf,
 N_OBSERVATIONS, N_CATEGORIES, x,
 IMSLS_CUTPOINTS, &cutpoints,
 IMSLS_CELL_COUNTS, &cell_counts,
 IMSLS_CELL_CHI_SQUARED, &cell_chi_squared,
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsls_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,
 chi_squared_statistics,
 IMSLS_ROW_LABELS, stat_row_labels,
 0);
 imsls_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1,
 cutpoints, 0);
 imsls_f_write_matrix ("Cell Counts", 1, N_CATEGORIES,
 cell_counts, 0);
 imsls_f_write_matrix ("Cell Contributions to Chi-Squared", 1,
 N_CATEGORIES, cell_chi_squared,
 0);
}

Output
 Chi Squared Statistics

chi-squared 13.18
degrees of freedom 9.00
p-value 0.15

 Cut Points
 1 2 3 4 5 6
 -1.282 -0.842 -0.524 -0.253 -0.000 0.253

 7 8 9
 0.524 0.842 1.282

 Cell Counts
 1 2 3 4 5 6

Chapter 7: Tests of Goodness of Fit chi_squared_test • 481

 106 109 89 92 83 87

 7 8 9 10
 110 104 121 99

 Cell Contributions to Chi-Squared
 1 2 3 4 5 6
 0.36 0.81 1.21 0.64 2.89 1.69

 7 8 9 10
 1.00 0.16 4.41 0.01

Example 3
In this example, a discrete Poisson random sample of size 1,000 with parameter θ = 5.0
is generated by function imsls_f_random_poisson (Chapter 12, Random Number
Generation”). In the call to imsls_f_chi_squared_test, function
imsls_f_poisson_cdf (Chapter 11, “Probability Distribution Functions and
Inverses”) is used as function user_proc_cdf.

#include <imsls.h>

#define SEED 123457
#define N_CATEGORIES 10
#define N_PARAMETERS_ESTIMATED 0
#define N_NUMBERS 1000
#define THETA 5.0

float user_proc_cdf(float);

main()
{
 int i, *poisson;
 float cell_statistics[3][N_CATEGORIES];
 float chi_squared_statistics[3], x[N_NUMBERS];
 float cutpoints[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,
 7.5, 8.5, 9.5};
 char *cell_row_labels[] = {"count", "expected count",
 "cell chi-squared"};
 char *cell_col_labels[] = {"Poisson value", "0", "1", "2",
 "3", "4", "5", "6", "7",
 "8", "9"};
 char *stat_row_labels[] = {"chi-squared",
 "degrees of freedom","p-value"};

 imsls_random_seed_set(SEED);
 /* Generate the data */
 poisson = imsls_random_poisson(N_NUMBERS, THETA, 0);
 /* Copy data to a floating point vector*/
 for (i = 0; i < N_NUMBERS; i++)
 x[i] = poisson[i];

 chi_squared_statistics[2] =
 imsls_f_chi_squared_test(user_proc_cdf, N_NUMBERS,
 N_CATEGORIES, x,
 IMSLS_CUTPOINTS_USER, cutpoints,

482 • chi_squared_test IMSL C Stat Library

 IMSLS_CELL_COUNTS_USER, &cell_statistics[0][0],
 IMSLS_CELL_EXPECTED_USER, &cell_statistics[1][0],
 IMSLS_CELL_CHI_SQUARED_USER, &cell_statistics[2][0],
 IMSLS_CHI_SQUARED, &chi_squared_statistics[0],
 IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1],
 0);
 /* Print results */
 imsls_f_write_matrix("\nChi-squared Statistics\n", 3, 1,
 &chi_squared_statistics[0],
 IMSLS_ROW_LABELS, stat_row_labels,
 0);
 imsls_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,
 &cell_statistics[0][0],
 IMSLS_ROW_LABELS, cell_row_labels,
 IMSLS_COL_LABELS, cell_col_labels,
 IMSLS_WRITE_FORMAT, "%9.1f",
 0);
}

float user_proc_cdf(float k)
{
 float cdf_v;

 cdf_v = imsls_f_poisson_cdf ((int) k, THETA);
 return cdf_v;
}

Output
 Chi-squared Statistics

chi-squared 10.48
degrees of freedom 9.00
p-value 0.31

 Cell Statistics

Poisson value 0 1 2 3 4
count 41.0 94.0 138.0 158.0 150.0
expected count 40.4 84.2 140.4 175.5 175.5
cell chi-squared 0.0 1.1 0.0 1.7 3.7

Poisson value 5 6 7 8 9
count 159.0 116.0 75.0 37.0 32.0
expected count 146.2 104.4 65.3 36.3 31.8
cell chi-squared 1.1 1.3 1.4 0.0 0.0

Programming Notes
Function user_proc_cdf must be supplied with calling sequence
user_proc_cdf(y), which returns the value of the cumulative distribution function at

Chapter 7: Tests of Goodness of Fit normality_test • 483

any point y in the (optionally) specified range. Many of the cumulative distribution
functions in Chapter 11, “Probability Distribution Functions and Inverses,” can be used
for user_proc_cdf, either directly if the calling sequence is correct or indirectly if,
for example, the sample means and standard deviations are to be used in computing the
theoretical cumulative distribution function.

Warning Errors

IMSLS_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1.

IMSLS_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5.

Fatal Errors

IMSLS_ALL_OBSERVATIONS_MISSING All observations contain missing values.

IMSLS_INCORRECT_CDF_1 Function user_proc_cdf is not a
cumulative distribution function. The value
at the lower bound must be nonnegative, and
the value at the upper bound must not be
greater than 1.

IMSLS_INCORRECT_CDF_2 Function user_proc_cdf is not a
cumulative distribution function. The
probability of the range of the distribution is
not positive.

IMSLS_INCORRECT_CDF_3 Function user_proc_cdf is not a
cumulative distribution function. Its
evaluation at an element in x is inconsistent
with either the evaluation at the lower or
upper bound.

IMSLS_INCORRECT_CDF_4 Function user_proc_cdf is not a
cumulative distribution function. Its
evaluation at a cutpoint is inconsistent with
either the evaluation at the lower or upper
bound.

IMSLS_INCORRECT_CDF_5 An error has occurred when inverting the
cumulative distribution function. This
function must be continuous and defined
over the whole real line.

normality_test
Performs a test for normality.

Synopsis
#include <imsls.h>

484 • normality_test IMSL C Stat Library

float imsls_f_normality_test (int n_observations, float x[], ..., 0)
The type double function is imsls_d_normality_test.

Required Arguments

int n_observations (Input)
Number of observations. Argument n_observations must be in the range
from 3 to 2,000, inclusive, for the Shapiro-Wilk W test and must be greater
than 4 for the Lilliefors test.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
The p-value for the Shapiro-Wilk W test or the Lilliefors test for normality. The
Shapiro-Wilk test is the default. If the Lilliefors test is used, probabilities less than 0.01
are reported as 0.01, and probabilities greater than 0.10 for the normal distribution are
reported as 0.5. Otherwise, an approximate probability is computed.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_normality_test (int n_observations, float x[],

IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w,
IMSLS_LILLIEFORS, float *max_difference,
IMSLS_CHI_SQUARED, int n_categories, float *df,
 float *chi_squared,
0)

Optional Arguments

IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w (Output)
Indicates the Shapiro-Wilk W test is to be performed. The Shapiro-Wilk W
statistic is returned in shapiro_wilk_w. Argument
IMSLS_SHAPIRO_WILK_W is the default test.

IMSLS_LILLIEFORS, float *max_difference (Output)
Indicates the Lilliefors test is to be performed. The maximum absolute
difference between the empirical and the theoretical distributions is returned
in max_difference.

IMSLS_CHI_SQUARED, int n_categories (Input),
float *df, float *chi_squared (Output)
Indicates the chi-squared goodness-of-fit test is to be performed. Argument
n_categories is the number of cells into which the observations are to be
tallied. The degrees of freedom for the test are returned in argument df, and
the chi-square statistic is returned in argument chi_squared.

Description
Three methods are provided for testing normality: the Shapiro-Wilk W test, the
Lilliefors test, and the chi-squared test.

Chapter 7: Tests of Goodness of Fit normality_test • 485

Shapiro-Wilk W Test
The Shapiro-Wilk W test is thought by D’Agostino and Stevens (1986, p. 406) to be
one of the best omnibus tests of normality. The function is based on the approximations
and code given by Royston (1982a, b, c). It can be used in samples as large as 2,000 or
as small as 3. In the Shapiro and Wilk test, W is given by

()() ()()2 2/i iiW a x x x= −∑ ∑

where x(i) is the i-th largest order statistic and x is the sample mean. Royston (1982)
gives approximations and tabled values that can be used to compute the coefficients
ai, i = 1, …, n, and obtains the significance level of the W statistic.

Lilliefors Test
This function computes Lilliefors test and its p-values for a normal distribution in
which both the mean and variance are estimated. The one-sample, two-sided
Kolmogorov-Smirnov statistic D is first computed. The p-values are then computed
using an analytic approximation given by Dallal and Wilkinson (1986). Because Dallal
and Wilkinson give approximations in the range
(0.01, 0.10) if the computed probability of a greater D is less than 0.01, an
IMSLS_NOTE is issued and the p-value is set to 0.50. Note that because parameters are
estimated, p-values in Lilliefors test are not the same as in the Kolmogorov-Smirnov
Test.
Observations should not be tied. If tied observations are found, an informational
message is printed. A general reference for the Lilliefors test is Conover (1980). The
original reference for the test for normality is Lilliefors (1967).

Chi-Squared Test
This function computes the chi-squared statistic, its p-value, and the degrees of
freedom of the test. Argument n_categories finds the number of intervals into
which the observations are to be divided. The intervals are equiprobable except for the
first and last interval which are infinite in length.
If more flexibility is desired for the specification of intervals, the same test can be
performed with a call to function imsls_f_chi_squared_test using the optional
arguments described for that function.

Examples

Example 1
The following example is taken from Conover (1980, pp. 195, 364). The data consists
of 50 two-digit numbers taken from a telephone book. The W test fails to reject the null
hypothesis of normality at the .05 level of significance.

#include <imsls.h>

void main()
{

 int n_observations = 50;
 float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,

486 • normality_test IMSL C Stat Library

 37.0, 54.0, 61.0, 73.0, 24.0, 40.0,
 56.0, 62.0, 74.0, 27.0, 42.0, 57.0,
 63.0, 75.0, 29.0, 43.0, 57.0, 64.0,
 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
 32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
 45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
 58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
 70.0, 97.0};
 float p_value;

 /* Shapiro-Wilk test */
 p_value = imsls_f_normality_test (n_observations, x,
 0);
 printf ("p-value = %11.4f.\n", p_value);

}

Output
p-value = 0.2309

Example 2
The following example uses the same data as the previous example. Here, the Shapiro-
Wilk W statistic is output.

#include <imsls.h>

void main()
{

 int n_observations = 50;
 float x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,
 37.0, 54.0, 61.0, 73.0, 24.0, 40.0,
 56.0, 62.0, 74.0, 27.0, 42.0, 57.0,
 63.0, 75.0, 29.0, 43.0, 57.0, 64.0,
 77.0, 31.0, 43.0, 58.0, 65.0, 81.0,
 32.0, 44.0, 58.0, 66.0, 87.0, 33.0,
 45.0, 58.0, 68.0, 89.0, 33.0, 48.0,
 58.0, 68.0, 93.0, 35.0, 48.0, 59.0,
 70.0, 97.0};
 float p_value, shapiro_wilk_w;

 /* Shapiro-Wilk test */
 p_value = imsls_f_normality_test (n_observations, x,
 IMSLS_SHAPIRO_WILK_W,
 &shapiro_wilk_w,
 0);
 printf ("p-value = %11.4f.\n", p_value);
 printf ("Shapiro Wilk W statistic = %11.4f.\n",
 shapiro_wilk_w);

}

Output
p-value = 0.2309.

Chapter 7: Tests of Goodness of Fit kolmogorov_one • 487

Shapiro Wilk W statistic = 0.9642

Warning Errors

IMSLS_ALL_OBS_TIED All observations in “x” are tied.

Fatal Errors

IMSLS_NEED_AT_LEAST_5 All but # elements of “x” are missing. At least five
nonmissing observations are necessary to continue.

IMSLS_NEG_IN_EXPONENTIAL In testing the exponential distribution, an invalid ele-
ment in “x” is found (“x[]” = #). Negative values are
not possible in exponential distributions.

IMSLS_NO_VARIATION_INPUT There is no variation in the input data. All
nonmissing observations are tied.

kolmogorov_one
Performs a Kolmogorov-Smirnov one-sample test for continuous distributions.

Synopsis
#include <imsls.h>
float *imsls_f_kolmogorov_one (float cdf(), int n_observations,

float x[], ..., 0)
The type double function is imsls_d_kolmogorov_one.

Required Arguments

float cdf (float x) (Input)
User-supplied function to compute the cumulative distribution function (CDF)
at a given value. The form is CDF(x), where x is the value at which cdf is to
be evaluated (Input)
and cdf is the value of CDF at x. (Output)

int n_observations (Input)
Number of observations.

float x[] (Input)
Array of size n_observations containing the observations.

Return Value
Pointer to an array of length 3 containing Z, p 1 , and p 2 .

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_kolmogorov_one (float cdf(), int n_observations,

float x[],
IMSLS_DIFFERENCES, int **differences, IMSLS_DIFFERENCES_USER,
int differences[]

488 • kolmogorov_one IMSL C Stat Library

IMSLS_N_MISSING, int *n_missing,
IMSLS_RETURN_USER, , float test_statistic[],
IMSLS_FCN_W_DATA, float cdf (), void *data,
0)

Optional Arguments

IMSLS_DIFFERENCES, int **differences (Output)
Address of a pointer to the internally allocated array containing
Dn , Dn

+, Dn
-.

IMSLS_DIFFERENCES_USER, int differences[]
Storage for the array differences is provided by the user.
See IMSLS_DIFFERENCES.

IMSLS_N_MISSING, int *n_missing (Ouput)
Number of missing values is returned in *n_missing.

IMSLS_RETURN_USER, float test_statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both one-
sided and two-sided alternatives is stored in array test_statistics
provided by the user.

IMSLS_FCN_W_DATA, float cdf (float x) , void *data, (Input)
User-supplied function to compute the cumulative distribution function, which
also accepts a pointer to data that is supplied by the user. data is a pointer to
the data to be passed to the user-supplied function. See the Introduction,
Passing Data to User-Supplied Functions at the beginning of this manual for
more details.

Description
The routine imsls_f_kolmogorov_one performs a Kolmogorov-Smirnov goodness-
of-fit test in one sample. The hypotheses tested follow:

0 1

0 1

0 1

: () () : () ()
: () () : () ()
: () () : () ()

H F x F x H F x F x
H F x F x H F x F x
H F x F x H F x F x

∗ ∗

∗ ∗

∗ ∗

• = ≠
• ≥ <
• ≤ >

where F is the cumulative distribution function (CDF) of the random variable, and the
theoretical cdf, F* , is specified via the user-supplied function cdf. Let
n = n_observations − n_missing. The test statistics for both one-sided
alternatives

[1]nD differences+ =

and

[2]nD differences− =

Chapter 7: Tests of Goodness of Fit kolmogorov_one • 489

and the two-sided (Dn = differences[0]) alternative are computed as well as an
asymptotic z-score (test_statistics[0]) and p-values associated with the one-
sided (test_statistics[1]) and two-sided (test_statistics[2]) hypotheses.
For n > 80, asymptotic p-values are used (see Gibbons 1971). For
n ≤ 80, exact one-sided p-values are computed according to a method given by
Conover (1980, page 350). An approximate two-sided test p-value is obtained as twice
the one-sided p-value. The approximation is very close for one-sided
p-values less than 0.10 and becomes very bad as the one-sided p-values get larger.

Programming Notes

1. The theoretical CDF is assumed to be continuous. If the CDF is not continuous,
the statistics

nD∗

will not be computed correctly.

2. Estimation of parameters in the theoretical CDF from the sample data will
tend to make the p-values associated with the test statistics too liberal. The
empirical CDF will tend to be closer to the theoretical CDF than it should be.

3. No attempt is made to check that all points in the sample are in the support of
the theoretical CDF. If all sample points are not in the support of the CDF, the
null hypothesis must be rejected.

Example
In this example, a random sample of size 100 is generated via routine
imsls_f_random_uniform (Chapter 12, “Random Number Generation”) for the
uniform (0, 1) distribution. We want to test the null hypothesis that the cdf is the
standard normal distribution with a mean of 0.5 and a variance equal to the uniform
(0, 1) variance (1/12).

#include <imsls.h>

#include <stdio.h>

float cdf(float);

void main()

{

 float *statistics=NULL, *diffs = NULL, *x=NULL;

 int nobs = 100, nmiss;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nobs, 0);

 statistics = imsls_f_kolmogorov_one(cdf, nobs, x,

 IMSLS_N_MISSING, &nmiss,

 IMSLS_DIFFERENCES, &diffs,

 0);

 printf("D = %8.4f\n", diffs[0]);

490 • kolmogorov_two IMSL C Stat Library

 printf("D+ = %8.4f\n", diffs[1]);

 printf("D- = %8.4f\n", diffs[2]);

 printf("Z = %8.4f\n", statistics[0]);

 printf("Prob greater D one sided = %8.4f\n", statistics[1]);

 printf("Prob greater D two sided = %8.4f\n", statistics[2]);

 printf("N missing = %d\n", nmiss);

}

float cdf(float x)

{

 float mean = .5, std = .2886751, z;

 z = (x-mean)/std;

 return(imsls_f_normal_cdf(z));

}

Output

D = 0.1471
D+ = 0.0810
D- = 0.1471
Z = 1.4708
Prob greater D one-sided = 0.0132
Prob greater D two-sided = 0.0264
N missing = 0

kolmogorov_two
Performs a Kolmogorov-Smirnov two-sample test.

Synopsis
#include <imsls.h>
float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int

n_observations_y, float y[], ..., 0)
The type double function is imsls_d_kolmogorov_two.

Required Arguments

int n_observations_x (Input)
Number of observations in sample one.

float x[] (Input)
Array of size n_observations_x containing the observations from sample
one.

int n_observations_y (Input)
Number of observations in sample two.

Chapter 7: Tests of Goodness of Fit kolmogorov_two • 491

float y[] (Input)
Array of size n_observations_y containing the observations from sample
two.

Return Value
Pointer to an array of length 3 containing Z, p 1 , and p 2 .

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int

n_observations_y, float y[], ...
IMSLS_DIFFERENCES, int **differences,
IMSLS_DIFFERENCES_USER, int differences[],
IMSLS_N_MISSING_X, int *xmissing,
IMSLS_N_MISSING_Y, int *ymissing,
IMSLS_RETURN_USER, float test_statistic[],
0)

Optional Arguments

IMSLS_DIFFERENCES, int **differences (Output)
Address of a pointer to the internally allocated array containing
Dn , Dn

+, Dn
-.

IMSLS_DIFFERENCES_USER, int differences[] (Output)
Storage for array differences is provided by the user.
See IMSLS_DIFFERENCES.

IMSLS_N_MISSING_X, int *xmissing (Ouput)
Number of missing values in the x sample is returned in *xmissing.

IMSLS_N_MISSING_Y, int *ymissing (Ouput)
Number of missing values in the y sample is returned in *ymissing.

IMSLS_RETURN_USER, float test_statistics[] (Output)
If specified, the Z-score and the p-values for hypothesis test against both one-
sided and two-sided alternatives is stored in array test_statistics
provided by the user.

Description
Function imsls_f_kolmogorov_two computes Kolmogorov-Smirnov two-sample
test statistics for testing that two continuous cumulative distribution functions (CDF’s)
are identical based upon two random samples. One- or two-sided alternatives are
allowed. Exact p-values are computed for the two-sided test when
n_observations_x * n_observations_y is less than 104.
Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the empiri-
cal CDF in the Y sample, where n = n_observations_x − n_missing_x
and m = n_observations_y − n_missing_y, and let the corresponding population
distribution functions be denoted by F(x) and G(y), respectively. Then, the hypotheses
tested by imsls_f_kolmogorov_two are as follows:

492 • kolmogorov_two IMSL C Stat Library

0 1

0 1

0 1

: () () : () ()
: () () : () ()
: () () : () ()

H F x G x H F x G x
H F x G x H F x G x
H F x G x H F x G x

• = ≠
• ≤ >
• ≥ <

The test statistics are given as follows:

()max , (diffs[0])

max (() ()) (diffs[1])
max (G () ()) (diffs[2])

mn mn mn

mn x n m

mn x m n

D D D

D F x G x
D x F x

+ −

+

−

=

= −
= −

Asymptotically, the distribution of the statistic

() /(*)mnZ D m n m n= +

(returned in test_statistics[0]) converges to a distribution given by Smirnov
(1939).
Exact probabilities for the two-sided test are computed when n*m is less than or equal
to 104, according to an algorithm given by Kim and Jennrich (1973). When n*m is
greater than 104, the very good approximations given by Kim and Jennrich are used to
obtain the two-sided p-values. The one-sided probability is taken as one half the two-
sided probability. This is a very good approximation when the p-value is small (say,
less than 0.10) and not very good for large
p-values.

Example
The following example illustrates the imsls_f_kolmogorov_two routine with two
randomly generated samples from a uniform(0,1) distribution. Since the two theoretical
distributions are identical, we would not expect to reject the null hypothesis.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float *statistics=NULL, *diffs = NULL, *x=NULL, *y=NULL;

 int nobsx = 100, nobsy = 60, nmissx, nmissy;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nobsx, 0);

 y = imsls_f_random_uniform(nobsy, 0);

 statistics = imsls_f_kolmogorov_two(nobsx, x, nobsy, y,

 IMSLS_N_MISSING_X, &nmissx,

 IMSLS_N_MISSING_Y, &nmissy,

Chapter 7: Tests of Goodness of Fit multivar_normality_test • 493

 IMSLS_DIFFERENCES, &diffs,

 0);

 printf("D = %8.4f\n", diffs[0]);

 printf("D+ = %8.4f\n", diffs[1]);

 printf("D- = %8.4f\n", diffs[2]);

 printf("Z = %8.4f\n", statistics[0]);

 printf("Prob greater D one sided = %8.4f\n", statistics[1]);

 printf("Prob greater D two sided = %8.4f\n", statistics[2]);

 printf("Missing X = %d\n", nmissx);

 printf("Missing Y = %d\n", nmissy);

}

Output
3. D = 0.1800

D+ = 0.1800
D- = 0.0100
Z = 1.1023
Prob greater D one sided = 0.0720
Prob greater D two sided = 0.1440
Missing X = 0
Missing Y = 0

multivar_normality_test
Computes Mardia’s multivariate measures of skewness and kurtosis and tests for
multivariate normality.

Synopsis
#include <imsls.h>
float *imsls_f_multivar_normality_test (int n_observations,

int n_variables, float x[], ..., 0)
The type double function is imsls_d_multivar_normality_test.

Required Arguments

int n_observations (Input)
Number of observations (number of rows of data) x.

int n_variables (Input)
Dimenionality of the multivariate space for which the skewness and kurtosis
are to be computed. Number of variables in x.

float x[] (Input)
Array of size n_observations by n_variables containing the data.

494 • multivar_normality_test IMSL C Stat Library

Return Value
A pointer to an array of dimension 13 containing output statistics
I stat[I]

0 estimated skewness

1 expected skewness assuming a multivariate normal distribution

2 asymptotic chi-squared statistic assuming a multivariate normal distribution

3 probability of a greater chi-squared

4 Mardia and Foster's standard normal score for skewness

5 estimated kurtosis

6 expected kurtosis assuming a multivariate normal distribution

7 asymptotic standard error of the estimated kurtosis

8 standard normal score obtained from stat[5] through stat[7]

9 p-value corresponding to stat[8]

10 Mardia and Foster's standard normal score for kurtosis

11 Mardia's SW statistic based upon stat[4] and stat[10]

12 p-value for stat[11]

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_multivar_normality_test (int n_observations_x, int

n_variables, float x[], ...
 IMSLS_FREQUENCIES, float frequencies[],

IMSLS_WEIGHTS, float weights[],
IMSLS_SUM_FREQ, int *sum_frequencies,
IMSLS_SUM_WEIGHTS, float *sum_weights,
IMSLS_N_ROWS_MISSING, int *nrmiss,
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_R, float **R_matrix,
IMSLS_R_USER, float R_matrix[],
IMSLS_RETURN_USER, float test_statistics[],
0)

Optional Arguments
IMSLS_FREQUENCIES, float frequencies[] (Input)

Array of size n_rows containing the frequencies. Frequencies must be
integer valued. Default assumes all frequencies equal one.

IMSLS_WEIGHTS, float weights[] (Input)
Array of size n_rows containing the weights. Weights must be greater than
non-negative. Default assumes all weights equal one.

Chapter 7: Tests of Goodness of Fit multivar_normality_test • 495

IMSLS_SUM_FREQ, int *sum_frequencies (Output)
The sum of the frequencies of all observations used in the computations.

IMSLS_SUM_WEIGHTS, float *weights[] (Output)
The sum of the weights times the frequencies for all observations used in the
computations.

IMSLS_N_ROWS_MISSING, int **nrmiss (Output)
Number of rows of data in x[] containing any missing values (NaN).

IMSLS_MEANS, float **means (Output)
The address of a pointer to an array of length n_variables containing the
sample means.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by user. See IMSLS_MEANS.

IMSLS_R, float **R_matrix (Output)
The address of a pointer to an n_variables by n_variables upper
triangular matrix containing the Cholesky RTR factorization of the covariance
matrix.

IMSLS_R_USER, float R_matrix[] (Output)
Storage for array R_matrix is provided by user. See IMSLS_R.

IMSLS_RETURN_USER, float stat[] (Output)
User supplied array of dimension 13 containing the estimates and their
associated test statistics.

Description
Function imsls_f_multivar_normality_test computes Mardia’s (1970)
measures b1,p and b2,p of multivariate skewness and kurtosis, respectfully, for
p = n_variables. These measures are then used in computing tests for multivariate
normality. Three test statistics, one based upon b1,p alone, one based upon b2,p alone,
and an omnibus test statistic formed by combining normal scores obtained from b1,p
and b2,p are computed. On the order of np3, operations are required in computing
b1,p when the method of Isogai (1983) is used, where n = n_observations. On the

order of np2, operations are required in computing b2,p.

Let
1() ()T

ij i j i jd w w x x S x x−= − −

where
1

1

11

()()

1

n T
i i i i i

n
i i

n

i i in
ii i i

w f x x x x
S

f

x w f x
w f

=

=

==

∑ − −
=

∑

=
∑ ∑

496 • multivar_normality_test IMSL C Stat Library

fi is the frequency of the i-th observation, and wi is the weight for this observation.
(Weights wi are defined such that xi is distributed according to a multivariate normal,
N(μ, Σ/wi) distribution, where Σ is the covariance matrix.) Mardia’s multivariate
skewness statistic is defined as:

3
1, 2

1 1

1 n n

p i j ij
i j

b f f d
n = =

= ∑∑

while Mardia’s kurtosis is given as:

2
2,

1

1 n

p i ii
i

b f d
n =

= ∑

Both measures are invariant under the affine (matrix) transformation AX + D,
and reduce to the univariate measures when p = n_variables = 1. Using formulas
given in Mardia and Foster (1983), the approximate expected value, asymptotic
standard error, and asymptotic p-value for b2,p, and the approximate expected value, an
asymptotic chi-squared statistic, and p-value for the b1,p statistic are computed. These
statistics are all computed under the null hypothesis of a multivariate normal
distribution. In addition, standard normal scores W1(b1,p) and W2(b2,p) (different from
but similar to the asymptotic normal and chi-squared statistics above) are computed.
These scores are combined into an asymptotic chi-squared statistic with two degrees of
freedom:

() ()2 2
1 1, 2 2,W p pS W b W b= +

This chi-squared statistic may be used to test for multivariate normality.
A p-value for the chi-squared statistic is also computed.

Example
In the following example, 150 observations from a 5 dimensional standard normal
distribution are generated via routine imsls_f_random_normal (Chapter 12, “Random
Number Generation”). The skewness and kurtosis statistics are then computed for these
observations.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float *x, swt, *xmean, *r, *stats;

 int nobs = 150, ncol = 5, nvar = 5, izero = 0, ni, nrmiss;

 imsls_random_seed_set(123457);

 x = imsls_f_random_normal(nobs*nvar, 0);

 stats = imsls_f_multivar_normality_test(nobs, nvar, x,

Chapter 7: Tests of Goodness of Fit randomness_test • 497

 IMSLS_SUM_FREQ, &ni,

 IMSLS_SUM_WEIGHTS, &swt,

 IMSLS_N_ROWS_MISSING, &nrmiss,

 IMSLS_R, &r,IMSLS_MEANS, &xmean,
 0);
 printf("Sum of frequencies = %d\nSum of the weights =%8.3f\nNumber

rows missing = %3d\n", ni, swt, nrmiss);

 imsls_f_write_matrix("stat", 13, 1, stats,

 IMSLS_ROW_NUMBER_ZERO,

 0)

}

Output
Sum of frequencies = 150
Sum of the weights = 150.000
Number rows missing = 0

 stat
0 0.73
1 1.36
2 18.62
3 0.99
4 -2.37
5 32.67
6 34.54
7 1.27
8 -1.48
9 0.14
10 1.62
11 8.24
12 0.02

 means
 1 2 3 4 5
0.02623 0.09238 0.06536 0.09819 0.05639

 R
 1 2 3 4 5
1 1.033 -0.084 -0.065 0.108 -0.067
2 0.000 1.049 -0.097 -0.042 -0.021
3 0.000 0.000 1.063 0.006 -0.145
4 0.000 0.000 0.000 0.942 -0.084
5 0.000 0.000 0.000 0.000 0.949

randomness_test
Performs a test for randomness.

498 • randomness_test IMSL C Stat Library

Synopsis
#include <imsls.h>
float imsls_f_randomness_test (int n_observations, float x[],

int n_run..., 0)
The type double function is imsls_d_randomness_test.

Required Arguments

int n_observations (Input)
Number of observations in x.

float x[] (Input)
Array of size n_observations containing the data.

int n_run (Input)
Length of longest run for which tabulation is desired. For optional arguments
IMSLS_PAIRS, IMSLS_DSQUARE, and IMSLS_DCUBE, n_run stands for the
number of equiprobable cells into which the statistics are to be tabulated.

Return Value

The probability of a larger chi-squared statistic for testing the null hypothesis of a
uniform distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float imsls_f_randomness_test (int n_observations_x, float x[], int

n_run, ...
 IMSLS_RUNS, float **runs_count, float **covariances,
 IMSLS_RUNS_USER, float runs_count[], float covariances[],

IMSLS_PAIRS, int pairs_lag, float **pairs_count,
 IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[],
 IMSLS_DSQUARE, float **dsquare_count,
 IMSLS_DSQUARE_USER, float dsquare_count[],
 IMSLS_DCUBE, float **dcube_count,
 IMSLS_DCUBE_USER, float dcube_count[],
 IMSLS_RUNS_EXPECT, float **runs_expect,
 IMSLS_RUNS_EXPECT_USER, float runs_expect[],
 IMSLS_EXPECT, float *expect,
 IMSLS_CHI_SQUARED, float *chi_squared,
 IMSLS_DF, float *df,
 IMSLS_RETURN USER, float *pvalue,
 0)

Chapter 7: Tests of Goodness of Fit randomness_test • 499

Optional Arguments
IMSLS_RUNS, float **runs_count, float **covariances, (Output) or
IMSLS_PAIRS, int pairs_lag (Input), float **pairs_count,(Output) or
IMSLS_DSQUARE, float **dsquare_count, (Output) or
IMSLS_DCUBE, float **dcube_count, (Output)
 IMSLS_RUNS indicates the runs test is to be performed. Array of length

n_run containing the counts of the number of runs up of each length is
returned in *runs_counts. n_run by n_observations matrix containing
the variances and covariances of the counts is returned in *covariances.
IMSLS_RUNS is the default test, however, to return the counts and covariances
IMSLS_RUNS argument must be used.

 IMSLS_PAIRS indicates the pairs test is to be performed. The lag to be used in
computing the pairs statistic is stored in pairs_lag. Pairs (X[i], X[i +
pairs_lag]) for i = 0,…, N – pairs_lag -1 are tabulated, where N is
the total sample size. n_run by n_run matrix containing the count of the
number of pairs in each cell is returned in pairs_user.

 IMSLS_DSQUARE indicates the d2 test is to be performed.
**dsquare_counts is an address of a pointer to an internally allocated array
of length n_run containing the tabulations for the d2 test.

 IMSLS_DCUBE indicates the triplets test is to be performed.
**dcube_counts is an address of a pointer to an internally allocated array of
length n_run by n_run by n_run containing the tabulations for the triplets
test.

IMSLS_RUNS_USER, float runs_counts[], float covariances[] (Output)
Storage for runs_counts and covariances is provided by the user. See
IMSLS_RUNS.

IMSLS_PAIRS_USER, int pairs_lag, float pairs_counts[] (Output)
Storage for pairs_lag and pairs_counts is provided by the user. See
IMSLS_PAIRS.

IMSLS_DSQUARE_USER, float dsquare_count[] (Output)
Storage for dsquare_count is provided by the user.
See IMSLS_DSQUARE.

IMSLS_DCUBE_USER, float dcube_count[] (Output)
Storage for dcube_count is provided by the user. See IMSLS_DCUBE.

IMSLS_CHI_SQUARED, float *chi_squared (Output)
Chi-squared statistic for testing the null hypothesis of a uniform distribution.

IMSLS_DF, float *df (Output)
Degrees of freedom for chi-squared.

IMSLS_RETURN_USER, float *pvalue (Output)
If specified, pvalue returns the probability of a larger chi-squared statistic
for testing the null hypothesis of a uniform distribution.

If IMSLS_RUNS is specified:

500 • randomness_test IMSL C Stat Library

IMSLS_RUNS_EXPECT, float **runs_expect (Output)
The address of a pointer to an internally allocated array of length
n_run containing the expected number of runs of each length.

IMSLS_RUNS_EXPECT_USER, float runs_expect[] (Output)
Storage for runs_expect is provided by the user.
See IMSLS_RUNS_EXPECT.

If IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is specified:
IMSLS_EXPECT, float **expect (Output)

Expected number of counts for each cell. This argument is optional only if
one of IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is used.

Description

Runs Up Test
Function imsls_f_randomness_test performs one of four different tests for
randomness. Optional argument IMSLS_RUNS computes statistics for the runs up test.
Runs tests are used to test for cyclical trend in sequences of random numbers. If the
runs down test is desired, each observation should first be multiplied by −1 to change
its sign, and IMSLS_RUNS called with the modified vector of observations.
IMSLS_RUNS first tallies the number of runs up (increasing sequences) of each desired
length. For i = 1, …, r − 1, where r = n_run, runs_count[i] contains the number of
runs of length i. runs_count[n_run] contains the number of runs of length n_run or
greater. As an example of how runs are counted, the sequence (1, 2, 3, 1) contains 1 run
up of length 3, and one run up of length 1.
After tallying the number of runs up of each length, IMSLS_RUNS computes the
expected values and the covariances of the counts according to methods given by
Knuth (1981, pages 65−67). Let R denote a vector of length n_run containing
the number of runs of each length so that the i-th element of R, ri, contains the count of
the runs of length i. Let ΣR denote the covariance matrix of R under the null hypothesis
of randomness, and let μR denote the vector of expected values for R under this null
hypothesis, then an approximate chi-squared statistic with n_run degrees of freedom is
given as

2 1() ()T
R R RR Rχ μ μ−= − ∑ −

In general, the larger the value of each element of μR, the better the chi-squared
approximation.

Pairs Test
IMSLS_PAIRS computes the pairs test (or the Good’s serial test) on a hypothesized
sequence of uniform (0,1) pseudorandom numbers. The test proceeds as follows.
Subsequent pairs (X(i), X(i + pairs_lag)) are tallied into a k × k matrix, where
k = n_run. In this tally, element (j, m) of the matrix is incremented, where

Chapter 7: Tests of Goodness of Fit randomness_test • 501

() 1

() 1

j kX i

m kX i l

= +⎢ ⎥⎣ ⎦
= + +⎢ ⎥⎣ ⎦

where l = pairs_lag, and the notation ⎣ ⎦ represents the greatest integer function, ⎣Y⎦
is the greatest integer less than or equal to Y, where Y is a real number. If l = 1, then
i = 1, 3, 5, …, n − 1. If l > 1, then i = 1, 2, 3, …, n − l, where n is the total number of
pseudorandom numbers input on the current invocation of IMSLS_PAIRS
(i.e., n = n_observations).
Given the tally matrix in pairs_count, chi-squared is computed as

21
2

, 0

()k
ij

i j

o e
e

χ
−

=

−
= ∑

where e = ∑oij/k2, and oij is the observed count in cell (i, j) (oij = pairs_count(i, j)).

Because pair statistics for the trailing observations are not tallied on any call, the user
should call IMSLS_PAIRS with n_observations as large as possible. For
pairs_lag < 20 and n_observations = 2000, little power is lost.

d 2 Test

IMSLS_DSQAR computes the d2 test for succeeding quadruples of hypothesized
pseudorandom uniform (0, 1) deviates. The d 2 test is performed as follows. Let X, X2,
X3, and X4 denote four pseudorandom uniform deviates, and consider

D2 = (X3 −X1)2 + (X4 − X2)2

The probability distribution of D2 is given as
3 4

2 2 2 8Pr()
3 2
d dD d d π≤ = − +

when D2 ≤ 1, where π denotes the value of pi. If D2 > 1, this probability is given as

2 2 2 2

322 4 2
2

1Pr() (2) 4 1
3

11(1)8 4 arctan
13 2

D d d d

d d dd

d

π≤ = + − + −

⎛ ⎞
−⎜ ⎟− ⎜ ⎟+ − −

⎜ ⎟
⎜ ⎟
⎝ ⎠

See Gruenberger and Mark (1951) for a derivation of this distribution.

502 • randomness_test IMSL C Stat Library

For each succeeding set of 4 pseudorandom uniform numbers input in X, d2 and the
cumulative probability of d2 (Pr(D2 ≤ d 2)) are computed. The resulting probability is
tallied into one of k = n_run equally spaced intervals.
Let n denote the number of sets of four random numbers input (n = the total number of
observations/4). Then, under the null hypothesis that the numbers input are random
uniform (0, 1) numbers, the expected value for each element in dsquare_count is
e = n/k. An approximate chi-squared statistic is computed as

21
2

0

()k
i

i

o e
e

χ
−

=

−
= ∑

where oi = dsquare_count(i) is the observed count. Thus, χ2 has k − 1 degrees of
freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is rejected if
χ2 is too large. As n increases, the chi-squared approximation becomes better. A useful
generalization is that e > 5 yields a good chi-squared approximation.

Triplets Test
IMSLS_DCUBE computes the triplets test on a sequence of hypothesized pseudorandom
uniform(0, 1) deviates. The triplets test is computed as follows:

Each set of three successive deviates, X1, X2, and X3, is tallied into one of m3 equal sized
cubes, where m = n_run. Let i = [mX1] + 1, j = [mX2] + 1, and
k = [mX3] + 1. For the triplet (X1, X2, X3), dcube_count(i, j, k) is incremented.

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m3 cells are
equally probable and each has expected value e = n/m3, where n is the number of
triplets tallied. An approximate chi-squared statistic is computed as

21
2

, , 0

()k
ijk

i j k

o e
e

χ
−

=

−
= ∑

where oijk = dcube_count(i, j, k).

The computed chi-squared has m3 − 1 degrees of freedom, and the null hypothesis of
pseudorandom uniform (0, 1) deviates is rejected if χ2 is too large.

Examples

Example 1

The following example illustrates the use of the runs test on 104 pseudo-random
uniform deviates. In the example, 2000 deviates are generated for each call to
IMSLS_RUNS. Since the probability of a larger chi-squared statistic is 0.1872, there is
no strong evidence to support rejection of this null hypothesis of randomness.

#include <imsls.h>

Chapter 7: Tests of Goodness of Fit randomness_test • 503

#include <stdio.h>

void main()

{

 int nran = 10000, n_run = 6;

 char *fmt = "%8.1f";

 float *x, pvalue, *runs_counts, *runs_expect, chisq, df;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nran, 0);

 pvalue = imsls_f_randomness_test(nran, x, n_run,

 IMSLS_CHI_SQUARED, &chisq,

 IMSLS_DF, &df,

 IMSLS_RUNS_EXPECT, &runs_expect,

 IMSLS_RUNS, &runs_counts, &covariances,

 0);

 imsls_f_write_matrix("runs_counts", 1, n_run, runs_counts, 0);

 imsls_f_write_matrix("runs_expect", 1, n_run, runs_expect,

 IMSLS_WRITE_FORMAT, fmt,

 0);

 imsls_f_write_matrix("covariances", n_run, n_run, covariances,

 IMSLS_WRITE_FORMAT, fmt,

 0);

 printf("chisq = %f\n", chisq);

 printf("df = %f\n", df);

 printf("pvalue = %f\n", pvalue);

}

Output
 runs_count
 1 2 3 4 5 6
1709.0 2046.0 953.0 260.0 55.0 4.0

 runs_expect
 1 2 3 4 5 6
1667.3 2083.4 916.5 263.8 57.5 11.9

 covariances
 1 2 3 4 5 6
1 1278.2 -194.6 -148.9 -71.6 -22.9 -6.7
2 -194.6 1410.1 -490.6 -197.2 -55.2 -14.4
3 -148.9 -490.6 601.4 -117.4 -31.2 -7.8
4 -71.6 -197.2 -117.4 222.1 -10.8 -2.6
5 -22.9 -55.2 -31.2 -10.8 54.8 -0.6
6 -6.7 -14.4 -7.8 -2.6 -0.6 11.7
chisq = 8.76514

504 • randomness_test IMSL C Stat Library

df = 6.00000
pvalue = 0.187225

Example 2
The following example illustrates the calculations of the IMSLS_PAIRS statistics when
a random sample of size 104 is used and the pairs_lag is 1. The results are not
significant. IMSL routine imsls_f_random_uniform (Chapter 12, “Random Number
Generation) is used in obtaining the pseudorandom deviates.

#include <imsls.h>

#include <stdio.h>

void main()

{

 int nran = 10000, n_run = 10;

 float *x, pvalue, *pairs_counts, expect, chisq, df;

 imsls_random_seed_set(123467);

 x = imsls_f_random_uniform(nran, 0);

 pvalue = imsls_f_randomness_test(nran, x, n_run,

 IMSLS_CHI_SQUARED, &chisq,

 IMSLS_DF, &df,

 IMSLS_EXPECT, &expect,

 IMSLS_PAIRS, 5, &pairs_counts,

 0);

 imsls_f_write_matrix("pairs_counts", n_run, n_run, pairs_counts, 0);

 printf("expect = %8.2f\n", expect);

 printf("chisq = %8.2f\n", chisq);

 printf("df = %8.2f\n", df);

 printf("pvalue = %10.4f\n", pvalue);

}

Output
pairs_counts
 1 2 3 4 5 6 7 8 9 10
 1 112 82 95 118 103 103 113 84 90 74
 2 104 106 109 108 101 98 102 92 109 88
 3 88 111 86 106 112 79 103 105 106 101
 4 91 110 108 92 88 108 113 93 105 114
 5 104 105 103 104 101 94 96 87 93 104
 6 98 104 103 104 79 89 92 104 92 100
 7 103 91 97 101 116 83 118 118 106 99
 8 105 105 111 91 93 82 100 104 110 89
 9 92 102 82 101 94 128 102 110 125 98
10 79 99 103 98 104 101 93 93 98 105

expect = 99.95
chisq = 104.86
df = 99.00

Chapter 7: Tests of Goodness of Fit randomness_test • 505

pvalue = 0.3242

Example 3
In the following example, 2000 observations generated via IMSL routine
imsls_f_random_uniform (Chapter 12, “Random Number Generation) are input to
IMSLS_DSQAR in one call. In the example, the null hypothesis of a uniform distribution
is not rejected.

#include <imsls.h>

#include <stdio.h>

void main()

{

 int nran = 2000, n_run = 6;

 float *x, pvalue, *dsquare_counts, *covariances, expect, chisq, df;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nran, 0);

 pvalue = imsls_f_randomness_test(nran, x, n_run,

 IMSLS_CHI_SQUARED, &chisq,

 IMSLS_DF, &df,

 IMSLS_EXPECT, &expect,

 IMSLS_DSQUARE, &dsquare_counts,

 0);

 imsls_f_write_matrix("dsquare_counts", 1, n_run, dsquare_counts, 0);

 printf("expect = %10.4f\n", expect);

 printf("chisq = %10.4f\n", chisq);

 printf("df = %8.2f\n", df);

 printf("pvalue = %10.4f\n", pvalue);

}

Output
 dsquare_counts
 1 2 3 4 5 6
 87 84 78 76 92 83
expect = 83.3333
chisq = 2.0560
df = 5.00
pvalue = 0.8413

Example 4
In the following example, 2001 deviates generated by IMSL routine
imsls_f_random_uniform (Chapter 12, “Random Number Generation) are input to
IMSLS_DCUBE, and tabulated in 27 equally sized cubes. In the example, the null
hypothesis is not rejected.

506 • randomness_test IMSL C Stat Library

#include <imsls.h>

#include <stdio.h>

void main()

{

 int nran = 2001, n_run = 3;

 float *x, pvalue, *dcube_counts, expect, chisq, df;

 imsls_random_seed_set(123457);

 x = imsls_f_random_uniform(nran, 0);

 pvalue = imsls_f_randomness_test(nran, x, n_run,

 IMSLS_CHI_SQUARED, &chisq,

 IMSLS_DF, &df,

 IMSLS_EXPECT, &expect,

 IMSLS_DCUBE, &dcube_counts,

 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run, dcube_counts, 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run,
&dcube_counts[n_run*n_run], 0);

imsls_f_write_matrix("dcube_counts", n_run, n_run,
&dcube_counts[2*n_run*n_run], 0);

 printf("expect = %10.4f\n", expect);

 printf("chisq = %10.4f\n", chisq);

 printf("df = %8.2f\n", df);

 printf("pvalue = %10.4f\n", pvalue);

}

Output
 dcube_counts

 1 2 3
1 26 27 24
2 20 17 32
3 30 18 21

 dcube_counts
 1 2 3
1 20 16 26
2 22 22 27
3 30 24 26

 dcube_counts
 1 2 3
1 28 30 22
2 23 24 22
3 33 30 27

Chapter 7: Tests of Goodness of Fit randomness_test • 507

expect = 24.7037
chisq = 21.7631
df = 26.0000
pvalue = 0.701586

Chapter 8: Time Series and Forecasting Routines • 509

Chapter 8: Time Series and
Forecasting

Routines
 ARIMA Models

Computes least-squares or method of moments estimates
of parameters arma 511
Computes maximum likelihood estimates of parameters max_arma 521
Computes forecasts and
their associated probability limits arma_forecast 527
Automatic selection and fitting of a univariate
autoregressive time series model. auto_uni_ar 532
Detects and determines outliers and simultaneously estimates
the model parameters in a time series ts_outlier_identification 537
Computes forecasts for an outlier contaminated
time series ts_outlier_forecast 547
Automatically identifies time series outliers, determines parameters of a
multiplicative seasonal ARIMA (,0,) (0, ,0)sp q d× model and
produces forecasts that incorporate the effects of outliers
whose effects persist beyond the end of the series auto_arima 555
Performs differencing on a time series difference 563
Estimates the optimum seasonality parameters for a
time series using an autoregressive model seasonal_fit 576
Model Construction and Evaluation Utilities
Performs a Box-Cox transformation box_cox_transform 584
Sample autocorrelation function autocorrelation 588
Computes the sample cross correlation function crosscorrelation 593
Computes the multichannel cross-correlation
function multi_crosscorrelation 599
Sample partial autocorrelation function partial_autocorrelation 608
Lack-of-fit test based on the corrleation function lack_of_fit 611
Estimates missing values in a time series estimate_missing 614
GARCH Modeling
Computes estimates of the parameters of a GARCH(p,q) model garch 618

510 • Usage Notes IMSL C Stat Library

Frequency Domain Modeling
Performs Kalman filtering and evaluates the likelihood
function for the state-space model kalman 626

Usage Notes
The functions in this chapter assume the time series does not contain any missing
observations. If missing values are present, they should be set to NaN
(see Chapter 15, “Utilities”) routine imsls_f_machine), and the routine will return
an appropriate error message. To enable fitting of the model, the missing values must
be replaced by appropriate estimates.

General Methodology
A major component of the model identification step concerns determining
if a given time series is stationary. The sample correlation functions
computed by routines imsls_f_autocorrelation,
imsls_f_crosscorrelation, imsls_f_multi_crosscorrelation, and
imsls_f_partial_autocorrelation may be used to diagnose
the presence of nonstationarity in the data, as well as to indicate the type of
transformation required to induce stationarity. The family of power transformations
provided by routine imsls_f_box_cox_transform coupled with the ability to
difference the transformed data using routine imsls_f_difference affords a
convenient method of transforming a wide class of nonstationary time series to
stationarity.
The “raw” data, transformed data, and sample correlation functions also provide insight
into the nature of the underlying model. Typically, this information is displayed in
graphical form via time series plots, plots of the lagged data, and various correlation
function plots.
The observed time series may also be compared with time series generated from
various theoretical models to help identify possible candidates for model fitting. The
routine imsls_f_random_uniform (Chapter 12, “Random Number Generation) may
be used to generate a time series according to a specified autoregressive moving
average model.

Time Domain Methodology
Once the data are transformed to stationarity, a tentative model in the time domain is
often proposed and parameter estimation, diagnostic checking and forecasting are
performed.

ARIMA Model (Autoregressive Integrated Moving Average)
A small, yet comprehensive, class of stationary time-series models consists of the
nonseasonal ARMA processes defined by

φ(B) (Wt − μ) = θ(B)At, t ∈ Z

Chapter 8: Time Series and Forecasting arma • 511

where Z = {..., −2, −1, 0, 1, 2, ...} denotes the set of integers, B is the backward shift
operator defined by BkWt = Wt-k, μ is the mean of Wt, and the following equations are
true:

φ(B) = 1 − φ1B − φ2B2 − ... − φpBp, p ≥ 0

θ(B) = 1 − θ1B − θ2B2 − ... − θqBq, q ≥ 0

The model is of order (p, q) and is referred to as an ARMA (p, q) model.
An equivalent version of the ARMA (p, q) model is given by

φ(B) Wt = θ0 + θ(B)At, t ∈ Z

where θ0 is an overall constant defined by the following:

0
1

1
p

i
i

θ μ φ
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

See Box and Jenkins (1976, pp. 92−93) for a discussion of the meaning and usefulness
of the overall constant.
If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing using
imsls_f_difference induces stationarity, and the model is called ARIMA
(AutoRegressive Integrated Moving Average). Parameter estimation is performed on
the stationary time series Wt, = ∇dZt , where ∇d = (1 − B)d is the backward difference
operator with period 1 and order d, d > 0.
Typically, the method of moments includes argument IMSLS_METHOD_OF_MOMENTS in a
call to function imsls_f_arma for preliminary parameter estimates. These estimates can
be used as initial values into the least-squares procedure by including argument
IMSLS_LEAST_SQUARES in a call to function imsls_f_arma. Other initial estimates
provided by the user can be used. The least-squares procedure can be used to compute
conditional or unconditional least-squares estimates of the parameters, depending on the
choice of the backcasting length. The parameter estimates from either the method of
moments or least-squares procedures can be input to function imsls_f_arma_forecast
through the arma_info structure. The functions for preliminary parameter estimation,
least-squares parameter estimation, and forecasting follow the approach of Box and
Jenkins (1976, Programs 2−4, pp. 498−509).

arma
Computes least-square estimates of parameters for an ARMA model.

512 • arma IMSL C Stat Library

Synopsis
#include <imsls.h>
float *imsls_f_arma (int n_observations, float z[], int p, int q, ..., 0)
The type double function is imsls_d_arma.

Required Arguments

int n_observations (Input)
Number of observations.

float z[] (Input)
Array of length n_observations containing the observations.

int p (Input)
Number of autoregressive parameters.

int q (Input)
Number of moving average parameters.

Return Value
Pointer to an array of length 1 + p + q with the estimated constant, AR, and MA
parameters. If IMSLS_NO_CONSTANT is specified, the 0-th element of this array is 0.0.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_arma (int n_observations, float z[], int p, int q,

IMSLS_NO_CONSTANT, or
IMSLS_CONSTANT,
IMSLS_AR_LAGS, int ar_lags[],
IMSLS_MA_LAGS,vint ma_lags[],
IMSLS_METHOD_OF_MOMENTS, or
IMSLS_LEAST_SQUARES,
IMSLS_BACKCASTING, int length, float tolerance,
IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance,
IMSLS_RELATIVE_ERROR, floatvrelative_error,
IMSLS_MAX_ITERATIONS,vintvmax_iterations,
IMSLS_MEAN_ESTIMATE, float *z_mean,
IMSLS_INITIAL_ESTIMATES, float ar[], float ma[],
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_PARAM_EST_COV, float **param_est_cov,
IMSLS_PARAM_EST_COV_USER, float param_est_cov[],
IMSLS_AUTOCOV, float **autocov,
IMSLS_AUTOCOV_USER, float autocov[],
IMSLS_SS_RESIDUAL, float *ss_residual,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info,
0)

Chapter 8: Time Series and Forecasting arma • 513

Optional Arguments

IMSLS_NO_CONSTANT, or
IMSLS_CONSTANT

If IMSLS_NO_CONSTANT is specified, the time series is not centered about its
mean, z_mean. If IMSLS_CONSTANT, the default, is specified, the time series
is centered about its mean.

IMSLS_AR_LAGS, int ar_lags[] (Input)
Array of length p containing the order of the autoregressive parameters. The
elements of ar_lags must be greater than or equal to 1.
Default: ar_lags = [1, 2, ..., p]

IMSLS_MA_LAGS, int ma_lags[] (Input)
Array of length q containing the order of the moving average parameters. The
ma_lags elements must be greater than or equal to 1.
Default: ma_lags = [1, 2, ..., q]

IMSLS_METHOD_OF_MOMENTS, or
IMSLS_LEAST_SQUARES

If IMSLS_METHOD_OF_MOMENTS is specified, the autoregressive and moving
average parameters are estimated by a method of moments procedure. If
IMSLS_LEAST_SQUARES is specified, the autoregressive and moving average
parameters are estimated by a least-squares procedure.

IMSLS_BACKCASTING, int length, float tolerance (Input)
If IMSLS_BACKCASTING is specified, length is the maximum length of
backcasting and must be greater than or equal to 0. Argument tolerance is
the tolerance level used to determine convergence of the backcast algorithm.
Typically, tolerance is set to a fraction of an estimate of the standard
deviation of the time series.
Default: length = 10; tolerance = 0.01 × standard deviation of z

IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance (Input)
Tolerance level used to determine convergence of the nonlinear least-squares
algorithm. Argument convergence_tolerance represents the minimum
relative decrease in sum of squares between two iterations required to
determine convergence. Hence, convergence_tolerance must be greater
than or equal to 0. The default value is max {10-10, eps2/3} for single precision
and max {10-20, eps2/3} for double precision, where
eps = imsls_f_machine(4) for single precision and
eps = imsls_d_machine(4) for double precision.

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for use in the nonlinear equation solver used in both the
method of moments and least-squares algorithms.
Default: relative_error = 100 × imsls_f_machine(4)
See documentation for function imsls_f_machine (Chapter 15, “Utilities”).

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations allowed in the nonlinear equation solver used

514 • arma IMSL C Stat Library

in both the method of moments and least-squares algorithms.
Default: max_iterations = 200

IMSLS_MEAN_ESTIMATE, float *z_mean (Input or Input/Output)
On input, z_mean is an initial estimate of the mean of the time series z. On
return, z_mean contains an update of the mean.
If IMSLS_NO_CONSTANT and IMSLS_LEAST_SQUARES are specified, z_mean
is not used in parameter estimation.

IMSLS_INITIAL_ESTIMATES, float ar[], float ma[] (Input)
If specified, ar is an array of length p containing preliminary estimates of the
autoregressive parameters, and ma is an array of length q containing
preliminary estimates of the moving average parameters; otherwise, these are
computed internally. IMSLS_INITIAL_ESTIMATES is only applicable if
IMSLS_LEAST_SQUARES is also specified.

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length
n_observations − max (ar_lags [i]) + length containing the residuals
(including backcasts) at the final parameter estimate point in the first
n_observations − max (ar_lags [i]) + nb, where nb is
the number of values backcast.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_PARAM_EST_COV, float **param_est_cov (Output)
Address of a pointer to an internally allocated array of size np × np, where
np = p + q + 1 if z is centered about z_mean, and np = p + q
if z is not centered. The ordering of variables in param_est_cov is z_mean,
ar, and ma. Argument np must be 1 or larger.

IMSLS_PARAM_EST_COV_USER, float param_est_cov[] (Output)
Storage for array param_est_cov is provided by the user. See
IMSLS_PARAM_EST_COV.

IMSLS_AUTOCOV, float **autocov (Output)
Address of a pointer to an array of length p + q + 1 containing the variance
and autocovariances of the time series z. Argument autocov [0] contains the
variance of the series z. Argument autocov [k] contains the autocovariance
of lag k, where k = 1, ..., p + q + 1.

IMSLS_AUTOCOV_USER, float autocov[] (Output)
Storage for array autocov is provided by the user. See IMSLS_AUTOCOV.

IMSLS_SS_RESIDUAL, float *ss_residual (Output)
If specified, ss_residual contains the sum of squares of the random shock,
ss_residual = residual [1]2 + ... + residual [na]2.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output)
If specified, constant is the constant parameter estimate, ar is an array of

Chapter 8: Time Series and Forecasting arma • 515

length p containing the final autoregressive parameter estimates, and ma is an
array of length q containing the final moving average parameter estimates.

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info (Output)
Address of a pointer to an internally allocated structure of type Imsls_f_arma
that contains information necessary in the call to imsls_forecast.

Description
Function imsls_f_arma computes estimates of parameters for a nonseasonal ARMA
model given a sample of observations, {Wt}, for t = 1, 2, ..., n, where
n = n_observations. There are two methods, method of moments and least squares,
from which to choose. The default is method of moments.
Two methods of parameter estimation, method of moments and least squares, are
provided. The user can choose the method of moments algorithm with the optional
argument IMSLS_METHOD_OF_MOMENTS. The least-squares algorithm is used if the
user specifies IMSLS_LEAST_SQUARES. If the user wishes to use the least-squares
algorithm, the preliminary estimates are the method of moments estimates by default.
Otherwise, the user can input initial estimates by specifying optional argument
IMSLS_INITIAL_ESTIMATES. The following table lists the appropriate optional
arguments for both the method of moments and least-squares algorithm:

Method of Moments only Least Squares only Both Method of Moments
and Least Squares

IMSLS_METHOD_OF_MOMENTS IMSLS_LEAST_SQUARES IMSLS_RELATIVE_ERROR
 IMSLS_CONSTANT

(or IMSLS_NO_CONSTANT)
IMSLS_MAX_ITERATIONS

 IMSLS_AR_LAGS IMSLS_MEAN_ESTIMATE

 IMSLS_MA_LAGS IMSLS_AUTOCOV(_USER)

 IMSLS_BACKCASTING IMSLS_RETURN_USER

 IMSLS_CONVERGENCE_TOLERANCE IMSLS_ARMA_INFO

 IMSLS_INITIAL_ESTIMATES

 IMSLS_RESIDUAL (_USER)

 IMSLS_PARAM_EST_COV (_USER)

 IMSLS_SS_RESIDUAL

Method of Moments Estimation
Suppose the time series {Zt} is generated by an ARMA (p, q) model of the form

φ(B)Zt = θ0 + θ(B)At

for t ∈ {0, ±1, ±2, ...}
Let μ̂ = w_mean be the estimate of the mean μ of the time series{Zt}, where
μ̂ equals the following:

516 • arma IMSL C Stat Library

1

for known
ˆ 1 for unknown

n

t
t

Z
n

μ μ
μ

μ
=

⎧
⎪= ⎨
⎪⎩

∑

The autocovariance function is estimated by

() ()()
1

1ˆ ˆ ˆ
n k

t t k
t

k Z Z
n

σ μ μ
−

+
=

= − −∑

for k = 0, 1, ..., K, where K = p + q. Note that σ̂ (0) is an estimate of the sample
variance.
Given the sample autocovariances, the function computes the method of moments
estimates of the autoregressive parameters using the extended Yule-Walker equations
as follows:

ˆ ˆ ˆφ σ∑ =

where

()
()

()

1
ˆ ˆ ˆ, ,

ˆ ˆ | | , , 1, ,

ˆ ˆ , 1, ,

T

p

ij

i

q i j i j p

q i i p

φ φ φ

σ

σ σ

=

∑ = + − =

= + =

…

…

…

The overall constant θ0 is estimated by the following:

0

1

ˆ for 0
ˆ

ˆˆ 1 for 0
p

i
i

p

p

μ
θ

μ φ
=

=⎧
⎪= ⎛ ⎞⎨ − >⎜ ⎟⎪

⎝ ⎠⎩
∑

The moving average parameters are estimated based on a system of nonlinear equations
given K = p + q + 1 autocovariances, σ(k) for k = 1, ..., K, and p autoregressive
parameters φi for i = 1, ..., p.

Let Z′t = φ(B)Zt. The autocovariances of the derived moving average process
Z′t = θ(B)At are estimated by the following relation:

()
()

()() 0
0 0

ˆ for 0
ˆ ˆ ˆ ˆˆ for 1, 1

p p

i j
i j

k p
k

k i j p

σ
σ

φ φ σ φ
= =

=⎧
⎪′ = ⎨

+ − ≥ ≡ −⎪
⎩
∑∑

The iterative procedure for determining the moving average parameters is based on the
relation

Chapter 8: Time Series and Forecasting arma • 517

()
()
()

2 2 2
1

2
1 1

1 ... for 0

... for 1

q A

k k q k q A

k
k

k+ −

⎧ + θ + + θ σ =⎪σ = ⎨
−θ + θ θ + + θ θ σ ≥⎪⎩

where σ(k) denotes the autocovariance function of the original Zt process.

Let τ = (τ0, τ1, ..., τq)T and f = (f0, f1, ..., fq)T, where

0

for 0

θ / for 1, ...,
A

j
j

j

j q

σ =
τ =

− τ =

⎧
⎨
⎩

and

()
0

ˆ for 0,1, ...,
q j

j i i j
i

f j j q
−

+
=

′= τ τ − σ =∑

Then, the value of τ at the (i + 1)-th iteration is determined by the following:

() 11i i i iT fτ τ
−+ = −

The estimation procedure begins with the initial value

()0 ˆ(0 , 0, , 0)Tτ σ ′= …

and terminates at iteration i when either ||f i|| is less than relative_error or
i equals max_iterations. The moving average parameter estimates are obtained
from the final estimate of τ by setting

0
ˆ / for 1, ,j j j qθ τ τ= − = …

The random shock variance is estimated by the following:

2
1

2
0

ˆˆ ˆσ(0) () for 0
σ̂

for 0

p

i
iA

i q

q
=

− φ σ =
=

τ ≥

⎧
⎪
⎨
⎪⎩

∑

See Box and Jenkins (1976, pp. 498−500) for a description of a function that performs
similar computations.

Least-squares Estimation
Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form,

518 • arma IMSL C Stat Library

φ(B) (Zt − μ) = θ(B)At for t ∈ {0, ±1, ±2, …}

where B is the backward shift operator, μ is the mean of Zt, and

() () () ()

() () () ()

1 2
1 2

1 2
1 2

1 ... for 0

θ 1 θ θ ... θ for 0

l pl l
p

l l l q
q

B B B B p

B B B B q

φ φ

θ θ θ

φφ = − φ − φ − − φ ≥

= − − − − ≥

with p autoregressive and q moving average parameters. Without loss of generality, the
following is assumed:

1 ≤ lf (1) ≤ lf (2) ≤ … ≤ lf (p)

1 ≤ lq (1) ≤ lq (2) ≤ … ≤ lq (q)

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lq (p) and q′ = lq
(q). Note that the usual hierarchical model assumes the following:

lf (i) = i, 1 ≤ i ≤ p

lq (j) = j, 1 ≤ j ≤ q

Consider the sum-of-squares function

() []2

1

, ,
n

T t
T

S Aμ φ θ
− +

= ∑

where

[] (), , ,t tA E A Zμ φ θ⎡ ⎤= ⎣ ⎦

and T is the backward origin. The random shocks {At} are assumed to be independent
and identically distributed

()20, AN σ

random variables. Hence, the log-likelihood function is given by

() () () ()
2

, ,
, , , , , ln

2
T

A A
A

S
l f n

μ φ θ
μ φ θ σ μ φ θ σ

σ
= − −

where f (μ, φ, θ) is a function of μ, φ, and θ.

Chapter 8: Time Series and Forecasting arma • 519

For T = 0, the log-likelihood function is conditional on the past values of both
Zt and At required to initialize the model. The method of selecting these initial values
usually introduces transient bias into the model (Box and Jenkins 1976, pp. 210−211).
For T = ∞, this dependency vanishes, and estimation problem concerns maximization
of the unconditional log-likelihood function. Box and Jenkins (1976, p. 213) argue that

() ()2, , / 2 AS μ φ θ σ∞

dominates

()2, , , Al μ φ θ σ

The parameter estimates that minimize the sum-of-squares function are called least-
squares estimates. For large n, the unconditional least-squares estimates are
approximately equal to the maximum likelihood-estimates.
In practice, a finite value of T will enable sufficient approximation of the unconditional
sum-of-squares function. The values of [AT] needed to compute
the unconditional sum of squares are computed iteratively with initial values of
Zt obtained by back forecasting. The residuals (including backcasts), estimate of
random shock variance, and covariance matrix of the final parameter estimates also are
computed. ARIMA parameters can be computed by using imsls_f_difference
with imsls_f_arma.

Examples

Example 1
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example
consists of the number of sunspots observed from 1770 through 1869. The method of
moments estimates

0 1 2 1
ˆ ˆˆ ˆθ ,φ ,φ , and θ

for the ARMA(2, 1) model

0 0 1 2 2 1 1t t t t tz z z A A− − −= θ + φ + φ − θ +

where the errors At are independently normally distributed with mean zero and variance
2
Aσ

#include <imsls.h>

void main()
{
 int p = 2;
 int q = 1;

520 • arma IMSL C Stat Library

 int i;
 int n_observations = 100;
 int max_iterations = 0;
 float w[176][2];
 float z[100];
 float *parameters;
 float relative_error = 0.0;

 imsls_f_data_sets(2, IMSLS_X_COL_DIM,
 2, IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_RELATIVE_ERROR, relative_error,
 IMSLS_MAX_ITERATIONS, max_iterations,
 0);
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);
}

Output
AR estimates are 1.2443 and -0.5751.
MA estimate is -0.1241.

Example 2
The data for this example are the same as that for the initial example. Preliminary
method of moments estimates are computed by default, and the method of least squares
is used to find the final estimates. Note that at the end of the output, a warning error
appears. In most cases, this error message can be ignored. There are three general
reasons this error can occur:

1. Convergence is declared using the criterion based on tolerance, but the
gradient of the residual sum-of-squares function is nonzero. This occurs in this
example. Either the message can be ignored or tolerance can be reduced to
allow more iterations and a slightly more accurate solution.

2. Convergence is declared based on the fact that a very small step was taken,
but the gradient of the residual sum-of-squares function was nonzero. This
message can usually be ignored. Sometimes, however, the algorithm is
making very slow progress and is not near a minimum.

3. Convergence is not declared after 100 iterations.
Trying a smaller value for tolerance can help determine what caused the error
message.

#include <imsls.h>

void main()
{
 int p = 2;
 int q = 1;

Chapter 8: Time Series and Forecasting max_arma • 521

 int i;
 int n_observations = 100;
 float w[176][2];
 float z[100];
 float *parameters;
 float tolerance = 0.125;

 imsls_f_data_sets(2, IMSLS_X_COL_DIM,
 2, IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_LEAST_SQUARES,
 IMSLS_CONVERGENCE_TOLERANCE,
 tolerance,
 0);
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);

}

Output
*** WARNING Error IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma. Least
*** squares estimation of the parameters has failed to converge.
*** Increase "length" and/or "tolerance" and/or
*** "convergence_tolerance". The estimates of the parameters at
 the
*** last iteration may be used as new starting values.

AR estimates are 1.3926 and -0.7329.
MA estimate is -0.1375.

Warning Errors

IMSLS_LEAST_SQUARES_FAILED Least-squares estimation of the parameters
has failed to converge. Increase “length”
and/or “tolerance” and/or
“convergence_tolerance.” The estimates of
the parameters at the last iteration may be
used as new starting values.

max_arma
Exact maximum likelihood estimation of the parameters in a univariate ARMA
(autoregressive, moving average) time series model.

Synopsis

#include <imsls.h>

 float *imsls f max_arma (int n_obs, float w[], int p, int q,…,0)

522 • max_arma IMSL C Stat Library

The type double function is imsls_d_max_arma.

Required Arguments

int n_obs (Input)
Number of observations in the time series.

float w[] (Input)
Array of length n_obs containing the time series.

int p (Input)
Non-negative number of autoregressive parameters.

int q (Input)
Non-negative number of moving average parameters.

Return Value
Pointer to an array of length 1+p+q with the estimated constant, AR and MA
parameters. If no value can be computed, NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_max_arma (int n_obs, float w[], int p, int q,

IMSLS_INITIAL_ESTIMATES, float init_ar[] float init_ma[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_LOG_LIKELIHOOD, float *log_likeli,
IMSLS_VAR_NOISE, float *avar,
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info,
IMSLS_MEAN_ESTIMATE, float *w_mean,
IMSLS_RETURN_USER, float *constant, float ar[], float ma[],
0)

Optional Arguments

IMSLS_INITIAL_ESTIMATES, float init ar[], float init ma[] (Input)
If specified, init ar is an array of length p containing preliminary estimates
of the autoregressive parameters, and init ma is an array of length q
containing preliminary estimates of the moving average parameters;
otherwise, they are computed internally. If p=0 or q=0, then the corresponding
arguments are ignored.

IMSLS_PRINT LEVEL, int iprint (Input)
Printing option:
0 — No printing.
1 — Prints final results only.
2 — Prints intermediate and final results.
Default: iprint = 0

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of estimation iterations.
Default: maxit = 300

IMSLS_VAR_NOISE, float *avar (Output)
Estimate of innovation variance.

Chapter 8: Time Series and Forecasting max_arma • 523

IMSLS_LOG_LIKELIHOOD, float *log_likeli (Output)
Value of -2*(ln(likelihood)) for the fitted model.

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info (Output)
Address of a pointer to an internally allocated structure of type Imsls_f_arma
that contains information necessary in the call to
imsls_f_arma_forecast.

IMSLS_MEAN_ESTIMATE, float *w_mean (Input/Output)
Estimate of the mean of the time series w. On return, w_mean contains an
update of the mean.
Default: Time series w is centered about its sample mean.

IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output)
If specified, constant is the constant parameter estimate, ar is an array of
length p containing the final autoregressive parameter estimates, and ma is an
array of length q containing the final moving average parameter estimates.

Description
The function imsls_f_max_arma is derived from the maximum likelihood estimation
algorithm described by Akaike, Kitagawa, Arahata and Tada (1979), and the
XSARMA routine published in the TIMSAC-78 Library.
Using the notation developed in the Time Domain Methodology at the beginning of
this chapter, the stationary time series tW with mean μ can be represented by the
nonseasonal autoregressive moving average (ARMA) model by the following
relationship:

()() ()t tB W B aφ μ θ− =

where

{ , 2, 1,0,1,2, },t ZZ∈ = − −" "

B is the backward shift operator defined by k
t t kB W W −= ,

2
1 2() 1 , 0,p

pB B B B pφ φ φ φ= − − − − ≥"

and
2

1 2() 1 , 0.q
qB B B B qθ θ θ θ= − − − − ≥"

Function imsls_f_max_arma estimates the AR coefficients 1 2, , , pφ φ φ" and the MA
coefficients 1 2, , , qθ θ θ" using maximum likelihood estimation.

Function imsls_f_max_arma checks the initial estimates for both the autoregressive
and moving average coefficients to ensure that they represent a stationary and
invertible series respectively.
If

524 • max_arma IMSL C Stat Library

1 2, , , pφ φ φ"

are the initial estimates for a stationary series then all (complex) roots of the following
polynomial will fall outside the unit circle:

2
1 21 .p

pz z zφ φ φ− − − −"

If

1 2, , , qθ θ θ"

are initial estimates for an invertible series then all (complex) roots of the polynomial
2

1 21 q
qz z zθ θ θ− − − −"

will fall outside the unit circle.
Initial values for the AR and MA coefficients can be supplied by vectors init_ar and
init_ma. Otherwise, estimates are computed internally by the method of moments.
imsls_f_max_arma computes the roots of the associated polynomials. If the AR
estimates represent a non-stationary series, imsls_f_max_arma issues a warning
message and replaces init_ar with initial values that are stationary. If the MA
estimates represent a non-invertible series, imsls_f_max_arma issues a terminal
error, and new initial values have to be sought.
imsls_f_max_arma also validates the final estimates of the AR coefficients to ensure
that they too represent a stationary series. This is done to guard against the possibility
that the internal log-likelihood optimizer converged to a non-stationary solution. If
non-stationary estimates are encountered, imsls_f_max_arma issues a fatal error
message. Routines imsls_error_options and imsls_error_code (see Chapter
15, Utilities) can be used to verify that the stationarity condition was met.
For model selection, the ARMA model with the minimum value for AIC might be
preferred,

()+2 p+qAIC = log_likeli

Function imsls_f_max_arma can also handle white noise processes, i.e. ARMA(0,0)
Processes.

Examples

Example 1

Consider the Wolfer Sunspot data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1770 through 1869. In this example,
imsls_f_max_arma is used to fit the following ARMA(2,1) model:

 1 1 2 2 1 1t t t t tw w w a aφ φ θ− − −= + + −� � � ,

Chapter 8: Time Series and Forecasting max_arma • 525

with :t tw w μ= −� , μ the sample mean of the time series { }tw .

For these data, imsls_f_max_arma calculated the following model:

 1 2 11.23 0.56 0.38t t t t tw w w a a− − −= − + +� � � .

Defining the overall constant 0φ by 0 1
: (1)p

ii
φ μ φ

=
= − ∑ , we obtain the following

equivalent representations:

 0 1 1 2 2 1 1 ,t t t t tw w w a aφ φ φ θ− − −= + + + −

and

 1 2 115.73 1.23 0.56 0.38 .t t t t tw w w a a− − −= + − + +
#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>

void main()
{
 int i;
 int n_obs = 100;
 int p = 2, q = 1;
 float z[176][2];
 float w[100];
 float *parameters = NULL;
 float avar, log_likeli;

 /* get wolfer sunspot data */
 imsls_f_data_sets (2, IMSLS_X_COL_DIM, 2,
 IMSLS_RETURN_USER, w,
 0);

 for (i=0; i<n_obs; i++)
 w[i] = z[21+i][1];

 parameters = imsls_f_max_arma (n_obs, w, p, q,
 IMSLS_MAX_ITERATIONS, 12000,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_LOG_LIKELIHOOD, &log_likeli,
 0);

 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);
 printf("Constant estimate is %11.4f.\n", parameters[0]);
 printf("-2*ln(Maximum Log Likelihood) = %11.4f.\n", log_likeli);
 printf("White noise variance = %11.4f.\n", avar);

 if (parameters)
 {
 free(parameters);
 parameters = NULL;
 }

526 • max_arma IMSL C Stat Library

 return;
}

Output

AR estimates are 1.2273 and -0.5626.
MA estimate is -0.3808.
Constant estimate is 15.7508.
-2*ln(Maximum Log Likelihood) = 539.5843.
White noise variance = 214.5020.

Example 2

This is the same as

Example 1, but now initial values for the AR and MA parameters are explicitly given.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>

void main()
{
 int i;
 int n_obs = 100;
 int p = 2, q = 1;
 float z[176][2];
 float w[100];
 float parameters[4];
 float avar, log_likeli;
 float init_ar[2] = {1.244e0, -0.575e0};
 float init_ma[1] = {-0.1241e0};

 /* get wolfer sunspot data */
 imsls_f_data_sets (2, IMSLS_X_COL_DIM, 2,
 IMSLS_RETURN_USER, w,
 0);

 for (i=0; i<n_obs; i++)
 z[i] = w[21+i][1];

 imsls_f_max_arma (n_obs, w, p, q,
 IMSLS_MAX_ITERATIONS, 12000,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_LOG_LIKELIHOOD, &log_likeli,
 IMSLS_INITIAL_ESTIMATES, init_ar, init_ma,
 IMSLS_RETURN_USER, ¶meters[0], ¶meters[1],
 ¶meters[3],
 0);

 printf("AR estimates are %11.4f and %11.4f.\n",

Chapter 8: Time Series and Forecasting arma_forecast • 527

 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);
 printf("Constant estimate is %11.4f.\n", parameters[0]);
 printf("-2*ln(Maximum Log Likelihood) = %11.4f.\n", log_likeli);
 printf("White noise variance = %11.4f.\n", avar);

 return;
}

Output

AR estimates are 1.2273 and -0.5623.
MA estimate is -0.3804.
Constant estimate is 15.7373.
-2*ln(Maximum Log Likelihood) = 539.5843.
White noise variance = 214.5052.

arma_forecast
Computes forecasts and their associated probability limits for an ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, int n_predict,

..., 0)
The type double function is imsls_d_arma_forecast.

Required Arguments

Imsls_f_arma *arma_info (Input)
Pointer to a structure of type Imsls_f_arma that is passed from the
imsls_f_arma function.

int n_predict (Input)
Maximum lead time for forecasts. Argument n_predict must be greater than
0.

Return Value
Pointer to an array of length n_predict × (backward_origin + 3) containing the
forecasts up to n_predict steps ahead and the information necessary to obtain
pairwise confidence intervals. More information is given in the description of argument
IMSLS_RETURN_USER.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, int n_predict,

IMSLS_CONFIDENCE, float confidence,

528 • arma_forecast IMSL C Stat Library

IMSLS_BACKWARD_ORIGIN, int backward_origin,
IMSLS_RETURN_USER, float forecasts[],
0)

Optional Arguments

IMSLS_CONFIDENCE, float confidence (Input)
Value in the exclusive interval (0, 100) used to specify the confidence
percent probability limits of the forecasts. Typical choices for confidence
are 90.0, 95.0, and 99.0.
Default: confidence = 95.0

IMSLS_BACKWARD_ORIGIN, int backward_origin (Input)
If specified, the maximum backward origin. Argument backward_origin
must be greater than or equal to 0 and less than or equal to
n_observations − max (maxar, maxma), where maxar = max (ar_lags
[i]), maxma = max (ma_lags [j]), and n_observations = the number of
observations in the series, as input in function imsls_f_arma. Forecasts at
origins n_observations − backward_origin through n_observations
are generated.
Default: backward_origin = 0

IMSLS_RETURN_USER, float forecasts[] (Output)
If specified, a user-specified array of length
n_predict × (backward_origin + 3) as defined below.

Column Content
J forecasts for lead times l = 1, ..., n_predict at

origins
n_observations − backward_origin − 1 + j,
where j = 0, ..., backward_origin

backward_origin + 2 deviations from each forecast that give the
confidence percent probability limits

backward_origin + 3 psi weights of the infinite order moving average
form of the model

If specified, the forecasts for lead times l = 1, ..., n_predict at origins
n_observations − backward_origin − 1 + j, where j = 1, ...,
backward_origin + 1.

Description
The Box-Jenkins forecasts and their associated probability limits for a nonseasonal
ARMA model are computed given a sample of n = n_observations {Zt} for
t = 1, 2, ..., n, where n_observations = the number of observations in the series, as
input in function imsls_f_arma.
Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form

φ(B)Zt = θ0 + θ(B)At

Chapter 8: Time Series and Forecasting arma_forecast • 529

for t ∈ {0, ±1, ±2, ...}, where B is the backward shift operator, θ0 is the constant, and

() () () ()

() () () ()

1

2

2
2

2
1

1

1

1

1

...

...

l l p
p

l l q

l

l
q

B B B B

B B B B

φ φ

θ θ

φ

θ

φ = − φ − φ − − φ

θ = − θ − θ − − θ

with p autoregressive and q moving average parameters. Without loss of generality, the
following is assumed:

1 ≤ lf (1) ≤ lf (2) ≤ … ≤ lf (p)

1 ≤ lq (1) ≤ lq (2) ≤ … ≤ lq (q)

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lq(p) and
q′ = lq(q). Note that the usual hierarchical model assumes the following:

lf (i) = i, 1 ≤ i ≤ p

lq (j) = j, 1 ≤ j ≤ q

The Box-Jenkins forecast at origin t for lead time l of Zt+1 is defined in terms of the
difference equation

() () ()

[] () [] () ()

0 1 1

1 11 1

ˆ ...

... ...

t pt l l t l l p

t l t l t l l qt l l t l l q

Z l Z Z

A A A A A

φ φ

θ θ

+ − + −

+ + + −+ − θ + −

= θ + φ + + φ

+ − θ − − − θ − − θ

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

where the following is true:

[]
()

for 0, 1, 2, ...
ˆ for 1, 2, ...

t k

t k

t

Z k
Z

Z k k
+

+

= − −⎧⎪= ⎨
=⎪⎩

[] ()1
ˆ 1 for 0, 1, 2, ...

0 for 1, 2, ...
t k t k

t k

Z Z k
A

k
+ + −

+

⎧ − = − −⎪= ⎨
=⎪⎩

The 100(1 − α) percent probability limits for Zt+l are given by

()
1/ 2

1
2

1/ 2
1

ˆ 1
l

t j A
j

Z l z ψ σ
−

=

⎧ ⎫
± +⎨ ⎬

⎩ ⎭
∑

where z(1-a/2) is the 100(1 − α/2) percentile of the standard normal distribution
2
Aσ

530 • arma_forecast IMSL C Stat Library

(returned from imsls_f_arma) and

{ }2
jψ

are the parameters of the random shock form of the difference equation. Note that the
forecasts are computed for lead times l = 1, 2, ..., L at origins
t = (n − b), (n − b + 1), ..., n, where L = n_predict and b = backward_origin.
The Box-Jenkins forecasts minimize the mean-square error

()
2ˆ

t l tE Z Z l+
⎡ ⎤−⎣ ⎦

Also, the forecasts can be easily updated according to the following equation:

() ()1 1
ˆ ˆ 1t t l tZ l Z l Aψ+ += + +

This approach and others are discussed in Chapter 5: “Forecasting” of Box and Jenkins
(1976).

Example
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1749 through 1924. The data set for this example
consists of the number of sunspots observed from 1770 through 1869. Function
imsls_f_arma_forecast computes forecasts and 95-percent probability limits for
the forecasts for an ARMA(2, 1) model fit using function imsls_f_max_arma with
the method of moments option. With backward_origin = 3, columns zero through
three of forecasts provide forecasts given the data through 1866, 1867, 1868, and
1869, respectively. Column four gives the deviations from the forecast for computing
probability limits, and column six gives the psi weights, which can be used to update
forecasts when more data is available. For example, the forecast for the 102nd
observation (year 1871) given the data through the 100th observation (year 1869) is
77.21; and 95-percent probability limits are given by 77.21 ∓ 56.30. After observation
101 (Z101 for year 1870) is available, the forecast can be updated by using

()
1/ 2

1
2

/ 2
1

ˆ 1
l

t j A
j

Z l zα ψ σ
−

=

⎧ ⎫
± +⎨ ⎬

⎩ ⎭
∑

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for observation
101 (Z101 − 83.72) to give the following:

77.21 + 1.37 × (Z101 − 83.72)

Since this updated forecast is one step ahead, the 95-percent probability limits are now
given by the forecast ∓ 33.22.

#include <imsls.h>

Chapter 8: Time Series and Forecasting arma_forecast • 531

void main()
{
 int p = 2;
 int q = 1;
 int i;
 int n_observations = 100;
 int max_iterations = 0;
 int n_predict = 12;
 int backward_origin = 3;
 float w[176][2];
 float z[100];
 float *parameters;
 float rel_error = 0.0;
 float *forecasts;
 Imsls_f_arma *arma_info;

 char *col_labels[] = {
 "Lead Time",
 "Forecast From 1866",
 "Forecast From 1867",
 "Forecast From 1868",
 "Forecast From 1869",
 "Dev. for Prob. Limits",
 "Psi"};

 imsls_f_data_sets(2, IMSLS_X_COL_DIM,
 2, IMSLS_RETURN_USER, w,
 0);
 for (i=0; i<n_observations; i++) z[i] = w[21+i][1];

 parameters = imsls_f_arma(n_observations, &z[0], p, q,
 IMSLS_RELATIVE_ERROR,
 rel_error,
 IMSLS_MAX_ITERATIONS,
 max_iterations,
 IMSLS_ARMA_INFO,
 &arma_info,
 0);
 printf("Method of Moments initial estimates:\n");
 printf("AR estimates are %11.4f and %11.4f.\n",
 parameters[1], parameters[2]);
 printf("MA estimate is %11.4f.\n", parameters[3]);

 forecasts = imsls_f_arma_forecast(arma_info, n_predict,
 IMSLS_BACKWARD_ORIGIN,
 backward_origin,
 0);

 imsls_f_write_matrix("* * * Forecast Table * * *\n",
 n_predict, backward_origin+3,
 forecasts,
 IMSLS_COL_LABELS, col_labels,
 IMSLS_WRITE_FORMAT, "%11.4f",
 0);

532 • auto_uni_ar IMSL C Stat Library

}

Output
Method of Moments initial estimates:
AR estimates are 1.2443 and -0.5751.
MA estimate is -0.1241.

 * * * Forecast Table * * *

Lead Time Forecast From Forecast From Forecast From Forecast From
 1866 1867 1868 1869
 1 18.2833 16.6151 55.1893 83.7196
 2 28.9182 32.0189 62.7606 77.2092
 3 41.0101 45.8275 61.8922 63.4608
 4 49.9387 54.1496 56.4571 50.0987
 5 54.0937 56.5623 50.1939 41.3803
 6 54.1282 54.7780 45.5268 38.2174
 7 51.7815 51.1701 43.3221 39.2965
 8 48.8417 47.7072 43.2631 42.4582
 9 46.5335 45.4736 44.4577 45.7715
 10 45.3524 44.6861 45.9781 48.0758
 11 45.2103 44.9909 47.1827 49.0371
 12 45.7128 45.8230 47.8072 48.9080

Lead Time Dev. for Prob. Psi
 Limits
 1 33.2179 1.3684
 2 56.2980 1.1274
 3 67.6168 0.6158
 4 70.6432 0.1178
 5 70.7515 -0.2076
 6 71.0869 -0.3261
 7 71.9074 -0.2863
 8 72.5337 -0.1687
 9 72.7498 -0.0452
 10 72.7653 0.0407
 11 72.7779 0.0767
 12 72.8225 0.0720

auto_uni_ar
Automatic selection and fitting of a univariate autoregressive time series model. The
lag for the model is automatically selected using Akaike’s information criterion (AIC).
Estimates of the autoregressive parameters for the model with minimum AIC are
calculated using method of moments, method of least squares, or maximum likelihood.

Synopsis

#include <imsls.h>

float *imsls_f_auto_uni_ar(int n_obs, float z[], int maxlag,
 int *p,…,0)

The type double function is imsls_d_auto_uni_ar.

Chapter 8: Time Series and Forecasting auto_uni_ar • 533

Required Arguments

int n_obs (Input)
Number of observations in the time series.

float z[] (Input)
Array of length n_obs containing the stationary time series.

int maxlag (Input)
Maximum number of autoregressive parameters requested. It is required that
1≤ maxlag ≤ n_obs/2.

int *p (Output)
Number of autoregressive parameters in the model with minimum AIC.

Return Value
Vector of length 1+ maxlag containing the estimates for the constant and the
autoregressive parameters in the model with minimum AIC. The estimates are located
in the first 1+ p locations of this array.

Synopsis with Optional Arguments

#include <imsls.h>

float *imsls_f_auto_uni_ar (int n_obs, float z[], int maxlag,
int *p,
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_MAX_ITERATIONS, int maxit,
IMSLS_METHOD, int method,
IMSLS_VAR_NOISE, float *avar,
IMSLS_AIC, float *aic,
IMSLS_MEAN_ESTIMATE, float *z_mean,
IMSLS_RETURN_USER, float *constant, float ar[],
0)

Optional Arguments

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option:
0 — No printing.
1 — Prints final results only.
2 — Prints intermediate and final results.
Default: iprint = 0

IMSLS_MAX_ITERATIONS, int maxit (Input)
Maximum number of estimation iterations.
Default: maxit = 300

IMSLS_METHOD, int method (Input)
Estimation method option:
0 — Method of moments
1 — Method of least squares realized through Householder transformations

534 • auto_uni_ar IMSL C Stat Library

2 — Maximum likelihood
Default: method = 1

IMSLS_VAR_NOISE, float *avar (Output)
Estimate of innovation variance.

IMSLS_AIC, float *aic (Output)
Minimum AIC.

IMSLS_MEAN_ESTIMATE, float *z_mean (Input/Output)
Estimate of the mean of the time series z. On return, z_mean contains an
update of the mean.
Default: Time series z is centered about its sample mean.

IMSLS_RETURN_USER, float *constant, float ar[] (Output)
If specified, constant is the constant parameter estimate, ar is an array of
length maxlag containing the final autoregressive parameter estimates in its
first p locations.

Description
Function auto_uni_ar automatically selects the order of the AR model that best fits
the data and then computes the AR coefficients. The algorithm used in 2auto_uni_ar
is derived from the work of Akaike, H., et. al (1979) and Kitagawa and Akaike (1978).
This code was adapted from the UNIMAR procedure published as part of the
TIMSAC-78 Library.
The best fit AR model is determined by successively fitting AR models with 0, 1, 2, ...,
maxlag autoregressive coefficients. For each model, Akaike’s Information Criterion
(AIC) is calculated based on the formula

2 ln() 2AIC likelihood= − + p

Function 2auto_uni_ar uses the approximation to this formula developed by Ozaki
and Oda (1979),

() () () ()()2ˆln 2 ln 2 1 ,AIC σ π= − + + − +n_obs maxlag p n_obs maxlag

where
2σ̂ is an estimate of the residual variance of the series, commonly known in

time series analysis as the innovation variance.
The best fit model is the model with minimum AIC. If the number of parameters in
this model is equal to the highest order autoregressive model fitted, i.e., p=maxlag,
then a model with smaller AIC might exist for larger values of maxlag. In this case,
increasing maxlag to explore AR models with additional autoregressive parameters
might be warranted.
If method = 0, estimates of the autoregressive coefficients for the model with
minimum AIC are calculated using method of moments. If method =1, the
coefficients are determined by the method of least squares applied in the form
described by Kitagawa and Akaike (1978). Otherwise, if method =2, the coefficients
are estimated using maximum likelihood.

Chapter 8: Time Series and Forecasting auto_uni_ar • 535

Example
Consider the Wolfer Sunspot data (Anderson 1971, p. 660) consisting of the number of
sunspots observed each year from 1770 through 1869. In this example,
imsls_f_auto_uni_ar found the minimum AIC fit is an autoregressive model with
3 lags:

1 1 2 2 3 3 ,t t t t tw w w w aφ φ φ− − −= + + +� � � �

where

: ,t tw w μ= −�

μ the sample mean of the time series { }tw . Defining the overall constant 0φ by
3

0 1
: (1)ii

φ μ φ
=

= − ∑ , we obtain the following equivalent representation:

0 1 1 2 2 3 3 .t t t t tw w w w aφ φ φ φ− − −= + + + +

The example computes estimates for 0 1 2 3, , ,φ φ φ φ for every of the three parameter
estimation methods available.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>

void main()
{
 int i;
 int maxlag = 20;
 int n_obs = 100;
 int p;
 float w[176][2];
 float z[100];
 float *parameters = NULL;
 float avar, aic, constant;
 float ar[20];

 /* get wolfer sunspot data */
 imsls_f_data_sets (2, IMSLS_X_COL_DIM, 2,
 IMSLS_RETURN_USER, w,
 0);

 for (i=0; i<n_obs; i++)
 z[i] = w[21+i][1];

 /* Compute AR parameters for minimum AIC by method of moments */

 printf("\n\nAIC Automatic Order selection\n");
 printf("AR coefficients estimated using method of moments\n");

 parameters = imsls_f_auto_uni_ar(n_obs, z, maxlag, &p,

536 • auto_uni_ar IMSL C Stat Library

 IMSLS_VAR_NOISE, &avar,
 IMSLS_METHOD, 0,
 IMSLS_AIC, &aic,
 0);

 printf("Order selected: %d\n", p);
 printf("AIC = %11.4f, Variance = %11.4f\n", aic, avar);
 printf("Constant estimate is %11.4f.\n", parameters[0]);
 imsls_f_write_matrix("Final AR coefficients estimated by method of
moments",
 p, 1, ¶meters[1], 0);

 if (parameters)
 {
 free(parameters);
 parameters = NULL;
 }

 /* Compute AR parameters for minimum AIC by method of least squares */

 printf("\n\nAIC Automatic Order selection\n");
 printf("AR coefficients estimated using method of least squares\n");

 imsls_f_auto_uni_ar(n_obs, z, maxlag, &p,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_METHOD, 1,
 IMSLS_AIC, &aic,
 IMSLS_RETURN_USER, &constant, ar,
 0);

 printf("Order selected: %d\n", p);
 printf("AIC = %11.4f, Variance = %11.4f\n", aic, avar);
 printf("Constant estimate is %11.4f.\n", constant);
 imsls_f_write_matrix("Final AR coefficients estimated by method of least
squares", \
 p, 1, ar, 0);

 /* Compute AR parameters for minimum AIC by maximum likelihood estimation
*/

 printf("\n\nAIC Automatic Order selection\n");
 printf("AR coefficients estimated using maximum likelihood\n");

 imsls_f_auto_uni_ar(n_obs, z, maxlag, &p,
 IMSLS_VAR_NOISE, &avar,
 IMSLS_METHOD, 2,
 IMSLS_AIC, &aic,
 IMSLS_RETURN_USER, &constant, ar,
 0);

 printf("Order selected: %d\n", p);
 printf("AIC = %11.4f, Variance = %11.4f\n", aic, avar);
 printf("Constant estimate is %11.4f.\n", constant);
 imsls_f_write_matrix("Final AR coefficients estimated by maximum
likelihood", \

Chapter 8: Time Series and Forecasting ts_outlier_identification • 537

 p, 1, ar, 0);

 return;
}

Output

AIC Automatic Order selection
AR coefficients estimated using method of moments
Order selected: 3
AIC = 554.0114, Variance = 287.2694
Constant estimate is 13.7098.

Final AR coefficients estimated by method of moments
 1 1.368
 2 -0.738
 3 0.078

 AIC Automatic Order selection
AR coefficients estimated using method of least squares
Order selected: 3
AIC = 554.0114, Variance = 144.7149
Constant estimate is 9.8934.

Final AR coefficients estimated by method of least squares
 1 1.604
 2 -1.024
 3 0.209

AIC Automatic Order selection
AR coefficients estimated using maximum likelihood
Order selected: 3
AIC = 554.0114, Variance = 218.8337
Constant estimate is 11.3902.

Final AR coefficients estimated by maximum likelihood
 1 1.553

2 -1.001
3 0.205

ts_outlier_identification
Detects and determines outliers and simultaneously estimates the model parameters in
a time series whose underlying outlier free series follows a general seasonal or
nonseasonal ARMA model.

Synopsis
#include <imsls.h>

538 • ts_outlier_identification IMSL C Stat Library

float *imsls_f_ts_outlier_identification (int n_obs, int model[],
float w[],…,0)

The type double function is imsls_d_ts_outlier_identification.

Required Arguments

int n_obs (Input)
Number of observations in the time series.

int model[] (Input)
Vector of length 4 containing the numbers p, q, s, d of the
ARIMA (,0,) (0, ,0)sp q d× model the outlier free series is following.

float w[] (Input)
An array of length n_obs containing the time series.

Return Value
Pointer to an array of length n_obs containing the outlier free time series.
If an error occurred, NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>

float *imsls_f_ts_outlier_identification (int n_obs,
int model[], float w[],
IMSLS_RETURN_USER, float x[],
IMSLS_DELTA, float delta,
IMSLS_CRITICAL, float critical,
IMSLS_EPSILON, float epsilon,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_RESIDUAL_SIGMA, float *res_sigma,
IMSLS_NUM_OUTLIERS, int *num_outliers,
IMSLS_OUTLIER_STATISTICS, int **outlier_stat,
IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[],
IMSLS_TAU_STATISTICS, float **tau_stat,
IMSLS_TAU_STATISTICS_USER, float tau_stat[],
IMSLS_OMEGA_WEIGHTS, float **omega,
IMSLS_OMEGA_WEIGHTS_USER, float omega[],
IMSLS_ARMA_PARAM, float **parameters,
IMSLS_ARMA_PARAM_USER, float parameters[],
IMSLS_AIC, float *aic,
0)

Optional Arguments
IMSLS_RETURN_USER, float x[] (Output)

A user supplied array of length n_obs containing the outlier free series.
IMSLS_DELTA, float delta (Input)

The dampening effect parameter used in the detection of a Temporary

Chapter 8: Time Series and Forecasting ts_outlier_identification • 539

Change Outlier (TC), 0<delta < 1.
Default: delta = 0.7

IMSLS_CRITICAL, float critical (Input)
Critical value used as a threshold for outlier detection, critical > 0.
Default: critical = 3.0

IMSLS_EPSILON, float epsilon (Input)
Positive tolerance value controlling the accuracy of parameter estimates
during outlier detection.
Default: epsilon = 0.001

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for the nonlinear equation solver used in function
imsls_f_arma.
Default: relative_error = 1010− .

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length n_obs
containing the residuals for the outlier free series.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_RESIDUAL_SIGMA, float *res_sigma (Output)
Residual standard error of the outlier free series.

IMSLS_NUM_OUTLIERS, int *num_outliers (Output)
The number of outliers detected.

IMSLS_OUTLIER_STATISTICS, int **outlier_stat (Output)
Address of a pointer to an internally allocated array of length
num_outliers × 2 containing outlier statistics. The first column contains
the time at which the outlier was observed (t=1,2,...,n_obs) and the second
column contains an identifier indicating the type of outlier observed.
Outlier types fall into one of five categories:

0 Innovational Outliers (IO)

1 Additive outliers (AO)

2 Level Shift Outliers (LS)

3 Temporary Change Outliers (TC)

4 Unable to Identify (UI).

 Use IMSLS_NUM_OUTLIERS to obtain num_outliers, the number of
detected outliers.
If num_outliers = 0, NULL is returned.

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[] (Output)
A user allocated array of length n_obs × 2 containing outlier statistics in the
first num_outliers locations. Use IMSLS_NUM_OUTLIERS to obtain the
number of outliers, num_outliers, detected by
ts_outlier_identification. See IMSLS_OUTLIER_STATISTICS.
If num_outliers = 0, outlier_stat stays unchanged.

540 • ts_outlier_identification IMSL C Stat Library

IMSLS_TAU_STATISTICS, float **tau_stat (Output)
Address of a pointer to an internally allocated array of length num_outliers
containing the t value for each detected outlier.
If num_outliers = 0, NULL is returned.

IMSLS_TAU_STATISTICS_USER, float tau_stat[] (Output)
A user allocated array of length n_obs containing the t value for each
detected outlier in its first num_outliers locations.
If num_outliers = 0, tau_stat stays unchanged.

IMSLS_OMEGA_WEIGHTS, float **omega (Output)
Address of a pointer to an internally allocated array of length num_outliers
containing the computed ω weights for the detected outliers.
If num_outliers = 0, NULL is returned.

IMSLS_OMEGA_WEIGHTS_USER float omega[] (Output)
A user allocated array of length n_obs containing the computed ω weights
for the detected outliers in its first num_outliers locations.
If num_outliers = 0, omega stays unchanged.

IMSLS_ARMA_PARAM, float **parameters (Output)
Address of a pointer to an internally allocated array of length 1+p+q
containing the estimated constant, AR and MA parameters.

IMSLS_ARMA_PARAM_USER float parameters[] (Output)
A user allocated array of length 1+p+q containing the estimated constant, AR
and MA parameters.

IMSLS_AIC, float *aic (Output)
Akaike’s information criterion (AIC).

Description
Consider a univariate time series { }tY that can be described by the following
multiplicative seasonal ARIMA model of order (,0,) (0, ,0)sp q d× :

()
()

, 1, , .t td
s

B
Y a

B
t nθ

μ
φ

− =
Δ

= …

Here, (1)d s d
s BΔ = − , 1() 1 ,q

qB B Bθ θ θ= − − −… 1() 1 p
pB B Bφ φ φ= − − −… . B is the lag

operator, k
t t kB Y Y −= , { }ta is a white noise process, and μ denotes the mean of the

series { }tY .

In general, { }tY is not directly observable due to the influence of outliers. Chen and
Liu (1993) distinguish between four types of outliers: innovational outliers (IO),
additive outliers (AO), temporary changes (TC) and level shifts (LS). If an outlier
occurs as the last observation of the series, then Chen and Liu’s algorithm is unable to
determine the outlier’s classification. In imsls_f_ts_outlier_identification,
such an outlier is called a UI (unable to identify) and is treated as an innovational
outlier.

Chapter 8: Time Series and Forecasting ts_outlier_identification • 541

In order to take the effects of multiple outliers occurring at time points 1 2, , , mt t t… into
account, Chen and Liu consider the following model:

1

()
() ()

()
.m

t j j t j tdj
s

B
Y L B I t a

B
θ

μ ω
φ

∗

=
− = +

Δ
∑

Here, { }tY ∗ is the observed outlier contaminated series, and jω and ()jL B denote the
magnitude and dynamic pattern of outlier j , respectively. ()t jI t is an indicator
function that determines the temporal course of the outlier effect, () 1

jt jI t = , () 0t jI t =

otherwise. Note that ()jL B operates on tI via , 0,1,k
t t kB I I k−= = … .

The last formula shows that the outlier free series { }tY can be obtained from the
original series { }tY ∗ by removing all occurring outlier effects:

1
() ()m

j j t jjt tY Y L B I tω
=

∗= − ∑ .

The different types of outliers are charaterized by different values for ()jL B :

1. ()
()

()j d
s

B
L B

B
θ

φ
=

Δ
 for an innovational outlier,

2. () 1jL B = for an additive outlier,

3. 1() (1)jL B B −= − for a level shift outlier and

4. 1() (1) , 0 1,jL B Bδ δ−= − < < for a temporary change outlier.

Function imsls_f_ts_outlier_identification is an implementation of Chen
and Liu’s algorithm. It determines the coefficients in (), ()B Bφ θ and the outlier effects
in the model for the observed series jointly in three stages. The magnitude of the outlier
effects is determined by least squares estimates. Outlier detection itself is realized by
examination of the maximum value of the standardized statistics of the outlier effects.
For a detailed description, see Chen and Liu’s original paper (1993).
Intermediate and final estimates for the coefficients in ()Bφ and ()Bθ are computed by
functions imsls_f_arma and imsls_f_max_arma. If the roots of ()Bφ or ()Bθ lie
on or within the unit circle, then the algorithm stops with an appropriate error message.
In this case, different values for p and q should be tried.

Examples

Example 1
This example is based on estimates of the Canadian lynx population. Function
imsls_f_ts_outlier_identification is used to fit an ARIMA(2,2,0) model of
the form 2 2

1 2(1) (1) t tB B B Y aφ φ− − − = , 1, 2, ,144t = … ,{ }ta Gaussian White noise, to

542 • ts_outlier_identification IMSL C Stat Library

the given series. Function ts_outlier_identification computes parameters
1 0.123609φ = and 2 0.178963φ = − and identifies a LS outlier at time point 16t = .

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>

void main()
{
 float series[114]={
 0.24300E01,0.25060E01,0.27670E01,0.29400E01,0.31690E01,0.34500E01,
 0.35940E01,0.37740E01,0.36950E01,0.34110E01,0.27180E01,0.19910E01,
 0.22650E01,0.24460E01,0.26120E01,0.33590E01,0.34290E01,0.35330E01,
 0.32610E01,0.26120E01,0.21790E01,0.16530E01,0.18320E01,0.23280E01,
 0.27370E01,0.30140E01,0.33280E01,0.34040E01,0.29810E01,0.25570E01,
 0.25760E01,0.23520E01,0.25560E01,0.28640E01,0.32140E01,0.34350E01,
 0.34580E01,0.33260E01,0.28350E01,0.24760E01,0.23730E01,0.23890E01,
 0.27420E01,0.32100E01,0.35200E01,0.38280E01,0.36280E01,0.28370E01,
 0.24060E01,0.26750E01,0.25540E01,0.28940E01,0.32020E01,0.32240E01,
 0.33520E01,0.31540E01,0.28780E01,0.24760E01,0.23030E01,0.23600E01,
 0.26710E01,0.28670E01,0.33100E01,0.34490E01,0.36460E01,0.34000E01,
 0.25900E01,0.18630E01,0.15810E01,0.16900E01,0.17710E01,0.22740E01,
 0.25760E01,0.31110E01,0.36050E01,0.35430E01,0.27690E01,0.20210E01,
 0.21850E01,0.25880E01,0.28800E01,0.31150E01,0.35400E01,0.38450E01,
 0.38000E01,0.35790E01,0.32640E01,0.25380E01,0.25820E01,0.29070E01,
 0.31420E01,0.34330E01,0.35800E01,0.34900E01,0.34750E01,0.35790E01,
 0.28290E01,0.19090E01,0.19030E01,0.20330E01,0.23600E01,0.26010E01,
 0.30540E01,0.33860E01,0.35530E01,0.34680E01,0.31870E01,0.27230E01,
 0.26860E01,0.28210E01,0.30000E01,0.32010E01,0.34240E01,0.35310E01};

 int n_obs = 114;
 float *parameters = NULL, *result = NULL;
 float res_sigma, aic;
 int *outlier_stat = NULL;
 int num_outliers;

 model[0] = 2;
 model[1] = 0;
 model[2] = 1;
 model[3] = 2;

 result = imsls_f_ts_outlier_identification(n_obs, model, series,
 IMSLS_CRITICAL, 3.5,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS, &outlier_stat,
 IMSLS_ARMA_PARAM, ¶meters,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_AIC, &aic,
 0);

 printf("Number of outliers: %d\n\n", num_outliers);
 printf("Outlier statistics:\n");
 printf("Time point\t\tOutlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]);

Chapter 8: Time Series and Forecasting ts_outlier_identification • 543

 printf("\n\n");
 printf("ARMA parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("%d\t\t%lf\n", i, parameters[i]);

 printf("\n\n");
 printf("RSE:%lf\n", res_sigma);
 printf("\n\n");
 printf("AIC:%lf\n", aic);

 if (parameters)
 {
 free(parameters);
 parameters = NULL;
 }

 if (outlier_stat)
 {
 free(outlier_stat);
 outlier_stat = NULL;
 }

 if (result)
 {
 free(result);
 result = NULL;
 }

 return;
}

Output
ARMA parameters:
0 0.000000
1 0.123609
2 -0.178963

Number of outliers: 1

Outlier statistics:
Time point Outlier type
16 2

RSE:0.319653
AIC:282.997314

Extract from the series:

time point original series outlier free series

1 2.430000 2.430000
2 2.506000 2.506000
3 2.767000 2.767000

544 • ts_outlier_identification IMSL C Stat Library

4 2.940000 2.940000
5 3.169000 3.169000
6 3.450000 3.450000
7 3.594000 3.594000
8 3.774000 3.774000
9 3.695000 3.695000
10 3.411000 3.411000
11 2.718000 2.718000
12 1.991000 1.991000
13 2.265000 2.265000
14 2.446000 2.446000
15 2.612000 2.612000
16 3.359000 2.702106
17 3.429000 2.772106
18 3.533000 2.876106
19 3.261000 2.604106
20 2.612000 1.955106
21 2.179000 1.522106
22 1.653000 0.996106
23 1.832000 1.175106
24 2.328000 1.671106
25 2.737000 2.080106
26 3.014000 2.357106
27 3.328000 2.671106
28 3.404000 2.747107
29 2.981000 2.324106
30 2.557000 1.900106
31 2.576000 1.919106
32 2.352000 1.695106
33 2.556000 1.899106
34 2.864000 2.207107
35 3.214000 2.557106
36 3.435000 2.778106

Example 2
This example is an artificial realization of an ARMA(1,1) process via formula

1 10.8 10.0 0.5 , 1, ,300,t t t tY Y a a t− −− = + + = … { }ta Gaussian white noise, [] 50.0tE Y = .

An additive outlier with 1 4.5ω = was added at time point 150t = , a temporary change
outlier with 2 3.0ω = was added at time point 200t = .

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>

void main()
{

 int i, n_obs = 300;
 float parameters_user[300], result_user[300];
 float res_sigma, aic;
 int outlier_stat[600];
 int num_outliers;
 int outlier_stat_user[300];

Chapter 8: Time Series and Forecasting ts_outlier_identification • 545

 float omega_user[300];
 int model[4];

 float series[300]={
 50.0000000,50.2728081,50.6242599,51.0373917,51.9317627,50.3494759,
 51.6597252,52.7004929,53.5499802,53.1673279,50.2373505,49.3373871,
 49.5516472,48.6692696,47.6606636,46.8774185,45.7315445,45.6469727,
 45.9882355,45.5216560,46.0479660,48.1958656,48.6387749,49.9055367,
 49.8077278,47.7858467,47.9386749,49.7691956,48.5425873,49.1239853,
 49.8518791,50.3320694,50.9146347,51.8772049,51.8745689,52.3394470,
 52.7273712,51.4310036,50.6727448,50.8370399,51.2843437,51.8162918,
 51.6933670,49.7038231,49.0189247,49.455703,50.2718010,49.9605980,
 51.3775749,50.2285385,48.2692299,47.6495590,49.2938499,49.1924858,
 49.6449242,50.0446815,51.9972496,54.2576981,52.9835434,50.4193535,
 50.3617897,51.8276901,53.1239929,54.0682144,54.9238319,55.6877632,
 54.8896332,54.0701065,52.2754097,52.2522354,53.1248703,51.1287193,
 50.5003815,49.6504173,47.2453079,45.4555626,45.8449707,45.9765129,
 45.7682228,45.2343674,46.6496811,47.0894432,49.3368340,50.8058052,
 49.9132500,49.5893288,48.2470627,46.9779968,45.6760864,45.7070389,
 46.6158409,47.5303612,47.5630417,47.0389214,46.0352287,45.8161545,
 45.7974396,46.0015373,45.3796463,45.3461685,47.6444016,49.3327446,
 49.3810692,50.2027817,51.4567032,52.3986320,52.5819206,52.7721825,
 52.6919098,53.3274345,55.1345940,56.8962631,55.7791634,55.0616989,
 52.3551178,51.3264084,51.0968323,51.1980476,52.8001442,52.0545082,
 50.8742943,51.5150337,51.2242050,50.5033989,48.7760124,47.4179192,
 49.7319527,51.3320541,52.3918304,52.4140434,51.0845947,49.6485748,
 50.6893463,52.9840813,53.3246994,52.4568024,51.9196091,53.6683121,
 53.4555359,51.7755814,49.2915611,49.8755112,49.4546776,48.6171913,
 49.9643021,49.3766441,49.2551308,50.1021881,51.0769119,55.8328133,
 52.0212708,53.4930801,53.2147255,52.2356453,51.9648819,52.1816330,
 51.9898071,52.5623627,51.0717278,52.2431946,53.6943054,54.3752098,
 54.1492615,53.8523254,52.1093712,52.3982697,51.2405128,50.3018112,
 51.3819618,49.5479546,47.5024452,47.4447708,47.8939056,48.4070015,
 48.2440681,48.7389755,49.7309227,49.1998024,49.5798340,51.1196213,
 50.6288414,50.3971405,51.6084099,52.4564743,51.6443901,52.4080658,
 52.4643364,52.6257210,53.1604691,51.9309731,51.4137230,52.1233368,
 52.9867249,53.3180733,51.9647636,50.7947655,52.3815842,50.8353729,
 49.4136009,52.8355217,52.2234840,51.1392517,48.5245132,46.8700218,
 46.1607285,45.2324257,47.4157829,48.9989090,49.6230736,50.4352913,
 51.1652985,50.2588654,50.7820129,51.0448799,51.2880516,49.6898804,
 49.0288200,49.9338837,48.2214432,46.2103348,46.9550171,47.5595894,
 47.7176018,48.4502945,50.9816895,51.6950073,51.6973495,52.1941261,
 51.8988075,52.5617599,52.0218391,49.5236053,47.9684906,48.2445183,
 48.8275146,49.7176971,51.5649338,52.5627213,52.0182419,50.9688835,
 51.5846901,50.9486771,48.8685837,48.5600624,48.4760094,48.5348396,
 50.4187813,51.2542381,50.1872864,50.4407692,50.6222687,50.4972000,
 51.0036087,51.3367500,51.7368202,53.0463791,53.6261253,52.0728683,
 48.9740753,49.3280830,49.2733917,49.8519020,50.8562126,49.5594254,
 49.6109200,48.3785629,48.0026474,49.4874268,50.1596375,51.8059540,
 53.0288620,51.3321075,49.3114815,48.7999306,47.7201881,46.3433914,
 46.5303612,47.6294632,48.6012459,47.8567657,48.0604057,47.1352806,
 49.5724792,50.5566483,49.4182968,50.5578079,50.6883736,50.6333389,
 51.9766159,51.0595245,49.3751640,46.9667702,47.1658173,47.4411278,
 47.5360374,48.9914742,50.4747620,50.2728043,51.9117165,53.7627792};

546 • ts_outlier_identification IMSL C Stat Library

 model[0] = 1;
 model[1] = 1;
 model[2] = 1;
 model[3] = 0;

 imsls_f_ts_outlier_identification(n_obs, model, series,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS_USER,
outlier_stat_user,
 IMSLS_OMEGA_WEIGHTS_USER, omega_user,
 IMSLS_ARMA_PARAM_USER, parameters_user,
 IMSLS_RETURN_USER, result_user,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_AIC, &aic,
 IMSLS_RELATIVE_ERROR, 1.0e-05,
 0);

 printf("\n");
 printf("ARMA parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("%d\t\t%lf\n", i, parameters_user[i]);

 printf("\nNumber of outliers: %d\n\n", num_outliers);
 printf("Outlier statistics:\n");
 printf("Time point\tOutlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d\t\t%d\n", outlier_stat_user[2*i], outlier_stat_user[2*i+1]);

 printf("\nOmega statistics:\n");
 printf("Time point\tomega\n");
 for (i=0; i<num_outliers; i++)
 printf("%d\t%18.6f\n", outlier_stat_user[2*i], omega_user[i]);

 printf("\n");
 printf("RSE:%lf\n", res_sigma);
 printf("AIC:%lf\n\n", aic);

 return;
}

 Output
ARMA parameters:
0 10.808282
1 0.785631
2 -0.496392

Number of outliers: 2

Outlier statistics:
Time point Outlier type
150 1
200 3

Omega statistics:

Chapter 8: Time Series and Forecasting ts_outlier_forecast • 547

Time point omega
150 4.477811
200 3.382051

RSE:1.007220
AIC:1417.042480

ts_outlier_forecast
Computes forecasts, their associated probability limits and ψ weights for an outlier
contaminated time series whose underlying outlier free series follows a general
seasonal or nonseasonal ARMA model.

Synopsis

#include <imsls.h>

float *imsls_f_ts_outlier_forecast (int n_obs, float series[],
int num_outliers, int outlier_statistics[], float omega[],
float delta, int model[], float parameters[], int n_predict,…,0)

The type double function is imsls_d_ts_outlier_forecast.

Required Arguments

int n_obs (Input)
Number of observations in the time series.

float series[] (Input)
An array of length n_obs by 2 containing the outlier free time series in its
first column and the residuals of the series in the second column.

int num_outliers (Input)
Number of detected outliers in the original outlier contaminated series as
computed in imsls_f_ts_outlier_identification.

int outlier_statistics[] (Input)
An array of length num_outliers by 2 containing the outlier statistics from
imsls_f_ts_outlier_identification. If num_outliers=0, this
array is ignored.

float omega[] (Input)
Array of length num_outliers containing the ψ weights for the outliers
determined in imsls_f_ts_outlier_identification. Ignored, if
num_outliers=0.

float delta (Input)
The dynamic dampening effect parameter used in the outlier detection.

int model[] (Input)
Vector of length 4 containing the numbers p, q, s, d of the
ARIMA (,0,) (0, ,0)sp q d× model the outlier free series is following.

548 • ts_outlier_forecast IMSL C Stat Library

float parameters[] (Input)
Vector of length 1+p+q containing the estimated constant, AR and MA parameters
as output from imsls_f_ts_outlier_identification.

int n_predict (Input)
Maximum lead time for forecasts. The forecasts are taken at origin t=n_obs, the
time point of the last observed value, for lead times 1,2,...,n_predict.

Return Value
Pointer to an array of length n_predict by 3. The first column contains the
forecasted values for the original outlier contaminated series. The second column
contains the deviations from each forecast for computing confidence probability
limits, and the third column contains the ψ weights of the infinite moving average
form of the model.
If an error occurred, NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>

float *imsls_f_ts_outlier_forecast(int n_obs, float series[],
int num_outliers, int outlier_statistics[],
float omega[], float delta, int model[],
float parameters[], int n_predict,
IMSLS_RETURN_USER, float forecast[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_OUT_FREE_FORECAST, float **outfree_forecast,
IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[],
0)

Optional Arguments
IMSLS_RETURN_USER, float forecast[] (Output)

An array of length n_predict by 3 supplied by the user containing the
forecasts for the original outlier contaminated series in column 1, deviations
from each forecast in column 2 and the ψ weights of the infinite moving
average form of the model in column 3.

IMSLS_CONFIDENCE, float confidence (Input)
Value in the exclusive interval (0,100) used to specify the confidence
percent probability limits of the forecast.Typical choices for confidence
are 90.0, 95.0 and 99.0.
Default: confidence = 95.0

IMSLS_OUT_FREE_FORECAST, float **outfree_forecast (Output)
Address of a pointer to an array of length n_predict by 3 containing the
forecasts for the original outlier free series in column 1, deviations from each
forecast in column 2 and the ψ weights of the infinite moving average form
of the model in column 3.

IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[] Output)
Storage for array outfree_forecast is provided by the user. For a
description, see IMSLS_OUT_FREE_FORECAST.

Chapter 8: Time Series and Forecasting ts_outlier_forecast • 549

Description
Consider the following model for a given outlier contaminated univariate time series

1, ,{ }t t nY ∗
= … :

1
() ().m

t t j j t jj
Y Y L B I tω∗

=
= + ∑

For an explanation of the notation, see the “Description” section for
imsls_f_ts_outlier_identification. It follows from the formula above that
the Box-Jenkins forecast at origin t for lead time l , ˆ ()tY l∗ , can be computed as:

1
ˆ ˆ() () () (), 1, , .m
t t j j t l jj

Y l Y l L B I t lω∗
+=

= + =∑ n_predict…

Therefore, computation of the forecasts for { }tY ∗ is done in two steps:
1. Computation of the forecasts for the outlier free series { }tY .
2. Computation of the forecasts for the original series { }tY ∗ by adding the multiple

outlier effects to the forecasts for { }tY .

Step 1 above:
Since

()() () ,t tB Y B aϕ μ θ− =

where

1() : () 1 ,d p sd
s p sdB B B Bϕ φ ϕ ϕ +

+= Δ = − − −…

the Box-Jenkins forecast at origin t for lead time l , ˆ ()tY l , can be computed
recursively as:

1 1
ˆ ˆ() (1) () .p sd p sd q
t j j t j t l jj j j l

Y l Y l j aϕ μ ϕ θ+ +

+ −= = =
= − + − −∑ ∑ ∑

Here,

for 0ˆ () ,ˆ () for 0
t l j

t
t

Y l j
Y l j

Y l j l j
+ − − ≤⎧⎪− = ⎨
− − >⎪⎩

and

1

 0 for max{1, }
.ˆ (1) for max{1, } 1, ,k

k k

k p sd
a

Y Y k p sd n−

≤ +⎧⎪= ⎨
− = + +⎪⎩ …

Step 2 above:

550 • ts_outlier_forecast IMSL C Stat Library

The formulas for ()jL B for the different types of outliers are as follows:

Innovational outliers (IO)
00

()() : () , 1
()

k
j kd k

s

BL B B B
B

θ ψ ψ ψ
φ

∞

=
= = = =

Δ ∑

Additive outliers (AO) () 1jL B =

Level shifts (LS)
0

1()
1

k
j k

L B B
B

∞

=
= =

− ∑

Temporary changes (TC)
0

1()
1

k k
j k

L B B
B

δ
δ

∞

=
= =

− ∑

Assuming the outlier occurs at time point jt , the outlier impact is therefore:

Innovational outliers (IO) 0 for ,
() ()

for , 0,
j

j j t j
j k j

t t
L B I t

t t k k
ω

ω ψ
<⎧⎪= ⎨ = + ≥⎪⎩

Additive outliers (AO) 0 for ,
() ()

for ,
j

j j t j
j j

t t
L B I t

t t
ω

ω
≠⎧⎪= ⎨ =⎪⎩

Level shifts (LS) 0 for ,
() ()

for , 0,
j

j j t j
j j

t t
L B I t

t t k k
ω

ω
<⎧⎪= ⎨ = + ≥⎪⎩

Temporary changes (TC) 0 for ,
() ()

for , 0.
j

kj j t j
j j

t t
L B I t

t t k k
ω

ω δ
<⎧⎪= ⎨ = + ≥⎪⎩

From these formulas, the forecasts ˆ ()tY l∗ can be computed easily.

The 100(1)α− percent probability limits for t lY ∗
+ and t lY + are given by

1 2 1/ 2
/ 2 1

ˆ ˆ() (or (), resp.) (1) ,l
t t j aj

Y l Y l u sα ψ−∗
=

± + ∑

where / 2uα is the 100(1 / 2)α− percentile of the standard normal distribution, 2
as is an

estimate of the variance 2
aσ of the random shocks (returned from

imsls_f_ts_outlier_identification), and the ψ weights { }jψ are the
coefficients in

Chapter 8: Time Series and Forecasting ts_outlier_forecast • 551

00

()() : : , 1.
()

k
k dk

s

BB B
B

θψ ψ ψ
φ

∞

=
= = =

Δ∑

For a detailed explanation of these concepts, see Chapter 5: “Forecasting,” Box,
Jenkins and Reinsel (1994).

Example
This example is a realization of an ARMA(2,1) process described by the model

1 2 10.24 10.0 0.5t t t t tY Y Y a a− − −− + = + + ,{ }ta a Gaussian white noise process.

Outliers were artificially added to the outlier free series 1, ,280{ }t tY = … at time points
150t = (level shift, 1 2.5ω = +) and 200t = (additive outlier, 2 3.2ω = +), resulting in

the outlier contaminated series 1, ,280{ }t tZ = … . For both series, forecasts were determined
for time points 281, , 290t = … and compared with the actual values of the series.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>

void main()
{
 float time_series[290] ={
 41.6699982,41.6699982,42.0752144,42.6123962,43.6161919,42.1932831,
 43.1055450,44.3518715,45.3961258,45.0790215,41.8874397,40.2159805,
 40.2447319,39.6208458,38.6873589,37.9272423,36.8718872,36.8310852,
 37.4524879,37.3440933,37.9861374,40.3810501,41.3464622,42.6495285,
 42.6096764,40.3134537,39.7971268,41.5401535,40.7160759,41.0363541,
 41.8171883,42.4190292,43.0318832,43.9968109,44.0419617,44.3225212,
 44.6082611,43.2199631,42.0419197,41.9679718,42.4926224,43.2091255,
 43.2512283,41.2301674,40.1057358,40.4510574,41.5329170,41.5678177,
 43.0090141,42.1592140,39.9234505,38.8394127,40.4319878,40.8679352,
 41.4551926,41.9756317,43.9878922,46.5736389,45.5939293,42.4487762,
 41.5325394,42.8830910,44.5771217,45.8541985,46.8249474,47.5686378,
 46.6700745,45.4120026,43.2305107,42.7635345,43.7112923,42.0768661,
 41.1835632,40.3352280,37.9761467,35.9550056,36.3212509,36.9925880,
 37.2625008,37.0040665,38.5232544,39.4119797,41.8316803,43.7091446,
 42.9381447,42.1066780,40.3771248,38.6518707,37.0550499,36.9447708,
 38.1017685,39.4727097,39.8670387,39.3820763,38.2180786,37.7543488,
 37.7265244,38.0290642,37.5531158,37.4685936,39.8233147,42.0480766,
 42.4053535,43.0117416,44.1289330,45.0393829,45.1114540,45.0086479,
 44.6560631,45.0278931,46.7830849,48.7649765,47.7991905,46.5339661,
 43.3679199,41.6420822,41.2694893,41.5959740,43.5330009,43.3643608,
 42.147129 1,42.5552788,42.4521446,41.7629128,39.9476891,38.3217010,
 40.5318718,42.8811569,44.4796944,44.6887932,43.1670265,41.2226143,
 41.8330154,44.3721924,45.2697029,44.4174194,43.5068550,44.9793015,
 45.0585403,43.2746620,40.3317070,40.3880501,40.2627106,39.6230278,
 41.0305252,40.9262009,40.8326912,41.7084885,42.9038048,45.8650513,
 46.5231590,47.9916115,47.8463135,46.5921936,45.8854408,45.9130440,
 45.7450371,46.2964249,44.9394569,45.8141251,47.5284042,48.5527802,
 48.3950577,47.8753052,45.8880005,45.7086983,44.6174774,43.5567932,
 44.5891113,43.1778679,40.9405632,40.6206894,41.3330421,42.2759552,
 42.4744949,43.0719833,44.2178459,43.8956337,44.1033440,45.6241455,

552 • ts_outlier_forecast IMSL C Stat Library

 45.3724861,44.9167595,45.9180603,46.9077835,46.1666603,46.6013489,
 46.6592331,46.7291603,47.1908340,45.9784355,45.1215782,45.6791115,
 46.7379875,47.3036957,45.9968834,44.4669495,45.7734680,44.6315041,
 42.9911766,46.3842583,43.7214432,43.5276833,41.3946495,39.7013168,
 39.1033401,38.5292892,41.0096245,43.4535828,44.6525154,45.5725899,
 46.2815285,45.2766647,45.3481712,45.5039482,45.6745682,44.0144806,
 42.9305000,43.6785469,42.2500534,40.0007210,40.4477005,41.4432716,
 42.0058670,42.9357758,45.6758842,46.8809929,46.8601494,47.0449791,
 46.5420647,46.8939934,46.2963371,43.5479164,41.3864059,41.4046364,
 42.3037987,43.6223717,45.8602371,47.3016396,46.8632469,45.4651413,
 45.6275482,44.9968376,42.7558670,42.0218239,41.9883728,42.2571678,
 44.3708687,45.7483635,44.8832512,44.7945862,44.8922577,44.7409401,
 45.1726494,45.5686874,45.9946709,47.3151054,48.0654068,46.4817467,
 42.8618279,42.4550323,42.5791168,43.4230957,44.7787971,43.8317108,
 43.6481781,42.4183960,41.8426285,43.3475227,44.4749908,46.3498306,
 47.8599319,46.2449913,43.6044006,42.4563484,41.2715340,39.8492508,
 39.9997292,41.4410820,42.9388237,42.5687332,42.6384087,41.7088661,
 43.9399033,45.4284401,44.4558411,45.1761856,45.3489113,45.1892662,
 46.3754730,45.6082802 };

 int n_obs = 280, i;
 float *parameters = NULL, *result = NULL, *forecast = NULL;
 float *outfree_forecast = NULL, *omega = NULL, *residual = NULL;
 float res_sigma, aic;
 float delta = 0.7;
 float series[560];
 int *outlier_stat = NULL;
 int num_outliers;
 int n_predict = 10;
 int model[4];
 float forecast_table[40];

 model[0] = 2;
 model[1] = 1;
 model[2] = 1;
 model[3] = 0;

 result = imsls_f_ts_outlier_identification(n_obs, model,
 time_series,
 IMSLS_RELATIVE_ERROR, 1.0e-5,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_RESIDUAL, &residual,
 IMSLS_OUTLIER_STATISTICS, &outlier_stat,
 IMSLS_OMEGA_WEIGHTS, &omega,
 IMSLS_ARMA_PARAM, ¶meters,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_AIC, &aic,
 0);

 printf("\nARMA parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("%d\t\t%lf\n", i, parameters[i]);

 printf("\nNumber of outliers: %d\n\n", num_outliers);
 printf("Outlier statistics:\n");

Chapter 8: Time Series and Forecasting ts_outlier_forecast • 553

 printf("Time point\t\tOutlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]);

 printf("\n");
 printf("RSE:%lf\n", res_sigma);
 printf("AIC:%lf\n", aic);

 for (i=0; i<n_obs; i++)
 {
 series[2*i] = time_series[i];
 series[2*i+1] = residual[i];
 }

 forecast = imsls_f_ts_outlier_forecast(n_obs, series,
 num_outliers, outlier_stat, omega, delta,
 model, parameters, n_predict,
 IMSLS_OUT_FREE_FORECAST,&outfree_forecast, 0);

 for (i=0; i<n_predict; i++)
 {
 forecast_table[4*i] = time_series[n_obs+i];
 forecast_table[4*i+1] = forecast[3*i];
 forecast_table[4*i+2] = forecast[3*i+1];
 forecast_table[4*i+3] = forecast[3*i+2];
 }

 imsls_f_write_matrix("\t* * * Forecast Table for outlier"
 "contaminated series * * *\nOrig. Series"
 "\tforecast\tprob. limits\tpsi weights\n",
 n_predict, 4, forecast_table,
 IMSLS_WRITE_FORMAT, "%11.4f", 0);

 for (i=0; i<n_predict; i++)
 {
 forecast_table[4*i] = time_series[n_obs+i] - 2.5;
 forecast_table[4*i+1] = outfree_forecast[3*i];
 forecast_table[4*i+2] = outfree_forecast[3*i+1];
 forecast_table[4*i+3] = outfree_forecast[3*i+2];
 }

 printf("\n");
 imsls_f_write_matrix("\t* * * Forecast Table for outlier free"
 "series * * *\n\nOutlier free series\tforecast"
 "\tprob. limits\tpsi weights\n",
 n_predict, 4, forecast_table,
 IMSLS_WRITE_FORMAT, "%11.4f", 0);

 if (parameters)
 {
 free(parameters);
 parameters = NULL;
 }

 if (outlier_stat)

554 • ts_outlier_forecast IMSL C Stat Library

 {
 free(outlier_stat);
 outlier_stat = NULL;
 }

 if (result)
 {
 free(result);
 result = NULL;
 }

 if (forecast)
 {
 free(forecast);
 forecast = NULL;
 }

 if (outfree_forecast)
 {
 free(outfree_forecast);
 outfree_forecast = NULL;
 }

 if (omega)
 {
 free(omega);
 omega = NULL;
 }

 if (residual)
 {
 free(residual);
 residual = NULL;
 }

 return;
}

Output

ARMA parameters:
0 8.839014
1 0.948735
2 -0.153870
3 -0.553387

Number of outliers: 2

Outlier statistics:
Time point Outlier type
150 2
200 1

RSE:1.004321
AIC:1323.625977

Chapter 8: Time Series and Forecasting auto_arima • 555

 * * * Forecast Table for outlier contaminated series * * *

 Orig. series forecast prob. limits psi weights

 1 2 3 4
 1 42.6384 43.6883 1.9684 1.5021
 2 41.7089 43.8260 3.5521 1.2712
 3 43.9399 44.0496 4.3450 0.9749
 4 45.4284 44.2406 4.7500 0.7294
 5 44.4558 44.3874 4.9622 0.5420
 6 45.1762 44.4973 5.0756 0.4019
 7 45.3489 44.5790 5.1369 0.2979
 8 45.1893 44.6395 5.1703 0.2208
 9 46.3755 44.6844 5.1885 0.1637
 10 45.6083 44.7177 5.1985 0.1213

 * * * Forecast Table for outlier free series * * *

 Outlier free series forecast prob. limits psi weights

 1 2 3 4
 1 40.1384 41.9641 1.9684 1.5021
 2 39.2089 42.1018 3.5521 1.2712
 3 41.4399 42.3254 4.3450 0.9749
 4 42.9284 42.5164 4.7500 0.7294
 5 41.9558 42.6632 4.9622 0.5420
 6 42.6762 42.7731 5.0756 0.4019
 7 42.8489 42.8548 5.1369 0.2979
 8 42.6893 42.9153 5.1703 0.2208
 9 43.8755 42.9602 5.1885 0.1637
 10 43.1083 42.9935 5.1985 0.1213

auto_arima
Automatically identifies time series outliers, determines parameters of a multiplicative
seasonal ARIMA (,0,) (0, ,0)sp q d× model and produces forecasts that incorporate the
effects of outliers whose effects persist beyond the end of the series.

Synopsis
#include <imsls.h>
float *imsls_f_auto_arima (int n_obs, int tpoints[], float x[],...,0)

The type double function is imsls_d_auto_arima.

Required Arguments

int n_obs (Input)
Number of observations in the original time series. Assuming that the series
is defined at time points 1, ,t tn_obs… , the actual length of the series, including
missing observations is 1 1n t t= − +n_obs .

556 • auto_arima IMSL C Stat Library

int tpoints[] (Input)
A vector of length n_obs containing the time points 1 2 _, , n obst t t… the time
series was observed. It is required that 1 2 _, , n obst t t… are in strictly ascending
order.

float x[] (Input)
A vector of length n_obs containing the observed time series values

* * *
1 2 _, , , n obsY Y Y" . This series can contain outliers and missing observations.

Outliers are identified by this routine and missing values are identified by the
time values in vector tpoints. If the time interval between two consecutive
time points is greater than one, i.e. 1 1i it t m+ − = > , then 1m − missing
values are assumed to exist between it and 1it + at times 11, 2, , 1i i it t t ++ + −… .
Therefore, the gap free series is assumed to be defined for equidistant time
points 1 1 _, 1, , n obst t t+ … . Missing values are automatically estimated prior to
identifying outliers and producing forecasts. Forecasts are generated for both
missing and observed values.

Return Value
Pointer to an array of length 1 + p + q with the estimated constant, AR and MA
parameters used to fit the outlier-free series using an ARIMA (,0,) (0, ,0)sp q d× model.
Upon completion, if d=model[3]=0, then an ARMA(p, q) model or AR(p) model is
fitted to the outlier-free version of the observed series *

tY . If d=model[3]>0, these
parameters are computed for an ARMA(p,q) representation of the seasonally adjusted
series * * *(1)d d

t s t s tZ Y B Y= Δ ⋅ = − ⋅ , where * *
s t t sB Y Y −= and s=model[2]≥1.

If an error occurred, NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>

 float *imsls_f_auto_arima(int n_obs, int tpoints[], float x[],
IMSLS_METHOD, int method,
IMSLS_MAX_LAG, int maxlag,
IMSLS_MODEL, int model[],
IMSLS_DELTA, float delta,
IMSLS_CRITICAL, float critical,
IMSLS_EPSILON, float epsilon,
IMSLS_RESIDUAL, float **residual,
IMSLS_RESIDUAL_USER, float residual[],
IMSLS_RESIDUAL_SIGMA, float *res_sigma,
IMSLS_NUM_OUTLIERS, int *num_outliers,
IMSLS_P_INITIAL, int n_p_initial, int p_initial[],
IMSLS_Q_INITIAL, int n_q_initial, int q_initial[],
IMSLS_S_INITIAL, int n_s_initial, int s_initial[],
IMSLS_D_INITIAL, int n_d_initial, int d_initial[],
IMSLS_OUTLIER_STATISTICS, int **outlier_stat,
IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[],
IMSLS_AIC, float *aic,

Chapter 8: Time Series and Forecasting auto_arima • 557

IMSLS_OUT_FREE_SERIES, float **outfree_series,
IMSLS_OUT_FREE_SERIES_USER, float outfree_series[],
IMSLS_CONFIDENCE, float confidence,
IMSLS_NUM_PREDICT, int n_predict,
IMSLS_OUT_FREE_FORECAST, float **outfree_forecast,
IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[],
IMSLS_OUTLIER_FORECAST, float **outlier_forecast,
IMSLS_OUTLIER_FORECAST_USER, float outlier_forecast[],
IMSLS_RETURN_USER, float parameters[],
0)

Optional Arguments

IMSLS_METHOD, int method (Input)
The method used in model selection:
1 — Automatic ARIMA (,0,0) (0, ,0)sp d× selection
2 — Grid search (Requires arguments IMSLS_P_INITIAL and
IMSLS_Q_INITIAL.)
3 — Specified ARIMA (,0,) (0, ,0)sp q d× model (Requires argument
IMSLS_MODEL.)
Default: method = 1
For more information, see the “Description” section.

IMSLS_MAX_LAG, int maxlag (Input)
The maximum lag allowed when fitting an AR(p) model.
Default: maxlag = 10

IMSLS_MODEL, int model[] (Input/Output)
Array of length 4 containing the values for p, q, s, d. If method=3 is chosen,
then the values for p and q must be defined. If IMSLS_S_INITIAL and
IMSLS_D_INITIAL are not defined, then also s and d must be given. If
method=1 or method=2, then model is ignored as an input array. On output,
model contains the optimum values for p, q, s, d in model[0], model[1],
model[2] and model[3], respectively.

IMSLS_DELTA, float delta (Input)
The dampening effect parameter used in the detection of a Temporary
Change Outlier (TC), 0<delta<1.
Default: delta = 0.7

IMSLS_CRITICAL, float critical (Input)
Critical value used as a threshold for outlier detection, critical > 0.
Default: critical = 3.0

IMSLS_EPSILON, float epsilon (Input)
Positive tolerance value controlling the accuracy of parameter estimates
during outlier detection.
Default: epsilon = 0.001

IMSLS_RESIDUAL, float **residual (Output)
Address of a pointer to an internally allocated array of length

558 • auto_arima IMSL C Stat Library

_ 1 1n obsn t t= − + ≥ n_obs , containing t̂e , the estimates of the white noise in
the outlier free original series.

IMSLS_RESIDUAL_USER, float residual[] (Output)
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.

IMSLS_RESIDUAL_SIGMA, float *res_sigma (Output)
Residual standard error (RSE) of the outlier free original series.

IMSLS_NUM_OUTLIERS, int *num_outliers (Output)
The number of outliers detected.

IMSLS_P_INITIAL, int n_p_initial, int p_initial[] (Input)
An array with n_p_initial elements containing the candidate values for p,
from which the optimum is being selected. All candidate values in
p_initial[] must be non-negative and n_p_initial ≥ 1. If method=2,
then IMSLS_P_INITIAL must be defined. Otherwise, n_p_initial and
p_initial are ignored.

IMSLS_Q_INITIAL, int n_q_initial, int q_initial[] (Input)
An array with n_q_initial elements containing the candidate values for q,
from which the optimum is being selected. All candidate values in
q_initial[] must be non-negative and n_q_initial ≥ 1. If method=2,
then IMSLS_Q_INITIAL must be defined. Otherwise, n_q_initial and
q_initial are ignored.

IMSLS_S_INITIAL, int n_s_initial, int s_initial[] (Input)
A vector of length n_s_initial containing the candidate values for s, from
which the optimum is being selected. All candidate values in s_initial[]
must be positive and n_s_initial ≥ 1.
Default: n_s_initial=1, s_initial={1}

IMSLS_D_INITIAL, int n_d_initial, int d_initial[] (Input)
A vector of length n_d_initial containing the candidate values for d, from
which the optimum is being selected. All candidate values in d_initial[]
must be non-negative and n_d_initial ≥ 1.
Default: n_d_initial=1, d_initial={0}

IMSLS_OUTLIER_STATISTICS, int **outlier_stat (Output)
Address of a pointer to an internally allocated array of length
num_outliers by 2 containing outlier statistics. The first column contains
the time at which the outlier was observed (1 1 1, 1, 2, ,t t t t t= + + n_obs…) and
the second column contains an identifier indicating the type of outlier
observed. Outlier types fall into one of five categories:

Chapter 8: Time Series and Forecasting auto_arima • 559

0 Innovational Outliers (IO)

1 Additive Outliers (AO)

2 Level Shift Outliers (LS)

3 Temporary Change Outliers (TC)

4 Unable to Identify (UI).

 If num_outliers=0, NULL is returned.

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[] (Output)
A user allocated array of length n × 2 containing outlier statistics in its first
num_outliers rows. Here, 1 1n t t= − + ≥n_obs n_obs .
See IMSLS_OUTLIER_STATISTICS.
If num_outliers = 0, outlier_stat stays unchanged.

IMSLS_AIC, float *aic (Output)
Akaike’s information criterion (AIC) for the optimum model.

IMSLS_OUT_FREE_SERIES, float **outfree_series (Output)
Address of a pointer to an internally allocated array of length n by 2, where

1 1n t t= − +n_obs . The first column of outfree_series contains the n_obs
observations from the original series, *

tY , plus estimated values for any time
gaps. The second column contains the same values as the first column
adjusted by removing any outlier effects. In effect, the second column
contains estimates of the underlying outlier-free series, tY . If no outliers are
detected then both columns will contain identical values.

IMSLS_OUT_FREE_SERIES_USER, float outfree_series[] (Output)
A user allocated array of length n by 2, where 1 1n t t= − +n_obs . For further
details, see IMSLS_OUT_FREE_SERIES.

IMSLS_CONFIDENCE, float confidence (Input)
Confidence level for computing forecast confidence limits, taken from the
exclusive interval (0, 100). Typical choices for confidence are 90.0, 95.0
and 99.0.
Default: confidence = 95.0

IMSLS_NUM_PREDICT, int n_predict (Input)
The number of forecasts requested. Forecasts are made at origin tn_obs , i.e.
from the last observed value of the series.
Default: n_predict = 0

IMSLS_OUT_FREE_FORECAST, float **outfree_forecast (Output)
Address of a pointer to an internally allocated array of length n_predict by 3.
The first column contains the forecasted values for the original outlier free
series for t= tn_obs +1, _n obst + 2,..., tn_obs + n_predict. The second column
contains standard errors for these forecasts, and the third column contains the
psi weights of the infinite order moving average form of the model.

560 • auto_arima IMSL C Stat Library

IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[] (Output)
A user allocated array of length n_predict by 3. For more information, see
IMSLS_OUT_FREE_FORECAST.

IMSLS_OUTLIER_FORECAST, float **outlier_forecast (Output)
Address of a pointer to an internally allocated array of length n_predict by 3.
The first column contains the forecasted values for the original series for
t= tn_obs +1, tn_obs +2,..., tn_obs +n_predict. The second column contains
standard errors for these forecasts, and the third column contains the ψ weights
of the infinite order moving average form of the model.

IMSLS_OUTLIER_FORECAST_USER, float outlier_forecast[] (Output)
A user allocated array of length n_predict by 3. For more information, see
IMSLS_OUTLIER_FORECAST.

IMSLS_RETURN_USER, float parameters[] (Output)
A user allocated array containing the estimated constant, AR and MA
parameters in its first 1+p+q locations. The values p and q can be estimated
by upper bounds: If method=1, an upper bound for p would be maxlag, and
q= 0. If method=2, upper bounds for p and q would be the maximum values
in arrays p_initial and q_initial, respectively. If method=3,
p= model[0] and q= model[1].

Description
Overview
Function imsls_f_auto_arima determines the parameters of a multiplicative
seasonal ARIMA (,0,) (0, ,0)sp q d× model, and then uses the fitted model to identify
outliers and prepare forecasts. The order of this model can be specified or
automatically determined.
The ARIMA (,0,) (0, ,0)sp q d× model handled by imsls_f_auto_arima has the
following form:

() () () , 1, 2, , ,d
s t tB Y B a t nφ μ θΔ − = = …

where
2

1 2() 1 ,p
pB B B Bφ φ φ φ= − − − −"

2

1 2() 1 ,q
qB B B Bθ θ θ θ= − − − −"

(1)d s d

s BΔ = −

and

.k
t t kB Y Y −=

It is assumed that all roots of ()Bφ and ()Bθ lie outside the unit circle. Clearly, if
1s = this reduces to the traditional ARIMA(p, d, q) model.

tY is the unobserved, outlier-free time series with mean μ , and white noise ta . This
model is referred to as the underlying, outlier-free model. Function
imsls_f_auto_arima does not assume that this series is observable. It assumes that

Chapter 8: Time Series and Forecasting auto_arima • 561

the observed values might be contaminated by one or more outliers, whose effects are
added to the underlying outlier-free series:

* _ .t t tY Y outlier effect= +

Outlier identification uses the algorithm developed by Chen and Liu (1993). Outliers
are classified into 1 of 5 types:
0. innovational
1. additive
2. level shift
3. temporary change and
4. unable to identify
Once outliers are identified, imsls_f_auto_arima estimates tY , the outlier-free
series representation of the data, by removing the estimated outlier effects.
Using the information about the adjusted ARIMA (,0,) (0, ,0)sp q d× model and the
removed outliers, forecasts are then prepared for the outlier-free series. Outlier effects
are added to these forecasts to produce a forecast for the observed series, *

tY . If there
are no outliers, then the forecasts for the outlier-free series and the observed series will
be identical.
Model Selection
Users have an option of either specifying specific values for p, q , s and d or have
imsls_f_auto_arima automatically select best fit values. Model selection can be
conducted in one of three methods listed below depending upon the value of variable
method.

Method 1: Automatic ARIMA (,0,0) (0, ,0)sp d× Selection

This method initially searches for the AR(p) representation with minimum AIC for the
noisy data, where p =0,...,maxlag.

If IMSLS_D_INITIAL is defined then the values in s_initial and d_initial are
included in the search to find an optimum ARIMA (,0,0) (0, ,0)sp d× representation of
the series. Here, every possible combination of values for p, s in s_initial and d in
d_initial is examined. The best found ARIMA (,0,0) (0, ,0)sp d× representation is
then used as input for the outlier detection routine.

The optimum values for p, q, s and d are returned in model[0], model[1], model[2]
and model[3], respectively.

562 • auto_arima IMSL C Stat Library

Method 2: Grid Search

The second automatic method conducts a grid search for p and q using all possible
combinations of candidate values in p_initial and q_initial. Therefore, for this
method the definition of IMSLS_P_INITIAL and IMSLS_Q_INITIAL is required.

If IMSLS_D_INITIAL is defined, the grid search is extended to include the candidate
values for s and d given in s_initial and d_initial, respectively.

If IMSLS_D_INITIAL is not defined, no seasonal adjustment is attempted, and the grid
search is restricted to searching for optimum values of p and q only.

The optimum values of p, q, s and d are returned in model[0], model[1], model[2]
and model[3], respectively.

Method 3: Specified ARIMA (,0,) (0, ,0)sp q d× Model

In the third method, specific values for p, q, s and d are given. The values for p and q
must be defined in model[0] and model[1], respectively. If IMSLS_S_INITIAL and
IMSLS_D_INITIAL are not defined, then values 0s > and 0d ≥ must be specified in
model[2] and model[3]. If IMSLS_S_INITIAL and IMSLS_D_INITIAL are defined,
then a grid search for the optimum values of s and d is conducted using all possible
combinations of input values in s_initial and d_initial. The optimum values of
s and d can be found in model[2] and model[3], respectively.

Outliers

The algorithm of Chen and Liu (1993) is used to identify outliers. The number of
outliers identified is returned in num_outliers. Both the time and classification for
these outliers are returned in outlier_stat[]. Outliers are classified into one of five
categories based upon the standardized statistic for each outlier type. The time at
which the outlier occurred is given in the first column of outlier_stat. The outlier
identifier returned in the second column is according to the descriptions in the
following table:

Chapter 8: Time Series and Forecasting auto_arima • 563

Except for additive outliers (AO), the effect of an outlier persists to observations
following that outlier. Forecasts produced by imsls_f_auto_arima take this into
account.

Examples

Example 1
This example uses time series LNU03327709 from the US Department of Labor,
Bureau of Labor Statistics. It contains the unadjusted special unemployment rate, taken
monthly from Janurary 1994 through September 2005. The values 01/2004 – 03/2005
are used by imsls_f_auto_arima for outlier detection and parameter estimation. In
this example, Method 1 without seasonal adjustment is chosen to find an appropriate
AR(p) model. A forecast is done for the following six months and compared with the
actual values 04/2005 – 09/2005.

#include <imsls.h>

Outlier
Identifier

Name General Description

0

(IO)
Innovational

Outlier

Innovational outliers persist. That is, there is an initial
impact at the time the outlier occurs. This effect continues
in a lagged fashion with all future observations. The lag
coefficients are determined by the coefficient of the
underlying ARIMA (,0,) (0, ,0)sp q d× model.

1 (AO)
Additive
Outlier

Additive outliers do not persist. As the name implies, an
additive outlier effects only the observation at the time the
outlier occurs. Hence additive outliers have no effect on
future forecasts.

2 (LS)
Level Shift

Level shift outliers persist. They have the effect of either
raising or lowering the mean of the series starting at the
time the outlier occurs. This shift in the mean is abrupt and
permanent.

3 (TC)
Temporary

Change

Temporary change outliers persist and are similar to level
shift outliers with one major exception. Like level shift
outliers, there is an abrupt change in the mean of the series
at the time this outlier occurs. However, unlike level shift
outliers, this shift is not permanent. The TC outlier
gradually decays, eventually bringing the mean of the
series back to its original value. The rate of this decay is
modeled using the parameter delta. The default of
delta= 0.7 is the value recommended for general use by
Chen and Liu (1993).

4 (UI)
Unable to
Identify

If an outlier is identified as the last observation, then the
algorithm is unable to determine the outlier’s classification.
For forecasting, a UI outlier is treated as an IO outlier.
That is, its effect is lagged into the forecasts.

564 • auto_arima IMSL C Stat Library

#include <stdlib.h>
#include <stdio.h>

void main(void)
{
 float *parameters = NULL, *outlier_forecast = NULL;
 int *outlier_stat = NULL;
 int n_obs, n_predict, i, num_outliers;
 float aic, res_sigma;
 int model[4];
 float forecast_table[24];

 float x[141] = {
 12.8,12.2,11.9,10.9,10.6,11.3,11.1,10.4,10.0,9.7,9.7,9.7,
 11.1,10.5,10.3,9.8,9.8,10.4,10.4,10.0,9.7,9.3,9.6,9.7,
 10.8,10.7,10.3,9.7,9.5,10.0,10.0,9.3,9.0,8.8,8.9,9.2,
 10.4,10.0,9.6,9.0,8.5,9.2,9.0,8.6,8.3,7.9,8.0,8.2,
 9.3,8.9,8.9,7.7,7.6,8.4,8.5,7.8,7.6,7.3,7.2,7.3,
 8.5,8.2,7.9,7.4,7.1,7.9,7.7,7.2,7.0,6.7,6.8,6.9,
 7.8,7.6,7.4,6.6,6.8,7.2,7.2,7.0,6.6,6.3,6.8,6.7,
 8.1,7.9,7.6,7.1,7.2,8.2,8.1,8.1,8.2,8.7,9.0,9.3,
 10.5,10.1,9.9,9.4,9.2,9.8,9.9,9.5,9.0,9.0,9.4,9.6,
 11.0,10.8,10.4,9.8,9.7,10.6,10.5,10.0,9.8,9.5,9.7,9.6,
 10.9,10.3,10.4,9.3,9.3,9.8,9.8,9.3,8.9,9.1,9.1,9.1,
 10.2,9.9,9.4,8.7,8.6,9.3,9.1,8.8,8.5};

 int times[141] = {
 1,2,3,4,5,6,7,8,9,10,11,12,
 13,14,15,16,17,18,19,20,21,22,23,24,
 25,26,27,28,29,30,31,32,33,34,35,36,
 37,38,39,40,41,42,43,44,45,46,47,48,
 49,50,51,52,53,54,55,56,57,58,59,60,
 61,62,63,64,65,66,67,68,69,70,71,72,
 73,74,75,76,77,78,79,80,81,82,83,84,
 85,86,87,88,89,90,91,92,93,94,95,96,
 97,98,99,100,101,102,103,104,105,106,107,108,
 109,110,111,112,113,114,115,116,117,118,119,120,
 121,122,123,124,125,126,127,128,129,130,131,132,
 133,134,135,136,137,138,139,140,141};

 n_predict = 6;
 n_obs = 135;

 parameters = imsls_f_auto_arima(n_obs, times, x, IMSLS_MODEL, model,
 IMSLS_AIC, &aic,
 IMSLS_MAX_LAG, 5,
 IMSLS_CRITICAL, 4.0,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS, &outlier_stat,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_NUM_PREDICT, n_predict,
 IMSLS_OUTLIER_FORECAST, &outlier_forecast,
 0);

 printf("\nMethod 1: Automatic ARIMA model selection,"

Chapter 8: Time Series and Forecasting auto_arima • 565

 " no differencing\n");
 printf("\nModel chosen: p=%d, q=%d, s=%d, d=%d\n", model[0],
 model[1], model[2], model[3]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);

 printf("Outlier statistics:\n\n");
 printf("Time point\t\tOutlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]);

 printf("\nAIC = %lf\n", aic);
 printf("RSE = %lf\n\n", res_sigma);

 printf("Parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("parameters[%d]=%lf\n", i, parameters[i]);

 for (i=0; i<n_predict; i++)
 {
 forecast_table[4*i] = x[n_obs+i];
 forecast_table[4*i+1] = outlier_forecast[3*i];
 forecast_table[4*i+2] = outlier_forecast[3*i+1];
 forecast_table[4*i+3] = outlier_forecast[3*i+2];
 }

 imsls_f_write_matrix("\t* * * Forecast Table * * *"
 "\nOrig. series\t forecast\tprob. limits\tpsi weights\n",
 n_predict, 4, forecast_table, IMSLS_WRITE_FORMAT, "%11.4f", 0);

 if (parameters)
 {
 free(parameters);
 parameters = NULL;
 }

 if (outlier_forecast)
 {
 free(outlier_forecast);
 outlier_forecast = NULL;
 }

 if (outlier_stat)
 {
 free(outlier_stat);
 outlier_stat = NULL;
 }

 return;
}

Output
Method 1: Automatic ARIMA model selection, no differencing

Model chosen: p=5, q=0, s=1, d=0

566 • auto_arima IMSL C Stat Library

Number of outliers: 6

Outlier statistics:

Time point Outlier type
13 0
37 3
85 0
97 0
109 0
121 0

AIC = 380.951660
RSE = 0.372990

Parameters:
parameters[0]=0.078454
parameters[1]=0.905531
parameters[2]=-0.101995
parameters[3]=-0.184992
parameters[4]=0.218070
parameters[5]=0.154951

 * * * Forecast Table * * *
 Orig. series forecast prob. limits psi weights

 1 2 3 4
1 8.7000 9.0883 0.7310 0.9055
2 8.6000 9.1523 0.9862 0.7180
3 9.3000 9.4397 1.1172 0.3728
4 9.1000 9.5955 1.1500 0.3149
5 8.8000 9.5500 1.1728 0.4667
6 8.5000 9.4054 1.2214 0.6184

Example 2

This is the same as Example 1, except now imsls_f_auto_arima uses Method 2
with a possible seasonal adjustment. As a result, the unadjusted model with

3, 2, 1, 0p q s d= = = = is chosen as optimum.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>

void main(void)
{
 int n_obs, n_predict, i, num_outliers;
 float aic, res_sigma;
 int model[4];
 int n_s_initial = 2;
 int n_d_initial = 3;
 int s_initial[2] = {1,2};
 int d_initial[3] = {0,1,2};
 int n_p_initial = 4, n_q_initial = 4;

Chapter 8: Time Series and Forecasting auto_arima • 567

 int p_initial[4] = {0,1,2,3};
 int q_initial[4] = {0,1,2,3};
 float parameters_user[141];
 float outfree_series_user[282];
 int outlier_stat_user[282];
 float outlier_forecast_user[24];
 float forecast_table[24];

 float x[141] = {
 12.8,12.2,11.9,10.9,10.6,11.3,11.1,10.4,10.0,9.7,9.7,9.7,
 11.1,10.5,10.3,9.8,9.8,10.4,10.4,10.0,9.7,9.3,9.6,9.7,
 10.8,10.7,10.3,9.7,9.5,10.0,10.0,9.3,9.0,8.8,8.9,9.2,
 10.4,10.0,9.6,9.0,8.5,9.2,9.0,8.6,8.3,7.9,8.0,8.2,
 9.3,8.9,8.9,7.7,7.6,8.4,8.5,7.8,7.6,7.3,7.2,7.3,
 8.5,8.2,7.9,7.4,7.1,7.9,7.7,7.2,7.0,6.7,6.8,6.9,
 7.8,7.6,7.4,6.6,6.8,7.2,7.2,7.0,6.6,6.3,6.8,6.7,
 8.1,7.9,7.6,7.1,7.2,8.2,8.1,8.1,8.2,8.7,9.0,9.3,
 10.5,10.1,9.9,9.4,9.2,9.8,9.9,9.5,9.0,9.0,9.4,9.6,
 11.0,10.8,10.4,9.8,9.7,10.6,10.5,10.0,9.8,9.5,9.7,9.6,
 10.9,10.3,10.4,9.3,9.3,9.8,9.8,9.3,8.9,9.1,9.1,9.1,
 10.2,9.9,9.4,8.7,8.6,9.3,9.1,8.8,8.5};

 int times[141] = {
 1,2,3,4,5,6,7,8,9,10,11,12,
 13,14,15,16,17,18,19,20,21,22,23,24,
 25,26,27,28,29,30,31,32,33,34,35,36,
 37,38,39,40,41,42,43,44,45,46,47,48,
 49,50,51,52,53,54,55,56,57,58,59,60,
 61,62,63,64,65,66,67,68,69,70,71,72,
 73,74,75,76,77,78,79,80,81,82,83,84,
 85,86,87,88,89,90,91,92,93,94,95,96,
 97,98,99,100,101,102,103,104,105,106,107,108,
 109,110,111,112,113,114,115,116,117,118,119,120,
 121,122,123,124,125,126,127,128,129,130,131,132,
 133,134,135,136,137,138,139,140,141};

 n_predict = 6;
 n_obs = 135;

 imsls_f_auto_arima(n_obs, times, x, IMSLS_MODEL, model,
 IMSLS_AIC, &aic,
 IMSLS_CRITICAL, 4.0,
 IMSLS_MAX_LAG, 5,
 IMSLS_METHOD, 2,
 IMSLS_P_INITIAL, n_p_initial, p_initial,
 IMSLS_Q_INITIAL, n_q_initial, q_initial,
 IMSLS_S_INITIAL, n_s_initial, s_initial,
 IMSLS_D_INITIAL, n_d_initial, d_initial,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS_USER, outlier_stat_user,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_NUM_PREDICT, 6,
 IMSLS_OUTLIER_FORECAST_USER, outlier_forecast_user,
 IMSLS_RETURN_USER, parameters_user,
 0);

568 • auto_arima IMSL C Stat Library

 for (i=0; i<n_predict; i++)
 {
 forecast_table[4*i] = x[n_obs+i];
 forecast_table[4*i+1] = outlier_forecast_user[3*i];
 forecast_table[4*i+2] = outlier_forecast_user[3*i+1];
 forecast_table[4*i+3] = outlier_forecast_user[3*i+2];
 }

 printf("\nMethod 2: Grid search, differencing allowed\n");

 printf("\nModel chosen: p=%d, q=%d, s=%d, d=%d\n", model[0],
 model[1], model[2], model[3]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);

 printf("Outlier statistics:\n\n");
 printf("Time point\t\tOutlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d\t\t%d\n", outlier_stat_user[2*i],
 outlier_stat_user[2*i+1]);

 printf("\nAIC = %lf\n", aic);
 printf("RSE = %lf\n\n", res_sigma);

 printf("Parameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("parameters[%d]=%lf\n", i, parameters_user[i]);

 imsls_f_write_matrix("\n\t* * * Forecast Table * * *"
 "\nOrig. series\t forecast\tprob. limits\tpsi weights\n",
 n_predict, 4, forecast_table, IMSLS_WRITE_FORMAT, "%11.4f", 0);

 return;
}

Output

Method 2: Grid search, differencing allowed

Model chosen: p=3, q=2, s=1, d=0

Number of outliers: 1

Outlier statistics:

Time point Outlier type
109 0

AIC = 408.076813
RSE = 0.412409

Parameters:
parameters[0]=0.509478
parameters[1]=1.944665
parameters[2]=-1.901104
parameters[3]=0.901657

Chapter 8: Time Series and Forecasting auto_arima • 569

parameters[4]=1.113017
parameters[5]=-0.914998

 * * * Forecast Table * * *
 Orig. series forecast prob. limits psi weights

 1 2 3 4
1 8.7000 9.1109 0.8083 0.8316
2 8.6000 9.1811 1.0513 0.6312
3 9.3000 9.5185 1.1686 0.5480
4 9.1000 9.7804 1.2497 0.6157
5 8.8000 9.7117 1.3451 0.7245
6 8.5000 9.3842 1.4671 0.7326

Example 3
This example is the same as Example 2 but now Method 3 with the optimum model
parameters 3, 2, 1, 0p q s d= = = = from Example 2 are chosen for outlier detection
and forecasting.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>

void main(void)
{
 float *parameters = NULL, *outlier_forecast = NULL;
 int *outlier_stat = NULL;
 int n_obs, n_predict, i, num_outliers;
 float aic, res_sigma;
 int model[4];
 float forecast_table[24];

 float x[141] = {
 12.8,12.2,11.9,10.9,10.6,11.3,11.1,10.4,10.0,9.7,9.7,9.7,
 11.1,10.5,10.3,9.8,9.8,10.4,10.4,10.0,9.7,9.3,9.6,9.7,
 10.8,10.7,10.3,9.7,9.5,10.0,10.0,9.3,9.0,8.8,8.9,9.2,
 10.4,10.0,9.6,9.0,8.5,9.2,9.0,8.6,8.3,7.9,8.0,8.2,
 9.3,8.9,8.9,7.7,7.6,8.4,8.5,7.8,7.6,7.3,7.2,7.3,
 8.5,8.2,7.9,7.4,7.1,7.9,7.7,7.2,7.0,6.7,6.8,6.9,
 7.8,7.6,7.4,6.6,6.8,7.2,7.2,7.0,6.6,6.3,6.8,6.7,
 8.1,7.9,7.6,7.1,7.2,8.2,8.1,8.1,8.2,8.7,9.0,9.3,
 10.5,10.1,9.9,9.4,9.2,9.8,9.9,9.5,9.0,9.0,9.4,9.6,
 11.0,10.8,10.4,9.8,9.7,10.6,10.5,10.0,9.8,9.5,9.7,9.6,
 10.9,10.3,10.4,9.3,9.3,9.8,9.8,9.3,8.9,9.1,9.1,9.1,
 10.2,9.9,9.4,8.7,8.6,9.3,9.1,8.8,8.5};

 int times[141] = {
 1,2,3,4,5,6,7,8,9,10,11,12,
 13,14,15,16,17,18,19,20,21,22,23,24,
 25,26,27,28,29,30,31,32,33,34,35,36,
 37,38,39,40,41,42,43,44,45,46,47,48,
 49,50,51,52,53,54,55,56,57,58,59,60,
 61,62,63,64,65,66,67,68,69,70,71,72,

570 • auto_arima IMSL C Stat Library

 73,74,75,76,77,78,79,80,81,82,83,84,
 85,86,87,88,89,90,91,92,93,94,95,96,
 97,98,99,100,101,102,103,104,105,106,107,108,
 109,110,111,112,113,114,115,116,117,118,119,120,
 121,122,123,124,125,126,127,128,129,130,131,132,
 133,134,135,136,137,138,139,140,141};

 n_predict = 6;
 n_obs = 135;

 model[0] = 3;
 model[1] = 2;
 model[2] = 1;
 model[3] = 0;

 parameters = imsls_f_auto_arima(n_obs, times, x, IMSLS_MODEL, model,
 IMSLS_AIC, &aic,
 IMSLS_CRITICAL, 4.0,
 IMSLS_METHOD, 3,
 IMSLS_NUM_OUTLIERS, &num_outliers,
 IMSLS_OUTLIER_STATISTICS, &outlier_stat,
 IMSLS_RESIDUAL_SIGMA, &res_sigma,
 IMSLS_NUM_PREDICT, 6,
 IMSLS_OUTLIER_FORECAST, &outlier_forecast,
 0);

 printf("\nMethod 3: Specified ARIMA model\n");
 printf("\nModel: p=%d, q=%d, s=%d, d=%d\n", model[0], model[1],
 model[2], model[3]);
 printf("\nNumber of outliers: %d\n\n", num_outliers);

 printf("Outlier statistics:\n\n");
 printf("Time point\t\tOutlier type\n");
 for (i=0; i<num_outliers; i++)
 printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]);

 printf("\nAIC = %lf\n", aic);
 printf("RSE = %lf\n", res_sigma);

 printf("\nParameters:\n");
 for (i=0; i<=model[0]+model[1]; i++)
 printf("parameters[%d]=%lf\n", i, parameters[i]);

 for (i=0; i<n_predict; i++)
 {
 forecast_table[4*i] = x[n_obs+i];
 forecast_table[4*i+1] = outlier_forecast[3*i];
 forecast_table[4*i+2] = outlier_forecast[3*i+1];
 forecast_table[4*i+3] = outlier_forecast[3*i+2];
 }

 imsls_f_write_matrix("\t* * * Forecast Table * * *"
 "\nOrig. series\t forecast\tprob. limits\tpsi weights\n",
 n_predict, 4, forecast_table, IMSLS_WRITE_FORMAT, "%11.4f", 0);

Chapter 8: Time Series and Forecasting auto_arima • 571

 if (parameters)
 {
 free(parameters);
 parameters = NULL;
 }

 if (outlier_forecast)
 {
 free(outlier_forecast);
 outlier_forecast = NULL;
 }

 if (outlier_stat)
 {
 free(outlier_stat);
 outlier_stat = NULL;
 }

 return;

}

Output
Method 3: Specified ARIMA model

Model: p=3, q=2, s=1, d=0

Number of outliers: 1

Outlier statistics:

Time point Outlier type
109 0

AIC = 408.076813
RSE = 0.412409

Parameters:
parameters[0]=0.509478
parameters[1]=1.944665
parameters[2]=-1.901104
parameters[3]=0.901657
parameters[4]=1.113017
parameters[5]=-0.914998

 * * * Forecast Table * * *
 Orig. series forecast prob. limits psi weights

 1 2 3 4
1 8.7000 9.1109 0.8083 0.8316
2 8.6000 9.1811 1.0513 0.6312
3 9.3000 9.5185 1.1686 0.5480
4 9.1000 9.7804 1.2497 0.6157
5 8.8000 9.7117 1.3451 0.7245
6 8.5000 9.3842 1.4671 0.7326

572 • difference IMSL C Stat Library

difference
Differences a seasonal or nonseasonal time series.

Synopsis
#include <imsls.h>

float *imsls_f_difference (int n_observations, float z[],
int n_differences, int periods[], ..., 0)

The type double function is imsls_d_difference.

Required Arguments

int n_observations (Input)
Number of observations.

float z[] (Input)
Array of length n_observations containing the time series.

int n_differences (Input)
Number of differences to perform. Argument n_differences must be
greater than or equal to 1.

int periods[] (Input)
Array of length n_differences containing the periods at which z is to be
differenced.

Return Value
Pointer to an array of length n_observations containing the differenced series.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_difference (int n_observations, float z[],

int n_differences, int periods[],
IMSLS_ORDERS, int orders[],
IMSLS_LOST, intv*n_lost,
IMSLS_EXCLUDE_FIRST, or
IMSLS_SET_FIRST_TO_NAN,
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments
IMSLS_ORDERS, int orders[] (Input)

Array of length n_differences containing the order of each difference
given in periods. The elements of orders must be greater than or equal to 0.

IMSLS_LOST, int *n_lost (Output)
Number of observations lost because of differencing the time series z.

Chapter 8: Time Series and Forecasting difference • 573

IMSLS_EXCLUDE_FIRST, or
IMSLS_SET_FIRST_TO_NAN

If IMSLS_EXCLUDE_FIRST is specified, the first n_lost are excluded from w
due to differencing. The differenced series w is of length n_observations −
n_lost. If IMSLS_SET_FIRST_TO_NAN is specified, the first n_lost
observations are set to NaN (Not a Number). This is the default if neither
IMSLS_EXCLUDE_FIRST nor IMSLS_SET_FIRST_TO_NAN is specified.

IMSLS_RETURN_USER, float w[] (Output)
If specified, w contains the differenced series. If IMSLS_EXCLUDE_FIRST also
is specified, w is of length n_observations. If IMSLS_SET_FIRST_TO_NAN
is specified or neither IMSLS_EXCLUDE_FIRST nor
IMSLS_SET_FIRST_TO_NAN is specified, w is of length
n_observations − n_lost.

Description
Function imsls_f_difference performs m = n_differences successive backward
differences of period si = periods [i − 1] and order
di = orders [i − 1] for i = 1, ..., m on the n = n_observations observations {Zt} for
t = 1, 2, ..., n.
Consider the backward shift operator B given by

k
t t kB Z Z −=

for all k. Then, the backward difference operator with period s is defined by the
following:

(1)s

s t t t t sZ B Z Z Z −Δ = − = −
 for

0s >
.

Note that s
tB Z and s

tZΔ are defined only for t = (s + 1), ..., n. Repeated differencing
with period s is simply

() () ()
0

!1 1
! !

dd jd s sj
s t t t

j

dZ B Z B Z
j d j=

Δ = − = −
−∑

where d ≥ 0 is the order of differencing. Note that
d
s tZΔ

is defined only for t = (sd + 1), ..., n.
The general difference formula used in the function imsls_f_difference is given
by

574 • difference IMSL C Stat Library

1 2

1 2

NaN for 1, ...,

for 1, ...,m

m

L
t dd d

s s s t L

t n
W

Z t n n

=⎧⎪= ⎨Δ Δ Δ = +⎪⎩ …

where nL represents the number of observations “lost” because of differencing and
NaN represents the missing value code. See the functions imsls_f_machine and
imsls_d_machine (Chapter 15, “Utilities”) to retrieve missing values. Note that

L j j
j

n s d= ∑

A homogeneous, stationary time series can be arrived at by appropriately differencing a
homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85). Preliminary
application of an appropriate transformation followed by differencing of a series can
enable model identification and parameter estimation in the class of homogeneous
stationary autoregressive moving average models.

Examples

Example 1
Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the monthly
total number of international airline passengers from January 1949 through December
1960. Function imsls_f_difference is used to compute

1 12 12 1 13() ()t t t t t tW Z Z Z Z Z− − −= Δ Δ = − − −

for t = 14, 15, ..., 24.
#include <imsls.h>

void main()

{
 int i;
 int n_observations = 24;
 int n_differences = 2;
 int periods[2] = {1, 12};
 float *z;
 float *difference;

 z = imsls_f_data_sets (4, 0);
 difference = imsls_f_difference (n_observations, z,
 n_differences, periods,
 0);
 printf ("i\tz[i]\tdifference[i]\n");
 for (i = 0; i < n_observations; i++)
 printf ("%d\t%f\t%f\n", i, z[i], difference[i]);

}

Chapter 8: Time Series and Forecasting difference • 575

Output
 i z[i] difference[i]
 0 112.000000 NaN
 1 118.000000 NaN
 2 132.000000 NaN
 3 129.000000 NaN
 4 121.000000 NaN
 5 135.000000 NaN
 6 148.000000 NaN
 7 148.000000 NaN
 8 136.000000 NaN
 9 119.000000 NaN
10 104.000000 NaN
11 118.000000 NaN
12 115.000000 NaN
13 126.000000 5.000000
14 141.000000 1.000000
15 135.000000 -3.000000
16 125.000000 -2.000000
17 149.000000 10.000000
18 170.000000 8.000000
19 170.000000 0.000000
20 158.000000 0.000000
21 133.000000 -8.000000
22 114.000000 -4.000000
23 140.000000 12.000000

Example 2
The data for this example is the same as that for the initial example. The first n_lost
observations are excluded from W due to differencing, and n_lost is also output.

#include <imsls.h>

void main()
{

 int i;
 int n_observations = 24;
 int n_differences = 2;
 int periods[2] = {1, 12};
 int n_lost;
 float *z;
 float *difference;
 /* Get airline data */
 z = imsls_f_data_sets (4, 0);
 /* Compute differenced time series when observations
 lost are excluded from the differencing */
 difference = imsls_f_difference (n_observations, z,
 n_differences, periods,
 IMSLS_EXCLUDE_FIRST,
 IMSLS_LOST, &n_lost,
 0);
 /* Print the number of lost observations */
 printf ("n_lost equals %d\n", n_lost);
 printf ("\n\ni\tz[i]\t difference[i]\n");

576 • seasonal_fit IMSL C Stat Library

 /* Print the original time series and the differenced
 time series */
 for (i = 0; i < n_observations - n_lost; i++)
 printf ("%d\t%f\t%f\n", i, z[i], difference[i]);
}

Output
n_lost equals 13

 i z[i] difference[i]
 0 112.000000 5.000000
 1 118.000000 1.000000
 2 132.000000 -3.000000
 3 129.000000 -2.000000
 4 121.000000 10.000000
 5 135.000000 8.000000
 6 148.000000 0.000000
 7 148.000000 0.000000
 8 136.000000 -8.000000
 9 119.000000 -4.000000
10 104.000000 12.000000

Fatal Errors

IMSLS_PERIODS_LT_ZERO “period[#]” = #. All elements of “period” must be
greater than 0.

IMSLS_ORDER_NEGATIVE “order[#]” = #. All elements of “order” must be
nonnegative.

IMSLS_Z_CONTAINS_NAN “z[#]” = NaN; “z” can not contain missing values.
There may be other elements of “z” that are equal to
NaN.

seasonal_fit
Estimates the optimum seasonality parameters for a time series using an autoregressive
model, AR(p), to represent the time series.

Synopsis

#include <imsls.h>

float * imsls_f_seasonal_fit(int n_obs, float z[], int maxlag,
 int n_differences, int n_s_initial, int s_initial[],…,0)

The type double function is imsls_d_seasonal_fit.

Required Arguments

int n_obs (Input)
Number of observations in the time series.

Chapter 8: Time Series and Forecasting seasonal_fit • 577

float z[] (Input)
An array of length n_obs containing the time series. No missing values in
the series are allowed.

int maxlag (Input)
The maximum lag allowed when fitting an AR(p) model.

int n_differences (Input)
The number of differences to perform. Argument n_differences must be
greater than or equal to one.

int n_s_initial (Input)
The number of rows of the array containing the seasonal differences.

int s_initial[] (Input)
Array of dimension n_s_initial by n_differences containing the seasonal
differences to test. All values of s_initial must be greater than or equal to one.

Return Value
Pointer to an array of length n_obs or n_obs-n_lost containing the optimum
seasonally adjusted, autoregressive series. The first n_lost observations in this series
are set to NaN, missing values. The seasonal adjustment is done by selecting optimum
values for 1 , , md d… , 1 , , ms s… (m=n_differences) and p in the AR model:

1 2

1 2
()()m

m

dd d
p s s s t tB Z aφ μΔ Δ Δ − =" ,

where { }tZ is the original time series, B is the backward shift operator defined by
k

t t kB Z Z −= , 0k ≥ , ta is Gaussian white noise with [] 0tE a = and 2[]tVAR a σ= ,
2

1 2() 1 , 0p
pp B B B B pφ φ φ φ= − − − − ≤ ≤ maxlag" ,

(1) , d s d
s BΔ = − with 0, 0s d> ≥ , and μ is a centering parameter for the

differenced series.

NOTE that 0 1sΔ = , the identity operator, i.e. 0
s t tY YΔ = .

If an error occurred, then NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>

float * imsls_f_seasonal_fit (int n_obs, float z[], int maxlag,
int n_differences, int n_s_initial, int s_initial[],
IMSLS_RETURN_USER, float w[],
IMSLS_D_INITIAL, int n_d_initial, int d_initial[],
IMSLS_SET_FIRST_TO_NAN, or IMSLS_EXCLUDE_FIRST,
IMSLS_CENTER, int n_center,
IMSLS_LOST, int *n_lost,
IMSLS_BEST_PERIODS, int **s,
IMSLS_BEST_PERIODS_USER, int s[],

578 • seasonal_fit IMSL C Stat Library

IMSLS_BEST_ORDERS, int **d,
IMSLS_BEST_ORDERS_USER, int d[],
IMSLS_AR_ORDER, int *p,
IMSLS_AIC, float *aic,
0)

Optional Arguments
IMSLS_RETURN_USER, float w[] (Output)

An array of length n_obs supplied by the user to hold the seasonally adjusted
series returned by imsls_f_seasonal_fit.

IMSLS_D_INITIAL, int n_d_initial, int d_initial[] (Input)
An array of dimension n_d_initial by n_differences containing the
candidate values for d[], from which the optimum is being selected. All
candidate values in d_initial[] must be non-negative and
n_d_initial ≥ 1.
Default: n_d_initial=1, d_initial an array of length n_differences
filled with ones.

IMSLS_SET_FIRST_TO_NAN, or IMSLS_EXCLUDE_FIRST (Input)
If IMSLS_EXCLUDE_FIRST is specified, the first n_lost values are excluded
from w due to differencing. The differenced series w is of length
n_obs–n_lost. If IMSLS_SET_FIRST_TO_NAN is specified, the first
n_lost observations are set to NaN (Not a Number).
Default: IMSLS_SET_FIRST_TO_NAN.

IMSLS_CENTER, int n_center (Input)
If supplied, IMSLS_CENTER controls the method used to center the
differenced series. If n_center=0 then the series is not centered. If
n_center=1, the mean of the series is used to center the data, and if
n_center=2, the median is used.
Default: n_center=1.

IMSLS_LOST, int *n_lost (Output)
The number of observations lost due to differencing the time series. This is
also equal to the number of NaN values that appear in the first n_lost
locations of the returned seasonally adjusted series.

IMSLS_BEST_PERIODS, int **s (Output)
Address of a pointer to an internally allocated array of length
m=n_differences containing the optimum values for the seasonal
adjustment parameters 1 2, , , ms s s… selected from the list of candidates
contained in s_initial[].

IMSLS_BEST_PERIODS_USER, int s[] (Output)
A user supplied array of length n_differences for storage of the array s.

IMSLS_BEST_ORDERS, int **d (Output)
Address of a pointer to an internally allocated array of length
m=n_differences containing the optimum values for the seasonal
adjustment parameters 1 2, , , md d d… selected from the list of candidates
contained in d_initial[].

IMSLS_BEST_ORDERS_USER, int d[] (Output)
A user supplied array of length n_differences for storage of the array d.

Chapter 8: Time Series and Forecasting seasonal_fit • 579

IMSLS_AR_ORDER, int *p (Output)
The optimum value for the autoregressive lag.

IMSLS_AIC, float *aic (Output)
Akaike’s Information Criterion (AIC) for the optimum seasonally adjusted
model.

Description
Many time series contain seasonal trends and cycles that can be modeled by first
differencing the series. For example, if the correlation is strong from one period to the
next, the series might be differenced by a lag of 1. Instead of fitting a model to the
series tZ , the model is fitted to the transformed series: 1t t tW Z Z −= − . Higher order
lags or differences are warranted if the series has a cycle every 4 or 13 weeks.
Function imsls_f_seasonal_fit does not center the original series. If
IMSLS_CENTER is specified with either n_center =1 or n_center =2, then the
differenced series, tW , is centered before determination of minimum AIC and optimum

lag. For every combination of rows in s_initial and d_initial, the series tZ is
converted to the seasonally adjusted series using the following computation

 1 2

1 2
01 1

(,) (1) (1)
i

j sm i i i

m

dm m
id s dd d j

t s s s t t t
ji i

d
W s d Z B Z B Z

j
⋅

== =

⎛ ⎞
= Δ Δ Δ = − = −⎜ ⎟

⎝ ⎠
∑∏ ∏" .

where 1: (, ,)ms s s= … , 1: (, ,)md d d= … represent specific rows of arrays s_initial
and d_initial respectively, and m =n_differences.

This transformation of the series tZ to (,)tW s d is accomplished using function
imsls_f_difference(). After this transformation,

(,)tW s d

is (optionally) centered and a call is made to imsls_f_auto_uni_ar to automatically
determine the optimum lag for an AR(p) representation for (,)tW s d . This procedure is
repeated for every possible combination of rows of s_initial and d_initial. The
series with the minimum AIC is identified as the optimum representation and returned.

Example
Consider the Airline Data (Box, Jenkins and Reinsel 1994, p. 547) consisting of the
monthly total number of international airline passengers from January 1949 through
December 1960. Function imsls_f_seasonal_fit is used to compute the optimum
seasonality representation of the adjusted series

1 2 1 1 2 2

1 2
(,) (1) (1) ,s sd d d d

t s s t tW s d Z B B Z= Δ Δ = − −

where

(1,1)s =

580 • seasonal_fit IMSL C Stat Library

or

(1,12)s =

and

(1,1).d =

As differenced series with minimum AIC,

() ()1 2
1 12 12 1 13 ,t t t t t tW Z Z Z Z Z− − −= Δ Δ = − − −

is identified.

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>

void main()
{
 int i;
 int maxlag = 10;
 int nobs = 144;
 int n_differences = 2;
 int n_s_initial = 2;
 int nlost;
 int npar;
 float aic;
 int s_init[] = { 1, 1,
 1, 12};
 int *s = NULL;
 int *d = NULL;
 float *z = NULL;
 float *difference = NULL;

 z = imsls_f_data_sets(4, 0);

 difference = imsls_f_seasonal_fit(nobs, z, maxlag, n_differences,
 n_s_initial, s_init,
 IMSLS_LOST, &nlost,
 IMSLS_BEST_PERIODS, &s,
 IMSLS_BEST_ORDERS, &d,
 IMSLS_AIC, &aic,
 IMSLS_AR_ORDER, &npar,
 0);

 printf("\nnlost = %d\n", nlost);
 printf("s = (%d, %d)\n", s[0], s[1]);
 printf("d = (%d, %d)\n", d[0], d[1]);
 printf("Order of optimum AR process: %d\n", npar);
 printf("aic = %lf\n", aic);

Chapter 8: Time Series and Forecasting seasonal_fit • 581

 printf("\ni\tz[i]\tdifference[i]\n");
 for (i=0; i<nobs; i++)
 printf("%d\t%f\t%f\n", i, z[i], difference[i]);

 if (s)
 {
 free(s);
 s = NULL;
 }

 if (d)
 {
 free(d);
 d = NULL;
 }

 if (z)
 {
 free(z);
 z = NULL;
 }

 if (difference)
 {
 free(difference);
 difference = NULL;
 }

 return;
}

Output

nlost = 13
s = (1, 12)
d = (1, 1)
Order of optimum AR process: 1
aic = 829.780334

i z[i] difference[i]
0 112.000000 NaN
1 118.000000 NaN
2 132.000000 NaN
3 129.000000 NaN
4 121.000000 NaN
5 135.000000 NaN
6 148.000000 NaN
7 148.000000 NaN
8 136.000000 NaN
9 119.000000 NaN
10 104.000000 NaN
11 118.000000 NaN
12 115.000000 NaN

582 • seasonal_fit IMSL C Stat Library

13 126.000000 5.000000
14 141.000000 1.000000
15 135.000000 -3.000000
16 125.000000 -2.000000
17 149.000000 10.000000
18 170.000000 8.000000
19 170.000000 0.000000
20 158.000000 0.000000
21 133.000000 -8.000000
22 114.000000 -4.000000
23 140.000000 12.000000
24 145.000000 8.000000
25 150.000000 -6.000000
26 178.000000 13.000000
27 163.000000 -9.000000
28 172.000000 19.000000
29 178.000000 -18.000000
30 199.000000 0.000000
31 199.000000 0.000000
32 184.000000 -3.000000
33 162.000000 3.000000
34 146.000000 3.000000
35 166.000000 -6.000000
36 171.000000 0.000000
37 180.000000 4.000000
38 193.000000 -15.000000
39 181.000000 3.000000
40 183.000000 -7.000000
41 218.000000 29.000000
42 230.000000 -9.000000
43 242.000000 12.000000
44 209.000000 -18.000000
45 191.000000 4.000000
46 172.000000 -3.000000
47 194.000000 2.000000
48 196.000000 -3.000000
49 196.000000 -9.000000
50 236.000000 27.000000
51 235.000000 11.000000
52 229.000000 -8.000000
53 243.000000 -21.000000
54 264.000000 9.000000
55 272.000000 -4.000000
56 237.000000 -2.000000
57 211.000000 -8.000000
58 180.000000 -12.000000
59 201.000000 -1.000000
60 204.000000 1.000000
61 188.000000 -16.000000
62 235.000000 7.000000
63 227.000000 -7.000000
64 234.000000 13.000000
65 264.000000 16.000000
66 302.000000 17.000000
67 293.000000 -17.000000

Chapter 8: Time Series and Forecasting seasonal_fit • 583

68 259.000000 1.000000
69 229.000000 -4.000000
70 203.000000 5.000000
71 229.000000 5.000000
72 242.000000 10.000000
73 233.000000 7.000000
74 267.000000 -13.000000
75 269.000000 10.000000
76 270.000000 -6.000000
77 315.000000 15.000000
78 364.000000 11.000000
79 347.000000 -8.000000
80 312.000000 -1.000000
81 274.000000 -8.000000
82 237.000000 -11.000000
83 278.000000 15.000000
84 284.000000 -7.000000
85 277.000000 2.000000
86 317.000000 6.000000
87 313.000000 -6.000000
88 318.000000 4.000000
89 374.000000 11.000000
90 413.000000 -10.000000
91 405.000000 9.000000
92 355.000000 -15.000000
93 306.000000 -11.000000
94 271.000000 2.000000
95 306.000000 -6.000000
96 315.000000 3.000000
97 301.000000 -7.000000
98 356.000000 15.000000
99 348.000000 -4.000000
100 355.000000 2.000000
101 422.000000 11.000000
102 465.000000 4.000000
103 467.000000 10.000000
104 404.000000 -13.000000
105 347.000000 -8.000000
106 305.000000 -7.000000
107 336.000000 -4.000000
108 340.000000 -5.000000
109 318.000000 -8.000000
110 362.000000 -11.000000
111 348.000000 -6.000000
112 363.000000 8.000000
113 435.000000 5.000000
114 491.000000 13.000000
115 505.000000 12.000000
116 404.000000 -38.000000
117 359.000000 12.000000
118 310.000000 -7.000000
119 337.000000 -4.000000
120 360.000000 19.000000
121 342.000000 4.000000
122 406.000000 20.000000

584 • box_cox_transform IMSL C Stat Library

123 396.000000 4.000000
124 420.000000 9.000000
125 472.000000 -20.000000
126 548.000000 20.000000
127 559.000000 -3.000000
128 463.000000 5.000000
129 407.000000 -11.000000
130 362.000000 4.000000
131 405.000000 16.000000
132 417.000000 -11.000000
133 391.000000 -8.000000
134 419.000000 -36.000000
135 461.000000 52.000000
136 472.000000 -13.000000
137 535.000000 11.000000
138 622.000000 11.000000
139 606.000000 -27.000000
140 508.000000 -2.000000
141 461.000000 9.000000
142 390.000000 -26.000000
143 432.000000 -1.000000

box_cox_transform
Performs a forward or an inverse Box-Cox (power) transformation.

Synopsis
#include <imsls.h>
float *imsls_f_box_cox_transform (int n_observations, float z[], float

power, ..., 0)
The type double function is imsls_d_box_cox_transform.

Required Arguments

int n_observations (Input)
Number of observations in z.

float z[] (Input)
Array of length n_observations containing the observations.

float power (Input)
Exponent parameter in the Box-Cox (power) transformation.

Return Value
Pointer to an internally allocated array of length n_observations containing the
transformed data. To release this space, use free. If no value can be computed, then
NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>

Chapter 8: Time Series and Forecasting box_cox_transform • 585

float *imsls_f_box_cox_transform (int n_observations, float z[], float
power,
IMSLS_SHIFT, float shift,
IMSLS_INVERSE_TRANSFORM,
IMSLS_RETURN_USER, float x[]
0)

Optional Arguments

IMSLS_SHIFT, float shift (Input)
Shift parameter in the Box-Cox (power) transformation. Parameter shift must
satisfy the relation min (z(i)) + shift > 0.
Default: shift = 0.0.

IMSLS_INVERSE_TRANSFORM
If IMSLS_INVERSE_TRANSFORM is specified, the inverse transform is
performed.

IMSLS_RETURN_USER, float x[] (Output)
User-allocated array of length n_observations containing the transformed
data.

Description
Function imsls_f_box_cox_transform performs a forward or an inverse Box-Cox
(power) transformation of n = n_observations observations {Zt} for t = 1, 2, ..., n.

The forward transformation is useful in the analysis of linear models or models with
nonnormal errors or nonconstant variance (Draper and Smith 1981, p. 222). In the time
series setting, application of the appropriate transformation and subsequent
differencing of a series can enable model identification and parameter estimation in the
class of homogeneous stationary autoregressive-moving average models. The inverse
transformation can later be applied to certain results of the analysis, such as forecasts
and prediction limits of forecasts, in order to express the results in the scale of the
original data. A brief note concerning the choice of transformations in the time series
models is given in Box and Jenkins (1976, p. 328).
The class of power transformations discussed by Box and Cox (1964) is defined by

()

()

1
0

ln 0

t

t

t

Z
X

Z

λξ
λ

λ
ξ λ

⎧ + −
≠⎪= ⎨

⎪ + =⎩

where Zt + ξ > 0 for all t. Since

() ()
0

1
lim lnt

t

Z
Z

λ

λ

ξ
ξ

λ→

+ −
= +

the family of power transformations is continuous.

586 • box_cox_transform IMSL C Stat Library

Let λ = power and ξ = shift; then, the computational formula used by
imsls_f_box_cox_transform is given by

()
()

0

ln 0
t

t
t

Z
X

Z

λξ λ

ξ λ

⎧ + ≠⎪= ⎨
+ =⎪⎩

where Zt + ξ > 0 for all t. The computational and Box-Cox formulas differ only in the
scale and origin of the transformed data. Consequently, the general analysis of the data
is unaffected (Draper and Smith 1981, p. 225).
The inverse transformation is computed by

()

1/ 0

0
t

t
t

Z

exp
X

Z

λ ξ λ

ξ λ

− ≠

− =

⎧⎪= ⎨
⎪⎩

where {Zt} now represents the result computed by imsls_f_box_cox_transform
for a forward transformation of the original data using parameters λ and ξ.

Examples

Example 1
The following example performs a Box-Cox transformation with power = 2.0 on 10
data points.

#include <imsls.h>

void main() {
 int n_observations = 10;
 float power = 2.0;
 float *x;
 static float z[10] ={
 1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};

 /* Transform Data using Box Cox Transform */
 x = imsls_f_box_cox_transform(n_observations, z, power, 0);

 imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);

 free(x);
}

Output
 Transformed Data
 1 2 3 4 5 6
 1.0 4.0 9.0 16.0 25.0 30.2

 7 8 9 10
 42.2 56.2 64.0 100.0

Chapter 8: Time Series and Forecasting box_cox_transform • 587

Example 2
This example extends the first example—an inverse transformation is applied to the
transformed data to return to the orignal data values.

#include <imsls.h>

void main() {
 int n_observations = 10;
 float power = 2.0;
 float *x, *y;
 static float z[10] ={
 1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0};

 /* Transform Data using Box Cox Transform */
 x = imsls_f_box_cox_transform(n_observations, z, power, 0);

 imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);

 /* Perform an Inverse Transform on the Transformed Data */
 y = imsls_f_box_cox_transform(n_observations, x, power,
 IMSLS_INVERSE_TRANSFORM, 0);

 imsls_f_write_matrix("Inverse Transformed Data", 1, n_observations, y,
0);

 free(x);
 free(y);
}

Output
 Transformed Data
 1 2 3 4 5 6
 1.0 4.0 9.0 16.0 25.0 30.2

 7 8 9 10
 42.2 56.2 64.0 100.0

 Inverse Transformed Data
 1 2 3 4 5 6
 1.0 2.0 3.0 4.0 5.0 5.5

 7 8 9 10
 6.5 7.5 8.0 10.0

Fatal Errors

IMSLS_ILLEGAL_SHIFT “shift” = # and the smallest element of “z” is “z[#]” =
#. “shift” plus “z[#]” = #. “shift” + “z[i]” must be
greater than 0 for i = 1, ..., “n_observations”.
“n_observations” = #.

IMSLS_BCTR_CONTAINS_NAN One or more elements of “z” is equal to NaN (Not a
number). No missing values are allowed. The

588 • autocorrelation IMSL C Stat Library

smallest index of an element of “z” that is equal to
NaN is #.

IMSLS_BCTR_F_UNDERFLOW Forward transform. “power” = #. “shift” = #. The
minimum element of “z” is “z[#]” = #. (“z[#]”+
“shift”) ^ “power” will underflow.

IMSLS_BCTR_F_OVERFLOW Forward transformation. “power” = #. “shift” = #.
The maximum element of “z” is “z[#]” = #. (“z[#]” +
“shift”) ^ “power” will overflow.

IMSLS_BCTR_I_UNDERFLOW Inverse transformation. “power” = #. The minimum
element of “z” is “z[#]” = #. exp(“z[#]”) will
underflow.

IMSLS_BCTR_I_OVERFLOW Inverse transformation. “power” = #. The maximum
element of “z[#]” = #. exp(“z[#]”) will overflow.

IMSLS_BCTR_I_ABS_UNDERFLOW Inverse transformation. “power” = #.
The element of “z” with the smallest absolute value is
“z[#]” = #. “z[#]” ^ (1/ “power”) will underflow.

IMSLS_BCTR_I_ABS_OVERFLOW Inverse transformation. “power” = #.
The element of “z” with the largest absolute value is
“z[#]” = #. “z[#]” ^ (1/ “power”) will overflow.

autocorrelation
Computes the sample autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_autocorrelation (int n_observations, float x[],

int lagmax, ...
0)

The type double function is imsls_d_autocorrelation.

Required Arguments

int n_observations (Input)
Number of observations in the time series x. n_observations must be
greater than or equal to 2.

float x[] (Input)
Array of length n_observations containing the time series.

int lagmax (Input)
Maximum lag of autocovariance, autocorrelations, and standard errors of
autocorrelations to be computed. lagmax must be greater than or equal to 1
and less than n_observations.

Chapter 8: Time Series and Forecasting autocorrelation • 589

Return Value
Pointer to an array of length lagmax + 1 containing the autocorrelations of the time
series x. The 0-th element of this array is 1. The k-th element of this array contains the
autocorrelation of lag k where k = 1, ..., lagmax.

Synopsis with Optional Arguments

#include <imsls.h>
float imsls_f_autocorrelation (int n_observations, float x[],

int lagmax,
IMSLS_RETURN_USER, float autocorrelations[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_ACV, float **autocovariances,
IMSLS_ACV_USER, float autocovariances[],
IMSLS_SEAC, float **standard_errors,
int se_option,
IMSLS_SEAC_USER, float standard_errors[],
int se_option,
IMSLS_X_MEAN_IN, float x_mean_in,
IMSLS_X_MEAN_OUT, float *x_mean_out,
0)

Optional Arguments
IMSLS_RETURN_USER, float autocorrelations[] (Output)

If specified, autocorrelations is an array of length lagmax + 1
containing the autocorrelations of the time series x. The
oth element of this array is 1. The kth element of this array contains the
autocorrelation of lag k where k = 1, ..., lagmax.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.
Default = 0.

Iprint Action

0 No printing is performed.
1 Prints the mean and variance.
2 Prints the mean, variance, and autocovariances.
3 Prints the mean, variance, autocovariances,

autocorrelations, and standard errors of
autocorrelations.

IMSLS_ACV, float **autocovariances (Output)
Address of a pointer to an array of length lagmax + 1 containing the variance
and autocovariances of the time series x. The 0-th element of this array is the
variance of the time series x. The kth element contains the autocovariance of
lag k where k = 1, ..., lagmax.

590 • autocorrelation IMSL C Stat Library

IMSLS_ACV_USER, float autocovariances[] (Output)
If specified, autocovariances is an array of length lagmax + 1 containing
the variance and autocovariances of the time series x.
See IMSLS_ACV.

IMSLS_SEAC, float **standard_errors, int se_option (Output)
Address of a pointer to an array of length lagmax containing the standard
errors of the autocorrelations of the time series x.
Method of computation for standard errors of the autocorrelations is chosen
by se_option.

se_option Action
1 Compute the standard errors of autocorrelations using

Barlett’s formula.
2 Compute the standard errors of autocorrelations using

Moran’s formula.

IMSLS_SEAC_USER, float standard_errors[], int se_option (Output)
If specified, autocovariances is an array of length lagmax containing the
standard errors of the autocorrelations of the time series x.
See IMSLS_SEAC.

IMSLS_X_MEAN_IN, float x_mean_in (Input)
User input the estimate of the time series x.

IMSLS_X_MEAN_OUT, float *x_mean_out (Output)
If specified, x_mean_out is the estimate of the mean of the time
series x.

Description
Function imsls_f_autocorrelation estimates the autocorrelation function of a
stationary time series given a sample of n = n_observations observations {Xt} for
t = 1, 2, …, n.
Let

μ̂ = x_mean

be the estimate of the mean μ of the time series {Xt} where

1

, known
ˆ 1 unknown

n

t
t

X
n

μ μ
μ

μ
=

⎧
⎪= ⎨
⎪⎩

∑

The autocovariance function σ(k) is estimated by

Chapter 8: Time Series and Forecasting autocorrelation • 591

1

1ˆ ˆ ˆ() ()(), 0,1, ,
n k

t t k
t

k X X k K
n

σ μ μ
−

+
=

= − − =∑ …

where K = lagmax. Note that

()ˆ 0σ

is an estimate of the sample variance. The autocorrelation function ρ(k) is estimated by

ˆ ()ˆ () , 0,1, ,
ˆ (0)

kk k Kσρ
σ

= = …

Note that

()ˆ 0 1ρ ≡

by definition.
The standard errors of the sample autocorrelations may be optionally computed
according to argument se_option for the optional argument IMSLS_SEAC. One
method (Bartlett 1946) is based on a general asymptotic expression for the variance of
the sample autocorrelation coefficient of a stationary time series with independent,
identically distributed normal errors. The theoretical formula is

{ } 2 2 21ˆvar (k) () () () 4 () () () 2 () ()
i

i i k i k i k i k i k
n

ρ ρ ρ ρ ρ ρ ρ ρ ρ
∞

=−∞

⎡ ⎤= + − + − − +⎣ ⎦∑

where

ˆ ()kρ

assumes μ is unknown. For computational purposes, the autocorrelations r(k) are
replaced by their estimates

ˆ ()kρ

for |k| ≤ K, and the limits of summation are bounded because of the assumption that
r(k) = 0 for all k such that |k| > K.
A second method (Moran 1947) utilizes an exact formula for the variance of the sample
autocorrelation coefficient of a random process with independent, identically
distributed normal errors. The theoretical formula is

(){ } ()
ˆvar

2
n kk

n n
ρ −

=
+

592 • autocorrelation IMSL C Stat Library

where μ is assumed to be equal to zero. Note that this formula does not depend on the
autocorrelation function.

Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for this
example consists of the number of sunspots observed from 1770 through 1869.
Function imsls_f_autocorrelation with optional arguments computes the
estimated autocovariances, estimated autocorrelations, and estimated standard errors of
the autocorrelations.

#include <imsls.h>
#include <stdio.h>

void main()
{
 float *result=NULL, data[176][2], x[100], xmean;
 int i, nobs = 100, lagmax = 20;
 float *acv=NULL, *seac=NULL;

 imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
 for (i=0;i<nobs;i++) x[i] = data[21+i][1];

 result = imsls_f_autocorrelation(nobs, x, lagmax,
 IMSLS_X_MEAN_OUT, &xmean,
 IMSLS_ACV, &acv,
 IMSLS_SEAC, &seac, 1,
 0);
 printf("Mean = %8.3f\n", xmean);
 printf("Variance = %8.1f\n", acv[0]);
 printf("\nLag\t ACV\t\t AC\t\t SEAC\n");
 printf("%2d\t%8.1f\t%8.5f\n", 0, acv[0], result[0]);
 for(i=1; i<21; i++)
 printf("%2d\t%8.1f\t%8.5f\t%8.5f\n", i, acv[i], result[i],
 seac[i-1]);

}

Output

Mean = 46.976
Variance = 1382.9

Lag ACV AC SEAC

 0 1382.9 1.00000
 1 1115.0 0.80629 0.03478
 2 592.0 0.42809 0.09624
 3 95.3 0.06891 0.15678
 4 -236.0 -0.17062 0.20577
 5 -370.0 -0.26756 0.23096
 6 -294.3 -0.21278 0.22899
 7 -60.4 -0.04371 0.20862

Chapter 8: Time Series and Forecasting crosscorrelation • 593

 8 227.6 0.16460 0.17848
 9 458.4 0.33146 0.14573
10 567.8 0.41061 0.13441
11 546.1 0.39491 0.15068
12 398.9 0.28848 0.17435
13 197.8 0.14300 0.19062
14 26.9 0.01945 0.19549
15 -77.3 -0.05588 0.19589
16 -143.7 -0.10394 0.19629
17 -202.0 -0.14610 0.19602
18 -245.4 -0.17743 0.19872
19 -230.8 -0.16691 0.20536
20 -142.9 -0.10332 0.20939

Figure 8-1 Sample Autocorrelation Function

crosscorrelation
Computes the sample cross-correlation function of two stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_crosscorrelation (int n_observations, float x[],

float y[], int lagmax, ..., 0)
The type double function is imsls_d_crosscorrelation.

594 • crosscorrelation IMSL C Stat Library

Required Arguments

int n_observations (Input)
Number of observations in each time series. n_observations must be
greater than or equal to 2.

float x[] (Input)
Array of length n_observations containing the first time series.

float y[] (Input)
Array of length n_observations containing the second time series.

int lagmax (Input)
Maximum lag of cross-covariances and cross-correlations to be computed.
lagmax must be greater than or equal to 1 and less than n_observations.

Return Value
Pointer to an array of length 2*lagmax + 1 containing the cross-correlations between
the time series x and y. The kth element of this array contains the cross-correlation
between x and y at lag (k-lagmax) where k = 0, 1, …, 2*lagmax. To release this
space, use free. If no solution can be computed, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_crosscorrelation (int n_observations, float x[], float

y[], int lagmax,
IMSLS_RETURN_USER, float crosscorrelations[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_VARIANCES, float *x_variance, float *y_variance
IMSLS_SE_CCF, float **standard_errors, int se_option,
IMSLS_SE_CCF_USER, float standard_errors[], int se_option,
IMSLS_CROSS_COVARIANCES, float **cross_covariances,
IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[],
IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in,
IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out,
0)

Optional Arguments
IMSLS_RETURN_USER, float crosscorrelations[] (Output)

If specified, crosscorrelations is an array of length
2*lagmax + 1 containing the cross-correlations between the time series x
and y. The kth element of this array contains the cross-correlation between x
and y at lag (k-lagmax) where k = 0, 1, …, 2*lagmax.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option. Default = 0.
iprint Action

0 No printing is performed.
1 Prints the means and variances.

Chapter 8: Time Series and Forecasting crosscorrelation • 595

iprint Action
2 Prints the means, variances, and cross-covariances.
3 Prints the means, variances, cross-covariances, cross-

correlations, and standard errors of cross-correlations.

IMSLS_VARIANCES, float *x_variance, float *y_variance (Output)
If specified, x_variance is variance of the time series x and y_variance is
variance of the time series y.

IMSLS_SE_CCF, float **standard_errors, int se_option (Output)
Address of a pointer to an array of length 2*lagmax + 1containing the
standard errors of the cross-correlations between the time series x and y.
Method of computation for standard errors of the cross-correlations is chosen
by se_option.

se_option Action
1 Compute standard errors of cross-correlations using

Bartlett’s formula.
2 Compute standard errors of cross-correlations using

Bartlett’s formula with the assumption of no cross-
correlation.

IMSLS_SE_CCF_USER, float standard_errors[], int se_option (Output)
If specified, standard_errors is an array of length 2*lagmax + 1 containing
the standard errors of the cross-correlations between the time series x and y.
See IMSLS_SE_CC.

IMSLS_CROSS_COVARIANCES, float **cross_covariances (Output)
Address of a pointer to an array of length 2*lagmax + 1 containing the cross-
covariances between the time series x and y. The kth element of this array
contains the cross-covariances between x and y at lag
 (k-lagmax) where k = 0, 1, …, 2*lagmax.

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[] (Output)
If specified, cross_covariances is an array of length 2*lagmax + 1 the
cross-covariances between the time series x and y. See
IMSLS_CROSS_COVARIANCES.

IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in (Input)
If specified, x_mean_in is the user input of the estimate of the mean of the
time series x and y_mean_in is the user input of the estimate of the mean of
the time series y.

IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out (Output)
If specified, x_mean_out is the mean of the time series x and y_mean_out
is the mean of the time series y.

596 • crosscorrelation IMSL C Stat Library

Description
Function imsls_f_crosscorrelation estimates the cross-correlation
function of two jointly stationary time series given a sample of
n = n_observations observations {Xt} and {Yt} for t = 1, 2, …, n.

Let

ˆ xμ = x_mean

be the estimate of the mean μX of the time series {Xt} where

1

known
ˆ 1 unknown

X X
n

X
t X

t
X

n

μ μ
μ

μ
=

⎧
⎪= ⎨
⎪⎩

∑

The autocovariance function of {Xt}, σX(k), is estimated by

1

1ˆ ˆ ˆ() ()(), 0, 1, ,
n k

X t X t k X
t

k X X k K
n

σ μ μ
−

+
=

= − − =∑ …

where K = lagmax. Note that

ˆ (0)Xσ

is equivalent to the sample variance x_variance. The autocorrelation function ρX(k)
is estimated by

ˆ ()ˆ () 0,1, ,
ˆ (0)

X
X

X

k
k k K

σ
ρ

σ
= = …

Note that

ˆ (0) 1Xρ ≡

by definition. Let

() ()ˆˆ ˆy_mean, ,andY Y Yk kμ σ ρ=

be similarly defined.
The cross-covariance function σXY(k) is estimated by

1

1

1 ˆ ˆ()() 0,1, ,
ˆ ()

1 ˆ ˆ()() 1, 2, ,

n k

t X t k Y
t

XY n

t X t k Y
t k

X Y k K
n

k
X Y k K

n

μ μ
σ

μ μ

−

+
=

+
= −

⎧ − − =⎪⎪= ⎨
⎪ − − = − − −⎪⎩

∑

∑

…

…

Chapter 8: Time Series and Forecasting crosscorrelation • 597

The cross-correlation function ρXY(k) is estimated by

[]1 2

ˆ ()ˆ () 0, 1, ,
ˆ ˆ(0) (0)

XY
XY

X Y

k
k k K

σ
ρ

σ σ
= = ± ±…

The standard errors of the sample cross-correlations may be optionally computed
according to argument se_option for the optional argument IMSLS_SE_CCF. One
method is based on a general asymptotic expression for the variance of the sample
cross-correlation coefficient of two jointly stationary time series with independent,
identically distributed normal errors given by Bartlett (1978, page 352). The theoretical
formula is

{ } [

{ }

()

XY

2 2 2

1ˆvar () () () () ()

2 () () () () ()

1 1() () ()
2 2

X Y XY XY
i

XY X XY XY Y

XY X X Y

k i i i k i k
n k

k i i k i i k

k i i i

ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ

ρ ρ ρ ρ

∞

=−∞

= + − +
−

− + + − +

⎤⎧ ⎫+ + +⎨ ⎬⎥⎩ ⎭⎦

∑

For computational purposes, the autocorrelations ρX(k) and ρY(k) and the cross-
correlations ρXY(k) are replaced by their corresponding estimates for |k| ≤ K, and the
limits of summation are equal to zero for all k such that |k| > K.
A second method evaluates Bartlett’s formula under the additional assumption that the
two series have no cross-correlation. The theoretical formula is

{ }XY
1ˆvar () () () 0X Y

i
k i i k

n k
ρ ρ ρ

∞

=−∞

= ≥
− ∑

For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, page
377).
An important property of the cross-covariance coefficient is σXY(k) = σYX(−k) for k ≥ 0.
This result is used in the computation of the standard error of the sample cross-
correlation for lag k < 0. In general, the cross-covariance function is not symmetric
about zero so both positive and negative lags are of interest.

Example
Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where
X is the input gas rate in cubic feet/minute and Y is the percent CO2 in the outlet gas.
Function imsls_f_crosscorrelation is used to compute the cross-covariances and
cross-correlations between time series X and Y with lags from −lagmax = −10 through
lag lagmax = 10. In addition, the estimated standard errors of the estimated cross-
correlations are computed. The standard errors are based on the additional assumption
that all cross-correlations for X and Y are zero.

598 • crosscorrelation IMSL C Stat Library

#include "imsls.h"
#include <stdio.h>

#define nobs 296
#define lagmax 10

void main ()
{
 int i;
 float data[nobs][2], x[nobs], y[nobs];
 float *secc = NULL, *ccv = NULL, *cc = NULL;
 float xmean, ymean, xvar, yvar;

 imsls_f_data_sets (7, IMSLS_X_COL_DIM, 2, IMSLS_RETURN_USER, data, 0);

 for (i = 0; i < nobs; i++)
 {
 x[i] = data[i][0];
 y[i] = data[i][1];
 }

 cc = imsls_f_crosscorrelation (nobs, x, y, lagmax,
 IMSLS_OUTPUT_MEANS, &xmean, &ymean,
 IMSLS_VARIANCES, &xvar, &yvar,
 IMSLS_SE_CCF, &secc, 2,
 IMSLS_CROSS_COVARIANCES, &ccv, 0);

 printf ("Mean of series X = %g\n", xmean);
 printf ("Variance of series X = %g\n\n", xvar);
 printf ("Mean of series Y = %g\n", ymean);
 printf ("Variance of series Y = %g\n\n", yvar);

 printf ("Lag CCV CC SECC\n\n");
 for (i = 0; i < 2 * lagmax + 1; i++)
 printf ("%-5d%13g%13g%13g\n", i - lagmax, ccv[i], cc[i], secc[i]);
}

Output
Mean of series X = -0.0568344
Variance of series X = 1.14694

Mean of series Y = 53.5091
Variance of series Y = 10.2189

Lag CCV CC SECC

-10 -0.404502 -0.118154 0.162754
-9 -0.508491 -0.148529 0.16247
-8 -0.61437 -0.179456 0.162188
-7 -0.705476 -0.206067 0.161907
-6 -0.776167 -0.226716 0.161627
-5 -0.831474 -0.242871 0.161349
-4 -0.891316 -0.260351 0.161073
-3 -0.980605 -0.286432 0.160798
-2 -1.12477 -0.328542 0.160524

Chapter 8: Time Series and Forecasting multi_crosscorrelation • 599

-1 -1.34704 -0.393467 0.160252
0 -1.65853 -0.484451 0.159981
1 -2.04865 -0.598405 0.160252
2 -2.48217 -0.725033 0.160524
3 -2.88541 -0.84282 0.160798
4 -3.16536 -0.924592 0.161073
5 -3.25344 -0.950319 0.161349
6 -3.13113 -0.914593 0.161627
7 -2.83919 -0.82932 0.161907
8 -2.45302 -0.716521 0.162188
9 -2.05269 -0.599584 0.16247
10 -1.69466 -0.495004 0.162754

multi_crosscorrelation
Computes the multichannel cross-correlation function of two mutually stationary
multichannel time series.

Synopsis
#include <imsls.h>
float *imsls_f_multi_crosscorrelation (int n_observations_x,

int n_channel_x, float x[], int n_observations_y,
int n_channel_y, float y[], int lagmax, ..., 0)

The type double function is imsls_d_multi_crosscorrelation.

Required Arguments

int n_observations_x (Input)
Number of observations in each channel of the first time series x.
n_observations_x must be greater than or equal to two.

int n_channel_x (Input)
Number of channels in the first time series x. n_channel_x must be greater
than or equal to one.

float x[] (Input)
Array of length n_observations_x by n_channel_x containing the first
time series.

int n_observations_y (Input)
Number of observations in each channel of the second time series y.
n_observations_y must be greater than or equal to two.

int n_channel_y (Input)
Number of channels in the second time series y. n_channel_y must be
greater than or equal to one.

float y[] (Input)
Array of length n_observations_y by n_channel_y containing the second
time series.

600 • multi_crosscorrelation IMSL C Stat Library

int lagmax (Input)
Maximum lag of cross-covariances and cross-correlations to be computed.
lagmax must be greater than or equal to one and less than the minimum of
n_observations_x and n_observations_y.

Return Value
Pointer to an array of length n_channel_x * n_channel_y * (2 * lagmax + 1)
containing the cross-correlations between the channels of x and y. The mth element of
this array contains the cross-correlation between channel i of the x series and channel j
of the y series at lag (k-lagmax) where
 i = 1, …, n_channel_x
 j = 1, …, n_channel_y
 k = 0, 1, …, 2*lagmax, and
 m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j))
To release this space, use free. If no solution can be computed, NULL is return.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_multi_crosscorrelation (int n_observations_x,

int n_channel_x, float x[], int n_observations_y,
int n_channel_y, float y[], int lagmax,
IMSLS_RETURN_USER, float crosscorrelations[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_VARIANCES, float **x_variance, float **y_variance,
IMSLS_VARIANCES_USER, float x_variance[],
float y_variance[],
IMSLS_CROSS_COVARIANCES, float **cross_covariances,
IMSLS_CROSS_COVARIANCES_USER,
float cross_covariances[],
IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in,
IMSLS_OUTPUT_MEANS, float **x_mean_out,
float **y_mean_out,
IMSLS_OUTPUT_MEANS_USER, float x_mean_out[],
float y_mean_out[],
0)

Optional Arguments
IMSLS_RETURN_USER, float crosscorrelations[] (Output)

If specified, crosscorrelations is a user-specified array of length
n_channel_x * n_channel_y * (2*lagmax + 1) containing the
cross-correlations between the channels of x and y. See Return Value.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option. Default = 0.

Chapter 8: Time Series and Forecasting multi_crosscorrelation • 601

iprint Action
0 No printing is performed.
1 Prints the means and variances.
2 Prints the means, variances, and cross-covariances.
3 Prints the means, variances, cross-covariances, and cross-

correlations.

IMSLS_VARIANCES, float **x_variance, float **y_variance (Output)
If specified, x_variance is the address of a pointer to an array of length
n_channel_x containing the variances of the channels of x and y_variance
is the address of a pointer to an array of length n_channel_y containing the
variances of the channels of y.

IMSLS_VARIANCES_USER, float x_variance[], float y_variance[] (Output)
If specified, x_variance is an array of length n_channel_x containing the
variances of the channels of x and y_variance is an array of length
n_channel_y containing the variances of the channels of y. See
IMSLS_VARIANCES.

IMSLS_CROSS_COVARIANCES, float **cross_covariances (Output)
Address of a pointer to an array of length n_channel_x * n_channel_y *
(2*lagmax + 1) containing the cross-covariances between the channels of x and
y. The mth element of this array contains the cross-covariance between channel i
of the x series and channel j of the y series at lag (k-lagmax) where
 i = 1, …, n_channel_x
 j = 1, …, n_channel_y
 k = 0, 1, …, 2*lagmax, and
 m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j)).

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[] (Output)
If specified, cross_covariances is an array of length n_channel_x *
n_channel_y * (2*lagmax + 1) containing the cross-covariances between
the channels of x and y. See IMSLS_CROSS_COVARIANCES.

IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in (Input)
If specified, x_mean_in is an array of length n_channel_x containing the
user input of the estimate of the means of the channels of x and y_mean_in
is an array of length n_channel_y containing the user input of the estimate
of the means of the channels of y.

IMSLS_OUTPUT_MEANS, float **x_mean_out, float **y_mean_out (Output)
If specified, x_mean_out is the address of a pointer to an array of length
n_channel_x containing the means of the channels of x and y_mean_out is
the address of a pointer to an array of length n_channel_y containing the
means of the channels of y.

IMSLS_OUTPUT_MEANS_USER, float x_mean_out[], float y_mean_out[] (Output)
If specified, x_mean_out is an array of length n_channel_x containing the
means of the channels of x and y_mean_out is an array of length

602 • multi_crosscorrelation IMSL C Stat Library

n_channel_y containing the means of the channels of y. See
IMSLS_OUTPUT_MEANS.

Description
Function imsls_f_multi_crosscorrelation estimates the multichannel
cross-correlation function of two mutually stationary multichannel time series.
Define the multichannel time series X by

X = (X1, X2, …, Xp)

where

Xj = (X1j, X2j, …, Xnj)T, j = 1, 2, …, p

with n = n_observations_x and p = n_channel_x. Similarly, define the
multichannel time series Y by

Y = (Y1, Y2, …, Yq)

where

Yj = (Y1j, Y2j, …, Ymj)T, j = 1, 2, …, q

with m = n_observations_y and q = n_channel_y. The columns of X and Y
correspond to individual channels of multichannel time series and may be
examined from a univariate perspective. The rows of X and Y correspond to
observations of p-variate and q-variate time series, respectively, and may be
examined from a multivariate perspective. Note that an alternative
characterization of a multivariate time series X considers the columns to be
observations of the multivariate time series while the rows contain univariate
time series. For example, see Priestley (1981, page 692) and Fuller (1976, page
14).
Let

ˆ x_meanXμ =

be the row vector containing the means of the channels of X. In particular,

()1 2
ˆ ˆ ˆ ˆ, , ,

pX X X Xμ μ μ μ= …

where for j = 1, 2, …, p

1

known
ˆ 1 unknown

j j

j

j

X X

n
X

tj X
t

X
n

μ μ
μ

μ
=

⎧
⎪= ⎨
⎪
⎩

∑

Chapter 8: Time Series and Forecasting multi_crosscorrelation • 603

Let
ˆ _meanY yμ =

be similarly defined. The cross-covariance of lag k between channel i of X and
channel j of Y is estimated by

,

,

1 ˆ ˆ()() 0,1, ,
ˆ ()

1 ˆ ˆ()() 1, 2, ,

i j

i j

i j

ti X t k j Y
t

X Y

ti X t k j Y
t

X Y k K
N

k
X Y k K

N

μ μ
σ

μ μ

+

+

⎧ − − =⎪⎪= ⎨
⎪ − − = − − −
⎪⎩

∑

∑

…

…

where i = 1, …, p, j = 1, …, q, and K = lagmax. The summation on t extends
over all possible cross-products with N equal to the number of cross-products in
the sum
Let

()ˆ 0 x_varianceXσ =

be the row vector consisting of the estimated variances of the channels of X. In
particular,

1 2
ˆ ˆ ˆ ˆ(0) ((0), (0), , (0))

pX X X Xσ σ σ σ= …

where

2

1

1ˆ ˆ(0)) 1,2, ,
j j

n

X tj X
t

X j p
n

σ μ
=

= − =∑ …

Let
ˆ (0) y_varianceYσ =

be similarly defined. The cross-correlation of lag k between channel i of X and
channel j of Y is estimated by

()

1 2

ˆ
ˆ () 0, 1, ,

ˆ ˆ(0) (0)

i j

i j

i j

X Y k
X Y

X Y

k k K
σ

ρ
σ σ

= = ± ±
⎡ ⎤
⎣ ⎦

…

Example
Consider the Wolfer Sunspot Data (Y) (Box and Jenkins 1976, page 530) along with
data on northern light activity (X1) and earthquake activity (X2) (Robinson 1967, page
204) to be a three-channel time series. Function
imsls_f_multi_crosscorrelation is used to compute the cross-covariances and
cross-correlations between X1 and Y and between X2 and Y with lags from
−lagmax = −10 through lag lagmax = 10.

604 • multi_crosscorrelation IMSL C Stat Library

#include "imsls.h"

void main () {
 int i, lagmax, nobsx, nchanx, nobsy, nchany;
 float x[100 * 2], y[100], *result = NULL, *xvar = NULL, *yvar = NULL,
 *xmean = NULL, *ymean = NULL, *ccv = NULL;
 float data[100][4];
 char line[20];

 nobsx = nobsy = 100;
 nchanx = 2;
 nchany = 1;
 lagmax = 10;

 imsls_f_data_sets (8, IMSLS_X_COL_DIM, 4, IMSLS_RETURN_USER, data, 0);
 for (i = 0; i < 100; i++)
 {
 y[i] = data[i][1];
 x[i * 2] = data[i][2];
 x[i * 2 + 1] = data[i][3];
 }

 result =
 imsls_f_multi_crosscorrelation (nobsx, nchanx, &x[0], nobsy, nchany,
 &y[0], lagmax, IMSLS_VARIANCES, &xvar,
 &yvar, IMSLS_OUTPUT_MEANS, &xmean, &ymean,
 IMSLS_CROSS_COVARIANCES, &ccv, 0);

 imsls_f_write_matrix ("Channel means of x", 1, nchanx, xmean, 0);
 imsls_f_write_matrix ("Channel variances of x", 1, nchanx, xvar, 0);
 imsls_f_write_matrix ("Channel means of y", 1, nchany, ymean, 0);
 imsls_f_write_matrix ("Channel variances of y", 1, nchany, yvar, 0);

 printf ("\nMultichannel cross-covariance between x and y\n");
 for (i = 0; i < (2 * lagmax + 1); i++)
 {
 sprintf (line, "Lag K = %d", i - lagmax);
 imsls_f_write_matrix (line, nchanx, nchany,
 &ccv[nchanx * nchany * i], 0);
 }

 printf ("\nMultichannel cross-correlation between x and y\n");
 for (i = 0; i < (2 * lagmax + 1); i++)
 {
 sprintf (line, "Lag K = %d", i - lagmax);
 imsls_f_write_matrix (line, nchanx, nchany,
 &result[nchanx * nchany * i], 0);
 }
}

Output

 Channel means of x

Chapter 8: Time Series and Forecasting multi_crosscorrelation • 605

 1 2
 63.43 97.97

 Channel variances of x
 1 2
 2644 1978

Channel means of y
 46.94

Channel variances of y
 1384

Multichannel cross-covariance between x and y

 Lag K = -10
1 -20.51
2 70.71

 Lag K = -9
1 65.02
2 38.14

 Lag K = -8
1 216.6
2 135.6

 Lag K = -7
1 246.8
2 100.4

 Lag K = -6
1 142.1
2 45.0

 Lag K = -5
1 50.70
2 -11.81

 Lag K = -4
1 72.68
2 32.69

 Lag K = -3
1 217.9
2 -40.1

 Lag K = -2
1 355.8
2 -152.6

 Lag K = -1
1 579.7
2 -213.0

606 • multi_crosscorrelation IMSL C Stat Library

 Lag K = 0
1 821.6
2 -104.8

 Lag K = 1
1 810.1
2 55.2

 Lag K = 2
1 628.4
2 84.8

 Lag K = 3
1 438.3
2 76.0

 Lag K = 4
1 238.8
2 200.4

 Lag K = 5
1 143.6
2 283.0

 Lag K = 6
1 253.0
2 234.4

 Lag K = 7
1 479.5
2 223.0

 Lag K = 8
1 724.9
2 124.5

 Lag K = 9
1 925.0
2 -79.5

 Lag K = 10
1 922.8
2 -279.3

Multichannel cross-correlation between x and y

 Lag K = -10
1 -0.01072
2 0.04274

 Lag K = -9
1 0.03400
2 0.02305

 Lag K = -8

Chapter 8: Time Series and Forecasting multi_crosscorrelation • 607

1 0.1133
2 0.0819

 Lag K = -7
1 0.1290
2 0.0607

 Lag K = -6
1 0.07431
2 0.02718

 Lag K = -5
1 0.02651
2 -0.00714

 Lag K = -4
1 0.03800
2 0.01976

 Lag K = -3
1 0.1139
2 -0.0242

 Lag K = -2
1 0.1860
2 -0.0923

 Lag K = -1
1 0.3031
2 -0.1287

 Lag K = 0
1 0.4296
2 -0.0633

 Lag K = 1
1 0.4236
2 0.0333

 Lag K = 2
1 0.3285
2 0.0512

 Lag K = 3
1 0.2291
2 0.0459

 Lag K = 4
1 0.1248
2 0.1211

 Lag K = 5
1 0.0751
2 0.1710

608 • partial_autocorrelation IMSL C Stat Library

 Lag K = 6
1 0.1323
2 0.1417

 Lag K = 7
1 0.2507
2 0.1348

 Lag K = 8
1 0.3790
2 0.0752

 Lag K = 9
1 0.4836
2 -0.0481

 Lag K = 10
1 0.4825
2 -0.1688

partial_autocorrelation
Computes the sample partial autocorrelation function of a stationary time series.

Synopsis
#include <imsls.h>
float *imsls_f_partial_autocorrelation (int lagmax, int cf[], …, 0)
The type double function is imsls_d_partial_autocorrelation.

Required Arguments

int lagmax (Input)
Maximum lag of partial autocorrelations to be computed.

float cf[] (Input)
Array of length lagmax + 1 containing the autocorrelations of the time series
x.

Return Value
Pointer to an array of length lagmax containing the partial autocorrelations of the time
series x.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_partial_autocorrelation (int lagmax, float cf[],

 IMSLS_RETURN_USER, float partial_autocorrelations[],
 0)

Chapter 8: Time Series and Forecasting partial_autocorrelation • 609

Optional Arguments
IMSLS_RETURN_USER, float partial_autocorrelations[] (Output)

If specified, the partial autocorrelations are stored in an array of length
lagmax provided by the user.

Description
Function imsls_f_partial_autocorrelation estimates the partial
autocorrelations of a stationary time series given the K = lagmax sample
autocorrelations

()ˆ kρ

for k = 0, 1, …, K. Consider the AR(k) process defined by

1 1 2 2 ...t k t k t kk t k tX X X X A− − −= φ + φ + + φ +

where φkj denotes the j-th coefficient in the process. The set of estimates

{ }k̂kφ

for k = 1, …, K is the sample partial autocorrelation function. The autoregressive
parameters

{ }k̂jφ

for j = 1, …, k are approximated by Yule-Walker estimates for successive AR(k)
models where k = 1, …, K. Based on the sample Yule-Walker equations

1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ() (1) (2) ... (), 1, 2,...,k k kkj j j j k j kρ = φ ρ − + φ ρ − + + φ ρ − =

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The
equations are given by

1
1 1,

1
1 1,

ˆ (1) 1
ˆ ˆˆ ˆ() ()

2, ...,ˆ ˆ1 ()

k
kk j k j

k
j k j

k

k k j
k K

j

−
= −

−
= −

ρ =

φ = ρ − ∑ φ ρ −
=

− ∑ φ ρ

⎧
⎪
⎨
⎪
⎩

and

1
1 1,

1
1 1,

ˆ (1) 1
ˆ ˆˆ ˆ() ()

2, ...,ˆ ˆ1 ()

k
kk j k j

k
j k j

k

k k j
k K

j

−
= −

−
= −

ρ =

φ = ρ − ∑ φ ρ −
=

− ∑ φ ρ

⎧
⎪
⎨
⎪
⎩

610 • partial_autocorrelation IMSL C Stat Library

This procedure is sensitive to rounding error and should not be used if the parameters
are near the nonstationarity boundary. A possible alternative would be to estimate
{φkk} for successive AR(k) models using least or maximum likelihood. Based on the
hypothesis that the true process is AR(p), Box and Jenkins (1976, page 65) note

1ˆvar{ } 1kk k p
n

φ − ≥ +�

See Box and Jenkins (1976, pages 82–84) for more information concerning the partial
autocorrelation function.

Example
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set for this
example consists of the number of sunspots observed from 1770 through 1869. Routine
imsls_f_partial_autocorrelation is used to compute the estimated partial
autocorrelations.

#include <imsls.h>
#include <stdio.h>

void main()
{
 float *partial=NULL, data[176][2], x[100];
 int i, nobs = 100, lagmax = 20;
 float *ac;

 imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
 for (i=0;i<nobs;i++) x[i] = data[21+i][1];

 ac = imsls_f_autocorrelation(100, x, lagmax, 0);
 partial = imsls_f_partial_autocorrelation(lagmax, ac, 0);
 imsls_f_write_matrix("Lag PACF", 20, 1, partial, 0);
}

Output
 Lag PACF
 1 0.806
 2 -0.635
 3 0.078
 4 -0.059
 5 -0.001
 6 0.172
 7 0.109
 8 0.110
 9 0.079
10 0.079
11 0.069
12 -0.038
13 0.081
14 0.033

Chapter 8: Time Series and Forecasting lack_of_fit • 611

15 -0.035
16 -0.131
17 -0.155
18 -0.119
19 -0.016
20 -0.004

lack_of_fit
Performs lack-of-fit test for a univariate time series or transfer function given the
appropriate correlation function.

Synopsis

#include <imsls.h>
float imsls_lack_of_fit (int n_observations, float cf[],
int lagmax, int npfree,..., 0)

Required Arguments

int n_observations (Input)
Number of observations of the stationary time series.

float cf[] (Input)
Array of length lagmax+1 containing the correlation function.

int lagmax (Input)
Maximum lag of the correlation function.

int npfree (Input)
Number of free parameters in the formulation of the time series model.
npfree must be greater than or equal to zero and less than lagmax.
Woodfield (1990) recommends npfree = p + q.

Return Value
Pointer to an array of length 2 with the test statistic, Q, and its p-value, p. Under the
null hypothesis, Q has an approximate chi-squared distribution with
lagmax-lagmin+1-npfree degrees of freedom.

Synopsis with Optional Arguments

 #include <imsls.h>

 float *imsls_f_lack_of_fit (int n_observations, float cf[], int lagmax,
int npfree,
IMSLS_RETURN_USER, float stat[],
IMSLS_LAGMIN, int lagmin,
0)

Optional Arguments

 IMSLS_RETURN_USER, float stat[] (Input)
User defined array for storage of lack-of-fit statistics.

612 • lack_of_fit IMSL C Stat Library

 IMSLS_LAGMIN, int lagmin (Input)
Minimum lag of the correlation function. lagmin corresponds to the lower
bound of summation in the lack of fit test statistic. Default value is 1.

Description
Routine imsls_f_lack_of_fit may be used to diagnose lack of fit in both ARMA
and transfer function models. Typical arguments for these situations are:

Model LAGMIN LAGMAX NPFREE

ARMA (p, q) 1 NOBS p + q

Transfer function 0 NOBS R + s

Function imsls_f_lack_of_fit performs a portmanteau lack of fit test for a time
series or transfer function containing n observations given the appropriate sample
correlation function

ˆ ()kρ

for k = L, L + 1, …, K where L = lagmin and K = lagmax.
The basic form of the test statistic Q is

1 ˆ(2) () ()
K

k L
Q n n n k kρ−

=

= + −∑

with L = 1 if

()ˆ kρ

is an autocorrelation function. Given that the model is adequate, Q has a chi-squared
distribution with K − L + 1 − m degrees of freedom where m = npfree is the number
of parameters estimated in the model. If the mean of the time series is estimated,
Woodfield (1990) recommends not including this in the count of the parameters
estimated in the model. Thus, for an ARMA(p, q) model set npfree= p + q regardless
of whether the mean is estimated or not. The original derivation for time series models
is due to Box and Pierce (1970) with the above modified version discussed by Ljung
and Box (1978). The extension of the test to transfer function models is discussed by
Box and Jenkins (1976, pages 394–395).

Example
Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the
number of sunspots observed each year from 1749 through 1924. The data set
for this example consists of the number of sunspots observed from 1770 through 1869.
An ARMA(2,1) with nonzero mean is fitted using routine imsls_f_arma. The
autocorrelations of the residuals are estimated using routine

Chapter 8: Time Series and Forecasting lack_of_fit • 613

imsls_f_autocorrelation. A portmanteau lack of fit test is computed using 10
lags with imsls_f_lack_of_fit.
The warning message from imsls_f_arma in the output can be ignored.
(See the example for routine imsls_f_arma for a full explanation of the warning
message.)

#include <imsls.h>
#include <stdio.h>

void main()
{
 int p = 2;
 int q = 1;
 int i;
 int n_observations = 100;
 int max_itereations = 0;
 int lagmin = 1;
 int lagmax = 10;
 int npfree = 4;
 float data[176][2], x[100];
 float *parameters;
 float *correlations;
 float *residuals;
 float tolerance = 0.125;
 float *result;

 /* Get sunspot data for 1770 through 1869, store it in x[]. */
 imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0);
 for (i=0;i<n_observations;i++) x[i] = data[21+i][1];

 /* Get residuals from ARMA(2,1) for autocorrelation/lack of fit */
 parameters = imsls_f_arma(n_observations, x, p, q,
 IMSLS_LEAST_SQUARES,
 IMSLS_CONVERGENCE_TOLERANCE, tolerance,
 IMSLS_RESIDUAL, &residuals,
 0);
 /* Get autocorrelations from residuals for lack of fit test */
 /* NOTE: number of OBS is equal to number of residuals */

correlations = imsls_f_autocorrelation(n_observations-p+lagmax,
 residuals, lagmax,
 0);

 /* Get lack of fit test statistic and p-value */
 /* NOTE: number of OBS is equal to original number of data */

 result = imsls_f_lack_of_fit(n_observations, correlations, lagmax,
 npfree, 0);

 /* Print parameter estimates, test statistic, and p-value */
 /* NOTE: Test Statistic Q follows a Chi-squared dist. */

 printf("Lack of Fit Statistic, Q = \t%3.5f\n P-value of Q
 = \t %1.5f\n\n",result[0], result[1]);

614 • estimate_missing IMSL C Stat Library

}

Output

***WARNING ERROR IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma. Least
*** squares estimation of the parameters has failed to converge.
*** Increase “length” and/or “tolerence” and/or
*** “convergence_tolerence”. The estimates of the parameters at
*** the last iteration may be used as new starting values.

Lack of Fit statistic (Q) = 14.572

 P-value (PVALUE) = 0.9761

estimate_missing
Estimates missing values in a time series.

Synopsis

#include <imsls.h>

float *imsls_f_estimate_missing(int n_obs, int tpoints[],
float z[],…,0)

 The type double function is imsls_d_estimate_missing.

Required Arguments

int n_obs (Input)
Number of non-missing observations in the time series. The time series must
not contain gaps with more than 3 missing values.

int tpoints[] (Input)
Vector of length n_obs containing the time points 1 _, , n obst t… at which the
time series values were observed. The time points must be in strictly
increasing order. Time points for missing values must lie in the open interval

1 _(), n obst t .

float z[] (Input)
Vector of length n obs containing the time series values. The values must be
ordered in accordance with the values in vector tpoints. It is assumed that
the time series after estimation of missing values contains values at
equidistant time points where the distance between two consecutive time
points is one. If the non-missing time series values are observed at time points

1 _, , n obst t… , then missing values between it and 1it +
, 1, , 1i = −n_obs… ,

exist if 1 1i it t
+

− > . The size of the gap between it and 1it +
 is then 1 1i it t

+
− − .

The total length of the time series with non-missing and estimated missing
values is _ 1 1n obst t− + , or tpoints[n_obs-1]-tpoints[0]+1.

Chapter 8: Time Series and Forecasting estimate_missing • 615

Return Value

Pointer to an array of length (tpoints[n_obs-1]-tpoints[0]+1) containing the
time series together with estimates for the missing values. If an error occurred, NULL is
returned.

Synopsis with Optional Arguments

#include <imsls.h>

 float *imsls_f_estimate_missing (int n_obs, int tpoints[], float z[],
IMSLS_METHOD, int method,
IMSLS_MAX_LAG, int maxlag,
IMSLS_NTIMES, int *ntimes,
IMSLS_MEAN_ESTIMATE, float mean_estimate,
IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance,
IMSLS_RELATIVE_ERROR, float relative_error,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_TIMES_ARRAY, int **times,
IMSLS_TIMES_ARRAY_USER, int times[],
IMSLS_MISSING_INDEX, int **missing_index,
IMSLS_MISSING_INDEX_USER, int missing_index[],
IMSLS_RETURN_USER, float u_z[],
0)

Optional Arguments
IMSLS_METHOD, int method (Input)

The method used for estimating the missing values:
0 — Use median.
1 — Use cubic spline interpolation.
2 — Use one-step-ahead forecasts from an AR(1) model.
3 — Use one-step-ahead forecasts from an AR(p) model.
Default: method = 3
If method = 2 is chosen, then all values of gaps beginning at time points

1 1t + or 1 2t + are estimated by method 0. If method = 3 is chosen and the
first gap starts at 1 1t + , then the values of this gap are also estimated by
method 0. If the length of the series before a gap, denoted len, is greater than
1 and less than 2 ⋅ maxlag, then maxlag is reduced to len/2 for the
computation of the missing values within this gap.

IMSLS_MAX_LAG, int maxlag (Input)
Maximum lag number when method = 3 was chosen.
Default: maxlag = 10

IMSLS_NTIMES, int *ntimes (Output)
Number of elements in the time series with estimated missing values. Note
that ntimes = tpoints[n_obs-1]-tpoints[0]+1.

IMSLS_MEAN_ESTIMATE, float mean_estimate (Input)
Estimate of the mean of the time series.

IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance (Input)
Tolerance level used to determine convergence of the nonlinear least squares
algorithm used in method 2. Argument convergence_tolerance represents

616 • estimate_missing IMSL C Stat Library

the minimum relative decrease in the sum of squares between two iterations
required to determine convergence. Hence, convergence_tolerance must be
greater than or equal to 0.
Default: 10 2 / 3max{10 , eps }− for single precision and 20 2 / 3max{10 , eps }− for
double precision, where eps =imsls_f_machine(4) for single precision and
eps =imsls_d_machine(4) for double precision.

IMSLS_RELATIVE_ERROR, float relative_error (Input)
Stopping criterion for use in the nonlinear equation solver used by method 2.
Default: relative_error = 100 × imsls_f_machine(4) for single
precision, relative_error = 100 × imsls_d_machine(4) for double
precision..

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations allowed in the nonlinear equations solver used
by method 2.
Default: max_iterations = 200.

IMSLS_TIMES_ARRAY, int **times (Output)
Address of a pointer to an internally allocated array of length
ntimes = tpoints[n_obs-1]-tpoints[0]+1 containing the time points of
the time series with estimates for the missing values.

IMSLS_TIMES_ARRAY_USER, int times[] (Output)
Storage for array times is provided by the user. See IMSLS_TIMES_ARRAY.

IMSLS_MISSING_INDEX, int **missing_index (Output)
Address of a pointer to an internally allocated array of length (ntimes-
n_obs) containing the indices for the missing values in array times. If
ntimes-n_obs = 0, then no missing value could be found and NULL is
returned.

IMSLS_MISSING_INDEX_USER, int missing_index[] (Output)
Storage for array missing_index is provided by the user. See
IMSLS_MISSING_INDEX.

IMSLS_RETURN_USER, float u_z[] (Output)
If specified, u_z is a vector of length tpoints[n_obs-1]-tpoints[0]+1
containing the time series values together with estimates for missing values.

Description
Traditional time series analysis as described by Box, Jenkins and Reinsel (1994)
requires the observations made at equidistant time points 1 1 1, 1, 2, , nt t t t+ + … . When
observations are missing, the problem occurs to determine suitable estimates. Function
imsls_f_estimate_missing offers 4 estimation methods:
Method 0 estimates the missing observations in a gap by the median of the last four
time series values before and the first four values after the gap. If not enough values are
available before or after the gap then the number is reduced accordingly. This method
is very fast and simple, but its use is limited to stationary ergodic series without
outliers and level shifts.
Method 1 uses a cubic spline interpolation method to estimate missing values. Here the
interpolation is again done over the last four time series values before and the first four
values after the gap. The missing values are estimated by the resulting interpolant. This
method gives smooth transitions across missing values.

Chapter 8: Time Series and Forecasting estimate_missing • 617

Method 2 assumes that the time series before the gap can be well described by an
AR(1) process. If the last observation prior to the gap is made at time point mt then it
uses the time series values at 1 1, , ,1 mt t t+ … to compute the one-step-ahead forecast at

origin mt . This value is taken as an estimate for the missing value at time point 1mt + .
If the value at 2mt + is also missing then the values at time points 1 1, , ,1 1mt t t+ +… are
used to recompute the AR(1) model, estimate the value at 2mt + and so on. The

coefficient 1φ in the AR(1) model is computed internally by the method of least
squares from routine imsls_f_arma.
Finally, method 3 uses an AR(p) model to estimate missing values by a one-step-ahead
forecast . First, function imsls_f_auto_uni_ar, applied to the time series prior to
the missing values, is used to determine the optimum p from the set {0, 1, …, maxlag}
of possible values and to compute the parameters 1, , pφ φ… of the resulting AR(p)
model. The parameters are estimated by the least squares method based on
Householder transformations as described in Kitagawa and Akaike (1978). Denoting
the mean of the series

1 1 1, , ,
mt t ty y y+ … by μ the one-step-ahead forecast at origin mt ,

ˆ (1)
mt

y , can be computed by the formula

11 1
.ˆ (1) (1)

m m

p p

t j j t jj j
y yμ φ φ + −= =

= − +∑ ∑

This value is used as an estimate for the missing value. The procedure starting with
imsls_f_auto_uni_ar is then repeated for every further missing value in the gap.
All four estimation methods treat gaps of missing values in increasing time order.

Example
Consider the AR(1) process

1 1 1, 2, 3,,t tY Y a tt φ −= + = …

We assume that { }ta is a Gaussian white noise process, 2(0,)ta N σ∼ . Then,

[] 0tE Y = and 2 2
1[] /(1)tVAR Y σ φ= − (see Anderson, p. 174).

The time series in the code below was artificially generated from an AR(1) process
characterized by 1 0.7φ = − and 2 2

11 0.51σ φ= − = . This process is stationary with

[] 1tVAR Y = . As initial value, 0 0:Y a= was taken. The sequence { }ta was generated
by a random number generator.
From the original series, we remove the observations at time points t=130, t=140,
t=141, t=160, t=175, t=176. Then, imsls_f_estimate_missing is used to compute
estimates for the missing values by all 4 estimation methods available. The estimated
values are compared with the actual values.

618 • estimate_missing IMSL C Stat Library

#include <imsls.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>

void main()
{
 int i, j, k;
 int maxlag = 20;
 int times_1[200], times_2[200];
 float x_1[200], x_2[200];
 int ntemp;
 int n_obs, n_miss;
 int ntimes;
 float *result = NULL;
 int *times = NULL, *missing_index = NULL;
 int miss_ind;

 float y[200] = {
 1.30540,-1.37166,1.47905,-0.91059,1.36191,-2.16966,3.11254,
 -1.99536,2.29740,-1.82474,-0.25445,0.33519,-0.25480,-0.50574,
 -0.21429,-0.45932,-0.63813,0.25646,-0.46243,-0.44104,0.42733,
 0.61102,-0.82417,1.48537,-1.57733,-0.09846,0.46311,0.49156,
 -1.66090,2.02808,-1.45768,1.36115,-0.65973,1.13332,-0.86285,
 1.23848,-0.57301,-0.28210,0.20195,0.06981,0.28454,0.19745,
 -0.16490,-1.05019,0.78652,-0.40447,0.71514,-0.90003,1.83604,
 -2.51205,1.00526,-1.01683,1.70691,-1.86564,1.84912,-1.33120,
 2.35105,-0.45579,-0.57773,-0.55226,0.88371,0.23138,0.59984,
 0.31971,0.59849,0.41873,-0.46955,0.53003,-1.17203,1.52937,
 -0.48017,-0.93830,1.00651,-1.41493,-0.42188,-0.67010,0.58079,
 -0.96193,0.22763,-0.92214,1.35697,-1.47008,2.47841,-1.50522,
 0.41650,-0.21669,-0.90297,0.00274,-1.04863,0.66192,-0.39143,
 0.40779,-0.68174,-0.04700,-0.84469,0.30735,-0.68412,0.25888,
 -1.08642,0.52928,0.72168,-0.18199,-0.09499,0.67610,0.14636,
 0.46846,-0.13989,0.50856,-0.22268,0.92756,0.73069,0.78998,
 -1.01650,1.25637,-2.36179,1.99616,-1.54326,1.38220,0.19674,
 -0.85241,0.40463,0.39523,-0.60721,0.25041,-1.24967,0.26727,
 1.40042,-0.66963,1.26049,-0.92074,0.05909,-0.61926,1.41550,
 0.25537,-0.13240,-0.07543,0.10413,1.42445,-1.37379,0.44382,
 -1.57210,2.04702,-2.22450,1.27698,0.01073,-0.88459,0.88194,
 -0.25019,0.70224,-0.41855,0.93850,0.36007,-0.46043,0.18645,
 0.06337,0.29414,-0.20054,0.83078,-1.62530,2.64925,-1.25355,
 1.59094,-1.00684,1.03196,-1.58045,2.04295,-2.38264,1.65095,
 -0.33273,-1.29092,0.14020,-0.11434,0.04392,0.05293,-0.42277,
 0.59143,-0.03347,-0.58457,0.87030,0.19985,-0.73500,0.73640,
 0.29531,0.22325,-0.60035,1.42253,-1.11278,1.30468,-0.41923,
 -0.38019,0.50937,0.23051,0.46496,0.02459,-0.68478,0.25821,
 1.17655,-2.26629,1.41173,-0.68331
 };

 int tpoints[200] = {
 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
 25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,
 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,

Chapter 8: Time Series and Forecasting estimate_missing • 619

 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,
 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,
 107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,
 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,
 139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,
 155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,
 171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,
 187,188,189,190,191,192,193,194,195,196,197,198,199,200
 };

 n_miss = 0;
 times_1[0] = times_2[0] = tpoints[0];
 x_1[0] = x_2[0] = y[0];
 k = 0;

 for (i=1; i<200;i++)
 {
 times_1[i] = tpoints[i];
 x_1[i] = y[i];

 /* Generate series with missing values */
 if (i!=129 && i!= 139 && i!=140 && i!=159 && i!=174 && i!=175)
 {
 k += 1;
 times_2[k] = times_1[i];
 x_2[k] = x_1[i];
 }
 }

 n_obs = k + 1;

 for (j=0;j<=3;j++)
 {
 if (j <= 2)
 result = imsls_f_estimate_missing(n_obs, times_2, x_2,
 IMSLS_METHOD, j,
 IMSLS_NTIMES, &ntimes,
 IMSLS_TIMES_ARRAY, ×,
 IMSLS_MISSING_INDEX,
&missing_index,
 0);
 else
 result = imsls_f_estimate_missing(n_obs, times_2, x_2,
 IMSLS_METHOD, j,
 IMSLS_NTIMES, &ntimes,
 IMSLS_MAX_LAG, 20,
 IMSLS_TIMES_ARRAY, ×,
 IMSLS_MISSING_INDEX,
&missing_index,
 0);

 if (!result)
 {

620 • estimate_missing IMSL C Stat Library

 if (times)
 {
 free(times);
 times = NULL;
 }
 if (missing_index)
 {
 free(missing_index);
 missing_index = NULL;
 }

 return;
 }

 if (j == 0) printf("\nMethod: Median\n");
 if (j == 1) printf("\nMethod: Cubic Spline Interpolation\n");
 if (j == 2) printf("\nMethod: AR(1) Forecast\n");
 if (j == 3) printf("\nMethod: AR(p) Forecast\n");

 printf("ntimes = %d\n", ntimes);
 printf("time\tactual\tpredicted\tdifference\n");

 n_miss = ntimes-n_obs;

 for (i = 0; i < n_miss; i++)
 {
 miss_ind = missing_index[i];
 printf("%d, %10.5f, %10.5f, %18.6f\n", times[miss_ind],
 x_1[miss_ind], result[miss_ind],
 fabs(x_1[miss_ind]-result[miss_ind]));
 }

 if (result)
 {
 free(result);
 result = NULL;
 }
 if (times)
 {
 free(times);
 times = NULL;
 }
 if (missing_index)
 {
 free(missing_index);
 missing_index = NULL;
 }
 }

 return;
}

Output

Method: Median
ntimes = 200

Chapter 8: Time Series and Forecasting garch • 621

time actual predicted difference
130, -0.92074, 0.26132, 1.182060
140, 0.44382, 0.05743, 0.386390
141, -1.57210, 0.05743, 1.629530
160, 2.64925, 0.04680, 2.602450
175, -0.42277, 0.04843, 0.471195
176, 0.59143, 0.04843, 0.543005

Method: Cubic Spline Interpolation
ntimes = 200
time actual predicted difference
130, -0.92074, 1.54109, 2.461829
140, 0.44382, -0.40730, 0.851119
141, -1.57210, 2.49709, 4.069194
160, 2.64925, -2.94712, 5.596371
175, -0.42277, 0.25066, 0.673430
176, 0.59143, 0.38032, 0.211107

Method: AR(1) Forecast
ntimes = 200
time actual predicted difference
130, -0.92074, -0.92971, 0.008968
140, 0.44382, 1.02824, 0.584424
141, -1.57210, -0.74527, 0.826832
160, 2.64925, 1.22880, 1.420454
175, -0.42277, 0.01049, 0.433259
176, 0.59143, 0.03683, 0.554601

Method: AR(p) Forecast
ntimes = 200
time actual predicted difference
130, -0.92074, -0.86385, 0.056894
140, 0.44382, 0.98098, 0.537164
141, -1.57210, -0.64489, 0.927206
160, 2.64925, 1.18966, 1.459592
175, -0.42277, -0.00105, 0.421722
176, 0.59143, 0.03773, 0.553705

garch
Computes estimates of the parameters of a GARCH(p,q) model.

Synopsis
#include <imsls.h>
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[], …, 0)
The type double function is imsls_d_garch.

Required Arguments

int p (Input)
Number of GARCH parameters.

622 • garch IMSL C Stat Library

int q (Input)
Number of ARCH parameters.

int m (Input)
Length of the observed time series.

 float y[] (Input)
Array of length m containing the observed time series data.

float xguess[] (Input)
Array of length p + q + 1 containing the initial values for the parameter array
x[].

Return Value
Pointer to the parameter array x[] of length p + q + 1 containing the estimated values
of sigma squared, followed by the q ARCH parameters, and the p GARCH parameters.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[],

IMSLS_MAX_SIGMA, float max_sigma,
 IMSLS_A, float *a,
 IMSLS_AIC, float *aic,
 IMSLS_VAR, float *var,
 IMSLS_VAR_USER, float var[],
 IMSLS_VAR_COL_DIM, int var_col_dim,
 IMSLS_RETURN_USER, float x[],
 0)

Optional Arguments
IMSLS_MAX_SIGMA, float max_sigma, (Input)

Value of the upperbound on the first element (sigma) of the array of returned
estimated coefficients. Default = 10.

IMSLS_A, float *a, (Output)
Value of Log-likelihood function evaluated at the estimated parameter array
x.

IMSLS_AIC, float *aic, (Output)
Value of Akaike Information Criterion evaluated at the estimated parameter
array x.

IMSLS_VAR, float *var, (Output)
Array of size (p+q+1)x(p+q+1) containing the variance-covariance matrix.

IMSLS_VAR_USER, float var[], (Output)
Storage for array var is provided by the user.
See IMSLS_VAR.

Chapter 8: Time Series and Forecasting garch • 623

IMSLS_VAR_COL_DIM, int var_col_dim, (Input)
Column dimension (p+q+1)of the variance-covariance matrix.

IMSLS_RETURN_USER, float x[], (Output)
If specified, x returns an array of length p +q + 1 containing the estimated
values of sigma squared, followed by the q ARCH parameters, and the p
GARCH parameters. Storage for estimated parameter array x is provided by
the user.

Description
The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model for a
time series { }tw is defined as

2 2 2 2

1 1
,

t t t
p q

t i t i i t i
i i

w z

w

σ

σ σ β σ α− −
= =

=

= + +∑ ∑

where zt’s are independent and identically distributed standard normal random
variables,

()

2

1

2 1 1

0 , 0, 0 and

1.

i i

p q p q

i i
i i i

x i

σ β α

β α
+ +

= = =

< < ≥ ≥

= + <∑ ∑ ∑

max_sigma

The above model is denoted as GARCH(p,q). The βi and αi coeffecients will be
referred to as GARCH and ARCH coefficents, respectively. When βi = 0,
i = 1,2,…,p, the above model reduces to ARCH(q) which was proposed by Engle
(1982). The nonnegativity conditions on the parameters imply a nonnegative variance
and the condition on the sum of the βi’s and α i’s is required for wide sense stationarity.
In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models have
often found to appropriately account for conditional heteroskedasticity (Palm 1996).
This finding is similar to linear time series analysis based on ARMA models.
It is important to notice that for the above models positive and negative past values
have a symmetric impact on the conditional variance. In practice, many series may
have strong asymmetric influence on the conditional variance. To take into account
this phenomena, Nelson (1991) put forward Exponential GARCH (EGARCH). Lai
(1998) proposed and studied some properties of a general class of models that extended
linear relationship of the conditional variance in ARCH and GARCH into nonlinear
fashion.
The maximum likelihood method is used in estimating the parameters in GARCH(p,q).
The log-likelihood of the model for the observed series {wt} with length m = nobs is

624 • garch IMSL C Stat Library

2 2 2

1 1

2 2 2 2

1 1

1 1log() log(2) / log ,
2 2 2

 .

m m

t t t
t t

p q

t i t i i t i
i i

mL y

where w

π σ σ

σ σ β σ α

= =

− −
= =

= − − −

= + +

∑ ∑

∑ ∑

Thus log(L) is maximized subject to the constraints on the αi, βi, and σ.
In this model, if q = 0, the GARCH model is singular since the estimated Hessian
matrix is singular.
The initial values of the parameter vector x entered in vector xguess must satisfy
certain constraints. The first element of xguess refers to σ2 and must be greater than
zero and less than max_sigma. The remaining p+q initial values must each be greater
than or equal to zero and sum to a value less than one.
To guarantee stationarity in model fitting,

1

2 1 1

() 1
p q p q

i i
i i i

x i β α
+ +

= = =

= + <∑ ∑ ∑

is checked internally. The initial values should selected from values between zero and
one.
AIC is computed by

 - 2 log (L) + 2(p+q+1),

where log(L) is the value of the log-likelihood function.
Statistical inferences can be performed outside the routine GARCH based on the output
of the log-likelihood function (A), the Akaike Information Criterion (AIC), and the
variance-covariance matrix (VAR).

Example
The data for this example are generated to follow a GARCH(p,q) process by using a
random number generation function sgarch. The data set is analyzed and estimates of
sigma, the ARCH parameters, and the GARCH parameters are returned. The values of
the Log-likelihood function and the Akaike Information Criterion are returned from the
optional arguments IMSLS_A and IMSLS_AIC.

#include <imsls.h>
#include <math.h>

static void sgarch (int p, int q, int m, float x[],
 float y[], float z[], float y0[], float sigma[]);
#define M 1000
#define N (P + Q + 1)
#define P 2
#define Q 1

void main ()

Chapter 8: Time Series and Forecasting garch • 625

{
 int n, p, q, m;
 float a, aic, wk1[M + 1000], wk2[M + 1000],
 wk3[M + 1000], x[N], xguess[N], y[M];
 float *result;

 imsls_random_seed_set (182198625);
 m = M;
 p = P;
 q = Q;
 n = p+q+1;
 x[0] = 1.3;
 x[1] = .2;
 x[2] = .3;
 x[3] = .4;
 xguess[0] = 1.0;
 xguess[1] = .1;
 xguess[2] = .2;
 xguess[3] = .3;
 sgarch (p, q, m, x, y, wk1, wk2, wk3);
 result = imsls_f_garch(p, q, m, y, xguess,
 IMSLS_A, &a,
 IMSLS_AIC, &aic,
 0);
 printf("Sigma estimate is\t%11.4f\n", result[0]);
 printf("ARCH(1) estimate is\t%11.4f\n", result[1]);
 printf("GARCH(1) estimate is\t%11.4f\n", result[2]);
 printf("GARCH(2) estimate is\t%11.4f\n", result[3]);
 printf("\nLog-likelihood function value is\t%11.4f\n", a);
 printf("Akaike Information Criterion value is\t%11.4f\n", aic);
 return;
}

static void sgarch (int p, int q, int m, float x[],
 float y[], float z[], float y0[], float sigma[])
{
 int i, j, l;
 float s1, s2, s3;

 imsls_f_random_normal (m + 1000, IMSLS_RETURN_USER, z, 0);

 l = imsls_i_max (p, q);
 l = imsls_i_max (l, 1);
 for (i = 0; i < l; i++) y0[i] = z[i] * x[0];

 /* COMPUTE THE INITIAL VALUE OF SIGMA */
 s3 = 0.0;
 if (imsls_i_max (p, q) >= 1) {
 for (i = 1; i < (p + q + 1); i++) s3 += x[i];
 }
 for (i = 0; i < l; i++) sigma[i] = x[0] / (1.0 - s3);

 for (i = l; i < (m + 1000); i++) {
 s1 = 0.0;
 s2 = 0.0;

626 • kalman IMSL C Stat Library

 if (q >= 1) {
 for (j = 0; j < q; j++)
 s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1];
 }
 if (p >= 1) {
 for (j = 0; j < p; j++)
 s2 += x[q + 1 + j] * sigma[i - j - 1];
 }
 sigma[i] = x[0] + s1 + s2;
 y0[i] = z[i] * sqrt (sigma[i]);
 }
 /*
 * DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS
 */
 for (i = 0; i < m; i++) y[i] = y0[1000 + i];
 return;
} /* end of function */

Output
Sigma estimate is 1.6480
ARCH(1) estimate is 0.2427
GARCH(1) estimate is 0.3175
GARCH(2) estimate is 0.3335

Log-likelihood function value is -2707.0903
Akaike Information Criterion value is 5422.1807

kalman
Performs Kalman filtering and evaluates the likelihood function for the state-space
model.

Synopsis
#include <imsls.h>
void imsls_f_kalman (int nb, float nb[], float covb[], int *n,

float *ss, float *alndet, ..., 0)
The type double function is imsls_d_kalman.

Required Arguments

int nb (Input)
Number of elements in the state vector.

float b[] (Input/Output)
Array of length nb containing the estimated state vector. The input is the
estimated state vector at time k given the observations through time
k − 1. The output is the estimated state vector at time k + 1 given the
observations through time k. On the first call to imsls_f_kalman, the input
b must be the prior mean of the state vector at time 1.

Chapter 8: Time Series and Forecasting kalman • 627

float covb[] (Input/Output)
Array of size nb by nb such that covb* σ2 is the mean squared error matrix
for b.
Before the first call to imsls_f_kalman, covb * σ2 must equal the
variance-covariance matrix of the state vector.

int *n (Input/Output)
Pointer to the rank of the variance-covariance matrix for all the observations.
n must be initialized to zero before the first call to imsls_f_kalman. In the
usual case when the variance-covariance matrix is nonsingular, n equals the
sum of the ny’s from the invocations to imsls_f_kalman. See optional
argument IMSLS_UPDATE below for the definition of ny.

float *ss (Input/Output)
Pointer to the generalized sum of squares.
ss must be initialized to zero before the first call to imsls_f_kalman. The
estimate of σ2 is given by ss

n
.

float *alndet (Input/Output)
Pointer to the natural log of the product of the nonzero eigenvalues of
P where P * σ2 is the variance-covariance matrix of the observations.
Although alndet is computed, imsls_f_kalman avoids the explicit
computation of P. alndet must be initialized to zero before the first call to
imsls_f_kalman. In the usual case when P is nonsingular, alndet is the
natural log of the determinant of P.

Synopsis with Optional Arguments
#include <imsls.h>
voidt *imsls_f_random_sample (int nb, float nb[], float covb[],

 int *n, float *ss, float *alndet,
IMSLS_UPDATE, int ny, float *y, float *z, float *r,
IMSLS_Z_COL_DIM, int z_col_dim,
IMSLS_R_COL_DIM, int r_col_dim,
IMSLS_T, float *t,
IMSLS_T_COL_DIM, int t_col_dim,
IMSLS_Q, float *q,
IMSLS_Q_COL_DIM, int t_col_dim,
IMSLS_TOLERANCE, float tolerance,
IMSLS_V, float **v,
IMSLS_V_USER, float v[],
IMSLS_COVV, float **v,
IMSLS_COVV_USER, float v[],
 0)

Optional Arguments

IMSLS_UPDATE, int ny, float *y, float *z, float *r (Input)
Perform computation of the update equations.
ny: Number of observations for current update.

628 • kalman IMSL C Stat Library

 y: Array of length ny containing the observations.

 z: ny by nb array containing the matrix relating the observations to the state
vector in the observation equation.

 r: ny by ny array containing the matrix such that r * σ2 is the variance-
covariance matrix of errors in the observation equation.
σ2 is a positive unknown scalar. Only elements in the upper triangle of r are
referenced.

IMSLS_Z_COL_DIM, int z_col_dim (Input)
Column dimension of the matrix z.
Default: z_col_dim = nb

IMSLS_R_COL_DIM, int r_col_dim (Input)
Column dimension of the matrix r.
Default: r_col_dim = ny

IMSLS_T, float *t (Input)
nb by nb transition matrix in the state equation
Default: t = identity matrix

IMSLS_T_COL_DIM, int r_col_dim (Input)
Column dimension of the matrix t.
Default: t_col_dim = nb

IMSLS_Q, float *q (Input)
nb by nb matrix such that q * σ2 is the variance-covariance matrix of the
error vector in the state equation.
Default: There is no error term in the state equation.

IMSLS_Q_COL_DIM, int q_col_dim (Input)
Column dimension of the matrix q.
Default: q_col_dim = nb

IMSLS_TOLERANCE, float tolerance (Input)
Tolerance used in determining linear dependence.
Default: tolerance = 100.0*imsls_f_machine(4)

IMSLS_V, float **v (Output)
Address to a pointer v to an array of length ny containing the one-step-ahead
prediction error.

IMSLS_V_USER, float v[] (Output)
Storage for v is provided by the user. See IMSLS_V.

IMSLS_COVV, float **covv (Output)
The address to a pointer of size ny by ny containing a matrix such that covv *
σ2 is the variance-covariance matrix of v.

IMSLS_COVV_USER, float covv[] (Output)
Storage for covv is provided by the user. See IMSLS_COVV.

Chapter 8: Time Series and Forecasting kalman • 629

Description
Routine imsls_f_kalman is based on a recursive algorithm given by Kalman (1960),
which has come to be known as the Kalman filter. The underlying model is known as
the state-space model. The model is specified stage by stage where the stages generally
correspond to time points at which the observations become available. The routine
imsls_f_kalman avoids many of the computations and storage requirements that
would be necessary if one were to process all the data at the end of each stage in order
to estimate the state vector. This is accomplished by using previous computations and
retaining in storage only those items essential for processing of future observations.
The notation used here follows that of Sallas and Harville (1981). Let yk (input in y
using optional argument IMSLS_UPDATE) be the nk × 1 vector of observations that
become available at time k. The subscript k is used here rather than t, which is more
customary in time series, to emphasize that the model is expressed in stages k = 1, 2, …
and that these stages need not correspond to equally spaced time points. In fact, they
need not correspond to time points of any kind. The observation equation for the state-
space model is

yk = Zkbk + ek k = 1, 2, …

Here, Zk (input in z using optional argument IMSLS_UPDATE) is an nk × q known
matrix and bk is the q × 1 state vector. The state vector bk is allowed to change with
time in accordance with the state equation

bk+1 = Tk+1bk + wk+1 k = 1, 2, …

starting with b1 = μ1 + w1.
The change in the state vector from time k to k + 1 is explained in part by the transition
matrix Tk+1 (the identity matrix by default, or optionally input using IMSLS_T), which
is assumed known. It is assumed that the q-dimensional wks
(k = 1, 2,…) are independently distributed multivariate normal with mean vector 0 and
variance-covariance matrix σ2Qk, that the nk-dimensional eks (k = 1, 2,…) are
independently distributed multivariate normal with mean vector 0 and variance-
covariance matrix σ2Rk, and that the wks and eks are independent of each other. Here,

μ1is the mean of b1 and is assumed known, σ2 is an unknown positive scalar.
Qk+1(input in Q) and Rk (input in R) are assumed known.

Denote the estimator of the realization of the state vector bk given the observations y1,
y2, …, yj by

|
ˆ

k jβ

By definition, the mean squared error matrix for

|
ˆ

k jβ

630 • kalman IMSL C Stat Library

is
2 ˆ ˆ()()T

k kk j k j k jC E b bσ β β= − −

At the time of the k-th invocation, we have

1
ˆ

k kβ −

and
Ck|k−1, which were computed from the (k−1)-st invocation, input in b and covb,
respectively. During the k-th invocation, function imsls_f_kalman computes the
filtered estimate

|
ˆ

k kβ

along with Ck|k. These quantities are given by the update equations:

1
1 1

1
1 1 1

ˆ ˆ T
k k kk k k k k k

T
k k kk k k k k k k k

C Z H v

C C C Z H Z C

β β −
− −

−
− − −

= +

= −

where

1
ˆ

k k k k kv y Z β −= −

and where

1
T

k k k kk kH R Z C Z−= +

Here, vk (stored in v) is the one-step-ahead prediction error, and σ2Hk is the variance-
covariance matrix for vk. Hk is stored in covv. The “start-up values” needed on the first
invocation of imsls_f_kalman are

11 0β̂ μ=

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th invocation
are completed by imsls_f_kalman computing the one-step-ahead estimate

1
ˆ

k kβ +

along with Ck+1|k given by the prediction equations:

Chapter 8: Time Series and Forecasting kalman • 631

11

1 1 11

ˆ ˆ
kk k k k

T
k k kk k k k

T

C T C T Q

β β++

+ + ++

=

= +

If both the filtered estimates and one-step-ahead estimates are needed by the user at
each time point, imsls_f_kalman can be invoked twice for each time point—first
without IMSLS_T and IMSLS_Q to produce

ˆ
k kβ

and Ck|k, and second without IMSLS_UPDATE to produce

1
ˆ

k kβ +

and Ck+1|k (Without IMSLS_T and IMSLS_Q, the prediction equations are skipped.
Without IMSLS_UPDATE, the update equations are skipped.).
Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an
estimate of

ˆ
k jβ

is needed where k > j + 1. At time j, imsls_f_kalman is invoked with
IMSLS_UPDATE to compute

1
ˆ

j jβ +

Subsequent invocations of imsls_f_kalman without IMSLS_UPDATE can compute

2 3
ˆ ˆ ˆ, , ...,j j j j k j+ +β β β

Computations for

ˆ
k jβ

and Ck|j assume the variance-covariance matrices of the errors in the observation

equation and state equation are known up to an unknown positive scalar multiplier, σ2.
The maximum likelihood estimate of σ2 based on the observations y1, y2, …, ym, is
given by

2ˆ /SS Nσ =

where

632 • kalman IMSL C Stat Library

1
1 1andm m T

k k k k k kN n SS v H v−
= == ∑ = ∑

N and SS are the input/output arguments n and ss.

If σ2 is known, the Rks and Qks can be input as the variance-covariance matrices

exactly. The earlier discussion is then simplified by letting σ2 = 1.
In practice, the matrices Tk, Qk, and Rk are generally not completely known. They may
be known functions of an unknown parameter vector θ. In this case, imsls_f_kalman
can be used in conjunction with an optimization program (see routine
imsl_f_min_uncon_multivar, IMSL C/Math/Library, Chapter 8, “Optimization”)
to obtain a maximum likelihood estimate of θ. The natural logarithm of the likelihood
function for y1, y2, …, ym differs by no more than an additive constant from

2 2
1 2

2 1

1 1

1(, ; , , ,) ln
2

1 1ln[det()]
2 2

m

m m
T

k k k k
k k

L y y y N

H v H v

θ σ σ

σ − −

= =

= −

− −∑ ∑

…

(Harvey 1981, page 14, equation 2.21).
Here,

=1 ln[det()]m
k kH∑

(stored in alndet) is the natural logarithm of the determinant of V where σ2V is the
variance-covariance matrix of the observations.

Minimization of −2L(θ, σ2; y1, y2, …, ym) over all θ and σ2 produces maximum
likelihood estimates. Equivalently, minimization of −2Lc(θ; y1, y2, …, ym) where

1 2
1

1 1(; , , ,) ln ln[det()]
2 2

m

c m k
k

SSL y y y N H
N

θ
=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑…

produces maximum likelihood estimates
2ˆ ˆand /SS Nθ σ =

The minimization of −2Lc(θ; y1, y2, …, ym) instead of −2L(θ, σ2; y1, y2, …, ym),
reduces the dimension of the minimization problem by one. The two optimization
problems are equivalent since

2ˆ () () /SS Nσ θ θ=

minimizes −2L(θ, σ2; y1, y2, …, ym) for all θ, consequently,

Chapter 8: Time Series and Forecasting kalman • 633

2ˆ ()σ θ

can be substituted for σ2 in L(θ, σ2; y1, y2, …, ym) to give a function that differs by no
more than an additive constant from Lc(θ; y1, y2, …, ym).

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modification
for singular distributions described by Rao (1973, pages 527–528) is used. The
necessary changes in the preceding discussion are as follows:

1. Replace
1

kH −

 by a generalized inverse.

2. Replace det(Hk) by the product of the nonzero eigenvalues of Hk.

3. Replace N by

()1
rankm

kk
H

=∑

Maximum likelihood estimation of parameters in the Kalman filter is discussed by
Sallas and Harville (1988) and Harvey (1981, pages 111–113).

Example 1
Function imsls_f_kalman is used to compute the filtered estimates and one-step-
ahead estimates for a scalar problem discussed by Harvey (1981, pages
116–117). The observation equation and state equation are given by

1 1 1, 2,3, 4
k k k

k k k

y b e
b b w k+ +

= +
= + =

where the eks are identically and independently distributed normal with mean 0 and

variance σ2, the wks are identically and independently distributed normal with mean 0

and variance 4σ2, and b1is distributed normal with mean 4 and variance 16σ2. Two
invocations of imsls_f_kalman are needed for each time point in order to compute
the filtered estimate and the one-step-ahead estimate. The first invocation does not use
the optional arguments IMSLS_T and IMSLS_Q so that the prediction equations are
skipped in the computations. The update equations are skipped in the computations in
the second invocation.
This example also computes the one-step-ahead prediction errors. Harvey (1981, page
117) contains a misprint for the value v4 that he gives as 1.197. The correct value of
v4 = 1.003 is computed by imsls_f_kalman.

.
#include <stdio.h>
#include <imsls.h>

634 • kalman IMSL C Stat Library

#define NB 1
#define NOBS 4
#define NY 1

void main()
{
 int nb = NB, nobs = NOBS, ny = NY;
 int ldcovb, ldcovv, ldq, ldr, ldt, ldz;
 int i, iq, it, n, nout;
 float alndet, b[NB], covb[NB][NB], covv[NY][NY],
 q[NB][NB], r[NY][NY], ss,
 t[NB][NB], tol, v[NY], y[NY], z[NY][NB];
 float ydata[] = {4.4, 4.0, 3.5, 4.6};

 z[0][0] = 1.0;
 r[0][0] = 1.0;
 q[0][0] = 4.0;
 t[0][0] = 1.0;
 b[0] = 4.0;
 covb[0][0] = 16.0;

 /* Initialize arguments for initial call to imsls_f_kalman. */
 n = 0;
 ss = 0.0;
 alndet = 0.0;
 printf("k/j b covb n ss alndet v covv\n");

 for (i = 0; i < nobs; i++) {
 /* Update */
 y[0] = ydata[i];
 imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,
 IMSLS_UPDATE, ny, y, z, r,
 IMSLS_V_USER, v,
 IMSLS_COVV_USER, covv,
 0);

 printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",
 i, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);

 /* Prediction */
 imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,
 IMSLS_T, t,
 IMSLS_Q, q,
 0);

 printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",
 i+1, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]);
 }

}

Output
k/j b covb n ss alndet v covv
0/0 4.376 0.941 1 0.009 2.833 0.400 17.000

Chapter 8: Time Series and Forecasting kalman • 635

1/0 4.376 4.941 1 0.009 2.833 0.400 17.000
1/1 4.063 0.832 2 0.033 4.615 -0.376 5.941
2/1 4.063 4.832 2 0.033 4.615 -0.376 5.941
2/2 3.597 0.829 3 0.088 6.378 -0.563 5.832
3/2 3.597 4.829 3 0.088 6.378 -0.563 5.832
3/3 4.428 0.828 4 0.260 8.141 1.003 5.829
4/3 4.428 4.828 4 0.260 8.141 1.003 5.829

Example 2
Function imsls_f_kalman is used with routine imsl_f_min_uncon_multivar,
(see IMSL C/Math/Library, Chapter 8, “Optimization”) to find a maximum likelihood
estimate of the parameter θ in a MA(1) time series represented by yk = εk − θεk−1.
Function imsls_f_random_arma (see IMSL C/Stat/Library, Chapter 12, “Random
Number Generation”) is used to generate 200 random observations from an MA(1)
time series with θ = 0.5 and σ2 = 1.
The MA(1) time series is cast as a state-space model of the following form (see Harvey
1981, pages 103–104, 112):

()

1

1 0

0 1
0 0

k k

k k k

y b

b b w−

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

where the two-dimensional wks are independently distributed bivariate normal with

mean 0 and variance σ2 Qk and

2

1 2

2

1

1
2, 3, ..., 200k

Q

Q k

+ θ −θ
=

−θ θ

−θ
= =

−θ θ

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

The warning error that is printed as part of the output is not serious and indicates that
imsl_f_min_uncon_multivar (See Chapter 8, “Optimization” in the math manual)
is generally used for multi-parameter minimization.

#include <stdio.h>
#include <math.h>
#include <imsls.h>

#define NOBS 200
#define NTHETA 1
#define NB 2
#define NY 1

float fcn(int ntheta, float theta[]);
float *ydata;

636 • kalman IMSL C Stat Library

void main ()
{
 int lagma[1];
 float pma[1];
 float *theta;

 imsls_random_seed_set(123457);
 pma[0] = 0.5;
 lagma[0] = 1;
 ydata = imsls_f_random_arma(200, 0, NULL, 1, pma,

IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_NONZERO_MALAGS, lagma,

 0);

 theta = imsl_f_min_uncon_multivar(fcn, NTHETA, 0);

 printf("* * * Final Estimate for THETA * * *\n");
 printf("Maximum likelihood estimate, THETA = %f\n", theta[0]);

}

float fcn(int ntheta, float theta[])
{
 int i, n;
 float res, ss, alndet;
 float t[] = {0.0, 1.0, 0.0, 0.0};
 float z[] = {1.0, 0.0};
 float q[NB][NB], r[NY][NY], b[NB], covb[NB][NB], y[NY];
 if (fabs(theta[0]) > 1.0) {
 res = 1.0e10;
 } else {
 q[0][0] = 1.0;
 q[0][1] = -theta[0];
 q[1][0] = -theta[0];
 q[1][1] = theta[0]*theta[0];

 r[0][0] = 0.0;

 b[0] = 0.0;
 b[1] = 0.0;

 covb[0][0] = 1.0 + theta[0]*theta[0];
 covb[0][1] = -theta[0];
 covb[1][0] = -theta[0];
 covb[1][1] = theta[0]*theta[0];

 n = 0;
 ss = 0.0;
 alndet = 0.0;

 for (i = 0; i<NOBS; i++) {
 y[0] = ydata[i];
 imsls_f_kalman(NB, b, (float*)covb, &n, &ss, &alndet,
 IMSLS_UPDATE, NY, y, z, r,
 IMSLS_Q, q,

Chapter 8: Time Series and Forecasting kalman • 637

 IMSLS_T, t,
 0);
 }
 res = n*log(ss/n) + alndet;
 }
 return(res);
}

Output

*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. This routine
*** may be inefficient for a problem of size "n" = 1.

*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar. The last global
*** step failed to locate a lower point than the current X value.
*** The current X may be an approximate local minimizer and no more
*** accuracy is possible or the step tolerance may be too large
*** where "step_tol" = 2.422181e-05 is given.

* * * Final Estimate for THETA * * *
Maximum likelihood estimate, THETA = 0.453256

638 • kalman IMSL C Stat Library

Chapter 9: Multivariate Analysis Routines • 639

Chapter 9: Multivariate Analysis

Routines
Hierarchical Cluster Analysis

Computes matrix of dissimilarities or similarities dissimilarities 641
Hierarchical cluster analysis cluster_hierarchical 645
Retrieves cluster numbers in hierarchical
cluster analysis cluster_number 649

K-means Cluster Analysis
Performs a K-means (centroid) cluster analysis cluster_k_means 653

Principal Component Analysis
Computes principal components principal_components 657

Factor Analysis
Extracts factor-loading estimates factor_analysis 663
Performs discriminant function analysis discriminant_analysis 682

Usage Notes

Cluster Analysis
Function imsls_f_cluster_k_means performs a K-means cluster analysis. Basic K-
means clustering attempts to find a clustering that minimizes the within-cluster sums-
of-squares. In this method of clustering the data, matrix X is grouped so that each
observation (row in X) is assigned to one of a fixed number, K, of clusters. The sum of
the squared difference of each observation about its assigned cluster’s mean is used as
the criterion for assignment. In the basic algorithm, observations are transferred from
one cluster or another when doing so decreases the within-cluster sums-of-squared
differences. When no transfer occurs in a pass through the entire data set, the algorithm
stops. Function imsls_f_cluster_k_means is one implementation of the basic
algorithm.
The usual course of events in K-means cluster analysis is to use
imsls_f_cluster_k_means to obtain the optimal clustering. The clustering is then
evaluated by functions described in Chapter 1, “Basic Statistics,” and/or other chapters
in this manual. Often, K-means clustering with more than one value of K is performed,
and the value of K that best fits the data is used.

640 • Usage Notes IMSL C Stat Library

Clustering can be performed either on observations or variables. The discussion of the
function imsls_f_cluster_k_means assumes the clustering is to be performed on
the observations, which correspond to the rows of the input
data matrix. If variables, rather than observations, are to be clustered, the
data matrix should first be transposed. In the documentation for
imsls_f_cluster_k_means, the words “observation” and “variable” are
interchangeable.

Principal Components
The idea in principal components is to find a small number of linear combinations of
the original variables that maximize the variance accounted for in the original data.
This amounts to an eigensystem analysis of the covariance (or correlation) matrix. In
addition to the eigensystem analysis, imsls_f_principal_components computes
standard errors for the eigenvalues. Correlations of the original variables with the
principal component scores also are computed.

Factor Analysis
Factor analysis and principal component analysis, while quite different in assumptions,
often serve the same ends. Unlike principal components in which linear combinations
yielding the highest possible variances are obtained, factor analysis generally obtains
linear combinations of the observed variables according to a model relating the
observed variable to hypothesized underlying factors, plus a random error term called
the unique error or uniqueness. In factor analysis, the unique errors associated with
each variable are usually assumed to be independent of the factors. Additionally, in the
common factor model, the unique errors are assumed to be mutually independent. The
factor analysis model is expressed in the following equation:

x − μ = Λf + e

where x is the p vector of observed values, μ is the p vector of variable means,
Λ is the p × k matrix of factor loadings, f is the k vector of hypothesized underlying
random factors, e is the p vector of hypothesized unique random errors, p is the number
of variables in the observed variables, and k is the number of factors.
Because much of the computation in factor analysis was originally done by hand or
was expensive on early computers, quick (but dirty) algorithms that made the
calculations possible were developed. One result is the many factor extraction methods
available today. Generally speaking, in the exploratory or model building phase of a
factor analysis, a method of factor extraction that is not computationally intensive
(such as principal components, principal factor, or image analysis) is used. If desired, a
computationally intensive method is then used to obtain the final factors.
In exploratory factor analysis, the unrotated factor loadings obtained from the factor
extraction are generally transformed (rotated) to simplify the interpretation of the
factors. Rotation is possible because of the overparameterization in the factor analysis
model. The method used for rotation may result in factors that are independent
(orthogonal rotations) or correlated (oblique rotations). Prior information may be
available (or hypothesized) in which case a Procrustes rotation could be used. When no
prior information is available, an analytic rotation can be performed.

Chapter 9: Multivariate Analysis dissimilarities • 641

The steps generally used in a factor analysis are summarized as follows:

Steps in a Factor Analysis
Step 1

Calculate Covariance (Correlation) Matrix
IMSL routine imsls_f_covariances

(see Chapter 3, “Correlation and Covariance”)

Step 2
Initial Factor Extraction

imsls_f_factor_analysis

Step 3
Factor Rotation

using imsls_f_factor_analysis’ optional arguments
Orthogonal Oblique

No Prior Info.

IMSLS_ORTHOMAX_ROTATION,

No Prior Info.
IMSLS_OBLIQUE_PROMAX_ROTATION

IMSLS_DIRECT_OBLIMIN_ROTATION

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION

Prior Info.
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION

Prior Info.
IMSLS_OBLIQUE_PROCRUSTES_ROTATION

 Step 4

Factor Structure and Variance
imsls_f_factor_analysis

optional argument
IMSLS_FACTOR_STRUCTURE

dissimilarities
Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of
a matrix.

Synopsis
#include <imsls.h>

float *imsls_f_dissimilarities (int nrow, int ncol, float *x, …, 0)

The type double function is imsls_d_dissimilarities.

Required Arguments

int nrow (Input)
Number of rows in the matrix.

642 • dissimilarities IMSL C Stat Library

int ncol (Input)
Number of columns in the matrix.

float *x (Input)
Array of size nrow by ncol containing the matrix.

Return Value
An array of size m by m containing the computed dissimilarities or similarities, where
m = nrow if optional argument IMSLS_ROWS is used, and m = ncol otherwise.

Synopsis with Optional Arugments
#include <imsls.h>
float *imsls_f_dissimilarities (int nrow, int ncol, float *x,

IMSLS_ROWS, or IMSLS_COLUMNS,
IMSLS_INDEX, int ndstm, int ind[],
IMSLS_METHOD, int imeth,
IMSLS_SCALE, int iscale,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_RETURN_USER, float dist[],
0)

Optional Arguments

IMSLS_ROWS,
or

IMSLS_COLUMNS, (Input)
Exactly one of these options can be present to indicate whether distances are
computed between rows or columns of x.
Default: Distances are computed between rows.

IMSLS_INDEX, int ndstm, int ind[], (Input)
Argument ind is an array of length ndstm containing the indices of the rows
(columns if IMSLS_ROWS is used) to be used in computing the distance
measure.
Default: All rows(columns) are used.

IMSLS_METHOD, int imeth (Input)
Method to be used in computing the dissimilarities or similarities.
Default: imeth = 0.

imeth Method

0 Euclidean distance (L2 norm)

1 Sum of the absolute differences (L1 norm)

2 Maximum difference (L∞ norm)

3 Mahalanobis distance

4 Absolute value of the cosine of the angle
between the vectors

Chapter 9: Multivariate Analysis dissimilarities • 643

imeth Method

5 Angle in radians (0, π) between the lines
through the origin defined by the vectors

6 Correlation coefficient

7 Absolute value of the correlation
coefficient

8 Number of exact matches
See the Description section for a more detailed description of each measure.

IMSLS_SCALE, int iscale (Input)
Scaling option. (Input)
iscale is not used for methods 3 through 8.
Default: iscale = 0.

iscale Scaling Performed

0 No scaling is performed.

1 Scale each column (row, if IMSLS_ROWS is
used) by the standard deviation of the
column (row).

2 Scale each column (row, if IMSLS_ROWS is
used) by the range of the column (row).

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = ncol.

IMSLS_RETURN_USER, float dist[] (Output)
User allocated array of size m by m containing the computed dissimilarities or
similarities, where m = nrow if IMSLS_ROWS is used, and m = ncol
otherwise.

Description
Function imsls_f_dissimilarities computes an upper triangular matrix
(excluding the diagonal) of dissimilarities (or similarities) between the columns or
rows of a matrix. Nine different distance measures can be computed. For the first three
measures, three different scaling options can be employed. Output from
imsls_f_dissimilarities is generally used as input to clustering or
multidimensional scaling functions.
The following discussion assumes that the distance measure is being computed
between the columns of the matrix, i.e., that IMSLS_COLUMNS is used. If distances
between the rows of the matrix are desired, use optional argument IMSLS_ROWS.
For imeth = 0 to 2, each row of x is first scaled according to the value of iscale. The
scaling parameters are obtained from the values in the row scaled as either the standard
deviation of the row or the row range; the standard deviation is computed from the
unbiased estimate of the variance. If iscale is 0, no scaling is performed, and the

644 • dissimilarities IMSL C Stat Library

parameters in the following discussion are all 1.0. Once the scaling value (if any) has
been computed, the distance between column i and column j is computed via the
difference vector zk = (xk − yk)/sk, i = 1, …, ndstm, where xk denotes the k-th element
in the i-th column, and yk denotes the corresponding element in the j-th column. For
given zi, the metrics 0 to 2 are defined as:

imeth Metric

0 ()ndstm 2
1 ii

z
=∑ Euclidean distance

1 ndstm

1 ii
z

=∑ L1 norm

2 max i iz L• norm

Distance measures corresponding to imeth = 3 to 8 do not allow for scaling. These
measures are defined via the column vectors X = (xi), Y = (yi), and
Z = (xi − yi) as follows:

imeth Scaling Performed

3 1ˆZ Z−′Σ = Mahalanobis distance, where Σ̂
is the usual unbiased sample estimate of
the covariance matrix of the rows.

4 () ()cos /T T TX Y X X Y Yθ = = the dot
product of X and Y divided by the length of
X times the length of Y .

5 θ, where θ is defined in 4.

6 ρ = the usual (centered) estimate of the
correlation between X and Y.

7 The absolute value of ρ (where ρ is defined
in 6).

8 The number of times xi = yi, where xi and yi
are elements of X and Y.

For the Mahalanobis distance, any variable used in computing the distance measure
that is (numerically) linearly dependent upon the previous variables in the ind vector is
omitted from the distance measure.

Example
The following example illustrates the use of imsls_f_dissimilarities for
computing the Euclidean distance between the rows of a matrix.

#include "imsls.h"

void main()
{
 int ncol=2, nrow = 4;
 float x [4][2] = {1., 1.,

Chapter 9: Multivariate Analysis cluster_hierarchical • 645

 1., 0.,
 1.,-1.,
 1., 2.};
 float *dist;

 dist = imsls_f_dissimilarities(nrow, ncol, (float*)x, 0);
 imsls_f_write_matrix("dist", 4, 4, dist, 0);
}

Output

 dist
 1 2 3 4
1 0 1 2 1
2 0 0 1 2
3 0 0 0 3
4 0 0 0 0

cluster_hierarchical
Performs a hierarchical cluster analysis given a distance matrix.

Synopsis
#include <imsls.h>
void imsls_f_cluster_hierarchical (int npt, float *dist, …, 0)
The type double function is imsls_d_cluster_hierarchical.

Required Arguments

int npt (Input)
Number of data points to be clustered.

float *dist (Input/Ouput)
An npt by npt symmetric matrix containing the distance (or similarity)
matrix.
dist is a symmetric matrix. On input, only the upper triangular part needs to
be present. The function imsls_f_cluster_hierarchical saves the
upper triangular part of dist in the lower triangle. On return from
imsls_f_cluster_hierarchical, the upper triangular part of dist is
restored, and the matrix is made symmetric.

Synopsis with Optional Arugments
#include <imsls.h>
void *imsls_f_cluster_hierarchical (int npt, float *dist,

IMSLS_METHOD, int imeth,
IMSLS_TRANSFORMATION, int itrans,
IMSLS_CLUSTERS, float **clevel, int **iclson, int **icrson,
IMSLS_CLUSTERS_USER, float clevel[], int iclson[], int icrson[],
0)

646 • cluster_hierarchical IMSL C Stat Library

Optional Arguments

IMSLS_METHOD, int imeth (Input)
Option giving the clustering method to be used.
Default: imeth = 0.

imeth Method

0 Single linkage (minimum distance)

1 Complete linkage (maximum distance)

2 Average distance within (average distance
between objects within the merged cluster)

3 Average distance between (average
distance between objects in the two
clusters)

4 Ward’s method (minimize the within-
cluster sums of squares). For Ward’s
method, the elements of dist are assumed
to be Euclidean distances.

IMSLS_TRANSFORMATION, int itrans (Input)
Option giving the method to be used for clustering.
Default: itrans = 0.

Imeth Method

0 No transformation is required. The
elements of dist are distances.

1 Convert similarities to distances by
multiplication by −1.0.

2 Convert similarities (usually correlations)
to distances by taking the reciprocal of the
absolute value.

IMSLS_CLUSTERS, float **clevel, int **iclson, int **icrson (Output)
Argument clevel is the address of an array of length npt − 1 containing the
level at which the clusters are joined. clevel[k-1] contains the distance (or
similarity) level at which cluster npt + k was formed. If the original data in
dist was transformed via the optional argument IMSLS_TRANSFORMATION,
the inverse transformation is applied to the values in clevel prior to exit
from imsls_f_cluster_hierarchical. Argument iclson is the address
of an array of length npt − 1 containing the left sons of each merged cluster.
Argument icrson is the address of an array of length npt − 1 containing the
right sons of each merged cluster. Cluster
npt + k is formed by merging clusters iclson[k-1] and icrson[k-1].

Chapter 9: Multivariate Analysis cluster_hierarchical • 647

IMSLS_CLUSTERS_USER, float clevel[], int iclson[], int icrson[] (Output)
Storage for arrays clevel, iclson, and icrson is provided by the user. See
IMSLS_CLUSTERS.

Description
Function imsls_f_cluster_hierarchical conducts a hierarchical cluster analysis
based upon the distance matrix, or by appropriate use of the IMSLS_TRANSFORMATION
optional argument, based upon a similarity matrix. Only the upper triangular part of the
matrix dist is required as input to imsls_f_cluster_hierarchical.
Hierarchical clustering in imsls_f_cluster_hierarchical proceeds as follows.
Initially, each data point is considered to be a cluster, numbered 1 to
n = npt.

1. If the data matrix contains similarities, they are converted to distances by the
method specified by IMSLS_TRANSFORMATION. Set k = 1.

2. A search is made of the distance matrix to find the two closest clusters. These
clusters are merged to form a new cluster, numbered n + k. The cluster
numbers of the two clusters joined at this stage are saved in icrson and
iclson, and the distance measure between the two clusters is stored in
clevel.

3. Based upon the method of clustering, updating of the distance measure in the
row and column of dist corresponding to the new cluster is performed.

4. Set k = k + 1. If k < n, go to Step 2.
The five methods differ primarily in how the distance matrix is updated after two
clusters have been joined. The IMSLS_METHOD optional argument specifies how the
distance of the cluster just merged with each of the remaining clusters will be updated.
Function imsls_f_cluster_hierarchical allows five methods for computing the
distances. To understand these measures, suppose in the following discussion that
clusters “A” and “B” have just been joined to form cluster “Z”, and interest is in
computing the distance of Z with another cluster called “C”.

Z

dist

CBA

Imeth Method

0 Single linkage method. The distance from Z to C is the minimum
of the distances (A to C, B to C).

1 Complete linkage method. The distance from Z to C is the
maximum of the distances (A to C, B to C).

2 Average-distance-within-clusters method. The distance from Z to

648 • cluster_hierarchical IMSL C Stat Library

Imeth Method
C is the average distance of all objects that would be within the
cluster formed by merging clusters Z and C. This average may be
computed according to formulas given by Anderberg (1973, page
139).

3 Average-distance-between-clusters method. The distance from Z
to C is the average distance of objects within cluster Z to objects
within cluster C. This average may be computed according to
methods given by Anderberg (1973, page 140).

4 Ward’s method. Clusters are formed so as to minimize the
increase in the within-cluster sums of squares. The distance
between two clusters is the increase in these sums of
squares if the two clusters were merged. A method for
computing this distance from a squared Euclidean distance
matrix is given by Anderberg (1973, pages 142−145).

In general, single linkage will yield long thin clusters while complete linkage will yield
clusters that are more spherical. Average linkage and Ward’s linkage tend to yield
clusters that are similar to those obtained with complete linkage.
Function imsls_f_cluster_hierarchical produces a unique representation of the
binary cluster tree via the following three conventions; the fact that the tree is unique
should aid in interpreting the clusters. First, when two clusters are joined and each
cluster contains two or more data points, the cluster that was initially formed with the
smallest level (in clevel) becomes the left son. Second, when a cluster containing
more than one data point is joined with a cluster containing a single data point, the
cluster with the single data point becomes the right son. Finally, when two clusters
containing only one object are joined, the cluster with the smallest cluster number
becomes the right son.

Comments

1. The clusters corresponding to the original data points are numbered from 1 to
npt. The npt − 1 clusters formed by merging clusters are numbered npt + 1
to npt + (npt − 1).

2. Raw correlations, if used as similarities, should be made positive and
transformed to a distance measure. One such transformation can be performed
by specifying optional argument IMSLS_TRANSFORMATION, with itrans = 2
in imsls_f_cluster_hierarchical.

3. The user may cluster either variables or observations in
imsls_f_cluster_hierarchical since a dissimilarity matrix, not the
original data, is used. Function imsls_f_dissimilarities may be used
to compute the matrix dist for either the variables or observations.

Example
In the following example, the average distance within clusters method is used to
perform a hierarchical cluster analysis of the Fisher iris data. Function

Chapter 9: Multivariate Analysis cluster_number • 649

imsls_f_data_sets (see Chapter 15, “Utilities”) is first used to obtain the Fisher
iris data. The example is typical in that after the program obtains the data, function
imsls_f_dissimilarities computes the distance matrix (dist) prior to calling
imsls_f_cluster_hierarchical.

#include "imsls.h"

void main()
{
 int iscale=1, ncol=5, nrow=150, nvar=4, npt = 150;
 int i, iclson[149], icrson[149], ind[4] = {1, 2, 3, 4};
 float clevel[149], *dist, *x;

 x = imsls_f_data_sets(3, 0);

 dist = imsls_f_dissimilarities(nrow, ncol, x,
 IMSLS_INDEX, nvar, ind,
 IMSLS_SCALE, iscale,
 0);
 imsls_f_cluster_hierarchical(npt, dist,
 IMSLS_CLUSTERS_USER, clevel, iclson, icrson,
 IMSLS_METHOD, 2,
 0);

 for (i=0;i<149;i+=15) printf("%6.2f\t", clevel[i]);
 printf("\n");
 for (i=0;i<149;i+=15) printf("%6d\t", iclson[i]);
 printf("\n");
 for (i=0;i<149;i+=15) printf("%6d\t", icrson[i]);
 printf("\n");
}

Output
 0.00 0.17 0.23 0.27 0.31 0.37 0.41 0.48 0.60 0.78
 143 153 17 140 53 198 186 218 261 249
 102 29 6 113 51 91 212 243 266 262

cluster_number
Computes cluster membership for a hierarchical cluster tree.

Synopsis
#include <imsls.h>

int *imsls_cluster_number (int npt, int *iclson, int *icrson, int k, …, 0)

Required Arguments

int npt (Input)
Number of data points to be clustered.

650 • cluster_number IMSL C Stat Library

int *iclson (Input)
Vector of length npt − 1 containing the left son cluster numbers.
Cluster npt + i is formed by merging clusters iclson[i-1] and
icrson[i-1].

int *icrson (Input)
Vector of length npt − 1 containing the left son cluster numbers.
Cluster npt + i is formed by merging clusters iclson[i-1] and
icrson[i-1].

int k (Input)
Desired number of clusters.

Return Value
Vector of length npt containing the cluster membership of each observation.

Synopsis with Optional Arugments
#include <imsls.h>
int *imsls_cluster_number (int npt, int *iclson, int *icrson, int k,

IMSLS_OBS_PER_CLUSTERS, int **nclus,
IMSLS_OBS_PER_CLUSTERS_USER, int nclus[],
IMSLS_RETURN_USER, int iclus[],
0)

Optional Arguments

IMSLS_OBS_PER_CLUSTERS, int **nclus (Output)
Address of a pointer to an internally allocated array of length k containing the
number of observations in each cluster.

IMSLS_OBS_PER_CLUSTERS_USER, int nclus[] (Output)
Storage for array nclus is provided by the user. See
IMSLS_OBS_PER_CLUSTERS.

IMSLS_RETURN_USER, float iclus[] (Output)
User allocated array of length npt containing the cluster membership of each
observation.

Description
Given a fixed number of clusters (K) and the cluster tree (vectors icrson and iclson)
produced by the hierarchical clustering algorithm (see function
imsls_f_cluster_hierarchical, function imsls_cluster_number determines
the cluster membership of each observation. The function imsls_cluster_number
first determines the root nodes for the K distinct subtrees forming the K clusters and
then traverses each subtree to determine the cluster membership of each observation.
The function imsls_cluster_number also returns the number of observations found
in each cluster.

Chapter 9: Multivariate Analysis cluster_number • 651

Example 1
In the following example, cluster membership for K = 2 clusters is found for the
displayed cluster tree. The output vector iclus contains the cluster numbers for each
observation.

9
8

6
7

5 3 1 4 2

#include "imsls.h"

void main()
{
 int k = 2, npt = 5, *iclus;
 int iclson[] = {5, 6, 4, 7};
 int icrson[] = {3, 1, 2, 8};

 iclus = imsls_cluster_number(npt, iclson, icrson, k, 0);
 imsls_i_write_matrix("iclus", 1, 5, iclus, 0);
}

Output
 iclus
 1 2 3 4 5
 1 2 1 2 1

Example 2
This example illustrates the typical usage of imsls_cluster_number. The Fisher iris
data (see function imsls_f_data_sets, see Chapter 15, “Utilities”) is clustered.
First the distance between the irises are computed using function
imsls_f_dissimilarities. The resulting distance matrix is then clustered using
function imsls_f_cluster_hierarchical. The cluster membership for 5 clusters
is then obtained via function imsls_cluster_number using the output from
imsls_f_cluster_hierarchical. The need for 5 clusters can be obtained either by
theoretical means or by examining a cluster tree. The cluster membership for each of
the iris observations is printed.

#include "imsls.h"
#define MAX(A,B) ((A)>(B)?(A): (B))

void main()

652 • cluster_number IMSL C Stat Library

{
 int ncol = 5, nrow = 150, nvar = 4, npt = 150, k = 5;
 int i, j, *iclson, *icrson, *iclus, *nclus;
 int ind[4] = {1, 2, 3, 4};
 float *clevel, dist[150][150], *x, f_rand;
 int *p_iclus = NULL, *p_nclus = NULL;

 x = imsls_f_data_sets (3, 0);
 imsls_f_dissimilarities(nrow, ncol, x,
 IMSLS_INDEX, nvar, ind,
 IMSLS_RETURN_USER, dist,
 0);

 imsls_random_seed_set (4);
 for (i = 0; i < npt; i++)
 {
 for (j = i + 1; j < npt; j++)
 {
 imsls_f_random_uniform (1, IMSLS_RETURN_USER, &f_rand, 0);
 dist[i][j] = MAX (0.0, dist[i][j] + .001 * f_rand);
 dist[j][i] = dist[i][j];
 }
 dist[i][i] = 0.;
 }
 imsls_f_cluster_hierarchical (npt, (float*)dist,
 IMSLS_CLUSTERS, &clevel, &iclson, &icrson,
 0);

 iclus = imsls_cluster_number (npt, iclson, icrson, k,
 IMSLS_OBS_PER_CLUSTER, &nclus,
 0);

 imsls_i_write_matrix ("iclus", 25, 5, iclus, 0);
 imsls_i_write_matrix ("nclus", 1, 5, nclus, 0); }

Output
 iclus
 1 2 3 4 5
 1 5 5 5 5 5
 2 5 5 5 5 5
 3 5 5 5 5 5
 4 5 5 5 5 5
 5 5 5 5 5 5
 6 5 5 5 5 5
 7 5 5 5 5 5
 8 5 5 5 5 5
 9 5 5 5 5 5
10 5 5 5 5 5
11 2 2 2 2 2
12 2 2 1 2 2
13 1 2 2 2 2
14 2 2 2 2 2
15 2 2 2 2 2
16 2 2 2 2 2
17 2 2 2 2 2
18 2 2 2 2 2

Chapter 9: Multivariate Analysis cluster_k_means • 653

19 2 2 2 1 2
20 2 2 2 1 2
21 2 2 2 2 2
22 2 3 2 2 2
23 2 2 2 2 2
24 2 2 4 2 2
25 2 2 2 2 2

 nclus
 1 2 3 4 5
 4 93 1 2 50

cluster_k_means
Performs a K-means (centroid) cluster analysis.

Synopsis
#include <imsls.h>
int *imsls_f_cluster_k_means (int n_observations, int n_variables,

float x[], int n_clusters, float cluster_seeds, ..., 0)
The type double function is imsls_d_cluster_k_means.

Required Arguments

int n_observations (Input)
Number of observations.

int n_variables (Input)
Number of variables to be used in computing the metric.

float x[] (Input)
Array of length n_observations × n_variables containing the
observations to be clustered.

int n_clusters (Input)
Number of clusters.

float cluster_seeds[] (Input)
Array of length n_clusters × n_variables containing the cluster seeds,
i.e., estimates for the cluster centers.

Return Value
The cluster membership for each observation is returned.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_cluster_k_means (int n_observations, int n_variables,

float x[], int n_clusters, float cluster_seeds,
IMSLS_WEIGHTS, float weights[],
IMSLS_FREQUENCIES, float frequencies[],

654 • cluster_k_means IMSL C Stat Library

IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_CLUSTER_MEANS, float **cluster_means,
IMSLS_CLUSTER_MEANS_USER, float cluster_means[],
IMSLS_CLUSTER_SSQ, float **cluster_ssq,
IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[],
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim,
IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim,
IMSLS_CLUSTER_COUNTS, int **cluster_counts,
IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[],
IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[],
IMSLS_RETURN_USER, int cluster_group[],
0)

Optional Arguments

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_observations containing the weight of each observation
of matrix x.
Default: weights [] = 1

IMSLS_FREQUENCIES, float frequencies[] (Input)
Array of length n_observations containing the frequency of each
observation of matrix x.
Default: frequencies [] = 1

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations.
Default: max_iterations = 30

IMSLS_CLUSTER_MEANS, float **cluster_means (Output)
The address of a pointer to an internally allocated array of length
n_clusters × n_variables containing the cluster means.

IMSLS_CLUSTER_MEANS_USER, float cluster_means[] (Output)
Storage for array cluster_means is provided by the user. See
IMSLS_CLUSTER_MEANS.

IMSLS_CLUSTER_SSQ, float **cluster_ssq (Output)
The address of a pointer to internally allocated array of length n_clusters
containing the within sum-of-squares for each cluster.

IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[] (Output)
Storage for array cluster_ssq is provided by the user. See
IMSLS_CLUSTER_SSQ.

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of x.
Default: x_col_dim = n_variables

Chapter 9: Multivariate Analysis cluster_k_means • 655

IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim (Input)
Column dimension for the vector cluster_means.
Default: cluster_means_col_dim = n_variables

IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim (Input)
Column dimension for the vector cluster_seeds.
Default: cluster_seeds_col_dim = n_variables

IMSLS_CLUSTER_COUNTS, int **cluster_counts (Output)
The address of a pointer to an internally allocated array of length
n_clusters containing the number of observations in each cluster.

IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[] (Output)
Storage for array cluster_counts is provided by the user. See
IMSLS_CLUSTER_COUNTS.

IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[] (Input)
Vector of length n_variables containing the columns of x to be used in
computing the metric. Columns are numbered 0, 1, 2, ..., n_variables
Default: cluster_variables [] = 0, 1, 2, …, n_variables

IMSLS_RETURN_USER, int cluster_group[] (Output)
User-allocated array of length n_observations containing the cluster
membership for each observation.

Description
Function imsls_f_cluster_k_means is an implementation of Algorithm AS 136 by
Hartigan and Wong (1979). It computes K-means (centroid) Euclidean metric clusters
for an input matrix starting with initial estimates of the K-cluster means. The function
allows for missing values coded as NaN (Not a Number) and for weights and
frequencies.
Let p = n_variables be the number of variables to be used in computing the
Euclidean distance between observations. The idea in K-means cluster analysis is to
find a clustering (or grouping) of the observations so as to minimize the total within-
cluster sums-of-squares. In this case, the total sums-of-squares within each cluster is
computed as the sum of the centered sum-of-squares over all nonmissing values of
each variable. That is,

()2

, ,
1 1 1

i

im im im im

K

j

np

v v v v j ij
i j m

f w x x
= = =

φ = δ −∑ ∑ ∑

where νim denotes the row index of the m-th observation in the i-th cluster in the matrix
X; ni is the number of rows of X assigned to group i; f denotes the frequency of the
observation; w denotes its weight; δ is 0 if the j-th variable on observation νim is
missing, otherwise δ is 1; and

ijx

656 • cluster_k_means IMSL C Stat Library

is the average of the nonmissing observations for variable j in group i. This method
sequentially processes each observation and reassigns it to another cluster if doing so
results in a decrease of the total within-cluster sums-of-squares. See
Hartigan and Wong (1979) or Hartigan (1975) for details.

Example
This example performs K-means cluster analysis on Fisher’s iris data, which is
obtained by function imsls_f_data_sets (see Chapter 15, “Utilities”). The initial
cluster seed for each iris type is an observation known to be in the iris type.

#include <stdio.h>
#include <imsls.h>

main()
{
#define N_OBSERVATIONS 150
#define N_VARIABLES 4
#define N_CLUSTERS 3
 float x[N_OBSERVATIONS][5];
 float cluster_seeds[N_CLUSTERS][N_VARIABLES];
 float cluster_means[N_CLUSTERS][N_VARIABLES];
 float cluster_ssq[N_CLUSTERS];
 int cluster_variables[N_VARIABLES] = {1, 2, 3, 4};
 int cluster_counts[N_CLUSTERS];
 int cluster_group[N_OBSERVATIONS];
 int i;

 /* Retrieve the data set */
 imsls_f_data_sets(3, IMSLS_RETURN_USER, x, 0);
 /* Assign initial cluster seeds */
 for (i=0; i<N_VARIABLES; i++) {
 cluster_seeds[0][i] = x[0][i+1];
 cluster_seeds[1][i] = x[50][i+1];
 cluster_seeds[2][i] = x[100][i+1];
 }

 /* Perform the analysis */
 imsls_f_cluster_k_means(N_OBSERVATIONS, N_VARIABLES, (float*)x,
 N_CLUSTERS, (float*)cluster_seeds,
 IMSLS_X_COL_DIM, 5,
 IMSLS_CLUSTER_VARIABLE_COLUMNS, cluster_variables,
 IMSLS_CLUSTER_COUNTS_USER, cluster_counts,
 IMSLS_CLUSTER_MEANS_USER, cluster_means,
 IMSLS_CLUSTER_SSQ_USER, cluster_ssq,
 IMSLS_RETURN_USER, cluster_group,
 0);
 /* Print results */
 imsls_i_write_matrix("Cluster Membership", 1, N_OBSERVATIONS,
 cluster_group, 0);
 imsls_f_write_matrix("Cluster Means", N_CLUSTERS, N_VARIABLES,
 (float*)cluster_means, 0);
 imsls_f_write_matrix("Cluster Sum of Squares", 1, N_CLUSTERS,
 cluster_ssq, 0);
 imsls_i_write_matrix("# Observations in Each Cluster", 1,
 N_CLUSTERS, cluster_counts, 0);

Chapter 9: Multivariate Analysis principal_components • 657

}

 Cluster Membership
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1 1 1 1 1 1 1 1 1 1 2 2 3 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 2 3 2 3 3 3 3 2 3 3 3 3 3 3 2 2

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 3 3 3 3 2 3 2 3 2 3 3 2 2 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 3 3 2 3 3 3 3 2 3 3 3 2 3 3 3 2

148 149 150
 3 3 2

 Cluster Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.902 2.748 4.394 1.434
3 6.850 3.074 5.742 2.071

 Cluster Sum of Squares
 1 2 3
 15.15 39.82 23.88

Observations in Each Cluster
 1 2 3
 50 62 38

Warning Errors

IMSLS_NO_CONVERGENCE Convergence did not occur.

principal_components
Computes principal components.

Synopsis
#include <imsls.h>

658 • principal_components IMSL C Stat Library

float *imsls_f_principal_components (int n_variables,
float covariances[], ..., 0)

The type double function is imsls_d_principal_components.

Required Arguments

int n_variables (Input)
Order of the covariance matrix.

float covariances[] (Input)
Array of length n_variables × n_variables containing the covariance or
correlation matrix.

Return Value
An array of length n_variables containing the eigenvalues of the matrix
covariances ordered from largest to smallest.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_principal_components (int n_variables,

float covariances[],
IMSLS_COVARIANCE_MATRIX, or
IMSLS_CORRELATION_MATRIX,
IMSLS_CUM_PERCENT, float **cum_percent,
IMSLS_CUM_PERCENT_USER, float cum_percent[],
IMSLS_EIGENVECTORS, float **eigenvectors,
IMSLS_EIGENVECTORS_USER, float eigenvectors[],
IMSLS_CORRELATIONS, float **correlations,
IMSLS_CORRELATIONS_USER, float correlations[],
IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev,
IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_RETURN_USER, float eigenvalues[],
0)

Optional Arguments

IMSLS_COVARIANCE_MATRIX
Treat the input vector covariances as a covariance matrix. This option is
the default.
or

IMSLS_CORRELATION_MATRIX
Treat the input vector covariances as a correlation matrix.

IMSLS_CUM_PERCENT, float **cum_percent (Output)
The address of a pointer to an internally allocated array of length
n_variables containing the cumulative percent of the total variances
explained by each principal component.

Chapter 9: Multivariate Analysis principal_components • 659

IMSLS_CUM_PERCENT_USER, float cum_percent[] (Output)
Storage for array cum_percent is provided by the user. See
IMSLS_CUM_PERCENT.

IMSLS_EIGENVECTORS, float **eigenvectors (Output)
The address of a pointer to an internally allocated array of length
n_variables × n_variables containing the eigenvectors of
covariances, stored columnwise. Each vector is normalized to have
Euclidean length equal to the value one. Also, the sign of each vector is set so
that the largest component in magnitude (the first of the largest if there are
ties) is made positive.

IMSLS_EIGENVECTORS_USER, float eigenvectors[] (Output)
Storage for array eigenvectors is provided by the user. See
IMSLS_EIGENVECTORS.

IMSLS_CORRELATIONS, float **correlations (Output)
The address of a pointer to an internally allocated array of length
n_variables * n_variables containing the correlations of the principal
components (the columns) with the observed/standardized variables (the
rows). If IMSLS_COVARIANCE_MATRIX is specified, then the correlations are
with the observed variables. Otherwise, the correlations are with the
standardized (to a variance of 1.0) variables. In the principal component
model for factor analysis, matrix correlations is the matrix of unrotated
factor loadings.

IMSLS_CORRELATIONS_USER, float correlations[] (Output)
Storage for array correlations is provided by the user. See
IMSLS_CORRELATIONS.

IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev (Input/Output)
Argument n_degrees_freedom contains the number of degrees of freedom
in covariances. Argument std_dev is the address of a pointer to an
internally allocated array of length n_variables containing the estimated
asymptotic standard errors of the eigenvalues.

IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[]
(Input/Output)
Storage for array std_dev is provided by the user. See IMSLS_STD_DEV.

IMSLS_COV_COL_DIM int cov_col_dim (Input)
Column dimension of covariances.
Default: cov_col_dim = n_variables

IMSLS_RETURN_USER, float eigenvalues[] (Output)
User-supplied array of length n_variables containing the eigenvalues of
covariances ordered from largest to smallest.

Description
Function imsls_f_principal_components finds the principal components of a set
of variables from a sample covariance or correlation matrix. The characteristic roots,

660 • principal_components IMSL C Stat Library

characteristic vectors, standard errors for the characteristic roots, and the correlations
of the principal component scores with the original variables are computed. Principal
components obtained from correlation matrices are the same as principal components
obtained from standardized (to unit variance) variables.

The principal component scores are the elements of the vector y = ΓTx, where
Γ is the matrix whose columns are the characteristic vectors (eigenvectors) of the
sample covariance (or correlation) matrix and x is the vector of observed (or
standardized) random variables. The variances of the principal component scores are
the characteristic roots (eigenvalues) of the covariance (correlation) matrix.
Asymptotic variances for the characteristic roots were first obtained by Girschick
(1939) and are given more recently by Kendall et al. (1983, p. 331). These variances
are computed either for covariance matrices or for correlation matrices.
The correlations of the principal components with the observed (or standardized)
variables are given in the matrix correlations. When the principal components are
obtained from a correlation matrix, correlations is the same as the matrix of
unrotated factor loadings obtained for the principal components model for factor
analysis.

Examples

Example 1
In this example, eigenvalues of the covariance matrix are computed.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9

 float *values;
 static float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 values = imsls_f_principal_components(N_VARIABLES, covariances, 0);

 /* Print results. */
 imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0);

 /* Free allocated memory. */
 free(values);
}

Chapter 9: Multivariate Analysis principal_components • 661

Output
 Eigenvalues
 1 2 3 4 5 6
 4.677 1.264 0.844 0.555 0.447 0.429

 7 8 9
 0.310 0.277 0.196

Example 2
In this example, principal components are computed for a nine-variable correlation
matrix.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9

 float *values, *eigenvectors, *std_dev, *cum_percent, *a;
 static float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 values = imsls_f_principal_components(N_VARIABLES, covariances,
 IMSLS_CORRELATION_MATRIX,
 IMSLS_EIGENVECTORS, &eigenvectors,
 IMSLS_STD_DEV, 100, &std_dev,
 IMSLS_CUM_PERCENT, &cum_percent,
 IMSLS_CORRELATIONS, &a,
 0);

 /* Print results */
 imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0);
 imsls_f_write_matrix("Eigenvectors", N_VARIABLES, N_VARIABLES,
 eigenvectors, 0);
 imsls_f_write_matrix("STD", 1, N_VARIABLES, std_dev, 0);
 imsls_f_write_matrix("PCT", 1, N_VARIABLES, cum_percent, 0);
 imsls_f_write_matrix("A", N_VARIABLES, N_VARIABLES, a, 0);

 /* Free allocated memory */
 free(values);
 free(eigenvectors);
 free (cum_percent);
 free (std_dev);

662 • principal_components IMSL C Stat Library

 free(a);
}

Output
 Eigenvalues
 1 2 3 4 5 6
 4.677 1.264 0.844 0.555 0.447 0.429

 7 8 9
 0.310 0.277 0.196

 Eigenvectors
 1 2 3 4 5 6
1 0.3462 -0.2354 0.1386 -0.3317 -0.1088 0.7974
2 0.3526 -0.1108 -0.2795 -0.2161 0.7664 -0.2002
3 0.2754 -0.2697 -0.5585 0.6939 -0.1531 0.1511
4 0.3664 0.4031 0.0406 0.1196 0.0017 0.1152
5 0.3144 0.5022 -0.0733 -0.0207 -0.2804 -0.1796
6 0.3455 0.4553 0.1825 0.1114 0.1202 0.0697
7 0.3487 -0.2714 -0.0725 -0.3545 -0.5242 -0.4355
8 0.2407 -0.3159 0.7383 0.4329 0.0861 -0.1969
9 0.3847 -0.2533 -0.0078 -0.1468 0.0459 -0.1498

 7 8 9
1 0.1735 -0.1240 -0.0488
2 0.1386 -0.3032 -0.0079
3 0.0099 -0.0406 -0.0997
4 -0.4022 -0.1178 0.7060
5 0.7295 0.0075 0.0046
6 -0.3742 0.0925 -0.6780
7 -0.2854 -0.3408 -0.1089
8 0.1862 -0.1623 0.0505
9 -0.0251 0.8521 0.1225

 STD
 1 2 3 4 5 6
 0.6498 0.1771 0.0986 0.0879 0.0882 0.0890

 7 8 9
 0.0944 0.0994 0.1113

 PCT
 1 2 3 4 5 6
 0.520 0.660 0.754 0.816 0.865 0.913

 7 8 9
 0.947 0.978 1.000

 A
 1 2 3 4 5 6
1 0.7487 -0.2646 0.1274 -0.2471 -0.0728 0.5224
2 0.7625 -0.1245 -0.2568 -0.1610 0.5124 -0.1312
3 0.5956 -0.3032 -0.5133 0.5170 -0.1024 0.0990

Chapter 9: Multivariate Analysis factor_analysis • 663

4 0.7923 0.4532 0.0373 0.0891 0.0012 0.0755
5 0.6799 0.5646 -0.0674 -0.0154 -0.1875 -0.1177
6 0.7472 0.5119 0.1677 0.0830 0.0804 0.0456
7 0.7542 -0.3051 -0.0666 -0.2641 -0.3505 -0.2853
8 0.5206 -0.3552 0.6784 0.3225 0.0576 -0.1290
9 0.8319 -0.2848 -0.0071 -0.1094 0.0307 -0.0981

 7 8 9
1 0.0966 -0.0652 -0.0216
2 0.0772 -0.1596 -0.0035
3 0.0055 -0.0214 -0.0442
4 -0.2240 -0.0620 0.3127
5 0.4063 0.0039 0.0021
6 -0.2084 0.0487 -0.3003
7 -0.1589 -0.1794 -0.0482
8 0.1037 -0.0854 0.0224
9 -0.0140 0.4485 0.0543

Warning Errors

IMSLS_100_DF Because the number of degrees of freedom in
“covariances” and “n_degrees_freedom” is less than
or equal to 0, 100 degrees of freedom will be used.

IMSLS_COV_NOT_NONNEG_DEF “eigenvalues[#]” = #. One or more eigenvalues much
less than zero are computed. The matrix
“covariances” is not nonnegative definite. In order to
continue computations of “eigenvalues” and
“correlations,” these eigenvalues are treated as 0.

IMSLS_FAILED_TO_CONVERGE The iteration for the eigenvalue failed to converge in
100 iterations before deflating.

factor_analysis
Extracts initial factor-loading estimates in factor analysis with rotation options.

Synopsis
#include <imsls.h>
float *imsls_f_factor_analysis (int n_variables, float covariances[],

int n_factors, ..., 0)
The type double function is imsls_d_factor_analysis.

Required Arguments

int n_variables (Input)
Number of variables.

664 • factor_analysis IMSL C Stat Library

float covariances[] (Input)
Array of length n_variables*n_variables containing the variance-
covariance or correlation matrix.

int n_factors (Input)
Number of factors in the model.

Return Value
An array of length n_variables*n_factors containing the matrix of factor
loadings.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_factor_analysis (int n_variables,
float covariances[], int n_factors,
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances, or
IMSLS_PRINCIPAL_COMPONENT, or
IMSLS_PRINCIPAL_FACTOR, or
IMSLS_UNWEIGHTED_LEAST_SQUARES,or
IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances, or
IMSLS_IMAGE, or
IMSLS_ALPHA, int df_covariances,
IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[],
IMSLS_UNIQUE_VARIANCES_OUTPUT,
 float unique_variances[],
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search,
IMSLS_CONVERGENCE_EPS, float convergence_eps,
IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon,
IMSLS_EIGENVALUES, float **eigenvalues,
IMSLS_EIGENVALUES_USER, float eigenvalues[],
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared,
 float *p_value,
IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient,
IMSLS_N_ITERATIONS, int *n_iterations,
IMSLS_FUNCTION_MIN, float *function_min,
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_ORTHOMAX_ROTATION, float w, int norm, float **b,
 float **t,
IMSLS_ORTHOMAX_ROTATION_USER, float w, int norm, float b[],
 float t[],
IMSLS_ORTHOGONAL_PROCUSTES_ROTATION, float target[],
 float **b, float **t,
IMSLS_ORTHOGONAL_PROCUSTES_ROTATION_USER,
 float target[], float b[], float t[],
IMSLS_DIRECT_OBLIMIN_ROTATION, float w, int norm, float **b,

Chapter 9: Multivariate Analysis factor_analysis • 665

 float **t, float **factor_correlations,
IMSLS_DIRECT_OBLIMIN_ROTATION_USER, float w, int norm,
 float b[], float t[], float factor_correlations[],
IMSLS_OBLIQUE_PROMAX_ROTATION, float w, float power[],
 int norm, float **target, float **b, float **t,
 float **factor_correlations,
IMSLS_OBLIQUE_PROMAX_ROTATION_USER, float w, float power[], nt
norm, float target[], float b[], float t[],
 loat factor_correlations[],
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, float w,
 float pivot[], int norm, float **target, float **b,
 float **t, float **factor_correlations,
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER, float w,
 loat pivot[], int norm, float target[], float b[],
 float t[], float factor_correlations[],
IMSLS_OBLIQUE_PROCRUSTES_ROTATION, float target[],
 float **b, float **t, float **factor_correlations,
IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER, float target[],
 float b[], float t[], float factor_correlations[],
IMSLS_FACTOR_STRUCTURE, float **s, float **fvar,
IMSLS_FACTOR_STRUCTURE_USER, float s[], float fvar[],
IMSLS_COV_COL_DIM, int cov_col_dim,
IMSLS_RETURN_USER, float factor_loadings[],
0)

Optional Arguments

IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances (Input)
Maximum likelihood (common factor model) method used to obtain the
estimates. Argument df_covariances is the number of degrees of freedom
in covariances.
or

IMSLS_PRINCIPAL_COMPONENT
Principal component (principal component model) method used to obtain the
estimates.
or

IMSLS_PRINCIPAL_FACTOR
Principal factor (common factor model) method used to obtain the estimates.
or

IMSLS_UNWEIGHTED_LEAST_SQUARES
Unweighted least-squares (common factor model) method used to obtain the
estimates. This option is the default.
or

IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances (Input)
Generalized least-squares (common factor model) method used to obtain the

666 • factor_analysis IMSL C Stat Library

estimates.
or

IMSLS_IMAGE
Image-factor analysis (common factor model) method used to obtain the
estimates.
or

IMSLS_ALPHA, int df_covariances (Input)
Alpha-factor analysis (common factor model) method used to obtain the
estimates. Argument df_covariances is the number of degrees of freedom
in covariances.

IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[] (Input)
Array of length n_variables containing the initial estimates of the unique
variances.
Default: Initial estimates are taken as the constant
1 − n_factors/2 * n_variables divided by the diagonal elements of the
inverse of covariances.

IMSLS_UNIQUE_VARIANCES_OUTPUT, float unique_variances[] (Output)
User-allocated array of length n_variables containing the estimated unique
variances.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations in the iterative procedure.
Default: max_iterations = 60

IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search (Input)
Maximum number of step halvings allowed during any one iteration.
Default: max_steps_line_search = 10

IMSLS_CONVERGENCE_EPS, float convergence_eps (Input)
Convergence criterion used to terminate the iterations. For the unweighted
least squares, generalized least squares or maximum likelihood methods,
convergence is assumed when the relative change in the criterion is less than
convergence_eps. For alpha-factor analysis, convergence is assumed when
the maximum change (relative to the variance) of a uniqueness is less than
convergence_eps.
Default: convergence_eps = 0.0001

IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon (Input)
Convergence criterion used to switch to exact second derivatives. When the
largest relative change in the unique standard deviation vector is less than
switch_epsilon, exact second derivative vectors are used. Argument
switch_epsilon is not used with the principal component, principal factor,
image-factor analysis, or alpha-factor analysis methods.
Default: switch_epsilon = 0.1

IMSLS_EIGENVALUES, float **eigenvalues (Output)
The address of a pointer to an internally allocated array of length

Chapter 9: Multivariate Analysis factor_analysis • 667

n_variables containing the eigenvalues of the matrix from which the
factors were extracted.

IMSLS_EIGENVALUES_USER, float eigenvalues[] (Output)
Storage for array eigenvalues is provided by the user. See
IMSLS_EIGENVALUES.

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value
(Output)
Number of degrees of freedom in chi-squared is df; chi_squared is the chi-
squared test statistic for testing that n_factors common factors are adequate
for the data; p_value is the probability of a greater chi-squared statistic.

IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient (Output)
Tucker reliability coefficient.

IMSLS_N_ITERATIONS, int *n_iterations (Output)
Number of iterations.

IMSLS_FUNCTION_MIN, float *function_min (Output)
Value of the function minimum.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to an internally allocated array of length n_variables
containing the updates of the unique variance estimates when convergence
was reached (or the iterations terminated).

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See
IMSLS_LAST_STEP.

IMSLS_ORTHOMAX_ROTATION, float w, int norm, float **b, float **t (Input/Output)
Nonnegative constant w defines the rotation. If norm =1, row normalization
is performed. Otherwise, row normalization is not performed. b contains the
address of a pointer to the internally allocated array of length
n_variables*n_factors containing the rotated factor loading matrix. t
contains the address of a pointer to the internally allocated array of length
n_factors*n_factors containing the rotation transformation matrix.
w = 0.0 results in quartimax rotations, w = 1.0 results in varimax rotations,
and w = n_factors/2.0 results in equamax rotations. Other nonnegative
values of w may also be used, but the best values for w are in the range
(0.0, 5 * n_factors).

IMSLS_ORTHOMAX_ROTATION_USER, float w, int norm, float b[], float t[]
(Input/Output)
Storage for b and t are provided by the user. See
IMSLS_ORTHOMAX_ROTATION.

IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION, float target[], float **b, float **t
(Input/Output)
If specified, the n_variables by n_factors target matrix target will be
used to compute an orthogonal Procrustes rotation of the factor-loading

668 • factor_analysis IMSL C Stat Library

matrix. b contains the address of a pointer to the internally allocated array of
length n_variables*n_factors containing the rotated factor loading
matrix. t contains the address of a pointer to the internally allocated array of
length n_factors*n_factors containing the rotation transformation
matrix.

IMSLS_ORTHOGONAL_PROCRUTES_ROTATION_USER, float target[],
float b[], float t[] (Input/Output)
Storage for b and t are provided by the user. See
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION.

IMSLS_DIRECT_OBLIMIN_ROTATION, float w , int norm, float **b,
float **t, float **factor_correlations (Input/Output)
Computes a direct oblimin rotation. Nonpositive constant w defines the
rotation. If norm =1, row normalization is performed. Otherwise, row
normalization is not performed. b contains the address of a pointer to the
internally allocated array of length n_variables*n_factors containing the
rotated factor loading matrix. t contains the address of a pointer to the
internally allocated array of length n_factors*n_factors containing the
rotation transformation matrix. factor_correlations contains the address
of a pointer to the internally allocated array of length
n_factors*n_factors containing the factor correlations. The parameter w
determines the type of direct oblimin rotation to be performed. In general w
must be negative. w = 0.0 results in direct quartimin rotations. As w
approaches negative infinity, the orthogonality among factors will increase.

IMSLS_DIRECT_OBLIMIN_ROTATION_USER, float w, int norm, float b[],
float t[], float factor_correlations[] (Input/Output)
Storage for b, t and factor_correlations are provided by the user. See
IMSLS_DIRECT_OBLIMIN_ROTATION.

IMSLS_OBLIQUE_PROMAX_ROTATION, float w, float power[], int norm,
float **target, float **b, float **t, float **factor_correlations,
(Input/Output)
Computes an oblique promax rotation of the factor loading matrix using a
power vector. Nonnegative constant w defines the rotation. power, a vector of
length n_factors containing the power vector. If norm =1, row (Kaiser)
normalization is performed. Otherwise, row normalization is not performed.
b contains the address of a pointer to the internally allocated array of length
n_variables*n_factors containing the rotated factor loading matrix. t
contains the address of a pointer to the internally allocated array of length
n_factors*n_factors containing the rotation transformation matrix.
factor_correlations contains the address of a pointer to the internally
allocated array of length n_factors*n_factors containing the factor
correlations. target contains the address of a pointer to the internally
allocated array of length n_variables*n_factors containing the target
matrix for rotation, derived from the orthomax rotation. w is used in the
orthomax rotation, see the optional argument IMSLS_ORTHOMAX_ROTATION
for common values of w.

Chapter 9: Multivariate Analysis factor_analysis • 669

 All power[j] should be greater than 1.0, typically 4.0. Generally, the larger the
values of power [j], the more oblique the solution will be.

IMSLS_OBLIQUE_PROMAX_ROTATION_USER, float w, float power[], int norm, float
target[], float b[], float t[], float factor_correlations[],
(Input/Output)
 Storage for b, t, factor_correlations, and target are provided by the
user. See IMSLS_OBLIQUE_PROMAX_ROTATION.

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, float w, float pivot[],
int norm, float **target , float **b, float **t,
float **factor_correlations, (Input/Output)
Computes an oblique pivotal promax rotation of the factor loading matrix
using pivot constants. Nonnegative constant w defines the rotation. pivot, a
vector of length n_factors containing the pivot constants. pivot[j]
should be in the interval (0.0, 1.0). If norm =1, row (Kaiser) normalization is
performed. Otherwise, row normalization is not performed. b contains the
address of a pointer to the internally allocated array of length
n_variables*n_factors containing the rotated factor loading matrix. t
contains the address of a pointer to the internally allocated array of length
n_factors*n_factors containing the rotation transformation matrix.
factor_correlations contains the address of a pointer to the internally
allocated array of length n_factors*n_factors containing the factor
correlations. target contains the address of a pointer to the internally
allocated array of length n_variables*n_factors containing the target
matrix for rotation, derived from the orthomax rotation. w is used in the
orthomax rotation, see the optional argument IMSLS_ORTHOMAX_ROTATION
for common values of w.

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER, float w, float pivot[], int
norm, float target[], float b[], float t[],
float factor_correlations[], (Input/Output)
 Storage for b, t, factor_correlations, and target are provided by the
user. See IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION.

IMSLS_OBLIQUE_PROCRUSTES_ROTATION, float **target, float **b, float **t,
float **factor_correlations (Input/Output)
Computes an oblique procrustes rotation of the factor loading matrix using a
target matrix. target is a hypothesized rotated factor loading matrix based
upon prior knowledge with loadings chosen to the enhance interpretability. A
simple structure solution will have most of the weights target[i][j] either
zero or large in magnitude. b contains the address of a pointer to the
internally allocated array of length n_variables*n_factors containing the
rotated factor loading matrix. t contains the address of a pointer to the
internally allocated array of length n_factors*n_factors containing the
rotation transformation matrix. factor_correlations contains the address
of a pointer to the internally allocated array of length
n_factors*n_factors containing the factor correlations.

670 • factor_analysis IMSL C Stat Library

IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER, float target[],
float b[], float t[], float factor_correlations[] (Input/Output)
Storage for b, t, and factor_correlations are provided by the user. See
IMSLS_PROCRUSTES_ROTATION.

IMSLS_FACTOR_STRUCTURE,float **s, float **fvar, (Output)
Computes the factor structure and the variance explained by each factor. s
contains the address of a pointer to the internally allocated array of length
n_variables*n_factors containing the factor structure matrix. fvar
contains the address of a pointer to the internally allocated array of length
n_factors containing the variance accounted for by each of the n_factors
rotated factors. A factor rotation matrix is used to compute the factor
structure and the variance. One and only one rotation option argument can be
specified.

IMSLS_FACTOR_STRUCTURE_USER, float s[], float fvar[], (Output)
Storage for s, and fvar are provided by the user.
See IMSLS_FACTOR_STRUCTURE.

IMSLS_COV_COL_DIM, int cov_col_dim (Input)
Column dimension of the matrix covariances.
Default: cov_col_dim = n_variables

IMSLS_RETURN_USER, float factor_loadings[] (Output)
User-allocated array of length n_variables*n_factors containing the
unrotated factor loadings.

Description
Function imsls_f_factor_analysis computes factor loadings in exploratory factor
analysis models. Models available in imsls_f_factor_analysis are the principal
component model for factor analysis and the common factor model with additions to
the common factor model in alpha-factor analysis and image analysis. Methods of
estimation include principal components, principal factor, image analysis, unweighted
least squares, generalized least squares, and maximum likelihood.
In the factor analysis model used for factor extraction, the basic model is given as
Σ = ΛΛT + Ψ, where Σ is the p × p population covariance matrix, Λ is the p × k matrix
of factor loadings relating the factors f to the observed variables x, and Ψ is the p × p
matrix of covariances of the unique errors e. Here, p = n_variables and
k = n_factors. The relationship between the factors, the unique errors, and the
observed variables is given as x = Λf + e, where in addition, the expected values of e, f,
and x are assumed to be 0. (The sample means can be subtracted from x if the expected
value of x is not 0.) It also is assumed that each factor has unit variance, the factors are
independent of each other, and that the factors and the unique errors are mutually
independent. In the common factor model, the elements of unique errors e also are
assumed to be independent of one another so that the matrix Ψ is diagonal. This is not
the case in the principal component model in which the errors may be correlated.
Further differences between the various methods concern the criterion that is optimized
and the amount of computer effort required to obtain estimates. Generally speaking, the
least-squares and maximum likelihood methods, which use iterative algorithms, require

Chapter 9: Multivariate Analysis factor_analysis • 671

the most computer time with the principal factor, principal component and the image
methods requiring much less time since the algorithms in these methods are not
iterative. The algorithm in alpha-factor analysis is also iterative, but the estimates in
this method generally require somewhat less computer effort than the least-squares and
maximum likelihood estimates. In all methods, one eigensystem analysis is required on
each iteration.

Principal Component and Principal Factor Methods
Both the principal component and principal factor methods compute the factor-loading
estimates as

1/ 2ˆˆ −ΓΔ

where Γ and the diagonal matrix Δ are the eigenvectors and eigenvalues of a matrix. In
the principal component model, the eigensystem analysis is performed on the sample
covariance (correlation) matrix S, while in the principal factor model, the matrix
(S + Ψ) is used. If the unique error variances Ψ are not known in the principal factor
mode, then imsls_f_factor_analysis obtains estimates for them.
The basic idea in the principal component method is to find factors that maximize the
variance in the original data that is explained by the factors. Because this method
allows the unique errors to be correlated, some factor analysts insist that the principal
component method is not a factor analytic method. Usually, however, the estimates
obtained by the principal component model and factor analysis model will be quite
similar.
It should be noted that both the principal component and principal factor methods give
different results when the correlation matrix is used in place of the covariance matrix.
Indeed, any rescaling of the sample covariance matrix can lead to different estimates
with either of these methods. A further difficulty with the principal factor method is the
problem of estimating the unique error variances. Theoretically, these must be known
in advance and be passed to imsls_f_factor_analysis using optional argument
IMSLS_UNIQUE_VARIANCES_INPUT. In practice, the estimates of these parameters are
produced by imsls_f_factor_analysis when
IMSLS_UNIQUE_VARIANCES_INPUT is not specified. In either case, the resulting
adjusted covariance (correlation) matrix

ˆS ψ−

may not yield the n_factors positive eigenvalues required for n_factors factors to
be obtained. If this occurs, the user must either lower the number of factors to be
estimated or give new unique error variance values.

Least-squares and Maximum Likelihood Methods
Unlike the previous two methods, the algorithm used to compute estimates in this
section is iterative (see Jöreskog 1977). As with the principal factor model, the user
may either initialize the unique error variances or allow imsls_f_factor_analysis
to compute initial estimates. Unlike the principal factor method,
imsls_f_factor_analysis optimizes the criterion function with respect to both Ψ

672 • factor_analysis IMSL C Stat Library

and Γ. (In the principal factor method, Ψ is assumed to be known. Given Ψ, estimates
for Λ may be obtained.)
The major difference between the methods discussed in this section is in the criterion
function that is optimized. Let S denote the sample covariance (correlation) matrix, and
let Σ denote the covariance matrix that is to be estimated by the factor model. In the
unweighted least-squares method, also called the iterated principal factor method or the
minres method (see Harman 1976, p. 177), the function minimized is the sum-of-
squared differences between S and Σ. This is written as Φul = 0.5 (trace (S − Σ)2).

Generalized least-squares and maximum likelihood estimates are asymptotically
equivalent methods. Maximum likelihood estimates maximize the (normal theory)
likelihood {Φml = trace (Σ-1S) − log (|Σ-1S|)}, while generalized least squares optimizes
the function Φgs = trace (ΣS-1 − I)2.

In all three methods, a two-stage optimization procedure is used. This proceeds by first
solving the likelihood equations for Λ in terms of Ψ and substituting the solution into
the likelihood. This gives a criterion φ (Ψ, Λ (Ψ)), which is optimized with respect to
Ψ. In the second stage, the estimates Λ̂ are obtained from the estimates for Ψ.
The generalized least-squares and maximum likelihood methods allow for the
computation of a statistic (IMSLS_CHI_SQUARED_TEST) for testing that n_factors
common factors are adequate to fit the model. This is a chi-squared test that all
remaining parameters associated with additional factors are 0. If the probability of a
larger chi-squared is so small that the null hypothesis is rejected, then additional factors
are needed (although these factors may not be of any practical importance). Failure to
reject does not legitimize the model. The statistic IMSLS_CHI_SQUARED_TEST is a
likelihood ratio statistic in maximum likelihood estimation. As such, it asymptotically
follows a chi-squared distribution with degrees of freedom given by df.

The Tucker and Lewis reliability coefficient, ρ, is returned by
IMSLS_TUCKER_RELIABILITY_COEFFICIENT when the maximum likelihood or
generalized least-squares methods are used. This coefficient is an estimate of the ratio
of explained variation to the total variation in the data. It is computed as follows:

0

0 1
kmM mM

mM
ρ

−
=

−

2 5 2
6 6

p km d +
= − −

()
()0

ln | |
1 / 2
S

M
p p
−

=
−

()()2 / 2
kM

p k p k

φ
=

− − −

Chapter 9: Multivariate Analysis factor_analysis • 673

where |S| is the determinant of covariances, p = n_variables, k = n_variables, φ is
the optimized criterion, and d = df_covariances.

Image Analysis Method
The term image analysis is used here to denote the noniterative image method of
Kaiser (1963). It is not the image analysis discussed by Harman (1976, p. 226). The
image method (as well as the alpha-factor analysis method) begins with the notion that
only a finite number from an infinite number of possible variables have been measured.
The image factor pattern is calculated under the assumption that the ratio of the number
of factors to the number of observed variables is near 0, so that a very good estimate
for the unique error variances (for standardized variables) is given as 1 minus the
squared multiple correlation of the variable under consideration with all variables in the
covariance matrix.

First, the matrix D2 = (diag (S-1))-1 is computed where the operator “diag” results in a
matrix consisting of the diagonal elements of its argument and S is the sample
covariance (correlation) matrix. Then, the eigenvalues Λ and eigenvectors Γ of the
matrix D-1SD-1 are computed. Finally, the unrotated image-factor pattern is computed
as DΓ [(Λ − I)2Λ-1]1/2.

Alpha-factor Analysis Method
The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-loading
estimates to maximize the correlation between the factors and the complete universe of
variables of interest. The basic idea in this method is that only a finite number of
variables out of a much larger set of possible variables is observed. The population
factors are linearly related to this larger set, while the observed factors are linearly
related to the observed variables. Let f denote the factors obtainable from a finite set of
observed random variables, and let ξ denote the factors obtainable from the universe of
observable variables. Then, the alpha method attempts to find factor-loading estimates
so as to maximize the correlation between f and ξ. In order to obtain these estimates,
the iterative algorithm of Kaiser and Caffrey (1965) is used.

Rotation Methods
The IMSLS_ORTHOMAX_ROTATION optional argument performs an orthogonal rotation
according to an orthomax criterion. In this analytic method of rotation, the criterion
function

2
4 2
ir ir

i r r i
Q

p
γλ λ⎡ ⎤= − ⎢ ⎥⎣ ⎦

∑∑ ∑ ∑

is minimized by finding an orthogonal rotation matrix T such that (λij) = Λ = AT where
A is the matrix of unrotated factor loadings. Here, γ ≥ 0 is a user-specified constant (W)
yielding a family of rotations, and p is the number of variables.
Kaiser (row) normalization can be performed on the factor loadings prior to rotation by
specifying the parameter norm =1. In Kaiser normalization, the rows of A are first
“normalized” by dividing each row by the square root of the sum of its squared

674 • factor_analysis IMSL C Stat Library

elements (Harman 1976). After the rotation is complete, each row of b is
“denormalized” by multiplication by its initial normalizing constant.
The method for optimizing Q proceeds by accumulating simple rotations where a
simple rotation is defined to be one in which Q is optimized for two columns in Λ and
for which the requirement that T be orthogonal is satisfied. A single iteration is defined
to be such that each of the n_factors(n_factors − 1)/2 possible simple rotations is
performed where n_factors is the number of factors. When the relative change in Q
from one iteration to the next is less than EPS (the user-specified convergence
criterion), the algorithm stops. eps = 0.0001 is usually sufficient. Alternatively, the
algorithm stops when the user-specified maximum number of iterations,
max_iterations, is reached. max_iterations = 30 is usually sufficient.

The parameter in the rotation, γ, is used to provide a family of rotations. When
γ = 0.0, a direct quartimax rotation results. Other values of γ yield other rotations.
The IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION optional argument performs
orthogonal Procrustes rotation according to a method proposed by Schöneman (1966).
Let k = n_factors denote the number of factors, p = n_variables denote the
number of variables, A denote the p × k matrix of unrotated factor loadings, T denote
the k × k orthogonal rotation matrix (orthogonality requires that TT T be a k × k identity
matrix), and let X denote the target matrix. The basic idea in orthogonal Procrustes
rotation is to find an orthogonal rotation matrix T such that B = AT and T provides a
least-squares fit between the target matrix X and the rotated loading matrix B.
Schöneman’s algorithm proceeds by finding the singular value decomposition of the
matrix AT X = UΣVT. The rotation matrix is computed as T = UVT.
The IMSLS_DIRECT_OBLIMIN_ROTATION optional argument performs direct oblimin
rotation. In this analytic method of rotation, the criterion function

2 2 2 2
ir is ir is

r s i i i
Q

p
γλ λ λ λ

≠

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∑ ∑ ∑

is minimized by finding a rotation matrix T such that (λir) = Λ = AT and (TT T)−1 is a
correlation matrix. Here, γ ≤ 0 is a user-specified constant (w) yielding a family of
rotations, and p is the number of variables. The rotation is said to be direct because it
minimizes Q with respect to the factor loadings directly, ignoring the reference
structure.
Kaiser normalization can be performed on the factor loadings prior to rotation via the
parameter norm. In Kaiser normalization (see Harman 1976), the rows of the factor
loading matrix are first “normalized” by dividing each row by the square root of the
sum of its squared elements. After the rotation is complete, each row of b is
“denormalized” by multiplication by its initial normalizing constant.
The method for optimizing Q is essentially the method first proposed by Jennrich and
Sampson (1966). It proceeds by accumulating simple rotations where a simple rotation
is defined to be one in which Q is optimized for a given factor in the plane of a second
factor, and for which the requirement that (TTT)−1 be a correlation matrix is satisfied.
An iteration is defined to be such that each of the n_factors[n_factors − 1]

Chapter 9: Multivariate Analysis factor_analysis • 675

possible simple rotations is performed, where n_factors is the number of factors.
When the relative change in Q from one iteration to the next is less than eps (the user-
specified convergence criterion), the algorithm stops. eps = .0001 is usually sufficient.
Alternatively, the algorithm stops when the user-specified maximum number of
iterations, max_iterations, is reached. max_iterations = 30 is usually sufficient.

The parameter in the rotation, γ, is used to provide a family of rotations. Harman
(1976) recommends that γ be strictly less than or equal to zero. When γ = 0.0, a direct
quartimin rotation results. Other values of γ yield other rotations. Harman (1976)
suggests that the direct quartimin rotations yield the most highly correlated factors
while more orthogonal factors result as γ approaches −∞.
IMSLS_OBLIQUE_PROMAX_ROTATION,
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION,
IMSLS_OBLIQUE_PROCRUSTES_ROTATION, optional arguments performs oblique
rotations using the Promax, pivotal Promax, or oblique Procrustes methods. In all of
these methods, a target matrix X is first either computed or specified by the user. The
differences in the methods relate to how the target matrix is first obtained.
Given a p × k target matrix, X, and a p × k orthogonal matrix of unrotated factor
loadings, A, compute the rotation matrix T as follows: First regress each column of A
on X yielding a k × k matrix β. Then, let γ = diag(βT β) where diag denotes the
diagonal matrix obtained from the diagonal of the square matrix. Standardize β to
obtain
T = γ−1/2 β. The rotated loadings are computed as B = AT while the factor correlations
can be computed as the inverse of the T TT matrix.
In the Promax method, the unrotated factor loadings are first rotated according to an
orthomax criterion via optional argument IMSLS_ORTHOMAX_ROTATION . The target
matrix X is taken as the elements of the B raised to a power greater than one but
retaining the same sign as the original loadings. The column i of the rotated matrix B is
raised to the power power[i]. A power of four is commonly used. Generally, the
larger the power, the more oblique the solution.
In the pivotal Promax method, the unrotated matrix is first rotated to an orthomax
orthogonal solution as in the Promax case. Then, rather than raising the i-th column in
B to the power pivot[i], the elements xij of X are obtained from the elements bij of B
by raising the ij element of B to the power pivot[i]/bij. This has the effects of greatly
increasing in X those elements in B that are greater in magnitude than the pivot
elements pivot[i], and of greatly decreasing those elements that are less than
pivot[i].
In the oblique Procrustes method, the elements of X are specified by the user as input to
the routine via the target argument. No orthogonal rotation is performed in the
oblique Procrustes method.

Factor Structure and Variance
The IMSLS_FACTOR_STRUCTURE optional argument computes the factor structure
matrix (the matrix of correlations between the observed variables and the hypothesized
factors) and the variance explained by each of the factors (for orthogonal rotations).

676 • factor_analysis IMSL C Stat Library

For oblique rotations, IMSLS_FACTOR_STRUCTURE computes a measure of the
importance of the factors, the sum of the squared elements in each column.
Let Δ denote the diagonal matrix containing the elements of the variance of the original
data along its diagonal. The estimated factor structure matrix S is computed as

1
2 1()TS A T− −= Δ

while the elements of fvar are computed as the diagonal elements of
1
2TS ATΔ

If the factors were obtained from a correlation matrix (or the factor variances for
standardized variables are desired), then the variances should all be 1.0.

Comments

1. Function imsls_f_factor_analysis makes no attempt to solve for
n_factors. In general, if n_factors is not known in advance, several
different values of n_factors should be used and the most reasonable value
kept in the final solution.

2. Iterative methods are generally thought to be superior from a theoretical point
of view, but in practice, often lead to solutions that differ little from the
noniterative methods. For this reason, it is usually suggested that a
noniterative method be used in the initial stages of the factor analysis and that
the iterative methods be used when issues such as the number of factors have
been resolved.

3. Initial estimates for the unique variances can be input. If the iterative methods
fail for these values, new initial estimates should be tried. These can be
obtained by use of another factoring method. (Use the final estimates from the
new method as the initial estimates in the old method.)

Examples

Example 1
In this example, factor analysis is performed for a nine-variable matrix using the
default method of unweighted least squares.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9
#define N_FACTORS 3
 float *a;

 float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,

Chapter 9: Multivariate Analysis factor_analysis • 677

 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 a = imsls_f_factor_analysis (9, covariances, 3, 0);

 /* Print results */
 imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
 a, 0);

 free(a);
}

Output
 Unrotated Loadings
 1 2 3
1 0.7018 -0.2316 0.0796
2 0.7200 -0.1372 -0.2082
3 0.5351 -0.2144 -0.2271
4 0.7907 0.4050 0.0070
5 0.6532 0.4221 -0.1046
6 0.7539 0.4842 0.1607
7 0.7127 -0.2819 -0.0701
8 0.4835 -0.2627 0.4620
9 0.8192 -0.3137 -0.0199

Example 2
The following data were originally analyzed by Emmett (1949). There are 211
observations on 9 variables. Following Lawley and Maxwell (1971), three factors are
obtained by the method of maximum likelihood.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>

main()
{
#define N_VARIABLES 9
#define N_FACTORS 3
 float *a;
 float *evals;
 float chi_squared, p_value, reliability_coef, function_min;
 int chi_squared_df, n_iterations;
 float uniq[N_VARIABLES];

 float covariances[N_VARIABLES][N_VARIABLES] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219, 0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,

678 • factor_analysis IMSL C Stat Library

 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149, 0.409,
 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,
 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 a = imsls_f_factor_analysis (9, covariances, 3,
 IMSLS_MAXIMUM_LIKELIHOOD, 210,
 IMSLS_SWITCH_EXACT_HESSIAN, 0.01,
 IMSLS_CONVERGENCE_EPS, 0.000001,
 IMSLS_MAX_ITERATIONS, 30,
 IMSLS_MAX_STEPS_LINE_SEARCH, 10,
 IMSLS_EIGENVALUES, &evals,
 IMSLS_UNIQUE_VARIANCES_OUTPUT, uniq,
 IMSLS_CHI_SQUARED_TEST,
 &chi_squared_df,
 &chi_squared,
 &p_value,
 IMSLS_TUCKER_RELIABILITY_COEFFICIENT, &reliability_coef,
 IMSLS_N_ITERATIONS, &n_iterations,
 IMSLS_FUNCTION_MIN, &function_min,
 0);

 /* Print results */
 imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
 a, 0);
 imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, evals, 0);
 imsls_f_write_matrix("Unique Error Variances", 1, N_VARIABLES,
 uniq, 0);
 printf("\n\nchi_squared_df = %d\n", chi_squared_df);
 printf("chi_squared = %f\n", chi_squared);
 printf("p_value = %f\n\n", p_value);
 printf("reliability_coef = %f\n", reliability_coef);
 printf("function_min = %f\n", function_min);
 printf("n_iterations = %d\n", n_iterations);

 free(evals);
 free(a);
}

Output
 Unrotated Loadings
 1 2 3
1 0.6642 -0.3209 0.0735
2 0.6888 -0.2471 -0.1933
3 0.4926 -0.3022 -0.2224
4 0.8372 0.2924 -0.0354
5 0.7050 0.3148 -0.1528
6 0.8187 0.3767 0.1045
7 0.6615 -0.3960 -0.0777
8 0.4579 -0.2955 0.4913
9 0.7657 -0.4274 -0.0117

Chapter 9: Multivariate Analysis factor_analysis • 679

 Eigenvalues
 1 2 3 4 5 6
 0.063 0.229 0.541 0.865 0.894 0.974

 7 8 9
 1.080 1.117 1.140

 Unique Error Variances
 1 2 3 4 5 6
 0.4505 0.4271 0.6166 0.2123 0.3805 0.1769

 7 8 9
 0.3995 0.4615 0.2309

chi_squared_df = 12
chi_squared = 7.149356
p_value = 0.847588

reliability_coef = 1.000000
function_min = 0.035017
n_iterations = 5

Example 3
This example is a continuation of example 1 and illustrates the use of the
IMSLS_FACTOR_STRUCTURE optional argument when the structure and an index of
factor importance for obliquely rotated loadings are desired. A direct oblimin rotation
is used to compute the factors, derived from nine variables and using γ = −1. Note in
this example that the elements of fvar are not variances since the rotation is oblique.

#include <stdio.h>
#include <imsls.h>
#include <stdlib.h>
void main()
{
#define N_VARIABLES 9
#define N_FACTORS 3
 float *a;
 float w= -1.0;
 int norm=1;
 float *b, *t, *fcor;
 float *s, *fvar;
 float covariances[9][9] = {
 1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434,

0.639,
 0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283,

0.645,
 0.395, 0.479, 1.0, 0.355, 0.27, 0.254, 0.452, 0.219,

0.504,
 0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285,

0.505,
 0.346, 0.418, 0.27, 0.691, 1.0, 0.679, 0.383, 0.149,

0.409,

680 • factor_analysis IMSL C Stat Library

 0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314,
0.472,

 0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,
 0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,
 0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0};

 /* Perform analysis */
 a = imsls_f_factor_analysis (9, (float *)covariances, 3,
 IMSLS_MAXIMUM_LIKELIHOOD, 210,
 IMSLS_SWITCH_EXACT_HESSIAN, 0.01,
 IMSLS_CONVERGENCE_EPS, 0.00001,
 IMSLS_MAX_ITERATIONS, 30,
 IMSLS_MAX_STEPS_LINE_SEARCH, 10,
 IMSLS_DIRECT_OBLIMIN_ROTATION, w, norm, &b, &t, &fcor,
 IMSLS_FACTOR_STRUCTURE, &s, &fvar,
 0);

 /* Print results */

 imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,
 a, 0);
 imsls_f_write_matrix("Rotated Loadings", N_VARIABLES, N_FACTORS,
 b, 0);
 imsls_f_write_matrix("Transformation Matrix", N_FACTORS, N_FACTORS,
 t, 0);
 imsls_f_write_matrix("Factor Correlation Matrix", N_FACTORS, N_FACTORS,
 fcor, 0);
 imsls_f_write_matrix("Factor Structure", N_VARIABLES,
 N_FACTORS,s,0);
 imsls_f_write_matrix("Factor Variance", 1, N_FACTORS, fvar, 0);
}

Output
 Unrotated Loadings
 1 2 3
1 0.6642 -0.3209 0.0735
2 0.6888 -0.2471 -0.1933
3 0.4926 -0.3022 -0.2224
4 0.8372 0.2924 -0.0354
5 0.7050 0.3148 -0.1528
6 0.8187 0.3767 0.1045
7 0.6615 -0.3960 -0.0777
8 0.4579 -0.2955 0.4913
9 0.7657 -0.4274 -0.0117

 Rotated Loadings
 1 2 3
1 0.1128 -0.5144 0.2917
2 0.1847 -0.6602 -0.0018
3 0.0128 -0.6354 -0.0585
4 0.7797 -0.1751 0.0598
5 0.7147 -0.1813 -0.0959
6 0.8520 0.0039 0.1820
7 0.0354 -0.6844 0.1510
8 0.0276 -0.0941 0.6824

Chapter 9: Multivariate Analysis factor_analysis • 681

9 0.0729 -0.7100 0.2493

 Transformation Matrix
 1 2 3
1 0.611 -0.462 0.203
2 0.923 0.813 -0.249
3 0.042 0.728 1.050

 Factor Correlation Matrix
 1 2 3
1 1.000 -0.427 0.217
2 -0.427 1.000 -0.411
3 0.217 -0.411 1.000

 Factor Structure
 1 2 3
1 0.3958 -0.6824 0.5275
2 0.4662 -0.7383 0.3094
3 0.2714 -0.6169 0.2052
4 0.8675 -0.5326 0.3011
5 0.7713 -0.4471 0.1339
6 0.8899 -0.4347 0.3656
7 0.3605 -0.7616 0.4398
8 0.2161 -0.3861 0.7271
9 0.4302 -0.8435 0.5568

 Factor Variance
 1 2 3
 2.170 2.560 0.914

Warning Errors

IMSLS_VARIANCES_INPUT_IGNORED When using the
IMSLS_PRINCIPAL_COMPONENT
option, the unique variances are
assumed to be zero. Input for
IMSLS_UNIQUE_VARIANCES_INPUT is
ignored.

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is
assumed.

IMSLS_NO_DEG_FREEDOM There are no degrees of freedom for the
significance testing.

IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is
assumed.

IMSLS_NO_ROTATION n_factors = 1. No rotation is possible.

IMSLS_SVD_ERROR An error occurred in the singular value
decomposition of tran(A)*X. The
rotation matrix, T, may not be correct.

682 • discriminant_analysis IMSL C Stat Library

Fatal Errors

IMSLS_HESSIAN_NOT_POS_DEF The approximate Hessian is not semi-
definite on iteration #. The computations cannot
proceed. Try using different initial estimates.

IMSLS_FACTOR_EVAL_NOT_POS “eigenvalues[#]” = #. An eigenvalue
corresponding to a factor is negative or zero. Either
use different initial estimates for “unique_variances”
or reduce the number of factors.

IMSLS_COV_NOT_POS_DEF “covariances” is not positive semi-definite. The
computations cannot proceed.

IMSLS_COV_IS_SINGULAR The matrix “covariances” is singular. The
computations cannot continue because variable # is
linearly related to the remaining variables.

IMSLS_COV_EVAL_ERROR An error occurred in calculating the eigenvalues of
the adjusted (inverse) covariance matrix. Check
“covariances.”

IMSLS_ALPHA_FACTOR_EVAL_NEG In alpha factor analysis on iteration #,
eigenvalue # is #. As all eigenvalues corresponding to
the factors must be positive, either the number of
factors must be reduced or new initial estimates for
“unique_variances” must be given.

IMSLS_RANK_LESS_THAN The rank of TRAN(A)*target = #. This must be
greater than or equal to n_factors = #.

discriminant_analysis
Performs a linear or a quadratic discriminant function analysis among several known
groups.

Synopsis
#include <imsls.h>
void imsls_f_discriminant_analysis (int n_rows, int n_variables, float

*x, int n_groups, ..., 0)
The type double function is imsls_d_discriminant_analysis.

Required Arguments

int n_rows (Input)
Number of rows of x to be processed.

int n_variables (Input)
Number of variables to be used in the discrimination.

Chapter 9: Multivariate Analysis discriminant_analysis • 683

float *x (Input)
Array of size n_rows by n_variables + 1 containing the data. The first
n_variables columns correspond to the variables, and the last column
(column n_variables) contains the group numbers. The groups must be
numbered 1, 2, ..., n_groups.

int n_groups (Input)
Number of groups in the data.

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_f_discriminant_analysis (int n_rows, int n_variables,
float *x, int n_groups,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,
IMSLS_METHOD, int method,
IMSLS_IDO, int ido,
IMSLS_ROWS_ADD,
IMSLS_ROWS_DELETE,
IMSLS_PRIOR_EQUAL,
IMSLS_PRIOR_PROPORTIONAL,
IMSLS_PRIOR_INPUT, float prior_input[],
IMSLS_PRIOR_OUTPUT, float **prior_output
IMSLS_PRIOR_OUTPUT_USER, float prior_output[]
IMSLS_GROUP_COUNTS, int **gcounts,
IMSLS_GROUP_COUNTS_USER, int gcounts[]
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_COV, float **covariances,
IMSLS_COV_USER, float covariances[],
IMSLS_COEF, float **coefficients
IMSLS_COEF_USER, float coefficients[],
IMSLS_CLASS_MEMBERSHIP, int **class_membership,
IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[],
IMSLS_CLASS_TABLE, float **class_table,
IMSLS_CLASS_TABLE_USER, float class_table[],
IMSLS_PROB, float **prob,
IMSLS_PROB_USER, float prob[],
IMSLS_MAHALANOBIS, float **d2,
IMSLS_MAHALANOBIS_USER, float d2[],
IMSLS_STATS, float **stats,
IMSLS_STATS_USER, float stats[],
IMSLS_N_ROWS_MISSING, int *nrmiss,
0)

684 • discriminant_analysis IMSL C Stat Library

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of array x.
Default: x_col_dim = n_variables + 1

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt (Input)
Each of the four arguments contains indices indicating column numbers of x
in which particular types of data are stored. Columns are numbered 0 …
x_col_dim − 1.

Parameter igrp contains the index for the column of x in which the group
numbers are stored.

Parameter ind contains the indices of the variables to be used in the analysis.

Parameters ifrq and iwt contain the column numbers of x in which the
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will
be no column for frequencies. Set iwt = −1 if there will be no column for
weights. Weights are rounded to the nearest integer. Negative weights are not
allowed.

Defaults: igrp = n_variables, ind[] = 0, 1, ..., n_variables − 1,
ifrq = −1, and iwt = −1

IMSLS_METHOD, int method (Input)
Method of discrimination. The method chosen determines whether linear or
quadratic discrimination is used, whether the group covariance matrices are
computed (the pooled covariance matrix is always computed), and whether
the leaving-out-one or the reclassification method is used to classify each
observation.

method discrimination
method

covariances
computed

classification
method

1 linear pooled, group Reclassification
2 quadratic pooled, group Reclassification
3 linear pooled Reclassification
4 linear pooled, group leaving-out-one
5 quadratic pooled, group leaving-out-one
6 linear pooled leaving-out-one

In the leaving-out-one method of classification, the posterior probabilities are
adjusted so as to eliminate the effect of the observation from the sample
statistics prior to its classification. In the classification method, the effect of
the observation is not eliminated from the classification function.

When optional argument IMSLS_IDO is specified, the following rules for
mixing methods apply; Methods 1, 2, 4, and 5 can be intermixed, as can
methods 3 and 6. Methods 1, 2, 4, and 5 cannot be intermixed with methods 3
and 6.

Chapter 9: Multivariate Analysis discriminant_analysis • 685

Default: method = 1

IMSLS_IDO, int ido (Input)
Processing option. See Comments 3 and 4 for more information.

ido Action
0 This is the only invocation; all the data are input at once. (Default)
1 This is the first invocation with this data; additional calls will be

made. Initialization and updating for the n_rows observations of x
will be performed.

2 This is an intermediate invocation; updating for the n_rows
observations of x will be performed.

3 All statistics are updated for the n_rows observations. The
discriminant functions and other statistics are computed.

4 The discriminant functions are used to classify each of the n_rows
observations of x.

5 The covariance matrices are computed, and workspace is released. No
further call to discriminant_analysis with ido greater than
1 should be made without first calling discriminant_analysis
with ido = 1.

6 Workspace is released. No further calls to
discriminant_analysis with ido greater than 1 should be
made without first calling discriminant_analysis with
ido = 1. Invocation with this option is not required if a call has
already been made with ido = 5.

Default: ido = 0
IMSLS_ROWS_ADD, or
IMSLS_ROWS_DELETE (Input)

By default (or if IMSLS_ROWS_ADD is specified), then the observations in x
are added to the discriminant statistics. If IMSLS_ROWS_DELETE is specified,
then the observations are deleted.

If ido = 0, these optional arguments are ignored (data is always added if there
is only one invocation).

IMSLS_PRIOR_EQUAL, or
IMSLS_PRIOR_PROPORTIONAL, or
IMSLS_PRIOR_INPUT, float prior_input[] (Input)

By default, (or if IMSLS_PRIOR_EQUAL is specified), equal prior probabilities
are calculated as 1.0/n_groups.

If IMSLS_PRIOR_PROPORTIONAL is specified, prior probabilities are
calculated to be proportional to the sample size in each group.

If IMSLS_PRIOR_INPUT is specified, then array prior_input is an array of
length n_groups containing the prior probabilities for each group, such that
the sum of all prior probabilities is equal to 1.0. Prior probabilities are not
used if ido is equal to 1, 2, 5, or 6.

686 • discriminant_analysis IMSL C Stat Library

IMSLS_PRIOR_OUTPUT, float **prior_output (Output)
Address of a pointer to an array of length n_groups containing the most
recently calculated or input prior probabilities. If
IMSLS_PRIOR_PROPORTIONAL is specified, every element of
prior_output is equal to −1 until a call is made with ido equal to 0 or 3, at
which point the priors are calculated. Note that subsequent calls to
discriminant_analysis with IMSLS_PRIOR_PROPORTIONAL specified,
and ido not equal to 0 or 3 will result in the elements of prior_output being
reset to −1.

IMSLS_PRIOR_OUTPUT_USER, float prior_output[] (Output)
Storage for array prior_output is provided by the user. See
IMSLS_PRIOR_OUTPUT.

IMSLS_GROUP_COUNTS, int **gcounts (Output)
Address of a pointer to an integer array of length n_groups containing the
number of observations in each group. Array gcounts is updated when ido is
equal to 0, 1, or 2.

IMSLS_GROUP_COUNTS_USER, int gcounts[] (Output)
Storage for integer array gcounts is provided by the user. See
IMSLS_GROUP_COUNTS.

IMSLS_MEANS, float **means (Output)
Address of a pointer to an array of size n_groups by n_variables. The i-th
row of means contains the group i variable means. Array means is updated
when ido is equal to 0, 1, 2, or 5. The means are unscaled until a call is made
with ido = 5. where the unscaled means are calculated as Σwifi xi and the
scaled means as

i i i

i i

w f x
w f

∑
∑

where xi is the value of the i-th observation, wi is the weight of the i-th
observation, and fi is the frequency of the i-th observation.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_COV, float **covariances (Output)
Address of a pointer to an array of size g by n variables by n_variables
containing the within-group covariance matrices (methods 1, 2, 4, and 5
only) as the first g-1 matrices, and the pooled covariance matrix as the g-th
matrix (that is, the first n_variables ∗ n_variables elements comprise
the group 1 covariance matrix, the next n_variables ∗ n_variables
elements comprise the group 2 covariance, ..., and the last
n_variables ∗ n_variables elements comprise the pooled covariance
matrix). If method is 3 or 6 then g is equal to 1. Otherwise, g is equal to
n_groups + 1. Argument cov is updated when ido is equal to 0, 1, 2, 3, or 5.

Chapter 9: Multivariate Analysis discriminant_analysis • 687

IMSLS_COV_USER, float covariances[] (Output)
Storage for array covariances is provided by the user. See
IMSLS_COVARIANCES.

IMSLS_COEF, float **coefficients (Output)
Address of a pointer to an array of size n_groups by
(n_variables + 1) containing the linear discriminant coefficients. The first
column of coefficients contains the constant term, and the remaining
columns contain the variable coefficients. Row i − 1 of coefficients
corresponds to group i, for
i = 1, 2, ..., n_variables + 1. Array coefficients are always computed
as the linear discriminant function coefficients even when quadratic
discrimination is specified.

Array coefficients is updated when ido is equal to 0 or 3.

IMSLS_COEF_USER, float coefficients[] (Output)
Storage for array coefficients is provided by the user. See
IMSLS_COEFFICIENTS.

IMSLS_CLASS_MEMBERSHIP, int **class_membership (Output)
Address of a pointer to an integer array of length n_rows containing the
group to which the observation was classified. Array class_membership is
updated when ido is equal to 0 or 4.

If an observation has an invalid group number, frequency, or weight when the
leaving-out-one method has been specified, then the observation is not
classified and the corresponding elements of class_membership (and prob,
see IMSLS_PROB) are set to zero.

IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[] (Ouput)
Storage for array class_membership is provided by the user. See
IMSLS_CLASS_MEMBERSHIP.

IMSLS_CLASS_TABLE, float **class_table (Output)
Address of a pointer to an array of size n_groups by n_groups containing
the classification table. Array class_table is updated when ido is equal to
0, 1, or 4. Each observation that is classified and has a group number 1.0, 2.0,
..., n_groups is entered into the table. The rows of the table correspond to the
known group membership. The columns refer to the group to which the
observation was classified. Classification results accumulate with each call to
imsls_f_discriminant_analysis with ido equal to 4. For example, if
two calls with ido equal to 4 are made, the elements in class_table sum to
the total number of valid observations in the two calls.

IMSLS_CLASS_TABLE_USER, float class_table[] (Output)
Storage for array class_table is provided by the user. See
IMSLS_CLASS_TABLE.

IMSLS_PROB, float **prob (Output)
Address of a pointer to an array of size n_rows by n_groups containing the

688 • discriminant_analysis IMSL C Stat Library

posterior probabilities for each observation. Argument prob is updated when
ido is equal to 0 or 4.

IMSLS_PROB_USER, float prob[] (Output)
Storage for array prob is provided by the user. See IMSLS_PROB.

IMSLS_MAHALANOBIS, float **d2 (Output)
Address of a pointer to an array of size n_groups by n_groups containing
the Mahalanobis distances

2
ijD

between the group means. Argument d2 is updated when ido is equal to 0 or
3.

For linear discrimination, the Mahalanobis distance is computed using the
pooled covariance matrix. Otherwise, the Mahalanobis distance

2
ijD

between group means i and j is computed using the within covariance matrix
for group i in place of the pooled covariance matrix.

IMSLS_MAHALANOBIS_USER, float d2[] (Output)
Storage for array d2 is provided by the user. See IMSLS_MAHALANOBIS.

IMSLS_STATS, float **stats (Output)
Address of a pointer to an array of length 4 + 2 × (n_groups + 1) containing
various statistics of interest. Array stats is updated when ido is equal to 0,
1, 3, or 5. The first element of stats is the sum of the degrees of freedom for
the within-covariance matrices. The second, third, and fourth elements of
stats correspond to the chi-squared statistic, its degrees of freedom, and the
probability of a greater
chi-squared, respectively, of a test of the homogeneity of the within-
covariance matrices (not computed if method is equal to 3 or 6). The fifth
through 5 + n_groups elements of stats contain the log of the determinants
of each group’s covariance matrix (not computed if method is equal to 3 or 6)
and of the pooled covariance matrix (element 4 + n_groups). Finally, the last
n_groups + 1 elements of stats contain the sum of the weights within each
group, and in the last position, the sum of the weights in all groups.

IMSLS_STATS_USER, float stats[] (Output)
Storage for array stats is provided by the user. See IMSLS_STATS_USER.

IMSLS_N_ROWS_MISSING, int *nrmiss (Output)
Number of rows of data encountered in calls to discriminant_analysis
containing missing values (NaN) for the classification, group, weight, and/or
frequency variables. If a row of data contains a missing value (NaN) for any
of these variables, that row is excluded from the computations.

Chapter 9: Multivariate Analysis discriminant_analysis • 689

Array nrmiss is updated when ido is equal to 0, 1, 2, or 3.

Comments

1. Common choices for the Bayesian prior probabilities are given by:
prior_input[i] = 1.0/n_groups (equal priors)
prior_input[i] = gcounts/n_rows (proportional priors)
prior_input[i] = Past history or subjective judgment.
In all cases, the priors should sum to 1.0.

2. Two passes of the data are made. In the first pass, the statistics required to
compute the discriminant functions are obtained (ido equal to 1, 2, and 3). In
the second pass, the discriminant functions are used to classify the
observations. When ido is equal to 0, all of the data are memory resident, and
both passes are made in one call to imsls_f_discriminant_analysis.
When ido > 0 (optional argument IMSLS_IDO is specified), a third call to
imsls_f_discriminant_analysis involving no data is required with ido
equal to 5 or 6.

3. Here are a few rules and guidelines for the correct value of ido in a series of
calls:

1 Calls with ido = 0 or ido = 1 may be made at any time,
subject to rule 2. These calls indicate that a new analysis is to
begin, and therefore allocate memory and destroy all statistics
from previous calls.

2 Each series of calls to imsls_f_discriminant_analysis
which begins with ido = 1 must end with ido equal to 5 or 6
to ensure the proper release of workspace, subject to rule 3.

3 ido may not be 4 or 5 before a call with ido = 3 has been
made.

4 ido may not be 2, 3, 4, 5, or 6
a) Immediately after a call with ido = 0.
b) Before a call with ido = 1 has been made.
c) Immediately after a call with ido equal to 5 or 6 has been
made.

The following is a valid sequence of ido’s:

ido Explanation
0 Data Set A: Perform a complete analysis. All data to be used in the analysis

must be present in x. Since cleanup of workspace is automatic for ido = 0, no
further calls are necessary.

1 Data Set B: Begin analysis. The n_rows observations in x are used for
initialization.

2 Data Set B: Continue analysis. New observations placed in x are added to (or
deleted from, see IMSLS_ROWS_DELETE) the analysis.

690 • discriminant_analysis IMSL C Stat Library

ido Explanation
2 Data Set B: Continue analysis. n_rows new observations placed in x are

added to (or deleted from, see IMSLS_ROWS_DELETE) the analysis.
3 Data Set B: Continue analysis. n_rows new observations are added (or

deleted) and discriminant functions and other statistics are computed.
4 Data Set B: Classification of each of the n_rows observations in the current x

matrix.
5 Data Set B: End analysis. Covariance matrices are computed and workspace is

released. This analysis could also have been ended by choosing ido = 6
1 Data Set C: Begin analysis. Note that for this call to be valid the previous call

must have been made with ido equal to 5 or 6.
3 Data Set C: Continue analysis.
4 Data Set C: Continue analysis.
3 Data Set C: Continue analysis.
6 Data Set C: End analysis.

4. Because of the internal workspace allocation and saved variables, function
imsls_f_discriminant_analysis must complete the analysis of a data
set before beginning processing of the next data set.

Return Value
The return value is void.

Description
Function imsls_f_discriminant_analysis performs discriminant function
analysis using either linear or quadratic discrimination. The output includes a measure
of distance between the groups, a table summarizing the classification results, a matrix
containing the posterior probabilities of group membership for each observation, and
the within-sample means and covariance matrices. The linear discriminant function
coefficients are also computed.
By default (or if optional argument IMSLS_IDO is specified with ido = 0) all
observations are input during one call, a method of operation that has the advantage of
simplicity. Alternatively, one or more rows of observations can be input during
separate calls. This method does not require that all observations be memory resident, a
significant advantage with large data sets. Note, however, that the algorithm requires
two passes of the data. During the first pass the discriminant functions are computed
while in the second pass, the observations are classified. Thus, with the second method
of operation, the data will usually need to be input twice.
Because both methods result in the same operations being performed, the algorithm is
discussed as if only a few observations are input during each call. The operations
performed during each call depend upon the ido parameter.
The ido = 1 step is the initialization step. “Private” internally allocated saved variables
corresponding to means, class_table, and covariances are initialized to zero, and
other program parameters are set (copies of these private variables are written to the
corresponding output variables upon return from the function call, assuming ido

Chapter 9: Multivariate Analysis discriminant_analysis • 691

values such that the results are to be returned). Parameters n_rows, x, and method can
be changed from one call to the next within the two sets {1, 2, 4, 5} and {3, 6} but not
between these sets when ido > 1. That is, do not specify method = 1 in one call and
method = 3 in another call without first making a call with ido = 1.
After initialization has been performed in the ido = 1 step, the within-group means are
updated for all valid observations in x. Observations with invalid group numbers are
ignored, as are observation with missing values. The LU factorization of the covariance
matrices are updated by adding (or deleting) observations via Givens rotations.
The ido = 2 step is used solely for adding or deleting observations from the model as
in the above paragraph.
The ido = 3 step begins by adding all observations in x to the means and the
factorizations of the covariance matrices. It continues by computing some statistics of
interest: the linear discriminant functions, the prior probabilities (by default, or if
IMSLS_PROPORTIONAL_PRIORS is specified), the log of the determinant of each of
the covariance matrices, a test statistic for testing that all of the within-group
covariance matrices are equal, and a matrix of Mahalanobis distances between the
groups. The matrix of Mahalanobis distances is computed via the pooled covariance
matrix when linear discrimination is specified; the row covariance matrix is used when
the discrimination is quadratic.
Covariance matrices are defined as follows: Let Ni denote the sum of the frequencies of
the observations in group i and Mi denote the number of observations in group i. Then,
if Si denotes the within-group i covariance matrix,

()()
1

1
1

iM
T

i j j j j
ji

S w f x x x x
N =

= − −
− ∑

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj is the
j-th observation column vector (in group i), and x denotes the mean vector of the
observations in group i. The mean vectors are computed as

1 1

1() where
i iM M

j j j i j j
j ji

x w f x W w f
W = =

= =∑ ∑

Given the means and the covariance matrices, the linear discriminant function for
group i is computed as:

() 1 1ln 0.5 T T
i i i p i p iz p x S x x S x− −= − +

where ln (pi) is the natural log of the prior probability for the i-th group, x is the
observation to be classified, and Sp denoted the pooled covariance matrix.

Let S denote either the pooled covariance matrix of one of the within-group covariance
matrices Si. (S will be the pooled covariance matrix in linear discrimination, and Si
otherwise.) The Mahalanobis distance between group i and group j is computed as:

692 • discriminant_analysis IMSL C Stat Library

() ()2 1T

ij i j i jD x x S x x−= − −

Finally, the asymptotic chi-squared test for the equality of covariance matrices is
computed as follows (Morrison 1976, p. 252):

() (){ }1

1

ln ln
k

i p i
i

C n S Sγ −

=

= −∑

where ni is the number of degrees of freedom in the i-th sample covariance matrix, k is
the number of groups, and

()()
2

1

1

1 2 3 1 1 1
6 1 1

k

i i j
j

p pC
p k n n

−

=

⎛ ⎞− + − ⎜ ⎟= −
⎜ ⎟+ − ⎝ ⎠
∑ ∑

where p is the number of variables.
When ido = 4, the estimated posterior probability of each observation x belonging to
group is computed using the prior probabilities and the sample mean vectors and
estimated covariance matrices under a multivariate normal assumption. Under
quadratic discrimination, the within-group covariance matrices are used to compute the
estimated posterior probabilities. The estimated posterior probability of an observation
x belonging to group i is

()
()()

()()

2

2

1

exp 0.5
ˆ

exp 0.5

i
i k

j
j

D x
q x

D x
=

−
=

−∑

where

()
() () ()
() () ()

1
2

1

METHOD 1 or 2

METHOD 3

ln 2ln

2ln

T
i i i i i

i T
i p i i

x x S x x S p
D x

x x S x x p

−

−

=

=

⎧ − − + −⎪= ⎨
− − −⎪⎩

For the leaving-out-one method of classification (method equal to 4, 5 or 6), the
sample mean vector and sample covariance matrices in the formula for

2
iD

are adjusted so as to remove the observation x from their computation. For linear
discrimination (method equal to 1, 3, 4, or 6), the linear discriminant function
coefficients are actually used to compute the same posterior probabilities.
Using the posterior probabilities, each observation in x is classified into a group; the
result is tabulated in the matrix class_table and saved in the vector
class_membership. Matrix class_table is not altered at this stage if

Chapter 9: Multivariate Analysis discriminant_analysis • 693

x[i][x_group] (by default, x_igrp = 0; see optional argument IMSLS_INDICES)
contains a group number that is out of range. If the reclassification method is specified,
then all observations with no missing values in the n_variables classification
variables are classified. When the leaving-out-one method is used, observations with
invalid group numbers, weights, frequencies, or classification variables are not
classified. Regardless of the frequency, a 1 is added (or subtracted) from
class_table for each row of x that is classified and contains a valid group number.
When method > 3, adjustment is made to the posterior probabilities to remove the
effect of the observation in the classification rule. In this adjustment, each observation
is presumed to have a weight of x[i][iwt] if
iwt > −1 (and a weight of 1.0 if iwt = −1), and a frequency of 1.0. See Lachenbruch
(1975, p. 36) for the required adjustment.
Finally, when ido = 5, the covariance matrices are computed from their LU
factorizations. Internally allocated and saved variables are cleaned up at this step (ido
equal to 5 or 6).

Example 1
The following example uses liner discrimination with equal prior probabilities on
Fisher’s (1936) iris data. This example illustrates the execution of
imsls_f_discriminant_analysis when one call is made (i.e. using the default of
ido = 0).

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
 int n_groups = 3;
 int nrow, nvar, ncol, nrmiss;
 float *x, *xtemp;
 float *prior_out, *means, *cov, *coef;
 float *table, *d2, *stats, *prob;
 int *counts, *cm;
 static int perm[5] = {1, 2, 3, 4, 0};

 /* Retrieve the Fisher Iris Data Set */
 xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow,
 IMSLS_N_VARIABLES, &ncol, 0);
 nvar = ncol - 1;

 /* Move the group column to end of the the matrix */
 x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,
 IMSLS_PERMUTE_COLUMNS, 0);
 free(xtemp);

 imsls_f_discriminant_analysis (nrow, nvar, x, n_groups,
 IMSLS_METHOD, 3,
 IMSLS_GROUP_COUNTS, &counts,
 IMSLS_COEF, &coef,
 IMSLS_MEANS, &means,
 IMSLS_STATS, &stats,
 IMSLS_CLASS_MEMBERSHIP, &cm,

694 • discriminant_analysis IMSL C Stat Library

 IMSLS_CLASS_TABLE, &table,
 IMSLS_PROB, &prob,
 IMSLS_MAHALANOBIS, &d2,
 IMSLS_COV, &cov,
 IMSLS_PRIOR_OUTPUT, &prior_out,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 IMSLS_PRIOR_EQUAL,
 IMSLS_METHOD, 3, 0);

 imsls_i_write_matrix("Counts", 1, n_groups, counts, 0);
 imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0);
 imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
 imsls_f_write_matrix("Stats", 12, 1, stats, 0);
 imsls_i_write_matrix("Membership", 1, nrow, cm, 0);
 imsls_f_write_matrix("Table", n_groups, n_groups, table, 0);
 imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0);
 imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);
 imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0);
 imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);
 printf("\nnrmiss = %3d\n", nrmiss);

 free(means);
 free(stats);
 free(counts);
 free(coef);
 free(cm);
 free(table);
 free(prob);
 free(d2);
 free(prior_out);
 free(cov);
}

Output
 Counts
 1 2 3
 50 50 50

 Coef
 1 2 3 4 5
1 -86.3 23.5 23.6 -16.4 -17.4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12.4 3.7 12.8 21.1

 Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

 Stats
 1 147
 2
 3
 4
 5

Chapter 9: Multivariate Analysis discriminant_analysis • 695

 6
 7
 8 -10
 9 50
10 50
11 50
12 150

 Membership
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

148 149 150
 3 3 3

 Table
 1 2 3
1 50 0 0
2 0 48 2
3 0 1 49

 Prob
 1 2 3
 1 1.000 0.000 0.000
 2 1.000 0.000 0.000
 3 1.000 0.000 0.000
 4 1.000 0.000 0.000
 5 1.000 0.000 0.000
 6 1.000 0.000 0.000
 7 1.000 0.000 0.000
 8 1.000 0.000 0.000
 9 1.000 0.000 0.000
 10 1.000 0.000 0.000
 11 1.000 0.000 0.000

696 • discriminant_analysis IMSL C Stat Library

 12 1.000 0.000 0.000
 13 1.000 0.000 0.000
 14 1.000 0.000 0.000
 15 1.000 0.000 0.000
 16 1.000 0.000 0.000
 17 1.000 0.000 0.000
 18 1.000 0.000 0.000
 19 1.000 0.000 0.000
 20 1.000 0.000 0.000
 21 1.000 0.000 0.000
 22 1.000 0.000 0.000
 23 1.000 0.000 0.000
 24 1.000 0.000 0.000
 25 1.000 0.000 0.000
 26 1.000 0.000 0.000
 27 1.000 0.000 0.000
 28 1.000 0.000 0.000
 29 1.000 0.000 0.000
 30 1.000 0.000 0.000
 31 1.000 0.000 0.000
 32 1.000 0.000 0.000
 33 1.000 0.000 0.000
 34 1.000 0.000 0.000
 35 1.000 0.000 0.000
 36 1.000 0.000 0.000
 37 1.000 0.000 0.000
 38 1.000 0.000 0.000
 39 1.000 0.000 0.000
 40 1.000 0.000 0.000
 41 1.000 0.000 0.000
 42 1.000 0.000 0.000
 43 1.000 0.000 0.000
 44 1.000 0.000 0.000
 45 1.000 0.000 0.000
 46 1.000 0.000 0.000
 47 1.000 0.000 0.000
 48 1.000 0.000 0.000
 49 1.000 0.000 0.000
 50 1.000 0.000 0.000
 51 0.000 1.000 0.000
 52 0.000 0.999 0.001
 53 0.000 0.996 0.004
 54 0.000 1.000 0.000
 55 0.000 0.996 0.004
 56 0.000 0.999 0.001
 57 0.000 0.986 0.014
 58 0.000 1.000 0.000
 59 0.000 1.000 0.000
 60 0.000 1.000 0.000
 61 0.000 1.000 0.000
 62 0.000 0.999 0.001
 63 0.000 1.000 0.000
 64 0.000 0.994 0.006
 65 0.000 1.000 0.000
 66 0.000 1.000 0.000

Chapter 9: Multivariate Analysis discriminant_analysis • 697

 67 0.000 0.981 0.019
 68 0.000 1.000 0.000
 69 0.000 0.960 0.040
 70 0.000 1.000 0.000
 71 0.000 0.253 0.747
 72 0.000 1.000 0.000
 73 0.000 0.816 0.184
 74 0.000 1.000 0.000
 75 0.000 1.000 0.000
 76 0.000 1.000 0.000
 77 0.000 0.998 0.002
 78 0.000 0.689 0.311
 79 0.000 0.993 0.007
 80 0.000 1.000 0.000
 81 0.000 1.000 0.000
 82 0.000 1.000 0.000
 83 0.000 1.000 0.000
 84 0.000 0.143 0.857
 85 0.000 0.964 0.036
 86 0.000 0.994 0.006
 87 0.000 0.998 0.002
 88 0.000 0.999 0.001
 89 0.000 1.000 0.000
 90 0.000 1.000 0.000
 91 0.000 0.999 0.001
 92 0.000 0.998 0.002
 93 0.000 1.000 0.000
 94 0.000 1.000 0.000
 95 0.000 1.000 0.000
 96 0.000 1.000 0.000
 97 0.000 1.000 0.000
 98 0.000 1.000 0.000
 99 0.000 1.000 0.000
100 0.000 1.000 0.000
101 0.000 0.000 1.000
102 0.000 0.001 0.999
103 0.000 0.000 1.000
104 0.000 0.001 0.999
105 0.000 0.000 1.000
106 0.000 0.000 1.000
107 0.000 0.049 0.951
108 0.000 0.000 1.000
109 0.000 0.000 1.000
110 0.000 0.000 1.000
111 0.000 0.013 0.987
112 0.000 0.002 0.998
113 0.000 0.000 1.000
114 0.000 0.000 1.000
115 0.000 0.000 1.000
116 0.000 0.000 1.000
117 0.000 0.006 0.994
118 0.000 0.000 1.000
119 0.000 0.000 1.000
120 0.000 0.221 0.779
121 0.000 0.000 1.000

698 • discriminant_analysis IMSL C Stat Library

122 0.000 0.001 0.999
123 0.000 0.000 1.000
124 0.000 0.097 0.903
125 0.000 0.000 1.000
126 0.000 0.003 0.997
127 0.000 0.188 0.812
128 0.000 0.134 0.866
129 0.000 0.000 1.000
130 0.000 0.104 0.896
131 0.000 0.000 1.000
132 0.000 0.001 0.999
133 0.000 0.000 1.000
134 0.000 0.729 0.271
135 0.000 0.066 0.934
136 0.000 0.000 1.000
137 0.000 0.000 1.000
138 0.000 0.006 0.994
139 0.000 0.193 0.807
140 0.000 0.001 0.999
141 0.000 0.000 1.000
142 0.000 0.000 1.000
143 0.000 0.001 0.999
144 0.000 0.000 1.000
145 0.000 0.000 1.000
146 0.000 0.000 1.000
147 0.000 0.006 0.994
148 0.000 0.003 0.997
149 0.000 0.000 1.000
150 0.000 0.018 0.982

 D2
 1 2 3
1 0.0 89.9 179.4
2 89.9 0.0 17.2
3 179.4 17.2 0.0

 Covariance
 1 2 3 4
1 0.2650 0.0927 0.1675 0.0384
2 0.0927 0.1154 0.0552 0.0327
3 0.1675 0.0552 0.1852 0.0427
4 0.0384 0.0327 0.0427 0.0419

 Prior OUT
 1 2 3
 0.3333 0.3333 0.3333

nrmiss = 0

Example 2
Continuing with Fisher’s iris data, the example below computes the quadratic
discriminant functions using values of IDO greater than 0. In the first loop, all
observations are added to the functions, one at a time. In the second loop, each of the
observations is classified, one by one, using the leaving-out-one method.

Chapter 9: Multivariate Analysis discriminant_analysis • 699

#include <stdio.h>
#include <stdlib.h>
#include <imsls.h>

main() {
 int n_groups = 3;
 int nrow, nvar, ncol, i, nrmiss;
 float *x, *xtemp;
 float *prior_out, *means, *cov, *coef;
 float *table, *d2, *stats, *prob;
 int *counts, *cm;
 static int perm[5] = {1, 2, 3, 4, 0};

 /* Retrieve the Fisher Iris Data Set */
 xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow,
 IMSLS_N_VARIABLES, &ncol, 0);
 nvar = ncol - 1;

 /* Move the group column to end of the the matrix */
 x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,
 IMSLS_PERMUTE_COLUMNS, 0);
 free(xtemp);

 prior_out = (float *) malloc(n_groups*sizeof(float));
 counts = (int *) malloc(n_groups*sizeof(int));
 means = (float *) malloc(n_groups*nvar*sizeof(float));
 cov = (float *) malloc(nvar*nvar*(ngroups+1)*sizeof(float));
 coef = (float *) malloc(n_groups*(nvar+1)*sizeof(float));
 table = (float *) malloc(n_groups*n_groups*sizeof(float));
 d2 = (float *) malloc(n_groups*n_groups*sizeof(float));
 stats = (float *) malloc((4+2*(n_groups+1))*sizeof(float));
 cm = (int *) malloc(nrow*sizeof(int));
 prob = (float *) malloc(nrow*n_groups*sizeof(float));

 /*Initialize Analysis*/
 imsls_f_discriminant_analysis (0, nvar, x, n_groups,
 IMSLS_IDO, 1,
 IMSLS_METHOD, 2, 0);

 /*Add In Each Observation*/
 for (i=0;i<nrow;i=i+1) {
 imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,
 IMSLS_IDO, 2, 0);
 }

 /*Remove observation 0 from the analysis */
 imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,
 IMSLS_ROWS_DELETE,
 IMSLS_IDO, 2, 0);

 /*Add observation 0 back into the analysis */
 imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,
 IMSLS_IDO, 2, 0);

 /*Compute statistics*/

700 • discriminant_analysis IMSL C Stat Library

 imsls_f_discriminant_analysis (0, nvar, x, n_groups,
 IMSLS_PRIOR_PROPORTIONAL,
 IMSLS_PRIOR_OUTPUT_USER, prior_out,
 IMSLS_IDO, 3, 0);

 imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);

 /*Classify One observation at a time, using proportional priors*/
 for (i=0;i<nrow;i=i+1) {
 imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,
 IMSLS_IDO, 4,
 IMSLS_CLASS_MEMBERSHIP_USER, (cm+i),
 IMSLS_PROB_USER, (prob+i*n_groups), 0);
 }

 /*Compute covariance matrices and release internal workspace*/
 imsls_f_discriminant_analysis (0, nvar, x, n_groups,
 IMSLS_IDO, 5,
 IMSLS_COV_USER, cov,
 IMSLS_GROUP_COUNTS_USER, counts,
 IMSLS_COEF_USER, coef,
 IMSLS_MEANS_USER, means,
 IMSLS_STATS_USER, stats,
 IMSLS_CLASS_TABLE_USER, table,
 IMSLS_MAHALANOBIS_USER, d2,
 IMSLS_N_ROWS_MISSING, &nrmiss, 0);

 imsls_i_write_matrix("Counts", 1, n_groups, counts, 0);
 imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0);
 imsls_f_write_matrix("Means", n_groups, nvar, means, 0);
 imsls_f_write_matrix("Stats", 12, 1, stats, 0);
 imsls_i_write_matrix("Membership", 1, nrow, cm, 0);
 imsls_f_write_matrix("Table", n_groups, n_groups, table, 0);
 imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0);
 imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);
 imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0);
 printf("\nnrmiss = %3d\n", nrmiss);

 free(means);
 free(stats);
 free(counts);
 free(coef);
 free(cm);
 free(table);
 free(prob);
 free(d2);
 free(prior_out);
 free(cov);

}

Output
 Prior OUT
 1 2 3
 0.3333 0.3333 0.3333

Chapter 9: Multivariate Analysis discriminant_analysis • 701

 Counts
 1 2 3
 50 50 50

 Coef
 1 2 3 4 5
1 -86.3 23.5 23.6 -16.4 -17.4
2 -72.9 15.7 7.1 5.2 6.4
3 -104.4 12.4 3.7 12.8 21.1

 Means
 1 2 3 4
1 5.006 3.428 1.462 0.246
2 5.936 2.770 4.260 1.326
3 6.588 2.974 5.552 2.026

 Stats
 1 147.0
 2 143.8
 3 20.0
 4 0.0
 5 -13.1
 6 -10.9
 7 -8.9
 8 -10.0
 9 50.0
10 50.0
11 50.0
12 150.0

 Membership
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 1

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2

81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3

702 • discriminant_analysis IMSL C Stat Library

148 149 150
 3 3 3

 Table
 1 2 3
1 50 0 0
2 0 48 2
3 0 1 49

 Prob
 1 2 3
 1 1.000 0.000 0.000
 2 1.000 0.000 0.000
 3 1.000 0.000 0.000
 4 1.000 0.000 0.000
 5 1.000 0.000 0.000
 6 1.000 0.000 0.000
 7 1.000 0.000 0.000
 8 1.000 0.000 0.000
 9 1.000 0.000 0.000
 10 1.000 0.000 0.000
 11 1.000 0.000 0.000
 12 1.000 0.000 0.000
 13 1.000 0.000 0.000
 14 1.000 0.000 0.000
 15 1.000 0.000 0.000
 16 1.000 0.000 0.000
 17 1.000 0.000 0.000
 18 1.000 0.000 0.000
 19 1.000 0.000 0.000
 20 1.000 0.000 0.000
 21 1.000 0.000 0.000
 22 1.000 0.000 0.000
 23 1.000 0.000 0.000
 24 1.000 0.000 0.000
 25 1.000 0.000 0.000
 26 1.000 0.000 0.000
 27 1.000 0.000 0.000
 28 1.000 0.000 0.000
 29 1.000 0.000 0.000
 30 1.000 0.000 0.000
 31 1.000 0.000 0.000
 32 1.000 0.000 0.000
 33 1.000 0.000 0.000
 34 1.000 0.000 0.000
 35 1.000 0.000 0.000
 36 1.000 0.000 0.000
 37 1.000 0.000 0.000
 38 1.000 0.000 0.000
 39 1.000 0.000 0.000
 40 1.000 0.000 0.000
 41 1.000 0.000 0.000
 42 1.000 0.000 0.000
 43 1.000 0.000 0.000

Chapter 9: Multivariate Analysis discriminant_analysis • 703

 44 1.000 0.000 0.000
 45 1.000 0.000 0.000
 46 1.000 0.000 0.000
 47 1.000 0.000 0.000
 48 1.000 0.000 0.000
 49 1.000 0.000 0.000
 50 1.000 0.000 0.000
 51 0.000 1.000 0.000
 52 0.000 1.000 0.000
 53 0.000 0.998 0.002
 54 0.000 0.997 0.003
 55 0.000 0.997 0.003
 56 0.000 0.989 0.011
 57 0.000 0.995 0.005
 58 0.000 1.000 0.000
 59 0.000 1.000 0.000
 60 0.000 0.994 0.006
 61 0.000 1.000 0.000
 62 0.000 0.999 0.001
 63 0.000 1.000 0.000
 64 0.000 0.988 0.012
 65 0.000 1.000 0.000
 66 0.000 1.000 0.000
 67 0.000 0.973 0.027
 68 0.000 1.000 0.000
 69 0.000 0.813 0.187
 70 0.000 1.000 0.000
 71 0.000 0.336 0.664
 72 0.000 1.000 0.000
 73 0.000 0.699 0.301
 74 0.000 0.972 0.028
 75 0.000 1.000 0.000
 76 0.000 1.000 0.000
 77 0.000 0.998 0.002
 78 0.000 0.861 0.139
 79 0.000 0.992 0.008
 80 0.000 1.000 0.000
 81 0.000 1.000 0.000
 82 0.000 1.000 0.000
 83 0.000 1.000 0.000
 84 0.000 0.154 0.846
 85 0.000 0.943 0.057
 86 0.000 0.996 0.004
 87 0.000 0.999 0.001
 88 0.000 0.999 0.001
 89 0.000 1.000 0.000
 90 0.000 0.999 0.001
 91 0.000 0.981 0.019
 92 0.000 0.997 0.003
 93 0.000 1.000 0.000
 94 0.000 1.000 0.000
 95 0.000 0.999 0.001
 96 0.000 1.000 0.000
 97 0.000 1.000 0.000
 98 0.000 1.000 0.000

704 • discriminant_analysis IMSL C Stat Library

 99 0.000 1.000 0.000
100 0.000 1.000 0.000
101 0.000 0.000 1.000
102 0.000 0.000 1.000
103 0.000 0.000 1.000
104 0.000 0.006 0.994
105 0.000 0.000 1.000
106 0.000 0.000 1.000
107 0.000 0.004 0.996
108 0.000 0.000 1.000
109 0.000 0.000 1.000
110 0.000 0.000 1.000
111 0.000 0.006 0.994
112 0.000 0.001 0.999
113 0.000 0.000 1.000
114 0.000 0.000 1.000
115 0.000 0.000 1.000
116 0.000 0.000 1.000
117 0.000 0.033 0.967
118 0.000 0.000 1.000
119 0.000 0.000 1.000
120 0.000 0.041 0.959
121 0.000 0.000 1.000
122 0.000 0.000 1.000
123 0.000 0.000 1.000
124 0.000 0.028 0.972
125 0.000 0.001 0.999
126 0.000 0.007 0.993
127 0.000 0.057 0.943
128 0.000 0.151 0.849
129 0.000 0.000 1.000
130 0.000 0.020 0.980
131 0.000 0.000 1.000
132 0.000 0.009 0.991
133 0.000 0.000 1.000
134 0.000 0.605 0.395
135 0.000 0.000 1.000
136 0.000 0.000 1.000
137 0.000 0.000 1.000
138 0.000 0.050 0.950
139 0.000 0.141 0.859
140 0.000 0.000 1.000
141 0.000 0.000 1.000
142 0.000 0.000 1.000
143 0.000 0.000 1.000
144 0.000 0.000 1.000
145 0.000 0.000 1.000
146 0.000 0.000 1.000
147 0.000 0.000 1.000
148 0.000 0.001 0.999
149 0.000 0.000 1.000
150 0.000 0.061 0.939

 D2
 1 2 3

Chapter 9: Multivariate Analysis discriminant_analysis • 705

1 0.0 323.1 706.1
2 103.2 0.0 17.9
3 168.8 13.8 0.0

 Covariance
 1 2 3 4
1 0.1242 0.0992 0.0164 0.0103
2 0.0992 0.1437 0.0117 0.0093
3 0.0164 0.0117 0.0302 0.0061
4 0.0103 0.0093 0.0061 0.0111

nrmiss = 0

Warning Errors

IMSLS_BAD_OBS_1 In call #, row # of the data matrix, “x”, has group
number = #. The group number must be an integer
between 1.0 and “n_groups” = #, inclusively. This
observation will be ignored.

IMSLS_BAD_OBS_2 The leaving out one method is specified but this obser-
vation does not have a valid group number (Its group
number is #.). This observation (row #) is ignored.

IMSLS_BAD_OBS_3 The leaving out one method is specified but this obser-
vation does not have a valid weight or it does not have
a valid frequency. This observation (row #) is ignored.

IMSLS_COV_SINGULAR_3 The group # covariance matrix is singular. “stats[1]”
cannot be computed. “stats[1]” and “stats[3]” are set to
the missing value code (NaN).

Fatal Errors

IMSLS_BAD_IDO_1 “ido” = #. Initial allocations must be performed by
making a call to discriminant_analysis with “ido” = 1.

IMSLS_BAD_IDO_2 “ido” = #. A new analysis may not begin until the pre-
vious analysis is terminated with “ido” equal to 5 or 6.

IMSLS_COV_SINGULAR_1 The variance-covariance matrix for population number
is singular. The computations cannot continue.

IMSLS_COV_SINGULAR_2 The pooled variance-covariance matrix is singular.
The computations cannot continue.

IMSLS_COV_SINGULAR_4 A variance-covariance matrix is singular. The index of
the first zero element is equal to #.

706 • discriminant_analysis IMSL C Stat Library

Chapter 10: Survival and Reliability Analysis Routines • 707

Chapter 10: Survival and Reliability
Analysis

Routines
Survival Analysis

Computes Kaplan-Meier estimates of survival
probabilties kaplan_meier_estimates 708
Analyzes survival and reliability data using Cox’s
proportional hazards model prop_hazards_gen_lin 713
Analyzes survival data using the generalized
linear model survival_glm 727
Estimates using various parametric modes survival_estimates 750

Reliability Analysis
Estimates a reliability hazard function using a
nonparametric approach nonparam_hazard_rate 756

Actuarial Tables
Produces population and cohort life tables life_tables 764

Usage Notes
The functions described in this chapter have primary application in the areas of
reliability and life testing, but they may find application in any situation in which
analysis of binomial events over time is of interest. Kalbfleisch and Prentice (1980),
Elandt-Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless
(1982), and Chiang (1968) and Tanner and Wong (1984) are references for discussing
the models and methods desribed in this chapter.
Function imsls_f_kaplan_meier_estimates produces Kaplan-Meier (product-
limit) estimates of the survival distribution in a single population, and these can be
printed using the IMSLS_PRINT optional argument.
Function imsls_f_prop_hazards_gen_lin computes the parameter estimates in a
proportional hazards model.
Function imsls_f_survival_glm fits any of several generalized linear models for
survival data, and imsls_f_survival_estimates computes estimates of survival
probabilities based upon the same models.

708 • kaplan_meier_estimates IMSL C Stat Library

Function imsls_f_nonparam_hazard_rate performs nonparametric hazard rate
estimation using kernel functions and quasi-likelihoods.
Function imsls_f_life_tables computes and (optionally) prints an actuarial table
based either upon a cohort followed over time or a cross-section of a population.

kaplan_meier_estimates
Computes Kaplan-Meier estimates of survival probabilities in stratified samples.

Synopsis
#include <imsls.h>
float *imsls_f_kaplan_meier_estimates (int n_observations, int ncol,

float x[], ..., 0)
The type double function is imsls_d_kaplan_meier_estimates.

Required Arguments

int n_observations (Input)
Number of observations.

int ncol (Input)
Number of columns in x.

float x[] (Input)
Two-dimensional data array of size n_observations*ncol.

Return Value
Pointer to an array of length n_observations*2. The first column contains the
estimated survival probabilities, and the second column contains Greenwood’s estimate
of the standard deviation of these probabilities. If the i-th observation contains censor
codes out of range or if a variable is missing, then the corresponding elements of the
return value are set to missing (NaN, not a number). Similarly, if an element in the
return value is not defined, then it is set to missing.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_kaplan_meier_estimates (int n_observations, int ncol,

float x[],
IMSLS_RETURN_USER, float table[],
IMSLS_PRINT,
IMSLS_X_RESPONSE_COL, int irt,
IMSLS_CENSOR_CODES_COL, int icen,
IMSLS_FREQ_RESPONSE_COL_COL, int ifrq,
IMSLS_STRATUM_NUMBER_COL, int igrp,
IMSLS_SORTED,
IMSLS_N_MISSING, int *nrmiss,
0)

Chapter 10: Survival and Reliability Analysis kaplan_meier_estimates • 709

Optional Arguments

IMSLS_RETURN_USER, float table[] (Output)
User supplied storage of an array of length n_observations*2 containing the
estimated survival probabilities and their associated standard deviations. See
Return Value section.

IMSLS_PRINT, (Input)
Print Kaplan-Meier estimates of survival probabilities in stratified samples.

IMSLS_X_RESPONSE_COL, int irt (Input)
Column index for the response times in the data array, x. The interpretation of
these times as either right-censored or exact failure times depends on
IMSLS_CENSOR_CODES_COL.
Default: irt = 0.

IMSLS_CENSOR_CODES_COL, int icen (Input)
Column index for the optional censoring codes in the data array, x. If x[i,
icen]= 0, the failure time x[i, irt] is treated as an exact time of failure.
Otherwise it is treated as a right-censored time.
Default: It is assumed that there is no censor code column in x. All
observations are assumed to be exact failure times.

IMSLS_FREQ_RESPONSE_COL_COL, int ifrq (Input)
Column index for the number of responses associated with each row in the
data array, x.
Default: It is assumed that there is no frequency response column in x. Each
observation in the data array is assumed to be for a single failure.

IMSLS_STRATUM_NUMBER_COL, int igrp (Input)
Column index for the stratum number for each observation in the data array,
x. Column igrp of x contains a unique value for each stratum in the data.
Kaplan-Meier estimates are computed within each stratum.
Default: It is assumed that there is no stratum number column in x. The data is
assumed to come from one stratum.

IMSLS_SORTED, (Input)
If this option is used, column irt of x is assumed to be sorted in ascending
order within each stratum. Otherwise, a detached sort is conducted prior to
analysis. If sorting is performed, all censored individuals are assumed to
follow tied failures.
Default: Column irt of x is not sorted.

IMSLS_N_MISSING, int *nrmiss (Output)
Number of rows of data in x containing missing values.

Description
Function imsls_f_kaplan_meier_estimates computes Kaplan-Meier (or product-
limit) estimates of survival probabilities for a sample of failure times that can be right
censored or exact times. A survival probability S(t) is defined as
1 − F(t), where F(t) is the cumulative distribution function of the failure times (t).

710 • kaplan_meier_estimates IMSL C Stat Library

Greenwood’s estimate of the standard errors of the survival probability estimates are
also computed. (See Kalbfleisch and Prentice, 1980, pages 13 and 14.)
Let (ti, δi), for i = 1,…, n denote the failure censoring times and the censoring codes for
the n observations in a single sample. Here, ti = xi-1, irt is a failure time if δi is 0, where
δi = xi-1, icen. Also, ti is a right censoring time if δi is 1. Rows in x containing values
other than 0 or 1 for δi are ignored. Let the number of observations in the sample that
have not failed by time s(ι) be denoted by n(ι), where s(ι) is an ordered (from smallest to
largest) listing of the distinct failure times (censoring times are omitted). Then the
Kaplan-Meier estimate of the survival probabilities is a step function, which in the
interval from s(ι) to s(i+1) (including the lower endpoint) is given by

() ()

1 ()

ˆ()
i

j j

j j

n d
S t

n=

⎛ ⎞−
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏

where d(j) denotes the number of failures occurring at time s(j), and n(ϕ) is the number
of observation that have not failed prior tos(j).
Note that one row of X may correspond to more than one failed (or censored)
observation when the frequency option is in effect (ifrq is specified). The Kaplan-
Meier estimate of the survival probability prior to time s(1) is 1.0, while the Kaplan-
Meier estimate of the survival probability after the last failure time is not defined.
Greenwood’s estimate of the variance of

ˆ()S t

in the interval from s(i) to s(i+1) is given as

()2

1 () () ()

ˆ ˆest.var(()) ()
()

i
j

j j j j

d
S t S t

n n d=

=
−∑

Function imsls_f_kaplan_meier_estimates computes the single sample
estimates of the survival probabilities for all samples of data included in x during a
single call. This is accomplished through the igrp column of x, which if present, must
contain a distinct code for each sample of observations. If igrp is not specified, there
is no grouping column, and all observations are assumed to come from the same
sample.
When failures and right-censored observations are tied and the data are to be sorted by
imsls_f_kaplan_meier_estimates (IMSLS_SORTED optional argument is not
used), imsls_f_kaplan_meier_estimates assumes that the time of censoring for
the tied-censored observations is immediately after the tied failure (within the same
sample). When the IMSLS_SORTED optional argument is used, the data are assumed to
be sorted from smallest to largest according to column irt of x within each stratum.
Furthermore, a small increment of time is assumed (theoretically) to elapse between the
failed and censored observations that are tied (in the same sample). Thus, when the

Chapter 10: Survival and Reliability Analysis kaplan_meier_estimates • 711

IMSLS_SORTED optional argument is used, the user must sort all of the data in x from
smallest to largest according to column irt (and column igrp, if present). By
appropriate sorting of the observations, the user can handle censored and failed
observations that are tied in any manner desired.
The IMSLS_PRINT option prints life tables. One table for each stratum is printed. In
addition to the survival probabilities at each failure point, the following is also printed:
the number of individuals remaining at risk, Greenwood’s estimate of the standard
errors for the survival probabilities, and the Kaplan-Meier log-likelihood. The Kaplan-
Meier log-likelihood is computed as:

() () () () () () () ()ln ()ln() lnj j j j j j j j
j

d d n d n d n n= + − − −∑A

where the sum is with respect to the distinct failure times s(j), d(j).

Example
The following example is taken from Kalbfleisch and Prentice (1980, page 1). The first
column in x contains the death/censoring times for rats suffering from vaginal cancer.
The second column contains information as to which of two forms of treatment were
provided, while the third column contains the censoring code. Finally, the fourth
column contains the frequency of each observation. The product-limit estimates of the
survival probabilities are computed for both groups with one call to
imsls_f_kaplan_meier_estimates.
Function imsls_f_kaplan_meier_estimates could have been called with the
IMSLS_SORTED optional argument if the censored observations had been sorted with
respect to the failure time variable. IMSLS_PRINT option is used to print the life
tables.

#include "imsls.h"

void main ()
{
 int icen = 2, ifrq = 3, igrp = 1, ncol = 4, n_observations = 33;
 float x[] = {
 143, 5, 0, 1,
 164, 5, 0, 1,
 188, 5, 0, 2,
 190, 5, 0, 1,
 192, 5, 0, 1,
 206, 5, 0, 1,
 209, 5, 0, 1,
 213, 5, 0, 1,
 216, 5, 0, 1,
 220, 5, 0, 1,
 227, 5, 0, 1,
 230, 5, 0, 1,
 234, 5, 0, 1,
 246, 5, 0, 1,
 265, 5, 0, 1,
 304, 5, 0, 1,

712 • kaplan_meier_estimates IMSL C Stat Library

 216, 5, 1, 1,
 244, 5, 1, 1,
 142, 7, 0, 1,
 156, 7, 0, 1,
 163, 7, 0, 1,
 198, 7, 0, 1,
 205, 7, 0, 1,
 232, 7, 0, 2,
 233, 7, 0, 4,
 239, 7, 0, 1,
 240, 7, 0, 1,
 261, 7, 0, 1,
 280, 7, 0, 2,
 296, 7, 0, 2,
 323, 7, 0, 1,
 204, 7, 1, 1,
 344, 7, 1, 1
 };

 imsls_f_kaplan_meier_estimates (n_observations, ncol, x,
 IMSLS_PRINT,
 IMSLS_FREQ_RESPONSE_COL_COL, ifrq,
 IMSLS_CENSOR_CODES_COL, icen,
 IMSLS_STRATUM_NUMBER_COL, igrp,
 0);
}

Output

 Kaplan Meier Survival Probabilities
 For Group Value = 5

 Number Number Survival Estimated
 at risk Failing Time Probability Std. Error
 19 1 143 0.94737 0.051228

 18 1 164 0.89474 0.070406

 17 2 188 0.78947 0.093529

 15 1 190 0.73684 0.10102

 14 1 192 0.68421 0.10664

 13 1 206 0.63158 0.11066

 12 1 209 0.57895 0.11327

 11 1 213 0.52632 0.11455

 10 1 216 0.47368 0.11455

 8 1 220 0.41447 0.11452

 7 1 227 0.35526 0.11243

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin • 713

 6 1 230 0.29605 0.10816

 5 1 234 0.23684 0.10145

 3 1 246 0.15789 0.093431

 2 1 265 0.078947 0.072792

 1 1 304 0

 Total number in group = 19
 Total number failing = 17
 Product Limit Likelihood = -49.1692

 Kaplan Meier Survival Probabilities
 For Group Value = 7

 Number Number Survival Estimated
 at risk Failing Time Probability Std. Error
 21 1 142 0.95238 0.046471

 20 1 156 0.90476 0.064056

 19 1 163 0.85714 0.07636

 18 1 198 0.80952 0.085689

 16 1 205 0.75893 0.094092

 15 2 232 0.65774 0.10529

 13 4 233 0.45536 0.11137

 9 1 239 0.40476 0.10989

 8 1 240 0.35417 0.10717

 7 1 261 0.30357 0.10311

 6 2 280 0.20238 0.090214

 4 2 296 0.10119 0.067783

 2 1 323 0.050595 0.049281

 Total number in group = 21
 Total number failing = 19
 Product Limit Likelihood = -50.4277

prop_hazards_gen_lin
Analyzes survival and reliability data using Cox’s proportional hazards model.

714 • prop_hazards_gen_lin IMSL C Stat Library

Synopsis
#include <imsls.h>
float *imsls_f_prop_hazards_gen_lin (int n_observations,

int n_columns, float x[], int nef, int n_var_effects[],
int indices_effects[], int max_class, int *ncoef, ..., 0)

The type double function is imsls_d_prop_hazards_gen_lin.

Required Arguments

int n_observations (Input)
Number of observations.

int n_columns (Input)
Number of columns in x.

float x[] (Input)
Array of length n_observations * n_columns containing the data. When
optional argument itie = 1, the observations in x must be grouped by
stratum and sorted from largest to smallest failure time within each stratum,
with the strata separated.

int nef (Input)
Number of effects in the model. In addition to effects involving classification
variables, simple covariates and the product of simple covariates are also
considered effects.

int n_var_effects[] (Input)
Array of length nef containing the number of variables associated with each
effect in the model.

int indices_effects[] (Input)
Index array of length n_var_effects[0] + … + n_var_effects[nef-1]
containing the column indices of x associated with each effect. The first
n_var_effects[0] elements of indices_effects contain the column
indices of x for the variables in the first effect. The next n_var_effects[1]
elements in indices_effects contain the column indices for the second
effect, etc.

int max_class (Input)
An upper bound on the total number of different values found among the
classification variables in x. For example, if the model consisted of two class
variables, one with the values {1, 2, 3, 4} and a second with the values {0, 1},
then then the total number of different classification values is 4+2=6, and
max_class >= 6.

int *ncoef (Output)
Number of estimated coefficients in the model.

Return Value

Pointer to an array of length ncoef*4, coef, containing the parameter estimates and
associated statistics.

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin • 715

Column Statistic
1 Coefficient estimate β̂

2 Estimated standard deviation of the estimated coefficient.
3 Asymptotic normal score for testing that the coefficient is zero

against the two-sided alternative.
4 p-value associated with the normal score in column 3.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_prop_hazards_gen_lin (int n_observations,

int n_columns, float x[], int nef, int n_var_effects[],
int indices_effects[], int max_class, int *ncoef,
IMSLS_RETURN_USER, float cov[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_CONVERGENCE_EPS, float eps,
IMSLS_RATIO, float ratio,
IMSLS_X_RESPONSE_COL, int irt,
IMSLS_CENSOR_CODES_COL, int icen,
IMSLS_STRATIFICATION_COL, int istrat,
IMSLS_CONSTANT_COL, int ifix,
IMSLS_FREQ_RESPONSE_COL, int ifrq,
IMSLS_TIES_OPTION, int itie,
IMSLS_MAXIMUM_LIKELIHOOD, float algl,
IMSLS_N_MISSING, int *nrmiss,
IMSLS_STATISTICS, float **case,
IMSLS_STATISTICS_USER, float case[],
IMSLS_X_MEAN, float **xmean,
IMSLS_X_MEAN_USER, float xmean[],
IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov,
IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[],
IMSLS_INITIAL_EST_INPUT, float in_coef[],
IMSLS_UPDATE, float **gr,
IMSLS_UPDATE_USER, float gr[],
IMSLS_DUMP, int n_class_var, int index_class_var[],
IMSLS_STRATUM_NUMBER, int **igrp,
IMSLS_STRATUM_NUMBER_USER, int igrp[],
IMSLS_CLASS_VARIABLES, int **n_class_values,
 float **class_values,
IMSLS_CLASS_VARIABLES_USER, int n_class_values[],
 float class_values[],
0)

716 • prop_hazards_gen_lin IMSL C Stat Library

Optional Arguments
IMSLS_RETURN_USER, float coef[] (Output)

If specified, coef is an array of length ncoef*4 containing the parameter
estimates and associated statistics. See Return Value.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option. Default: iprint = 0.
Iprint Action

0 No printing is performed.
1 Printing is performed, but observational statistics are not

printed.
2 All output statistics are printed.

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. max_iterations = 30 will usually be
sufficient. Use max_iterations = 0 to compute the Hessian and gradient,
stored in cov and gr, at the initial estimates. When max_iterations = 0,
IMSLS_INITIAL_EST_INPUT must be used.
Default: max_iterations = 30.

IMSLS_CONVERGENCE_EPS, float eps (Input)
Convergence criterion. Convergence is assumed when the relative change in
algl from one iteration to the next is less than eps. If eps is zero,
eps = 0.0001 is assumed.
Default: eps = 0.0001.

IMSLS_RATIO, float ratio (Input)
Ratio at which a stratum is split into two strata.
Default: ratio = 1000.0.
Let

ˆ=exp()k k kr z wβ +

 be the observation proportionality constant, where zk is the design row vector
for the k-th observation and wk is the optional fixed parameter specified by
xk, ifix. Let r∃ be the minimum value rk in a stratum, where, for failed
observations, the minimum is over all times less than or equal to the time of
occurrence of the k-th observation. Let r∀ be the maximum value of rk for
the remaining observations in the group. Then, if r∃ > ratio r∀, the
observations in the group are divided into two groups at k. ratio = 1000 is
usually a good value. Set ratio = −1.0 if no division into strata is to be made.

IMSLS_X_RESPONSE_COL, int irt (Input)
Column index in x containing the response variable. For point observations,
xi, irt contains the time of the i-th event. For right-censored observations, xi,

irt contains the right-censoring time. Note that because
imsls_f_prop_hazards_gen_lin only uses the order of the events,

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin • 717

negative “times” are allowed.
Default: irt = 0.

IMSLS_CENSOR_CODES_COL, int icen (Input)
Column index in x containing the censoring code for each observation.
Default: A censoring code of 0 is assumed for all observations.

x
i,icen

 Censoring
0 Exact censoring time xi, irt.
1 Right censored. The exact censoring time is greater than xi, irt.

IMSLS_STRATIFICATION_COL, int istrat (Input)
Column number in x containing the stratification variable. Column istrat
in x contains a unique number for each stratum. The risk set for an
observation is determined by its stratum.
Default: All observations are considered to be in one stratum.

IMSLS_CONSTANT_COL, int ifix (Input)
Column index in x containing a constant, wi, to be added to the linear
response. The linear response is taken to be ˆ

i iw z β+
where wi is the observation constant, zi is the observation design row vector,
and β̂ is the vector of estimated parameters. The “fixed” constant allows one
to test hypotheses about parameters via the log-likelihoods.
Default: wi is assumed to be 0 for all observations.

IMSLS_FREQ_RESPONSE_COL, int ifrq (Input)
Column index in x containing the number of responses for each observation.
Default: A response frequency of 1 for each observation is assumed.

IMSLS_TIES_OPTION, int itie (Input)
Method for handling ties. Default: itie = 0.

Itie Method
0 Breslow’s approximate method.
1 Failures are assumed to occur in the same order as the observations

input in x. The observations in x must be sorted from largest to
smallest failure time within each stratum, and grouped by stratum.
All observations are treated as if their failure/censoring times were
distinct when computing the log-likelihood.

IMSLS_MAXIMUM_LIKELIHOOD, float *algl (Output)
The maximized log-likelihood.

IMSLS_N_MISSING, int *nrmiss (Output)
Number of rows of data in X that contain missing values in one or more
columns irt, ifrq, ifix, icen, istrat, index_class_var, or
indices_effects of x.

718 • prop_hazards_gen_lin IMSL C Stat Library

IMSLS_STATISTICS, float **case (Output)
Address of a pointer to an array of length n_observations * 5 containing
the case statistics for each observation.

Column Statistic

1 Estimated survival probability at the observation time.
2 Estimated observation influence or leverage.
3 A residual estimate.
4 Estimated cumulative baseline hazard rate.
5 Observation proportionality constant.

IMSLS_STATISTICS_USER, float case[] (Output)
Storage for case is provided by the user. See IMSLS_STATISTICS.

IMSLS_X_MEAN, float **xmean (Output)
Address of a pointer to an array of length ncoef containing the means of the
design variables.

IMSLS_X_MEAN_USER, float xmean[] (Output)
Storage for xmean is provided by the user. See IMSLS_X_MEAN.

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov (Output)
Address of a pointer to an array of length ncoef*ncoef containing the
estimated asymptotic variance-covariance matrix of the parameters. For
max_iterations = 0, the return value is the inverse of the Hessian of the
negative of the log-likelihood, computed at the estimates input in in_coef.

IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[] (Output)
Storage for cov is provided by the user. See
IMSLS_VARIANCE_COVARIANCE_MATRIX.

IMSLS_INITIAL_EST_INPUT, float *in_coef (Input)
An array of length ncoef containing the initial estimates on input to
prop_hazards_gen_lin.
Default: all initial estimates are taken to be 0.

IMSLS_UPDATE, float **gr (Output)
Address of a pointer to an array of length ncoef containing the last parameter
updates (excluding step halvings). For
max_iterations = 0, gr contains the inverse of the Hessian times the
gradient vector computed at the estimates input in in_coef.

IMSLS_UPDATE_USER, float gr[] (Output)
Storage for gr is provided by the user. See IMSLS_UPDATE.

IMSLS_DUMP, int n_class_var, int index_class_var[] (Input)
Variable n_class_var is the number of classification variables. Dummy
variables are generated for classification variables using the dummy_method
= IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY option of
imsls_f_regressors_for_glm function (see Chapter 2, Regression).

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin • 719

Argument index_class_var is an index array of length n_class_var
containing the column numbers of x that are the classification variables. (if
n_class_var is is equal to zero, index_class_var is not used).
Default: n_class_var = 0.

IMSLS_STRATUM_NUMBER, int **igrp (Output)
Address of a pointer to an array of length n_observations giving the
stratum number used for each observation. If ratio is not −1.0, additional
“strata” (other than those specified by column
istrat of x) may be generated. igrp also contains a record of the generated
strata. See the “Description” section for more detail.

IMSLS_STRATUM_NUMBER_USER, int igrp[] (Output)
Storage for igrp is provided by the user. See IMSLS_STRATUM_NUMBER.

IMSLS_CLASS_VARIABLES, int **n_class_values, float **class_values
(Output)
n_class_values is an address of a pointer to an array of length
n_class_var containing the number of values taken by each classification
variable. n_class_values[i] is the number of distinct values for the i-th
classification variable. class_values is an address of a pointer to an array
of length n_class_values[0] + n_class_values[1] + … +
n_class_values[n_class_var-1] containing the distinct values of the
classification variables. The first n_class_values[0] elements of
class_values contain the values for the first classification variable, the next
n_class_values[1] elements contain the values for the second
classification variable, etc.

IMSLS_CLASS_VARIABLES_USER, int n_class_values[], float class_values[]
(Output)
Storage for n_class_values and class_values is provided by the user.
The length of class_values will not be known in advance, use max_class
as the maximum length of class_values. See IMSLS_CLASS_VARIABLES.

Description
Function imsls_f_prop_hazards_gen_lin computes parameter estimates and
other statistics in Proportional Hazards Generalized Linear Models. These models were
first proposed by Cox (1972). Two methods for handling ties are allowed in
imsls_f_prop_hazards_gen_lin. Time-dependent covariates are not allowed. The
user is referred to Cox and Oakes (1984), Kalbfleisch and Prentice (1980), Elandt-
Johnson and Johnson (1980), Lee (1980), or Lawless (1982), among other texts, for a
thorough discussion of the Cox proportional hazards model.
Let λ(t, zi) represent the hazard rate at time t for observation number i with covariables
contained as elements of row vector zi. The basic assumption in the proportional
hazards model (the proportionality assumption) is that the hazard rate can be written as
a product of a time varying function λ0(t), which depends only on time, and a function
ƒ(zi), which depends only on the covariable values. The function ƒ(zi) used in
imsls_f_prop_hazards_gen_lin is given as ƒ(zi) = exp(wi + βzi) where wi is a

720 • prop_hazards_gen_lin IMSL C Stat Library

fixed constant assigned to the observation, and β is a vector of coefficients to be
estimated. With this function one obtains a hazard rate λ(t, zi) = λ0(t) exp(wi + βzi). The
form of λ0(t) is not important in proportional hazards models.

The constants wi may be known theoretically. For example, the hazard rate may be
proportional to a known length or area, and the wi can then be determined from this
known length or area. Alternatively, the wi may be used to fix a subset of the
coefficients β (say, β1) at specified values. When wi is used in this way, constants
wi = β1z1i are used, while the remaining coefficients in β are free to vary in the
optimization algorithm. If user-specified constants are not desired, the user should set
ifix to 0 so that wi = 0 will be used.

With this definition of λ(t, zi), the usual partial (or marginal, see Kalbfleisch and
Prentice (1980)) likelihood becomes

1 ()

exp()
exp()

d

i

n
i i

i j R t j j

w z
L

w z
β

β= ∈

+
=

∑ +∏

where R(ti) denotes the set of indices of observations that have not yet failed at time ti
(the risk set), ti denotes the time of failure for the i-th observation, nd is the total
number of observations that fail. Right-censored observations (i.e., observations that
are known to have survived to time ti, but for which no time of failure is known) are
incorporated into the likelihood through the risk set R(ti). Such observations never
appear in the numerator of the likelihood. When itie = 0, all observations that are
censored at time ti are not included in R(ti), while all observations that fail at time ti are
included in R(ti).

If it can be assumed that the dependence of the hazard rate upon the covariate values
remains the same from stratum to stratum, while the time-dependent term, λ0(t), may
be different in different strata, then imsls_f_prop_hazards_gen_lin allows the
incorporation of strata into the likelihood as follows. Let k index the m = istrat
strata. Then, the likelihood is given by

1 1 ()

exp()
exp()

k

ki

nm
ki ki

s
k i j R t kj kj

w z
L

w z
β

β= = ∈

⎡ ⎤+
= ⎢ ⎥

∑ +⎢ ⎥⎣ ⎦
∏ ∏

In imsls_f_prop_hazards_gen_lin, the log of the likelihood is maximized with
respect to the coefficients β. A quasi-Newton algorithm approximating the Hessian via
the matrix of sums of squares and cross products of the first partial derivatives is used
in the initial iterations (the “Q-N” method in the output). When the change in the log-
likelihood from one iteration to the next is less than 100*eps, Newton-Raphson
iteration is used (the “N-R” method). If, during any iteration, the initial step does not
lead to an increase in the log-likelihood, then step halving is employed to find a step
that will increase the log-likelihood.
Once the maximum likelihood estimates have been computed,
imsls_f_prop_hazards_gen_lin computes estimates of a probability associated

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin • 721

with each failure. Within stratum k, an estimate of the probability that the i-th
observation fails at time ti given the risk set R(tki) is given by

()

exp()
exp()

ki

ki ki
ki

j R t kj kj

w z
p

w z
β

β∈

+
=

∑ +

A diagnostic “influence” or “leverage” statistic is computed for each noncensored
observation as:

1
ki ki s kil g H g−′ ′= −

where Hs is the matrix of second partial derivatives of the log-likelihood, and

kig ′

is computed as:

()

exp()
exp()

ki

ki ki ki
ki ki

j R t kj kj

z w z
g z

w z
β

β∈

+′ = −
∑ +

Influence statistics are not computed for censored observations.
A “residual” is computed for each of the input observations according to methods
given in Cox and Oakes (1984, page 108). Residuals are computed as

() ()

ˆexp() ˆexp()ki kj

kj
ki ki ki

j R t l R t kl kl

d
r w z

w z
β

β∈ ∈

= +
∑ +

∑

where dkj is the number of tied failures in group k at time tkj. Assuming that the
proportional hazards assumption holds, the residuals should approximate a random
sample (with censoring) from the unit exponential distribution. By subtracting the
expected values, centered residuals can be obtained. (The j-th expected order statistic
from the unit exponential with censoring is given as

1
1j l j h le ≤ − += ∑

where h is the sample size, and censored observations are not included in the
summation.)
An estimate of the cumulative baseline hazard within group k is given as

0
()

ˆ () ˆexp()kj ki kj

kj
k ik

t t l R t kl kl

d
H t

w z β≤ ∈

=
∑ +

∑

The observation proportionality constant is computed as

722 • prop_hazards_gen_lin IMSL C Stat Library

ˆexp()ki kiw z β+

Programming Notes

1. The covariate vectors zki are computed from each row of the input matrix x
via function imsls_f_regressors_for_glm (see Chapter 2, Regression).
Thus, class variables are easily incorporated into the zki. The reader is referred
to the document for imsls_f_regressors_for_glm in the regression
chapter for a more detailed discussion.
Note that imsls_f_prop_hazards_gen_lin calls
imsls_f_regressors_for_glm with
dummy_method = IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY option.

2. The average of each of the explanatory variables is subtracted from the
variable prior to computing the product zkiβ. Subtraction of the mean values
has no effect on the computed log-likelihood or the estimates since the
constant term occurs in both the numerator and denominator of the likelihood.
Subtracting the mean values does help to avoid invalid exponentiation in the
algorithm and may also speed convergence.

3. Function imsls_f_prop_hazards_gen_lin allows for two methods of
handling ties. In the first method (itie = 1), the user is allowed to break ties
in any manner desired. When this method is used, it is
assumed that the user has sorted the rows in X from largest to smallest with
respect to the failure/censoring times xi, irt within each stratum (and across
strata), with tied observations (failures or censored) broken in the manner
desired. The same effect can be obtained with itie = 0 by adding (or
subtracting) a small amount from each of the tied observations failure/
censoring times ti = xi, irt so as to break the ties in the desired manner.

The second method for handling ties (itie = 0) uses an approximation for the tied
likelihood proposed by Breslow (1974). The likelihood in Breslow’s method is as
specified above, with the risk set at time ti including all observations that fail at time ti,
while all observations that are censored at time ti are not included. (Tied censored
observations are assumed to be censored immediately prior to the time ti).
4. IMSLS_INITIAL_EST_INPUT option is used, then it is assumed that the user

has provided initial estimates for the model coefficients β in in_coef. When
initial estimates are provided by the user, care should be taken to ensure that
the estimates correspond to the generated covariate vector zki. If
IMSLS_INITIAL_EST_INPUT option is not used, then initial estimates of
zero are used for all of the coefficients. This corresponds to no effect from any
of the covariate values.

5. If a linear combination of covariates is monotonically increasing or decreasing
with increasing failure times, then one or more of the estimated coefficients is
infinite and extended maximum likelihood estimates must be computed. Such
estimates may be written as ˆ ˆ ˆfβ β ργ= + where ρ = ∞ at the supremum of the
likelihood so that ˆ

fβ is the finite part of the solution. In

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin • 723

imsls_f_prop_hazards_gen_lin, it is assumed that extended maximum
likelihood estimates must be computed if, within any group k, for any time t,

ˆ ˆmin exp() max exp()
ki ki

ki ki ki kit t t t
w z w zβ ρ β

< <
+ > +

where ρ = ratio is specified by the user. Thus, for example, if ρ = 10000,
then imsls_f_prop_hazards_gen_lin does not compute extended
maximum likelihood estimates until the estimated proportionality constant

ˆexp()ki kiw z β+

is 10000 times larger for all observations prior to t than for all observations
after t. When this occurs, imsls_f_prop_hazards_gen_lin computes
estimates for ˆ

fβ by splitting the failures in stratum k into two strata at t (see
Bryson and Johnson 1981). Censored observations in stratum k are placed
into a stratum based upon the associated value for

ˆexp()ki kiw z β+

The results of the splitting are returned in igrp.
The estimates ˆ

fβ based upon the stratified likelihood represent the finite part
of the extended maximum likelihood solution. Function
imsls_f_prop_hazards_gen_lin does not compute γ̂ explicitly, but an
estimate for γ̂ may be obtained in some circumstances by setting ratio = −1
and optimizing the log-likelihood without forming additional strata. The
solution β̂ obtained will be such that ˆ ˆ ˆfβ β ργ= + for some finite value of
ρ > 0. At this solution, the Newton-Raphson algorithm will not have
“converged” because the Newton-Raphson step sizes returned in gr will be
large, at least for some variables. Convergence will be declared, however,
because the relative change in the log-likelihood during the final iterations
will be small.

Example
The following data are taken from Lawless (1982, page 287) and involve the survival
of lung cancer patients based upon their initial tumor types and treatment type. In the
first example, the likelihood is maximized with no strata present in the data. This
corresponds to Example 7.2.3 in Lawless (1982, page 367). The input data is printed in
the output. The model is given as:

1 1 2 2 3 3ln()= i jx x xλ β β β α γ+ + + +

where αi and γj correspond to dummy variables generated from column indices 5 and 6
of x, respectively, x1 corresponds to column index 2, x2 corresponds to column index 3,
and x3 corresponds to column index 4 of x.

#include "imsls.h"

#define NOBS 40

724 • prop_hazards_gen_lin IMSL C Stat Library

#define NCOL 7
#define NCLVAR 2
#define NEF 5

void main ()
{
 int icen = 1, iprint = 2, maxcl = 6, ncoef;
 int indef[NEF] = { 2, 3, 4, 5, 6 };
 int nvef[NEF] = { 1, 1, 1, 1, 1 };
 int indcl[NCLVAR] = { 5, 6 };
 float *coef, ratio = 10000.0;
 float x[NOBS * NCOL] = {
 411, 0, 7, 64, 5, 1, 0,
 126, 0, 6, 63, 9, 1, 0,
 118, 0, 7, 65, 11, 1, 0,
 92, 0, 4, 69, 10, 1, 0,
 8, 0, 4, 63, 58, 1, 0,
 25, 1, 7, 48, 9, 1, 0,
 11, 0, 7, 48, 11, 1, 0,
 54, 0, 8, 63, 4, 2, 0,
 153, 0, 6, 63, 14, 2, 0,
 16, 0, 3, 53, 4, 2, 0,
 56, 0, 8, 43, 12, 2, 0,
 21, 0, 4, 55, 2, 2, 0,
 287, 0, 6, 66, 25, 2, 0,
 10, 0, 4, 67, 23, 2, 0,
 8, 0, 2, 61, 19, 3, 0,
 12, 0, 5, 63, 4, 3, 0,
 177, 0, 5, 66, 16, 4, 0,
 12, 0, 4, 68, 12, 4, 0,
 200, 0, 8, 41, 12, 4, 0,
 250, 0, 7, 53, 8, 4, 0,
 100, 0, 6, 37, 13, 4, 0,
 999, 0, 9, 54, 12, 1, 1,
 231, 1, 5, 52, 8, 1, 1,
 991, 0, 7, 50, 7, 1, 1,
 1, 0, 2, 65, 21, 1, 1,
 201, 0, 8, 52, 28, 1, 1,
 44, 0, 6, 70, 13, 1, 1,
 15, 0, 5, 40, 13, 1, 1,
 103, 1, 7, 36, 22, 2, 1,
 2, 0, 4, 44, 36, 2, 1,
 20, 0, 3, 54, 9, 2, 1,
 51, 0, 3, 59, 87, 2, 1,
 18, 0, 4, 69, 5, 3, 1,
 90, 0, 6, 50, 22, 3, 1,
 84, 0, 8, 62, 4, 3, 1,
 164, 0, 7, 68, 15, 4, 1,
 19, 0, 3, 39, 4, 4, 1,
 43, 0, 6, 49, 11, 4, 1,
 340, 0, 8, 64, 10, 4, 1,
 231, 0, 7, 67, 18, 4, 1
 };

 coef = imsls_f_prop_hazards_gen_lin (NOBS, NCOL, x, NEF,

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin • 725

 nvef, indef, maxcl, &ncoef,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_CENSOR_CODES_COL, icen,
 IMSLS_RATIO, ratio,
 IMSLS_DUMMY, NCLVAR, &indcl[0], 0);
}

Output

 Initial Estimates
 1 2 3 4 5 6 7
 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Method Iteration Step size Maximum scaled Log
 coef. update likelihood
 Q-N 0 -102.4
 Q-N 1 1.0000 0.5034 -91.04
 Q-N 2 1.0000 0.5782 -88.07
 N-R 3 1.0000 0.1131 -87.92
 N-R 4 1.0000 0.06958 -87.89
 N-R 5 1.0000 0.0008145 -87.89

Log-likelihood -87.88778

 Coefficient Statistics
 Coefficient Standard Asymptotic Asymptotic
 error z-statistic p-value
1 -0.585 0.137 -4.272 0.000
2 -0.013 0.021 -0.634 0.526
3 0.001 0.012 0.064 0.949
4 -0.367 0.485 -0.757 0.449
5 -0.008 0.507 -0.015 0.988
6 1.113 0.633 1.758 0.079
7 0.380 0.406 0.936 0.349

 Asymptotic Coefficient Covariance
 1 2 3 4 5
1 0.01873 0.000253 0.0003345 0.005745 0.00975
2 0.0004235 -4.12e-005 -0.001663 -0.0007954
3 0.0001397 0.0008111 -0.001831
4 0.235 0.09799
5 0.2568

 6 7
1 0.004264 0.002082
2 -0.003079 -0.002898
3 0.0005995 0.001684
4 0.1184 0.03735
5 0.1253 -0.01944
6 0.4008 0.06289
7 0.1647

 Case Analysis
 Survival Influence Residual Cumulative Prop.
 Probability hazard constant

726 • prop_hazards_gen_lin IMSL C Stat Library

 1 0.00 0.04 2.05 6.10 0.34
 2 0.30 0.11 0.74 1.21 0.61
 3 0.34 0.12 0.36 1.07 0.33
 4 0.43 0.16 1.53 0.84 1.83
 5 0.96 0.56 0.09 0.05 2.05
 6 0.74 0.13 0.31 0.42
 7 0.92 0.37 0.03 0.08 0.42
 8 0.59 0.26 0.14 0.53 0.27
 9 0.26 0.12 1.20 1.36 0.88
10 0.85 0.15 0.97 0.17 5.76
11 0.55 0.31 0.21 0.60 0.36
12 0.74 0.21 0.96 0.31 3.12
13 0.03 0.06 3.02 3.53 0.86
14 0.94 0.09 0.17 0.06 2.71
15 0.96 0.16 1.31 0.05 28.89
16 0.89 0.23 0.59 0.12 4.82
17 0.18 0.09 2.62 1.71 1.54
18 0.89 0.19 0.33 0.12 2.68
19 0.14 0.23 0.72 1.96 0.37
20 0.05 0.09 1.66 2.95 0.56
21 0.39 0.22 1.17 0.94 1.25
22 0.00 0.00 1.73 21.11 0.08
23 0.08 2.19 2.52 0.87
24 0.00 0.00 2.46 8.89 0.28
25 0.99 0.31 0.05 0.01 4.28
26 0.11 0.17 0.34 2.23 0.15
27 0.66 0.25 0.16 0.41 0.38
28 0.87 0.22 0.15 0.14 1.02
29 0.39 0.45 0.94 0.48
30 0.98 0.25 0.06 0.02 2.53
31 0.77 0.26 1.03 0.26 3.90
32 0.63 0.35 1.80 0.46 3.88
33 0.82 0.26 1.06 0.19 5.47
34 0.47 0.26 1.65 0.75 2.21
35 0.51 0.32 0.39 0.67 0.58
36 0.22 0.18 0.49 1.53 0.32
37 0.80 0.26 1.08 0.23 4.77
38 0.70 0.16 0.26 0.36 0.73
39 0.01 0.23 0.87 4.66 0.19
40 0.08 0.20 0.81 2.52 0.32

 Last Coefficient Update
 1 2 3 4 5 6
-1.296e-008 2.269e-009 -5.894e-009 -4.782e-007 -1.787e-007 1.509e-007

 7
 4.327e-008

 Covariate Means
 1 2 3 4 5 6
 5.65 56.58 15.65 0.35 0.28 0.13

 7
 0.53

Chapter 10: Survival and Reliability Analysis survival_glm • 727

Distinct Values For Each Class Variable
Variable 1: 1 2 3 4

Variable 2: 0 1

 Stratum Numbers For Each Observation
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
40
 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

Number of Missing Values 0

survival_glm
Analyzes censored survival data using a generalized linear model.

Synopsis
#include <imsls.h>
int imsls_f_survival_glm (int n_observations, int n_class,

int n_continuous, int model, float x[], ..., 0)
The type double function is imsls_d_survival_glm.

Required Arguments

int n_observations (Input)
Number of observations.

int n_class (Input)
Number of classification variables.

int n_continuous (Input)
Number of continuous variables.

int model (Input)
Argument model specifies the model used to analyze the data.

Model PDF of the Response Variable
0 Exponential
1 Linear hazard
2 Log-normal
3 Normal
4 Log-logistic

728 • survival_glm IMSL C Stat Library

Model PDF of the Response Variable
5 Logistic
6 Log least extreme value
7 Least extreme value
8 Log extreme value
9 Extreme value
10 Weibull

See the “Description” section for more information about these models.

float x[] (Input)
Array of size n_observations by (n_class + n_continuous) + m
containing data for the independent variables, dependent variable, and
optional parameters.

The columns must be ordered such that the first n_class columns contain
data for the class variables, the next n_continuous columns contain data for
the continuous variables, and the next column contains the response variable.
The final (and optional) m − 1 columns contain the optional parameters.

Return Value
An integer value indicating the number of estimated coefficients in the model.

Synopsis with Optional Arguments
#include <imsls.h>
int imsls_f_survival_glm (int n_observations, int n_class,

int n_continuous, int model, float x[],
IMSLS_X_COL_CENSORING, int icen, int ilt, int irt,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_X_COL_FREQUENCIES, int ifrq,
IMSLS_X_COL_FIXED_PARAMETER, int ifix,
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[],
 int iy
IMSLS_EPS, float eps,
IMSLS_MAX_ITERATIONS, int max_iterations,
IMSLS_INTERCEPT,
IMSLS_NO_INTERCEPT,
IMSLS_INFINITY_CHECK, int lp_max
IMSLS_NO_INFINITY_CHECK
IMSLS_EFFECTS, int n_effects, int n_var_effects[],
 int indices_effects,
IMSLS_INITIAL_EST_INTERNAL,
IMSLS_INITIAL_EST_INPUT, int n_coef_input,
 float estimates[],
IMSLS_MAX_CLASS, int max_class,
IMSLS_CLASS_INFO, int **n_class_values,
 float **class_values,

Chapter 10: Survival and Reliability Analysis survival_glm • 729

IMSLS_CLASS_INFO_USER, int n_class_values[],
 float class_values[],
IMSLS_COEF_STAT, float **coef_statistics,
IMSLS_COEF_STAT_USER, float coef_statistics[],
IMSLS_CRITERION, float *criterion,
IMSLS_COV, float **cov,
IMSLS_COV_USER, float cov[],
IMSLS_MEANS, float **means,
IMSLS_MEANS_USER, float means[],
IMSLS_CASE_ANALYSIS, float **case_analysis,
IMSLS_CASE_ANALYSIS_USER, float case_analysis[],
IMSLS_LAST_STEP, float **last_step,
IMSLS_LAST_STEP_USER, float last_step[],
IMSLS_OBS_STATUS, int **obs_status,
IMSLS_OBS_STATUS_USER, int obs_status[],
IMSLS_ITERATIONS, int *n, float **iterations,
IMSLS_ITERATIONS_USER, int *n, float iterations[],
IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info
IMSLS_N_ROWS_MISSING, int *n_rows_missing,
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of input array x.
Default: x_col_dim = n_class + n_continuous + 1

IMSLS_X_COL_CENSORING, int icen, int ilt, int irt (Input)
Parameter icen is the column in x containing the censoring code for each
observation.

x [i] [icen] Censoring type
0 Exact failure at x [i] [irt]
1 Right Censored. The response is greater than

x [i] [irt].
2 Left Censored. The response is less than or equal

to x [i] [irt].
3 Interval Censored. The response is greater than

x [i] [irt], but less than or equal to x [i] [ilt].

Parameter ilt is the column number of x containing the upper endpoint of
the failure interval for interval- and left-censored observations. If there are no
left-censored or interval-censored observations, ilt should be set to −1.

Parameter irt is the column number of x containing the lower endpoint of
the failure interval for interval- and right-censored observations. If there are
no left-censored or interval-censored observations, irt should be set to −1.

730 • survival_glm IMSL C Stat Library

Exact failure times are specified in column iy of x. By default, iy is column
n_class + n_continuous of x. The default can be changed if keyword
IMSLS_X_COL_VARIABLES is specified.

Note that it is allowable to set iy = irt, since a row with an iy value will
never have an irt value, and vice versa. This use is illustrated in Example 2.

IMSLS_FREQUENCIES, int ifrq (Input)
Column number of x containing the frequency of response for each
observation.

IMSLS_FIXED_PARAMETER, int ifix (Input)
Column number in x containing a fixed parameter for each observation that is
added to the linear response prior to computing the model parameter. The
“fixed” parameter allows one to test hypothesis about the parameters via the
log-likelihoods.

IMSLS_X_COL_VARIABLES int iclass[], int icontinuous[], int iy (Input)
This keyword allows specification of the variables to be used in the analysis,
and overrides the default ordering of variables described for input argument x.
Columns are numbered from 0 to x_col_dim − 1. To avoid errors, always
specify the keyword IMSLS_X_COL_DIM when using this keyword.

Argument iclass is an index vector of length n_class containing the
column numbers of x that correspond to classification variables.

Argument icontinuous is an index vector of length n_continuous
containing the column numbers of x that correspond to continuous variables.

Argument iy corresponds to the column of x which contains the dependent
variable.

IMSLS_EPS, float eps (Input)
Argument eps is the convergence criterion. Convergence is assumed when
the maximum relative change in any coefficient estimate is less than eps from
one iteration to the next or when the relative change in the log-likelihood,
criterion, from one iteration to the next is less than eps/100.0.
Default: eps = 0.001

IMSLS_MAX_ITERATIONS, int max_iterations (Input)
Maximum number of iterations. Use max_iterations = 0 to compute the
Hessian, stored in cov, and the Newton step, stored in last_step, at the
initial estimates (The initial estimates must be input. Use keyword
IMSLS_INITIAL_EST_INPUT).
Default: max_iterations = 30

IMSLS_INTERCEPT, or
IMSLS_NO_INTERCEPT,

By default, or if IMSLS_INTERCEPT is specified, the intercept is
automatically included in the model. If IMSLS_NO_INTERCEPT is specified,
there is no intercept in the model (unless otherwise provided for by the user).

Chapter 10: Survival and Reliability Analysis survival_glm • 731

IMSLS_INFINITY_CHECK, int lp_max (Input)
Remove a right- or left-censored observation from the log-likelihood
whenever the probability of the observation exceeds 0.995. At convergence,
use linear programming to check that all removed observations actually have
infinite linear response

ˆ
iz β

obs_status [i] is set to 2 if the linear response is infinite (See optional
argument IMSLS_OBS_STATUS). If not all removed observations have infinite
linear response, re-compute the estimates based upon the observations with
finite

ˆ
iz β

Parameter lp_max is the maximum number of observations that can be
handled in the linear programming. Setting lp_max = n_observations is
always sufficient.
Default: No infinity checking; lp_max = 0

IMSLS_NO_INFINITY_CHECK
Iterates without checking for infinite estimates. This option is the default.

IMSLS_EFFECTS, int n_effects, int n_var_effects[],
int indices_effects[] (Input)
Use this keyword to specify the effects in the model.

Variable n_effects is the number of effects (sources of variation) in the
model. Variable n_var_effects is an array of length n_effects
containing the number of variables associated with each effect in the model.

Argument indices_effects is an index array of length
n_var_effects [0] + n_var_effects [1] + … +
n_var_effects [n_effects − 1]. The first n_var_effects [0] elements
give the column numbers of x for each variable in the first effect. The next
n_var_effects[1] elements give the column numbers for each variable in
the second effect. The last n_var_effects [n_effects − 1] elements give
the column numbers for each variable in the last effect.

IMSLS_INITIAL_EST_INTERNAL, or
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[] (Input)
 By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted linear

regression is used to obtain initial estimates. If IMSLS_INITIAL_EST_INPUT
is specified, then the n_coef_input elements of estimates contain initial
estimates of the parameters (which requires that the user know the number of
coefficients in the model prior to the call to survival_glm). See optional
argument IMSLS_COEF_STAT for a description of the “nuisance” parameter,
which is the first element of array estimates.

732 • survival_glm IMSL C Stat Library

IMSLS_MAX_CLASS, int max_class (Input)
An upper bound on the sum of the number of distinct values taken on by each
classification variable. Internal workspace usage can be significantly reduced
with an appropriate choice of max_class.
Default: max_class = n_observations ∗ n_class

IMSLS_CLASS_INFO, int **n_class_values, float **class_values (Output)
Argument n_class_values is the address of a pointer to the internally
allocated array of length n_class containing the number of values taken by
each classification variable; the i-th classification variable has
n_class_values [i] distinct values. Argument class_values is the
address of a pointer to the internally allocated array of length

-1

0

[]
i

i
=
∑

n_class

n_class_values

containing the distinct values of the classification variables in ascending
order. The first n_class_values [0] elements of class_values contain
the values for the first classification variables, the next n_class_values [1]
elements contain the values for the second classification variable, etc.

IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[]
(Output)
Storage for arrays n_class_values and class_values is provided by the
user. See IMSLS_CLASS_INFO.

IMSLS_COEF_STAT, float **coef_statistics (Output)
Address of a pointer to an internally allocated array of size
n_coefficients ∗ 4 containing the parameter estimates and associated
statistics:

Column Statistic
0 Coefficient estimate.
1 Estimated standard deviation of the estimated coefficient.
2 Asymptotic normal score for testing that the coefficient is

zero.
3 The p-value associated with the normal score in Column 2.

When present in the model, the first coefficient in coef_statistics is the
estimate of the “nuisance” parameter, and the remaining coefficients are
estimates of the parameters associated with the “linear” model, beginning with
the intercept, if present. Nuisance parameters are as follows:

Chapter 10: Survival and Reliability Analysis survival_glm • 733

model
0 No nuisance parameter
1 Coefficient of the quadratic term in time, θ

2-9 Scale parameter, σ
10 Shape parameter, θ

IMSLS_COEF_STAT_USER, float coef_statistics[] (Output)
Storage for array coef_statistics is provided by the user. See
IMSLS_COEF_STAT.

IMSLS_CRITERION, float *criterion (Output)
Optimized criterion. The criterion to be maximized is a constant plus the log-
likelihood.

IMSLS_COV, float **cov (Output)
Address of a pointer to the internally allocated array of size
n_coefficients by n_coefficients containing the estimated
asymptotic covariance matrix of the coefficients. For max_iterations = 0,
this is the Hessian computed at the initial parameter estimates.

IMSLS_COV_USER, float cov[] (Ouput)
Storage for array cov is provided by the user. See IMSLS_COV.

IMSLS_MEANS, float **means (Output)
Address of a pointer to the internally allocated array containing the means of
the design variables. The array is of length n_coefficients − m if
IMSLS_NO_INTERCEPT is specified, and of length n_coefficients − m − 1
otherwise. Here, m is equal to 0 if model = 0, and equal to 1 otherwise.

IMSLS_MEANS_USER, float means[] (Output)
Storage for array means is provided by the user. See IMSLS_MEANS.

IMSLS_CASE_ANALYSIS, float **case_statistics (Output)
Address of a pointer to the internally allocated array of size
n_observations by 5 containing the case analysis below:

Column Statistic
0 Estimated predicted value.
1 Estimated influence or leverage.
2 Estimated residual.
3 Estimated cumulative hazard.
4 Non-censored observations: Estimated density at the

observation failure time and covariate values.
Censored observations: The corresponding estimated
probability.

If max_iterations = 0, case_statistics is an array of length
n_observations containing the estimated probability (for censored
observations) or the estimated density (for non-censored observations)

734 • survival_glm IMSL C Stat Library

IMSLS_CASE_ANALYSIS_USER, float case_statistics[] (Output)
Storage for array case_statistics is provided by the user. See
IMSLS_CASE_ANALYSIS.

IMSLS_LAST_STEP, float **last_step (Output)
Address of a pointer to the internally allocated array of length
n_coefficients containing the last parameter updates (excluding step
halvings). Parameter last_step is computed as the inverse of the matrix of
second partial derivatives times the vector of first partial derivatives of the
log-likelihood. When max_iterations = 0, the derivatives are computed at
the initial estimates.

IMSLS_LAST_STEP_USER, float last_step[] (Output)
Storage for array last_step is provided by the user. See
IMSLS_LAST_STEP.

IMSLS_OBS_STATUS, int **obs_status (Output)
Address of a pointer to the internally allocated array of length
n_observations indicating which observations are included in the extended
likelihood.

Obs_status [i] Status of Observation
0 Observation I is in the likelihood
1 Observation i cannot be in the likelihood because it

contains at least one missing value in x.
2 Observation i is not in the likelihood. Its estimated

parameter is infinite.

IMSLS_OBS_STATUS_USER, int obs_status[] (Output)
Storage for array obs_status is provided by the user. See
IMSLS_OBS_STATUS.

IMSLS_ITERATIONS, int *n, float **iterations (Output)
Address of a pointer to the internally allocated array of size, n by 5 containing
information about each iteration of the analysis, where n is equal to the
number of iterations.

Column Statistic
0 Method of iteration

Q-N Step = 0
N-R Step = 1

1 Iteration number
2 Step size
3 Maximum scaled coefficient update
4 Log-likelihood

IMSLS_ITERATIONS_USER, int *n, float iterations[] (Output)
Storage for array iterations is provided by the user. See IMSLS_ITERATIONS.

Chapter 10: Survival and Reliability Analysis survival_glm • 735

IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info (Output)
Address of the pointer to an internally allocated structure of type
Imsls_f_survival containing information about the survival analysis. This
structure is required input for function imsls_f_survival_estimates.

IMSLS_N_ROWS_MISSING, int *n_rows_missing (Output)
Number of rows of data that contain missing values in one or more of the
following vectors or columns of x: iy, icen, ilt, irt, ifrq, ifix, iclass,
icontinuous, or indices_effects.

Comments

1. Dummy variables are generated for the classification variables as follows: An
ascending list of all distinct values of each classification variable is obtained
and stored in class_values. Dummy variables are then generated for each
but the last of these distinct values. Each dummy variable is zero unless the
classification variable equals the list value corresponding to the dummy
variable, in which case the dummy variable is one. See keyword
IMSLS_LEAVE_OUT_LAST for optional argument IMSLS_DUMMY in
imsls_f_regressors_for_glm (Chapter 2, “Regression”).

2. The “product” of a classification variable with a covariate yields dummy
variables equal to the product of the covariate with each of the dummy
variables associated with the classification variable.

3. The “product” of two classification variables yields dummy variables in the
usual manner. Each dummy variable associated with the first classification
variable multiplies each dummy variable associated with the second
classification variable. The resulting dummy variables are such that the index
of the second classification variable varies fastest.

Description
Function imsls_f_survival_glm computes the maximum likelihood estimates of
parameters and associated statistics in generalized linear models commonly found in
survival (reliability) analysis. Although the terminology used will be from the survival
area, the methods discussed have applications in many areas of data analysis, including
reliability analysis and event history analysis. These methods can be used anywhere a
random variable from one of the discussed distributions is parameterized via one of the
models available in imsls_f_survival_glm. Thus, while it is not advisable to do so,
standard multiple linear regression can be performed by routine
imsls_f_survival_glm. Estimates for any of 10 standard models can be computed.
Exact, left-censored, right-censored, or interval-censored observations are allowed
(note that left censoring is the same as interval censoring with the left endpoint equal to
the left endpoint of the support of the distribution).

Let η = xTβ be the linear parameterization, where x is a design vector obtained by
imsls_f_survival_glm via function imsls_f_regressors_for_glm from a row
of x, and β is a vector of parameters associated with the linear model. Let
T denote the random response variable and S(t) denote the probability that T > t. All
models considered also allow a fixed parameter wi for observation i (input in column

736 • survival_glm IMSL C Stat Library

ifix of x). Use of this parameter is discussed below. There also may be nuisance
parameters θ > 0, or σ > 0 to be estimated (along with β) in the various models. Let Φ
denote the cumulative normal distribution. The survival models available in
imsls_f_survival_glm are:

Model Name S (t)
0 Exponential exp [−t exp (wi + η)]

1 Linear hazard
()

2

exp exp
2 i
tt wθ η

⎡ ⎤⎛ ⎞
− + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

2 Log-normal ()ln
1 it wη

σ
− −⎛ ⎞

− Φ ⎜ ⎟
⎝ ⎠

3 Normal
1 it wη

σ
− −⎛ ⎞− Φ ⎜ ⎟

⎝ ⎠

4 Log-logistic () 1ln
{1 exp }it wη

σ
−− −⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

5 Logistic
1{1 exp }it wη

σ
−− −⎛ ⎞+ ⎜ ⎟

⎝ ⎠

6 Log least extreme
value

()ln
exp{ exp }it wη

σ
− −⎛ ⎞

− ⎜ ⎟
⎝ ⎠

7 Least extreme value
exp{ exp }it wη

σ
− −⎛ ⎞− ⎜ ⎟

⎝ ⎠

8 Log extreme value ()ln
1 exp{ exp }it wη

σ
− −⎛ ⎞

− − ⎜ ⎟
⎝ ⎠

9 Extreme value
1 exp{ exp }it wη

σ
− −⎛ ⎞− − ⎜ ⎟

⎝ ⎠

10 Weibull

()
exp{ }

exp i

t
w

θ

η
⎡ ⎤

− ⎢ ⎥
+⎢ ⎥⎣ ⎦

Note that the log-least-extreme-value model is a reparameterization of the Weibull
model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0, while all of the
remaining models allow any value for T, −∞ < T < ∞.
Each row vector in the data matrix can represent a single observation; or, through the
use of vector frequencies, each row can represent several observations. Also note that
classification variables and their products are easily incorporated into the models via
the usual regression-type specifications.

Chapter 10: Survival and Reliability Analysis survival_glm • 737

The constant parameter Wi is input in x and may be used for a number of purposes. For
example, if the parameter in an exponential model is known to depend upon the size of
the area tested, volume of a radioactive mass, or population density, etc., then a
multiplicative factor of the exponential parameter λ = exp (xβ) may be known apriori.
This factor can be input in Wi (Wi is the log of the factor).

An alternate use of Wi is as follows: It may be that λ = exp (x1β1 + x2β2), where
β2 is known. Letting Wi = x2β2, estimates for β1 can be obtained via
imsls_f_survival_glm with the known fixed values for β2. Standard methods can
then be used to test hypothesis about β1 via computed log-likelihoods.

Computational Details

The computations proceed as follows:

1. The input parameters are checked for consistency and validity.
• Estimates of the means of the “independent” or design variables are

computed. Means are computed as

i i

i

f x
x

f
= ∑

∑

2. If initial estimates are not provided by the user (see optional argument
IMSLS_INITIAL_EST_INPUT), the initial estimates are calculated as follows:
• Models 2-10

A. Kaplan-Meier estimates of the survival probability,

()Ŝ t

at the upper limit of each failure interval are obtained. (Because upper
limits are used, interval- and left-censored data are assumed to be exact
failures at the upper endpoint of the failure interval.) The Kaplan-Meier
estimate is computed under the assumption that all failure distributions
are identical (i.e., all β’s but the intercept, if present, are assumed to be
zero).

B. If there is an intercept in the model, a simple linear regression is
performed predicting

()()1 ˆ
iS S t w tα φ− ′− = +

where t′ is computed at the upper endpoint of each failure interval,
t′ = t in models 3, 5, 7, and 9, and t′ = ln (t) in models 2, 4, 6, 8, and 10,
and wi is the fixed constant, if present.

If there is no intercept in the model, then α is fixed at zero, and the
model

738 • survival_glm IMSL C Stat Library

()()1 ˆ ˆ T
iS S t t w xφ β− ′− − =

is fit instead. In this model, the coefficients β are used in place of the
location estimate α above. Here

φ̂

is estimated from the simple linear regression with α = 0.

C. If the intercept is in the model, then in log-location-scale models
(models 1-8),

ˆσ̂ φ=

and the initial estimate of the intercept is assumed to be α̂ .

 In the Weibull model

ˆ ˆ1/θ φ=

and the intercept is assumed to be α̂ .

Initial estimates of all parameters β, other than the intercept, are
assumed to be zero.

 If there is no intercept in the model, the scale parameter is estimated as
above, and the estimates

β̂

from Step 2 are used as initial estimates for the β’s.
• Models 0 and 1

For the exponential models (model = 0 or 1), the “average total time
on” test statistic is used to obtain an estimate for the intercept.
Specifically, let Tt denote the total number of failures divided by the
total time on test. The initial estimates for the intercept is then ln(Tt).
Initial estimates for the remaining parameters β are assumed to be zero,
and if model = 1, the initial estimate for the linear hazard parameter θ is
assumed to be a small positive number. When the intercept is not in the
model, the initial estimate for the parameter θ is assumed to be a small
positive number, and initial estimates of the parameters β are computed
via multiple linear regression as in Part A.

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian
estimate

Chapter 10: Survival and Reliability Analysis survival_glm • 739

ˆ
j l j li i

i
H lκ κ α α′= ∑

 where l′iαj is the partial derivative of the i-th term in the log-likelihood with
respect to the parameter αj, and aj denotes one of the parameter to be
estimated.

When the relative change in the log-likelihood from one iteration to the next is 0.1 or
less, exact second partial derivatives are used for the Hessian so the Newton-Rapheson
iteration is used.
If the initial step size results in an increase in the log-likelihood, the full step is used. If
the log-likelihood decreases for the initial step size, the step size is halved, and a check
for an increase in the log-likelihood performed. Step-halving is performed (as a simple
line search) until an increase in the log-likelihood is detected, or until the step size
becomes very small (the initial step size is 1.0).

4. Convergence is assumed when the maximum relative change in any
coefficient update from one iteration to the next is less than eps or when the
relative change in the log-likelihood from one iteration to the next is less than
eps/100. Convergence is also assumed after maxit iterations or when step
halving leads to a very small step size with no increase in the log-likelihood.

5. If requested (see optional argument IMSLS_INFINITY_CHECK), then the
methods of Clarkson and Jennrich (1988) are used to check for the existence
of infinite estimates in

T
i ixη β=

As an example of a situation in which infinite estimates can occur, suppose that
observation j is right-censored with tj > 15 in a normal distribution model in which the
mean is

T
j j jxμ β η= =

where xj is the observation design vector. If the design vector xj for parameter βm is
such that xjm = 1 and xim = 0 for all i ≠ j, then the optimal estimate of βm occurs at

ˆ
mβ = ∞

leading to an infinite estimate of both βm and ηj. In imsls_f_survival_glm, such
estimates can be “computed”.
In all models fit by imsls_f_survival_glm, infinite estimates can only occur when
the optimal estimated probability associated with the left- or right-censored observation
is 1. If infinity checking is on, left- or right-censored observations that have estimated
probability greater than 0.995 at some point during the iterations are excluded from the
log-likelihood, and the iterations proceed with a log-likelihood based on the remaining
observations. This allows convergence of the algorithm when the maximum relative

740 • survival_glm IMSL C Stat Library

change in the estimated coefficients is small and also allows for a more precise
determination of observations with infinite

T
i ixη β=

At convergence, linear programming is used to ensure that the eliminated observations
have infinite ηi. If some (or all) of the removed observations should not have been
removed (because their estimated ηi’s must be finite), then the iterations are restarted
with a log-likelihood based upon the finite ηi observations. See Clarkson and Jennrich
(1988) for more details.
When infinity checking is turned off (see optional argument
IMSLS_NO_INFINITY_CHECK), no observations are eliminated during the iterations.
In this case, the infinite estimates occur, some (or all) of the coefficient estimates

β̂

will become large, and it is likely that the Hessian will become (numerically) singular
prior to convergence.

6. The case statistics are computed as follows: Let Ii (θi)denote the log-
likelihood
of the i-th observation evaluated at θi, let I′i denote the vector of derivatives of
Ii with respect to all parameters, I′h,i denote the derivative of Ii with respect to
η = xTβ, H denote the Hessian, and E denote expectation. Then the columns
of case_statistics are:

A. Predicted values are computed as E (T/x) according to standard formulas.
If model is 4 or 8, and if s ≥ 1, then the expected values cannot be computed
because they are infinite.

B. Following Cook and Weisberg (1982), the influence (or leverage) of the
i-th observation is assumed to be

() 1T

i iI H I−′ ′

This quantity is a one-step approximation of the change in the estimates when
the i-th observation is deleted (ignoring the nuisance parameters).

C. The “residual” is computed as I′h,i.

D. The cumulative hazard is computed at the observation covariate values
and, for interval observations, the upper endpoint of the failure interval. The
cumulative hazard also can be used as a “residual” estimate. If the model is
correct, the cumulative hazards should follow a standard exponential
distribution. See Cox and Oakes (1984).

Chapter 10: Survival and Reliability Analysis survival_glm • 741

Programming Notes
Indicator (dummy) variables are created for the classification variables using function
imsls_f_regressors_for_glm (Chapter 2, “Regression”) using keyword
IMSLS_LEAVE_OUT_LAST as the argument to the IMSLS_DUMMY optional argument.

Examples

Example 1
This example is taken from Lawless (1982, p. 287) and involves the mortality of
patients suffering from lung cancer. An exponential distribution is fit for the model

η = μ + αi + γk + β6x3 + β7x4 + β8x5

where αi is associated with a classification variable with four levels, and γk is
associated with a classification variable with two levels. Note that because the
computations are performed in single precision, there will be some small variation in
the estimated coefficients across different machine environments.

#include <imsls.h>

main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,

742 • survival_glm IMSL C Stat Library

 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};
 int n_observations = 40;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int n_coef;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 float *coef_stat;
 char *fmt = "%12.4f";
 static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};

 n_coef = imsls_f_survival_glm(n_observations, n_class,
 n_continuous, model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_COEF_STAT, &coef_stat,
 0);

 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
 coef_stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);
}

Output
 Coefficient Statistics
 coefficient s.e. z p
 -1.1027 1.3140 -0.8392 0.4016
 -0.3626 0.4446 -0.8156 0.4149
 0.1271 0.4863 0.2613 0.7939
 0.8690 0.5861 1.4825 0.1385
 0.2697 0.3882 0.6948 0.4873
 -0.5400 0.1081 -4.9946 0.0000
 -0.0090 0.0197 -0.4594 0.6460
 -0.0034 0.0117 -0.2912 0.7710

Example 2
This example is the same as Example 1, but more optional arguments are
demonstrated.

#include <imsls.h>

main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,

Chapter 10: Survival and Reliability Analysis survival_glm • 743

 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};
 int n_observations = 40;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int n_coef;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 int n, *ncv, nrmiss, *obs;
 float *iterations, *cv, criterion;
 float *coef_stat, *casex;
 char *fmt = "%12.4f";
 char *fmt2 = "%4d%4d%6.4f%8.4f%8.1f";
 static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};
 static char *clabels2[] = {"", "Method", "Iteration", "Step Size",
 "Coef Update", "Log-Likelihood"};

744 • survival_glm IMSL C Stat Library

 n_coef = imsls_f_survival_glm(n_observations, n_class,
 n_continuous, model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_COEF_STAT, &coef_stat,
 IMSLS_ITERATIONS, &n, &iterations,
 IMSLS_CASE_ANALYSIS, &casex,
 IMSLS_CLASS_INFO, &ncv, &cv,
 IMSLS_OBS_STATUS, &obs,
 IMSLS_CRITERION, &criterion,
 IMSLS_N_ROWS_MISSING, &nrmiss,
 0);

 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
 coef_stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);

 imsls_f_write_matrix("Iteration Information", n, 5, iterations,
 IMSLS_WRITE_FORMAT, fmt2,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels2, 0);

 printf("\nLog-Likelihood = %12.5f\n", criterion);

 imsls_f_write_matrix("Case Analysis", 1, n_observations, casex,
 IMSLS_WRITE_FORMAT, fmt,
 0);

 imsls_f_write_matrix(
 "Distinct Values for Classification Variable 1",
 1, ncv[0], &cv[0], IMSLS_NO_COL_LABELS, 0);

 imsls_f_write_matrix(
 "Distinct Values for Classification Variable 2",
 1, ncv[1], &cv[ncv[0]], IMSLS_NO_COL_LABELS, 0);

 imsls_i_write_matrix("Observation Status", 1, n_observations,
 obs, 0);

 printf("\nNumber of Missing Values = %2d\n", nrmiss);
}

Output
 Coefficient Statistics
 coefficient s.e. z p
 -1.1027 1.3140 -0.8392 0.4016
 -0.3626 0.4446 -0.8156 0.4149
 0.1271 0.4863 0.2613 0.7939
 0.8690 0.5861 1.4825 0.1385
 0.2697 0.3882 0.6948 0.4873
 -0.5400 0.1081 -4.9946 0.0000

Chapter 10: Survival and Reliability Analysis survival_glm • 745

 -0.0090 0.0197 -0.4594 0.6460
 -0.0034 0.0117 -0.2912 0.7710

 Iteration Information
Method Iteration Step Size Coef Update Log-Likelihood
 0 0 -224.0
 0 1 1.0000 0.9839 -213.4
 1 2 1.0000 3.6033 -207.3
 1 3 1.0000 10.1236 -204.3
 1 4 1.0000 0.1430 -204.1
 1 5 1.0000 0.0117 -204.1

Log-Likelihood = -204.13916

 Case Analysis
 1 2 3 4 5
 262.6884 0.0450 -0.5646 1.5646 0.0008

 6 7 8 9 10
 153.7777 0.0042 0.1806 0.8194 0.0029

 11 12 13 14 15
 270.5347 0.0482 0.5638 0.4362 0.0024

 16 17 18 19 20
 55.3168 0.0844 -0.6631 1.6631 0.0034

 21 22 23 24 25
 61.6845 0.3765 0.8703 0.1297 0.0142

 26 27 28 29 30
 230.4414 0.0025 -0.1085 0.1085 0.8972

 31 32 33 34 35
 232.0135 0.1960 0.9526 0.0474 0.0041

 36 37 38 39 40
 272.8432 0.1677 0.8021 0.1979 0.0030

 Distinct Values for Classification Variable 1
 1 2 3 4

Distinct Values for Classification Variable 2
 0 1

 Observation Status
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 0

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
 0

Number of Missing Values = 0

746 • survival_glm IMSL C Stat Library

Example 3
In this example, the same data and model as Example 1 are used, but
max_iterations is set to zero iterations with model coefficients restricted such that
μ = −1.25, β6 = −0.6, and the remaining six coefficients are equal to zero. A chi-
squared statistic, with 8 degrees of freedom for testing the coefficients is specified as
above (versus the alternative that it is not as specified), can be computed, based on the
output, as

2 1ˆTg gχ −= Σ

where

Σ̂

is output in cov. The resulting test statistic, χ2 = 6.107, based upon no iterations is
comparable to likelihood ratio test that can be computed from the log-likelihood output
in this example (−206.6835) and the log-likelihood output in Example 2 (−204.1392).

()2 2 206.6835 204.1392 5.0886LRχ = − =

Neither statistic is significant at the α = 0.05 level.
#include <imsls.h>

main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,

Chapter 10: Survival and Reliability Analysis survival_glm • 747

 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,
 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};
 int n_observations = 40;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 int n_coef_input = 8;
 static float estimates[8] = {-1.25, 0.0, 0.0, 0.0,
 0.0, -0.6, 0.0, 0.0};

 int n_coef;
 float *coef_stat, *means, *cov;
 float criterion, *last_step;

 char *fmt = "%12.4f";
 static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"};

 n_coef = imsls_f_survival_glm(n_observations, n_class,
 n_continuous, model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_INITIAL_EST_INPUT, n_coef_input, estimates,
 IMSLS_MAX_ITERATIONS, 0,
 IMSLS_COEF_STAT, &coef_stat,
 IMSLS_MEANS, &means,
 IMSLS_COV, &cov,
 IMSLS_CRITERION, &criterion,
 IMSLS_LAST_STEP, &last_step,
 0);

 imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,
 coef_stat,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels,
 0);

 imsls_f_write_matrix("Covariate Means", 1, n_coef-1, means, 0);

 imsls_f_write_matrix("Hessian", n_coef, n_coef, cov,

748 • survival_glm IMSL C Stat Library

 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_PRINT_UPPER,
 0);

 printf("\nLog-Likelihood = %12.5f\n", criterion);

 imsls_f_write_matrix("Newton-Raphson Step", 1, n_coef, last_step,
 IMSLS_WRITE_FORMAT, fmt, 0);

}

Output
 Coefficient Statistics
 coefficient s.e. z p
 -1.2500 1.3833 -0.9036 0.3664
 0.0000 0.4288 0.0000 1.0000
 0.0000 0.5299 0.0000 1.0000
 0.0000 0.7748 0.0000 1.0000
 0.0000 0.4051 0.0000 1.0000
 -0.6000 0.1118 -5.3652 0.0000
 0.0000 0.0215 0.0000 1.0000
 0.0000 0.0109 0.0000 1.0000

 Covariate Means
 1 2 3 4 5 6
 0.35 0.28 0.12 0.53 5.65 56.58

 7
 15.65

 Hessian
 1 2 3 4 5
1 1.9136 -0.0906 -0.1641 -0.1681 0.0778
2 0.1839 0.0996 0.1191 0.0358
3 0.2808 0.1264 -0.0226
4 0.6003 0.0460
5 0.1641

 6 7 8
1 -0.0818 -0.0235 -0.0012
2 -0.0005 -0.0008 0.0006
3 0.0104 0.0005 -0.0021
4 0.0193 -0.0016 0.0007
5 0.0060 -0.0040 0.0017
6 0.0125 0.0000 0.0003
7 0.0005 -0.0001
8 0.0001

Log-Likelihood = -206.68349

 Newton-Raphson Step
 1 2 3 4 5
 0.1706 -0.3365 0.1333 1.2967 0.2985

 6 7 8

Chapter 10: Survival and Reliability Analysis survival_glm • 749

 0.0625 -0.0112 -0.0026

Warning Errors

IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. Convergence is
assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. Convergence is
assumed.

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected value for
the log logistic distribution (“model” = 4)
does not exist. Predicted values will not be
calculated.

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected value for
the log extreme value distribution(“model”
= 8) does not exist. Predicted values will not
be calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one negative
eigenvalue. An upper bound on the absolute
value of the minimum eigenvalue is #
corresponding to variable index #.

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and “x[#][“irt”= #]” = #.
The censoring interval has length 0.0. The
censoring code for this observation is being
set to 0.0.

Fatal Error

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the
classification variables exceeds “max_class”
= #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified,
and “n_coef_input” = #. The model
specified requires # coefficients.

IMSLS_TOO_FEW_VALID_OBS “n_observations” = # and “n_rows_missing”
= #. “n_observations”−”n_rows_missing”
must be greater than or equal to 2 in order to
estimate the coefficients.

IMSLS_SVGLM_1 For the exponential model (“model” = 0)
with “n_effects” = # and no intercept,
“n_coef” has been determined to equal 0.
With no coefficients in the model,
processing cannot continue.

IMSLS_INCREASE_LP_MAX Too many observations are to be deleted
from the model. Either use a different model
or increase the workspace.

750 • survival_estimates IMSL C Stat Library

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of
distinct values for each classification
variable must be greater than one.

survival_estimates
Estimates survival probabilities and hazard rates for the various parametric models.

Synopsis
#include <imsls.h>
int *imsls_f_survival_estimates (Imsls_f_survival *survival_info,

int n_observations, float xpt[], float time, int npt, float delta,
..., 0)

The type double function is imsls_d_survival_estimates.

Required Arguments

Imsls_f_survival *survival_info (Input)
Pointer to structure of type Imsls_f_survival containing the estimated survival
coefficients and other related information. See imsls_f_survival_glm.

int n_observations (Input)
Number of observations for which estimates are to be calculated.

float xpt[] (Input)
Array xpt is an array of size n_observations by x_col_dim containing
the groups of covariates for which estimates are desired, where x_col_dim is
described in the documentation for imsls_f_survival_glm. The covariates
must be specified exactly as in the call to imsls_f_survival_glm which
produced survival_info.

float time (Input)
Beginning of the time grid for which estimates are desired. Survival
probabilities and hazard rates are computed for each covariate vector over the
grid of time points time + i*delta for i = 0, 1, …, npt − 1.

int npt (Input)
Number of points on the time grid for which survival probabilities are desired.

float delta (Input)
Increment between time points on the time grid.

Return Value
An array of size npt by (2 ∗ n_observations + 1) containing the estimated survival
probabilities for the covariate groups specified in xpt. Column 0 contains the survival
time. Columns 1 and 2 contain the estimated survival probabilities and hazard rates,
respectively, for the covariates in the first row of xpt. In general, the survival and
hazard for row i of xpt is contained in columns 2i − 1 and 2i, respectively, for
i = 1, 2, …, npt.

Chapter 10: Survival and Reliability Analysis survival_estimates • 751

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_survival_estimates (Imsls_f_survival survival_info,

int n_observations, float xpt[], float time, int npt, float delta,
IMSLS_XBETA, float **xbeta,
IMSLS_XBETA_USER, float xbeta[],
IMSLS_RETURN_USER, float sprob[],
0)

Optional Arguments

IMSLS_XBETA, float **xbeta (Output)
Address of a pointer to an array of length n_observations containing the
estimated linear response

ˆw xβ+

for each row of xpt.

IMSLS_XBETA_USER, float xbeta[] (Output)
Storage for array xbeta is provided by the user. See IMSLS_XBETA.

IMSLS_RETURN_USER, float sprob[] (Output)
User supplied array of size npt by (2 ∗ n_observations + 1) containing the
estimated survival probabilities for the covariate groups specified in xpt.
Column 0 contains the survival time. Columns 1 and 2 contain the estimated
survival probabilities and hazard rates, respectively, for the covariates in the
first row of xpt. In general, the survival and hazard for row i of xpt is
contained in columns 2i − 1 and 2i, respectively, for i = 1, 2, …, npt.

Description
Function imsls_f_survival_estimates computes estimates of survival
probabilities and hazard rates for the parametric survival/reliability models fit by
function imsls_f_survival_glm.

Let η = xTβ be the linear parameterization, where x is the design vector corresponding
to a row of xpt (imsls_f_survival_estimates generates the design vector using
function imsls_f_regressors_for_glm), and β is a vector of parameters
associated with the linear model. Let T denote the random response variable and S(t)
denote the probability that T > t. All models considered also allow a fixed parameter w
(input in column ifix of xpt). Use of the parameter is discussed in function
imsls_f_survival_glm. There also may be nuisance parameters θ > 0 or σ > 0. Let
Φ denote the cumulative normal distribution. The survival models available in
imsls_f_survival_estimates are:

752 • survival_estimates IMSL C Stat Library

Model Name S (t)
0 Exponential exp [−t exp (wi + η)]

1 Linear hazard
()

2

exp exp
2 i
tt wθ η

⎡ ⎤⎛ ⎞
− + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

2 Log-normal ()ln
1 it wη

σ
− −⎛ ⎞

− Φ ⎜ ⎟
⎝ ⎠

3 Normal
1 it wη

σ
− −⎛ ⎞− Φ ⎜ ⎟

⎝ ⎠

4 Log-logistic () 1ln
{1 exp }it wη

σ
−− −⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

5 Logistic
1{1 exp }it wη

σ
−− −⎛ ⎞+ ⎜ ⎟

⎝ ⎠

6 Log least extreme value ()ln
exp{ exp }it wη

σ
− −⎛ ⎞

− ⎜ ⎟
⎝ ⎠

7 Least extreme value
exp{ exp }it wη

σ
− −⎛ ⎞− ⎜ ⎟

⎝ ⎠

8 Log extreme value ()ln
1 exp{ exp }it wη

σ
− −⎛ ⎞

− − ⎜ ⎟
⎝ ⎠

9 Extreme value
1 exp{ exp }it wη

σ
− −⎛ ⎞− − ⎜ ⎟

⎝ ⎠

10 Weibull

()
exp{ }

exp i

t
w

θ

η
⎡ ⎤

− ⎢ ⎥
+⎢ ⎥⎣ ⎦

Let λ(t) denote the hazard rate at time t. Then λ(t) and S(t) are related at

() ()exp()
t

S t s dsλ
−∞

= ∫

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume
λ(s) = 0 for s < 0), while the remaining models allow arbitrary values for
T, −∞ < T < ∞. The computations proceed in function
imsls_f_survival_estimates as follows:

1. The input arguments are checked for consistency and validity.

2. For each row of xpt, the explanatory variables are generated from the
classification and variables and the covariates using function
imsls_f_regressors_for_glm (See Chapter 2, “Regression”) with

Chapter 10: Survival and Reliability Analysis survival_estimates • 753

dummy_method = IMSLS_LEAVE_OUT_LAST. Given the explanatory
variables x, η is computed as η = xTβ, where β is input in survival_info.

3. For each point requested in the time grid, the survival probabilities and hazard
rates are computed.

Example
This example is a continuation of the first example given for function
imsls_f_survival_glm. Prior to calling survival_estimates,
imsls_f_survival_glm is invoked to compute the parameter estimates (contained in
the structure survival_info). The example is taken from Lawless (1982, p. 287) and
involves the mortality of patients suffering from lung cancer.

#include <imsls.h>
#include <stdlib.h>
main() {
 static float x[40][7] = {
 1.0, 0.0, 7.0, 64.0, 5.0, 411.0, 0.0,
 1.0, 0.0, 6.0, 63.0, 9.0, 126.0, 0.0,
 1.0, 0.0, 7.0, 65.0, 11.0, 118.0, 0.0,
 1.0, 0.0, 4.0, 69.0, 10.0, 92.0, 0.0,
 1.0, 0.0, 4.0, 63.0, 58.0, 8.0, 0.0,
 1.0, 0.0, 7.0, 48.0, 9.0, 25.0, 1.0,
 1.0, 0.0, 7.0, 48.0, 11.0, 11.0, 0.0,
 2.0, 0.0, 8.0, 63.0, 4.0, 54.0, 0.0,
 2.0, 0.0, 6.0, 63.0, 14.0, 153.0, 0.0,
 2.0, 0.0, 3.0, 53.0, 4.0, 16.0, 0.0,
 2.0, 0.0, 8.0, 43.0, 12.0, 56.0, 0.0,
 2.0, 0.0, 4.0, 55.0, 2.0, 21.0, 0.0,
 2.0, 0.0, 6.0, 66.0, 25.0, 287.0, 0.0,
 2.0, 0.0, 4.0, 67.0, 23.0, 10.0, 0.0,
 3.0, 0.0, 2.0, 61.0, 19.0, 8.0, 0.0,
 3.0, 0.0, 5.0, 63.0, 4.0, 12.0, 0.0,
 4.0, 0.0, 5.0, 66.0, 16.0, 177.0, 0.0,
 4.0, 0.0, 4.0, 68.0, 12.0, 12.0, 0.0,
 4.0, 0.0, 8.0, 41.0, 12.0, 200.0, 0.0,
 4.0, 0.0, 7.0, 53.0, 8.0, 250.0, 0.0,
 4.0, 0.0, 6.0, 37.0, 13.0, 100.0, 0.0,
 1.0, 1.0, 9.0, 54.0, 12.0, 999.0, 0.0,
 1.0, 1.0, 5.0, 52.0, 8.0, 231.0, 1.0,
 1.0, 1.0, 7.0, 50.0, 7.0, 991.0, 0.0,
 1.0, 1.0, 2.0, 65.0, 21.0, 1.0, 0.0,
 1.0, 1.0, 8.0, 52.0, 28.0, 201.0, 0.0,
 1.0, 1.0, 6.0, 70.0, 13.0, 44.0, 0.0,
 1.0, 1.0, 5.0, 40.0, 13.0, 15.0, 0.0,
 2.0, 1.0, 7.0, 36.0, 22.0, 103.0, 1.0,
 2.0, 1.0, 4.0, 44.0, 36.0, 2.0, 0.0,
 2.0, 1.0, 3.0, 54.0, 9.0, 20.0, 0.0,
 2.0, 1.0, 3.0, 59.0, 87.0, 51.0, 0.0,
 3.0, 1.0, 4.0, 69.0, 5.0, 18.0, 0.0,
 3.0, 1.0, 6.0, 50.0, 22.0, 90.0, 0.0,
 3.0, 1.0, 8.0, 62.0, 4.0, 84.0, 0.0,
 4.0, 1.0, 7.0, 68.0, 15.0, 164.0, 0.0,
 4.0, 1.0, 3.0, 39.0, 4.0, 19.0, 0.0,
 4.0, 1.0, 6.0, 49.0, 11.0, 43.0, 0.0,

754 • survival_estimates IMSL C Stat Library

 4.0, 1.0, 8.0, 64.0, 10.0, 340.0, 0.0,
 4.0, 1.0, 7.0, 67.0, 18.0, 231.0, 0.0};

 int n_observations = 40;
 int n_estimates = 2;
 int n_class = 2;
 int n_continuous = 3;
 int model = 0;
 int icen = 6, ilt = -1, irt = 5;
 int lp_max = 40;
 float time = 10.0;
 int npt = 10;
 float delta = 20.0;

 int n_coef;
 float *sprob;
 Imsls_f_survival *survival_info;
 char *fmt = "%12.2f%10.4f%10.6f%10.4f%10.6f";
 char *clabels[] = {"", "Time", "S1", "H1", "S2", "H2"};

 n_coef = imsls_f_survival_glm(n_observations, n_class,
 n_continuous,
 model, &x[0][0],
 IMSLS_X_COL_CENSORING, icen, ilt, irt,
 IMSLS_INFINITY_CHECK, lp_max,
 IMSLS_SURVIVAL_INFO, &survival_info,
 0);

 sprob = imsls_f_survival_estimates(survival_info, n_estimates,
 &x[0][0], time, npt, delta, 0);

 imsls_f_write_matrix("Survival and Hazard Estimates",
 npt, 2*n_estimates+1, sprob,
 IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS,
 IMSLS_COL_LABELS, clabels, 0);

 free (survival_info);
 free (sprob);
}

Output

 Survival and Hazard Estimates

 Time S1 H1 S2 H2
 10.00 0.9626 0.003807 0.9370 0.006503
 30.00 0.8921 0.003807 0.8228 0.006503
 50.00 0.8267 0.003807 0.7224 0.006503
 70.00 0.7661 0.003807 0.6343 0.006503
 90.00 0.7099 0.003807 0.5570 0.006503
 110.00 0.6579 0.003807 0.4890 0.006503
 130.00 0.6096 0.003807 0.4294 0.006503
 150.00 0.5649 0.003807 0.3770 0.006503
 170.00 0.5235 0.003807 0.3310 0.006503
 190.00 0.4852 0.003807 0.2907 0.006503

Chapter 10: Survival and Reliability Analysis survival_estimates • 755

Note that the hazard rate is constant over time for the exponential model.

Warning Errors

IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. Convergence is
assumed.

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. Convergence is
assumed.

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected value for
the log logistic distribution (“model” = 4)
does not exist. Predicted values will not be
calculated.

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected value for
the log extreme value distribution (“model”
= 8) does not exist. Predicted values will not
be calculated.

IMSLS_NEG_EIGENVALUE The Hessian has at least one negative
eigenvalue. An upper bound on the absolute
value of the minimum eigenvalue is #
corresponding to variable index #.

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and “x[#][“irt”= #]” = #.
The censoring interval has length 0.0. The
censoring code for this observation is being
set to 0.0.

Fatal Error

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the
classification variables exceeds “max_class”
= #.

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified,
and “n_coef_input” = #. The model
specified requires # coefficients.

IMSLS_TOO_FEW_VALID_OBS “n_observations” = %(i1) and
“n_rows_missing” = #. “n_observations”−
”n_rows_missing” must be greater than or
equal to 2 in order to estimate the
coefficients.

IMSLS_SVGLM_1 For the exponential model (“model” = 0)
with “n_effects” = # and no intercept,
“n_coef” has been determined to equal 0.
With no coefficients in the model,
processing cannot continue.

756 • nonparam_hazard_rate IMSL C Stat Library

IMSLS_INCREASE_LP_MAX Too many observations are to be deleted
from the model. Either use a different model
or increase the workspace.

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of
distinct values for each classification
variable must be greater than one.

nonparam_hazard_rate
Performs nonparametric hazard rate estimation using kernel functions and quasi-
likelihoods.

Synopsis
#include <imsls.h>
float *imsls_f_nonparam_hazard_rate (int n_observations,

float t[], int n_hazard, float hazard_min,
float hazard_increment, ..., 0)

The type double function is imsls_d_nonparam_hazard_rate.

Required Arguments

int n_observations (Input)
Number of observations.

float t[] (Input)
An array of n_observations containing the failure times. If optional
argument IMSLS_CENSOR_CODES is used, the values of t may be treated as
exact failure times, as right-censored times, or a combination of exact and
right censored times. By default, all times in t are assumed to be exact failure
times.

int n_hazard (Input)
Number of grid points at which to compute the hazard. The function
computes the hazard rates over the range given by:
hazard_min + j * hazard_increment, for j = 0, …, n_hazard − 1.

float hazard_min (Input)
First grid value.

float hazard_increment (Input)
Increment between grid values.

Return Value
Pointer to an array of length n_hazard containing the estimated hazard rates.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_nonparam_hazard_rate (int n_observations,

float t[], int n_hazard, float hazard_min,

Chapter 10: Survival and Reliability Analysis nonparam_hazard_rate • 757

float hazard_increment
IMSLS_RETURN_USER, float haz[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_CENSOR_CODES, int censor_codes[],
IMSLS_WEIGHT, int iwto,
IMSLS_SORT_OPTION, int isort,
IMSLS_K_GRID, int n_k, float k_min, float k_increment,
IMSLS_BETA_GRID, int n_beta_grid, float beta_start,
float beta_increment,
IMSLS_N_MISSING, int *nmiss,
IMSLS_ALPHA, float *alpha,
IMSLS_BETA, float *beta,
IMSLS_CRITERION, float *vml,
IMSLS_K, int *k,
IMSLS_SORTED_EVENT_TIMES, float **event_times,
IMSLS_SORTED_EVENT_TIMES_USER, float event_times[],
IMSLS_SORTED_CENSOR_CODES, int **isorted_censor,
IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[],
0)

Optional Arguments
IMSLS_RETURN_USER, float haz[] (Output)

If specified, haz is a user supplied array of length n_hazard containing the
estimated hazard rates.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option. Default: iprint = 0.

iprint Action

0 No printing is performed.
1 The grid estimates and the optimized estimates are printed for each

value of k.

IMSLS_CENSOR_CODES, int censor_codes[] (Input)
censor_codes is an array of length n_observations containing the
censoring codes for each time in t. If censor_codes[i]=0 the failure time
t[i] is treated as an exact time of failure. Otherwise it is treated as a right-
censored time; that is, the exact time of failure is greater than t[i].
Default: All failure times are treated as exact times of failure with no
censoring.

IMSLS_WEIGHT_OPTION, int iwto (Input)
Weight option . If iwto = 1, then

()()ln 1 1/ i= + −weight n_observations is used for the i-th smallest observation.
Otherwise, ()1/ i−weight = n_observations is used.
Default: iwto = 0.

758 • nonparam_hazard_rate IMSL C Stat Library

IMSLS_SORT_OPTION, int isort (Input)
Sorting option . If isort = 1, then the event times are not automatically
sorted by the function. Otherwise, sorting is performed with exact failure
times following tied right-censored times.
Default: isort = 0.

IMSLS_K_GRID, int n_k, float k_min, float k_increment (Input)
Finds the optimal value of k over the range given by: kmin + (j − 1) *
k_increment, for j = 1, …, n_k. Where n_k is the number of values of k to
be considered. k_min is the minimum value for parameter k. k_increment
is the increment between successive values of parameter k. Parameter k is the
number of nearest neighbors to be used in computing the k-th nearest neighbor
distance.
Default: k_min is the smallest possible value of k, k_increment =2, and
n_k will be at most 10 points.

 IMSLS_BETA_GRID, int n_beta_grid, float beta_start, float
beta_increment (Input)
For n_beta_grid > 0, a user-defined grid is used. This grid is defined as
beta_start + (j − 1)*beta_increment, for j = 1, …, n_beta_grid.
beta_start is the first value to be used in the user-defined grid and
beta_increment is the increment between successive grid values of beta.
Default: The values in the initial beta search are given as follows: Let β∗ = −
8, − 4, − 2, − 1, − 0.5,0.5,1, and 2, and

ββ e
∗−=

 For each value of β, vml is computed at the optimizing β. The maximizing β
is used to initiate the iterations. If the initial β∗ is determined from the search
to be less than −6, then it is presumed that β is infinite, and an analytic
estimate of α based upon infinite β is used. Infinite β corresponds to a flat
hazard rate.

IMSLS_N_MISSING, int *nmiss (Output)
Number of missing (NaN, not a number) failure times in t.

IMSLS_ALPHA, float *alpha (Output)
Optimal estimate for the parameter α.

IMSLS_BETA, float *beta (Output)
Optimal estimate for the parameter β.

IMSLS_CRITERION, float *vml (Output)
Optimum value of the criterion function.

IMSLS_K, int *k (Output)
Optimal estimate for the parameter k.

IMSLS_SORTED_EVENT_TIMES, float **event_times (Output)
Address of a pointer to an array of length n_observations containing the
times of occurrence of the events, sorted from smallest to largest.

Chapter 10: Survival and Reliability Analysis nonparam_hazard_rate • 759

IMSLS_SORTED_EVENT_TIMES_USER, float event_times[] (Output)
Storage for event_times is provided by the user. See
IMSLS_SORTED_EVENT_TIMES.

IMSLS_SORTED_CENSOR_CODES, int **isorted_censor (Output)
Address of a pointer to an array of length n_observations containing the
sorted censor codes. Censor codes are sorted corresponding to the events
event_times[i], with censored observations preceding tied failures.

IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[] (Output)
Storage for isorted_censor is provided by the user. See
IMSLS_SORTED_CENSOR_CODE.

Description
Function imsls_f_nonparam_hazard_rate is an implementation of the methods
discussed by Tanner and Wong (1984) for estimating the hazard rate in survival or
reliability data with right censoring. It uses the biweight kernel,

2 215
16 (1) for 1

()
0 elsewhere

x x
K x

⎧ − <
= ⎨

⎩

and a modified likelihood to obtain data-based estimates of the smoothing parameters
α, β, and k needed in the estimation of the hazard rate. For kernel K(x), define the
“smoothed” kernel
Ks(x − x(j) as follows:

()
()

1()
α βS j

jk jk

x x j
K x x K

d d
⎛ ⎞−

− = ⎜ ⎟⎜ ⎟
⎝ ⎠

where djk is the distance to the k-th nearest failure from x(j), and x(j) is the j-th ordered
observation (from smallest to largest). For given α and β, the hazard at point x is then

()
1

() {(1) ()}
N

i i s i
i

h x w K x xδ
=

= − −∑

where N = n_observations, δi is the i-th observation’s censor code (1 = censored,
0 = failed), and wi is the i-th ordered observation’s weight, which may be chosen as
either 1/(N − i + 1), or
ln(1 + 1/(N − i + 1)). Let

0
() ()

x
H x h s ds= ∫

The likelihood is given by
(1)

1 (){ () exp(())}iN
i i iL h x H xδ−
== −∏ ,

760 • nonparam_hazard_rate IMSL C Stat Library

where Π denotes product. Since the likelihood leads to degenerate estimates, Tanner
and Wong (1984) suggest the use of a modified likelihood. The modification consists
of deleting observation xi in the calculation of h(xi) and H(xi) when the likelihood term
for xi is computed using the usual optimization techniques. α and β for given k can then
be estimated.
Estimates for α and β are computed as follows: for given β, a closed form solution is
available for α. The problem is thus reduced to the estimation of β.
A grid search for β is first performed. Experience indicates that if the initial estimate of
β from this grid search is greater than, say, e6, then the modified likelihood is
degenerate because the hazard rate does not change with time. In this situation, β
should be taken to be infinite, and an estimate of α corresponding to infinite β should
be directly computed. When the estimate of β from the grid search is less than e6, a
secant algorithm is used to optimize the modified likelihood. The secant algorithm
iteration stops when the change in β from one iteration to the next is less than 10−5.
Alternatively, the iterations may cease when the value of β becomes greater than e6, at
which point an infinite β with a degenerate likelihood is assumed.
To find the optimum value of the likelihood with respect to k, a user-specified grid of
k-values is used. For each grid value, the modified likelihood is optimized with respect
to α and β. That grid point, which leads to the smallest likelihood, is taken to be the
optimal k.

Programming Notes
1. If sorting of the data is performed by imsls_f_nonparam_hazard_rate, then the
sorted array will be such that all censored observations at a given time precede all
failures at that time. To specify an arbitrary pattern of censored/failed observations at a
given time point, the isort = 1 option must be used. In this case, it is assumed that the
times have already been sorted from smallest to largest.
2. The smallest value of k must be greater than the largest number of tied failures since
djk must be positive for all j. (Censored observations are not counted.) Similarly, the
largest value of k must be less than the total number of failures. If the grid specified for
k includes values outside the allowable range, then a warning error is issued; but k is
still optimized over the allowable grid values.
3. The secant algorithm iterates on the transformed parameter β∗ = exp(− β). This
assures a positive β, and it also seems to lead to a more desirable grid search. All
results returned to the user are in the original parameterization, however.
4. Since local minimums have been observed in the modified likelihood, it is
recommended that more than one grid of initial values for α and β be used.
5. Function imsls_f_nonparam_hazard_rate assumes that the hazard grid points
are new data points.

Example
The following example is taken from Tanner and Wong (1984). The data are from
Stablein, Carter, and Novak (1981) and involve the survival times of individuals with
nonresectable gastric carcinoma. Only individuals treated with both radiation and
chemotherapy are used. For each value of k from 18 to 22 with increment of 2, the

Chapter 10: Survival and Reliability Analysis nonparam_hazard_rate • 761

default grid search for β is performed. Using the optimal value of β in the grid, the
optimal parameter estimates of α and β are computed for each value of k. The final
solution is the parameter estimates for the value of k which optimizes the modified
likelihood (vml). Because the iprint = 1 is in effect,
imsls_f_nonparam_hazard_rate prints all of the results in the output.

#include "imsls.h"

void main ()
{
 int n_observations = 45, iprint = 1, kmin = 18;
 int increment_k = 2, n_k = 3, isort = 1, nmiss, *isorted_censor;
 float *event_times, *haz;
 int n_hazard=100;
 float hazard_min = 0.0, hazard_inc = 10;

 float t[] = { 17.0, 42.0, 44.0, 48.0, 60.0, 72.0, 74.0, 95.0,
 103.0, 108.0, 122.0, 144.0, 167.0, 170.0, 183.0,
 185.0, 193.0, 195.0, 197.0, 208.0, 234.0, 235.0,
 254.0, 307.0, 315.0, 401.0, 445.0, 464.0, 484.0,
 528.0, 542.0, 567.0, 577.0, 580.0, 795.0, 855.0,
 882.0, 892.0,1031.0,1033.0,1306.0,1335.0,1366.0,
 1452.0, 1472.0};
 float censor_codes[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};

 haz = imsls_f_nonparam_hazard_rate I (n_observations, t,
 n_hazard, hazard_min, hazard_inc,
 IMSLS_K_GRID, n_k, kmin,

increment_k,
 IMSLS_PRINT_LEVEL, iprint,
 IMSLS_N_MISSING, &nmiss,
 IMSLS_SORT_OPTION, isort,
 IMSLS_CENSOR_CODES, censor_codes,
 IMSLS_SORTED_EVENT_TIMES,

 &event_times,
 IMSLS_SORTED_CENSOR_CODES,
 &isorted_censor,
 0);

 printf ("\nnmiss = %d\n", nmiss);
 imsls_f_write_matrix ("Sorted Event Times", 1, n_observations,
 event_times, IMSLS_WRITE_FORMAT, "%7.1f", 0);
 imsls_i_write_matrix ("Sorted Censors", 1, n_observations,
 isorted_censor, 0);
 imsls_f_write_matrix ("Hazard Rates", 1, n_hazard, haz, 0);

}

762 • nonparam_hazard_rate IMSL C Stat Library

Output

 *** Grid search for k = 18 ***
 alpha beta vml
 4.57832 2980.96 -266.805
 4.54312 54.5982 -266.62
 4.33646 20.0855 -265.541
 4.01933 12.1825 -264.001
 3.54274 7.38906 -262.54
 2.99058 4.48169 -262.512
 2.35154 2.71828 -262.634
 1.58417 1.64872 -262.158
 0.966332 1 -262.868

 *** Optimal parameter estimates ***

 alpha beta vml
 1.69515 1.76926 -262.119

 *** Grid search for k = 20 ***

 alpha beta vml
 4.05393 2980.96 -266.526
 4.03284 54.5982 -266.401
 3.90505 20.0855 -265.648
 3.68782 12.1825 -264.402
 3.30434 7.38906 -262.666
 2.82272 4.48169 -262.08
 2.25276 2.71828 -262.445
 1.55578 1.64872 -261.772
 0.955586 1 -262.618

 *** Optimal parameter estimates ***

 alpha beta vml
 1.54053 1.63155 -261.771

 *** Grid search for k = 22 ***

 alpha beta vml
 3.65641 2980.96 -267.595
 3.64159 54.5982 -267.499
 3.55056 20.0855 -266.904
 3.38875 12.1825 -265.859
 3.07147 7.38906 -264.066
 2.64504 4.48169 -263.039
 2.1374 2.71828 -263.335
 1.51261 1.64872 -262.64
 0.936368 1 -262.683

 *** Optimal parameter estimates ***
 alpha beta vml
 1.34217 1.45001 -262.561

 *** The final solution (k = 20) ***
 alpha beta vml
 1.54053 1.63155 -261.771

nmiss = 0

Chapter 10: Survival and Reliability Analysis nonparam_hazard_rate • 763

 Sorted Event Times
 1 2 3 4 5 6 7 8
 17.0 42.0 44.0 48.0 60.0 72.0 74.0 95.0

 9 10 11 12 13 14 15 16
 103.0 108.0 122.0 144.0 167.0 170.0 183.0 185.0

 17 18 19 20 21 22 23 24
 193.0 195.0 197.0 208.0 234.0 235.0 254.0 307.0

 25 26 27 28 29 30 31 32
 315.0 401.0 445.0 464.0 484.0 528.0 542.0 567.0

 33 34 35 36 37 38 39 40
 577.0 580.0 795.0 855.0 882.0 892.0 1031.0 1033.0

 41 42 43 44 45
 1306.0 1335.0 1366.0 1452.0 1472.0

 Sorted Censors
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

39 40 41 42 43 44 45
1 1 1 1 1 1 1

 Hazard Rates
 1 2 3 4 5 6
 0.000962 0.001111 0.001276 0.001451 0.001634 0.001819

 7 8 9 10 11 12
 0.002004 0.002185 0.002359 0.002523 0.002675 0.002813

 13 14 15 16 17 18
 0.002935 0.003040 0.003126 0.003193 0.003240 0.003266

 19 20 21 22 23 24
 0.003273 0.003260 0.003229 0.003179 0.003114 0.003034

 25 26 27 28 29 30
 0.002941 0.002838 0.002727 0.002612 0.002495 0.002381

 31 32 33 34 35 36
 0.002273 0.002175 0.002084 0.001998 0.001917 0.001841

 37 38 39 40 41 42
 0.001771 0.001709 0.001655 0.001608 0.001569 0.001537

 43 44 45 46 47 48
 0.001510 0.001484 0.001459 0.001435 0.001411 0.001388

764 • life_tables IMSL C Stat Library

 49 50 51 52 53 54
 0.001365 0.001343 0.001323 0.001304 0.001285 0.001266

 55 56 57 58 59 60
 0.001247 0.001228 0.001208 0.001188 0.001167 0.001146

 61 62 63 64 65 66
 0.001125 0.001103 0.001081 0.001060 0.001040 0.001020

 67 68 69 70 71 72
 0.000999 0.000979 0.000958 0.000936 0.000913 0.000891

 73 74 75 76 77 78
 0.000868 0.000845 0.000821 0.000798 0.000775 0.000752

 79 80 81 82 83 84
 0.000730 0.000708 0.000685 0.000662 0.000640 0.000617

 85 86 87 88 89 90
 0.000595 0.000573 0.000552 0.000530 0.000510 0.000490

 91 92 93 94 95 96
 0.000471 0.000452 0.000434 0.000416 0.000399 0.000383

 97 98 99 100
 0.000366 0.000351 0.000336 0.000321

Fatal Errors

IMSLS_ALL_OBSERVATIONS_MISSING

 All observations are missing (NaN, not a number) values.

life_tables
Produces population and cohort life tables.

Synopsis
#include <imsls.h>
float *imsls_f_life_tables (int n_classes, float age[], float a[],

int n_cohort[], ..., 0)
The type double function is imsls_d_life_tables.

Required Arguments

int n_classes (Input)
Number of age classes.

float age[] (Input)
Array of length n_classes + 1 containing the lowest age in each age
interval, and in age[n_classes], the endpoint of the last age interval.
Negative age[0] indicates that the age intervals are all of length |age[0]|

Chapter 10: Survival and Reliability Analysis life_tables • 765

and that the initial age interval is from 0.0 to |age[0]|. In this case, all other
elements of age need not be specified. age[n_classes] need not be
specified when getting a cohort table.

float a[] (Input)
Array of length n_classes containing the fraction of those dying within each
interval who die before the interval midpoint. A common choice for all a[i]
is 0.5. This choice may also be specified by setting a[0] to any negative
value. In this case, the remaining values of a need not be specified.

int n_cohort[] (Input)
Array of length n_classes containing the cohort sizes during each interval.
If the IMSL_POPULATION_LIFE_TABLE option is used, then n_cohort[i]
contains the size of the population at the midpoint of interval i. Otherwise,
n_cohort[i] contains the size of the cohort at the beginning of interval i.
When requesting a population table, the population sizes in n_cohort may
need to be adjusted to correspond to the number of deaths in n_deaths. See
the Description section for more information.

Return Value

Pointer to an array of length n_classes by 12 containing the life table. The
function returns a cohort table by default. If the
IMSL_POPULATION_LIFE_TABLE option is used, a population table is returned.
Entries in the ith row are for the age interval defined by age[i]. Column
definitions are described in the following table.

Column Description

0 Lowest age in the age interval.
1 Fraction of those dying within the interval who die before the

interval midpoint.
2 Number surviving to the beginning of the interval.
3 Number of deaths in the interval.
4 Death rate in the interval. For cohort table, this column is set to NaN

(not a number).
5 Proportion dying in the interval.
6 Standard error of the proportion dying in the interval.
7 Proportion of survivors at the beginning of the interval.
8 Standard error of the proportion of survivors at the beginning of the

interval.
9 Expected lifetime at the beginning of the interval.
10 Standard error of the expected life at the beginning of the interval.
11 Total number of time units lived by all of the population in the

interval.

Synopsis with Optional Arguments
#include <imsls.h>

766 • life_tables IMSL C Stat Library

float * imsls_f_life_tables (int n_classes, float age[],
float a[], int n_cohort[],
IMSLS_RETURN_USER, float table[],
IMSLS_PRINT_LEVEL, int iprint,
IMSLS_POPULATION_SIZE, int initial_pop,
IMSLS_POPULATION_LIFE_TABLE, int *n_deaths,
0)

Optional Arguments
IMSLS_RETURN_USER, float table[] (Output)

If specified, table is an user-specified array of length n_classes*12
containing the life table.

IMSLS_PRINT_LEVEL, int iprint (Input)
Printing option.
Default: iprint = 0.

Iprint Action
0 No printing is performed.
1 The life table is printed.

IMSLS_POPULATION_SIZE, int initial_pop (Input)
The population size at the beginning of the first age interval in requesting
population table. A default value of 10,000 is used to allow easy entry of
n_cohorts and n_deaths when numbers are available as percentages.
Default: initial_pop = 10000.

IMSLS_POPULATION_LIFE_TABLE, int *n_deaths (Input)
Compute a population table. n_deaths is an array of length n_classes
containing the number of deaths in each age interval.

Description
Function imsls_f_life_tables computes population (current) or cohort life tables
based upon the observed population sizes at the middle (for population table) or the
beginning (for cohort table) of some userspecified age intervals. The number of deaths
in each of these intervals must also be observed.
The probability of dying prior to the middle of the interval, given that death occurs
somewhere in the interval, may also be specified. Often, however, this probability is
taken to be 0.5. For a discussion of the probability models underlying the life table
here, see the references.
Let ti, for i = 0, 1, …, tn denote the time grid defining the n age intervals, and note that
the length of the age intervals may vary. Following Gross and Clark (1975, page 24),
let di denote the number of individuals dying in age interval i, where age interval i ends
at time ti. For population table, the death rate at the middle of the interval is given by
ri = di/(Mihi), where Mi is the number of individuals alive at the middle of the interval,
and hi = ti − ti-1, t0 = 0. The number of individuals alive at the beginning of the interval
may be estimated by Pi = Mi + (1 − ai)di where ai is the probability that an individual

Chapter 10: Survival and Reliability Analysis life_tables • 767

dying in the interval dies prior to the interval midpoint. For cohort table, Pi is input
directly while the death rate in the interval, ri, is not needed.

The probability that an individual dies during the age interval from ti-1 to ti is given by
qi = di/Pi. It is assumed that all individuals alive at the beginning of the last interval die
during the last interval. Thus, qn = 1.0. The asymptotic variance of qi can be estimated
by

2 (1) /i i i iq q Pσ = −

For population table, the number of individuals alive in the middle of the time interval
(input in n_cohort[i]) must be adjusted to correspond to the number of deaths
observed in the interval. Function imsls_f_life_tables assumes that the number
of deaths observed in interval hi occur over a time period equal to hi. If di is measured
over a period ui, where ui ≠ di, then n_cohort[i] must be adjusted to correspond to
di by multiplication by ui/hi, i.e., the value Mi input into imsls_f_life_tables as
n_cohort[i] is computed as

/i i i iM M u h∗ =

Let Si denote the number of survivors at time ti from a hypothetical (for population
table) or observed (for cohort table) population. Then, S0 = initial_pop for
population table, and S0 = n_cohort[0] for cohort table, and Si is given by
Si = Si−1 − δi-1 where δi = Siqi is the number of individuals who die in the i-th interval.
The proportion of survivors in the interval is given by Vi = Si/S0 while the asymptotic
variance of Vi can be estimated as follows.

21
2

2
1

var()
(1)

i
j

i i
j j

V V
q

σ−

=

=
−∑

The expected lifetime at the beginning of the interval is calculated as the total lifetime
remaining for all survivors alive at the beginning of the interval divided by the number
of survivors at the beginning of the interval. If ei denotes this average expected
lifetime, then the variance of ei can be estimated as (see Chiang 1968)

1 2 2 2
1 1

2

[(1)]
var()

n
j i j j j j j

i
j

P e h a
e

P
σ−

= + +∑ + −
=

where var(en) = 0.0.

Finally, the total number of time units lived by all survivors in the time interval can be
estimated as:

[(1)]i i i i iU h S aδ= − −

768 • life_tables IMSL C Stat Library

Example
This example is taken from Chiang (1968). The cohort life table has thirteen equally
spaced intervals, so age[0] is set to −5.0. Similarly, the probabilities of death prior to
the middle of the interval are all taken to be 0.5, so a[0] is set to −1.0. Since
IMSLS_PRINT_LEVEL option is used, imsls_f_life_tables prints the life table.

#include "imsls.h"

#define N_CLASSES 13

void main ()
{
 int iprint = 1;
 int n_cohort[] =
 { 270, 268, 264, 261, 254, 251, 248, 232, 166, 130, 76, 34, 13 };
 float age[N_CLASSES + 1], a[N_CLASSES];
 float *result;

 age[0] = -5.0;
 a[0] = -1.0;
 result = imsls_f_life_tables (N_CLASSES, age, a, n_cohort,
 IMSLS_PRINT_LEVEL, iprint, 0);
}

Output

 Life Table
Age Class Age PDHALF Alive Deaths Death Rate
 1 0 0.5 270 2
 2 5 0.5 268 4
 3 10 0.5 264 3
 4 15 0.5 261 7
 5 20 0.5 254 3
 6 25 0.5 251 3
 7 30 0.5 248 16
 8 35 0.5 232 66
 9 40 0.5 166 36
 10 45 0.5 130 54
 11 50 0.5 76 42
 12 55 0.5 34 21
 13 60 0.5 13 13

Age Class P(D) Std(P(D)) P(S) Std(P(S)) Lifetime
 1 0.007407 0.005218 1 0 43.19
 2 0.01493 0.007407 0.9926 0.005218 38.49
 3 0.01136 0.006523 0.9778 0.008971 34.03
 4 0.02682 0.01 0.9667 0.01092 29.4
 5 0.01181 0.006779 0.9407 0.01437 25.14
 6 0.01195 0.006859 0.9296 0.01557 20.41
 7 0.06452 0.0156 0.9185 0.01665 15.63
 8 0.2845 0.02962 0.8593 0.02116 11.53
 9 0.2169 0.03199 0.6148 0.02962 10.12
 10 0.4154 0.04322 0.4815 0.03041 7.231

Chapter 10: Survival and Reliability Analysis life_tables • 769

 11 0.5526 0.05704 0.2815 0.02737 5.592
 12 0.6176 0.08334 0.1259 0.02019 4.412
 13 1 0 0.04815 0.01303 2.5

Age Class Std(Life) Time Units
 1 0.6993 1345
 2 0.6707 1330
 3 0.623 1313
 4 0.594 1288
 5 0.5403 1263
 6 0.5237 1248
 7 0.5149 1200
 8 0.4982 995
 9 0.4602 740
 10 0.4328 515
 11 0.4361 275
 12 0.4167 117.5
 13 0 32.5

Chapter 11: Probability Distribution Functions and Inverses Routines • 771

Chapter 11: Probability Distribution
Functions and Inverses

Routines
Discrete Random Variables: Distribution Functions and Probability Functions

Distribution Functions
Binomial distribution function binomial_cdf 774
Binomial probability function binomial_pdf 775
Hypergeometric distribution function hypergeometric_cdf 777
Hypergeometric probability function hypergeometric_pdf 778
Poisson distribution function poisson_cdf 779
Poisson probability function poisson_pdf 781

Continuous Random Variables
Distribution Functions and Their Inverses
Beta distribution function beta_cdf 783
Inverse beta distribution function beta_inverse_cdf 785
Bivariate normal distribution function bivariate_normal_cdf 786
Chi-squared distribution function chi_squared_cdf 788
Inverse chi-squared
distribution function chi_squared_inverse_cdf 789
Noncentral chi-squared
distribution function non_central_chi_sq 791
Inverse of the noncentral chi-squared
distribution function non_central_chi_sq_inv 793
F distribution function F_cdf 794
Inverse F distribution function F_inverse_cdf 796
Gamma distribution function gamma_cdf 798
Inverse gamma distribution function gamma_inverse_cdf 799
Normal (Gaussian) distribution function normal_cdf 801
Inverse normal distribution function normal_inverse_cdf 802
Student’s t distribution function t_cdf 804
Inverse Student’s t distribution function t_inverse_cdf 805
Noncentral Students’s t distribution function non_central_t_cdf 807

772 • Usage Notes IMSL C Stat Library

Inverse of the noncentral Student’s t
distribution function non_central_t_inv_cdf 809

Usage Notes
Definitions and discussions of the terms basic to this chapter can be found in Johnson
and Kotz (1969, 1970a, 1970b). These are also good references for the specific
distributions.
In order to keep the calling sequences simple, whenever possible, the subprograms
described in this chapter are written for standard forms of statistical distributions.
Hence, the number of parameters for any given distribution may be fewer than the
number often associated with the distribution. For example, while a gamma distribution
is often characterized by two parameters (or even a third, “location”), there is only one
parameter that is necessary, the “shape”.
The “scale” parameter can be used to scale the variable to the standard gamma
distribution. Also, the functions relating to the normal distribution,
imsls_f_normal_cdf and imsls_f_normal_inverse_cdf , are for a normal
distribution with mean equal to zero and variance equal to one. For other means and
variances, it is very easy for the user to standardize the variables by subtracting the
mean and dividing by the square root of the variance.
The distribution function for the (real, single-valued) random variable X is the function
F defined for all real x by

F(x) = Prob(X ≤ x)

where Prob(⋅) denotes the probability of an event. The distribution function is often
called the cumulative distribution function (CDF).
For distributions with finite ranges, such as the beta distribution, the CDF is 0 for
values less than the left endpoint and 1 for values greater than the right endpoint. The
subprograms described in this chapter return the correct values for the distribution
functions when values outside of the range of the random variable are input, but
warning error conditions are set in these cases.

Discrete Random Variables
For discrete distributions, the function giving the probability that the random variable
takes on specific values is called the probability function, defined by

p(x) = Prob(X = x)

The “PR” routines described in this chapter evaluate probability functions.
The CDF for a discrete random variable is

() ()
A

F x p k= ∑

Chapter 11: Probability Distribution Functions and Inverses Usage Notes • 773

where A is the set such that k ≤ x. The “DF” routines in this chapter evaluate cumulative
distribution functions. Since the distribution function is a step function, its inverse does
not exist uniquely.

Continuous Distributions
For continuous distributions, a probability function, as defined above, would not be
useful because the probability of any given point is 0. For such distributions, the useful
analog is the probability density function (PDF). The integral of the PDF is the
probability over the interval, if the continuous random variable X has PDF f, then

Prob() ()b
aa X b f x dx< ≤ = ∫

The relationship between the CDF and the PDF is

() ()xF x f t dt−∞= ∫ .

The “_cdf” functions described in this chapter evaluate cumulative distribution
functions.
For (absolutely) continuous distributions, the value of F(x) uniquely determines
x within the support of the distribution. The “_inverse_cdf” functions described in
this chapter compute the inverses of the distribution functions, that is, given F(x)
(called “P” for “probability”), a routine such as imsls_f_beta_inverse_cdf
computes x. The inverses are defined only over the open interval (0,1).

Additional Comments
Whenever a probability close to 1.0 results from a call to a distribution function or is to
be input to an inverse function, it is often impossible to achieve good accuracy because
of the nature of the representation of numeric values. In this case, it may be better to
work with the complementary distribution function (one minus the distribution
function). If the distribution is symmetric about some point (as the normal distribution,
for example) or is reflective about some point (as the beta distribution, for example),
the complementary distribution function has a simple relationship with the distribution
function. For example, to evaluate the standard normal distribution at 4.0, using
imsls_f_normal_inverse_cdf directly, the result to six places is 0.999968. Only
two of those digits are really useful, however. A more useful result may be 1.000000
minus this value, which can be obtained to six significant figures as 3.16713E-05 by
evaluating imsls_f_normal_inverse_cdf at −4.0. For the normal distribution, the
two values are related by Φ(x) = 1 − Φ(−x), where Φ(⋅) is the normal distribution
function. Another example is the beta distribution with parameters 2 and 10. This
distribution is skewed to the right, so evaluating imsls_f_beta_cdf at 0.7, 0.999953
is obtained. A more precise result is obtained by evaluating imsls_f_beta_cdf with
parameters 10 and 2 at 0.3. This yields 4.72392E-5. (In both of these examples, it is
wise not to trust the last digit.)
Many of the algorithms used by routines in this chapter are discussed by Abramowitz
and Stegun (1964). The algorithms make use of various expansions and recursive
relationships and often use different methods in different regions.

774 • binomial_cdf IMSL C Stat Library

Cumulative distribution functions are defined for all real arguments, however, if the
input to one of the distribution functions in this chapter is outside the range of the
random variable, an error of Type 1 is issued, and the output is set to zero or one, as
appropriate. A Type 1 error is of lowest severity, a “note”, and, by default, no printing
or stopping of the program occurs. The other common errors that occur in the routines
of this chapter are Type 2, “alert”, for a function value being set to zero due to
underflow, Type 3, “warning”, for considerable loss of accuracy in the result returned,
and Type 5, “terminal”, for incorrect and/or inconsistent input, complete loss of
accuracy in the result returned, or inability to represent the result (because of
overflow). When a Type 5 error occurs, the result is set to NaN (not a number, also
used as a missing value code).

binomial_cdf
Evaluates the binomial distribution function.

Synopsis
#include <imsls.h>
float imsls_f_binomial_cdf (int k, int n, float p)
The type double function is imsls_d_binomial_cdf.

Required Arguments

int k (Input)
Argument for which the binomial distribution function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial.

Return Value
The probability that k or fewer successes occur in n independent Bernoulli trials, each
of which has a probability p of success.

Description
The imsls_f_binomial_cdf function evaluates the distribution function of a
binomial random variable with parameters n and p. It does this by summing
probabilities of the random variable taking on the specific values in its range. These
probabilities are computed by the recursive relationship:

() ()
() ()
1

1
1

n j p
Pr X j Pr X j

j p
+ −

= = = −
−

To avoid the possibility of underflow, the probabilities are computed forward from 0 if
k is not greater than n × p; otherwise, they are computed backward from n. The
smallest positive machine number, ε, is used as the starting value for summing the

Chapter 11: Probability Distribution Functions and Inverses binomial_pdf • 775

probabilities, which are rescaled by (1 − p)nε if forward computation is performed and
by pnε if backward computation is used.
For the special case of p = 0, imsls_f_binomial_cdf is set to 1; for the case p = 1,
imsls_f_binomial_cdf is set to 1 if k = n and is set to 0 otherwise.

Example
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, the
function finds the probability that X is less than or equal to 3.

#include <imsls.h>

void main()
{
 int k = 3;
 int n = 5;
 float p = 0.95;
 float pr;

 pr = imsls_f_binomial_cdf(k,n,p);
 printf("Pr(x <= 3) = %6.4f\n", pr);
}

Output
Pr(x <= 3) = 0.0226

Informational Errors

IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution
function is set to zero.

IMSLS_GREATER_THAN_N The input argument, k, is greater than the number of
Bernoulli trials, n.

binomial_pdf
Evaluates the binomial probability function.

Synopsis
#include <imsls.h>
float imsls_f_binomial_pdf (int k, int n, float p,..., 0)
The type double function is imsls_d_binomial_pdf.

Required Arguments

int k (Input)
Argument for which the binomial probability function is to be evaluated.

int n (Input)
Number of Bernoulli trials.

776 • binomial_pdf IMSL C Stat Library

float p (Input)
Probability of success on each trial.

Return Value
The probability that a binomial random variable takes on a value equal to k.

Description
The function imsls_f_binomial_pdf evaluates the probability that a binomial
random variable with parameters n and p takes on the value k. It does this by
computing probabilities of the random variable taking on the values in its range less
than (or the values greater than) k. These probabilities are computed by the recursive
relationship

(1)Pr() Pr(1)
(1)

n j pX j X j
j p
+ −

= = = −
−

To avoid the possibility of underflow, the probabilities are computed forward from 0, if
k is not greater than n times p, and are computed backward from n, otherwise. The
smallest positive machine number, ε, is used as the starting value for computing the
probabilities, which are rescaled by (1 − p)nε if forward computation is performed and
by pnε if backward computation is done.
For the special case of p = 0, imsls_f_binomial_pdf is set to 0 if k is greater than 0
and to 1 otherwise; and for the case p = 1, imsls_f_binomial_pdf is set to 0 if k is
less than n and to 1 otherwise.

Example 1
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we
find the probability that X is equal to 3.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int k, n;
 float p, prob;

 k = 3;
 n = 5;
 p = 0.95;
 prob = imsls_f_binomial_pdf(k, n, p);

 printf("The probability that X is equal to 3 is %f\n", prob);
 }

Output
The probability that X is equal to 3 is 0.021434

Chapter 11: Probability Distribution Functions and Inverses hypergeometric_cdf • 777

hypergeometric_cdf
Evaluates the hypergeometric distribution function.

Synopsis
#include <imsls.h>
float imsls_f_hypergeometric_cdf (int k, int n, int m, int l)
The type double function is imsls_d_hypergeometric_cdf.

Required Arguments

int k (Input)
Argument for which the hypergeometric distribution function is to be
evaluated.

int n (Input)
Sample size. Argument n must be greater than or equal to k.

int m (Input)
Number of defectives in the lot.

int l (Input)
Lot size. Argument l must be greater than or equal to n and m.

Return Value
The probability that k or fewer defectives occur in a sample of size n drawn from a lot
of size l that contains m defectives.

Description
Function imsls_f_hypergeometric_cdf evaluates the distribution function of a
hypergeometric random variable with parameters n, l, and m. The hypergeometric
random variable x can be thought of as the number of items of a given type in a random
sample of size n that is drawn without replacement from a population of size l
containing m items of this type. The probability function is

()
()()

() ()for , 1, , min ,
m l m
j n j

l
n

Pr x = j j i i n m
−
−= = + …

where i = max (0, n − l + m).
If k is greater than or equal to i and less than or equal to min (n, m),
imsls_f_hypergeometric_cdf sums the terms in this expression for j going from i
up to k; otherwise, 0 or 1 is returned, as appropriate. To avoid rounding in the
accumulation, imsls_f_hypergeometric_cdf performs the summation differently,
depending on whether or not k is greater than the mode of the distribution, which is the
greatest integer less than or equal to (m + 1) (n + 1)/(l + 2).

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In
this example, evaluate the distribution function at 7.

778 • hypergeometric_pdf IMSL C Stat Library

#include <imsls.h>

void main()
{
 int k = 7;
 int l = 1000;
 int m = 70;
 int n = 100;
 float p;

 p = imsls_f_hypergeometric_cdf(k,n,m,l);
 printf("\nPr (x <= 7) = %6.4f", p);
}

Output
Pr (x <= 7) = 0.599

Informational Errors

IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution
function is set to zero.

IMSLS_K_GREATER_THAN_N The input argument, k, is greater than the sample
size.

Fatal Errors

IMSLS_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to
n and m.

hypergeometric_pdf
Evaluates the hypergeometric probability function.

Synopsis
#include <imsls.h>
float imsls_f_hypergeometric_pdf (int k, int n, int m, int l)
The type double function is imsls_d_hypergeometric_pdf.

Required Arguments

int k (Input)
Argument for which the hypergeometric probability function is to be
evaluated.

int n (Input)
Sample size. n must be greater than zero and greater than or equal to k.

int m (Input)
Number of defectives in the lot.

Chapter 11: Probability Distribution Functions and Inverses poisson_cdf • 779

int l (Input)
Lot size. l must be greater than or equal to n and m.

Return Value
The probability that a hypergeometric random variable takes a value equal to k. This
value is the probability that exactly k defectives occur in a sample of size n drawn from
a lot of size l that contains m defectives.

Description
The function imsls_f_hypergeometic_pdf evaluates the probability function of a
hypergeometric random variable with parameters n, l, and m. The hypergeometric
random variable X can be thought of as the number of items of a given type in a
random sample of size n that is drawn without replacement from a population of size l
containing m items of this type. The probability function is

()()
()

Pr() for , 1, 2, min(,)
m l m
k n kX k k i i i n m

l
n

−
−= = = + + …

where i = max(0, n − l + m). imsls_f_hypergeometic_pdf evaluates the expression
using log gamma functions.

Example
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In
this example, we evaluate the probability function at 7.

include "imsls.h"

void main()

{

 int k=7, n=100, l=1000, m=70;

 float pr;

 pr = imsls_f_hypergeometic_pdf(k, n, m, l);

 printf(" The probability that X is equal to 7 is %6.4f\n", pr);

}

Output
 The probability that X is equal to 7 is 0.1628

poisson_cdf
Evaluates the Poisson distribution function.

Synopsis
#include <imsls.h>

780 • poisson_cdf IMSL C Stat Library

float imsls_f_poisson_cdf (int k, float theta)
The type double function is imsls_d_poisson_cdf.

Required Arguments

int k (Input)
Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
The probability that a Poisson random variable takes a value less than or equal
to k.

Description
Function imsls_f_poisson_cdf evaluates the distribution function of a Poisson
random variable with parameter theta. The mean of the Poisson random variable,
theta, must be positive. The probability function (with θ = theta) is as follows:

() / !, for 0, 1, 2,xf x e x xθθ−= = …

The individual terms are calculated from the tails of the distribution to the mode of the
distribution and summed. Function imsls_f_poisson_cdf uses the recursive
relationship

() () ()()1 / 1 for 0, 1, 2, , 1f x f x x x kθ+ = + = −…

with f (0) = e-q.

Chapter 11: Probability Distribution Functions and Inverses poisson_pdf • 781

Figure 11-1 Plot of Fp (k, θ)

Example
Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the
probability that X is less than or equal to 7.

#include <imsls.h>

void main()
{
 int k = 7;
 float theta = 10.0;
 float p;

 p = imsls_f_poisson_cdf(k, theta);
 printf("Pr(x <= 7) = %6.4f\n", p);
}

Output
Pr(x <= 7) = 0.2202

Informational Errors

IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution
function is set to zero.

poisson_pdf
Evaluates the Poisson probability function.

782 • poisson_pdf IMSL C Stat Library

Synopsis
#include <imsls.h>
float imsls_f_poisson_pdf (int k, float theta)
The type double function is imsls_d_poisson_pdf.

Required Arguments

int k (Input)
Argument for which the Poisson distribution function is to be evaluated.

float theta (Input)
Mean of the Poisson distribution. theta must be positive.

Return Value
Function value, the probability that a Poisson random variable takes a value equal to k.

Description
Function imsls_f_poisson_pdf evaluates the probability function of a Poisson
random variable with parameter theta. theta, which is the mean of the Poisson
random variable, must be positive. The probability function (with θ = theta) is

f(x) = e−θ θk/k!, for k = 0, 1, 2,…

imsls_f_poisson_pdf evaluates this function directly, taking logarithms and using
the log gamma function.

Chapter 11: Probability Distribution Functions and Inverses beta_cdf • 783

Figure 11-2 Poisson Probability Function

Example
Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the
probability function at 7.

#include "imsls.h"

void main () {
 int k = 7;
 float theta = 10.0;

 printf ("The probability that X is equal to 7 is %g.\n",
 imsls_f_poisson_pdf (k, theta));
}

Output

The probability that X is equal to 7 is 0.0900792.

beta_cdf
Evaluates the beta probability distribution function.

Synopsis
#include <imsls.h>

784 • beta_cdf IMSL C Stat Library

float imsls_f_beta_cdf (float x, float pin, float qin)
The type double function is imsls_d_beta_cdf.

Required Arguments

float x (Input)
Argument for which the beta probability distribution function is to be
evaluated.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
The probability that a beta random variable takes on a value less than or equal
to x.

Description
Function imsls_f_beta_cdf evaluates the distribution function of a beta random
variable with parameters pin and qin. This function is sometimes called the
incomplete beta ratio and, with p = pin and q = qin, is denoted by Ix (p, q). It is given
by

() () ()
() () 11

0
, 1

x qp
x

p q
I p q t t dt

p q
−−Γ Γ

= −
Γ + ∫

where Γ (⋅) is the gamma function. The value of the distribution function by Ix (p, q) is
the probability that the random variable takes a value less than or equal to x.
The integral in the expression above is called the incomplete beta function and is
denoted by βx(p, q). The constant in the expression is the reciprocal of the beta function
(the incomplete function evaluated at 1) and is denoted by β(p, q).
Function imsls_f_beta_cdf uses the method of Bosten and Battiste (1974).

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric
distribution). This example finds the probability that X is less than 0.6 and the
probability that X is between 0.5 and 0.6. (Since X is a symmetric beta random
variable, the probability that it is less than 0.5 is 0.5.)

#include <imsls.h>

main()
{
 float p, pin, qin, x;

 pin = 12.0;
 qin = 12.0;
 x = 0.6;

Chapter 11: Probability Distribution Functions and Inverses beta_inverse_cdf • 785

 p = imsls_f_beta_cdf(x, pin, qin);
 printf("The probability that X is less than 0.6 is %6.4f\n",
 p);
 x = 0.5;
 p -= imsls_f_beta_cdf(x, pin, qin);
 printf("The probability that X is between 0.5 and");
 printf(" 0.6 is %6.4f\n", p);
}

Output
The probability that X is less than 0.6 is 0.8364
The probability that X is between 0.5 and 0.6 is 0.3364

beta_inverse_cdf
Evaluates the inverse of the beta distribution function.

Synopsis
#include <imsls.h>
float imsls_f_beta_inverse_cdf (float p, float pin, float qin)
The type double function is imsls_d_beta_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the beta distribution function is to be
evaluated. Argument p must be in the open interval (0.0, 1.0).

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
Function imsls_f_beta_inverse_cdf returns the inverse distribution function of a
beta random variable with parameters pin and qin.

Description
With P = p, p = pin, and q = qin, the beta_inverse_cdf returns x such that

()
() () () 11

0
1

x qpp q
P t t dt

p q
−−Γ +

= −
Γ Γ ∫

where Γ (⋅) is the gamma function. The probability that the random variable takes a
value less than or equal to x is P.

786 • bivariate_normal_cdf IMSL C Stat Library

Example
Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric
distribution). In this example, we find the value x such that the probability that X is less
than or equal to x is 0.9.

#include <imsls.h>

main()
{
 float p, pin, qin, x;

 pin = 12.0;
 qin = 12.0;
 p = 0.9;
 x = imsls_f_beta_inverse_cdf(p, pin, qin);
 printf(" X is less than %6.4f with probability 0.9.\n",
 x);
}

Output
X is less than 0.6299 with probability 0.9.

bivariate_normal_cdf
Evaluates the bivariate normal distribution function.

Synopsis
#include <imsls.h>
float imsls_f_bivariate_normal_cdf (float x, float y, float rho)
The type double function is imsls_d_bivariate_normal_cdf.

Required Arguments

float x (Input)
The x-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float y (Input)
The y-coordinate of the point for which the bivariate normal distribution
function is to be evaluated.

float rho (Input)
Correlation coefficient.

Return Value
The probability that a bivariate normal random variable with correlation rho takes a
value less than or equal to x and less than or equal to y.

Chapter 11: Probability Distribution Functions and Inverses bivariate_normal_cdf • 787

Description
Function imsls_f_bivariate_normal_cdf evaluates the distribution function F of
a bivariate normal distribution with means of zero, variances of one, and correlation of
rho; that is, with ρ = rho, and |ρ| < 1,

2 2

22

1 2(,) exp
2(1)2 1

yx u uv vF x y du dvρ
ρπ ρ −∞ −∞

⎛ ⎞− +
= −⎜ ⎟−− ⎝ ⎠

∫ ∫

To determine the probability that U ≤ u0 and V ≤ v0, where (U, V)T is a bivariate

normal random variable with mean μ = (μU, μV)T and variance-covariance matrix

2

2
U UV

UV V

σ σ
σ σ

⎛ ⎞
∑ = ⎜ ⎟

⎝ ⎠

transform (U, V)T to a vector with zero means and unit variances. The input
to imsls_f_bivariate_normal_cdf would be X = (u0 − μU)/σU, Y = (v0 − μV)/σV,
and ρ = σUV/(σUσV).

Function imsls_f_bivariate_normal_cdf uses the method of Owen (1962, 1965).
Computation of Owen’s T-function is based on code by M. Patefield and D. Tandy
(2000). For |ρ| = 1, the distribution function is computed based on the univariate
statistic, Z = min(x, y), and on the normal distribution function
imsls_f_normal_cdf.

Example
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-
covariance matrix as follows:

1.0 0.9
0.9 1.0

⎡ ⎤
⎢ ⎥
⎣ ⎦

In this example, we find the probability that X is less than −2.0 and Y is less than 0.0.
#include <imsls.h>

main()
{
 float p, rho, x, y;

 x = -2.0;
 y = 0.0;
 rho = 0.9;
 p = imsls_f_bivariate_normal_cdf(x, y, rho);
 printf(" The probability that X is less than -2.0\n"
 " and Y is less than 0.0 is %6.4f\n", p);

}

788 • chi_squared_cdf IMSL C Stat Library

Output
The probability that X is less than -2.0
and Y is less than 0.0 is 0.0228

chi_squared_cdf
Evaluates the chi-squared distribution function.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_cdf (float chi_squared, float df)
The type double function is imsls_d_chi_squared_cdf.

Required Arguments

float chi_squared (Input)
Argument for which the chi-squared distribution function is to be evaluated.

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument df
must be greater than or equal to 0.5.

Return Value
The probability that a chi-squared random variable takes a value less than or equal to
chi_squared.

Description
Function imsls_f_chi_squared_cdf evaluates the distribution function, F, of a chi-
squared random variable x = chi_squared with ν = df. Then,

() ()
/ 2 / 2 1

/ 2 0

1
2 / 2

x t v
vF x e t dt

v
− −=

Γ ∫

where Γ (⋅) is the gamma function. The value of the distribution function at the point x
is the probability that the random variable takes a value less than or equal to x.

For ν > 65, imsls_f_chi_squared_cdf uses the Wilson-Hilferty approximation
(Abramowitz and Stegun 1964, Equation 26.4.17) to the normal distribution, and
function imsls_f_normal_cdf is used to evaluate the normal distribution function.

For ν ≤ 65, imsls_f_chi_squared_cdf uses series expansions to evaluate the
distribution function. If x < max (ν / 2, 26), imsls_f_chi_squared_cdf uses the
series 6.5.29 in Abramowitz and Stegun (1964); otherwise, it uses the asymptotic
expansion 6.5.32 in Abramowitz and Stegun.

Example
Suppose X is a chi-squared random variable with two degrees of freedom. In this
example, we find the probability that X is less than 0.15 and the probability that
X is greater than 3.0.

Chapter 11: Probability Distribution Functions and Inverses chi_squared_inverse_cdf • 789

#include <imsls.h>

void main()
{
 float chi_squared = 0.15;
 float df = 2.0;
 float p;

 p = imsls_f_chi_squared_cdf(chi_squared, df);
 printf("%s %s %6.4f\n", "The probability that chi-squared\n",
 "with 2 df is less than 0.15 is", p);

 chi_squared = 3.0;
 p = 1.0 - imsls_f_chi_squared_cdf(chi_squared, df);
 printf("%s %s %6.4f\n", "The probability that chi-squared\n",
 "with 2 df is greater than 3.0 is", p);
}

Output
The probability that chi-squared
 with 2 df is less than 0.15 is 0.0723
The probability that chi-squared
 with 2 df is greater than 3.0 is 0.2231

Informational Errors

IMSLS_ARG_LESS_THAN_ZERO Since “chi_squared” = # is less than zero, the
distribution function is zero at “chi_squared.”

Alert Errors

IMSLS_NORMAL_UNDERFLOW Using the normal distribution for large degrees of
freedom, underflow would have occurred.

chi_squared_inverse_cdf
Evaluates the inverse of the chi-squared distribution function.

Synopsis
#include <imsls.h>
float imsls_f_chi_squared_inverse_cdf (float p, float df)
The type double function is imsls_d_chi_squared_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the chi-squared distribution function is to
be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the chi-squared distribution. Argument df
must be greater than or equal to 0.5.

790 • chi_squared_inverse_cdf IMSL C Stat Library

Return Value
The inverse at the chi-squared distribution function evaluated at p. The probability that
a chi-squared random variable takes a value less than or equal to
imsls_f_chi_squared_inverse_cdf is p.

Description
Function imsls_f_chi_squared_inverse_cdf evaluates the inverse distribution
function of a chi-squared random variable with ν = df and with probability p. That is,
it determines x = imsls_f_chi_squared_inverse_cdf (p, df), such that

()
/ 2 / 2 1

/ 2 0

1
2 / 2

x t v
vp e t dt

v
− −=

Γ ∫

where Γ (⋅) is the gamma function. The probability that the random variable takes a
value less than or equal to x is p.

For ν < 40, imsls_f_chi_squared_inverse_cdf uses bisection (if ν ≤ 2 or
p > 0.98) or regula falsi to find the point at which the chi-squared distribution function
is equal to p. The distribution function is evaluated using IMSL function
imsls_f_chi_squared_cdf.
For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun
1964, Equation 26.4.18) to the normal distribution is used. IMSL function
imsls_f_normal_cdf is used to evaluate the inverse of the normal distribution
function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramowitz and
Stegun 1964, Equation 26.4.17) is used.

Example
In this example, we find the 99-th percentage point of a chi-squared random variable
with 2 degrees of freedom and of one with 64 degrees of freedom.

#include <imsls.h>

void main ()
{
 float df, x;
 float p = 0.99;

 df = 2.0;
 x = imsls_f_chi_squared_inverse_cdf(p, df);
 printf("For p = .99 with 2 df, x = %7.3f.\n", x);

 df = 64.0;
 x = imsls_f_chi_squared_inverse_cdf(p,df);
 printf("For p = .99 with 64 df, x = %7.3f.\n", x);
}

Output
For p = .99 with 2 df, x = 9.210.
For p = .99 with 64 df, x = 93.217.

Chapter 11: Probability Distribution Functions and Inverses non_central_chi_sq • 791

Warning Errors

IMSLS_UNABLE_TO_BRACKET_VALUE The bounds that enclose “p” could not be
found. An approximation for
imsls_f_chi_squared_inverse_cdf is
returned.

IMSLS_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared could not
be found within a specified number of
iterations. An approximation for
imsls_f_chi_squared_inverse_cdf is
returned.

non_central_chi_sq
Evaluates the noncentral chi-squared distribution function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_chi_sq (float chi_squared, float df , float delta)
The type double function is imsls_d_non_central_chi_sq.

Required Arguments
float chi_squared (Input)

Argument for which the noncentral chi-squared distribution function is to be
evaluated.

float df (Input)
Number of degrees of freedom of the noncentral chi-squared distribution.
Argument df must be greater than or equal to 0.5

float delta (Input)
The noncentrality parameter. delta must be nonnegative, and delta +
df must be less than or equal to 200,000.

Return Value
The probability that a noncentral chi-squared random variable takes a value less than or
equal to chi_squared.

Description
Function imsls_f_non_central_chi_sq evaluates the distribution function of a
noncentral chi-squared random variable with df degrees of freedom and noncentrality
parameter alam, that is, with v = df, λ = alam, and x = chi_squared,

2

2

/ 2 (2) / 2 1 / 2

0 (2) / 20
2

(/ 2)_ _ _ ()
! i

i v i tx

v ii v

e t enon central chi sq x dt
i

λ λ− + − −∞

+= +
=

⎛ ⎞Γ⎜ ⎟
⎝ ⎠

∑ ∫

792 • non_central_chi_sq IMSL C Stat Library

where Γ(⋅) is the gamma function. This is a series of central chi-squared distribution
functions with Poisson weights. The value of the distribution function at the point x is
the probability that the random variable takes a value less than or equal to x.
The noncentral chi-squared random variable can be defined by the distribution function
above, or alternatively and equivalently, as the sum of squares of independent normal
random variables. If Yi have independent normal distributions with means μi and
variances equal to one and

2
1

n
i iX Y== ∑

then X has a noncentral chi-squared distribution with n degrees of freedom and
noncentrality parameter equal to

2
1

n
i iμ=∑

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the
same as the chi-squared distribution.
Function imsls_f_non_central_chi_sq determines the point at which the Poisson
weight is greatest, and then sums forward and backward from that point, terminating
when the additional terms are sufficiently small or when a maximum of 1000 terms
have been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun
(1964) is used to speed the evaluation of the central chi-squared distribution functions.

Figure 11-3 Noncentral Chi-squared Distribution Function

Chapter 11: Probability Distribution Functions and Inverses non_central_chi_sq_inv • 793

Example
In this example, imsls_f_non_central_chi_sq is used to compute the probability
that a random variable that follows the noncentral chi-squared distribution with
noncentrality parameter of 1 and with 2 degrees of freedom is less than or equal to
8.642.

#include <imsls.h>
#include <stdio.h>
void main()
{
 float chsq = 8.642;
 float df = 2.0;
 float alam = 1.0;
 float p;
 p = imsls_f_non_central_chi_sq(chsq, df, alam);
 printf("The probability that a noncentral chi-squared random\n"
 "variable with %2.0f df and noncentrality parameter %3.1f is less\n"
 "than %5.3f is %5.3f.\n", df, alam, chsq, p);
}

Output
The probability that a noncentral chi-squared random
variable with 2 df and noncentrality parameter 1.0 is less
than 8.642 is 0.950

1.

non_central_chi_sq_inv
Evaluates the inverse of the noncentral chi-squared function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_chi_sq_inv (float p, float df, float delta)
The type double function is imsls_d_non_central_chi_sq_inv.

Required Arguments
float p (Input)

Probability for which the inverse of the noncentral chi-squared distribution
function is to be evaluated. p must be in the open interval (0.0, 1.0).

float df (Input)
Number of degrees of freedom of the noncentral chi-squared distribution.
Argument df must be greater than or equal to 0.5

float delta (Input)
The noncentrality parameter. delta must be nonnegative, and delta +
df must be less than or equal to 200,000.

794 • F_cdf IMSL C Stat Library

Return Value
The probability that a noncentral chi-squared random variable takes a value less than or
equal to imsls_f_non_central_chi_sq_inv is p.

Description
Function imsls_f_non_central_chi_sq_inv evaluates the inverse distribution
function of a noncentral chi-squared random variable with
df degrees of freedom and noncentrality parameter delta; that is, with P = p, v = df,
and λ = delta, it determines c0 (= imsls_f_non_central_chi_sq_inv (p, df,
delta)), such that

0
/ 2 (2) / 2 1 / 2

(2) / 2 20
0 2

(/ 2)
! 2 ()

i v i xc

v i v i
i

e x eP dx
i

λ λ− + − −∞

+ +
=

=
Γ∑ ∫

where Γ(⋅) is the gamma function. The probability that the random variable takes a
value less than or equal to c0 is P.

Function imsls_f_non_central_chi_sq_inv uses bisection and modified regula
falsi to invert the distribution function, which is evaluated using
routine imsls_f_non_central_chi_sq. See imsls_f_non_central_chi_sq for an
alternative definition of the noncentral chi-squared random variable in terms of normal
random variables.

Example
In this example, we find the 95-th percentage point for a noncentral chi-squared
random variable with 2 degrees of freedom and noncentrality parameter 1.

#include <imsls.h>

#include <stdio.h>

void main()

{

 float p = .95;

 int df = 2;

 float delta = 1.0;

 float chi_squared;

 chi_squared = imsls_f_non_central_chi_sq_inv(p, df, delta);

 printf("The 0.05 noncentral chi-squared critical value is %6.4f.\n",

 chi_squared);

}

Output
The 0.05 noncentral chi-squared critical value is 8.6422.

F_cdf
Evaluates the F distribution function.

Chapter 11: Probability Distribution Functions and Inverses F_cdf • 795

Synopsis
#include <imsls.h>
float imsls_f_F_cdf (float f, float df_numerator, float df_denominator)
The type double function is imsls_d_F_cdf.

Required Arguments

float f (Input)
Point at which the F distribution function is to be evaluated.

float df_numerator (Input)
The numerator degrees of freedom. Argument df_numerator must be
positive.

float df_denominator (Input)
The denominator degrees of freedom. Argument df_denominator must be
positive.

Return Value
The probability that an F random variable takes a value less than or equal to the input
point, f.

Description
Function imsls_f_F_cdf evaluates the distribution function of a Snedecor’s F
random variable with df_numerator and df_denominator. The function is
evaluated by making a transformation to a beta random variable, then evaluating the
incomplete beta function. If X is an F variate with ν1 and ν2 degrees of freedom and
Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2.
Function imsls_f_F_cdf also uses a relationship between F random variables that
can be expressed as

FF(f, v1, v2) = 1 − FF(1/f, v2, v1)

where FF is the distribution function for an F random variable.

796 • F_inverse_cdf IMSL C Stat Library

Figure 11-4 Plot of FF(f, 1.0, 1.0)

Example
This example finds the probability that an F random variable with one numerator and
one denominator degree of freedom is greater than 648.

#include <imsls.h>

main()
{
 float p;
 float F = 648.0;
 float df_numerator = 1.0;
 float df_denominator = 1.0;

 p = 1.0 - imsls_f_F_cdf(F,df_numerator, df_denominator);
 printf("%s %s %6.4f.\n", "The probability that an F(1,1) variate",
 "is greater than 648 is", p);
}

Output
The probability that an F(1,1) variate is greater than 648 is 0.0250.

F_inverse_cdf
Evaluates the inverse of the F distribution function.

Chapter 11: Probability Distribution Functions and Inverses F_inverse_cdf • 797

Synopsis
#include <imsls.h>
float imsls_f_F_inverse_cdf (float p, float df_numerator,

float df_denominator)
The type double function is imsls_d_F_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the F distribution function is to be
evaluated. Argument p must be in the open interval (0.0, 1.0).

float df_numerator (Input)
Numerator degrees of freedom. Argument df_numerator must be positive.

float df_denominator (Input)
Denominator degrees of freedom. Argument df_denominator must be
positive.

Return Value
The value of the inverse of the F distribution function evaluated at p. The probability
that an F random variable takes a value less than or equal to
imsls_f_F_inverse_cdf is p.

Description
Function imsls_f_F_inverse_cdf evaluates the inverse distribution function of a
Snedecor’s F random variable with ν1 = df_numerator numerator degrees of
freedom and ν2 = df_denominator denominator degrees of freedom. The function is
evaluated by making a transformation to a beta random variable, then evaluating the
inverse of an incomplete beta function. If X is an F variate with ν1 and ν2 degrees of
freedom and Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and
q = ν2/2. If p ≤ 0.5, imsls_f_F_ inverse_cdf uses this relationship directly;
otherwise, it also uses a relationship between F random variables that can be expressed
as follows:

FF(f, v1, v2) = 1 − FF(1/f, v2, v1)

Example
This example finds the 99-th percentage point for an F random variable with 7 and 1
degrees of freedom.

#include <imsls.h>

main()
{
 float df_denominator = 1.0;
 float df_numerator = 7.0;
 float f;
 float p = 0.99;

798 • gamma_cdf IMSL C Stat Library

 f = imsls_f_F_inverse_cdf(p, df_numerator, df_denominator);

 printf("The F(7,1) 0.01 critical value is %6.3f\n", f);
}

Output
The F(7,1) 0.01 critical value is 5928.370

Fatal Errors

IMSLS_F_INVERSE_OVERFLOW Function imsls_f_F_inverse_cdf overflows.
This is because df_numerator or
df_denominator and p are too large. The return
value is set to machine infinity.

gamma_cdf
Evaluates the gamma distribution function.

Synopsis
#include <imsls.h>
float imsls_f_gamma_cdf (float x, float a)
The type double function is imsls_d_gamma_cdf.

Required Arguments

float x (Input)
Argument for which the gamma distribution function is to be evaluated.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to x.

Description
Function imsls_f_gamma_cdf evaluates the distribution function, F, of a gamma
random variable with shape parameter a,

() ()
1

0

1 x
t aF x e t dt

a
− −=

Γ ∫

where Γ(⋅) is the gamma function. (The gamma function is the integral from 0 to ∞ of
the same integrand as above.) The value of the distribution function at the point x is the
probability that the random variable takes a value less than or equal to x.
The gamma distribution is often defined as a two-parameter distribution with a scale
parameter b (which must be positive) or as a three-parameter distribution in which the
third parameter c is a location parameter. In the most general case, the probability
density function over (c, ∞) is as follows:

Chapter 11: Probability Distribution Functions and Inverses gamma_inverse_cdf • 799

() ()
() () 1/1 at c b

af t e x c
b a

−− −= −
Γ

If T is a random variable with parameters a, b, and c, the probability that T ≤ t0 can be
obtained from imsls_f_gamma_cdf by setting x = (t0 − c)/b.

If x is less than a or less than or equal to 1.0, imsls_f_gamma_cdf uses a
series expansion; otherwise, a continued fraction expansion is used.
(See Abramowitz and Stegun 1964.)

Example
Let X be a gamma random variable with a shape parameter of four. (In this case, it has
an Erlang distribution since the shape parameter is an integer.) This example finds the
probability that X is less than 0.5 and the probability that
X is between 0.5 and 1.0.

#include <imsls.h>

main()
{
 float p, x;
 float a = 4.0;

 x = 0.5;
 p = imsls_f_gamma_cdf(x,a);
 printf("The probability that X is less than 0.5 is %6.4f\n", p);

 x = 1.0;
 p = imsls_f_gamma_cdf(x,a) - p;
 printf("The probability that X is between 0.5 and 1.0 is %6.4f\n",
 p);
}

Output
The probability that X is less than 0.5 is 0.0018
The probability that X is between 0.5 and 1.0 is 0.0172

Informational Errors

IMSLS_ARG_LESS_THAN_ZERO Since “x” = # is less than zero, the distribution
function is zero at “x.”

Fatal Errors

IMSLS_X_AND_A_TOO_LARGE Since “x” = # and “a” = # are so large, the algorithm
would overflow.

gamma_inverse_cdf
Evaluates the inverse of the gamma distribution function.

800 • gamma_inverse_cdf IMSL C Stat Library

Synopsis
#include <imsls.h>
float imsls_f_gamma_inverse_cdf (float p, float a)
The type double function is imsls_d_gamma_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the gamma distribution function is to be
evaluated. p must be in the open interval (0.0, 1.0).

float a (Input)
The shape parameter of the gamma distribution. This parameter must be
positive.

Return Value
The probability that a gamma random variable takes a value less than or equal to
the returned value is p.

Description

Function imsls_f_gamma_inverse_cdf evaluates the inverse distribution
function of a gamma random variable with shape parameter a, that is, it
determines x (=imsls_f_gamma_inverse_cdf (p, a)), such that

1

0

1
()

x t aP e t dt
a

− −=
Γ ∫

where Γ(⋅) is the gamma function. The probability that the random variable takes
a value less than or equal to x is P. See the documentation for function
imsls_f_gamma_cdf for further discussion of the gamma distribution.

Function imsls_f_gamma_inverse_cdf uses bisection and modified regula
falsi to invert the distribution function, which is evaluated using function
imsls_f_gamma_cdf.

Example
In this example, we find the 95-th percentage point for a gamma random variable
with shape parameter of 4.

include "imsls.h"

void main()

{

 float p = .95, a = 4.0, x;

 x = imsls_f_gamma_inverse_cdf(p,a);

 printf("The 0.05 gamma(4) critical value is %6.4f\n", x);

}

Chapter 11: Probability Distribution Functions and Inverses normal_cdf • 801

Output
The 0.05 gamma(4) critical value is 7.7537

normal_cdf
Evaluates the standard normal (Gaussian) distribution function.

Synopsis
#include <imsls.h>
float imsls_f_normal_cdf (float x)
The type double function is imsls_d_normal_cdf.

Required Arguments

float x (Input)
Point at which the normal distribution function is to be evaluated.

Return Value
The probability that a normal random variable takes a value less than or equal
to x.

Description
Function imsls_f_normal_cdf evaluates the distribution function, Φ, of a standard
normal (Gaussian) random variable as follows:

() 2 / 21
2

x
tx e dt

π
−

−∞

Φ = ∫

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x.
The standard normal distribution (for which imsls_f_normal_cdf is the distribution
function) has mean of 0 and variance of 1. The probability that a normal random
variable with mean μ and variance σ2 is less than y is given by imsls_f_normal_cdf
evaluated at (y − μ)/σ.

802 • normal_inverse_cdf IMSL C Stat Library

Figure 11-5 Plot of Φ(x)

Example
Suppose X is a normal random variable with mean 100 and variance 225. This example
finds the probability that X is less than 90 and the probability that X is between 105 and
110.

#include <imsls.h>

main()
{
 float p, x1, x2;

 x1 = (90.0-100.0)/15.0;
 p = imsls_f_normal_cdf(x1);
 printf("The probability that X is less than 90 is %6.4f\n", p);

 x1 = (105.0-100.0)/15.0;
 x2 = (110.0-100.0)/15.0;
 p = imsls_f_normal_cdf(x2) - imsls_f_normal_cdf(x1);
 printf("The probability that X is between 105 and 110 is %6.4f\n",
 p);
}

Output
The probability that X is less than 90 is 0.2525
The probability that X is between 105 and 110 is 0.1169

normal_inverse_cdf
Evaluates the inverse of the standard normal (Gaussian) distribution function.

Chapter 11: Probability Distribution Functions and Inverses normal_inverse_cdf • 803

Synopsis
#include <imsls.h>
float imsls_f_normal_inverse_cdf (float p)
The type double function is imsls_d_normal_inverse_cdf.

Required Arguments

float p (Input)
Probability for which the inverse of the normal distribution function is to be
evaluated. Argument p must be in the open interval (0.0, 1.0).

Return Value
The inverse of the normal distribution function evaluated at p. The probability that a
standard normal random variable takes a value less than or equal to
imsls_f_normal_inverse_cdf is p.

Description
Function imsls_f_normal_inverse_cdf evaluates the inverse of the distribution
function, Φ, of a standard normal (Gaussian) random variable,
imsls_f_normal_inverse_cdf(p) = Φ-1(x), where

() 2 / 21
2

x
tx e dt

π
−

−∞

Φ = ∫

The value of the distribution function at the point x is the probability that the random
variable takes a value less than or equal to x. The standard normal distribution has a
mean of 0 and a variance of 1.
Function imsls_f_normal_inverse_cdf (p) is evaluated by use of minimax
rational-function approximations for the inverse of the error function. General
descriptions of these approximations are given in Hart et al. (1968) and Strecok (1968).
The rational functions used in imsls_f_normal_inverse_cdf are described by
Kinnucan and Kuki (1968).

Example
This example computes the point such that the probability is 0.9 that a standard normal
random variable is less than or equal to this point.

#include <imsls.h>

main()
{
 float x;
 float p = 0.9;

 x = imsls_f_normal_inverse_cdf(p);
 printf("The 90th percentile of a standard normal is %6.4f.\n", x);
}

804 • t_cdf IMSL C Stat Library

Output
The 90th percentile of a standard normal is 1.2816.

t_cdf
Evaluates the Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_t_cdf (float t, float df)
The type double function is imsls_d_t_cdf.

Required Arguments

float t (Input)
Argument for which the Student’s t distribution function is to be evaluated.

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The probability that a Student’s t random variable takes a value less than or equal to
the input t.

Description
Function imsls_f_t_cdf evaluates the distribution function of a Student’s t random
variable with ν = df degrees of freedom. If the square of t is greater than or equal to ν,
the relationship of a t to an F random variable (and subsequently, to a beta random
variable) is exploited, and percentage points from a beta distribution are used.
Otherwise, the method described by Hill (1970) is used. If ν is not an integer, is greater
than 19, or is greater than 200, a Cornish- Fisher expansion is used to evaluate the
distribution function. If ν is less than 20 and |t| is less than 2.0, a trigonometric series is
used (see Abramowitz and Stegun 1964, Equations 26.7.3 and 26.7.4 with some
rearrangement). For the remaining cases, a series given by Hill (1970) that converges
well for large values of t is used.

Chapter 11: Probability Distribution Functions and Inverses t_inverse_cdf • 805

Figure 11-6 Plot of Ft (t, 6.0)

Example
This example finds the probability that a t random variable with 6 degrees of freedom
is greater in absolute value than 2.447. The fact that t is symmetric about 0 is used.

#include <imsls.h>

main ()
{
 float p;
 float t = 2.447;
 float df = 6.0;

 p = 2.0*imsls_f_t_cdf(-t,df);
 printf("Pr(|t(6)| > 2.447) = %6.4f\n", p);
}

Output
Pr(|t(6)| > 2.447) = 0.0500

t_inverse_cdf
Evaluates the inverse of the Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_t_inverse_cdf (float p, float df)
The type double function is imsls_d_t_inverse_cdf.

806 • t_inverse_cdf IMSL C Stat Library

Required Arguments

float p (Input)
Probability for which the inverse of the Student’s t distribution function is to
be evaluated. Argument p must be in the open interval (0.0, 1.0).

float df (Input)
Degrees of freedom. Argument df must be greater than or equal to 1.0.

Return Value
The inverse of the Student’s t distribution function evaluated at p. The probability that
a Student’s t random variable takes a value less than or equal to
imsls_f_t_inverse_cdf is p.

Description
Function imsls_f_t_inverse_cdf evaluates the inverse distribution function of a
Student’s t random variable with ν = df degrees of freedom. If ν equals 1 or 2, the
inverse can be obtained in closed form. If ν is between 1 and 2, the relationship of a t to
a beta random variable is exploited and the inverse of the beta distribution is used to
evaluate the inverse; otherwise, the algorithm of Hill (1970) is used. For small values
of ν greater than 2, Hill’s algorithm inverts an integrated expansion in 1/(1 + t2/ν) of
the t density. For larger values, an asymptotic inverse Cornish-Fisher type expansion
about normal deviates is used.

Example
This example finds the 0.05 critical value for a two-sided t test with 6 degrees of
freedom.

#include <imsls.h>

void main()
{
 float df = 6.0;
 float p = 0.975;
 float t;

 t = imsls_f_t_inverse_cdf(p,df);

 printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t);
}

Output
The two-sided t(6) 0.05 critical value is 2.447

Informational Errors

IMSLS_OVERFLOW Function imsls_f_t_inverse_cdf is set to
machine infinity since overflow would occur upon
modifying the inverse value for the F distribution with
the result obtained from the inverse beta distribution.

Chapter 11: Probability Distribution Functions and Inverses non_central_t_cdf • 807

non_central_t_cdf
Evaluates the noncentral Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_t_cdf (float t, int df , float delta)
The type double function is imsls_d_non_central_t_cdf.

Required Arguments
float t (Input)
 Argument for which the noncentral Student’s t distribution function is to be

evaluated.
int df (Input)
 Number of degrees of freedom of the noncentral Student’s t distribution.

Argument df must be greater than or equal to 0.0
float delta (Input) The

noncentrality parameter.

Return Value
The probability that a noncentral Student’s t random variable takes a value less than or
equal to t.

Description
Function imsls_f_non_central_t_cdf evaluates the distribution function
F of a noncentral t random variable with df degrees of freedom and noncentrality
parameter delta; that is, with v = df, δ = delta , and t0 = t,

2

20

2

/ 2 / 2
/ 22

0 !2 (1) / 2
0

() ((1) / 2)()()
(/ 2)()

i
vt ix

iv v x
i

v eF t v i dx
v v x

δ
δ

π

− ∞

+ +−∞
=

= Γ + +
Γ +

∑∫

where Γ(⋅) is the gamma function. The value of the distribution function at the point t0
is the probability that the random variable takes a value less than or equal to t0.

The noncentral t random variable can be defined by the distribution function above, or
alternatively and equivalently, as the ratio of a normal random variable and an
independent chi-squared random variable. If w has a normal distribution with mean δ
and variance equal to one, u has an independent chi-squared distribution with v degrees
of freedom, and

/ /x w u v=

then x has a noncentral t distribution with degrees of freedom and noncentrality
parameter δ.

808 • non_central_t_cdf IMSL C Stat Library

The distribution function of the noncentral t can also be expressed as a double integral
involving a normal density function (see, for example, Owen 1962, page 108). The
function TNDF uses the method of Owen (1962, 1965), which uses repeated integration
by parts on that alternate expression for the distribution function.

Figure 11-7 Noncentral Student’s t Distribution Function

Example
Suppose t is a noncentral t random variable with 6 degrees of freedom and
noncentrality parameter 6. In this example, we find the probability that t is less than
12.0. (This can be checked using the table on page 111 of Owen 1962, with η = 0.866,
which yields λ = 1.664.)

#include <imsls.h>
#include <stdio.h>
void main()
{
 float t = 12.0;
 int df = 6;
 float delta = 6.0;
 float p;
 p = imsls_f_non_central_t_cdf(t, df, delta);
 printf("The probability that t is less than 12 is %6.4f.\n", p);
}

Chapter 11: Probability Distribution Functions and Inverses non_central_t_inv_cdf • 809

Output
The probability that T is less than 12.0 is 0.9501

non_central_t_inv_cdf
Evaluates the inverse of the noncentral Student’s t distribution function.

Synopsis
#include <imsls.h>
float imsls_f_non_central_t_inv_cdf (float p, int df , float delta)
The type double function is imsls_d_non_central_t_inv_cdf.

Required Arguments
float p (Input)

A Probability for which the inverse of the noncentral Student’s t distribution
function is to be evaluated. p must be in the open interval (0.0, 1.0).

int df (Input)
Number of degrees of freedom of the noncentral Student’s t distribution.
Argument df must be greater than or equal to 0.0

float delta (Input)
The noncentrality parameter.

Return Value
The probability that a noncentral Student’s t random variable takes a value less than or
equal to t is p.

Description
Function imsls_f_non_central_t_inv_cdf evaluates the inverse distribution
function of a noncentral t random variable with df degrees of freedom and
noncentrality parameter delta; that is, with P = p, v = df, and
δ = delta, it determines t0 (= imsls_f_non_central_t_inv_cdf
(p, df, delta)), such that

2

20

2

/ 2 / 2
/ 22

!2 (1) / 2
0

((1) / 2)()()
(/ 2)()

i
vt ix

iv v x
i

v eP v i dx
v v x

δ
δ

π

− ∞

+ +−∞
=

= Γ + +
Γ +

∑∫

where Γ(⋅) is the gamma function. The probability that the random variable takes a
value less than or equal to t0 is P. See imsls_f_non_central_t_cdf
(page) for an alternative definition in terms of normal and chi-squared random
variables. The function imsls_f_non_central_t_inv_cdf uses bisection and
modified regula falsi to invert the distribution function, which is evaluated using
routine imsls_f_non_central_t_cdf.

Example
In this example, we find the 95-th percentage point for a noncentral t random variable
with 6 degrees of freedom and noncentrality parameter 6.

810 • non_central_t_inv_cdf IMSL C Stat Library

#include <imsls.h>
#include <stdio.h>
void main()
{
 float p = .95;
 int df = 6;
 float delta = 6.0;
 float t;
 t = imsls_f_non_central_t_inv_cdf(p, df, delta);
 printf("The 0.05 noncentral t critical value is %6.4f.\n", t);
}

Output
The 0.05 noncentral t critical value is 11.995.

Chapter 12: Random Number Generation Routines • 811

Chapter 12: Random Number
Generation

Routines
Univariate Discrete Distributions

Generates pseudorandom binomial numbers random_binomial 816
Generates pseudorandom geometric
numbers random_geometric 818
Generates pseudorandom
hypergeometric numbers random_hypergeometric 819
Generates pseudorandom
logarithmic numbers random_logarithmic 822
Generates pseudorandom negative
binomial numbers random_neg_binomial 823
Generates pseudorandom Poisson numbers random_poisson 825
Generates pseudorandom discrete
uniform numbers random_uniform_discrete 826
Generates pseudorandom numbers from
a general discrete distribution random_general_discrete 828
Sets up a table to generate pseudorandom numbers from
a general discrete distribution discrete_table_setup 832

Univariate Continuous Distributions
Generates pseudorandom beta numbers random_beta 837
Generates pseudorandom Cauchy numbers random_cauchy 838
Generates pseudorandom chi_squared
numbers random_chi_squared 840
Generates pseudorandom exponential
numbers random_exponential 841
Generates pseudorandom mixed
exponential numbers random_exponential_mix 843
Generates pseudorandom gamma numbers random_gamma 845
Generates peudorandom lognormal numbers random_lognormal 846
Generates pseudorandom normal numbers random_normal 848

812 • Routines IMSL C Stat Library

Generates pseudorandom numbers from a
stable distribution random_stable 850
Generates pseudorandom Student’s t random_student_t 852
Generates pseudorandom triangular numbers random_triangular 853
Generates pseudorandom uniform numbers random_uniform 854
Generates pseudorandom Von Mises
numbers random_von_mises 856
Generates pseudorandom Weibull numbers random_weibull 857
Generates pseudorandom numbers from a
general continuous distribution random_general_continuous 859
Sets up table to generate pseudorandom numbers
from a general continuous distribution continuous_table_setup 862

Multivariate Continuous Distributions
Generates multivariate
normal vectors random_normal_multivariate 864
Generates a pseudorandom orthogonal matrix
or a correlation matrix random_orthogonal_matrix 866
Generates pseudorandom numbers from a multivariate distribution
determined from a given sample random_mvar_from_data 868
Generates pseudorandom numbers from a
multinomial distribution random_multinomial 871
Generates pseudorandom points on a unit circle or
K-dimensional sphere random_sphere 873
Generates a pseudorandom
two-way table random_table_twoway 875

Order Statistics
Generates pseudorandom order statistics from a standard
normal distribution random_order_normal 876
Generates pseudorandom order statistics from a
uniform (0, 1) distribution random_order_uniform 878

Stochastic Processes
Generates pseudorandom ARMA
process numbers random_arma 880
Generates pseudorandom numbers from a
nonhomogeneous Poisson process random_npp 884

Samples and Permutations
Generates a pseudorandom permutation random_permutation 887
Generates a simple pseudorandom sample
of indices random_sample_indices 889
Generates a simple pseudorandom sample from
a finite population random_sample 890

Utility Functions
Selects the uniform (0, 1) generator random_option 894

Chapter 12: Random Number Generation Usage Notes • 813

Retrieves the uniform (0, 1) multiplicative congruential
pseudorandom number generator random_option_get 895
Retrieves the current value of the seed random_seed_get 896
Retrieves a seed for the congruential
generators random_substream_seed_get 897
Initializes a random seed random_seed_set 899
Sets the current table used in the
shuffled generator random_table_set 900
Retrieves the current table used in the
shuffled generator random_table_get 900
Sets the current able used in the
GFSR generator random_GFSR_table_set 901
Retrieves the current table used in the
GFSR generator random_GFSR_table_get 902
Initializes the 32-bit Mersenne Twister
generator using an array. random_MT32_init 905
Retrieves the current table used in the 32-bit
Mersenne Twister generator. random_MT32_table_get 905
Sets the current table used in the 32-bit
Mersenne Twister generator. random_MT32_table_set 907
Initializes the 64-bit Mersenne Twister
generator using an array. random_MT64_init 908
Retrieves the current table used in the 64-bit
Mersenne Twister generator random_MT64_table_get 908
Sets the current table used in the 64-bit
Mersenne Twister generator. random_MT64_table_set 910

Low-discrepancy sequence
Generates a shuffled Faure sequence faure_next_point 911

Usage Notes
Overview of Random Number Generation
This chapter describes functions for the generation of random numbers that are useful
for applications in Monte Carlo or simulation studies. Before using any of the random
number generators, the generator must be initialized by selecting a seed or starting
value. The user can do this by calling the function imsls_random_seed_set. If the
user does not select a seed, one is generated using the system clock. A seed needs to be
selected only once in a program, unless two or more separate streams of random
numbers are maintained. Other utility functions in this chapter can be used to select the
form of the basic generator to restart simulations and to maintain separate simulation
streams.
In the following discussions, the phrases “random numbers,” “random deviates,”
“deviates,” and “variates” are used interchangeably. The phrase “pseudorandom” is
sometimes used to emphasize that the numbers generated are really not “random” since
they result from a deterministic process. The usefulness of pseudorandom numbers is
derived from the similarity, in a statistical sense, of samples of the pseudorandom

814 • Usage Notes IMSL C Stat Library

numbers to samples of observations from the specified distributions. In short, while the
pseudorandom numbers are completely deterministic and repeatable, they simulate the
realizations of independent and identically distributed random variables.

Basic Uniform Generators
The random number generators in this chapter use either a multiplicative congruential
method or a generalized feedback shift register. The selection of the type of generator
is made by calling the routine imsls_random_option. If no selection is made
explicitly, a multiplicative generator (with multiplier 16807) is used. Whatever
distribution is being simulated, uniform (0, 1) numbers are first generated and then
transformed if necessary. These routines are portable in the sense that, given the same
seed and for a given type of generator, they produce the same sequence in all
computer/compiler environments. There are many other issues that must be considered
in developing programs for the methods described below (see Gentle 1981 and 1990).

The Multiplicative Congruential Generators
The form of the multiplicative congruential generators is

xi ≡ cxi-1mod (231 − 1)

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root
modulo 231 − 1 (which is a prime), then the generator will have a maximal period of
231 − 2. There are several other considerations, however. See Knuth (1981) for a good
general discussion. The possible values for c in the generators are 16807, 397204094,
and 950706376. The selection is made by the function imsls_random_option. The
choice of 16807 will result in the fastest execution time, but other evidence suggests
that the performance of 950706376 is best among these three choices
(Fishman and Moore 1982). If no selection is made explicitly, the functions use the
multiplier 16807, which has been in use for some time (Lewis et al. 1969).
The generation of uniform (0,1) numbers is done by the function
imsls_f_random_uniform. This function is portable in the sense that, given the
same seed, it produces the same sequence in all computer/compiler environments.

Shuffled Generators
The user also can select a shuffled version of these generators using
imsls_random_option. The shuffled generators use a scheme due to Learmonth and
Lewis (1973). In this scheme, a table is filled with the first 128 uniform (0,1) numbers
resulting from the simple multiplicative congruential generator. Then, for each xi from
the simple generator, the low-order bits of xi are used to select a random integer, j,
from 1 to 128. The j-th entry in the table is then delivered as the random number; and
xi, after being scaled into the unit interval, is inserted into the j-th position in the table.
This scheme is similar to that of Bays and Durham (1976), and their analysis is
applicable to this scheme as well.

Chapter 12: Random Number Generation Usage Notes • 815

The Generalized Feedback Shift Register Generator
The GFSR generator uses the recursion Xt = Xt-1563 ⊕ Xt-96. This generator, which is
different from earlier GFSR generators, was proposed by Fushimi (1990), who
discusses the theory behind the generator and reports on several empirical tests of it.
Background discussions on this type of generator can be found in Kennedy and Gentle
(1980), pages 150−162.

Setting the Seed
The seed of the generator can be set in imsls_random_seed_set and can be
retrieved by imsls_random_seed_get. Prior to invoking any generator in this
section, the user can call imsls_random_seed_set to initialize the seed, which is an
integer variable with a value between 1 and 2147483647. If it is not initialized by
imsls_random_seed_set, a random seed is obtained from the system clock. Once it
is initialized, the seed need not be set again.
If the user wants to restart a simulation, imsls_random_seed_get can be used to
obtain the final seed value of one run to be used as the starting value in a subsequent
run. Also, if two simultaneous random number streams are desired in one run,
imsls_random_seed_set and imsls_random_seed_get can be used before and
after the invocations of the generators in each stream.
If a shuffled generator or the GFSR generator is used, in addition to resetting the seed,
the user must also reset some values in a table. For the shuffled generators, this is done
using the routines imsls_f_random_table_get and
imsls_f_random_table_set; and for the GFSR generator; the table is retrieved and
set by the routines imsls_random_GFSR_table_get and
imsls_random_GFSR_table_set. The tables for the shuffled generators are separate
for single and double precision; so, if precisions are mixed in a program, it is necessary
to manage each precision separately for the shuffled generators.

Timing Considerations
The generation of the uniform (0,1) numbers is done by the routine
imsls_f_random_uniform. The particular generator selected in
imsls_random_option, that is, the value of the multiplier and whether shuffling is
done or whether the GFSR generator is used, affects the speed of
imsls_f_random_uniform. The smaller multiplier (16807, selected by iopt = 1) is
faster than the other multipliers. The multiplicative congruential generators that do not
shuffle are faster than the ones that do. The GFSR generator is roughly as fast as the
fastest multiplicative congruential generator, but the initialization for it (required only
on the first invocation) takes longer than the generation of thousands of uniform
random numbers. Precise statements of relative speeds depend on the computing
system.

Distributions Other than the Uniform
The nonuniform generators use a variety of transformation procedures. All of the
transformations used are exact (mathematically). The most straightforward
transformation is the inverse CDF technique, but it is often less efficient than others

816 • random_binomial IMSL C Stat Library

involving acceptance/rejection and mixtures. See Kennedy and Gentle (1980) for
discussion of these and other techniques.
Many of the nonuniform generators in this chapter use different algorithms depending
on the values of the parameters of the distributions. This is particularly true of the
generators for discrete distributions. Schmeiser (1983) gives an overview of techniques
for generating deviates from discrete distributions.
Although, as noted above, the uniform generators yield the same sequences on
different computers, because of rounding, the nonuniform generators that use
acceptance/rejection may occasionally produce different sequences on different
computer/compiler environments.
Although the generators for nonuniform distributions use fast algorithms, if a very
large number of deviates from a fixed distribution are to be generated, it might be
worthwhile to consider a table-sampling method, as implemented in the routines
imsls_f_random_general_discrete, imsls_f_discrete_table_setup,
imsls_f_random_general_continuous, and
imsls_f_continuous_table_setup. After an initialization stage, which may take
some time, the actual generation may proceed very fast.

Tests
Extensive empirical tests of some of the uniform random number generators available
in imsls_f_random_uniform are reported by Fishman and Moore (1982 and 1986).
Results of tests on the generator using the multiplier 16807 with and without shuffling
are reported by Learmonth and Lewis (1973b). If the user wishes to perform additional
tests, the routines in Chapter 7, “Tests of Goodness of Fit and Randomness,” may be of
use. Often in Monte Carlo applications, it is appropriate to construct an ad hoc test that
is sensitive to departures that are important in the given application. For example, in
using Monte Carlo methods to evaluate a one-dimensional integral, autocorrelations of
order one may not be harmful, but they may be disastrous in evaluating a two-
dimensional integral. Although generally the routines in this chapter for generating
random deviates from nonuniform distributions use exact methods, and, hence, their
quality depends almost solely on the quality of the underlying uniform generator, it is
often advisable to employ an ad hoc test of goodness of fit for the transformations that
are to be applied to the deviates from the nonuniform generator.

Additional Notes on Usage
The generators for continuous distributions are available in both single and double-
precision versions. This is merely for the convenience of the user; the double-precision
versions should not be considered more “accurate,” except possibly for the multivariate
distributions.

random_binomial
Generates pseudorandom numbers from a binomial distribution.

Synopsis
#include <imsls.h>

Chapter 12: Random Number Generation random_binomial • 817

int *imsls_f_random_binomial (int n_random, int n, float p, ..., 0)
The type double function is imsls_d_random_binomial.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int n (Input)
Number of Bernoulli trials.

float p (Input)
Probability of success on each trial. Parameter p must be greater than 0.0 and
less than 1.0.

Return Value
An integer array of length n_random containing the random binomial deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_binomial (int n_random, int n, float p,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_random containing the random
binomial deviates.

Description
Function imsls_f_random_binomial generates pseudorandom numbers from a
binomial distribution with parameters n and p. Parameters n and p must be positive,
and p must less than 1. The probability function (with n = n and p = p) is

() () ()1 n xn x
xf x p p −= −

for x = 0, 1, 2, …, n.
The algorithm used depends on the values of n and p. If np < 10 or p is less than
machine epsilon (see imsls_f_machine, Chapter 15, “Utilities”), the inverse CDF
technique is used; otherwise, the BTPE algorithm of Kachitvichyanukul and Schmeiser
(see Kachitvichyanukul 1982) is used. This is an acceptance/rejection method using a
composition of four regions. (TPE=Triangle, Parallelogram, Exponential, left and
right.)

Example
In this example, imsls_f_random_binomial generates five pseudorandom binomial
deviates from a binomial distribution with parameters 20 and 0.5.

#include <stdio.h>

818 • random_geometric IMSL C Stat Library

#include <imsls.h>

void main()
{
 int n_random = 5;
 int n = 20;
 float p = 0.5;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_binomial(n_random, n, p, 0);
 imsls_i_write_matrix("Binomial (20, 0.5) random deviates:",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output
Binomial (20, 0.5) random deviates:
 14 9 12 10 12

random_geometric
Generates pseudorandom numbers from a geometric distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_geometric (int n_random, float p, ..., 0)
The type double function is imsls_d_random_geometric.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float p (Input)
Probability of succes on each trial. Parameter p must be positive and less than
1.0.

Return Value
An integer array of length n_random containing the random geometric deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_geometric (int n_random, float p,

IMSLS_RETURN_USER, int ir[],
0)

Chapter 12: Random Number Generation random_hypergeometric • 819

Optional Arguments

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_random containing the random
geometric deviates.

Description
Function imsls_f_random_geometric generates pseudorandom numbers from a
geometric distribution with parameter P, where P is the probability of getting a success
on any trial. A geometric deviate can be interpreted as the number of trials until the
first success (including the trial in which the first success is obtained). The probability
function is

f(x) = P(1 − P)x-1

for x = 1, 2, … and 0 < P < 1.
The geometric distribution as defined above has mean 1/P.
The i-th geometric deviate is generated as the smallest integer not less than
(log (Ui))/(log (1 − P)), where the Ui are independent uniform(0, 1) random numbers
(see Knuth 1981).
The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 − P)/P. Such
deviates can be obtained by subtracting 1 from each element of ir (the returned vector
of random deviates).

Example
In this example, imsls_f_random_geometric generates five pseudorandom
geometric deviates from a geometric distribution with parameter an equal to 0.3.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 float p = 0.3;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_geometric(n_random, p, 0);
 imsls_i_write_matrix("Geometric(0.3) random deviates:",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output
Geometric(0.3) random deviates:
 1 4 1 2 1

random_hypergeometric
Generates pseudorandom numbers from a hypergeometric distribution.

820 • random_hypergeometric IMSL C Stat Library

Synopsis
#include <imsls.h>
int *imsls_f_random_hypergeometric (int n_random, int n, int m,

int l, ..., 0)
The type double function is imsls_d_random_hypergeometric.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int n (Input)
Number of items in the sample. Parameter n must be positive.

int m (Input)
Number of special items in the population, or lot. Parameter m must be
positive.

int l (Input)
Number of items in the lot. Parameter l must be greater than both n and m.

Return Value
An integer array of length n_random containing the random hypergeometric deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_hypergeometric (int n_random, int n, int m,

int l,
IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_random containing the random
hypergeometric deviates.

Description
Function imsls_f_random_hypergeometric generates pseudorandom numbers
from a hypergeometric distribution with parameters N, M, and L. The hypergeometric
random variable X can be thought of as the number of items of a given type in a
random sample of size N that is drawn without replacement from a population of size L
containing M items of this type. The probability function is

()
()()

()
M L M
x N x

L
N

f x
−
−=

for x = max (0, N − L + M), 1, 2, …, min (N, M)

Chapter 12: Random Number Generation random_hypergeometric • 821

If the hypergeometric probability function with parameters N, M, and L evaluated at
N − L + M (or at 0 if this is negative) is greater than the machine epsilon
(see imsls_f_machine, Chapter 15, “Utilities”), and less than 1.0 minus the machine
epsilon, then imsls_f_random_hypergeometric uses the inverse CDF technique.
The routine recursively computes the hypergeometric probabilities, starting at
x = max (0, N − L + M) and using the ratio

()
()

1f X x
f X x

= +
=

(see Fishman 1978, p. 475).
If the hypergeometric probability function is too small or too close to 1.0, the
imsls_f_random_hypergeometric generates integer deviates uniformly in the
interval [1, L − i] for i = 0, 1, ..., and at the i-th step, if the generated deviate is less than
or equal to the number of special items remaining in the lot, the occurence of one
special item is tallied and the number of remaining special items is decreased by one.
This process continues until the sample size of the number of special items in the lot is
reached, whichever comes first. This method can be much slower than the inverse CDF
technique. The timing depends on N. If N is more than half of L (which in practical
examples is rarely the case), the user may wish to modify the problem, replacing N by
L − N, and to consider the generated deviates to be the number of special items not
included in the sample.

Example
In this example, imsls_f_random_hypergeometric generates five pseudorandom
hypergeometric deviates from a hypergeometric distribution to simulate taking random
samples of size 4 from a lot containing 20 items, of which 12 are defective. The
resulting hypergeometric deviates represent the numbers of defectives in each of the
five samples of size 4.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 int n = 4;
 int m = 12;
 int l = 20;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_hypergeometric(n_random, n, m, l, 0);
 imsls_i_write_matrix("Hypergeometric random deviates: ",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output
Hypergeometric random deviates:
 4 2 3 3 3

822 • random_logarithmic IMSL C Stat Library

Fatal Errors

IMSLS_LOT_SIZE_TOO_SMALL The lot size must be greater than the sample size and
the number of defectives in the lot. Lot size = #. Sam-
ple size = #. Number of defectives in the lot = #.

random_logarithmic
Generates pseudorandom numbers from a logarithmic distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_logarithmic (int n_random, float a, ..., 0)
The type double function is imsls_d_random_logarithmic.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float a (Input)
Parameter of the logarithmic distribution. Parameter a must be positive and
less than 1.0.

Return Value
An integer array of length n_random containing the random logarithmic deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_logarithmic (int n_random, float a,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_random containing the random
logarithmic deviates.

Description
Function imsls_f_random_logarithmic generates pseudorandom numbers from a
logarithmic distribution with parameter a. The probability function is

() ()ln 1

xaf x
x a

= −
−

for x = 1, 2, 3, ..., and 0 < a < 1

Chapter 12: Random Number Generation random_neg_binomial • 823

The methods used are described by Kemp (1981) and depend on the value of a. If a is
less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of an inverse
CDF technique, is used. Otherwise, Kemp’s algorithm LK, which gives special
treatment to the highly probable values of 1 and 2 is used.

Example
In this example, imsls_f_random_logarithmic generates five pseudorandom
logarithmic deviates from a logarithmic distribution with parameter a equal to 0.3.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 float a = 0.3;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_logarithmic(n_random, a, 0);
 imsls_i_write_matrix("logarithmic random deviates:",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output
logarithmic random deviates:
 2 1 1 1 2

random_neg_binomial
Generates pseudorandom numbers from a negative binomial distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_neg_binomial (int n_random, float rk, float p, ..., 0)
The type double function is imsls_d_random_neg_binomial.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float rk (Input)
Negative binomial parameter. Parameter rk must be positive. If rk is an
integer, the generated deviates can be thought of as the number of failures in a
sequence of Bernoulli trials before rk successes occur.

float p (Input)
Probability of failure on each trial. Parameter p must be greater than machine
epsilon (see imsls_f_machine, Chapter 15, “Utilities”) and less than 1.0.

824 • random_neg_binomial IMSL C Stat Library

Return Value
An integer array of length n_random containing the random negative binomial
deviates.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_neg_binomial (int n_random, float rk, float p,

IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_random containing the random
negative binomial deviates.

Description
Function imsls_f_random_neg_binomial generates pseudorandom numbers from
a negative binomial distribution with parameters rk and p. Parameters rk and p must
be positive and p must be less than 1. The probability function (with r = rk and p = p)
is

() ()()1 1 rr x x
xf x p p+ −= −

for x = 0, 1, 2, ...
If r is an integer, the distribution is often called the Pascal distribution and can be
thought of as modeling the length of a sequence of Bernoulli trials until r successes are
obtained, where p is the probability of getting a failure on any trial. In this form, the
random variable takes values r, r + 1, r + 2, … and can be obtained from the negative
binomial random variable defined above by adding r to the negative binomial variable.
This latter form is also equivalent to the sum of r geometric random variables defined
as taking values 1, 2, 3, ...

If rp/(1 − p) is less than 100 and (1 − p)r is greater than the machine epsilon,
imsls_f_random_neg_binomial uses the inverse CDF technique; otherwise, for
each negative binomial deviate, imsls_f_random_neg_binomial generates a
gamma (r, p/(1 − p)) deviate Y and then generates a Poisson deviate with parameter Y.

Example
In this example, imsls_f_random_neg_binomial generates five pseudorandom
negative binomial deviates from a negative binomial (Pascal) distribution with
parameters r equal to 4 and p equal to 0.3.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;

Chapter 12: Random Number Generation random_poisson • 825

 float rk = 4.0;
 float p = 0.3;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_neg_binomial(n_random, rk, p, 0);
 imsls_i_write_matrix(
 "Negative Binomial (4.0, 0.3) random deviates: ",
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);
}

Output
Negative Binomial (4.0, 0.3) random deviates:
 5 1 3 2 3

random_poisson
Generates pseudorandom numbers from a Poisson distribution.

Synopsis
#include <imsls.h>
int *imsls_random_poisson (int n_random, float theta, ..., 0)

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float theta (Input)
Mean of the Poisson distribution. Argument theta must be positive.

Return Value
An array of length n_random containing the random Poisson deviates.

Synopsis with Optional Arguments

#include <imsls.h>
int *imsls_random_poisson (int n_random, float theta,

IMSLS_RETURN_USER, int r[],
0)

Optional Arguments

IMSLS_RETURN_USER, int r[] (Output)
User-supplied array of length n_random containing the random Poisson
deviates.

Description
Function imsls_random_poisson generates pseudorandom numbers from a Poisson
distribution with positive mean theta. The probability function (with θ = theta) is

826 • random_uniform_discrete IMSL C Stat Library

() () / ! for 0, 1, 2,...xf x e x x−θ= θ =

If theta is less than 15, imsls_random_poisson uses an inverse CDF method;
otherwise, the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see also
Schmeiser 1983) is used. The PTPE method uses a composition of four regions, a
triangle, a parallelogram, and two negative exponentials. In each region except the
triangle, acceptance/rejection is used. The execution time of the method is essentially
insensitive to the mean of the Poisson.
Function imsls_random_seed_set can be used to initialize the seed of the random
number generator; function imsls_random_option can be used to select the form of
the generator.

Example
In this example, imsls_random_poisson is used to generate five pseudorandom
deviates from a Poisson distribution with mean equal to 0.5.

#include <imsls.h>

#define N_RANDOM 5

void main()
{
 int *r;
 int seed = 123457;
 float theta = 0.5;

 imsls_random_seed_set (seed);
 r = imsls_random_poisson (N_RANDOM, theta, 0);
 imsls_i_write_matrix ("Poisson(0.5) random deviates", 1, N_RANDOM, r,
0);
}

Output
Poisson(0.5) random deviates
 1 2 3 4 5
 2 0 1 0 1

random_uniform_discrete
Generates pseudorandom numbers from a discrete uniform distribution.

Synopsis
#include <imsls.h>
int *imsls_f_random_uniform_discrete (int n_random, int k, ..., 0)
The type double function is imsls_d_random_uniform_discrete.

Chapter 12: Random Number Generation random_uniform_discrete • 827

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int k (Input)
Parameter of the discrete uniform distribution. The integers 1, 2, ..., k occur
with equal probability. Parameter k must be positive.

Return Value
An integer array of length n_random containing the random discrete uniform deviates.

Synopsis with Optional Arguments
#include <imsls.h>

int *imsls_f_random_uniform_discrete (int n_random, int k,
IMSLS_RETURN_USER, int ir[],
0)

Optional Arguments

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied integer array of length n_random containing the random
discrete uniform deviates.

Description
Function imsls_f_random_uniform_discrete generates pseudorandom numbers
from a uniform discrete distribution over the integers 1, 2, ...k. A random integer is
generated by multiplying k by a uniform (0, 1) random number, adding 1.0, and
truncating the result to an integer. This, of course, is equivalent to sampling with
replacement from a finite population of size k

Example
In this example, imsls_f_random_uniform_discrete generates five
pseudorandom discrete uniform deviates from a discrete uniform distribution over the
integers 1 to 6.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 int k = 6;
 int *ir;

 imsls_random_seed_set(123457);
 ir = imsls_f_random_uniform_discrete(n_random, k, 0);
 imsls_i_write_matrix("Discrete uniform (1, 6) random deviates:" ,
 1, n_random, ir, IMSLS_NO_COL_LABELS, 0);

}

828 • random_general_discrete IMSL C Stat Library

Output
Discrete uniform (1, 6) random deviates:

 6 2 5 4 6

random_general_discrete
Generates pseudorandom numbers from a general discrete distribution using an alias
method or optionally a table lookup method.

Synopsis
#include <imsls.h>
int *imsls_f_random_general_discrete (int n_random, int imin, int

nmass, float probs[],..., 0)
The type double function is imsls_d_random_general_discrete.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int imin (Input)
Smallest value the random deviate can assume.
This is the value corresponding to the probability in probs[0].

int nmass (Input)
Number of mass points in the discrete distribution.

float probs[] (Input)
Array of length nmass containing probabilities associated with the individual
mass points. The elements of probs must be nonnegative and must sum to
1.0.

 If the optional argument IMSLS_TABLE is used, then probs is a vector of
length at least nmass + 1 containing in the first nmass positions the
cumulative probabilities and, possibly, indexes to speed access to the
probabilities.
IMSL routine imsls_f_discrete_table_setup can be used to initialize
probs properly. If no elements of probs are used as indexes, probs [nmass]
is 0.0 on input. The value in probs[0] is the probability of imin. The value in
probs [nmass-1] must be exactly 1.0 (since this is the CDF at the upper range
of the distribution.)

Return Value
An integer array of length n_random containing the random discrete deviates. To
release this space, use free.

Chapter 12: Random Number Generation random_general_discrete • 829

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_general_discrete (int n_random, int imin, int

nmass, float probs[],
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk,
IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[],
IMSLS_SET_INDEX_VECTORS, int iwk[], float wk[],
IMSLS_RETURN_USER, int ir[],
IMSLS_TABLE,
 0)

Optional Arguments

IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk (Output)
Retrieve indexing vectors that can be used to increase efficiency when
multiple calls will be made to imsls_f_random_general_discrete with
the same values in probs.

IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[] (Output)
User-supplied arrays of length nmass used for retrieve indexing vectors that
can be used to increase efficiency when multiple calls will be made to
imsls_f_random_general_discrete with the same values in probs.

IMSLS_SET_INDEX_VECTORS, int *iwk, float *wk (Input)
Arrays of length nmass that can be used to increase efficiency when multiple
calls will be made to imsls_f_random_general_discrete the same
values in probs. These arrays are obtained by using one of the options
IMSLS_GET_INDEX_VECTORS or IMSLS_GET_INDEX_VECTORS_USER in
the first call to imsls_f_random_general_discrete.

IMSLS_TABLE (Input)
Generate pseudorandom numbers from a general discrete distribution using a
table lookup method. If this option is used, then probs is a vector of length at
least nmass + 1 containing in the first nmass positions the cumulative
probabilities and, possibly, indexes to speed access to the probabilities.

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied array of length n_random containing the random discrete
deviates.

Description
Routine imsls_f_random_general_discrete generates pseudorandom numbers
from a discrete distribution with probability function given in the vector probs; that is

Pr(X = i) = pj

for i = i∃, i∃ + 1, …, i∃ + nm − 1 where j = i − i∃ + 1, pj = probs[j-1],
i∃ = imin, and nm = nmass.

830 • random_general_discrete IMSL C Stat Library

The algorithm is the alias method, due to Walker (1974), with modifications suggested
by Kronmal and Peterson (1979). The method involves a setup phase, in which the
vectors iwk and wk are filled. After the vectors are filled, the generation phase is very
fast. To increase efficiency, the first call to imsls_f_random_general_discrete
can retrieve the arrays iwk and wk using the optional arguments
IMSLS_GET_INDEX_VECTORS or IMSLS_GET_INDEX_VECTORS_USER , then
subsequent calls can be made using the optional argument
IMSLS_SET_INDEX_VECTORS.
If the optional argument IMSLS_TABLE is used,
imsls_f_random_general_discrete generates pseudorandom deviates from a
discrete distribution, using the table probs, which contains the cumulative
probabilities of the distribution and, possibly, indexes to speed the search of the table.
The routine imsls_f_discrete_table_setup can be used to set up the table
probs. imsls_f_random_general_discrete uses the inverse CDF method to
generate the variates.

Example 1
In this example, imsls_f_random_general_discrete is used to generate five
pseudorandom variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

When imsls_f_random_general_discrete is called the first time,
IMSLS_GET_INDEX_VECTORS is used to initialize the index vectors iwk and wk. In the
next call, IMSLS_GET_INDEX_VECTORS is used, so the setup phase is bypassed.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int nr = 5, nmass = 5, iopt = 0, imin = 1, *iwk, *ir;

 float probs[] = {.05, .45, .31, .04, .15};
 float *wk;

 imsls_random_seed_set(123457);

 ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,
 IMSLS_GET_INDEX_VECTORS, &iwk, &wk,

Chapter 12: Random Number Generation random_general_discrete • 831

 0);

 imsls_i_write_matrix("Random deviates", 1, 5, ir,
 IMSLS_NO_COL_LABELS,
 0);
 free(ir);

 ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,
 IMSLS_SET_INDEX_VECTORS, iwk, wk,
 0);

 imsls_i_write_matrix("Random deviates", 1, 5, ir,
 IMSLS_NO_COL_LABELS,
 0);

}

Output
 Random deviates
 3 2 2 3 5

 Random deviates
 1 3 4 5 3

Example 2
In this example, imsls_f_discrete_table_setup is used to set up a table and then
imsls_f_random_general_discrete is used to generate five pseudorandom
variates from the binomial distribution with parameters 20 and 0.5.

#include <stdio.h>
#include <imsls.h>

float prf(int ix);
void main()
{
 int nndx = 12, imin = 0, nmass = 21, nr = 5;
 float del = 0.00001, *cumpr;
 int *ir = NULL;

 cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass, 0);

 imsls_random_seed_set(123457);

 ir = imsls_f_random_general_discrete(nr, imin, nmass, cumpr,
 IMSLS_TABLE, 0);

 imsls_i_write_matrix("Binomial (20, 0.5) random deviates", 1, 5, ir,
 IMSLS_NO_COL_LABELS,
 0);

}

832 • discrete_table_setup IMSL C Stat Library

float prf(int ix)
{
 int n = 20;
 float p = .5;
 return imsls_f_binomial_probability (ix, n, p);
}

Output

Binomial (20, 0.5) random deviates
 14 9 12 10 12

discrete_table_setup
 Sets up table to generate pseudorandom numbers from a general discrete distribution.

Synopsis
#include <imsls.h>
float *imsls_f_discrete_table_setup (float prf(), float del,

int nndx, int *imin, int *nmass, ..., 0)
The type double function is imsls_d_discrete_table_setup.

Required Arguments

float prf(int ix) (Input)
User-supplied function to compute the probability associated with each mass
point of the distribution The argument to the function is the point at which the
probability function is to be evaluated. ix can range from imin to the value at
which the cumulative probability is greater than or equal to 1.0 − del.

float del (Input)
Maximum absolute error allowed in computing the cumulative probability.
Probabilities smaller than del are ignored; hence, del should be a small
positive number. If del is too small, however, the return value, cumpr
[nmass-1] must be exactly 1.0 since that value is compared to
1.0 − del.

int nndx (Input)
The number of elements of cumpr available to be used as indexes.
nndx must be greater than or equal to 1. In general, the larger nndx is, to
within sixty or seventy percent of nmass, the more efficient the generation of
random numbers using imsls_f_random_general_discrete will be.

int *imin (Input/Output)
Pointer to a scalar containing the smallest value the random deviate can
assume. (Input/Output)
imin is not used if optional argument IMSLS_INDEX_ONLY is used. By
default, prf is evaluated at imin. If this value is less than del, imin is
incremented by 1 and again prf is evaluated at imin. This process is

Chapter 12: Random Number Generation discrete_table_setup • 833

continued until prf(imin) ≥ del. imin is output as this value and the return
value cumpr [0] is output as prf(imin).

int *nmass (Input/Output)
Pointer to a scalar containing the number of mass points in the distribution.
Input, if IMSLS_INDEX_ONLY is used; otherwise, output.
By default, nmass is the smallest integer such that
prf(imin + nmass − 1) > 1.0 − del. nmass does include the points iminin +
j for which prf(iminin + j) < del, for j = 0, 1, …,
iminout − iminin, where iminin denotes the input value of imin and iminout
denotes its output value.

Return Value
Array, cumpr, of length nmass + nndx containing in the first nmass positions, the
cumulative probabilities and in some of the remaining positions, indexes to speed
access to the probabilities. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_discrete_table_setup (float prf(), float del, int nndx, int

*imin, int *nmass,
IMSLS_INDEX_ONLY,
IMSLS_RETURN_USER, float cumpr[], int lcumpr,
IMSLS_FCN_W_DATA, float prf(), void *data,
 0)

Optional Arguments

IMSLS_INDEX_ONLY (Intput)
Fill only the index portion of the result, cumpr, using the values in the first
nmass positions. prf is not used and may be a dummy function; also, imin is
not used. The optional argument IMSLS_RETURN_USER is required if
IMSLS_INDEX_ONLY is used.

IMSLS_RETURN_USER, float cumpr[], int lcumpr (Input/Output)
cumpr is a user-allocated array of length nmass + nndx containing in the first
nmass positions, the cumulative probabilities and in some of the remaining
positions, indexes to speed access to the probabilities. lcumpr is the actual
length of cumpr as specified in the calling function. Since, by default, the
logical length of cumpr is determined in
imsls_f_discrete_table_setup, lcumpr is used for error checking. If
the option IMSLS_INDEX_ONLY is used, then only the index portion of
cumpr are filled.

IMSLS_FCN_W_DATA, float prf(int ix), void *data, (Input)
User-supplied function to compute the probability associated with each mass
point of the distribution, which also accepts a pointer to data that is supplied
by the user. data is a pointer to the data to be passed to the user-supplied
function. See the Introduction, Passing Data to User-Supplied Functions at
the beginning of this manual for more details.

834 • discrete_table_setup IMSL C Stat Library

Description
Routine imsls_f_discrete_table_setup sets up a table that routine
imsls_f_random_general_discrete uses to generate pseudorandom deviates
from a discrete distribution. The distribution can be specified either by its probability
function prf or by a vector of values of the cumulative probability function. Note that
prf is not the cumulative probability distribution function. If the cumulative
probabilities are already available in cumpr, the only reason to call
imsls_f_discrete_table_setup is to form an index vector in the upper portion of
cumpr so as to speed up the generation of random deviates by the routine
imsls_f_random_general_discrete.

Example 1
In this example, imsls_f_discrete_table_setup is used to set up a table to
generate pseudorandom variates from the discrete distribution:

Pr(X = 1) = .05

Pr(X = 2) = .45

Pr(X = 3) = .31

Pr(X = 4) = .04

Pr(X = 5) = .15

In this simple example, we input the cumulative probabilities directly in cumpr and
request 3 indexes to be computed (nndx = 4). Since the number of mass points is so
small, the indexes would not have much effect on the speed of the generation of the
random variates.

#include <stdio.h>
#include <imsls.h>

float prf(int ix);
void main()
{
 int i, lcumpr = 9, ir[5];
 int nndx = 4, imin = 1, nmass = 5, nr = 5;

 float cumpr[9], del = 0.00001, *p_cumpr = NULL;
 i = 0;
 cumpr[i++] = .05;
 cumpr[i++] = .5;
 cumpr[i++] = .81;
 cumpr[i++] = .85;
 cumpr[i++] = 1.0;

 imsls_f_discrete_table_setup (prf, del,

Chapter 12: Random Number Generation discrete_table_setup • 835

 nndx, &imin, &nmass,
 IMSLS_INDEX_ONLY,
 IMSLS_RETURN_USER, cumpr, lcumpr,
 0);
 imsls_f_write_matrix("Cumulative probabilities and indexes",
 1, lcumpr, cumpr, 0);

}

float prf(int ix)
{
 return 0.;

}

Output
1.

 Cumulative probabilities and indexes
 1 2 3 4 5 6
 0.05 0.50 0.81 0.85 1.00 3.00

 7 8 9
 1.00 2.00 5.00

Example 2
This example, imsls_f_random_general_discrete is used to set up a table to
generate binomial variates with parameters 20 and 0.5. The routine
imsls_f_binomial_probabililty (Chapter 11, Probability Distribution
Functions and Inverses) is used to compute the probabilities.

#include <stdio.h>
#include <imsls.h>

float prf(int ix);
void main()
{
 int lcumpr = 33;
 int nndx = 12, imin = 0, nmass = 21, nr = 5;
 float del = 0.00001, *cumpr;
 int *ir = NULL;

 cumpr = imsls_f_discrete_table_setup (prf, del, nndx, &imin, &nmass, 0);

 printf("The smallest point with positive probability using \n");
 printf("the given del is %d and all points after \n", imin);
 printf("point number %d (counting from the input value\n", nmass);
 printf("of IMIN) have zero probability.\n");
 imsls_f_write_matrix("Cumulative probabilities and indexes",
 nmass+nndx, 1, cumpr,
 IMSLS_WRITE_FORMAT, "%11.7f", 0);

}

836 • discrete_table_setup IMSL C Stat Library

float prf(int ix)
{
 int n = 20;
 float p = .5;
 return imsls_f_binomial_probability(ix, n, p);
}

Output
2.

The smallest point with positive probability using
the given del is 1 and all points after
point number 19 (counting from the input value
of IMIN) have zero probability.

Cumulative probabilities and indexes
 1 0.0000191
 2 0.0002003
 3 0.0012875
 4 0.0059080
 5 0.0206938
 6 0.0576583
 7 0.1315873
 8 0.2517219
 9 0.4119013
 10 0.5880987
 11 0.7482781
 12 0.8684127
 13 0.9423417
 14 0.9793062
 15 0.9940920
 16 0.9987125
 17 0.9997997
 18 0.9999809
 19 1.0000000
 20 11.0000000
 21 1.0000000
 22 7.0000000
 23 8.0000000
 24 9.0000000
 25 9.0000000
 26 10.0000000
 27 11.0000000
 28 11.0000000
 29 12.0000000
 30 13.0000000
 31 19.0000000

Chapter 12: Random Number Generation random_beta • 837

random_beta
Generates pseudorandom numbers from a beta distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_beta (int n_random, float pin, float qin, ..., 0)
The type double function is imsls_d_random_beta.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float pin (Input)
First beta distribution parameter. Argument pin must be positive.

float qin (Input)
Second beta distribution parameter. Argument qin must be positive.

Return Value
If no optional arguments are used, imsls_f_random_beta returns an array of length
n_random containing the random standard beta deviates. To release this space, use
free.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_random_beta (int n_random, float pin, float qin,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
Array of length n_random containing the random standard beta deviates.

Description
Function imsls_f_random_beta generates pseudorandom numbers from a beta
distribution with parameters pin and qin, both of which must be positive. With
p = pin and q = qin, the probability density function is

() ()
() () () 11 1 for 0 1qpp q

f x x x x
p q

−−Γ +
= − ≤ ≤

Γ Γ

where Γ (⋅) is the gamma function.
The algorithm used depends on the values of p and q. Except for the trivial cases of
p = 1 or q = 1, in which the inverse CDF method is used, all of the methods use
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) is

838 • random_cauchy IMSL C Stat Library

used. If either p or q is less than 1 and the other is greater than 1, the method of
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB (Cheng
1978), which requires very little setup time, is used if n_random is less than 4; and
algorithm B4PE of Schmeiser and Babu (1980) is used if n_random is greater than or
equal to 4. Note that for p and q both greater than 1, calling imsls_f_random_beta
in a loop getting less than four variates on each call will not yield the same set of
deviates as calling imsls_f_random_beta once and getting all the deviates at once
because two different algorithms are used.

The values returned in r are less than 1.0 and greater than ε, where ε is the smallest
positive number such that 1.0 − ε is less than 1.0.
Function imsls_random_seed_set can be used to initialize the seed of the random
number generator; function imsls_random_option can be used to select the form of
the generator.

Example
In this example, imsls_f_random_beta generates five pseudorandom beta
(3, 2) variates.

#include <imsls.h>

main()
{

 int n_random = 5;
 int seed = 123457;
 float pin = 3.0;
 float qin = 2.0;
 float *r;

 imsls_random_seed_set (seed);
 r = imsls_f_random_beta (n_random, pin, qin, 0);
 imsls_f_write_matrix("Beta (3,2) random deviates", 1, n_random,
 r, 0);
}

Output
 Beta (3,2) random deviates
 1 2 3 4 5
 0.2814 0.9483 0.3984 0.3103 0.8296

random_cauchy
Generates pseudorandom numbers from a Cauchy distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_cauchy (int n_random, ..., 0)
The type double function is imsls_d_random_cauchy.

Chapter 12: Random Number Generation random_cauchy • 839

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random Cauchy deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_cauchy (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random Cauchy
deviates.

Description
Function imsls_f_random_cauchy generates pseudorandom numbers from a
Cauchy distribution. The probability density function is

()
()22[]
Sf x

S x Tπ
=

+ −

where T is the median and T − S is the first quartile. This function first generates
standard Cauchy random numbers (T = 0 and S = 1) using the technique described
below, and then scales the values using T and S.
Use of the inverse CDF technique would yield a Cauchy deviate from a uniform (0, 1)
deviate, u, as tan [π (u − 0.5)]. Rather than evaluating a tangent directly, however,
random_cauchy generates two uniform (−1, 1) deviates, x1 and x2. These values can
be thought of as sine and cosine values. If

2 2
1 2x x+

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate;
otherwise, x1 and x2 are rejected and two new uniform (−1, 1) deviates are generated.
This method is also equivalent to taking the ration of two independent normal deviates.

Example
In this example, imsls_f_random_cauchy generates five pseudorandom Cauchy
numbers. The generator used is a simple multiplicative congruential with a multiplier
of 16807.

#include <imsls.h>
#include <stdio.h>

840 • random_chi_squared IMSL C Stat Library

void main()
{
 int n_random = 5;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_cauchy(n_random, 0);
 printf("Cauchy random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 r[0], r[1], r[2], r[3], r[4]);

}

Output
Cauchy random deviates: 3.5765 0.9353 15.5797 2.0815 -0.1333

random_chi_squared
Generates pseudorandom numbers from a chi-squared distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_chi_squared (int n_random, float df, ..., 0)
The type double function is imsls_d_random_chi_squared.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parameter df must be positive.

Return Value
An array of length n_random containing the random chi-squared deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_chi_squared (int n_random, float df,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random chi-squared
deviates.

Chapter 12: Random Number Generation random_exponential • 841

Description
Function imsls_f_random_chi_squared generates pseudorandom numbers from a
chi-squared distribution with df degrees of freedom. If df is an even integer less than
17, the chi-squared deviate r is generated as

1

2 ln
n

i
i

r u
=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∏

where n = df/2 and the ui are independent random deviates from a uniform (0, 1)
distribution. If df is an odd integer less than 17, the chi-squared deviate is generated in
the same way, except the square of a normal deviate is added to the expression above.
If df is is greater than 16 or is not an integer, and if it is not too large to cause overflow
in the gamma random number generator, the chi-squared deviate is generated as a
special case of a gamma deviate, using function imsls_f_random_gamma. If
overflow would occur in imsls_f_random_gamma, the chi-squared deviate is
generated in the manner described above, using the logarithm of the product of
uniforms, but scaling the quantities to prevent underflow and overflow.

Example
In this example, imsls_f_random_chi_squared generates five pseudorandom chi-
squared deviates with five degrees of freedom.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 float df = 5.0;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_chi_squared(n_random, df, 0);
 imsls_f_write_matrix("Chi-Squared random deviates: ",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);

}

Output
 Chi-Squared random deviates:
 12.09 0.48 1.80 14.87 1.75

random_exponential
Generates pseudorandom numbers from a standard exponential distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_exponential (int n_random, ..., 0)

842 • random_exponential IMSL C Stat Library

The type double function is imsls_d_random_exponential.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random standard exponential deviates.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_exponential (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random standard
exponential deviates.

Description
Function imsls_f_random_exponential generates pseudorandom numbers from a
standard exponential distribution. The probability density function is f (x) = e-x, for
x > 0. Function imsls_f_random_exponential uses an antithetic inverse CDF
technique; that is, a uniform random deviate U is generated, and the inverse of the
exponential cumulative distribution function is evaluated at 1.0 − U to yield the
exponential deviate.
Deviates from the exponential distribution with mean θ can be generated by using
imsls_f_random_exponential and then multiplying each entry in r by θ.

Example
In this example, imsls_f_random_exponential generates five pseudorandom
deviates from a standard exponential distribution.

#include <imsls.h>

#define N_RANDOM 5

main()

{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;

 imsls_random_seed_set(seed);
 r = imsls_f_random_exponential(n_random, 0);
 printf("%s: %8.4f%8.4f%8.4f%8.4f\n",
 "Exponential random deviates",

Chapter 12: Random Number Generation random_exponential_mix • 843

 r[0], r[1], r[2], r[3], r[4]);
}

Output
Exponential random deviates: 0.0344 1.3443 0.2662 0.5633 0.1686

random_exponential_mix
Generates pseudorandom numbers from a mixture of two exponential distributions.

Synopsis
#include <imsls.h>
float *imsls_f_random_exponential_mix (int n_random, float theta1,

float theta2, float p, ..., 0)
The type double function is imsls_d_random_exponential_mix.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float theta1 (Input)
Mean of the exponential distribution which has the larger mean.

float theta2 (Input)
Mean of the exponential distribution which has the smaller mean. Parameter
theta2 must be positive and less than or equal to theta1.

float p (Input)
Mixing parameter. Parameter p must be non-negative and less than or equal to
theta1/(theta1 − theta2).

Return Value
An array of length n_random containing the random deviates of a mixture of two
exponential distributions.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_exponential_mix (int n_random, float theta1,

float theta2, float p,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random deviates.

844 • random_exponential_mix IMSL C Stat Library

Description
Function imsls_f_random_exponential_mix generates pseudorandom numbers
from a mixture of two exponential distributions. The probability density function is

() 1 2/ /

1 2

1x xp pf x e eθ θ

θ θ
− −−

= +

for x > 0, where p = p, θ1 = theta1, and θ2 = theta2.

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter
p is interpretable as a probability; and imsls_f_random_exponential_mix with
probability p generates an exponential deviate with mean θ1, and with probability 1 − p
generates an exponential with mean θ2. When p is greater than 1, but less than
θ1/(θ1 − θ2), then either an exponential deviate with mean θ1 or the sum of two
exponentials with means θ1 and θ2 is generated. The probabilities are
q = p − (p − 1) (θ1/θ2) and 1 − q, respectively, for the single exponential and the sum of
the two exponentials.

Example
In this example, imsls_f_random_exponential_mix is used to generate five
pseudorandom deviates from a mixture of exponentials with means 2 and 1,
respecctively, and with mixing parameter 0.5.

#include <imsls.h>
#include <stdio.h>

void main()
{
 int n_random = 5;
 float theta1 = 2.0;
 float theta2 = 1.0;
 float p = 0.5;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_exponential_mix(n_random, theta1, theta2, p, 0);
 imsls_f_write_matrix("Mixed exponential random deviates: ",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);

}

Output
 Mixed exponential random deviates:
 0.070 1.302 0.630 1.976 0.372

Chapter 12: Random Number Generation random_gamma • 845

random_gamma
Generates pseudorandom numbers from a standard gamma distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_gamma (int n_random, float a, ..., 0)
The type double function is imsls_d_random_gamma.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float a (Input)
Shape parameter of the gamma distribution. This parameter must be positive.

Return Value
An array of length n_random containing the random standard gamma deviates.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_random_gamma (int n_random, float a,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_USER_RETURN, float r[] (Output)
User-supplied array of length n_random containing the random standard
gamma deviates.

Description
Function imsls_f_random_gamma generates pseudorandom numbers from a gamma
distribution with shape parameter a and unit scale parameter. The probability density
function is

() ()
11 for 0a xf x x e x

a
− −= ≥

Γ

Various computational algorithms are used depending on the value of the shape
parameter a. For the special case of a = 0.5, squared and halved normal deviates are
used; for the special case of a = 1.0, exponential deviates are generated. Otherwise, if a
is less than 1.0, an acceptance-rejection method due to Ahrens, described in
Ahrens and Dieter (1974), is used. If a is greater than 1.0, a ten-region rejection
procedure developed by Schmeiser and Lal (1980) is used.

846 • random_lognormal IMSL C Stat Library

Deviates from the two-parameter gamma distribution with shape parameter a and scale
parameter b can be generated by using imsls_f_random_gamma and then multiplying
each entry in r by b. The following statements (in single precision) would yield random
deviates from a gamma (a, b) distribution.
float *r;
r = imsls_f_random_gamma(n_random, a, 0);
for (i=0; i<n_random; i++) *(r+i) *= b;

The Erlang distribution is a standard gamma distribution with the shape parameter
having a value equal to a positive integer; hence, imsls_f_random_gamma generates
pseudorandom deviates from an Erlang distribution with no modifications required.
Function imsls_random_seed_set can be used to initialize the seed of the random
number generator; function imsls_random_option can be used to select the form of
the generator.

Example
In this example, imsls_f_random_gamma generates five pseudorandom deviates
from a gamma (Erlang) distribution with shape parameter equal to 3.0.

#include <imsls.h>

void main()
{
 int seed = 123457;
 int n_random = 5;
 float a = 3.0;
 float *r;

 imsls_random_seed_set(seed);
 r = imsls_f_random_gamma(n_random, a, 0);
 imsls_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0);
}

Output
 Gamma(3) random deviates
 1 2 3 4 5
 6.843 3.445 1.853 3.999 0.779

random_lognormal
Generates pseudorandom numbers from a lognormal distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_lognormal (int n_random, float mean, float std, ...,

0)
The type double function is imsls_d_random_lognormal.

Chapter 12: Random Number Generation random_lognormal • 847

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float mean (Input)
Mean of the underlying normal distribution.

float std (Input)
Standard deviation of the underlying normal distribution.

Return Value
An array of length n_random containing the random deviates of a lognormal
distribution. The log of each element of the vector has a normal distribution with mean
mean and standard deviation std.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_lognormal (int n_random, float mean, float std,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random lognormal
deviates.

Description
Function imsls_f_random_lognormal generates pseudorandom numbers from a
lognormal distribution with parameters mean and std. The scale parameter in the
underlying normal distribution, std, must be positive. The method is to generate
normal deviates with mean mean and standard deviation std and then to exponentiate
the normal deviates.

With μ = mean and σ = std, the probability density function for the lognormal
distribution is

() ()2
2

1 1exp ln
22

f x x
x

μ
σσ π

⎡ ⎤= − −⎢ ⎥⎣ ⎦

for x > 0. The mean and variance of the lognormal distribution are exp (μ + σ2/2) and
exp (2μ + 2σ2) − exp (2μ + σ2), respectively.

Example
In this example, imsls_f_random_lognormal is used to generate five
pseudorandom lognormal deviates with a mean of 0 and standard deviation of 1.

#include <stdio.h>
#include <imsls.h>

848 • random_normal IMSL C Stat Library

void main()
{
 int n_random = 5;
 float mean = 0.0;
 float std = 1.0;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_lognormal(n_random, mean, std, 0);
 imsls_f_write_matrix("lognormal random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output
 lognormal random deviates:
 7.780 2.954 1.086 3.588 0.293

random_normal
Generates pseudorandom numbers from a normal, N (μ, σ2), distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_normal (int n_random, ..., 0)
The type double function is imsls_d_random_normal.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random normal deviates.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_random_normal (int n_random,
IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_MEAN, float mean (Input)
Parameter mean contains the mean, μ, of the N(μ, σ2) from which random
normal deviates are to be generated.
Default: mean = 0.0

Chapter 12: Random Number Generation random_normal • 849

IMSLS_VARIANCE, float variance (Input)
Parameter variance contains the variance of the N (μ, σ2) from which random
normal deviates are to be generated.
Default: variance = 1.0

IMSLS_ACCEPT_REJECT_METHOD
By default, random numbers are generated using an inverse CDF technique.
When optional argument IMSLS_ACCEPT_REJECT_METHOD is specified, an
acceptance/ rejection method is used instead. See the “Description” section for
details about each method.

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the generated random
standard normal deviates.

Description
By default, function imsls_f_random_normal generates pseudorandom numbers
from a normal (Gaussian) distribution using an inverse CDF technique. In this method,
a uniform (0, 1) random deviate is generated. The inverse of the normal distribution
function is then evaluated at that point, using the function
imsls_f_normal_inverse_cdf (Chapter 11, Probablility Distribution Functions
and Inverses).
If optional argument IMSLS_ACCEPT_REJECT_METHOD is specified, function
imsls_f_random_normal generates pseudorandom numbers using an
acceptance/rejection technique due to Kinderman and Ramage (1976). In this method,
the normal density is represented as a mixture of densities over which a variety of
acceptance/rejection method due to Marsaglia (1964), Marsaglia and Bray (1964), and
Marsaglia et al. (1964) are applied. This method is faster than the inverse CDF
technique.

Remarks
Function imsls_random_seed_set can be used to initialize the seed of the random
number generator; function imsls_random_option can be used to select the form of
the generator.

Example
In this example, imsls_f_random_normal generates five pseudorandom deviates
from a standard normal distribution.

#include <imsls.h>
#define N_RANDOM 5

void main()
{
 int seed = 123457;
 int n_random = N_RANDOM;
 float *r;

 imsls_random_seed_set (seed);
 r = imsls_f_random_normal(n_random, 0);
 printf("%s:\n%8.4f%8.4f%8.4f%8.4f%8.4f\n",

850 • random_stable IMSL C Stat Library

 "Standard normal random deviates",
 r[0], r[1], r[2], r[3], r[4]);
}

Output
Standard normal random deviates:
1.8279 -0.6412 0.7266 0.1747 1.0145

random_stable
Generates pseudorandom numbers from a stable distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_stable (int n_random, float alpha,

float bprime, ..., 0)
The type double function is imsls_d_random_stable.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float alpha (Input)
Characteristic exponent of the stable distribution. This parameter must be
positive and less than or equal to 2.

float bprime (Input)
Skewness parameter of the stable distribution. When bprime = 0, the
distribution is symmetric. Unless alpha = 1, bprime is not the usual
skewness parameter of the stable distribution. bprime must be greater than or
equal to − 1 and less than or equal to 1.

Return Value
An integer array of length n_random containing the random deviates. To release this
space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_binomial (int n_random, float alpha,

float bprime,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random deviates.

Chapter 12: Random Number Generation random_stable • 851

Description
Function imsls_f_random_stable generates pseudorandom numbers from a stable
distribution with parameters alpha and bprime. alpha is the usual characteristic
exponent parameter α and bprime is related to the usual skewness parameter β of the
stable distribution. With the restrictions 0 < α ≤ 2 and − 1 ≤ β ≤ 1, the characteristic
function of the distribution is

ϕ(t) = exp[−| t |α exp(−πiβ(1 − |1 − α|)sign(t)/2)] for α ≠ 1

and

ϕ(t) = exp[−| t |(1 + 2iβ ln| t |)sign(t)/π)] for α = 1

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution is
normal with mean 0 and variance 2; and if α = 1, the distribution is Cauchy.
The parameterization using bprime and the algorithm used here are due to Chambers,
Mallows, and Stuck (1976). The relationship between bprime = β′ and the standard β
is

β′ = −tan(π(1 − α)/2) tan(−πβ(1 − |1 − α|)/2) for α ≠ 1

and

β′ = β for α = 1

The algorithm involves formation of the ratio of a uniform and an exponential random
variate.

Example
In this example, imsls_f_random_stable is used to generate five pseudorandom
symmetric stable variates with characteristic exponent 1.5. The tails of this distribution
are heavier than those of a normal distribution, but not so heavy as those of a Cauchy
distribution. The variance of this distribution does not exist, however. (This is the case
for any stable distribution with characteristic exponent less than 2.)

#include <stdio.h>
#include <imsls.h>

void main()
{
 int nr = 5;
 float alpha = 1.5, bprime = 0.0, *r;

 imsls_random_seed_set(123457);

 r = imsls_f_random_stable(nr, alpha, bprime, 0);
 imsls_f_write_matrix("Stable random deviates", 5, 1, r,
 IMSLS_NO_ROW_LABELS, 0);

}

852 • random_student_t IMSL C Stat Library

 Output
Stable random deviates
 4.409
 1.056
 2.546
 5.672
 2.166

random_student_t
Generates pseudorandom numbers from a Student’s t distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_student_t (int n_random, float df, ..., 0)
The type double function is imsls_d_random_student_t.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float df (Input)
Degrees of freedom. Parameter df must be positive.

Return Value
An array of length n_random containing the random deviates of a Student’s t
distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_student_t (int n_random, float df,

IMSLS_RETURN_USER, float r[],
IMSLS_MEAN, float mean,
IMSLS_VARIANCE, float variance,
0)

Optional Arguments

IMSLS_MEAN, float mean (Input)
Mean of the Student’s t distribution.
Default: mean = 0.0

IMSLS_VARIANCE, float variance (Input)
Variance of the Student’s t distribution.
Default: variance = 1.0

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random Student’s t
deviates.

Chapter 12: Random Number Generation random_triangular • 853

Description
Function imsls_f_random_student_t generates pseudorandom numbers from a
Student’s t distribution with df degrees of freedom, using a method suggested by
Kinderman et al. (1977). The method (“TMX” in the reference) involves a
representation of the t density as the sum of a triangular density over (−2, 2) and the
difference of this and the t density. The mixing probabilities depend on the degrees of
freedom of the t distribution. If the triangular density is chosen, the variate is generated
as the sum of two uniforms; otherwise, an acceptance/rejection method is used to
generate the difference density.

random_triangular
Generates pseudorandom numbers from a triangular distribution on the interval (0, 1).

Synopsis
#include <imsls.h>
float *imsls_f_random_triangular (int n_random, ..., 0)
The type double function is imsls_d_random_triangular.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random deviates of a triangular
distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_triangular (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random triangular
deviates.

Description
Function imsls_f_random_triangular generates pseudorandom numbers from a
triangular distribution over the unit interval. The probability density function is
f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 − x), for 0.5 < x ≤ 1. An inverse CDF
technique is used.

854 • random_uniform IMSL C Stat Library

Example
In this example, imsls_f_random_triangular is used to generate five
pseudorandom deviates from a triangular distribution.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_triangular(n_random, 0);
 imsls_f_write_matrix("Triangular random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output
 Triangular random deviates:
 0.8700 0.3610 0.6581 0.5360 0.7215

random_uniform
Generates pseudorandom numbers from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_uniform (int n_random, …, 0)
The type double function is imsls_d_random_uniform.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

Return Value
An array of length n_random containing the random uniform (0, 1) deviates.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_random_uniform (int n_random,

IMSLS_RETURN_USER, float r[],
0)

Chapter 12: Random Number Generation random_uniform • 855

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random uniform (0, 1)
deviates.

Description
Function imsls_f_random_uniform generates pseudorandom numbers from a
uniform (0, 1) distribution using a multiplicative congruential method. The form of the
generator is as follows:

xi ≡ cxi-1mod (231 − 1)

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the
generators are 16807, 397204094, and 950706376. The selection is made by the
function imsls_random_option. The choice of 16807 will result in the fastest
execution time. If no selection is made explicitly, the functions use the multiplier
16807.
Function imsls_random_seed_set can be used to initialize the seed of the random
number generator; function imsls_random_option can be used to select the form of
the generator.
The user can select a shuffled version of these generators. In this scheme, a table is
filled with the first 128 uniform (0, 1) numbers resulting from the simple multiplicative
congruential generator. Then, for each xi from the simple generator, the low-order bits
of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table is
then delivered as the random number, and xi, after being scaled into the unit interval, is
inserted into the j-th position in the table.
The values returned by imsls_f_random_uniform are positive and less than 1.0.
However, some values returned may be smaller than the smallest relative spacing;
hence, it may be the case that some value, for example r [i], is such that
1.0 − r [i] = 1.0.
Deviates from the distribution with uniform density over the interval (a, b) can be
obtained by scaling the output from imsls_f_random_uniform. The following
statements (in single precision) would yield random deviates from a uniform
(a, b) distribution.
float *r;
r = imsls_f_random_uniform (n_random, 0);
for (i=0; i<n_random; i++) r[i] = r[i]*(b-a) + a;

Example
In this example, imsls_f_random_uniform generates five pseudorandom uniform
numbers. Since function imsls_random_option is not called, the generator used is a
simple multiplicative congruential one with a multiplier of 16807.

#include <imsls.h>
#include <stdio.h>

#define N_RANDOM 5

856 • random_von_mises IMSL C Stat Library

void main()
{
 float *r;

 imsls_random_seed_set(123457);

 r = imsls_f_random_uniform(N_RANDOM, 0);

 printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",
 r[0], r[1], r[2], r[3], r[4]);
}

Output
Uniform random deviates: 0.9662 0.2607 0.7663 0.5693 0.8448

random_von_mises
Generates pseudorandom numbers from a von mises distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_von_mises (int n_random, float c, …, 0)
The type double function is imsls_d_random_von_mises.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float c (Input)
Parameter of the von Mises distribution. This parameter must be greater than
one-half of machine epsilon (On many machines, the lower bound for c is 10-

3).

Return Value
An array of length n_random containing the random deviates of a von Mises
distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_von_mises (int n_random, float c,

IMSLS_RETURN_USER, float r[],
0)

Chapter 12: Random Number Generation random_weibull • 857

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random von mises
deviates.

Description
Function imsls_f_random_von_mises generates pseudorandom numbers from a
von Mises distribution with parameter c, which must be positive. With c = c, the
probability density function is

() () ()
0

1 exp cos
2

f x c x
I cπ

= ⎡ ⎤⎣ ⎦

for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of order 0.
The probability density is equal to 0 outside the interval (−π, π).
The algorithm is an acceptance/rejection method using a wrapped Cauchy distribution
as the majorizing distribution. It is due to Nest and Fisher (1979).

Example
In this example, imsls_f_random_von_mises is used to generate five
pseudorandom von Mises variates with c = 1.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 float c = 1.0;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_von_mises(n_random, c, 0);
 imsls_f_write_matrix("Von Mises random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output
 Von Mises random deviates:
 0.247 -2.433 -1.022 -2.172 -0.503

random_weibull
Generates pseudorandom numbers from a Weibull distribution.

Synopsis
#include <imsls.h>

float *imsls_f_random_weibull (int n_random, float a, …, 0)

858 • random_weibull IMSL C Stat Library

The type double function is imsls_d_random_weibull.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

float a (Input)
Shape parameter of the Weibull distribution. This parameter must be positive.

Return Value
An array of length n_random containing the random deviates of a Weibull distribution.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_weibull (int n_random, float a,

IMSLS_B, float b,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_B, float b (Input)
Scale parameter of the two parameter Weibull distribution.
Default: b = 1.0

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random Weibull
deviates.

Description
Function imsls_f_random_weibull generates pseudorandom numbers from a
Weibull distribution with shape parameter a and scale parameter b. The probability
density function is

() ()1 expa af x abx bx−= −

for x ≥ 0, a > 0, and b > 0. Function imsls_f_random_weibull uses an antithetic
inverse CDF technique to generate a Weibull variate; that is, a uniform random deviate
U is generated and the inverse of the Weibull cumulative distribution function is
evaluated at 1.0 − U to yield the Weibull deviate.
Note that the Rayleigh distribution with probability density function

() ()()2 2/ 2

2

1 x
r x xe

α

α
−

=

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2 and
scale parameter b equal to

Chapter 12: Random Number Generation random_general_continuous • 859

2α

Example
In this example, imsls_f_random_weibull is used to generate five pseudorandom
deviates from a two-parameter Weibull distribution with shape parameter equal to 2.0
and scale parameter equal to 6.0—a Rayleigh distribution with the following
parameter:

3 2α =

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 float a = 3.0;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_weibull(n_random, a, 0);
 imsls_f_write_matrix("Weibull random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output
 Weibull random deviates:
 0.325 1.104 0.643 0.826 0.552

Warning Errors

IMSLS_SMALL_A The shape parameter is so small that a relatively large
proportion of the values of deviates from the Weibull
cannot be represented.

random_general_continuous
Generates pseudorandom numbers from a general continuous distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_general_continuous (int n_random, int ndata, float

table[],..., 0)
The type double function is imsls_d_random_general_continuous.

860 • random_general_continuous IMSL C Stat Library

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int ndata (Input)
Number of points at which the CDF is evaluated for interpolation. ndata
must be greater than or equal to 4.

float *table (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative distribution
function.
The first column of table contains abscissas of the cumulative distribution
function in ascending order, the second column contains the values of the
CDF (which must be strictly increasing beginning with 0.0 and ending at 1.0)
and the remaining columns contain values used in interpolation. This table is
set up using routine imsls_f_continous_table_setup.

Return Value
An array of length n_random containing the random discrete deviates. To release this
space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_f_random_general_continuous (int n_random, int ndata, float

table[],
IMSLS_TABLE_COL_DIM, int table_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments

IMSLS_TABLE_COL_DIM, int table_col_dim (Intput)
Column dimension of the matrix table.
Default: table_col_dim = 5

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the random continuous
deviates.

Description
Routine imsls_f_random_general_continuous generates pseudorandom numbers
from a continuous distribution using the inverse CDF technique, by interpolation of
points of the distribution function given in table, which is set up by routine
imsls_f_continuous_table_setup. A strictly monotone increasing distribution
function is assumed. The interpolation is by an algorithm attributable to Akima (1970),
using piecewise cubics. The use of this technique for generation of random numbers is
due to Guerra, Tapia, and Thompson (1976), who give a description of the algorithm
and accuracy comparisons between this method and linear interpolation. The relative
errors using the Akima interpolation are generally considered very good.

Chapter 12: Random Number Generation random_general_continuous • 861

Example 1
In this example, imsls_f_continuous_table_setup is used to set up a table for
generation of beta pseudorandom deviates. The CDF for this distribution is computed
by the routine imsls_f_beta_cdf (Chapter 11, Probability Distribution Functions
and Inverses). The table contains 100 points at which the CDF is evaluated and that are
used for interpolation.

#include <stdio.h>
#include <imsls.h>

float cdf(float);
void main()
{
 int i, iopt=0, ndata= 100;
 float table[100][5], x = 0.0, *r;

 for (i=0;i<ndata;i++) {
 table[i][0] = x;
 x += .01;
 }

 imsls_f_continuous_table_setup(cdf, iopt, ndata, (float*)table);

 imsls_random_seed_set(123457);
 r = imsls_f_random_general_continuous (5, ndata, table, 0);
 imsls_f_write_matrix("Beta (3, 2) random deviates", 5, 1, r, 0);

}

float cdf(float x)
{
 return imsls_f_beta_cdf(x, 3., 2.);
}

Output
*** WARNING Error from imsls_f_continuous_table_setup. The values of the
*** CDF in the second column of table did not begin at 0.0 and end
*** at 1.0, but they have been adjusted. Prior to adjustment,
*** table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.

Beta (3, 2) random deviates
 1 0.9208
 2 0.4641
 3 0.7668
 4 0.6536
 5 0.8171

862 • continuous_table_setup IMSL C Stat Library

continuous_table_setup
Sets up table to generate pseudorandom numbers from a general continuous
distribution.

Synopsis
#include <imsls.h>
void imsls_f_continuous_table_setup (float cdf(), int iopt, int ndata,

float *table, ..., 0)
The type double function is imsls_d_continuous_table_setup.

Required Arguments

float cdf(float x) (Input)
User-supplied function to compute the cumulative distribution function. The
argument to the function is the point at which the distribution function is to be
evaluated

int iopt (Input)
Indicator of the extent to which table is initialized prior to calling
imsls_f_continuous_table_setup.

iopt Action
0 imsls_f_continuous_table_setup fills the last four

columns of table. The user inputs the points at which the
CDF is to be evaluated in the first column of table. These
must be in ascending order.

1 imsls_f_continuous_table_setup fills the last three
columns of table. The user supplied function cdf is not used
and may be a dummy function; instead, the cumulative
distribution function is specified in the first two columns of
table. The abscissas (in the first column) must be in
ascending order and the function must be strictly monotonically
increasing.

int ndata (Input)
Number of points at which the CDF is evaluated for interpolation. ndata
must be greater than or equal to 4.

float *table (Input/Ouput)
ndata by 5 table to be used for interpolation of the cumulative distribution
function.
The first column of table contains abscissas of the cumulative distribution
function in ascending order, the second column contains the values of the
CDF (which must be strictly increasing), and the remaining columns contain
values used in interpolation. The first row of table corresponds to the left
limit of the support of the distribution and the
last row corresponds to the right limit of the support; that is,
table[0][1] = 0.0 and table[ndata-1][1] = 1.0.

Chapter 12: Random Number Generation continuous_table_setup • 863

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_continuous_table_setup (float cdf(), int iopt,

int ndata, float table[],
IMSLS_TABLE_COL_DIM,
IMSLS_FCN_W_DATA, float cdf(), void *data,
 0)

Optional Arguments

IMSLS_TABLE_COL_DIM, int table_col_dim (Intput)
Column dimension of the array table.
Default: table_col_dim = 5

IMSLS_FCN_W_DATA, float cdf(float x), void *data, (Input)
User-supplied function to compute the cumulative distribution function, which
also accepts a pointer to data that is supplied by the user. data is a pointer to
the data to be passed to the user-supplied function. See the Introduction,
Passing Data to User-Supplied Functions at the beginning of this manual for
more details.

Description
Routine imsls_f_continuous_table_setup sets up a table that routine
imsls_f_random_general_continuous can use to generate pseudorandom
deviates from a continuous distribution. The distribution is specified by its cumulative
distribution function, which can be supplied either in tabular form in table or by a
function cdf. See the documentation for the routine
imsls_f_random_general_continuous for a description of the method.

Example 1
In this example, imsls_f_continuous_table_setup is used to set up a
table to generate pseudorandom variates from a beta distribution. This example
is continued in the documentation for routine
imsls_f_random_general_continuous to generate the random variates.

#include <stdio.h>
#include <imsls.h>

float cdf(float);
void main()
{
 int i, iopt=0, ndata= 100;
 float table[100][5], x = 0.0;

 for (i=0;i<ndata;i++) {
 table[i][0] = x;
 x += .01;
 }

 imsls_f_continuous_table_setup(cdf, iopt, ndata, table);

864 • random_normal_multivariate IMSL C Stat Library

 printf("The first few values from the table:\n");
 for (i=0;i<10;i++) printf("%4.2f\t%8.4f\n", table[i][0], table[i][1]);

}

float cdf(float x)
{
 return imsls_f_beta_cdf(x, 3., 2.);
}

Output

*** WARNING Error from imsls_f_continuous_table_setup. The values of the
*** CDF in the second column of table did not begin at 0.0 and end
*** at 1.0, but they have been adjusted. Prior to adjustment,
*** table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01.

The first few values from the table:
0.00 0.0000
0.01 0.0000
0.02 0.0000
0.03 0.0001
0.04 0.0002
0.05 0.0005
0.06 0.0008
0.07 0.0013
0.08 0.0019
0.09 0.0027

random_normal_multivariate
Generates pseudorandom numbers from a multivariate normal distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_normal_multivariate (int n_vectors, int length,

float *covariances, …, 0)
The type double function is imsls_d_random_normal_multivariate.

Required Arguments

int n_vectors (Input)
Number of random multivariate normal vectors to generate.

int length (Input)
Length of the multivariate normal vectors.

float *covariances (Input)
Array of size length × length containing the variance-covariance matrix.

Chapter 12: Random Number Generation random_normal_multivariate • 865

Return Value
An array of length n_vectors × length containing the random multivariate normal
vectors stored consecutively.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_random_normal_multivariate (int n_vectors, int length,

float *covariances,
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_vectors × length containing the random
multivariate normal vectors stored consecutively.

Description
Function imsls_f_random_normal_multivariate generates pseudorandom
numbers from a multivariate normal distribution with mean vector consisting of all
zeros and variance-covariance matrix imsls_f_covariances. First, the Cholesky
factor of the variance-covariance matrix is computed. Then, independent random
normal deviates with mean 0 and variance 1 are generated, and the matrix containing
these deviates is postmultiplied by the Cholesky factor. Because the Cholesky
factorization is performed in each invocation, it is best to generate as many random
vectors as needed at once.
Deviates from a multivariate normal distribution with means other than 0 can be
generated by using imsls_f_random_normal_multivariate and then by adding
the vectors of means to each row of the result.

Example
In this example, imsls_f_random_normal_multivariate generates five
pseudorandom normal vectors of length 2 with variance-covariance matrix equal to the
following:

0.500 0.375
0.375 0.500

⎡ ⎤
⎢ ⎥
⎣ ⎦

#include <imsls.h>

void main()
{
 int n_vectors = 5;
 int length = 2;
 float covariances[] = {.5, .375, .375, .5};
 float *random;

 imsls_random_seed_set (123457);
 random = imsls_f_random_normal_multivariate (n_vectors, length,

866 • random_orthogonal_matrix IMSL C Stat Library

 covariances, 0);

 imsls_f_write_matrix ("multivariate normal random deviates",
 n_vectors, length, random, 0);
}

Output
multivariate normal random deviates
 1 2
 1 1.451 1.246
 2 0.766 -0.043
 3 0.058 -0.669
 4 0.903 0.463
 5 -0.867 -0.933

random_orthogonal_matrix
Generates a pseudorandom orthogonal matrix or a correlation matrix.

Synopsis
#include <imsls.h>
float *imsls_f_random_orthogonal_matrix (int n, ..., 0)
The type double function is imsls_d_random_orthogonal_matrix.

Required Arguments

int n (Input)
The order of the matrix to be generated.

Return Value
n by n random orthogonal matrix. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_orthogonal_matrix (int n,

IMSLS_EIGENVALUES, float *eignevalues[],
IMSLS_A_MATRIX, float *a,
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments

IMSLS_EIGENVALUES, float *eigenvalues (Input)
A vector of length n containing the eigenvalues of the correlation matrix to be
generated. The elements of eigenvalues must be positive, they must sum
to n, and they cannot all be equal.

Chapter 12: Random Number Generation random_orthogonal_matrix • 867

IMSLS_A_MATRIX, float *a (Input)
n by n random orthogonal matrix. A random correlation matrix is generated
using the orthogonal matrix input in a. The option IMSLS_EIGENVALUES
must also be supplied if IMSLS_A_MATRIX is used.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of the matrix a.
Default: a_col_dim = n

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n × n containing the random correlation matrix.

Description
Routine imsls_f_random_orthogonal_matrix generates a pseudorandom
orthogonal matrix from the invariant Haar measure. For each column, a random vector
from a uniform distribution on a hypersphere is selected and then is projected onto the
orthogonal complement of the columns already formed. The method is described by
Heiberger (1978). (See also Tanner and Thisted 1982.)
If the optional argument IMSLS_EIGENVALUES is used, a correlation matrix is formed
by applying a sequence of planar rotations to the matrix AT DA, where
D = diag(eigenvalues[0], …, eigenvalues [n-1]), so as to yield ones along the
diagonal. The planar rotations are applied in such an order that in the two by two
matrix that determines the rotation, one diagonal element is less than 1.0 and one is
greater than 1.0. This method is discussed by Bendel and Mickey (1978) and by Lin
and Bendel (1985).
The distribution of the correlation matrices produced by this method is not known.
Bendel and Mickey (1978) and Johnson and Welch (1980) discuss the distribution.
For larger matrices, rounding can become severe; and the double precision results may
differ significantly from single precision results.

Example
In this example, imsls_f_random_orthogonal_matrix is used to generate a 4 by 4
pseudorandom correlation matrix with eigenvalues in the ratio 1:2:3:4.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int i, n = 4;
 float *a, *cor;
 float ev[] = {1., 2., 3., 4.};

 for (i=0;i<4;i++) ev[i] = 4.*ev[i]/10.;

 imsls_random_seed_set(123457);

 a = imsls_f_random_orthogonal_matrix(n, 0);
 imsls_f_write_matrix("Random orthogonal matrix",
 4, 4, (float*)a, 0);

868 • random_mvar_from_data IMSL C Stat Library

 cor = imsls_f_random_orthogonal_matrix(n,
 IMSLS_EIGENVALUES, ev,
 IMSLS_A_MATRIX, a,
 0);
 imsls_f_write_matrix("Random correlation matrix",
 4, 4, (float*)cor, 0);

}

 Output

 Random orthogonal matrix
 1 2 3 4
1 -0.8804 -0.2417 0.4065 -0.0351
2 0.3088 -0.3002 0.5520 0.7141
3 -0.3500 0.5256 -0.3874 0.6717
4 -0.0841 -0.7584 -0.6165 0.1941

 Random correlation matrix
 1 2 3 4
1 1.000 -0.236 -0.326 -0.110
2 -0.236 1.000 0.191 -0.017
3 -0.326 0.191 1.000 -0.435
4 -0.110 -0.017 -0.435 1.000

random_mvar_from_data
Generates pseudorandom numbers from a multivariate distribution determined from a
given sample.

Synopsis
#include <imsls.h>
float *imsls_f_random_mvar_from_data (int n_random, int ndim, int

nsamp, float x[], int nn, ..., 0)
The type double function is imsls_d_random_mvar_from_data.

Required Arguments

int n_random (Input)
Number of random multivariate vectors to generate.

int ndim (Input)
The length of the multivariate vectors, that is, the number of dimensions.

int nsamp (Input)
Number of given data points from the distribution to be simulated.

float x[] (Input)
Array of size nsamp × ndim matrix containing the given sample.

Chapter 12: Random Number Generation random_mvar_from_data • 869

int nn (Input)
Number of nearest neighbors of the randomly selected point in x that are used
to form the output point in the result.

Return Value
n_random × ndim matrix containing the random multivariate vectors in its rows. To
release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_random_mvar_from_data (int n_random, int ndim,

int nsamp, float x[], int nn,
IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of the matrix x.
Default: x_col_dim = ndim

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random × ndim containing the random
correlation matrix.

Description
Given a sample of size n (= nsamp) of observations of a k-variate random variable,
imsls_f_random_mvar_from_data generates a pseudorandom sample with
approximately the same moments as the given sample. The sample obtained is
essentially the same as if sampling from a Gaussian kernel estimate of the sample
density. (See Thompson 1989.) Routine imsls_f_random_mvar_from_data uses
methods described by Taylor and Thompson (1986).
Assume that the (vector-valued) observations xi are in the rows of x. An observation, xj,
is chosen randomly; its nearest m (= nn) neighbors,

1 2
, ,...,

mj j jx x x

are determined; and the mean

jx

of those nearest neighbors is calculated. Next, a random sample
u1, u2, …, um is generated from a uniform distribution with lower bound

()
2

3 11 m
m m

−
−

870 • random_mvar_from_data IMSL C Stat Library

and upper bound

()
2

3 11
m

m m
−

+

The random variate delivered is

()
1

m

l jl j j
l

u x x x
=

− +∑

The process is then repeated until n_random such simulated variates are generated and
stored in the rows of the result.

Example
In this example, imsls_f_random_mvar_from_data is used to generate 5
pseudorandom vectors of length 4 using the initial and final systolic pressure and the
initial and final diastolic pressure from Data Set A in Afifi and Azen (1979) as the
fixed sample from the population to be modeled. (Values of these four variables are in
the seventh, tenth, twenty-first, and twenty-fourth columns of data set number nine in
routine imsls_f_data_sets, Chapter 15, “Utilities”.)

#include <stdio.h>
#include <imsls.h>

void main()
{
 int i, nrrow, nrcol, nr = 5, k=4, nsamp = 113, nn = 5;
 float x[113][4], rdata[113][34], *r;

 imsls_random_seed_set(123457);

 imsls_f_data_sets(9,
 IMSLS_N_OBSERVATIONS, &nrrow,
 IMSLS_N_VARIABLES, &nrcol,
 IMSLS_RETURN_USER, rdata,
 0);
 for (i=0;i<nrrow;i++) x[i][0] = rdata[i][6];
 for (i=0;i<nrrow;i++) x[i][1] = rdata[i][9];
 for (i=0;i<nrrow;i++) x[i][2] = rdata[i][20];
 for (i=0;i<nrrow;i++) x[i][3] = rdata[i][23];

 r = imsls_f_random_mvar_from_data(nr, k, nsamp, x, nn, 0);
 imsls_f_write_matrix("Random variates", 5, 4, r, 0);
 }

 Output

 Random variates
 1 2 3 4
1 162.8 90.5 153.7 104.9

Chapter 12: Random Number Generation random_multinomial • 871

2 153.4 78.3 176.7 85.2
3 93.7 48.2 153.5 71.4
4 101.8 54.2 113.1 56.3
5 91.7 58.8 48.4 28.1

random_multinomial
Generates pseudorandom numbers from a multinomial distribution.

Synopsis
#include <imsls.h>
int *imsls_random_multinomial (int n_random, int n, int k,

float p[], ..., 0)

Required Arguments

int n_random (Input)
Number of random multinomial vectors to generate.

int n (Input)
Multinomial parameter indicating the number of independent trials.

int k (Input)
The number of mutually exclusive outcomes on any trial. k is the length of
the multinomial vectors. k must be greater than or equal to 2.

float p[] (Input)
Vector of length k containing the probabilities of the possible outcomes. The
elements of p must be positive and must sum to 1.0.

Return Value
n_random by k matrix containing the random multinomial vectors in its rows. To
release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_multinomial (int n_random, int n, int k,

float p[],
IMSLS_RETURN_USER, float r[],
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random × k containing the random deviates.

Description
Routine imsls_random_multinomial generates pseudorandom numbers from a K-
variate multinomial distribution with parameters n and p. k and n must be positive.

872 • random_multinomial IMSL C Stat Library

Each element of p must be positive and the elements must sum to 1. The probability
function (with n = n, k = k, and pi = p[i+1]) is

() 1 2
1 2 1 2

1 2

!, ,..., ...
! !... !

kxx x
k k

k

nf x x x p p p
x x x

=

for xi ≥ 0 and

1

0

k

i
i

x n
−

=

=∑

The deviate in each row of r is produced by generation of the binomial deviate x0 with
parameters n and pi and then by successive generations of the conditional binomial
deviates xj given x0, x1, …, xj-2 with parameters n − x0 − x1 − … − xj-2 and
pj /(1 − p0 − p1 − … − pj-2).

Example
In this example, imsls_random_multinomial is used to generate five
pseudorandom 3-dimensional multinomial variates with parameters n = 20 and
p = [0.1, 0.3, 0.6].

#include <stdio.h>
#include <imsls.h>

void main()
{
 int nr = 5, n = 20, k = 3, *ir;
 float p[3] = {.1, .3, .6};

 imsls_random_seed_set(123457);

 ir = imsls_random_multinomial(nr, n, k, p, 0);

 imsls_i_write_matrix("Multinomial random_deviates", 5, 3, ir,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS, 0);
}

 Output
Multinomial random_deviates
 5 4 11
 3 6 11
 3 3 14
 5 5 10
 4 5 11

Chapter 12: Random Number Generation random_sphere • 873

random_sphere
Generates pseudorandom points on a unit circle or K-dimensional sphere

Synopsis
#include <imsls.h>
float *imsls_f_random_sphere (int n_random, int k,..., 0)
The type double function is imsls_d_random_sphere.

Required Arguments

int n_random (Input)
Number of random numbers to generate.

int k (Input)
Dimension of the circle (k = 2) or of the sphere.

Return Value
n_random by k matrix containing the random Cartesian coordinates on the unit circle
or sphere. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_sphere (int n_random, int k,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of size n_random by k containing the random Cartesian
coordinates on the unit circle or sphere.

Description
Routine imsls_f_random_sphere generates pseudorandom coordinates of points
that lie on a unit circle or a unit sphere in K-dimensional space. For points on a circle
(k = 2), pairs of uniform (− 1, 1) points are generated and accepted only if they fall
within the unit circle (the sum of their squares is less than 1), in which case they are
scaled so as to lie on the circle.
For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are used.
For three dimensions, two independent uniform (− 1, 1) deviates U1 and U2 are
generated and accepted only if the sum of their squares S1 is less than 1. Then, the
coordinates

1 1 1 2 2 1 3 12 1 , 2 1 , and 1 2Z U S Z U S Z S= − = − = −

874 • random_sphere IMSL C Stat Library

are formed. For four dimensions, U1, U2, and S1 are produced as described above.
Similarly, U3, U4, and S2 are formed. The coordinates are then

()1 1 2 2 3 3 1 2, , 1 /Z U Z U Z U S S= = = −

and

()4 4 1 21 /Z U S S= −

For spheres in higher dimensions, K independent normal deviates are generated and
scaled so as to lie on the unit sphere in the manner suggested by Muller (1959).

Example
In this example, imsls_f_random_sphere is used to generate two uniform random
deviates from the surface of the unit sphere in three space.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 2;
 int k = 3;
 float *z;
 char *rlabel[] = {"First point",
 "Second point"};

 imsls_random_seed_set(123457);

 z = imsls_f_random_sphere(n_random, k, 0);

 imsls_f_write_matrix("Coordinates", n_random, k, z,
 IMSLS_ROW_LABELS, rlabel,
 IMSLS_NO_COL_LABELS,
 0);
 }

Output

 Coordinates
First point 0.8893 0.2316 0.3944
Second point 0.1901 0.0396 -0.9810

Chapter 12: Random Number Generation random_table_twoway • 875

random_table_twoway
Generates a pseudorandom two-way table.

Synopsis
#include <imsls.h>
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],

int nctot[],..., 0)

Required Arguments

int nrow (Input)
Number of rows in the table.

int ncol (Input)
Number of columns in the table.

int nrtot[] (Input)
Array of length nrow containing the row totals.

int nctot[] (Input)
Array of length ncol containing the column totals. (Input)
The elements of nrtot and nctot must be nonnegative and must sum to the
same quantity.

Return Value
nrow by ncol random matrix with the given row and column totals. To release this
space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],

int nctot[],
IMSLS_RETURN_USER, int ir[],
 0)

Optional Arguments

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied array of size nrow by ncol containing the random matrix with
the given row and column totals.

Description
Routine imsls_random_table_twoway generates pseudorandom entries for a two-
way contingency table with fixed row and column totals. The method depends on the
size of the table and the total number of entries in the table. If the total number of
entries is less than twice the product of the number of rows and columns, the method
described by Boyette (1979) and by Agresti, Wackerly, and Boyette (1979) is used. In
this method, a work vector is filled with row indices so that the number of times each

876 • random_order_normal IMSL C Stat Library

index appears equals the given row total. This vector is then randomly permuted and
used to increment the entries in each row so that the given row total is attained.
For tables with larger numbers of entries, the method of Patefield (1981) is used. This
method can be considerably faster in these cases. The method depends on the
conditional probability distribution of individual elements, given the entries in the
previous rows. The probabilities for the individual elements are computed starting from
their conditional means.

Example
In this example, imsls_random_table_twoway is used to generate a two by three
table with row totals 3 and 5, and column totals 2, 4, and 2.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int *itable, nrow = 2, ncol = 3;
 int nrtot[2] = {3, 5};
 int nctot[3] = {2, 4, 2};
 char *title = "A random contingency table with fixed marginal totals";

 imsls_random_seed_set(123457);

 itable = imsls_random_table_twoway(nrow, ncol, nrtot, nctot, 0);

 imsls_i_write_matrix(title, nrow, ncol, itable,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);
 }

Output
A random contingency table with fixed marginal totals
 0 2 1
 2 2 1

random_order_normal
Generates pseudorandom order statistics from a standard normal distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_order_normal (int ifirst, int ilast, int n,..., 0)
The type double function is imsls_d_random_order_normal.

Chapter 12: Random Number Generation random_order_normal • 877

Required Arguments

int ifirst (Input)
First order statistic to generate.

int ilast (Input)
Last order statistic to generate.
ilast must be greater than or equal to ifirst. The full set of order statistics
from ifirst to ilast is generated. If only one order statistic is desired, set
ilast = ifirst.

int n (Input)
Size of the sample from which the order statistics arise.

Return Value
An array of length ilast + 1 − ifirst containing the random order statistics in
ascending order.
The first element is the ifirst order statistic in a random sample of size n from the
standard normal distribution. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_order_normal (int ifirst, int ilast, int n,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length ilast + 1 − ifirst containing the random
order statistics in ascending order.

Description
Routine imsls_f_random_order_normal generates the ifirst through the ilast
order statistics from a pseudorandom sample of size N from a normal
(0, 1) distribution. Routine imsls_f_random_order_normal uses the routine
imsls_f_random_order_uniform to generate order statistics from the uniform (0,
1) distribution and then obtains the normal order statistics using the inverse CDF
transformation.
Each call to imsls_f_random_order_normal yields an independent event so order
statistics from different calls may not have the same order relations with each other.

Example
In this example, imsls_f_random_order_normal is used to generate the fifteenth
through the nineteenth order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>

void main()

878 • random_order_uniform IMSL C Stat Library

{
 float *r = NULL;

 imsls_random_seed_set(123457);

 r = imsls_f_random_order_normal(15, 19, 20, 0);

 printf("The 15th through the 19th order statistics from a \n");
 printf("random sample of size 20 from a normal distribution\n");
 imsls_f_write_matrix("", 5, 1, r, 0);
}

Output
The 15th through the 19th order statistics from a
random sample of size 20 from a normal distribution

1 0.4056
2 0.4681
3 0.4697
4 0.9067
5 0.9362

random_order_uniform
Generates pseudorandom order statistics from a uniform (0, 1) distribution.

Synopsis
#include <imsls.h>
float *imsls_f_random_order_uniform (int ifirst, int ilast,

int n,..., 0)
The type double function is imsls_d_random_order_uniform.

Required Arguments

int ifirst (Input)
First order statistic to generate.

int ilast (Input)
Last order statistic to generate.
ilast must be greater than or equal to ifirst. The full set of order statistics
from ifirst to ilast is generated. If only one order statistic is desired, set
ilast = ifirst.

int n (Input)
Size of the sample from which the order statistics arise.

Chapter 12: Random Number Generation random_order_uniform • 879

Return Value
An array of length ilast + 1 − ifirst containing the random order statistics in
ascending order.
The first element is the ifirst order statistic in a random sample of size n from the
uniform (0, 1) distribution. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_order_uniform (int ifirst, int ilast, int n,

IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length ilast + 1 − ifirst containing the random
order statistics in ascending order.

Description
Routine imsls_f_random_order_uniform generates the ifirst through the
ilast order statistics from a pseudorandom sample of size n from a uniform
(0, 1) distribution. Depending on the values of ifirst and ilast, different methods
of generation are used to achieve greater efficiency. If ifirst = 1 and ilast = n, that
is, if the full set of order statistics are desired, the spacings between successive order
statistics are generated as ratios of exponential variates. If the full set is not desired, a
beta variate is generated for one of the order statistics, and the others are generated as
extreme order statistics from conditional uniform distributions. Extreme order statistics
from a uniform distribution can be obtained by raising a uniform deviate to an
appropriate power.
Each call to imsls_f_random_order_uniform yields an independent event. This
means, for example, that if on one call the fourth order statistic is requested and on a
second call the third order statistic is requested, the “fourth” may be smaller than the
“third”. If both the third and fourth order statistics from a given sample are desired,
they should be obtained from a single call to imsls_f_random_order_uniform (by
specifying ifirst less than or equal to 3 and ilast greater than or equal to 4).

Example
In this example, imsls_f_random_order_uniform is used to generate the fifteenth
through the nineteenth order statistics from a sample of size twenty.

#include <stdio.h>
#include <imsls.h>

void main()
{
 float *r = NULL;

 imsls_random_seed_set(123457);

880 • random_arma IMSL C Stat Library

 r = imsls_f_random_order_uniform(15, 19, 20, 0);

 printf("The 15th through the 19th order statistics from a \n");
 printf("random sample of size 20 from a uniform distribution\n");
 imsls_f_write_matrix("", 5, 1, r, 0);
}

Output
The 15th through the 19th order statistics from a
random sample of size 20 from a uniform distribution

1 0.6575
2 0.6802
3 0.6807
4 0.8177
5 0.8254

random_arma
Generates a time series from a specific ARMA model.

Synopsis
#include <imsls.h>
float *imsls_f_random_arma (int n_observations, int p, float ar[], int q,

float ma[], ..., 0)
The type double function is imsls_d_random_arma.

Required Arguments

int n_observations (Input)
Number of observations to be generated. Parameter n_observations must
be greater than or equal to one.

int p (Input)
Number of autoregressive parameters. Paramater p must be greater than or
equal to zero.

float ar[] (Input)
Array of length p containing the autoregressive parameters.

int q (Input)
Number of moving average parameters. Parameter q must be greater than or
equal to zero.

float ma[] (Input)
Array of length q containing the moving average parameters.

Return Value
An array of length n_observations containing the generated time series.

Chapter 12: Random Number Generation random_arma • 881

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_arma (int n_observations, int p, float ar[],

int q, float ma[],
IMSLS_ARMA_CONSTANT, float constant,
IMSLS_VAR_NOISE, float *a_variance,
IMSLS_INPUT_NOISE, float *a_input,
IMSLS_OUTPUT_NOISE, float **a_return,
IMSLS_OUTPUT_NOISE_USER, float a_return[],
IMSLS_NONZERO_ARLAGS, int *ar_lags,
IMSLS_NONZERO_MALAGS, int *ma_lags,
IMSLS_INITIAL_W, float *w_initial,
IMSLS_ACCEPT_REJECT_METHOD,
IMSLS_RETURN_USER, float w[],
0)

Optional Arguments

IMSLS_ARMA_CONSTANT, float constant (Input)
Overall constant. See “Description”.
Default: constant = 0

IMSLS_VAR_NOISE, float a_variance (Input)
If IMSLS_VAR_NOISE is specified (and IMSLS_INPUT_NOISE is not
specified) the noise at will be generated from a normal distribution with mean
0 and variance a_variance.
Default: a_variance = 1.0

IMSLS_INPUT_NOISE, float *a_input (Input)
If IMSLS_INPUT_NOISE is specified, the user will provide an array of length
n_observations + max (ma_lags[i]) containing the random noises. If this
option is specified, then IMSLS_VAR_NOISE should not be specified (a
warning message will be issued and the option IMSLS_VAR_NOISE will be
ignored).

IMSLS_OUTPUT_NOISE, float **a_return (Output)
An address of a pointer to an internally allocated array of length
n_observations + max (ma_lags[i]) containing the random noises.

IMSLS_OUTPUT_NOISE_USER, float a_return[] (Output)
Storage for array a_return is provided by user. See IMSLS_OUTPUT_NOISE.

IMSLS_NONZERO_ARLAGS, int ar_lags[] (Input)
An array of length p containing the order of the nonzero autoregressive
parameters.
Default: ar_lags = [1, 2, ..., p]

IMSLS_NONZERO_MALAGS, int ma_lags (Input)
An array of length q containing the order of the nonzero moving average
parameters.
Default: ma_lags = [1, 2, ..., q]

882 • random_arma IMSL C Stat Library

IMSLS_INITIAL_W, float w_initial[] (Input)
Array of length max (ar_lags[i]) containing the initial values of the time
series.
Default: all the elements in w_initial =
constant/(1 − ar [0] − ar [1] − … − ar [p − 1])

IMSLS_ACCEPT_REJECT_METHOD (Input)
If IMSLS_ACCEPT_REJECT_METHOD is specified, the random noises will be
generated from a normal distribution using an acceptance/rejection method. If
IMSLS_ACCEPT_REJECT_METHOD is not specified, the random noises will be
generated using an inverse normal CDF method. This argument will be
ignored if IMSLS_INPUT_NOISE is specified.

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length n_random containing the generated time series.

Description
Function imsls_f_random_arma simulates an ARMA(p, q) process, {Wt}, for
t = 1, 2, ..., n (with n = n_observations, p = p, and q = q). The model is

() ()0t tB W B A t Zφ θ θ= + ∈

()
()

2
1 2

2
1 2

1 ...

1 ...

P
p

q
q

B B B B

B B B B

φ φ φ φ

θ θ θ θ

= − − − −

= − − − −

Let μ be the mean of the time series {Wt}. The overall constant θ0 (constant) is

()0
1

0

1 0p
i i

p

p

μ
θ

μ φ=

=⎧⎪= ⎨ − >⎪⎩ ∑

Time series whose innovations have a nonnormal distribution may be simulated by
providing the appropriate innovations in a_input and start values in w_initial.
The time series is generated according to the followng model:

X[i] = constant + ar[0] ⋅ X[i − ar_lags[0]] + … +

ar[p − 1] ⋅ X[i − ar_lags[p − 1]] +

A[i] − ma[0] ⋅ A[i − ma_lags[0]] − … −

ma[q − 1] ⋅ A[i − ma_lags[q − 1]]
where the constant is related to the mean of the series,

W

as follows:

[]constant (1 ar 0 ... ar[q 1])W= ⋅ − − − −

Chapter 12: Random Number Generation random_arma • 883

and where

X[t] = W[t], t = 0, 1, …, n_observations − 1

and

W[t] = w_initial[t + p], t = −p, −p + 1, …, −2, −1

and A is either a_input (if IMSLS_INPUT_NOISE is specified) or a_return
(otherwise).

Examples

Example 1
In this example, imsls_f_random_arma is used to generate a time series of length
five, using an ARMA model with three autoregressive parameters and two moving
average parameters. The start values are 0.1000, 0.0500, and 0.0375.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 int np = 3;
 float phi[3] = {0.5, 0.25, 0.125};
 int nq = 2;
 float theta[2] = {-0.5, -0.25};
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_arma(n_random, np, phi, nq, theta, 0);
 imsls_f_write_matrix("ARMA random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output
 ARMA random deviates:
 0.863 0.809 1.904 0.110 2.266

Example 2
In this example, a time series of length 5 is generated using an ARMA model with 4
autoregressive parameters and 2 moving average parameters. The start values are 0.1,
0.05 and 0.0375.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int n_random = 5;
 int np = 3;

884 • random_npp IMSL C Stat Library

 float phi[3] = {0.5, 0.25, 0.125};
 int nq = 2;
 float theta[2] = {-0.5, -0.25};
 float wi[3] = {0.1, 0.05, 0.0375};
 float theta0 = 1.0;
 float avar = 0.1;
 float *r;

 imsls_random_seed_set(123457);
 r = imsls_f_random_arma(n_random, np, phi, nq, theta,
 IMSLS_ACCEPT_REJECT_METHOD,
 IMSLS_INITIAL_W, wi,
 IMSLS_ARMA_CONSTANT, theta0,
 IMSLS_VAR_NOISE, avar,
 0);
 imsls_f_write_matrix("ARMA random deviates:",
 1, n_random, r, IMSLS_NO_COL_LABELS, 0);
}

Output
 ARMA random deviates:
 1.403 2.220 2.286 2.888 2.832

Warning Errors

IMSLS_RNARM_NEG_VAR VAR(a) = “a_variance” = #, VAR(a) must be greater
than 0. The absolute value of # is used for VAR(a).

IMSLS_RNARM_IO_NOISE Both IMSLS_INPUT_NOISE and IMSLS_OUTPUT_-
NOISE are specified. IMSLS_INPUT_NOISE is used.

random_npp
Generates pseudorandom numbers from a nonhomogeneous Poisson process.

Synopsis
#include <imsls.h>
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(), float

theta_min, float theta_max, int neub, int *ne, ..., 0)
The type double function is imsls_d_random_npp.

Required Arguments

float tbegin (Input)
Lower endpoint of the time interval of the process.
tbegin must be nonnegative. Usually, tbegin = 0.

float tend (Input)
Upper endpoint of the time interval of the process.
tend must be greater than tbegin.

Chapter 12: Random Number Generation random_npp • 885

float ftheta(float t) (Input)
User-supplied function to provide the value of the rate of the process as a
function of time. This function must be defined over the interval from tbegin
to tend and must be nonnegative in that interval.

float theta_min (Input)
Minimum value of the rate function ftheta() in the interval (tbegin,
tend).
If the actual minimum is unknown, set theta_min = 0.0.

float theta_max (Input)
Maximum value of the rate function ftheta() in the interval (tbegin,
tend).
If the actual maximum is unknown, set theta_max to a known upper bound
of the maximum. The efficiency of imsls_f_random_npp is less the greater
theta_max exceeds the true maximum.

int neub (Input)
Upper bound on the number of events to be generated.
In order to be reasonably sure that the full process through time tend is
generated, calculate neub as neub = X + 10.0 * SQRT(X), where
X = theta_max * (tend − tbegin).

int *ne (Output)
Number of events actually generated.
If ne is less that neub, the time tend is reached before neub events are
realized.

Return Value
An array of length neub containing the the times to events in the first ne elements. To
release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(), float

theta_min, float theta_max, int neub, int *ne, IMSLS_RETURN_USER,
float r[],
IMSLS_FCN_W_DATA, float ftheta(), void *data,
0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length neub containing the the times to events in the
first ne elements.

IMSLS_FCN_W_DATA, float ftheta(float t), void *data, (Input)
User-supplied function to provide the value of the rate of the process as a
function of time, which also accepts a pointer to data that is supplied by the
user. data is a pointer to the data to be passed to the user-supplied function.

886 • random_npp IMSL C Stat Library

See the “Introduction”, Passing Data to User-Supplied Functions at the
beginning of this manual for more details.

Description
Routine imsls_f_random_npp simulates a one-dimensional nonhomogeneous
Poisson process with rate function ftheta in a fixed interval (tbegin, tend].

Let λ(t) be the rate function and t0 = tbegin and t1 = tend. Routine
imsls_f_random_npp uses a method of thinning a nonhomogeneous Poisson process
{N∗(t), t ≥ t0} with rate function λ∗(t) ≥ λ(t) in (t0, t1], where the number of events, N∗,
in the interval (t0, t1] has a Poisson distribution with parameter

()1

0
0

t

t
t dtμ λ= ∫

The function

() ()
0

t
t t dtλ

′
Λ = ∫

is called the integrated rate function.) In imsls_f_random_npp, λ∗(t) is taken to be a
constant λ∗(= theta_max) so that at time ti, the time of the next event
ti + 1 is obtained by generating and cumulating exponential random numbers

* *
1, 2,, ,...,i iE E

with parameter λ∗, until for the first time

()* * *
, 1, , /...j i i i j iu t E E≤ + λ+ +

where the uj,i are independent uniform random numbers between 0 and 1. This process
is continued until the specified number of events, neub, is realized or until the time,
tend, is exceeded. This method is due to Lewis and Shedler (1979), who also review
other methods. The most straightforward (and most efficient) method is by inverting
the integrated rate function, but often this is not possible.
If theta_max is actually greater than the maximum of λ(t) in (t0, t1], the routine will
work, but less efficiently. Also, if λ(t) varies greatly within the interval, the efficiency
is reduced. In that case, it may be desirable to divide the time interval into subintervals
within which the rate function is less variable. This is possible because the process is
without memory.
If no time horizon arises naturally, tend must be set large enough to allow for the
required number of events to be realized. Care must be taken, however, that ftheta is
defined over the entire interval.

Chapter 12: Random Number Generation random_permutation • 887

After simulating a given number of events, the next event came be generated by setting
tbegin to the time of the last event (the sum of the elements in R) and calling
imsls_f_random_npp again. Cox and Lewis (1966) discuss modeling applications of
nonhomogeneous Poisson processes.

Example
In this example, imsls_f_random_npp is used to generate the first five events in the
time 0 to 20 (if that many events are realized) in a nonhomogeneous process with rate
function

λ(t) = 0.6342 e0.001427t

for 0 < t ≤ 20.
Since this is a monotonically increasing function of t, the minimum is at t = 0 and is
0.6342, and the maximum is at t = 20 and is 0.6342 e0.02854 = 0.652561.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int i, neub = 5, ne;
 float *r, tmax= .652561, tmin = .6342, tbeg=0., tend=20.;

 imsls_random_seed_set(123457);

 r = imsls_f_random_npp(tbeg, tend, ftheta, tmin, tmax, neub, &ne, 0);

 printf("Inter-event times for the first %d events in the process:\n", ne);
 for (i=0; i<ne; i++) printf("\t%f\n", r[i]);

}

Output
Inter-event times for the first 5 events in the process:
 0.052660
 0.407979
 0.258399
 0.019767
 0.167641

random_permutation
Generates a pseudorandom permutation.

Synopsis
#include <imsls.h>
int *imsls_random_permutation (int k, ..., 0)

888 • random_permutation IMSL C Stat Library

Required Arguments

int k (Input)
Number of integers to be permuted.

Return Value
An array of length k containing the random permutation of the integers from
1 to k. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_permutation (int k,

 IMSLS_RETURN_USER, int ir[],
 0)

Optional Arguments

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied array of length k containing the random permutation of the
integers from 1 to k.

Description
Routine imsls_random_permutation generates a pseudorandom permutation of the
integers from 1 to k. It begins by filling a vector of length k with the consecutive
integers 1 to k. Then, with M initially equal to k, a random index J between 1 and M
(inclusive) is generated. The element of the vector with the index M and the element
with index J swap places in the vector. M is then decremented by 1 and the process
repeated until M = 1.

Example
In this example, imsls_random_permutation is called to produce a pseudorandom
permutation of the integers from 1 to 10.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int *ir, k = 10;

 imsls_random_seed_set(123457);

 ir = imsls_random_permutation(k, 0);

 printf("Random permutation of the integers from 1 to 10\n");
 imsls_i_write_matrix("", 1, k, ir,
 IMSLS_NO_COL_LABELS, 0);
 }

Chapter 12: Random Number Generation random_sample_indices • 889

Output
Random permutation of the integers from 1 to 10

 5 9 2 8 1 6 4 7 3 10

random_sample_indices
Generates a simple pseudorandom sample of indices.

Synopsis
#include <imsls.h>
int *imsls_random_sample_indices (int nsamp, int npop, ..., 0)

Required Arguments

int nsamp (Input)
Sample size desired.

int npop (Input)
Number of items in the population.

Return Value
An array of length nsamp containing the indices of the sample. To release this space,
use free.

Synopsis with Optional Arguments
#include <imsls.h>
int *imsls_random_sample_indices (int nsamp, int npop,

 IMSLS_RETURN_USER, int ir[],
 0)

Optional Arguments

IMSLS_RETURN_USER, int ir[] (Output)
User-supplied array of length nsamp containing the indices of the sample.

Description
Routine imsls_random_sample_indices generates the indices of a pseudorandom
sample,without replacement, of size nsamp numbers from a population of size npop. If
nsamp is greater than npop/2, the integers from 1 to npop are selected sequentially
with a probability conditional on the number selected and the number remaining to be
considered. If, when the i-th population index is considered, j items have been included
in the sample, then the index i is included with probability (nsamp − j)/(npop + 1 − i).
If nsamp is not greater than npop/2, a O(nsamp) algorithm due to Ahrens and Dieter
(1985) is used. Of the methods discussed by Ahrens and Dieter, the one called SG* is
used in imsls_random_sample_indices. It involves a preliminary selection of q
indices using a geometric distribution for the distances between each index and the

890 • random_sample IMSL C Stat Library

next one. If the preliminary sample size q is less than nsamp, a new preliminary sample
is chosen, and this is continued until a preliminary sample greater in size than nsamp is
chosen. This preliminary sample is then thinned using the same kind of sampling as
described above for the case in which the sample size is greater than half of the
population size. Routine imsls_random_sample_indices does not store the
preliminary sample indices, but rather restores the state of the generator used in
selecting the sample initially, and then passes through once again, making the final
selection as the preliminary sample indices are being generated.

Example
In this example, imsls_random_sample_indices is used to generate the indices of
a pseudorandom sample of size 5 from a population of size 100.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int *ir, nsamp = 5, npop = 100;

 imsls_random_seed_set(123457);

 ir = imsls_random_sample_indices(nsamp, npop, 0);

 imsls_i_write_matrix("Random Sample", 1, nsamp, ir,
 IMSLS_NO_COL_LABELS, 0);
 }

Output

 Random Sample

 2 22 53 61 79

random_sample
Generates a simple pseudorandom sample from a finite population.

Synopsis
#include <imsls.h>
float *imsls_f_random_sample (int nrow, int nvar, float population[], int

nsamp,..., 0)
The type double function is imsls_d_random_sample.

Required Arguments

int nrow (Input)
Number of rows of data in population.

Chapter 12: Random Number Generation random_sample • 891

int nvar (Input)
Number of variables in the population and in the sample.

float population[] (Input)
nrow by nvar matrix containing the population to be sampled. If either of the
optional arguments IMSLS_FIRST_CALL or IMSLS_ADDITIONAL_CALL are
specified, then population contains a different part of the population on
each invocation, otherwise population contains the entire population.

int nsamp (Input)
The sample size desired.

Return Value
nsamp by nvar matrix containing the sample. To release this space, use free.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_random_sample (int nrow, int nvar, float population[], int

nsamp,
IMSLS_FIRST_CALL, int **index, int *npop
IMSLS_FIRST_CALL_USER, int index[], int *npop
IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp,
IMSLS_POPULATION_COL_DIM, int population_col_dim,
IMSLS_RETURN_USER, int samp[],
 0)

Optional Arguments

IMSLS_FIRST_CALL, int **index, int *npop (Output)
This is the first invocation with this data; additional calls to
imsls_f_random_sample may be made to add to the population.
Additional calls should be made using the optional argument
IMSLS_ADDITIONAL_CALL . Argument index is the address of a pointer to
an internally allocated array of length nsamp containing the indices of the
sample in the population. Argument npop returns the number of items in the
population. If the population is input a few items at a time, the first call to
imsls_f_random_sample should use IMSLS_FIRST_CALL, and subsequent
calls should use IMSLS_ADDITIONAL_CALL. See example 2.

IMSLS_FIRST_CALL_USER, int index[], int *npop (Output)
Storage for index is provided by the user. See IMSLS_FIRST_CALL.

IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp (Input/Output)
This is an additional invocation of imsls_f_random_sample, and updating
for the subpopulation in population is performed. Argument index is a
pointer to an array of length nsamp containing the indices of the sample in the
population, as returned using optional argument IMSLS_FIRST_CALL.
Argument npop, also obtained using optional argument IMSLS_FIRST_CALL,
returns the number of items in the population. It is not necessary to know the

892 • random_sample IMSL C Stat Library

number of items in the population in advance. npop is used to cumulate the
population size and should not be changed between calls to
imsls_f_random_sample. Argument samp is a pointer to the array of size
nsamp by nvar containing the sample. samp is the result of calling
imsls_f_random_sample with optional argument IMSLS_FIRST_CALL.
See example 2

IMSLS_POPULATION_COL_DIM, int population_col_dim (Input)
Column dimension of the matrix population.
Default: x_col_dim = nvar

IMSLS_RETURN_USER, int samp[] (Output)
User-supplied array of size nrow by nvar containing the sample. This option
should not be used if IMSLS_ADDITIONAL_CALL is used.

Description
Routine imsls_f_random_sample generates a pseudorandom sample from a given
population, without replacement, using an algorithm due to McLeod and Bellhouse
(1983).
The first nsamp items in the population are included in the sample. Then, for each
successive item from the population, a random item in the sample is replaced by that
item from the population with probability equal to the sample size divided by the
number of population items that have been encountered at that time.

Example 1
In this example, imsls_f_random_sample is used to generate a sample of size 5
from a population stored in the matrix population.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int nrow = 176, nvar = 2, nsamp = 5;
 float *population;
 float *sample;

 population = imsls_f_data_sets(2, 0);

 imsls_random_seed_set(123457);

 sample = imsls_f_random_sample(nrow, nvar, population, nsamp, 0);

 imsls_f_write_matrix("The sample", nsamp, nvar, sample,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);
}

Output
 The sample
 1764 36

Chapter 12: Random Number Generation random_sample • 893

 1828 62
 1923 6
 1773 35
 1769 106

Example 2
Routine imsls_f_random_sample is now used to generate a sample of size 5 from
the same population as in the example above except the data are input to RNSRS one
observation at a time. This is the way imsls_f_random_sample may be used to
sample from a file on disk or tape. Notice that the number of records need not be
known in advance.

#include <stdio.h>
#include <imsls.h>

void main()
{
 int i, nrow = 176, nvar = 2, nsamp = 5;
 int *index, npop;
 float *population;
 float *sample;

 population = imsls_f_data_sets(2, 0);

 imsls_random_seed_set(123457);

 sample = imsls_f_random_sample(1, 2, population, nsamp,
 IMSLS_FIRST_CALL, &index, &npop,
 0);
 for (i = 1; i < 176; i++) {
 imsls_f_random_sample(1, 2, &population[2*i], nsamp,
 IMSLS_ADDITIONAL_CALL, index, &npop, sample,
 0);
 }
 printf("The population size is %d\n", npop);
 imsls_i_write_matrix("Indices of random sample", 5, 1, index, 0);

 imsls_f_write_matrix("The sample", nsamp, nvar, sample,
 IMSLS_NO_ROW_LABELS,
 IMSLS_NO_COL_LABELS,
 0);
 }

Output
The population size is 176

Indices of random sample
 1 16
 2 80
 3 175
 4 25
 5 21

894 • random_option IMSL C Stat Library

 The sample
 1764 36
 1828 62
 1923 6
 1773 35
 1769 106

random_option
Selects the uniform (0, 1) multiplicative congruential pseudorandom number generator
or a generalized feedback shift register (GFSR) method.

Synopsis
#include <imsls.h>
void imsls_random_option (int generator_option)

Required Arguments

int generator_option (Input)
Indicator of the generator. Argument generator_option is used to choose
the multiplier and whether or not shuffling is done, or the GFSR method.

generator_option Generator
1 The multiplier 16807 is used.
2 The multiplier 16807 is used with shuffling.
3 The multiplier 397204094 is used.
4 The multiplier 397204094 is used with shuffling.
5 The multiplier 950706376 is used.
6 The multiplier 950706376 is used with shuffling.
7 GFSR, with the recursion Xt = Xt-1563 ⊕ Xt-96 is used.

8 A 32-bit Mersenne Twister generator is used. The float
and double random numbers are generated from 32-bit
integers.

9 A 64-bit Mersenne Twister generator is used. The float
and double random numbers are generated from 64-bit
integers. This ensures that all bits of both float and
doubles are random.

Description
The uniform pseudorandom number generators use a multiplicative congruential
method, with or without shuffling. The value of the multiplier and whether or not to
use shuffling are determined by imsls_random_option. The description of function
imsls_f_random_uniform may provide some guidance in the choice of the form of
the generator. If no selection is made explicitly, the generators use the multiplier 16807
without shuffling. This form of the generator has been in use for some time (see Lewis
et al. 1969).

Chapter 12: Random Number Generation random_option_get • 895

Both of the Mersenne Twister generators have a period of 219937-1 and a 623-
dimensional equidistribution property. See Matsumoto et al. 1998 for details.
The IMSL Mersenne Twister generators are derived from code copyright (C) 1997 -
2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved. It is subject to the
following notice:
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The IMSL 32-bit Mersenne Twister generator is based on the Matsumoto and
Nishimura code ‘mt19937ar’ and the 64-bit code is based on ‘mt19937-64’.

Example
See function imsls_random_GFSR_table_get.

random_option_get
Retrieves the uniform (0, 1) multiplicative congruential pseudorandom number
generator.

Synopsis
#include <imsls.h>
int imsls_random_option_get ()

Return Value
Indicator of the generator.

896 • random_seed_get IMSL C Stat Library

Result Generator
1 The multiplier 16807 is used.
2 The multiplier 16807 is used with shuffling.
3 The multiplier 397204094 is used.
4 The multiplier 397204094 is used with shuffling.
5 The multiplier 950706376 is used.
6 The multiplier 950706376 is used with shuffling.
7 GFSR, with the recursion Xt = Xt-1563 ⊕ Xt-96 is used

Description
The routine imsls_random_option_get retrieves the uniform (0, 1) multiplicative
congruential pseudorandom number generator or the GRSR method. The uniform
pseudorandom number generators use a multiplicative congruential method, with or
without shuffling. The value of the multiplier and whether or not to use shuffling are
determined by imsls_random_option.

random_seed_get
Retrieves the current value of the seed used in the random number generators.

Synopsis
#include <imsls.h>
int imsls_random_seed_get ()

Return Value
The value of the seed.

Description
Function imsls_random_seed_get retrieves the current value of the “seed” used in
the random number generators. A reason for doing this would be to restart a
simulation, using function imsls_random_seed_set to reset the seed.

Example
This example illustrates the statements required to restart a simulation using
imsls_random_seed_get and imsls_random_seed_set. The example shows that
restarting the sequence of random numbers at the value of the seed last generated is the
same as generating the random numbers all at once.

#include <imsls.h>

#define N_RANDOM 5

main()
{
 int seed = 123457;
 float *r1, *r2, *r;

Chapter 12: Random Number Generation random_substream_seed_get • 897

 imsls_random_seed_set(seed);
 r1 = imsls_f_random_uniform(N_RANDOM, 0);
 imsls_f_write_matrix ("First Group of Random Numbers", 1,
 N_RANDOM, r1, 0);
 seed = imsls_random_seed_get();

 imsls_random_seed_set(seed);
 r2 = imsls_f_random_uniform(N_RANDOM, 0);
 imsls_f_write_matrix ("Second Group of Random Numbers", 1,
 N_RANDOM, r2, 0);

 imsls_random_seed_set(123457);
 r = imsls_f_random_uniform(2*N_RANDOM, 0);
 imsls_f_write_matrix ("Both Groups of Random Numbers", 1,
 2*N_RANDOM, r, 0);
}

Output
 First Group of Random Numbers
 1 2 3 4 5
 0.9662 0.2607 0.7663 0.5693 0.8448

 Second Group of Random Numbers
 1 2 3 4 5
 0.0443 0.9872 0.6014 0.8964 0.3809

 Both Groups of Random Numbers
 1 2 3 4 5 6
 0.9662 0.2607 0.7663 0.5693 0.8448 0.0443

 7 8 9 10
 0.9872 0.6014 0.8964 0.3809

random_substream_seed_get
Retrieves a seed for the congruential generators that do not do shuffling that will
generate random numbers beginning 100,000 numbers farther along.

Synopsis
#include <imsls.h>
int imsls_random_substream_seed_get (int iseed1)

Required Arguments

int iseed1 (Input)
The seed that yields the first stream.

Return Value
The seed that yields a stream beginning 100,000 numbers beyond the stream that
begins with iseed1.

898 • random_substream_seed_get IMSL C Stat Library

Description
Given a seed, iseed1, imsls_random_substream_seed_get determines another
seed, such that if one of the IMSL multiplicative congruential generators, using no
shuffling, went through 100,000 generations starting with iseed1, the next number in
that sequence would be the first number in the sequence that begins with the returned
seed.
Note that imsls_random_substream_seed_get works only when a multiplicative
congruential generator without shuffling is used. This means that either the routine
imsls_random_option has not been called at all or that it has been last called with
generator_option taking a value of 1, 3, or 5.
For many of the IMSL generators for nonuniform distributions that do not use the
inverse CDF method, the distance between the sequences generated starting with
iseed1 and starting with the returned seed may be less than 100,000. This is because
the nonuniform generators that use other techniques may require more than one
uniform deviate for each output deviate.
The reason that one may want two seeds that generate sequences a known distance
apart is for blocking Monte Carlo experiments or for running parallel streams

Example
In this example, imsls_random_substream_seed_get is used to determine seeds
for 4 separate streams, each 200,000 numbers apart, for a multiplicative congruential
generator without shuffling. (Since imsls_random_option is not invoked to select a
generator, the multiplier is 16807.) Since the streams are 200,000 numbers apart, each
seed requires two invocations of imsls_random_substream_seed_get. All of the
streams are non-overlapping, since the period of the underlying generator is
2,147,483,646. The resulting seed are then verified by checking the seed after
generating random sequences of length 200,000.

#include <imsls.h>

main()
{
 int i, is1, is2, is3, is4;
 float *r;

 is1 = 123457;
 is2 = imsls_random_substream_seed_get(is1);
 is2 = imsls_random_substream_seed_get(is2);
 is3 = imsls_random_substream_seed_get(is2);
 is3 = imsls_random_substream_seed_get(is3);
 is4 = imsls_random_substream_seed_get(is3);
 is4 = imsls_random_substream_seed_get(is4);
 printf("Seeds for four separate streams:\n");
 printf("%d\t%d\t%d\t%d\n\n", is1, is2, is3, is4);

 imsls_random_seed_set(is1);
 for (i=0;i<3;i++) {
 r = imsls_f_random_uniform(200000, 0);
 printf("seed after %d random numbers: %d\n", (i+1)*200000,
 imsls_random_seed_get());

Chapter 12: Random Number Generation random_seed_set • 899

 if (r) free(r);
 }
}

Output
Seeds for four separate streams:
123457 2016130173 85016329 979156171

seed after 200000 random numbers: 2016130173
seed after 400000 random numbers: 85016329
seed after 600000 random numbers: 979156171

random_seed_set
Initializes a random seed for use in the random number generators.

Synopsis
#include <imsls.h>
void imsls_random_seed_set (int seed)

Required Arguments

int seed (Input)
The seed of the random number generator. The argument seed must be in the
range (0, 2147483646). If seed is 0, a value is computed using the system
clock; hence, the results of programs using the random number generators will
be different at various times.

Description
Function imsls_random_seed_set is used to initialize the seed used in the random
number generators. The form of the generators is as follows:

xi ≡ cxi-1mod (231 − 1)

The value of x0 is the seed. If the seed is not initialized prior to invocation of any of the
functions for random number generation by calling imsls_random_seed_set, the
seed is initialized by the system clock. The seed can be reinitialized to a clock-
dependent value by calling imsls_random_seed_set with seed set to 0.
The effect of imsls_random_seed_set is to set some global values used by the
random number generators. A common use of imsls_random_seed_set is in
conjunction with function imsls_random_seed_get to restart a simulation.

Example
See function imsls_random_seed_get.

900 • random_table_set IMSL C Stat Library

random_table_set
Sets the current table used in the shuffled generator.

Synopsis
#include <imsls.h>
void imsls_f_random_table_set (float table[])
The type double function is imsls_d_random_table_set.

Required Arguments

float table[] (Input)
Array of length 128 used in the shuffled generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive in except if the user wishes to reinitialize the array, in which case
the first element of the array is input as a nonpositive value. (Usually, one should avoid
reinitializing these arrays, but it might be necessary sometimes in restarting a
simulation.) If the first element of table is set to a nonpositive value on the call to
imsls_random_table_set, on the next invocation of a routine to generate random
numbers using a shuffled method, the appropriate array will be reinitialized.

Example
See function imsls_random_GFSR_table_get.

random_table_get
Retrieves the current table used in the shuffled generator.

Synopsis
#include <imsls.h>
void imsls_f_random_table_get (float **table, ..., 0)
The type double function is imsls_d_random_table_get.

Required Arguments

float **table (Output)
Address of a pointer to an array of length 128 containing the table used in the
shuffled generators. Typically, float *table is declared and &table is used
as an argument.

Synopsis with Optional Arguments
#include <imsls.h>

Chapter 12: Random Number Generation random_GFSR_table_set • 901

void imsls_random_table_get (float **table,
IMSLS_RETURN_USER, float r[],
 0)

Optional Arguments

IMSLS_RETURN_USER, float r[] (Output)
User-supplied array of length 1565 containing the table used in the GFSR
generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in which case
the first element of the array is input as a nonpositive value. (Usually, one should avoid
reinitializing these arrays, but it might be necessary sometimes in restarting a
simulation.) If the first element of table is set to a nonpositive value on the call to
imsls_random_table_set, on the next invocation of a routine to generate random
numbers using a shuffled method, the appropriate array will be reinitialized.

Example
See function imsls_random_GFSR_table_get.

random_GFSR_table_set
Sets the current table used in the GFSR generator.

Synopsis
#include <imsls.h>
void imsls_random_GFSR_table_set (int table[])

Required Arguments

int table [] (Input)
Array of length 1565 used in the GFSR generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in which case
the first element of the array is input as a nonpositive value. (Usually, one should
avoid reinitializing these arrays, but it might be necessary sometimes in restarting a
simulation.) If the first element of table is set to a nonpositive value on the call to
imsls_random_GFSR_table_set, on the next invocation of a routine to generate
random numbers using a GFSR method, the appropriate array will be reinitialized.

Example
See function imsls_random_GFSR_table_get.

902 • random_GFSR_table_get IMSL C Stat Library

random_GFSR_table_get
Retrieves the current table used in the GFSR generator.

Synopsis
#include <imsls.h>
void imsls_random_GFSR_table_get (int **table, ..., 0)

Required Arguments

int **table (Output)
Address of a pointer to an array of length 1565 containing the table used in the
GFSR generators. Typically, int *table is declared and &table is used as
an argument.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_random_GFSR_table_get (int **table,

IMSLS_RETURN_USER, int r[],
 0)

Optional Arguments

IMSLS_RETURN_USER, int r[] (Output)
User-supplied array of length 1565 containing the table used in the GFSR
generators.

Description
The values in table are initialized by the IMSL random number generators. The
values are all positive except if the user wishes to reinitialize the array, in which case
the first element of the array is input as a nonpositive value. (Usually, one should avoid
reinitializing these arrays, but it might be necessary sometimes in restarting a
simulation.) If the first element of table is set to a nonpositive value on the call to
imsls_random_GFSR_table_set, on the next invocation of a routine to generate
random numbers using a GFSR method, the appropriate array will be reinitialized.

Example
In this example, three separate simulation streams are used, each with a different form
of the generator. Each stream is stopped and restarted. (Although this example is
obviously an artificial one, there may be reasons for maintaining separate streams and
stopping and restarting them because of the nature of the usage of the random numbers
coming from the separate streams.)

#include <stdio.h>
#include <imsls.h>

void main()
{
 float *r, *table;

Chapter 12: Random Number Generation random_GFSR_table_get • 903

 int nr, iseed1, iseed2, iseed7;
 int *itable;

 nr = 5;
 iseed1 = 123457;
 iseed2 = 123457;
 iseed7 = 123457;

 /* Begin first stream, iopt = 1 (by default) */
 imsls_random_seed_set (iseed1);
 r = imsls_f_random_uniform (nr, 0);
 iseed1 = imsls_random_seed_get ();
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed1);
 free(r);

 /* Begin second stream, iopt = 2 */
 imsls_random_option (2);
 imsls_random_seed_set (iseed2);
 r = imsls_f_random_uniform (nr, 0);
 iseed2 = imsls_random_seed_get ();
 imsls_f_random_table_get (&table, 0);
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed2);
 free(r);

 /* Begin third stream, iopt = 7 */
 imsls_random_option (7);
 imsls_random_seed_set (iseed7);
 r = imsls_f_random_uniform (nr, 0);
 iseed7 = imsls_random_seed_get ();
 imsls_random_GFSR_table_get (&itable, 0);
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed7);
 free(r);

 /* Reinitialize seed and resume first stream */
 imsls_random_option (1);
 imsls_random_seed_set (iseed1);
 r = imsls_f_random_uniform (nr, 0);
 iseed1 = imsls_random_seed_get ();
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed1);
 free(r);

 /*
 * Reinitialize seed and table for shuffling and

904 • random_GFSR_table_get IMSL C Stat Library

 * resume second stream
 */
 imsls_random_option (2);
 imsls_random_seed_set (iseed2);
 imsls_f_random_table_set (table);
 r = imsls_f_random_uniform (nr, 0);
 iseed2 = imsls_random_seed_get ();
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed2);
 free(r);

 /*
 * Reinitialize seed and table for GFSR and
 * resume third stream.
 */
 imsls_random_option (7);
 imsls_random_seed_set (iseed7);
 imsls_random_GFSR_table_set (itable);
 r = imsls_f_random_uniform (nr, 0);
 iseed7 = imsls_random_seed_get ();
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS, 0);
 printf(" Output seed\t%d\n\n", iseed7);
 free(r);

}

 Output

 First stream output
 0.9662 0.2607 0.7663 0.5693 0.8448
 Output seed 1814256879

 Second stream output
 0.7095 0.1861 0.4794 0.6038 0.3790
 Output seed 1965912801

 Third stream output
 0.3914 0.0263 0.7622 0.0281 0.8997
 Output seed 1932158269

 First stream output
 0.0443 0.9872 0.6014 0.8964 0.3809
 Output seed 817878095

 Second stream output
 0.2557 0.4788 0.2258 0.3455 0.5811
 Output seed 2108806573

Chapter 12: Random Number Generation random_MT32_init • 905

 Third stream output
 0.7519 0.5084 0.9070 0.0910 0.6917
 Output seed 1485334679

random_MT32_init
Initializes the 32-bit Mersenne Twister generator using an array.

Synopsis
#include <imsls.h>
void imsls_random_MT32_table_init (int key_length, unsigned int key[])

Required Arguments

int key_length (Input)
Length of the array key.

unsigned int key [] (Input)
Array of length key_length used to initialize the 32-bit Mersenne Twister
generator.

Description
By default, the Mersenne Twister random number generator is initialized using the
current seed value (see imsls_random_seed_get). The seed is limited to one integer
for initialization. This function allows an arbitrary length array to be used for
initialization.
This function completely replaces the use of the seed for initialization of the 32-bit
Mersenne Twister generator.

Example
See function imsls_random_MT32_table_get.

random_MT32_table_get
Retrieves the current table used in the 32-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>
void imsls_random_MT32_table_get (unsigned int **table, ..., 0)

Required Arguments

unsigned int **table (Output)
Address of a pointer to an array of length 625 containing the table used in the
32-bit Mersenne Twister generator. Typically, unsigned int *table is
declared and &table is used as an argument.

906 • random_MT32_table_get IMSL C Stat Library

Synopsis with Optional Arguments
#include <imsls.h>

void imsls_random_MT32_table_get (int **table,
IMSLS_RETURN_USER, int r[],
0)

Optional Arguments

IMSLS_RETURN_USER, int r[] (Output)
User-supplied array of length 625 containing the table used in the 32-bit
Mersenne Twister generator.

Description
The values in table contain the state of the 32-bit Mersenne Twister random number
generator. The table can be used by imsls_random_MT32_table_set to set the
generator back to this state.

Example
In this example, four simulation streams are generated. The first series is generated
with the seed used for initialization. The second series is generated using an array for
initialization. The third series is obtained by resetting the generator back to the state it
had at the beginning of the second stream. Therefore, the second and third streams are
identical. The fourth stream is obtained by resetting the generator back to its original,
uninitialized state, and having it reinitialize using the seed. The first and fourth
streams are therefore the same.

#include <imsls.h>

void main()
{
 const unsigned int init[] = {0x123, 0x234, 0x345, 0x456};
 float *r;
 int iseed = 123457;
 int *itable;
 int nr = 5;

 /* Initialize Mersenne Twister series with a seed */
 imsls_random_option (8);
 imsls_random_seed_set (iseed);
 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 free(r);

 /* Reinitialize Mersenne Twister series with an array */
 imsls_random_option (8);
 imsls_random_MT32_init(4, init);
 /* Save the state of the series */
 imsls_random_MT32_table_get(&itable, 0);

Chapter 12: Random Number Generation random_MT32_table_set • 907

 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 free(r);

 /* Restore the state of the series */
 imsls_random_MT32_table_set(itable);

 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 free(r);

 /* Reset the series - it will reinitialize from the seed */
 itable[0] = 1000;
 imsls_random_MT32_table_set(itable);

 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Fourth stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 free(r);
}

Output
 First stream output
 0.4347 0.3522 0.0139 0.2091 0.4956

 Second stream output
 0.2486 0.2226 0.1111 0.9563 0.9846

 Third stream output
 0.2486 0.2226 0.1111 0.9563 0.9846

 Fourth stream output
 0.4347 0.3522 0.0139 0.2091 0.4956

random_MT32_table_set
Sets the current table used in the 32-bit Mersenne Twister generator.

Synopsis
#include <imsls.h>

void imsls_random_MT32_table_set (unsigned int table[])

Required Arguments
unsigned int table [] (Input)

908 • random_MT64_init IMSL C Stat Library

Array of length 625 used in the 32-bit Mersenne Twister generator.

Description
The values in table are the state of the 32-bit Mersenne Twister random number
generator obtained by a call to imsls_random_MT32_table_set. The values in the
table can be used to restore the state of the generator.
Alternatively, if table[0] > 625 then the generator is set to its original, uninitialized,
state.

Example
See function imsls_random_MT32_table_get.

random_MT64_init
Initializes the 64-bit Mersenne Twister generator using an array.

Synopsis
#include <imsls.h>
void imsls_random_MT64_table_init (int key_length, unsigned long long

key[])

Required Arguments

int key_length (Input)

Length of the array key.

unsigned long long key [] (Input)

Array of length key_length used to initialize the 64-bit Mersenne Twister generator.

Description
By default, the Mersenne Twister random number generator is initialized using the
current seed value (see imsls_random_seed_get). The seed is limited to one
integer for initialization. This function allows an arbitrary length array to be used for
initialization.
This function completely replaces the use of the seed for initialization of the 64-bit
Mersenne Twister generator.

Example
See function imsls_random_MT64_table_get.

random_MT64_table_get
Retrieves the current table used in the 64-bit Mersenne Twister generator.

Synopsis

#include <imsls.h>

void imsls_random_MT64_table_get (unsigned long long **table, ..., 0)

Chapter 12: Random Number Generation random_MT64_table_get • 909

Required Arguments

unsigned long long **table (Output)
Address of a pointer to an array of length 625 containing the table used in the 64-bit
Mersenne Twister generator. Typically, unsigned long long *table is declared and
&table is used as an argument.

Synopsis with Optional Arguments

#include <imsls.h>

void imsls_random_MT64_table_get (unsigned long long **table,
IMSLS_RETURN_USER, unsigned long long r[],
0)

Optional Arguments

IMSLS_RETURN_USER, unsigned long long r[] (Output)
User-supplied array of length 625 containing the table used in the 64-bit
Mersenne Twister generator.

Description
The values in the table contain the state of the 64-bit Mersenne Twister random
number generator. The table can be used by imsls_random_MT64_table_set to set
the generator back to this state.

Example
In this example, four simulation streams are generated. The first series is generated
with the seed used for initialization. The second series is generated using an array for
initialization. The third series is obtained by resetting the generator back to the state it
had at the beginning of the second stream. Therefore the second and third streams are
identical. The fourth stream is obtained by resetting the generator back to its original,
uninitialized state, and having it reinitialize using the seed. The first and fourth
streams are therefore the same.

#include <imsls.h>

void main()
{
 const unsigned long long init[] = {0x123, 0x234, 0x345, 0x456};
 float *r;
 int iseed = 123457;
 unsigned long long *itable;
 int nr = 5;

 /* Initialize 64-bit Mersenne Twister series with a seed */
 imsls_random_option (9);
 imsls_random_seed_set (iseed);
 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("First stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);

910 • random_MT64_table_set IMSL C Stat Library

 free(r);

 /* Reinitialize Mersenne Twister series with an array */
 imsls_random_option (9);
 imsls_random_MT64_init(4, init);
 /* Save the state of the series */
 imsls_random_MT64_table_get(&itable, 0);

 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Second stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 free(r);

 /* Restore the state of the series */
 imsls_random_MT64_table_set(itable);

 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Third stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 free(r);

 /* Reset the series - it will reinitialize from the seed */
 itable[0] = 1000;
 imsls_random_MT64_table_set(itable);

 r = imsls_f_random_uniform (nr, 0);
 imsls_f_write_matrix ("Fourth stream output", 1, 5, r,
 IMSLS_NO_COL_LABELS,
 IMSLS_NO_ROW_LABELS,
 0);
 free(r);
}

Output

 First stream output
 0.5799 0.9401 0.7102 0.1640 0.5457

 Second stream output
 0.4894 0.7397 0.5725 0.0863 0.7588

 Third stream output
 0.4894 0.7397 0.5725 0.0863 0.7588

 Fourth stream output
 0.5799 0.9401 0.7102 0.1640 0.5457

random_MT64_table_set
Sets the current table used in the 64-bit Mersenne Twister generator.

Chapter 12: Random Number Generation faure_next_point • 911

Synopsis
#include <imsls.h>

void imsls_random_MT64_table_set (unsigned long long table[])

Required Arguments

unsigned long long table [] (Input)

Array of length 625 used in the 64-bit Mersenne Twister generator.

Description
The values in table are the state of the 64-bit Mersenne Twister random number
generator obtained by a call to imsls_random_MT64_table_set. The values in the
table can be used to restore the state of the generator.
Alternatively, if table[0] > 625 then the generator is set to its original, uninitialized,
state.

Example
See function imsls_random_MT64_table_get.

faure_next_point
Computes a shuffled Faure sequence.

Synopsis
#include <imsls.h>
Imsls_faure* imsls_faure_sequence_init (int ndim, …, 0)
float* imsls_f_faure_next_point (Imsls_faure *state, …, 0)
void imsls_faure_sequence_free (Imsls_faure *state)
The type double function is imsls_d_faure_next_point. The functions
imsls_faure_sequence_init and imsls_faure_sequence_free
are precision independent.

Required Arguments for imsls_faure_sequence_init

int ndim (Input)
The dimension of the hyper-rectangle.

Return Value for imsls_faure_sequence_init

Returns a structure that contains information about the sequence. The structure should
be freed using imsls_faure_sequence_free after it is no longer needed.

Required Arguments for imsls_faure_next_point

Imsls_faure *state (Input/Output)
Structure created by a call to imsls_faure_sequence_init.

912 • faure_next_point IMSL C Stat Library

Return Value for imsls_faure_next_point

Returns the next point in the shuffled Faure sequence. To release this space, use
imsls_faure_sequence_free.

Required Arguments for imsls_faure_sequence_free

Imsls_faure *state (Input/Output)
Structure created by a call to imsls_faure_sequence_init.

Synopsis with Optional Arguments

#include <imsls.h>
Imsls_faure *imsls_faure_sequence_init (int ndim,

IMSLS_BASE, int base,
IMSLS_SKIP, int skip,
0)

float* imsls_f_faure_next_point (Imsls_faure *state,
IMSLS_RETURN_USER, float *user,
IMSLS_RETURN_SKIP, int *skip,
0)

Optional Arguments

IMSLS_BASE, int base (Input)
The base of the Faure sequence.
Default: The smallest prime greater than or equal to ndim.

IMSLS_SKIP, int *skip (Input)
The number of points to be skipped at the beginning of the Faure sequence.
Default: / 2 1m −⎢ ⎥⎣ ⎦base , where log /logBm = ⎢ ⎥⎣ ⎦base and B is the largest
representable integer.

IMSLS_RETURN_USER, float *user (Output)
User-supplied array of length ndim containing the current point in the
sequence.

IMSLS_RETURN_SKIP, int *skip (Output)
The current point in the sequence. The sequence can be restarted by
initializing a new sequence using this value for IMSLS_SKIP, and using the
same dimension for ndim.

Description
Discrepancy measures the deviation from uniformity of a point set.

The discrepancy of the point set []1,..., 0,1 , 1d
nx x d∈ ≥ , is

() () ()
;

sup ,
E

A E ndD En n
λ= −

where the supremum is over all subsets of [0, 1]d of the form

Chapter 12: Random Number Generation faure_next_point • 913

))1
0, 0 0 1, 1... , ,

d jE t t t j d≤ ≤ ≤ ≤⎡⎡= × ×⎣ ⎣ ,

λ is the Lebesque measure, and ();A E n is the number of the xj contained in E.

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there exists a
constant c(d), depending only on d, such that

() () ()log dndD c dn n
≤

for all n>1.
Generalized Faure sequences can be defined for any prime base b≥d. The lowest
bound for the discrepancy is obtained for the smallest prime b≥d, so the optional
argument IMSLS_BASE defaults to the smallest prime greater than or equal to the
dimension.
The generalized Faure sequence x1, x2, …, is computed as follows:
Write the positive integer n in its b-ary expansion,

0

() i
i

i

n a n b
∞

=

= ∑

where ai(n) are integers, ()0 ia n b≤ < .

The j-th coordinate of xn is

() () 1

0 0

() , 1j j k
n kd d

k d

x c a n b j d
∞ ∞

− −

= =

= ≤ ≤∑∑

The generator matrix for the series, ()jck d , is defined to be

()j d k
k d k dc j c−=

and k dc is an element of the Pascal matrix,

()
!

! !
0

k d

d k d
c d cc

k d

⎧ ≤⎪ −= ⎨
⎪ >⎩

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence
itself. It can be shown that this shuffling preserves the low-discrepancy property.

914 • faure_next_point IMSL C Stat Library

The shuffling used is the b-ary Gray code. The function G(n) maps the positive integer
n into the integer given by its b-ary expansion.
The sequence computed by this function is x(G(n)), where x is the generalized Faure
sequence.

Example
In this example, five points in the Faure sequence are computed. The points are in the
three-dimensional unit cube.
Note that imsls_faure_sequence_init is used to create a structure that holds the
state of the sequence. Each call to imsls_f_faure_next_point returns the next
point in the sequence and updates the Imsls_faure structure. The final call to
imsls_faure_sequence_free frees data items, stored in the structure, that were
allocated by imsls_faure_sequence_init.

#include "stdio.h"
#include "imsl.h"

void main()
{
 Imsl_faure *state;
 float *x;
 int ndim = 3;
 int k;

 state = imsl_faure_sequence_init(ndim, 0);

 for (k = 0; k < 5; k++) {
 x = imsl_f_faure_next_point(state, 0);
 printf("%10.3f %10.3f %10.3f\n", x[0], x[1], x[2]);
 free(x);
 }

 imsl_faure_sequence_free(state);
}

Output

 0.334 0.493 0.064
 0.667 0.826 0.397
 0.778 0.270 0.175
 0.111 0.604 0.509
 0.445 0.937 0.842

Chapter 13: Neural Networks Routines • 915

Chapter 13: Neural Networks

Routines
Network

Multilayered feedforward neural network mlff_network 934
Training mlff_network_trainer 944
Forecasting mlff_network_forecast 954

Preprocessing Filters
Scales or unscales continuous data prior to its use in
neural network training, testing, or forecasting. scale_filter 960
Converts time series data to the format required
for processing by a neural network. time_series_filter 966
Converts time series data sorted within
nominal classes. time_series_class_filter 969
Converts nominal data into a series of binary encoded
columns for input to a neural network. unsupervised_nominal_filter 973
Converts ordinal data into proportions. unsupervised_ordinal_filter 976

Usage Notes

Neural Networks – An Overview
Today, neural networks are used to solve a wide variety of problems, some of which
have been solved by existing statistical methods, and some of which have not. These
applications fall into one of the following three categories:
• Forecasting: predicting one or more quantitative outcomes from both

quantitative and categorical input data,
• Classification: classifying input data into one of two or more categories, or
• Statistical pattern recognition: uncovering patterns, typically spatial or

temporal, among a set of variables.
Forecasting, pattern recognition and classification problems are not new. They existed
years before the discovery of neural network solutions in the 1980’s. What is new is
that neural networks provide a single framework for solving so many traditional
problems and, in some cases, extend the range of problems that can be solved.

916 • Usage Notes IMSL C Stat Library

Traditionally, these problems were solved using a variety of widely known statistical
methods:
• linear regression and general least squares,
• logistic regression and discrimination,
• principal component analysis,
• discriminant analysis,
• k-nearest neighbor classification, and
• ARMA and NARMA time series forecasts.
In many cases, simple neural network configurations yield the same solution as many
traditional statistical applications. For example, a single-layer, feedforward neural
network with linear activation for its output perceptron is equivalent to a general linear
regression fit. Neural networks can provide more accurate and robust solutions for
problems where traditional methods do not completely apply.
Mandic and Chambers (2001) identify the traditional methods for time series
forecasting that are unsuitable when a time series:
• is non-stationary,
• has large amounts of noise, such as a biomedical series, or
• is too short.
ARIMA and other traditional time series approaches can produce poor forecasts when
one or more of the above conditions exist. The forecasts of ARMA and non-linear
ARMA (NARMA) depend heavily upon key assumptions about the model or
underlying relationship between the output of the series and its patterns.
Neural networks, on the other hand, adapt to changes in a non-stationary series and can
produce reliable forecasts even when the series contains a good deal of noise or when
only a short series is available for training. Neural networks provide a single tool for
solving many problems traditionally solved using a wide variety of statistical tools and
for solving problems when traditional methods fail to provide an acceptable solution.
Although neural network solutions to forecasting, pattern recognition and classification
problems can vary vastly, they are always the result of computations that proceed from
the network inputs to the network outputs. The network inputs are referred to as
patterns, and outputs are referred to as classes. Frequently the flow of these
computations is in one direction, from the network input patterns to its outputs.
Networks with forward-only flow are referred to as feedforward networks.

Chapter 13: Neural Networks Usage Notes • 917

X0

X1

X2

Input Layer

X3

Output Layer

Z0 Y0

Z1 Y1

Hidden Layer

H0

H1

H2

Figure 13-1: A 2-layer, Feedforward Network with 4 inputs and 2 outputs

Other networks, such as recurrent neural networks, allow data and information to flow
in both directions, see Mandic and Chambers' (2001).

Hidden Layer

H0

H2

X0

X1

X2

Input Layer

X3

Output Layer

Z0 Y0

Z1 Y1

Figure 13-2: A recurrent neural network with 4 inputs and 2 outputs

A neural network is defined not only by its architecture and flow, or interconnections,
but also by computations used to transmit information from one node or input to
another node. These computations are determined by network weights. The process of
fitting a network to existing data to determine these weights is referred to as training
the network, and the data used in this process are referred to as patterns. Individual
network inputs are referred to as attributes and outputs are referred to as classes. The
table below lists terms used to describe neural networks that are synonymous to
common statistical terminology.

918 • Usage Notes IMSL C Stat Library

Neural Network

Terminology
Traditional Statistical

Terminology
Description

Training Model Fitting Estimating unknown parameters or
coefficients in the analysis

Patterns Cases or Observations A single observation of all input and
output variables

Attributes Independent Variables Inputs to the network or model

Classes Dependent Variables Outputs from the network or model
calculations

Table 1. Synonyms between Neural Network and Common Statistical Terminology

Neural Networks – History and Terminology
The Threshold Neuron
McCulloch and Pitts' (1943) wrote one of the first published works on neural networks.
This paper describes the threshold neuron as a model for which the human brain stores
and processes information.

X0

X1

X2

W1

W0

W2

Inputs

Weights

Y

McCulloch &
Pitts Neuron

Output

Figure 13-3: The McCulloch & Pitts Threshold Neuron

All inputs to a threshold neuron are combined into a single number, Z, using the
following weighted sum:

1

m

i i
i

Z w x μ
=

= −∑ ,

Chapter 13: Neural Networks Usage Notes • 919

where iw is the weight associated with the ith input (attribute) ix . The term μ in this
calculation is referred to as the bias term. In traditional statistical terminology it might
be referred to as the intercept. The weights and bias terms in this calculation are
estimated during network training.
In McCulloch and Pitts’ (1943) description of the threshold neuron, the neuron does
not respond to its inputs unless Z is greater than zero. If Z is greater than zero then the
output from this neuron is set to 1. If Z is less than or equal to zero the output is zero:

1 if 0
0 if 0

Z
Y

Z
>⎧

= ⎨ ≤⎩ ,

where Y is the neuron’s output.
Years following McCulloch and Pitts’ (1943) article, interest in McCulloch and Pitts
neural network was limited to theoretical discussions, such as Hebb (1949), which
describe learning, memory and the brain’s structure.

The Perceptron
The McCulloch and Pitts’ neuron is also referred to as a threshold neuron since it
abruptly changes its output from 0 to 1 when its potential, Z, crosses a threshold.
Mathematically, this behavior can be viewed as a step function that maps the neuron’s
potential, Z, to the neuron’s output, Y.
Rosenblatt (1958) extended the McCulloch and Pitts threshold neuron by replacing this
step function with a continuous function that maps Z to Y. The Rosenblatt neuron is
referred to as the perceptron, and the continuous function mapping Z to Y makes it
easier to train a network of perceptrons than a network of threshold neurons.
Unlike the threshold neuron, the perceptron produces analog output rather than the
threshold neuron’s purely binary output. Carefully selecting the analog function,
makes Rosenblatt’s perceptron differentiable, whereas the threshold neuron is not.
This simplifies the training algorithm.
Like the threshold neuron, Rosenblatt’s perceptron starts by calculating a weighted
sum of its inputs,

1

m

i i
i

Z w x μ
=

= −∑ .

This is referred to as the perceptron’s potential.
Rosenblatt’s perceptron calculates its analog output from its potential. There are many
choices for this calculation. The function used for this calculation is referred to as the
activation function as shown in Figure 13-4 below.

920 • Usage Notes IMSL C Stat Library

X0

X1

X2

W1

W0

W2

Inputs

Weights

Output

Z Y = g(Z)

Activation
Function

g(Z)

Potential

Figure 13-4: A Neural Net Perceptron

As shown in Figure 13-4, perceptrons consist of the following five components:
1. Inputs – x1, x2, and x3,
2. Input Weights – W1, W2, and W3,

3. Potential –
3

1
i i

i

Z W x μ
=

= −∑ , where μ is a bias correction,

4. Activation Function – g(Z), and
5. Output – Y = g(Z) .
Like threshold neurons, perceptron inputs can be either the initial raw data inputs or the
output from another perceptron. The primary purpose of network training is to
estimate the weights associated with each perceptron’s potential. The activation
function maps this potential to the perceptron’s output.

The Activation Function
Although theoretically any differentiable function can be used as an activation
function, the identity and sigmoid functions are the two most commonly used.
The identity activation function, also referred to as a linear activation function, is a
flow-through mapping of the perceptron’s potential to its output:

()g Z Z=
.

Output perceptrons in a forecasting network often use the identity activation function.

Chapter 13: Neural Networks Usage Notes • 921

Z
Figure 13-5: An Identity (Linear) Activation Function

If the identity activation function is used throughout the network, then it is easily
shown that the network is equivalent to fitting a linear regression model of the form

0 1 1i k kY x xβ β β= + + +" , where 1 2, , , kx x x" are the k network inputs, iY is the ith
network output and 0 1, , , kβ β β" are the coefficients in the regression equation. As a
result, it is uncommon to find a neural network with identity activation used in all its
perceptrons.
Sigmoid activation functions are differentiable functions that map the perceptron’s
potential to a range of values, such as 0 to 1, i.e., Kℜ → ℜ where K is the number of
perceptron inputs.

1

Z
Figure 13-6: A Sigmoid Activation Function

922 • Usage Notes IMSL C Stat Library

In practice, the most common sigmoid activation function is the logistic function that
maps the potential into the range 0 to 1:

1()
1 Zg Z

e−=
+

,

Since 0 < g(Z) < 1, the logistic function is very popular for use in networks that output
probabilities.
Other popular sigmoid activation functions include:

• the hyperbolic-tangent () tanh()
Z Z

Z Z

e eg Z Z
e e

α α

α α

−

−

−
= =

+
,

• the arc-tangent 2() arctan
2
Zg Z π

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

, and

• the squash activation function, see Elliott (1993), ()
1

Zg Z
Z

=
+

.

It is easy to show that the hyperbolic-tangent and logistic activation functions are
linearly related. Consequently, forecasts produced using logistic activation should be
close to those produced using hyperbolic-tangent activation. However, one function
may be preferred over the other when training performance is a concern. Researchers
report that the training time using the hyperbolic-tangent activation function is shorter
than using the logistic activation function.

Network Applications
Forecasting using Neural Networks
There are numerous good statistical forecasting tools. Most require assumptions about
the relationship between the variables being forecasted and the variables used to
produce the forecast, as well as the distribution of forecast errors. Such statistical tools
are referred to as parametric methods. ARIMA time series models, for example,
assume that the time series is stationary, that the errors in the forecasts follow a
particular ARIMA model, and that the probability distribution for the residual errors is
Gaussian, see Box and Jenkins (1970). If these assumptions are invalid, then ARIMA
time series forecasts can be substandard.
Neural networks, on the other hand, require few assumptions. Since neural networks
can approximate highly non-linear functions, they can be applied without an extensive
analysis of underlying assumptions.
Another advantage of neural networks over ARIMA modeling is the number of
observations needed to produce a reliable forecast. ARIMA models generally require
50 or more equally spaced, sequential observations in time. In many cases, neural
networks can also provide adequate forecasts with fewer observations by incorporating
exogenous, or external, variables in the network’s input.
For example, a company applying ARIMA time series analysis to forecast business
expenses would normally require each of its departments, and each sub-group within
each department, to prepare its own forecast. For large corporations this can require

Chapter 13: Neural Networks Usage Notes • 923

fitting hundreds or even thousands of ARIMA models. With a neural network
approach, the department and sub-group information could be incorporated into the
network as exogenous variables. Although this can significantly increase the
network’s training time, the result would be a single model for predicting expenses
within all departments.
Linear least squares models are also popular statistical forecasting tools. These
methods range from simple linear regression for predicting a single quantitative
outcome to logistic regression for estimating probabilities associated with categorical
outcomes. It is easy to show that simple linear least squares forecasts and logistic
regression forecasts are equivalent to a feedforward network with a single layer. For
this reason, single-layer feedforward networks are rarely used for forecasting. Instead
multilayer networks are used.
Hutchinson (1994) and Masters (1995) describe using multilayer feedforward neural
networks for forecasting. Multilayer feedforward networks are characterized by the
forward-only flow of information in the network. The flow of information and
computations in a feedforward network is always in one direction, mapping an
M-dimensional vector of inputs to a C-dimensional vector of outputs, i.e., CM ℜ→ℜ
where C M< .
There are many other types of networks without this feed forward requirement.
Information and computations in a recurrent neural network, for example, flow in both
directions. Output from one level of a recurrent neural network can be fed back, with
some delay, as input into the same network (see Figure 13-2). Recurrent networks are
very useful for time series prediction, see Mandic and Chambers (2001).

Pattern Recognition using Neural Networks
Neural networks are also extensively used in statistical pattern recognition. Pattern
recognition applications that make wide use of neural networks include:
• natural language processing: Manning and Schütze (1999)
• speech and text recognition: Lippmann (1989)
• face recognition: Lawrence, et al. (1997)
• playing backgammon, Tesauro (1990)
• classifying financial news, Calvo (2001).
The interest in pattern recognition using neural networks has stimulated the
development of important variations of feedforward networks. Two of the most
popular are:
• Self-Organizing Maps, also called Kohonen Networks, Kohonen (1995),
• and Radial Basis Function Networks, Bishop (1995).
Useful mathematical descriptions of the neural network methods underlying these
applications are given by Bishop (1995), Ripley (1996), Mandic and Chambers (2001),
and Abe (2001). From a statistical viewpoint, Warner and Misra (1996) describes an
excellent overview of neural networks.

924 • Usage Notes IMSL C Stat Library

Neural Networks for Classification
Classifying observations using prior concomitant information is possibly the most
popular application of neural networks. Data classification problems abound in
business and research. When decisions based upon data are needed, they can often be
treated as a neural network data classification problem. Decisions to buy, sell, hold or
remain with a stock are decisions involving four choices. Classifying loan applicants as
good or bad credit risks, based upon their application, is a classification problem
involving two choices. Neural networks are powerful tools for making decisions or
choices based upon data.
These same tools are ideally suited for automatic selection or decision-making.
Incoming email, for example, can be examined to separate spam from important email
using a neural network trained for this task. A good overview of solving classification
problems using multilayer feedforward neural networks is found in Abe (2001) and
Bishop (1995).
There are two popular methods for solving data classification problems using
multilayer feedforward neural networks, depending upon the number of choices
(classes) in the classification problem. If the classification problem involves only two
choices, then it can be solved using a neural network with a single logistic output. This
output estimates the probability that the input data belong to one of the two choices.
For example, a multilayer feedforward network with a single logistic output can be
used to determine whether a new customer is credit-worthy. The network’s input
would consist of information on the applicants credit application, such as age, income,
etc. If the network output probability is above some threshold value (such as 0.5 or
higher) then the applicant’s credit application is approved.
This is referred to as binary classification using a multilayer feedforward neural
network. If more than two classes are involved then a different approach is needed. A
popular approach is to assign logistic output perceptrons to each class in the
classification problem. The network assigns each input pattern to the class associated
with the output perceptron that has the highest probability for that input pattern.
However, this approach produces invalid probabilities since the sum of the individual
class probabilities for each input is not equal to one, which is a requirement for any
valid multivariate probability distribution.
To avoid this problem, the softmax activation function, see Bridle (1990), applied to
the network outputs ensures that the outputs conform to the mathematical requirements
of multivariate classification probabilities. If the classification problem has C
categories, or classes, then each category is modeled by one of the network outputs. If
Zi is the weighted sum of products between its weights and inputs for the ith output,
i.e.,

i ji ji
j

Z w y= ∑

then

Chapter 13: Neural Networks Multilayer Feedforward Neural Networks • 925

i

1

e i

j

Z

C
Z

j

softmax
e

=

=

∑ .

The softmax activation function ensures that all outputs conform to the requirements
for multivariate probabilities. That is,
• 0 < softmaxi< 1, for all i = 1, 2, …, C and

•
C

i
i=1

1softmax =∑

A pattern is assigned to the ith classification when softmaxi is the largest among all
C classes.
However, multilayer feedforward neural networks are only one of several popular
methods for solving classification problems. Others include:
• Support Vector Machines (SVM Neural Networks), Abe (2001),
• Classification and Regression Trees (CART), Breiman, et al. (1984),
• Quinlan’s classification algorithms C4.5 and C5.0, Quinlan (1993), and
• Quick, Unbiased and Efficient Statistical Trees (QUEST), Loh and Shih (1997).
Support Vector Machines are simple modifications of traditional multilayer
feedforward neural networks (MLFF) configured for pattern classification.

Multilayer Feedforward Neural Networks
A multilayer feedforward neural network is an interconnection of perceptrons in which
data and calculations flow in a single direction, from the input data to the outputs. The
number of layers in a neural network is the number of layers of perceptrons. The
simplest neural network is one with a single input layer and an output layer of
perceptrons. The network in Figure 13-7 illustrates this type of network. Technically,
this is referred to as a one-layer feedforward network with two outputs because the
output layer is the only layer with an activation calculation.

926 • Multilayer Feedforward Neural Networks IMSL C Stat Library

X0

X1

X2

Input Layer

Input
Data

Z0

Z1

Y0

Y1

Output
Layer

g0(Z0)

g1(Z1)

OuputsNeuron

Figure 13- 7: A Single-Layer Feedforward Neural Net

In this single-layer feedforward neural network, the network’s inputs are directly
connected to the output layer perceptrons, Z1 and Z2.
The output perceptrons use activation functions, g1 and g2, to produce the outputs Y1
and Y2.
Since

3 3

1 1, 1 2 2, 2
1 1

andi i i i
i i

Z W x Z W xμ μ
= =

= − = −∑ ∑ ,

3

1 1 1 1 1, 1
1

() ()i i
i

Y g Z g W x μ
=

= = −∑ ,

and
3

2 2 2 2 2, 2
1

() ()i i
i

Y g Z g W x μ
=

= = −∑ .

When the activation functions g1 and g2 are identity activation functions, the single-
layer neural net is equivalent to a linear regression model. Similarly, if g1 and g2 are
logistic activation functions, then the single-layer neural net is equivalent to logistic
regression. Because of this correspondence between single-layer neural networks and
linear and logistic regression, single-layer neural networks are rarely used in place of
linear and logistic regression.
The next most complicated neural network is one with two layers. This extra layer is
referred to as a hidden layer. In general there is no restriction on the number of hidden
layers. However, it has been shown mathematically that a two-layer neural network

Chapter 13: Neural Networks Multilayer Feedforward Neural Networks • 927

can accurately reproduce any differentiable function, provided the number of
perceptrons in the hidden layer is unlimited.
However, increasing the number of perceptrons increases the number of weights that
must be estimated in the network, which in turn increases the execution time for the
network. Instead of increasing the number of perceptrons in the hidden layers to
improve accuracy, it is sometimes better to add additional hidden layers, which
typically reduce both the total number of network weights and the computational time.
However, in practice, it is uncommon to see neural networks with more than two or
three hidden layers.

Neural Network Error Calculations
Error Calculations for Forecasting
The error calculations used to train a neural network are very important. Researchers
have investigated many error calculations in an effort to find a calculation with a short
training time appropriate for the network’s application. Typically error calculations are
very different depending primarily on the network’s application.
For forecasting, the most popular error function is the sum-of-squared errors, or one of
its scaled versions. This is analogous to using the minimum least squares optimization
criterion in linear regression. Like least squares, the sum-of-squared errors is
calculated by looking at the squared difference between what the network predicts for
each training pattern and the target value, or observed value, for that pattern. Formally,
the equation is the same as one-half the traditional least squares error:

()21
2

1 1

ˆ
N C

ij ij
i j

E t t
= =

= −∑∑
,

where N is the total number of training cases, C is equal to the number of network
outputs, ijt is the observed output for the ith training case and the jth network output,

and îjt is the network’s forecast for that case.

Common practice recommends fitting a different network for each forecast variable.
That is, the recommended practice is to use C=1 when using a multilayer feedforward
neural network for forecasting. For classification problems with more than two
classes, it is common to associate one output with each classification category, i.e.,
C=number of classes.
Notice that in ordinary least squares, the sum-of-squared errors are not multiplied by
one-half. Although this has no impact on the final solution, it significantly reduces the
number of computations required during training.
Also note that as the number of training patterns increases, the sum-of-squared errors
increases. As a result, it is often useful to use the root-mean-square (RMS) error
instead of the unscaled sum-of-squared errors:

928 • Multilayer Feedforward Neural Networks IMSL C Stat Library

()

()

2

1 1

2

1 1

ˆ
N C

ij ij
i jRMS

N C

ij
i j

t t
E

t t

= =

= =

−
=

−

∑∑

∑∑

where t is the average output:

1 1

N C

ij
i j

t
t

N C
= ==

⋅

∑∑
.

Unlike the unscaled sum-of-squared errors, RMSE does not increase as N increases.
The smaller values for RMSE , indicate that the network predicts its training targets
closer. The smallest value, 0RMSE = , indicates that the network predicts every
training target exactly. The largest value, 1RMSE = , indicates that the network predicts
the training targets only as well as setting each forecast equal to the mean of the
training targets.
Notice that the root-mean-squared error is related to the sum-of-squared error by a
simple scale factor:

2RMSE E
t

= ⋅

Another popular error calculation for forecasting from a neural network is the
Minkowski-R error. The sum-of-squared error, E, and the root-mean-squared error,

RMSE , are both theoretically motivated by assuming the noise in the target data is
Gaussian. In many cases, this assumption is invalid. A generalization of the Gaussian
distribution to other distributions gives the following error function, referred to as the
Minkowski-R error:

1 1

ˆ
N C RR

ij ij
i j

E t t
= =

= −∑∑
.

Notice that 2RE E= when R=2.

A good motivation for using RE instead of E is to reduce the impact of outliers in the
training data. The usual error measures, E and RMSE , emphasize larger differences
between the training data and network forecasts since they square those differences. If
outliers are expected, then it is better to de-emphasize larger differences. This can be
done by using the Minkowski-R error with R=1. When R=1, the Mindowski-R error
simplifies to the sum of absolute differences:

Chapter 13: Neural Networks Multilayer Feedforward Neural Networks • 929

1

1 1

ˆ
N C

ij ij
i j

L E t t
= =

= = −∑∑
.

L is also referred to as the Laplacian error. This name is derived from the fact that it
can be theoretically justified by assuming the noise in the training data follows a
Laplacian, rather than Gaussian, distribution.
Of course, similar to E, L generally increases when the number of training cases
increases. Similar to RMSE , a scaled version of the Laplacian error can be calculated
using the following formula:

1 1

1 1

ˆ
N C

ij ij
i jRMS

N C

ij
i j

t t
L

t t

= =

= =

−
=

−

∑∑

∑∑ .

Cross-Entropy Error for Binary Classification
As previously mentioned, multilayer feedforward neural networks can be used for both
forecasting and classification applications. Training a forecasting network involves
finding the network weights that minimize either the Gaussian or Laplacian
distributions, E or L respectively, or equivalently their scaled versions, RMSE or RMSL .
Although these error calculations can be adapted for use in classification by setting the
target classification variable to zeros and ones, this is not recommended. Use of the
sum-of-squared and Laplacian error calculations is based on the assumption that the
target variable is continuous. In classification applications, the target variable is a
discrete random variable with C possible values, where C=number of classes.
A multilayer feedforward neural network for classifying patterns into one of only two
categories is referred to as a binary classification network. It has a single output: the
estimated probability that the input pattern belongs to one of the two categories. The
probability that it belongs to the other category is equal to one minus this probability,
i.e., 2 1 1() (not C) 1 ()P C P P C= = − .

Binary classification applications are very common. Any problem requiring yes/no
classification is a binary classification application. For example, deciding to sell or
buy a stock is a binary classification problem. Deciding to approve a loan application
is also a binary classification problem. Deciding whether to approve a new drug or to
provide one of two medical treatments are binary classification problems.
For binary classification problems, only a single output is used, C=1. This output
represents the probability that the training case should be classified as “yes.” A
common choice for the activation function of the output of a binary classification
network is the logistic activation function, which always results in an output in the
range 0 to 1, regardless of the perceptron’s potential.

930 • Multilayer Feedforward Neural Networks IMSL C Stat Library

One choice for training binary classification networks is to use sum-of-squared errors
with the class value of yes patterns coded as a 1 and the no classes coded as a 0, i.e.:

1 if training pattern i = "yes"
0 if training pattern i = " no"it

⎧
= ⎨

⎩ .

However, using either the sum-of-squared or Laplacian errors for training a network
with these target values assumes that the noise in the training data are Gaussian. In
binary classification, the zeros and ones are not Gaussian. They follow the Bernoulli
distribution:

1() (1)t t
iP t t p p −= = −

,

where p is equal to the probability that a randomly selected case belongs to the “yes”
class.
Modeling the binary classes as Bernoulli observations leads to the use of the cross-
entropy error function described by Hopfield (1987) and Bishop (1995):

{ }
1

ˆ ˆln() (1) ln(1)
N

C
i i i i

i

E t t t t
=

= − + − −∑ ,

where N is the number of training patterns, it is the target value for the ith case (either

1 or 0), and ît is the network output for the ith training pattern. This is equal to the
neural network’s estimate of the probability that the ith training pattern should be
classified as “yes.”
For situations in which the target variable is a probability in the range 0 1ijt< < , the
value of the cross-entropy at the network’s optimum is equal to:

{ }min
1

ln() (1) ln(1)
N

C
i i i i

i

E t t t t
=

= − + − −∑

Subtracting min
CE from CE gives an error term bounded below by zero, i.e.,

0CEE ≥

where: min
1

ˆ ˆ1
ln (1) ln

1

N
CE C C i i

i i
i i i

t t
E E E t t

t t=

⎧ ⎫⎡ ⎤ ⎡ ⎤−⎪ ⎪= − = − + −⎨ ⎬⎢ ⎥ ⎢ ⎥−⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
∑ .

This adjusted cross-entropy, CEE , is normally reported when training a binary
classification network where 0 1ijt< < . Otherwise CE , the unadjusted cross-entropy

error, is used. For CEE small values, i.e. values near zero, indicate that the training
resulted in a network able to classify the training cases with a low error rate.

Chapter 13: Neural Networks Multilayer Feedforward Neural Networks • 931

Cross-Entropy Error for Multiple Classes
Using a multilayer feedforward neural network for binary classification is relatively
straightforward. A network for binary classification only has a single output that
estimates the probability that an input pattern belongs to the “yes” class, i.e., 1it = . In
classification problems with more than two mutually exclusive classes, the calculations
and network configurations are not as simple.
One approach is to use multiple network outputs, one for each of the C classes. Using
this approach, the jth output for the ith training pattern, ijt , is the estimated probability

that the ith pattern belongs to the jth class, denoted by îjt . An easy way to estimate
these probabilities is to use logistic activation for each output. This ensures that each
output satisfies the univariate probability requirements, i.e., ˆ0 1ijt≤ ≤ .

However, since the classification categories are mutually exclusive, each pattern can
only be assigned to one of the C classes, which means that the sum of these individual
probabilities should always equal 1. However, if each output is the estimated

probability for that class, it is very unlikely that
1

ˆ 1
C

ij
j

t
=

=∑ . In fact, the sum of the

individual probability estimates can easily exceed 1 if logistic activation is applied to
every output.
Support Vector Machine (SVM) neural networks use this approach with one
modification. An SVM network classifies a pattern as belonging to the ith category if
the activation calculation for that category exceeds a threshold and the other
calculations do not exceed this value. That is, the ith pattern is assigned to the jth
category if and only if îjt δ> and îkt δ≤ for all k j≠ , where δ is the threshold. If
this does not occur, then the pattern is marked as unclassified.
Another approach to multi-class classification problems is to use the softmax activation
function developed by Bridle (1990) on the network outputs. This approach produces
outputs that conform to the requirements of a multinomial distribution. That is

1

ˆ ˆ1 for all 1,2, , and 0 1 for all 1, 2, ,
C

ij ij
j

t i N t i N
=

= = ≤ ≤ =∑ " "

and

1, 2, ,j C= "

The softmax activation function estimates classification probabilities using the
following softmax activation function:

1

ˆ
ij

ij

Z

ij C
Z

j

et
e

=

=

∑ ,

932 • Multilayer Feedforward Neural Networks IMSL C Stat Library

where ijZ is the potential for the jth output perceptron, or category, using the ith
pattern.
For this activation function, it is clear that:

1. ˆ0 1ijt≤ ≤ for all 1, 2, ,i N= " , 1, 2, ,j C= " and

2.
1

ˆ 1
C

ij
j

t
=

=∑ for all 1, 2, ,i N= "

Modeling the C network outputs as multinomial observations leads to the cross-entropy
error function described by Hopfield (1987) and Bishop (1995):

1 1

ˆln()
N C

C
ij ij

i j

E t t
= =

= −∑∑ ,

where N is the number of training patterns, ijt is the target value for the jth class of ith

pattern (either 1 or 0), and îjt is the network’s jth output for the ith pattern. îjt is equal
to the neural network’s estimate of the probability that the ith pattern should be
classified into the jth category.
For situations in which the target variable is a probability in the range 0 1ijt< < , the
value of the cross-entropy at the networks optimum is equal to:

min
1 1

ln()
N C

C
ij ij

i j

E t t
= =

= −∑∑

Subtracting this from CE gives an error term bounded below by zero, i.e.,
0CEE ≥ where:

min
1 1

ˆ
ln

N C
ijCE C C

ij
i j ij

t
E E E t

t= =

⎡ ⎤
= − = − ⎢ ⎥

⎢ ⎥⎣ ⎦
∑∑

This adjusted cross-entropy is normally reported when training a binary classification
network where 0 1ijt< < . Otherwise CE , the non-adjusted cross-entropy error, is
used. That is, when 1-in-C encoding of the target variable is used,

1 if the th pattern belongs to the th category
0 if the th pattern does not belong to the th categoryij

i j
t

i j
⎧

= ⎨
⎩

Small values, values near zero, indicate that the training resulted in a network with a
low error rate and that patterns are being classified correctly most of the time.

Chapter 13: Neural Networks Multilayer Feedforward Neural Networks • 933

Back-Propagation in Multilayer Feedforward Neural Networks
Sometimes a multilayer feedforward neural network is referred to incorrectly as a back-
propagation network. The term back-propagation does not refer to the structure or
architecture of a network. Back-propagation refers to the method used during network
training. More specifically, back-propagation refers to a simple method for calculating
the gradient of the network, that is the first derivative of the weights in the network.
The primary objective of network training is to estimate an appropriate set of network
weights based upon a training dataset. Many ways have been researched for estimating
these weights, but they all involve minimizing some error function. In forecasting the
most commonly used error function is the sum-of-squared errors:

()21
2

1 1

ˆ
N C

ij ij
i j

E t t
= =

= −∑∑
.

Training uses one of several possible optimization methods to minimize this error term.
Some of the more common are: steepest descent, quasi-Newton, conjugant gradient and
many various modifications of these optimization routines.
Back-propagation is a method for calculating the first derivative, or gradient, of the
error function required by some optimization methods. It is certainly not the only
method for estimating the gradient. However, it is the most efficient. In fact, some
will argue that the development of this method by Werbos (1974), Parker (1985) and
Rumelhart, Hinton and Williams (1986) contributed to the popularity of neural network
methods by significantly reducing the network training time and making it possible to
train networks consisting of a large number of inputs and perceptrons.
Simply stated, back-propagation is a method for calculating the first derivative of the
error function with respect to each network weight. Bishop (1995) derives and
describes these calculations for the two most common forecasting error functions – the
sum-of-squared errors and Laplacian error functions. Abe (2001) gives the description
for the classification error function - the cross-entropy error function. For all of these
error functions, the basic formula for the first derivative of the network weight jiw at
the ith perceptron applied to the output from the jth
perceptron is:

j i
ji

E Z
w

δ∂
=

∂ ,

where ()i iZ g a= is the output from the ith perceptron after activation, and
ji

E
w
∂

∂
is the

derivative for a single output and a single training pattern. The overall estimate of the
first derivative of jiw is obtained by summing this calculation over all N training
patterns and C network outputs.
The term back-propagation gets its name from the way the term jδ in the back-
propagation formula is calculated:

934 • mlff_network IMSL C Stat Library

()j j kj k
k

g a wδ δ′= ⋅∑ ,

where the summation is over all perceptrons that use the activation from the jth
perceptron, ()jg a .

The derivative of the activation functions, ()g a′ , varies among these functions. See the
following table:

Activation Function ()g a ()g a′
Linear ()g a a= () 1g a′ =

Logistic 1()
1 ag a

e−=
+

() ()(1 ())g a g a g a′ = −

Hyperbolic-tangent () ()g a tanh a= 2 2() () 1 ()g a sech a tanh a′ = = −

Squash
()

1
ag a

a
=

+

()
()2

2

1() 1 ()
1

g a g a
a

′ = = −
+

Table 2. Activation Functions and Their Derivatives

mlff_network
Creates a multilayered feedforward neural network.

Synopsis
#include <imsls.h>
Imsls_f_NN_Network *ffnet imsls_f_mlff_network_init

(int n_inputs, int n_outputs)
void imsls_f_mlff_network (Imsls_f_NN_Network *ff_net, ..., 0)
void imsls_f_mlff_network_free (Imsls_f_NN_Network *ff_net)
The type double functions are imsls_d_mlff_network_init,
imsls_d_mlff_network, and imsls_d_mlff_network_free.
The function imsl_f_mlff_network_init is used to initialize the network, the
function imsl_f_mlff_network is used to build up the network in preparation for
training, and the function imsl_f_mlff_network_free is used to free the internally
allocated structure ff_net. Descriptions of these functions are provided below.

Required Arguments for imsls_f_mlff_network_init

int n_inputs (Input/Output)
Number of input attributes in the network.

int n_outputs (Input)
Number of output attributes in the network.

Chapter 13: Neural Networks mlff_network • 935

Return Value for imsls_f_mlff_network_init

Pointer to structure of type Imsls_f_NN_Network containing the multilayered feed
forward network.

Required Argument for imsls_f_mlff_network

Imsls_f_NN_Network *ff_net (Input/Output)
Pointer to structure of type Imsls_f_NN_Network containing the multilayered
feed forward network.

Required Argument for imsls_f_mlff_network_free

Imsls_f_NN_Network *ff_net (Input)
Pointer to structure of type Imsls_f_NN_Network containing the multilayered
feed forward network.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_mlff_network (Imsls_f_NN_Network *ff_net,

IMSLS_CREATE_HIDDEN_LAYER, int n_perceptrons,
IMSLS_ACTIVATION_FCN, int layer_id, int activation_fcn[],
IMSLS_BIAS, int layer_id, float bias[],
IMSLS_LINK_ALL,
IMSLS_LINK_LAYER, int to, int from,
IMSLS_LINK_NODE, int to, int from,
IMSLS_REMOVE_LINK, int to, int from,
IMSLS_WEIGHTS, float weights[],
IMSLS_N_LINKS, int *n_links,
 0)

Optional Arguments for imsls_f_mlff_network

IMSLS_CREATE_HIDDEN_LAYER, int n_perceptrons (Input)
Creates a hidden layer with n_perceptrons. To create one or more hidden
layers imsls_f_mlff_network must be called multiple times with optional
argument IMSLS_CREATE_HIDDEN_LAYER.
Default: No hidden layer is created.

IMSLS_ACTIVATION_FCN, int layer_id, int activation_fcn[] (Input)
Specifies the activation function for each perceptron in a hidden layer or the
output layer, indicated by layer_id. layer_id must be between 1 and the
number of layers. If a hidden layer has been created, layer_id set to 1 will
indicate the first hidden layer. If there are zero hidden layers, layer_id set
to 1 indicates the output layer. Argument activation_fcn is an array of
length n_perceptrons in layer_id, where n_perceptrons is the number
of perceptrons in layer_id. activation_fcn contains the activation
function for the ith perceptron. Valid values for activation_fcn are:

936 • mlff_network IMSL C Stat Library

IMSLS_LINEAR Linear
IMSLS_LOGISTIC Logistic
IMSLS_TANH Hyperbolic-tangent
IMSLS_SQUASH Squash

 Default: Output Layer activation_fcn[i] = IMSLS_LINEAR. All hidden
layers activation_fcn[i] = IMSLS_LOGISTIC.

IMSLS_BIAS, int layer_id, float bias[], (Input)
Specifies the bias values for each perceptron in a hidden layer or the output
layer, indicated by layer_id. layer_id must be between 1 and the number
of layers. If a hidden layer has been created, layer_id set to 1 indicates the
first hidden layer. If there are zero hidden layers, layer_id set to 1 indicates
the output layer. Argument bias is an array of length n_perceptrons in
layer_id, where n_perceptrons is the number of perceptrons in
layer_id. bias contains the initial bias values for the ith perceptron.
Default: bias[i] = 0.0

IMSLS_LINK_ALL, (Input)
Connects all nodes in a layer to each node in the next layer, for all layers in
the network. To create a valid network, use IMSLS_LINK_ALL,
IMSLS_LINK_LAYER, or IMSLS_LINK_NODE.

IMSLS_LINK_LAYER, int to, int from (Input)
Creates a link between all nodes in layer from to all nodes in layer to. Layers
are numbered starting at zero with the input layer, then the hidden layers in
the order they are created, and finally the output layer. To create a valid
network, use IMSLS_LINK_ALL, IMSLS_LINK_LAYER, or
IMSLS_LINK_NODE.

or

IMSLS_LINK_NODE, int to, int from (Input)
Links node from to node to. Nodes are numbered starting at zero with the
input nodes, then the hidden layer perceptrons, and finally the output
perceptrons. To create a valid network, use IMSLS_LINK_ALL,
IMSLS_LINK_LAYER, or IMSLS_LINK_NODE.

or

IMSLS_REMOVE_LINK, int to, int from (Input)
Removes the link between node from and node to. Nodes are numbered
starting at zero with the input nodes, then the hidden layer perceptrons, and
finally output perceptrons.

IMSLS_WEIGHTS, float weights[] (Input)
Array of length n_links containing the initial weight for the ith link in the

Chapter 13: Neural Networks mlff_network • 937

network. See keyword IMSLS_N_LINKS.
Default: weights[] = 1.0.

IMSLS_N_LINKS, int *n_links (Output)
Returns the number of links in the network.

Description
A multilayerd feedforward network contains an input layer, an output layer and zero or
more hidden layers. The input and output layers are created by the function
imsls_f_mlff_network_init, where n_inputs specifies the number of inputs in
the input layer and n_outputs specifies the number of perceptrons in the output layer.
The hidden layers are created by one or more calls to imsls_f_mlff_network with
the keyword IMSLS_CREATE_HIDDEN_LAYER, where n_perceptrons specifies the
number of perceptrons in the hidden layer.
The network also contains links or connections between nodes. Links are created by
using one of the three optional arguments in the imsls_f_mlff_network function,
IMSLS_LINK_ALL, IMSLS_LINK_LAYER, IMSLS_LINK_NODE. The most useful is the
IMSLS_LINK_ALL, which connects every node in each layer to every node in the next
layer. A feed forward network is a network in which links are only allowed from one
layer to a following layer.
Each link has a weight and gradient value. Each perceptron node has a bias value.
When the network is trained, the weight and bias values are used as initial guesses.
After the network is trained using imsls_f_mlff_network_trainer, the weight,
gradient and bias values are updated in the Imsls_f_NN_Network structure.
Each perceptron has an activation function g, and a biasμ. The value of the percepton is
given by g(Z), where g is the activation function and z is the potential calculated using

1

m

i i
i

Z w x μ
=

= −∑

where xi are the values of nodes input to this perceptron with weights wi.
All information for the network is stored in the structure called Imsls_f_NN_Network.
(If the type is double, then the structure name is Imsls_d_NN_Network.) This structure
describes the network that is trained by imsls_f_mlff_network_trainer.
The following code gives a detailed description of this structure:

typedef struct
{
 int n_layers;
 Imsls_NN_Layer *layers;
 int n_links;
 int next_link;
 Imsls_f_NN_Link *links;
 int n_nodes;
 Imsls_f_NN_Node *nodes;
} Imsls_f_NN_Network;

938 • mlff_network IMSL C Stat Library

Where Imsls_NN_Layer is:
typedef struct
{
 int n_nodes;
 int *nodes;

} Imsls_NN_Layer;

Imsls_NN_Link is:

typedef struct
{
 float weight;
 int to_node;
 int from_node;
} Imsls_f_NN_Link;

And, Imsls_NN_Node is:

typedef struct
{
 int layer_id;
 int n_inLinks;
 int n_outLinks;
 int *inLinks;
 int *outLinks;
 float delta;
 float bias;
 int ActivationFcn;
} Imsls_f_NN_Node;

In particular, if ff_net is a pointer to the structure of type Imsls_f_NN_Network ,
then:

Structure member Description
ff_net->n_layers Number of layers in

network. Layers are
numbered starting at 0 for
the input layer.

ff_net->n_nodes Total number of nodes in
network, including the
input attributes.

ff_net->n_links Total number of links or
connections between input
attributes and perceptrons
and between perceptrons
from layer to layer.

ff_net->layers[0] Input layer with
n_inputs attributes.

Chapter 13: Neural Networks mlff_network • 939

Structure member Description
ff_net->layers[ff_net->n_layers-1] Output layer with

n_outputs perceptrons.
ff_net->layers[0].n_nodes n_inputs (number of

input attributes).
ff_net->layers[ffnet->n_layers-1].n_nodes n_outputs (number of

output perceptrons).
ff_net->layers[1].n_nodes Number of output

perceptrons in first hidden
layer.

ff_net->n_links[i].weight Initial weight for the ith
link in network. After the
training has completed the
structure menber contains
the weight used for
forecasting.

ff_net->n_nodes[i].bias Initial bias value for the ith
node. After the training
has completed the bias
value is updated.

Table 3. Structure Members and Their Descriptions

Nodes are numbered starting at zero with the input nodes, then the hidden layer
perceptrons and finally the output perceptrons.
Layers are numbered starting at zero with the input layer, then the hidden layers and
finally the output layer. If there are zero hidden layers, the output layer is numbered
one.
Use function imsls_f_mlff_network_free to free memory allocated by
imsls_f_mlff_network_init.

Examples

Example 1
This code fragment creates a single-layer feedforward network. The network inputs
are directly connected to the output perceptrons. The output perceptrons use the
default linear activation function and default bias values of 0.0.

940 • mlff_network IMSL C Stat Library

X0

X1

X2

Input Layer

X3

X4

Y0

Y1

Output Layer

g1(Z0)

g1(Z1)Input
Data

Perceptron Ouputs

Figure 13- 8: A Single-Layer Feedforward Neural Net

#include "imsls.h"
void main()
{
 Imsls_f_NN_Network *ffnet;
 float *stats;
 int n_obs= 100, n_cat=2, n_cont=1;

 /* Data for categorical,continuous, and output omitted
 See imsls_f_mlff_network_trainer Example 1 for a complete
 source code example */
 …

 ffnet = imsls_f_mlff_network_init(3,2);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_ALL, 0);

 stats = imsls_f_mlff_network_trainer(ffnet, n_obs, n_cat, n_cont,
 categorical,continuous, output,0);

 imsls_f_mlff_network_free(ffnet);

}

Example 2
This code fragment creates a two-layer feedforward network with four inputs, one
hidden layer with three perceptrons and two outputs.
Since the default activation function is linear for output and logistic for the hidden
layers, to create a network that uses only linear activation you must specify the linear
activation for each hidden layer in the network. This code fragment demonstrates how
to change the activation function and bias values for hidden and output layer
perceptrons as shown in Figure 13- 9 below.

Chapter 13: Neural Networks mlff_network • 941

X0

X1

X2

Input Layer

X3

Output Layer

X7 Y0

X8 Y1

Hidden Layer

X4

X5

X6

Figure 13- 9: A 2-layer, Feedforward Network with 4 Inputs and 2 Outputs

#include "imsls.h"
void main()
{
 Imsls_f_NN_Network *ffnet;
 float *stats;
 int n_obs= 100, n_cat=5, n_cont=1;
 int hidActFcn[3] ={IMSLS_LINEAR, IMSLS_LINEAR, IMSLS_LINEAR};
 int outbias[1] = {1.0};
 int hidbias[3] = {1.0, 1.0, 1.0};

 /* Data for categorical,continuous, and output Omitted
 See imsls_f_mlff_network_trainer Example 1 for a complete
 source code example */
 …

 ffnet = imsls_f_mlff_network_init(4,2);
 imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 3,
 IMSLS_ACTIVATION_FCN, 1, &hidActFcn,
 IMSLS_BIAS, 2, &outbias,
 IMSLS_LINK_ALL, 0);
 imsls_f_mlff_network(ffnet, IMSLS_BIAS, 1, &hidbias, 0);

 stats = imsls_f_mlff_trainer(ffnet, n_obs, n_cat, n_cont,
 categorical,continuous, output,
 0);

942 • mlff_network IMSL C Stat Library

 imsls_f_mlff_network_free(ffnet);
}

Example 3
This example creates a three-layer feedforward network with six input nodes and they
are not all connected to every node in the first hidden layer.
Note also that the four perceptrons in the first hidden layer are not connected to every
node in the second hidden layer, and the perceptrons in the second hidden layer are not
all connected to the two outputs.

Hidden Layer
2

X10

X11

X12 Output Layer

X13 Y0

X14 Y1

Input Layer

X0

X1

X2

X3

X4

X5

X6

X7

X8

Hidden Layer
1

X9

Figure 13- 10: This network uses a total of nine perceptrons to produce two forecasts

 from six input attributes.

Links among the input nodes and perceptrons can be created using one of several
approaches. If all inputs are connected to every perceptron in the first hidden layer,
and if all perceptrons are connected to every perceptron in the following layer, which is
a standard architecture for feed forward networks, then a call to the IMSLS_LINK_ALL
method can be used to create these links.
However, this example does not use that standard configuration. Some links are
missing. The keyword IMSLS_LINK_NODE can be used is to construct individual links

Chapter 13: Neural Networks mlff_network • 943

or an alternative approach is to first create all links and then remove those that are not
needed. The code fragment below illustrates this approach.

#include "imsls.h"
void main()
{
 Imsls_f_NN_Network *ffnet;
 float *stats;
 int n_obs= 100, n_cat=4, n_cont=2;

 ffnet = imsls_f_mlff_network_init(6,2);
 /* Create 2 hidden layers and link all nodes 0 */
 imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 4, 0);
 imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 3,
 IMSLS_LINK_ALL, 0);
 /* Remove unwanted links from Input 0 */
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,8,0, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,9,0, 0);
 /* Remove unwanted links from Input 1 */
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,9,1, 0);
 /* Remove unwanted links from Input 2 */
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,6,2, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,9,2, 0);
 /* Remove unwanted links from Input 3*/
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,6,3, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,7,3, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,8,3, 0);
 /* Remove unwanted links from Input 4 */
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,6,4, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,7,4, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,8,4, 0);
 /* Remove unwanted links from Input 5 */
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,6,5, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,7,5, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,8,5, 0);
 /* Add link from Input 0 to Output Perceptron 0 */
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,13,0, 0);

 /* Remove unwanted links between hidden Layer 1 and hidden layer 2 */
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,11,8, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,10,9, 0);

 /* Remove unwanted links between hidden Layer 2 and output layer */
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,14,10, 0);

 stats = imsls_f_network_trainer(ffnet, n_obs, n_cat, n_cont,
 categorical,continuous, output,
 0);

 imsls_f_mlff_network_free(ffnet);
}

Another approach is to use keywords LINK_NODE and LINK_LAYER to combine links
between the two hidden layers, create individual links, and remove the links that are
not needed. The following code fragment illustrates this approach:

944 • mlff_network_trainer IMSL C Stat Library

#include "imsls.h"
void main()
{
 Imsls_f_NN_Network *ffnet;
 double *stats;
 int n_obs= 100, n_cat=4, n_cont=2;

 /* Data for categorical,continuous, and output Omitted
 See imsls_network_trainer Example 1 for complete
 source code example */
 …

 ffnet = imsls_f_mlff_network_init(6,2);
 imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 4, 0);
 imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 3, 0);

 /* Link input attributes to first hidden layer */
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,6,0, 0);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,7,0, 0);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,6,1, 0);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,7,1, 0);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,8,1, 0);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,7,2, 0);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,8,2, 0);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,9,3, 0);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,9,4, 0);
 imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,9,5, 0);

 /* Link hidden layer 1 to hidden layer 2 then remove unwanted links */
 imsls_f_mlff_network(ffnet, IMSLS_LINK_LAYER,2,1, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,11,8, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,10,9, 0);

 /* Link hidden layer 2 to output layer then remove unwanted links */
 imsls_f_mlff_network(ffnet, IMSLS_LINK_LAYER,3,2, 0);
 imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,14,10, 0);

 stats = imsls_f_mlff_network_trainer(ffnet, n_obs, n_cat, n_cont,

 categorical,continuous, output,
 0);

 imsls_f_mlff_network_free(ffnet);
}

mlff_network_trainer
Trains a multilayered feedforward neural network.

Synopsis
#include <imsls.h>

Chapter 13: Neural Networks mlff_network_trainer • 945

float *imsls_f_mlff_network_trainer (Imsls_f_NN_Network *ff_net,
int n_observations, int n_categorical, int n_continuous,
int categorical[], float continuous[], float output[], ..., 0)

The type double function is imsls_d_mlff_network_trainer.

Return Value
An array of length 5 containing the summary statistics from the network training,
organized as follows:

z[0] = Error sum of squares at the optimum
z[1] = Total number of Stage I iterations
z[2] = Smallest error sum of squares after Stage I training
z[3] = Total number of Stage II iterations
z[4] = Smallest error sum of squares after Stage II training

If training is unsuccessful, NULL is returned.

Required Arguments

Imsls_f_NN_Network *ff_net (Input/Output)
Pointer to a structure of type Imsls_f_NN_Network containing the feedforward
network. See imsls_f_mlff_network. On return, the weights and bias
values are updated.

int n_observations (Input)
Number of network training patterns.

int n_categorical (Input)
Number of categorical attributes. n_categorical + n_continuous must
equal n_inputs, where n_inputs is the number of input attributes in the
network. n_inputs = ff_net->layers[0].n_nodes. For more details,
see imsls_f_mlff_network.

int n_continuous (Input)
Number of continuous attributes. n_categorical + n_continuous must
equal n_inputs, where n_inputs is the number of input attributes in the
network. n_inputs = ff_net->layers[0].n_nodes. For more details,
see imsls_f_mlff_network.

int categorical[] (Input)
Array of size n_observations by n_categorical containing the input
training patterns. Each row of categorical contains a training pattern.

float continuous[] (Input)
Array of size n_observations by n_continuous containing the input
training patterns. Each row of continuous contains a training pattern.

float output[] (Input)
Array of size n_observations by n_outputs containing the output training
patterns, where n_outputs is the number of output perceptrons in the network.

946 • mlff_network_trainer IMSL C Stat Library

n_outputs = ff_net->layers[ff_net->n_layers-1].n_nodes. For
more details, see imsls_f_mlff_network.

Synopsis with Optional Arguments
#include <imsls.h>

float *imsls_f_mlff_network_trainer (Imsls_f_NN_Network *ff_net,
int n_observations , int n_categorical, int n_continuous,
float categorical[], int continuous[], float output[],
IMSLS_STAGE_I, int n_epochs, int epoch_size,
IMSLS_NO_STAGE_II,
IMSLS_MAX_STEP, float max_step,
IMSLS_MAX_ITN, int max_itn,
IMSLS_MAX_FCN, int max_fcn,
IMSLS_REL_FCN_TOL, float rfcn_tol,
IMSLS_GRAD_TOL, float grad_tol,
IMSLS_TOLERANCE, float tolerance,
IMSLS_PRINT,
IMSLS_RESIDUAL, float *residuals,
IMSLS_RESIDUAL_USER, float residuals[],
IMSLS_GRADIENT, float *gradients,
IMSLS_GRADIENT_USER, float gradients[],
IMSLS_FORECASTS, float *forecasts,
IMSLS_FORECASTS_USER, float forecasts[],
IMSLS_WEIGHTS, float *weights,
IMSLS_WEIGHTS_USER, float weights[],
IMSLS_RETURN_USER, float z[],
 0)

Optional Arguments

IMSLS_STAGE_I, int n_epochs, int epoch_size (Input)
Argument n_epochs is the number epochs used for Stage I training and
argument epoch_size is the number of observations used during each epoch.
If epoch training is not needed, set epoch_size = n_observations and
n_epochs=1.
Default: n_epochs=15, epoch_size = n_observations.

IMSLS_NO_STAGE_II (Input)
Specifies no Stage II training is performed.
Default: Stage II training is performed.

IMSLS_MAX_STEP, float max_step (Input)
Maximum allowable step size in the optimizer.
Default: max_step = 1000

IMSLS_MAX_ITN, int max_itn (Input)
Maximum number of iterations in the optimizer, per epoch.
Default: max_itn=1000

Chapter 13: Neural Networks mlff_network_trainer • 947

IMSLS_MAX_FCN, int max_fcn (Input)
Maximum number of function evaluations in the optimizer, per epoch.
Default: max_fcn=400

IMSLS_REL_FCN_TOL, float rfcn_tol (Input)
Relative function tolerance in the optimizer.
Default: rfcn_tol = max (10-10, ε2/3), max (10-20, ε2/3) in double.

IMSLS_GRAD_TOL, float grad_tol (Input)
Scaled gradient tolerance in the optimizer.
Default: = εgrad_tol , 3 ε in double where ε is the machine precision.

IMSLS_TOLERANCE, float tolerance (Input)
Absolute accuracy tolerance for the sum of squared errors in the optimizer.
Default: tolerance = 0.1

IMSLS_PRINT (Input)
Printing is performed.
Default: No printing is performed.

IMSLS_RESIDUAL float **residuals (Output)
The address of a pointer to an array with n_observations by n_outputs
containing the residuals for each observation in the training data, where
n_outputs is the number of output perceptrons in the network.
n_outputs = ff_net->layers[ff_net->n_layers-1].n_nodes.

IMSLS_RESIDUAL_USER float residuals[] (Output)
Storage for array residuals is provided by user. See IMSLS_RESIDUAL.

IMSLS_GRADIENT float **gradients (Output)
The address of a pointer gradients to an array of size
n_links + n_nodes – n_inputs to store the gradients for each weight
found at the optimum training stage, where n_links = ffnet->n_links,
n_nodes = ff_net->n_nodes, and
n_inputs = ff_net->layers[0].nodes.

IMSLS_GRADIENT_USER float gradients[] (Output)
Storage for array gradients is provided by user. See IMSLS_GRADIENT.

IMSLS_FORECASTS float **forecasts (Output)
The address of a pointer forecasts to an array of size n_observations by
n_outputs, where n_outputs is the number of output perceptrons in the
network.
n_outputs = ff_net->layers[ff_net->n_layers-1].n_nodes. The
values of the ith row are the forecasts for the outputs for the ith training
pattern.

IMSLS_FORECASTS_USER float forecasts[] (Output)
Storage for array forecasts is provided by user. See IMSLS_FORECASTS.

IMSLS_RETURN_USER, float z[] (Output)
User-supplied array of length 5. Upon completion, z contains the return array
of training statistics.

948 • mlff_network_trainer IMSL C Stat Library

Description
Function imsls_f_mlff_network_trainer trains a multilayered feedforward
neural network returning the forecasts for the training data, their residuals, the
optimum weights and the gradients associated with those weights. Linkages among
perceptrons allow for skipped layers, including linkages between inputs and
perceptrons. The linkages and activation function for each perceptron, including output
perceptrons, can be individually configured. For more details, see optional arguments
IMSLS_LINK_ALL, IMSLS_LINK_LAYER, and IMSLS_LINK_NODE in
imsls_f_mlff_network.

Training Data
Neural network training patterns consist of the following three types of data:
1. categorical input attributes

2. continuous input attributes

3. continuous output classes

The first data type contains the encoding of any nominal input attributes. If binary
encoding is used, this encoding consists of creating columns of zeros and ones for each
class value associated with every nominal attribute. If only one attribute is used for
input, then the number of columns is equal to the number of classes for that attribute.
If more columns appear in the data, then each nominal attribute is associated with
several columns, one for each of its classes.
Each column consists of zeros, if that classification is not associated with this case,
otherwise, one if that classification is associated. Consider an example with one
nominal variable and two classes: male and female (male, male, female, male, female).
With binary encoding, the following matrix is sent to the training engine to represent
this data:

1 0
1 0
0 1
1 0
0 1

categoricalAtt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

Continuous input and output data are passed to the training engine using two double
precision arrays: continuous and outputs. The number of rows in each of these
matrices is n_observations. The number of columns in continuous and outputs,
corresponds to the number of input and output variables, respectively.

Network Configuration
The network configuration consists of the following:
• the number of inputs and outputs
• the number of hidden layers

Chapter 13: Neural Networks mlff_network_trainer • 949

• a description of the number of perceptrons in each layer
• and a description of the linkages among the perceptrons
This description is passed into imsls_f_mlff_network_trainer using the
structure Imsls_f_NN_Network. See imsls_f_mlff_network.

Training Efficiency
The training efficiency determines the time it takes to train the network. This is
controlled by several factors. One of the most important factors is the initial weights
used by the optimization algorithm. These are taken from the initial values provided in
the structure Imsls_f_NN_Network, ff_net->links[i].weight. Equally important
are the scaling and filtering applied to the training data.
In most cases, all variables, particularly output variables, should be scaled to fall within
a narrow range, such as [0, 1]. If variables are unscaled and have widely varied ranges,
then numerical overflow conditions can terminate network training before an optimum
solution is calculated.

Output
Output from imsls_f_mlff_network_trainer consists of scaled values for the
network outputs, a corresponding forecast array for these outputs, a weights array for
the trained network, and the training statistics. The Imsls_f_NN_Network structure is
updated with the weights and bias values and can be used as input to
imsls_f_mlff_network_forecast. For more details about the weights and bias
values, see Table 3.

Examples

Example 1
This example trains a two-layer network using 100 training patterns from one nominal
and one continuous input attribute. The nominal attribute has three classifications
which are encoded using binary encoding. This results in three binary network input
columns. The continuous input attribute is scaled to fall in the interval [0,1].
The network training targets were generated using the relationship:

Y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4,

where X1, X2, X3 are the three binary columns, corresponding to the categories 1-3 of
the nominal attribute, and X4 is the scaled continuous attribute.
The structure of the network consists of four input nodes and two layers, with three
perceptrons in the hidden layer and one in the output layer. The following figure
illustrates this structure:

950 • mlff_network_trainer IMSL C Stat Library

Hidden Layer

X4

X5

X6

X0

X1

X2

Input Layer

X3

Output Layer

X7 Y0

Figure 13- 11: A 2-layer, Feedforward Network with 4 Inputs and 1 Output

There are a total of 15 weights and 4 bias weights in this network. The activation
functions are all linear.
Since the target output is a linear function of the input attributes, linear activation
functions guarantee that the network forecasts will exactly match their targets. Of
course, the same result could have been obtained using multiple regression. Printing is
turned on to show progress during the training session.

#include "imsls.h"
#include <stdio.h>

void main()
{
 /* A 2D matrix of values for the categorical training
 attribute. In this example, the single categorical
 attribute has 3 categories that are encoded using binary
 encoding for input into the network.

 {1,0,0} = category 1
 {0,1,0} = category 2
 {0,0,1} = category 3
 */
 int categorical[300] =
 {
 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,
 1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,

 0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,
 0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,

Chapter 13: Neural Networks mlff_network_trainer • 951

 0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,

 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,
 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,
 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,
 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1
 };

 /* A matrix of values for the continuous training attribute */
 float continuous[100] = {
 4.007054658,7.10028447,4.740350984,5.714553211,6.205437459,
 2.598930065,8.65089967,5.705787357,2.513348184,2.723795955,
 4.1829356,1.93280416,0.332941608,6.745567628,5.593588463,
 7.273544478,3.162117939,4.205381208,0.16414745,2.883418275,
 0.629342241,1.082223406,8.180324708,8.004894314,7.856215418,
 7.797143157,8.350033996,3.778254431,6.964837082,6.13938006,
 0.48610387,5.686627923,8.146173848,5.879852653,4.587492779,
 0.714028533,7.56324211,8.406012623,4.225261454,6.369220241,
 4.432772218,9.52166984,7.935791508,4.557155333,7.976015058,
 4.913538616,1.473658514,2.592338905,1.386872932,7.046051685,
 1.432128376,1.153580985,5.6561491,3.31163251,4.648324851,
 5.042514515,0.657054195,7.958308093,7.557870384,7.901990083,
 5.2363088,6.95582150,8.362167045,4.875903563,1.729229471,
 4.380370223,8.527875685,2.489198107,3.711472959,4.17692681,
 5.844828801,4.825754155,5.642267843,5.339937786,4.440813223,
 1.615143829,7.542969339,8.100542684,0.98625265,4.744819569,
 8.926039258,8.813441887,7.749383991,6.551841576,8.637046998,
 4.560281415,1.386055087,0.778869034,3.883379045,2.364501589,
 9.648737525,1.21754765,3.908879368,4.253313879,9.31189696,
 3.811953836,5.78471629,3.414486452,9.345413015,1.024053777
 };
 /* A 2D matrix containing the training outputs for this network.
 In this case there is an exact linear relationship between these
 outputs and the inputs: output = 10*X1 +20*X2 + 30*X3 +2*X4,
 where X1-X3 are the categorical variables and X4 is the continuous
 attribute variable. Output is unscaled.
 */
 float output[100];
 Imsls_f_NN_Network *ffnet;
 float *stats;
 int n_obs= 100, n_cat=3, n_cont=1;
 int i;
 float *residuals, *forecasts, *weights;
 float bias, coef1, coef2, coef3, coef4;
 int hidActFcn[3] = {IMSLS_LINEAR,IMSLS_LINEAR,IMSLS_LINEAR};

 /* Scale continuous attribute into the interval [0, 1]
 and generate outputs */
 for(i=0; i < 100; i++)
 {
 continuous[i] = continuous[i]/10.0;
 output[i] = (10 * categorical[i*3]) + (20 * categorical[i*3+1]) +
 (30 * categorical[i*3+2]) + (20 * continuous[i]);
 }

952 • mlff_network_trainer IMSL C Stat Library

 /* Create network */
 ffnet = imsls_f_mlff_network_init(4,1);
 imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 3,
 IMSLS_ACTIVATION_FCN, 1, &hidActFcn,
 IMSLS_LINK_ALL, 0);

 /* Set initial weights */
 for (i=0; i<ffnet->n_links; i++)
 {
 /* hidden layer 1 */
 if (ffnet->nodes[ffnet->links[i].to_node].layer_id == 1)
 ffnet->links[i].weight = .25;
 /* output layer */
 if (ffnet->nodes[ffnet->links[i].to_node].layer_id == 2)
 ffnet->links[i].weight = .33;
 }

 /* Initialize seed for consisten results */
 imsls_random_seed_set(12345);
 stats = imsls_f_mlff_network_trainer(ffnet, n_obs, n_cat, n_cont,
 categorical,continuous, output,
 IMSLS_STAGE_I, 10, 100,
 IMSLS_MAX_FCN, 1000,
 IMSLS_REL_FCN_TOL, 1.0e-20,
 IMSLS_GRAD_TOL, 1.0e-20,
 IMSLS_MAX_STEP, 5.0,
 IMSLS_TOLERANCE, 1.0e-5,
 IMSLS_PRINT,
 IMSLS_RESIDUAL, &residuals,
 IMSLS_FORECASTS, &forecasts,
 0);

 printf("Predictions for Last Ten Observations: \n");

 for(i=90; i < 100; i++){
 printf("observation[%d] %f Prediction %f Residual %f \n", i,
output[i],
 forecasts[i], residuals[i]);
 }
 /* hidden layer nodes bias value * link weight */
 bias = ffnet->nodes[ffnet->n_nodes-4].bias * ffnet->links[12].weight +
 ffnet->nodes[ffnet->n_nodes-3].bias * ffnet->links[13].weight +
 ffnet->nodes[ffnet->n_nodes-2].bias * ffnet->links[14].weight;
 bias += ffnet->nodes[ffnet->n_nodes-1].bias; /* the bias of the output
node */
 coef1 = ffnet->links[0].weight * ffnet->links[12].weight;
 coef1 += ffnet->links[4].weight * ffnet->links[13].weight;
 coef1 += ffnet->links[8].weight * ffnet->links[14].weight;
 coef2 = ffnet->links[1].weight * ffnet->links[12].weight;
 coef2 += ffnet->links[5].weight * ffnet->links[13].weight;
 coef2 += ffnet->links[9].weight * ffnet->links[14].weight;
 coef3 = ffnet->links[2].weight * ffnet->links[12].weight;
 coef3 += ffnet->links[6].weight * ffnet->links[13].weight;
 coef3 += ffnet->links[10].weight * ffnet->links[14].weight;
 coef4 = ffnet->links[3].weight * ffnet->links[12].weight;

Chapter 13: Neural Networks mlff_network_trainer • 953

 coef4 += ffnet->links[7].weight * ffnet->links[13].weight;
 coef4 += ffnet->links[11].weight * ffnet->links[14].weight;
 coef1 += bias;
 coef2 += bias;
 coef3 += bias;

 printf("Bias: %f \n", bias);
 printf("X1: %f \n", coef1);
 printf("X2: %f \n", coef2);
 printf("X3: %f \n", coef3);
 printf("X4: %f \n", coef4);

 imsls_f_mlff_network_free(ffnet);

}

Output

TRAINING PARAMETERS:
 Stage II Opt. = 1
 n_epochs = 10
 epoch_size = 100
 max_itn = 1000
 max_fcn = 1000
 max_step = 5.000000
 rfcn_tol = 1e-20
 grad_tol = 1e-20
 tolerance = 0.000010

STAGE I TRAINING STARTING
Stage I: Epoch 1 - Epoch Error SS = 3.57886e-10 (Iterations=34)
Stage I Training Converged at Epoch = 1

STAGE I FINAL ERROR SS = 0.000000

OPTIMUM WEIGHTS AFTER STAGE I TRAINING:
weight[0] = 0.262463 weight[1] = 1.30687 weight[2] = 1.32345
weight[3] = 0.929833
weight[4] = -1.40295 weight[5] = 1.46973 weight[6] = 4.50657
weight[7] = 6.25732
weight[8] = 2.05971 weight[9] = 2.55983 weight[10] = 3.40746
weight[11] = 3.52705
weight[12] = 0.371129 weight[13] = 3.43777 weight[14] = -0.526312
weight[15] = 1.41332
weight[16] = 4.33401 weight[17] = 6.28003 weight[18] = 3.69105

STAGE I TRAINING CONVERGED
STAGE I ERROR SS = 0.000000

GRADIENT AT THE OPTIMUM WEIGHTS
g[0] = 0.000001 weight[0] = 0.262463
g[1] = -0.000023 weight[1] = 1.306865
g[2] = 0.000027 weight[2] = 1.323447

954 • mlff_network_forecast IMSL C Stat Library

g[3] = 0.000007 weight[3] = 0.929833
g[4] = 0.000010 weight[4] = -1.402949
g[5] = -0.000216 weight[5] = 1.469729
g[6] = 0.000249 weight[6] = 4.506571
g[7] = 0.000063 weight[7] = 6.257323
g[8] = -0.000002 weight[8] = 2.059708
g[9] = 0.000033 weight[9] = 2.559830
g[10] = -0.000038 weight[10] = 3.407457
g[11] = -0.000010 weight[11] = 3.527051
g[12] = 0.000049 weight[12] = 0.371129
g[13] = 0.000399 weight[13] = 3.437771
g[14] = 0.000235 weight[14] = -0.526312
g[15] = 0.000005 weight[15] = 1.413319
g[16] = 0.000043 weight[16] = 4.334013
g[17] = -0.000007 weight[17] = 6.280032
g[18] = 0.000012 weight[18] = 3.691053

Training Completed

Predictions for Last Ten Observations:
observation[90] 49.297478 Prediction 49.297482 Residual 0.000004
observation[91] 32.435097 Prediction 32.435097 Residual 0.000000
observation[92] 37.817757 Prediction 37.817760 Residual 0.000004
observation[93] 38.506630 Prediction 38.506630 Residual 0.000000
observation[94] 48.623795 Prediction 48.623802 Residual 0.000008
observation[95] 37.623909 Prediction 37.623913 Residual 0.000004
observation[96] 41.569431 Prediction 41.569435 Residual 0.000004
observation[97] 36.828972 Prediction 36.828976 Residual 0.000004
observation[98] 48.690826 Prediction 48.690826 Residual 0.000000
observation[99] 32.048107 Prediction 32.048107 Residual 0.000000
Bias: 15.809660
X1: 9.999999
X2: 19.999996
X3: 30.000000
X4: 20.000002

mlff_network_forecast
Calculates forecasts for trained multilayered feedforward neural networks.

Synopsis
#include <imsls.h>
float *imsls_f_mlff_network_forecast (Imsls_f_NN_Network *ff_net,

int n_categorical, int n_continuous,
int categorical[], float continuous[], ..., 0)

The type double function is imsls_d_mlff_network_forecast.

Return Value
Pointer to an array of size n_outputs containing the forecasts, where n_outputs is
the number of output perceptrons in the network.
n_outputs = ff_net->layers[ff_net->n_layers-1].n_nodes.

Chapter 13: Neural Networks mlff_network_forecast • 955

Required Arguments

Imsls_f_NN_Network *ff_net (Input)
Pointer to a structure of type Imsls_f_NN_Network containing the trained
feedforward network. See imsls_f_mlff_network.

int n_categorical (Input)
Number of categorical attributes.

int n_continuous (Input)
Number of continous attributes.

int categorical[] (Input)
Array of size n_categorical containing the categorical input variables.

float continuous[] (Input)
Array of size n_continuous containing the continuous input variables.

Synopsis with Optional Arguments
#include <imsls.h>
float *imsls_f_mlff_network_forecast (Imsls_f_NN_Network *ff_net,

int n_categorical, int n_continuous, int categorical[],
float continuous[],
IMSLS_RETURN_USER, float forecasts[],
0)

Optional Arguments
IMSLS_RETURN_USER, float forecasts[] (Output)

If specified, the forecasts for the trained network is stored in array
forecasts of size n_outputs, where n_outputs is the number of
perceptrons in the network.
n_outputs = ff_net->layers[ff_net->n_layers -1].n_nodes.

Description
Function imsls_f_mlff_network calculates a forecast for a previously trained
multilayered feedforward neural network using the same network structure and scaling
applied during the training. The structure Imsls_f_NN_Network describes the network
structure used to originally train the network. The weights, which are the key output
from training, are used as input to this routine. The weights are stored in the
Imsls_f_NN_Network structure.
In addition, two one-dimensional arrays are used to describe the values of the
categorical and continuous attributes that are to be used as network inputs for
calculating the forecast.
Function imsls_f_mlff_network returns a forecast, calculated using the network
input attributes provided.

Training Data
Neural network training data consist of the following three types of data:
1. categorical input attribute data
2. continuous input attribute data

956 • mlff_network_forecast IMSL C Stat Library

3. continuous output data
The first data type contains the encoding of any nominal input attributes. If binary
encoding is used, this encoding consists of creating columns of zeros and ones for each
class value associated with every nominal attribute. If only one attribute is used for
input, then the number of columns is equal to the number of classes for that attribute.
If more columns appear in the data, then each nominal attribute is associated with
several columns, one for each of its classes.
Each column consists of zeros, if that classification is not associated with this case,
otherwise, one if that classification is associated. Consider an example with one
nominal variable and two classes: male and female (male, male, female, male, female).
With binary encoding, the following matrix is sent to the training engine to represent
this data:

1 0
1 0
0 1
1 0
0 1

categoricalAtt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Continuous input and output data are passed to the training engine using two double
precision arrays: continuous and outputs. The number of rows in each of these
matrices is n_observations. The number of columns in continuous and outputs,
corresponds to the number of input and output variables, respectively.

Network Configuration
The configuration of the network consists of a description of the number of perceptrons
for each layer, the number of hidden layers, the number of inputs and outputs, and a
description of the linkages among the perceptrons. This description is passed into this
training routine through the structure Imsls_f_NN_Network. See
imsls_f_mlff_network.

Forecast Calculation
The forecast is calculated from the input attributes, network structure and weights
provided in the structure Imsls_f_NN_Network.

Examples

Example 1
This example trains a two-layer network using 90 training patterns from one nominal
and one continuous input attribute. The nominal attribute has three classifications
which are encoded using binary encoding. This results in three binary network input
columns. The continuous input attribute is scaled to fall in the interval [0,1].
The network training targets were generated using the relationship:

Y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4,

Chapter 13: Neural Networks mlff_network_forecast • 957

where X1, X2, X3 are the three binary columns, corresponding to the categories 1-3 of
the nominal attribute, and X4 is the scaled continuous attribute.
The structure of the network consists of four input nodes ands two layers, with three
perceptrons in the hidden layer and one in the output layer. The following figure
illustrates this structure:

Hidden Layer

X4

X5

X6

X0

X1

X2

Input Layer

X3

Output Layer

X7 Y0

Figure 13- 12: A 2-layer, Feedforward Network with 4 Inputs and 1 Output

There are a total of 100 outputs. Training the first 90 and forecasting the 10 and
compare the forecasted values with the actual outputs.

#include "imsls.h"
#include <stdio.h>
void
main ()
{
 static int categorical[300] = {
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0,
 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1
 };

958 • mlff_network_forecast IMSL C Stat Library

 static float continuous[100] = {
 4.007054658, 7.10028447, 4.740350984, 5.714553211, 6.205437459,
 2.598930065, 8.65089967, 5.705787357, 2.513348184, 2.723795955,
 4.1829356, 1.93280416, 0.332941608, 6.745567628, 5.593588463,
 7.273544478, 3.162117939, 4.205381208, 0.16414745, 2.883418275,
 0.629342241, 1.082223406, 8.180324708, 8.004894314, 7.856215418,
 7.797143157, 8.350033996, 3.778254431, 6.964837082, 6.13938006,
 0.48610387, 5.686627923, 8.146173848, 5.879852653, 4.587492779,
 0.714028533, 7.56324211, 8.406012623, 4.225261454, 6.369220241,
 4.432772218, 9.52166984, 7.935791508, 4.557155333, 7.976015058,
 4.913538616, 1.473658514, 2.592338905, 1.386872932, 7.046051685,
 1.432128376, 1.153580985, 5.6561491, 3.31163251, 4.648324851,
 5.042514515, 0.657054195, 7.958308093, 7.557870384, 7.901990083,
 5.2363088, 6.95582150, 8.362167045, 4.875903563, 1.729229471,
 4.380370223, 8.527875685, 2.489198107, 3.711472959, 4.17692681,
 5.844828801, 4.825754155, 5.642267843, 5.339937786, 4.440813223,
 1.615143829, 7.542969339, 8.100542684, 0.98625265, 4.744819569,
 8.926039258, 8.813441887, 7.749383991, 6.551841576, 8.637046998,
 4.560281415, 1.386055087, 0.778869034, 3.883379045, 2.364501589,
 9.648737525, 1.21754765, 3.908879368, 4.253313879, 9.31189696,
 3.811953836, 5.78471629, 3.414486452, 9.345413015, 1.024053777
 };
 static float output[100] = {
 18.01410932, 24.20056894, 19.48070197, 21.42910642, 22.41087492,
 15.19786013, 27.30179934, 21.41157471, 15.02669637, 15.44759191,
 18.3658712, 13.86560832, 10.66588322, 23.49113526, 21.18717693,
 24.54708896, 16.32423588, 18.41076242, 10.3282949, 15.76683655,
 11.25868448, 12.16444681, 26.36064942, 26.00978863, 25.71243084,
 25.59428631, 26.70006799, 17.55650886, 23.92967416, 22.27876012,
 10.97220774, 21.37325585, 26.2923477, 21.75970531, 19.17498556,
 21.42805707, 35.12648422, 36.81202525, 28.45052291, 32.73844048,
 28.86554444, 39.04333968, 35.87158302, 29.11431067, 35.95203012,
 29.82707723, 22.94731703, 25.18467781, 22.77374586, 34.09210337,
 22.86425675, 22.30716197, 31.3122982, 26.62326502, 29.2966497,
 30.08502903, 21.31410839, 35.91661619, 35.11574077, 35.80398017,
 30.4726176, 33.91164302, 36.72433409, 29.75180713, 23.45845894,
 38.76074045, 47.05575137, 34.97839621, 37.42294592, 38.35385362,
 41.6896576, 39.65150831, 41.28453569, 40.67987557, 38.88162645,
 33.23028766, 45.08593868, 46.20108537, 31.9725053, 39.48963914,
 47.85207852, 47.62688377, 45.49876798, 43.10368315, 47.274094,
 39.1205628, 32.77211017, 31.55773807, 37.76675809, 34.72900318,
 49.29747505, 32.4350953, 37.81775874, 38.50662776, 48.62379392,
 37.62390767, 41.56943258, 36.8289729, 48.69082603, 32.04810755
 };

 /* 2D Array Definitions */
#define CATEGORICAL(i,j) categorical[i*n_cat+j]
#define CATEGORICALOBS(i,j) categoricalObs[i*n_cat+j]

 Imsls_f_NN_Network *ffnet;

 float *stats;
 int n_obs = 100, n_cat = 3, n_cont = 1;
 int i, j;
 float *forecasts;

Chapter 13: Neural Networks mlff_network_forecast • 959

 /* for forecasting */
 int categoricalObs[3] = { 0, 0, 0 };
 float continuousObs[1] = { 0 };
 float x, y;
 float forecast[5];
 float *cont;

 /* Scale continuous attribute to the interval [0, 1] */
 cont = imsls_f_scale_filter (n_obs, continuous, 1,
 IMSLS_SCALE_LIMITS, 0.0, 10.0, 0.0, 1.0, 0);

 ffnet = imsls_f_mlff_network_init (4, 1);

 imsls_f_mlff_network (ffnet,
 IMSLS_CREATE_HIDDEN_LAYER, 3, IMSLS_LINK_ALL, 0);

 for (i = 0; i < ffnet->n_links; i++)
 {

 /* hidden layer 1 */
 if (ffnet->nodes[ffnet->links[i].to_node].layer_id == 1)
 {
 ffnet->links[i].weight = .25;
 }

 /* output layer */
 if (ffnet->nodes[ffnet->links[i].to_node].layer_id == 2)
 {
 ffnet->links[i].weight = .33;
 }

 }

 imsls_random_seed_set (12345);
 stats = imsls_f_mlff_network_trainer (ffnet, n_obs - 10, n_cat,
 n_cont, categorical, continuous, output,
 0);

 printf ("Predictions for Observations 90 to 100: \n");

 for (i = 90; i < 100; i++)
 {
 continuousObs[0] = continuous[i];
 for (j = 0; j < n_cat; j++)
 {
 CATEGORICALOBS (0, j) = CATEGORICAL (i, j);
 }

 forecasts = imsls_f_mlff_network_forecast (ffnet, n_cat, n_cont,
 categoricalObs,
 continuousObs, 0);

 x = output[i];

960 • scale_filter IMSL C Stat Library

 y = forecasts[0];
 printf
 ("observation[%d] %8.4f Prediction %8.4f Residual %8.4f \n",
 i, x, y, x - y);

 }

 imsls_f_mlff_network_free (ffnet);
#undef CATEGORICAL
#undef CATEGORICALOBS
}

Output

NOTE: Because multiple optima are possible during training, the output of
this example can vary by platform.

Predictions for Observations 90 to 100:

observation[90] 49.2975 Prediction 43.8761 Residual 5.4213
observation[91] 32.4351 Prediction 23.6643 Residual 8.7708
observation[92] 37.8178 Prediction 30.4261 Residual 7.3916
observation[93] 38.5066 Prediction 31.2768 Residual 7.2298
observation[94] 48.6238 Prediction 43.1369 Residual 5.4869
observation[95] 37.6239 Prediction 30.1860 Residual 7.4379
observation[96] 41.5694 Prediction 35.0006 Residual 6.5688
observation[97] 36.8290 Prediction 29.1978 Residual 7.6311
observation[98] 48.6908 Prediction 43.2108 Residual 5.4800
observation[99] 32.0481 Prediction 23.1740 Residual 8.8742

scale_filter
Scales or unscales continuous data prior to its use in neural network training, testing, or
forecasting.

Synopsis
#include <imsls.h>

float * imsls_f_scale_filter (int n_obs, float x[], int method,
 …,0)

The type double function is imsls_d_scale_filter.

Required Arguments

int n_obs (Input)
Number of observations.

float x[] (Input)
An array of length n_obs. The values in x are either the scaled or unscaled
values of a continuous variable. Missing values are allowed, and are
indicated by placing a NaN (not a number) in x. See imsls_f_machine(6).

Chapter 13: Neural Networks scale_filter • 961

int method (Input)
The scaling method to apply to each variable. The association of the value in
method and the scaling algorithm is summarized in the table below. The sign
of method determines whether the values in x are scaled or unscaled. If
method is positive then values in x are scaled. If method is negative then
values in x are unscaled.

Method Algorithm

0 No scaling.

±1 Bounded scaling and unscaling.

±2 Unbounded z-score scaling using the mean and standard deviation.

±3 Unbounded z-score scaling using the median and mean absolute
difference.

±4 Bounded z-score scaling using the mean and standard deviation.

±5 Bounded z-score scaling using the median mean absolute difference.

Return Value
A pointer to an internally allocated array of length n_obs containing either the scaled
or unscaled value of x, depending upon whether method is positive or negative,
respectively. If errors are encountered, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float * imsls_f_scale_filter (int n_obs, float x[], int method,

IMSLS_RETURN_USER, float z[],
IMSLS_SCALE_LIMITS, float real_min, float real_max,
float target_min, float target_max,
IMSLS_SUPPLY_CENTER_SPREAD, float center, float spread,
IMSLS_RETURN_CENTER_SPREAD, float *center,
float *spread,
 0)

Optional Arguments

IMSLS_RETURN_USER, float z[] (Output)
A user-supplied array of length n_obs containing either the scaled or unscaled
values of x, depending upon whether method is positive or negative,
respectively.

IMSLS_SCALE_LIMITS, float real_min, float real_max, float target_min,
float target_max (Input)
The real and target limits for x. This optional argument is required when
bounded scaling is performed, i.e., method=±1, ±4, or ±5. real_min is the
lowest value expected for each input variable in x. real_max is the largest
value expected. target_min is lowest value allowed for the output variable,
z. target_max is the largest value allowed for the output variable.

962 • scale_filter IMSL C Stat Library

IMSLS_SUPPLY_CENTER_SPREAD, float center, float spread (Input)
The values center and spread are only used for z-score scaling or
unscaling of x, that is, when method is one of ±2, ±3, ±4, and ±5. The value
of center is either the mean or median, and the value of spread is either
the standard deviation or mean absolute difference. When method is positive,
this optional argument can be used to supply a user-defined center and spread
rather than allowing imsls_f_scale_filter to compute the center and
spread from the data in x. When method is one of -2, -3, -4, or -5, this
optional argument must be used to supply the center and spread used during
scaling.

IMSLS_RETURN_CENTER_SPREAD, float *center, float *spread (Output)
Pointers to scalars containing the computed center and spread of x. The
values center and spread are only used for z-score scaling or unscaling of
x. These methods, ±2, ±3, ±4, and ±5, require two numbers, either the mean
or median, and either the standard deviation, or mean absolute difference.
The value of center is either the mean or median for x. The value of
spread is either the standard deviation or mean absolute difference.

Description
The function imsls_f_scale_filter is designed to either scale or unscale a
continuous variable using one of four methods prior to their use as neural network
input or output.
The specific encoding computations employed are specified by argument method.
Scaling limits are supplied with the optional argument IMSLS_SCALE_LIMITS, and are
required for the bounded scaling methods, i.e., method=±1, ±4, or ±5. Bounded
scaling ensures that the scaled values in the returned array fall between a lower and
upper bound.
If method=1 then the bounded method of scaling and unscaling is applied to x using
the scaling limits in scale_limit.
If method=±2, ±3, ±4, or ±5, then the z-score method of scaling is used. These
calculations are based upon the following scaling calculation:

()
b

aixiz −
=

][][
,

where a is a measure of center for x, and b is a measure of the spread of x.
If method=±2 or ±4, then by default a and b are the arithmetic average and sample
standard deviation of the training data. These values can be overridden using the
optional argument IMSLS_SUPPLY_CENTER_SPREAD.

If method=±3 or ±5, then by default a and b are the median and s~ , where s~ is a
robust estimate of the population standard deviation:

 0.6745
MADs =�

, where MAD is the Mean Absolute Deviation

Chapter 13: Neural Networks scale_filter • 963

{ { }}jMAD median x median x= −
.

Again, the values of a and b can be overridden using the optional argument
IMSLS_SUPPLY_CENTER_SPREAD.

Method ±1: Bounded Scaling and Unscaling
If method=1, then the optional argument IMSLS_SCALE_LIMITS is required and a
scaling operation is conducted using the scale limits for x using the following
calculation:

()[] []z i r x i real_min target_min= − +
,

where

target_max target_minr
real_max real_min

−
=

− .

If method=-1, then optional argument IMSLS_SCALE_LIMITS is required and an
unscaling operation is conducted by inverting the following calculation:

()[]
[]

z i target_min
x i real_min

r
−

= +
.

Method +2 or +3: Unbounded z-score Scaling
If method=2 or method=3, then a scaling operation is conducted using the scale limits
of x using a z-score calculation:

()[]
[]

x i center
z i

spread
−

=
,

If either center or spread are missing, (a NaN), then appropriate values are
calculated from the non-missing values of x. If method=2, then center is set equal to
the arithmetic average x , and spread is set equal to the sample standard deviation,
s .
If method=3, then center is set equal to the median m� , and center is set equal to
the Mean Absolute Difference (MAD).

Method -2 or -3: Unbounded z-score Unscaling
If method=-2 or method=-3, then an unscaling operation is conducted using the
inverse calculation for the equation shown in the above section, “Method +2 or +3:
Unbounded z-score Scaling.”

[] []x i spread z i center= ⋅ +
.

964 • scale_filter IMSL C Stat Library

For these values of method, missing values for center and spread are not allowed.
If method=-2, then center and spread are assumed to be equal to the arithmetic
average and standard deviation, respectively. These values would normally be the
same used in scaling the variable with method=+2. If method= -3, then center and
spread are assumed to be equal to the median and mean absolute difference,
respectively. These values would normally be the same used in scaling the variable
with method=+3.

Method +4 or +5: Bounded z-score Scaling
This method is essentially the same as the z-score calculation described for
method=+2 and method=+3 with additional scaling or unscaling using the scale
limits. If method=4, then the optional argument IMSLS_SCALE_LIMITS is required
and a scaling operation is conducted using the scale limits for x using the widely
known z-score calculation:

()[]
[]

r x i center
z i r real_min target_min

spread
⋅ −

= − ⋅ +
.

If either center or spread are missing, (a NaN), then appropriate values are
calculated from the non-missing values in x. If center is missing and method=+4,
then center is set equal to the arithmetic average x , and spread is set equal to the
Sample Standard Deviation, s . If center is missing and method=+5, then
x_stats[i] is set equal to the median m~ , and spread is set equal to the MAD.

In bounded scaling, if z[i] exceeds its bounds, it is set to the boundary it exceeded.

Method -4 or -5: Bounded z-score unscaling
If method=-4 or method=-5, then the optional argument IMSLS_SCALE_LIMITS is
required and an unscaling operation is conducted using the inverse calculation for the
equation below.

()[]
[]

spread z i target_min
x i spread real_min center

r
⋅ −

= + ⋅ +

For these values of method, missing values for center and spread are not allowed.
If method=-4, then center and spread are assumed to be equal to the arithemetic
average and standard deviation, respectively. These values would normally be the
same used in scaling x with method=+4. If method=-5, then center and spread are
assumed to be equal to the median and mean absolute difference, respectively. These
values would normally be the same used in scaling the x with method=+5.

Examples

Example 1
In this example two data sets are filtered using bounded z-score scaling.

#include <imsls.h>
void main()

Chapter 13: Neural Networks scale_filter • 965

{
 int n_obs=5;
 float x1[] = {3.5, 2.4, 4.4, 5.6, 1.1};
 float x2[] = {3.1, 1.5, - 1.5, 2.4, 4.2};
 float *z1, *z2;
 float *y1, *y2;
 float center1, spread1;
 float center2, spread2;

 z1 = imsls_f_scale_filter(n_obs, x1, 4,
 IMSLS_SCALE_LIMITS, -6.0, 6.0, -3.0, 3.0,
 IMSLS_RETURN_CENTER_SPREAD, ¢er1, &spread1,
 0);
 z2 = imsls_f_scale_filter(n_obs, x2, 5,
 IMSLS_SCALE_LIMITS, -3.0, 3.0, -3.0, 3.0,
 IMSLS_RETURN_CENTER_SPREAD, ¢er2, &spread2,
 0);

 imsls_f_write_matrix("z1", n_obs, 1, z1, 0);
 printf("Center = %f\nSpread = %f\n", center1, spread1);
 imsls_f_write_matrix("z2", n_obs, 1, z2, 0);
 printf("Center = %f\nSpread = %f\n", center2, spread2);

 /* Un-scale z1 and z2. */
 y1 = imsls_f_scale_filter(n_obs, z1, -4,
 IMSLS_SCALE_LIMITS, -6.0, 6.0, -3.0, 3.0,
 IMSLS_SUPPLY_CENTER_SPREAD, center1, spread1,
 0);
 y2 = imsls_f_scale_filter(n_obs, z2, -5,
 IMSLS_SCALE_LIMITS, -3.0, 3.0, -3.0, 3.0,
 IMSLS_SUPPLY_CENTER_SPREAD, center2, spread2,
 0);
 imsls_f_write_matrix("y1", n_obs, 1, y1, 0);
 imsls_f_write_matrix("y2", n_obs, 1, y2, 0);

}

Output
3.

 z1
1 0.0287
2 -0.2870
3 0.2870
4 0.6314
5 -0.6601
Center = 3.400000
Spread = 1.742125

 z2
1 0.525
2 -0.674
3 -2.923
4 0.000
5 1.349
Center = 2.400000
Spread = 1.334342

966 • time_series_filter IMSL C Stat Library

 y1
1 3.5
2 2.4
3 4.4
4 5.6
5 1.1

 y2
1 3.1
2 1.5
3 -1.5
4 2.4
5 4.2

time_series_filter
Converts time series data to the format required for processing by a neural network.

Synopsis
#include <imsls.h>
float* imsls_f_time_series_filter (int n_obs, int n_var, int max_lag,

float x[], …,0)
The type double function is imsls_d_time_series_filter.

Required Arguments

int n_obs (Input)
Number of observations. The number of observations must be greater than
n_lags.

int n_var (Input)
Number of variables (columns) in x. The number of variables must be one or
greater, n_var>0.

int max_lag (Input)
The number of lags. The number of lags must be one or greater, max_lag>0.

float x[] (Input)
An array of size n_obs by n_var. All data must be sorted in chronological
order from most recent to oldest observations.

Return Value
A pointer to an internally allocated array of size (n_obs-max_lag) by
n_var*(max_lag+1)) If errors are encountered, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float* imsls_f_time_series_filter (int n_obs, int n_var,

 int max_lag, float x[],

Chapter 13: Neural Networks time_series_filter • 967

IMSLS_RETURN_USER, float z[],
0)

Optional Arguments
IMSLS_RETURN_USER, float z[] (Output)
User supplied array of size (n_obs-max_lag) by n_var*(max_lag+1) containing the
filtered data.

Description
Function imsls_f_time_series_filter accepts a data matrix and lags every
column to form a new data matrix. The input matrix, x, contains n_var columns.
Each column is transformed into (max_lag+1) columns by lagging its values.
Since a lag of zero is always included in the output matrix z, the total number of lags is
n_lags = max_lag+1.
The output data array, z, can be represented symbolically as:

z = |x(0) : x(1) : x(2) : … : x(max_lag)|,

where x(i) is the ith lag of the incoming data matrix, x. For example, if
x={1, 2, 3, 4, 5} and n_var=1, then n_obs=5, and x(0)=x, x(1)={2, 3, 4, 5},
x(2)={3, 4, 5}, etc.
Consider, an example in which n_obs=5 and n_var=2 with all variables continuous
input attributes. It is assumed that the most recent observations are in the first row and
the oldest are in the last row.

1 6
2 7
3 8
4 9
5 10

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

If max_lag=1, then the number of columns will be n_var*(max_lag+1)=2*2=4, and
the number of rows will be n_obs–max_lag=5-1=4:

1 6 2 7
2 7 3 8
3 8 4 9
4 9 5 10

z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

.

If max_lag=2, then the number of columns will be n_var*(max_lag+1)=2*3=6. , and
the number of rows will be n_obs–max_lag=5-2=3:

968 • time_series_filter IMSL C Stat Library

1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10

z
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

.

Example 1
In this example, the matrix x with 5 rows and 2 columns is lagged twice, i.e.
max_lag=2. This produces an output two-dimensional matrix with
5(n_obs-max_lag)=5-2=3 rows, but 2*3=6 columns. The first two columns
correspond to lag=0, which simply places the original data into these columns. The 3rd
and 4th columns contain the first lags of the original 2 columns and the 5th and 6th
columns contain the second lags. Note that the number of rows for the output matrix z
is less than the number for the input matrix x.

#include <imsls.h>
void main ()
{
#define N_OBS 5
#define N_VAR 2
#define MAX_LAG 2
 float x[N_OBS*N_VAR] = {1, 6,
 2, 7,
 3, 8,
 4, 9,
 5, 10};

 float *z;

 z = imsls_f_time_series_filter(N_OBS, N_VAR, MAX_LAG, (float*)x, 0);
 imsls_f_write_matrix("X", N_OBS, N_VAR, (float*)x, 0);
 imsls_f_write_matrix("Z", N_OBS-MAX_LAG, N_VAR*(MAX_LAG+1), z, 0);
}

Output

 X
 1 2
1 1 6
2 2 7
3 3 8
4 4 9
5 5 10

 Z
 1 2 3 4 5 6
1 1 6 2 7 3 8
2 2 7 3 8 4 9
3 3 8 4 9 5 10

Chapter 13: Neural Networks time_series_class_filter • 969

time_series_class_filter
Converts time series data sorted within nominal classes in decreasing chronological
order to a useful format for processing by a neural network.

Synopsis
#include <imsls.h>
float* imsls_f_time_series_class_filter (int n_obs, int n_lags,

int n_classes, int i_class[], float x[], …,0)
The type double function is imsls_d_time_series_class_filter.

Required Arguments

int n_obs (Input)
Number of observations. The number of observations must be greater than
n_lags.

int n_lags (Input)
The number of lags. The number of lags must be one or greater.

int n_classes (Input)
The number of classes associated with these data. The number of classes must
be one or greater.

int i_class[] (Input)
An array of length n_obs. The ith element in i_class is equal to the class
associated with the ith element of x. The classes must be numbered from 1 to
n_classes.

float x[] (Input)
A sorted array of length n_obs. This array is assumed to be sorted first by
class designations and then descending by chronological order, i.e., most
recent observations appear first within a class.

Return Value
A pointer to an internally allocated array of size n_obs by n_lags columns. If errors
are encountered, then NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
float* imsls_f_time_series_class_filter (int n_obs, int n_lags,

int n_classes, int i_class[], float x[],
IMSLS_RETURN_USER, float z[],
IMSLS_LAGS, int lag[],
0)

The type double function is imsls_d_time_series_class_filter.

970 • time_series_class_filter IMSL C Stat Library

Optional Arguments

IMSLS_RETURN_USER, float z[] (Output)
A user-supplied array of size n_obs by n_lags. The ith column contains the
lagged values of x for a lag equal to the number of lags in lag[i].

IMSLS_LAGS, int lag[] (Input)
An array of length n_lags. The ith element in lag is equal to the lag
requested for the ith column of z. Every lag must be non-negative.
Default: lag[i]=i

Description
The function imsls_f_time_series_class_filter accepts a data array, x[], and
returns a new data array, z[], containing n_lags columns, each containing a lagged
version of x.
The output data array, z, can be represented symbolically as:

z = |x(0) : x(1) : x(2) : … : x(n_lags-1)|,
where x(i) is the ith lagged column of the incoming data array, x. Notice that n_lags
is the number of lags and not the maximum lag. The maximum number of lags is
max_lag= n_lags-1, unless the optional input log[] is given, the highest lag is
max_lags. If n_lags = 2 and the optional input log[] is not given, then the output
array contains the lags 0, 1.
Consider, an example in which n_obs=10, n_lags =2 and

{1,2,3,4,5,6,7,8,9,10}Tx =
.

If {0, 2}Tlag = and

_ {1,1,1,1,1,1,1,1,1,1}Ti class =
.

then, n_classes=1 and z would contain 2 columns and 10 rows:

1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9

10

z

NaN
NaN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

.

Chapter 13: Neural Networks time_series_class_filter • 971

Note that since lagT = [0,1], the first column of z is formed using a lag of zero and the
second is formed using a lag of two. A zero lag corresponds to no lag, which is why
the first column of z in this example is equal to the original data in x.
On the other hand, if the data were organized into two classes with

_ {1,1,1,1,1, 2, 2,2,2,2}Ti class =
,

then z is still a 2 by 10 matrix, but with the following values:

1 3
2 4
3 5
4
5
6 8
7 9
8 10
9

10

NaN
NaNz

NaN
NaN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

The first 5 rows of z are the lagged columns for the first class, and the last five are the
lagged columns for the second class.

Example 1
Suppose that the training data to the neural network consists of the following data
matrix consisting of a single nominal variable coded into two binary columns and a
single time series variable:

0 1 2.1
0 1 2.3
0 1 2.4
0 1 2.5
1 0 1.1
1 0 1.2
1 0 1.3
1 0 1.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

In this case, n_obs=8 and n_classes=2. If we wanted to lag the 3rd column by 2
time lags, i.e., n_lags=2,

{0,1}Tlag =
,

972 • time_series_class_filter IMSL C Stat Library

_ {1,1,1,1, 2, 2,2,2}Ti class =
, and

{2.1, 2.3, 2.4, 2.5,1.1,1.2,1.3,1.4}Tx =
.

The resulting data matrix would have 4 rows and 2 columns:

[]

2.1 2.3
2.3 2.4
2.4 2.5
2.5(0) (1)
1.1 1.2
1.2 1.3
1.3 1.4
1.4

NaNz x x

NaN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

void main(){

#define N_OBS 8

#define N_LAGS 2

 float x[N_OBS] = {2.1, 2.3, 2.4, 2.5, 1.1, 1.2, 1.3, 1.4};

 float *z;

 int n_classes = 2;

 int i_class[] = {1,1,1,1,2,2,2,2};

 z = imsls_f_time_series_class_filter(N_OBS, N_LAGS, n_classes,

 i_class, x,

 0);

 imsls_f_write_matrix("z", N_OBS, N_LAGS, (float*)z, 0);

}

Output

 z
 1 2
1 2.1 2.3
2 2.3 2.4
3 2.4 2.5
4 2.5
5 1.1 1.2
6 1.2 1.3
7 1.3 1.4
8 1.4

Chapter 13: Neural Networks unsupervised_nominal_filter • 973

unsupervised_nominal_filter
Converts nominal data into a series of binary encoded columns for input to a neural
network. Optionally, it can also reverse the binary encoding, accepting a series of
binary encoded columns and returning a single column of nominal classes.

Synopsis
#include <imsls.h>
int* imsls_unsupervised_nominal_filter (int n_obs,

int n_classes, int x[], …, 0)

Required Arguments

int n_obs (Input)
Number of observations.

int * n_classes (Input/Output)
A pointer to the number of classes in x[]. n_classes is output for
IMSLS_ENCODE and input for IMSLS_DECODE.

int x[] (Input)
A one or two-dimensional array depending upon whether encoding or
decoding is requested. If encoding is requested, x is an array of length n_obs
containing the categories for a nominal variable numbered from 1 to
n_classes. If decoding is requested, then x is an array of size n_obs by
n_classes. In this case, the columns contain only zeros and ones that are
interpreted as binary encoded representations for a single nominal variable.

Return Value
A pointer to an internally allocated array, z[]. The values in z are either the encoded
or decoded values for x, depending upon whether IMSLS_ENCODE or IMSLS_DECODE
is requested. If errors are encountered, NULL is returned.

Synopsis with Optional Arguments
#include <imsls.h>
int* imsls_f_unsupervised_nominal_filter (int n_obs, int x[],

IMSLS_RETURN_USER, int z[],
IMSLS_ENCODE or
IMSLS_DECODE,
0)

Optional Arguments

IMSLS_ENCODE or IMSLS_DECODE (Input)
If IMSLS_ENCODE is specified, binary encoding is requested. Classes must be
numbered sequentially from 1 to n_classes. IMSLS_DECODE is used to
request that x be decoded. The values in each column should be zeros and
ones. The values in the ith column of x are associated with the ith class of the

974 • unsupervised_nominal_filter IMSL C Stat Library

nominal variable.
Default: IMSLS_ENCODE.

IMSLS_RETURN_USER, int z[] (Output)
A user-supplied array of size n_obs by n_classes. If IMSLS_DECODE is
specified, then z should be length n_obs. The value in z[i] is either the
encoded or decoded value for x[i], depending upon whether IMSLS_ENCODE
or IMSLS_DECODE is specified.

Description
The function imsls_unsupervised_nominal_filter is designed to either encode
or decode nominal variables using a simple binary mapping.

Binary Encoding: IMSLS_ENCODE
In this case, x[] is an input array to which a binary filter is applied. Binary encoding
takes each category in x[], and creates a column in z[], the output matrix, containing
all zeros and ones. A value of zero indicates that this category is not present and a
value of one indicates that it is present.
For example, if x[]={2, 1, 3, 4, 2, 4} then n_classes=4, and

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Notice that the number of columns in z is equal to the number of distinct classes in x.
The number of rows in z is equal to the length of x.

Binary Decoding: IMSLS_DECODE
Binary decoding takes each column in x[], and returns the appropriate class in z[].
For example, if x[] is the same as described above:

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

then z[] would be returned as z[]={2, 1, 3, 4, 2, 4}. Notice this is the same as the
original array because classes are numbered sequentially from 1 to n_classes. This
ensures that the ith column of x[] is associated with the ith class in the output array.

Chapter 13: Neural Networks unsupervised_nominal_filter • 975

#include <imsls.h>

void main ()
{
#define N_OBS 7
 int x[N_OBS] = {3, 3, 1, 2, 2, 1, 2};
 int *x2;
 int *z, n_classes;
 /* Binary Filtering. */
 z = imsls_unsupervised_nominal_filter(N_OBS, &n_classes, x, 0);
 printf("n_classes = %d\n",n_classes);
 imsls_i_write_matrix("X", N_OBS, 1, (int*)x, 0);
 imsls_i_write_matrix("Z", N_OBS, n_classes, z, 0);
 /* Binary Unfiltering. */
 x2 = imsls_unsupervised_nominal_filter(N_OBS, &n_classes, z,
 IMSLS_DECODE, 0);
 imsls_i_write_matrix("Unfiltering result", N_OBS, 1, x2, 0);
 }

Output

7 n_classes = 3
8
9 X
10 1 3
11 2 3
12 3 1
13 4 2
14 5 2
15 6 1
16 7 2
17
18 Z
19 1 2 3
20 1 0 0 1
21 2 0 0 1
22 3 1 0 0
23 4 0 1 0
24 5 0 1 0
25 6 1 0 0
26 7 0 1 0
27
28 Unfiltering result
29 1 3
30 2 3
31 3 1
32 4 2
33 5 2
34 6 1
35 7 2

976 • unsupervised_ordinal_filter IMSL C Stat Library

unsupervised_ordinal_filter
Converts ordinal data into proportions. Optionally, it can also reverse encoding,
accepting proportions and converting them into ordinal values.

Synopsis
#include <imsls.h>

void imsls_f_unsupervised_ordinal_filter (int n_obs,
 int x[], float z[]…,0)

The type double function is imsls_d_unsupervised_ordinal_filter.

Required Arguments

int n_obs (Input)
Number of observations.

int x[] (Input/Output)
An array of length n_obs containing the classes for the ordinal data. Classes
must be numbered 1 to IMSLS_N_CLASSES. This is an output argument if
IMSLS_DECODE is specified, otherwise it is input.

float z[] (Input/Output)
An array of length n_obs containing the encoded values for x represented as
cumulative proportions associated with each ordinal class (values between 0.0
and 1.0 inclusive). This is an input argument if IMSLS_DECODE is specified,
otherwise it is output.

Synopsis with Optional Arguments
#include <imsls.h>
void imsls_f_unsupervised_ordinal_filter (int n_obs, int x[],

float z[],
IMSLS_ENCODE or
IMSLS_DECODE,
IMSLS_NO_TRANSFORM, or
IMSLS_SQUARE_ROOT, or
IMSLS_ARC_SIN,
IMSLS_N_CLASSES, int * n_classes,
0)

The type double function is imsls_d_unsupervised_ordinal_filter.

Optional Arguments

IMSLS_ENCODE or IMSLS_DECODE (Input)
If IMSLS_ENCODE is specified, z is an output array and x is an input array that
is filtered by converting each ordinal class value into a cumulative proportion
(a value between 0.0 and 1.0 inclusive). If IMSLS_DECODE is specified, x is
an output array and z is an input array that contains transformed cumulative
proportions. In this case, the transformed cumulative proportions are

Chapter 13: Neural Networks unsupervised_ordinal_filter • 977

converted into ordinal class values using the coding class=1, 2, … etc.
Default: IMSLS_ENCODE.

IMSLS_SQUARE_ROOT or IMSLS_ARC_SIN or IMSLS_NO_TRANSFORM (Input)
IMSLS_NO_TRANSFORM indicates that the cumulative proportions used to
encode the ordinal variable are not transformed. If IMSLS_SQUARE_ROOT is
specified, cumulative proportions are transformed using the square root
transformation. If IMSLS_ARC_SIN is specified, the cumulative proportions
are transformed using the arcsin of the square root of the cumulative
proportions.
Default: IMSLS_NO_TRANSFORM .

IMSLS_N_CLASSES, int * n_classes (Output)
The number of ordinal classes in x and the number of unique proportions in z.

Description
The function imsls_f_unsupervised_ordinal_filter is designed to either
encode or decode ordinal variables. Filtering consists of transforming the ordinal
classes into proportions, with each proportion being equal to the proportion of the data
at or below this class.

Ordinal Filtering: IMSLS_ENCODE
In this case, x is an input array that is filtered by converting each ordinal class value
into a cumulative proportion.
For example, if x[]={2, 1, 3, 4, 2, 4, 1, 1, 3, 3} then n_obs=10 and
IMSLS_N_CLASSES=4. This function then fills z with cumulative proportions
represented as proportions displayed in the table below. Cumulative proportions are
equal to the proportion of the data in this class or a lower class.

Ordinal Class Frequency Cumulative Proportion
1 3 30%

2 2 50%

3 3 80%

4 2 100%

If IMSLS_NO_TRANSFORM is specified, then the equivalent proportions in z are
z[]={0.50, 0.30, 0.80, 1.00, 0.50, 1.00, 0.30, 0.30, 0.80, 0.80}.

 If IMSLS_SQUARE_ROOT is specified, then the square root of these values is returned,
i.e.,

[][]
100
z iz i =

z[]={0.71, 0.55 , 0.89, 1.0, 0.71, 1.0, 0.55, 0.55, 0.89, 0.89};

978 • unsupervised_ordinal_filter IMSL C Stat Library

If IMSLS_ARC_SIN is specified, then the arcsin square root of these values is returned
using the following calculation:

[][] arcsin
100
z iz i

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

Ordinal UnFiltering: IMSLS_DECODE
Ordinal Unfiltering takes the transformed cumulative proportions in z and converts
them into ordinal class values using the coding class=1, 2, … etc.
For example, if IMSLS_NO_TRANSFORM is specified and z[]={0.20, 1.00, 0.20, 0.40,
1.00, 1.00, 0.40, 0.10, 1.00, 1.00} then upon return, the output array would consist of
the ordinal classes x[]={2, 4, 2, 3, 4, 4, 3, 1, 4, 4}.
If one of the transforms is specified, the same operation is performed since the
transformations of the proportions are monotonically increasing. For example, if the
original observations consisted of {2.8, 5.6, 5.6, 1.2, 4.5, 7.1}, then input x for
encoding would be x[]={2, 4, 4, 1, 3, 5} and output IMSLS_N_CLASSES=5. The
output array x after decoding would consist of the ordinal classes
x[]={2, 4, 4, 1, 3, 5}.

Example 1
A taste test was conducted yielding the following data:

Individual Rating
1 Poor

2 Good

3 Very Good

4 Very Poor

5 Very Good

The data in the table above would have the coded values shown below. This assumes
that the rating scale is: very poor, poor, good, and very good.

x={2, 3, 4, 1, 4}
The returned values are:

z={0.40, 0.60, 1.00, 0.20, 1.00}.

#include <imsls.h>

void main () {
#define N_OBS 5
 int x[N_OBS] = {2,3,4,1,4};
 int x2[N_OBS], n_classes;
 float z[N_OBS];

 /* Filtering. */
 imsls_f_unsupervised_ordinal_filter(N_OBS, x, z,

Chapter 13: Neural Networks unsupervised_ordinal_filter • 979

 IMSLS_N_CLASSES, &n_classes,
 0);
 printf("n_classes = %d\n", n_classes);
 imsls_i_write_matrix("x", N_OBS, 1, x, 0);
 imsls_f_write_matrix("z", N_OBS, 1, z, 0);

 /* Unfiltering. */
 imsls_f_unsupervised_ordinal_filter(N_OBS, x2, z,
 IMSLS_DECODE,
 IMSLS_N_CLASSES, &n_classes,
 0);
 printf("\nn_classes = %d\n", n_classes);
 imsls_i_write_matrix("x-unfiltered", N_OBS, 1, x2, 0);
}

Output

n_classes = 4

 x
1 2
2 3
3 4
4 1
5 4

 z
1 0.4
2 0.6
3 1.0
4 0.2
5 1.0

n_classes = 4

x-unfiltered
 1 2
 2 3
 3 4
 4 1
 5 4

Chapter 14: Printing Functions Routines • 981

Chapter 14: Printing Functions

Routines
Print a matrix or vector write_matrix 981
Set the page width and length page 986
Set the printing options write_options 987

write_matrix
Prints a rectangular matrix (or vector) stored in contiguous memory locations.

Synopsis
#include <imsls.h>
void imsls_f_write_matrix (char *title, int nra, int nca, float a[], …,

0)
For int a[], use imsls_i_write_matrix.
For double a[], use imsls_d_write_matrix.

Required Arguments

char *title (Input)
Matrix title. Use \n within a title to create a new line. Long titles are
automatically wrapped.

int nra (Input)
Number of rows in the matrix.

int nca (Input)
Number of columns in the matrix.

float a[] (Input)
Array of size nra × nca containing the matrix to be printed.

Synopsis with Optional Arguments

#include <imsls.h>
void imsls_f_write_matrix (char *title, int nra, int nca, float a[],

IMSLS_TRANSPOSE,
IMSLS_A_COL_DIM, int a_col_dim,

982 • write_matrix IMSL C Stat Library

IMSLS_PRINT_ALL, or
IMSLS_PRINT_LOWER, or
IMSLS_PRINT_UPPER, or
IMSLS_PRINT_LOWER_NO_DIAG, or
IMSLS_PRINT_UPPER_NO_DIAG,
IMSLS_WRITE_FORMAT, char *fmt,
IMSLS_NO_ROW_LABELS, or
IMSLS_ROW_NUMBER, or
IMSLS_ROW_NUMBER_ZERO, or
IMSLS_ROW_LABELS, char *rlabel[],
IMSLS_NO_COL_LABELS, or
IMSLS_COL_NUMBER, or
IMSLS_COL_NUMBER_ZERO, or
IMSLS_COL_LABELS, char *clabel[],
0)

Optional Arguments

IMSLS_TRANSPOSE
Print aT.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of a.
Default: a_col_dim = nca

IMSLS_PRINT_ALL, or
IMSLS_PRINT_LOWER, or
IMSLS_PRINT_UPPER, or
IMSLS_PRINT_LOWER_NO_DIAG, or
IMSLS_PRINT_UPPER_NO_DIAG

Exactly one of these optional arguments can be specified to
indicate that either a triangular part of the matrix or the entire
matrix is to be printed. If omitted, the entire matrix is printed.

Keyword Action
IMSLS_PRINT_ALL Entire matrix is printed (the

default).
IMSLS_PRINT_LOWER Lower triangle of the matrix is

printed, including the diagonal.
IMSLS_PRINT_UPPER Upper triangle of the matrix is

printed, including the diagonal.
IMSLS_PRINT_LOWER_NO_DIAG Lower triangle of the matrix is

printed, without the diagonal.
IMSLS_PRINT_UPPER_NO_DIAG Upper triangle of the matrix is

printed, without the diagonal.

IMSLS_WRITE_FORMAT, char *fmt (Input)
Character string containing a list of C conversion specifications (formats) to be
used when printing the matrix. Any list of C conversion specifications suitable

Chapter 14: Printing Functions write_matrix • 983

for the data type can be given. For example, fmt = "%10.3f" specifies the
conversion character f for the entire matrix. For the conversion character f, the
matrix must be of type float or double.
Alternatively,fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f" specifies the
conversion character e for columns 1 and 2 and the conversion character f for
columns 3, 4, and 5. If the end of fmt is encountered and if some columns of
the matrix remain, format control continues with the first conversion
specification in fmt.

Aside from restarting the format from the beginning, other exceptions to the
usual C formatting rules are as follows:

Characters not associated with a conversion specification are not allowed. For
example, in the format fmt = "1%d2%d", the characters 1 and 2 are not
allowed and result in an error.

A conversion character d can be used for floating-point values (matrices of
type float or double). The integer part of the floating-point value is
printed.

For printing numbers whose magnitudes are unknown, the conversion
character g is useful; however, the decimal points will generally not be
aligned when printing a column of numbers. The w (or W) conversion
character is a special conversion character used by this function to select
a conversion specification so that the decimal points will be aligned. The
conversion specification ending with w is specified as "%n.dw". Here, n
is the field width and d is the number of significant digits generally
printed. Valid values for n are 3, 4, …, 40. Valid values for d are 1, 2, …,
n − 2. If fmt specifies one conversion specification ending with w, all
elements of a are examined to determine one conversion specification for
printing. If fmt specifies more than one conversion specification, separate
conversion specifications are generated for each conversion specification
ending with w. Set fmt = "10.4w" for a single conversion specification
selected automatically with field width 10 and with four significant digits.

IMSLS_NO_ROW_LABELS, or
IMSLS_ROW_NUMBER, or
IMSLS_ROW_NUMBER_ZERO, or
IMSLS_ROW_LABELS, char *rlabel[] (Input)

If IMSLS_ROW_LABELS is specified, rlabel is a vector of length nra
containing pointers to the character strings comprising the row labels. Here,
nra is the number of rows in the printed matrix. Use \n within a label to
create a new line. Long labels are automatically wrapped. If no row labels are
desired, use the IMSLS_NO_ROW_LABELS optional argument. If the numbers
1, 2, …, nra are desired, use the IMSLS_ROW_NUMBER optional argument. If
the numbers 0, 1, 2, …, nra − 1 are desired, use the
IMSLS_ROW_NUMBER_ZERO optional argument. If none of these optional
arguments is used, the numbers 1, 2, 3, …, nra are used for the row labels by
default whenever nra > 1.
If nra = 1, the default is no row labels.

984 • write_matrix IMSL C Stat Library

IMSLS_NO_COL_LABELS, or
IMSLS_COL_NUMBER, or
IMSLS_COL_NUMBER_ZERO, or
IMSLS_COL_LABELS, char *clabel[] (Input)

If IMSLS_COL_LABELS is specified, clabel is a vector of length nca + 1
containing pointers to the character strings comprising the column headings.
The heading for the row labels is clabel [0]; clabel [i], i = 1, …, nca, is
the heading for the i-th column. Use \n within a label to create a new line.
Long labels are automatically wrapped. If no column labels are desired, use
the IMSLS_NO_COL_LABELS optional argument. If the numbers 1, 2, …, nca,
are desired, use the IMSLS_COL_NUMBER optional argument. If the numbers 0,
1, …, nca − 1 are desired, use the IMSLS_COL_NUMBER_ZERO optional
argument. If none of these optional arguments is used, the numbers
1, 2, 3, …, nca are used for the column labels by default whenever nca > 1.
If nca = 1, the default is no column labels.

Description
Function imsls_write_matrix prints a real rectangular matrix (stored in a) with
optional row and column labels (specified by rlabel and clabel, respectively,
regardless of whether a or aT is printed). An optional format, fmt, can be used to
specify a conversion specification for each column of the matrix.
In addition, the write matrix functions can restrict printing to the elements of the upper
or lower triangles of a matrix by using the IMSLS_PRINT_UPPER,
IMSLS_PRINT_LOWER, IMSLS_PRINT_UPPER_NO_DIAG, and
IMSLS_PRINT_LOWER_NO_DIAG options. Generally, these options are used with
symmetric matrices, but this is not required. Vectors can be printed by specifying a row
or column dimension of 1.
Output is written to the file specified by the function imsls_output_file (Chapter
15, “Utilities”). The default output file is standard output (corresponding to the file
pointer stdout). A page width of 78 characters is used. Page width and page length
can be reset by invoking function imsls_page.
Horizontal centering, the method for printing large matrices, paging, the method for
printing NaN (Not a Number), and whether or not a title is printed on each page can be
selected by invoking function imsls_write_options.

Examples

Example 1
This example is representative of the most common situation in which no optional
arguments are given.

#include <imsls.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j;

Chapter 14: Printing Functions write_matrix • 985

 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1+(j+1)*0.1);
 }

 }
 /* Write matrix */
 imsls_f_write_matrix ("matrix\na", NRA, NCA, (float*) a, 0);
}

Output
 matrix
 a
 1 2 3 4
1 1.1 1.2 1.3 1.4
2 2.1 2.2 2.3 2.4
3 3.1 3.2 3.3 3.4

Example 2
In this example, some of the optional arguments available in the
imsls_write_matrix functions are demonstrated.

#include <imsls.h>

#define NRA 3
#define NCA 4

main()
{
 int i, j;
 float a[NRA][NCA];
 char *fmt = "%10.6W";
 char *rlabel[] = {"row 1", "row 2", "row 3"};
 char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1+(j+1)*0.1);
 }
 }
 /* Write matrix */
 imsls_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,
 IMSLS_WRITE_FORMAT, fmt,
 IMSLS_ROW_LABELS, rlabel,
 IMSLS_COL_LABELS, clabel,
 IMSLS_PRINT_UPPER_NO_DIAG,
 0);
}

986 • page IMSL C Stat Library

Output
 matrix
 a
 col 2 col 3 col 4
row 1 1.2 1.3 1.4
row 2 2.3 2.4
row 3 3.4

Example 3
In this example, a row vector of length four is printed.

#include <imsls.h>

#define NRA 1
#define NCA 4

main()
{
 int i;
 float a[NCA];
 char *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"};

 for (i = 0; i < NCA; i++) {
 a[i] = i + 1;
 }
 /* Write matrix */
 imsls_f_write_matrix ("matrix\na", NRA, NCA, a,
 IMSLS_COL_LABELS, clabel,
 0);
}

Output
 matrix
 a
 col 1 col 2 col 3 col 4
 1 2 3 4

page
Sets or retrieves the page width or length.

Synopsis
#include <imsls.h>
void imsls_page (Imsls_page_options option, int *page_attribute)

Required Arguments

Imsls_page_options option (Input)
Option giving which page attribute is to be set or retrieved. The possible
values are shown in the table below.

Chapter 14: Printing Functions write_options • 987

Keyword Description
IMSLS_SET_PAGE_WIDTH Sets the page width.
IMSLS_GET_PAGE_WIDTH Retrieves the page width.
IMSLS_SET_PAGE_LENGTH Sets the page length.
IMSLS_GET_PAGE_LENGTH Retrieves the page length.

int *page_attribute (Input, if the attribute is set; Output, otherwise.)
The value of the page attribute to be set or retrieved. The page width is the
number of characters per line of output (default 78), and the page length is the
number of lines of output per page (default 60). Ten or more characters per
line and 10 or more lines per page are required.

Example
The following example illustrates the use of imsls_page to set the page width to 40
characters. Function imsls_f_write_matrix is then used to print a
3 × 4 matrix A, where aij = i + j/10.

#include <imsls.h>

#define NRA 3
#define NCA 4
main()
{
 int i, j, page_attribute;
 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 page_attribute = 40;
 imsls_page(IMSLS_SET_PAGE_WIDTH, &page_attribute);
 imsls_f_write_matrix("a", NRA, NCA, (float *)a, 0);
}

Output
 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3

 4
1 1.4
2 2.4
3 3.4

write_options
Sets or retrieves an option for printing a matrix.

988 • write_options IMSL C Stat Library

Synopsis
#include <imsls.h>
void imsls_write_options (Imsls_write_options option, int *option_value)

Required Arguments

Imsls_write_options option (Input)
Option giving the type of the printing attribute to set or retrieve.

Keyword for Setting Keyword for Retrieving Attribute Description
IMSLS_SET_DEFAULTS uses the default settings for

all parameters
IMSLS_SET_CENTERING IMSLS_GET_CENTERING horizontal centering
IMSLS_SET_ROW_WRAP IMSLS_GET_ROW_WRAP row wrapping
IMSLS_SET_PAGING IMSLS_GET_PAGING paging
IMSLS_SET_NAN_CHAR IMSLS_GET_NAN_CHAR method for printing NaN
IMSLS_SET_TITLE_PAGE IMSLS_GET_TITLE_PAGE whether or not titles appear

on each page
IMSLS_SET_FORMAT IMSLS_GET_FORMAT default format for real and

complex numbers

int *option_value (Input, if option is to be set; Output, otherwise)
Value of the option attribute selected by option. The values to be used when
setting attributes are described in a table in the description section.

Description
Function imsls_write_options allows the user to set or retrieve an option for
printing a matrix. Options controlled by imsls_write_options are horizontal
centering, method for printing large matrices, paging, method for printing NaN,
method for printing titles, and the default format for real and complex numbers. (NaN
can be retrieved by functions imsls_f_machine and imsls_d_machine (Chapter
15, “Utilities”).

Chapter 14: Printing Functions write_options • 989

The following values can be used for the attributes:

Keyword Value Meaning
CENTERING 0

1
Matrix is left justified.
Matrix is centered.

ROW_WRAP 0

m

Complete row is printed before the next row
is printed. Wrapping is used if necessary.
Here, m is a positive integer. Let n1 be the
maximum number of columns that fit across
the page, as determined by the widths in the
conversion specifications starting with
column 1. First, columns 1 through n1 are
printed for rows 1 through m. Let n2 be the
maximum number of columns that fit across
the page, starting with column n1+1. Second,
columns n1+1 through n1+n2 are printed for
rows 1 through m. This continues until the
last columns are printed for rows 1 through
m. Printing continues in this fashion for the
next m rows, etc.

PAGING −2

−1

0

k

No paging occurs.
Paging is on. Every invocation of an function
imsls_write_matrix begins on a new
page, and paging occurs within each
invocation as is needed.
Paging is on. The first invocation of an
imsls_f_write_f_matrix function
begins on a new page, and subsequent paging
occurs as is needed. Paging occurs in the
second and all subsequent calls to an
imsls_f_write_matrix function only
as needed.
Turn paging on and set the number of lines
printed on the current page to k lines. If k is
greater than or equal to the page length, then
the first invocation of an
imsls_write_matrix function begins
on a new page. In any case, subsequent
paging occurs as is needed.

NAN_CHAR 0
1

. is printed for NaN.
A blank field is printed for NaN.

TITLE_PAGE 0
1

Title appears only on first page.
Title appears on the first page and all
continuation pages.

FORMAT 0
1
2

Format is "%10.4x".

Format is "%12.6w".

Format is "%22.5e".

990 • write_options IMSL C Stat Library

The w conversion character used by the FORMAT option is a special conversion character
that can be used to automatically select a pretty C conversion specification ending in
either e, f, or d. The conversion specification ending with w is specified as "%n.dw".
Here, n is the field width, and d is the number of significant digits generally printed.
Function imsls_write_options can be invoked repeatedly before using a function
imsls_f_write_matrix to print a matrix. The matrix printing functions retrieve the
values set by imsls_write_options to determine the printing options. It is not
necessary to call imsls_write_options if a default value of a printing option is
desired. The defaults are as follows:

Keyword Default Value Meaning
CENTERING 0 left justified
ROW_WRAP 1000 lines before wrapping
PAGING −2 no paging
NAN_CHAR 0
TITLE_PAGE 0 title appears only on the

first page
FORMAT 0 %10.4w

Example
The following example illustrates the effect of imsls_write_options when printing
a 3 × 4 real matrix A with function imsls_f_write_matrix, where aij = i + j/10. The
first call to imsls_write_options sets horizontal centering so that the matrix is
printed centered horizontally on the page. In the next invocation of
imsls_f_write_matrix, the left-justification option has been set by function
imsls_write_options so the matrix is left justified when printed.

#include <imsls.h>

#define NRA 4
#define NCA 3

main()
{
 int i, j, option_value;
 float a[NRA][NCA];

 for (i = 0; i < NRA; i++) {
 for (j = 0; j < NCA; j++) {
 a[i][j] = (i+1) + (j+1)/10.0;
 }
 }
 /* Activate centering option */
 option_value = 1;
 imsls_write_options (IMSLS_SET_CENTERING, &option_value);
 /* Write a matrix */
 imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
 /* Activate left justification */
 option_value = 0;
 imsls_write_options (IMSLS_SET_CENTERING, &option_value);

Chapter 14: Printing Functions write_options • 991

 imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0);
}

Output
 a
 1 2 3
 1 1.1 1.2 1.3
 2 2.1 2.2 2.3
 3 3.1 3.2 3.3
 4 4.1 4.2 4.3

 a
 1 2 3
1 1.1 1.2 1.3
2 2.1 2.2 2.3
3 3.1 3.2 3.3
4 4.1 4.2 4.3

Chapter 15: Utilities Routines • 993

Chapter 15: Utilities

Routines
Set Output Files

Set output files output_file 993
Get library version and license number version 997

Error Handling
Error message options error_options 998
Get error code error_code 1004

Constants
Integer machine constants machine (integer) 1005
Float machine constants machine (float) 1007
Common data sets data_sets 1009

Mathematical Support
Matrix-vector, matrix-matrix,
vector-vector products mat_mul_rect 1012
Rearrange elements of vector permute_vector 1015
Interchange rows and columns of matrices permute_matrix 1017
Evaluate the binomial coeficient binomial_coefficient 1018
Evaluate the complete beta function beta 1020
Evaluate the real incomplete beta function beta_incomplete 1021
Evaluate the log of the real beta function log_beta 1022
Evaluate the real gamma function gamma 1023
Evaluate the incomplete gamma function gamma_incomplete 1025
Evaluate the logarithm of the absolute value
of the gamma function log_gamma 1027
Return the number of CPU seconds used ctime 1029

output_file
Sets the output file or the error message output file.

Synopsis with Optional Arguments

#include <imsls.h>

994 • output_file IMSL C Stat Library

void imsls_output_file (
IMSLS_SET_OUTPUT_FILE, FILE *ofile,
IMSLS_GET_OUTPUT_FILE, FILE **pofile,
IMSLS_SET_ERROR_FILE, FILE *efile,
IMSLS_GET_ERROR_FILE, FILE **pefile,
0)

Optional Arguments

IMSLS_SET_OUTPUT_FILE, FILE *ofile (Input)
Sets the output file to ofile.
Default: ofile = stdout

IMSLS_GET_OUTPUT_FILE, FILE **pofile (Output)
Sets the FILE pointed to by pofile to the current output file.

IMSLS_SET_ERROR_FILE, FILE *efile (Input)
Sets the error message output file to efile.
Default: efile = stderr

IMSLS_GET_ERROR_FILE, FILE **pefile (Output)
Sets the FILE pointed to by pefile to the error message output file.

Description
This function allows the file used for printing by IMSL functions to be changed.
If multiple threads are used then default settings are valid for each thread. When using
threads it is possible to set different output files for each thread by calling
imsls_output_file from within each thread. See Example 2 for more details.

Example 1
This example opens the file myfile and sets the output file to this new file. Function
imsls_f_write_matrix then writes to this file.

#include <stdio.h>
#include <imsls.h>

main()
{
 FILE *ofile;
 float x[] = {3.0, 2.0, 1.0};

 imsls_f_write_matrix ("x (default file)", 1, 3, x, 0);

 ofile = fopen("myfile", "w");
 imsls_output_file(IMSLS_SET_OUTPUT_FILE, ofile,
 0);
 imsls_f_write_matrix ("x (myfile)", 1, 3, x, 0);
}

Output
 x (default file)
 1 2 3
 3 2 1

Chapter 15: Utilities output_file • 995

File myfile
x (myfile)
1 2 3
3 2 1

Example 2
The following example illustrates how to direct output from IMSL routines that run in
separate threads to different files. First, two threads are created, each calling a
different IMSL function, then the results are printed by calling
imsls_f_write_matrix from within each thread. Note that imsls_output_file
is called from within each thread to change the default output file.

#include <pthread.h>

#include <stdio.h>

#include "imsls.h"

void *ex1(void* arg);

void *ex2(void* arg);

void main()

{

 pthread_t thread1;

 pthread_t thread2;

 /* Disable IMSL signal trapping. */

 imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 /* Create two threads. */

 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)

 perror("pthread_create"), exit(1);

 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)

 perror("pthread_create"), exit(1);

 /* Wait for threads to finish. */

 if (pthread_join(thread1, NULL) != 0)

 perror("pthread_join"),exit(1);

 if (pthread_join(thread2, NULL) != 0)

 perror("pthread_join"),exit(1);

}

void *ex1(void* arg)

{

 float *rand_nums = NULL;

996 • output_file IMSL C Stat Library

 FILE *file_ptr;

 /* Open a file to write the result in. */

 file_ptr = fopen("ex1.out", "w");

 /* Set the output file for this thread. */

 imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0);

 /* Compute 5 random numbers. */

 imsls_random_seed_set(12345);

 rand_nums = imsls_f_random_uniform(5, 0);

 /* Output random numbers. */

 imsls_f_write_matrix("Random Numbers", 5, 1, rand_nums, 0);

 if (rand_nums) free(rand_nums);

 fclose(file_ptr);

}

void *ex2(void* arg)

{

 int n_intervals=10;

 int n_observations=30;

 float *table;

 float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37,

 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32,

 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96,

 1.89, 0.90, 2.05};

 FILE *file_ptr;

 /* Open a file to write the result in. */

 file_ptr = fopen("ex2.out", "w");

 /* Set the output file for this thread. */

 imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0);

 table = imsls_f_table_oneway (n_observations, x, n_intervals, 0);

 imsls_f_write_matrix("counts", 1, n_intervals, table, 0);

 if (table) free(table);

 fclose(file_ptr);

}

ex1.out

Random Numbers

 1 0.4919

 2 0.3909

 3 0.2645

 4 0.1814

 5 0.7546

Chapter 15: Utilities version • 997

ex2.out

 counts

 1 2 3 4 5 6

 4 8 5 5 3 1

 7 8 9 10

 3 0 0 1

version
Returns information describing the version of the library, serial number, operating
system, and compiler.

Synopsis

#include <imsls.h>
char *imsls_version (Imsls_keyword code)

Required Arguments

Imsls_keyword code (Input)
Index indicating which value is to be returned. It must be
IMSLS_LIBRARY_VERSION, IMSLS_OS_VERSION,
IMSLS_COMPILER_VERSION, or IMSLS_LICENSE_NUMBER.

Return Value
The requested value is returned. If code is out of range, then NULL is returned. Use
free to release the returned string.

Description
Function imsls_version returns information describing the version of the library, the
version of the operating system under which it was compiled, the compiler used, and
the IMSL serial number.

Example
This example prints all the values returned by imsls_version on a particular
machine. The output is omitted because the results are system dependent.

#include <imsls.h>

main()
{
 char *library_version, *os_version;
 char *compiler_version, *license_number;

 library_version = imsls_version(IMSLS_LIBRARY_VERSION);
 os_version = imsls_version(IMSLS_OS_VERSION);
 compiler_version = imsls_version(IMSLS_COMPILER_VERSION);

998 • error_options IMSL C Stat Library

 license_number = imsls_version(IMSLS_LICENSE_NUMBER);

 printf("Library version = %s\n", library_version);
 printf("OS version = %s\n", os_version);
 printf("Compiler version = %s\n", compiler_version);
 printf("Serial number = %s\n", license_number);
}

error_options
Sets various error handling options.

Synopsis with Optional Arguments

#include <imsls.h>

void imsls_error_options (
IMSLS_SET_PRINT, Imsls_error type, int setting,
IMSLS_SET_STOP, Imsls_error type, int setting,
IMSLS_SET_TRACEBACK, Imsls_error type, int setting,
IMSLS_FULL_TRACEBACK, int setting,
IMSLS_GET_PRINT, Imsls_error type, int *psetting,
IMSLS_GET_STOP, Imsls_error type, int *psetting,
IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting,
IMSLS_SET_ERROR_FILE, FILE *file,
IMSLS_GET_ERROR_FILE, FILE **pfile,
IMSLS_ERROR_MSG_PATH, char *path,
IMSLS_ERROR_MSG_NAME, char *name,
IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc,
IMSLS_SET_SIGNAL_TRAPPING, int setting,
 0)

Optional Arguments

IMSLS_SET_PRINT, Imsls_error type, int setting (Input)
Printing of type type error messages is turned off if setting is 0; otherwise,
printing is turned on.
Default: Printing turned on for IMSLS_WARNING, IMSLS_FATAL,
IMSLS_TERMINAL, IMSLS_FATAL_IMMEDIATE, and
IMSLS_WARNING_IMMEDIATE messages

IMSLS_SET_STOP, Imsls_error type, int setting (Input)
Stopping on type type error messages is turned off if setting is 0;
otherwise, stopping is turned on.
Default: Stopping turned on for IMSLS_FATAL and IMSLS_TERMINAL and
IMSLS_FATAL_IMMEDIATE messages

IMSLS_SET_TRACEBACK, Imsls_error type, int setting (Input)
Printing of a traceback on type type error messages is turned off if setting
is 0; otherwise, printing of the traceback turned on.
Default: Traceback turned off for all message types

Chapter 15: Utilities error_options • 999

IMSLS_FULL_TRACEBACK, int setting (Input)
Only documented functions are listed in the traceback if setting is 0;
otherwise, internal function names also are listed.
Default: Full traceback turned off

IMSLS_GET_PRINT, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for printing of
type type error messages.

IMSLS_GET_STOP, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for stopping on
type type error messages.

IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting (Output)
Sets the integer pointed to by psetting to the current setting for printing of a
traceback for type type error messages.

IMSLS_SET_ERROR_FILE, FILE *file (Input)
Sets the error output file.
Default: file = stderr

IMSLS_GET_ERROR_FILE, FILE **pfile (Output)
Sets the FILE * pointed to by pfile to the error output file.

IMSLS_ERROR_MSG_PATH, char *path (Input)
Sets the error message file path. On UNIX systems, this is a colon-separated
list of directories to be searched for the file containing the error messages.
Default: system dependent

IMSLS_ERROR_MSG_NAME, char *name (Input)
Sets the name of the file containing the error messages.
Default: file = "imsls_e.bin"

IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc (Input)
Sets the error printing function. The procedure print_proc has the form
void print_proc (Imsls_error type, long code,
char *function_name, char *message).

In this case, type is the error message type number (IMSLS_FATAL, etc.),
code is the error message code number (IMSLS_MAJOR_VIOLATION, etc.),
function_name is the name of the function setting the error, and message is
the error message to be printed. If print_proc is NULL, then the default error
printing function is used.

IMSLS_SET_SIGNAL_TRAPPING, int setting (Input)
C/Stat/Library will use its own signal handler if setting is 1; otherwise the
C/Stat/Library signal handler is not used. If C/Stat/Library is called from a
multi-threaded application, signal handling by C/Stat/Library must be turned
off. See Example 3 for details.
Default: setting = 1

1000 • error_options IMSL C Stat Library

Return Value
The return value is void.

Description
This function allows the error handling system to be customized.
If multiple threads are used then default settings are valid for each thread but can be
altered for each individual thread. When using threads it is necessary to set options
(excluding IMSLS_SET_SIGNAL_TRAPPING) for each thread by calling
imsls_error_options from within each thread.
The IMSL signal-trapping mechanism must be disabled when multiple threads are
used. The IMSL signal-trapping mechanism can be disabled by making the following
call before any threads are created:
imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 See Example 3 and Example 4 for multithreaded examples.
NOTE: Signal handlers are installed when a C/Stat/Library function is called, then
uninstalled prior to returning from the C/Stat/Library function. The library function
imsls_error_options can be used to perform many different tasks with regard to
error handling and it will install signal handlers when first called, even if the call is
being made to disable signal handling through the use of the optional argument
IMSLS_SET_SIGNAL_TRAPPING. However, there may be cases when it is desirable to
completely avoid any installation of signal handlers by C/Stat/Library functions. In
these cases, the following function can be called.

#include <imsls.h>

void imsls_skip_signal_handler();

Examples

Example 1
In this example, the IMSLS_TERMINAL print setting is retrieved. Next, stopping on
IMSLS_TERMINAL errors is turned off, output to standard output is redirected, and an
error is deliberately caused by calling imsls_error_options with an illegal value.

#include <imsls.h>
#include <stdio.h>

main()
{
 int setting;
 /* Turn off stopping on IMSLS_TERMINAL */
 /* error messages and write error */
 /* messages to standard output */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_ERROR_FILE, stdout,
 0);
 /* Call imsls_error_options() with */
 /* an illegal value */

Chapter 15: Utilities error_options • 1001

 imsls_error_options(-1);
 /* Get setting for IMSLS_TERMINAL */
 imsls_error_options(IMSLS_GET_PRINT, IMSLS_TERMINAL, &setting,
 0);
 printf("IMSLS_TERMINAL error print setting = %d\n", setting);
}

Output
*** TERMINAL Error from imsls_error_options. There is an error with
*** argument number 1. This may be caused by an incorrect number of
*** values following a previous optional argument name.

IMSLS_TERMINAL error print setting = 1

Example 2
In this example, IMSL’s error printing function has been substituted for the standard
function. Only the first four lines are printed below.

#include <imsls.h>
#include <stdio.h>

void print_proc(Imsls_error, long, char*, char*);

main()
{
 /* Turn off tracebacks on IMSLS_TERMINAL */
 /* error messages and use a custom */
 /* print function */
 imsls_error_options(IMSLS_ERROR_PRINT_PROC, print_proc,
 0);
 /* Call imsls_error_options() with an */
 /* illegal value */
 imsls_error_options(-1);
}

void print_proc(Imsls_error type, long code, char *function_name,
 char *message)
{
 printf("Error message type %d\n", type);
 printf("Error code %d\n", code);
 printf("From function %s\n", function_name);
 printf("%s\n", message);
}

Output
Error message type 5
Error code 103
From function imsls_error_options
There is an error with argument number 1. This may be caused by an
incorrect number of values following a previous optional argument name.

Example 3
In this example, two threads are created and error options is called within each thread
to set the error handling options slightly different for each thread. Since we expect to

1002 • error_options IMSL C Stat Library

generate terminal errors in each thread, we must turn off stopping on terminal errors for
each thread. Also notice that imsls_error_options is called from main to disable
the IMSL signal-trapping mechanism.
See Example 4 for a similar example, using WIN32 threads. Note since multiple
threads are executing, the order of the errors output may differ on some systems.

#include <pthread.h>
#include <stdio.h>
#include "imsls.h"

void *ex1(void* arg);
void *ex2(void* arg);
void main()
{
 pthread_t thread1;
 pthread_t thread2;

 /* Disable IMSL signal trapping. */
 imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 /* Create two threads. */
 if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);
 if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0)
 perror("pthread_create"), exit(1);

 /* Wait for threads to finish. */
 if (pthread_join(thread1, NULL) != 0)
 perror("pthread_join"),exit(1);
 if (pthread_join(thread2, NULL) != 0)
 perror("pthread_join"),exit(1);

}

void *ex1(void* arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 0);
 res = imsls_f_beta(-1.0, .5);
}
void *ex2(void* arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread. Notice that tracebacks are
 * turned on for IMSLS_TERMINAL errors.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1, 0);

Chapter 15: Utilities error_options • 1003

 res = imsls_f_gamma(-1.0);
}

Output

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+00 and "y" =
*** 5.000000e-01 must be greater than zero.

*** TERMINAL Error from imsls_f_gamma. The argument for the function can
*** not be a negative integer. Argument "x" = -1.000000e+00.

Here is a traceback of the calls in reverse order.
 Error Type Error Code Routine
 ---------- ---------- -------
 IMSLS_TERMINAL IMSLS_NEGATIVE_INTEGER imsls_f_gamma

Example 4
In this example the WIN32 API is used to demonstrate the same functionality as shown
in Example 3 above. Note since multiple threads are executing, the order of the errors
output may differ on some systems.

#include <windows.h>
#include <stdio.h>
#include "imsls.h"

DWORD WINAPI ex1(void *arg);
DWORD WINAPI ex2(void *arg);

int main(int argc, char* argv[])
{
 HANDLE thread[2];

 imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL);
 thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL);

 WaitForMultipleObjects(2, thread, TRUE, INFINITE);

}
DWORD WINAPI ex1(void *arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread.
 */
imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 0);
 res = imsls_f_beta(-1.0, .5);
 return(0);
}

1004 • error_code IMSL C Stat Library

DWORD WINAPI ex2(void *arg)
{
 float res;
 /*
 * Call imsls_error_options to set the error handling
 * options for this thread. Notice that tracebacks are
 * turned on for IMSLS_TERMINAL errors.
 */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1,
 0);
 res = imsls_f_gamma(-1.0);
 return(0);
}

Output

*** TERMINAL Error from imsls_f_beta. Both "x" = -1.000000e+000 and "y" =
*** 5.000000e-001 must be greater than zero.

*** TERMINAL Error from imsls_f_gamma. The argument for the function can
*** not be a negative integer. Argument "x" = -1.000000e+000.

Here is a traceback of the calls in reverse order.
 Error Type Error Code Routine
 ---------- ---------- -------
 IMSLS_TERMINAL IMSLS_NEGATIVE_INTEGER imsls_f_gamma USER

error_code
Gets the code corresponding to the error message from the last function called.

Synopsis

#include <imsls.h>
long imsls_error_code ()

Return Value
This function returns the error message code from the last function called. The include
file imsls.h defines a name for each error code.

Example
In this example, stopping on IMSLS_TERMINAL error messages is turned off and an
error is then generated by calling function imsls_error_options with an illegal
value for IMSLS_SET_PRINT. The error message code number is then retrieved and
printed. In imsls.h, IMSLS_INTEGER_OUT_OF_RANGE is defined to be 132.

#include <imsls.h>
#include <stdio.h>

Chapter 15: Utilities machine (integer) • 1005

main()
{
 long code;
 /* Turn off stopping IMSLS_TERMINAL */
 /* messages and print error messages */
 /* on standard output */
 imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0,
 IMSLS_SET_ERROR_FILE, stdout,
 0);
 /* Call imsls_error_options() with */
 /* an illegal value */
 imsls_error_options(IMSLS_SET_PRINT, 100, 0,
 0);
 /* Get the error message code */
 code = imsls_error_code();
 printf("error code = %d\n", code);
}

Output
*** TERMINAL error from imsls_error_options. "type" must be between 1 and
*** 5, but "type" = 100.

error code = 132

machine (integer)
Returns integer information describing the computer’s arithmetic.

Synopsis

#include <imsls.h>
int imsls_i_machine (int n)

Required Arguments

int n (Input)
Index indicating which value is to be returned. It must be between 0 and 12.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_i_machine returns information describing the computer’s arithmetic.
This can be used to make programs machine independent.

imsls_i_machine(0) = Number of bits per byte

Assume that integers are represented in M-digit, base-A form as

0

M
k

k
k

x Aσ
=

∑

1006 • machine (integer) IMSL C Stat Library

where σ is the sign and 0 ≤ xk < A for k = 0, …, M. Then,

N Definition
0 C, bits per character
1 A, the base
2 Ms, the number of base-A digits in a short int

3 1,sMA − the largest short int

4 Ml, the number of base-A digits in a long int

5 1,lMA − the largest long int

Assume that floating-point numbers are represented in N-digit, base B form as

1

N
E k

k
k

B x Bσ −

−
∑

where σ is the sign and 0 ≤ xk < B for k = 1, …, N and E$ ≤ E ≤ E". Then

N Definition
6 B, the base
7 Nf, the number of base-B digits in float

8
min ,

f
E the smallest float exponent

9
max ,

f
E the largest float exponent

10 Nd, the number of base-B digits in double

11
max ,

f
E the largest long int

12
max ,

d
E the number of base-B digits in double

Example
In this example, all the values returned by imsls_i_machine on a machine with
IEEE (Institute for Electrical and Electronics Engineer) arithmetic are printed.

#include <imsls.h>

main()
{
 int n, ans;

 for (n = 0; n <= 12; n++) {
 ans = imsls_i_machine(n);
 printf("imsls_i_machine(%d) = %d\n", n, ans);
 }
}

Chapter 15: Utilities machine (float) • 1007

Output
imsls_i_machine(0) = 8
imsls_i_machine(1) = 2
imsls_i_machine(2) = 15
imsls_i_machine(3) = 32767
imsls_i_machine(4) = 31
imsls_i_machine(5) = 2147483647
imsls_i_machine(6) = 2
imsls_i_machine(7) = 24
imsls_i_machine(8) = -125
imsls_i_machine(9) = 128
imsls_i_machine(10) = 53
imsls_i_machine(11) = -1021
imsls_i_machine(12) = 1024

machine (float)
Returns information describing the computer’s floating-point arithmetic.

Synopsis

#include <imsls.h>
float imsls_f_machine (int n)
The type double function is imsls_d_machine.

Required Arguments

int n (Input)
Index indicating which value is to be returned. The index must be between 1
and 8.

Return Value
The requested value is returned. If n is out of range, NaN is returned.

Description
Function imsls_f_machine returns information describing the computer’s floating-
point arithmetic. This can be used to make programs machine independent. In addition,
some of the functions are also important in setting missing values.
Assume that float numbers are represented in Nf-digit, base B form as

1

fN
E k

k
k

B x Bσ −

=
∑

where σ is the sign; 0 ≤ xk < B for k = 1, 2, …, Nf; and

min maxf f
E E E≤ ≤

Note that B = imsls_i_machine(6); Nf = imsls_i_machine(7);

1008 • machine (float) IMSL C Stat Library

min (8)
f

E = imsls_i_machine

and

max (9)
f

E = imsls_i_machine

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN as the result of
various otherwise illegal operations, such as computing 0/0. On computers that do not
support NaN, a value larger than imsls_d_machine(2) is returned for
imsls_f_machine(6). On computers that do not have a special representation for
infinity, imsls_f_machine(2) returns the same value as imsls_f_machine(7).
Function imsls_f_machine is defined by the following table:

N Definition
1 min 1

, the smallest positive numberfE
B

−

2 max (1), the largest numberf fE NB B−−

3 ,fNB− the smallest relative spacing

4 1 ,fNB − the largest relative spacing

5 log10(B)

6 NaN
7 positive machine infinity
8 negative machine infinity

Function imsls_d_machine retrieves machine constants that define the computer’s
double arithmetic. Note that for double B = imsls_i_machine(6),
Nd = imsls_i_machine(10),

min (11)
d

E = imsls_i_machine

and

max (12)
d

E = imsls_i_machine

Missing values in functions are always indicated by NaN. This is
imsls_f_machine(6) in single precision and imsls_d_machine(6) in double
precision. There is no missing-value indicator for integers. Users will almost always
have to convert from their missing value indicators to NaN.

Example
In this example, all eight values returned by imsls_f_machine and by
imsls_d_machine on a machine with IEEE arithmetic are printed.

Chapter 15: Utilities data_sets • 1009

#include <imsls.h>

main()
{
 int n;
 float fans;
 double dans;

 for (n = 1; n <= 8; n++) {
 fans = imsls_f_machine(n);
 printf("imsls_f_machine(%d) = %g\n", n, fans);
 }

 for (n = 1; n <= 8; n++) {
 dans = imsls_d_machine(n);
 printf("imsls_d_machine(%d) = %g\n", n, dans);
 }
}

Output
imsls_f_machine(1) = 1.17549e-38
imsls_f_machine(2) = 3.40282e+38
imsls_f_machine(3) = 5.96046e-08
imsls_f_machine(4) = 1.19209e-07
imsls_f_machine(5) = 0.30103
imsls_f_machine(6) = NaN
imsls_f_machine(7) = Inf
imsls_f_machine(8) = -Inf
imsls_d_machine(1) = 2.22507e-308
imsls_d_machine(2) = 1.79769e+308
imsls_d_machine(3) = 1.11022e-16
imsls_d_machine(4) = 2.22045e-16
imsls_d_machine(5) = 0.30103
imsls_d_machine(6) = NaN
imsls_d_machine(7) = Inf
imsls_d_machine(8) = -Inf

data_sets
Retrieves a commonly analyzed data set.

Synopsis

#include <imsls.h>
float *imsls_f_data_sets (int data_set_choice, ..., 0)
The type double function is imsls_d_data_sets.

Required Arguments

int data_set_choice (Input)
Data set indicator. Set data_set_choice = 0 to print a description of all
nine data sets. In this case, any optional arguments are ignored.

1010 • data_sets IMSL C Stat Library

data_set_choice N_observations n_variables Description of
Data Set

1 16 7 Longley
2 176 2 Wolfer sunspot
3 150 5 Fisher iris
4 144 1 Box and Jenkins

Series G
5 13 5 Draper and Smith

Appendix B
6 197 1 Box and Jenkins

Series A
7 296 2 Box and Jenkins

Series J
8 100 4 Robinson

Multichannel Time
Series

9 113 34 Afifi and Azen
Data Set A

Return Value
If data_set_choice ≠ 0, the requested data set is returned. If
data_set_choice = 0 or an error occurs, NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_data_sets (int data_set_choice,

IMSLS_X_COL_DIM, int x_col_dim,
IMSLS_N_OBSERVATIONS, int *n_observations,
IMSLS_N_VARIABLES, int *n_variables,
IMSLS_PRINT_NONE,
IMSLS_PRINT_BRIEF,
IMSLS_PRINT_ALL,
IMSLS_RETURN_USER, float x[],
0)

Optional Arguments

IMSLS_X_COL_DIM, int x_col_dim (Input)
Column dimension of user allocated space.

IMSLS_N_OBSERVATIONS, int *n_observations (Output)
Number of observations or rows in the output matrix.

IMSLS_N_VARIABLES, int *n_variables (Output)
Number of variables or columns in the output matrix.

IMSLS_PRINT_NONE
No printing is performed. This option is the default.

Chapter 15: Utilities data_sets • 1011

IMSLS_PRINT_BRIEF
Rows 1 through 10 of the data set are printed.

IMSLS_PRINT_ALL
All rows of the data set are printed.

IMSLS_RETURN_USER, float x[] (Output)
User-supplied array containing the data set.

Description
Function imsls_f_data_sets retrieves a standard data set frequently cited in
statistics text books or in this manual. The following tables gives the references for
each data set:

Data_set_choice Reference
1 Longley (1967)
2 Anderson (1971, p.660)
3 Fisher (1936); Mardia et al. (1979, Table 1.2.2)
4 Box and Jenkins (1976, p. 531)
5 Draper and Smith (1981, pp. 629-630)
6 Box and Jenkins (1976, p. 525)
7 Box and Jenkins (1976, pp. 532-533)
8 Robinson (1976, p. 204)
9 Afifi and Azen (1979, pp. 16-22)

Example
In this example, imsls_f_data_sets is used to copy the Draper and Smith (1981,
Appendix B) data set into x.

#include <imsls.h>

main()
{
 float *x;

 x = imsls_f_data_sets (5, 0);

 imsls_f_write_matrix("Draper and Smith, Appendix B", 13, 5, x, 0);
}

Output
 Draper and Smith, Appendix B
 1 2 3 4 5
 1 7.0 26.0 6.0 60.0 78.5
 2 1.0 29.0 15.0 52.0 74.3
 3 11.0 56.0 8.0 20.0 104.3
 4 11.0 31.0 8.0 47.0 87.6
 5 7.0 52.0 6.0 33.0 95.9
 6 11.0 55.0 9.0 22.0 109.2
 7 3.0 71.0 17.0 6.0 102.7

1012 • mat_mul_rect IMSL C Stat Library

 8 1.0 31.0 22.0 44.0 72.5
 9 2.0 54.0 18.0 22.0 93.1
10 21.0 47.0 4.0 26.0 115.9
11 1.0 40.0 23.0 34.0 83.8
12 11.0 66.0 9.0 12.0 113.3
13 10.0 68.0 8.0 12.0 109.4

mat_mul_rect
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product,
a bilinear form, or any triple product.

Synopsis

#include <imsls.h>

float *imsls_f_mat_mul_rect (char *string, ..., 0)
The type double function is imsls_d_mat_mul_rect.

Required Arguments

char *string (Input)
String indicating operation to be performed. See the “Description” section
below for more details.”

Return Value
The result of the operation. This is always a pointer to a float, even if the result is a
single number. If no answer was computed, NULL is returned.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_mat_mul_rect (char *string,

IMSLS_A_MATRIX, int nrowa, int ncola, float a[],
IMSLS_A_COL_DIM, int a_col_dim,
IMSLS_B_MATRIX, int nrowb, int ncolb, float b[],
IMSLS_B_COL_DIM, int b_col_dim,
IMSLS_X_VECTOR, int nx, float *x,
IMSLS_Y_VECTOR, int ny, float *y,
IMSLS_RETURN_USER, float ans[],
IMSLS_RETURN_COL_DIM, int return_col_dim,
0)

Optional Arguments

IMSLS_A_MATRIX, int nrowa, int ncola, float a[] (Input)
The nrowa × ncola matrix A.

IMSLS_A_COL_DIM, int a_col_dim (Input)
Column dimension of A.
Default: a_col_dim = ncola

Chapter 15: Utilities mat_mul_rect • 1013

IMSLS_B_MATRIX, int nrowb, int ncolb, float b[] (Input)
The nrowb × ncolb matrix A.

IMSLS_B_COL_DIM, int b_col_dim (Input)
Column dimension of B.
Default: b_col_dim = ncolb

IMSLS_X_VECTOR, int nx, float *x (Input)
Vector x of size nx.

IMSLS_Y_VECTOR, int ny, float *y (Input)
Vector y of size ny.

IMSLS_RETURN_USER, float ans[] (Output)
User-allocated array containing the result.

IMSLS_RETURN_COL_DIM, int return_col_dim (Input)
Column dimension of the answer.
Default: return_col_dim = the number of columns in the answer

Description
This function computes a matrix-vector product, a matrix-matrix product, a bilinear
form of a matrix, or a triple product according to the specification given by string.
For example, if “A*x” is given, Ax is computed. In string, the matrices A and B and
the vectors x and y can be used. Any of these four names can be used with trans,
indicating transpose. The vectors x and y are treated as n × 1 matrices.
If string contains only one item, such as “x” or “trans(A)”, then a copy of the
array, or its transpose, is returned. If string contains one multiplication, such as
“A*x” or “B*A”, then the indicated product is returned. Some other legal values for
string are “trans(y)*A”, “A*trans(B)”, “x*trans(y)”, or “trans(x)*y”.
The matrices and/or vectors referred to in string must be given as optional
arguments. If string is “B*x”, then IMSLS_B_MATRIX and IMSLS_X_VECTOR must
be given.

Example
Let A, B, x, and y equal the following matrices:

3 2 7 3
1 2 9

7 4 2 4
5 4 7

9 1 1 2
A B x y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

The arrays AT, Ax, xTAT, AB, BTAT, xTy, xyT and xTAy are computed and printed.
#include <imsls.h>

main()
{
 float A[] = {1, 2, 9,
 5, 4, 7};
 float B[] = {3, 2,

1014 • mat_mul_rect IMSL C Stat Library

 7, 4,
 9, 1};
 float x[] = {7, 2, 1};
 float y[] = {3, 4, 2};
 float *ans;

 ans = imsls_f_mat_mul_rect("trans(A)",
 IMSLS_A_MATRIX, 2, 3, A,
 0);
 imsls_f_write_matrix("trans(A)", 3, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("A*x",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_X_VECTOR, 3, x,
 0);
 imsls_f_write_matrix("A*x", 1, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("trans(x)*trans(A)",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_X_VECTOR, 3, x,
 0);
 imsls_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("A*B",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_B_MATRIX, 3, 2, B,
 0);
 imsls_f_write_matrix("A*B", 2, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("trans(B)*trans(A)",
 IMSLS_A_MATRIX, 2, 3, A,
 IMSLS_B_MATRIX, 3, 2, B,
 0);
 imsls_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0);

 ans = imsls_f_mat_mul_rect("trans(x)*y",
 IMSLS_X_VECTOR, 3, x,
 IMSLS_Y_VECTOR, 3, y,
 0);
 imsls_f_write_matrix("trans(x)*y", 1, 1, ans, 0);

 ans = imsls_f_mat_mul_rect("x*trans(y)",
 IMSLS_X_VECTOR, 3, x,
 IMSLS_Y_VECTOR, 3, y,
 0);
 imsls_f_write_matrix("x*trans(y)", 3, 3, ans, 0);

 ans = imsls_f_mat_mul_rect("trans(x)*A*y",
 IMSLS_A_MATRIX, 2, 3, A,
 /* use only the first 2 components of x */
 IMSLS_X_VECTOR, 2, x,
 IMSLS_Y_VECTOR, 3, y,
 0);
 imsls_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0);
}

Chapter 15: Utilities permute_vector • 1015

Output
 trans(A)
 1 2
1 1 5
2 2 4
3 9 7

 A*x
 1 2
 20 50

 trans(x)*trans(A)
 1 2
 20 50

 A*B
 1 2
1 98 19
2 106 33

 trans(B)*trans(A)
 1 2
1 98 106
2 19 33

trans(x)*y
 31

 x*trans(y)
 1 2 3
1 21 28 14
2 6 8 4
3 3 4 2

trans(x)*A*y
 293

permute_vector
Rearranges the elements of a vector as specified by a permutation.

Synopsis

#include <imsls.h>

float *imsls_f_permute_vector (int n_elements, float x[],
int permutation[], Imsls_permute permute, ..., 0)

The type double function is imsls_d_permute_vector.

Required Arguments

int n_elements (Input)
Number of elements in the input vector x.

1016 • permute_vector IMSL C Stat Library

float x[] (Input)
Array of length n_elements to be permuted.

int permutation[] (Input)
Array of length n_elements containing the permutation.

Imsls_permute permute (Input)
Keyword of type Imsls_permute. Argument permute must be either
IMSLS_FORWARD_PERMUTATION or IMSLS_BACKWARD_PERMUTATION. If
IMSLS_FORWARD_PERMUTATION is specified, then a forward permutation is
performed, i.e., x(permutation[i]) is moved to location i in the return
vector. If IMSLS_BACKWARD_PERMUTATION is specified, then a backward
permutation is performed, i.e., x[i] is moved to location permutation[i]
in the return vector.

Return Value
An array of length n_elements containing the input vector x permuted.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_permute_vector (int n_elements, float x[],

int permutation[], Imsls_permute permute,
IMSLS_RETURN_USER, float permuted_result[],
0)

Optional Arguments

IMSLS_RETURN_USER, float permuted_result[](Output)
User-allocated array containing the result of the permutation.

Description
Function imsls_f_permute_vector rearranges the elements of a vector according
to a permutation vector. The function can perform both forward and backward
permutation.

Example
This example rearranges the vector x using permutation. A forward permutation is
performed.

#include <imsls.h>

void main()
{
 float x[] = {5.0, 6.0, 1.0, 4.0};
 int permutation[] = {2, 0, 3, 1};
 float *output;
 int n_elements = 4;

 output = imsls_f_permute_vector (n_elements, x, permutation,
 IMSLS_FORWARD_PERMUTATION, 0);

 imsls_f_write_matrix ("permuted result", 1, n_elements, output,

Chapter 15: Utilities permute_matrix • 1017

 IMSLS_COL_NUMBER_ZERO, 0);
}

Output
 permuted result
 0 1 2 3
 1 5 4 6

permute_matrix
Permutes the rows or columns of a matrix.

Synopsis

#include <imsls.h>

float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[],
int permutation[], Imsls_permute permute, ..., 0)

The type double function is imsls_d_permute_matrix.

Required Arguments

int n_rows (Input)
Number of rows in the input matrix a.

int n_columns (Input)
Number of columns in the input matrix a.

float a[] (Input)
Matrix of size n_rows × n_columns to be permuted.

int permutation[] (Input)
Array of length n_elements containing the permutation.

Imsls_permute permute (Input)
Keyword of type Imsls_permute. Argument permute must be either
IMSLS_PERMUTE_ROWS, if the rows of a are to be interchanged, or
IMSLS_PERMUTE_COLUMNS, if the columns of a are to be interchanged.

Return Value
Array of size n_rows × n_columns containing the permuted input matrix a.

Synopsis with Optional Arguments

#include <imsls.h>
float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[],

int permutation[], Imsls_permute permute,
IMSLS_RETURN_USER, float permuted_result[],
0)

1018 • binomial_coefficient IMSL C Stat Library

Optional Arguments

IMSLS_RETURN_USER, float permuted_result[] (Output)
User-allocated array of size n_rows × n_columns containing the result of the
permutation.

Description
Function imsls_f_permute_matrix interchanges the rows or columns of a matrix
using a permutation vector. The function permutes a column (row) at a time using
function imsls_f_permute_vector. This process is continued until all the columns
(rows) are permuted. On completion, let B = result and pi = permutation [i], then
Bij = Apij for all i, j.

Example
This example permutes the columns of a matrix a.

#include <imsls.h>

void main()
{
 float a[] = {3.0, 5.0, 1.0, 2.0, 4.0,
 3.0, 5.0, 1.0, 2.0, 4.0,
 3.0, 5.0, 1.0, 2.0, 4.0};
 int permutation[] = {2, 3, 0, 4, 1};
 float *output;
 int n_rows = 3;
 int n_columns = 5;

 output = imsls_f_permute_matrix (n_rows, n_columns, a, permutation,
 IMSLS_PERMUTE_COLUMNS,
 0);

 imsls_f_write_matrix ("permuted matrix", n_rows, n_columns, output,
 IMSLS_ROW_NUMBER_ZERO,
 IMSLS_COL_NUMBER_ZERO,
 0);
}

Output
 permuted matrix
 0 1 2 3 4
0 1 2 3 4 5
1 1 2 3 4 5
2 1 2 3 4 5

binomial_coefficient
Evaluates the binomial coefficient.

Synopsis
#include <imsls.h>

Chapter 15: Utilities binomial_coefficient • 1019

int imsls_f_binomial_coefficient (int n, int m)
The type double procedure is imsls_d_binomial_coefficient.

Required Arguments

int n (Input)
First parameter of the binomial coefficient. Argument n must be nonnegative.

int m (Input)
Second parameter of the binomial coefficient. Argument m must be
nonnegative.

Return Value
The binomial coefficient

n
m

⎛ ⎞
⎜ ⎟
⎝ ⎠

is returned.

Description
The binomial function is defined to be

()
!

! !
n n
m m n m

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

with n ≥ m ≥ 0. Also, n must not be so large that the function overflows.

Example

In this example, ()9
5 is computed and printed.

#include <stdio.h>
#include <imsls.h>

main()
{
 int n = 9;
 int m = 5;
 int ans;

 ans = imsls_f_binomial_coefficient(n, m);
 printf("binomial coefficient = %d\n", ans);
}

Output

binomial coefficient = 126

1020 • beta IMSL C Stat Library

beta
Evaluates the complete beta function.

Synopsis
#include <imsls.h>
float imsls_f_beta (float a, float b)
The type double procedure is imsls_d_beta.

Required Arguments

float a (Input)
First beta parameter. It must be positive.

float b (Input)
Second beta parameter. It must be positive.

Return Value
The value of the beta function β(a, b). If no result can be computed, then NaN is
returned.

Description
The beta function, β(a, b), is defined to be

() () ()
() ()

1 11

0
, 1 baa b

a b t t dt
a b

β −−Γ Γ
= = −

Γ + ∫

Example
Evaluate the beta function β(0.5, 0.2).

#include <imsls.h>

main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;

 ans = imsls_f_beta(x, y);
 printf("beta(%f,%f) = %f\n", x, y, ans);
}

Output
beta(0.500000,0.200000) = 6.268653

Chapter 15: Utilities beta_incomplete • 1021

Figure 15-1 Plot of β (x, b)

The beta function requires that a > 0 and b > 0. It underflows for large arguments.

Alert Errors

IMSLS_BETA_UNDERFLOW The arguments must not be so large that the result
underflows.

Fatal Errors

IMSLS_ZERO_ARG_OVERFLOW One of the arguments is so close to zero that the
result overflows.

beta_incomplete
Evaluates the real incomplete beta function Ix = βx (a, b)/β(a, b).

Synopsis
#include <imsls.h>
float imsls_f_beta_incomplete (float x, float a, float b)
The type double procedure is imsls_d_beta_incomplete.

Required Arguments

float x (Input)
Point at which the incomplete beta function is to be evaluated.

float a (Input)
Point at which the incomplete beta function is to be evaluated.

1022 • log_beta IMSL C Stat Library

float b (Input)
Point at which the incomplete beta function is to be evaluated.

Return Value
The value of the incomplete beta function.

Description
The incomplete beta function is defined to be

() ()
() () () 11

0

, 1, 1
, ,

x bx a
x

a b
I a b t t dt

a b a b
β
β β

−−= = −∫

The incomplete beta function requires that 0 ≤ x ≤ 1, a > 0, and b > 0. It underflows for
sufficiently small x and large a. This underflow is not reported as an error. Instead, the
value zero is returned.

Example
Evaluate the log of the incomplete beta function I0.61 =β0.61 (2.2,3.7)/β(2.2,3.7).

#include <imsls.h>

main()
{
 float x = 0.61;
 float a = 2.2;
 float b = 3.7;
 float ans;

 ans = imsls_f_beta_incomplete(x, a, b);
 printf("beta incomplete = %f\n", ans);
}
beta incomplete = 0.8822;

log_beta
Evaluates the logarithm of the real beta function ln β(x, y).

Synopsis
#include <imsls.h>
float imsls_f_log_beta (float x, float y)
The type double procedure is imsls_d_log_beta.

Required Arguments

float x (Input)
Point at which the logarithm of the beta function is to be evaluated. It must be
positive.

Chapter 15: Utilities gamma • 1023

float y (Input)
Point at which the logarithm of the beta function is to be evaluated. It must be
positive.

Return Value
The value of the logarithm of the beta function β(x, y).

Description
The beta function, β(x, y), is defined to be

() () ()
() ()

1 11

0
, 1 yxx y

x y t t dt
x y

β −−Γ Γ
= = −

Γ + ∫

and imsls_f_log_beta returns ln β(x, y).
The logarithm of the beta function requires that x > 0 and y > 0. It can overflow for
very large arguments.

Warning Errors

IMSLS_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than one
precision because the expression −x/(x + y)
is too close to −1.

Example
Evaluate the log of the beta function ln β(0.5, 0.2).

#include <imsls.h>

main()
{
 float x = 0.5;
 float y = 0.2;
 float ans;

 ans = imsls_f_log_beta(x, y);
 printf("log beta(%f,%f) = %f\n", x, y, ans);
}

Output
log beta(0.500000,0.200000) = 1.835562

gamma
Evaluates the real gamma function.

Synopsis
#include <imsls.h>
float imsls_f_gamma (float x)
The type double procedure is imsls_d_gamma.

1024 • gamma IMSL C Stat Library

Required Arguments

float x (Input)
Point at which the gamma function is to be evaluated.

Return Value
The value of the gamma function Γ(x).

Description
The gamma function, Γ(x), is defined to be

() 1

0

x tx t e dt
∞ − −Γ = ∫

For x < 0, the above definition is extended by analytic continuation.
The gamma function is not defined for integers less than or equal to zero. It underflows
for x << 0 and overflows for large x. It also overflows for values near negative integers.

Figure 15-2 Plot of Γ(x) and 1/Γ(x)

Alert Errors

IMSLS_SMALL_ARG_UNDERFLOW The argument x must be large enough that
Γ(x) does not underflow. The underflow
limit occurs first for arguments close to
large negative half integers. Even though
other arguments away from these half

Chapter 15: Utilities gamma_incomplete • 1025

integers may yield machine-representable
values of Γ(x), such arguments are
considered illegal.

Warning Errors

IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than one-half
precision because x is too close to a negative
integer.

Example
In this example, Γ(1.5) is computed and printed.

#include <stdio.h>
#include <imsls.h>

main()
{
 float x = 1.5;
 float ans;

 ans = imsls_f_gamma(x);
 printf("Gamma(%f) = %f\n", x, ans);
}

Output
Gamma(1.500000) = 0.886227

Fatal Errors

IMSLS_ZERO_ARG_OVERFLOW The argument for the gamma function is too close to
zero.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close to a
negative integer.

IMSLS_LARGE_ARG_OVERFLOW The function overflows because x is too large.

IMSLS_CANNOT_FIND_XMIN The algorithm used to find x$ failed. This error
should never occur.

IMSLS_CANNOT_FIND_XMAX The algorithm used to find x" failed. This error
should never occur.

gamma_incomplete
Evaluates the incomplete gamma function γ(a, x).

Synopsis
#include <imsls.h>
float imsls_f_gamma_incomplete (float a, float x)
The type double procedure is imsls_d_gamma_incomplete.

1026 • gamma_incomplete IMSL C Stat Library

Required Arguments

float a (Input)
Parameter of the incomplete gamma function is to be evaluated. It must be
positive.

float x (Input)
Point at which the incomplete gamma function is to be evaluated. It must be
nonnegative.

Return Value
The value of the incomplete gamma function γ(a, x).

Description
The incomplete gamma function, γ(a, x), is defined to be

() 1

0
,

x a ta x t e dtγ − −= ∫

for x > 0. The incomplete gamma function is defined only for a > 0. Although
γ(a, x) is well defined for x > −∞, this algorithm does not calculate γ(a, x) for negative
x. For large a and sufficiently large x, γ(a, x) may overflow. γ(a, x) is bounded by Γ(a),
and users may find this bound a useful guide in determining legal values for a.

Figure 15-3 Contour Plot of γ(a, x)

Example
Evaluates the incomplete gamma function at a = 1 and x = 3.

Chapter 15: Utilities log_gamma • 1027

#include <stdio.h>
#include <imsls.h>

main()
{
 float x = 3.0;
 float a = 1.0;
 float ans;

 ans = imsls_f_gamma_incomplete(a, x);
 printf("incomplete gamma(%f,%f) = %f\n", a, x, ans);
}

Output
incomplete gamma(1.000000,3.000000) = 0.950213

Fatal Errors

IMSLS_NO_CONV_200_TS_TERMS The function did not converge in 200 terms
of Taylor series.

IMSLS_NO_CONV_200_CF_TERMS The function did not converge in 200 terms
of the continued fraction.

log_gamma
Evaluates the logarithm of the absolute value of the gamma function log |Γ(x)|.

Synopsis
#include <imsls.h>
float imsls_f_log_gamma (float x)
The type double procedure is imsls_d_log_gamma.

Required Arguments

float x (Input)
Point at which the logarithm of the absolute value of the gamma function is to
be evaluated.

Return Value
The value of the logarithm of gamma function log |Γ(x)|.

Description
The logarithm of the absolute value of the gamma function log |Γ(x)| is computed.

1028 • log_gamma IMSL C Stat Library

Figure 15-4 Plot of log|Γ(x)|

Example
In this example, log |Γ(3.5)| is computed and printed.

#include <stdio.h>
#include <imsls.h>

main()
{
 float x = 3.5;
 float ans;
 ans = imsls_f_log_gamma(x);
 printf("log gamma(%f) = %f\n", x, ans);
}

Output
log gamma(3.500000) = 1.200974

Warning Errors

IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than one-half
precision because x is too close to a negative
integer.

Chapter 15: Utilities ctime • 1029

Fatal Errors

IMSLS_NEGATIVE_INTEGER The argument for the function cannot be a
negative integer.

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close to
a negative integer.

IMSLS_LARGE_ABS_ARG_OVERFLOW |x| must not be so large that the result
overflows.

ctime
Returns the number of CPU seconds used.

Synopsis
#include <imsls.h>
double imsls_ctime ()

Return Value
The number of CPU seconds used by the program.

Example
The CPU time needed to compute

1,000,000

0k

k
=

∑

is obtained and printed. The time needed is machine dependent. The CPU time needed
will varies slightly from run to run on the same machine.

#include <imsls.h>

main()
{
 int k;
 double sum, time;
 /* Sum 1 million values */
 for (sum=0, k=1; k<=1000000; k++)
 sum += k;
 /* Get amount of CPU time used */
 time = imsls_ctime();
 printf("sum = %f\n", sum);

 printf("time = %f\n", time);
}

Output
sum = 500000500000.000000
time = 0.820000

Reference Material User Errors • 1031

Reference Material

User Errors
IMSL functions attempt to detect user errors and handle them in a way that provides as
much information to the user as possible. To do this, various levels of severity of errors
are recognized, and the extent of the error in the context of the purpose of the function
also is considered; a trivial error in one situation can be serious in another. IMSL
attempts to report as many errors as can reasonably be detected. Multiple errors present
a difficult problem in error detection because input is interpreted in an uncertain
context after the first error is detected.

What Determines Error Severity
In some cases, the user’s input may be mathematically correct, but because of
limitations of the computer arithmetic and of the algorithm used, it is not possible to
compute an answer accurately. In this case, the assessed degree of accuracy determines
the severity of the error. In cases where the function computes several output
quantities, some are not computable but most are, an error condition exists. The
severity of the error depends on an assessment of the overall impact of the error.

Kinds of Errors and Default Actions
Five levels of severity of errors are defined in IMSL C/Stat/Library. Each level has an
associated PRINT attribute and a STOP attribute. These attributes have default settings
(YES or NO), but they may also be set by the user. The purpose of having multiple
error types is to provide independent control of actions to be taken for errors of
different levels of severity. Upon return from an IMSL function, exactly one error state
exists. (A code 0 “error” is no error.) Even if more than one informational error occurs,
only one message is printed (if the PRINT attribute is YES). Multiple errors for which
no corrective action within the calling program is reasonable or necessary result in the
printing of multiple messages (if the PRINT attribute for their severity level is YES).
Errors of any of the severity levels except IMSLS_TERMINAL may be informational
errors. The include file, imsls.h, defines each of IMSLS_NOTE, IMSLS_ALERT,
IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL, IMSLS_WARNING_IMMEDIATE,
and IMSLS_FATAL_IMMEDIATE as enumerated data type Imsls_error.
IMSLS_NOTE. A note is issued to indicate the possibility of a trivial error or simply to
provide information about the computations.
Default attributes: PRINT=NO, STOP=NO

1032 • User Errors IMSL C Stat Library

IMSLS_ALERT. An alert indicates that a function value has been set to 0 due to
underflow.
Default attributes: PRINT=NO, STOP=NO
IMSLS_WARNING. A warning indicates the existence of a condition that may require
corrective action by the user or calling function. A warning error may be issued
because the results are accurate to only a few decimal places; because some of the
output may be erroneous, but most of the output is correct; or because some
assumptions underlying the analysis technique are violated. Usually no corrective
action is necessary, and the condition can be ignored.
Default attributes: PRINT=YES, STOP=NO
IMSLS_FATAL. A fatal error indicates the existence of a condition that may be serious.
In most cases, the user or calling function must take corrective action to recover.
Default attributes: PRINT=YES, STOP=YES
IMSLS_TERMINAL. A terminal error is serious. It usually is the result of an incorrect
specification, such as specifying a negative number as the number of equations. These
errors can also be caused by various programming errors impossible to diagnose
correctly in C. The resulting error message may be perplexing to the user. In such
cases, the user is advised to compare carefully the actual arguments passed to the
function with the dummy argument descriptions given in the documentation. Special
attention should be given to checking argument order and data types.
A terminal error is not an informational error, because corrective action within the
program is generally not reasonable. In normal use, execution is terminated
immediately when a terminal error occurs. Messages relating to more than one terminal
error are printed if they occur.
Default attributes: PRINT=YES, STOP=YES
IMSLS_WARNING_IMMEDIATE. An immediate warning error is identical to a warning
error, except it is printed immediately.
Default attributes: PRINT=YES, STOP=NO
IMSLS_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error,
except it is printed immediately.
Default attributes: PRINT=YES, STOP=YES
The user can set PRINT and STOP attributes by calling function
imsls_error_options as described in Chapter 14, “Utilities.”

Errors in Lower-level Functions
It is possible that a user’s program may call an IMSL function that in turn calls a nested
sequence of lower-level IMSL functions. If an error occurs at a lower level in such a
nest of functions and if the lower-level function cannot pass the information up to the
original user-called function, then a traceback of the functions is produced. The only
common situation in which this can occur is when an IMSL function calls a user-
supplied routine that in turn calls another IMSL function.

Functions for Error Handling
The user may interact in two ways with the IMSL error-handling system: (1) to change
the default actions and (2) to determine the code of an informational error so as to take

Reference Material User Errors • 1033

corrective action. The IMSL functions to use are imsls_error_options and
imsls_error_code. Function imsls_error_options sets the actions to be taken
when errors occur. Function imsls_error_code retrieves the integer code for an
informational error. These functions are documented in Chapter 15, “Utilities.”

Threads and Error Handling
If multiple threads are used then default settings are valid for each thread
but can be altered for each individual thread. When using threads it is
necessary to set options using imsls_error_options (excluding
IMSLS_SET_SIGNAL_TRAPPING) for each thread by calling imsls_error_options
from within each thread.
The IMSL signal-trapping mechanism must be disabled when multiple threads
are used. The IMSL signal-trapping mechanism can be disabled by making the
following call before any threads are created:
imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0);

 See Chapter 15, “Utilities”, examples 3 and 4 of imsls_error_options for
multithreaded examples.

Use of Informational Error to Determine Program Action
In the program segment below, a factor analysis is to be performed on the matrix
covariances. If it is determined that the matrix is singular (and often this is not
immediately obvious), the program is to take a different branch.
 x = imsls_f_factor_analysis (nobs, covariances,
 n_factors, 0);
 if (imsls_error_code() == IMSLS_COV_IS_SINGULAR) {
 /* Handle a singular matrix */
 }

Additional Examples
See functions imsls_error_options and imsls_error_code in Chapter 15,
“Utilities” for additional examples.

Product Support Contacting Visual Numerics Support • 1035

Product Support

Contacting Visual Numerics Support
Users within support warranty may contact Visual Numerics regarding the use of the
IMSL C Numerical Libraries. Visual Numerics can consult on the following topics:
• Clarity of documentation
• Possible Visual Numerics-related programming problems
• Choice of IMSL Libraries functions or procedures for a particular problem

Not included in these topics are mathematical/statistical consulting and debugging of
your program.
Contact Visual Numerics Product Support emailing:
• http://www.vni.com/tech/imsl/phone.html

Electronic addresses are not handled uniformly across the major networks, and some
local conventions for specifying electronic addresses might cause further variations to
occur; contact your E-mail postmaster for further details.
The following describes the procedure for consultation with Visual Numerics:

1. Include your VNI license number

2. Include the product name and version number: IMSL C Numerical Library
Version 6.0

3. Include compiler and operating system version numbers

4. Include the name of the routine for which assistance is needed and a description
of the problem

http://www.vni.com/contact.worldwideoffices.html

Appendix A: References Contacting Visual Numerics Support • 1037

Appendix A: References

Abe
Abe, S. (2001) Pattern Classification: Neuro-Fuzzy Methods and their Comparison,
Springer-Verlag.

Abramowitz and Stegun
Abramowitz, Milton and Irene A. Stegun (editors) (1964), Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of
Standards, Washington.

Afifi and Azen
Afifi, A.A. and S.P. Azen (1979), Statistical Analysis: A Computer Oriented Approach,
2d ed., Academic Press, New York.

Agresti, Wackerly, and Boyette
Agresti, Alan, Dennis Wackerly, and James M. Boyette (1979), Exact conditional tests
for cross-classifications: Approximation of attained significance levels, Psychometrika,
44, 75-83.

Ahrens and Dieter
Ahrens, J.H. and U. Dieter (1974), Computer methods for sampling from gamma, beta,
Poisson, and binomial distributions, Computing, 12, 223−246.
Ahrens, J.H., and U. Dieter (1985), Sequential random sampling, ACM Transactions
on Mathematical Software, 11, 157−169.

Akaike
Akaike, H., (1978), Covariance Matrix Computation of the State Variable of a
Stationary Gaussian Process, Ann. Inst. Statist. Math. 30 , Part B, 499-504.

Akaike et al
Akaike, H. , Kitagawa, G., Arahata, E., Tada, F., (1979), Computer Science
Monographs No. 13, The Institute of Statistical Mathematics, Tokyo.

1038 • Contacting Visual Numerics Support IMSL C Stat Library

Anderberg
Anderberg, Michael R. (1973), Cluster Analysis for Applications, Academic Press,
New York.

Anderson
Anderson, T.W. (1971), The Statistical Analysis of Time Series, John Wiley & Sons,
New York.
Anderson, T. W. (1994) The Statistical Analysis of Time Series, John Wiley & Sons,
New York.

Anderson and Bancroft
Anderson, R.L. and T.A. Bancroft (1952), Statistical Theory in Research, McGraw-
Hill Book Company, New York.

Atkinson
Atkinson, A.C. (1979), A family of switching algorithms for the computer generation
of beta random variates, Biometrika, 66, 141−145.
Atkinson, A.C. (1985), Plots, Transformations, and Regression, Claredon Press,
Oxford.

Barrodale and Roberts
Barrodale, I., and F.D.K. Roberts (1973), An improved algorithm for discrete L1
approximation, SIAM Journal on Numerical Analysis, 10, 839−848.
Barrodale, I., and F.D.K. Roberts (1974), Solution of an overdetermined system of
equations in the l1 norm, Communications of the ACM, 17, 319−320.

Barrodale, I., and C. Phillips (1975), Algorithm 495. Solution of an overdetermined
system of linear equations in the Chebyshev norm, ACM Transactions on
Mathematical Software, 1, 264−270.

Bartlett, M. S.
Bartlett, M.S. (1935), Contingency table interactions, Journal of the Royal Statistics
Society Supplement, 2, 248−252.
Bartlett, M. S. (1937) Some examples of statistical methods of research in agriculture
and applied biology, Supplement to the Journal of the Royal Statistical Society, 4, 137-
183.
Bartlett, M. (1937), The statistical conception of mental factors, British Journal of
Psychology, 28, 97–104.
Bartlett, M.S. (1946), On the theoretical specification and sampling properties of
autocorrelated time series, Supplement to the Journal of the Royal Statistical Society, 8,
27–41.
Bartlett, M.S. (1978), Stochastic Processes, 3rd. ed., Cambridge University Press,
Cambridge.

Appendix A: References Contacting Visual Numerics Support • 1039

Bays and Durham
Bays, Carter and S.D. Durham (1976), Improving a poor random number generator,
ACM Transactions on Mathematical Software, 2, 59−64.

Bendel and Mickey
Bendel, Robert B., and M. Ray Mickey (1978), Population correlation matrices for
sampling experiments, Communications in Statistics, B7, 163−182.

Berry
Berry, M. J. A. and Linoff, G. (1997) Data Mining Techniques, John Wiley & Sons,
Inc.

Best and Fisher
Best, D.J., and N.I. Fisher (1979), Efficient simulation of the von Mises distribution,
Applied Statistics, 28, 152−157.

Bishop
Bishop, C. M. (1995) Neural Networks for Pattern Recognition, Oxford University
Press.

Bishop et al
Bishop, Yvonne M.M., Stephen E. Feinberg, and Paul W. Holland (1975), Discrete
Multivariate Analysis: Theory and Practice, MIT Press, Cambridge, Mass.

Bjorck and Golub
Bjorck, Ake, and Gene H. Golub (1973), Numerical Methods for Computing Angles
Between Subspaces, Mathematics of Computation, 27, 579−594.

Blom
Blom, Gunnar (1958), Statistical Estimates and Transformed Beta-Variables, John
Wiley & Sons, New York.

Bosten and Battiste
Bosten, Nancy E. and E.L. Battiste (1974), Incomplete beta ratio, Communications of
the ACM, 17, 156s−157.

Box and Jenkins
Box, George E.P. and Gwilym M. Jenkins (1970) Time Series Analysis: Forecasting
and Control, Holden-Day, Inc.
Box, George E.P. and Gwilym M. Jenkins (1976), Time Series Analysis: Forecasting
and Control, revised ed., Holden-Day, Oakland.

1040 • Contacting Visual Numerics Support IMSL C Stat Library

Box and Pierce
Box, G.E.P., and David A. Pierce (1970), Distribution of residual autocorrelations in
autoregressive-integrated moving average time series models, Journal of the American
Statistical Association, 65, 1509–1526.

Box and Tidwell
Box, G.E.P. and P.W. Tidwell (1962), Transformation of the Independent Variables,
Technometrics, 4, 531−550.

Box et al.
Box, George E.P., Jenkins,Gwilym M. and Reinsel G.C., (1994) Time Series Analysis,
Third edition, Prentice Hall, Englewood Cliffs, New Jersey.

Boyette
Boyette, James M. (1979), Random RC tables with given row and column totals,
Applied Statistics, 28, 329−332.

Bradley
Bradley, J.V. (1968), Distribution-Free Statistical Tests, Prentice-Hall, New Jersey.

Breiman
Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984) Classification and
Regression Trees, Chapman & Hall. For the latest information on CART visit
http://www.salford-systems.com/cart.php.

Breslow
Breslow, N.E. (1974), Covariance analysis of censored survival data, Biometrics, 30,
89−99.

Bridel
Bridle, J. S. (1990) Probabilistic Interpretation of Feedforward Classification Network
Outputs, with relationships to statistical pattern recognition, in F. Fogelman Soulie and
J. Herault (Eds.), Neuralcomputing: Algorithms, Architectures and Applications,
Springer-Verlag, 227-236.

Brown
Brown, Morton E. (1983), MCDP4F, two-way and multiway frequency tables-
measures of association and the log-linear model (complete and incomplete tables), in
BMDP Statistical Software, 1983 Printing with Additions, (edited by W.J. Dixon),
University of California Press, Berkeley.

Brown and Benedetti
Brown, Morton B. and Jacqualine K. Benedetti (1977), Sampling behavior and tests for
correlation in two-way contingency tables, Journal of the American Statistical
Association, 42, 309−315.

Appendix A: References Contacting Visual Numerics Support • 1041

Calvo
Calvo, R. A. (2001) Classifying Financial News with Neural Networks, Proceedings of
the 6th Australasian Document Computing Symposium.

Chen and Liu
Chen, C. and Liu, L., Joint Estimation of Model Parameters and Outlier Effects in
Time Series, Journal of the American Statistical Association, Vol. 88, No.421, March
1993.

Cheng
Cheng, R.C.H. (1978), Generating beta variates with nonintegral shape parameters,
Communications of the ACM, 21, 317−322.

Chiang
Chiang, Chin Long (1968), Introduction to Stochastic Processes in Statistics, John
Wiley & Sons, New York.

Clarkson and Jenrich
Clarkson, Douglas B. and Robert B Jenrich (1991), Computing extended maximum
likelihood estimates for linear parameter models, submitted to Journal of the Royal
Statistical Society, Series B, 53, 417-426.

Conover
Conover, W.J. (1980), Practical Nonparametric Statistics, 2d ed., John Wiley & Sons,
New York.

Conover and Iman
Conover, W.J. and Ronald L. Iman (1983), Introduction to Modern Business Statistics,
John Wiley & Sons, New York.

Conover, W. J., Johnson, M. E., and Johnson, M. M
Conover, W. J., Johnson, M. E., and Johnson, M. M. (1981) A comparative study of
tests for homogeneity of variances, with applications to the outer continental shelf
bidding data, Technometrics, 23, 351-361.

Cook and Weisberg
Cook, R. Dennis and Sanford Weisberg (1982), Residuals and Influence in Regression,
Chapman and Hall, New York.

Cooper
Cooper, B.E. (1968), Algorithm AS4, An auxiliary function for distribution integrals,
Applied Statistics, 17, 190−192.

Cox
Cox, David R. (1970), The Analysis of Binary Data, Methuen, London.

1042 • Contacting Visual Numerics Support IMSL C Stat Library

Cox, D.R. (1972), Regression models and life tables (with discussion), Journal of the
Royal Statistical Society, Series B, Methodology, 34, 187–220.

Cox and Lewis
Cox, D.R., and P.A.W. Lewis (1966), The Statistical Analysis of Series of Events,
Methuen, London.

Cox and Oakes
Cox, D.R., and D. Oakes (1984), Analysis of Survival Data, Chapman and Hall,
London.

Cox and Stuart
Cox, D.R., and A. Stuart (1955), Some quick sign tests for trend in location and
dispersion, Biometrika, 42, 80−95.

D'Agostino and Stevens
D'Agostino, Ralph B. and Michael A. Stevens (1986), Goodness-of-Fit Techniques,
Marcel Dekker, New York.

Dallal and Wilkinson
Dallal, Gerald E. and Leland Wilkinson (1986), An analytic approximation to the
distribution of Lilliefor's test statistic for normality, The American Statistician, 40,
294−296.

Dennis and Schnabel
Dennis, J.E., Jr. and Robert B. Schnabel (1983), Numerical Methods for Unconstrained
Optimization and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, New Jersey.

Devore
Devore, Jay L (1982), Probability and Statistics for Engineering and Sciences,
Brooks/Cole Publishing Company, Monterey, Calif.

Draper and Smith
Draper, N.R. and H. Smith (1981), Applied Regression Analysis, 2d ed., John Wiley &
Sons, New York.

Durbin
Durbin, J. (1960), The fitting of time series models, Revue Institute Internationale de
Statistics, 28, 233–243.

Efroymson
Efroymson, M.A. (1960), Multiple regression analysis, Mathematical Methods for
Digital Computers, Volume 1, (edited by A. Ralston and H. Wilf), John Wiley & Sons,
New York, 191−203.

Appendix A: References Contacting Visual Numerics Support • 1043

Ekblom
Ekblom, Hakan (1973), Calculation of linear best Lp-approximations, BIT, 13,
292−300.
Ekblom, Hakan (1987), The L1-estimate as limiting case of an Lp or Huber-estimate, in
Statistical Data Analysis Based on the L1-Norm and Related Methods (edited by
Yadolah Dodge), North-Holland, Amsterdam, 109−116.

Elandt-Johnson and Johnson
Elandt-Johnson, Regina C., and Norman L. Johnson (1980), Survival Models and Data
Analysis, John Wiley & Sons, New York, 172−173.

Elliot
Elliot, D.L. (1993) A better activation function for artificial neural networks. Tech.
Report. TR 93-8. Institute for Systems Research, Univ. of Maryland.

Elman
Elman, J. L. (1990) Finding Structure in Time, Cognitive Science, 14, 179-211.

Emmett
Emmett, W.G. (1949), Factor analysis by Lawless method of maximum likelihood,
British Journal of Psychology, Statistical Section, 2, 90−97.

Engle
Engle, C. (1982), Autoregressive conditional heteroskedasticity with estimates of the
variance of U.K. inflation, Econometrica , 50, 987−1008.

Fisher
Fisher, R.A. (1936), The use of multiple measurements in taxonomic problems, The
Annals of Eugenics, 7, 179−188.

Fishman
Fishman, George S. (1978), Principles of Discrete Event Simulation, John Wiley &
Sons, New York.

Fishman and Moore
Fishman, George S. and Louis R. Moore (1982), A statistical evaluation of
multiplicative congruential random number generators with modulus , Journal of the
American Statistical Association, 77, 129−136.

Forsythe
Forsythe, G.E. (1957), Generation and use of orthogonal polynomials for fitting data
with a digital computer, SIAM Journal on Applied Mathematics, 5, 74−88.

1044 • Contacting Visual Numerics Support IMSL C Stat Library

Fuller
Fuller, Wayne A. (1976), Introduction to Statistical Time Series, John Wiley & Sons,
New York.

Furnival and Wilson
Furnival, G.M. and R.W. Wilson, Jr. (1974), Regressions by leaps and bounds,
Technometrics, 16, 499−511.

Fushimi
Fushimi, Masanori (1990), Random number generation with the recursion
Xt = Xt-3p ⊕Xt-3q, Journal of Computational and Applied Mathematics, 31, 105−118.

Gentleman
Gentleman, W. Morven (1974), Basic procedures for large, sparse or weighted linear
least squares problems, Applied Statistics, 23, 448−454.

Gibbons
Gibbons, J.D. (1971), Nonparametric Statistical Inference, McGraw-Hill, New York.

Girschick
Girschick, M.A. (1939), On the sampling theory of roots of determinantal equations,
Annals of Mathematical Statistics, 10, 203−224.

Golub and Van Loan
Golub, Gene H. and Charles F. Van Loan (1983), Matrix Computations, Johns Hopkins
University Press, Baltimore, Md.

Gonin and Money
Gonin, Rene, and Arthur H. Money (1989), Nonlinear Lp-Norm Estimation, Marcel
Dekker, New York.

Goodnight
Goodnight, James H. (1979), A tutorial on the SWEEP operator, The American
Statistician, 33, 149−158.

Graybill
Graybill, Franklin A. (1976), Theory and Application of the Linear Model, Duxbury
Press, North Scituate, Mass.

Griffin and Redish
Griffin, R. and K.A. Redish (1970), Remark on Algorithm 347: An efficient algorithm
for sorting with minimal storage, Communications of the ACM,
13, 54.

Appendix A: References Contacting Visual Numerics Support • 1045

Gross and Clark
Gross, Alan J., and Virginia A. Clark (1975), Survival Distributions: Reliability
Applications in the Biomedical Sciences, John Wiley & Sons, New York.

Gruenberger and Mark
Gruenberger, F., and A.M. Mark (1951), The d2 test of random digits, Mathematical
Tables and Other Aids in Computation, 5, 109−110.

Guerra et al.
Guerra, Victor O., Richard A. Tapia, and James R. Thompson (1976), A random
number generator for continuous random variables based on an interpolation procedure
of Akima, in Proceedings of the Ninth Interface Symposium on Computer Science and
Statistics, (edited by David C. Hoaglin and Roy E. Welsch), Prindle, Weber &
Schmidt, Boston, 228−230.

Giudici
Giudici, P. (2003) Applied Data Mining: Statistical Methods for Business and
Industry, John Wiley & Sons, Inc.

Haldane
Haldane, J.B.S. (1939), The mean and variance of when used as a test of homogeneity,
when expectations are small, Biometrika, 31, 346.

Hamilton
Hamilton, James D., Time Series Analysis, Princeton University Press, Princeton
(NewJersey), 1994.

Harman
Harman, Harry H. (1976), Modern Factor Analysis, 3d ed. revised, University of
Chicago Press, Chicago.

Hart et al
Hart, John F., E.W. Cheney, Charles L. Lawson, Hans J. Maehly, Charles K.
Mesztenyi, John R. Rice, Henry G. Thacher, Jr., and Christoph Witzgall (1968),
Computer Approximations, John Wiley & Sons, New York.

Hartigan
Hartigan, John A. (1975), Clustering Algorithms, John Wiley & Sons, New York.

Hartigan and Wong
Hartigan, J.A. and M.A. Wong (1979), Algorithm AS 136: A K-means clustering
algorithm, Applied Statistics, 28, 100−108.

1046 • Contacting Visual Numerics Support IMSL C Stat Library

Hayter
Hayter, Anthony J. (1984), A proof of the conjecture that the Tukey-Kramer multiple
comparisons procedure is conservative, Annals of Statistics, 12, 61−75.

Hebb
Hebb, D. O. (1949) The Organization of Behaviour: A Neuropsychological Theory,
John Wiley.

Heiberger
Heiberger, Richard M. (1978), Generation of random orthogonal matrices, Applied
Statistics, 27, 199−206.

Hemmerle.
Hemmerle, William J. (1967), Statistical Computations on a Digital Computer,
Blaisdell Publishing Company, Waltham, Mass.

Herraman
Herraman, C. (1968), Sums of squares and products matrix, Applied Statistics, 17,
289−292.

Hill
Hill, G.W. (1970), Student's t-distribution, Communications of the ACM, 13,
617−619.
Hill, G.W. (1970), Student's t-quantiles, Communications of the ACM, 13,
619−620.

Hinkelmann, K and Kemthorne
Hinkelmann, K and Kemthorne, O (1994) Design and Analysis of Experiments – Vol 1,
John Wiley.

Hinkley
Hinkley, David (1977), On quick choice of power transformation, Applied Statistics,
26, 67−69.

Hoaglin and Welsch
Hoaglin, David C. and Roy E. Welsch (1978), The hat matrix in regression and
ANOVA, The American Statistician, 32, 17−22.

Hocking
Hocking, R.R. (1972), Criteria for selection of a subset regression: Which one should
be used?, Technometrics, 14, 967−970.
Hocking, R.R. (1973), A discussion of the two-way mixed model, The American
Statistician, 27, 148−152.

Appendix A: References Contacting Visual Numerics Support • 1047

Hocking, R.R. (1985), The Analysis of Linear Models, Brooks/Cole Publishing
Company, Monterey, California.

Hopfield
Hopfield, J. J. (1987) Learning Algorithms and Probability Distributions in Feed-
Forward and Feed-Back Networks, Proceedings of the National Academy of Sciences,
84, 8429-8433.

Huber
Huber, Peter J. (1981), Robust Statistics, John Wiley & Sons, New York.

Hutchinson
Hutchinson, J. M. (1994) A Radial Basis Function Approach to Financial Timer Series
Analysis, Ph.D. dissertation, Massachusetts Institute of Technology.

Hughes and Saw
Hughes, David T., and John G. Saw (1972), Approximating the percentage points of
Hotelling’s generalized T0

2 statistic, Biometrika, 59, 224−226.

Hwang
Hwang, J. T. G. and Ding, A. A. (1997) Prediction Intervals for Artificial Neural
Networks, Journal of the American Statistical Society, 92(438) 748-757.

Iman and Davenport
Iman, R.L., and J.M. Davenport (1980), Approximations of the critical region of the
Friedman statistic, Communications in Statistics, A9(6), 571−595.

Jacobs
Jacobs, R. A., Jorday, M. I., Nowlan, S. J., and Hinton, G. E. (1991) Adaptive Mixtures
of Local Experts, Neural Computation, 3(1), 79-87.

Jennrich and Robinson
Jennrich, R.I. and S.M. Robinson (1969), A Newton-Raphson algorithm for maximum
likelihood factor analysis, Psychometrika, 34, 111−123.

Jennrich and Sampson
Jennrich, R.I. and P.F. Sampson (1966), Rotation for simple loadings, Psychometrika,
31, 313–323.

John
John, Peter W.M. (1971), Statistical Design and Analysis of Experiments, Macmillan
Company, New York.

1048 • Contacting Visual Numerics Support IMSL C Stat Library

Jöhnk
Jöhnk, M.D. (1964), Erzeugung von Betaverteilten und Gammaverteilten
Zufallszahlen, Metrika, 8, 5−15.

Johnson and Kotz
Johnson, Norman L., and Samuel Kotz (1969), Discrete Distributions, Houghton
Mifflin Company, Boston.
Johnson, Norman L., and Samuel Kotz (1970a), Continuous Univariate Distributions-
1, John Wiley & Sons, New York.
Johnson, Norman L., and Samuel Kotz (1970b), Continuous Univariate Distributions-
2, John Wiley & Sons, New York.

Johnson and Welch
Johnson, D.G., and W.J. Welch (1980), The generation of pseudo-random correlation
matrices, Journal of Statistical Computation and Simulation, 11,
55−69.

Jonckheere
Jonckheere, A.R. (1954), A distribution-free k-sample test against ordered alternatives,
Biometrika, 41, 133−143.

Jöreskog
Jöreskog, K.G. (1977), Factor analysis by least squares and maximum-likelihood
methods, Statistical Methods for Digital Computers, (edited by Kurt Enslein, Anthony
Ralston, and Herbert S. Wilf), John Wiley & Sons, New York,
125−153.

Kachitvichyanukul
Kachitvichyanukul, Voratas (1982), Computer generation of Poisson, binomial, and
hypergeometric random variates, Ph.D. dissertation, Purdue University, West
Lafayette, Indiana.

Kaiser
Kaiser, H.F. (1963), Image analysis, Problems in Measuring Change, (edited by C.
Harris), University of Wisconsin Press, Madison, Wis.

Kaiser and Caffrey
Kaiser, H.F. and J. Caffrey (1965), Alpha factor analysis, Psychometrika, 30,
1−14.

Kalbfleisch and Prentice
Kalbfleisch, John D., and Ross L. Prentice (1980), The Statistical Analysis of Failure
Time Data, John Wiley & Sons, New York.

Appendix A: References Contacting Visual Numerics Support • 1049

Kemp
Kemp, A.W., (1981), Efficient generation of logarithmically distributed pseudo-
random variables, Applied Statistics, 30, 249−253.

Kendall and Stuart
Kendall, Maurice G. and Alan Stuart (1973), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 3d ed., Charles Griffin & Company, London.
Kendall, Maurice G. and Alan Stuart (1979), The Advanced Theory of Statistics,
Volume 2: Inference and Relationship, 4th ed., Oxford University Press, New York.

Kendall et al.
Kendall, Maurice G., Alan Stuart, and J. Keith Ord (1983), The Advanced Theory of
Statistics, Volume 3: Design and Analysis, and Time Series, 4th. ed., Oxford
University Press, New York.

Kennedy and Gentle
Kennedy, William J., Jr. and James E. Gentle (1980), Statistical Computing, Marcel
Dekker, New York.

Kohonen
Kohonen, T. (1995), Self-Organizing Maps, Third Edition. Springer Series in
Information Sciences., New York.

Kuehl, R. O.
Kuehl, R. O. (2000) Design of Experiments: Statistical Principles of Research Design
and Analysis, 2nd edition, Duxbury Press.

Kim and Jennrich
Kim, P.J., and R.I. Jennrich (1973), Tables of the exact sampling distribution of the
two sample Kolmogorov-Smirnov criterion Dmn (m < n), in Selected Tables in
Mathematical Statistics, Volume 1, (edited by H. L. Harter and D.B. Owen), American
Mathematical Society, Providence, Rhode Island.

Kinderman and Ramage
Kinderman, A.J., and J.G. Ramage (1976), Computer generation of normal random
variables, Journal of the American Statistical Association, 71, 893−896.

Kinderman et al.
Kinderman, A.J., J.F. Monahan, and J.G. Ramage (1977), Computer methods for
sampling from Student’s t distribution, Mathematics of Computation 31,
1009−1018.

1050 • Contacting Visual Numerics Support IMSL C Stat Library

Kinnucan and Kuki
Kinnucan, P. and H. Kuki (1968), A Single Precision INVERSE Error Function
Subroutine, Computation Center, University of Chicago.

Kirk
Kirk, Roger E. (1982), Experimental Design: Procedures for the Behavioral Sciences,
2d ed., Brooks/Cole Publishing Company, Monterey, Calif.

Kitagawa and Akaike
Kitagawa, G. and Akaike, H., A Procedure for the modeling of non-stationary time
series, Ann. Inst. Statist. Math. 30 (1978), Part B, 351-363.

Knuth
Knuth, Donald E. (1981), The Art of Computer Programming, Volume 2:
Seminumerical Algorithms, 2d ed., Addison-Wesley, Reading, Mass.

Kshirsagar
Kshirsagar, Anant M. (1972), Multivariate Analysis, Marcel Dekker, New York.

Lachenbruch
Lachenbruch, Peter A. (1975), Discriminant Analysis, Hafner Press, London.

Lai
Lai, D. (1998a), Local asymptotic normality for location-scale type processes. Far East
Journal of Theorectical Statistics, (in press).
Lai, D. (1998b), Asymptotic distributions of the correlation integral based statistics.
Journal of Nonparametric Statistics, (in press).
Lai, D. (1998c), Asymptotic distributions of the estimated BDS statistic and residual
analysis of AR Models on the Canadian lynx data. Journal
of Biological Systems, (in press).

Laird and Oliver
Laird, N.M., and D. Fisher (1981), Covariance analysis of censored survival data using
log-linear analysis techniques, JASA 76, 1231−1240.

Lawless
Lawless, J.F. (1982), Statistical Models and Methods for Lifetime Data, John Wiley &
Sons, New York.

Lawley and Maxwell
Lawley, D.N. and A.E. Maxwell (1971), Factor Analysis as a Statistical Method, 2d
ed., Butterworth, London.

Appendix A: References Contacting Visual Numerics Support • 1051

Lawrence et al
Lawrence, S., Giles, C. L, Tsoi, A. C., Back, A. D. (1997) Face Recognition: A
Convolutional Neural Network Approach, IEEE Transactions on Neural Networks,
Special Issue on Neural Networks and Pattern Recognition, 8(1), 98-113.

Learmonth and Lewis
Learmonth, G.P. and P.A.W. Lewis (1973), Naval Postgraduate School Random
Number Generator Package LLRANDOM, NPS55LW73061A, Naval Postgraduate
School, Monterey, Calif.

Lee
Lee, Elisa T. (1980), Statistical Methods for Survival Data Analysis, Lifetime Learning
Publications, Belmont, Calif.

Lehmann
Lehmann, E.L. (1975), Nonparametrics: Statistical Methods Based on Ranks, Holden-
Day, San Francisco.

Levenberg
Levenberg, K. (1944), A method for the solution of certain problems in least squares,
Quarterly of Applied Mathematics, 2, 164−168.

Levene, H.
Levene, H. (1960) In Contributions to Probability and Statistics: Essays in Honor of
Harold Hotelling, I. Olkin et al. editors, Stanford University Press, 278-292.

Lewis et al.
Lewis, P.A.W., A.S. Goodman, and J.M. Miller (1969), A pseudorandom number
generator for the System/360, IBM Systems Journal, 8, 136−146.

Li
Li, L. K. (1992) Approximation Theory and Recurrent Networks, Proc. Int. Joint Conf.
On Neural Networks, vol. II, 266-271.

Liffiefors
Lilliefors, H.W. (1967), On the Kolmogorov-Smirnov test for normality with mean and
variance unknown, Journal of the American Statistical Association, 62, 534−544.

Lippmann
Lippmann, R. P. (1989) Review of Neural Networks for Speech Recognition, Neural
Computation, I, 1-38.

1052 • Contacting Visual Numerics Support IMSL C Stat Library

Ljung and Box
Ljung, G.M., and G.E.P. Box (1978), On a measure of lack of fit in time series models,
Biometrika, 65, 297–303.

Loh
Loh, W.-Y. and Shih, Y.-S. (1997) Split Selection Methods for Classification Trees,
Statistica Sinica, 7, 815-840. For information on the latest version of QUEST see
http://www.stat.wisc.edu/~loh/quest.html.

Longley
Longley, James W. (1967), An appraisal of least-squares programs for the electronic
computer from the point of view of the user, Journal of the American Statistical
Association, 62, 819−841.

Matsumoto and Nishimure
Makoto Matsumoto and Takuji Nishimura, ACM Transactions on Modeling and
Computer Simulation, Vol. 8, No. 1, January 1998, Pages 3–30.

Mandic
Mandic, D. P. and Chambers, J. A. (2001) Recurrent Neural Networks for Prediction,
John Wiley & Sons, LTD.

Manning
Manning, C. D. and Schütze, H. (1999) Foundations of Statistical Natural Language
Processing, MIT Press.

Marsaglia
Marsaglia, George (1964), Generating a variable from the tail of a normal distribution,
Technometrics, 6, 101−102.
Marsaglia, G. (1968), Random numbers fall mainly in the planes, Proceedings of the
National Academy of Sciences, 61, 25−28.
Marsaglia, G. (1972), The structure of linear congruential sequences, in Applications of
Number Theory to Numerical Analysis, (edited by S. K. Zaremba), Academic Press,
New York, 249−286.
Marsaglia, George (1972), Choosing a point from the surface of a sphere,
The Annals of Mathematical Statistics, 43, 645−646.

McCulloch
McCulloch, W. S. and Pitts, W. (1943) A Logical Calculus for Ideas Imminent in
Nervous Activity, Bulletin of Mathematical Biophysics, 5, 115-133.

McKean and Schrader
McKean, Joseph W., and Ronald M. Schrader (1987), Least absolute errors analysis of
variance, in Statistical Data Analysis Based on the L1-Norm and Related Methods

Appendix A: References Contacting Visual Numerics Support • 1053

(edited by Yadolah Dodge), North-Holland, Amsterdam,
297−305.

McKeon

McKeon, James J. (1974), F approximations to the distribution of Hotelling’s T0
2 ,

Biometrika, 61, 381−383.

McCullagh and Nelder
McCullagh, P., and J.A. Nelder, (1983), Generalized Linear Models, Chapman and
Hall, London.

Maindonald
Maindonald, J.H. (1984), Statistical Computation, John Wiley & Sons, New York.

Marazzi
Marazzi, Alfio (1985), Robust affine invariant covariances in ROBETH, ROBETH-85
document No. 6, Division de Statistique et Informatique, Institut Universitaire de
Medecine Sociale et Preventive, Laussanne.

Mardia et al.
Mardia, K.V. (1970), Measures of multivariate skewness and kurtosis with
applications, Biometrics, 57, 519−530.
Mardia, K.V., J.T. Kent, J.M. Bibby (1979), Multivariate Analysis, Academic Press,
New York.

Mardia and Foster
Mardia, K.V. and K. Foster (1983), Omnibus tests of multinormality based on
skewness and kurtosis, Communications in Statistics A, Theory and Methods, 12,
207−221.

Marquardt
Marquardt, D. (1963), An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics, 11, 431−441.

Marsaglia
Marsaglia, George (1964), Generating a variable from the tail of a normal distribution,
Technometrics, 6, 101−102.

Marsaglia and Bray
Marsaglia, G. and T.A. Bray (1964), A convenient method for generating normal
variables, SIAM Review, 6, 260−264.

1054 • Contacting Visual Numerics Support IMSL C Stat Library

Marsaglia et al.
Marsaglia, G., M.D. MacLaren, and T.A. Bray (1964), A fast procedure for generating
normal random variables, Communications of the ACM, 7, 4−10.

Merle and Spath
Merle, G., and H. Spath (1974), Computational experiences with discrete Lp
approximation, Computing, 12, 315−321.

Miller
Miller, Rupert G., Jr. (1980), Simultaneous Statistical Inference, 2d ed., Springer-
Verlag, New York.

Milliken and Johnson
Milliken, George A. and Dallas E. Johnson (1984), Analysis of Messy Data, Volume 1:
Designed Experiments, Van Nostrand Reinhold, New York.

Moran
Moran, P.A.P. (1947), Some theorems on time series I, Biometrika, 34,
281−291.

Moré et al.
Moré, Jorge, Burton Garbow, and Kenneth Hillstrom (1980), User Guide for [4]
MINPACK-1, Argonne National Laboratory Report ANL-80_74, Argonne, Ill.

Morrison
Morrison, Donald F. (1976), Multivariate Statistical Methods, 2nd. ed. McGraw-Hill
Book Company, New York.

Muller
Muller, M.E. (1959), A note on a method for generating points uniformly on
N-dimensional spheres, Communications of the ACM, 2, 19−20.

Nelson
Nelson, D. B. (1991), Conditional heteroskedasticity in asset returns: A new approach.
Econometrica, , 59, 347−370.

Nelson
Nelson, Peter (1989), Multiple Comparisons of Means Using Simultaneous Confidence
Intervals, Journal of Quality Technology, 21, 232−241.

Neter
Neter, John (1983), Applied Linear Regression Models, Richard D. Irwin, Homewood,
Ill.

Appendix A: References Contacting Visual Numerics Support • 1055

Neter and Wasserman
Neter, John and William Wasserman (1974), Applied Linear Statistical Models,
Richard D. Irwin, Homewood, Ill.

Noether
Noether, G.E. (1956), Two sequential tests against trend, Journal of the American
Statistical Association, 51, 440−450.

Owen
Owen, D.B. (1962), Handbook of Statistical Tables, Addison-Wesley Publishing
Company, Reading, Mass.
Owen, D.B. (1965), A special case of the bivariate non-central t distribution,
Biometrika, 52, 437−446.

Ozaki and Oda
Ozaki, T and Oda H (1978) Nonlinear time series model identification by Akaike's
information criterion. Information and Systems, Dubuisson eds, Pergamon Press. 83-
91.

Pao
Pao, Y. (1989) Adaptive Pattern Recognition and Neural Networks, Addison-Wesley
Publishing.

Palm
Palm, F. C. (1996), GARCH models of volatility. In Handbook of Statistics,
Vol. 14, 209-240. Eds: Maddala and Rao. Elsevier,New York.

Parker
Parker, D. B., (1985), Learning Logic. Technical Report TR-47, Cambridge, MA: MIT
Center for Research in computational Economics and Management Science.

Patefield
Patefield, W.M. (1981), An efficient method of generating R × C tables with given row
and column totals, Applied Statistics, 30, 91−97.

Patefield and Tandy
Patefield, W.M. (1981), and Tandy D. (2000) Fast and Accurate Calculation of Owen’s
T-Function, J. Statistical Software, 5, Issue 5.

Peixoto
Peixoto, Julio L. (1986), Testable hypotheses in singular fixed linear models,
Communications in Statistics: Theory and Methods, 15,
1957−1973.

1056 • Contacting Visual Numerics Support IMSL C Stat Library

Petro
Petro, R. (1970), Remark on Algorithm 347: An efficient algorithm for sorting with
minimal storage, Communications of the ACM, 13, 624.

Pillai
Pillai, K.C.S. (1985), Pillai’s trace, in Encyclopedia of Statistical Sciences, Volume 6,
(edited by Samuel Kotz and Norman L. Johnson), John Wiley & Sons, New York,
725−729.

Poli
Poli, I. and Jones, R. D. (1994) A Neural Net Model for Prediction, Journal of the
American Statistical Society, 89(425) 117-121.

Pregibon
Pregibon, Daryl (1981), Logistic regression diagnostics, The Annals of Statistics, 9,
705−724.

Prentice
Prentice, Ross L. (1976), A generalization of the probit and logit methods for dose
response curves, Biometrics, 32, 761−768.

Priestley
Priestley, M.B. (1981), Spectral Analysis and Time Series, Volumes 1 and 2, Academic
Press, New York.

Quinlan
Quinlan, J. R. (1993). C4.5 Programs for Machine Learning, Morgan Kaufmann. For
the latest information on Quinlan’s algorithms see http://www.rulequest.com/.

Rao
Rao, C. Radhakrishna (1973), Linear Statistical Inference and Its Applications, 2d ed.,
John Wiley & Sons, New York.

Reed
Reed, R. D. and Marks, R. J. II (1999) Neural Smithing: Supervised Learning in
Feedforward Artificial Neural Networks, The MIT Press, Cambridge, MA.

Ripley
Ripley, B. D. (1994) Neural Networks and Related Methods for Classification, Journal
of the Royal Statistical Society B, 56(3), 409-456.
Ripley, B. D. (1996) Pattern Recognition and Neural Networks, Cambridge University
Press.

Appendix A: References Contacting Visual Numerics Support • 1057

Robinson
Robinson, Enders A. (1967), Multichannel Time Series Analysis with Digital Computer
Programs, Holden-Day, San Francisco.

Rosenblatt
Rosenblatt, F. (1958) The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain, Psychol. Rev., 65, 386-408.

Royston
Royston, J.P. (1982a), An extension of Shapiro and Wilk's W test for normality to large
samples, Applied Statistics, 31, 115−124.
Royston, J.P. (1982b), The W test for normality, Applied Statistics, 31, 176−180.
Royston, J.P. (1982c), Expected normal order statistics (exact and approximate),
Applied Statistics, 31, 161−165.

Rumelhart et al.
Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Learning Representations
by Back-Propagating Errors, Nature, 323, 533-536.
Rumelhart, D. E. and McClelland, J. L. eds. (1986) Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, 1, 318-362, Cambridge, MA, MIT
Press.

Sallas
Sallas, William M. (1990), An algorithm for an Lp norm fit of a multiple linear
regression model, American Statistical Association 1990 Proceedings of the Statistical
Computing Section, 131−136.

Sallas and Lionti
Sallas, William M. and Abby M. Lionti (1988), Some useful computing formulas for
the nonfull rank linear model with linear equality restrictions, IMSL Technical Report
8805, IMSL, Houston.

Savage
Savage, I. Richard (1956), Contributions to the theory of rank order statistics-the two-
sample case, Annals of Mathematical Statistics, 27, 590−615.

Scheffe
Scheffe, Henry (1959), The Analysis of Variance, John Wiley & Sons, New York.

Schmeiser
Schmeiser, Bruce (1983), Recent advances in generating observations from discrete
random variates, Computer Science and Statistics: Proceedings of the Fifteenth
Symposium on the Interface, (edited by James E. Gentle), North-Holland Publishing
Company, Amsterdam, 154−160.

1058 • Contacting Visual Numerics Support IMSL C Stat Library

Schmeiser and Babu
Schmeiser, Bruce W. and A.J.G. Babu (1980), Beta variate generation via exponential
majorizing functions, Operations Research, 28, 917−926.

Schmeiser and Kachitvichyanukul
Schmeiser, Bruce and Voratas Kachitvichyanukul (1981), Poisson Random Variate
Generation, Research Memorandum 81−4, School of Industrial Engineering, Purdue
University, West Lafayette, Ind.

Schmeiser and Lal
Schmeiser, Bruce W. and Ram Lal (1980), Squeeze methods for generating gamma
variates, Journal of the American Statistical Association, 75, 679−682.

Searle
Searle, S.R. (1971), Linear Models, John Wiley & Sons, New York.

Seber
Seber, G.A.F. (1984), Multivariate Observations, John Wiley & Sons, New York.

Snedecor and Cochran
Snedecor and Cochran (1967) Statistical Methods, 6th edition, Iowa State University
Press.

Snedecor, George W. & Cochran, William G.
Snedecor, George W. and Cochran, William G. (1967) Statistical Methods, 6th edition,
Iowa State University Press, 296-298.

Shampine
Shampine, L.F. (1975), Discrete least-squares polynomial fits, Communications of the
ACM, 18, 179−180.

Siegal
Siegal, Sidney (1956), Nonparametric Statistics for the Behavioral Sciences, McGraw-
Hill, New York.

Singleton
Singleton, R.C. (1969), Algorithm 347: An efficient algorithm for sorting with minimal
storage, Communications of the ACM, 12, 185−187.

Smirnov
Smirnov, N.V. (1939), Estimate of deviation between empirical distribution functions
in two independent samples (in Russian), Bulletin of Moscow University, 2, 3−16.

Appendix A: References Contacting Visual Numerics Support • 1059

Smith and Dubey
Smith, H., and S. D. Dubey (1964), "Some reliability problems in the chemical
industry", Industrial Quality Control, 21 (2), 1964, 64-70.

Smith
Smith, M. (1993) Neural Networks for Statistical Modeling, New York: Van Nostrand
Reinhold.

Snedecor and Cochran
Snedecor, George W. and William G. Cochran (1967), Statistical Methods, 6th ed.,
Iowa State University Press, Ames, Iowa.

Sposito
Sposito, Vincent A. (1989), Some properties of Lp-estimators, in Robust Regression:
Analysis and Applications (edited by Kenneth D. Lawrence and Jeffrey L. Arthur),
Marcel Dekker, New York, 23−58.

Spurrier and Isham
Spurrier, John D. and Steven P. Isham (1985), Exact simultaneous confidence intervals
for pairwise comparisons of three normal means, Journal of the American Statistical
Association, 80, 438−442.

Stablein, Carter, and Novak
Stablein, D.M, W.H. Carter, and J.W. Novak (1981), Analysis of survival data with
nonproportional hazard functions, Controlled Clinical Trials, 2, 149–159.

Stahel
Stahel, W. (1981), Robuste Schatzugen: Infinitesimale Opimalitat und Schatzugen von
Kovarianzmatrizen, Dissertation no. 6881, ETH, Zurich.

Steel and Torrie
Steel and Torrie (1960) Principles and Procedures of Statistics, McGraw-Hill.

Stephens
Stephens, M.A. (1974), EDF statistics for goodness of fit and some comparisons,
Journal of the American Statistical Association, 69, 730−737.

Stirling
Stirling, W.D. (1981), Least squares subject to linear constraints, Applied Statistics, 30,
204−212. (See correction, p. 357.)

1060 • Contacting Visual Numerics Support IMSL C Stat Library

Stoline
Stoline, Michael R. (1981), The status of multiple comparisons: simultaneous
estimation of all pairwise comparisons in one-way ANOVA designs,
The American Statistician, 35, 134−141.

Strecok
Strecok, Anthony J. (1968), On the calculation of the inverse of the error function,
Mathematics of Computation, 22, 144−158.

Studenmund
Studenmund, A. H. (1992) Using Economics: A Practical Guide, New York: Harper
Collins.

Swingler
Swingler, K. (1996) Applying Neural Networks: A Practical Guide, Academic Press.

Tanner and Wong
Tanner, Martin A., and Wing H. Wong (1983), The estimation of the hazard function
from randomly censored data by the kernel method, Annals of Statistics, 11, 989–993.
Tanner, Martin A., and Wing H. Wong (1984), Data-based nonparametric estimation of
the hazard function with applications to model diagnostics and exploratory analysis,
Journal of the American Statistical Association, 79, 123–456.

Taylor and Thompson
Taylor, Malcolm S., and James R. Thompson (1986), Data based random number
generation for a multivariate distribution via stochastic simulation, Computational
Statistics & Data Analysis, 4, 93−101.

Tesauro
Tesauro, G. (1990) Neurogammon Wins Computer Olympiad, Neural Computation, 1,
321-323.

Tezuka
Tezuka, S. (1995), Uniform Random Numbers: Theory and Practice. Academic
Publishers, Boston.

Thompson
Thompson, James R, (1989), Empirical Model Building, John Wiley & Sons, New
York.

Tucker and Lewis
Tucker, Ledyard and Charles Lewis (1973), A reliability coefficient for maximum
likelihood factor analysis, Psychometrika, 38, 1−10.

Appendix A: References Contacting Visual Numerics Support • 1061

Tukey
Tukey, John W. (1962), The future of data analysis, Annals of Mathematical Statistics,
33, 1−67.

Velleman and Hoaglin
Velleman, Paul F. and David C. Hoaglin (1981), Applications, Basics, and Computing
of Exploratory Data Analysis, Duxbury Press, Boston.

Verdooren
Verdooren, L. R. (1963), Extended tables of critical values for Wilcoxon's test statistic,
Biometrika, 50, 177−186.

Wallace
Wallace, D.L. (1959), Simplified Beta-approximations to the Kruskal-Wallis H-test,
Journal of the American Statistical Association, 54, 225−230.

Warner
Warner, B. and Misra, M. (1996) Understanding Neural Networks as Statistical Tools,
The American Statistician, 50(4) 284-293.

Weisberg
Weisberg, S. (1985), Applied Linear Regression, 2d ed., John Wiley & Sons, New
York.

Werbos
Werbos, P. (1974) Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Science, PhD thesis, Harvard University, Cambridge, MA.
Werbos, P. (1990) Backpropagation Through Time: What It Does and How to do It,
Proc. IEEE, 78, 1550-1560.

Williams
Williams, R. J. and Zipser, D. (1989) A Learning Algorithm for Continuously
Running Fully Recurrent Neural Networks, Neural Computation, 1, 270-280.

Witten
Witten, I. H. and Frank, E. (2000) Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations, Morgan Kaufmann Publishers.

Woodfield
Woodfield, Terry J. (1990), Some notes on the Ljung-Box portmanteau statistic,
American Statistical Association 1990 Proceedings of the Statistical Computing
Section, 155–160.

1062 • Contacting Visual Numerics Support IMSL C Stat Library

Wu
Wu, S-I (1995) Mirroring Our Thought Processes, IEEE Potentials, 14, 36-41.

Yates, F.
Yates, F. (1936) A new method of arranging variety trials involving a large number of
varieties. Journal of Agricultural Science, 26, 424-455.

Appendix A: References Contacting Visual Numerics Support • 1063

Appendix B: Alphabetical Summary of Routines Routines • 1065

Appendix B: Alphabetical Summary
of Routines

Routines

Function/Page Purpose Statement

A
anova_balanced on page
254

Analyzes a balanced complete experimental design for a
fixed, random, or mixed model.

anova_factorial on
page 237

Analyzes a balanced factorial design with fixed effects.

anova_nested on page
245

Analyzes a completely nested random model with possibly
unequal numbers in the subgroups.

anova_oneway on page
228

Analyzes a one-way classification model.

arma on page 511 Computes least-square estimates of parameters for an
ARMA model.

arma_forecast on page
527

Computes forecasts and their associated probability limits
for an ARMA model.

autocorrelation on
page 588

Computes the sample autocorrelation function of a
stationary time series.

auto_arima on page 555 Automatically identifies time series outliers, determines
parameters of a multiplicative seasonal
ARIMA (,0,) (0, ,0)sp q d× model and produces forecasts
that incorporate the effects of outliers whose effects persist
beyond the end of the series

auto_uni_ar on page
532

Automatic selection and fitting of a univariate
autoregressive time series model.

B
beta on page 1020 Evaluates the complete beta function.
beta_cdf on page 783 Evaluates the beta probability distribution function.
beta_incomplete on

1021
Evaluates the real incomplete beta function.

1066 • Routines IMSL C Stat Library

page 1021

beta_inverse_cdf on
page 785

Evaluates the inverse of the beta distribution function.

binomial_cdf on page
774

Evaluates the binomial distribution function.

binomial_coefficient
on page 1018

Evaluates the binomial coefficient.

binomial_pdf on page
775

Evaluates the binomial probability function.

bivariate_normal_cdf
on page 786

Evaluates the bivariate normal distribution function.

box_cox_transform on
page 584

Performs a Box-Cox transformation.

C
categorical_glm on page
422

Analyzes categorical data using logistic, Probit, Poisson,
and other generalized linear models.

chi_squared_cdf on page
788

Evaluates the chi-squared distribution function.

chi_squared_inverse_cdf
on page 789

Evaluates the inverse of the chi-squared distribution
function.

chi_squared_test on
page 475

Performs a chi-squared goodness-of-fit test.

cluster_hierarchical on
page 645

Performs a hierarchical cluster analysis given a distance
matrix.

cluster_k_means on page
653

Performs a K-means (centroid) cluster analysis.

cluster_number on page
649

Computes cluster membership for a hierarchical cluster tree.

cochran_q_test on page
466

Performs a Cochran Q test for related observations.

contingency_table on
page 402

Performs a chi-squared analysis of a two-way contingency
table.

continuous_table_setup
on page 862

Sets up table to generate pseudorandom numbers from a
general continuous distribution.

covariances on page 185 Computes the sample variance-covariance or correlation
matrix.

cox_stuart_trends_test
on page 448

Performs the Cox and Stuart’ sign test for trends in location
and dispersion.

crd_factorial on page
266

Analyzes data from balanced and unbalanced completely
randomized experiments.

crosscorrelation on
page 593

Computes the sample cross-correlation function of two
stationary time series

D
data_sets on page 1009 Retrieves a commonly analyzed data set.

Appendix B: Alphabetical Summary of Routines Routines • 1067

difference on page 572 Differences a seasonal or nonseasonal time series.
discrete_table_setup
on page 832

Sets up a table to generate pseudorandom numbers from a
general discrete distribution.

discriminant_analysis
on page 682

Performs discriminant function analysis.

E
error_code on page
1004

Returns the code corresponding to the error message from
the last function called.

error_options on page
998

Sets various error handling options.

estimate_missing on
page 614

Estimates missing values in a time series.

exact_enumeration on
page 414

Computes exact probabilities in a two-way contingency
table, using the total enumeration method.

exact_network on page
416

Computes exact probabilities in a two-way contingency
table using the network algorithm.

F
factor_analysis on
page 640

Extracts initial factor-loading estimates in factor analysis.

faure_next_point on
page 911

Computes a shuffled Faure sequence

friedmans_test on page
462

Performs Friedman’s test for a randomized complete block
design.

G
gamma on page 1023 Evaluates the real gamma functions.
gamma_cdf on page 798 Evaluates the gamma distribution function.
gamma_incomplete on
page 1025

Evaluates the incomplete gamma function.

gamma_inverse_cdf on
page 799

Evaluates the inverse of the gamma distribution function.

garch on page 621 Computes estimates of the parameters of a GARCH
(p, q) model

H
homogeneity on page
376

Conducts Bartlett’s and Levene’s tests of the homogeneity
of variance assumption in analysis of variance.

hypergeometric_cdf on
page 777

Evaluates the hypergeometric distribution function.

hypergeometric_pdf on
page 778

Evaluates the hypergeometric probability function.

hypothesis_partial on
page 95

Constructs a completely testable hypothesis.

1068 • Routines IMSL C Stat Library

hypothesis_scph on
page 100

Sums of cross products for a multivariate hypothesis.

hypothesis_test on
page 105

Tests for the multivariate linear hypothesis.

I

J

K
kalman on page 626 Performs Kalman filtering and evaluates the likelihood

function for the state-space model.
kaplan_meier_estimates
on page 708

Computes Kaplan-Meier estimates of survival probabilities
in stratified samples.

kolmogorov_one on page
487

Performs a Kolmogorov-Smirnov’s one-sample test for
continuos distributions.

kolmogorov_two on page
490

Performs a Kolmogorov-Smirnov’s two-sample test

kruskal_wallis_test on
page 459

Performs a Kruskal-Wallis’s test for identical population
medians.

k_trends_test on page
469

Performs k-sample trends test against ordered alternatives.

L
lack_of_fit on page
611

Performs lack-of-fit test for an univariate time series or
transfer function given the appropriate correlation function.

latin_square on page
287

Analyzes data from latin-square experiments.

lattice on page 296 Analyzes balanced and partially-balanced lattice
experiments.

life_tables on page
764

Produces population and cohort life tables.

Lnorm_regression on
page 166

Fits a multiple linear regression model using criteria other
than least squares.

log_beta on page 1022 Evaluates the log of the real beta function.
log_gamma on page 1027 Evaluates the logarithm of the absolute value of the gamma

function.

M
machine (float) on page
1007

Returns information describing the computer's floating-
point arithmetic.

machine (integer) on
page 1005

Returns integer information describing the computer's
arithmetic.

mat_mul_rect on page
1012

Computes the transpose of a matrix, a matrix-vector
product, a matrix-matrix product, a bilinear form, or any

Appendix B: Alphabetical Summary of Routines Routines • 1069

triple product.
max_arma on page 521 Exact maximum likelihood estimation of the parameters in a

univariate ARMA (autoregressive, moving average) time
series model.

mlff_network on page
934

Creates a multilayered feedforward neural network.

mlff_network_forecast
on page 954

Calculates forecasts for trained multilayered feedforward
neural networks.

mlff_network_trainer on
page 944

Trains a multilayered feedforward neural network.

multi_crosscorrelation
on page 599

Computes the multichannel cross-correlation function of
two mutually stationary multichannel time series.

multiple_comparisons on
page 383

Performs Student-Newman-Keuls multiple comparisons
test.

multivar_normality_test
on page 493

Computes Mardia’s multivariate measures of skewness and
kurtosis and tests for multivariate normality.

N
noether_cyclical_trend
on page 444

Performs the Noether’s test for cyclical trend.

non_central_chi_sq on
page 791

Evaluates the noncentral chi-squared distribution function.

non_central_chi_sq_inv
on page 793

Evaluates the inverse of the noncentral chi-squared
function.

non_central_t_cdf on
page 807

Evaluates the noncentral Student’s t distribution function.

non_central_t_inv_cdf
on page 809

Evaluates the inverse of the noncentral Student’s t
distribution function.

nonlinear_optimization
on page 157

Fits a nonlinear regression model using Powell's algorithm.

nonlinear_regression
on page 147

Fits a nonlinear regression model.

nonparam_hazard_rate
on page 756

Performs nonparametric hazard rate estimation using kernel
functions and quasi-likelihoods.

normal_cdf on page 801 Evaluates the standard normal (Gaussian) distribution
function.

normal_inverse_cdf on
page 802

Evaluates the inverse of the standard normal (Gaussian)
distribution function.

normal_one_sample on
page 7

Computes statistics for mean and variance inferences using
a sample from a normal population.

normal_two_sample on
page 11

Computes statistics for mean and variance inferences using
samples from two normal population.

normality_test on page
483

Performs a test for normality.

1070 • Routines IMSL C Stat Library

O
output_file on page
993

Sets the output file or the error message output file.

P
page on page 986 Sets or retrieves the page width or length.
partial_autocorrelation on
page 608

Computes the sample partial autocorrelation function
of a stationary time series.

partial_covariances on
page 192

Computes partial covariances or partial correlations
from the covariance or correlation matrix.

permute_matrix on page
1017

Permutes the rows or columns of a matrix.

permute_vector on page
1015

Rearranges the elements of a vector as specified by a
permutation.

poisson_cdf on page 779 Evaluates the Poisson distribution function.
poisson_pdf on page 781 Evaluates the Poisson probability function.
poly_prediction on page
137

Computes predicted values, confidence intervals, and
diagnostics after fitting a polynomial regression model.

poly_regression on page
130

Performs a polynomial least-squares regression.

pooled_covariances on page
197

Computes a pooled variance-covariance from the
observations.

principal_components on
page 640

Computes principal components.

prop_hazards_gen_lin on
page 713

Analyzes time event data via the proportional hazards
model.

Q

R
random_arma on page 880 Generates pseudorandom ARMA process numbers.
random_beta on page 837 Generates pseudorandom numbers from a beta distribution.
random_binomial on page
816

Generates pseudorandom binomial numbers.

random_cauchy on page 838 Generates pseudorandom numbers from a Cauchy
distribution.

random_chi_squared on page
840

Generates pseudorandom numbers from a chi-squared
distribution.

random_exponential on page
841

Generates pseudorandom numbers from a standard
exponential distribution.

random_exponential_mix on
page 843

Generates pseudorandom mixed numbers from a standard
exponential distribution.

random_gamma on page 845 Generates pseudorandom numbers from a standard gamma

Appendix B: Alphabetical Summary of Routines Routines • 1071

distribution.
random_general_continuous
on page 859

Generates pseudorandom numbers from a general
continuous distribution.

random_general_discrete on
page 828

Generates pseudorandom numbers from a general discrete
distribution using an alias method or optionally a table
lookup method.

random_geometric on page
818

Generates pseudorandom numbers from a geometric
distribution.

random_GFSR_table_get on
page 902

Retrieves the current table used in the GFSR generator.

random_GFSR_table_set on
page 901

Sets the current table used in the GFSR generator.

random_hypergeometric on
page 819

Generates pseudorandom numbers from a hypergeometric
distribution.

random_logarithmic on page
822

Generates pseudorandom numbers from a logarithmic
distribution.

random_lognormal on page
846

Generates pseudorandom numbers from a lognormal
distribution.

random_MT32_init on page
905

Initializes the 32-bit Mersenne Twister generator using an
array.

random_MT32_table_get on
page 905

Retrieves the current table used in the 32-bit Mersenne
Twister generator.

random_MT32_table_set on
page 907

Sets the current table used in the 32-bit Mersenne Twister
generator.

random_MT64_init on page
908

Initializes the 64-bit Mersenne Twister generator using an
array.

random_MT64_table_get on
page 908

Retrieves the current table used in the 64-bit Mersenne
Twister generator.

random_MT64_table_set on
page 910

Sets the current table used in the 64-bit Mersenne Twister
generator.

random_multinomial on page
871

Generates pseudorandom numbers from a multinomial
distribution.

random_mvar_from_data on
page 868

Generates pseudorandom numbers from a multivariate
distribution determined from a given sample.

random_neg_binomial on
page 823

Generates pseudorandom numbers from a negative binomial
distribution.

random_normal on page 848 Generates pseudorandom numbers from a standard normal
distribution using an inverse CDF method.

random_normal_multivariate
on page 864

Generates pseudorandom numbers from a multivariate
normal distribution.

random_npp on page 884 Generates pseudorandom numbers from a nonhomogeneous
Poisson process.

random_option on page 894 Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

random_option_get on page
895

Retrieves the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

1072 • Routines IMSL C Stat Library

random_order_normal on
page 876

Generates pseudorandom order statistics from a standard
normal distribution.

random_order_uniform on
page 878

Generates pseudorandom order statistics from a uniform (0,
1) distribution

random_orthogonal_matrix
on page 866

Generates a pseudorandom orthogonal matrix or a
correlation matrix.

random_permutation on page
887

Generates a pseudorandom permutation.

random_poisson on page 825 Generates pseudorandom numbers from a Poisson
distribution.

random_sample on page 890 Generates a simple pseudorandom sample from a finite
population.

random_sample_indices on
page 889

Generates a simple pseudorandom sample of indices.

random_seed_get on page
896

Retrieves the current value of the seed used in the IMSL
random number generators.

random_seed_set on page
899

Initializes a random seed for use in the IMSL random
number generators.

random_sphere on page 873 Generates pseudorandom points on a unit circle or K-
dimensional sphere.

random_stable on page 850 Sets up a table to generate pseudorandom numbers from a
general discrete distribution.

random_student_t on page
852

Generates pseudorandom Student's t.

random_substream_seed_get
on page 897

Retrieves a seed for the congruential generators that do not
do shuffling that will generate random numbers beginning
100,000 numbers farther along.

random_table_get on page
900

Retrieves the current table used in the shuffled generator.

random_table_set on page
900

Sets the current table used in the shuffled generator.

random_table_twoway on
page 875

Generates a pseudorandom two-way table.

random_triangular on page
853

Generates pseudorandom numbers from a triangular
distribution.

random_uniform on page 854 Generates pseudorandom numbers from a uniform (0, 1)
distribution.

random_uniform_discrete on
page 826

Generates pseudorandom numbers from a discrete uniform
distribution.

random_von_mises on page
856

Generates pseudorandom numbers from a von Mises
distribution.

random_weibull on page 857 Generates pseudorandom numbers from a Weibull
distribution.

randomness_test on page
497

Performs a test for randomness.

ranks on page 34 Computes the ranks, normal scores, or exponential scores

Appendix B: Alphabetical Summary of Routines Routines • 1073

for a vector of observations.
rcbd_factorial on page 277 Analyzes data from balanced and unbalanced randomized

complete-block experiments.
regression on page 64 Fits a multiple linear regression model using least squares.
regression_prediction on
page 84

Computes predicted values, confidence intervals, and
diagnostics after fitting a regression model.

regression_selection on
page 112

Selects the best multiple linear regression models.

regression_stepwise on
page 122

Builds multiple linear regression models using forward
selection, backward selection or stepwise selection.

regression_summary on page
76

Produces summary statistics for a regression model given
the information from the fit.

regressors_for_glm on page
55

Generates regressors for a general linear model.

robust_covariances on page
203

Computes a robust estimate of a covariance matrix and
mean vector.

random_arma on page 880 Generates pseudorandom ARMA process numbers.
random_beta on page 837 Generates pseudorandom numbers from a beta distribution.
random_binomial on page
816

Generates pseudorandom binomial numbers.

random_cauchy on page 838 Generates pseudorandom numbers from a Cauchy
distribution.

random_chi_squared on page
840

Generates pseudorandom numbers from a chi-squared
distribution.

random_exponential on page
841

Generates pseudorandom numbers from a standard
exponential distribution.

random_exponential_mix on
page 843

Generates pseudorandom mixed numbers from a standard
exponential distribution.

random_gamma on page 845 Generates pseudorandom numbers from a standard gamma
distribution.

random_general_continuous
on page 859

Generates pseudorandom numbers from a general
continuous distribution.

random_general_discrete on
page 828

Generates pseudorandom numbers from a general discrete
distribution using an alias method or optionally a table
lookup method.

random_geometric on page
818

Generates pseudorandom numbers from a geometric
distribution.

random_GFSR_table_get on
page 902

Retrieves the current table used in the GFSR generator.

random_GFSR_table_set on
page 901

Sets the current table used in the GFSR generator.

random_hypergeometric on
page 819

Generates pseudorandom numbers from a hypergeometric
distribution.

random_logarithmic on page
822

Generates pseudorandom numbers from a logarithmic
distribution.

random_lognormal on page Generates pseudorandom numbers from a lognormal

1074 • Routines IMSL C Stat Library

846 distribution.
random_multinomial on page
871

Generates pseudorandom numbers from a multinomial
distribution.

random_mvar_from_data on
page 868

Generates pseudorandom numbers from a multivariate
distribution determined from a given sample.

random_neg_binomial on
page 823

Generates pseudorandom numbers from a negative binomial
distribution.

random_normal on page 848 Generates pseudorandom numbers from a standard normal
distribution using an inverse CDF method.

random_normal_multivariate
on page 864

Generates pseudorandom numbers from a multivariate
normal distribution.

random_npp on page 884 Generates pseudorandom numbers from a nonhomogeneous
Poisson process.

random_option on page 894 Selects the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

random_option_get on page
895

Retrieves the uniform (0, 1) multiplicative congruential
pseudorandom number generator.

random_order_normal on
page 876

Generates pseudorandom order statistics from a standard
normal distribution.

random_order_uniform on
page 878

Generates pseudorandom order statistics from a uniform (0,
1) distribution

random_orthogonal_matrix
on page 866

Generates a pseudorandom orthogonal matrix or a
correlation matrix.

random_permutation on page
887

Generates a pseudorandom permutation.

random_poisson on page 825 Generates pseudorandom numbers from a Poisson
distribution.

random_sample on page 890 Generates a simple pseudorandom sample from a finite
population.

random_sample_indices on
page 889

Generates a simple pseudorandom sample of indices.

random_seed_get on page
896

Retrieves the current value of the seed used in the IMSL
random number generators.

random_seed_set on page
899

Initializes a random seed for use in the IMSL random
number generators.

random_sphere on page 873 Generates pseudorandom points on a unit circle or K-
dimensional sphere.

random_stable on page 850 Sets up a table to generate pseudorandom numbers from a
general discrete distribution.

random_student_t on page
852

Generates pseudorandom Student's t.

random_substream_seed_get
on page 897

Retrieves a seed for the congruential generators that do not
do shuffling that will generate random numbers beginning
100,000 numbers farther along.

random_table_get on page
900

Retrieves the current table used in the shuffled generator.

Appendix B: Alphabetical Summary of Routines Routines • 1075

random_table_set on page
900

Sets the current table used in the shuffled generator.

random_table_twoway on
page 875

Generates a pseudorandom two-way table.

random_triangular on page
853

Generates pseudorandom numbers from a triangular
distribution.

random_uniform on page 854 Generates pseudorandom numbers from a uniform (0, 1)
distribution.

random_uniform_discrete on
page 826

Generates pseudorandom numbers from a discrete uniform
distribution.

random_von_mises on page
856

Generates pseudorandom numbers from a von Mises
distribution.

random_weibull on page 857 Generates pseudorandom numbers from a Weibull
distribution.

randomness_test on page
497

Performs a test for randomness.

ranks on page 34 Computes the ranks, normal scores, or exponential scores
for a vector of observations.

rcbd_factorial on page 277 Analyzes data from balanced and unbalanced randomized
complete-block experiments.

regression on page 64 Fits a multiple linear regression model using least squares.
regression_prediction on
page 84

Computes predicted values, confidence intervals, and
diagnostics after fitting a regression model.

regression_selection on
page 112

Selects the best multiple linear regression models.

regression_stepwise on
page 122

Builds multiple linear regression models using forward
selection, backward selection or stepwise selection.

regression_summary on page
76

Produces summary statistics for a regression model given
the information from the fit.

regressors_for_glm on page
55

Generates regressors for a general linear model.

robust_covariances on page
203

Computes a robust estimate of a covariance matrix and
mean vector.

S
scale_filter on page 960 Scales or unscales continuous data prior to its use in

neural network training, testing, or forecasting.
seasonal_fit on page 576 Estimates the optimum seasonality parameters for a

time series using an autoregressive model, AR(p), to
represent the time series.

sign_test on page 438 Performs a sign test.
simple_statistics on page
1

Computes basic univariate statistics.

sort_data on page 26 Sorts observations by specified keys, with option to
tally cases into a multi-way frequency table.

1076 • Routines IMSL C Stat Library

split_plot on page 314 Analyzes a wide variety of split-plot experiments
with fixed, mixed or random factors.

split_split_plot on page
326

Analyzes data from split-split-plot experiments.

strip_plot on page 342 Analyzes data from strip-plot experiments.
strip_split_plot on page
353

Analyzes data from strip-split-plot experiments.

survival_estimates on page
750

Estimates using various parametric models.

survival_glm on page 727 Analyzes survival data using a generalized linear
model.

T
t_cdf on page 804 Evaluates the Student's t distribution function.
t_inverse_cdf on page 805 Evaluates the inverse of the Student's t distribution

function.
table_oneway on page 17 Tallies observations into one-way frequency table.
table_twoway on page 22 Tallies observations into a two-way frequency table.
tie_statistics on page 453 Computes tie statistics for a sample of observations.
time_series_class_filter
on page 969

Converts time series data sorted with nominal classes
in decreasing chronological order to useful format for
processing by a neural network.

time_series_filter on page
966

Converts time series data to the format required for
processing by a neural network.

ts_outlier_forecast on
page 547

Computes forecasts, their associated probability limits
and ψ -weights for an outlier contaminated time
series whose underlying outlier free series follows a
general seasonal or nonseasonal ARMA model

ts_outlier_identification
on page 537

Detects and determines outliers and simultaneously
estimates the model parameters in a time series whose
underlying outlier free series follows a general
seasonal or nonseasonal ARMA model.

U
unsupervised_nominal_filter
on page 973

Converts nominal data into a series of binary
encoded columns for input to a neural network.

unsupervised_ordinal_filter
on page 976

Converts ordinal data into percentages.

V
version on page 997 Returns integer information describing the version

of the library, license number, operating system, and
compiler.

Appendix B: Alphabetical Summary of Routines Routines • 1077

W
wilcoxon_rank_sum on page
455

Performs a Wilcoxon rank sum test.

wilcoxon_sign_rank on page
441

Performs a Wilcoxon sign rank test.

write_matrix on page 981 Prints a rectangular matrix (or vector) stored in
contiguous memory locations.

write_options on page 987 Sets or retieves an option for printing a matrix.

X

Y

Z

Index Routines • 1079

Index

A

additive (AO) 539
AIC 535, 579, 580
Airline Data 579
Akaike’s information criterion 532
alpha factor analysis 673
ANOVA

balanced 254
factorial 237
multiple comparisons 383
nested 245
oneway 228

ANSI C ix
ARIMA models 555

forecasts 527
least squares estimates 537
least-square estimates 511
maximum likelihood estimates

537
method of moments 513
method of moments estimates 524
method of moments estimation 515
multiplicative seasonal 560

ARIMA models XE "ARIMA
models:least squares
estimates" \r "ARIMA" XE
537

ARMA model 521
association, measures of 407
Autoregressive model (AR) 617
Autoregressive Moving Average

Model 510

B

backward selection 122
balanced 254
balanced experimental design 254
beta distribution function 783

inverse 785
beta distribution, simulation 837

beta functions 1020, 1021, 1022
binary encoded 973
binomial coefficient 1018
binomial distribution 774
binomial distributions 816, 823, 832,

862
binomial probability 775
bivariate normal distribution

function 786
Bonferroni method 232
bounded scaling 961
Box-Cox transformation 584

C

Cartesian coordinates 873
cauchy distributions 838
chi-squared analysis 402
chi-squared distribution function

788, 789
chi-squared distributions 840
chi-squared goodness-of-fit test 475
chi-squared statistics 401, 405
chi-squared test 475
classification model

one-way 228
cluster analysis 639, 653
cluster membership 649
cluster_hierarchical 645
cluster_number 649
Cochran Q test 466
coefficient

excess (kurtosis) 2
skewness 2
variation 5

compiler 997
computer constants 1005, 1007
confidence intervals 137

mean 2
constants 1005, 1007
contingency coefficient 406
contingency tables 414, 416

two-way 402
correlation matrix 185, 866
correlations 192
counts 2, 26
covariances 203
Cox and Stuart sign test 448
CPU 1029
Cramer’s V 406
Crd factorial 266

factorial experiments 271
pooled location interaction 271
unbalanced 266

1080 • Routines IMSL C Stat Library

unbalanced completely
randomized experiments 266

crosscorrelation 593
cross-correlation function 593, 599,

708, 714, 756, 764
cubic spline interpolation 617

D

data sets 1009
detection 538
deviation, standard 2
diagnostic checking 510
diagnostics 137
discrete uniform distributions 826
discriminant function analysis 682
dissimilarities 641
distribution functions

beta 783
inverse 785

bivariate normal 786
chi-squared 788

inverse 789
chi-squared, noncentral 791, 793

inverse 793
F_cdf

inverse 794
F_inverse_cdf 796
gamma 798
Gaussian 801
hypergeometric 777
inverse 802
normal 801
Poisson 779
Student’s t 804

inverse 805
Student’s t, noncentral 807

inverse 809
Dunn-Sidák method 232

E

eigensystem analysis 640
empirical tests 816
error handling xiv, 998, 1004, 1031
error messages 993
estimate of scale

simple robust 6
excess 5
exponential distribution, simulation

841
exponential scores 34

F

F statistic 15
factor analysis 640, 663
factorial 237
factorial design

analysis 237
Faure 913
Faure sequence 911, 912

faure_next_point 912
finite difference gradient 157
finite population 890
Fisher’s LSD 233
forecasting 510
forecasts 547

ARMA models 527, 547
GARCH 547, 621

forward selection 122
frequency tables 17, 22

multi-way 26
Friedman’s test 462

G

gamma distribution function 798
gamma distribution, simulation 845
gamma functions 1023, 1025, 1027
gamma_inverse_cdf 799
GARCH

(Generalized Autoregressive
Conditional Heteroskedastic)
621

Gaussian distribution functions 801
inverse 802

general continuous distribution 859
general discrete distribution 828,

829, 832, 862
general distributions 475
general linear models 55
Generalized Feedback Shift Register

815
generalized feedback shift register

method 814
generalized linear models 401
geometric distributions 818
GFSR 894
GFSR generator 815, 901, 902
goodness-of-fit tests 475
Gray code 914

H

Haar measure 867
hierarchical cluster analysis 645
hierarchical cluster tree 649

Index Routines • 1081

homogeneity 376
hypergeometric distribution function

777
hypergeometric distributions 819
hypergeometric_pdf 778
hyper-rectangle 911
hypothesis 95, 100, 105

I
image analysis 673
innovational (AO) 563
innovational (IO) 539, 563
integrated rate function 886
invertible/invertiblility 525

K

Kalman filtering 626
Kaplan_meier estimates 709
Kaplan_meier_estimates 708
Kaplan-Meier estimates

computes 708
Kappa analysis 401
K-dimensional sphere 873
kernel functions 708, 756
K-means analysis 653
Kolmogorov one-sample test 487
Kolmogorov two-sample test 490
Kruskal-Wallis test 459
k-sample trends test 469
kurtosis 2, 5

L

lack-of-fit test 611
lack-of-fit tests 52
Latin square 287
Lattice 296

3x3 balanced-lattice 301
balanced lattice experiments 300
intra-Block Error 301
partially-balanced lattice

experiments 296, 300
Least Absolute Value 54, 166, 170,

178
Least Maximum Value 54, 166, 183
Least Squares

Alternatives
Least Absolute Value 54
Least Maximum Value 54
Lp Norm 54

least-squares fit 64, 166, 245, 254,
441, 444, 448, 453, 462, 487,
490, 608

Lebesque measure 913
level shift (LS) 563
level Shift (LS) 539
library version 997
linear dependence 48
linear discriminant function analysis

682
linear regression

multiple 44
simple 44

logarithmic distributions 822
low-discrepancy 913
Lp Norm 54, 171

M

MAD (Median Absolute Deviation)
6

Mardia’s multivariate measures 495
Mardia’s multivariate tests 493
matrices 641, 1012
matrix of dissimilarities 641
matrix storage modes xi
maximum 2, 5
maximum likelihood estimates 632
mean 2, 5, 7, 9

for two normal populations 11
normal population 7

Mean Absolute Deviation 962
measures of association 401, 406
measures of prediction 407
measures of uncertainty 407
median 6, 617

absolute deviation 6
memory allocation xii
Mersenne Twister 905, 907, 908,

910, 1071
minimum 2, 5
missing values 55, 617
models 147

general linear 55
multiple linear regression 112
nonlinear regression 49
polynomial 45
polynomial regression 137

Monte Carlo applications 816
multinomial distribution 871
Multiple comparisons 383
Multiple comparisons test

Bonferroni, Tukey’s, or Duncan’s
MRT 383

1082 • Routines IMSL C Stat Library

Student-Newman-Keuls 383
multiple linear regression models 64,

112, 122, 166, 245, 254, 441,
444, 448, 453, 462, 487, 490,
608

multiple_crosscorrelation 599
multiplicative congruential generator

814
multiplicative generator 814
multiplying matrices 1012
multivariate distribution 868
multivariate general linear

hypothesis 100, 105
multivariate normal distribution,

simulation 864

N

nested 245
nested random model 245, 249
network 934
Noether test 444
nominal data 973
non-ANSI C ix
noncentral chi-squared distribution

function 791
inverse 793

noncentral Student’s t distribution
function 807, 809

nonhomogeneous Poisson process
884

nonlinear model 157
nonlinear regression 147
nonlinear regression models 49, 147
nonparam_hazard_rate 756
nonparametric hazard rate estimation

756
nonuniform generators 816
normal distribution function 802
normal distribution, simulation 848
normal populations

mean 7
variance 7

normal scores 34
normality test 483

O

observations
number of 2

one-step-ahead forecasts 615
oneway 228
one-way classification model 228
one-way frequency table 17

operating system 997
order statistics 876, 878
ordinal data 976
orthogonal matrix 866
outlier

description 563
outlier contaminated series 547
output files 993
overflow xiv

P

parameter estimation 510
partial correlations 192
partial covariances 192
partially tested hypothesis 95
permutations 1015, 1017
phi 406
Poisson distribution function 779
Poisson distribution, simulation 825
poisson_pdf 781
polynomial models 45
polynomial regression 130
polynomial regression models 137
pooled variance-covariance 197
population 764
predicted values 137
prediction coefficient 407
principal components 657
printing

matrices 981
options 987
retrieving page size 986
setting paper size 986
vectors 981

probability limits
ARMA models 527, 547
outlier contaminated series 549

prop_hazards_gen_lin 713
pseudorandom number generators

475
pseudorandom numbers 829, 832,

846, 852, 856, 857, 862
pseudorandom permutation 887
pseudorandom sample 889
p-values 406

Q

quadratic discriminant function
analysis 682

Index Routines • 1083

R

random number generator 905, 906,
908, 909, 911

random numbers
beta distribution 837
exponential distribution 841
gamma distribution 845
Poisson distribution 825
seed

current value 896
initializing 899

selecting generator 894, 895
random numbers generators 848
random_MT32_init 905
random_MT32_table_get 905
random_MT32_table_set 907
random_MT64_init 908
random_MT64_table_get 908
random_MT64_table_set 910
randomness test 497
range 2, 5
ranks 34
Rcbd factorial 277
regression models 44, 76, 84
regressors 55
robust covariances 203

S

sample autocorrelation function 588
sample correlation function 510
sample partial autocorrelation

function 608
scale filter 960
scales 960
Scheffé method 232
scores

exponential 34
normal 34

seasonal adjustment 577
seasonality parameters 576
seed 897
Seed 815
serial number 997
shuffled generator 900
sign test 438
simulation of random variables 813
skewness 2, 5
Split plot 314

blocking factor 321
completely randomized 314
completely randomized design 321
experiments 314
fixed effects 321

IMSLS_RCBD default setting 322
random effects 323
randomized complete block design

314, 321
randomizing whole-plots 322
split plot factor 322
split plot factors 321
whole plot 321
whole plot factor 322
whole plot factors 321

Split Plots
whole-plots 314

Split-split plot 326
split-plot factors 327
split-split-plot experiments 326
sub-plot factors 327
whole plot factors 327

stable distribution 850
standard deviation 2, 9
standard errors 406
state vector 626
statespace model 626
stationary/stationarity 525
stepwise selection 122
Strip plot 342
Strip-split plot 353
Student’s t distribution function 804

inverse 805
summary statistics 50
survival probabilities 708, 709

T

t statistic 15
temporary change (TC) 539, 563
tests for randomness 475
Thread Safe x

multithreaded application x
single-threaded application xi
threads and error handling 1033

tie statistics 453
time domain methodology 510
time event data 707, 713
time series 510, 880

difference 572
time series class filter 969
time series data 966, 969
time series filter 966
transformation 510
transformations 54
transposing matrices 1012
triangular distributions 853
Tukey method 231
Tukey-Kramer method 231

1084 • Routines IMSL C Stat Library

two-way contingency table 875
two-way frequency tables 22
two-way table 875

U

unable to identify (UI) 539, 563
uncertainty, measures of 407
underflow xiv
uniform distribution, simulation 854
unit sphere 873
univariate statistics 1, 422, 727, 750,

843
unscales 960
unsupervised nominal filter 973
unsupervised ordinal filter 976
update equations 627
user-supplied gradient 157

V

variable selection 45
variance 2, 5, 7

for two normal populations 11
normal population 7

variance-covariance matrix 185
variation, coefficient of 5

W

weighted least squares 50
white noise

Gaussian 541, 544, 551
process 540

white noise process 524
Wilcoxon rank sum test 455
Wilcoxon signed rank test 441
Wilcoxon two-sample test 460
Wolfer Sunspot series 524, 535

Y

yates 388

Z

z-score scaling 961

	C Stat Library version 6.0
	Table of Contents
	Introduction
	IMSL C Stat Library
	Getting Started
	ANSI C vs. Non-ANSI C
	The imsls.h File

	Thread Safe Usage
	Signal Handling
	Routines that Produce Output
	Input Arguments

	Matrix Storage Modes
	General Mode
	Rectangular Mode
	Symmetric Mode

	Memory Allocation for Output Arrays
	Finding the Right Function
	Organization of the Documentation
	Naming Conventions
	Error Handling, Underflow, and Overflow
	Printing Results
	Missing Values
	Passing Data to User-Supplied Functions

	Chapter 1: Basic Statistics
	Routines
	Usage Notes
	simple_statistics
	normal_one_sample
	normal_two_sample
	table_oneway
	table_twoway
	sort_data
	ranks

	Chapter 2: Regression
	Routines
	Usage Notes
	Simple and Multiple Linear Regression
	No Intercept Model
	Variable Selection
	Polynomial Model
	Specification of X for the General Linear Model
	Functions for Fitting the Model
	Linear Dependence and the R Matrix
	Nonlinear Regression Model
	Weighted Least Squares
	Summary Statistics
	Tests for Lack-of-Fit
	Transformations
	Alternatives to Least Squares
	Missing Values

	regressors_for_glm
	regression
	regression_summary
	regression_prediction
	hypothesis_partial
	hypothesis_scph
	hypothesis_test
	regression_selection
	regression_stepwise
	poly_regression
	poly_prediction
	nonlinear_regression
	nonlinear_optimization
	Lnorm_regression

	Chapter 3: Correlation and Covariance
	Routines
	Usage Notes
	covariances
	partial_covariances
	pooled_covariances
	robust_covariances

	Chapter 4: Analysis of Variance and Designed Experiments
	Routines
	Usage Notes
	Completely Randomized Experiments
	Factorial Experiments
	Blocking
	Multiple Locations
	Split-Plot Designs – Nesting and Restricted Randomization
	Strip-Plot Designs
	Split-Split Plot and Strip-Split Plot Experiments
	Validating Key Assumptions in Anova
	Missing Observations

	anova_oneway
	anova_factorial
	anova_nested
	anova_balanced
	crd_factorial
	rcbd_factorial
	latin_square
	lattice
	split_plot
	split_split_plot
	strip_plot
	strip_split_plot
	homogeneity
	multiple_comparisons
	yates

	Chapter 5: Categorical and Discrete Data Analysis
	Routines
	Usage Notes
	contingency_table
	exact_enumeration
	exact_network
	categorical_glm

	Chapter 6: Nonparametric Statistics
	Routines
	Usage Notes
	sign_test
	wilcoxon_sign_rank
	noether_cyclical_trend
	cox_stuart_trends_test
	tie_statistics
	wilcoxon_rank_sum
	kruskal_wallis_test
	friedmans_test
	cochran_q_test
	k_trends_test

	Chapter 7: Tests of Goodness of Fit
	Routines
	Usage Notes
	chi_squared_test
	normality_test
	kolmogorov_one
	kolmogorov_two
	multivar_normality_test
	randomness_test

	Chapter 8: Time Series and Forecasting
	Routines
	Usage Notes
	arma
	max_arma
	arma_forecast
	auto_uni_ar
	ts_outlier_identification
	ts_outlier_forecast
	auto_arima
	difference
	seasonal_fit
	box_cox_transform
	autocorrelation
	crosscorrelation
	multi_crosscorrelation
	partial_autocorrelation
	lack_of_fit
	estimate_missing
	garch
	kalman

	Chapter 9: Multivariate Analysis
	Routines
	Usage Notes
	Cluster Analysis
	Principal Components
	Factor Analysis

	dissimilarities
	cluster_hierarchical
	cluster_number
	cluster_k_means
	principal_components
	factor_analysis
	discriminant_analysis

	Chapter 10: Survival and Reliability Analysis
	Routines
	Usage Notes
	kaplan_meier_estimates
	prop_hazards_gen_lin
	survival_glm
	survival_estimates
	nonparam_hazard_rate
	life_tables

	Chapter 11: Probability Distribution Functions and Inverses
	Routines
	Usage Notes
	Continuous Distributions

	binomial_cdf
	binomial_pdf
	hypergeometric_cdf
	hypergeometric_pdf
	poisson_cdf
	poisson_pdf
	beta_cdf
	beta_inverse_cdf
	bivariate_normal_cdf
	chi_squared_cdf
	chi_squared_inverse_cdf
	non_central_chi_sq
	non_central_chi_sq_inv
	F_cdf
	F_inverse_cdf
	gamma_cdf
	gamma_inverse_cdf
	normal_cdf
	normal_inverse_cdf
	t_cdf
	t_inverse_cdf
	non_central_t_cdf
	non_central_t_inv_cdf

	Chapter 12: Random Number Generation
	Routines
	Usage Notes
	Overview of Random Number Generation
	Basic Uniform Generators
	The Multiplicative Congruential Generators
	Shuffled Generators
	The Generalized Feedback Shift Register Generator
	Setting the Seed
	Timing Considerations
	Distributions Other than the Uniform
	Tests

	random_binomial
	random_geometric
	random_hypergeometric
	random_logarithmic
	random_neg_binomial
	random_poisson
	random_uniform_discrete
	random_general_discrete
	discrete_table_setup
	random_beta
	random_cauchy
	random_chi_squared
	random_exponential
	random_exponential_mix
	random_gamma
	random_lognormal
	random_normal
	random_stable
	random_student_t
	random_triangular
	random_uniform
	random_von_mises
	random_weibull
	random_general_continuous
	continuous_table_setup
	random_normal_multivariate
	random_orthogonal_matrix
	random_mvar_from_data
	random_multinomial
	random_sphere
	random_table_twoway
	random_order_normal
	random_order_uniform
	random_arma
	random_npp
	random_permutation
	random_sample_indices
	random_sample
	random_option
	random_option_get
	random_seed_get
	random_substream_seed_get
	random_seed_set
	random_table_set
	random_table_get
	random_GFSR_table_set
	random_GFSR_table_get
	random_MT32_init
	random_MT32_table_get
	random_MT32_table_set
	random_MT64_init
	random_MT64_table_get
	random_MT64_table_set
	faure_next_point

	Chapter 13: Neural Networks
	Routines
	Usage Notes
	Neural Networks – An Overview
	Neural Networks – History and Terminology
	Network Applications

	Multilayer Feedforward Neural Networks
	Neural Network Error Calculations

	mlff_network
	mlff_network_trainer
	mlff_network_forecast
	scale_filter
	time_series_filter
	time_series_class_filter
	unsupervised_nominal_filter
	unsupervised_ordinal_filter

	Chapter 14: Printing Functions
	Routines
	write_matrix
	page
	write_options

	Chapter 15: Utilities
	Routines
	output_file
	version
	error_options
	error_code
	machine (integer)
	machine (float)
	data_sets
	mat_mul_rect
	permute_vector
	permute_matrix
	binomial_coefficient
	beta
	beta_incomplete
	log_beta
	gamma
	gamma_incomplete
	log_gamma
	ctime

	Reference Material
	User Errors
	What Determines Error Severity
	Kinds of Errors and Default Actions
	Errors in Lower-level Functions
	Functions for Error Handling
	Threads and Error Handling
	Use of Informational Error to Determine Program Action
	Additional Examples

	Product Support
	Contacting Visual Numerics Support

	Appendix A: References
	Appendix B: Alphabetical Summary of Routines
	Routines

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

