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Introduction 

IMSL C Stat Library 
The IMSL C Stat Library is a library of C functions useful in scientific programming. 
Each function is designed and documented to be used in research activities as well as 
by technical specialists. A number of the example programs also show graphs of 
resulting output.  

Getting Started 
To use any of the C Stat Library functions, you must first write a program in C to call 
the function. Each function conforms to established conventions in programming and 
documentation. First priority in development is given to efficient algorithms, clear 
documentation, and accurate results. The uniform design of the functions makes it easy 
to use more than one function in a given application. Also, you will find that the design 
consistency enables you to apply your experience with one C Stat Library function to 
all other C functions that you use. 

ANSI C vs. Non-ANSI C 
All of the examples in this documentation conform to ANSI C. If you are not using 
ANSI C, you will need to modify your examples in functions that are declared or in 
those arrays that are initialized as type float. 
Non-ANSI C does not allow for automatic aggregate initialization, and thus, all auto 
arrays that are initialized as type float in ANSI C must be initialized as type static float 
in non-ANSI C. The following program contains arrays that are initialized as type float 
and also a user-defined function: 

1 #include <imsls.h>  
2  
3 float           fcn(int, float[], int, float[]);  
4  
5 main()  
6 {  
7     int         n_observations = 3,  
8                 n_parameters = 1,  
9                 n_independent = 1; 
10    float       *theta_hat; 
11    float       x[3] = {1.0, 2.0, 3.0};  
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12    float       y[3] = {2.0, 4.0, 3.0}; 
13                     /* Evaluate the integral */  
14    theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters, 
15                n_observations, n_independent, x, y, 0); 
16                     /* Print the result and the exact answer */  
17    imsls_f_write_matrix("estimated coefficient", 1, 1, theta_hat, 0); 
18 } 
19 float fcn(int n_independent, float x[], int n_parameters,  
20           float theta[])  
21 {  
22    return exp(theta[0]*x[0]);  
23 } 

If using non-ANSI C, you will need to modify lines 3, 11, 12, 19, and 20 as follows: 
3  float          fcn(); /* Function is not prototyped */ 
     . 
     . 
     . 
11    static float       x[3] = {1.0, 2.0, 3.0};  
12    static float       y[3] = {2.0, 4.0, 3.0}; 
     . 
     . 
     . 
19  float fcn(n_independent, x, n_parameters, 
20            theta)     /*Declaration of variable names*/ 
20a int n_independent; 
20b float x[]; 
20c int n_parameters; 
20d float theta[];       /*Type definitions of variables*/ 

The imsls.h File 
The include file <imsls.h> is used in all the examples in this manual. This file 
contains prototypes for all IMSL-defined functions; the structures, Imsls_f_regression, 
Imsls_d_regression, Imsls_f_poly_regression, Imsls_d_poly_regression, Imsls_f_arma, 
and Imsls_d_arma; and the enumerated data types, 
Imsls_arma_method,Imsls_permute, Imsls_dummy_method, Imsls_write_options, 
Imsls_page_options, and Imsls_error.  

Thread Safe Usage 
On systems that support either POSIX threads or WIN32 threads, C Stat Library can be 
safely called from a multithreaded application.  When C Stat Library is used in a 
multithreaded application, the calling program must adhere to a few important 
guidelines. In particular, IMSL C Stat Library's implementation of signal handling, error 
handling, and I/O must be understood. 

Signal Handling 
When calling C Stat Library from a multithreaded application it is necessary to turn  
C Stat Library’ signal-handling capability off.  This is accomplished by making a 
single call to imsls_error_options before any calls are made to C Stat Library. For 
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an example of turning off  C Stat Library’ internal-signal handling , see Chapter 15, 
“Utilities”, Example 3 of imsls_error_options.  
C Stat Library 's error handling in a multithreaded application behaves similarly to how 
it behaves in a single-threaded application.  The major difference is that an error stack 
exists for each thread calling C Stat Library  functions.  The result of separate error 
stacks for each thread is greater control of the error handler options for each thread.  
Each thread can set its own options for the C Stat Library error handler using 
imsls_error_options.  For an example of setting error handler options for separate 
threads, see Chapter 15, “Utilities”, Example 3 of imsls_error_options.  

Routines that Produce Output 
A number of routines in C Stat Library can be used to produce output.  The function 
imsls_output_file can be used to control which file the output is directed.  In an 
application with a single thread of execution, a single call to imsls_output_file 
can be used to set the file to which the output will be directed.  In a multithreaded 
application each thread must call imsls_output_file to change the default setting 
of where output will be directed. See Chapter 15, “Utilities”, Example 2 of 
imsls_output_ file for more details. 

Input Arguments 
In a multithreaded application attention must be given to the data sent to C Stat 
Library. Some arguments that may appear to be input-only are temporarily modified 
during the call and restored before returning to the caller. Care must be used to avoid 
usage of the same data space in separate threads calling functions in C Stat Library. 

Matrix Storage Modes 
In this section, the word matrix is used to refer to a mathematical object and the word 
array is used to refer to its representation as a C data structure. In the following list 
of array types, the C Stat Library functions require input consisting of matrix 
dimension values and all values for the matrix entries. These values are stored in 
row-major order in the arrays. 

Each function processes the input array and typically returns a pointer to a “result.” For 
example, in solving linear regression, the pointer points to the estimated coefficients. 
Normally, the input array values are not changed by the functions. 
In the C Stat Library, an array is a pointer to a contiguous block of data. An array is not 
a pointer to a pointer to the rows of the matrix. Typical declarations are as follows: 
         float *a = {1, 2, 3, 4};  
         float b[2][2] = {1, 2, 3, 4};  
         float c[] = {1, 2, 3, 4}; 

Note: If you are using non-ANSI C and the variables are of type auto, the above 
declarations would need to be declared as type static float. 
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General Mode 
A general matrix is a square n × n matrix. The data type of a general array can be int, 
float, or double. 

Rectangular Mode 
A rectangular matrix is an m × n matrix. The data type of a rectangular array can be 
int, float, or double. 

Symmetric Mode 

A symmetric matrix is a square n × n matrix A, such that AT = A. (The matrix  
AT is the transpose of A.) The data type of a symmetric array can be int, float, or 
double. 

Memory Allocation for Output Arrays 
Many functions return a pointer to an array containing the computed answers. If the 
function invocation uses the optional arguments 
IMSLS_RETURN_USER, float a[] 
then the computed answers are stored in the user-provided array a, and the pointer 
returned by the function is set to point to the user-provided array a. If an invocation 
does not use IMSLS_RETURN_USER, then a pointer to the function is internally 
initialized (through a memory allocation request to malloc) and stores the answers 
there. (To release this space, free can be used. Both malloc and free are standard C 
library functions declared in the header.) In this way, the allocation of space for the 
computed answers can be made either by the user or internally by the function. 
Similarly, other optional arguments specify whether additional computed output arrays 
are allocated by the user or are to be allocated internally by the function. For example, 
in many functions, the optional arguments 
IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
specify two mutually exclusive optional arguments. If the first option is chosen,  
float **anova_table refers to the address of a pointer to an internally allocated array 
containing the analysis of variance statistics. On return, the pointer is initialized 
(through a memory allocation request to malloc), and the array is stored there. 
Typically, float *anova_table is declared, &anova_table is used as an argument to 
this function, and free(anova_table) is used to release the space. In the second 
option, the analysis of variance statistics are stored in the user-provided array 
anova_table. 

Finding the Right Function 
The C Stat Library documentation is organized into chapters; each chapter  contains 
functions with similar computational or analytical capabilities. To locate the right 
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function for a given problem, use either the table of contents located in each chapter 
introduction or the alphabetical summary at the end of this manual. 
Often, the quickest way to use the C Stat Library is to find an example similar to your 
problem, then mimic the example. Each function documented has at least one example 
demonstrating its application. 

Organization of the Documentation 
This manual contains a concise description of each function with at least one example 
demonstrating the use of each function, including sample input and results. All 
information pertaining to a particular function is in one place within a chapter.  
Each chapter begins with an introduction followed by a table of contents listing the 
functions included in the chapter. Documentation of the functions consists of the 
following information: 
• Section Name: Usually, the common root for the type float and type double 

versions of the function. 
• Purpose: A statement of the purpose of the function. 
• Synopsis: The form for referencing the subprogram with required arguments 

listed. 
Required Arguments: A description of the required arguments in the order of their 
occurrence. 
Input: Argument must be initialized; it is not changed by the function. 
Input/Output: Argument must be initialized; the function returns output through this 
argument. The argument cannot be a constant or an expression. 
Output: No initialization is necessary. The argument cannot be a constant or an 
expression; the function returns output through this argument. 

• Return Value: The value returned by the function. 
• Synopsis with Optional Arguments: The form for referencing the function 

with both required and optional arguments listed. 
• Optional Arguments: A description of the optional arguments in the order of 

their occurrence. 
• Description: A description of the algorithm and references to detailed 

information. In many cases, other IMSL functions with similar or 
complementary functions are noted. 

• Examples: At least one application of this function showing input and optional 
arguments. 

• Errors: Listing of any errors that may occur with a particular function. A 
discussion on error types is given in the “User Errors” section of the Reference 
Material. The errors are listed by their type as follows: 

Informational Errors: List of informational errors that may occur with the function. 
Alert Errors: List of alert errors that may occur with the function. 
Warning Errors: List of warning errors that may occur with the function. 
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Fatal Errors: List of fatal errors that may occur with the function. 
References: References are listed alphabetically by author. 

Naming Conventions 
Most functions are available in both a type float and a type double version, with names 
of the two versions sharing a common root. Some functions are also available in type 
int. The following list is of each type and the corresponding prefix of the function. 
name in which multiple type versions exist: 

Type Prefix 
float  imsls_f_ 

double  imsls_d_ 

int  imsls_i_ 

The section names for the functions contain only the common root to make finding the 
functions easier. For example, the functions imsls_f_simple_statistics and 
imsls_d_simple_statistics can be found in Chapter 1, Basic Statistics,  in the 
“simple_statistics” section. 
Where appropriate, the same variable name is used consistently throughout the C Stat 
Library. For example, anova_table denotes the array containing the analysis of 
variance statistics and y denotes a vector of responses for a dependent variable. 
When writing programs accessing the C Stat Library, choose C names that do not 
conflict with IMSL external names. The careful user can avoid any conflicts with 
IMSL names if, in choosing names, the following rule is observed: 

• Do not choose a name beginning with “imsls_” in any combination of 
uppercase or lowercase characters. 

Error Handling, Underflow, and Overflow 
The functions in the C Stat Library attempt to detect and report errors and invalid 
input. This error-handling capability provides automatic protection for the user without 
requiring the user to make any specific provisions for the treatment of error conditions. 
Errors are classified according to severity and are assigned a code number. By default, 
errors of moderate or higher severity result in messages being automatically printed by 
the function. Moreover, errors of highest severity cause program execution to stop. The 
severity level, as well as the general nature of the error, is designated by an “error type” 
with symbolic names IMSLS_FATAL, IMSLS_WARNING, etc. See the section “User 
Errors” in the Reference Material for further details. 
In general, the C Stat Library codes are written so that computations are not affected by 
underflow, provided the system (hardware or software) replaces an underflow with the 
value 0. Normally, system error messages indicating underflow can be ignored. 
IMSL codes also are written to avoid overflow. A program that produces system error 
messages indicating overflow should be examined for programming errors such as 
incorrect input data, mismatch of argument types, or improper dimensions. 
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In many cases, the documentation for a function points out common pitfalls that can 
lead to failure of the algorithm. 

Printing Results 
Most functions in the C Stat Library do not print any of the results; the output is 
returned in C variables. The C Stat Library does contain some special functions just for 
printing arrays. For example, IMSL function imsls_f_write_matrix is convenient 
for printing matrices of type float. See Chapter 13, “Printing Functions,” for detailed 
descriptions of these functions. 

Missing Values 
Some of the functions in the C Stat Library allow the data to contain missing values. 
These functions recognize as a missing value the special value referred to as “Not a 
Number” or NaN. The actual value is different on different computers, but it can be 
obtained by reference to the function imsls_f_machine, described in Chapter 15, 
“Utilities”. 
The way that missing values are treated depends on the individual function and is 
described in the documentation for the function. 

Passing Data to User-Supplied Functions  
In some cases it may be advantageous to pass problem-specific data to a user-supplied 
function through the IMSL C Stat Library interface.  This ability can be useful if a user-
supplied function requires data that is local to the user's calling function, and the user 
wants to avoid using global data to allow the user-supplied function to access the data.  
Functions in IMSL C Stat Library that accept user-supplied functions have an optional 
argument(s) that will accept an alternative user-supplied function, along with a pointer to 
the data,  that allows user-specified data to be passed to the function.  The example below 
demonstrates this feature using the IMSL C Stat Library function 
imsls_f_kolmogorov_one and optional argument IMSLS_FCN_W_DATA. 
 

#include <imsls.h> 
#include <stdio.h> 
float cdf_w_data(float, void *data_ptr); 
float cdf(float); 
void main() 
{ 
  float *statistics=NULL, *diffs = NULL, *x=NULL; 
  int nobs = 100, nmiss; 
  float usr_data[] = {0.5, .2886751}; 
 
  imsls_random_seed_set(123457); 
  x = imsls_f_random_uniform(nobs, 0); 
 
  statistics = imsls_f_kolmogorov_one(cdf, nobs, x, 
          IMSLS_N_MISSING, &nmiss, 
          IMSLS_DIFFERENCES, &diffs, 
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          IMSLS_FCN_W_DATA, cdf_w_data, usr_data, 
          0); 
  printf("D = %8.4f\n", diffs[0]); 
  printf("D+ = %8.4f\n", diffs[1]); 
  printf("D- = %8.4f\n", diffs[2]); 
  printf("Z = %8.4f\n", statistics[0]); 
  printf("Prob greater D one sided = %8.4f\n", statistics[1]); 
  printf("Prob greater D two sided = %8.4f\n", statistics[2]); 
  printf("N missing = %d\n", nmiss); 
} 
/*  
 * User function that accepts additional data in a (void*) pointer. 
 * This (void*) pointer can be cast to any type and dereferenced to  
 * get at any sort of data-type or structure that is needed.  
 * For example, to get at the data in this example 
 *  *((float*)data_ptr)   contains the value  0.5 
 *  *((float*)data_ptr+1) contains the value  0.2886751. 
 */ 
float cdf_w_data(float x, void *data_ptr) 
{ 
  float mean, std, z; 
  mean = *((float*)data_ptr); 
  std =  *((float*)data_ptr+1); 
 
  z = (x-mean)/std; 
  return(imsls_f_normal_cdf(z)); 
} 
/*  Dummy function to satisfy C prototypes. */ 
float cdf(float x) 
{ 
  return; 
}  
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Chapter 1: Basic Statistics 

Routines 
Simple Summary Statistics 

Univariate summary statistics simple_statistics 1  
Mean and variance inference  
for a single normal population normal_one_sample 7  
Inferences for two normal populations normal_two_sample 11  

Tabulate, Sort, and Rank 
Tally observations into a one-way frequency table table_oneway 17  
Tally observations into a two-way frequency table table_twoway 22  
Sort data with options to tally cases 
into a multi-way frequency table sort_data 26 
Ranks, normal scores, or exponential scores ranks 34 

Usage Notes 
The functions for computations of basic statistics generally have relatively simple 
arguments. In most cases, the first required argument is the number of observations. 
The data are input in either a one- or two-dimensional array. As usual, when a two-
dimensional array is used, the rows contain observations and the columns represent 
variables. Most of the functions in this chapter allow for missing values. Missing value 
codes can be set by using function imsls_f_machine, described in Chapter 15, 
“Utilities”. 
Several functions in this chapter perform statistical tests. These functions generally 
return a “p-value” for the test, often as the return value for the C function. The p-value 
is between 0 and 1 and is the probability of observing data that would yield a test 
statistic as extreme or more extreme under the assumption of the null hypothesis. 
Hence, a small p-value is evidence for the rejection of the null hypothesis. 

simple_statistics 
Computes basic univariate statistics. 

Synopsis 
#include <imsls.h> 
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float *imsls_f_simple_statistics (int n_observations, int n_variables, 
float x[], ..., 0) 

The type double function is imsls_d_simple_statistics. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

int n_variables   (Input) 
Number of variables. 

float x[]   (Input) 
Array of size n_observations × n_variables containing the data matrix. 

Return Value 
A pointer to an array containing some simple statistics for each of the columns in x. If 
IMSLS_MEDIAN and IMSLS_MEDIAN_AND_SCALE are not used as optional arguments, 
the size of the matrix is 14 × n_variables. The columns of this matrix correspond to 
the columns of x, and the rows contain the following statistics: 
 

Row Statistic 
0 mean 

1 variance 

2 standard deviation 

3 coefficient of skewness 

4 coefficient of excess (kurtosis) 

5 minimum value 

6 maximum value 

7 range 

8 coefficient of variation (when defined) 
If the coefficient of variation is not defined, 0 is returned. 

9 number of observations (the counts) 

10 lower confidence limit for the mean (assuming normality) 
The default is a 95-percent confidence interval. 

11 upper confidence limit for the mean (assuming normality) 

12 lower confidence limit for the variance (assuming normality) 
The default is a 95-percent confidence interval. 

13 upper confidence limit for the variance (assuming normality)) 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_simple_statistics (int n_observations, int n_variables, 

float x[], 
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IMSLS_CONFIDENCE_MEANS, float confidence_means, 
IMSLS_CONFIDENCE_VARIANCES, float confidence_variances, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_STAT_COL_DIM, int stat_col_dim, 
IMSLS_MEDIAN, or 
IMSLS_MEDIAN_AND_SCALE, 
IMSLS_MISSING_LISTWISE, or 
IMSLS_MISSING_ELEMENTWISE, 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_WEIGHTS, float weights[], 
IMSLS_RETURN_USER, float simple_statistics[], 
0) 

Optional Arguments 

IMSLS_CONFIDENCE_MEANS, float confidence_means   (Input) 
Confidence level for a two-sided interval estimate of the means (assuming 
normality) in percent. Argument confidence_means must be between 0.0 
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval 
with confidence level c, set confidence_means = 100.0 − 2(100 − c). If 
IMSLS_CONFIDENCE_MEANS is not specified, a 95-percent confidence 
interval is computed. 

IMSLS_CONFIDENCE_VARIANCES, float confidence_variances   (Input) 
The confidence level for a two-sided interval estimate of the variances 
(assuming normality) in percent. The confidence intervals are symmetric in 
probability (rather than in length). For a one-sided confidence interval with 
confidence level c, set confidence_means  = 100.0 − 2(100 − c). If 
IMSLS_CONFIDENCE_VARIANCES is not specified, a 95-percent confidence 
interval is computed. 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of array x. 
Default: x_col_dim = n_variables 

IMSLS_STAT_COL_DIM, int stat_col_dim   (Input) 
Column dimension of the returned value array, or if IMSLS_RETURN_USER is 
specified, the column dimension of array simple_statistics. 
Default: stat_col_dim = n_variables 

IMSLS_MEDIAN, or 
IMSLS_MEDIAN_AND_SCALE 

Exactly one of these optional arguments can be specified in order to indicate 
the additional simple robust statistics to be computed. If IMSLS_MEDIAN is 
specified, the medians are computed and stored in one additional row (row 
number 14) in the returned matrix of simple statistics. If 
IMSLS_MEDIAN_AND_SCALE is specified, the medians, the medians of the 
absolute deviations from the medians, and a simple robust estimate of scale 
are computed, then stored in three additional rows (rows 14, 15, and 16) in the 
returned matrix of simple statistics. 
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IMSLS_MISSING_LISTWISE, or 
IMSLS_MISSING_ELEMENTWISE 

If IMSLS_MISSING_ELEMENTWISE is specified, all non missing data for any 
variable is used in computing the statistics for that variable. If 
IMSLS_MISSING_LISTWISE is specified and if an observation (row of x) 
contains a missing value, the observation is excluded from computations for all 
variables. The default is IMSLS_MISSING_LISTWISE. In either case, if weights 
and/or frequencies are specified and the value of the weight and/or frequency is 
missing, the observation is excluded from computations for all variables. 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency for each 
observation. 
Default: Each observation has a frequency of 1 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_observations containing the weight for each 
observation. 
Default: Each observation has a weight of 1 

IMSLS_RETURN_USER, float simple_statistics[]   (Output) 
User-supplied array containing the matrix of statistics. If neither 
IMSLS_MEDIAN nor IMSLS_MEDIAN_AND_SCALE is specified, the matrix is 
14 × n_variables. If IMSLS_MEDIAN is specified, the matrix is 15 ×
 n_variables. If IMSLS_MEDIAN_AND_SCALE is specified, the matrix is 
17 × n_variables. 

Description 
For the data in each column of x, imsls_f_simple_statistics computes the 
sample mean, variance, minimum, maximum, and other basic statistics. This function 
also computes confidence intervals for the mean and variance (under the hypothesis 
that the sample is from a normal population). 
Frequencies are interpreted as multiple occurrences of the other values in the 
observations. In other words, a row of x with a frequency variable having a value of 2 
has the same effect as two rows with frequencies of 1. The total of the frequencies is 
used in computing all the statistics based on moments (mean, variance, skewness, and 
kurtosis). Weights are not viewed as replication factors. The sum of the weights is used 
only in computing the mean (the weighted mean is used in computing the central 
moments). Both weights and frequencies can be 0, but neither can be negative. In 
general, a 0 frequency means that the row is to be eliminated from the analysis; no 
further processing or error checking is done on the row. A weight of 0 results in the 
row being counted, and updates are made of the statistics. 
The definitions of some of the statistics are given below in terms of a single variable x 
of which the i-th datum is xi. 
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Median 

median
middle  after sorting if  is odd
average of middle two ' s if  is even

x
x n

x ni
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Median Absolute Deviation 

MAD = median {|xi − median {xj}|} 

Simple Robust Estimate of Scale 

MAD/Φ-1(3/4) 

where Φ-1(3/4) ≈ 0.6745 is the inverse of the standard normal distribution function 
evaluated at 3/4. This standardizes MAD in order to make the scale estimate consistent 
at the normal distribution for estimating the standard deviation (Huber 1981, pp. 
107−108). 

Example 
Data from Draper and Smith (1981) are used in this example, which includes  
5 variables and 13 observations. 

#include <imsls.h> 
 
#define N_VARIABLES             5 
#define N_OBSERVATIONS         13 
 
main() 
{ 
    float       *simple_statistics; 
    float       x[] = { 
         7., 26.,  6., 60.,  78.5, 
         1., 29., 15., 52.,  74.3, 
        11., 56.,  8., 20., 104.3, 
        11., 31.,  8., 47.,  87.6, 
         7., 52.,  6., 33.,  95.9, 
        11., 55.,  9., 22., 109.2, 
         3., 71., 17.,  6., 102.7, 
         1., 31., 22., 44.,  72.5, 
         2., 54., 18., 22.,  93.1, 
        21., 47.,  4., 26., 115.9, 
         1., 40., 23., 34.,  83.8, 
        11., 66.,  9., 12., 113.3, 
        10., 68.,  8., 12., 109.4}; 
    char        *row_labels[] = { 
        "means", "variances", "std. dev", "skewness", "kurtosis",  
        "minima", "maxima", "ranges", "C.V.", "counts", "lower mean",  
        "upper mean", "lower var", "upper var"}; 
 
    simple_statistics = imsls_f_simple_statistics(N_OBSERVATIONS, 
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        N_VARIABLES, x, 0); 
 
    imsls_f_write_matrix("* * * Statistics * * *\n", 14, N_VARIABLES, 
        simple_statistics, 
        IMSLS_ROW_LABELS,  row_labels, 
        IMSLS_WRITE_FORMAT, "%7.3f", 0); 
} 

Output 
                * * * Statistics * * * 
 
                  1        2        3        4        5 
means         7.462   48.154   11.769   30.000   95.423 
variances    34.603  242.141   41.026  280.167  226.314 
std. dev      5.882   15.561    6.405   16.738   15.044 
skewness      0.688   -0.047    0.611    0.330   -0.195 
kurtosis      0.075   -1.323   -1.079   -1.014   -1.342 
minima        1.000   26.000    4.000    6.000   72.500 
maxima       21.000   71.000   23.000   60.000  115.900 
ranges       20.000   45.000   19.000   54.000   43.400 
C.V.          0.788    0.323    0.544    0.558    0.158 
counts       13.000   13.000   13.000   13.000   13.000 
lower mean    3.907   38.750    7.899   19.885   86.332 
upper mean   11.016   57.557   15.640   40.115  104.514 
lower var    17.793  124.512   21.096  144.065  116.373 
upper var    94.289  659.817  111.792  763.434  616.688 

normal_one_sample 
Computes statistics for mean and variance inferences using a sample from a normal 
population. 

Synopsis 
#include <imsls.h> 
float imsls_f_normal_one_sample (int n_observations, float x[], ..., 0) 
The type double function is imsls_d_normal_one_sample. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations. 

Return Value 
The mean of the sample. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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float imsls_f_normal_one_sample (int n_observations, float x[], 
IMSLS_CONFIDENCE_MEAN, float confidence_mean, 
IMSLS_CI_MEAN, float *lower_limit, float *upper_limit, 
IMSLS_STD_DEV, float *std_dev, 
IMSLS_T_TEST, int *df, float *t, float *p_value, 
IMSLS_T_TEST_NULL, float mean_hypothesis_value, 
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance, 
IMSLS_CI_VARIANCE, float *lower_limit,  float *upper_limit, 
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, 
 float *p_value, 
IMSLS_CHI_SQUARED_TEST_NULL, 
 float variance_hypothesis_value, 
0) 

Optional Arguments 

IMSLS_CONFIDENCE_MEAN, float confidence_mean   (Input) 
Confidence level (in percent) for two-sided interval estimate of the mean. 
Argument confidence_mean must be between 0.0 and 100.0 and is often 
90.0, 95.0, or 99.0. For a one-sided confidence interval with confidence level 
c (at least 50 percent), set confidence_mean = 100.0 − 2.0 × (100.0 − c). If 
IMSLS_CONFIDENCE_MEAN is not specified, a 95-percent confidence interval 
is computed. 

IMSLS_CI_MEAN, float *lower_limit, float *upper_limit   (Output) 
Argument lower_limit contains the lower confidence limit for the mean, 
and argument upper_limit contains the upper confidence limit for the 
mean. 

IMSLS_STD_DEV, float *std_dev   (Output) 
Standard deviation of the sample. 

IMSLS_T_TEST, int *df, float *t, float *p_value   (Output) 
Argument df is the degrees of freedom associated with the t test for the mean, 
t is the test statistic, and p_value is the probability of a larger  
t in absolute value. The t test is a test, against a two-sided alternative, of the 
hypothesis μ = μ0, where μ0 is the null hypothesis value as described in 
IMSLS_T_TEST_NULL. 

IMSLS_T_TEST_NULL, float mean_hypothesis_value   (Input) 
Null hypothesis value for t test for the mean. 
Default: mean_hypothesis_value = 0.0 

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance   (Input) 
Confidence level (in percent) for two-sided interval estimate of the variances. 
Argument confidence_variance must be between 0.0 and 100.0 and is 
often 90.0, 95.0, 99.0. For a one-sided confidence interval with confidence 
level c (at least 50 percent), set confidence_variance = 100.0 − 2.0 × 
(100.0 − c). If this option is not used, a 95-percent confidence interval is 
computed. 
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IMSLS_CI_VARIANCE, float *lower_limit, float *upper_limit   (Output) 
Contains the lower and upper confidence limits for the variance. 

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value   
(Output) 
Argument df is the degrees of freedom associated with the chi-squared test 
for variances, chi_squared is the test statistic, and p_value is the 
probability of a larger chi-squared. The chi-squared test is a test of the 
hypothesis σ σ σ2

0
2

0
2=  where 

 
is the null hypothesis value as described in 

IMSLS_CHI_SQUARED_TEST_NULL. 

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value   (Input) 
Null hypothesis value for the chi-squared test. 
Default: variance_hypothesis_value = 1.0 

Description 
Statistics for mean and variance inferences using a sample from a normal population 
are computed, including confidence intervals and tests for both mean and variance. The 
definitions of mean and variance are given below. The summation in each case is over 
the set of valid observations, based on the presence of missing values in the data. 
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where s is given above. This quantity has a χ2 distribution with n − 1 degrees of 
freedom. 

Examples  

Example 1 
This example uses data from Devore (1982, p. 335), which is based on data published 
in the Journal of Materials. There are 15 observations; the mean is the only output.  

#include <imsls.h> 
 
main() 
{ 
#define N_OBSERVATIONS 15 
 
    float  mean; 
    float x[N_OBSERVATIONS] = { 
        26.7, 25.8, 24.0, 24.9, 26.4,  
        25.9, 24.4, 21.7, 24.1, 25.9,  
        27.3, 26.9, 27.3, 24.8, 23.6}; 
 
                     /* Perform analysis */ 
    mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x, 0); 
             
                     /* Print results */ 
    printf("Sample Mean = %5.2f", mean); 
} 

Output 
Sample Mean = 25.3 

Example 2 
This example uses the same data as the initial example. The hypothesis H0: μ = 20.0 is 
tested. The extremely large t value and the correspondingly  
small p-value provide strong evidence to reject the null hypothesis. 

#include <imsls.h> 
 
main() 
{ 
#define N_OBSERVATIONS 15 
 
    int     df; 
    float  mean, s, lower_limit, upper_limit, t, p_value; 
    static float x[N_OBSERVATIONS] = { 
        26.7, 25.8, 24.0, 24.9, 26.4,  
        25.9, 24.4, 21.7, 24.1, 25.9,  
        27.3, 26.9, 27.3, 24.8, 23.6}; 
 
                     /* Perform analysis +*/ 
    mean = imsls_f_normal_one_sample(N_OBSERVATIONS, x,  
        IMSLS_STD_DEV, &s, 
        IMSLS_CI_MEAN, &lower_limit, &upper_limit, 
        IMSLS_T_TEST_NULL, 20.0, 
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        IMSLS_T_TEST, &df, &t, &p_value, 
        0); 
             
                     /* Print results */ 
    printf("Sample Mean               = %5.2f\n", mean); 
    printf("Sample Standard Deviation = %5.2f\n", s); 
    printf("95%% CI for the mean is (%5.2f,%5.2f)\n", lower_limit,  
        upper_limit); 
    printf("df = %3d\n", df); 
    printf("t = %5.2f\n", t); 
    printf("p-value = %8.5f\n", p_value); 
} 

Output 
Sample Mean               = 25.31 
Sample Standard Deviation =  1.58 
95% CI for the mean is (24.44,26.19) 
df =  14 
t = 13.03 
p-value =  0.00000 

normal_two_sample 
Computes statistics for mean and variance inferences using samples from two normal 
populations. 

Synopsis 
#include <imsls.h> 
float imsls_f_normal_two_sample (int n1_observations, float x1[], 

int n2_observations, float x2[], ..., 0) 
The type double function is imsls_d_normal_two_sample. 

Required Arguments 

int n1_observations   (Input) 
Number of observations in the first sample, x1. 

float x1[]   (Input) 
Array of length n1_observations containing the first sample. 

int n2_observations   (Input) 
Number of observations in the second sample, x2. 

float x2[]   (Input) 
Array of length n2_observations containing the second sample. 

Return Value 
Difference in means, x1_mean − x2_mean. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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float imsls_f_normal_two_sample (int n1_observations, float x1[], 
int n2_observations, float x2[], 
IMSLS_MEANS, float *x1_mean, float *x2_mean, 
IMSLS_CONFIDENCE_MEAN, float confidence_mean, 
IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit, 
 float *upper_limit, 
IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit, 
 float *upper_limit 
IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t,  float *p_value, 
IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, 
 float *p_value, 
IMSLS_T_TEST_NULL, float mean_hypothesis_value, 
IMSLS_POOLED_VARIANCE, float *pooled_variance, 
IMSLS_CONFIDENCE_VARIANCE, float confidence_variance, 
IMSLS_CI_COMMON_VARIANCE, float *lower_limit, 
 float *upper_limit, 
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, 
 float *p_value, 
IMSLS_CHI_SQUARED_TEST_NULL, 
 float variance_hypothesis_value, 
IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev, 
IMSLS_CI_RATIO_VARIANCES, float *lower_limit, 
 float *upper_limit, 
IMSLS_F_TEST, int *df_numerator, int *df_denominator,  float *F, 
float *p_value, 
0) 

Optional Arguments 

IMSLS_MEANS, float *x1_mean, float *x2_mean   (Output) 
Means of the first and second samples. 

IMSLS_CONFIDENCE_MEAN, float confidence_mean   (Input) 
Confidence level for two-sided interval estimate of the mean of x1 minus the 
mean of x2, in percent. Argument confidence_mean must be between 0.0 
and 100.0 and is often 90.0, 95.0, or 99.0. For a one-sided confidence interval 
with confidence level c (at least 50 percent), set 
confidence_mean = 100.0 − 2.0 × (100.0 − c). 
Default: confidence_mean = 95.0 

IMSLS_CI_DIFF_FOR_EQUAL_VARS, float *lower_limit, float *upper_limit   
(Output) 
Argument lower_limit contains the lower confidence limit, and 
upper_limit contains the upper limit for the mean of the first population 
minus the mean of the second, assuming equal variances.  

IMSLS_CI_DIFF_FOR_UNEQUAL_VARS, float *lower_limit, 
float *upper_limit   (Output) 
Argument lower_limit contains the approximate lower confidence limit, 
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and upper_limit contains the approximate upper limit for the mean of the 
first population minus the mean of the second, assuming unequal variances. 

IMSLS_T_TEST_FOR_EQUAL_VARS, int *df, float *t, float *p_value   (Output) 
A t test for μ1 − μ2 = c, where c is the null hypothesis value. (See the 
description of IMSLS_T_TEST_NULL.) Argument df contains the degrees of 
freedom, argument t contains the t value, and argument p_value contains the 
probability of a larger t in absolute value, assuming equal means. This test 
assumes equal variances. 

IMSLS_T_TEST_FOR_UNEQUAL_VARS, float *df, float *t, float *p_value   
(Output) 
A t test for μ1 − μ2 = c, where c is the null hypothesis value. (See the 
description of IMSLS_T_TEST_NULL.) Argument df contains the degrees of 
freedom for Satterthwaite’s approximation, argument t contains the t value, 
and argument p_value contains the approximate probability of a larger t in 
absolute value, assuming equal means. This test does not assume equal 
variances. 

IMSLS_T_TEST_NULL, float mean_hypothesis_value   (Input) 
Null hypothesis value for the t test.  
Default: mean_hypothesis_value = 0.0 

IMSLS_POOLED_VARIANCE, float *pooled_variance   (Output) 
Pooled variance for the two samples. 

IMSLS_CONFIDENCE_VARIANCE, float confidence_variance   (Input) 
Confidence level for inference on variances. Under the assumption of equal 
variances, the pooled variance is used to obtain a two-sided 
confidence_variance percent confidence interval for the common 
variance if IMSLS_CI_COMMON_VARIANCE is specified. Without making the 
assumption of equal variances, the ratio of the variances is of interest. A two-
sided confidence_variance percent confidence interval for the ratio of the 
variance of the first sample to that of the second sample is computed and is 
returned if IMSLS_CI_RATIO_VARIANCES is specified. The confidence 
intervals are symmetric in probability.  
Default: confidence_variance = 95.0 

IMSLS_CI_COMMON_VARIANCE, float *lower_limit, float *upper_limit   
(Output) 
Argument lower_limit contains the lower confidence limit, and 
upper_limit contains the upper limit for the common, or pooled, variance.  

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value   
(Output) 
The chi-squared test for σ σ σ2

0
2 2=  where 

 
is the common, or pooled, 

variance, and σ0
2

 
is the null hypothesis value. (See description of 

IMSLS_CHI_SQUARED_TEST_NULL.) Argument df contains the degrees of 
freedom, argument chi_squared contains the chi-squared value, and 
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argument p_value contains the probability of a larger chi-squared in absolute 
value, assuming equal means. 

IMSLS_CHI_SQUARED_TEST_NULL, float variance_hypothesis_value   (Input) 
Null hypothesis value for the chi-squared test. 
Default: variance_hypothesis_value = 1.0 

IMSLS_STD_DEVS, float *x1_std_dev, float *x2_std_dev   (Output) 
Standard deviations of the first and second samples. 

IMSLS_CI_RATIO_VARIANCES, float *lower_limit, float *upper_limit   
(Output) 
Argument lower_limit contains the approximate lower confidence limit, 
and upper_limit contains the approximate upper limit for the ratio of the 
variance of the first population to the second. 

IMSLS_F_TEST, int *df_numerator, int *df_denominator, float *F, 
float *p_value   (Output) 
The F test for equality of variances. Argument df_numerator and 
df_denominator contain the numerator degrees of freedom, argument F 
contains the F test value, and argument p_value contains the probability of a 
larger F in absolute value, assuming equal variances. 

Description 
Function imsls_f_normal_two_sample computes statistics for making inferences 
about the means and variances of two normal populations, using independent samples 
in x1 and x2. For inferences concerning parameters of a single normal population, see 
function imsls_normal_one_sample. 

Let μ1 and σ1
2  be the mean and variance of the first population, and let μ2 and σ2

2  be 
the corresponding quantities of the second population. The function contains test 
confidence intervals for difference in means, equality of variances, and the pooled 
variance. 
The means and variances for the two samples are as follows: 

x x n x x ni i1 1 1 2 2 2= =∑ ∑( / ), ( ) /
 

and 

s x x n s x x ni i1
2

1 1
2

1 2
2

2 2
2

21 1= − − = − −∑ ∑( ) / , /b g b g b g
 

Inferences about the Means 
The test that the difference in means equals a certain value, for example, μ0, depends 
on whether or not the variances of the two populations can be considered equal. If the 
variances are equal and mean_hypothesis_value equals 0, the test is the two-
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sample t test, which is equivalent to an analysis-of-variance test. The pooled variance 
for the difference-in-means test is as follows: 

s
n s n s

n n
2 1 1 2 2

1 2

1 1
2

=
− + −

+ −
b g b g

 

The t statistic is as follows: 

t x x
s n n

=
− −

+
1 2 0

1 21 1
μ

/ /b g b g  

Also, the confidence interval for the difference in means can be obtained by specifying 
IMSLS_CI_DIFF_FOR_EQUAL_VARS. 
If the population variances are not equal, the ordinary t statistic does not have a  
t distribution and several approximate tests for the equality of means have been 
proposed. (See, for example, Anderson and Bancroft 1952, and Kendall and Stuart 
1979.) One of the earliest tests devised for this situation is the Fisher-Behrens test, 
based on Fisher’s concept of fiducial probability. A procedure used if 
IMSLS_T_TEST_FOR_UNEQUAL_VARS and/or IMSLS_CI_DIFF_FOR_UNEQUAL_VARS 
are specified is the Satterthwaite’s procedure, as suggested by H.F. Smith and modified 
by F.E. Satterthwaite (Anderson and Bancroft 1952, p. 83). 
The test statistic is 

′ = − −t x x sd1 2 0μb g /
 

where 

s s n s nd = +1
2

1 2
2

2/ /e j e j  

Under the null hypothesis of μ1 − μ2 = c, this quantity has an approximate t distribution 
with degrees of freedom df (in IMSLS_T_TEST_FOR_UNEQUAL_VARS), given by the 
following equation: 

df =

−
+

−

s

s n

n

s n

n

d
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1
2

1
2

1

2
2

2
2

21 1

/ /e j e j  

Inferences about Variances 

The F statistic for testing the equality of variances is given by F s s= max min/2 2 , where 

smax
2  is the larger of s1

2  and s2
2 . If the variances are equal, this quantity has an F 

distribution with n1 − 1 and n2 − 1 degrees of freedom. 
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It is generally not recommended that the results of the F test be used to decide whether 
to use the regular t test or the modified t′ on a single set of data. The modified t′ 
(Satterthwaite’s procedure) is the more conservative approach to use if there is doubt 
about the equality of the variances. 

Examples  

Example 1 
This example, taken from Conover and Iman (1983, p. 294), involves scores on 
arithmetic tests of two grade-school classes. The question is whether a group taught by 
an experimental method has a higher mean score. Only the difference in means is 
output. The data are shown below. 
Scores for Standard Group Scores for Experimental Group 

72 111 
75 118 
77 128 
80 138 
104 140 
110 150 
125 163 

 164 
 169 

 

#include <imsls.h> 
 
main() 
{ 
#define N1_OBSERVATIONS 7 
#define N2_OBSERVATIONS 9 
 
    float  diff_means; 
    float x1[N1_OBSERVATIONS] = { 
        72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0}; 
    float x2[N2_OBSERVATIONS] = { 
        111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,  
        164.0, 169.0}; 
 
                     /* Perform analysis */ 
    diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,  
        N2_OBSERVATIONS, x2, 0); 
             
                     /* Print results */ 
    printf("\nx1_mean - x2_mean = %5.2f\n", diff_means); 
} 

Output 
x1_mean - x2_mean = -50.48 
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Example 2 
The same data is used for this example as for the initial example. Here, the results of 
the t test are output. The variances of the two populations are assumed to be equal. It is 
seen from the output that there is strong reason to believe that the two means are 
different (t value of −4.804). Since the lower 97.5-percent confidence limit does not 
include 0, the null hypothesis is that μ1 ≤ μ2 would be rejected at the 0.05 significance 
level. (The closeness of the values of the sample variances provides some qualitative 
substantiation of the assumption of equal variances.) 

#include <imsls.h> 
 
main() 
{ 
#define N1_OBSERVATIONS 7 
#define N2_OBSERVATIONS 9 
 
    int    df; 
    float  diff_means, lower_limit, upper_limit, t, p_value, sp2; 
    float x1[N1_OBSERVATIONS] = { 
        72.0, 75.0, 77.0, 80.0, 104.0, 110.0, 125.0}; 
    float x2[N2_OBSERVATIONS] = { 
        111.0, 118.0, 128.0, 138.0, 140.0, 150.0, 163.0,  
        164.0, 169.0}; 
 
                     /* Perform analysis */ 
    diff_means = imsls_f_normal_two_sample(N1_OBSERVATIONS, x1,  
        N2_OBSERVATIONS, x2,  
        IMSLS_POOLED_VARIANCE, &sp2, 
        IMSLS_CI_DIFF_FOR_EQUAL_VARS, &lower_limit, &upper_limit, 
        IMSLS_T_TEST_FOR_EQUAL_VARS, &df, &t, &p_value, 
        0); 
             
                     /* Print results */ 
    printf("\nx1_mean - x2_mean = %5.2f\n", diff_means); 
    printf("Pooled variance = %5.2f\n", sp2); 
    printf("95%% CI for x1_mean - x2_mean is (%5.2f,%5.2f)\n",  
        lower_limit, upper_limit); 
    printf("df = %3d\n", df); 
    printf("t = %5.2f\n", t); 
    printf("p-value = %8.5f\n", p_value); 
} 

Output 
x1_mean - x2_mean = -50.48 
Pooled variance = 434.63 
95% CI for x1_mean - x2_mean is (-73.01,-27.94) 
df =  14 
t = -4.80 
p-value =  0.00028 

table_oneway 
Tallies observations into a one-way frequency table. 
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Synopsis 
#include <imsls.h> 
float *imsls_f_table_oneway (int n_observations, float x[],  

int n_intervals, ..., 0) 
The type double function is imsls_d_table_oneway. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the observations. 

int n_intervals   (Input) 
Number of intervals (bins). 

Return Value 
Pointer to an array of length n_intervals containing the counts. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_table_oneway (int n_observations, float x[], 

int n_intervals, 
IMSLS_DATA_BOUNDS, float *minimum, float *maximum, or 
IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound, or 
IMSLS_CUTPOINTS, float cutpoints[], or 
IMSLS_CLASS_MARKS, float class_marks[],  
IMSLS_RETURN_USER, float table[],  
0) 

Optional Arguments 

IMSLS_DATA_BOUNDS, float *minimum, float *maximum   (Output) 
If none is specified or if IMSLS_DATA_BOUNDS is specified, n_intervals 
intervals of equal length are used with the initial interval starting with the 
minimum value in x and the last interval ending with the maximum value in x. 
The initial interval is closed on the left and right. The remaining intervals are 
open on the left and closed on the right. When IMSLS_DATA_BOUNDS is 
explicitly specified, the minimum and maximum values in x are output in 
minimum and maximum. With this option, each interval is of length 
(maximum − minimum)/n_intervals. 

 or 

IMSLS_KNOWN_BOUNDS, float lower_bound, float upper_bound   (Input) 
If IMSLS_KNOWN_BOUNDS is specified, two semi-infinite intervals are used as 
the initial and last intervals. The initial interval is closed on the right and 
includes lower_bound as its right endpoint. The last interval is open on the 
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left and includes all values greater than upper_bound. The remaining 
n_intervals − 2 intervals are each of length 

upper_bound lower_bound

n_intervals

-
 − 2  

and are open on the left and closed on the right. Argument n_intervals 
must be greater than or equal to 3 for this option.  
or 

IMSLS_CUTPOINTS, float cutpoints[]   (Input) 
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be provided in 
the array cutpoints of length n_intervals − 1. This option allows 
unequal interval lengths. The initial interval is closed on the right and includes 
the initial cutpoint as its right endpoint. The last interval is open on the left 
and includes all values greater than the last cutpoint. The remaining 
n_intervals − 2 intervals are open on the left and closed on the right. 
Argument n_interval must be greater than or equal to 3 for this option. 

 or 

IMSLS_CLASS_MARKS, float class_marks[]   (Input) 
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in ascending 
order must be provided in the array class_marks of length n_intervals. 
The class marks are the midpoints of each of the n_intervals. Each interval 
is assumed to have length class_marks [1] − class_marks [0]. Argument 
n_intervals must be greater than or equal to 2 for this option.  

None or exactly one of the four optional arguments described above can be 
specified in order to define the intervals or bins for the one-way table. 

IMSLS_RETURN_USER, float table[]   (Output) 
Counts are stored in the array table of length n_intervals, which is 
provided by the user. 

Examples  

Example 1 
The data for this example is from Hinkley (1977) and Velleman and Hoaglin (1981). 
The measurements (in inches) are for precipitation in Minneapolis/St. Paul during the 
month of March for 30 consecutive years. 

#include <imsls.h> 
main() 
{ 
    int     n_intervals=10; 
    int     n_observations=30; 
    float   *table; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
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    table = imsls_f_table_oneway (n_observations, x, n_intervals, 0); 
    imsls_f_write_matrix("counts", 1, n_intervals, table, 0); 
  } 

Output 
                               counts 
         1          2          3          4          5          6 
         4          8          5          5          3          1 
  
         7          8          9          10 
         3          0          0          1 

Example 2 
In this example, IMSLS_KNOWN_BOUNDS is used, and lower_bound = 0.5 and 
upper_bound = 4.5 are set so that the eight interior intervals each have width  
(4.5 − 0.5)/(10 − 2) = 0.5. The 10 intervals are (−∞, 0.5], (0.5, 1.0], …, (4.0, 4.5], and 
(4.5, ∞]. 

#include <imsls.h> 
main() 
{ 
    int     n_observations=30; 
    int     n_intervals=10; 
    float   *table; 
    float   lower_bound=0.5, upper_bound=4.5; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    table = imsls_f_table_oneway (n_observations, x, n_intervals, 
                                IMSLS_KNOWN_BOUNDS, lower_bound,  
                                upper_bound, 
                                0); 
    imsls_f_write_matrix("counts", 1, n_intervals, table, 0); 
  } 

Output 
                                counts 
         1           2           3           4           5           6 
         2           7           6           6           4           2 
  
         7           8           9          10 
         2           0           0           1 

Example 3 
In this example, 10 class marks, 0.25, 0.75, 1.25, ..., 4.75, are input. This defines the 
class intervals (0.0, 0.5], (0.5, 1.0], ..., (4.0, 4.5], (4.5, 5.0]. Note that unlike the 
previous example, the initial and last intervals are the same length as the remaining 
intervals. 

#include <imsls.h> 
main() 
{ 
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    int        n_intervals=10; 
    int        n_observations=30; 
    double     *table; 
    double     x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47,  
                      1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 
                      0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 
                      1.87, 1.18, 1.35, 4.75, 2.48, 0.96,1.89,  
                      0.90, 2.05}; 
    double     class_marks[] = {0.25, 0.75, 1.25, 1.75, 2.25,  
                                2.75, 3.25,3.75, 4.25, 4.75}; 
    table = imsls_d_table_oneway (n_observations, x, n_intervals, 
                                IMSLS_CLASS_MARKS, class_marks, 
                                0); 
    imsls_d_write_matrix("counts", 1, n_intervals, table, 0); 
  } 

 

 

Output 
                                counts 
         1           2           3           4           5           6 
         2           7           6           6           4           2 
  
         7           8           9          10 
         2           0           0           1 

Example 4 
In this example, cutpoints, 0.5, 1.0, 1.5, 2.0, ..., 4.5, are input to define the same 10 
intervals as in Example 2. Here again, the initial and last intervals are semi-infinite 
intervals. 

#include <imsls.h> 
main() 
{ 
    int        n_intervals=10; 
    int        n_observations=30; 
    double     *table; 
    double     x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 
                      1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10,  
                      0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 
                      1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 
                      0.90, 2.05}; 
    double     cutpoints[] = {0.5, 1.0, 1.5, 2.0, 2.5,  
                              3.0, 3.5, 4.0, 4.5}; 
    table = imsls_d_table_oneway (n_observations, x, n_intervals,  
                                IMSLS_CUTPOINTS, cutpoints,  
                                0); 
    imsls_d_write_matrix("counts", 1, n_intervals, table, 0); 
  } 
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Output 
                                counts 
         1          2          3          4          5           6 
         2          7          6          6          4           2 
         7          8          9          10 
         2          0          0          1 

table_twoway 
Tallies observations into two-way frequency table. 

Synopsis 
#include <imsls.h> 

float *imsls_f_table_twoway (int n_observations, float x[], float y[], 
int nx, int ny, ..., 0) 

The type double function is imsls_d_table_twoway. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the data for the first variable. 

float y[]   (Input) 
Array of length n_observations containing the data for the second variable. 

int nx   (Input) 
Number of intervals (bins) for variable x. 

int nx   (Input) 
Number of intervals (bins) for variable y. 

Return Value 
Pointer to an array of size nx by ny containing the counts. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_table_twoway (int n_observations, float x[], float y[],  

int nx, int ny, 
IMSLS_DATA_BOUNDS, float *xmin, float *xmax, float *ymin, float 
*ymax, or 
IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi, or 
IMSLS_CUTPOINTS, float cx[], float cy[], or 
IMSLS_CLASS_MARKS, float cx[], float cy[],  
IMSLS_RETURN_USER, float table[],  
0) 
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Optional Arguments 

IMSLS_DATA_BOUNDS, float *xlo, float *xhi, float *ylo, float *yhi   (Output) 
If none is specified or if IMSLS_DATA_BOUNDS is specified, n_intervals 
intervals of equal length are used. Let xmin and xmax be the minimum and 
maximum values in x, respectively, with similar meanings for ymin and 
ymax. Then, table[0] is the tally of observations with the x value less than 
or equal to  
xmin + (xmax − xmin)/nx, and the y value less than or equal to  
ymin + (ymax − ymin)/ny. When IMSLS_DATA_BOUNDS is explicitly 
specified, the minimum and maximum values in x and y are output in xmin, 
xmax, ymin, and ymax. 

or 
IMSLS_KNOWN_BOUNDS, float xlo, float xhi, float ylo, float yhi   (Input) 

Intervals of equal lengths are used just as in the case of 
IMSLS_DATA_BOUNDS, except the upper and lower bounds are taken as the 
user supplied variables xlo, xhi, ylo, and yhi, instead of the actual minima 
and maxima in the data. Therefore, the first and last intervals for both 
variables are semi-infinite in length. Arguments nx and ny must be greater 
than or equal to 3. 

or 

IMSLS_CUTPOINTS, float cx[], float cy[]   (Input) 
If IMSLS_CUTPOINTS is specified, cutpoints (boundaries) must be provided in 
the arrays cx and cy, of length (nx-1) and (ny-1) respectively. The tally in 
table[0] is the number of observations for which the x value is less than or 
equal to cx[0], and the y value is less than or equal to cy[0]. This option 
allows unequal interval lengths. Arguments nx and ny must be greater than or 
equal to 2. 

or 

IMSLS_CLASS_MARKS, float cx[], float cy[]   (Input) 
If IMSLS_CLASS_MARKS is specified, equally spaced class marks in 
ascending order must be provided in the arrays cx and cy. The class marks 
are the midpoints of each interval. Each interval is taken to have length cx[1] 
− cx[0] in the x direction and cy[1] − cy[0] in the y direction. The total 
number of elements in table may be less than n_observations. 
Arguments nx and ny must be greater than or equal to 2. 

None or exactly one of the four optional arguments described above can be specified in 
order to define the intervals or bins for the one-way table. 

IMSLS_RETURN_USER, float table[]   (Output) 
Counts are stored in the array table of size nx by ny, which is provided by the 
user. 
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Examples   

Example 1 
The data for x in this example are the same as those used in the examples for 
table_oneway. The data for y were created by adding small integers to the data in x. 
This example uses the default tally method, IMSLS_DATA_BOUNDS, which may be 
appropriate when the range of the data is unknown.  

#include <imsls.h> 
main() 
{ 
    int     nx = 5; 
    int     ny = 6; 
    int     n_observations=30; 
    float   *table; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    float   y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, 
                   3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 
                   1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 
                   2.89, 2.90, 5.05}; 
    table = imsls_f_table_twoway (n_observations, x, y, nx, ny, 0); 
    imsls_f_write_matrix("counts", nx, ny, table,  
        IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0); 
  } 

Output 
                                  counts 
            0           1           2           3           4           5 
0           4           2           4           2           0           0 
1           0           4           3           2           1           0 
2           0           0           1           2           0           1 
3           0           0           0           0           1           2 
4           0           0           0           0           0           1 

Example 2 
In this example, xlo, xhi, ylo, and yhi are chosen so that the intervals will be 0 to 1, 
1 to 2, and so on for x, and 1 to 2, 2 to 3, and so on for y. 

#include <imsls.h> 
main() 
{ 
    int     nx = 5; 
    int     ny = 6; 
    int     n_observations=30; 
    float   *table; 
    float   xlo = 1.0; 
    float   xhi = 4.0; 
    float   ylo = 2.0; 
    float   yhi = 6.0; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
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    float   y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, 
                   3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 
                   1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 
                   2.89, 2.90, 5.05}; 
    table = imsls_f_table_twoway (n_observations, x, y, nx, ny,  
        IMSLS_KNOWN_BOUNDS, xlo, xhi, ylo, yhi, 0); 
    imsls_f_write_matrix("counts", nx, ny, table, 
        IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0); 
  } 

Output 
                                 counts 
            0           1           2           3           4           5 
0           3           2           4           0           0           0 
1           0           5           5           2           0           0 
2           0           0           1           3           2           0 
3           0           0           0           0           0           2 
4           0           0           0           0           1           0 

Example 3 
In this example, the class boundaries are input in cx and cy. The same intervals are 
chosen as in Example 2, where the first element of cx and cy specify the first cutpoint 
between classes. 

#include <imsls.h> 
main() 
{ 
    int     nx = 5; 
    int     ny = 6; 
    int     n_observations=30; 
    float   *table; 
    float   cmx[] = {0.5, 1.5, 2.5, 3.5, 4.5}; 
    float   cmy[] = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5}; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    float   y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, 
                   3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 
                   1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 
                   2.89, 2.90, 5.05}; 
    table = imsls_f_table_twoway (n_observations, x, y, nx, ny,  
        IMSLS_CLASS_MARKS, cmx, cmy, 0); 
    imsls_f_write_matrix("counts", nx, ny, table, 
        IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0); 
  } 
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Output 
  
                                 counts 
            0           1           2           3           4           5 
0           3           2           4           0           0           0 
1           0           5           5           2           0           0 
2           0           0           1           3           2           0 
3           0           0           0           0           0           2 
4           0           0           0           0           1           0 

Example 4 
This example, uses the IMSLS_CUTPOINTS tally option with cutpoints such that the 
intervals are specified as in the previous examples. 

 

#include <imsls.h> 
main() 
{ 
    int     nx = 5; 
    int     ny = 6; 
    int     n_observations=30; 
    float   *table; 
    float   cpx[] = {1, 2, 3, 4}; 
    float   cpy[] = {2, 3, 4, 5, 6}; 
    float   x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 
                   2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 
                   0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 
                   1.89, 0.90, 2.05}; 
    float   y[] = {1.77, 3.74, 3.81, 2.20, 3.95, 4.20, 1.47, 3.43, 6.37, 
                   3.20, 5.00, 6.09, 2.51, 4.10, 3.52, 2.62, 3.31, 3.32, 
                   1.59, 2.81, 5.81, 2.87, 3.18, 4.35, 5.75, 4.48, 3.96, 
                   2.89, 2.90, 5.05}; 
    table = imsls_f_table_twoway (n_observations, x, y, nx, ny,  
        IMSLS_CUTPOINTS, cpx, cpy, 0); 
    imsls_f_write_matrix("counts", nx, ny, table, 
        IMSLS_ROW_NUMBER_ZERO, IMSLS_COL_NUMBER_ZERO, 0); 
  } 

Output 
  
                                 counts 
            0           1           2           3           4           5 
0           3           2           4           0           0           0 
1           0           5           5           2           0           0 
2           0           0           1           3           2           0 
3           0           0           0           0           0           2 
4           0           0           0           0           1           0 

sort_data 
Sorts observations by specified keys, with option to tally cases into a multi-way 
frequency table. 
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Synopsis 
#include <imsls.h> 
void imsls_f_sort_data (int n_observations, int n_variables, float x[], 

int n_keys, ..., 0) 
The type double function is imsls_d_sort_data. 

Required Arguments 

int n_observations   (Input) 
Number of observations (rows) in x. 

int n_variables   (Input) 
Number of variables (columns) in x. 

float x[]   (Input/Output) 
An n_observations × n_variables matrix containing the observations to 
be sorted. The sorted matrix is returned in x (exception: see optional argument 
IMSLS_PASSIVE). 

int n_keys   (Input) 
Number of columns of x on which to sort. The first n_keys columns of x are 
used as the sorting keys (exception: see optional argument 
IMSLS_INDICES_KEYS). 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_sort_data (int n_observations, int n_variables,  

float x[], int n_keys, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_INDICES_KEYS, int indices_keys[], 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_ASCENDING, or 
IMSLS_DESCENDING, 
IMSLS_ACTIVE, or 
IMSLS_PASSIVE, 
IMSLS_PERMUTATION, int **permutation, 
IMSLS_PERMUTATION_USER, int permutation[], 
IMSLS_TABLE, int **n_values, float **values, float **table, 
IMSLS_TABLE_USER, int n_values[], float values[], 
 float table[], 
IMSLS_LIST_CELLS, int *n_cells, float **list_cells,  
 float **table_unbalanced,  
IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[],  
 float table_unbalanced[],  
IMSLS_N, int *n_cells, int **n, 
IMSLS_N_USER, int *n_cells, int n[], 
0) 
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Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of x. 
Default: x_col_dim = n_variables 

IMSLS_INDICES_KEYS, int indices_keys[]   (Input) 
Array of length n_keys giving the column numbers of x which are to be used 
in the sort. 
Default: indices_keys [ ] = 0, 1, …, n_keys − 1 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency for each 
observation in x. 
Default: frequencies [ ] = 1 

IMSLS_ASCENDING, or 

IMSLS_DESCENDING  
By default, or if IMSLS_ASCENDING is specified, the sort is in ascending 
order. If IMSLS_DESCENDING is specified, the sort is in descending order. 

IMSLS_ACTIVE, or 

IMSLS_PASSIVE 
By default, or if IMSLS_ACTIVE is specified, the sorted matrix is returned in 
x. If IMSLS_PASSIVE is specified, x is unchanged by imsls_f_sort_data 
(i.e., x becomes input only). 

IMSLS_PERMUTATION, int **permutation   (Output) 
Address of a pointer to an internally allocated array of length 
n_observations specifying the rearrangement (permutation) of the 
observations (rows). 

IMSLS_PERMUTATION_USER, int permutation[]   (Output) 
Storage for array permutation is provided by the user. See 
IMSLS_PERMUTATION. 

IMSLS_TABLE, int **n_values, float **values, float **table   (Output) 
Argument n_values is the address of a pointer to an internally allocated 
array of length n_keys containing in its i-th element  
(i = 0, 1, …, n_keys − 1), the number of levels or categories of the  
i-th classification variable (column). 

Argument values is the address of a pointer to an internally allocated array 
of length  
n_values [0] + n_values [1] + … + n_values [n_keys − 1] containing 
the values of the classification variables. The first n_values [0] elements of 
values contain the values for the first classification variable. The next 
n_values [1] contain the values for the second variable. The last 
n_values [n_keys − 1] positions contain the values for the last classification 
variable. 
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Argument table is the address of a pointer to an internally allocated array of 
length n_values [0] × n_values [1] × … × n_values [n_keys − 1] 
containing the frequencies in the cells of the table to be fit. 

Empty cells are included in table, and each element of table is 
nonnegative. The cells of table are sequenced so that the first variable cycles 
through its n_values [0] categories one time, the second variable cycles 
through its n_values [1] categories n_values [0] times, the third variable 
cycles through its n_values [2] categories n_values [0] × n_values [1] 
times, etc., up to the n_keys-th variable, which cycles through its 
n_values [n_keys − 1] categories n_values [0] × n_values [1] × … ×
 n_values [n_keys − 2] times. 

IMSLS_TABLE_USER, int n_values[], float values[], float table[]   (Output) 
Storage for arrays n_values, values, and table is provided by the user. If 
the length of table is not known in advance, the upper bound for this length 
can be taken to be the product of the number of distinct values taken by all of 
the classification variables (since table includes the empty cells). 

IMSLS_LIST_CELLS, int *n_cells, float **list_cells, 
float **table_unbalanced   (Output) 
Number of nonempty cells is returned by n_cells. Argument list_cells 
is an internally allocated array of size  
n_cells × n_keys containing, for each row, a list of the levels of n_keys 
corresponding classification variables that describe a cell.  

Argument table_unbalanced is the address of a pointer to an array of 
length n_cells containing the frequency for each cell. 

IMSLS_LIST_CELLS_USER, int *n_cells, float list_cells[], 
float table_unbalanced[]   (Output) 
Storage for arrays list_cells and table_unbalanced is provided by the 
user. See IMSLS_LIST_CELLS. 

IMSLS_N, int *n_cells, int **n   (Output) 
The integer n_cells returns the number of groups of different observations. 
A group contains observations (rows) in x that are equal with respect to the 
method of comparison. 

Argument n is the address of the pointer to an internally allocated array of 
length n_cells containing the number of observations (rows) in each group. 

The first n [0] rows of the sorted x are group number 1. The next n [1]rows of 
the sorted x are group number 2, etc. The last  
n [n_cells − 1] rows of the sorted x are group number n_cells. 

IMSLS_N_USER, int *n_cells, int n[]   (Output) 
Storage for array n_cells is provided by the user. If the value of n_cells is 
not known, n_observations can be used as an upper bound for the length of 
n. See IMSLS_N. 
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Description 
Function imsls_f_sort_data can perform both a key sort and/or tabulation of 
frequencies into a multi-way frequency table. 

Sorting 
Function imsls_f_sort_datasorts the rows of real matrix x using a particular row in 
x as the keys. The sort is algebraic with the first key as the most significant, the second 
key as the next most significant, etc. When x is sorted in ascending order, the resulting 
sorted array is such that the following is true: 

• For i = 0, 1, …, n_observations − 2, 
x [i] [indices_keys [0]] ≤ x [i + 1] [indices_keys [0]] 

• For k = 1, …, n_keys − 1, if 
x [i] [indices_keys [j]] = x [i + 1] [indices_keys [j]] for  
j = 0, 1, …, k − 1, then 
x [i] [indices_keys [k]] = x [i + 1] [indices_keys [k]] 

The observations also can be sorted in descending order. 
The rows of x containing the missing value code NaN in at least one of the specified 
columns are considered as an additional group. These rows are moved to the end of the 
sorted x. 
The sorting algorithm is based on a quicksort method given by Singleton (1969) with 
modifications by Griffen and Redish (1970) and Petro (1970).  

Frequency Tabulation 
Function imsls_f_sort_data determines the distinct values in multivariate data and 
computes frequencies for the data. This function accepts the data in the matrix x, but 
performs computations only for the variables (columns) in the first n_keys columns of 
x (Exception: see optional argument IMSLS_INDICES_KEYS). In general, the variables 
for which frequencies should be computed are discrete; they should take on a relatively 
small number of different values. Variables that are continuous can be grouped first. 
The imsls_f_table_oneway function can be used to group variables and determine 
the frequencies of groups. 
When IMSLS_TABLE is specified, imsls_f_sort_data fills the vector values with 
the unique values of the variables and tallies the number of unique values of each 
variable in the vector table. Each combination of one value from each variable forms 
a cell in a multi-way table. The frequencies of these cells are entered in table so that 
the first variable cycles through its values exactly once, and the last variable cycles 
through its values most rapidly. Some cells cannot correspond to any observations in 
the data; in other words, “missing cells” are included in table and have a value of 0. 
When IMSLS_LIST_CELLS is specified, the frequency of each cell is entered in 
table_unbalanced so that the first variable cycles through its values exactly once 
and the last variable cycles through its values most rapidly. All cells have a frequency 
of at least 1, i.e., there is no “missing cell.” The array list_cells can be considered 
“parallel” to table_unbalanced because row i of list_cells is the set of n_keys 
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values that describes the cell for which row i of table_unbalanced contains the 
corresponding frequency. 

Examples  

Example 1 
The rows of a 10 × 3 matrix x are sorted in ascending order using Columns 0 and 1 as 
the keys. There are two missing values (NaNs) in the keys. The observations 
containing these values are moved to the end of the sorted array. 

#include <imsls.h> 
#define N_OBSERVATIONS 10 
#define N_VARIABLES    3 
main() 
{ 
    int     n_keys=2; 
    float   x[N_OBSERVATIONS][N_VARIABLES] = {1.0, 1.0, 1.0,  
                                              2.0, 1.0, 2.0,  
                                              1.0, 1.0, 3.0,  
                                              1.0, 1.0, 4.0,  
                                              2.0, 2.0, 5.0,  
                                              1.0, 2.0, 6.0,  
                                              1.0, 2.0, 7.0,  
                                              1.0, 1.0, 8.0,  
                                              2.0, 2.0, 9.0, 
                                              1.0, 1.0, 9.0}; 
    x[4][1]=imsls_f_machine(6); 
    x[6][0]=imsls_f_machine(6); 
    imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES, x, n_keys, 0); 
    imsls_f_write_matrix("sorted x", N_OBSERVATIONS, N_VARIABLES,  
                       (float *)x, 0); 
  } 

Output 
               sorted x 
             1           2           3 
 1           1           1           1 
 2           1           1           9 
 3           1           1           3 
 4           1           1           4 
 5           1           1           8 
 6           1           2           6 
 7           2           1           2 
 8           2           2           9 
 9   .........           2           7 
10           2   .........           5 

Example 2 
This example uses the same data as the previous example. The permutation of the rows 
is output in the array permutation. 

#include <imsls.h> 
#define N_OBSERVATIONS 10 
#define N_VARIABLES 3 
MAIN() 
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{ 
    int     n_keys=2; 
    int     n_cells; 
    int     *n; 
    int     *permutation; 
    float   x[N_OBSERVATIONS][N_VARIABLES]={1.0, 1.0, 1.0, 
                                            2.0, 1.0, 2.0, 
                                            1.0, 1.0, 3.0, 
                                            1.0, 1.0, 4.0, 
                                            2.0, 2.0, 5.0, 
                                            1.0, 2.0, 6.0, 
                                            1.0, 2.0, 7.0, 
                                            1.0, 1.0, 8.0, 
                                            2.0. 2.0, 9.0, 
                                            1.0, 1.0, 9.0}; 
    x[4][1]=imsls_f_machine(6); 
    x[6][0]=imsls_f_machine(6); 
    imsls_f_sort_data (N_OBSERVATIONS, N_VARIABLES, 
                     (float *)x, n_keys, 
                     IMSLS_PASSIVE, 
                     IMSLS_PERMUTATION, &permutation, 
                     IMSLS_N, &n_cells, &n, 0}; 
    imsls_f_write_matrix("unchanged x ", N_OBSERVATIONS, N_VARIABLES, 
                       (float *)x, 0); 
    imsls_i_write_matrix("permutation", 1, N_OBSERVATIONS, permutation, 
                       0); 
    imsls_i_write_matrix("n", 1, n_cells, n, 0); 
  } 

Output 
              unchanged x 
             1           2           3 
 1           1           1           1 
 2           2           1           2 
 3           1           1           3 
 4           1           1           4 
 5           2  ..........           5 
 6           1           2           6 
 7  ..........           2           7 
 8           1           1           8 
 9           2           2           9 
10           1           1           9 
  
              permutation 
 1   2   3   4   5   6   7   8   9  10 
 0   9   2   3   7   5   1   8   6   4 
  
       n 
 1   2   3   4 
 5   1   1   1 

Example 3 
The table of frequencies for a data matrix of size 30 × 2 is output in the array table. 
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#include <imsls.h> 
main() 
{ 
    int     n_observations=30; 
    int     n_variables=2; 
    int     n_keys=2; 
    int     *n_values; 
    int     n_rows, n_columns; 
    float   *values; 
    float   *table; 
    float   x[] = {0.5, 1.5, 
                   1.5, 3.5, 
                   0.5, 3.5, 
                   1.5, 2.5, 
                   1.5, 3.5, 
                   1.5, 4.5, 
                   0.5, 1.5, 
                   1.5, 3.5, 
                   3.5, 6.5, 
                   2.5, 3.5, 
                   2.5, 4.5, 
                   3.5, 6.5, 
                   1.5, 2.5, 
                   2.5, 4.5, 
                   0.5, 3.5, 
                   1.5, 2.5, 
                   1.5, 3.5, 
                   0.5, 3.5, 
                   0.5, 1.5, 
                   0.5, 2.5, 
                   2.5, 5.5, 
                   1.5, 2.5, 
                   1.5, 3.5, 
                   1.5, 4.5, 
                   4.5, 5.5, 
                   2.5, 4.5, 
                   0.5, 3.5, 
                   1.5, 2.5, 
                   0.5, 2.5, 
                   2.5, 5.5}; 
                       
   imsls_f_sort_data (n_observations, n_variables, x, n_keys,  
                     IMSLS_PASSIVE, 
                     IMSLS_TABLE, &n_values, &values, &table, 
                     0); 
   imsls_f_write_matrix("unchanged x", n_observations, n_variables, 
                       x, 0); 
   n_rows = n_values[0]; 
   n_columns = n_values[1]; 
   imsls_f_write_matrix("row values", 1, n_rows, values, 0);     
   imsls_f_write_matrix("column values", 1, n_columns, &values[n_rows], 
                      0); 
   imsls_f_write_matrix("table", n_rows, n_columns, table, 0); 
  } 
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Output 
        unchanged x 
             1           2 
 1         0.5         1.5 
 2         1.5         3.5 
 3         0.5         3.5 
 4         1.5         2.5 
 5         1.5         3.5 
 6         1.5         4.5 
 7         0.5         1.5 
 8         1.5         3.5 
 9         3.5         6.5 
10         2.5         3.5 
11         2.5         4.5 
12         3.5         6.5 
13         1.5         2.5 
14         2.5         4.5 
15         0.5         3.5 
16         1.5         2.5 
17         1.5         3.5 
18         0.5         3.5 
19         0.5         1.5 
20         0.5         2.5 
21         2.5         5.5 
22         1.5         2.5 
23         1.5         3.5 
24         1.5         4.5 
25         4.5         5.5 
26         2.5         4.5 
27         0.5         3.5 
28         1.5         2.5 
29         0.5         2.5 
30         2.5         5.5 
  
                        row values 
         1           2           3           4           5 
       0.5         1.5         2.5         3.5         4.5 
  
                             column values 
         1           2           3           4           5           6 
       1.5         2.5         3.5         4.5         5.5         6.5 
  
                                  table 
            1           2           3           4           5           6 
1           3           2           4           0           0           0 
2           0           5           5           2           0           0 
3           0           0           1           3           2           0 
4           0           0           0           0           0           2 
5           0           0           0           0           1           0 

ranks 
Computes the ranks, normal scores, or exponential scores for a vector of observations. 
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Synopsis 
#include <imsls.h>  
float *imsls_f_ranks (int n_observations, float x[], ..., 0) 
The type double function is imsls_d_ranks. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the observations to be ranked. 

Return Value 
A pointer to a vector of length n_observations containing the rank (or optionally, a 
transformation of the rank) of each observation. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float* imsls_f_ranks (int n_observations, float x[],  

IMSLS_AVERAGE_TIE, or 
IMSLS_HIGHEST, or 
IMSLS_LOWEST, or 
IMSLS_RANDOM_SPLIT,  
IMSLS_FUZZ, float fuzz_value,  
IMSLS_RANKS, or 
IMSLS_BLOM_SCORES, or 
IMSLS_TUKEY_SCORES, or 
IMSLS_VAN_DER_WAERDEN_SCORES, or 
IMSLS_EXPECTED_NORMAL_SCORES, or 
IMSLS_SAVAGE_SCORES,  
IMSLS_RETURN_USER, float ranks[],  
0) 

Optional Arguments 

IMSLS_AVERAGE_TIE, or 
IMSLS_HIGHEST, or 
IMSLS_LOWEST, or 
IMSLS_RANDOM_SPLIT 

Exactly one of these optional arguments can be used to change the method 
used to assign a score to tied observations. 
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Argument Method 
IMSLS_AVERAGE_TIE average of the scores of the tied 

observations (default) 
IMSLS_HIGHEST highest score in the group of ties 
IMSLS_LOWEST lowest score in the group of ties 
IMSLS_RANDOM_SPLIT tied observations are randomly split using 

a random number generator 

IMSLS_FUZZ, float fuzz_value   (Input) 
Value used to determine when two items are tied. If abs(x [i] − x [j]) is less 
than or equal to fuzz_value, then x[i] and x[j] are said to be tied. 
Default: fuzz_value = 0.0 

IMSLS_RANKS, or 
IMSLS_BLOM_SCORES, or 
IMSLS_TUKEY_SCORES, or 
IMSLS_VAN_DER_WAERDEN_SCORES, or 
IMSLS_EXPECTED_NORMAL_SCORES, or 
IMSLS_SAVAGE_SCORES 

Exactly one of these optional arguments can be used to specify the type of 
values returned. 

Argument Result 
IMSLS_RANKS ranks (default) 
IMSLS_BLOM_SCORES Blom version of normal scores 
IMSLS_TUKEY_SCORES Tukey version of normal scores 
IMSLS_VAN_DER_WAERDEN_SCORES Van der Waerden version of normal 

scores 
IMSLS_EXPECTED_NORMAL_SCORES expected value of normal order statistics 

(for tied observations, the average of the 
expected normal scores) 

IMSLS_SAVAGE_SCORES Savage scores (the expected value of 
exponential order statistics) 

IMSLS_RETURN_USER, float ranks[]   (Output) 
If specified, the ranks are returned in the user-supplied array ranks. 

Description 

Ties 
In data without ties, the output values are the ordinary ranks (or a transformation of the 
ranks) of the data in x. If x[i] has the smallest value among the values in x and there 
is no other element in x with this value, then ranks [i] = 1. If both x[i] and x[j] have 
the same smallest value, the output value depends on the option used to break ties. 
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Argument Result 
IMSLS_AVERAGE_TIE ranks[i] = ranks[j] = 1.5 
IMSLS_HIGHEST ranks[i] = ranks[j] = 2.0 
IMSLS_LOWEST ranks[i] = ranks[j] = 1.0 
IMSLS_RANDOM_SPLIT ranks[i] = 1.0 and ranks[j] = 2.0 

or, randomly, 

ranks[i] = 2.0 and ranks[j] = 1.0 

When the ties are resolved randomly, function imsls_f_random_uniform (Chapter 
12) is used to generate random numbers. Different results may occur from different 
executions of the program unless the “seed” of the random number generator is set 
explicitly by use of the function imsls_f_random_seed_set (Chapter 12). 

Scores 
As an option, normal and other functions of the ranks can be returned. Normal scores 
can be defined as the expected values, or approximations to the expected values, of 
order statistics from a normal distribution. The simplest approximations are obtained 
by evaluating the inverse cumulative normal distribution function, function 
imsls_f_normal_inverse_cdf (Chapter 11), at the ranks scaled into the open 
interval (0, 1). In the Blom version (see Blom 1958), the scaling transformation for the 
rank ri (1 ≤ ri ≤ n, where n is the sample size, n_observations) is (ri − 3/8)/(n + 1/4). 
The Blom normal score corresponding to the observation with rank ri is  

Φ− −
+
F
HG

I
KJ

1 3 8
1 4

r
n
i /

/  

where Φ(·) is the normal cumulative distribution function. 
Adjustments for ties are made after the normal score transformation. That is, if x [i] 
equals x [j] (within fuzz_value) and their value is the k-th smallest in the data set, 
the Blom normal scores are determined for ranks of k and k + 1. Then, these normal 
scores are averaged or selected in the manner specified. (Whether the transformations 
are made first or ties are resolved first makes no difference except when 
IMSLS_AVERAGE_TIE is specified.) 
In the Tukey version (see Tukey 1962), the scaling transformation for the rank  
ri is (ri − 1/3)/(n + 1/3). The Tukey normal score corresponding to the observation with 
rank ri is as follows: 
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r
n
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/  

Ties are handled in the same way as for the Blom normal scores. 



 

 
 

38 • ranks IMSL C Stat Library 

 

 

 

In the Van der Waerden version (see Lehmann 1975, p. 97), the scaling transformation 
for the rank ri is ri/(n + 1). The Van der Waerden normal score corresponding to the 
observation with rank ri is as follows: 

Φ−

+
F
HG
I
KJ

1

1
r

n
i

 

Ties are handled in the same way as for the Blom normal scores. 
When option IMSLS_EXPECTED_NORMAL_SCORES is used, the output values are the 
expected values of the normal order statistics from a sample of size n_observations. 
If the value in x[i] is the k-th smallest, the value output in ranks [i] is E(zk), where 
E(·) is the expectation operator and zk is the k-th order statistic in a sample of size 
n_observations from a standard normal distribution. Ties are handled in the same 
way as for the Blom normal scores. 
Savage scores are the expected values of the exponential order statistics from a sample 
of size n_observations. These values are called Savage scores because of their use 
in a test discussed by Savage 1956 (see also Lehmann 1975). If the value in x[i] is the 
k-th smallest, the value output in ranks [i] is E(yk), where yk is the k-th order statistic 
in a sample of size n_observations from a standard exponential distribution. The 
expected value of the k-th order statistic from an exponential sample of size n 
(n_observations) is as follows: 

1 1
1

1
1n n n k

+
−

+ +
− +

…
 

Ties are handled in the same way as for the Blom normal scores. 

Examples   

Example 1 
The data for this example, from Hinkley (1977), contains 30 observations. Note that 
the fourth and sixth observations are tied and that the third and twentieth observations 
are tied. 

#include <imsls.h> 
 
#define N_OBSERVATIONS          30 
 
main() 
{ 
    float       *ranks; 
    float       x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 
                       3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 
                       1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 
                       4.75, 2.48, 0.96, 1.89, 0.90, 2.05}; 
 
    ranks = imsls_f_ranks(N_OBSERVATIONS, x, 0); 
    imsls_f_write_matrix("Ranks", 1, N_OBSERVATIONS, ranks, 0); 
} 
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Output 
                                 Ranks 
         1           2           3           4           5           6 
       5.0        18.0         6.5        11.5        21.0        11.5 
  
         7           8           9          10          11          12 
       2.0        15.0        29.0        24.0        27.0        28.0 
  
        13          14          15          16          17          18 
      16.0        23.0         3.0        17.0        13.0         1.0 
  
        19          20          21          22          23          24 
       4.0         6.5        26.0        19.0        10.0        14.0 
  
        25          26          27          28          29          30 
      30.0        25.0         9.0        20.0         8.0        22.0 

 
Example 2 
This example uses all the score options with the same data set, which contains some 
ties. Ties are handled in several different ways in this example. 

#include <imsls.h> 
 
#define N_OBSERVATIONS          30 
 
void main() 
{ 
    float       fuzz_value=0.0, score[4][N_OBSERVATIONS], *ranks; 
    float       x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 
                       3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 
                       1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 
                       4.75, 2.48, 0.96, 1.89, 0.90, 2.05}; 
    char        *row_labels[] = {"Blom", "Tukey", "Van der Waerden", 
                                 "Expected Value"}; 
 
                                /* Blom scores using largest ranks */ 
                                /* for ties */ 
    imsls_f_ranks(N_OBSERVATIONS, x,  
                 IMSLS_HIGHEST, 
                 IMSLS_BLOM_SCORES, 
                 IMSLS_RETURN_USER,   &score[0][0], 
                 0); 
                                /* Tukey normal scores using smallest */ 
                                /* ranks for ties */ 
    imsls_f_ranks(N_OBSERVATIONS, x, 
                 IMSLS_LOWEST, 
                 IMSLS_TUKEY_SCORES, 
                 IMSLS_RETURN_USER,  &score[1][0], 
                 0); 
                                /* Van der Waerden scores using */ 
                                /* randomly resolved ties */ 
    imsls_random_seed_set(123457); 
    imsls_f_ranks(N_OBSERVATIONS, x,  
                 IMSLS_RANDOM_SPLIT, 
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                 IMSLS_VAN_DER_WAERDEN_SCORES, 
                 IMSLS_RETURN_USER, &score[2][0], 
                 0); 
                                /* Expected value of normal order */ 
                                /* statistics using averaging to */ 
                                /* break ties */ 
    imsls_f_ranks(N_OBSERVATIONS, x,  
                 IMSLS_EXPECTED_NORMAL_SCORES, 
                 IMSLS_RETURN_USER, &score[3][0], 
                 0); 
    imsls_f_write_matrix("Normal Order Statistics", 4, N_OBSERVATIONS,  
                  (float *)score, 
                 IMSLS_ROW_LABELS,   row_labels, 
                 IMSLS_WRITE_FORMAT, "%9.3f", 
                 0); 
                                /* Savage scores using averaging */ 
                                /* to break ties */ 
    ranks = imsls_f_ranks(N_OBSERVATIONS, x,  
                 IMSLS_SAVAGE_SCORES, 
                 0); 
    imsls_f_write_matrix("Expected values of exponential order "  
                 "statistics", 1,  
                 N_OBSERVATIONS, ranks,  
                 0); 
} 

Output 
                        Normal Order Statistics 
                         1          2          3          4          5 
Blom                -1.024      0.209     -0.776     -0.294      0.473 
Tukey               -1.020      0.208     -0.890     -0.381      0.471 
Van der Waerden     -0.989      0.204     -0.753     -0.287      0.460 
Expected Value      -1.026      0.209     -0.836     -0.338      0.473 
  
                         6          7          8          9         10 
Blom                -0.294     -1.610     -0.041      1.610      0.776 
Tukey               -0.381     -1.599     -0.041      1.599      0.773 
Van der Waerden     -0.372     -1.518     -0.040      1.518      0.753 
Expected Value      -0.338     -1.616     -0.041      1.616      0.777 
  
                        11         12         13         14         15 
Blom                 1.176      1.361      0.041      0.668     -1.361 
Tukey                1.171      1.354      0.041      0.666     -1.354 
Van der Waerden      1.131      1.300      0.040      0.649     -1.300 
Expected Value       1.179      1.365      0.041      0.669     -1.365 
  
                        16         17         18         19         20 
Blom                 0.125     -0.209     -2.040     -1.176     -0.776 
Tukey                0.124     -0.208     -2.015     -1.171     -0.890 
Van der Waerden      0.122     -0.204     -1.849     -1.131     -0.865 
Expected Value       0.125     -0.209     -2.043     -1.179     -0.836 
  
                        21         22         23         24         25 
Blom                 1.024      0.294     -0.473     -0.125      2.040 
Tukey                1.020      0.293     -0.471     -0.124      2.015 
Van der Waerden      0.989      0.287     -0.460     -0.122      1.849 
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Expected Value       1.026      0.294     -0.473     -0.125      2.043 
  
                        26         27         28         29         30 
Blom                 0.893     -0.568      0.382     -0.668      0.568 
Tukey                0.890     -0.566      0.381     -0.666      0.566 
Van der Waerden      0.865     -0.552      0.372     -0.649      0.552 
Expected Value       0.894     -0.568      0.382     -0.669      0.568 
  
            Expected values of exponential order statistics 
         1           2           3           4           5           6 
     0.179       0.892       0.240       0.474       1.166       0.474 
  
         7           8           9          10          11          12 
     0.068       0.677       2.995       1.545       2.162       2.495 
  
        13          14          15          16          17          18 
     0.743       1.402       0.104       0.815       0.555       0.033 
  
        19          20          21          22          23          24 
     0.141       0.240       1.912       0.975       0.397       0.614 
  
        25          26          27          28          29          30 
     3.995       1.712       0.350       1.066       0.304       1.277 
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Chapter 2: Regression 

Routines 
Multivariate Linear Regression—Model Fitting 

Generate regressors for a general  
linear model regressors_for_glm 55 
Fit a multivariate linear regression model regression 64 

Multivariate Linear Regression—Statistical  
Inference and Diagnostics 
Produce summary statistics for  
a regression model regression_summary 76 
Compute predicted values,  
confidence intervals, and diagnostics regression_prediction 84 
Construction of a completely  
testable hypothesis hypothesis_partial 95 
Sums of cross products for a  
multivariate hypothesis hypothesis_scph 100 
Tests for the multivariate linear hypothesis hypothesis_test 105 

Variable Selection 
All best regressions regression_selection 112 
Stepwise regression regression_stepwise 122 

Polynomial and Nonlinear Regression 
Fit a polynomial regression model poly_regression 130 
Compute predicted values, confidence intervals,  
and diagnostics poly_prediction 137 
Fit a nonlinear regression model. nonlinear_regression 147 
Fit a nonlinear regression model using  
Powell's algorithm nonlinear_optimization 157 

Alternatives to Least Squares Regression 
LAV, Lpnorm, and LMV criteria regression Lnorm_regression 166 



 

 
 

44 • Usage Notes IMSL C Stat Library 

 

 

 

Usage Notes 
The regression models in this chapter include the simple and multiple linear regression 
models, the multivariate general linear model, the polynomial model, and the nonlinear 
regression model. Functions for fitting regression models, computing summary 
statistics from a fitted regression, computing diagnostics, and computing confidence 
intervals for individual cases are provided. This chapter also provides methods for 
building a model from a set of candidate variables. 

Simple and Multiple Linear Regression 
The simple linear regression model is 

yi = β0 + β1xi + εi i = 1, 2, ..., n 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the xi’s are the settings of the independent (explanatory) variable, 
β0 and β1 are the intercept and slope parameters (respectively) and the εi’s are 
independently distributed normal errors, each with mean 0 and variance σ2. 
The multiple linear regression model is 

yi = β0 + β1xi1 + β2xi2 + ... + βkxik + εi  i = 1, 2, ..., n 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable; the xi1’s, xi2’s, ..., xik’s are the settings of the k independent 
(explanatory) variables; β0, β1, ..., βk are the regression coefficients; and the εi’s are 
independently distributed normal errors, each with mean 0 and variance σ2. 
Function imsls_f_regression fits both the simple and multiple linear regression 
models using a fast Given’s transformation and includes an option for excluding the 
intercept β0. The responses are input in array y, and the independent variables are input 
in array x, where the individual cases correspond to the rows and the variables 
correspond to the columns. 
After the model has been fitted using imsls_f_regression, function 
imsls_f_regression_summary computes summary statistics and 
imsls_f_regression_prediction computes predicted values, confidence intervals, and 
case statistics for the fitted model. The information about the fit is communicated from 
imsls_f_regression to imsls_f_regression_summary and 
imsls_f_regression_prediction by passing an  
argument of structure type Imsls_f_regression. 

No Intercept Model 
Several functions provide the option for excluding the intercept from a model. In most 
practical applications, the intercept should be included in the model. For functions that 
use the sums of squares and crossproducts matrix as input, the no-intercept case can be 
handled by using the raw sums of squares and crossproducts matrix as input in place of 
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the corrected sums of squares and crossproducts. The raw sums of squares and 
crossproducts matrix can be computed as  
(x1, x2, ..., xk, y)T (x1, x2, ..., xk, y). 

Variable Selection 
Variable selection can be performed by imsls_f_regression_selection, which 
computes all best-subset regressions, or by imsls_f_regression_stepwise, which 
computes stepwise regression. The method used by 
imsls_f_regression_selection is generally preferred over that used by 
imsls_f_regression_stepwise because imsls_f_regression_selection 
implicitly examines all possible models in the search for a model that optimizes some 
criterion while stepwise does not examine all possible models. However, the computer 
time and memory requirements for imsls_f_regression_selection can be much 
greater than that for imsls_f_regression_stepwise when the number of 
candidate variables is large. 

Polynomial Model 
The polynomial model is 

2
0 1 2 ... 1, 2, ...,k

i i i k i iy x x x i nβ β β β ε= + + + + + =
 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable; the xi’s are the settings of the independent (explanatory) variable; 
β0, β1, ..., βk are the regression coefficients; and the εi’s are independently distributed 
normal errors each with mean 0 and variance σ2. 
Function imsls_f_poly_regression fits a polynomial regression model with the 
option of determining the degree of the model and also produces summary information. 
Function imsls_f_poly_prediction computes predicted values, confidence 
intervals, and case statistics for the model fit by imsls_f_poly_regression.  
The information about the fit is communicated from imsls_f_poly_regression to 
imsls_f_poly_prediction by passing an argument of structure type 
Imsls_f_poly_regression. 

Specification of X for the General Linear Model 
Variables used in the general linear model are either continuous or classification 
variables. Typically, multiple regression models use continuous variables, whereas 
analysis of variance models use classification variables. Although the notation used to 
specify analysis of variance models and multiple regression models may look quite 
different, the models are essentially the same. The term “general linear model” 
emphasizes that a common notational scheme is used for specifying a model that may 
contain both continuous and classification variables. 
A general linear model is specified by its effects (sources of variation). An effect is 
referred to in this text as a single variable or a product of variables. (The term “effect” 
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is often used in a narrower sense, referring only to a single regression coefficient.) In 
particular, an “effect” is composed of one of the following: 

1. a single continuous variable 

2. a single classification variable 

3. several different classification variables 

4. several continuous variables, some of which may be the same 

5. continuous variables, some of which may be the same, and classification 
variables, which must be distinct 

Effects of the first type are common in multiple regression models. Effects of the 
second type appear as main effects in analysis of variance models. Effects of the third 
type appear as interactions in analysis of variance models. Effects of the fourth type 
appear in polynomial models and response surface models as powers and crossproducts 
of some basic variables. Effects of the fifth type appear in one-way analysis of 
covariance models as regression coefficients that indicate lack of parallelism of a 
regression function across the groups. 
The analysis of a general linear model occurs in two stages. The first stage calls 
function imsls_f_regressors_for_glm to specify all regressors except the 
intercept. The second stage calls imsls_f_regression, at which point the model 
will be specified as either having (default) or not having an intercept. 
For this discussion, define a variable INTCEP as follows: 

Option INTCEP Action 
IMSLS_NO_INTERCEPT 

IMSLS_INTERCEPT (default) 
0 
1 

An intercept is not in the model. 
An intercept is in the model. 

The remaining variables (n_continuous, n_class, x_class_columns, 
n_effects, n_var_effects, and indices_effects) are defined for function 
imsls_f_regressors_for_glm. All these variables have defaults except for 
n_continuous and n_class, both of which must be specified.  
(See the documentation for imsls_f_regressors_for_glm for a discussion of the 
defaults.) The meaning of each of these arguments is as follows: 

n_continuous   (Input) 
Number of continuous variables.  

n_class   (Input) 
Number of classification variables. 

x_class_columns   (Input) 
Index vector of length n_class containing the column numbers of  
x that are the classification variables. 

n_effects   (Input) 
Number of effects (sources of variation) in the model, excluding error. 



 
 
 
 

 
 

Chapter 2: Regression Usage Notes • 47  

 

 

 

n_var_effects   (Input) 
Vector of length n_effects containing the number of variables associated 
with each effect in the model. 

indices_effects   (Input) 
Index vector of length n_var_effects(0) + n_var_effects(1) + ... + 
n_var_effects (n_effects – 1). The first n_var_effects(0) elements 
give the column numbers of x for each variable in the first effect; the next 
n_var_effects(1) elements give the column numbers for each variable in 
the second effect; and finally, the last n_var_effects (n_effects – 1) 
elements give the column numbers for each variable in the last effect. 

Suppose the data matrix has as its first four columns two continuous variables in 
Columns 0 and 1 and two classification variables in Columns 2 and 3. The data might 
appear as follows: 

Column 0 Column 1 Column 2 Column 3 
11.23 1.23 1.0 5.0 
12.12 2.34 1.0 4.0 
12.34 1.23 1.0 4.0 
4.34 2.21 1.0 5.0 
5.67 4.31 2.0 4.0 
4.12 5.34 2.0 1.0 
4.89 9.31 2.0 1.0 
9.12 3.71 2.0 1.0 

Each distinct value of a classification variable determines a level. The classification 
variable in Column 2 has two levels. The classification variable in Column 3 has three 
levels. (Integer values are recommended, but not required, for values of the 
classification variables. The values of the classification variables corresponding to the 
same level must be identical.) Some examples of regression functions and their 
specifications are as follows: 

 INTCEP n_class x_class_columns 

β0 + β1x1 1 0  

2
0 1 1 2 1x xβ β β+ +  1 0  

μ + αI 1 1 2 

μ + αi + βj + γij 1 2 2, 3 

μij 0 2 2, 3 

β0 + β1x1 + β2x2 + β3x1x2 1 0  

μ + αi + βx1i + βix1i 1 1 2 
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 n_effects n_var_effects Indices_effects 

β0 + β1x1 1 1 0 

2
0 1 1 2 1x xβ β β+ +  2 1, 2 0, 0, 0 

μ + αI 1 1 2 

μ + αi + βj + γij 3 1, 1, 2 2, 3, 2, 3 

μij 1 2 2, 3 

β0 + β1x1 + β2x2 + β
3x1x2 

3 1, 1, 2 0, 1, 0, 1 

μ + αi + βx1i + βix1i 3 1, 1, 2 2, 0, 0, 2 

Functions for Fitting the Model 
Function imsls_f_regression fits a multivariate general linear model, where 
regressors for the general linear model have been generated using function 
imsls_f_regressors_for_glm.  

Linear Dependence and the R Matrix 
Linear dependence of the regressors frequently arises in regression models—
sometimes by design and sometimes by accident. The functions in this chapter are 
designed to handle linear dependence of the regressors; i.e., the n × p matrix X (the 
matrix of regressors) in the general linear model can have rank less than p. Often, the 
models are referred to as non-full rank models. 
As discussed in Searle (1971, Chapter 5), be careful to correctly use the results of the 
fitted non-full rank regression model for estimation and hypothesis testing. In the non-
full rank case, not all linear combinations of the regression coefficients can be 
estimated. Those linear combinations that can be estimated are called “estimable 
functions.” If the functions are used to attempt to estimate linear combinations that 
cannot be estimated, error messages are issued. A good general discussion of estimable 
functions is given by Searle (1971, pp. 180–188). 
The check used by functions in this chapter for linear dependence is sequential. The j-
th regressor is declared linearly dependent on the preceding  j − 1 regressors if 

( )
2

1,2, , 1...1 j jR −−
 

is less than or equal to tolerance. Here, 

( )1,2,..., 1j jR −  

is the multiple correlation coefficient of the j-th regressor with the first  j − 1 
regressors. When a function declares the j-th regressor to be linearly dependent on the 
first j − 1, the j-th regression coefficient is set to 0. Essentially, this removes the j-th 
regressor from the model. 
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The reason a sequential check is used is that practitioners frequently include the 
preferred variables to remain in the model first. Also, the sequential check is based on 
many of the computations already performed as this does not degrade the overall 
efficiency of the functions. There is no perfect test for linear dependence when finite 
precision arithmetic is used. The optional argument IMSLS_TOLERANCE allows the 
user some control over the check for linear dependence. If a model is full rank, input 
tolerance = 0.0. However, tolerance should be input as approximately 100 times 
the machine epsilon. The machine epsilon is imsls_f_machine(4) in single precision 
and imsls_d_machine(4) in double precision. (See functions imsls_f_machine 
and imsls_d_machine in Chapter 15, “Utilities.”) 
Functions performing least squares are based on QR decomposition of X or on a 
Cholesky factorization RTR of XTX. Maindonald (1984, Chapters 1−5) discusses these 
methods extensively. The R matrix used by the regression function is a  
p × p upper-triangular matrix, i.e., all elements below the diagonal are 0. The signs of 
the diagonal elements of R are used as indicators of linearly dependent regressors and 
as indicators of parameter restrictions imposed by fitting a restricted model. The rows 
of R can be partitioned into three classes by the sign of the corresponding diagonal 
element: 

1. A positive diagonal element means the row corresponds to data. 

2. A negative diagonal element means the row corresponds to a linearly 
independent restriction imposed on the regression parameters by AB = Z in a 
restricted model. 

3. A zero diagonal element means a linear dependence of the regressors was 
declared. The regression coefficients in the corresponding row of B̂  are set to 
0. This represents an arbitrary restriction that is imposed to obtain a solution 
for the regression coefficients. The elements of the corresponding row of R 
also are set to 0. 

Nonlinear Regression Model 
The nonlinear regression model is 

yi = f(xi;θ) + εi i = 1, 2, …, n 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the xi’s are the known vectors of values of the independent 
(explanatory) variables, f is a known function of an unknown regression parameter 
vector θ, and the εi’s are independently distributed normal errors each with mean 0 and 
variance σ2. 
Function imsls_f_nonlinear_regression performs the least-squares fit to the 
data for this model. 
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Weighted Least Squares 
Functions throughout the chapter generally allow weights to be assigned to the 
observations. The vector weights is used throughout to specify the weighting for each 
row of X. 
Computations that relate to statistical inference—e.g., t tests, F tests, and confidence 
intervals—are based on the multiple regression model except that the variance of εi is 
assumed to equal σ2 times the reciprocal of the corresponding weight. 
If a single row of the data matrix corresponds to ni observations, the vector 
frequencies can be used to specify the frequency for each row of X. Degrees of 
freedom for error are affected by frequencies but are unaffected by weights. 

Summary Statistics 
Function imsls_f_regression_summary can be used to compute and print statistics 
related to a regression for each of the q dependent variables fitted by 
imsls_f_regression. The summary statistics include the model analysis of variance 
table, sequential sums of squares and F-statistics, coefficient estimates, estimated 
standard errors, t-statistics, variance inflation factors, and estimated variance-
covariance matrix of the estimated regression coefficients. Function 
imsls_f_poly_regression includes most of the same functionality for polynomial 
regressions.  
The summary statistics are computed under the model y = Xβ + ε, where y is the n × 1 
vector of responses, X is the n × p matrix of regressors with rank (X) = r, β is the p × 1 
vector of regression coefficients, and ε is the n × 1 vector of errors whose elements are 
independently normally distributed with mean 0 and variance σ2/wi. 

Given the results of a weighted least-squares fit of this model (with the wi’s as the 
weights), most of the computed summary statistics are output in the following 
variables: 

anova_table 
One-dimensional array usually of length 15. In 
imsls_f_regression_stepwise, anova_table is of length 13 because 
the last two elements of the array cannot be computed from the input. The 
array contains statistics related to the analysis of variance. The sources of 
variation examined are the regression, error, and total. The first 10 elements of 
anova_table and the notation frequently used for these is described in the 
following table (here, AOV replaces anova_table): 

Model Analysis of Variance Table 
Source of 
Variation 

Degrees of 
Freedom 

Sum of 
Squares 

 
Mean Square

 
F 

 
p-value 

Regression DFR = AOV[0] SSR = AOV[3] MSR = AOV[6] AOV[8] AOV[9] 
Error DFE = AOV[1] SSE = AOV[4] s2 = AOV[7]   

Total DFT = AOV[2] SST = AOV[5]    
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If the model has an intercept (default), the total sum of squares is the sum of 
squares of the deviations of yi from its (weighted) mean y — the so-called 
corrected total sum of squares, denoted by the following: 

( )2

1

SST
n

i i
i

w y y
=

= −∑  

If the model does not have an intercept (IMSLS_NO_INTERCEPT), the total 
sum of squares is the sum of squares of yi—the so-called uncorrected total 
sum of squares, denoted by the following: 

2

1

SST
n

i i
i

w y
=

= ∑  

The error sum of squares is given as follows: 

( )2

1

ˆSSE
n

i i i
i

w y y
=

= −∑  

The error degrees of freedom is defined by DFE = n – r. 

The estimate of σ2 is given by s2 = SSE/DFE, which is the error mean square. 

The computed F statistic for the null hypothesis, H0:β1 = β2 = ... = βk = 0, 
versus the alternative that at least one coefficient is nonzero is given by 
F = MSR/s2. The p-value associated with the test is the probability of an F 
larger than that computed under the assumption of the model and the null 
hypothesis. A small p-value (less than 0.05) is customarily used to indicate 
there is sufficient evidence from the data to reject the null hypothesis. 

The remaining five elements in anova_table frequently are displayed 
together with the actual analysis of variance table. The quantities  
R-squared (R2 = anova_table[10]) and adjusted R-squared  

[ ]( )2 11aR = anova_table
 

are expressed as a percentage and are defined as follows: 

R2 = 100(SSR/SST) = 100(1 – SSE/SST) 

2
2 100max 0, 1

SST/DFTa
sR

⎧ ⎫
= −⎨ ⎬

⎩ ⎭  

The square root of s2(s = anova_table[12]) is frequently referred to as the 
estimated standard deviation of the model error. 
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The overall mean of the responses y  is output in anova_table[13]. 

The coefficient of variation (CV = anova_table[14]) is expressed as a 
percentage and defined by CV = 100s/ y . 

coef_t_tests 
Two-dimensional matrix containing the regression coefficient vector β̂  as 
one column and associated statistics (estimated standard error, t statistic and 
p-value) in the remaining columns.  

coef_covariances 
Estimated variance-covariance matrix of the estimated regression coefficients. 

Tests for Lack-of-Fit 
Tests for lack-of-fit are computed for the polynomial regression by the function 
imsls_f_poly_regression. The output array ssq_lof contains the lack-of-fit F 
tests for each degree polynomial 1, 2, ..., k, that is fit to the data. These tests are used to 
indicate the degree of the polynomial required to fit the data well. 

Diagnostics for Individual Cases 
Diagnostics for individual cases (observations) are computed by two functions in the 
regression chapter: imsls_f_regression_prediction for linear and nonlinear 
regressions and imsls_f_poly_prediction for polynomial regressions. 
Statistics computed include predicted values, confidence intervals, and diagnostics for 
detecting outliers and cases that greatly influence the fitted regression. 
The diagnostics are computed under the model y = Xβ + ε, where y is the n × 1 vector 
of responses, X is the n × p matrix of regressors with rank (X) = r, β is the p × 1 vector 
of regression coefficients, and ε is the n × 1 vector of errors whose elements are 
independently normally distributed with mean 0 and variance σ2/wi. 

Given the results of a weighted least-squares fit of this model (with the wi’s as the 
weights), the following five diagnostics are computed: 

1. leverage 

2. standardized residual 

3. jackknife residual 

4. Cook’s distance 

5. DFFITS 
The definition of these terms is given in the discussion that follows: 
Let xi be a column vector containing the elements of the i-th row of X. A case can be 
unusual either because of xi or because of the response yi. The leverage  
hi is a measure of uniqueness of the xi. The leverage is defined by 

( )[ ]T T
i i i ih x X WX x w

−
=
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where W = diag(w1, w2, …, wn) and (XTWX)- denotes a generalized inverse of XTWX. 
The average value of the hi’s is r/n. Regression functions declare  
xi unusual if hi > 2r/n. Hoaglin and Welsch (1978) call a data point highly influential 
(i.e., a leverage point) when this occurs. 
Let ei denote the residual 

ˆi iy y−
 

for the i-th case. The estimated variance of ei is (1 – hi)s2/wi, where s2 is the residual 
mean square from the fitted regression. The i-th standardized residual (also called the 
internally studentized residual) is by definition 

( )2 1
i

i i
i

w
r e

s h
=

−  

and ri follows an approximate standard normal distribution in large samples. 

The i-th jackknife residual or deleted residual involves the difference between  
yi and its predicted value, based on the data set in which the i-th case is deleted. This 
difference equals ei/(1 − hi). The jackknife residual is obtained by standardizing this 
difference. The residual mean square for the regression in which the i-th case is deleted 
is as follows: 

( ) ( )2 2
2 / 1

1
i i i

i

n r s w e h
s

n r
− − −

=
− −  

The jackknife residual is defined as 

( )2 1
i

i i
i i

w
t e

s h
=

−  

and ti follows a t distribution with n – r − 1 degrees of freedom.  

Cook’s distance for the i-th case is a measure of how much an individual case affects 
the estimated regression coefficients. It is given as follows: 

( )

2

22 1
i i i

i
i

w h e
D

rs h
=

−  

Weisberg (1985) states that if Di exceeds the 50-th percentile of the F(r, n − r ) 
distribution, it should be considered large. (This value is about 1. This statistic does not 
have an F distribution.) 
DFFITS, like Cook’s distance, is also a measure of influence. For the i-th case, 
DFFITS is computed by the formula below. 
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( )22
DFFITS

1
i i

i i
i i

w h
e

s h
=

−  

Hoaglin and Welsch (1978) suggest that DFFITS greater than 

2 /r n
 

is large. 

Transformations 
Transformations of the independent variables are sometimes useful in order to satisfy 
the regression model. The inclusion of squares and crossproducts of the variables 

( )2 2
1 2 1 2 1 2, , , ,x x x x x x

 

is often needed. Logarithms of the independent variables are used also. (See 
Draper and Smith 1981, pp. 218−222; Box and Tidwell 1962; Atkinson 1985, pp. 177−
180; Cook and Weisberg 1982, pp. 78−86.) 
When the responses are described by a nonlinear function of the parameters, a 
transformation of the model equation often can be selected so that the transformed 
model is linear in the regression parameters. For example, by taking natural logarithms 
on both sides of the equation, the exponential model  

0 1 1xy eβ β ε+=
 

can be transformed to a model that satisfies the linear regression model provided the 
εi’s have a log-normal distribution (Draper and Smith, pp. 222−225). 

When the responses are nonnormal and their distribution is known, a transformation of 
the responses can often be selected so that the transformed responses closely satisfy the 
regression model, assumptions. The square-root transformation for counts with a 
Poisson distribution and the arc-sine transformation for binomial proportions are 
common examples (Snedecor and Cochran 1967, pp. 325−330; Draper and Smith, pp. 
237−239). 

Alternatives to Least Squares 
The method of least squares has desirable characteristics when the errors are normally 
distributed, e.g., a least-squares solution produces maximum likelihood estimates of the 
regression parameters. However, when errors are not normally distributed, least 
squares may yield poor estimators. Function imsls_f_lnorm_regression offers 
three alternatives to least squares methodology, Least Absolute Value , Lp Norm , and 
Least Maximum Value. 
The least absolute value (LAV, L1) criterion yields the maximum likelihood estimate 
when the errors follow a Laplace distribution. Option IMSLS_METHOD_LAV is often 
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used when the errors have a heavy tailed distribution or when a fit is needed that is 
resistant to outliers.  
A more general approach, minimizing the Lp norm (p ≤ 1), is given by option 
IMSLS_METHOD_LLP. Although the routine requires about 30 times the CPU time for 
the case p = 1 than would the use of IMSLS_METHOD_LAV, the generality of  
IMSLS_METHOD_LLP allows the user to try several choices for p ≥ 1 by simply 
changing the input value of p in the calling program. The CPU time decreases as p gets 
larger. Generally, choices of p between 1 and 2 are of interest. However, the Lp norm 
solution for values of p larger than 2 can also be computed. 
The minimax (LMV, L∞, Chebyshev) criterion is used by IMSLS_METHOD_LMV. Its 
estimates are very sensitive to outliers, however, the minimax estimators are quite 
efficient if the errors are uniformly distributed. 

Missing Values 
NaN (Not a Number) is the missing value code used by the regression functions. Use 
function imsls_f_machine(6), Chapter 15, “Utilities”  (or function 
imsls_d_machine(6) with double-precision regression functions) to retrieve NaN. 
Any element of the data matrix that is missing must be set to imsls_f_machine(6) 
(or imsls_d_machine(6) for double precision). In fitting regression models, any 
observation containing NaN for the independent, dependent, weight, or frequency 
variables is omitted from the computation of the regression parameters. 

regressors_for_glm 
Generates regressors for a general linear model. 

Synopsis 
#include <imsls.h> 
int imsls_f_regressors_for_glm (int n_observations, float x[], 

int n_class, int n_continuous, ..., 0) 
The type double function is imsls_d_regressors_for_glm. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
An n_observations × (n_class + n_continuous) array containing the 
data. The columns must be ordered such that the first n_class columns 
contain the class variables and the next n_continuous columns contain the 
continuous variables. (Exception: see optional argument 
IMSLS_X_CLASS_COLUMNS.) 

int n_class   (Input) 
Number of classification variables. 
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int n_continuous   (Input) 
Number of continuous variables. 

Return Value 
An integer (n_regressors) indicating the number of regressors generated. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int imsls_f_regressors_for_glm (int n_observations, float x[], 

int n_class, int n_continuous,  
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_CLASS_COLUMNS, int x_class_columns[], 
IMSLS_MODEL_ORDER, int model_order, 
IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[], 
int indices_effects[], 
IMSLS_DUMMY, Imsls_dummy_method dummy_method, 
IMSLS_REGRESSORS, float **regressors, 
IMSLS_REGRESSORS_USER, float regressors[], 
IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim, 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of x. 
Default: x_col_dim = n_class + n_continuous 

IMSLS_X_CLASS_COLUMNS, int x_class_columns[]   (Input) 
Index array of length n_class containing the column numbers of x that are 
the classification variables. The remaining variables are assumed to be 
continuous. 
Default: x_class_columns = 0, 1, ..., n_class − 1 

IMSLS_MODEL_ORDER, int model_order   (Input) 
Order of the model. Model order can be specified as 1 or 2. Use optional 
argument IMSLS_INDICES_EFFECTS to specify more complicated models.  
Default: model_order = 1 
or 

IMSLS_INDICES_EFFECTS, int n_effects, int n_var_effects[], 
int indices_effects[]   (Input) 
Variable n_effects is the number of effects (sources of variation) in the 
model. Variable n_var_effects is an array of length n_effects 
containing the number of variables associated with each effect in the model. 
Argument indices_effects is an index array of length 
n_var_effects[0] + n_var_effects[1] + … + n_var_effects 
(n_effects − 1). The first n_var_effects[0] elements give the column 
numbers of x for each variable in the first effect. The next 
n_var_effects[1] elements give the column numbers for each variable in 
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the second effect. … The last n_var_effects [n_effects − 1] elements 
give the column numbers for each variable in the last effect. 

IMSLS_DUMMY, Imsls_dummy_method dummy_method   (Input) 
Dummy variable option. Indicator variables are defined for each class variable 
as described in the “Description” section.  

 Dummy variables are then generated from the n indicator variables in one of 
the following three ways: 

dummy_method Method 
IMSLS_ALL The n indicator variables are the dummy variables 

(default). 
IMSLS_LEAVE_OUT_LAST The dummies are the first n − 1 indicator variables. 
IMSLS_SUM_TO_ZERO The n − 1 dummies are defined in terms of the 

indicator variables so that for balanced data, the 
usual summation restrictions are imposed on the 
regression coefficients. 

IMSLS_REGRESSORS, float **regressors   (Output) 
Address of a pointer to the internally allocated array of size 
n_observations × n_regressors containing the regressor variables 
generated from x. 

IMSLS_REGRESSORS_USER, float regressors[]   (Output) 
Storage for array regressors is provided by the user. See 
IMSLS_REGRESSORS. 

IMSLS_REGRESSORS_COL_DIM, int regressors_col_dim   (Input) 
Column dimension of regressors. 
Default: regressors_col_dim = n_regressors 

Description 
Function imsls_f_regressors_for_glm generates regressors for a general linear 
model from a data matrix. The data matrix can contain classification variables as well 
as continuous variables. Regressors for effects composed solely of continuous variables 
are generated as powers and crossproducts. Consider a data matrix containing 
continuous variables as Columns 3 and 4. The effect indices (3, 3) generate a regressor 
whose i-th value is the square of the i-th value in Column 3. The effect indices (3, 4) 
generates a regressor whose i-th value is the product of the i-th value in Column 3 with 
the i-th value in Column 4. 
Regressors for an effect (source of variation) composed of a single classification 
variable are generated using indicator variables. Let the classification variable A take 
on values a1, a2, ..., an. From this classification variable, 
imsls_f_regressors_for_glm creates n indicator variables. For  
k = 1, 2, ..., n, we have 

1 if 
0 otherwise

k
k

A a
I

=⎧
= ⎨

⎩  
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For each classification variable, another set of variables is created from the indicator 
variables. These new variables are called dummy variables. Dummy variables are 
generated from the indicator variables in one of three manners: 

1. The dummies are the n indicator variables. 

2. The dummies are the first n – 1 indicator variables. 

3. The n – 1 dummies are defined in terms of the indicator variables so that for 
balanced data, the usual summation restrictions are imposed on the regression 
coefficients. 

In particular, for dummy_method = IMSLS_ALL, the dummy variables are  
Ak = Ik(k = 1, 2, ..., n). For dummy_method = IMSLS_LEAVE_OUT_LAST, the dummy 
variables are Ak = Ik(k = 1, 2, ..., n − 1). For dummy_method = IMSLS_SUM_TO_ZERO, 
the dummy variables are Ak = Ik − In(k = 1, 2, ..., n − 1). The regressors generated for 
an effect composed of a single-classification variable are the associated dummy 
variables. 
Let mj be the number of dummies generated for the j-th classification variable. Suppose 
there are two classification variables A and B with dummies 

11 2, , ..., mA A A
 

and 

21 2, , ..., mB B B
 

The regressors generated for an effect composed of two classification variables  
A and B are 

( ) ( )1 2

2

2 1 1 1 2

1 2 1 2

1 1 1 2 1 2 1 2 2

2 1 2

, , ..., , , ...,

( , , ..., , , , ...,

, ..., , , ..., )

m m

m

m m m m m

A B A A A B B B

A B A B A B A B A B

A B A B A B A B

⊗ = ⊗

=
 

More generally, the regressors generated for an effect composed of several 
classification variables and several continuous variables are given by the Kronecker 
products of variables, where the order of the variables is specified in 
indices_effects. Consider a data matrix containing classification variables in 
Columns 0 and 1 and continuous variables in Columns 2 and 3. Label these four 
columns A, B, X1, and X2. The regressors generated by the effect indices  
(0, 1, 2, 2, 3) are A ⊗ B ⊗ X1X1X2. 

Remarks 
Let the data matrix x = (A, B, X1), where A and B are classification variables and X1 is a 
continuous variable. The model containing the effects A, B, AB, X1, AX1, BX1, and 
ABX1 is specified as follows (use optional keyword IMSLS_INDICES_EFFECTS): 

n_class = 2 
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n_continuous = 1 

n_effects = 7 

n_var_effects = (1, 1, 2, 1, 2, 2, 3) 

indices_effects = (0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2) 

For this model, suppose that variable A has two levels, A1 and A2, and that variable B 
has three levels, B1, B2, and B3. For each dummy_method option, the regressors in their 
order of appearance in regressors are given below. 

dummy_method regressors 

IMSLS_ALL A1, A2, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2, A2B3, 
X1, A1X1, A2X1, B1X1, B2X1, B3X1, A1B1X1, A1B2X1, 
A1B3X1, A2B1X1, A2B2X1, A2B3X1 

IMSLS_LEAVE_OUT_LAST A1, B1, B2, A1B1, A1B2, X1, A1X1, B1X1, B2X1, A1B1X1, 
A1B2X1 

IMSLS_SUM_TO_ZERO A1 − A2, B1 − B3, B2 − B3, (A1 − A2) (B1 − B2), (A1 − 
A2) (B2 − B3), X1, (A1 − A2) X1, 
(B1 − B3)X1, (B2 − B3)X1, (A1 − A2) (B1 − B2)X1, (A1 − 
A2) (B2 − B3)X1 

Within a group of regressors corresponding to an interaction effect, the indicator 
variables composing the regressors vary most rapidly for the last classification 
variable, next most rapidly for the next to last classification variable, etc. 
By default, imsls_f_regressors_for_glm internally generates values for 
n_effects, n_var_effects, and indices_effects, which correspond to a first 
order model with NEF = n_continuous + n_class. The variables then are used to 
create the regressor variables. The effects are ordered such that the first effect 
corresponds to the first column of x, the second effect corresponds to the second 
column of x, etc. A second order model corresponding to the columns (variables) of x 
is generated if IMSLS_MODEL_ORDER with model_order = 2 is specified. 
There are 

NVAR
NEF=  + 2  +  

2
⎛ ⎞

∗ ⎜ ⎟
⎝ ⎠

n_class n_continuous
 

effects, where NVAR = n_continuous + n_class. The first NVAR effects 
correspond to the columns of x, such that the first effect corresponds to the first column 
of x, the second effect corresponds to the second column of x, ..., the NVAR-th effect 
corresponds to the NVAR-th column of x (i.e. x[NVAR − 1]). The next 
n_continuous effects correspond to squares of the continuous variables. The last  
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( )NVAR
2  

effects correspond to the two-variable interactions. 

• Let the data matrix x = (A, B, X1), where A and B are classification variables 
and X1 is a continuous variable. The effects generated and order of appearance 
is 

2
1 1 1 1, , , , , ,A B X X AB AX BX

 

• Let the data matrix x = (A, X1, X2), where A is a classification variable and X1 
and X2 are continuous variables. The effects generated and order of 
appearance is 

2 2
1 2 1 2 1 2 1 2, , , , , , ,A X X X X AX AX X X

 

• Let the data matrix x = (X1, A, X2) (see IMSLS_CLASS_COLUMNS), where A is 
a classification variable and X1 and X2 are continuous variables. The effects 
generated and order of appearance is 

2 2
1 2 1 2 1 1 2 2, , , , , , ,X A X X X X A X X AX

 

Higher-order and more complicated models can be specified using 
IMSLS_INDICES_EFFECTS. 

Examples  

Example 1 
In the following example, there are two classification variables, A and B, with two and 
three values, respectively. Regressors for a one-way model (the default model order) 
are generated using the IMSLS_ALL dummy method (the default dummy method). The 
five regressors generated are A1, A2, B1, B2, and B3. 

#include <imsls.h> 
void main() { 
    int n_observations = 6; 
    int n_class = 2; 
    int n_cont  = 0; 
    int n_regressors; 
    float x[12] = { 
        10.0,  5.0, 
        20.0, 15.0, 
        20.0, 10.0, 
        10.0, 10.0, 
        10.0, 15.0, 
        20.0,  5.0}; 
 
   n_regressors = imsls_f_regressors_for_glm (n_observations, x,  
       n_class, n_cont, 0); 
 



 
 
 
 

 
 

Chapter 2: Regression regressors_for_glm • 61  

 

 

 

   printf("Number of regressors = %3d\n", n_regressors); 
} 

Output 
Number of regressors =   5 

Example 2 
In this example, a two-way analysis of covariance model containing all the interaction 
terms is fit. First, imsls_f_regressors_for_glm is called to produce a matrix of 
regressors, regressors, from the data x. Then, regressors is used as the input 
matrix into imsls_f_regression to produce the final fit. The regressors, generated 
using dummy_method = IMSLS_LEAVE_OUT_LAST, are the model whose mean 
function is 

μ + αi + βj + ϒij + δxij + ζixij + ηjxij + θijxij   i = 1, 2; j = 1, 2, 3 

where α2 = β3 = ϒ21 = ϒ22 = ϒ23 = ζ2 = η3 = θ21 = θ22 = θ23 = 0. 
#include <imsls.h> 
void main() { 
#define N_OBSERVATIONS 18 
    int n_class = 2; 
    int n_cont  = 1; 
    float anova[15], *regressors; 
    int n_regressors; 
    float x[54] = {  
        1.0, 1.0, 1.11, 
        1.0, 1.0, 2.22, 
        1.0, 1.0, 3.33, 
        1.0, 2.0, 1.11, 
        1.0, 2.0, 2.22, 
        1.0, 2.0, 3.33, 
        1.0, 3.0, 1.11, 
        1.0, 3.0, 2.22, 
        1.0, 3.0, 3.33, 
        2.0, 1.0, 1.11, 
        2.0, 1.0, 2.22, 
        2.0, 1.0, 3.33, 
        2.0, 2.0, 1.11, 
        2.0, 2.0, 2.22, 
        2.0, 2.0, 3.33, 
        2.0, 3.0, 1.11, 
        2.0, 3.0, 2.22, 
        2.0, 3.0, 3.33}; 
   float y[N_OBSERVATIONS] = { 
       1.0, 2.0, 2.0, 4.0, 4.0, 6.0,  
       3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 
       2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; 
   int class_col[2] = {0,1}; 
   int  n_effects = 7; 
   int n_var_effects[7] = {1, 1, 2, 1, 2, 2, 3}; 
   int indices_effects[12] = {0, 1, 0, 1, 2, 0, 2, 1, 2, 0, 1, 2}; 
   float *coef; 
   char      *reg_labels[] = { 
        " ", "Alpha1", "Beta1", "Beta2", "Gamma11", "Gamma12", 
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        "Delta", "Zeta1", "Eta1", "Eta2", "Theta11", "Theta12"}; 
   char      *labels[] = { 
        "degrees of freedom for the model", 
        "degrees of freedom for error", 
        "total (corrected) degrees of freedom", 
        "sum of squares for the model", 
        "sum of squares for error", 
        "total (corrected) sum of squares", 
        "model mean square", "error mean square", 
        "F-statistic", "p-value", 
        "R-squared (in percent)","adjusted R-squared (in percent)", 
        "est. standard deviation of the model error", 
        "overall mean of y", 
        "coefficient of variation (in percent)"}; 
 
   n_regressors = imsls_f_regressors_for_glm (N_OBSERVATIONS, x,  
       n_class, n_cont,  
       IMSLS_X_CLASS_COLUMNS, class_col, 
       IMSLS_DUMMY, IMSLS_LEAVE_OUT_LAST, 
       IMSLS_INDICES_EFFECTS, n_effects, n_var_effects, indices_effects, 
       IMSLS_REGRESSORS, &regressors,  
       0); 
 
   printf("Number of regressors = %3d", n_regressors); 
 
   imsls_f_write_matrix ("regressors", N_OBSERVATIONS, n_regressors, 
       regressors,  
       IMSLS_COL_LABELS, reg_labels,  
       0); 
 
   coef = imsls_f_regression (N_OBSERVATIONS, n_regressors, regressors,  
       y,  
       IMSLS_ANOVA_TABLE_USER, anova, 
       0); 
 
   imsls_f_write_matrix ("* * * Analysis of Variance * * *\n", 15, 1, 
        anova, 
        IMSLS_ROW_LABELS,   labels, 
        IMSLS_WRITE_FORMAT, "%11.4f", 
        0); 
 
} 

Output 
Number of regressors =  11  
                                regressors 
        Alpha1       Beta1       Beta2     Gamma11     Gamma12       Delta 
 1        1.00        1.00        0.00        1.00        0.00        1.11 
 2        1.00        1.00        0.00        1.00        0.00        2.22 
 3        1.00        1.00        0.00        1.00        0.00        3.33 
 4        1.00        0.00        1.00        0.00        1.00        1.11 
 5        1.00        0.00        1.00        0.00        1.00        2.22 
 6        1.00        0.00        1.00        0.00        1.00        3.33 
 7        1.00        0.00        0.00        0.00        0.00        1.11 
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 8        1.00        0.00        0.00        0.00        0.00        2.22 
 9        1.00        0.00        0.00        0.00        0.00        3.33 
10        0.00        1.00        0.00        0.00        0.00        1.11 
11        0.00        1.00        0.00        0.00        0.00        2.22 
12        0.00        1.00        0.00        0.00        0.00        3.33 
13        0.00        0.00        1.00        0.00        0.00        1.11 
14        0.00        0.00        1.00        0.00        0.00        2.22 
15        0.00        0.00        1.00        0.00        0.00        3.33 
16        0.00        0.00        0.00        0.00        0.00        1.11 
17        0.00        0.00        0.00        0.00        0.00        2.22 
18        0.00        0.00        0.00        0.00        0.00        3.33 
 
         Zeta1        Eta1        Eta2     Theta11     Theta12 
 1        1.11        1.11        0.00        1.11        0.00 
 2        2.22        2.22        0.00        2.22        0.00 
 3        3.33        3.33        0.00        3.33        0.00 
 4        1.11        0.00        1.11        0.00        1.11 
 5        2.22        0.00        2.22        0.00        2.22 
 6        3.33        0.00        3.33        0.00        3.33 
 7        1.11        0.00        0.00        0.00        0.00 
 8        2.22        0.00        0.00        0.00        0.00 
 9        3.33        0.00        0.00        0.00        0.00 
10        0.00        1.11        0.00        0.00        0.00 
11        0.00        2.22        0.00        0.00        0.00 
12        0.00        3.33        0.00        0.00        0.00 
13        0.00        0.00        1.11        0.00        0.00 
14        0.00        0.00        2.22        0.00        0.00 
15        0.00        0.00        3.33        0.00        0.00 
16        0.00        0.00        0.00        0.00        0.00 
17        0.00        0.00        0.00        0.00        0.00 
18        0.00        0.00        0.00        0.00        0.00 
  
 
           * * * Analysis of Variance * * * 
 
degrees of freedom for the model                11.0000 
degrees of freedom for error                     6.0000 
total (corrected) degrees of freedom            17.0000 
sum of squares for the model                    43.9028 
sum of squares for error                         0.8333 
total (corrected) sum of squares                44.7361 
model mean square                                3.9912 
error mean square                                0.1389 
F-statistic                                     28.7364 
p-value                                          0.0003 
R-squared (in percent)                          98.1372 
adjusted R-squared (in percent)                 94.7221 
est. standard deviation of the model error       0.3727 
overall mean of y                                3.9722 
coefficient of variation (in percent)            9.3821 
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regression 
Fits a multivariate linear regression model using least squares. 

Synopsis 
#include <imsls.h> 
float *imsls_f_regression (int n_rows, int n_independent, float x[], float 

y[], ..., 0) 
The type double function is imsls_d_regression. 

Required Arguments 

int n_rows   (Input) 
Number of rows in x.  

int n_independent   (Input) 
Number of independent (explanatory) variables. 

float x[]   (Input) 
Array of size n_rows × n_independent containing the independent 
(explanatory) variables(s). The i-th column of x contains the i-th independent 
variable. 

float y[]   (Input) 
Array of size n_rows × n_dependent containing the dependent (response) 
variables(s). The i-th column of y contains the i-th dependent variable. See 
optional argument IMSLS_N_DEPENDENT to set the value of n_dependent.  

Return Value 
If the optional argument IMSLS_NO_INTERCEPT is not used, regression returns a 
pointer to an array of length n_dependent × (n_independent + 1) containing a 
least-squares solution for the regression coefficients. The estimated intercept is the 
initial component of each row, where the i-th row contains the regression coefficients 
for the i-th dependent variable. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_regresssion (int n_rows, int n_independent,  

float x[], float y[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_Y_COL_DIM, int y_col_dim, 
IMSLS_N_DEPENDENT, int n_dependent,  
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq,  int iwt,  
IMSLS_IDO, int ido,  
IMSLS_ROWS_ADD, or 
IMSLS_ROWS_DELETE,  
IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT, 
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IMSLS_TOLERANCE, float tolerance, 
IMSLS_RANK, int *rank, 
IMSLS_COEF_COVARIANCES, float **coef_covariances, 
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[], 
IMSLS_COV_COL_DIM, int cov_col_dim,  
IMSLS_X_MEAN, float **x_mean,  
IMSLS_X_MEAN_USER, float x_mean[],  
IMSLS_RESIDUAL, float **residual,  
IMSLS_RESIDUAL_USER, float residual[],  
IMSLS_ANOVA_TABLE, float **anova_table,  
IMSLS_ANOVA_TABLE_USER, float anova_table[],  
IMSLS_SCPE, float **scpe[],  
IMSLS_SCPE_USER, float scpe_user[],  
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_WEIGHTS, float weights[],  
IMSLS_REGRESSION_INFO,  Imsls_f_regression **regression_info, 
IMSLS_RETURN_USER, float coefficients[],  
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of x. 
Default: x_col_dim = n_independent 

IMSLS_Y_COL_DIM, int y_col_dim   (Input) 
Column dimension of y. 
Default: y_col_dim = n_dependent 

IMSLS_N_DEPENDENT, int n_dependent   (Input) 
Number of dependent variables. Input matrix y must be declared of size 
n_rows by n_dependent, where column i of y contains the i-th dependent 
variable.  
Default: n_dependent = 1 

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt   (Input) 
This argument allows an alternative method for data specification. Data 
(independent, dependent, frequencies, and weights) is all stored in the data 
matrix x. Argument y, and keywords IMSLS_FREQUENCIES and 
IMSLS_WEIGHTS are ignored. 

Each of the four arguments contains indices indicating column numbers of x 
in which particular types of data are stored. Columns are numbered 0 … 
x_col_dim − 1.  

Parameter indind contains the indices of the independent variables.. 

Parameter inddep contains the indices of the dependent variables.  

Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will 
be no column for frequencies. Set iwt = −1 if there will be no column for 
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weights. Weights are rounded to the nearest integer. Negative weights are not 
allowed. 

Note that required input argument y is not referenced, and can be declared a 
vector of length 1. 

IMSLS_IDO, int ido   (Input) 
Processing option. 

Ido Action 
0 This is the only invocation; all the data are input at once. (Default) 
1 This is the first invocation with this data; additional calls will be made. 

Initialization and updating for the n_rows observations of x will be 
performed. 

2 This is an intermediate invocation; updating for the n_rows observations 
of x will be performed. 

3 This is the final invocation of this function. Updating for the data in x and 
wrap-up computations are performed. Workspace is released. No further 
call to regression with ido greater than 1 should be made without first 
calling regression with ido = 1 

Default: ido = 0 
IMSLS_ROWS_ADD, or 
IMSLS_ROWS_DELETE 

By default (or if IMSLS_ROWS_ADD is specified), the observations in x are 
added to the discriminant statistics. If IMSLS_ROWS_DELETE is specified, then 
the observations are deleted. 

If ido = 0, these optional arguments are ignored (data is always added if there 
is only one invocation). 

IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT 

IMSLS_INTERCEPT is the default where the fitted value for observation i is  

0 1 1
ˆ ˆ ˆ... k kx xβ β β+ + +

 

 where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the 
intercept term  

( )0β̂
 

is omitted from the model and the return value from regression is a pointer to 
an array of length n_dependent × n_independent. 

IMSLS_TOLERANCE, float tolerance   (Input) 
Tolerance used in determining linear dependence. For regression, 
tolerance = 100 × imsls_f_machine(4) is the default choice. For 
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imsls_d_regression, tolerance = 100 × imsls_d_machine(4) is the 
default. (See imsls_f_machine Chapter 15, Utilities.) 

IMSLS_RANK, int *rank   (Output) 
Rank of the fitted model is returned in *rank. 

IMSLS_COEF_COVARIANCES, float **coef_covariances   (Output) 
Address of a pointer to the n_dependent × m × m internally allocated array 
containing the estimated variances and covariances of the estimated regression 
coefficients. Here, m is the number of regression coefficients in the model. If 
IMSLS_NO_INTERCEPT is specified, n = n_independent; otherwise,  
m = n_independent + 1.  

The first m × m elements contain the matrix for the first dependent variable, 
the next m × m elements contain the matrix for the next dependent variable, ... 
and so on. 

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[]   (Output) 
Storage for arrays coef_covariances is provided by the user. See 
IMSLS_COEF_COVARIANCES.  

IMSLS_COV_COL_DIM, int cov_col_dim   (Input) 
Column dimension of array coef_covariances. 
Default: cov_col_dim = m, where m is the number of regression coefficients 
in the model 

IMSLS_X_MEAN, float **x_mean   (Output) 
Address of a pointer to the internally allocated array containing the estimated 
means of the independent variables. 

IMSLS_X_MEAN_USER, float x_mean[]   (Output) 
Storage for array x_mean is provided by the user.  
See IMSLS_X_MEAN. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to the internally allocated array of size n_rows by 
n_dependent containing the residuals. Residuals may not be requested if 
ido > 0. 

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user.  
See IMSLS_RESIDUAL. 

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to the internally allocated array of size  
15 × n_dependent containing the analysis of variance table for each 
dependent variable. The i-th column corresponds to the analysis for the i-th 
dependent variable.  

 The analysis of variance statistics are given as follows: 
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Element Analysis of Variance Statistics 
0 degrees of freedom for the model 
1 degrees of freedom for error 
2 total (corrected) degrees of freedom 
3 sum of squares for the model 
4 sum of squares for error 
5 total (corrected) sum of squares 
6 model mean square 
7 error mean square 
8 overall F-statistic 
9 p-value 
10 R2 (in percent) 
11 adjusted R2 (in percent) 
12 estimate of the standard deviation 
13 overall mean of y 
14 coefficient of variation (in percent) 

The anova statistics may not be requested if ido > 0. 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_SCPE, float **scpe  (Output) 
The address of a pointer to an internally allocated array of size n_dependent 
x n_dependent containing the error (residual) sums of squares and 
crossproducts. scpe [m][n] contains the sum of crossproducts  for the m-th 
and n-th dependent variables. 

IMSLS_SCPE_USER, float scpe[]   (Output) 
Storage for array scpe is provided by the user. See IMSLS_SCPE. 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_rows containing the frequency for each observation. 
Default: frequencies[] = 1 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_rows containing the weight for each observation. 
Default: weights[] = 1 

IMSLS_REGRESSION_INFO, Imsls_f_regression **regression_info   (Output) 
Address of the pointer to an internally allocated structure of type 
Imsls_f_regression containing information about the regression fit. This 
structure is required as input for functions 
imsls_f_regression_prediction and 
imsls_f_regression_summary. 
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IMSLS_RETURN_USER, float coefficients[]   (Output) 
If specified, the least-squares solution for the regression coefficients is stored 
in array coefficients provided by the user. If IMSLS_NO_INTERCEPT is 
specified, the array requires n_dependent × n units of memory, where 
n = n_independent; otherwise, n = n_independent + 1. 

Description 
Function imsls_f_regression fits a multivariate multiple linear regression model 
with or without an intercept. The multiple linear regression model is  

yi = β0 + β1xi1 + β2xi2 + … + βkxik + εi  i = 1, 2, …, n 

where the observed values of the yi’s are the responses or values of the dependent 
variable; the xi1’s, xi2’s, …, xik’s are the settings of the k (input in n_independent) 
independent variables; β0, β1, …, βk are the regression coefficients whose estimated 
values are to be output by imsls_f_regression; and the εi’s are independently 
distributed normal errors each with mean 0 and variance s2. Here, n is the sum of the 
frequencies for all nonmissing observations, i.e.,  

1

0
i

i

n f
−

=

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑

n_rows

 

where fi is equal to frequencies[i] if optional argument IMSLS_FREQUENCIES is 
specified and equal to 1.0 otherwise. Note that by default, β0 is included in the model. 

More generally, imsls_f_regression fits a multivariate regression model. See the 
chapter introduction for a description of the multivariate model. 
Function imsls_f_regression computes estimates of the regression coefficients by 
minimizing the sum of squares of the deviations of the observed response yi from the 
fitted response  

ˆiy
 

for the n observations. This minimum sum of squares (the error sum of squares) is 
output as one of the analysis of variance statistics if IMSLS_ANOVA_TABLE (or 
IMSLS_ANOVA_TABLE_USER) is specified and is computed as follows: 

( )2

1
ˆ

n

i i i
i

SSE w y y
=

= −∑  

Another analysis of variance statistic is the total sum of squares. By default, the total 
sum of squares is the sum of squares of the deviations of yi from its mean  

y
 

the so-called corrected total sum of squares. This statistic is computed as follows: 
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1
i i

n

i
SST w y y

=
= −∑  

When IMSLS_NO_INTERCEPT is specified, the total sum of squares is the sum of 
squares of yi, the so-called uncorrected total sum of squares. This is computed as 
follows: 

2

1

SST
n

i i
i

w y
=

= ∑  

See Draper and Smith (1981) for a good general treatment of the multiple linear 
regression model, its analysis, and many examples. 
In order to compute a least-squares solution, imsls_f_regression performs an 
orthogonal reduction of the matrix of regressors to upper-triangular form. The 
reduction is based on one pass through the rows of the augmented matrix (x, y) using 
fast Givens transformations. (See Golub  and Van Loan 1983, pp. 156–162; Gentleman 
1974.) This method has the advantage that the loss of accuracy resulting from forming 
the crossproduct matrix used in the normal equations is avoided. 
By default, the current means of the dependent and independent variables are used to 
internally center the data for improved accuracy. Let xi be a column vector containing 
the j-th row of data for the independent variables. Let xi represent the mean vector for 
the independent variables given the data for rows 1, 2, …, i. The current mean vector is 
defined as follows:  

1

1

i

j j j
j

i i

j j
j

w f x
x

w f

=

=

=
∑

∑  

where the wj’s and the fj’s are the weights and frequencies. The i-th row of data has  

ix
 

 
subtracted from it and is multiplied by 

1

i
i i

i

a
w f

a −  

where 
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i

i j j
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Although a crossproduct matrix is not computed, the validity of this centering 
operation can be seen from the following formula for the sum of squares and 
crossproducts matrix:  

( )( ) ( )( )
1 2 1

n n
T Ti

i i i n i n i i i i i i
i i i

a
w f x x x x w f x x x x

a= = −

− − = − −∑ ∑  

An orthogonal reduction on the centered matrix is computed. When the final 
computations are performed, the intercept estimate and the first row and column of the 
estimated covariance matrix of the estimated coefficients are updated (if 
IMSLS_COEF_COVARIANCES or IMSLS_COEF_COVARIANCES_USER is specified) to 
reflect the statistics for the original (uncentered) data. This means that the estimate of 
the intercept is for the uncentered data. 
As part of the final computations, imsls_f_regression checks for linearly 
dependent regressors. In particular, linear dependence of the regressors is declared if 
any of the following three conditions are satisfied: 

• A regressor equals 0. 

• Two or more regressors are constant. 

2
1,2,..., 11 i iR ⋅ −−

 

is less than or equal to tolerance. Here, 

1,2,..., 1i iR ⋅ −  

is the multiple correlation coefficient of the i-th independent variable with the 
first i – 1 independent variables. If no intercept is in the model, the multiple 
correlation coefficient is computed without adjusting for the mean. 

On completion of the final computations, if the i-th regressor is declared to be linearly 
dependent upon the previous i − 1 regressors, the i-th coefficient estimate and all 
elements in the i-th row and i-th column of the estimated variance-covariance matrix of 
the estimated coefficients (if IMSLS_COEF_COVARIANCES or 
IMSLS_COEF_COVARIANCES_USER is specified) are set to 0. Finally, if a linear 
dependence is declared, an informational (error) message, code 
IMSLS_RANK_DEFICIENT, is issued indicating the model is not full rank. 

Examples  

Example 1 
A regression model 

yi = β0 + β1xi1 + β2xi2 + β3xi3 + εi  i = 1, 2, …, 9 

is fitted to data taken from Maindonald (1984, pp. 203–204). 
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#include <imsls.h> 
 
#define INTERCEPT       1 
#define N_INDEPENDENT   3 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_OBSERVATIONS  9 
 
main() 
{ 
    float       *coefficients; 
    float       x[][N_INDEPENDENT] = {7.0, 5.0, 6.0, 
                                      2.0,-1.0, 6.0, 
                                      7.0, 3.0, 5.0, 
                                     -3.0, 1.0, 4.0, 
                                      2.0,-1.0, 0.0, 
                                      2.0, 1.0, 7.0, 
                                     -3.0,-1.0, 3.0, 
                                      2.0, 1.0, 1.0, 
                                      2.0, 1.0, 4.0}; 
    float       y[] = {7.0,-5.0, 6.0, 5.0, 5.0, -2.0, 0.0, 8.0, 3.0}; 
 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
                                     (float *)x, y, 0); 
    imsls_f_write_matrix("Least-Squares Coefficients", 1, N_COEFFICIENTS,  
                        coefficients,  
                        IMSLS_COL_NUMBER_ZERO, 
                        0); 
} 

Output 
          Least-Squares Coefficients 
         0           1           2           3 
     7.733      -0.200       2.333      -1.667 

Example 2 
A weighted least-squares fit is computed using the model 

yi = β0 + β1xi1 + β2xi2 + εi i = 1, 2, …, 4 

and weights 1/i2 discussed by Maindonald (1984, pp. 67−68).  
In the example, IMSLS_WEIGHTS is specified. The minimum sum of squares for error 
in terms of the original untransformed regressors and responses for this weighted 
regression is 

( )
4

2

=1

ˆSSE= i i i
i

w y y−∑  

where wi = 1/i2, represented in the C code as array w. 
#include <imsls.h> 
#include <math.h> 
 



 
 
 
 

 
 

Chapter 2: Regression regression • 73  

 

 

 

#define N_INDEPENDENT   2 
#define N_COEFFICIENTS  N_INDEPENDENT + 1 
#define N_OBSERVATIONS  4 
 
main() 
{ 
    int         i; 
    float       *coefficients, w[N_OBSERVATIONS], anova_table[15],  
                power; 
    float       x[][N_INDEPENDENT] = { 
                    -2.0, 0.0,  
                    -1.0, 2.0,  
                     2.0, 5.0, 
                     7.0, 3.0}; 
    float       y[] = {-3.0, 1.0, 2.0, 6.0}; 
    char        *anova_row_labels[] = { 
                   "degrees of freedom for regression",  
                   "degrees of freedom for error",  
                   "total (uncorrected) degrees of freedom", 
                   "sum of squares for regression",  
                   "sum of squares for error",  
                   "total (uncorrected) sum of squares", 
                   "regression mean square",  
                   "error mean square", "F-statistic", 
                   "p-value", "R-squared (in percent)",  
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of model error",  
                   "overall mean of y",  
                   "coefficient of variation (in percent)"}; 
 
                                /* Calculate weights */ 
    power = 0.0; 
    for (i = 0;  i < N_OBSERVATIONS;  i++)  { 
        power += 1.0; 
        w[i] = 1.0 / (power*power); 
    } 
 
                                /*Perform analysis */ 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *) x, y, 
        IMSLS_WEIGHTS, w,  
        IMSLS_ANOVA_TABLE_USER, anova_table, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("Least Squares Coefficients", 1,  
        N_COEFFICIENTS, coefficients, 0); 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,  
        anova_table, 
        IMSLS_ROW_LABELS, anova_row_labels, 
        IMSLS_WRITE_FORMAT, "%10.2f",  
        0); 
} 
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Output 
    Least Squares Coefficients 
         1           2           3 
    -1.431       0.658       0.748 
  
 

         * * * Analysis of Variance * * * 
 
degrees of freedom for regression             2.00 
degrees of freedom for error                  1.00 
total (uncorrected) degrees of freedom        3.00 
sum of squares for regression                 7.68 
sum of squares for error                      1.01 
total (uncorrected) sum of squares            8.69 
regression mean square                        3.84 
error mean square                             1.01 
F-statistic                                   3.79 
p-value                                       0.34 
R-squared (in percent)                       88.34 
adjusted R-squared (in percent)              65.03 
est. standard deviation of model error        1.01 
overall mean of y                            -1.51 
coefficient of variation (in percent)       -66.55 

Example 3 
A multivariate regression is performed for a data set with two dependent variables. 
Also, usage of the keyword IMSLS_X_INDICES is demonstrated. Note that the 
required input variable y is not referenced and is declared as a pointer to a float. 

#include <imsls.h> 
 
#define INTERCEPT       1 
#define N_INDEPENDENT   3 
#define N_DEPENDENT     2 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_OBSERVATIONS  9 
 
main() 
{ 
    float  coefficients[N_DEPENDENT*N_COEFFICIENTS]; 
    float  *dummy; 
    float  scpe[N_DEPENDENT*N_DEPENDENT]; 
    float  anova_table[15*N_DEPENDENT]; 
    static float   x[] =       { 7.0, 5.0, 6.0,  7.0,  1.0,  
                                 2.0,-1.0, 6.0, -5.0,  4.0,  
                                 7.0, 3.0, 5.0,  6.0, 10.0,  
                                -3.0, 1.0, 4.0,  5.0,  5.0,  
                                 2.0,-1.0, 0.0,  5.0, -2.0,  
                                 2.0, 1.0, 7.0, -2.0,  4.0,  
                                -3.0,-1.0, 3.0,  0.0, -6.0,  
                                 2.0, 1.0, 1.0,  8.0,  2.0,  
                                 2.0, 1.0, 4.0,  3.0,  0.0}; 
    int    ifrq = -1, iwt=-1; 
    static int indind[N_INDEPENDENT] = {0, 1, 2}; 
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    static int inddep[N_DEPENDENT] = {3, 4}; 
    char   *fmt = "%10.4f"; 
    char   *anova_row_labels[] = { 
                   "d.f. regression",  
                   "d.f. error",  
                   "d.f. total (uncorrected)", 
                   "ssr",  
                   "sse",  
                   "sst (uncorrected)", 
                   "msr",  
                   "mse", "F-statistic", 
                   "p-value", "R-squared (in percent)",  
                   "adj. R-squared (in percent)", 
                   "est. s.t.d. of model error",  
                   "overall mean of y",  
                   "coefficient of variation (in percent)"}; 
 
    imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *) x, dummy, 
        IMSLS_X_COL_DIM, N_INDEPENDENT+N_DEPENDENT, 
        IMSLS_N_DEPENDENT, N_DEPENDENT,  
        IMSLS_X_INDICES, indind, inddep, ifrq, iwt, 
        IMSLS_SCPE_USER, scpe,  
        IMSLS_ANOVA_TABLE_USER, anova_table, 
        IMSLS_RETURN_USER, coefficients, 
        0); 
 
    imsls_f_write_matrix("Least Squares Coefficients", N_DEPENDENT, 
        N_COEFFICIENTS, coefficients,  
        IMSLS_COL_NUMBER_ZERO, 0); 
 
    imsls_f_write_matrix("SCPE", N_DEPENDENT, N_DEPENDENT, scpe,  
        IMSLS_WRITE_FORMAT, "%10.4f", 0); 
 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n",  
        15, N_DEPENDENT,  
        anova_table, 
        IMSLS_ROW_LABELS, anova_row_labels, 
        IMSLS_WRITE_FORMAT, "%10.2f",  
        0); 
 
 
} 

Output 
           Least Squares Coefficients 
            0           1           2           3 
1       7.733      -0.200       2.333      -1.667 
2      -1.633       0.400       0.167       0.667 
  
          SCPE 
            1           2 
1      4.0000     20.0000 
2     20.0000    110.0000 
  
     * * * Analysis of Variance * * * 
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                              1           2 
d.f. regression            3.00        3.00 
d.f. error                 5.00        5.00 
d.f. total (uncorre        8.00        8.00 
   cted)                                    
ssr                      152.00       56.00 
sse                        4.00      110.00 
sst (uncorrected)        156.00      166.00 
msr                       50.67       18.67 
mse                        0.80       22.00 
F-statistic               63.33        0.85 
p-value                    0.00        0.52 
R-squared (in             97.44       33.73 
   percent)                                 
adj. R-squared            95.90        0.00 
   (in percent)                             
est. s.t.d. of             0.89        4.69 
   model error                              
overall mean of y          3.00        2.00 
coefficient of            29.81      234.52 
   variation (in                            
   percent)                                 

Warning Errors 

IMSLS_RANK_DEFICIENT The model is not full rank. There is not a unique 
least-squares solution. 

Fatal Errors 

IMSLS_BAD_IDO_6 “ido” = #. Initial allocations must be performed by 
making a call to function regression with “ido” = 1. 

IMSLS_BAD_IDO_7 “ido” = #. A new analysis may not begin until the 
previous analysis is terminated by a call to function 
regression with “ido” = 3. 

regression_summary 
Produces summary statistics for a regression model given the information from the fit. 

Synopsis 
#include <imsls.h> 
void imsls_f_regression_summary (Imsls_f_regression *regression_info, 

..., 0) 
The type double function is imsls_d_regression_summary. 
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Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information about 
the regression fit. See imsls_f_regression. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_regression_summary (Imsls_f_regression *regression_info,  

IMSLS_INDEX_REGRESSION, int idep,  
IMSLS_COEF_T_TESTS, float **coef_t_tests 
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[], 
IMSLS_COEF_COL_DIM, int coef_col_dim, 
IMSLS_COEF_VIF, float **coef_vif, 
IMSLS_COEF_VIF_USER, float coef_vif[], 
IMSLS_COEF_COVARIANCES, float **coef_covariances, 
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[], 
IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim, 
IMSLS_ANOVA_TABLE, float **anova_table, 
IMSLS_ANOVA_TABLE_USER, float anova_table[], 
IMSLS_SQSS, float **sqss,    
IMSLS_SQSS_USER, float sqss[], 
0) 

Optional Arguments 

IMSLS_INDEX_REGRESSION, int idep   (Input) 
Given a multivariate regression fit, this option allows the user to specify for 
which regression summary statistics will be computed. 
Default: idep = 0 

IMSLS_COEF_T_TESTS, float **coef_t_tests   (Output) 
Address of a pointer to the npar × 4 array containing statistics relating to the 
regression coefficients, where npar is equal to the number of parameters in the 
model. 

 Each row (for each dependent variable) corresponds to a coefficient in the 
model, where npar is the number of parameters in the model. Row i + intcep 
corresponds to the i-th independent variable, where intcep is equal to 1 if an 
intercept is in the model and 0 otherwise, for  
i = 0, 1, 2, …, npar – 1.  
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The statistics in the columns are as follows: 
Column Description 

0 coefficient estimate 
1 estimated standard error of the coefficient estimate 
2 t-statistic for the test that the coefficient is 0 
3 p-value for the two-sided t test 

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[]   (Output) 
Storage for array coef_t_tests is provided by the user. See 
IMSLS_COEF_T_TESTS. 

IMSLS_COEF_COL_DIM, int coef_col_dim   (Input) 
Column dimension of coef_t_tests. 
Default: coef_col_dim = 4 

IMSLS_COEF_VIF, float **coef_vif   (Output) 
Address of a pointer to an internally allocated array of length npar containing 
the variance inflation factor, where npar is the number of parameters. The 
i + intcep-th column corresponds to the i-th independent variable, where i = 0, 
1, 2, …, npar – 1, and intcep is equal to 1 if an intercept is in the model and 0 
otherwise. 

The square of the multiple correlation coefficient for the i-th regressor after all 
others can be obtained from coef_vif by  

1.01.0
[ ]i

−
coef_vif  

If there is no intercept, or there is an intercept and j = 0, the multiple 
correlation coefficient is not adjusted for the mean. 

IMSLS_COEF_VIF_USER, float coef_vif[]   (Output) 
Storage for array coef_t_tests is provided by the user. See 
IMSLS_COEF_VIF. 

IMSLS_COEF_COVARIANCES, float **coef_covariances   (Output) 
An npar by npar (where npar is equal to the number of parameters in the 
model) array that is the estimated variance-covariance matrix of the estimated 
regression coefficients when R is nonsingular and is from an unrestricted 
regression fit. See “Remarks” for an explanation of coef_covariances 
when R is singular and is from a restricted regression fit.  

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[]   (Output) 
Storage for coef_covariances is provided by the user. See 
IMSLS_COEF_COVARIANCES. 

IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim   (Input) 
Column dimension of coef_covariances. 
Default: coef_cov_col_dim = the number of parameters in the model 
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IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to the array of size 15 containing the analysis of variance 
table. 

Row Analysis of Variance Statistic 
0 degrees of freedom for the model 
1 degrees of freedom for error 
2 total (corrected) degrees of freedom 
3 sum of squares for the model 
4 sum of squares for error 
5 total (corrected) sum of squares 
6 model mean square 
7 error mean square 
8 overall F-statistic 
9 p-value 

10 R2(in percent) 
11 adjusted R2 (in percent) 
12 estimate of the standard deviation 
13 overall mean of y 
14 coefficient of variation (in percent) 

If the model has an intercept, the regression and total are corrected for the 
mean; otherwise, the regression and total are not corrected for the mean, and 
anova_table[13] and anova_table[14] are set to NaN. 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_SQSS, float **sqss   (Output) 
Address of a pointer to an internally allocated array of size npar by 4, where 
npar is equal to the numbers of parameters in the model, containing in 
columns 1 through 4 the sequential degrees of freedom, sum of squares,  
F-statistic, and p-value. Each row corresponds to an effect. Row i + intcep  
corresponds to the i-th independent variable, where intcep is equal to 1 if an 
intercept is in the model and 0 otherwise, for i =0. 1, 2, …, npar – 1. 

IMSLS_SQSS_USER, float sqss[]   (Output) 
Storage for sqss is provided by the user. See IMSLS_SQSS. 

Description 
Function imsls_f_regression_summary computes summary statistics from a fitted 
general linear model. The model is y = Xβ + ε, where y is the n × 1 vector of responses, 
X is the n × p matrix of regressors, β is the p × 1 vector of regression coefficients, and ε 
is the n × 1 vector of errors whose elements are each independently distributed with 
mean 0 and variance σ2. Function regression can be used to compute the fit of the 
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model. Next, imsls_f_regression_summary uses the results of this fit to compute 
summary statistics, including analysis of variance, sequential sum of squares,  
t tests, and an estimated variance-covariance matrix of the estimated regression 
coefficients. 
Some generalizations of the general linear model are allowed. If the i-th element of ε 
has variance of 

2

iw
σ

 

and the weights wi are used in the fit of the model, imsls_f_regression_summary 
produces summary statistics from the weighted least-squares fit. More generally, if the 
variance-covariance matrix of ε is σ2V, imsls_f_regression_summary can be used 
to produce summary statistics from the generalized least-squares fit. Function 
regression can be used to perform a generalized least-squares fit, by regressing y* on 
X* where y* = (T-1)Ty, X* = (T-1)TX and T satisfies TTT = V.  
The sequential sum of squares for the i-th regression parameter is given by  

( )2ˆ
i

Rβ
 

The regression sum of squares is given by the sum of the sequential sums of squares. If 
an intercept is in the model, the regression sum of squares is adjusted for the mean, i.e.,  

( )2

0
ˆRβ

 

is not included in the sum. 

The estimate of σ2 is s2 (stored in anova_table[7]) that is computed as SSE/DFE. 
If R is nonsingular, the estimated variance-covariance matrix of  

β̂
 

(stored in coef_covariances) is computed by s2R-1(R-1)T. 
If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a 
matrix G to be a gi (i = 1, 2, 3, or 4) inverse of a matrix A, G must satisfy conditions j 
(for j ≤ i) for the Moore-Penrose inverse but generally must fail conditions k (for k > i). 
The four conditions for G to be a Moore-Penrose inverse of A are as follows: 
1. AGA = A 
2.  GAG = G 
3.  AG is symmetric 
4.  GA is symmetric 
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In the case where R is singular, the method for obtaining coef_covariances follows 
the discussion of Maindonald (1984, pp. 101–103). Let Z be the diagonal matrix with 
diagonal elements defined by the following: 

1 if 0
0 if 0

ii
ii

ii

r
z

r
≠⎧

= ⎨ =⎩  

Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G to 0. 

Argument coef_covariances is set to s2GGT. (G is a g3 inverse of R, represented 
by, 

3gR
 

the result 

3 3
Tg gR R

 

is a symmetric g2 inverse of RTR = XTX. See Sallas and Lionti 1988.) 

Note that argument coef_covariances can be used only to get variances and 
covariances of estimable functions of the regression coefficients, i.e., nonestimable 
functions (linear combinations of the regression coefficients not in the space spanned 
by the nonzero rows of R) must not be used. See, for example, Maindonald (1984, pp. 
166–168) for a discussion of estimable functions. 
The estimated standard errors of the estimated regression coefficients (stored in 
Column 1 of coef_t_tests) are computed as square roots of the corresponding 
diagonal entries in coef_covariances. 

For the case where an intercept is in the model, put R  equal to the matrix R with the 
first row and column deleted. Generally, the variance inflation factor (VIF) for the i-th 
regression coefficient is computed as the product of the i-th diagonal element of RTR 
and the i-th diagonal element of its computed inverse. If an intercept is in the model, 
the VIF for those coefficients not corresponding to the intercept uses the diagonal 
elements of TR R  (see Maindonald 1984, p. 40). 

Remarks 
When R is nonsingular and comes from an unrestricted regression fit, 
coef_covariances is the estimated variance-covariance matrix of the estimated 
regression coefficients, and coef_covariances = (SSE/DFE) (RTR). Otherwise, 
variances and covariances of estimable functions of the regression coefficients can be 
obtained using coef_covariances, and coef_covariances = (SSE/DFE) (GDGT). 
Here, D is the diagonal matrix with diagonal elements equal to 0 if the corresponding 
rows of R are restrictions and with diagonal elements equal to 1 otherwise. Also, G is a 
particular generalized inverse of R. 



 

 
 

82 • regression_summary IMSL C Stat Library 

 

 

 

Example 
#include <imsls.h> 
 
main() 
{ 
#define INTERCEPT       1 
#define N_INDEPENDENT   4 
#define N_OBSERVATIONS  13 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_DEPENDENT     1 
 
    Imsls_f_regression   *regression_info; 
    float       *anova_table, *coef_t_tests, *coef_vif,  
                *coefficients, *coef_covariances; 
    float       x[][N_INDEPENDENT] = { 
        7.0, 26.0,  6.0, 60.0, 
        1.0, 29.0, 15.0, 52.0, 
       11.0, 56.0,  8.0, 20.0, 
       11.0, 31.0,  8.0, 47.0, 
        7.0, 52.0,  6.0, 33.0, 
       11.0, 55.0,  9.0, 22.0, 
        3.0, 71.0, 17.0,  6.0, 
        1.0, 31.0, 22.0, 44.0, 
        2.0, 54.0, 18.0, 22.0, 
       21.0, 47.0,  4.0, 26.0, 
        1.0, 40.0, 23.0, 34.0,  
       11.0, 66.0,  9.0, 12.0, 
       10.0, 68.0,  8.0, 12.0}; 
    float        y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,  
       102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
    char        *anova_row_labels[] = { 
                   "degrees of freedom for regression", 
                   "degrees of freedom for error", 
                   "total (uncorrected) degrees of freedom", 
                   "sum of squares for regression", 
                   "sum of squares for error", 
                   "total (uncorrected) sum of squares", 
                   "regression mean square", 
                   "error mean square", "F-statistic", 
                   "p-value", "R-squared (in percent)", 
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of model error", 
                   "overall mean of y", 
                   "coefficient of variation (in percent)"}; 
 
                                /* Fit the regression model */ 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *)x, y, 
        IMSLS_REGRESSION_INFO, &regression_info, 
        0); 
 
                                /* Generate summary statistics */ 
    imsls_f_regression_summary (regression_info, 
        IMSLS_ANOVA_TABLE, &anova_table,  
        IMSLS_COEF_T_TESTS, &coef_t_tests, 
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        IMSLS_COEF_VIF, &coef_vif, 
        IMSLS_COEF_COVARIANCES, &coef_covariances, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
        anova_table, 
        IMSLS_ROW_LABELS, anova_row_labels, 
        IMSLS_WRITE_FORMAT, "%10.2f", 0); 
 
    imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",  
        N_COEFFICIENTS, 4, coef_t_tests,  
        IMSLS_WRITE_FORMAT, "%10.2f", 0); 
 
    imsls_f_write_matrix("* * * Variance Inflation Factors * * *\n", 
        N_COEFFICIENTS, 1, coef_vif,  
        IMSLS_WRITE_FORMAT, "%10.2f", 0); 
 
    imsls_f_write_matrix("* * * Variance-Covariance Matrix * * *\n", 
        N_COEFFICIENTS, N_COEFFICIENTS,  
        coef_covariances,  
        IMSLS_WRITE_FORMAT, "%10.2f", 0); 
} 

Output 
         * * * Analysis of Variance * * * 
degrees of freedom for regression             4.00 
degrees of freedom for error                  8.00 
total (uncorrected) degrees of freedom       12.00 
sum of squares for regression              2667.90 
sum of squares for error                     47.86 
total (uncorrected) sum of squares         2715.76 
regression mean square                      666.97 
error mean square                             5.98 
F-statistic                                 111.48 
p-value                                       0.00 
R-squared (in percent)                       98.24 
adjusted R-squared (in percent)              97.36 
est. standard deviation of model error        2.45 
overall mean of y                            95.42 
coefficient of variation (in percent)         2.56 
  
     * * * Inference on Coefficients * * * 
 
            1           2           3           4 
1       62.41       70.07        0.89        0.40 
2        1.55        0.74        2.08        0.07 
3        0.51        0.72        0.70        0.50 
4        0.10        0.75        0.14        0.90 
5       -0.14        0.71       -0.20        0.84 
  
* * * Variance Inflation Factors * * * 
 
             1    10668.53 
             2       38.50 
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             3      254.42 
             4       46.87 
             5      282.51 
  
 
           * * * Variance-Covariance Matrix * * * 
 
            1           2           3           4           5 
1     4909.95      -50.51      -50.60      -51.66      -49.60 
2      -50.51        0.55        0.51        0.55        0.51 
3      -50.60        0.51        0.52        0.53        0.51 
4      -51.66        0.55        0.53        0.57        0.52 
5      -49.60        0.51        0.51        0.52        0.50 

regression_prediction 
Computes predicted values, confidence intervals, and diagnostics after fitting a 
regression model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_regression_prediction 

(Imsls_f_regression *regression_info, int n_predict, float x[], ..., 0) 
The type double function is imsls_d_regression_prediction. 

Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information about 
the regression fit. See imsls_f_regression. 

int n_predict   (Input) 
Number of rows in x. 

float x[]   (Input) 
Array of size n_predict by the number of independent variables containing 
the combinations of independent variables in each row for which calculations 
are to be performed. 

Return Value 
Pointer to an internally allocated array of length n_predict containing the predicted 
values. 

Synopsis with Optional Arguments 

#include <imsls.h> 

float *imsls_f_regression_prediction 
(Imsls_f_regression *regression_info, int n_predict, float x[],  
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_Y_COL_DIM, int y_col_dim,  
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IMSLS_INDEX_REGRESSION, int idep, 
IMSLS_X_INDICES, int indind[], int inddep[], int ifrq, 
 int iwt,  
IMSLS_WEIGHTS, float weights[], 
IMSLS_CONFIDENCE, float confidence, 
IMSLS_SCHEFFE_CI, float **lower_limit, 
 float **upper_limit, 
IMSLS_SCHEFFE_CI_USER, float lower_limit[], 
 float upper_limit[], 
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,  
 float **upper_limit, 
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],  
 float upper_limit[], 
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,  
 float **upper_limit, 
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, 
 float lower_limit[], float upper_limit[], 
IMSLS_LEVERAGE, float **leverage, 
IMSLS_LEVERAGE_USER, float leverage[], 
IMSLS_RETURN_USER, float y_hat[], 
IMSLS_Y, float y[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_STANDARDIZED_RESIDUAL, 
 float **standardized_residual, 
IMSLS_STANDARDIZED_RESIDUAL_USER,  
 float standardized_residual[], 
IMSLS_DELETED_RESIDUAL, float **deleted_residual, 
IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[], 
IMSLS_COOKSD, float **cooksd, 
IMSLS_COOKSD_USER, float cooksd[], 
IMSLS_DFFITS, float **dffits, 
IMSLS_DFFITS_USER, float dffits[], 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Number of columns in x. 
Default: x_col_dim is equal to the number of independent variables, which is 
input from the structure regression_info 

IMSLS_Y_COL_DIM, int y_col_dim   (Input) 
Number of columns in y. 
Default: y_col_dim = 1 

IMSLS_INDEX_REGRESSION, int idep   (Input) 
Given a multivariate regression fit, this option allows the user to specify for 



 

 
 

86 • regression_prediction IMSL C Stat Library 

 

 

 

which regression statistics will be computed. 
Default: idep = 0 

IMSLS_X_INDICES, int indind[], int inddep, int ifrq, int iwt   (Input) 
This argument allows an alternative method for data specification. Data 
(independent, dependent, frequencies, and weights) is all stored in the data 
matrix x. Argument y, and keyword IMSLS_WEIGHTS are ignored. 

Each of the four arguments contains indices indicating column numbers of x 
in which particular types of data are stored. Columns are numbered 0, …, 
x_col_dim − 1.  

Parameter indind contains the indices of the independent variables. 

Parameter inddep contains the indices of the dependent variables. If there is 
to be no dependent variable, this must be indicated by setting the first element 
of the vector to −1. 

Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will 
be no column for frequencies. Set iwt = −1 if there will be no column for 
weights. Weights are rounded to the nearest integer. Negative weights are not 
allowed. 

Note that frequencies are not referenced by function 
regression_prediction, and is included here only for the sake of 
keyword consistency. 

Finally, note that IMSLS_X_INDICES and IMSLS_Y are mutually exclusive 
keywords, and may not be specified in the same call to 
regression_prediction. 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_predict containing the weight for each row of x. The 
computed prediction interval uses SSE/(DFE*weights[i]) for the estimated 
variance of a future response. 
Default: weights[] = 1 

IMSLS_CONFIDENCE, float confidence   (Input) 
Confidence level for both two-sided interval estimates on the mean and for 
two-sided prediction intervals, in percent. Argument confidence must be in 
the range [0.0, 100.0). For one-sided intervals with confidence level onecl, 
where 50.0 ≤ onecl < 100.0, set confidence = 100.0 − 2.0* (100.0 −
 onecl). 
Default: confidence = 95.0 

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit   (Output) 
Array lower_limit is the address of a pointer to an internally allocated array 
of length n_predict containing the lower confidence limits of Scheffé 
confidence intervals corresponding to the rows of x. Array upper_limit is 
the address of a pointer to an internally allocated array of length n_predict 
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containing the upper confidence limits of Scheffé confidence intervals 
corresponding to the rows of x. 

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]   
(Output) 
Storage for arrays lower_limit and upper_limit is provided by the user. 
See IMSLS_SCHEFFE_CI. 

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit   
(Output) 
Array lower_limit is the address of a pointer to an internally allocated array 
of length n_predict containing the lower-confidence limits of the 
confidence intervals for two-sided interval estimates of the means, 
corresponding to the rows of x. Array upper_limit is the address of a 
pointer to an internally allocated array of length n_predict containing the 
upper-confidence limits of the confidence intervals for two-sided interval 
estimates of the means, corresponding to the rows of x. 

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[], 
float upper_limit[]   (Output) 
Storage for arrays lower_limit and upper_limit is provided by the user. 
See IMSLS_POINTWISE_CI_POP_MEAN. 

IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, 
float **upper_limit   (Output) 
Array lower_limit is the address of a pointer to an internally allocated array 
of length n_predict containing the lower-confidence limits of the 
confidence intervals for two-sided prediction intervals, corresponding to the 
rows of x. Array upper_limit is the address of a pointer to an internally 
allocated array of length n_predict containing the upper-confidence limits 
of the confidence intervals for two-sided prediction intervals, corresponding to 
the rows of x. 

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], 
float upper_limit[]   (Output) 
Storage for arrays lower_limit and upper_limit is provided by the user. 
See IMSLS_POINTWISE_CI_NEW_SAMPLE. 

IMSLS_LEVERAGE, float **leverage   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the leverages. 

IMSLS_LEVERAGE_USER, float leverage[]   (Output) 
Storage for array leverage is provided by the user. See IMSLS_LEVERAGE. 

IMSLS_RETURN_USER, float y_hat[]   (Output) 
Storage for array y_hat is provided by the user. The length n_predict array 
contains the predicted values. 

IMSLS_Y, float y[]   (Input) 
Array of length n_predict containing the observed responses.  
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Note: IMSLS_Y (or IMSLS_X_INDICES) must be specified if any of the following 
optional arguments are specified. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the residuals. 

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See IMSLS_RESIDUAL. 

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the standardized residuals. 

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]   
(Output) 
Storage for array standardized_residual is provided by the user. See 
IMSLS_STANDARDIZED_RESIDUAL. 

IMSLS_DELETED_RESIDUAL, float **deleted_residual   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the deleted residuals. 

IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[]   (Output) 
Storage for array deleted_residual is provided by the user. See 
IMSLS_DELETED_RESIDUAL. 

IMSLS_COOKSD, float **cooksd   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the Cook’s D statistics. 

IMSLS_COOKSD_USER, float cooksd[]   (Output) 
Storage for array cooksd is provided by the user. See IMSLS_COOKSD. 

IMSLS_DFFITS, float **dffits   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the DFFITS statistics. 

IMSLS_DFFITS_USER, float dffits[]   (Output) 
Storage for array dffits is provided by the user. See IMSLS_DFFITS. 

Description 
The general linear model used by function imsls_f_regression_prediction is 

y = Xβ + ε 

where y is the n × 1 vector of responses, X is the n × p matrix of regressors,  
β is the p × 1 vector of regression coefficients, and ε is the n × 1 vector of errors whose 
elements are independently normally distributed with mean 0 and the variance below. 

2

iw
σ
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From a general linear model fit using the wi’s as the weights, function 
imsls_f_regression_prediction computes confidence intervals and statistics for 
the individual cases that constitute the data set. Let xi be a column vector containing 
elements of the i-th row of X. Let W = diag (w1, w2, …, wn). The leverage is defined as  

( )( )T T
i i i ih x X WX x w

−
=

 

Put D = diag (d1, d2, …, dn) with dj = 1 if the j-th diagonal element of R is positive and 

0 otherwise. The leverage is computed as hi = (aTDa) wi where  

a is a solution to RTa = xi. The estimated variance of  

ˆˆ T
iy x B=

 

is given by the following: 
2

i

i

h s
w  

where 

2 SSE
DFE

s =
 

The computation of the remainder of the case statistics follow easily from their 
definitions. For a detailed discussion, see case diagnostics. 
Informational errors can occur if the input matrix x is not consistent with the 
information from the fit (contained in regression_info), or if excess rounding has 
occurred. The warning error IMSLS_NONESTIMABLE arises when x contains a row not 
in the space spanned by the rows of R. An examination of the model that was fitted and 
the x for which diagnostics are to be computed is required in order to ensure that only 
linear combinations of the regression coefficients that can be estimated from the fitted 
model are specified in x. For further details, see the discussion of estimable functions 
given in Maindonald (1984, pp. 166−168) and Searle (1971, pp. 180−188). 
Often predicted values and confidence intervals are desired for combinations of 
settings of the independent variables not used in computing the regression fit. This can 
be accomplished by defining a new data matrix. Since the information about the model 
fit is input in regression_info, it is not necessary to send in the data set used for the 
original calculation of the fit, i.e., only variable combinations for which predictions are 
desired need be entered in x.  
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Examples  

Example 1 
#include <imsls.h> 
 
main() 
{ 
#define INTERCEPT       1 
#define N_INDEPENDENT   4 
#define N_OBSERVATIONS  13 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_DEPENDENT     1 
 
    float       *y_hat, *coefficients; 
    Imsls_f_regression   *regression_info; 
    float       x[][N_INDEPENDENT] = { 
        7.0, 26.0,  6.0, 60.0, 
        1.0, 29.0, 15.0, 52.0, 
       11.0, 56.0,  8.0, 20.0, 
       11.0, 31.0,  8.0, 47.0, 
        7.0, 52.0,  6.0, 33.0, 
       11.0, 55.0,  9.0, 22.0, 
        3.0, 71.0, 17.0,  6.0, 
        1.0, 31.0, 22.0, 44.0, 
        2.0, 54.0, 18.0, 22.0, 
       21.0, 47.0,  4.0, 26.0, 
        1.0, 40.0, 23.0, 34.0,  
       11.0, 66.0,  9.0, 12.0, 
       10.0, 68.0,  8.0, 12.0}; 
    float        y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,  
       102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
 
                                /* Fit the regression model */ 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *)x, y, 
        IMSLS_REGRESSION_INFO, &regression_info, 
        0); 
 
                                /* Generate case statistics */ 
    y_hat = imsls_f_regression_prediction(regression_info,  
        N_OBSERVATIONS, (float*)x, 0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,  
        y_hat, 0); 
} 

Output 
                          Predicted Responses 
         1           2           3           4           5           6 
      78.5        72.8       106.0        89.3        95.6       105.3 
  
         7           8           9          10          11          12 
     104.1        75.7        91.7       115.6        81.8       112.3 
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        13 
     111.7 

Example 2 
#include <imsls.h> 
 
main() 
{ 
#define INTERCEPT       1 
#define N_INDEPENDENT   4 
#define N_OBSERVATIONS  13 
#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT) 
#define N_DEPENDENT     1 
 
    float       *y_hat, *leverage, *residual, *standardized_residual, 
                *deleted_residual, *dffits, *cooksd, *mean_lower_limit, 
                *mean_upper_limit, *new_sample_lower_limit,  
                *new_sample_upper_limit, *scheffe_lower_limit,  
                *scheffe_upper_limit, *coefficients; 
    Imsls_f_regression   *regression_info; 
    float       x[][N_INDEPENDENT] = { 
        7.0, 26.0,  6.0, 60.0, 
        1.0, 29.0, 15.0, 52.0, 
       11.0, 56.0,  8.0, 20.0, 
       11.0, 31.0,  8.0, 47.0, 
        7.0, 52.0,  6.0, 33.0, 
       11.0, 55.0,  9.0, 22.0, 
        3.0, 71.0, 17.0,  6.0, 
        1.0, 31.0, 22.0, 44.0, 
        2.0, 54.0, 18.0, 22.0, 
       21.0, 47.0,  4.0, 26.0, 
        1.0, 40.0, 23.0, 34.0,  
       11.0, 66.0,  9.0, 12.0, 
       10.0, 68.0,  8.0, 12.0}; 
    float        y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,  
       102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
 
                                /* Fit the regression model */ 
    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,  
        (float *)x, y, 
        IMSLS_REGRESSION_INFO, &regression_info, 
        0); 
 
                                /* Generate the case statistics */ 
    y_hat = imsls_f_regression_prediction(regression_info,  
        N_OBSERVATIONS, (float*)x,  
        IMSLS_Y,                       y, 
        IMSLS_LEVERAGE,                &leverage, 
        IMSLS_RESIDUAL,                &residual, 
        IMSLS_STANDARDIZED_RESIDUAL,   &standardized_residual, 
        IMSLS_DELETED_RESIDUAL,        &deleted_residual, 
        IMSLS_COOKSD,                  &cooksd, 
        IMSLS_DFFITS,                  &dffits, 
        IMSLS_POINTWISE_CI_POP_MEAN,   &mean_lower_limit,  
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                                       &mean_upper_limit, 
        IMSLS_POINTWISE_CI_NEW_SAMPLE, &new_sample_lower_limit,  
                                       &new_sample_upper_limit, 
        IMSLS_SCHEFFE_CI,              &scheffe_lower_limit,  
                                       &scheffe_upper_limit, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("Predicted Responses", 1, N_OBSERVATIONS,  
        y_hat, 0); 
    imsls_f_write_matrix("Residuals", 1, N_OBSERVATIONS, residual, 0); 
    imsls_f_write_matrix("Standardized Residuals", 1, N_OBSERVATIONS,  
        standardized_residual, 0); 
    imsls_f_write_matrix("Leverages", 1, N_OBSERVATIONS, leverage, 0); 
    imsls_f_write_matrix("Deleted Residuals", 1, N_OBSERVATIONS, 
        deleted_residual, 0); 
    imsls_f_write_matrix("Cooks D", 1, N_OBSERVATIONS, cooksd, 0); 
    imsls_f_write_matrix("DFFITS", 1, N_OBSERVATIONS, dffits, 0); 
    imsls_f_write_matrix("Scheffe Lower Limit", 1, N_OBSERVATIONS, 
        scheffe_lower_limit, 0); 
    imsls_f_write_matrix("Scheffe Upper Limit", 1, N_OBSERVATIONS, 
        scheffe_upper_limit, 0); 
    imsls_f_write_matrix("Population Mean Lower Limit", 1,  
        N_OBSERVATIONS, mean_lower_limit, 0); 
    imsls_f_write_matrix("Population Mean Upper Limit", 1,  
        N_OBSERVATIONS, mean_upper_limit, 0); 
    imsls_f_write_matrix("New Sample Lower Limit", 1, N_OBSERVATIONS, 
        new_sample_lower_limit, 0); 
    imsls_f_write_matrix("New Sample Upper Limit", 1, N_OBSERVATIONS, 
        new_sample_upper_limit, 0); 
} 

Output 
                          Predicted Responses 
         1           2           3           4           5           6 
      78.5        72.8       106.0        89.3        95.6       105.3 
  
         7           8           9          10          11          12 
     104.1        75.7        91.7       115.6        81.8       112.3 
  
        13 
     111.7 
  
                               Residuals 
         1           2           3           4           5           6 
     0.005       1.511      -1.671      -1.727       0.251       3.925 
  
         7           8           9          10          11          12 
    -1.449      -3.175       1.378       0.282       1.991       0.973 
  
        13 
    -2.294 
  
                        Standardized Residuals 
         1           2           3           4           5           6 
     0.003       0.757      -1.050      -0.841       0.128       1.715 
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         7           8           9          10          11          12 
    -0.744      -1.688       0.671       0.210       1.074       0.463 
  
        13 
    -1.124 
  
                               Leverages 
         1           2           3           4           5           6 
    0.5503      0.3332      0.5769      0.2952      0.3576      0.1242 
  
         7           8           9          10          11          12 
    0.3671      0.4085      0.2943      0.7004      0.4255      0.2630 
  
        13 
    0.3037 
  
                           Deleted Residuals 
         1           2           3           4           5           6 
     0.003       0.735      -1.058      -0.824       0.120       2.017 
  
         7           8           9          10          11          12 
    -0.722      -1.967       0.646       0.197       1.086       0.439 
  
        13 
    -1.146 
  
                                Cooks D 
         1           2           3           4           5           6 
    0.0000      0.0572      0.3009      0.0593      0.0018      0.0834 
  
         7           8           9          10          11          12 
    0.0643      0.3935      0.0375      0.0207      0.1708      0.0153 
  
        13 
    0.1102 
  
                                DFFITS 
         1           2           3           4           5           6 
     0.003       0.519      -1.236      -0.533       0.089       0.759 
  
         7           8           9          10          11          12 
    -0.550      -1.635       0.417       0.302       0.935       0.262 
  
        13 
    -0.757 
                          Scheffe Lower Limit 
         1           2           3           4           5           6 
      70.7        66.7        98.0        83.6        89.4       101.6 
  
         7           8           9          10          11          12 
      97.8        69.0        86.0       106.8        75.0       106.9 
  
        13 
     105.9 
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                          Scheffe Upper Limit 
         1           2           3           4           5           6 
      86.3        78.9       113.9        95.0       101.9       109.0 
  
         7           8           9          10          11          12 
     110.5        82.4        97.4       124.4        88.7       117.7 
  
        13 
     117.5 
  
                      Population Mean Lower Limit 
         1           2           3           4           5           6 
      74.3        69.5       101.7        86.3        92.3       103.3 
  
         7           8           9          10          11          12 
     100.7        72.1        88.7       110.9        78.1       109.4 
  
        13 
     108.6 
  
                      Population Mean Upper Limit 
         1           2           3           4           5           6 
      82.7        76.0       110.3        92.4        99.0       107.3 
  
         7           8           9          10          11          12 
     107.6        79.3        94.8       120.3        85.5       115.2 
  
        13 
     114.8 
  
                        New Sample Lower Limit 
         1           2           3           4           5           6 
      71.5        66.3        98.9        82.9        89.1        99.3 
  
         7           8           9          10          11          12 
      97.6        69.0        85.3       108.3        75.1       106.0 
  
        13 
     105.3 
  
                        New Sample Upper Limit 
         1           2           3           4           5           6 
      85.5        79.3       113.1        95.7       102.2       111.3 
  
         7           8           9          10          11          12 
     110.7        82.4        98.1       123.0        88.5       118.7 
  
        13 
     118.1 

Warning Errors 

IMSLS_NONESTIMABLE Within the preset tolerance, the linear 
combination of regression coefficients is 
nonestimable. 
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IMSLS_LEVERAGE_GT_1  A leverage (= #) much greater than 1.0 is 
computed. It is set to 1.0. 

IMSLS_DEL_MSE_LT_0  A deleted residual mean square  
(= #) much less than 0 is computed. It is set 
to 0. 

Fatal Errors 

IMSLS_NONNEG_WEIGHT_REQUEST_2 The weight for row # was #. Weights must 
be nonnegative. 

hypothesis_partial 
Constructs an equivalent completely testable multivariate general linear hypothesis 
HβU = G  from a partially testable hypothesis HpβU = Gp. 

Synopsis 
#include <imsls.h> 

int imsls_f_hypothesis_partial (Imsls_f_regression *regression_info, int 
nhp, float hp[], ..., 0) 

The type double function is imsls_d_hypothesis_partial. 

Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information about 
the regression fit. See function imsls_f_regression. 

int nhp   (Input) 
Number of rows in the hypothesis matrix, hp. 

float hp[]   (Input) 
The Hp array of size nhp by n_coefficients with each row corresponding to a 
row in the hypothesis and containing the constants that specify a linear 
combination of the regression coefficients. Here, n_coefficients is the number 
of coefficients in the fitted regression model. 

Return Value  
Number of rows in the completely testable hypothesis, nh. This value is also the 
degrees of freedom for the hypothesis. The value nh classifies the hypothesis 
HpβU = Gp as nontestable (nh = 0), partially testable (0 < nh < rank_hp) or 
completely testable (0 < nh = rank_hp), where rank_hp is the rank of Hp (see 
keyword IMSLS_RANK_HP). 

Synopsis with Optional Arguments 
#include <imsls.h> 
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int imsls_f_hypothesis_partial (Imsls_f_regression *regression_info, int 
nhp, float hp[], 
IMSLS_GP, float gp[], 
IMSLS_U, int nu, float u[], 
IMSLS_RANK_HP, int rank_hp 
IMSLS_H_MATRIX, float **h, 
IMSLS_H_MATRIX_USER, float h[], 
IMSLS_G, float **g, 
IMSLS_G_USER, float g[], 
0) 

Optional Arguments 

IMSLS_GP, float gp[]   (Input) 
Array of size nhp by nu containing the Gp matrix, the null hypothesis values. 
By default, each value of Gp is equal to 0. 

IMSLS_U, int nu, float u[]   (Input) 
Argument nu is the number of linear combinations of the dependent variables 
to be considered. The value nu must be greater than 0 and less than or equal to 
n_dependent. 

Argument u contains the n_dependent by nu U matrix for the test HpBU = Gp. 
This argument is not referenced by imsls_f_hypothesis_partial and is 
included only for consistency with functions imsls_f_hypothesis_scph 
and imsls_f_hypothesis_test. A dummy array of length 1 may be 
substituted for this argument. 
Default: nu = n_dependent and u is the identity matrix. 

IMSLS_RANK_HP, int*rank_hp   (Output) 
Rank of Hp. 

IMSLS_H_MATRIX, float **h   (Output) 
Address of a pointer to the internally allocated array of size nhp by 
n_parameters containing the H matrix. Each row of h corresponds to a row in 
the completely testable hypothesis and contains the constants that specify an 
estimable linear combination of the regression coefficients. 

IMSLS_H_MATRIX_USER, float h[]   (Output) 
Storage for array h is provided by the user. See IMSLS_H. 

IMSLS_G, float **g   (Output) 
Address of a pointer to the internally allocated array of size nph ny 
n_dependent containing the G matrix. The elements of g contain the null 
hypothesis values for the completely testable hypothesis. 

IMSLS_G_USER, float g[]   (Output) 
Storage for array g is provided by the user. See IMSLS_G. 

Description 
Once a general linear model y = Xβ + ε is fitted, particular hypothesis tests are 
frequently of interest. If the matrix of regressors X is not full rank (as evidenced by the 
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fact that some diagonal elements of the R matrix output from the fit are equal to zero), 
methods that use the results of the fitted model to compute the hypothesis sum of 
squares (see function imsls_f_hypothesis_scph) require specification in the 
hypothesis of only linear combinations of the regression parameters that are estimable. 
A linear combination of regression parameters cTβ is estimable if there exists some 
vector a such that cT = aTX, i.e., cT is in the space spanned by the rows of X. For a 
further discussion of estimable functions, see Maindonald (1984, pp. 166−168) and 
Searle (1971, pp. 180−188). Function imsls_f_hypothesis_partial is only useful 
in the case of non-full rank regression models, i.e., when the problem of estimability 
arises. 
Peixoto (1986) noted that the customary definition of testable hypothesis in the context 
of a general linear hypothesis test Hβ = g is overly restrictive. He extended the notion 
of a testable hypothesis (a hypothesis composed of estimable functions of the 
regression parameters) to include partially testable and completely testable hypothesis. 
A hypothesis Hβ = g is partially testable if the intersection of the row space H 
(denoted by ℜ(H)) and the row space of  
X (ℜ(X)) is not essentially empty and is a proper subset of ℜ(H), i.e.,  
{0} ⊂ ℜ(H) ∩ ℜ(X) ⊂ ℜ(H). A hypothesis Hβ = g is completely testable if  
{0} ⊂ ℜ(H) ∩ ℜ(H) ⊂ ℜ(X). Peixoto also demonstrated a method for converting a 
partially testable hypothesis to one that is completely testable so that the usual method 
for obtaining sums of squares for the hypothesis from the results of the fitted model can 
be used. The method replaces Hp in the partially testable hypothesis Hpβ = gp by a 
matrix H whose rows are a basis for the intersection of the row space of Hp and the row 
space of X. A corresponding conversion of the null hypothesis values from gp to g is 
also made. A sum of squares for the completely testable hypothesis can then be 
computed (see function imsls_f_hypothesis_scph). The sum of squares that is 
computed for the hypothesis Hβ = g equals the difference in the error sums of squares 
from two fitted models—the restricted model with the partially testable hypothesis 
Hpβ = gp and the unrestricted model. 

For the general case of the multivariate model Y = Xβ + ε with possible linear equality 
restrictions on the regression parameters, imsls_f_hypothesis_partial converts 
the partially testable hypothesis Hpβ = gp to a completely testable hypothesis HβU = G. 
For the case of the linear model with linear equality restrictions, the definitions of the 
estimable functions, nontestable hypothesis, partially testable hypothesis, and 
completely testable hypothesis are similar to those previously given for the unrestricted 
model with the exception that ℜ(X) is replaced by ℜ(R) where R is the upper triangular 
matrix based on the linear equality restrictions. The nonzero rows of R form a basis for 
the rowspace of the matrix (XT, AT)T. The rows of H form an orthonormal basis for the 
intersection of two subspaces—the subspace spanned by the rows of Hp and the 
subspace spanned by the rows of R. The algorithm used for computing the intersection 
of these two subspaces is based on an algorithm for computing angles between linear 
subspaces due to Björk and Golub (1973). (See also Golub and Van Loan 1983, pp. 
429−430). The method is closely related to a canonical correlation analysis discussed 
by Kennedy and Gentle (1980, pp. 561−565). The algorithm is as follows: 
 



 

 
 

98 • hypothesis_partial IMSL C Stat Library 

 

 

 

1.   Compute a QR factorization of  
T
PH

 

 with column permutations so that 

1 1 1
T T
PH Q R P=

 

Here, P1 is the associated permutation matrix that is also an orthogonal 
matrix. Determine the rank of Hp as the number of nonzero diagonal elements 
of R1, for example n1. Partition Q1 = (Q11, Q12) so that Q11 is the first n1 
column of Q1. Set rank_hp = n. 

2. Compute a QR factorization of the transpose of the R matrix (input through 
regression_info) with column permuations so that  

2 2 2
T TR Q R P=

 

Determine the rank of R from the number of nonzero diagonal elements of R, 
for example n2. Partition Q2 = (Q21, Q22) so that Q21 is the first n2 columns of 
Q2. 

3. Form 

11 21
TA Q Q=

 

4. Compute the singular values of A 

( )1 21 2 min ,... n nσ σ σ≥ ≥ ≥
 

and the left singular vectors W of the singular value decomposition of A so 
that 

( )( )1 21 min ,diag ,...T
n nW AV σ σ=

 

If σ1 < 1, then the dimension of the intersection of the two subspaces is s = 0. 
Otherwise, assume the dimension of the intersection to be  
s if σs = 1 > σs+1. Set nh = s. 

5. Let W1 be the first s columns of W. Set H = (Q1W1)T. 

6. Assume R11 to be a nhp by nhp matrix related to R1 as follows: If 
nhp < n_parameters, R11 equals the first nhp rows of R1. Otherwise,  
R11 contains R1 in its first n_parameters rows and zeros in the remaining rows. 
Compute a solution Z to the linear system 
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11 1
T T

pR Z P G=
 

If this linear system is delcared inconsistent, an error message with error code 
equal to 2 is issued. 

7. Partition 

( )1 2,T T TZ Z Z=
 

so that Z1 is the first n1 rows of Z. Set 

1 1
TG W Z=

 

The degrees of freedom (nh) classify the hypothesis HpβU =Gp as nontestable 
(nh = 0), partially testable (0 < nh < rank_hp), or completely testable 
(0 < nh = rank_hp). 

For further details concerning the algorithm, see Sallas and Lionti (1988). 

Example 
A one-way analysis-of-variance model discussed by Peixoto (1986) is fitted to data. 
The model is  

yii = μ + αi + εii  (i, j) = (1, 1) (2, 1) (2, 2) 

The model is fitted using function imsls_f_regression. The partially testable 
hypothesis 

1

2

5
0 3:H α

α
=
=  

is converted to a completely testable hypothesis. 
#include <imsls.h> 
#define N_ROWS 3 
#define N_INDEPENDENT 1 
#define N_DEPENDENT 1 
#define N_PARAMETERS 3 
#define NHP 2 
 
main() { 
    Imsls_f_regression *info; 
    int    n_class = 1; 
    int    n_continuous = 0; 
    int    nh, nreg, rank_hp; 
    float  *coefficients, *x, *g, *h; 
    static float   z[N_ROWS*N_INDEPENDENT] = { 1, 2, 2 }; 
    static float   y[] = {17.3, 24.1, 26.3}; 
    static float   gp[] = {5, 3}; 
    static float   hp[NHP*N_PARAMETERS] = {0, 1, 0,  
                                           0, 0, 1}; 
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    nreg = imsls_f_regressors_for_glm(N_ROWS, z,  
        n_class, n_continuous,  
        IMSLS_REGRESSORS, &x, 0);     
  
    coefficients = imsls_f_regression(N_ROWS, nreg, x, y, 
        IMSLS_N_DEPENDENT, N_DEPENDENT,  
        IMSLS_REGRESSION_INFO, &info,  
        0); 
  
    nh = imsls_f_hypothesis_partial(info, NHP, hp,  
        IMSLS_GP, gp,  
        IMSLS_H_MATRIX, &h,  
        IMSLS_G, &g,  
        IMSLS_RANK_HP, &rank_hp, 0); 
 
    if (nh == 0) { 
        printf("Nontestable Hypothesis\n"); 
    } else if (nh < rank_hp) { 
        printf("Partially Testable Hypothesis\n"); 
    } else { 
        printf("Completely Testable Hypothesis\n"); 
    } 
 
    imsls_f_write_matrix("H Matrix", nh, N_PARAMETERS, h, 0); 
 
    imsls_f_write_matrix("G", nh, N_DEPENDENT, g, 0); 
 
    free(coefficients); 
    free(info); 
    free(x); 
    free(h); 
    free(g);     
} 

Output 
Partially Testable Hypothesis 
  
             H Matrix 
         1           2           3 
    0.0000      0.7071     -0.7071 
  
     G 
     1.414 

Warning Errors 

IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the computed 
tolerance. 

hypothesis_scph 
Computes the matrix of sums of squares and crossproducts for the multivariate general 
linear hypothesis HβU = G given the regression fit.  
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Synopsis 
#include <imsls.h> 
float *imsls_f_hypothesis_scph (Imsls_f_regression *regression_info, int 

nh, float h[], float *dfh, ..., 0) 
The type double function is imsls_d_hypothesis_scph. 

Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information about 
the regression fit. See function imsls_f_regression. 

int nh   (Input) 
Number of rows in the hypothesis matrix, h. 

float h[]   (Input) 
The H array of size nh by n_coefficients with each row corresponding to a 
row in the hypothesis and containing the constants that specify a linear 
combination of the regression coefficients. Here, n_coefficients is the number 
of coefficients in the fitted regression model. 

float *dfh   (Output) 
Degrees of freedom for the sums of squares and crossproducts matrix. This is 
equal to the rank of input matrix h. 

Return Value 
Array of size nu by nu containing the sums of squares and crossproducts attributable to 
the hypothesis. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_regression_scph (Imsls_f_regression *regression_info,  

int nh, float h[], float *dfh, 
IMSLS_G, float g[], 
IMSLS_U, int nu, float u[], 
IMSLS_RETURN_USER, scph[], 
0) 

Optional Arguments 

IMSLS_G, float g[]   (Input) 
Array of size nh by nu containing the G matrix, the null hypothesis values. By 
default, each value of G is equal to 0. 

IMSLS_U, int nu, float u[]   (Input) 
Argument nu is the number of linear combinations of the dependent variables 
to be considered. The value nu must be greater than 0 and less than or equal to 
n_dependent. 

Argument u contains the n_dependent by nu U matrix for the test HpβU = Gp. 
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Default: nu = n_dependent and u is the identity matrix 

IMSLS_RETURN_USER, float scph[]   (Output) 
If specified, the sums of squares and crossproducts matrix is stored in array 
scph provided by the user, where scph is of size nu by nu. 

Description 
Function imsls_f_hypothesis_scph computes the matrix of sums of squares and 
crossproducts for the general linear hypothesis HβU = G for the multivariate general 
linear model Y = Xβ + ε. 
The rows of H must be linear combinations of the rows of R, i.e., Hβ = G must be 
completely testable. If the hypothesis is not completely testable, function 
imsls_f_hypothesis_partial can be used to construct an equivalent completely 
testable hypothesis. 
Computations are based on an algorithm discussed by Kennedy and Gentle (1980, p. 
317) that is extended by Sallas and Lionti (1988) for mulitvariate non-full rank models 
with possible linear equality restrictions. The algorithm is as follows: 

1. Form ˆW H U Gβ= − . 

2. Find C as the solution of RTC = HT. If the equations are declared inconsistent 
within a computed tolerance, a warning error message is issued that the 
hypothesis is not completely testable. 

3. For all rows of R corresponding to restrictions, i.e., containing negative 
diagonal elements from a restricted least-squares fit, zero out the 
corresponding rows of C, i.e., from DC. 

4. Decompose DC using Householder transformations and column pivoting to 
yield a square, upper triangular matrix T with diagonal elements of 
nonincreasing magnitude and permutation matrix P such that  

0
T

DCP Q ⎡ ⎤
= ⎢ ⎥

⎣ ⎦  

where Q is an orthogonal matrix. 

5. Determine the rank of T, say r. If t11 = 0, then r = 0. Otherwise, the rank of T 
is r if 

| trr | > | t11 | ε ≥ | tr + 1, r + 1 | 

where ε = 10.0 × imsls_f_machine(4)  
(10.0 × imsls_d_machine(4) for the double-precision version).  

Then, zero out all rows of T below r. Set the degrees of freedom for the 
hypothesis, dfh, to r. 
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6. Find V as a solution to TTV = PTW. If the equations are inconsistent, a 
warning error message is issued that the hypothesis is inconsistent within a 
computed tolerance, i.e., the linear system 

HβU = G 

Aβ = Z 

does not have a solution for β. 

Form VTV, which is the required matrix of sum of squares and crossproducts, 
scph. 

In general, the two warning errors described above are serious user errors that 
require the user to correct the hypothesis before any meaningful sums of 
squares from this function can be computed. However, in some cases, the user 
may know the hypothesis is consistent and completely testable, but the checks 
in imsls_f_hypothesis_scph are too tight. For this reason, 
imsls_f_hypothesis_scph continues with the calculations. 

Function imsls_f_hypothesis_scph gives a matrix of sums of squares 
and crossproducts that could also be obtained from separate fittings of the two 
models: 

Y¹ = Xβ¹ + ε¹  (1) 

Aβ¹ = Z¹   

Hβ¹ = G    

and 

Y¹ = Xβ¹ + ε¹  (2) 

Aβ¹ = Z¹   

where Y¹ = YU, β¹ = βU, ε¹ = εU, and Z¹ = ZU. The error sum of squares and 
crossproducts matrix for (1) minus that for (2) is the matrix sum of squares 
and crossproducts output in scph. Note that this approach avoids the question 
of testability.  

Example 
The data for this example are from Maindonald (1984, pp. 203−204). A multivariate 
regression model containing two dependent variables and three independent variables 
is fit using function imsls_f_regression and the results stored in the structure info. 
The sum of squares and crossproducts matrix, scph, is then computed by calling 
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imsls_f_hypothesis_scph for the test that the third independent variable is in the 
model (determined by the specification of h). The degrees of freedom for scph also is 
computed. 

#include <imsls.h> 
main() 
{ 
    Imsls_f_regression *info; 
    float   *coefficients, *scph; 
    float   dfh; 
    float   x[]     = { 7.0, 5.0, 6.0,  
                        2.0,-1.0, 6.0,   
                        7.0, 3.0, 5.0,   
                       -3.0, 1.0, 4.0, 
                        2.0,-1.0, 0.0, 
                        2.0, 1.0, 7.0, 
                       -3.0,-1.0, 3.0, 
                        2.0, 1.0, 1.0, 
                        2.0, 1.0, 4.0 }; 
    float   y[]     = { 7.0, 1.0,  
                       -5.0, 4.0,   
                        6.0, 10.0,   
                        5.0, 5.0,  
                        5.0, -2.0, 
                       -2.0, 4.0, 
                        0.0, -6.0,  
                        8.0, 2.0,  
                        3.0, 0.0 }; 
    int     n_observations = 9; 
    int     n_independent = 3; 
    int     n_dependent = 2; 
    int     nh = 1; 
    float h[]       = { 0, 0, 0, 1 }; 
 
    coefficients = imsls_f_regression(n_observations, n_independent,  
        x, y, 
        IMSLS_N_DEPENDENT, n_dependent,  
        IMSLS_REGRESSION_INFO, &info,  
        0); 
 
    scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0); 
  
    printf("Degrees of Freedom Hypothesis = %4.0f\n", dfh); 
 
    imsls_f_write_matrix("Sum of Squares and Crossproducts",  
        n_dependent, n_dependent, scph,  
        IMSLS_NO_COL_LABELS, IMSLS_NO_ROW_LABELS,  
        0); 
 
} 

Output 
Degrees of Freedom Hypothesis =    1 
  
Sum of Squares and Crossproducts 
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            100         -40 
            -40          16 

Warning Errors 

IMSLS_HYP_NOT_TESTABLE The hypothesis is not completely testable within the 
computed tolerance. Each row of “h” must be a linear 
combination of the rows of “r”. 

IMSLS_HYP_NOT_CONSISTENT The hypothesis is inconsistent within the computed 
tolerance. 

hypothesis_test 
Performs tests for a multivariate general linear hypothesis HβU = G given the 
hypothesis sums of squares and crossproducts matrix SH.  

Synopsis 
#include <imsls.h> 

float imsls_f_hypothesis_test (Imsls_f_regression *regression_info, float 
dfh, float *scph, ..., 0) 

The type double function is imsls_d_hypothesis_test. 

Required Argument 

Imsls_f_regression *regression_info   (Input) 
Pointer to a structure of type Imsls_f_regression containing information about 
the regression fit. See function imsls_f_regression. 

float dfh   (Input) 
Degrees of freedom for the sums of squares and crossproducts matrix.  

float *scph   (Input) 
Array of size nu by nu containing SH, the sums of squares and crossproducts 
attributable to the hypothesis. 

Return Value 
The p-value corresponding to Wilks’ lambda test. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_hypothesis_test (Imsls_f_regression *regression_info, float 

dfh, float *scph, 
IMSLS_U, int nu, float u[], 
IMSLS_WILK_LAMBDA, float *value, float *p_value,  
IMSLS_ROY_MAX_ROOT, float *value, float *p_value, 
IMSLS_HOTELLING_TRACE, float *value, float *p_value, 
IMSLS_PILLAI_TRACE, float *value, float *p_value, 
0) 
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Optional Arguments 

IMSLS_U, int nu, float u[]   (Input) 
Argument nu is the number of linear combinations of the dependent variables 
to be considered. The value nu must be greater than 0 and less than or equal to 
n_dependent. Argument u contains the n_dependent by nu U matrix for the 
test HpβU = Gp. 
Default: nu = n_dependent and u is the identity matrix 

IMSLS_WILK_LAMBDA, float *value, float *p_value   (Output) 
Wilk’s lamda and p-value. 

IMSLS_ROY_MAX_ROOT, float *value, float *p_value   (Output) 
Roy’s maximum root criterion and p-value. 

IMSLS_HOTELLING_TRACE, float *value, float *p_value   (Output) 
Hotelling’s trace and p-value. 

IMSLS_PILLAI_TRACE, float *value, float *p_value   (Output) 
Pillai’s trace and p-value. 

Description 
Function imsls_f_hypothesis_test computes test statistics and p-values for the 
general linear hypothesis HβU = G for the multivariate general linear model. 
The hypothesis sum of squares and crossproducts matrix input in scph is  

( ) ( ) ( )ˆ ˆT T
HS H U G C DC H U Gβ β

−
= − −

 

where C is a solution to RTC = H and where D is a diagonal matrix with diagonal 
elements 

1 if 0
0 otherwise

ii
ii

r
d

>⎧
= ⎨

⎩  

See the section “Linear Dependence and the R Matrix” in the Introduction. 
The error sum of squares and crossproducts matrix for the model Y = Xβ + ε is 

( ) ( )ˆ ˆT
Y X Y Xβ β− −

 

which is input in regression_info. The error sum of squares and crossproducts 
matrix for the hypothesis HβU = G computed by imsls_f_hypothesis_test is 

( ) ( )ˆ ˆTT
ES U Y X Y X Uβ β= − −

 

Let p equal the order of the matrices SE and SH, i.e., 
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NU if NU 0
NDEP otherwise

p
>⎧ ⎫

= ⎨ ⎬
⎩ ⎭  

Let q (stored in dfh) be the degrees of freedom for the hypothesis. Let v (input in 
regression_info) be the degrees of freedom for error. Function 
imsls_f_hypothesis_test computed three test statistics based on eigenvalues λi 
(i = 1, 2, …, p) of the generalized eigenvalue problem SHx = λSEx. These test statistics 
are as follows: 
 
Wilk’s lambda 

( )
( ) 1

det 1
det 1

p
E

iH E i

S
S S λ=

Λ = =
+ +∏  

The associated p-value is based on an approximation discussed by Rao (1973, p. 556). 
The statistic 

1/

1/

/ 2 11 s

s

ms pqF
pq

− + − Λ
=

Λ  

has an approximate F distribution with pq and ms − pq / 2 + 1 numerator and 
denominator degrees of freedom, respectively, where  

2 2

2 2

1 if 1 or 1

4 otherwise
5

p q

s p q
p q

= =⎧
⎪

= ⎨ −
⎪ + −⎩

 

and 

( )1
2

p q
m υ

+ −
= −

 

The F test is exact if min (p, q) ≤ 2 (Kshirsagar, 1972, Theorem 4, p. 299−300). 
Roy’s maximum root 

c = max λi over all i 

where c is output as value. The p-value is based on the approximation 

q sF c
s

υ + −
=
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where s = max (p, q) has an approximate F distribution with s and υ + q − s numerator 
and denominator degrees of freedom, respectively. The F test is exact if s = 1; the  
p-value is also exact. In general, the value output in p_value is lower bound on the 
actual p-value. 
 
 
Hotelling’s trace 

( )1

1
tr

p

i
i

U HE λ−

=

= = ∑  

U is output as value. The p-value is based on the approximation of McKeon (1974) 
that supersedes the approximation of Hughes and Saw (1972). McKeon’s 
approximation is also discussed by Seber (1984, p. 39). For 

( )( )
( )( )

24
1 1

3

pqb
q p

p p
υ υ
υ υ

+
= +

+ − − −
− − −

 

the p-value is based on the result that  

( )
( )

1
2

b p
F U

b pq
υ − −

=
−  

has an approximate F distribution with pq and b degrees of freedom. The test is exact if 
min (p, q) = 1. For υ ≤ p + 1, the approximation is not valid, and p_value is set to 
NaN. 
These three test statistics are valid when SE is positive definite. A necessary condition 
for SE to be positive definite is υ ≥ p. If SE is not positive definite, a warning error 
message is issued, and both value and p_value are set to NaN. 

Because the requirement υ ≥ p can be a serious drawback, 
imsls_f_hypothesis_test computes a fourth test statistic based on eigenvalues θi 
(i = 1, 2, …, p) of the generalized eigenvalue problem SHw = θ(SH + SE) w. This test 
statistic requires a less restrictive assumption—SH + SE is positive definite. A 
necessary condition for SH + SE to be positive definite is υ + q ≥ p. If SE is positive 
definite, imsls_f_hypothesis_test avoids the computation of the generalized 
eigenvalue problem from scratch. In this case, the eigenvalues θi are obtained from λi 
by  

1
i

i
i

λ
θ

λ
=

+  
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The fourth test statistic is as follows: 
Pillai’s trace 

( ) 1

1
tr

p

H H E i
i

V S S S θ−

=

⎡ ⎤= + =⎣ ⎦ ∑  

V is output as value. The p-value is based on an approximation discussed by Pillai 
(1985). The statistic  

2 1
2 1

n s VF
m s s V

+ +
=

+ + −  

has an approximate F distribution with s(2m + s + 1) and s(2n + s + 1) numerator and 
denominator degrees of freedom, respectively, where 

s = min (p, q) 

m = ½(|p − q| −1) 

n = ½(υ − p − 1) 

The F test is exact if min (p, q) = 1. 

Examples  

Example 1 
The data for this example are from Maindonald (1984, p. 203−204). A multivariate 
regression model containing two dependent variables and three independent variables 
is fit using function imsls_f_regression and the results stored in the structure 
regression_info. The sum of squares and crossproducts matrix, scph, is then 
computed with a call to imsls_f_hypothesis_scph for the test that the third 
independent variable is in the model (determined by specification of h). Finally, func-
tion imsls_f_hypothesis_test is called to compute the p-value for the test statistic 
(Wilk’s lambda). 

#include <imsls.h> 
main() 
{ 
    Imsls_f_regression *info; 
    float   *coefficients, *scph; 
    float   dfh, p_value; 
    float   x[]     = { 7.0, 5.0, 6.0,  
                        2.0,-1.0, 6.0,   
                        7.0, 3.0, 5.0,   
                       -3.0, 1.0, 4.0, 
                        2.0,-1.0, 0.0, 
                        2.0, 1.0, 7.0, 
                       -3.0,-1.0, 3.0, 
                        2.0, 1.0, 1.0, 
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                        2.0, 1.0, 4.0 }; 
    float   y[]     = { 7.0, 1.0,  
                       -5.0, 4.0,   
                        6.0, 10.0,   
                        5.0, 5.0,  
                        5.0, -2.0, 
                       -2.0, 4.0, 
                        0.0, -6.0,  
                        8.0, 2.0,  
                        3.0, 0.0 }; 
    int     n_observations = 9; 
    int     n_independent = 3; 
    int     n_dependent = 2; 
    int     nh = 1; 
    float h[]       = { 0, 0, 0, 1 }; 
 
    coefficients = imsls_f_regression(n_observations, n_independent,  
        x, y, 
        IMSLS_N_DEPENDENT, n_dependent,  
        IMSLS_REGRESSION_INFO, &info,  
        0); 
 
    scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0); 
  
    p_value = imsls_f_hypothesis_test(info, dfh, scph, 0); 
 
    printf("P-value = %10.6f\n", p_value); 
 
} 

Output 
P-value =   0.000010 

Example 2 
This example is the same as the first example, but more statistics are computed. Also, 
the U matrix, u, is explicitly specified as the identity matrix (which is the same default 
configuration of U).  

#include <imsls.h> 
main() 
{ 
    Imsls_f_regression *info; 
    float   *coefficients, *scph; 
    float   dfh, p_value; 
    float   x[]     = { 7.0, 5.0, 6.0,  
                        2.0,-1.0, 6.0,   
                        7.0, 3.0, 5.0,   
                       -3.0, 1.0, 4.0, 
                        2.0,-1.0, 0.0, 
                        2.0, 1.0, 7.0, 
                       -3.0,-1.0, 3.0, 
                        2.0, 1.0, 1.0, 
                        2.0, 1.0, 4.0 }; 
    float   y[]     = { 7.0, 1.0,  
                       -5.0, 4.0,   
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                        6.0, 10.0,   
                        5.0, 5.0,  
                        5.0, -2.0, 
                       -2.0, 4.0, 
                        0.0, -6.0,  
                        8.0, 2.0,  
                        3.0, 0.0 }; 
    int     n_observations = 9; 
    int     n_independent = 3; 
    int     n_dependent = 2; 
    int     nh = 1; 
    float   h[]     = { 0, 0, 0, 1 }; 
    int     nu = 2; 
    float   u[4]={1, 0, 0, 1}; 
    float   v1, v2, v3, v4, p1, p2, p3, p4; 
 
    coefficients = imsls_f_regression(n_observations, n_independent,  
        x, y, 
        IMSLS_N_DEPENDENT, n_dependent,  
        IMSLS_REGRESSION_INFO, &info,  
        0); 
 
    scph = imsls_f_hypothesis_scph(info, nh, h, &dfh, 0); 
  
    p_value = imsls_f_hypothesis_test(info, dfh, scph, 
        IMSLS_U, nu, u,   
        IMSLS_WILK_LAMBDA, &v1, &p1,  
        IMSLS_ROY_MAX_ROOT, &v2, &p2,  
        IMSLS_HOTELLING_TRACE, &v3, &p3, 
        IMSLS_PILLAI_TRACE, &v4, &p4,  
        0); 
 
    printf("Wilk      value = %10.6f   p-value = %10.6f\n", v1, p1); 
    printf("Roy       value = %10.6f   p-value = %10.6f\n", v2, p2); 
    printf("Hotelling value = %10.6f   p-value = %10.6f\n", v3, p3); 
    printf("Pillai    value = %10.6f   p-value = %10.6f\n", v4, p4); 
} 

Output 
Wilk      value =   0.003149   p-value =   0.000010 
Roy       value = 316.600861   p-value =   0.000010 
Hotelling value = 316.600861   p-value =   0.000010 
Pillai    value =   0.996851   p-value =   0.000010 

Warning Errors 

IMSLS_SINGULAR_1 “u”*“scpe”*“u” is singular. Only Pillai’s trace can be 
computed. Other statistics are set to NaN. 

Fatal Errors 

IMSLS_NO_STAT_1 “scpe” + “scph” is singular. No tests can be 
computed. 



 

 
 

112 • regression_selection IMSL C Stat Library 

 

 

 

IMSLS_NO_STAT_2 No statistics can be computed. Iterations for 
eigenvalues for the generalized eigenvalue problem 
“scph”*x = (lambda)*(“scph”+“scpe”)*x failed to 
converge. 

IMSLS_NO_STAT_3 No statistics can be computed. Iterations  
for eigenvalues for the generalized  
eigenvalue problem “scph” 
*x = (lambda)*(“scph”+“u”*“scpe”*“u”)*x failed to 
converge. 

IMSLS_SINGULAR_2 “u”*“scpe”*“u” + “scph” is singular. No tests can be 
computed. 

IMSLS_SINGULAR_TRI_MATRIX The input triangular matrix is singular. 
The index of the first zero diagonal element is equal 
to #. 

regression_selection 
Selects the best multiple linear regression models. 

Synopsis 
#include <imsls.h> 
void imsls_f_regression_selection (int n_rows, int n_candidate, 

float x[], float y[], ..., 0) 
The type double function is imsls_d_regression_selection. 

Required Arguments 

int n_rows   (Input) 
Number of observations or rows in x and y. 

int n_candidate   (Input) 
Number of candidate variables (independent variables) or columns in x. 
n_candidate must be greater than 2. 

float x[]   (Input) 
Array of size n_rows × n_candidate containing the data for the candidate 
variables. 

float y[]   (Input) 
Array of length n_rows containing the responses for the dependent variable. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_regression_selection (int n_rows, int n_candidate, float 

x[], float y[], 
IMSLS_X_COL_DIM, int x_col_dim, 
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IMSLS_PRINT, or 
IMSLS_NO_PRINT, 
IMSLS_WEIGHTS, float weights[], 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_R_SQUARED, int max_subset_size, or 
IMSLS_ADJ_R_SQUARED, or 
IMSLS_MALLOWS_CP,  
IMSLS_MAX_N_BEST, int max_n_best, 
IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved, 
IMSLS_CRITERIONS, int **index_criterions, 
 float **criterions, 
IMSLS_CRITERIONS_USER, int index_criterions[], 
 float criterions[], 
IMSLS_INDEPENDENT_VARIABLES, int **index_variables,  
 int **independent_variables, 
IMSLS_INDEPENDENT_VARIABLES_USER,  int index_variables[],  
 int independent_variables[], 
IMSLS_COEF_STATISTICS, int **index_coefficients,  
 float **coefficients, 
IMSLS_COEF_STATISTICS_USER, int index_coefficients[],  
 float coefficients[], 
IMSLS_INPUT_COV, int n_observations, float cov[], 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
The column dimension of x. 
Default: x_col_dim = n_candidate 

IMSLS_PRINT 
Printing is performed. This is the default. 
or 

IMSLS_NO_PRINT 
Printing is not performed. 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_rows containing the weight for each row of x. 
Default: weights[] = 1 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_rows containing the frequency for each row of x. 
Default: frequencies[] = 1 

IMSLS_R_SQUARED, int max_subset_size   (Input) 
The R2 criterion is used, where subset sizes  
1, 2, ..., max_subset_size are examined.  
This option is the default with max_subset_size = n_candidate. 
or 
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IMSLS_ADJ_R_SQUARED 
The adjusted R2 criterion is used, where subset sizes  
1, 2, ..., n_candidate are examined. 
or 

IMSLS_MALLOWS_CP 
Mallows Cp criterion is used, where subset sizes  
1, 2, ..., n_candidate are examined. 

IMSLS_MAX_N_BEST, int max_n_best   (Input) 
Number of best regressions to be found. If the R2 criterions are selected, the 
max_n_best best regressions for each subset size examined are found. If the 
adjusted R2 or Mallows Cp criterion is selected, the max_n_best overall 
regressions are found. 
Default: max_n_best = 1 

IMSLS_MAX_N_GOOD_SAVED, int max_n_good_saved   (Input) 
Maximum number of good regressions of each subset size to be saved in 
finding the best regressions. Argument max_n_good_saved must be greater 
than or equal to max_n_best. Normally, max_n_good_saved should be less 
than or equal to 10. It doesn't ever need to be larger than the maximum 
number of subsets for any subset size. Computing time required is inversely 
related to max_n_good_saved. 
Default: max_n_good_saved = 10 

IMSLS_CRITERIONS, int **index_criterions, float **criterions   (Output) 
Argument index_criterions is the address of a pointer to the internally 
allocated array of length nsize + 1(where nsize is equal to max_subset_size 
if optional argument IMSLS_R_SQUARED is specified; otherwise, nsize is 
equal to n_candidate) containing the locations in criterions of the first 
element for each subset size. For I = 0, 1, ..., nsize −1, element numbers 
index_criterions[I], index_criterions[I] + 1, ..., 
index_criterions[I + 1] − 1 of criterions correspond to the (I + 1)-st 
subset size. Argument criterions is the address of a pointer to the 
internally allocated array of length max (index_criterions [nsize] − 1 , 
n_candidate) containing in its first index_criterions [nsize] − 1 
elements the criterion values for each subset considered, in increasing subset 
size order. 

IMSLS_CRITERIONS_USER, int index_criterions[], float criterions[]   
(Output) 
Storage for arrays index_criterions and criterions is provided by the 
user. An upper bound on the length of criterions is 
max(max_n_good_saved × nsize, n_candidate). See 
IMSLS_CRITERIONS. 

IMSLS_INDEPENDENT_VARIABLES, int **index_variables, 
int **independent_variables   (Output) 
Argument index_variables is the address of a pointer to the internally 
allocated array of length nsize + 1 (where nsize is equal to 
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max_subset_size if optional argument IMSLS_R_SQUARED is specified; 
otherwise, nsize is equal to n_candidate) containing the locations in 
independent_variables of the first element for each subset size. For 
I = 0, 1, ..., nsize − 1, element numbers index_variables[I], 
index_variables[I] + 1, ..., index_variables[I + 1] − 1 of 
independent_variables correspond to the (I+1)-st subset size. Argument 
independent_variables is the address of a pointer to the internally 
allocated array of length index_variables [nsize] − 1 containing the 
variable numbers for each subset considered and in the same order as in 
criterions. 

IMSLS_INDEPENDENT_VARIABLES_USER, int index_variables[], 
int independent_variables[]   (Output) 
Storage for arrays index_variables and independent_variables is 
provided by the user. An upper bound for the length of 
independent_variables is as follows: 

( 1)
2

nsize nsize× × +max_n_good_saved

 

where nsize is equal to max_subset_size. 

See IMSLS_INDEPENDENT_VARIABLES. 

IMSLS_COEF_STATISTICS, int **index_coefficients, float **coefficients   
(Output) 
Argument index_coefficients is the address of a pointer to the internally 
allocated array of length ntbest + 1 containing the locations in coefficients or 
the first row for each of the best regressions. Here, ntbest is the total number of 
best regression found and is equal  
to max_subset_size × max_n_best if IMSLS_R_SQUARED is specified, equal 
to max_n_best if either IMSLS_MALLOWS_CP  
or IMSLS_ADJ_R_SQUARED is specified, and equal to  
max_n_best × n_candidate, otherwise. For I = 0, 1, ..., ntbest − 1, rows 
index_coefficients[I], index_coefficients[I] + 1, ..., 
index_coefficients[I + 1] – 1 of coefficients correspond to the  
(I + 1)-st regression. Argument coefficients is the address of a pointer to the 
internally allocated array of size (index_coefficients [ntbest] − 1)× 5 
containing statistics relating to the regression coefficients of the best models. 
Each row corresponds to a coefficient for a particular regression. The regressions 
are in order of increasing subset size. Within each subset size, the regressions are 
ordered so that the better regressions appear first. The statistic in the columns are 
as follows (inferences are conditional on the selected model): 
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Column Description 
0 variable number 
1 coefficient estimate 
2 estimated standard error of the estimate 
3 t-statistic for the test that the coefficient is 0 
4 p-value for the two-sided t test 

IMSLS_COEF_STATISTICS_USER, int index_coefficients[], 
float coefficients[]   (Output) 
Storage for arrays index_coefficients and coefficients is provided 
by the user. See IMSLS_COEF_STATISTICS. 

IMSLS_INPUT_COV, int n_observations, float cov[]   (Input) 
Argument n_observations is the number of observations associated with 
array cov. Argument cov is an (n_candidate + 1) by (n_candidate + 1) 
array containing a variance-covariance or sum of squares and crossproducts 
matrix, in which the last column must correspond to the dependent variable. 
Array cov can be computed using imsls_f_covariances. Arguments x 
and y, and optional arguments frequencies and weights are not accessed 
when this option is specified. Normally, imsls_f_regression_selection 
computes cov from the input data matrices x and y. However, there may be 
cases when the user will wish to calculate the covariance matrix and 
manipulate it before calling imsls_f_regression_selection. See the 
description section below for a discussion of such cases. 

Description 
Function imsls_f_regression_selection finds the best subset regressions for a 
regression problem with n_candidate independent variables. Typically, the intercept 
is forced into all models and is not a candidate variable. In this case, a sum of squares 
and crossproducts matrix for the independent and dependent variables corrected for the 
mean is computed internally. There may be cases when it is convenient for the user to 
calculate the matrix; see the description of optional argument IMSLS_INPUT_COV. 
“Best” is defined, on option, by one of the following three criteria: 

• R2 (in percent) 

2 SSE
100 (1 )

SST
pR = −

 

• 2
aR  (adjusted R2 in percent) 

2 SSE1100 1 ( )
SST

p
a

nR
n p

⎡ ⎤−
= −⎢ ⎥−⎣ ⎦  
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Note that maximizing the criterion is equivalent to minimizing the residual 
mean square: 

( )
SSE p

n p−  

• Mallows’ Cp statistic 

2

SSE
2p

pC p n
s

= + −
n_candidate  

Here, n is equal to the sum of the frequencies (or n_rows if IMSLS_FREQUENCIES is 
not specified) and SST is the total sum of squares.  
SSEp is the error sum of squares in a model containing p regression parameters 
including β0 (or p − 1 of the n_candidate candidate variables). Variable 

2sn_candidate  

is the error mean square from the model with all n_candidate variables in the model. 
Hocking (1972) and Draper and Smith (1981, pp. 296−302) discuss these criteria. 
Function imsls_f_regression_selection is based on the algorithm of Furnival 
and Wilson (1974). This algorithm finds max_n_good_saved candidate regressions 
for each possible subset size. These regressions are used to identify a set of best 
regressions. In large problems, many regressions are not computed. They may be 
rejected without computation based on results for other subsets; this yields an efficient 
technique for considering all possible regressions. 
There are cases when the user may want to input the variance-covariance matrix rather 
than allow the function imsls_f_regression_selection to calculate it. This can 
be accomplished using optional argument IMSLS_INPUT_COV. Three situations in 
which the user may want to do this are as follows: 

1. The intercept is not in the model. A raw (uncorrected) sum of squares and 
crossproducts matrix for the independent and dependent variables is required. 
Argument n_observations must be set to 1 greater than the number of 
observations. Form ATA, where A = [A, Y], to compute the raw sum of squares 
and crossproducts matrix. 

2. An intercept is a candidate variable. A raw (uncorrected) sum of squares and 
crossproducts matrix for the constant regressor (= 1.0), independent, and 
dependent variables is required for cov. In this case, cov contains one 
additional row and column corresponding to the constant regressor. This 
row/column contains the sum of squares and crossproducts of the constant 
regressor with the independent and dependent variables. The remaining 
elements in cov are the same as in the previous case. Argument 
n_observations must be set to 1 greater than the number of observations. 
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3. There are m variables to be forced into the models. A sum of squares and 
crossproducts matrix adjusted for the m variables is required (calculated by 
regressing the candidate variables on the variables to be forced into the 
model). Argument n_observations must be set to m less than the number 
of observations.  

Programming Notes 
Function imsls_f_regression_selection can save considerable CPU time over 
explicitly computing all possible regressions. However, the function has some 
limitations that can cause unexpected results for users who are unaware of the 
limitations of the software. 

1. For n_candidate + 1 > −log2 (ε), where ε is imsls_f_machine(4) 
(imsls_d_machine(4) for double precision; see Chapter 15, Utilities ), some 
results can be incorrect. This limitation arises because the possible models 
indicated (the model numbers 1, 2, ..., 2n_candidate) are stored as floating-
point values; for sufficiently large n_candidate, the model numbers cannot 
be stored exactly. On many computers, this means 
imsls_f_regression_selection (for n_candidate > 24) and 
imsls_d_regression_selection (for n_candidate > 49) can produce 
incorrect results. 

2. Function imsls_f_regression_selection eliminates some subsets of 
candidate variables by obtaining lower bounds on the error sum of squares 
from fitting larger models. First, the full model containing all n_candidate 
is fit sequentially using a forward stepwise procedure in which one variable 
enters the model at a time, and criterion values and model numbers for all the 
candidate variables that can enter at each step are stored. If linearly dependent 
variables are removed from the full model, error 
IMSLS_VARIABLES_DELETED is issued. If this error is issued, some 
submodels that contain variables removed from the full model because of 
linear dependency can be overlooked if they have not already been identified 
during the initial forward stepwise procedure. If error 
IMSLS_VARIABLES_DELETED is issued and you want the variables that were 
removed from the full model to be considered in smaller models, you can 
rerun the program with a set of linearly independent variables. 

Examples  

Example 1 
This example uses a data set from Draper and Smith (1981, pp. 629−630). Function 
imsls_f_regression_selection is invoked to find the best regression for each 
subset size using the R2 criterion. By default, the function prints the results. 

#include <imsls.h> 
#define N_OBSERVATIONS 13 
#define N_CANDIDATE    4 
main() 
{ 
    float  x[N_OBSERVATIONS][N_CANDIDATE] =  
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        {7., 26.,  6., 60., 
         1., 29., 15., 52., 
        11., 56.,  8., 20., 
        11., 31.,  8., 47., 
         7., 52.,  6., 33., 
        11., 55.,  9., 22., 
         3., 71., 17.,  6., 
         1., 31., 22., 44., 
         2., 54., 18., 22., 
        21., 47.,  4., 26., 
         1., 40., 23., 34., 
        11., 66.,  9., 12., 
        10., 68.,  8., 12.}; 
    float  y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9, 
        109.2, 102.7,  72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
 
    imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE, x, y, 0); 
} 

Output 
 Regressions with   1 variable(s) (R-squared) 
 
        Criterion         Variables 
             67.5          4 
             66.6          2 
             53.4          1 
             28.6          3 
 
 
 Regressions with   2 variable(s) (R-squared) 
 
        Criterion         Variables 
             97.9          1  2 
             97.2          1  4 
             93.5          3  4 
               68          2  4 
             54.8          1  3 
 
 
 Regressions with   3 variable(s) (R-squared) 
 
        Criterion         Variables 
             98.2          1  2  4 
             98.2          1  2  3 
             98.1          1  3  4 
             97.3          2  3  4 
 
 
 Regressions with   4 variable(s) (R-squared) 
 
        Criterion         Variables 
             98.2          1  2  3  4 
 
  
      Best Regression with   1 variable(s) (R-squared) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
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       4      -0.7382          0.1546       -4.775   0.0006 
  
  
  
      Best Regression with   2 variable(s) (R-squared) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.468          0.1213        12.10   0.0000 
       2        0.662          0.0459        14.44   0.0000 
  
  
  
      Best Regression with   3 variable(s) (R-squared) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.452          0.1170        12.41   0.0000 
       2        0.416          0.1856         2.24   0.0517 
       4       -0.237          0.1733        -1.36   0.2054 
  
  
  
      Best Regression with   4 variable(s) (R-squared) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.551          0.7448        2.083   0.0708 
       2        0.510          0.7238        0.705   0.5009 
       3        0.102          0.7547        0.135   0.8959 
       4       -0.144          0.7091       -0.203   0.8441 

Example 2 
This example uses the same data set as the first example, but Mallow’s Cp statistic is 
used as the criterion rather than R2. Note that when Mallow’s Cp statistic (or adjusted 
R2) is specified, the variable max_n_best indicates the total number of “best” 
regressions (rather than indicating the number of best regressions per subset size, as in 
the case of the R2 criterion). In this example, the three best regressions are found to be 
(1, 2), (1, 2, 4), and (1, 2, 3).  

#include <imsls.h> 
#define N_OBSERVATIONS 13 
#define N_CANDIDATE    4 
main() 
{ 
    float  x[N_OBSERVATIONS][N_CANDIDATE] =  
        {7., 26.,  6., 60., 
         1., 29., 15., 52., 
        11., 56.,  8., 20., 
        11., 31.,  8., 47., 
         7., 52.,  6., 33., 
        11., 55.,  9., 22., 
         3., 71., 17.,  6., 
         1., 31., 22., 44., 
         2., 54., 18., 22., 
        21., 47.,  4., 26., 
         1., 40., 23., 34., 
        11., 66.,  9., 12., 
        10., 68.,  8., 12.}; 
    float  y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9, 
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        109.2, 102.7,  72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
    int    max_n_best = 3; 
 
    imsls_f_regression_selection(N_OBSERVATIONS, N_CANDIDATE,  
        (float *) x, y, 
        IMSLS_MALLOWS_CP,  
        IMSLS_MAX_N_BEST,   max_n_best,  
        0); 
} 

Output 
1 
 
 Regressions with   1 variable(s) (Mallows  CP) 
        Criterion         Variables 
              139          4 
              142          2 
              203          1 
              315          3 
 
 
 Regressions with   2 variable(s) (Mallows  CP) 
 
        Criterion         Variables 
             2.68          1  2 
              5.5          1  4 
             22.4          3  4 
              138          2  4 
              198          1  3 
 
 
 Regressions with   3 variable(s) (Mallows  CP) 
 
        Criterion         Variables 
             3.02          1  2  4 
             3.04          1  2  3 
              3.5          1  3  4 
             7.34          2  3  4 
 
 
 Regressions with   4 variable(s) (Mallows  CP) 
 
        Criterion         Variables 
                5          1  2  3  4 
1 
  
     Best Regression with   2 variable(s) (Mallows CP) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.468          0.1213        12.10   0.0000 
       2        0.662          0.0459        14.44   0.0000 
  
  
  
     Best Regression with   3 variable(s) (Mallows CP) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
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       1        1.452          0.1170        12.41   0.0000 
       2        0.416          0.1856         2.24   0.0517 
       4       -0.237          0.1733        -1.36   0.2054 
  
  
    2nd Best Regression with   3 variable(s) (Mallows CP) 
Variable  Coefficient  Standard Error  t-statistic  p-value 
       1        1.696          0.2046         8.29   0.0000 
       2        0.657          0.0442        14.85   0.0000 
       3        0.250          0.1847         1.35   0.2089 

Warning Errors 

IMSLS_VARIABLES_DELETED At least one variable is deleted from the full model 
because the variance-covariance matrix “cov” is 
singular. 

Fatal Errors 

IMSLS_NO_VARIABLES No variables can enter any model. 

regression_stepwise 
Builds multiple linear regression models using forward selection, backward selection, 
or stepwise selection. 

Synopsis 
#include <imsls.h> 
void imsls_f_regression_stepwise (int n_rows, int n_candidate, float 

x[], float y[], ..., 0) 
The type double function is imsls_d_regression_stepwise. 

Required Arguments 

int n_rows   (Input) 
Number of rows in x and the number of elements in y. 

int n_candidate   (Input) 
Number of candidate variables (independent variables) or columns in x. 

float x[]   (Input) 
Array of size n_rows × n_candidate containing the data for the candidate 
variables. 

float y[]   (Input) 
Array of length n_rows containing the responses for the dependent variable. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_regression_stepwise (int n_rows, int n_candidate, float 

x[], float y[], 
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IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_WEIGHTS, float weights[], 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_FIRST_STEP, or 
IMSLS_INTERMEDIATE_STEP, or 
IMSLS_LAST_STEP, or 
IMSLS_ALL_STEPS, 
IMSLS_N_STEPS, int n_steps, 
IMSLS_FORWARD, or 
IMSLS_BACKWARD, or 
IMSLS_STEPWISE, 
IMSLS_P_VALUE_IN, float p_value_in, 
IMSLS_P_VALUE_OUT, float p_value_out, 
IMSLS_TOLERANCE, float tolerance, 
IMSLS_ANOVA_TABLE, float **anova_table, 
IMSLS_ANOVA_TABLE_USER, float anova_table[], 
IMSLS_COEF_T_TESTS, float **coef_t_tests, 
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[], 
IMSLS_COEF_VIF, float **coef_vif, 
IMSLS_COEF_VIF_USER, float coef_vif[], 
IMSLS_LEVEL, int level[], 
IMSLS_FORCE, int n_force, 
IMSLS_IEND, int *iend, 
IMSLS_SWEPT_USER, int swept[], 
IMSLS_HISTORY_USER, float history[],  
IMSLS_COV_SWEPT_USER, float *covs 
IMSLS_INPUT_COV, int n_observations, float *cov, 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of x. 
Default: x_col_dim = n_candidate 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_rows containing the weight for each row of x. 
Default: weights[] = 1 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_rows containing the frequency for each row of x. 
Default: frequencies[] = 1 

IMSLS_FIRST_STEP, or 
IMSLS_INTERMEDIATE_STEP, or 
IMSLS_LAST_STEP, or 
IMSLS_ALL_STEPS 

One or none of these options can be specified. If none of these is specified, the 
action defaults to IMSLS_ALL_STEPS. 
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Argument Action 
IMSLS_FIRST_STEP This is the first invocation; additional calls 

will be made. Initialization and stepping is 
performed. 

IMSLS_INTERMEDIATE_STEP This is an intermediate invocation.  
Stepping is performed. 

IMSLS_LAST_STEP This is the final invocation. Stepping and 
wrap-up computations are performed. 

IMSLS_ALL_STEPS This is the only invocation. Initialization, 
stepping, and wrap-up computations are 
performed. 

IMSLS_N_STEPS, int n_steps   (Input) 
For nonnegative n_steps, n_steps steps are taken. If n_steps = −1, 
stepping continues until completion. 

IMSLS_FORWARD, or 
IMSLS_BACKWARD, or 
IMSLS_STEPWISE 

One or none of these options can be specified. If none is specified, the action 
defaults to IMSLS_BACKWARD. 

Keyword Action 
IMSLS_FORWARD An attempt is made to add a variable to the model. A 

variable is added if its p-value is less than p_value_in. 
During initialization, only the forced variables enter the 
model. 

IMSLS_BACKWARD An attempt is made to remove a variable from the model. A 
variable is removed if its p-value exceeds p_value_out. 
During initialization, all candidate independent variables 
enter the model. 

IMSLS_STEPWISE A backward step is attempted. If a variable is not removed, 
a forward step is attempted. This is a stepwise step. Only 
the forced variables enter the model during initialization. 

IMSLS_P_VALUE_IN, float p_value_in   (Input) 
Largest p-value for variables entering the model. Variables with p-values less 
than p_value_in may enter the model. 
Default: p_value_in = 0.05 

IMSLS_P_VALUE_OUT, float p_value_out   (Input) 
Smallest p-value for removing variables. Variables with p_values greater 
than p_value_out may leave the model. Argument p_value_out must be 
greater than or equal to p_value_in. A common choice for p_value_out is 
2*p_value_in. 
Default: p_value_out = 0.10 

IMSLS_TOLERANCE, float tolerance   (Input) 
Tolerance used in determining linear dependence.  
Default: tolerance = 100*eps, where eps = imsls_f_machine(4) for 
single precision and eps = imsls_d_machine(4) for double precision 
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IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to the internally allocated array containing the analysis of 
variance table. The analysis of variance statistics are as follows:  

Element Analysis of Variance Statistic 
0 degrees of freedom for regression 
1 degrees of freedom for error 
2 total degrees of freedom 
3 sum of squares for regression 
4 sum of squares for error 
5 total sum of squares 
6 regression mean square 
7 error mean square 
8 F-statistic 
9 p-value 
10 R2 (in percent) 
11 adjusted R2 (in percent) 
12 estimate of the standard deviation 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_COEF_T_TESTS, float **coef_t_tests   (Output) 
Address to a pointer to the internally allocated array containing statistics 
relating to the regression coefficient for the final model in this invocationing. 
The rows correspond to the n_candidate independent variables. The rows 
are in the same order as the variables in x (or, if IMSLS_INPUT_COV is 
specified, the rows are in the same order as the variables in cov). Each row 
corresponding to a variable not in the model contains statistics for a model 
which includes the variables of the final model and the variable corresponding 
to the row in question. 

Column Description 
0 coefficient estimate 
1 estimated standard error of the coefficient estimate 
2 t-statistic for the test that the coefficient is 0 
3 p-value for the two-sided t test 

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[]   (Output) 
Storage for array coef_t_tests is provided by the user. See 
IMSLS_COEF_T_TESTS. 

IMSLS_COEF_VIF, float **coef_vif   (Output) 
Address to a pointer to the internally allocated array containing variance 
inflation factors for the final model in this invocation. The elements 
correspond to the n_candidate dependent variables. The elements are in the 
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same order as the variables in x (or, if IMSLS_INPUT_COV is specified, the 
elements are in the same order as the variables in cov). Each element 
corresponding to a variable not in the model contains statistics for a model 
which includes the variables of the final model and the variables 
corresponding to the element in question.  

The square of the multiple correlation coefficient for the I-th regressor after all 
others can be obtained from coef_vif[I] by the following formula: 

1.01.0
VIF

−
 

IMSLS_COEF_VIF_USER, float coef_vif[]   (Output) 
Storage for array coef_vif is provided by the user. See IMSLS_COEF_VIF. 

IMSLS_LEVEL, int level[]   (Input) 
Array of length n_candidate + 1 containing levels of priority for variables 
entering and leaving the regression. Each variable is assigned a positive value 
which indicates its level of entry into the model. A variable can enter the 
model only after all variables with smaller nonzero levels of entry have 
entered. Similarly, a variable can only leave the model after all variables with 
higher levels of entry have left. Variables with the same level of entry 
compete for entry (deletion) at each step. Argument level[I] = 0 means the 
I-th variable is never to enter the model. Argument level[I] = −1 means the 
I-th variable is the dependent variable. Argument level[n_candidate] 
must correspond to the dependent variable, except when IMSLS_INPUT_COV 
is specified. 
Default: 1, 1, ..., 1, −1 where −1 corresponds to level[n_candidate] 

IMSLS_FORCE, int n_force   (Input) 
Variable with levels 1, 2, ..., n_force are forced into the model as 
independent variables. See IMSLS_LEVEL. 

IMSLS_IEND, int *iend   (Output) 
Variable which indicates whether additional steps are possible.  

Iend Meaning 
0 Additional steps may be possible. 
1 No additional steps are possible. 

IMSLS_SWEPT_USER, int swept[]   (Output) 
A user-allocated array of length n_candidate + 1 with information to 
indicate the independent variables in the model. Argument 
swept[n_candidate] usually corresponds to the dependent variable. See 
IMSLS_LEVEL. 
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swept[i] Status of i-th Variable 
−1 Variable i is not in model. 

1 Variable i is in model. 

IMSLS_HISTORY_USER, float history[]   (Output) 
User-allocated array of length n_candidate + 1 containing the recent history 
of the independent variables. Element history[n_candidate] usually 
corresponds to the dependent variable. See IMSLS_LEVEL. 

history[i] Status of i-th Variable 
0.0 Variable has never been added to model. 

0.5 Variable was added into the model during initialization. 

k > 0.0 Variable was added to the model during the k-th step. 

k < 0.0 Variable was deleted from model during the k-th step. 

IMSLS_COV_SWEPT_USER, float *covs   (Output) 
User-allocated array of length  
(n_candidate + 1) × (n_candidate + 1) that results after cov has been 
swept on the columns corresponding to the variables in the model. The 
estimated variance-covariance matrix of the estimated regression coefficients 
in the final model can be obtained by extracting the rows and columns of 
covs corresponding to the independent variables in the final model and 
multiplying the elements of this matrix by anova_table[7].  

IMSLS_INPUT_COV, int n_observations float *cov   (Input) 
An (n_candidate + 1) by (n_candidate + 1) array containing a variance-
covariance or sum of squares and crossproducts matrix, in which the last 
column must correspond to the dependent variable. Argument 
n_observations is an integer specifying the number of observations 
associated with cov. Argument cov can be computed using 
imsls_f_covariances. Arguments x, y, weights, and frequencies are 
not accessed when this option is specified. 

By default, imsls_regression_stepwise computes cov from the input 
data matrices x and y. 

Description 
Function imsls_f_regression_stepwise builds a multiple linear regression model 
using forward selection, backward selection, or forward stepwise (with a backward 
glance) selection. Function imsls_f_regression_stepwise is designed so the user 
can monitor, and perhaps change, the variables added (deleted) to (from) the model 
after each step. In this case, multiple calls to imsls_f_regression_stepwise 
(using optional arguments IMSLS_FIRST_STEP, IMSLS_INTERMEDIATE_STEP, ..., 
IMSLS_LAST_STEP) are made. Alternatively, imsls_f_regression_stepwise can 
be invoked once (default, or specify optional argument IMSLS_ALL_STEPS) in order to 
perform the stepping until a final model is selected. 
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Levels of priority can be assigned to the candidate independent variables (use optional 
argument IMSLS_LEVEL). All variables with a priority level of 1 must enter the model 
before variables with a priority level of 2. Similarly, variables with a level of 2 must 
enter before variables with a level of 3, etc. Variables also can be forced into the model 
(see optional argument IMSLS_FORCE). Note that specifying optional argument 
IMSLS_FORCE without also specifying optional argument IMSLS_LEVEL will result in 
all variables being forced into the model. 
Typically, the intercept is forced into all models and is not a candidate variable. In this 
case, a sum-of-squares and crossproducts matrix for the independent and dependent 
variables corrected for the mean is required. Other possibilities are as follows: 

1. The intercept is not in the model. A raw (uncorrected) sum-of-squares and 
crossproducts matrix for the independent and dependent variables is required 
as input in cov (see optional argument IMSLS_INPUT_COV). Argument 
n_observations must be set to one greater than the number of observations. 

2. An intercept is a candidate variable. A raw (uncorrected) sum-of-squares and 
crossproducts matrix for the constant regressor (=1), independent and 
dependent variables are required for cov. In this case, cov contains one 
additional row and column corresponding to the constant regressor. This 
row/column contains the sum-of-squares and crossproducts of the constant 
regressor with the independent and dependent variables. The remaining 
elements in cov are the same as in the previous case. Argument 
n_observations must be set to one greater than the number of observations. 

The stepwise regression algorithm is due to Efroymson (1960). Function 
imsls_f_regression_stepwise uses sweeps of the covariance matrix (input in 
cov, if optional argument IMSLS_INPUT_COV is specified, or generated internally by 
default) to move variables in and out of the model (Hemmerle 1967, Chapter 3). The 
SWEEP operator discussed in Goodnight (1979) is used. A description of the stepwise 
algorithm is also given by Kennedy and Gentle (1980, pp. 335−340). The advantage of 
stepwise model building over all possible regression (see function 
imsls_f_regression_selection) is that it is less demanding computationally 
when the number of candidate independent variables is very large. However, there is 
no guarantee that the model selected will be the best model (highest R2) for any subset 
size of independent variables. 

Example 
This example uses a data set from Draper and Smith (1981, pp. 629−630). Backwards 
stepping is performed by default.  

#include <imsls.h> 
#define N_OBSERVATIONS 13 
#define N_CANDIDATE    4 
main() 
{ 
    char           *labels[] = { 
                    "degrees of freedom for regression", 
                    "degrees of freedom for error", 
                    "total degrees of freedom", 
                    "sum of squares for regression", 
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                    "sum of squares for error", 
                    "total sum of squares", 
                    "regression mean square", 
                    "error mean square", 
                    "F-statistic", 
                    "p-value", 
                    "R-squared (in percent)", 
                    "adjusted R-squared (in percent)", 
                    "est. standard deviation of within error" 
    }; 
    char           *c_labels[] = { 
                    "variable", 
                    "estimate", 
                    "s.e.", 
                    "t", 
                    "prob > t" 
    }; 
    float  *aov, *tt; 
    float  x[N_OBSERVATIONS][N_CANDIDATE] =  
        {7., 26.,  6., 60., 
         1., 29., 15., 52., 
        11., 56.,  8., 20., 
        11., 31.,  8., 47., 
         7., 52.,  6., 33., 
        11., 55.,  9., 22., 
         3., 71., 17.,  6., 
         1., 31., 22., 44., 
         2., 54., 18., 22., 
        21., 47.,  4., 26., 
         1., 40., 23., 34., 
        11., 66.,  9., 12., 
        10., 68.,  8., 12.}; 
    float  y[N_OBSERVATIONS] = {78.5, 74.3, 104.3, 87.6, 95.9, 
        109.2, 102.7,  72.5, 93.1, 115.9, 83.8, 113.3, 109.4}; 
 
    imsls_f_regression_stepwise(N_OBSERVATIONS, N_CANDIDATE, x, y,  
        IMSLS_ANOVA_TABLE, &aov,  
        IMSLS_COEF_T_TESTS, &tt,  
        0); 
 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n",  
        13, 1, aov, 
        IMSLS_ROW_LABELS, labels, 
        IMSLS_WRITE_FORMAT, "%9.2f",  
        0); 
 
    imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",  
        4, 4, tt, 
        IMSLS_COL_LABELS, c_labels,  
        IMSLS_WRITE_FORMAT, "%9.2f",  
        0); 
 
    return; 
} 
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Output 
         * * * Analysis of Variance * * * 
 
degrees of freedom for regression             2.00 
degrees of freedom for error                 10.00 
total degrees of freedom                     12.00 
sum of squares for regression              2657.86 
sum of squares for error                     57.90 
total sum of squares                       2715.76 
regression mean square                     1328.93 
error mean square                             5.79 
F-statistic                                 229.50 
p-value                                       0.00 
R-squared (in percent)                       97.87 
adjusted R-squared (in percent)              97.44 
est. standard deviation of within error       2.41 
  
       * * * Inference on Coefficients * * * 
 
variable   estimate       s.e.          t   prob > t 
       1       1.47       0.12      12.10       0.00 
       2       0.66       0.05      14.44       0.00 
       3       0.25       0.18       1.35       0.21 
       4      -0.24       0.17      -1.36       0.21 

Warning Errors 

IMSLS_LINEAR_DEPENDENCE_1 Based on “tolerance” = #, there are 
linear dependencies among the variables to be forced. 

Fatal Errors 

IMSLS_NO_VARIABLES_ENTERED No variables entered the model. All 
elements of “anova_table” are set to NaN. 

poly_regression 
Performs a polynomial least-squares regression. 

Synopsis 
#include <imsls.h> 
float *imsls_f_poly_regression (int n_observations, float x[], float 

y[], int degree, ..., 0) 
The type double function is imsls_d_poly_regression. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the independent variable. 



 
 
 
 

 
 

Chapter 2: Regression poly_regression • 131  

 

 

 

float y[]   (Input) 
Array of length n_observations containing the dependent variable. 

int degree   (Input) 
Degree of the polynomial. 

Return Value 
A pointer to the array of size degree + 1 containing the coefficients of the fitted 
polynomial. If a fit cannot be computed, NULL is returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 
float *imsls_f_poly_regression (int n_observations, float x[],  

float y[], int degree,  
IMSLS_WEIGHTS, float weights[], 
IMSLS_SSQ_POLY, float **ssq_poly, 
IMSLS_SSQ_POLY_USER, float ssq_poly[], 
IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim, 
IMSLS_SSQ_LOF, float **ssq_lof, 
IMSLS_SSQ_LOF_USER, float ssq_lof[], 
IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim, 
IMSLS_X_MEAN, float *x_mean, 
IMSLS_X_VARIANCE, float *x_variance, 
IMSLS_ANOVA_TABLE, float **anova_table,  
IMSLS_ANOVA_TABLE_USER, float anova_table[],  
IMSLS_DF_PURE_ERROR, int *df_pure_error,  
IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error,  
IMSLS_RESIDUAL, float **residual,  
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_POLY_REGRESSION_INFO, 
 Imsls_f_poly_regression **poly_info, 
IMSLS_RETURN_USER, float coefficients[], 
0) 

Optional Arguments 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array with n_observations components containing the array of weights for 
the observation.  
Default: weights[] = 1 

IMSLS_SSQ_POLY, float **ssq_poly   (Output) 
Address of a pointer to the internally allocated array containing the sequential 
sums of squares and other statistics. Row i corresponds to  
xi, i = 0, ..., degree − 1, and the columns are described as follows: 
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Column Description 
0 degrees of freedom 
1 sums of squares 
2 F-statistic 
3 p-value 

IMSLS_SSQ_POLY_USER, float ssq_poly[]   (Output) 
Storage for array ssq_poly is provided by the user. See IMSLS_SSQ_POLY. 

IMSLS_SSQ_POLY_COL_DIM, int ssq_poly_col_dim   (Input) 
Column dimension of ssq_poly. 
Default: ssq_poly_col_dim = 4 

IMSLS_SSQ_LOF, float **ssq_lof   (Output) 
Address of a pointer to the internally allocated array containing the lack-of-fit 
statistics. Row i corresponds to xi, i = 0, ..., degree − 1, and the columns are 
described in the following table: 

Column Description 
0 degrees of freedom 
1 lack-of-fit sums of squares 
2 F-statistic for testing lack-of-fit for a polynomial 

model of degree i 
3 p-value for the test 

IMSLS_SSQ_LOF_USER, float ssq_lof[]   (Output) 
Storage for array ssq_lof is provided by the user. See IMSLS_SSQ_LOF. 

IMSLS_SSQ_LOF_COL_DIM, int ssq_lof_col_dim   (Input) 
Column dimension of ssq_lof. 
Default: ssq_lof_col_dim = 4 

IMSLS_X_MEAN, float *x_mean   (Output) 
Mean of x. 

IMSLS_X_VARIANCE, float *x_variance   (Output) 
Variance of x.  

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to the array containing the analysis of variance table. 

Column Description 
0 degrees of freedom for the model 
1 degrees of freedom for error 
2 total (corrected) degrees of freedom 
3 sum of squares for the model 
4 sum of squares for error 
5 total (corrected) sum of squares 
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Column Description 
6 model mean square 
7 error mean square 
8 overall F-statistic 

9 p-value 
10 R2 (in percent) 
11 adjusted R2 (in percent) 
12 estimate of the standard deviation 

13 overall mean of y 
14 coefficient of variation (in percent) 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_DF_PURE_ERROR, int *df_pure_error   (Output) 
If specified, the degrees of freedom for pure error are returned in 
df_pure_error. 

IMSLS_SSQ_PURE_ERROR, float *ssq_pure_error   (Output) 
If specified, the sums of squares for pure error are returned in 
ssq_pure_error. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to the array containing the residuals.  

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See IMSLS_RESIDUAL. 

IMSLS_POLY_REGRESSION_INFO, Imsls_f_poly_regression **poly_info   
(Output) 
Address of a pointer to an internally allocated structure containing the 
information about the polynomial fit required as input for IMSL function 
imsls_f_poly_prediction. 

IMSLS_RETURN_USER, float coefficients[]   (Output) 
If specified, the least-squares solution for the regression coefficients is stored 
in array coefficients of size degree + 1 provided by the user. 

Description 
Function imsls_f_poly_regression computes estimates of the regression 
coefficients in a polynomial (curvilinear) regression model. In addition to the 
computation of the fit, imsls_f_poly_regression computes some summary 
statistics. Sequential sums of squares attributable to each power of the independent 
variable (stored in ssq_poly) are computed. These are useful in assessing the 
importance of the higher order powers in the fit. Draper and Smith (1981, pp. 101−102) 
and Neter and Wasserman (1974, pp. 278−287) discuss the interpretation of the 
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sequential sums of squares. The statistic R2 is the percentage of the sum of squares of y 
about its mean explained by the polynomial curve. Specifically, 
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is the fitted y value at xi and y  is the mean of y. This statistic is useful in assessing the 

overall fit of the curve to the data. R2 must be between 0 and 100 percent, inclusive. 
R2 = 100 percent indicates a perfect fit to the data. 
Estimates of the regression coefficients in a polynomial model are computed using 
orthogonal polynomials as the regressor variables. This reparameterization of the 
polynomial model in terms of orthogonal polynomials has the advantage that the loss 
of accuracy resulting from forming powers of the x-values is avoided. All results are 
returned to the user for the original model (power form). 
Function imsls_f_poly_regression is based on the algorithm of Forsythe (1957). 
A modification to Forsythe’s algorithm suggested by Shampine (1975) is used for 
computing the polynomial coefficients. A discussion of Forsythe’s algorithm and 
Shampine’s modification appears in Kennedy and Gentle (1980, pp. 342−347). 

Examples  

Example 1 
A polynomial model is fitted to data discussed by Neter and Wasserman  
(1974, pp. 279−285). The data set contains the response variable y measuring coffee 
sales (in hundred gallons) and the number of self-service coffee dispensers. Responses 
for 14 similar cafeterias are in the data set. A graph of the results is also given. 

#include <imsls.h> 
 
#define DEGREE          2 
#define NOBS           14 
 
main() 
{ 
    float       *coefficients; 
    float       x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 
                       4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0}; 
    float       y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 
                       758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4}; 
 
    coefficients = imsls_f_poly_regression (NOBS, x, y, DEGREE, 0); 
 
    imsls_f_write_matrix("Least-Squares Polynomial Coefficients",  
                        DEGREE + 1, 1, coefficients,  
                        IMSLS_ROW_NUMBER_ZERO, 
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                        0); 
} 

Output 
Least-Squares Polynomial Coefficients 
            0       503.3 
            1        78.9 
            2        -4.0 

 
Figure 2- 1  A Polynomial Fit 

Example 2 
This example is a continuation of the initial example. Here, many optional arguments 
are used. 

#include <stdio.h> 
#include <imsls.h> 
 
#define DEGREE           2 
#define NOBS            14 
 
void main() 
{ 
    int         iset = 1, dfpe; 
    float       *coefficients, *anova_table, sspe, *ssqpoly, *ssqlof; 
    float       x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 
                       4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0}; 
    float       y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 
                       758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4}; 
    char        *coef_rlab[2]; 
    char        *coef_clab[] = {" ", "intercept", "linear",  
                                "quadratic"}; 
    char        *stat_clab[] = {" ", "Degrees of\nFreedom",  
                                "Sum of\nSquares",  
                                "\nF-Statistic", "\np-value"}; 
    char        *anova_rlab[] = { 
                   "degrees of freedom for regression",  
                   "degrees of freedom for error",  
                   "total (corrected) degrees of freedom", 
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                   "sum of squares for regression",  
                   "sum of squares for error",  
                   "total (corrected) sum of squares", 
                   "regression mean square",  
                   "error mean square", "F-statistic", 
                   "p-value", "R-squared (in percent)",  
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of model error",  
                   "overall mean of y",  
                   "coefficient of variation (in percent)"}; 
 
     coefficients = imsls_f_poly_regression(NOBS, x, y, DEGREE, 
                                           IMSLS_SSQ_POLY, &ssqpoly, 
                                           IMSLS_SSQ_LOF, &ssqlof, 
                                           IMSLS_ANOVA_TABLE, &anova_table, 
                                           IMSLS_DF_PURE_ERROR, &dfpe, 
                                           IMSLS_SSQ_PURE_ERROR, &sspe, 
                                           0); 
    imsls_write_options(-1, &iset); 
    imsls_f_write_matrix("Least Squares Polynomial Coefficients",  
                                            1, DEGREE + 1,  
                        coefficients,  
                        IMSLS_COL_LABELS, coef_clab, 
                        0); 
    coef_rlab[0] = coef_clab[2]; 
    coef_rlab[1] = coef_clab[3]; 
    imsls_f_write_matrix("Sequential Statistics", DEGREE, 4, ssqpoly,  
                        IMSLS_COL_LABELS, stat_clab, 
                        IMSLS_ROW_LABELS, coef_rlab, 
                        IMSLS_WRITE_FORMAT, "%3.1f%8.1f%6.1f%6.4f", 
                        0); 
    imsls_f_write_matrix("Lack-of-Fit Statistics", DEGREE, 4, ssqlof, 
                        IMSLS_COL_LABELS, stat_clab, 
                        IMSLS_ROW_LABELS, coef_rlab, 
                        IMSLS_WRITE_FORMAT,  "%3.1f%8.1f%6.1f%6.4f", 
                        0); 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
                                                         anova_table, 
                        IMSLS_ROW_LABELS, anova_rlab, 
                        IMSLS_WRITE_FORMAT, "%9.2f", 
                        0); 
} 

Output 
                     Least Squares Polynomial Coefficients 
                         intercept      linear   quadratic 
                             503.3        78.9        -4.0 
  
                             Sequential Statistics 
                        Degrees of    Sum of                       
                           Freedom   Squares  F-Statistic  p-value 
             linear            1.0  220644.2       3415.8   0.0000 
             quadratic         1.0    4387.7         67.9   0.0000 
  
                            Lack-of-Fit Statistics 
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                        Degrees of    Sum of                       
                           Freedom   Squares  F-Statistic  p-value 
             linear            5.0    4793.7         22.0   0.0004 
             quadratic         4.0     405.9          2.3   0.1548 

                       * * * Analysis of Variance * * * 
 
               degrees of freedom for regression            2.00 
               degrees of freedom for error                11.00 
               total (corrected) degrees of freedom        13.00 
               sum of squares for regression           225031.94 
               sum of squares for error                   710.55 
               total (corrected) sum of squares        225742.48 
               regression mean square                  112515.97 
               error mean square                           64.60 
               F-statistic                               1741.86 
               p-value                                      0.00 
               R-squared (in percent)                      99.69 
               adjusted R-squared (in percent)             99.63 
               est. standard deviation of model error       8.04 
               overall mean of y                          710.99 
               coefficient of variation (in percent)        1.13 

Warning Errors 

IMSLS_CONSTANT_YVALUES The y values are constant. A zero-order 
polynomial is fit. High order coefficients are 
set to zero. 

IMSLS_FEW_DISTINCT_XVALUES There are too few distinct x values to fit the 
desired degree polynomial. High order 
coefficients are set to zero. 

IMSLS_PERFECT_FIT A perfect fit was obtained with a polynomial 
of degree less than degree. High order 
coefficients are set to zero. 

Fatal Errors 

IMSLS_NONNEG_WEIGHT_REQUEST_2 All weights must be nonnegative. 

IMSLS_ALL_OBSERVATIONS_MISSING Each (x, y) point contains NaN. There are no 
valid data. 

IMSLS_CONSTANT_XVALUES The x values are constant. 

poly_prediction 
Computes predicted values, confidence intervals, and diagnostics after fitting a 
polynomial regression model. 

Synopsis 
#include <imsls.h> 



 

 
 

138 • poly_prediction IMSL C Stat Library 

 

 

 

float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info, int 
n_predict, float x[], ..., 0) 

The type double function is imsls_d_poly_prediction. 

Required Arguments 

Imsls_f_poly_regression *poly_info   (Input) 
Pointer to a structure of type Imsls_f_poly_regression. See function 
imsls_f_poly_regression. 

int n_predict   (Input) 
Length of array x. 

float x[]   (Input) 
Array of length n_predict containing the values of the independent variable 
for which calculations are to be performed. 

Return Value 
A pointer to an internally allocated array of length n_predict containing the 
predicted values. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_poly_prediction (Imsls_f_poly_regression *poly_info, 

int n_predict, float x[],  
IMSLS_CONFIDENCE, float confidence, 
IMSLS_WEIGHTS, float weights[], 
IMSLS_SCHEFFE_CI, float **lower_limit,  float **upper_limit, 
IMSLS_SCHEFFE_CI_USER, float lower_limit[], 
 float upper_limit[], 
IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit,  
 float **upper_limit, 
IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[],  
 float upper_limit[], 
IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit,  
 float **upper_limit, 
IMSLS_POINTWISE_CI_NEW_SAMPLE_USER,  float lower_limit[],  
 float upper_limit[],  
IMSLS_LEVERAGE, float **leverage, 
IMSLS_LEVERAGE_USER, float leverage[], 
IMSLS_RETURN_USER, float y_hat[], 
IMSLS_Y, float y[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_STANDARDIZED_RESIDUAL,  float **standardized_residual, 
IMSLS_STANDARDIZED_RESIDUAL_USER,  
 float standardized_residual[], 
IMSLS_DELETED_RESIDUAL, float **deleted_residual, 
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IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[], 
IMSLS_COOKSD, float **cooksd, 
IMSLS_COOKSD_USER, float cooksd[], 
IMSLS_DFFITS, float **dffits, 
IMSLS_DFFITS_USER, float dffits[], 
0) 

Optional Arguments 

IMSLS_CONFIDENCE, float confidence   (Input) 
Confidence level for both two-sided interval estimates on the mean and for 
two-sided prediction intervals in percent. Argument confidence must be in 
the range [0.0, 100.0). For one-sided intervals with confidence level onecl, 
where 50.0 ≤ onecl < 100.0, set confidence = 100.0 – 2.0 * (100.0 −
 onecl). 
Default: confidence = 95.0 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_predict containing the weight for each row of x. The 
computed prediction interval uses SSE/(DFE*weights[i]) for the estimated 
variance of a future response. 
Default: weights[] = 1 

IMSLS_SCHEFFE_CI, float **lower_limit, float **upper_limit   (Output) 
Array lower_limit is the address of a pointer to an internally allocated array 
of length n_predict containing the lower confidence limits of Scheffé 
confidence intervals corresponding to the rows of x. Array upper_limit is 
the address of a pointer to an internally allocated array of length n_predict 
containing the upper confidence limits of Scheffé confidence intervals 
corresponding to the rows of x. 

IMSLS_SCHEFFE_CI_USER, float lower_limit[], float upper_limit[]   
(Output) 
Storage for arrays lower_limit and upper_limit is provided by the user. See 
IMSLS_SCHEFFE_CI. 

IMSLS_POINTWISE_CI_POP_MEAN, float **lower_limit, float **upper_limit   
(Output) 
Array lower_limit is the address of a pointer to an internally allocated array 
of length n_predict containing the lower confidence limits of the 
confidence intervals for two-sided interval estimates of the means, 
corresponding to the rows of x. Array upper_limit is the address of a 
pointer to an internally allocated array of length n_predict containing the 
upper confidence limits of the confidence intervals for two-sided interval 
estimates of the means, corresponding to the rows  
of x. 

IMSLS_POINTWISE_CI_POP_MEAN_USER, float lower_limit[], 
float upper_limit[]   (Output) 
Storage for arrays lower_limit and upper_limit is provided by the user. 
See IMSLS_POINTWISE_CI_POP_MEAN. 
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IMSLS_POINTWISE_CI_NEW_SAMPLE, float **lower_limit, 
float **upper_limit   (Output) 
Array lower_limit is the address of a pointer to an internally allocated array 
of length n_predict containing the lower confidence limits of the 
confidence intervals for two-sided prediction intervals, corresponding to the 
rows of x. Array upper_limit is the address of a pointer to an internally 
allocated array of length n_predict containing the upper confidence limits 
of the confidence intervals for two-sided prediction intervals, corresponding to 
the rows of x. 

IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, float lower_limit[], 
float upper_limit[]   (Output) 
Storage for arrays lower_limit and upper_limit is provided by the user. 
See IMSLS_POINTWISE_CI_NEW_SAMPLE. 

IMSLS_LEVERAGE, float **leverage   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the leverages. 

IMSLS_LEVERAGE_USER, float leverage[]   (Output) 
Storage for array leverage is provided by the user. See IMSLS_LEVERAGE. 

IMSLS_RETURN_USER, float y_hat[]   (Output) 
Storage for array y_hat is provided by the user. The length n_predict array 
contains the predicted values. 

IMSLS_Y float y[]   (Input) 
Array of length n_predict containing the observed responses.  

Note: IMSLS_Y must be specified if any of the following optional arguments are 
specified. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the residuals. 

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See IMSLS_RESIDUAL. 

IMSLS_STANDARDIZED_RESIDUAL, float **standardized_residual   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the standardized residuals. 

IMSLS_STANDARDIZED_RESIDUAL_USER, float standardized_residual[]   
(Output) 
Storage for array standardized_residual is provided by the user. See 
IMSLS_STANDARDIZED_RESIDUAL. 

IMSLS_DELETED_RESIDUAL, float **deleted_residual   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the deleted residuals. 
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IMSLS_DELETED_RESIDUAL_USER, float deleted_residual[]   (Output) 
Storage for array deleted_residual is provided by the user. See 
IMSLS_DELETED_RESIDUAL. 

IMSLS_COOKSD, float **cooksd   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the Cook’s D statistics. 

IMSLS_COOKSD_USER, float cooksd[]   (Output) 
Storage for array cooksd is provided by the user. See IMSLS_COOKSD. 

IMSLS_DFFITS, float **dffits   (Output) 
Address of a pointer to an internally allocated array of length n_predict 
containing the DFFITS statistics. 

IMSLS_DFFITS_USER, float dffits[]   (Output) 
Storage for array dffits is provided by the user. See IMSLS_DFFITS. 

Description 
Function imsls_f_poly_prediction assumes a polynomial model  

0 1 ..., 1, 2, ...,k
i i k i iy x x i nβ β β ε= + + + =

 

where the observed values of the yi’s constitute the response, the xi’s are the settings of 
the independent variable, the βj’s are the regression coefficients and the εi’s are the 
errors that are independently distributed normal with mean 0 and the following 
variance: 

2

iw
σ

 

Given the results of a polynomial regression, fitted using orthogonal polynomials and 
weights wi, function imsls_f_poly_prediction produces predicted values, 
residuals, confidence intervals, prediction intervals, and diagnostics for outliers and in 
influential cases. 
Often, a predicted value and confidence interval are desired for a setting of the 
independent variable not used in computing the regression fit. This is accomplished by 
simply using a different x matrix when calling imsls_f_poly_prediction than was 
used for the fit (function imsls_f_poly_regression). See  
Example 1. 
Results from function imsls_f_poly_prediction, which produces the fit using 
orthogonal polynomials, are used for input by the structure poly_info. The fitted 
model from imsls_f_poly_regression is 

( ) ( ) ( )0 0 1 1ˆ ˆ ˆ ˆ...i i i k k iy p z p z p zα α α= + + +
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where the zi’s are settings of the independent variable x scaled to the interval  

[−2, 2] and the pj (z)’s are the orthogonal polynomials. The XTX matrix for this model 
is a diagonal matrix with elements dj. The case statistics are easily computed from this 
model and are equal to those from the original polynomial model with βj’s as the 
regression coefficients. 
The leverage is computed as follows: 

( )1 2

0

k

i i j j i
j

h w d p z−

=

= ∑  

The estimated variance of 

ˆiy
 

is given by the following: 
2

i

i

h s
w  

The computation of the remainder of the case statistics follows easily from the 
definitions. See “Diagnostics for Individual Cases” for the  definition of the 
case diagnostics. 
Often, predicted values and confidence intervals are desired for combinations of 
settings of the independent variables not used in computing the regression fit. This can 
be accomplished by defining a new data matrix. Since the information about the model 
fit is input in poly_info, it is not necessary to send in the data set used for the 
original calculation of the fit, i.e., only variable combinations for which predictions are 
desired need be entered in x.  

Examples  

Example 1 
A polynomial model is fit to the data discussed by Neter and Wasserman  
(1974, pp. 279–285). The data set contains the response variable y measuring coffee 
sales (in hundred gallons) and the number of self-service dispensers. Responses for 14 
similar cafeterias are in the data set. 

#include <imsls.h> 
  
main() 
{ 
    Imsls_f_poly_regression *poly_info; 
    float     *y_hat, *coefficients;  
    int       n_observations = 14; 
    int       degree = 2; 
    int       n_predict = 8; 
    float     x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 
                     4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0}; 
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    float     y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 
                     758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4}; 
    float     x2[] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0}; 
 
    /* Generate the polynomial regression fit*/ 
    coefficients = imsls_f_poly_regression (n_observations, x, y,  
        degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0); 
 
    /* Compute predicted values */ 
    y_hat = imsls_f_poly_prediction(poly_info, n_predict, x2, 0); 
  
    /* Print predicted values */ 
    imsls_f_write_matrix("Predicted Values", 1, n_predict, y_hat, 0);  
  
    free(coefficients); 
    free(y_hat); 
    return; 
} 

Output 
                           Predicted Values 
         1           2           3           4           5           6 
     503.3       578.3       645.4       704.4       755.6       798.8 
  
         7           8 
     834.1       861.4 

Example 2 
Predicted values, confidence intervals, and diagnostics are computed for the data set 
described in the first example. 

#include <imsls.h> 
  
main() 
{ 
#define N_PREDICT 14 
    Imsls_f_poly_regression *poly_info; 
    float     *coefficients, y_hat[N_PREDICT], 
              lower_ci[N_PREDICT], upper_ci[N_PREDICT], 
              lower_pi[N_PREDICT], upper_pi[N_PREDICT], 
              s_residual[N_PREDICT], d_residual[N_PREDICT], 
              leverage[N_PREDICT], cooksd[N_PREDICT],  
              dffits[N_PREDICT], lower_scheffe[N_PREDICT],  
              upper_scheffe[N_PREDICT];  
    int       n_observations = N_PREDICT; 
    int       degree = 2; 
    float     x[] = {0.0, 0.0, 1.0, 1.0, 2.0, 2.0, 4.0, 
                     4.0, 5.0, 5.0, 6.0, 6.0, 7.0, 7.0}; 
    float     y[] = {508.1, 498.4, 568.2, 577.3, 651.7, 657.0, 755.3, 
                     758.9, 787.6, 792.1, 841.4, 831.8, 854.7, 871.4}; 
 
    /* Generate the polynomial regression fit*/ 
    coefficients = imsls_f_poly_regression (n_observations, x, y,  
        degree, IMSLS_POLY_REGRESSION_INFO, &poly_info, 0); 
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    /* Compute predicted values and case statistics */ 
    imsls_f_poly_prediction(poly_info, N_PREDICT, x,  
        IMSLS_RETURN_USER, y_hat,  
        IMSLS_POINTWISE_CI_POP_MEAN_USER, lower_ci, upper_ci,  
        IMSLS_POINTWISE_CI_NEW_SAMPLE_USER, lower_pi, upper_pi,  
        IMSLS_Y, y,  
        IMSLS_STANDARDIZED_RESIDUAL_USER, s_residual,  
        IMSLS_DELETED_RESIDUAL_USER, d_residual,  
        IMSLS_LEVERAGE_USER, leverage,  
        IMSLS_COOKSD_USER, cooksd,  
        IMSLS_DFFITS_USER, dffits, 
        IMSLS_SCHEFFE_CI_USER, lower_scheffe, upper_scheffe, 
        0); 
  
    /* Print results */ 
    imsls_f_write_matrix("Predicted Values", 1, N_PREDICT, y_hat, 0);  
    imsls_f_write_matrix("Lower Scheffe CI", 1, N_PREDICT,  
        lower_scheffe, 0);  
    imsls_f_write_matrix("Upper Scheffe CI", 1, N_PREDICT,  
        upper_scheffe, 0); 
    imsls_f_write_matrix("Lower CI", 1, N_PREDICT, lower_ci, 0);  
    imsls_f_write_matrix("Upper CI", 1, N_PREDICT, upper_ci, 0);  
    imsls_f_write_matrix("Lower PI", 1, N_PREDICT, lower_pi, 0);  
    imsls_f_write_matrix("Upper PI", 1, N_PREDICT, upper_pi, 0);  
    imsls_f_write_matrix("Standardized Residual", 1, N_PREDICT,  
        s_residual, 0);  
    imsls_f_write_matrix("Deleted Residual", 1, N_PREDICT,  
        d_residual, 0);  
    imsls_f_write_matrix("Leverage", 1, N_PREDICT, leverage, 0);  
    imsls_f_write_matrix("Cooks Distance", 1, N_PREDICT, cooksd, 0); 
    imsls_f_write_matrix("DFFITS", 1, N_PREDICT, dffits, 0);  
 
  
    free(coefficients); 
    return; 
 
} 

Output 
                           Predicted Values 
         1           2           3           4           5           6 
     503.3       503.3       578.3       578.3       645.4       645.4 
  
         7           8           9          10          11          12 
     755.6       755.6       798.8       798.8       834.1       834.1 
  
        13          14 
     861.4       861.4 
  
                           Lower Scheffe CI 
         1           2           3           4           5           6 
     489.8       489.8       569.5       569.5       636.5       636.5 
  
         7           8           9          10          11          12 
     745.7       745.7       790.2       790.2       825.5       825.5 
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        13          14 
     847.7       847.7 
  
                           Upper Scheffe CI 
         1           2           3           4           5           6 
     516.9       516.9       587.1       587.1       654.2       654.2 
  
         7           8           9          10          11          12 
     765.5       765.5       807.4       807.4       842.7       842.7 
  
        13          14 
     875.1       875.1 
  
                               Lower CI 
         1           2           3           4           5           6 
     492.8       492.8       571.5       571.5       638.4       638.4 
  
         7           8           9          10          11          12 
     747.9       747.9       792.1       792.1       827.4       827.4 
  
        13          14 
     850.7       850.7 
                               Upper CI 
         1           2           3           4           5           6 
     513.9       513.9       585.2       585.2       652.3       652.3 
  
         7           8           9          10          11          12 
     763.3       763.3       805.5       805.5       840.8       840.8 
  
        13          14 
     872.1       872.1 
  
                               Lower PI 
         1           2           3           4           5           6 
     482.8       482.8       559.3       559.3       626.4       626.4 
  
         7           8           9          10          11          12 
     736.3       736.3       779.9       779.9       815.2       815.2 
  
        13          14 
     840.8       840.8 
  
                               Upper PI 
         1           2           3           4           5           6 
     523.9       523.9       597.3       597.3       664.3       664.3 
  
         7           8           9          10          11          12 
     774.9       774.9       817.7       817.7       853.0       853.0 
  
        13          14 
     882.1       882.1 
  
                         Standardized Residual 
         1           2           3           4           5           6 
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     0.737      -0.766      -1.366      -0.137       0.859       1.575 
  
         7           8           9          10          11          12 
    -0.041       0.456      -1.507      -0.902       0.982      -0.308 
  
        13          14 
    -1.051       1.557 
  
                           Deleted Residual 
         1           2           3           4           5           6 
     0.720      -0.751      -1.429      -0.131       0.848       1.707 
  
         7           8           9          10          11          12 
    -0.039       0.439      -1.613      -0.894       0.980      -0.295 
  
        13          14 
    -1.056       1.681 
 
                               Leverage 
         1           2           3           4           5           6 
    0.3554      0.3554      0.1507      0.1507      0.1535      0.1535 
  
         7           8           9          10          11          12 
    0.1897      0.1897      0.1429      0.1429      0.1429      0.1429 
  
        13          14 
    0.3650      0.3650 
  
                            Cooks Distance 
         1           2           3           4           5           6 
    0.0997      0.1080      0.1104      0.0011      0.0446      0.1500 
  
         7           8           9          10          11          12 
    0.0001      0.0162      0.1262      0.0452      0.0536      0.0053 
  
        13          14 
    0.2116      0.4644 
  
                                DFFITS 
         1           2           3           4           5           6 
     0.535      -0.558      -0.602      -0.055       0.361       0.727 
  
         7           8           9          10          11          12 
    -0.019       0.212      -0.659      -0.365       0.400      -0.120 
  
        13          14 
    -0.801       1.274 

Warning Errors 

IMSLS_LEVERAGE_GT_1 A leverage (= #) much greater than one is computed. 
It is set to 1.0. 

IMSLS_DEL_MSE_LT_0 A deleted residual mean square (= #) much less than 
zero is computed. It is set to zero. 
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Fatal Errors 

IMSLS_NEG_WEIGHT “weights[#]” = #. Weights must be nonnegative. 

nonlinear_regression 
Fits a multivarite nonlinear regression model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_nonlinear_regression (float fcn(), int n_parameters, 

int n_observations, int n_independent, float x[], float y[], ..., 0) 
The type double function is imsls_d_nonlinear_regression. 

Required Arguments 

float fcn (int n_independent, float xi[], int n_parameters, float theta[]) 
User-supplied function to evaluate the function that defines the nonlinear 
regression problem where xi is an array of length n_independent at which 
point the function is evaluated and theta is an array of length 
n_parameters containing the current values of the regression coefficients. 
Function fcn returns a predicted value at the point xi. In the following, 
f(xi;θ), or just fi, denotes the value of this function at the point xi, for a given 
value of θ. (Both xi and θ are arrays.) 

int n_parameters   (Input) 
Number of parameters to be estimated. 

int n_observations   (Input) 
Number of observations. 

int n_independent   (Input) 
Number of independent variables. 

float x[]   (Input) 
Array of size n_observations by n_independent containing the matrix of 
independent (explanatory) variables. 

float y[]   (Input) 
Array of length n_observations containing the dependent (response) 
variable. 

Return Value 

A pointer to an array of length n_parameters containing a solution, θ̂  for the 
nonlinear regression coefficients. To release this space, use free. If no solution can be 
computed, then NULL is returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 
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float *imsls_f_nonlinear_regression (float fcn(), int n_parameters, 
int n_observations, int n_independent, float x[], float y[],  
IMSLS_THETA_GUESS, float theta_guess[], 
IMSLS_JACOBIAN, void jacobian(), 
IMSLS_THETA_SCALE, float theta_scale[], 
IMSLS_GRADIENT_EPS, float gradient_eps, 
IMSLS_STEP_EPS, float step_eps,  
IMSLS_SSE_REL_EPS, float sse_rel_eps, 
IMSLS_SSE_ABS_EPS, float sse_abs_eps, 
IMSLS_MAX_STEP, float max_step, 
IMSLS_INITIAL_TRUST_REGION, float trust_region, 
IMSLS_GOOD_DIGIT, int ndigit, 
IMSLS_MAX_ITERATIONS, int max_itn, 
IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval, 
IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian, 
IMSLS_TOLERANCE, float tolerance, 
IMSLS_PREDICTED, float **predicted, 
IMSLS_PREDICTED_USER, float predicted[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_R, float **r, 
IMSLS_R_USER, float r[], 
IMSLS_R_COL_DIM, int r_col_dim, 
IMSLS_R_RANK, int *rank,  
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_DF, int *df, 
IMSLS_SSE, float *sse, 
IMSLS_RETURN_USER, float theta_hat[], 
IMSLS_FCN_W_DATA, void fcn(),void *data, 
IMSLS_JACOBIAN_W_DATA, void jacobian(),void *data, 
0) 

Optional Arguments 

IMSLS_THETA_GUESS, float theta_guess[]   (Input) 
Array with n_parameters components containing an initial guess. 
Default: theta_guess[] = 0 

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[], 
int n_parameters, float theta[], float fjac[])   (Input/Output) 
User-supplied function to compute the i-th row of the Jacobian, where the 
n_independent data values corresponding to the i-th row are input in xi. 
Argument theta is an array of length n_parameters containing the 
regression coefficients for which the Jacobian is evaluated, fjac is the 
computed n_parameters row of the Jacobian for observation i at theta. 
Note that each derivative ∂f(xi)/∂θj should be returned in fjac 
[j − 1] for j = 1, 2, ..., n_parameters. 



 
 
 
 

 
 

Chapter 2: Regression nonlinear_regression • 149  

 

 

 

IMSLS_THETA_SCALE, float theta_scale[]   (Input) 
Array with n_parameters components containing the scaling array for θ. 
Array theta_scale is used mainly in scaling the gradient and the distance 
between two points. See keywords IMSLS_GRADIENT_EPS and 
IMSLS_STEP_EPS for more detail.  
Default: theta_scale[] = 1 

IMSLS_GRADIENT_EPS, float gradient_eps   (Input) 
Scaled gradient tolerance. The j-th component of the scaled gradient at θ is 
calculated as 

( )
( ) 2

2

max , 1/
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2
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θ
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where g = ∇F(θ), t = theta_scale, and 
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The value F(θ) is the sum of the squared residuals, SSE, at the point θ. 
Default: 

ε=grad_tol
 

( 3 ε  in double, where ε is the machine precision)  

IMSLS_STEP_EPS, float step_eps   (Input) 
Scaled step tolerance. The j-th component of the scaled step from points θ and 
θ′ is computed as 

( )max , 1/
j j

j jt

θ θ

θ

′−

 

where t = theta_scale 
Default: step_eps = ε2/3,where ε is the machine precision 

IMSLS_SSE_REL_EPS, float sse_rel_eps   (Input) 
Relative SSE function tolerance. 
Default: sse_rel_eps = max(10-10, ε2/3), max(10-20, ε2/3) in double, where ε 
is the machine precision 

IMSLS_SSE_ABS_EPS, float sse_abs_eps   (Input) 
Absolute SSE function tolerance. 
Default: sse_abs_eps = max(10-20,ε2), max(10-40, ε2) in double, where ε is 
the machine precision 
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IMSLS_MAX_STEP, float max_step   (Input) 
Maximum allowable step size. 
Default: max_step = 1000 max (ε1, ε2), where ε1 = (tTθ0)1/2, ε2 = ||t||2, 
t = theta_scale, and θ0 = theta_guess 

IMSLS_INITIAL_TRUST_REGION, float trust_region   (Input) 
Size of initial trust region radius. The default is based on the initial scaled 
Cauchy step. 

IMSLS_GOOD_DIGIT, int ndigit   (Input) 
Number of good digits in the function.  
Default: machine dependent 

IMSLS_MAX_ITERATIONS, int max_itn   (Input) 
Maximum number of iterations. 
Default: max_itn = 100 

IMSLS_MAX_SSE_EVALUATIONS, int max_sse_eval   (Input) 
Maximum number of SSE function evaluations. 
Default: max_sse_eval = 400 

IMSLS_MAX_JACOBIAN_EVALUATIONS, int max_jacobian   (Input) 
Maximum number of Jacobian evaluations. 
Default: max_jacobian = 400 

IMSLS_TOLERANCE, float tolerance   (Input) 
False convergence tolerance.  
Default: tolerance = 100* eps, where eps = imsls_f_machine(4) if single 
precision and eps = imsls_d_machine(4) if double precision 

IMSLS_PREDICTED, float **predicted   (Output) 
Address of a pointer to a real internally allocated array of length 
n_observations containing the predicted values at the approximate 
solution.  

IMSLS_PREDICTED_USER, float predicted[]   (Output) 
Storage for array predicted is provided by the user. See 
IMSLS_PREDICTED. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to a real internally allocated array of length 
n_observations containing the residuals at the approximate solution. 

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See IMSLS_RESIDUAL. 

IMSLS_R, float **r   (Output) 
Address of a pointer to an internally allocated array of size  n_parameters ×
 n_parameters containing the R matrix from a QR decomposition of the 
Jacobian. 

IMSLS_R_USER, float r[]   (Output) 
Storage for array r is provided by the user. See IMSLS_R. 
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IMSLS_R_COL_DIM, int r_col_dim   (Input) 
Column dimension of array r. 
Default: r_col_dim = n_parameters 

IMSLS_R_RANK, int *rank   (Output) 
Rank of r. Argument rank less than n_parameters may indicate the model 
is overparameterized. 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of x. 
Default: x_col_dim = n_independent 

IMSLS_DF, int *df   (Output) 
Degrees of freedom. 

IMSLS_SSE, float *sse   (Output) 
Residual sum of squares. 

IMSLS_RETURN_USER, float theta_hat[]   (Output) 
User-allocated array of length n_parameters containing the estimated 
regression coefficients. 

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int 
n_parameters, float theta[]), void *data, (Input) 
User-supplied function to evaluate the function that defines the nonlinear 
regression problem, which also accepts a pointer to data that is supplied by the 
user.  data is a pointer to the data to be passed to the user-supplied function.  
See the Introduction, Passing Data to User-Supplied Functions at the 
beginning of this manual for more details. 

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float xi[], 
int n_parameters, float theta[], float fjac[]), void *data, (Input) 
User-supplied function to compute the i-th row of the Jacobian, which also 
accepts a pointer to data that is supplied by the user.  data is a pointer to the 
data to be passed to the user-supplied function.  See the Introduction, Passing 
Data to User-Supplied Functions at the beginning of this manual for more 
details. 

Description 
Function imsls_f_nonlinear_regression fits a nonlinear regression model using 
least squares. The nonlinear regression model is 

yi = f(xi; θ) + εi  i = 1, 2, ..., n 

where the observed values of the yi’s constitute the responses or values of the 
dependent variable, the known xi’s are the vectors of the values of the independent 
(explanatory) variables, θ is the vector of p regression parameters, and the εi’s are 
independently distributed normal errors with mean 0 and variance σ2. For this model, a 
least-squares estimate of θ is also a maximum likelihood estimate of θ. 
The residuals for the model are as follows: 
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ei(θ) = yi – f(xi; θ) i = 1, 2, ..., n 

A value of θ that minimizes 

( )
2

1

n
ii

e θ
=

⎡ ⎤⎣ ⎦∑  

is a least-squares estimate of θ. Function imsls_f_nonlinear_regression is 
designed so that the values of the function f(xi; θ) are computed one at a time by a user-
supplied function. 
Function imsls_f_nonlinear_regression is based on MINPACK routines 
LMDIF and LMDER by Moré et al. (1980) that use a modified Levenberg-Marquardt 
method to generate a sequence of approximations to a minimum point. Let 

ĉθ
 

be the current estimate of θ. A new estimate is given by  

ĉ csθ +
 

where sc is a solution to the following: 

ˆ ˆ ˆ ˆ( ( ) ( ) ) ( ) ( )T T
c c c c c cJ J I s J eθ θ μ θ θ+ =

 

Here 

ˆ( )cJ θ
 

is the Jacobian evaluated at 

ĉθ
 

The algorithm uses a “trust region” approach with a step bound of δc. A solution of the 
equations is first obtained for 

μc = 0. If ||sc||2 < δc 

this update is accepted; otherwise, μc is set to a positive value and another solution is 
obtained. The method is discussed by Levenberg (1944), Marquardt (1963), and 
Dennis and Schnabel (1983, pp. 129−147, 218−338). 
If a user-supplied function is specified in IMSLS_JACOBIAN, the Jacobian is computed 
analytically; otherwise, forward finite differences are used to estimate the Jacobian 
numerically. In the latter case, especially if type float is used, the estimate of the 
Jacobian may be so poor that the algorithm terminates at a noncritical point. In such 
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instances, the user should either supply a Jacobian function, use type double, or do 
both. 

Programming Notes 
Nonlinear regression allows substantial flexibility over linear regression because the 
user can specify the functional form of the model. This added flexibility can cause 
unexpected convergence problems for users that are unaware of the limitations of the 
software. Also, in many cases, there are possible remedies that may not be immediately 
obvious. The following is a list of possible convergence problems and some remedies. 
There is not a one-to-one correspondence between the problems and the remedies. 
Remedies for some problems also may be relevant for the other problems. 

1. A local minimum is found. Try a different starting value. Good starting values 
often can be obtained by fitting simpler models. For example, for a nonlinear 
function 

( ) 2
1; xf x eθθ θ=

 

good starting values can be obtained from the estimated linear regression 
coefficients 

0β̂
 

and 

1̂β
 

from a simple linear regression of ln y on ln x. The starting values for the 
nonlinear regression in this case would be 

0
ˆ

1 2 1̂ and eβθ θ β= =
 

If an approximate linear model is not clear, then simplify the model by 
reducing the number of nonlinear regression parameters. For example, some 
nonlinear parameters for which good starting values are known could be set to 
these values in order to simplify the model for computing starting values for 
the remaining parameters. 

2. The estimate of θ is incorrectly returned as the same or very close to the initial 
estimate. This occurs often because of poor scaling of the problem, which 
might result in the residual sum of squares being either very large or very 
small relative to the precision of the computer. The optional arguments allow 
control of the scaling. 

3. The model is discontinuous as a function of θ. (The function f(x;θ) can be a 
discontinuous function of x.) 
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4. Overflow occurs during the computations. Make sure the user-supplied 
functions do not overflow at some value of θ. 

5. The estimate of θ is going to infinity. A parameterization of the problem in 
terms of reciprocals may help. 

6. Some components of θ are outside known bounds. This can sometimes be 
handled by making a function that produces artificially large residuals outside 
of the bounds (even though this introduces a discontinuity in the model 
function). 

Examples  

Example 1 
In this example (Draper and Smith 1981, p. 518), the following nonlinear model is fit: 

( ) ( )80.49 XY e βα α ε− −= + − +
 

#include <math.h> 
#include <imsls.h> 
 
float fcn(int, float[], int, float[]); 
 
void main ()  
{ 
#define N_OBSERVATIONS 4 
    int         n_independent  = 1; 
    int         n_parameters   = 2; 
    float       *theta_hat; 
    float       x[N_OBSERVATIONS][1] = {10.0, 20.0, 30.0, 40.0}; 
    float       y[N_OBSERVATIONS] = {0.48, 0.42, 0.40, 0.39}; 
 
                                /* Nonlinear regression */ 
    theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,  
        N_OBSERVATIONS, n_independent, (float *)x, y, 0);   
 
                                /* Print estimates */ 
    imsls_f_write_matrix("estimated coefficients", 1, n_parameters,  
        theta_hat, 0); 
 
}                               /* End of main */ 
 
float fcn(int n_independent, float x[], int n_parameters, float theta[]) 
{ 
    return (theta[0] + (0.49 - theta[0])*exp(theta[1]*(x[0] - 8))); 
}                               /* End of fcn */ 

Output 
estimated coefficients 
         1           2 
    0.3807     -0.0794 
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Example 2 
Consider the nonlinear regression model and data set discussed by Neter et al. (1983, 
pp. 475−478): 

2
1

ix
i iy eθθ ε= +

 

There are two parameters and one independent variable. The data set considered 
consists of 15 observations. 

#include <math.h> 
#include <imsls.h> 
 
float fcn(int, float[], int, float[]); 
void jacobian(int, float[], int, float[], float[]); 
 
void main() 
{ 
#define N_OBSERVATIONS 15 
    int             n_independent=1; 
    int             n_parameters= 2; 
    float           *theta_hat, *r, *y_hat; 
    float           grad_eps = 1.0e-3; 
    float           theta_guess[2] = {60.0, -0.03};   
    float           y[N_OBSERVATIONS] = {  
                        54.0, 50.0, 45.0, 37.0, 35.0,  
                        25.0, 20.0, 16.0, 18.0, 13.0,   
                         8.0, 11.0,  8.0,  4.0,  6.0 }; 
    float           x[N_OBSERVATIONS] = {   
                         2.0,  5.0,  7.0, 10.0, 14.0,  
                        19.0, 26.0, 31.0, 34.0, 38.0,  
                       45.0, 52.0, 53.0, 60.0, 65.0 }; 
    char            *fmt="%12.5e"; 
 
                                /* Nonlinear regression */ 
    theta_hat = imsls_f_nonlinear_regression(fcn, n_parameters,  
        N_OBSERVATIONS,  n_independent, x, y,  
        IMSLS_THETA_GUESS, theta_guess, 
        IMSLS_GRADIENT_EPS, grad_eps, 
        IMSLS_R, &r, 
        IMSLS_PREDICTED, &y_hat, 
        IMSLS_JACOBIAN, jacobian, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix("Estimated coefficients", 1, n_parameters,  
        theta_hat, 0); 
 
    imsls_f_write_matrix("Predicted values", 1, N_OBSERVATIONS,  
        y_hat, 0); 
 
    imsls_f_write_matrix("R matrix", n_parameters, n_parameters,  
        r, IMSLS_WRITE_FORMAT, "%10.2f", 0); 
 
}                               /* End of main */ 
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float fcn(int n_independent, float x[], int n_parameters, float theta[]) 
{ 
    return (theta[0]*exp(x[0]*theta[1])); 
}                               /* End of fcn */ 
 
void jacobian(int n_independent, float x[], int n_parameters,  
    float theta[], float fjac[]) 
{ 
    fjac[0] = exp(theta[1]*x[0]); 
    fjac[1] = theta[0]*x[0]*exp(theta[1]*x[0]); 
}    
                                /* End of jacobian */ 

Output 
Estimated coefficients 
         1           2 
     58.61       -0.04 
  
                           Predicted values 
         1           2           3           4           5           6 
     54.15       48.08       44.42       39.45       33.67       27.62 
  
         7           8           9          10          11          12 
     20.94       17.18       15.26       13.02        9.87        7.48 
  
        13          14          15 
      7.19        5.45        4.47 
  
        R matrix 
            1           2 
1        1.87     1139.93 
2        0.00     1139.80 

Informational Errors 

IMSLS_STEP_TOLERANCE Scaled step tolerance satisfied. The current 
point may be an approximate local solution, 
but it is also possible that the algorithm is 
making very slow progress and is not near a 
solution or that “step_eps” is too big. 

Warning Errors 

IMSLS_LITTLE_FCN_CHANGE Both the actual and predicted relative 
reductions in the function are less than or 
equal to the relative function tolerance. 

IMSLS_TOO_MANY_ITN Maximum number of iterations exceeded. 

IMSLS_TOO_MANY_JACOBIAN_EVAL Maximum number of Jacobian evaluations 
exceeded. 
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IMSLS_UNBOUNDED Five consecutive steps have been taken with 
the maximum step length. 

IMSLS_FALSE_CONVERGENCE The iterates appear to be converging to a 
noncritical point. 

Fatal Errors 

IMSLS_TOO_MANY_FCN_EVAL Maximum number of function evaluations 
exceeded. 

nonlinear_optimization 
Fits data to a nonlinear model (possibly with linear constraints) using the successive 
quadratic programming algorithm (applied to the sum of squared errors, sse = Σ(yi −
 f(xi; θ))2) and either a finite difference gradient or a user-supplied gradient. 

Synopsis 
#include <imsls.h> 
float *imsls_f_nonlinear_optimization (float fcn(), int n_parameters, 

int n_observations, int n_independent, float x[], float y[], ..., 0) 
The type double function is imsls_d_nonlinear_optimization. 

Required Arguments 

float fcn (int n_independent, float xi[], int n_parameters, float theta[]) 
User-supplied function to evaluate the function that defines the nonlinear 
regression problem where xi is an array of length n_independent at which 
point the function is evaluated and theta is an array of length 
n_parameters containing the current values of the regression coefficients. 
Function fcn returns a predicted value at the point xi. In the following, f(xi; 
θ), or just fi, denotes the value of this function at the point xi, for a given value 
of θ. (Both xi and θ are arrays.) 

int n_parameters   (Input) 
Number of parameters to be estimated. 

int n_observations   (Input) 
Number of observations. 

int n_independent   (Input) 
Number of independent variables. 

float *x   (Input) 
Array of size n_observations by n_independent containing the matrix of 
independent (explanatory) variables. 

float y[]   (Input) 
Array of length n_observations containing the dependent (response) 
variable. 
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Return Value 

A pointer to an array of length n_parameters containing a solution, θ̂  for the 
nonlinear regression coefficients. To release this space, use free. If no solution can be 
computed, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 

float *imsls_f_nonlinear_optimization (float fcn(), 
int n_parameters, int n_observations, int n_independent, 
float x[], float y[], 
IMSLS_THETA_GUESS, float theta_guess[], 
IMSLS_JACOBIAN, void jacobian(), 
IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[], 
IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[], 
IMSLS_LINEAR_CONSTRAINTS, int n_constraints, 
 int n_equality, float a[], float b[], 
IMSLS_FREQUENCIES, float frequencies, 
IMSLS_WEIGHTS, float weights, 
IMSLS_ACC, float acc, 
IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval, 
IMSLS_PRINT_LEVEL, int print_level, 
IMSLS_STOP_INFO, int *stop_info, 
IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active,  
 int **indices_active, float **multiplier, 
IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active,  
 int indices_active[], float multiplier[], 
IMSLS_PREDICTED, float **predicted, 
IMSLS_PREDICTED_USER, float predicted[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_SSE, float *sse, 
IMSLS_RETURN_USER, float theta_hat[], 
IMSLS_FCN_W_DATA, float fcn(), void *data, 
IMSLS_JACOBIAN_W_DATA, float jacobian(), void *data, 
0) 

Optional Arguments 

IMSLS_THETA_GUESS, float theta_guess[]   (Input) 
Array with n_parameters components containing an initial guess. 
Default: theta_guess[] = 0 

IMSLS_JACOBIAN, void jacobian (int n_independent, float xi[], 
int n_parameters, float theta[], float fjac[])   (Input/Output) 
User-supplied function to compute the i-th row of the Jacobian, where the 
n_independent data values corresponding to the i-th row are input in xi. 
Argument theta is an array of length n_parameters containing the 
regression coefficients for which the Jacobian is evaluated, fjac is the 
computed n_parameters row of the Jacobian for observation i at theta. 
Note that each derivative f(xi)/θ should be returned in  
fjac[j-1] for i = 1, 2, ..., n_parameters. Further note that in order to 
maintain consistency with the other nonlinear solver, 



 
 
 
 

 
 

Chapter 2: Regression nonlinear_optimization • 159  

 

 

 

nonlinear_regression, the Jacobian values must be specified  
as the negative of the calculated derivatives. 

IMSLS_SIMPLE_LOWER_BOUNDS, float theta_lb[]   (Input) 
Vector of length n_parameters containing the lower bounds on the 
parameters; choose a very large negative value if a component should be 
unbounded below or set theta_lb[i] = theta_ub[i] to freeze the  
i-th variable. 
Default: All parameters are bounded below by -106. 

IMSLS_SIMPLE_UPPER_BOUNDS, float theta_ub[]   (Input) 
Vector of length n_parameters containing the upper bounds on the 
parameters; choose a very large value if a component should be unbounded 
above or set theta_lb[i] = theta_ub[i] to freeze the  
i-th variable. 
Default: All parameters are bounded above by 106. 

IMSLS_LINEAR_CONSTRAINTS, int n_constraints, int n_equality, float 
a[], float b[]   (Input) 
Argument n_constraints is the total number of linear constraints 
(excluding simple bounds). Argument n_equality is the number of these 
constraints which are equality constraints; the remaining  
n_constraints − n_equality constraints are inequality constraints. 
Argument a is a n_constraints by n_parameters array containing the 
equality constraint gradients in the first n_equality rows, followed by the 
inequality constraint gradients. Argument b is a vector of length 
n_constraints containing the right-hand sides of the linear constraints.  
Specifically, the constraints on θ are: 
ai1 θ1 + ... + aij θj = bi   for i = 1, n_equality and j = 1, n_parameter, and  
ak1 θ1 + ... + akj θj ≤ bk   for k = n_equality + 1, n_constraints and j = 1, 
n_parameter. 
Default: There are no default linear constraints. 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency for each 
observation. 
Default: frequencies[] = 1 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_observations containing the weight for each 
observation. 
Default: weights[] = 1 

IMSLS_ACC, float acc   (Input) 
The nonnegative tolerance on the first order conditions at the calculated 
solution. 

IMSLS_MAX_SSE_EVALUATIONS, int *max_sse_eval   (Input/Output) 
On input max_sse_eval is the maximum number of sse evaluations 
allowed. On output, max_sse_eval contains the actual number of sse 
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evaluations needed. 
Default: max_sse_eval = 400 

IMSLS_PRINT_LEVEL, int print_level   (Input) 
Argument print_level specifies the frequency of printing during execution. 
If print_level = 0, there is no printing. Otherwise, after ensuring 
feasibility, information is printed every print_level iterations and 
whenever an internal tolerance (called tol) is reduced. The printing provides 
the values of theta and the sse and gradient at the value of theta. If 
print_level is negative, this information is augmented by the current 
values of indices_active, multiplier, and reskt, where reskt is the 
Kuhn-Tucker residual vector at theta. 

IMSLS_STOP_INFO, int *stop_info   (Output) 
Argument stop_info will have one of the following integer values to 
indicate the reason for leaving the routine: 

stop_info Reason for leaving routine 
1 θ is feasible, and the condition that depends on acc is sat-

isfied. 
2 θ is feasible, and rounding errors are preventing further 

progress. 
3 θ is feasible, but sse fails to decrease although a decrease is 

predicted by the current gradient vector. 
4 The calculation cannot begin because a contains fewer than 

n_constraints constraints or because the lower bound on 
a variable is greater than the upper bound. 

5 The equality constraints are inconsistent. These constraints 
include any components of θ̂ that are frozen by setting 
theta_lb[i] equal to theta_ub[i]. 

6 The equality constraints and the bound on the variables are 
found to be inconsistent. 

7 There is no possible θ that satisfies all of the constraints.  

8 Maximum number of sse evaluations (max_sse_eval) is 
exceeded. 

9 θ is determined by the equality constraints. 

IMSLS_ACTIVE_CONSTRAINTS_INFO, int *n_active, int **indices_active, 
float **multiplier   (Output) 
Argument n_active returns the final number of active constraints. Argument 
indices_active is the address of a pointer to an internally allocated integer 
array of length n_active containing the indices of the final active 
constraints. Argument multiplier is the address of a pointer to an internally 
allocated real array of length n_active containing the Lagrange multiplier 
estimates of the final active constraints. 
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IMSLS_ACTIVE_CONSTRAINTS_INFO_USER, int *n_active, 
int indices_active[], float multiplier[]   (Output) 
Storage for arrays indices_active and multiplier are provided by the 
user. The maximum length needed for these arrays is n_constraints. See 
IMSLS_ACTIVE_CONSTRAINTS_INFO. 

IMSLS_PREDICTED, float **predicted   (Output) 
Address of a pointer to a real internally allocated array of length 
n_observations containing the predicted values at the approximate 
solution.  

IMSLS_PREDICTED_USER, float predicted[]   (Output) 
Storage for array predicted is provided by the user. See IMSLS_PREDICTED. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to a real internally allocated array of length 
n_observations containing the residuals at the approximate solution.  

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See IMSLS_RESIDUAL. 

IMSLS_SSE, float *sse   (Output) 
Residual sum of squares. 

IMSLS_RETURN_USER, float theta_hat[]   (Output) 
User-allocated array of length n_parameters containing the estimated 
regression coefficients. 

IMSLS_FCN_W_DATA, float fcn (int n_independent, float xi[], int 
n_parameters, float theta[]), void *data, (Input) 
User-supplied function to evaluate the function that defines the nonlinear 
regression problem, which also accepts a pointer to data that is supplied by the 
user.  data is a pointer to the data to be passed to the user-supplied function.  
See the Introduction, Passing Data to User-Supplied Functions at the 
beginning of this manual for more details. 

IMSLS_JACOBIAN_W_DATA, void jacobian (int n_independent, float xi[], 
int n_parameters, float theta[], float fjac[]), void *data, (Input) 
User-supplied function to compute the i-th row of the Jacobian, which also 
accepts a pointer to data that is supplied by the user.  data is a pointer to the 
data to be passed to the user-supplied function.  See the Introduction, Passing 
Data to User-Supplied Functions at the beginning of this manual for more 
details. 

Description 
Function imsls_f_nonlinear_optimization is based on M.J.D. Powell’s 
TOLMIN, which solves linearly constrained optimization problems, i.e., problems of 
the form min f(θ), θ ∈ ℜ, subject to 

A1θ = b1 
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A2θ ≤ b2 

θI ≤ θ ≤ θu 

given the vectors b1,  b2, θI, and θu and the matrices A1 and A2. 

The algorithm starts by checking the equality constaints for inconsistency and 
redundancy. If the equality constraints are consistent, the method will revise θ0, the 
initial guess provided by the user, to satisfy 

A1θ = b1 

Next, θ0 is adjusted to satisfy the simple bounds and inequality constraints. This is 
done by solving a sequence of quadratic programming subproblems to minimize the 
sum of the constraint or bound violations. 

Now, for each iteration with a feasible θk, let Jk be the set of indices of inequality 
constraints that have small residuals. Here, the simple bounds are treated as inequality 
constraints. Let Ik be the set of indices of active constraints. The following quadratic 
programming problem  

( ) ( ) 1min
2

k T k T kf d f d B dθ θ+ ∇ +
 

subject to  

ajd = 0 j ∈ Ik 

ajd ≤ 0 j ∈ Jk 

is solved to get (dk, λk) where aj is a row vector representing either a constraint in A1 
or A2 or a bound constraint on θ. In the latter case, the aj = ei for the bound constraint  
θi ≤ (θu)i and aj = −ei for the constraint θi ≤ (θl)i. Here, ei is a vector with a 1 as the i-th 

component, and zeroes elsewhere. λk are the Lagrange multipliers, and Bk is a positive 
definite approximation to the second derivative  
∇2 f(θk). 

After the search direction dk is obtained, a line search is performed to locate a better 
point. The new point θk+1 = θk + αkdk has to satisfy the conditions 

f (θk + αkdk) ≤ f (θk) + 0.1αk (dk)T∇ f (θk) 

and 
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(dk)T∇ f (θk + αkdk) ≥ 0.7 (dk)T∇ f (θk) 

The main idea in forming the set Jk is that, if any of the inequality constraints restricts 

the step-length αk, then its index is not in Jk. Therefore, small steps are likely to be 
avoided. 

Finally, the second derivative approximation, Bk, is updated by the BFGS formula, if 
the condition  

(dk)T∇ f (θk + αkdk) − ∇ f (θk) > 0 

holds. Let θk ← θk+1, and start another iteration. 
The iteration repeats until the stopping criterion 

||∇ f (θk) − Akλk||2 ≤ τ 

is satisfied; here, τ is a user-supplied tolerance. For more details, see Powell (1988, 
1989). 
Since a finite-difference method is used to estimate the gradient for some single 
precision calculations, an inaccurate estimate of the gradient may cause the algorithm 
to terminate at a noncritical point. In such cases, high precision arithmetic is 
recommended. Also, whenever the exact gradient can be  
easily provided, the gradient should be passed to 
imsls_f_nonlinear_optimization using the optional argument 
IMSLS_JACOBIAN. 

Examples  

Example 1 
In this example, a data set is fitted to the nonlinear model function 

( )0sini i iy xθ ε= +
 

 
#include <imsls.h> 
#include <math.h> 
 
float fcn(int n_independent, float x[], int n_parameters, float theta[]); 
 
main() 
{ 
    int     n_parameters   =  1; 
    int     n_observations = 11; 
    int     n_independent  =  1; 
    float   *theta_hat; 
    float   x[11] = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
                     0.7, 0.8, 0.9, 1.0}; 
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    float   y[15] = {0.05, 0.21, 0.67, 0.72, 0.98, 0.94, 
                     1.00, 0.73, 0.44, 0.36, 0.02}; 
 
    theta_hat = 
        imsls_f_nonlinear_optimization(fcn, n_parameters, 
                                       n_observations, n_independent, x, y, 
                                       0); 
 
    imsls_f_write_matrix("Theta Hat", 1, n_parameters, theta_hat, 0); 
 
    free(theta_hat); 
} 
 
float fcn(int n_independent, float x[], int n_parameters, float theta[]) 
{ 
   return sin(theta[0]*x[0]); 
} 

Output 
 

 Theta Hat 
 
     3.161 
 

Example 2 
 
Draper and Smith (1981, p. 475) state a problem due to Smith and Dubey. [H. Smith 
and S. D. Dubey (1964), "Some reliability problems in the chemical industry", 
Industrial Quality Control, 21 (2), 1964, pp. 64−70] A certain product must have 50% 
available chlorine at the time of manufacture. When it reaches the customer 8 weeks 
later, the level of available chlorine has dropped to 49%. It was known that the level 
should stabilize at about 30%. To predict how long the chemical would last at the 
customer site, samples were analyzed at different times. It was postulated that the 
following nonlinear model should fit the data. 
 

( ) ( )8
0 0.49 ix

i iy e θθ θ ε− −= + − +
 

 

Since the chlorine level will stabilize at about 30%, the initial guess for theta1 is 0.30. 
Using the last data point (x = 42, y = 0.39) and θ0 = 0.30 and the above nonlinear 
equation, an estimate for θ1of 0.02 is obtained. 
 
The constraints that θ0 ≥ = 0 and θ1 ≥ = 0 are also imposed. These are equivalent to 
requiring that the level of available chlorine always be positive and never increase with 
time. 
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The Jacobian of the nonlinear model equation is also used. 
#include <imsls.h> 
#include <math.h> 
 

float fcn(int n_independent, float x[], int n_parameters, float theta[]); 
void jacobian(int n_independent, float x[], int n_parameters,  
              float theta[],  
float fjac[]); 
main() 
{ 
    int     n_parameters   =  2; 
    int     n_observations = 44; 
    int     n_independent  =  1; 
    float   *theta_hat; 
    float   x[44] = { 
        8.0, 8.0, 10.0, 10.0, 10.0, 10.0, 12.0, 12.0, 12.0, 
        12.0, 14.0, 14.0, 14.0, 16.0, 16.0, 16.0, 18.0, 18.0, 20.0, 
        20.0, 20.0, 22.0, 22.0, 22.0, 24.0, 24.0, 24.0, 26.0, 26.0, 
        26.0, 28.0, 28.0, 30.0, 30.0, 30.0, 32.0, 32.0, 34.0, 36.0, 
        36.0, 38.0, 38.0, 40.0, 42.0}; 
    float   y[44] = { 
        .49, .49, .48, .47, .48, .47, .46, .46, .45, .43, .45, 
        .43, .43, .44, .43, .43, .46, .45, .42, .42, .43, .41, .41, 
        .4, .42, .4, .4, .41, .4, .41, .41, .4, .4, .4, .38, .41, 
        .4, .4, .41, .38, .4, .4, .39, .39}; 
    float   guess[2] =  {0.30, 0.02}; 
    float   xlb[2] = {0.0, 0.0}; 
    float   sse; 
 
    theta_hat = 
        imsls_f_nonlinear_optimization(fcn, n_parameters, n_observations, 
                                       n_independent, x, y, 
                                       IMSLS_THETA_GUESS, guess,  
                                       IMSLS_SIMPLE_LOWER_BOUNDS, xlb, 
                                       IMSLS_JACOBIAN, jacobian, 
                                       IMSLS_SSE, &sse, 
                                       0); 
    imsls_f_write_matrix("Theta Hat", 1, 2, theta_hat, 0); 
    free(theta_hat); 
} 
 
float fcn(int n_independent, float x[], int n_parameters, float theta[]) 
{ 
    return  theta[0] + (0.49-theta[0])*exp(-theta[1]*(x[0]-8.0)); 
} 
 
 
 
void jacobian(int n_independent, float x[], int n_parameters, 
              float theta[],  
float fjac[]) 
{ 
    fjac[0] = -1.0 + exp(-theta[1]*(x[0]-8.0)); 
    fjac[1] = (0.49-theta[0])*(x[0]-8.0) * exp(-theta[1]*(x[0]-8.0)); 
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} 
 

Output 
 

       Theta Hat 
 
         1           2 
 
    0.3901      0.1016 
 

Fatal Errors 

IMSLS_BAD_CONSTRAINTS_1 The equality constraints are inconsistent. 

IMSLS_BAD_CONSTRAINTS_2 The equality constraints and the bounds on 
the variables are found to be inconsistent. 

IMSLS_BAD_CONSTRAINTS_3 No vector “theta” satisfies all of the 
constraints. Specifically, the current active 
constraints prevent any change in “theta” 
that reduces the sum of constraint violations. 

IMSLS_BAD_CONSTRAINTS_4 The variables are determined by the equality 
constraints. 

IMSLS_TOO_MANY_ITERATIONS_1 Number of function evaluations exceeded 
“maxfcn” = #. 

Lnorm_regression 

Fits a multiple linear regression model using criteria other than least squares.  Namely, 
imsls_f_Lnorm_regression allows the user to choose Least Absolute Value (L1), 
Least Lp norm (Lp ), or Least Maximum Value  (Minimax  
or L∞ ) method of multiple linear regression. 

Synopsis 
#include <imsls.h> 
float *imsls_f_Lnorm_regression (int n_rows, int n_independent, 

float x[], float y[], ..., 0) 
The type double function is imsls_d_Lnorm_regression. 

Required Arguments 

int n_rows   (Input) 
Number of rows in x.  

int n_independent   (Input) 
Number of independent (explanatory) variables. 



 
 
 
 

 
 

Chapter 2: Regression Lnorm_regression • 167  

 

 

 

float x[]   (Input) 
Array of size n_rows × n_independent containing the independent 
(explanatory) variables(s). The i-th column of x contains the i-th independent 
variable. 

float y[]   (Input) 
Array of size n_rows containing the dependent (response) variable.  

Return Value 
Function imsls_f_Lnorm_regression returns a pointer to an array of length 
n_independent + 1 containing a least absolute value solution for the regression 
coefficients.  The estimated intercept is the initial component of the array, where the i-
th component contains the regression coefficients for the i-th dependent variable.  If the 
optional argument IMSLS_NO_INTERCEPT is used then the (i-1)-st component contains 
the regression coefficients for the i-th dependent variable. 
imsls_f_Lnorm_regression returns the Lp norm or least maximum value solution 
for the regression coefficients when appropriately specified in the optional argument 
list. 

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_Lnorm__regression(int n_rows, int n_independent,  
          float x[], float y[], 

      IMSLS_METHOD_LAV, 
      IMSLS_METHOD_LLP, float p, 
      IMSLS_METHOD_LMV,  
      IMSLS_X_COL_DIM, int x_col_dim, 
      IMSLS_INTERCEPT, 
      IMSLS_NO_INTERCEPT,  
      IMSLS_RANK, int *rank, 
      IMSLS_ITERATIONS, int *iterations, 
      IMSLS_N_ROWS_MISSING, int *n_rows_missing, 
      IMSLS_TOLERANCE, float tolerence, 
      IMSLS_SEA, float *sum_lav_error, 
      IMSLS_MAX_RESIDUAL,  float *max_residual,                                       

      IMSLS_R, float **R_matrix, 
      IMSLS_R_USER, float R_matrix[], 
      IMSLS_DEGREES_OF_FREEDOM, float df_error, 
      IMSLS_RESIDUALS, float **residual, 
      IMSLS_RESIDUALS_USER, float residual[], 
      IMSLS_SCALE, float *square_of_scale, 
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      IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual, 
      IMSLS_EPS, float epsilon, 
      IMSLS_WEIGHTS,  float weights[], 
      IMSLS_FREQUENCIES, float  frequencies[], 
      IMSLS_RETURN_USER, float coefficients[], 
      0) 

Optional Arguments 

IMSLS_METHOD_LAV,  or 

IMSLS_METHOD_LLP, float p, (Input) or 

IMSLS_METHOD_LMV,  
By default (or if IMSLS_METHOD_LAV is specified) the function fits a multiple 
linear regression model using the least absolute values criterion.  

IMSLS_METHOD_LLP requires the argument p, for 1p ≥ , and fits a multiple linear 
regression model using the Lp  norm criterion. 

IMSLS_METHOD_LMV fits a multiple linear regression model using the minimax 
criterion. 

IMSLS_WEIGHTS, float weights[],  (Input)  
Array of size n_rows containing the weights for the independent 
(explanatory) variable. 

IMSLS_FREQUENCIES, float frequencies[], (Input)  
Array of size n_rows containing the frequencies for the independent 
(explanatory) variable. 

IMSLS_X_COL_DIM, int x_col_dim, (Input) 
Leading dimension of x exactly as specified in the dimension statement in the 
calling program. 

IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT,  

IMSLS_INTERCEPT is the default where the fitted value for observation i is  

0 1 1
ˆ ˆ ˆ... k kx xβ β β+ + +

 

 where k = n_independent. If IMSLS_NO_INTERCEPT is specified, the 
intercept term  

( )0β̂
 

              is omitted from the model and the return value from regression is a pointer to 
an array of length n_independent. 
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IMSLS_RANK, int *rank, (Output) 
Rank of the fitted model is returned in *rank. 

IMSLS_ITERATIONS, int *iterations,  (Output) 
Number of iterations performed. 

IMSLS_N_ROWS_MISSING, int *n_rows_missing,  (Output) 
Number of rows of data containing NaN (not a number) for the dependent or 
independent variables.   If a row of data contains NaN for any of these 
variables, that row is excluded from the computations. 

IMSLS_RETURN_USER, float coefficients[]  (Output) 
Storage for array coefficients is provided by the user.    
See Return Value. 

If IMSLS_METHOD_LAV is specified: 
IMSLS_SEA, float sum_lav_error, (Output) 

Sum of the absolute value of the errors. 

If IMSLS_METHOD_LMV is specified: 
IMSLS_MAX_RESIDUAL,  float max_residual, (Output) 

Magnitude of the largest residual. 

If IMSLS_METHOD_LLP is specified: 
IMSLS_TOLERANCE, float tolerence, (Input)  

Tolerance used in determining linear dependence.  
tolerence = 100 * imsls_f_machine(4) is the default.  
For more details see Chapter 14, “Utilities” function imsls_f_machine.                                            

IMSLS_R, float **R_matrix, (Output) 
Upper triangular matrix of dimension (number of coeffieciencts  
by number of coeffecients) containing the R matrix from a QR decomposition 
of the matrix of regressors. 

IMSLS_R_USER, float R_matrix[],  (Output) 
Storage for array R_matrix is provided by the user. See IMSLS_R.. 

IMSLS_DEGREES_OF_FREEDOM, float df_error, (Output) 
Sum of the frequencies minus *rank.  In least squares fit (p =2) df_error is 
called the degrees of freedom of error. 

IMSLS_RESIDUALS, float **residual, (Output) 
Address of a pointer to an array (of length equal to the number of 
observations) containing the residuals. 

IMSLS_RESIDUALS_USER, float residual[],  (Output) 
Storage for array residual is provided by the user.  
See IMSLS_RESIDUALS. 

IMSLS_SCALE, float *square_of_scale, (Output) 
Square of the scale constant used in an Lp analysis.  An estimated asymptotic 
variance-covariance matrix of the regression coefficients is 
square_of_scale * (RTR)-1. 
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  IMSLS_RESIDUALS_LP_NORM, float *Lp_norm_residual, (Output) 
Lp norm of the residuals. 

  IMSLS_EPS, float epsilon, (Input) 
Convergence criterion. If the maximum relative difference in residuals from 
the k-th to (k+1)-st iterations is less than epsilon, convergence is declared. 
epsilon = 100 * machine(4) is the default. 

Description  

Least Absolute Value Criterion 
Function imsls_f_Lnorm_regression computes estimates of the regression 
coefficients in a multiple linear regression model. For optional argument IMSLS_LAV 
(default), the criterion satisfied is the minimization of the sum of the absolute values of 
the deviations of the observed response yi from the fitted response 

ˆiy
 

for a set on n observations. Under this criterion, known as the L1 or LAV (least 
absolute value) criterion, the regression coefficient estimates minimize 

1

0

ˆ
n

i i
i

y y
−

=

−∑  

The estimation problem can be posed as a linear programming problem. The special 
nature of the problem, however, allows for considerable gains in efficiency by the 
modification of the usual simplex algorithm for linear programming. These 
modifications are described in detail by Barrodale and Roberts (1973, 1974). 
In many cases, the algorithm can be made faster by computing a least-squares solution 
prior to the invocation of IMSLS_LAV. This is particularly useful when a least-squares 
solution has already been computed. The procedure is as follows: 

1. Fit the model using least squares and compute the residuals from  
this fit. 

2. Fit the residuals from Step 1 on the regressor variables in the model using 
IMSLS_LAV. 

3 Add the two estimated regression coefficient vectors from Steps 1  
and 2. The result is an L1 solution. 

When multiple solutions exist for a given problem, option IMSLS_LAV may yield 
different estimates of the regression coefficients on different computers, however, the 
sum of the absolute values of the residuals should be the same (within rounding 
differences). The informational error indicating nonunique solutions may result from 
rounding accumulation. Conversely, because of rounding the error may fail to result 
even when the problem does have multiple solutions. 
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Lp Norm Criterion 
Optional argument IMSLS_LLP computes estimates of the regression coefficients in a 
multiple linear regression model y = Xβ + ε under the criterion of minimizing the Lp 
norm of the deviations for i = 0, …, n-1 of the observed response yi from the fitted 
response 

ˆiy
 

for a set on n observations and for p ≥ 1. For the case when IMSLS_WEIGHTS AND 
IMSLS_FREQUENCIES are not supplied, the estimated regression coefficient vector, 

β̂
 

(output in coefficients []) minimizes the Lp norm  

1/1

0

ˆ
pn

P
i i

i

y y
−

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  

 

The choice p = 1 yields the maximum likelihood estimate for β when the errors have a 
Laplace distribution. The choice p = 2 is best for errors that are normally distributed. 
Sposito (1989, pages 36−40) discusses other reasonable alternatives for p based on the 
sample kurtosis of the errors.  
Weights are useful if the errors in the model have known unequal variances 

2
iσ

 

In this case, the weights should be taken as 
21/i iw σ=

 

Frequencies are useful if there are repetitions of some observations in the data set. If a 
single row of data corresponds to ni observations, set the frequency fi = ni.  
In general, IMSLS_LLP minimizes the Lp norm 

( )
1/1

0

ˆ
pn p

i i i i
i

f w y y
−

=

⎛ ⎞
−⎜ ⎟

⎝ ⎠
∑  

The asymptotic variance-covariance matrix of the estimated regression coefficients is 
given by  

2 1ˆasy.var( ) ( )TR Rβ λ −=
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where R is from the QR decomposition of the matrix of regressors (output in  
R-Matrix)ere an estimate of λ2 is output in square_of_scale. 
In the discussion that follows, we will first present the algorithm with frequencies and 
weights all taken to be one. Later, we will present the modifications to handle 
frequencies and weights different from one.  
Option call IMSLS_LLP uses Newton’s method with a line search for p > 1.25 and, 
for p ≤ 1.25, uses a modification due to Ekblom (1973, 1987) in which a series of 
perturbed problems are solved in order to guarantee convergence and increase the 
convergence rate. The cutoff value of 1.25 as well as some of the other implementation 
details given in the remaining discussion were investigated by Sallas (1990) for their 
effect on CPU times.  
In each case, for the first iteration a least-squares solution for the regression 
coefficients is computed using function imsls_f_regression. If p = 2, the 
computations are finished. Otherwise, the residuals from the k-th iteration, 

( ) ( )ˆk k
i i ie y y= −

 

are used to compute the gradient and Hessian for the Newton step for the  
(k + 1)-st iteration for minimizing the p-th power of the Lp norm. (The exponent 1/p in 
the Lp norm can be omitted during the iterations.)  

For subsequent iterations, we first discuss the p > 1.25 case. For p > 1.25, the gradient 
and Hessian at the (k + 1)-st iteration depend upon 

( )1( 1) ( ) ( )sign
pk k k

i i iz e e
−+ =

 

and  
2( 1) ( ) pk k

i iv e
−+ =

 

In the case 1.25 < p < 2 and  
( ) ( )10,k k
i ie v +=

 

and the Hessian are undefined; and we follow the recommendation of Merle and Spath 
(1974). Specifically, we modify the definition of  

( 1)k
iv +

 

to the following: 

( )

( )

2

( 1)
2

if 2 and 

otherwise
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where τ equals 100 * imsls_f_machine(4) (or 100.0 * imsls_d_machine(4) for 
the double precision version) times the square root of the residual mean square from 
the least-squares fit. (See routines imsls_f_machine and imsls_d_machine which 
are documented in the section “Machine-Dependent Constants” in Reference Material.)  

Let V(k+1) be a diagonal matrix with diagonal entries 
( 1)k
iv +

 

and let z(k+1) be a vector with elements 
( 1)k
iz +

 

In order to compute the step on the (k + 1)-st iteration, the R from the QR 
decomposition of  

[V(k+1)]1/2X 

 is computed using fast Givens transformations. Let  

R(k+1)  

 denote the upper triangular matrix from the QR decomposition.  The linear system 

 [R(k+1)]TR(k+1)d(k+1)= XT z(k+1)  

is solved for  

d(k+1) 

where R(k+1) is from the QR decomposition of V(k+1)]1/2X . The step taken on the  
(k + 1)-st iteration is 

( 1) ( ) ( 1) ( 1)1ˆ ˆ
1

k k k kd
p

β β α+ + += +
−  

The first attempted step on the (k + 1)-st iteration is with α(k+1) = 1. If all of the 
( )k
ie

 

are nonzero, this is exactly the Newton step. See Kennedy and Gentle (1980, pages 
528−529) for further discussion. 
If the first attempted step does not lead to a decrease of at least one-tenth of the 
predicted decrease in the p-th power of the Lp norm of the residuals, a backtracking 
linesearch procedure is used. The backtracking procedure uses a one-dimensional 
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quadratic model to estimate the backtrack constant p. The value of p is constrained to 
be no less that 0.1. An approximate upper bound for p is 0.5. If after 10 successive 
backtrack attempts, α(k) = p1p2… p10 does not produce a step with a sufficient 
decrease, then imsls_f_Lnorm_regression issues a message with error code 5. For 
further details on the backtrack line-search procedure, see Dennis and Schnabel (1983, 
pages 126−127).  
Convergence is declared when the maximum relative change in the residuals from one 
iteration to the next is less than or equal to epsilon. The relative change 

( 1)k
iδ +

 

in the i-th residual from iteration k to iteration k + 1 is computed as follows: 
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where s is the square root of the residual mean square from the least-squares fit on the 
first iteration. 
For the case 1 ≤ p ≤ 1.25, we describe the modifications to the previous procedure that 
incorporate Ekblom’s (1973) results. A sequence of perturbed problems are solved 
with a successively smaller perturbation constant c. On the first iteration, the least-
squares problem is solved. This corresponds to an infinite c. For the second problem, c 
is taken equal to s, the square root of the residual mean square from the least-squares 
fit. Then, for the (j + 1)-st problem, the value of c is computed from the previous value 
of c according to 
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Each problem is stated as  
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For each problem, the gradient and Hessian on the (k + 1)-st iteration depend upon 
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The linear system [R(k+1)]TR(k+1)d(k+1)= XTz(k+1) is solved for d(k+1) where 
R(k+1) is from the QR decomposition of [V (k+1)]1/2X. The step taken on the  
(k + 1)-st iteration is 

( 1) ( ) ( 1) ( 1)ˆ ˆk k k kdβ β α+ + += +
 

where the first attempted step is with α(k+1) = 1. If necessary, the backtracking line-
search procedure discussed earlier is used. 
Convergence for each problem is relaxed somewhat by using a convergence epsilon 
equal to max(epsilon, 10−j) where j = 1, 2, 3, … indexes the problems  
(j = 0 corresponds to the least-squares problem).  
After the convergence of a problem for a particular c, Ekblom’s (1987) extrapolation 
technique is used to compute the initial estimate of β for the new problem. Let R(k),  

( )( ) , kk
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and c be from the last iteration of the last problem. Let 
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and let t be the vector with elements ti. The initial estimate of β for the new problem 
with perturbation constant 0.01c is  

(0) ( )ˆ ˆ k cdβ β= + Δ
 

where Δc = (0.01c − c) = −0.99c, and where d is the solution of the linear system 
[R(k)]ΤR(k)d = XTt. 
Convergence of the sequence of problems is declared when the maximum relative 
difference in residuals from the solution of successive problems is less than epsilon.  
The preceding discussion was limited to the case for which weights[i] = 1 and 
frequencies[i] = 1, i.e., the weights and frequencies are all taken equal to one. The 
necessary modifications to the preceding algorithm to handle weights and frequencies 
not all equal to one are as follows: 

1. Replace  
( ) ( ) by k k
i i ie w e

 

in the definitions of 
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and ti. 

2. Replace 
( ) ( ) ( ) ( )1 1 1 1( 1) ( 1) by , by ,  and  by k k k kk k
i i i i i i i i i i i iz f w z v f w v t f w t+ + + ++ +  

These replacements have the same effect as multiplying the i-th row of X and y by 

iw
 

and repeating the row fi times except for the fact that the residuals returned by 
imsls_f_Lnorm_regression are in terms of the original y and X.  
Finally, R and an estimate of λ2 are computed. Actually, R is recomputed because on 
output it corresponds to the R from the initial QR decomposition for least squares. The 
formula for the estimate of λ2 depends on p.  
For p = 1, the estimator for λ2 is given by (McKean and Schrader 1987) 
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where z0.975 is the 97.5 percentile of the standard normal distribution, and where  
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are the ordered residuals where rank zero residuals are excluded. Note that  
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For p = 2, the estimator of λ2 is the customary least-squares estimator given by 
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For 1 < p < 2 and for p > 2, the estimator for λ2 is given by (Gonin and Money 1989) 



 
 
 
 

 
 

Chapter 2: Regression Lnorm_regression • 177  

 

 

 

2 22
2

2

ˆ
( 1)

p
p

p

m

p m
−

−

ω =
⎡ ⎤−⎣ ⎦

 

with  

1
1
0

ˆ( )
rn

i i i i i
r n

i i

f w y y
m

f
=

−
=

−
= ∑

∑  

Least Minimum Value Criterion (minimax) 
Optional call IMSLS_LMV computes estimates of the regression coefficients in a 
multiple linear regression model. The criterion satisfied is the minimization of the 
maximum deviation of the observed response yi from the fitted response ˆiy  for a set on 
n observations. Under this criterion, known as the minimax or LMV (least maximum 
value) criterion, the regression coefficient estimates minimize  

0 1
ˆi ii n

max y y
≤ ≤ −

−
 

The estimation problem can be posed as a linear programming problem. A dual 
simplex algorithm is appropriate, however, the special nature of the problem allows for 
considerable gains in efficiency by modification of the dual simplex iterations so as to 
move more rapidly toward the optimal solution. The modifications are described in 
detail by Barrodale and Phillips (1975).  
When multiple solutions exist for a given problem, IMSLS_LMV may yield different 
estimates of the regression coefficients on different computers, however, the largest 
residual in absolute value should have the same absolute value (within rounding 
differences). The informational error indicating nonunique solutions may result from 
rounding accumulation. Conversely, because of rounding, the error may fail to result 
even when the problem does have multiple solutions. 

Example 1 
A straight line fit to a data set is computed under the LAV criterion. 

#include <imsls.h> 
#include <stdio.h> 
void main() 
{ 
    float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0}; 
    float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0}; 
    float sea; 
    int irank, iter, nrmiss; 
 
    float *coefficients = NULL; 
     
    coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy, 
                                      IMSLS_SEA, &sea, 
                                      IMSLS_RANK, &irank, 
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                                      IMSLS_ITERATIONS, &iter, 
                                      IMSLS_N_ROWS_MISSING, &nrmiss,0);  
 
    printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]); 
    printf("Rank of Regressors Matrix   = %3d\n", irank); 
    printf("Sum Absolute Value of Error = %8.4f\n", sea); 
    printf("Number of Iterations        = %3d\n", iter); 
    printf("Number of Rows Missing      = %3d\n", nrmiss); 
 
} 

Output 
B =    0.50     0.50 
Rank of Regressors Matrix  =     2 
Sum Absolute Value of Error =     6.00000 
Number of Iterations  =     2 
Number of Rows Missing  =     0 
 
 

 

  
Figure 2- 2 Least Squares and Least Absolute Value Fitted Lines 

Example 2 
Different straight line fits to a data set are computed under the criterion of minimizing 
the Lp norm by using  p equal to 1, 1.5, 2.0 and 2.5. 

#include <imsls.h> 
#include <stdio.h> 
void main() 
{ 
    float xx[] = {1.0, 4.0, 2.0, 2.0, 3.0, 3.0, 4.0, 5.0}; 
    float yy[] = {1.0, 5.0, 0.0, 2.0, 1.5, 2.5, 2.0, 3.0}; 
    float p, tolerance, convergence_eps, square_of_scale, df_error,& 
                                                                                                        Lp_norm_residual; 
    float R_matrix[4], residuals[8]; 
    int   i, irank, iter, nrmiss; 
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    int   n_row=2; 
    int   n_col=2; 
 
    float *coefficients = NULL; 
 
    tolerance = 100*imsls_f_machine(4); 
    convergence_eps = 0.001; 
    p = 1.0; 
    for(i=0; i<4; i++) 
    {     
    coefficients = imsls_f_Lnorm_regression(8, 1, xx, yy, 
     IMSLS_METHOD_LLP, p, 

IMSLS_EPS, convergence_eps, 
     IMSLS_RANK, &irank, 

IMSLS_ITERATIONS, &iter, 
IMSLS_N_ROWS_MISSING, &nrmiss, 

     IMSLS_R_USER, R_matrix, 
     IMSLS_DEGREES_OF_FREEDOM, &df_error, 
     IMSLS_RESIDUALS_USER, residuals, 
     IMSLS_SCALE, &square_of_scale, 
     IMSLS_RESIDUALS_LP_NORM, &Lp_norm_residual,
         

0);  
printf("Coefficients = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]); 
printf("Residuals = %6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\t%6.2f\n\n",  
         residuals[0], residuals[1], residuals[2], residuals[3],  
         residuals[4], residuals[5], residuals[6], residuals[7]); 
printf("P                           = %5.3f\n", p); 
printf("Lp norm of the residuals    = %5.3f\n", Lp_norm_residual); 
printf("Rank of Regressors Matrix   = %3d\n", irank); 

    printf("Degrees of Freedom Error    = %5.3f\n", df_error); 
    printf("Number of Iterations        = %3d\n", iter); 
    printf("Number of Missing Values    = %3d\n", nrmiss); 
    printf("Square of Scale Constant    = %5.3f\n", square_of_scale); 
     
    imsls_f_write_matrix("R Matrix\n", n_row, n_col, R_matrix, 0); 
    printf("---------------------------------------------------------\n\n"); 
    p += 0.5; 
    } 

} 
  

Output 
 
      Coefficients    0.50    0.50 
      Residuals    0.00    2.50   -1.50    0.50   -0.50    0.50   -0.50   0.00 
 
      p                                1.00 
      Lp norm of the residuals         6.00 
      Rank of the matrix of regressors    2 
      Degrees of freedom error         6.00 
      Number of iterations                8 
      Number of missing values            0 
      Square of the scale constant     6.25 
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         R matrix 
              1       2 
      1   2.828   8.485 
      2   0.000   3.464 
 
      ------------------------------------------------------------------------ 
 
      Coefficients    0.39    0.55 
 
      Residuals    0.06    2.39   -1.50    0.50   -0.55    0.45   -0.61   -0.16 
      p                                1.50 
      Lp norm of the residuals         3.71 
      Rank of the matrix of regressors    2 
      Degrees of freedom error         6.00 
      Number of iterations                6 
      Number of missing values            0 
      Square of the scale constant     1.06 
 
         R matrix 
        1       2 
      1   2.828   8.485 
      2   0.000   3.464 
 
      ------------------------------------------------------------------------ 
 
      Coefficients   -0.12    0.75 
      Residuals    0.38    2.12   -1.38    0.62   -0.62    0.38   -0.88   -0.62 
 
      p                                2.00 
      Lp norm of the residuals         2.94 
      Rank of the matrix of regressors    2 
      Degrees of freedom error         6.00 
      Number of iterations                1 
      Number of missing values            0 
      Square of the scale constant     1.44 
       
         R matrix 
              1       2 
      1   2.828   8.485 
      2   0.000   3.464 
 
      ------------------------------------------------------------------------ 
       
      Coefficients   -0.44    0.87 
      Residuals    0.57    1.96   -1.30    0.70   -0.67    0.33   -1.04   -0.91 
      p                                2.50 
      Lp norm of the residuals         2.54 
      Rank of the matrix of regressors    2 
      Degrees of freedom error         6.00 
      Number of iterations                4 
      Number of missing values            0 
      Square of the scale constant     0.79 
       
         R matrix 
              1       2 
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      1   2.828   8.485 
      2   0.000   3.464 
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Figure 2- 3 Various Lp Fitted Lines 

Example 3 
A straight line fit to a data set is computed under the LMV criterion. 

 
#include <imsls.h> 
#include <stdio.h> 
void main() 
{ 
    float xx[] = {0.0, 1.0, 2.0, 3.0, 4.0, 4.0, 5.0}; 
    float yy[] = {0.0, 2.5, 2.5, 4.5, 4.5, 6.0, 5.0}; 
    float max_residual; 
    int irank, iter, nrmiss; 
 
    float *coefficients = NULL; 
     
    coefficients = imsls_f_Lnorm_regression(7, 1, xx, yy, 
         IMSLS_METHOD_LMV, 
        IMSLS_MAX_RESIDUAL, &max_residual,                          
                                      IMSLS_RANK, &irank, 
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                                      IMSLS_ITERATIONS, &iter, 
                                      IMSLS_N_ROWS_MISSING, &nrmiss, 
                                      0);  
    printf("B = %6.2f\t%6.2f\n\n", coefficients[0], coefficients[1]); 
    printf("Rank of Regressors Matrix     = %3d\n", irank); 
    printf("Magnitude of Largest Residual = %8.4f\n", max_residual); 
    printf("Number of Iterations          = %3d\n", iter); 
    printf("Number of Rows Missing        = %3d\n", nrmiss); 
  
} 
  

Output 
      B =    1.00     1.00 
      Rank of Regressors Matrix   =   2 
      Magnitude of Largest Residual  =  1.00000 
      Number of Iterations   =   3 
      Number of Rows Missing  =   0 

5.  

        
Figure 2- 4  Least Squares and Least Maximum Value Fitted Lines 
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Chapter 3: Correlation and 
Covariance 

Routines 
 Variances, Covariances, and Correlations 

Variance-covariance or correlation matrix covariances 185 
Partial correlations and covariances partial_covariances 192 
Pooled covariance matrix pooled_covariances 197 
Robust estimate of covariance matrix robust_covariances 203 

Usage Notes 
This chapter is concerned with measures of correlation for bivariate data as follows: 

• The usual multivariate measures of correlation and covariance for continuous 
random variables are produced by routine imsls_f_covariances.   

• For data grouped by some auxiliary variable, routine 
imsls_f_pooled_covariances can be used to compute the pooled  
covariance matrix along with the means for each group.   
• Partial correlations or covariances are computed by 
imsls_f_partial_correlations.   
• Function imsls_f_robust_covariances computes robust M-estimates of 
the mean and covariance matrix from a matrix of observations. 

covariances 
Computes the sample variance-covariance or correlation matrix. 

Synopsis 
#include <imsls.h>  
float *imsls_f_covariances (int n_rows, int n_variables, float x[], ..., 

0) 
The type double function is imsls_d_covariances. 
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Required Arguments 

int n_rows   (Input) 
Number of rows in x. 

int n_variables   (Input) 
Number of variables. 

float x[]   (Input) 
Array of size n_rows × n_variables containing the data. 

Return Value 
If no optional arguments are used, imsls_f_covariances returns a pointer to an 
n_variables × n_variables array containing the sample variance-covariance 
matrix of the observations. The rows and columns of this array correspond to the 
columns of x. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_covariances (int n_rows, int n_variables, float x[],  

IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_MISSING_VALUE_METHOD, int missing_value_method, 
IMSLS_INCIDENCE_MATRIX, int **incidence_matrix, 
IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[], 
IMSLS_N_OBSERVATIONS, int *n_observations, 
IMSLS_VARIANCE_COVARIANCE_MATRIX, or 
IMSLS_CORRECTED_SSCP_MATRIX, or 
IMSLS_CORRELATION_MATRIX, or 
IMSLS_STDEV_CORRELATION_MATRIX, 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim, 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_WEIGHTS, float weights[], 
IMSLS_SUM_WEIGHTS, float *sumwt, 
IMSLS_N_ROWS_MISSING, int *nrmiss, 
IMSLS_RETURN_USER, float covariance[], 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of array x. 
Default: x_col_dim = n_variables 

IMSLS_MISSING_VALUE_METHOD, int missing_value_method   (Input) 
Method used to exclude missing values in x from the computations, where 
NaN is interpreted as the missing value code. See function 
imsls_f_machine/imsls_d_machine (Chapter 15, “Utilities”). The 
methods are as follows: 
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Missing_value_method Action 
0 The exclusion is listwise. (The entire row of x is 

excluded if any of the values of the row is equal to 
the missing value code.)  

1 Raw crossproducts are computed from all valid pairs 
and means, and variances are computed from all 
valid data on the individual variables. Corrected 
crossproducts, covariances, and correlations are 
computed using these quantities. 

2 Raw crossproducts, means, and variances are 
computed as in the case of 
missing_value_method = 1. However, cor-
rected crossproducts and covariances are computed 
only from the valid pairs of data. Correlations are 
computed using these covariances and the variances 
from all valid data. 

3 Raw crossproducts, means, variances, and 
covariances are computed as in the case of 
missing_value_method = 2. Correlations are 
computed using these covariances, but the variances 
used are computed from the valid pairs of data. 

IMSLS_INCIDENCE_MATRIX, int **incidence_matrix   (Output) 
Address of a pointer to an internally allocated array containing the incidence 
matrix. If missing_value_method is 0, incidence_matrix is 1 × 1 and 
contains the number of valid observations; otherwise, incidence_matrix is  
n_variables × n_variables and contains the number of pairs of valid 
observations used in calculating the crossproducts for covariance. 

IMSLS_INCIDENCE_MATRIX_USER, int incidence_matrix[]   (Output) 
Storage for array incidence_matrix is provided by the user. See 
IMSLS_INCIDENCE_MATRIX. 

IMSLS_N_OBSERVATIONS, int *n_observations   (Output) 
Sum of the frequencies. If missing_value_method is 0, observations with 
missing values are not included in n_observations; otherwise, all 
observations are included except for observations with missing values for the 
weight or the frequency. 

IMSLS_VARIANCE_COVARIANCE_MATRIX, or 
IMSLS_CORRECTED_SSCP_MATRIX, or 
IMSLS_CORRELATION_MATRIX, or 
IMSLS_STDEV_CORRELATION_MATRIX 

Exactly one of these options can be used to specify the type of matrix to be 
computed. 
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Keyword Type of Matrix 
IMSLS_VARIANCE_COVARIANCE_MATRIX variance-covariance matrix (default) 
IMSLS_CORRECTED_SSCP_MATRIX corrected sums of squares and crossproducts matrix 
IMSLS_CORRELATION_MATRIX correlation matrix 
IMSLS_STDEV_CORRELATION_MATRIX correlation matrix except for the diagonal elements which 

are the standard deviations 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to the internally allocated array containing the means of 
the variables in x. The components of the array correspond to the columns of 
x. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_COVARIANCE_COL_DIM, int covariance_col_dim   (Input) 
Column dimension of array covariance if IMSLS_RETURN_USER is specified; 
otherwise, the column dimension of the return value. 
Default: covariance_col_dim = n_variables 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency for each 
observation. 
Default: frequencies [ ] = 1 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_observations containing the weight for each 
observation. 
Default: weights [ ] = 1 

IMSLS_SUM_WEIGHTS, float *sum_wt   (Output) 
Sum of the weights of all observations. If missing_value_method is equal 
to 0, observations with missing values are not included in sum_wt. Otherwise, 
all observations are included except for observations with mssing values for 
the weight or the frequency. 

IMSLS_N_ROWS_MISSING, int *nrmiss   (Output) 
Total number of observations that contain any missing values (NaN). 

IMSLS_RETURN_USER, float covariance[]   (Output) 
If specified, the output is stored in the array covariance of size 
n_variables × n_variables provided by the user. 

Description 
Function imsls_f_covariances computes estimates of correlations, covariances, or 
sums of squares and crossproducts for a data matrix x. Weights and frequencies are 
allowed but not required. 
The means, (corrected) sums of squares, and (corrected) sums of crossproducts are 
computed using the method of provisional means. Let xki denote the mean based on i 
observations for the k-th variable, fi denote the frequency of the i-th observation, wi 
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denote the weight of the i-th observations, and cjki denote the sum of crossproducts (or 
sum of squares if j = k) based on i observations. Then the method of provisional means 
finds new means and sums of crossproducts as shown in the example below. 
The means and crossproducts are initialized as follows: 

xk0 = 0.0  for k = 1, …, p 

cjk0 = 0.0 for j, k = 1, …, p 

where p denotes the number of variables. Letting xk,i+1 denote the k-th variable of 
observation i + 1, each new observation leads to the following updates for xki and cjki 
using the update constant ri+1: 
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The default value for weights and frequencies is 1. Means and variances are computed 
based on the valid data for each variable or, if required, based on all the valid data for 
each pair of variables. 

Usage Notes 
Function imsls_f_covariances defines a sample mean by 
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where n is the number of observations.  
The following formula defines the sample covariance, sjk, between variables j and k: 
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The sample correlation between variables j and k, rjk, is defined as follows: 
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Examples 

Example 1 
This example illustrates the use of imsls_f_covariances for the first 50 
observations in the Fisher iris data (Fisher 1936). Note that the first variable is constant 
over the first 50 observations. 

#include <imsls.h> 
 
#define N_VARIABLES      5 
#define N_OBSERVATIONS  50 
 
 
main() 
{ 
    float       *covariances, *means; 
    float       x[] = { 
        1.0, 5.1, 3.5, 1.4, .2,  1.0, 4.9, 3.0, 1.4, .2, 
        1.0, 4.7, 3.2, 1.3, .2,  1.0, 4.6, 3.1, 1.5, .2, 
        1.0, 5.0, 3.6, 1.4, .2,  1.0, 5.4, 3.9, 1.7, .4, 
        1.0, 4.6, 3.4, 1.4, .3,  1.0, 5.0, 3.4, 1.5, .2, 
        1.0, 4.4, 2.9, 1.4, .2,  1.0, 4.9, 3.1, 1.5, .1, 
        1.0, 5.4, 3.7, 1.5, .2,  1.0, 4.8, 3.4, 1.6, .2, 
        1.0, 4.8, 3.0, 1.4, .1,  1.0, 4.3, 3.0, 1.1, .1, 
        1.0, 5.8, 4.0, 1.2, .2,  1.0, 5.7, 4.4, 1.5, .4, 
        1.0, 5.4, 3.9, 1.3, .4,  1.0, 5.1, 3.5, 1.4, .3, 
        1.0, 5.7, 3.8, 1.7, .3,  1.0, 5.1, 3.8, 1.5, .3, 
        1.0, 5.4, 3.4, 1.7, .2,  1.0, 5.1, 3.7, 1.5, .4, 
        1.0, 4.6, 3.6, 1.0, .2,  1.0, 5.1, 3.3, 1.7, .5, 
        1.0, 4.8, 3.4, 1.9, .2,  1.0, 5.0, 3.0, 1.6, .2, 
        1.0, 5.0, 3.4, 1.6, .4,  1.0, 5.2, 3.5, 1.5, .2, 
        1.0, 5.2, 3.4, 1.4, .2,  1.0, 4.7, 3.2, 1.6, .2, 
        1.0, 4.8, 3.1, 1.6, .2,  1.0, 5.4, 3.4, 1.5, .4, 
        1.0, 5.2, 4.1, 1.5, .1,  1.0, 5.5, 4.2, 1.4, .2, 
        1.0, 4.9, 3.1, 1.5, .2,  1.0, 5.0, 3.2, 1.2, .2, 
        1.0, 5.5, 3.5, 1.3, .2,  1.0, 4.9, 3.6, 1.4, .1, 
        1.0, 4.4, 3.0, 1.3, .2,  1.0, 5.1, 3.4, 1.5, .2, 
        1.0, 5.0, 3.5, 1.3, .3,  1.0, 4.5, 2.3, 1.3, .3, 
        1.0, 4.4, 3.2, 1.3, .2,  1.0, 5.0, 3.5, 1.6, .6, 
        1.0, 5.1, 3.8, 1.9, .4,  1.0, 4.8, 3.0, 1.4, .3, 
        1.0, 5.1, 3.8, 1.6, .2,  1.0, 4.6, 3.2, 1.4, .2, 
        1.0, 5.3, 3.7, 1.5, .2,  1.0, 5.0, 3.3, 1.4, .2}; 
 
                                /* Perform analysis */ 
    covariances = imsls_f_covariances (N_OBSERVATIONS,  
        N_VARIABLES, x, 0); 
 
                                /* Print results */ 
    imsls_f_write_matrix ("The default case: variances/covariances", 
        N_VARIABLES, N_VARIABLES, covariances, 
        IMSLS_PRINT_UPPER, 0); 
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} 

Output 
           The default case: variances/covariances 
            1           2           3           4           5 
1      0.0000      0.0000      0.0000      0.0000      0.0000 
2                  0.1242      0.0992      0.0164      0.0103 
3                              0.1437      0.0117      0.0093 
4                                          0.0302      0.0061 
5                                                      0.0111 

Example 2 
This example, which uses the first 50 observations in the Fisher iris data, illustrates the 
use of optional arguments. 

#include <imsls.h> 
 
#define N_VARIABLES      5 
#define N_OBSERVATIONS  50 
 
main() 
{ 
    char        *title; 
    float       *means, *correlations; 
    float       x[] = { 
        1.0, 5.1, 3.5, 1.4, .2,  1.0, 4.9, 3.0, 1.4, .2, 
        1.0, 4.7, 3.2, 1.3, .2,  1.0, 4.6, 3.1, 1.5, .2, 
        1.0, 5.0, 3.6, 1.4, .2,  1.0, 5.4, 3.9, 1.7, .4, 
        1.0, 4.6, 3.4, 1.4, .3,  1.0, 5.0, 3.4, 1.5, .2, 
        1.0, 4.4, 2.9, 1.4, .2,  1.0, 4.9, 3.1, 1.5, .1, 
        1.0, 5.4, 3.7, 1.5, .2,  1.0, 4.8, 3.4, 1.6, .2, 
        1.0, 4.8, 3.0, 1.4, .1,  1.0, 4.3, 3.0, 1.1, .1, 
        1.0, 5.8, 4.0, 1.2, .2,  1.0, 5.7, 4.4, 1.5, .4, 
        1.0, 5.4, 3.9, 1.3, .4,  1.0, 5.1, 3.5, 1.4, .3, 
        1.0, 5.7, 3.8, 1.7, .3,  1.0, 5.1, 3.8, 1.5, .3, 
        1.0, 5.4, 3.4, 1.7, .2,  1.0, 5.1, 3.7, 1.5, .4, 
        1.0, 4.6, 3.6, 1.0, .2,  1.0, 5.1, 3.3, 1.7, .5, 
        1.0, 4.8, 3.4, 1.9, .2,  1.0, 5.0, 3.0, 1.6, .2, 
        1.0, 5.0, 3.4, 1.6, .4,  1.0, 5.2, 3.5, 1.5, .2, 
        1.0, 5.2, 3.4, 1.4, .2,  1.0, 4.7, 3.2, 1.6, .2, 
        1.0, 4.8, 3.1, 1.6, .2,  1.0, 5.4, 3.4, 1.5, .4, 
        1.0, 5.2, 4.1, 1.5, .1,  1.0, 5.5, 4.2, 1.4, .2, 
        1.0, 4.9, 3.1, 1.5, .2,  1.0, 5.0, 3.2, 1.2, .2, 
        1.0, 5.5, 3.5, 1.3, .2,  1.0, 4.9, 3.6, 1.4, .1, 
        1.0, 4.4, 3.0, 1.3, .2,  1.0, 5.1, 3.4, 1.5, .2, 
        1.0, 5.0, 3.5, 1.3, .3,  1.0, 4.5, 2.3, 1.3, .3, 
        1.0, 4.4, 3.2, 1.3, .2,  1.0, 5.0, 3.5, 1.6, .6, 
        1.0, 5.1, 3.8, 1.9, .4,  1.0, 4.8, 3.0, 1.4, .3, 
        1.0, 5.1, 3.8, 1.6, .2,  1.0, 4.6, 3.2, 1.4, .2, 
        1.0, 5.3, 3.7, 1.5, .2,  1.0, 5.0, 3.3, 1.4, .2}; 
 
                                /* Perform analysis */ 
    correlations = imsls_f_covariances (N_OBSERVATIONS,  
        N_VARIABLES-1, x+1, 
        IMSLS_STDEV_CORRELATION_MATRIX, 
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        IMSLS_X_COL_DIM, N_VARIABLES, 
        IMSLS_MEANS, &means, 
        0); 
 
                                /* Print results */ 
    imsls_f_write_matrix ("Means\n", 1, N_VARIABLES-1, means, 0); 
    title = "Correlations with Standard Deviations on the Diagonal\n"; 
    imsls_f_write_matrix (title, N_VARIABLES-1, N_VARIABLES-1,  
        correlations, IMSLS_PRINT_UPPER, 0); 
} 

Output  
                    Means 
 
         1           2           3           4 
     5.006       3.428       1.462       0.246 
  
Correlations with Standard Deviations on the Diagonal 
 
               1           2           3           4 
   1      0.3525      0.7425      0.2672      0.2781 
   2                  0.3791      0.1777      0.2328 
   3                              0.1737      0.3316 
   4                                          0.1054 

Warning Errors 

IMSLS_CONSTANT_VARIABLE Correlations are requested, but the 
observations on one or more variables are 
constant. The corresponding correlations are 
set to NaN. 

IMSLS_INSUFFICIENT_DATA Variances and covariances are requested, but 
fewer than two valid observations are 
present for a variable. The pertinent 
statistics are set to NaN. 

IMSLS_ZERO_SUM_OF_WEIGHTS_2 The sum of the weights is zero. The means, 
variances, and covariances are set to NaN. 

IMSLS_ZERO_SUM_OF_WEIGHTS_3 The sum of the weights is zero. The means 
and correlations are set to NaN. 

IMSLS_TOO_FEW_VALID_OBS_CORREL Correlations are requested, but fewer than 
two valid observations are present for a 
variable. The pertinent correlation 
coefficients are set to NaN. 

partial_covariances 
Computes partial covariances or partial correlations from the covariance or correlation 
matrix. 
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Synopsis 
#include <imsls.h> 

float *imsls_f_partial_covariances (int n_independent, 
int n_dependent, float x, ..., 0) 

The type double function is imsls_d_partial_covariances. 

Required Argument 

int n_independent   (Input) 
Number of “independent” variables to be used in the partial 
covariances/correlations. The partial covariances/correlations are the 
covariances/correlations between the dependent variables after removing the 
linear effect of the independent variables. 

int n_dependent   (Input) 
Number of variables for which partial covariances/correlations are desired 
(the number of “dependent” variables). 

float x   (Input) 
The n × n covariance or correlation matrix, where 
n = n_independent + n_dependent. The rows/columns must be ordered 
such that the first n_independent rows/columns contain the independent 
variables, and the last n_dependent row/columns contain the dependent 
variables. Matrix x must always be square symmetric. 

Return Value  
Matrix of size n_dependent by n_dependent containing the partial covariances (the 
default) or partial correlations (use keyword IMSLS_PARTIAL_CORR). 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_partial_covariances (int n_independent, 

int n_dependent, float x[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_INDICES, int indices[], 
IMSLS_PARTIAL_COV, or 
IMSLS_PARTIAL_CORR, 
IMSLS_TEST, int df, int *df_out, float **p_values, 
IMSLS_TEST_USER, int df, int *df_out, float p_values[], 
IMSLS_RETURN_USER, float c[], 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Row/Column dimension of x. 
Default: x_col_dim = n_independent + n_dependent. 
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IMSLS_X_INDICES, int indices[]   (Input) 
An array of length x_col_dim containing values indicating the status of the 
variable as in the following table: 

indices[i] Variable is... 
−1 not used in analysis 

0 dependent variable 
1 independent variable 

By default, the first n_independent elements of indices are equal to 1, 
and the last n_dependent elements are equal to 0. 

IMSLS_PARTIAL_COV, or 
IMSLS_PARTIAL_CORR, 

By default, and if IMSLS_PARTIAL_COV is specified, partial covariances are 
calculated. Partial correlations are calculated if IMSLS_PARTIAL_CORR is 
specified. 

IMSLS_TEST, int df, int *df_out, float **p_values    
(Input, Output, Output) 
Argument df is an input integer indicating the number of degrees of freedom 
associated with input matrix x. If the number of degrees of freedom in x 
varies from element to element, then a conservative choice for df is the 
minimum degrees of freedom for all elements in x.  

Argument df_out contains the number of degrees of freedom in the test that 
the partial covariances/correlations are zero. This value will usually be df −
 n_independent, but will be greater than this value if the independent 
variables are computationally linearly related. 

Argument p_values is the address of a pointer to an internally allocated 
array of size n_dependent by n_dependent containing the p-values for 
testing the null hypothesis that the associated partial covariance/correlation is 
zero. It is assumed that the observations from which x was computed flows a 
multivariate normal distribution and that each element in x has df degrees of 
freedom. 

IMSLS_TEST_USER, int df, int *df_out, float p_values[]    
(Input, Output, Output) 
Storage for array p_values is provided by the user. See IMSLS_TEST 
above. 

IMSLS_RETURN_USER, float c[]   (Output) 
If specified, c returns the partial covariances/correlations. Storage for array c 
is provided by the user. 

Description 
Function imsls_f_partial_covariances computed partial covariances or partial 
correlations from an input covariance or correlation matrix. If the “independent” 
variables (the linear “effect” of the independent variables is removed in computing the 



 
 
 
 

 
 

Chapter 3: Correlation and Covariance partial_covariances • 195  

 

 

 

partial covariances/correlations) are linearly related to one another, 
imsls_f_partial_covariances detects the linearity and eliminates one or more of 
the independent variables from the list of independent variables. The number of 
variables eliminated, if any, can be determined from argument df_out. 
Given a covariance or correlation matrix Σ partitioned as  

11 12

21 22

Σ Σ⎛ ⎞
⎜ ⎟Σ Σ⎝ ⎠  

function imsls_f_partial_covariances computed the partial covariances (of the 
standardized variables if Σ is a correlation matrix) as  

1
22 /1 22 21 11 12

−Σ = Σ − Σ Σ Σ
 

If partial correlations are desired, these are computed as  

( ) ( )1/ 2 1/ 2
22 /1 22 /1 22 /1 22 /1P diag diag

− −
= Σ Σ Σ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

where diag denotes the matrix containing the diagonal of its argument along its 
diagonal with zeros off the diagonal. If Σ11 is singular, then as many variables as 
required are deleted from Σ11 (and Σ12) in order to eliminate the linear dependencies. 
The computations then proceed as above. 
The p-value for a partial covariance tests the null hypothesis H0: σij|1 = 0, where σij|1 is 
the (i, j) element in matrix Σ22|1. The p-value for a partial correlation tests the null 
hypothesis H0: ρij|1 = 0, where ρij|1 is the (i, j) element in matrix P22|1. The p-values are 
returned in p_values. If the degrees of freedom for x, df, is not known, the resulting 
p-values may be useful for comparison, but they should not by used as an 
approximation to the actual probabilities. 

Examples  

Example 1 
The following example computes partial covariances, scaled from a nine-variable 
correlation matrix originally given by Emmett (1949). The first three rows and columns 
contain the independent variables and the final six rows and columns contain the 
dependent variables. 

#include <imsls.h> 
#include <math.h> 
 
main() 
{ 
    float *pcov; 
    float x[9][9] = { 
        6.300, 3.050, 1.933, 3.365, 1.317, 2.293, 2.586, 1.242, 4.363, 
        3.050, 5.400, 2.170, 3.346, 1.473, 2.303, 2.274, 0.750, 4.077, 
        1.933, 2.170, 3.800, 1.970, 0.798, 1.062, 1.576, 0.487, 2.673, 
        3.365, 3.346, 1.970, 8.100, 2.983, 4.828, 2.255, 0.925, 3.910, 
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        1.317, 1.473, 0.798, 2.983, 2.300, 2.209, 1.039, 0.258, 1.687, 
        2.293, 2.303, 1.062, 4.828, 2.209, 4.600, 1.427, 0.768, 2.754, 
        2.586, 2.274, 1.576, 2.255, 1.039, 1.427, 3.200, 0.785, 3.309, 
        1.242, 0.750, 0.487, 0.925, 0.258, 0.768, 0.785, 1.300, 1.458, 
        4.363, 4.077, 2.673, 3.910, 1.687, 2.754, 3.309, 1.458, 7.400}; 
 
    pcov = imsls_f_partial_covariances(3, 6, x, 0); 
 
    imsls_f_write_matrix("Partial Covariances", 6, 6, pcov, 0); 
 
    free(pcov); 
    return; 
} 

Output 
                           Partial Covariances 
            1           2           3           4           5           6 
1       0.000       0.000       0.000       0.000       0.000       0.000 
2       0.000       0.000       0.000       0.000       0.000       0.000 
3       0.000       0.000       0.000       0.000       0.000       0.000 
4       0.000       0.000       0.000       5.495       1.895       3.084 
5       0.000       0.000       0.000       1.895       1.841       1.476 
6       0.000       0.000       0.000       3.084       1.476       3.403 

Example 2 
The following example computes partial correlations from a 9 variable correlation 
matrix originally given by Emmett (1949). The partial correlations between the 
remaining variables, after adjusting for variables 1, 3 and 9, are computed. Note in the 
output that the row and column labels are numbers, not variable numbers. The 
corresponding variable numbers would be 2, 4, 5, 6, 7  
and 8, respectively. 

#include <imsls.h> 
 
main() 
{ 
    float *pcorr, *pval; 
    int   df; 
    float x[9][9] = { 
        1.0, 0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639,  
        0.523, 1.0, 0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645,  
        0.395, 0.479, 1.0, .355, 0.27, 0.254, 0.452,  0.219, 0.504,  
        0.471, 0.506, 0.355, 1.0, 0.691, 0.791, 0.443, 0.285, 0.505,  
        0.346, 0.418, 0.27, 0.691, 1.0, 0.679,  0.383, 0.149, 0.409,  
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0, 0.372, 0.314, 0.472,  
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0, 0.385, 0.68,  
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0, 0.47,  
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68, 0.47, 1.0}; 
    int indices[9] = {1, 0, 1, 0, 0, 0, 0, 0, 1}; 
 
    pcorr = imsls_f_partial_covariances(3, 6, &x[0][0], 
                                        IMSLS_PARTIAL_CORR,  
                                        IMSLS_X_INDICES, indices,  
                                        IMSLS_TEST, 30, &df, &pval, 
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                                        0); 
 
    printf ("The degrees of freedom are %d\n\n", df); 
    imsls_f_write_matrix("Partial Correlations", 6, 6, pcorr, 0); 
    imsls_f_write_matrix("P-Values", 6, 6, pval, 0); 
 
    free(pcorr); 
    free(pval); 
    return; 
} 

Output 
The degrees of freedom are 27 
 
                          Partial Correlations 
            1           2           3           4           5           6 
1       1.000       0.224       0.194       0.211       0.125      -0.061 
2       0.224       1.000       0.605       0.720       0.092       0.025 
3       0.194       0.605       1.000       0.598       0.123      -0.077 
4       0.211       0.720       0.598       1.000       0.035       0.086 
5       0.125       0.092       0.123       0.035       1.000       0.062 
6      -0.061       0.025      -0.077       0.086       0.062       1.000 
  
                                P-Values 
            1           2           3           4           5           6 
1      0.0000      0.2525      0.3232      0.2801      0.5249      0.7576 
2      0.2525      0.0000      0.0006      0.0000      0.6417      0.9000 
3      0.3232      0.0006      0.0000      0.0007      0.5328      0.6982 
4      0.2801      0.0000      0.0007      0.0000      0.8602      0.6650 
5      0.5249      0.6417      0.5328      0.8602      0.0000      0.7532 
6      0.7576      0.9000      0.6982      0.6650      0.7532      0.0000 
 
 

Warning Errors 

IMSLS_NO_HYP_TESTS The input matrix “x” has # degrees of freedom, and 
the rank of the dependent variables is #. There are not 
enough degrees of freedom for hypothesis testing. The 
elements of “p_values” are set to NaN (not a number). 

Fatal Errors 

IMSLS_INVALID_MATRIX_1 The input matrix “x” is incorrectly specified. A com-
puted correlation is greater than 1 for variables # and 
#. 

IMSLS_INVALID_PARTIAL A computed partial correlation for variables # and # is 
greater than 1. The input matrix “x” is not positive 
semi-definite. 

pooled_covariances 
Compute a pooled variance-covariance from the observations. 
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Synopsis 
#include <imsls.h> 
float *imsls_f_pooled_covariances (int n_rows, int n_variables, float 

*x, int n_groups, ..., 0) 
The type double function is imsls_d_pooled_covariances. 

Required Argument 

int n_rows   (Input) 
Number of rows observations) in the input matrix x. 

int n_variables   (Input) 
Number of variables to be used in computing the covariance matrix.  

float *x   (Input) 
A n_rows × n_variables + 1 matrix containing the data. The first 
n_variables columns correspond to the variables, and the last column 
(column n_variables must contain the group numbers). 

int n_groups   (Input) 
Number of groups in the data. 

Return Value 
Matrix of size n_variables by n_variables containing the matrix of covariances. 

Synopsis with Optional Arguments 
#include <imsls.h> 

float *imsls_f_pooled_covariances (int n_rows, int n_variables, float 
x[], int n_groups,  
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,  
IMSLS_IDO, int ido, 
IMSLS_ROWS_ADD, 
IMSLS_ROWS_DELETE, 
IMSLS_GROUP_COUNTS, int **gcounts,  
IMSLS_GROUP_COUNTS_USER, int gcounts[], 
IMSLS_SUM_WEIGHTS, float **sum_weights, 
IMSLS_SUM_WEIGHTS_USER, float sum_weights[], 
IMSLS_MEANS_USER, float means[], 
IMSLS_U, float **u, 
IMSLS_U_USER, float u[], 
IMSLS_N_ROWS_MISSING, int *nrmiss, 
IMSLS_RETURN_USER, float c[], 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Default: x_col_dim = n_variables + 1 



 
 
 
 

 
 

Chapter 3: Correlation and Covariance pooled_covariances • 199  

 

 

 

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt   (Input) 
Each of the four arguments contains indices indicating column numbers of x 
in which particular types of data are stored. Columns are numbered 0 ... 
x_col_dim − 1. 

Parameter igrp contains the index for the column of x in which the group 
numbers are stored. 

Parameter ind contains the indices of the variables to be used in the analysis. 

Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will 
be no column for frequencies. Set iwt = −1 if there will be no column for 
weights. Weights are rounded to the nearest integer. Negative weights are not 
allowed. 

Defaults: igrp = n_variables,  
ind[ ] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1 

IMSLS_IDO, int ido   (Input) 
Processing option. 

ido Action 
0 This is the only invocation; all the data are input at once. (Default) 
1 This is the first invocation with this data; additional calls will be 

made. Initialization and updating for the n_rows observations of 
x will be performed. 

2 This is an intermediate invocation; updating for the n_rows 
observations of x will be performed. 

3 All statistics are updated for the n_rows observations. The 
covariance matrix computed. 

Default: ido = 0 
IMSLS_ROWS_ADD, or 
IMSLS_ROWS_DELETE 

By default (or if IMSLS_ROWS_ADD is specified), the observations in x are 
added into the analysis. If IMSLS_ROWS_DELETE is specified, the 
observations are deleted from the analysis. If ido = 0, these optional 
arguments are ignored (data is always added if there is only one invocation). 

IMSLS_GROUP_COUNTS, int **gcounts   (Output) 
Address of a pointer to an integer array of length n_groups containing the 
number of observations in each group. Array gcounts is updated when ido 
is equal to 0, 1, or 2. 

IMSLS_GROUP_COUNTS_USER, int gcounts[]   (Output) 
Storage for integer array gcounts is provided by the user. See 
IMSLS_GROUP_COUNTS. 
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IMSLS_SUM_WEIGHTS, float **sum_weights   (Output) 
Address of a pointer to an array of length n_groups containing the sum of the 
weights times the frequencies in the groups. 

IMSLS_SUM_WEIGHTS_USER, float sum_weights[]   (Output) 
Storage for array sum_weights is provided by the user. See 
IMSLS_SUM_WEIGHTS. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to an array of size n_groups × n_variables. The i-th 
row of means contains the group i variable means. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_U, float **u   (Output) 
Address of a pointer to an array of size n_variables ×  
n_variables containing the lower matrix U, the lower triangular for the 
pooled sample cross-products matrix. U is computed from the  
pooled sample covariance matrix, S (See the “Description” section below), as 
S = UTU. 

IMSLS_U_USER, float u[]   (Output)” 
Storage for array u is provided by the user. See IMSLS_U. 

IMSLS_N_ROWS_MISSING, int *nrmiss   (Output) 
Number of rows of data encountered in calls to 
imsls_f_pooled_covariances containing missing values (NaN) for any 
of the variables used. 

IMSLS_RETURN_USER, float c[]   (Output) 
If specified, c returns the covariance matrix. Storage for array c is provided 
by the user. 

Description 
Function imsls_f_pooled_covariances computes the pooled variance-covariance 
matrix from a matrix of observations. The within-groups means are also computed. 
Listwise deletion of missing values is assumed so that all observations used are 
complete; in any row of x, if any element of the observation is missing, the row is not 
used. Function imsls_f_pooled_covariances should be used whenever the user 
suspects that the data has been sampled from populations with different means but 
identical variance-covariance matrices. If these assumptions cannot be made, a dif-
ferent variance-covariance matrix should be estimated within each group. 
By default, all observations are processed in one call to 
imsls_f_pooled_covariances. The computations are the same as if 
imsls_f_pooled_covariances were consecutively called with ido equal to 1, 2, 
and 3. For brevity, the following discusses the computations with ido > 0. 
When ido = 1 variables are initialized, workspace is allocated and input variables are 
checked for errrors. 
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If n_rows ≠ 0 (for any value of ido), the group observation totals, Ti, for i = 1, …, g, 
where g is the number of groups, are updated for the n_rows observations in x. The 
group totals are computed as: 

i ij ij ij
j

T w f x= ∑  

where wij is the observation weight, xij is the j-th observation in the i-th group, and fij is 
the observation frequency. 
Modified Givens rotations are used in computed the Cholesky decomposition of the 
pooled sums of squares and crossproducts matrix. (Golub and Van Loan 1983). 
The group means and the pooled sample covariance matrix S are computed from the 
intermediate results when ido = 3. These quantities are defined by 
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Examples  

Example 1 
The following example computes a pooled variance-covariance matrix. The last 
column of the data set is the group indicator. 

#include <stdio.h> 
#include <stdlib.h> 
#include <imsls.h> 
 
main() { 
    int nobs = 6; 
    int nvar = 2; 
    int n_groups = 2; 
    float *cov; 
    static float x[6][3] = { 
        2.2, 5.6, 1, 
        3.4, 2.3, 1, 
        1.2, 7.8, 1, 
        3.2, 2.1, 2,  
        4.1, 1.6, 2, 
        3.7, 2.2, 2}; 
 
    cov = imsls_f_pooled_covariances(nobs, nvar, &x[0][0], n_groups, 0); 
 
    imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0); 
    free(cov); 
} 
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Output 
Pooled Covariance Matrix 
            1           2 
1       0.708      -1.575 
2      -1.575       3.883 

Example 2 
The following example computes a pooled variance-covariance matrix for the Fisher 
iris data. To illustrate the use of the ido argument, multiple calls to 
imsls_f_pooled_covariances are made. 
The first column of data is the group indicator, requiring either a permuation of the 
matrix or the use of the IMSLS_X_INDICES optional keyword. This exampe chooses 
the keyword method. 

#include <stdio.h> 
#include <stdlib.h> 
#include <imsls.h> 
 
main() { 
    int nobs = 150; 
    int nvar = 4; 
    int n_groups = 3; 
    int igrp = 0; 
    static int ind[4] = {1, 2, 3, 4}; 
    int ifrq = -1; 
    int iwt = -1; 
    float *x, cov[16]; 
    float *means; 
    int i; 
 
    /* Retrieve the Fisher iris data set */ 
    x = imsls_f_data_sets(3, 0); 
 
    /* Initialize */ 
    imsls_f_pooled_covariances(0, nvar, x, n_groups,   
        IMSLS_IDO, 1,  
        IMSLS_RETURN_USER, cov,  
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    /* Add 10 rows at a time */ 
    for (i=0;i<15;i++) { 
    imsls_f_pooled_covariances(10, nvar, (x+i*50), n_groups,  
        IMSLS_IDO, 2,  
        IMSLS_RETURN_USER, cov,  
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
    } 
 
    /* Calculate cov and free internal workspace */ 
    imsls_f_pooled_covariances(0, nvar, x, n_groups,  
        IMSLS_IDO, 3,  
        IMSLS_RETURN_USER, cov,  
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt,  
        IMSLS_MEANS, &means, 0); 
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    imsls_f_write_matrix("Pooled Covariance Matrix", nvar, nvar, cov, 0); 
    imsls_f_write_matrix("Means", n_groups, nvar, means, 0); 
 
    free(means); 
    free(x); 
} 
 

Output 
            Pooled Covariance Matrix 
            1           2           3           4 
1      0.2650      0.0927      0.1675      0.0384 
2      0.0927      0.1154      0.0552      0.0327 
3      0.1675      0.0552      0.1852      0.0427 
4      0.0384      0.0327      0.0427      0.0419 
  
 
 
                      Means 
            1           2           3           4 
1       5.006       3.428       1.462       0.246 
2       5.936       2.770       4.260       1.326 
3       6.588       2.974       5.552       2.026 

Warning Errors 

IMSLS_OBSERVATION_IGNORED In call #, row # of the matrix “x” has 
group number = #. The group number must be 
between 1 and #, the number of groups. This 
observation will be ignored. 

Fatal Errors 

IMSLS_BAD_IDO_4 “ido” = #. Initial allocations must be performed by 
making a call to pooled_covariances with “ido” 
= 1. 

IMSLS_BAD_IDO_5 “ido” = #. A new analysis may not begin until the 
previous analysis is terminated by a call to 
imsls_f_pooled_covariances with “ido” equal 
to 3. 

robust_covariances 
Computes a robust estimate of a covariance matrix and mean vector. 

Synopsis 
#include <imsls.h> 

float *imsls_f_robust_covariances (int n_rows, int n_variables, float 
*x, int n_groups, ..., 0) 
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The type double function is imsls_d_robust_covariances. 

Required Argument 

int n_rows   (Input) 
Number of rows observations) in the input matrix x. 

int n_variables   (Input) 
Number of variables to be used in computing the covariance matrix. 

float *x   (Input) 
A n_rows by n_variables + 1 matrix containing the data. The first 
n_variables columns correspond to the variables, and the last column 
(column n_variables) must contain the group numbers. 

int n_groups   (Input) 
Number of groups in the data. 

Return Value 
Matrix of size n_variables by n_variables containing the matrix of covariances. 

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_robust_covariances (int n_rows, int n_variables, float 
x[], int n_groups, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,  
IMSLS_INITIAL_EST_MEAN, 
IMSLS_INITIAL_EST_MEDIAN 
IMSLS_INITIAL_EST_INPUT, float input_means[], 
 float input_cov[], 
IMSLS_ESTIMATION_METHOD, int method, 
IMSLS_PERCENTAGE, float percentage, 
IMSLS_MAX_ITERATIONS, int maxit, 
IMSLS_TOLERANCE, float tolerance, 
IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c, 
IMSLS_GROUP_COUNTS, int **gcounts,  
IMSLS_GROUP_COUNTS_USER, int gcounts[], 
IMSLS_SUM_WEIGHTS, float **sum_weights, 
IMSLS_SUM_WEIGHTS_USER, float sum_weights[], 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_U, float **u, 
IMSLS_U_USER, float u[], 
IMSLS_BETA, float *beta, 
IMSLS_N_ROWS_MISSING, int *nrmiss, 
IMSLS_RETURN_USER, float c[], 
0) 
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Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Row/Column dimension of x. 
Default: x_col_dim = n_variables + 1 

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt   (Input) 
Each of the four arguments contains indices indicating column numbers of x 
in which particular types of data are stored. Columns are numbered 0 …
 x_col_dim − 1.  

Parameter igrp contains the index for the column of x in which the group 
numbers are stored. 

Parameter ind contains the indices of the variables to be used in the analysis.  

Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will 
be no column for frequencies. Set iwt = −1 if there will be no column for 
weights. Weights are rounded to the nearest integer. Negative weights are not 
allowed. 

Defaults: igrp = n_variables,  
ind [ ] = 0, 1, …, n_variables − 1, ifrq = −1, and iwt = −1 

IMSLS_INITIAL_EST_MEAN, or 
IMSLS_INITIAL_EST_MEDIAN, or 
IMSLS_INITIAL_EST_INPUT, float *input_mean, float *input_cov   (Input) 

If IMSLS_INITIAL_EST_MEAN is specified, initial estimates are obtained as 
the usual estimate of a mean vector and of a covariance matrix. 

If IMSLS_INITIAL_EST_MEDIAN is specified, initial estimates are based 
upon the median and interquartile range are used. 

If IMSLS_INITIAL_EST_INPUT is specified, the initial estimates are 
specified in arrays input_mean and input_cov. Argument input_mean is 
an array of size n_groups by n_variables, and input_cov is an array of 
size n_variables by n_variables. 

Default: IMSLS_INITIAL_EST_MEAN 

IMSLS_ESTIMATION_METHOD, int method   (Input) 
Option parameter giving the algorithm to be used in computing the estimates. 

method Method Used 
0 Huber’s conjugate-gradient algorithm is used. 
1 Stahel’s algorithm is used. 

IMSLS_PERCENTAGE, float percentage   (Input) 
Percentage of gross errors expected in the data. Argument percentage must 
be in the range 0.0 to 100.0 and contains the percentage of outliers expected in 
the data. If the percentage of gross errors expected in the data is not known, a 
reasonable strategy is to choose a value of percentage that is such that 
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larger values do not result in significant changes in the estimates. 
Default: percentage = 5.0 

IMSLS_MAX_ITERATIONS, int maxit   (Input) 
Maximum number of iterations. 
Default: maxit = 30 

IMSLS_TOLERANCE, float tolerance   (Input) 
Convergence criterion. When the maximum absolute change in a location or 
covariance estimate is less than tolerance, convergence is assumed. 
Default: tolerance = 10-4 

IMSLS_MINIMAX_WEIGHTS, float *a, float *b, float *c   (Output) 
Arguments a, b, and c contain the values for the parameters of the weighting 
function. See the “Description” section. 

IMSLS_GROUP_COUNTS, int **gcounts   (Output) 
Address of a pointer to an integer array of length n_groups containing the 
number of observations in each group.  

IMSLS_GROUP_COUNTS_USER, int gcounts[]   (Output) 
Storage for integer array gcounts is provided by the user. See 
IMSLS_GROUP_COUNTS. 

IMSLS_SUM_WEIGHTS, float **sum_weights   (Output) 
Address of a pointer to an array of length n_groups containing the sum of the 
weights times the frequencies in the groups. 

IMSLS_SUM_WEIGHTS_USER, float sum_weights[](Output) 
Storage for array sum_weights is provided by the user. See 
IMSLS_SUM_WEIGHTS. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to an array of size n_groups by n_variables. The i-th 
row of means contains the group i variable means. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_U, float **u   (Output) 
Address of a pointer to an array of size n_variables by n_variables 
containing the lower matrix U, the lower triangular for the robust sample 
cross-products matrix. U is computed from the robust sample covariance 
matrix, S (See the “Description” section), as S = UTU. 

IMSLS_U_USER, float u[]   (Output) 
Storage for array u is provided by the user. See IMSLS_U. 

IMSLS_BETA, float *beta   (Output) 
Argument beta contains the constant used to ensure that the estimated 
covariance matrix has unbiased expectation (for a given mean vector) for a 
multivariate normal density. 
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IMSLS_N_ROWS_MISSING, int *nrmiss   (Output) 
Number of rows of data encountered in calls to robust_covariances 
containing missing values (NaN) for any of the variables used. 

IMSLS_RETURN_USER, float c[]   (Output) 
If specified, c returns the covariance matrix. Storage for array c is provided 
by the user. 

Description 
Function imsls_f_robust_covariances computes robust M-estimates of the mean 
and covariance matrix from a matrix of observations. A pooled estimate of the 
covariance matrix is computed when multiple groups are present in the input data. M-
estimate weights are obtained using the “minimax” weights of Huber (1981, pp. 231-
235), with percentage expected gross errors. Huber’s (1981) weighting equations are 
given by: 
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User specified observation weights and frequencies may be given for each row in x. 
Listwise deletion of missing values is assumed so that all observations used are 
“complete”.  
Let f (x;μi, Σ) denote the density of an observation p-vector x in population (group) i 

with mean vector μi, for i = 1, …, τ. Let the covariance matrix Σ be such that Σ = RTR. 
If  

y = R-T (x − μi) 

then 

( ) ( )1/ 2 ; ,T
i ig y f R y μ μ= Σ + Σ

 

It is assumed that g(y) is a spherically symmetric density in p-dimensions. 
In imsls_f_robust_covariances, Σ and μi are estimated as the solutions 

( )ˆ ˆ, iμΣ
 

of the estimation equations 
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where i indexes the τ groups, ni, is the number of observations in group i, fij is the 
frequency for the j-th observation in group i, wij is the observation weight specified in 
column iwt of x, Ip is a p × p identity matrix, 

T
ij ij ijr y y=

 

w(r) and u(r) are the weighting functions, and where β is a constant computed by the 
program to make the expected weighted Mahalanobis distance (yTy) equal the expected 
Mahalanobis distance from a multivariate normal distribution (see Marazzi 1985). The 
constant β is described more fully below. 
Function imsls_f_robust_covariances uses one of two algorithms for solving the 
estimation equations. The first algorithm is discussed in detail in Huber (1981) and is a 
variant of the conjugate gradient method. The second algorithm is due to Stahel (1981) 
and is discussed in detail by Marazzi (1985). In both algorithms, correction vectors Tki 
for the group i means and correction matrix Wk = Ip + Uk for the Cholesky factorization 
of Σ are found such that the updated mean vectors are given by  

, 1 ,ˆ ˆi k i k kiTμ μ+ = +
 

and the updated matrix R is given as  

1
ˆ ˆ

k k kR W R+ =
 

where k is the iteration number and  

ˆ T
k k kR RΣ =

 

When all elements of Uk and Tki are less than ε = tolerance, convergence is 
assumed. 
Three methods for obtaining estimates are allowed. In the first method, the sample 
weighted estimate of Σ is computed. In the second method, estimates based upon the 
median and the interquartile range are used. Finally, in the last method, the user inputs 
initial estimates.  
Function imsls_f_robust_covariances computes estimates based on the 
“minimax” weights discussed above. The constant β is chosen such that E  
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(u(r)r2) = ρβ where the expectation is with respect to a standard p-variate multivariate 
normal distribution. This yields estimates with the correct expectation for the 
multivariate normal distribution (for given mean vector). The expectation is computed 
via integration of estimated spline function. 200 knots are used on an equally apaced 
grid from 0.0 to the 99.999 percentile of  

2
pχ
 

distribution. An error estimate is computed based upon 100 of these knots. If the 
estimated relative error is greater than 0.0001, a warning message is issued. If β is not 
computed accurately (i.e., if the warning message is issued), the computed esimates are 
still optimal, but the scale of the estimated covariance matrix may need to be multiplied 
by a constant in order for 

Σ̂
 

to have the correct multivariate normal covariance expectation. 

Examples  

Example 1 
The following example computes a robust variance-covariance matrix. The last column 
of the data set is the group indicator. 

#include <imsls.h> 
#include <stdlib.h> 
main() 
{ 
    int nobs = 6; 
    int nvar = 2; 
    int n_groups = 2; 
    float *cov; 
    float x[18] = { 
        2.2, 5.6, 1, 
        3.4, 2.3, 1, 
        1.2, 7.8, 1, 
        3.2, 2.1, 2,  
        4.1, 1.6, 2, 
        3.7, 2.2, 2}; 
 
    cov = imsls_f_robust_covariances(nobs, nvar, x, n_groups, 0);  
 
    imsls_f_write_matrix("Robust Covariance Matrix", nvar, nvar, cov,  
        IMSLS_COL_NUMBER_ZERO, 
        IMSLS_ROW_NUMBER_ZERO, 0); 
 
    free(cov); 
} 
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Output 
  
Robust Covariance Matrix 
            0           1 
0       0.522      -1.160 
1      -1.160       2.862 

Example 2 
The following example computes estimates of the pooled covariance matrix for the 
Fisher’s iris data. For comparison, the estimates are first computed via function 
imsls_f_pooled_covariances. Function imsls_f_robust_covariances with  
percentage = 2.0 is then used to compute the robust estimates. As can be seen from 
the output, the resulting estimates are quite similar. 
Next, three observations are made into outliers, and again, estimates are computed 
using functions imsls_f_pooled_covariances and 
imsls_f_robust_covariances. When outliers are present, the estimates of 
imsls_f_pooled_covariances are adversely affected, while the estimates 
produced by imsls_f_robust_covariances are close the estimates produced when 
no outliers are present. 

include <imsls.h> 
#include <stdlib.h> 
main() 
{ 
    int     nobs = 150; 
    int     nvar = 4; 
    int     n_groups = 3; 
    float   percentage = 2.0; 
    int     igrp = 0; 
    int     ifrq = -1; 
    int     iwt = -1; 
    int     ind[4] = {1, 2, 3, 4}; 
    float   *x, cov[16], rbcov[16]; 
 
    x = imsls_f_data_sets(3, 0); 
 
    imsls_f_pooled_covariances(nobs, nvar, x, n_groups,  
        IMSLS_RETURN_USER, cov, 
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    imsls_f_write_matrix("Pooled Covariance with No Outliers", nvar, nvar,  
                         cov,  
        IMSLS_COL_NUMBER_ZERO, 
        IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_PRINT_UPPER, 0); 
 
    imsls_f_robust_covariances(nobs, nvar, x, n_groups,  
        IMSLS_RETURN_USER, rbcov, 
        IMSLS_PERCENTAGE, percentage, 
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    imsls_f_write_matrix("Robust Covariance with No Outliers", nvar, nvar,  
                         rbcov,  
        IMSLS_COL_NUMBER_ZERO, 
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        IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_PRINT_UPPER, 0); 
 
    /* Add Outliers */ 
    x[1] = 100.0; 
    x[19] = 100.0; 
    x[497] = -100.0; 
 
    imsls_f_pooled_covariances(nobs, nvar, x, n_groups,  
        IMSLS_RETURN_USER, cov, 
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    imsls_f_write_matrix("Pooled Covariance with Outliers", nvar, nvar,  
                         cov,  
        IMSLS_COL_NUMBER_ZERO, 
        IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_PRINT_UPPER, 0); 
 
    imsls_f_robust_covariances(nobs, nvar, x, n_groups,  
        IMSLS_RETURN_USER, rbcov, 
        IMSLS_PERCENTAGE, percentage, 
        IMSLS_X_INDICES, igrp, ind, ifrq, iwt, 0); 
 
    imsls_f_write_matrix("Robust Covariance with Outliers", nvar, nvar,  
                         rbcov,  
        IMSLS_COL_NUMBER_ZERO, 
        IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_PRINT_UPPER, 0); 
 
 
    free(x); 
} 
 

Output 
  
       Pooled Covariance with No Outliers 
            0           1           2           3 
0      0.2650      0.0927      0.1675      0.0384 
1                  0.1154      0.0552      0.0327 
2                              0.1852      0.0427 
3                                          0.0419 
  
       Robust Covariance with No Outliers 
            0           1           2           3 
0      0.2474      0.0872      0.1535      0.0360 
1                  0.1073      0.0538      0.0322 
2                              0.1705      0.0412 
3                                          0.0401 
  
         Pooled Covariance with Outliers 
            0           1           2           3 
0       60.43        0.30        0.13       -1.56 
1                   70.53        0.17       -0.17 
2                                0.19        0.07 
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3                                           66.38 
  
         Robust Covariance with Outliers 
            0           1           2           3 
0      0.2555      0.0876      0.1553      0.0359 
1                  0.1127      0.0545      0.0322 
2                              0.1723      0.0412 
3                                          0.0424 

Warning Errors 

IMSLS_NO_CONVERGE_MAX_ITER Failure to converge within “maxit” = # 
iterations for at least one of the “nroot” = # 
roots. 

Fatal Errors 

IMSLS_BAD_GROUP_2 The group number for observation # is equal 
to #. It must be greater than or equal to one 
and less than or equal to #, the number of 
groups. 
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Chapter 4: Analysis of Variance and 
Designed Experiments 

Routines 
General Analysis of Variance 

One-way analysis of variance anova_oneway 228 
Analysis of variance for fixed effects, 
balanced factorial designs   anova_factorial 237 
Nested random effects analysis of variance anova_nested 245 
Analysis of variance for balanced fixed,  
random, or mixed models anova_balanced 254 

Designed Experiments 
Analysis of balanced and unbalanced completely 
randomized factorial experiments crd_factorial 266 
Analysis of balanced and unbalanced randomized  
complete block factorial experiments rcbd_factorial 277 

Analysis of latin-square experiments latin_square 287 

Analysis of balanced and partially-balanced data from  
lattice experiments lattice 296 

Analysis of split-plot experiments split_plot 314 

Analysis of split-split-plot experiments split_split_plot 326 

Analysis of strip-plot experiments strip_plot 342 

Analysis of strip-split-plot experiments strip_split_plot 353 

Utilities 
Bartlett’s and Levene’s tests of the homogeneity  
of variance assumption in analysis of variance homogeneity 376 

Multiple comparisons of means multiple_comparisons 383 

Yates’ method for estimating missing observations in  
designed experiments yates 388 
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Usage Notes 
The functions in this chapter cover a wide variety of commonly used experimental 
designs. They can be categorized, not only based upon the underlying experimental 
design that generated the user’s data, but also on whether they provide support for 
missing values, factorial treatment structure, blocking and replication of the entire 
experiment, or multiple locations.  
Typically, responses are stored in the input vector y. For a few functions, such as 
imsls_f_anova_oneway and imsls_f_anova_factorial the full set of model 
subscripts is not needed to identify each response. They assume the usual pattern, 
which requires that the last model subscript change most rapidly, followed by the 
model subscript next in line, and so forth, with the first subscript changing at the 
slowest rate. This pattern is referred to as lexicographical ordering. 
However, for most of the functions in this chapter, one or more arrays are used to 
describe the experimental conditions associated with each value in the response input 
vector y.   The function imsls_f_split_plot for example, requires three additional 
input arrays:  split, whole and rep.  They are used to identify the split-plot, whole-
plot and replicate number associated with each value in y.   
Many of the functions described in this chapter permit users to enter missing data 
values using NaN (Not a Number) as the missing value code. Use function 
imsls_f_machine (or function imsls_d_machine with the double-precision) to 
retrieve NaN. Any element of y that is missing must be set to imsls_f_machine(6) or 
imsls_d_machine(6) (for double precision). See imsls_f_machine in Chapter 15, 
“Utilities ” for a description. Functions imsls_f_anova_factorial, 
imsls_f_anova_nested and imsls_f_anova_balanced require complete, 
balanced data, and do not accept missing values. 
As a diagnostic tool for validating model assumptions, some functions in this chapter 
perform a test for lack of fit when replicates are available in each cell of the 
experimental design.. 

Completely Randomized Experiments 
Completely randomized experiments are analyzed using some variation of the one-way 
analysis of variance (Anova).  A completely randomized design (CRD) is the simplest 
and most common example of a statistically designed experiment.  Researchers using a 
CRD are interested in comparing the average effect of two or more treatments.  In 
agriculture, treatments might be different plant varieties or fertilizers.  In industry, 
treatments might be different product designs, different manufacturing plants, different 
methods for delivering the product, etc.  In business, different business processes, such 
as different shipping methods or alternate approaches to a product repair process, might 
be considered treatments.  Regardless of the area, the one thing they have in common is 
that random errors in the observations cause variations in differences between 
treatment observations, making it difficult to confirm the effectiveness of one treatment 
to another.  
If observations on these treatments are completely independent then the design is 
referred to as a completely randomized design or CRD.  The IMSL C Numerical 
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Library has two routines for analysis of data from CRD: imsls_f_anova_oneway 
and imsls_f_crd_factorial. 
Both functions allow users to specify observations with missing values, have unequal 
group sizes, and output treatment means and standard deviations. The primary 
difference between the functions is that: 
1. imsls_f_anova_oneway conducts multiple comparisons of treatment 

functions; whereas imsls_f_crd_factorial requires users to make a call to 
imsls_f_multiple_comparisons to compare treatment means. 

2. imsls_f_crd_factorial can analyze treatments with a factorial treatment 
structure; whereas imsls_f_anova_oneway does not analyze factorial 
structures. 

3. imsls_f_crd_factorial can analyze data from CRD experiments that are 
replicated across several blocks or locations. This can happen when the same 
experiment is repeated at different times or different locations. 

Factorial Experiments 
In some cases, treatments are identified by a combination of experimental factors.  For 
example, in an octane study comparing several different gasolines, each gasoline could 
be developed using a combination of two additives, denoted below in Table 1, as 
Additive A and Additive B. 

 
Treatment Additive A Additive B 

1 No No 

2 Yes No 

3 No Yes 

4 Yes Yes 

Table 1:  2x2 Factorial Experiment 

This is referred to as a 2x2 or 22 factorial experiment.  There are 4 treatments involved 
in this study.  One contains no additives, i.e. Treatment 1. Treatment 2 and 3 contain 
only one of the additives and treatment 4 contains both.  A one-way anova, such as 
found in anova_oneway can analyze these data as four different treatments.  Three 
functions, imsls_f_crd_factorial, imsls_f_rcbd_factorial and 
imsls_f_anova_factorial will analyze these data exploiting the factorial 
treatment structure.  These functions allow users to answer structural questions about 
the treatments such as:   
1. Are the average effects of the additives statistically significant?  This is referred 

to as the factor main effects. 
2. Is there an interaction effect between the additives?  That is, is the effectiveness 

of an additive independent of the other? 
Both imsls_f_crd_factorial and imsls_f_rcbd_factorial support analysis 
of a factorial experiment with missing values and multiple locations.  The function 
imsls_f_anova_factorial does not support analysis of experiments with missing 
values or experiments replicated over multiple locations.  The main difference, as the 
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names imply, between imsls_f_crd_factorial and imsls_f_rcbd_factorial 
is that imsls_f_crd_factorial assumes that treatments were completely 
randomized to experimental units.  The imsls_f_rcbd_factorial routine assumes 
that treatments are blocked. 

Blocking 
Blocking is an important technique for reducing the impact of experimental error on 
the ability of the researcher to evaluate treatment differences.  Usually this 
experimental error is caused by differences in location (spatial differences), differences 
in time (temporal differences) or differences in experimental units. Researchers refer to 
these as blocking factors.  They are identifiable causes known to cause variation in 
observations between experimental units. 
There are several functions that specifically support blocking in an experiment:  
imsls_f_rcbd_factorial, imsls_f_lattice, and imsls_f_latin_square.  
The first two functions, imsls_f_rcbd_factorial and imsls_f_lattice, support 
blocking on one factor. 
A requirement of RCBD experiments is that every block must contain observations on 
every treatment. However, when the number of treatments ( t ) is greater than the block 
size ( b ), it is impossible to have every block contain observations on every treatment.     

In this case, when t b> , an incomplete block design must be used instead of a RCBD.  
Lattice designs are a type of incomplete block design in which the number of 
treatments is equal to the square of an integer such as t = 9, 16, 25, etc.  Lattice 
designs were originally described by Yates (1936).  The function imsls_f_lattice 
supports analysis of data from lattice experiments. 

Besides the requirement that 2t k= , another characteristic of lattice experiments is that 
blocks be grouped into replicates, where each replicate contains one observation for 
every treatment.  This forces the number of blocks in each replicate to be equal to the 
number of observations per block.  That is, the number of blocks per replicate and the 
number of observations per block are both equal to k t= . 
In addition, the number of replicate groups in Lattice experiments is always less than or 
equal to 1k + .  If it is equal to 1k +  then the design is referred to as a Balanced 
Lattice.  If it is less than 1k +  then the design is referred to as a Partially Balanced 
Lattice.  Tables of these experiments and their analysis are tabulated in Cochran & Cox 
(1950). 
Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9.  Notice that the 
number of replicates is 1 4r k= + = . And the number of blocks per replicate and 
block size are both 3k = .  The total number of blocks is equal to 

( 1) 1b r k= ⋅ ⋅ − +n_locations .  For a balanced-lattice, 

( 1) ( 1) 4 3 12b r k k k t t= ⋅ = + ⋅ = + ⋅ = ⋅ = . 
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Replicate I Replicate II 
Block 1 (T1, T2, T3) Block 4 (T1, T4, T7) 
Block 2 (T4, T5, T6) Block 5 (T2, T5, T8) 
Block 3 (T7, T8, T9) Block 6 (T3, T6, T9) 

Replicate III Replicate IV 
Block 7 (T1, T5, T9) Block 10 (T1, T6, T8) 
Block 8 (T2, T6, T7) Block 11 (T2, T4, T9) 
Block 9 (T3, T4, T8) Block 12 (T3, T5, T7) 

Table 2 - A 3x3 Balanced-Lattice for Nine Treatments in Four Replicates. 

The Anova table for a balanced-lattice experiment, takes the form shared with other 
balanced incomplete block experiments.  In these experiments, the error term is divided 
into two components:  the Inter-Block Error and the Intra-Block Error. For single and 
multiple locations, the general format of the Anova tables for Lattice experiments is 
illustrated in Table 3 and Table 4.  
 

Source DF Sum of Squares Mean Squares 
  REPLICATES 1t −  SSR MSR 

  TREATMENTS(unadj) 1t −  SST MST 

TREATMENTS(adj) 1t −  SSTa MSTa 

BLOCKS(adj) ( 1)r k⋅ −  SSBa MSBa 

INTRA-BLOCK ERROR ( 1)( 1)k r k k− ⋅ − −  SSE MSE 

TOTAL 1r t⋅ −  SSTot 

Table 3 – The Anova Table for a Lattice Experiment at One Location 

 
 
 

Table 4 – The Anova Table for a Lattice Experiment at Multiple Locations 

 

Source DF Sum of 
Squares 

Mean 
Squares 

LOCATIONS 1p −  SSL MSL 

REPLICATES WITHIN 
LOCATIONS ( )1p r −  SSR MSR 

TREATMENTS(unadj) 1t −  SST MST 

TREATMENTS(adj) 1t −  SSTa MSTa 

BLOCKS(adj) ( 1)p r k⋅ −  SSB MSB 

INTRA-BLOCK ERROR ( )( 1) 1p k r k k− ⋅ − −  SSE MSE 

TOTAL 1p r t⋅ ⋅ −  SSTot 



 

 
 

220 • Usage Notes IMSL C Stat Library 

 

 

 

Latin Square designs are very popular in cases where: 
1. two blocking factors are involved 
2. the two blocking factors do not interact with treatments, and 
3. the number of blocks for each factor is equal to the number of treatments. 
Consider an octane study involving 4 test vehicles tested in 4 bays with 4 test 
gasolines.  This is a natural arrangement for a Latin square experiment.  In this case 
there are 4 treatments, and two blocking factors, test vehicle and bay, each with 4 
levels. The Latin Square for this example would look like the following arrangement. 
 

 Test Vehicle 
 1 2 3 4 

1 A C B D 

2 D B A C 

3 C A D B 

Test 
 
Bay 

4 B D C A 
Table 5. A Latin Square Design for t=4 Treatments 

As illustrated above in Table 5, the letters A-D are used to denote the four test 
gasolines, or treatments.  The assignment of each treatment to a particular test vehicle 
and test bay is described in Table 5.  Gasoline A, for example, is tested in the following 
four vehicle/bay combinations: (1/1), (2/3), (3/2), and (4/4).   
Notice that each treatment appears exactly once in every row and column.  This 
balance, together with the assumed absence of interactions between treatments and the 
two blocking factors is characteristic of a Latin Square. 
The corresponding Anova table for these data contains information on the blocking 
factors as well as treatment differences.  Notice that the F-test for one of the two 
blocking factors, test vehicle, is statistically significant (p = 0.048); whereas the other, 
test bay, is not statistically significant (p=0.321). 
Some researchers might use this as a basis to remove test bay as a blocking factor.  In 
that case, the design can then be analyzed as a RCBD experiment since every treatment 
is repeated once and only once in every block, i.e., test vehicle. 
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Source Degrees 
of  

Freedom 

Sum of 
Squares 

Mean Squares F-Test p-Value 

Test Vehicle 3 1.5825 0.5275 4.83 0.048 

Test Bay 3 0.0472 0.157 1.44 0.321 

Gasoline 3 4.247 1.416 12.97 0.005 

Error 6 0.655 0.109  

Total 15 6.9575  

Table 6 - Latin Square Anova Table for Octane Experiment 

Multiple Locations 
It is common for a researcher to repeat an experiment and then conduct an analysis of 
the data.  In agricultural experiments, for example, it is common to repeat an 
experiment at several different farms.  In other cases, a researcher may want to repeat 
an experiment at a specified frequency, such as week, month or year.  If these repeated 
experiments are independent of one another then we can treat them as multiple 
locations. 
Several of the functions in this chapter allow for multiple locations:  
imsls_f_crd_factorial, imsls_f_rcbd_factorial, imsls_f_lattice, 
imsls_f_latin_square, imsls_f_split_plot, imsls_f_split_split_plot, 
imsls_f_strip_plot, imsls_f_strip_split_plot.  All of these functions allow for 
analysis of experiments replicated at multiple locations.  By default they all treat locations as 
a random factor. Function imsls_f_split_plot also allows users to declare locations as a 
fixed effect. 

Split-Plot Designs – Nesting and Restricted Randomization 
Originally, split-plot designs were developed for testing agricultural treatments, such as 
varieties of wheat, different fertilizers or different insecticides.  In these original 
experiments, growing areas were divided into plots.  The major treatment factor, such 
as wheat variety, was randomly assigned to these plots.  However, in addition to testing 
wheat varieties, they wanted to test another treatment factor such as fertilizer.  This 
could have been done using a CRD or RCBD design.  If a CRD design was used then 
treatment combinations would need to be randomly assigned to plots, such as shown 
below in Table 7. 

CRD 
W3F2 W1F3 W4F1 W2F1 
W2F3 W1F1 W1F3 W1F2 

W2F2 W3F1 W2F1 W4F2 
W3F2 W1F1 W2F3 W1F2 
W4F1 W3F2 W3F2 W4F3 
W4F3 W3F1 W2F2 W4F2 

Table 7 – Completely Randomized Experiments –Both Factors Randomized 
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In the CRD illustration above, any plot could have any combination of wheat variety 
(W1, W2, W3 or W4) and fertilizer (F1, F2 or F3).  There is no restriction on 
randomization in a CRD.  Any of the 4 3 12t = × =  treatments can appear in any of the 
24 plots. 
If a RCBD were used, all t=12 treatment combinations would need to be arranged in 
blocks similar to what is described in Table 8, which places one restriction on 
randomization. 

RCBD 
W3F3 W1F3 W4F1 W4F3 
W2F3 W1F1 W3F2 W1F2 

Block 1 

W2F2 W3F1 W2F1 W4F2 
W3F2 W1F1 W2F3 W1F2 Block 2 
W4F1 W1F3 W3F2 W4F3 
Table 8 – Randomized Complete Block Experiments –  

Both Factors Randomized Within a Block 

The RCBD arrangement is basically a replicated CRD design with a randomization 
restriction that treatments are divided into two groups of replicates which are assigned 
to a block of land.  Randomization of treatments only occurs within each block. 
At first glance, a split-plot experiment could be mistaken for a RCBD experiment since 
it is also blocked.  The split-plot arrangement with only one replicate for this 
experiment is illustrated below in Table 9. Notice that it appears as if levels of the 
fertilizer factor (F1, F2, and F3) are nested within wheat variety (W1, W2, W3 and 
W4), however that is not the case.  Varieties were actually randomly assigned to one of 
four rows in the field.  After randomizing wheat varieties, fertilizer was randomized 
within wheat variety. 
 

Split-Plot Design 
Block 1 W2 W2F1 W2F3 W2F2 

W1 W1F3 W1F1 W1F2 
W4 W4F1 W4F3 W4F2 

 

W3 W3F2 W3F1 W3F3 
Block 2 W3 W3F2 W3F1 W3F3 

W1 W1F3 W1F1 W1F2 
W4 W4F1 W4F3 W4F2 
W2 W2F1 W2F3 W2F2 

Table 9 – A Split-Plot Experiment for Wheat (W) and Fertilizer (F) 

The essential distinction between split-plot experiments and completely randomized or 
randomized complete block experiments is the presence of a second factor that is 
blocked, or nested, within each level of the first factor. This second factor is referred to 
as the split-plot factor, and the first is referred to as the whole-plot factor.  
Both factors are randomized, but with a restriction on randomization of the second 
factor, the split-plot factor.  Whole plots (wheat variety) are randomly assigned, 
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without restriction to plots, or rows in this example. However, the randomization of 
split-plots (fertilizer) is restricted.  It is restricted to random assignment within whole-
plots.    

Strip-Plot Designs 
Strip-plot experiments look similar to split-plot experiments.  In fact they are easily 
confused, resulting in incorrect statistical analyses.  The essential distinction between 
strip-plot and split-plot experiments is the application of the second factor.  In a split-
plot experiment, levels of the second factor are nested within the whole-plot factor (see 
Table 11). In strip-plot experiments, the whole-plot factor is completely crossed with 
the second factor (see Table 10).   
This occurs, for example, when an agricultural field is used as a block and the levels of 
the whole-plot factor are applied in vertical strips across the entire field.  Levels of the 
second factor are assigned to horizontal strips across the same block. 
 

 Whole-Plot Factor 
 A2 A1 A4 A3 

B3 A2B3 A1B3 A4B3 A3B3 
B1 A2B1 A1B1 A4B1 A3B1 

Strip 
Plot B2 A2B2 A1B2 A4B2 A3B2 

Table 10 – Strip-Plot Experiments – Strip-Plots Completely Crossed 

Whole Plot Factor 
A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B3 
A2B3 A1B1 A4B3 A3B1 
A2B2 A1B2 A4B2 A3B2 

Table 11 – Split-Plot Experiments – Split-Plots Nested within Strip-Plots 

As described in the previous section, in a split-plot experiment the second experimental 
factor, referred to as the split-plot factor, is nested within the first factor, referred to as 
the whole-plot factor.  
Consider, for example, the semiconductor experiment described in Figure 1, “Split-Plot 
Randomization” below.  The wafers from each plater, the whole-plot factor, are 
divided into equal size groups and then randomly assigned to an etcher, the split-plot 
factor.  Wafers from different platers are etched separately from those that went 
through another plating machine.  Randomization occurred within each level of the 
whole-plot factor, i.e., plater. 
Graphically, as shown below, this arrangement appears similar to a tree or hierarchical 
structure. 
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Figure 1 - Split-Plot Randomization 

Notice that although there are only 3 etchers, 12 different runs are made using these 
etchers.  The wafers randomly assigned to the first plater and first etcher are processed 
separately from the wafers assigned to other plating machines. 
In a strip-plot experiment, the second randomization of the wafers to etchers occurs 
differently, see Figure 2, “Strip-Plot Semiconductor Experiment.”  Instead of 
randomizing the wafers from each plater to the three etchers and then running them 
separately from the wafers from another plater, the wafers from each plater are divided 
into three groups and then each randomly assigned to one of the three etchers.  
However, the wafers from all four plating machines assigned to the same etcher are run 
together. 

 
Figure 2 - Strip-Plot Semiconductor Experiment 

Strip-plot experiments can be analyzed using imsls_f_strip_plot.  Function 
imsls_f_strip_plot returns a strip-plot Anova table with the following general 
structure: 
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Source DF SS MS F-Test p-Value 
Blocks 1 0.0005 0.0005 0.955 0.431 
Whole-Plots:  Plating Machines 2 0.0139 0.0070 64.39 0.015 
Whole-Plot Error 2 0.0002 0.0001 0.194 0.838 
Strip-Plots: Etchers 1 0.0033 0.0033 100.0 0.060 
Strip-Plot Error 1 <0.0001 <0.0001 0.060 0.830 
Whole-Plot x Strip-Plot 2 0.0033 0.0017 2.970 0.251 
Whole-Plot x Strip-Plot Error 2 0.0011 0.0006   
Total 11 0.0225  

Table 12 - Strip-Plot Anova Table for Semiconductor Experiment 

Split-Split Plot and Strip-Split Plot Experiments 
There are hundreds of other designs used in research and industry.  The designs 
mentioned above are some of the most common.  Other frequently used designs 
include variations of the split and strip-plot designs: 
• Split-Split-Plot Experiments, and 
• Strip-Split Plot Experiments. 
The essential distinction between split-plot  and split-split-plot experiments is the 
presence of a third factor that is blocked, or nested, within each level of the whole-plot 
and split-plot factors.  This third factor is referred to as the sub-plot, factor.  A split-
plot experiment, see Table 12, has only two factors, denoted by A and B.  The second 
factor is nested within the first factor.  Randomization of the second factor, the split-
plot factor, occurs within each level of the first factor. 

 
Whole Plot Factor 

A2 A1 A4 A3 
A2B1 A1B3 A4B1 A3B2 
A2B3 A1B1 A4B3 A3B1 
A2B2 A1B2 A4B2 A3B3 

Table 13 - Split-Plot Experiment – Split-Plot B Nested  
within Whole-Plot A 

On the other hand, a split-split plot experiment has three factors, illustrated in Table 14 
by A, B and C.  The second factor is nested within the first factor, and the third factor 
is nested within the second. 
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Whole Plot Factor A 
A2 A1 A4 A3 

A2B3C2 
A2B3C1 

A1B2C1 
A1B2C2 

A4B1C2 
A4B1C1 

A3B3C2 
A3B3C1 

A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2 

A4B3C2 
A4B3C1 

A3B2C2 
A3B2C1 

A2B2C2 
A2B2C1 

A1B3C1 
A1B3C2 

A4B2C1 
A4B2C2 

A3B1C2 
A3B1C1 

Table 14 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within  
Split-Plot Factor B, Nested Within Whole-Plot Factor A 

Contrast the split-split plot experiment to the same experiment run using a strip-split 
plot design (see Table 15).  In a strip-split plot experiment factor B is applied in strip 
across factor A; whereas, in a split-split plot experiment, factor B is randomly assigned 
to each level of factor A.  In a strip-split plot experiment, the level of factor B is 
constant across a row; whereas in a split-split plot experiment, the levels of factor B 
change as you go across a row, reflecting the fact that for split-plot experiments, factor 
B is randomized within each level of factor A. 

 
 

  Factor A Strip Plots 
  A2 A1 A4 A3 

B3 A2B3C2 
A2B3C1 

A1B3C1 
A1B3C2 

A4B3C2 
A4B3C1 

A3B3C2 
A3B3C1 

B1 A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2 

A4B1C2 
A4B1C1 

A3B1C2 
A3B1C1 

 
Factor B 

Strip 
Plots B2 A2B2C2 

A2B2C1 
A1B2C1 
A1B2C2 

A4B2C1 
A4B2C2 

A3B2C2 
A3B2C1 

Table 15 – Strip-Split Plot Experiment, Split-Plots Nested Within  
Strip-Plot Factors A and B 

In some studies, split-split-plot or strip-split-plot experiments are replicated at several 
locations.  Functions imsls_f_split_split_plot and 
imsls_f_strip_split_plot can analyze these, even when the number of blocks or 
replicates at each location is different.  

Validating Key Assumptions in Anova 
The key output in the analysis of designed experiments is the F-tests in the Anova table 
for that experiment.  The validity of these tests relies upon several key assumptions: 
1. observational errors are independent of one another, 
2. observational errors are Normally distributed, and 
3. the variance of observational errors is homogeneous across treatments. 
These are referred to as the independence, Normality and homogeneity of variance 
assumptions.  All of these assumptions are evaluated by examining the properties of 
the residuals, which are estimates of the observational error for each observation.  
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Residuals are calculated by taking the difference between each observed value in the 
series and its corresponding estimate.  In most cases, the residual is the difference 
between the observed value and the mean for that treatment. 
The independence assumption can be examined by evaluating the magnitude of the 
correlations among the residuals sorted in the order they were collected.  The IMSL 
function imsls_f_autocorrelation (see Chapter 8, “Times Series and 
Forecasting”).  can be used to obtain these correlations.  The autocorrelations, to a 
maximum lag of about 20, can be examined to identify any that are statistically 
significant.   
Residuals should be independent of one another, which implies that all autocorrelations 
with a lag of 1 or higher should be statistically equivalent to zero.  If a statistically 
significant autocorrelation is found, leading a researcher to conclude that an 
autocorrelation is not equal to zero, then this would provide sufficient evidence to 
conclude that the observational errors are not independent of one another. 
The second major assumption for analysis of variance is the Normality assumption.  In 
the IMSL C Numerical Library, the function imsls_f_normality_test (see 
Chapter 7, “Tests of Goodness of Fit” )can be used to determine whether the residuals 
are not Normally distributed.  A small p-value from this test provides sufficient 
evidence to conclude that the observational errors are not Normally distributed. 
The last assumption, homogeneity of variance, is evaluated by comparing treatment 
standard errors.  This is equivalent to testing whether 1 2 tσ σ σ= = ="  , where iσ  is 
the standard deviation of the observational error for the ith treatment.  This test can be 
conducted using imsls_f_homogeneity.  To conduct this test, the residuals, and 
their corresponding treatment identifiers are passed into imsls_f_homogeneity.  It 
calculates the p-values for both Bartlett’s and Levene’s tests for equal variance.  If a p-
value is below the stated significance level, a researcher would conclude that the within 
treatment variances are not homogeneous. 

Missing Observations 
Missing observations create problems with the interpretation and calculation of  
F-tests for designed experiments.  The approach taken in the functions described in this 
chapter is to estimate missing values using the Yates method and then to compute the 
Anova table using these estimates. 
Essentially the Yates method, implemented in imsls_f_yates, replaces missing 
observations with the values that minimize the error sum of squares in the Anova table. 
The Anova table is calculated using these estimates, with one modification.  The total 
degrees of freedom and the error degrees of freedom are both reduced by the number of 
missing observations.  
For simple cases, in which only one observation is missing, formulas have been 
developed for most designs.  See Steel and Torrie (1960) and Cochran and Cox (1957) 
for a description of these formulas.  However for more than one missing observation, a 
multivariate optimization is conducted to simultaneously estimate the missing values.  
For the simple case with only one missing value, this approach produces estimates 
identical to the published formulas for a single missing value. 
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A potential issue arises when the Anova table contains more than one form of error, 
such as split-plot and strip-plot designs.  In every case, missing values are estimated by 
minimizing the last error term in the table. 

anova_oneway 
Analyzes a one-way classification model. 

Synopsis 
#include <imsls.h> 
float imsls_f_anova_oneway (int n_groups, int n[], float y[], ..., 0) 
The type double function is imsls_d_anova_oneway 

Required Arguments 

int n_groups   (Input) 
Number of groups. 

int n[]   (Input) 
Array of length n_groups containing the number of responses for each 
group. 

float y[]   (Input) 
Array of length n [0] + n [1] + … + n [n_group − 1] containing the responses 
for each group. 

Return Value 
The p-value for the F-statistic. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_anova_oneway (int n_groups, int n[], float y[], 

IMSLS_ANOVA_TABLE, float **anova_table, 
IMSLS_ANOVA_TABLE_USER, float anova_table[], 
IMSLS_GROUP_MEANS, float **means, 
IMSLS_GROUP_MEANS_USER, float means[], 
IMSLS_GROUP_STD_DEVS, float **std_devs, 
IMSLS_GROUP_STD_DEVS_USER, float std_devs[], 
IMSLS_GROUP_COUNTS, int **counts, 
IMSLS_GROUP_COUNTS_USER, int counts[], 
IMSLS_CONFIDENCE, float confidence, 
IMSLS_TUKEY, float **ci_diff_means, or 
IMSLS_DUNN_SIDAK, float **ci_diff_means, or 
IMSLS_BONFERRONI, float **ci_diff_means, or 
IMSLS_SCHEFFE, float **ci_diff_means, or 
IMSLS_ONE_AT_A_TIME, float **ci_diff_means, 
IMSLS_TUKEY_USER, float ci_diff_means[], or 
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IMSLS_DUNN_SIDAK_USER, float ci_diff_means[], or 
IMSLS_BONFERRONI_USER, float ci_diff_means[], or 
IMSLS_SCHEFFE_USER, float ci_diff_means[], or 
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[], 
0) 

Optional Arguments 

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to an internally allocated array of size 15 containing the 
analysis of variance table. The analysis of variance statistics are as follows: 

Element Analysis of Variance Statistics 
0 degrees of freedom for the model 
1 degrees of freedom for error 
2 total (corrected) degrees of freedom 
3 sum of squares for the model 
4 sum of squares for error 
5 total (corrected) sum of squares 
6 model mean square 
7 error mean square 
8 overall F-statistic 
9 p-value 

10 R2 (in percent) 
11 adjusted R2 (in percent) 
12 estimate of the standard deviation 
13 overall mean of y 
14 coefficient of variation (in percent) 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_GROUP_MEANS, float **means   (Output) 
Address of a pointer to an internally allocated array of length n_groups 
containing the group means. 

IMSLS_GROUP_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_GROUP_MEANS. 

IMSLS_GROUP_STD_DEVS, float **std_devs   (Output) 
Address of a pointer to an internally allocated array of length n_groups 
containing the group standard deviations. 

IMSLS_GROUP_STD_DEVS_USER, float std_devs[]   (Output) 
Storage for array std_devs is provided by the user. See IMSLS_STD_DEVS. 
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IMSLS_GROUP_COUNTS, int **counts   (Output) 
Address of a pointer to an internally allocated array of length n_groups 
containing the number of nonmissing observations for the groups. 

IMSLS_GROUP_COUNTS_USER, int counts[]   (Output) 
Storage for array counts is provided by the user. See IMSLS_COUNTS. 

IMSLS_CONFIDENCE, float confidence   (Input) 
Confidence level for the simultaneous interval estimation. 
If IMSLS_TUKEY is specified, confidence must be in the range [90.0, 99.0). 
Otherwise, confidence is in the range [0.0, 100.0). 
Default: confidence = 95.0 

IMSLS_TUKEY, float **ci_diff_means   (Output), or 
IMSLS_DUNN_SIDAK, float **ci_diff_means   (Output), or 
IMSLS_BONFERRONI, float **ci_diff_means   (Output), or 
IMSLS_SCHEFFE, float **ci_diff_means   (Output), or 

IMSLS_ONE_AT_A_TIME, float **ci_diff_means   (Output) 
Function imsls_f_anova_oneway computes the confidence intervals on all 
pairwise differences of means using any one of six methods: Tukey, Tukey-
Kramer, Dunn-Šidák, Bonferroni, Scheffé, or Fisher’s LSD (One-at-a-Time). 
If IMSLS_TUKEY is specified, the Tukey confidence intervals are calculated if 
the group sizes are equal; otherwise, the Tukey-Kramer confidence intervals 
are calculated. 

On return, ci_diff_means contains the address of a pointer to a 

( )2 5×ngroups

 

internally allocated array containing the statistics relating to the difference of 
means. 

Column Description 
0 group number for the i-th mean 
1 group number for the j-th mean 
2 difference of means (i-th mean) − (j-th mean) 
3 lower confidence limit for the difference 
4 upper confidence limit for the difference 

IMSLS_TUKEY_USER, float ci_diff_means[]   (Output), or 
IMSLS_DUNN_SIDAK_USER, float ci_diff_means[]   (Output), or 
IMSLS_BONFERRONI_USER, float ci_diff_means[]   (Output), or 
IMSLS_SCHEFFE_USER, float ci_diff_means[]   (Output), or 
IMSLS_ONE_AT_A_TIME_USER, float ci_diff_means[]   (Output) 

Storage for array ci_diff_means is provided by the user. 
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Description 
Function imsls_f_anova_oneway performs an analysis of variance of responses 
from a oneway classification design. The model is  

yij = μi + εij  i = 1, 2, …, k; j = 1, 2, …, ni 

where the observed value yij constitutes the j-th response in the i-th group,  
μi denotes the population mean for the i-th group, and the εij arguments are errors that 
are identically and independently distributed normal with mean 0 and variance σ2. 
Function imsls_f_anova_oneway requires the yij observed responses as input into a 
single vector y with responses in each group occupying contiguous locations. The 
analysis of variance table is computed along with the group sample means and standard 
deviations. A discussion of formulas and interpretations for the one-way analysis of 
variance problem appears in most elementary statistics texts, e.g., 
Snedecor and Cochran (1967, Chapter 10). 
Function imsls_f_anova_oneway computes simultaneous confidence intervals on all 

( )1
2

k k
k∗ −

=
 

pairwise comparisons of k means μ1 μ2, …, μk in the one-way analysis of variance 
model. Any of several methods can be chosen. A good review of these methods is 
given by Stoline (1981). The methods are also discussed in many elementary statistics 
texts, e.g., Kirk (1982, pp. 114−127). 

Let s2 be the estimated variance of a single observation. Let v be the degrees of 
freedom associated with s2. Let 

1
100.0

α = −
confidence

 

The methods are summarized as follows: 
Tukey method: The Tukey method gives the narrowest simultaneous confidence 
intervals for all pairwise differences of means μi − μj in balanced  
(n1 = n2 = … = nk = n) one-way designs. The method is exact and uses the Studentized 
range distribution. The formula for the difference μi − μj is given by 

2
1 ; , sk vi j n

y y q α−− ±
 

where q1-a;k,v is the (1 − α) 100 percentage point of the Studentized range distribution 
with parameters k and v. 
Tukey-Kramer method: The Tukey-Kramer method is an approximate extension of 
the Tukey method for the unbalanced case. (The method simplifies to the Tukey 
method for the balanced case.) The method always produces confidence intervals 
narrower than the Dunn-Šidák and Bonferroni methods. Hayter (1984) proved that the 
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method is conservative, i.e., the method guarantees a confidence coverage of at least 
(1 − α) 100. Hayter’s proof gave further support to earlier recommendations for its use 
(Stoline 1981). (Methods that are currently better are restricted to special cases and 
only offer improvement in severely unbalanced cases; see, for example, Spurrier and 
Isham 1985.) The formula for the difference μi − μj is given by the following: 

2 2
1 ; ,

2 2i j

s si j v k
n n

y y q α− +
− ±

 

Dunn-Šidák method: The Dunn-Šidák method is a conservative method. The method 
gives wider intervals than the Tukey-Kramer method. (For large v and small α and k, 
the difference is only slight.) The method is slightly better than the Bonferroni method 
and is based on an improved Bonferroni (multiplicative) inequality (Miller 1980, pp. 
101, 254−255). The method uses the t distribution (see function 
imsls_f_t_inverse_cdf, Chapter 11, “Probability Distribution Functions and 
Inverses. The formula for the difference μi − μj is given by 

( )
2 2

1/1 1 1 ;
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i j
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where tf ;v is the 100f percentage point of the t distribution with ν degrees of freedom. 

Bonferroni method: The Bonferroni method is a conservative method based on the 
Bonferroni (additive) inequality (Miller, p. 8). The method uses the t distribution. The 
formula for the difference μi − μj is given by the following: 
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1 ;

2 i j
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Scheffé method: The Scheffé method is an overly conservative method for 
simultaneous confidence intervals on pairwise difference of means. The method is 
applicable for simultaneous confidence intervals on all contrasts, i.e., all linear 
combinations 

1

k

i i
i

c μ
=
∑  

where the following is true: 

1

0
k

i
i

c
=

=∑  

This method can be recommended here only if a large number of confidence intervals 
on contrasts in addition to the pairwise differences of means are to be constructed. The 
method uses the F distribution (see function imsls_f_F_inverse_cdf, Chapter 11, 
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“Probabilty and Distribution Functions and Inverses”). The formula for the difference 
μi − μj is given by 

( )
2 2

1 ; 1,1 ( )i j k v
i j

s sy y k F
n nα− −− ± − +

 

where F1-a;(k-1),v is the (1 − α) 100 percentage point of the F distribution with  
k − 1 and ν degrees of freedom. 
One-at-a-Time t method (Fisher’s LSD): The One-at-a-Time t method is appropriate 
for constructing a single confidence interval. The confidence percentage input is 
appropriate for one interval at a time. The method has been used widely in conjunction 
with the overall test of the null hypothesis  
μ1 = μ2 = … = μk by the use of the F statistic. Fisher’s LSD (least significant 
difference) test is a two-stage test that proceeds to make pairwise comparisons of 
means only if the overall F test is significant. Milliken and Johnson (1984, p. 31) 
recommend LSD comparisons after a significant F only if the number of comparisons 
is small and the comparisons were planned prior to the analysis. If many unplanned 
comparisons are made, they recommend Scheffé’s method. If the F test is insignificant, 
a few planned comparisons for differences in means can still be performed by using 
either Tukey, Tukey-Kramer, Dunn-Šidák,or Bonferroni methods. Because the F test is 
insignificant, Scheffé’s method does not yield any significant differences. The formula 
for the difference μi − μj is given by the following: 
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Examples  

Example 1 
This example computes a one-way analysis of variance for data discussed by Searle 
(1971, Table 5.1, pp. 165−179). The responses are plant weights for six plants of three 
different types—three normal, two off-types, and one aberrant. The responses are given 
by type of plant in the following table: 

Normal Off-Type Aberrant 
101 84 32 

105 88  
94   

 
#include <imsls.h> 
main() 
{ 
    int     n_groups=3; 
    int     n[] = {3, 2, 1}; 
    float   y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0}; 
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    float   p_value; 
    p_value = imsls_f_anova_oneway (n_groups, n, y, 0); 
    printf ("p-value = %6.4f", p_value); 
  } 

Output 
p-value = 0.002 

Example 2 
The data used in this example is the same as that used in the initial example. Here, the 
anova_table is printed. 

#include <imsls.h> 
main() 
{ 
    int     n_groups=3; 
    int     n[] = {3, 2, 1}; 
    float   y[] = {101.0, 105.0, 94.0, 84.0, 88.0, 32.0}; 
    float   p_value; 
    float   *anova_table; 
    char    *labels[] = { 
                   "degrees of freedom for among groups", 
                   "degrees of freedom for within groups", 
                   "total (corrected) degrees of freedom", 
                   "sum of squares for among groups", 
                   "sum of squares for within groups", 
                   "total (corrected) sum of squares", 
                   "among mean square", 
                   "within mean square", "F-statistic", 
                   "p-value", "R-squared (in percent)", 
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of within error", 
                   "overall mean of y", 
                   "coefficient of variation (in percent)"}; 
 
                      /* Perform analysis */ 
    p_value = imsls_f_anova_oneway (n_groups, n, y, 
        IMSLS_ANOVA_TABLE, &anova_table, 
        0); 
                      /* Print results */ 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
        anova_table, 
        IMSLS_ROW_LABELS, labels, 
        IMSLS_WRITE_FORMAT, "%9.2f", 
        0); 
} 

Output 
         * * * Analysis of Variance * * * 
degrees of freedom for among groups           2.00 
degrees of freedom for within groups          3.00 
total (corrected) degrees of freedom          5.00 
sum of squares for among groups            3480.00 
sum of squares for within groups             70.00 
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total (corrected) sum of squares           3550.00 
among mean square                          1740.00 
within mean square                           23.33 
F-statistic                                  74.57 
p-value                                       0.00 
R-squared (in percent)                       98.03 
adjusted R-squared (in percent)              96.71 
est. standard deviation of within error       4.83 
overall mean of y                            84.00 
coefficient of variation (in percent)         5.75 

Example 3 
Simultaneous confidence intervals are generated for the following measurements of 
cold-cranking power for five models of automobile batteries. Nelson (1989, pp. 232−
241) provided the data and approach. 

Model 1 Model 2 Model 3 Model 4 Model 5 
41 42 27 48 28 
43 43 26 45 32 
42 46 28 51 37 
46 38 27 46 25 

The Tukey method is chosen for the analysis of pairwise comparisons, with a 
confidence level of 99 percent. The means and their confidence limits are output. 

#include <imsls.h> 
 
void main() 
{ 
 
   int    n_groups = 5; 
   int    n[] = {4, 4, 4, 4, 4}; 
   int    permute[] = {2, 3, 4, 0, 1}; 
   float  y[] = {41.0, 43.0, 42.0, 46.0, 42.0,  
                43.0, 46.0, 38.0, 27.0, 26.0, 
                28.0, 27.0, 48.0, 45.0, 51.0, 
                46.0, 28.0, 32.0, 37.0, 25.0}; 
   float  *anova_table, *ci_diff_means, tmp_diff_means[50]; 
   float  confidence = 99.0; 
   char   *labels[] = { 
                    "degrees of freedom for among groups", 
                    "degrees of freedom for within groups", 
                    "total (corrected) degrees of freedom", 
                    "sum of squares for among groups", 
                    "sum of squares for within groups", 
                    "total (corrected) sum of squares", 
                    "among mean square", 
                    "within mean square", "F-statistic", 
                    "p-value", "R-squared (in percent)", 
                    "adjusted R-squared (in percent)", 
                    "est. standard deviation of within error", 
                    "overall mean of y", 
                    "coefficient of variation (in percent)"}; 
   char   *mean_row_labels[] = { 
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                    "first and second", 
                    "first and third", 
                    "first and fourth", 
                    "first and fifth", 
                    "second and third", 
                    "second and fourth", 
                    "second and fifth", 
                    "third and fourth", 
                    "third and fifth", 
                    "fourth and fifth"}; 
   char   *mean_col_labels[] = { 
                    "Means", 
                    "Difference of means", 
                    "Lower limit", 
                    "Upper limit"}; 
                        /* Perform analysis */ 
    
 imsls_f_anova_oneway(n_groups, n, y, 
        IMSLS_ANOVA_TABLE, &anova_table,  
        IMSLS_CONFIDENCE, confidence,  
        IMSLS_TUKEY, &ci_diff_means, 
        0); 
                        /* Print anova_table */ 
   imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15,  
        1, anova_table,  
        IMSLS_ROW_LABELS, labels, 
        IMSLS_WRITE_FORMAT, "%9.2f", 
        0); 
                      /* Permute ci_diff_means for printing */ 
   imsls_f_permute_matrix(10, 5, ci_diff_means, permute, 
        IMSLS_PERMUTE_COLUMNS, 
        IMSLS_RETURN_USER, tmp_diff_means, 
        0); 
                      /* Print ci_diff_means */ 
   imsls_f_write_matrix("* * * Differences in Means * * *\n", 10, 
        3, tmp_diff_means, 
        IMSLS_A_COL_DIM, 5, 
        IMSLS_ROW_LABELS, mean_row_labels, 
        IMSLS_COL_LABELS, mean_col_labels, 
        IMSLS_WRITE_FORMAT, "%9.2f", 
        0); 
} 

Output 
         * * * Analysis of Variance * * * 
 
degrees of freedom for among groups           4.00 
degrees of freedom for within groups         15.00 
total (corrected) degrees of freedom         19.00 
sum of squares for among groups            1242.20 
sum of squares for within groups            150.75 
total (corrected) sum of squares           1392.95 
among mean square                           310.55 
within mean square                           10.05 
F-statistic                                  30.90 
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p-value                                       0.00 
R-squared (in percent)                       89.18 
adjusted R-squared (in percent)              86.29 
est. standard deviation of within error       3.17 
overall mean of y                            38.05 
coefficient of variation (in percent)         8.33 
  
           * * * Differences in Means * * * 
 
Means              Difference  Lower limit  Upper limit 
                     of means                           
first and second         0.75        -8.05         9.55 
first and third         16.00         7.20        24.80 
first and fourth        -4.50       -13.30         4.30 
first and fifth         12.50         3.70        21.30 
second and third        15.25         6.45        24.05 
second and fourth       -5.25       -14.05         3.55 
second and fifth        11.75         2.95        20.55 
third and fourth       -20.50       -29.30       -11.70 
third and fifth         -3.50       -12.30         5.30 
fourth and fifth        17.00         8.20        25.80 

anova_factorial 
Analyzes a balanced factorial design with fixed effects. 

Synopsis 
#include <imsls.h> 
float imsls_f_anova_factorial (int n_subscripts, int n_levels, float 

y[], ..., 0) 
The type double function is imsls_d_anova_factorial 

Required Arguments 

int n_subscripts   (Input) 
Number of subscripts. Number of factors in the model + 1 (for the error term). 

int n_levels   (Input) 
Array of length n_subscripts containing the number of levels for each of 
the factors for the first n_subscripts − 1 elements. n_levels 
[n_subscripts − 1] is the number of observations per cell. 

float y[]   (Input) 
Array of length n_levels [0]*n_levels [1]* … *n_levels 
[n_subscripts − 1] containing the responses. Argument y must not contain 
NaN for any of its elements, i.e., missing values are not allowed. 

Return Value 
The p-value for the overall F test. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_anova_factorial (int n_subscripts, int n_levels, float 

y[], 
IMSLS_MODEL_ORDER, int model_order, 
IMSLS_PURE_ERROR, or 
IMSLS_POOL_INTERACTIONS, 
IMSLS_ANOVA_TABLE, float **anova_table, 
IMSLS_ANOVA_TABLE_USER, float anova_table[], 
IMSLS_TEST_EFFECTS, float **test_effects, 
IMSLS_TEST_EFFECTS_USER, float test_effects[], 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
0) 

Optional Arguments 

IMSLS_MODEL_ORDER, int model_order   (Input) 
Number of factors to be included in the highest-way interaction in the model. 
Argument model_order must be in the interval [1, n_subscripts − 1]. For 
example, a model_order of 1 indicates that a main effect model will be 
analyzed, and a model_order of 2 indicates that two-way interactions will be 
included in the model. Default: model_order = n_subscripts − 1 

IMSLS_PURE_ERROR, or 
IMSLS_POOL_INTERACTIONS   (Input) 

IMSLS_PURE_ERROR, the default option, indicates factor n_subscripts is 
error. Its main effect and all its interaction effects are pooled into the error 
with the other (model_order + 1)-way and higher-way interactions. 
IMSLS_POOL_INTERACTIONS indicates factor n_subscripts is not error. 
Only (model_order + 1)-way and higher-way interactions are included in the 
error. 

IMSLS_ANOVA_TABLE, float **anova_table   (Output) 
Address of a pointer to an internally allocated array of size 15 containing the 
analysis of variance table. The analysis of variance statistics are given as 
follows: 

Element Analysis of Variance Statistics 
0 degrees of freedom for the model 
1 degrees of freedom for error 
2 total (corrected) degrees of freedom 
3 sum of squares for the model 
4 sum of squares for error 
5 total (corrected) sum of squares 
6 model mean square 
7 error mean square 
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Element Analysis of Variance Statistics 
8 Overall F-statistic 
9 p-value 
10 R2 (in percent) 
11 adjusted R2 (in percent) 
12 estimate of the standard deviation 
13 overall mean of y 
14 coefficient of variation (in percent) 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user. See 
IMSLS_ANOVA_TABLE. 

IMSLS_TEST_EFFECTS, float **test_effects   (Output) 
Address of a pointer to an NEF × 4 internally allocated array containing a 
matrix containing statistics relating to the sums of squares for the effects in 
the model. Here, 

( ) ( ) ( )1 2 min ( ,| |)NEF n n n
n= + + + model_order…

 

where n is given by n_subscripts if IMSLS_POOL_INTERACTIONS is 
specified; otherwise, n_subscripts − 1. 

Suppose the factors are A, B, C, and error. With model_order = 3, rows 0 
through NEF − 1 would correspond to A, B, C, AB, AC, BC, and ABC, 
respectively. The columns of test_effects are as follows: 

Column Description 
0 degrees of freedom 
1 sum of squares 
2 F-statistic 
3 p-value 

IMSLS_TEST_EFFECTS_USER, float test_effects[]   (Output) 
Storage for array test_effects is provided by the user. See 
IMSLS_TEST_EFFECTS. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to an internally allocated array of length 
(n_levels [0] + 1) × (n_levels [1] + 1) × … ×  
(n_levels[n − 1] + 1) containing the subgroup means.  

See argument IMSLS_TEST_EFFECTS for a definition of n. If the factors are 
A, B, C, and error, the ordering of the means is grand mean, A means, B 
means, C means, AB means, AC means, BC means, and ABC means. 
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IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

Description 
Function imsls_f_anova_factorial performs an analysis for an n-way 
classification design with balanced data. For balanced data, there must be an equal 
number of responses in each cell of the n-way layout. The effects are assumed to be 
fixed effects. The model is an extension of the two-way model to include n factors. The 
interactions (two-way, three-way, up to n-way) can be included in the model, or some 
of the higher-way interactions can be pooled into error. The argument model_order 
specifies the number of factors to be included in the highest-way interaction. For 
example, if three-way and higher-way interactions are to be pooled into error, set 
model_order = 2. (By default, model_order = n_subscripts − 1 with the last 
subscript being the error subscript.) Argument IMSLS_PURE_ERROR indicates there are 
repeated responses within the n-way cell; 
IMSLS_POOL_INTERACTIONS_INTO_ERROR indicates otherwise. 
Function imsls_f_anova_factorial requires the responses as input into a single 
vector y in lexicographical order, so that the response subscript associated with the first 
factor varies least rapidly, followed by the subscript associated with the second factor, 
and so forth. Hemmerle (1967, Chapter 5) discusses the computational method. 

Examples  

Example 1 
A two-way analysis of variance is performed with balanced data discussed by 
Snedecor and Cochran (1967, Table 12.5.1, p. 347). The responses are the weight gains 
(in grams) of rats that were fed diets varying in the source (A) and level (B) of protein. 
The model is  

1, 2; 1, 2, 3; 1, 2, ...,10ijk i j ij ijky i j k= μ + α + β + γ + ε = = =
 

where 
2 3 2 3

1 1 1 1

0; 0; 0 for 1, 2, 3; and 0i j ij ij
i j i j

jα β γ γ
= = = =

= = = = =∑ ∑ ∑ ∑  

for i = 1, 2. The first responses in each cell in the two-way layout are given in the 
following table: 

 Protein Source (A) 
Protein Level (B) Beef Cereal Pork 
High 73, 102, 118, 104, 81, 

107, 100, 87, 117, 111 
98, 74, 56, 111, 
95, 88, 82, 77, 
86, 92 

94, 79, 96, 98, 102, 102, 
108, 91, 120, 105 

Low 90, 76, 90, 64, 86, 51, 72, 
90, 95, 78 

107, 95, 97, 80, 
98, 74, 74, 67, 
89, 58 

49, 82, 73, 86, 81, 97, 
106, 70, 61, 82 
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#include <imsls.h> 
 
void main () 
{ 
    int        n_subscripts= 3; 
    int        n_levels[3] = {3,2,10}; 
    float      p_value; 
    float      y[60] = { 
        73.0, 102.0, 118.0, 104.0, 81.0,  
        107.0, 100.0, 87.0, 117.0, 111.0,  
        90.0, 76.0, 90.0, 64.0, 86.0,  
        51.0, 72.0, 90.0, 95.0, 78.0, 
        98.0, 74.0, 56.0, 111.0, 95.0,  
        88.0, 82.0, 77.0, 86.0, 92.0,  
        107.0, 95.0, 97.0, 80.0, 98.0,  
        74.0, 74.0, 67.0, 89.0, 58.0,  
        94.0, 79.0, 96.0, 98.0, 102.0,  
        102.0, 108.0, 91.0, 120.0, 105.0,  
        49.0, 82.0, 73.0, 86.0, 81.0,  
        97.0, 106.0, 70.0, 61.0, 82.0}; 
 
    p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y, 0); 
  
    printf("P-value = %10.6f",p_value); 
} 

Output 
P-value =   0.00229 

Example 2 
In this example, the same model and data is fit as in the initial example, but optional 
arguments are used for a more complete analysis. 

#include <imsls.h> 
 
void main () 
{ 
    int        n_subscripts= 3; 
    int        n_levels[3] = {3,2,10}; 
    float      p_value; 
    float      *test_effects, *means, *anova_table; 
    float      y[60] = { 
        73.0, 102.0, 118.0, 104.0, 81.0,  
        107.0, 100.0, 87.0, 117.0, 111.0,  
        90.0, 76.0, 90.0, 64.0, 86.0,  
        51.0, 72.0, 90.0, 95.0, 78.0, 
        98.0, 74.0, 56.0, 111.0, 95.0,  
        88.0, 82.0, 77.0, 86.0, 92.0,  
        107.0, 95.0, 97.0, 80.0, 98.0,  
        74.0, 74.0, 67.0, 89.0, 58.0,  
        94.0, 79.0, 96.0, 98.0, 102.0,  
        102.0, 108.0, 91.0, 120.0, 105.0,  
        49.0, 82.0, 73.0, 86.0, 81.0,  
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        97.0, 106.0, 70.0, 61.0, 82.0}; 
    char      *labels[] = { 
        "degrees of freedom for the model", 
        "degrees of freedom for error", 
        "total (corrected) degrees of freedom", 
        "sum of squares for the model", 
        "sum of squares for error", 
        "total (corrected) sum of squares", 
        "model mean square", "error mean square", 
        "F-statistic", "p-value", 
        "R-squared (in percent)","Adjusted R-squared (in percent)", 
        "est. standard deviation of the model error", 
        "overall mean of y", 
        "coefficient of variation (in percent)"}; 
 
    char      *test_row_labels[] = {"A", "B", "A*B"}; 
    char      *test_col_labels[] = { 
        "Source", "DF", "Sum of\nSquares",  
        "Mean\nSquare", "Prob. of\nLarger F"}; 
 
    char      *mean_row_labels[] = { 
        "grand mean", 
        "A1", "A2", "A3", 
        "B1", "B2",  
        "A1*B1", "A1*B2", "A2*B1", "A2*B2", "A3*B1", "A3*B2"}; 
                           /* Perform analysis */ 
    p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,  
        IMSLS_ANOVA_TABLE,   &anova_table, 
        IMSLS_TEST_EFFECTS,  &test_effects,  
        IMSLS_MEANS,         &means, 
        0); 
  
    printf("P-value = %10.6f",p_value); 
                           /* Print results */ 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
        anova_table,  
        IMSLS_ROW_LABELS,   labels, 
        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
 
    imsls_f_write_matrix("* * * Variation Due to the Model * * *", 3, 4, 
        test_effects, 
        IMSLS_ROW_LABELS,   test_row_labels, 
        IMSLS_COL_LABELS,   test_col_labels, 
        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
 
    imsls_f_write_matrix("* * * Subgroup Means * * *", 12, 1, 
        means, 
        IMSLS_ROW_LABELS,   mean_row_labels, 
        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
} 
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Output 
P-value =   0.002299  

 
           * * * Analysis of Variance * * * 
 
degrees of freedom for the model                 5.0000 
degrees of freedom for error                    54.0000 
total (corrected) degrees of freedom            59.0000 
sum of squares for the model                  4612.9346 
sum of squares for error                     11585.9990 
total (corrected) sum of squares             16198.9336 
model mean square                              922.5869 
error mean square                              214.5555 
F-statistic                                      4.3000 
p-value                                          0.0023 
R-squared (in percent)                          28.4768 
Adjusted R-squared (in percent)                 21.8543 
est. standard deviation of the model error      14.6477 
overall mean of y                               87.8667 
coefficient of variation (in percent)           16.6704 
  

 
          * * * Variation Due to the Model * * * 
Source           DF       Sum of         Mean     Prob. of 
                         Squares       Square     Larger F 
A            2.0000     266.5330       0.6211       0.5411 
B            1.0000    3168.2678      14.7667       0.0003 
A*B          2.0000    1178.1337       2.7455       0.0732 
  
 

* * * Subgroup Means * * * 
  grand mean      87.8667 
  A1              89.6000 
  A2              84.9000 
  A3              89.1000 
  B1              95.1333 
  B2              80.6000 
  A1*B1          100.0000 
  A1*B2           79.2000 
  A2*B1           85.9000 
  A2*B2           83.9000 
  A3*B1           99.5000 
  A3*B2           78.7000 

Example 3 
This example performs a three-way analysis of variance using data discussed by Peter 
W.M. John (1971, pp. 91−92). The responses are weights (in grams) of roots of carrots 
grown with varying amounts of applied nitrogen (A), potassium (B), and phosphorus 
(C). Each cell of the three-way layout has one response. Note that the ABC interactions 
sum of squares, which is 186, is given incorrectly by Peter W.M. John (1971, Table 
5.2.) The three-way layout is given in the following table: 
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 A0 A1 A2 

 B0 B1 B2 B0 B1 B2 B0 B1 B2 

C0 88.76 91.41 97.85 94.83 100.49 99.75 99.90 100.23 104.51 

C1 87.45 98.27 95.85 84.57 97.20 112.30 92.98 107.77 110.94 

C2 86.01 104.20 90.09 81.06 120.80 108.77 94.72 118.39 102.87 

 
#include <imsls.h> 
 
void main () 
{ 
    int        n_subscripts= 3; 
    int        n_levels[3] = {3,3,3}; 
    float      p_value; 
    float      *test_effects, *anova_table; 
    float      y[27] = { 
         88.76, 87.45, 86.01, 91.41, 98.27, 104.2, 97.85, 95.85,  
         90.09, 94.83, 84.57, 81.06, 100.49, 97.2, 120.8, 99.75, 
         112.3, 108.77, 99.9, 92.98, 94.72, 100.23, 107.77, 118.39,  
         104.51, 110.94, 102.87}; 
    char      *labels[] = { 
        "degrees of freedom for the model", 
        "degrees of freedom for error", 
        "total (corrected) degrees of freedom", 
        "sum of squares for the model", 
        "sum of squares for error", 
        "total (corrected) sum of squares", 
        "model mean square", "error mean square", 
        "F-statistic", "p-value", 
        "R-squared (in percent)","Adjusted R-squared (in percent)", 
        "est. standard deviation of the model error", 
        "overall mean of y", 
        "coefficient of variation (in percent)"}; 
 
    char      *test_row_labels[] = {"A", "B", "C", "A*B", "A*C", "B*C"}; 
    char      *test_col_labels[] = { 
        "Source", "DF", "Sum of\nSquares",  
        "Mean\nSquare", "Prob. of\nLarger F"}; 
                                  /* Perform analysis */ 
    p_value = imsls_f_anova_factorial(n_subscripts, n_levels, y,  
        IMSLS_ANOVA_TABLE,   &anova_table, 
        IMSLS_TEST_EFFECTS,  &test_effects, 
        IMSLS_POOL_INTERACTIONS,  
        0); 
                                  /* Print results */ 
    printf("P-value = %10.6f",p_value); 
 
    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1, 
        anova_table,  
        IMSLS_ROW_LABELS,   labels, 
        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
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    imsls_f_write_matrix("* * * Variation Due to the Model * * *", 6, 4, 
        test_effects, 
        IMSLS_ROW_LABELS,   test_row_labels, 
        IMSLS_COL_LABELS,   test_col_labels, 
        IMSLS_WRITE_FORMAT, "%11.4f",  
        0); 
 
} 

Output 
P-value =   0.008299  
 
           * * * Analysis of Variance * * * 
 
degrees of freedom for the model                18.0000 
degrees of freedom for error                     8.0000 
total (corrected) degrees of freedom            26.0000 
sum of squares for the model                  2395.7290 
sum of squares for error                       185.7763 
total (corrected) sum of squares              2581.5054 
model mean square                              133.0961 
error mean square                               23.2220 
F-statistic                                      5.7315 
p-value                                          0.0083 
R-squared (in percent)                          92.8036 
Adjusted R-squared (in percent)                 76.6116 
est. standard deviation of the model error       4.8189 
overall mean of y                               98.9619 
coefficient of variation (in percent)            4.8695 
  
          * * * Variation Due to the Model * * * 
Source           DF       Sum of         Mean     Prob. of 
                         Squares       Square     Larger F 
A            2.0000     488.3678      10.5152       0.0058 
B            2.0000    1090.6559      23.4832       0.0004 
C            2.0000      49.1484       1.0582       0.3911 
A*B          4.0000     142.5856       1.5350       0.2804 
A*C          4.0000      32.3474       0.3482       0.8383 
B*C          4.0000     592.6240       6.3800       0.0131 

anova_nested 
Analyzes a completely nested random model with possibly unequal numbers in the 
subgroups.  

Synopsis 
#include <imsls.h> 
float *imsls_f_anova_nested (int n_factors, int equal_option,  int 

n_levels[], float y[], ..., 0) 
The type double function is imsls_d_anova_nested. 
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Required Arguments 

int  n_factors (Input) 
Number of factors (number of subscripts) in the model, including error. 

int equal_option  (Input) 
Equal numbers option.  

equal_option Description 

0   Unequal numbers in the subgroups 

1   Equal numbers in the subgroups 

int  n_levels[]   (Input) 
Array with the number of levels.                                                             

 If equal_option = 1, n_levels is of length n_factors and contains the 
number of levels for each of the factors. In this case, the following additional 
variables are referred to in the description of anova_nested:  

Variable  Description 

 LNL n_levels[0] + n_levels[0] * n_levels[1] +  
... + n_levels[0] * n_levels[1] * ... * 
n_levels[n_factors – 2] 

   LNLNF n_levels[0] * n_levels[1] * ...* 
 n_levels[n_factors – 2] 

NOBS     The number of observations. NOBS equals n_levels[0] * 
n_levels[1] * ... * n_levels[n_factors-1]. 
 

If equal_option = 0, n_levels contains the number of levels of each factor at each 
level of the factor in which it is nested. In this case, the following additional variables 
are referred to in the description of anova_nested:  
Variable  Description 

     LNL Length of n_levels. 

   LNLNF Length of the subvector of n_levels for the last factor. 

NOBS     Number of observations. NOBS equals the sum of the last 
LNLNF elements of n_levels. 

For example, a random one-way model with two groups, five responses in the first 
group and ten in the second group, would have LNL= 3, LNLNF= 2, NOBS = 15, 
n_levels[0] = 2, n_levels[1] = 5, and  
n_levels[2] = 10. 

float y[]   (Input) 
Array of length NOBS containing the responses.  The elements of  Y are 
ordered lexicographically, i.e., the last model subscript changes most rapidly, 
the next to last model subscript changes the next most rapidly, and so forth, 
with the first subscript changing the slowest. 
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Return Value 
The p-value for the F-statistic, anova_table[9]. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float * imsls_f_anova_nested (int n_factors, int equal_option,  int 

n_levels[], float y[],  
 IMSLS_ANOVA_TABLE, float **anova_table, 
 IMSLS_ANOVA_TABLE_USER, float anova_table[]  

IMSLS_CONFIDENCE, float confidence, 
IMSLS_VARIANCE_COMPONENTS, float **variance_components,      
IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[],                    
IMSLS_EMS, float **expect_mean_sq, IMSLS_EMS_USER, float 
expect_mean_sq[], IMSLS_Y_MEANS, float **y_means,                
IMSLS_Y_MEANS_USER, float y_means[], 
 0) 

Optional Arguments 

IMSLS_ANOVA_TABLE,  float **anova_table,  (Output) 
Address of a pointer to an internally allocated array of size 15  
containing the analysis of variance table. The analysis of variance statistics are 
as follows: 

Element Analysis of Variance Statistics 

0  Degrees of freedom for the model 

1  Degrees of freedom for error 

2  Total (corrected) degrees of freedom 

3  Sum of squares for the model 

4  Sum of squares for error 

5  Total (corrected) sum of squares 

6  Model mean square 

7  Error mean square 

8  Overall F-statistic 

9  p-value 

10  R2 (in percent) 

11  Adjusted R2 (in percent) 

12  Estimate of the standard deviation 

13  Overall mean of y 

14  Coefficient of variation (in percent) 
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IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user.  
See IMSLS_ANOVA_TABLE.  

IMSLS_CONFIDENCE, float confidence   (Input) 
Confidence level for two-sided interval estimates on the variance components, 
in percent.  confidence  percent confidence intervals are computed, hence, 
confidence must be in the interval [0.0, 100.0). confidence often 
will be 90.0, 95.0, or 99.0. For one-sided intervals with confidence 
level ONECL, ONECL in the interval [50.0, 100.0), set  
confidence = 100.0 - 2.0 * (100.0 - ONECL).   
Default: confidence = 95.0 

IMSLS_VARIANCE_COMPONENTS,  float **variance_components, (Output)       
Address to a pointer to an internally allocated array. variance_components 
is an n_factors by 9 matrix containing statistics relating to the particular 
variance components in the model.  Rows of variance_components 
correspond to the n_factors  factors. Columns of variance_components 
are as follows:  

Column Description 

 1    Degrees of freedom 

 2    Sum of squares 

 3    Mean squares 

 4    F -statistic 

 5   p-value for F test 

 6    Variance component estimate 

7   Percent of variance of variance explained by variance component 

 8   Lower endpoint for a confidence interval on the variance 
component 

 9    Upper endpoint for a confidence interval on the variance  
 component 

A test for the error variance equal to zero cannot be performed. 
variance_components(n_factors, 4) and 
variance_components(n_factors, 5) are set to NaN (not a number). 

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[]  (Output)  
Storage for array variance_components is provided by the user.  See 
IMSLS_VARIANCE_COMPONENTS. 

IMSLS_EMS, float **expect_mean_sq,  (Output)                                                      
Address to a pointer to an internally allocated array of length  
with expected mean square coefficients.                   
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IMSLS_EMS_USER, float expect_mean_sq[], (Output)                               
Storage for array expect_mean_sq is provided by the user.   
See IMSLS_EMS. 

IMSLS_Y_MEANS, float **y_means  (Output) 
Address to a pointer to an internally allocated array containing the subgroup 
means.  

Equal options Length of y means 

0   1 + n_levels[0] + n_levels[1] + … n_levels[ 
(LNL - LNLNF)-1] (See the description of argument n_levels 
for definitions of LNL and LNLNF.) 

1   1 + n_levels[0] + n_levels[0] * n_levels[1]  
+ … + n_levels[0]* n_levels[1] * … * n_levels 
[n_factors – 2] 

If the factors are labeled A, B, C, and error, the ordering of the means is grand mean, A 
means, AB means, and then ABC means. 

IMSLS_Y_MEANS_USER, float y_means[], Storage for array y_means  
is provided by the user.  See IMSLS_Y_MEANS 

Description 
Routine imsls_f_anova_nested analyzes a nested random model with equal or 
unequal numbers in the subgroups. The analysis includes an analysis of variance table 
and computation of subgroup means and variance component estimates. Anderson and 
Bancroft (1952, pages 325−330) discuss the methodology. The analysis of variance 
method is used for estimating the variance components. This method solves a linear 
system in which the mean squares are set to the expected mean squares. A problem that 
Hocking (1985, pages  
324−330) discusses is that this method can yield negative variance component 
estimates.  Hocking suggests a diagnostic procedure for locating the cause of a negative 
estimate. It may be necessary to reexamine the assumptions of the model. 

Example 1 
An analysis of a three-factor nested random model with equal numbers in the 
subgroups is performed using data discussed by Snedecor and Cochran (1967, Table 
10.16.1, pages 285−288). The responses are calcium concentrations  
(in percent, dry basis) as measured in the leaves of turnip greens. Four plants are taken 
at random, then three leaves are randomly selected from each plant.  
Finally, from each selected leaf two samples are taken to determine calcium 
concentration. The model is 

yijk = μ + αi + βij + eijk     i = 1, 2, 3, 4; j = 1, 2, 3; k = 1, 2 

where yijk is the calcium concentration for the k-th sample of the j-th leaf of the  
i-th plant, the αi’s are the plant effects and are taken to be independently distributed  
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2(0, )N σ
 

the βij’s are leaf effects each independently distributed 

2(0, )N βσ
 

and the εijk’s are errors each independently distributed N(0, σ2). The effects are all 
assumed to be independently distributed. The data are given in the following table: 
 

Plant Leaf Samples 
1 1 

2 
3 

3.28 
3.52 
2.88 

3.09 
3.48 
2.80 

2 1 
2 
3 

2.46 
1.87 
2.19 

2.44 
1.92 
2.19 

3 1 
2 
3 

2.77 
3.74 
2.55 

2.66 
3.44 
2.55 

4 1 
2 
3 

3.78 
4.07 
3.31 

3.87 
4.12 
3.31 

 
 
#include <imsls.h> 
#include <stdio.h> 
#define Mfloat float 
void main() 
{ 
      Mfloat pvalue, *aov, *varc, *ymeans, *ems; 

Mfloat y[] = {3.28, 3.09, 3.52, 3.48, 2.88, 2.80, 2.46, 2.44, 1.87, 
  1.92, 2.19, 2.19, 2.77, 2.66, 3.74, 3.44, 2.55, 2.55, 3.78,  
  3.87, 4.07, 4.12, 3.31, 3.31}; 

int n_levels[] = {4, 3, 2}; 
 char    *aov_labels[] = { 
                   "degrees of freedom for model", 
                   "degrees of freedom for error", 
                   "total (corrected) degrees of freedom", 
                   "sum of squares for model", 
                   "sum of squares for error", 
                   "total (corrected) sum of squares", 
                   "model mean square", 
                   "error mean square", 
                   "F-statistic", 
                   "p-value",  
    "R-squared (in percent)", 
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                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of within error", 
                   "overall mean of y", 
                   "coefficient of variation (in percent)"}; 
 char    *ems_labels[] = { 
    "Effect A and Error",  
    "Effect A and Effect B",  
    "Effect A and Effect A", 
    "Effect B and Error",  
    "Effect B and Effect B",  
    "Error and Error"}; 
 char    *means_labels[] = { 
    "Grand mean",  
    " A means 1", 
    " A means 2",  
    " A means 3", 
    " A means 4", 
    "AB means 1 1", 
    "AB means 1 2", 
    "AB means 1 3", 
    "AB means 2 1", 
    "AB means 2 2", 
     "AB means 2 3", 
    "AB means 3 1", 
    "AB means 3 2", 
    "AB means 3 3", 
    "AB means 4 1", 
    "AB means 4 2", 
    "AB means 4 3"}; 
 char    *components_labels[] = { 
                   "degrees of freedom for A", 
                   "sum of squares for A", 
                   "mean square of A", 
                   "F-statistic for A", 
                   "p-value for A", 
    "Estimate of A",  
    "Percent Variation Explained by A", 
    "95% Confidence Interval Lower Limit for A", 
     "95% Confidence Interval Upper Limit for A", 
    "degrees of freedom for B", 
                   "sum of squares for B", 
                   "mean square of B", 
                   "F-statistic for B", 
                   "p-value for B", 
    "Estimate of B",  
    "Percent Variation Explained by B", 
    "95% Confidence Interval Lower Limit for B", 
     "95% Confidence Interval Upper Limit for B", 
    "degrees of freedom for Error", 
                   "sum of squares for Error", 
                   "mean square of Error", 
                   "F-statistic for Error", 
                   "p-value for Error", 
    "Estimate of Error",  
    "Percent Explained by Error", 
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    "95% Confidence Interval Lower Limit for Error", 
     "95% Confidence Interval Upper Limit for Error"};                 
 

pvalue = imsls_f_anova_nested(3, 1, n_levels, y,  
     IMSLS_ANOVA_TABLE, &aov, 
     IMSLS_Y_MEANS, &ymeans, 
     IMSLS_VARIANCE_COMPONENTS, &varc, 
     IMSLS_EMS, &ems, 
     0); 
 
 printf("pvalue = %f\n", pvalue);  
 imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,  
    IMSLS_ROW_LABELS, aov_labels, 
    IMSLS_WRITE_FORMAT, "%10.5f", 
    0); 

imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *"  
6, 1, ems, 

      IMSLS_ROW_LABELS, ems_labels,   
    IMSLS_WRITE_FORMAT, "%6.2f",  
    0); 

imsls_f_write_matrix("* * * Means * * *", 17, 1, ymeans,   
    IMSLS_ROW_LABELS, means_labels, 
    IMSLS_WRITE_FORMAT, "%6.2f", 
    0); 

imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *", 
27, 1, varc, 

    IMSLS_ROW_LABELS, components_labels, 
    IMSLS_WRITE_FORMAT, "%10.5f", 
    0); 
} 

Output 
pvalue = 0.079854 
 

* * * Analysis of Variance * * * 
degrees of freedom for model   11.00000 
degrees of freedom for error   12.00000 
total (corrected) degrees of freedom  23.00000 
sum of squares for model    10.19054 
sum of squares for error      0.07985 
total (corrected) sum of squares   10.27040 
model mean square       0.92641 
error mean square       0.00665        
F-statistic                      139.21599 
p-value       0.00000 
R-squared (in percent)    99.22248 
adjusted R-squared (in percent)   98.50976 
est. standard deviation of within error    0.08158 
overall mean of y       3.01208 
coefficient of variation (in percent)    2.70826 
  
 * * * Expected Mean Square Coefficients * * * 
Effect A and Error    1.00 
Effect A and Effect B   2.00 
Effect A and Effect A   6.00 



 
 
 
 

 
 

Chapter 4: Analysis of Variance and Designed Experiments anova_nested • 253  

 

 

 

Effect B and Error    1.00 
Effect B and Effect B   2.00 
Error and Error    1.00 
 
 * * * Means * * * 
Grand mean   3.01 
A means 1   3.17 
A means 2   2.18 
A means 3   2.95 
A means 4   3.74 
AB means 1 1   3.18 
AB means 1 2   3.50 
AB means 1 3   2.84 
AB means 2 1   2.45 
AB means 2 2 1.89 
AB means 2 3 2.19 
AB means 3 1 2.72 
AB means 3 2 3.59 
AB means 3 3 2.55 
AB means 4 1 3.82 
AB means 4 2 4.10 
AB means 4 3 3.31 
 
  * * Analysis of Variance / Variance Components * *  
degrees of freedom for A                             3.00000 
sum of squares for A                                 7.56034 
mean square of A                                     2.52011 
F-statistic for A                                    7.66516 
p-value for A                                        0.00973 
Estimate of A                                        0.36522 
Percent Variation Explained by A                    68.53015 
95% Confidence Interval Lower Limit for A 0.03955 
95% Confidence Interval Upper Limit for A 5.78674 
degrees of freedom for B 8.00000 
sum of squares for B 2.63020 
mean square of B 0.32878 
F-statistic for B 49.40642 
p-value for B 0.00000 
Estimate of B 0.16106 
Percent Variation Explained by B 30.22121 
95% Confidence Interval Lower Limit for B 0.06967 
95% Confidence Interval Upper Limit for B 0.60042 
degrees of freedom for Error 12.00000 
sum of squares for Error 0.07985 
mean square of Error 0.00665 
F-statistic for Error *********** 
p-value for Error *********** 
Estimate of Error 0.00665 
Percent Explained by Error 1.24864 
95% Confidence Interval Lower Limit for Error 0.00342 
95% Confidence Interval Upper Limit for Error 0.01813 
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anova_balanced 
Analyzes a balanced complete experimental design for a fixed, random, or mixed 
model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_anova_balanced (int n_factors, int n_levels[], float y[], 

int n_random, int index_random_factor[], int n_model_effects, int 
n_factors_per_effect[], int index_factor_per_effect[], ..., 0) 

The type double function is imsls_d_anova_balanced. 

Required Arguments 

int  n_factors (Input) 
Number of factors (number of subscripts) in the model, including error. 

 int  n_levels[]   (Input) 
Array of length n_factors containing the number of levels for each of the 
factors. 

float y[]   (Input) 
Array of length n_levels[0] * n_levels[1] *. . .* 
n_levels[n_factors-1] containing the responses.  y[] must not contain 
NaN (not a number) for any of its elements, i.e., missing values are not 
allowed. 

int  n_random (Input) 
For positive n_random, |n_random| is the number of random factors. For 
negative n_random, |n_random|  is the number of random effects (sources 
of variation). 

 int index_random_factor[]  (Input) 
Index array of length |n_random| containing either the factor numbers to be 
considered random (for n_random positive) or containing the effect numbers 
to be considered random (for n_random negative).  If n_random = 0, 
index_random_factor is not referenced.  

 int n_model_effects  (Input) 
Number of effects (sources of variation) due to the model excluding the 
overall mean and error. 

int n_factors_per_effect[] (Input) 
Array of length n_model_effects containing the number of factors 
associated with each effect in the model. 

int index_factor_per_effect[]  (Input) 
Index vector of length n_factors_per_efffect[0] + 
n_factors_per_effect[1] + . . . + 
n_factors_per_effect[n_model_effects-1]. The first 
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n_factors_per_effect[0] elements give the factor numbers in the first 
effect. The next n_factors_per_effect[1] elements give the factor 
numbers in the second effect. The last n_factors_per_effect 
[n_model_effects-1] elements give the factor numbers in the last effect. 
Main effects must appear before their interactions. In general, an effect E 
cannot appear after an effect  
F if all of the indices for E appear also in F. 

Return Value 
The p-value for the F-statistic. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_anova_balanced (int n_factors, int n_levels[], float y[], 

int n_random, int index_random_factor[], int n_model_effects, int 
n_factors_per_effect[], int index_factor_per_effect[],  

 IMSLS_ANOVA_TABLE, float **anova_table, 
IMSLS_ANOVA_TABLE_USER, float anova_table[] 
IMSLS_MODEL, int model, 
IMSLS_CONFIDENCE, float confidence, 
IMSLS_VARIANCE_COMPONENTS, float **variance_components,        
IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[], 
IMSLS_EMS, float **ems,  
IMSLS_EMS_USER, float ems[],  
IMSLS_Y_MEANS, float **y_means,                
IMSLS_Y_MEANS_USER, float y_means[], 
0) 

Optional Arguments 

IMSLS_ANOVA_TABLE,  float **anova_table,  (Output) 
Address of a pointer to an internally allocated array of size 15 containing the 
analysis of variance table. The analysis of variance statistics are as follows: 

Element Analysis of Variance Statistics 

0  Degrees of freedom for the model 

1  Degrees of freedom for error 

2  Total (corrected) degrees of freedom 

3  Sum of squares for the model 

4  Sum of squares for error 

5  Total (corrected) sum of squares 

6  Model mean square 

7  Error mean square 

8  Overall F-statistic 
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Element Analysis of Variance Statistics 

9  p-value 

10  R2 (in percent) 

11  adjusted R2 (in percent) 

12  estimate of the standard deviation 

13  overall mean of Y 

14  coefficient of variation (in percent) 

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output) 
Storage for array anova_table is provided by the user.  
See IMSLS_ANOVA_TABLE. 

IMSLS_MODEL, int model,    (Input) 
Model Option 

MODEL  Meaning 

0   Searle model 

1   Scheffe model  
For the Scheffe model, effects corresponding to interactions of fixed and random 
factors have their sum over the subscripts corresponding to fixed factors equal to zero. 
Also, the variance of a random interaction effect involving some fixed factors has a 
multiplier for the associated variance component that involves the number of levels in 
the fixed factors. The Searle model has no summation restrictions on the random 
interaction effects and has a multiplier of one for each variance component.  The 
default is model = 0. 

IMSLS_CONFIDENCE, float confidence   (Input) 
Confidence level for two-sided interval estimates on the variance components, in 
percent.  confidence  percent confidence intervals are computed, hence, 
confidence must be in the interval [0.0, 100.0). confidence 
often will be 90.0, 95.0, or 99.0.  
For one-sided intervals with confidence level α, α  
in the interval [50.0, 100.0),  
set confidence = 100.0 - 2.0 * 100.0 - α).  
Default:   confidence = 95.0 

IMSLS_VARIANCE_COMPONENTS,  float **variance_components, (Output)      
Address of a pointer to an array, variance_components. 
variance_components is an (n_model_effects + 1) by 9 array 
containing statistics relating to the particular variance components or effects 
in the model and the error.  Rows of variance_components correspond to 
the n_model_effects  effects plus error.  
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Element  Description 

 1    Degrees of freedom 

 2    Sum of squares 

 3    Mean squares 

 4    F -statistic 

 5   p-value for F test 

 6    Variance component estimate 

 7    Percent of variance of y explained by random effect 

 8   Lower endpoint for a confidence interval on the variance 
component 

 9    Upper endpoint for a confidence interval on the variance  
 component 

Elements 6 through 9 contain NaN (not a number) if the effect is fixed, i.e., if there is 
no variance component to be estimated. If the variance component estimate is negative, 
columns 8 and 9 contain NaN.                                                                                             

IMSLS_VARIANCE_COMPONENTS_USER, float variance_components[]  (Output)   
Storage for array variance_components is provided by the user.   
See IMSLS_VARIANCE_COMPONENTS. 

IMSLS_EMS, float **ems,  (Output)  
Address of a pointer to an internally allocated array of length 
(n_model_effects + 1) * (n_model_effects + 2)/2 containing 
expected mean square coefficients. Suppose the effects are  
A, B, and AB. The ordering of the coefficients in ems is as follows: 

 Error AB B A 

A ems[0]  ems[1] ems[2] ems[2 

B ems[4] ems[5] ems[6]  

AB ems[7] ems[8]   

Error ems[9]    

IMSLS_EMS_USER, float ems[]  (Output)   
Storage for ems is provided by the user.   
See IMSLS_EMS. 



 

 
 

258 • anova_balanced IMSL C Stat Library 

 

 

 

IMSLS_Y_MEANS, float **y_means  (Output) 
Address of a pointer to an internally allocated array of length (n_levels(0) + 
1) * (n_levels (1) + 1) * . . . *  
(n_levels (n-1) + 1) containing the subgroup means. Suppose the factors are 
A, B, and C. The ordering of the means is grand mean, A means, B means, C 
means, AB means, AC means, BC means, and ABC means.  

IMSLS_Y_MEANS_USER, float y_means  (Output) 
Storage for y_means is provided by the user.   
See IMSLS_Y_MEANS. 

Description 
Function imsls_f_anova_balanced analyzes a balanced complete experimental 
design for a fixed, random, or mixed model. The analysis includes an analysis of 
variance table, and computation of subgroup means and variance component estimates. 
A choice of two parameterizations of the variance components for the model can be 
made.  

Scheffé (1959, pages 274−289) discusses the parameterization for model = 1. For 
example, consider the following model equation with fixed factor A and random factor 
B: 

yijk = μ + αi + bj + cij + eijk     i = 1, 2, …, a; j = 1, 2, …, b; k = 1, 2, …, n 

The fixed effects αi’s are subject to the restriction 

1 0a
i iα=∑ =

 

the bj’s are random effects identically and independently distributed 
2(0, )BN σ

 

cij are interaction effects each distributed 

21(0, )AB
aN

a
σ−

 

and are subject to the restrictions 

1 0 for 1, 2, ...,a
i ijc j b=∑ = =

 

and the eijk’s are errors identically and independently distributed N(0, σ2). In general, 
interactions of fixed and random factors have sums over subscripts corresponding to 
fixed factors equal to zero. Also in general, the variance of a random interaction effect 
is the associated variance component times a product of ratios for each fixed factor in 
the random interaction term. Each ratio depends on the number of levels in the fixed 
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factor. In the earlier example, the random interaction AB has the ratio (a −1)/a as a 
multiplier of  
 

2
ABσ

 

and 

2 2 21var( )ijk B AB
ay

a
σ σ σ−

= + +
 

In a three-way crossed classification model, an ABC interaction effect with A fixed, B 
random, and C fixed would have variance 

2( 1)( 1)
ABC

a c
ac

σ− −
 

Searle (1971, pages 400−401) discusses the parameterization for model = 0. This 
parameterization does not have the summation restrictions on the effects corresponding 
to interactions of fixed and random factors. Also, the variance of each random 
interaction term is the associated variance component, i.e., without the multiplier. This 
parameterization is also used with unbalanced data, which is one reason for its 
popularity with balanced data also. In the earlier example, 

( ) 2 2 2var ijk B ABy σ σ σ= + +� �
 

Searle (1971, pages 400−404) compares these two parameterizations. Hocking (1973) 
considers these different parameterizations and concludes they are equivalent because 
they yield the same variance-covariance structure for the responses. Differences in 
covariances for individual terms, differences in expected mean square coefficients and 
differences in F tests are just a consequence of the definition of the individual terms in 
the model and are not caused by any fundamental differences in the models. For the 
earlier two-way model, Hocking states that the relations between the two 
parameterizations of the variance components are 

2 2 2

2 2

1
B B AB

AB AB

aσ σ σ

σ σ

= +

=

� �

�  

where  
2 2and B ABσ σ� �

 

are the variance components in the parameterization with model = 0. 
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The computations for degrees of freedom and sums of squares are the same regardless 
of the option specified by model.  imsls_f_anova_balanced first computes degrees 
of freedom and sum of squares for a full factorial design. Degrees of freedom for 
effects in the factorial design that are missing from the specified model are pooled into 
the model effect containing the fewest subscripts but still containing the factorial 
effect. If no such model effect exists, the factorial effect is pooled into error. If more 
than one such effect exists, a terminal error message is issued indicating a misspecified 
model. 
The analysis of variance method is used for estimating the variance components.  
This method solves a linear system in which the mean squares are set to the  
expected mean squares. A problem that Hocking (1985, pages 324−330)  
discusses is that this method can yield a negative variance component estimate.  
Hocking suggests a diagnostic procedure for locating the cause of the negative  
estimate. It may be necessary to re-examine the assumptions of the model. 
The percentage of variation explained by each random effect is computed  
(output in variance_components element 7) as the variance of the associated 
random effect divided by the variance of y. The two parameterizations can lead to 
different values because of the different definitions of the individual terms in the 
model. For example, the percentage associated with the AB interaction term in the 
earlier two-way mixed model is computed for model = 1 using the formula 

2

2 2 2

1

% variation(AB|Model=1)
1

AB

B AB

a
a

a
a

σ

σ σ σ

−

=
−

+ +  

while for the parameterization model  = 0, the percentage is computed using the 
formula 

2

2 2 2% variation(AB|Model=0) AB

B AB

σ
σ σ σ

=
+ +
�

� �  

In each case, the variance components are replaced by their estimates (stored in 
variance_components element 6). 
Confidence intervals on the variance components are computed using the method 
discussed by Graybill (1976, Theorem 15.3.5, page 624, and Note 4, page 620).  

Example 1 
An analysis of a generalized randomized block design is performed using data 
discussed by Kirk (1982, Table 6.10-1, pages 293−297). The model is 

yijk = μ + αi + bj + cij + eijk     i = 1, 2, 3, 4; j = 1, 2, 3, 4; k = 1, 2 
where yijk is the response for the k-th experimental unit in block j with treatment  
i; the αi’s are the treatment effects and are subject to the restriction 

2
1 0i iα=∑ =
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the bj’s are block effects identically and independently distributed 

2(0, )BN σ
 

cij are interaction effects each distributed 

23
4(0, )ABN σ

 

and are subject to the restrictions 
4

1 0 for 1, 2, 3, 4i ijc j=∑ = =
 

and the eijk’s are errors, identically and independently distributed N(0, σ2). The 
interaction effects are assumed to be distributed independently of the errors.  
 
The data are given in the following table: 

 Block 
Treatment 1 2 3 4 

1 3, 6 3, 1 2, 2 3, 2 

2 4, 5 4, 2 3, 4 3, 3 

3 7, 8 7, 5 6, 5 6, 6 

4 7, 8 9, 10 10, 9 8, 11 

#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
  float pvalue = -99.; 
  int n_levels[] = {4, 4, 2}; 
  int indrf[] = {2, 3}; 
  int nfef[] = {1, 1, 2}; 
  int indef[] = {1, 2, 1, 2}; 
  float y[] = {3.0, 6.0, 3.0, 1.0, 2.0, 2.0, 3.0, 2.0, 4.0, 5.0, 4.0, 
        2.0, 3.0, 4.0, 3.0, 3.0, 7.0, 8.0, 7.0, 5.0, 6.0, 5.0, 
        6.0, 6.0, 7.0, 8.0, 9.0, 10.0, 10.0, 9.0, 8.0, 11.0}; 
  float *aov=NULL, *y_means, *variance_components, *ems; 
 
  char    *aov_labels[] = { 
                   "degrees of freedom for model", 
                   "degrees of freedom for error", 
                   "total (corrected) degrees of freedom", 
                   "sum of squares for model", 
                   "sum of squares for error", 
                   "total (corrected) sum of squares", 
                   "model mean square", 
                   "error mean square", 
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                   "F-statistic", 
                   "p-value",  
        "R-squared (in percent)", 
                   "adjusted R-squared (in percent)", 
                   "est. standard deviation of within error", 
                   "overall mean of y", 
                   "coefficient of variation (in percent)"}; 
  char    *ems_labels[] = { 
    "Effect A and Error",  
    "Effect A and Effect AB",  
    "Effect A and Effect B",  
    "Effect A and Effect A", 
    "Effect B and Error",  
    "Effect B and Effect AB",  
    "Effect B and Effect B",  
    "Effect AB and Error",  
    "Effect AB and Effect AB",  
    "Error and Error"}; 
  char    *means_labels[] = { 
    "Grand mean",  
    " A means 1", 
    " A means 2",  
    " A means 3", 
    " A means 4", 
    " B means 1", 
    " B means 2",  
    " B means 3", 
    " B means 4", 
    "AB means 1 1", 
    "AB means 1 2", 
    "AB means 1 3", 
    "AB means 1 4", 
    "AB means 2 1", 
    "AB means 2 2", 
     "AB means 2 3", 
    "AB means 2 4", 
    "AB means 3 1", 
    "AB means 3 2", 
    "AB means 3 3", 
    "AB means 3 4", 
    "AB means 4 1", 
    "AB means 4 2", 
    "AB means 4 3",  
    "AB means 4 4",}; 
  char    *components_labels[] = { 
                   "degrees of freedom for A", 
                   "sum of squares for A", 
                   "mean square of A", 
                   "F-statistic for A", 
                   "p-value for A", 
        "Estimate of A",  
        "Percent Variation Explained by A", 

      "95% Confidence Interval Lower Limit for A", 
         "95% Confidence Interval Upper Limit for A", 
        "degrees of freedom for B", 



 
 
 
 

 
 

Chapter 4: Analysis of Variance and Designed Experiments anova_balanced • 263  

 

 

 

                   "sum of squares for B", 
                   "mean square of B", 
                   "F-statistic for B", 
                   "p-value for B", 

      "Estimate of B",  
        "Percent Variation Explained by B", 
        "95% Confidence Interval Lower Limit for B", 
         "95% Confidence Interval Upper Limit for B", 
        "degrees of freedom for AB", 

      "sum of squares for AB", 
      "mean square of AB", 
      "F-statistic for AB", 
      "p-value for AB", 

        "Estimate of AB",  
        "Percent Variation Explained by AB", 
        "95% Confidence Interval Lower Limit for AB", 
         "95% Confidence Interval Upper Limit for AB", 
        "degrees of freedom for Error", 

      "sum of squares for Error", 
             "mean square of Error", 

      "F-statistic for Error", 
      "p-value for Error", 

        "Estimate of Error",  
        "Percent Explained by Error", 
        "95% Confidence Interval Lower Limit for Error", 
        "95% Confidence Interval Upper Limit for Error"}; 
 
pvalue = imsls_f_anova_balanced(3, n_levels, y, 2, indrf, 3, nfef, indef,  
      IMSLS_MODEL, 1,  
      IMSLS_EMS, &ems,  
      IMSLS_VARIANCE_COMPONENTS, 
&variance_components, 
      IMSLS_Y_MEANS, &y_means, 
      IMSLS_ANOVA_TABLE, &aov, 
      0); 
 
printf("p value of F statistic = %f\n", pvalue); 
imsls_f_write_matrix("* * * Analysis of Variance * * *", 15, 1, aov,  
     IMSLS_ROW_LABELS, aov_labels, 
     IMSLS_WRITE_FORMAT, "%10.5f", 
     0);  
imsls_f_write_matrix("* * * Expected Mean Square Coefficients * * *",  

 10, 1, ems, 
     IMSLS_ROW_LABELS, ems_labels,   
     IMSLS_WRITE_FORMAT, "%6.2f",  
     0);   
imsls_f_write_matrix("* * Analysis of Variance / Variance Components * *", 

 36, 1, 
variance_components, 

     IMSLS_ROW_LABELS, components_labels, 
     IMSLS_WRITE_FORMAT, "%10.5f", 
     0); 
imsls_f_write_matrix("means", 25, 1, y_means,   
     IMSLS_ROW_LABELS, means_labels, 
     IMSLS_WRITE_FORMAT, "%6.2f", 
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     0); 
 
} 

Output 
 p value of F statistic = 0.000005 

     * * * Analysis of Variance * * * 
 

 degrees of freedom for model    15.00000 
 degrees of freedom for error    16.00000 
 total (corrected) degrees of freedom   31.00000 

        sum of squares for model    216.50000 
        sum of squares for error     19.00000 
        total (corrected) sum of squares  235.50000 
        model mean square      14.43333 
        error mean square       1.18750 
        F-statistic       12.15439 
        p-value        0.00000 
        R-squared (in percent)     91.93206 
        adjusted R-squared (in percent)    84.36836 
        est. standard deviation of within error   1.08972 

 overall mean of y                               5.37500 
        coefficient of variation (in percent) 20.27395 
 
   * * * Expected Mean Square Coefficients * * * 

Effect A and Error                               1.00 
Effect A and Effect AB                           2.00 
Effect A and Effect B                            0.00 
Effect A and Effect A                            8.00 
Effect B and Error                               1.00 
Effect B and Effect AB                           0.00 
Effect B and Effect B                            8.00 
Effect AB and Error                               1.00 
Effect AB and Effect AB                          2.00 
Error and Error                                  1.00 
 

     * * Analysis of Variance / Variance Components * * 
        degrees of freedom for A                          3.00000 
        sum of squares for A                            194.50000 
        mean square of A                                 64.83334 
        F-statistic for A                                32.87324 
        p-value for A                                     0.00004 
        Estimate of A                                  .......... 
        Percent Variation Explained by A               .......... 
        95% Confidence Interval Lower Limit for A      .......... 
        95% Confidence Interval Upper Limit for A      .......... 
        degrees of freedom for B                          3.00000 
        sum of squares for B                              4.25000 
        mean square of B                                  1.41667 
        F-statistic for B                                 1.19298 
        p-value for B                                     0.34396 
        Estimate of B                                     0.02865 
        Percent Variation Explained by B                  1.89655 
        95% Confidence Interval Lower Limit for B         0.00000 
        95% Confidence Interval Upper Limit for B         2.31682 
        degrees of freedom for AB                         9.00000 
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        sum of squares for AB                            17.75000 
        mean square of AB                                 1.97222 
        F-statistic for AB                                1.66082 
        p-value for AB                                    0.18016 
        Estimate of AB                                    0.39236 
        Percent Variation Explained by AB                19.48276 
        95% Confidence Interval Lower Limit for AB        0.00000 
        95% Confidence Interval Upper Limit for AB        2.75803 
        degrees of freedom for Error                     16.00000 
        sum of squares for Error                         19.00000 
        mean square of Error                              1.18750 
        F-statistic for Error                          .......... 
        p-value for Error                              .......... 
        Estimate of Error                                 1.18750 
        Percent Explained by Error                       78.62069 
        95% Confidence Interval Lower Limit for Error     0.65868 
        95% Confidence Interval Upper Limit for Error     2.75057 
  
  
  means 
  Grand mean  5.38  
  A means 1  2.75 
  A means 2   3.50 
  A means 3  6.25 
  A means 4  9.00 
  B means 1  6.00 
  B means 2   5.13 
  B means 3  5.13 
  B means 4  5.25 
  AB means 1 1  4.50 
  AB means 1 2  2.00 
  AB means 1 3  2.00 
  AB means 1 4  2.50 
  AB means 2 1  4.50 
  AB means 2 2  3.00 
   AB means 2 3  3.50 
  AB means 2 4  3.00 
  AB means 3 1  7.50 
  AB means 3 2  6.00 
  AB means 3 3  5.50 
  AB means 3 4  6.00 
  AB means 4 1  7.50 
  AB means 4 2  9.50 
  AB means 4 3         9.50 
  AB means 4 4  9.50 
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crd_factorial 
Analyzes data from balanced and unbalanced completely randomized experiments. 
Funtion crd_factorial does permit a factorial treatment structure. However, unlike 
anova_factorial, function crd_factorial allows for missing data, unequal 
replication and one or more locations. 

Synopsis 
#include <imsls.h> 

float * imsls_f_crd_factorial (int n_obs, int n_locations,  
int n_factors, int n_levels[], int model[], float y[],…, 0) 

The type double function is imsls_d_crd_factorial. 

Required Arguments 

int n_obs  (Input) 
Number of missing and non-missing experimental observations.   

int n_locations (Input) 
Number of locations.  n_locations must be one or greater. 

int n_factors   (Input) 
Number of factors in the model. 

int n_levels[]   (Input) 
Array of length n_factors+1.  The n_levels[0] through 
n_levels[n_factors-1] contain the number of levels for each factor.  The 
last element, n_levels[n_factors], contains the number of replicates for 
each treatment combination within a location. 

int model[] (Input) 
A n_obs by (n_factors+1) array identifying the location and factor levels 
associated with each  observation in y.  The first column must contain the 
location identifier and the remaining columns the factor level identifiers in the 
same order used in n_levels.  If n_locations = 1, the first column is still 
required, but its contents are ignored. 

float y[] (Input) 
An aray of length n_obs containing the experimental observations and any 
missing values.  Missing values are indicated by placing a NaN (not a 
number) in y. The NaN value can be set using either the function 
imsls_f_machine(6) or imsls_d_machine(6), depending upon whether 
single or double precision is being used, respectively.   

Return Value 
A pointer to the memory location of a two dimensional, n_anova by 6 array containing 
the ANOVA table, where: 
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2 if 1
3 if 1 and treatments are not replicated
4 if 1 and treatments are replicated at each location
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n_locations

n_locations

n_locations
 

Each row in this array contains values for one of the effects in the ANOVA table.  The 
first value in each row, anova_tablei,0 = anova_table[i*6], is the source identifier 
which identifies the type of effect associated with values in that row.  The remaining 
values in a row contain the ANOVA table values using the following convention: 

 
J anova_tablei,j = anova_table[i*6+j] 
0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 

The values for the mean squares, F-statistic and p-value are set to NaN for the 
residual and corrected total effects. 

The Source Identifiers in the first column of anova_tablei,j are the only 
negative values in anova_table. The absolute value of the source identifier 
is equal to the order of the effect in that row.  Main effects, for example, have 
a source identifier of –1.  Two-way interactions use a source identifier of –2, 
and so on.  

 
Source 
Identifier 

 
ANOVA Source 

-1 Main Effects † 

-2 Two-Way Interactions ‡ 

-3 Three-Way Interactions ‡ 

. . 

. . 

. . 
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Source 
Identifier 

 
ANOVA Source 

-n_factors (n_factors)-way Interactions ‡ 

-n_factors-1 Effects Error Term 

-n_factors-2 Residual ⇑ 

-n_factors-3 Corrected Total 

 
Notes: By default, model_order = n_factors when treatments are replicated, or 
n_locations >1. However, if treatments are not replicated and n_locations =1, 
model_order = n_factors -1. 
† The number of main effects is equal to n_factors+1 if n_locations >1, and 
n_factors if n_locations =1. The first row of values, anova_table[0] through 
anova_table[5] contain the location effect if n_locations >1.  If 
n_locations=1, then these values are the effects for factor 1.   
⇑  The residual term is only provided when treatments are replicated, i.e., 
n_levels[n_factors]>1. 
‡  The number of interaction effects for the nth-way interactions is equal to  

⎛ ⎞
⎜ ⎟
⎝ ⎠
n_factors

n_way  .  

The order of these terms is in ascending order by treatment subscript.  The interactions 
for factor 1 appear first, followed by factor 2, factor 3, and so on. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_crd_factorial (int n_obs, int n_locations,  

int n_factors, int n_levels[], int model[], float y[], 
IMSLS_RETURN_USER, float anova_table[] 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv,  
IMSLS_GRAND_MEAN, float *grand_mean,  
IMSLS_FACTOR_MEANS, float **factor_means, 
IMSLS_FACTOR_MEANS_USER, float factor_means[],  
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err, 
IMSLS_FACTOR_STD_ERRORS_USER,  
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 float factor_std_err[],  
IMSLS_TWO_WAY_MEANS,  
 float **two_way_means,  
IMSLS_TWO_WAY_MEANS_USER,  
 float two_way_means[],  
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err, 
IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[], 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err, 
IMSLS_TREATMENT_STD_ERROR_USER,  
 float treatment_std_err[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 0) 

Optional Arguments 

IMSLS_RETURN_USER, float anova_table[] (Output) 
User defined n_anova by 6 array for the anova_table. 

IMSLS_N_MISSING, int *n_missing  (Output) 
 Number of missing values, if any, found in y.  Missing values are denoted 
with a NaN (Not a Number) value. 

IMSLS_CV,  float *cv (Output) 
 Coefficient of Variation computed by: 

100 MS
CV residual⋅

=
grand_mean  

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
 Mean of all the data across every location. 

IMSLS_FACTOR_MEANS, float **factor_means (Output) 
 Address of a pointer to an internally allocated array of length 
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1] containing 
the factor means. 

IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output) 
Storage for the array factor_means, provided by the user. 

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output) 
Address of a pointer to an internally allocated  n_factors by 2 array 
containing factor standard errors and their associated degrees of freedom.  The 
first column contains the standard errors for comparing two factor means and 
the second its associated degrees of freedom. 

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output) 
Storage for the array factor_std_err, provided by the user. 

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output) 
Address of a pointer to an internally allocated one-dimensional array 
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containing the two-way means for all two by two combinations of the factors.  
The total length of this array when n_factors > 1 is equal to: 

1

0 1

where -2[ ] [ ],
f f

i j i

i j f
+

= = +

× =∑ ∑ n_levels n_levels n_factors
 

 If n_factors = 1, NULL is returned. If n_factors>1, the means would first 
be produced for all combinations of the first two factors followed by all 
combinations of the remaining factors using the subscript order suggested by 
the above formula.  For example, if the experiment is a 2x2x2 factorial, the 12 
two-way means would appear in the following order:  A1B1,  A1B2, A2B1, 
A2B2, A1C1,  A1C2, A2C1, A2C2, B1C1, B1C2, B2C1, and B2C2.   

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output) 
Storage for the array two_way_means, provided by the user. 

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output) 
Address of a pointer to an internally allocated  n_two_way by 2 array 
containing factor standard errors and their associated degrees of freedom., 
where 

=
⎛ ⎞
⎜ ⎟
⎝ ⎠
n_factors

n_two_way
2  

 The first column contains the standard errors for comparing two 2-way interaction 
means and the second its associated degrees of freedom.  The ordering of the rows 
in this array is similar to that used in IMSLS TWO_WAY_MEANS.  For example if 
n_factors=4, then n_two_way =6  with the order AB, AC, AD, BC, BD, CD.   

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output) 
Storage for the array two_way_std_err, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size  

[0] [1] [ 1]× × × −n_levels n_levels n_levels n_factors"
 

 containing the treatment means. The order of the means is organized  in 
ascending order by the value of the factor identifier.  For example, if the 
experiment is a 2x2x2 factorial, the 8 means would appear in the following 
order: A1B1C1, A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1,  and 
A2B2C2. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_TREATMENT_STD_ERROR, float **treatment_std_err (Output) 
The array of length 2 containing standard error for comparing treatments 
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based upon the average number of replicates per treatment and its associated 
degrees of freedom. 

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output)  
Storage for the array treatment_std_err, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array containing the 
labels for each of the  n_anova rows of the returned ANOVA table.  The 
label for the i-th row of the ANOVA table can be printed with  
printf("%s", anova_row_labels[i]); 

The memory associated with anova_row_labels  can be freed with a single 
call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) Storage 
for the anova_row_labels, provided by the user.  The amount of space 
required will vary depending upon the number of factors and n_anova.   An 
upperbound on the required memory is  
char *anova_row_labels[n_anova* 60]. 

Description 
The function imsls_f_crd_factorial analyzes factorial experiments replicated in 
different locations.  Unequal replication for each treatment and missing observations 
are allowed.  All factors are regarded as fixed effects in the analysis.  However, if 
multiple locations appear in the data, i.e., n_locations > 1, then all effects involving 
locations are treated as random effects. 
If n_locations = 1, then the residual mean square is used as the error mean square in 
calculating the F-tests for all other effects.  That is 

MS

MS
effectF

residual
=

, when n_locations = 1. 

 If n_locations > 1 then the error mean squares for all factor F-tests is the pooled 
location interaction.  For example, if n_factors = 2 then the error sum of squares, 
degrees of freedom and mean squares are calculated by: 

SS
df

SS SS SS SS

df df df df

MS error
error

error B LocationsA Locations A B Locations

error B LocationsA Locations A B Locations

error

= + +×× × ×

= + +×× × ×

=

 

Example 
The following example is based upon data from a 3x2x2 completely randomized 
design conducted at one location.  For demonstration purposes, observation 9 is set to 
missing. 



 

 
 

272 • crd_factorial IMSL C Stat Library 

 

 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

void ex_crd_doc(){ 

    int n_obs       = 12; 

    int n_locations = 1; 

    int n_factors   = 3; 

    int n_levels[4] ={3, 2, 2, 1};  

    int page_width = 132; 

    /*  model information */ 

    int model[]={ 

            1, 1, 1, 1, 

            1, 1, 1, 2, 

            1, 1, 2, 1, 

            1, 1, 2, 2, 

            1, 2, 1, 1, 

            1, 2, 1, 2, 

            1, 2, 2, 1, 

            1, 2, 2, 2, 

            1, 3, 1, 1, 

            1, 3, 1, 2, 

            1, 3, 2, 1, 

            1, 3, 2, 2 

    }; 

    /* response data */ 

    float y[] ={ 

            4.42725419998168950,   

            2.12795543670654300,  

            2.55254390835762020,  

            1.21479606628417970, 

            2.47588264942169190,  

            5.01306104660034180,  

            4.73502767086029050,  

            4.58392113447189330,  

            5.01421167794615030,  

            4.11972457170486450,  

            6.51671624183654790,  

            4.73365202546119690 

    }; 

     

    int model_order; 
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    int i, j, k, l, m, n_missing, i2, j2; 

    int n_factor_levels=0, n_treatments=1; 

    int n_two_way_means=0, n_two_way_std_err=0; 

    int n_two_way_interactions=0; 

    int n_subscripts, n_anova_table=2; 

    float cv, grand_mean; 

    float *anova_table; 

    float *two_way_means, *two_way_std_err; 

    float *treatment_means, *treatment_std_err; 

    float *factor_means; 

    float *factor_std_err;  

    float aNaN = imsls_f_machine(6); 

    char  **anova_row_labels; 

    char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",  

        "Mean  \nsquares", "\nF-Test", "\np-Value"}; 

    /*  

     * Compute the length of some of the output arrays. 

     */ 

    model_order = n_factors-1; 

    for (i=0; i < n_factors; i++){ 

        n_factor_levels = n_factor_levels + n_levels[i]; 

        n_treatments    = n_treatments*n_levels[i]; 

        for (j=i+1; j < n_factors; j++){ 

            n_two_way_interactions++; 

        } 

    } 

    n_two_way_std_err = n_two_way_interactions; 

    for (i=0; i < n_factors-1; i++){ 

        for (j=i+1; j < n_factors; j++){ 

            n_two_way_means = n_two_way_means + n_levels[i]*n_levels[j]; 

        } 

    }  

    n_subscripts = n_factors; 

    n_anova_table = 2; 

    for (i=1; i <= model_order; i++){ 

        n_anova_table += (int)imsls_f_binomial_coefficient(n_subscripts, i); 

    }    

     

    /* Set observation 9 to missing. */ 

    y[8] = aNaN; 

    anova_table = imsls_f_crd_factorial(n_obs, n_locations, n_factors, 

                                        n_levels, model, y, 
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                                        IMSLS_N_MISSING, &n_missing,  

                                        IMSLS_CV, &cv,  

                                        IMSLS_GRAND_MEAN, &grand_mean, 

                                        IMSLS_FACTOR_MEANS, &factor_means, 

                                 IMSLS_FACTOR_STD_ERRORS, 
 &factor_std_err, 

                                        IMSLS_TWO_WAY_MEANS, &two_way_means,    

                                        IMSLS_TWO_WAY_STD_ERRORS, 
 &two_way_std_err, 

                                        IMSLS_TREATMENT_MEANS, &treatment_means,  

                                        IMSLS_TREATMENT_STD_ERROR, 
&treatment_std_err, 

                                        IMSLS_ANOVA_ROW_LABELS, 
&anova_row_labels, 

                                        0) ; 

    /* Output results. */ 

     

    imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

    /* Print ANOVA table. */ 

    imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                         n_anova_table, 6, anova_table,  

                         IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f", 

                         IMSLS_ROW_LABELS, anova_row_labels, 

                         IMSLS_COL_LABELS, col_labels, 

                         0); 

    printf("\n\nNumber of Missing Values Estimated: %d", n_missing); 

    printf("\nGrand Mean:                       %7.3f", grand_mean); 

    printf("\nCoefficient of Variation:         %7.3f", cv); 

 

    m=0; 

    /* Print Factor Means. */ 

    printf("\n\nFactor Means\n"); 

    for(i=0; i < n_factors; i++){ 

        printf("  Factor %d: ", i+1); 

        for(j=0; j < n_levels[i]; j++){ 

            printf("  %f ", factor_means[m]); 

            m++; 

        } 

        k = (int)factor_std_err[2*i+1]; 

        printf("\n              std. err.(df):        %f(%d) \n",  

               factor_std_err[2*i], k); 

    } 
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    /* Print Two-Way Means. */ 

    printf("\n\nTwo-Way Means"); 

    m = 0; 

    l=0; 

    for(i=0; i < n_factors-1; i++){ 

        for(j=i+1; j < n_factors; j++){ 

            printf("\n  Factor %d by Factor %d: \n", i+1, j+1); 

            for(i2=0; i2 < n_levels[i]; i2++){ 

                for(j2=0; j2 < n_levels[j]; j2++){ 

                    printf("  %f ",two_way_means[m]); 

                    m++; 

                } 

                printf("\n"); 

            } 

            k = (int)two_way_std_err[l+1]; 

            printf("  std. err.(df): = %f(%d) \n", two_way_std_err[l], k); 

            l+=2; 

        } 

    } 

 

    /* Print Treatment Means. */ 

    printf("\n\nTreatment Means\n"); 

    m = 0; 

    for(i=0; i < n_levels[0]; i++){ 

        for(j=0; j < n_levels[1]; j++){ 

            for(k=0; k < n_levels[2]; k++){ 

                printf("  Treatment[%d][%d][%d] Mean: %f \n", 

                        i+1, j+1, k+1, treatment_means[m]); 

                m++; 

            } 

        } 

    } 

    k = (int)treatment_std_err[1]; 

    printf("\n  Treatment Std. Err (df) %f(%d) \n",  

           treatment_std_err[0], k); 

} 
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Output 
              *** ANALYSIS OF VARIANCE TABLE *** 

                                Mean 

           ID   DF     SSQ     squares    F-Test   p-Value 

[1]        -1    2    13.060     6.530     7.843     0.245 

[2]        -1    1     0.107     0.107     0.129     0.780 

[3]        -1    1     1.301     1.301     1.563     0.429 

[1]x[2]    -2    2     3.768     1.884     2.263     0.425 

[1]x[3]    -2    2     5.253     2.626     3.154     0.370 

[2]x[3]    -2    1     0.560     0.560     0.672     0.563 

Residual   -4    1     1.665     1.665  ........  ........ 

Total      -5   10    25.715  ........  ........  ........ 

 

 

Number of Missing Values Estimated: 1 

Grand Mean:                         3.961 

Coefficient of Variation:          32.574 

 

Factor Means 

  Factor 1:   2.580637   4.201973   5.101885 

              std. err.(df):        0.912459(1) 

  Factor 2:   3.866888   4.056109 

              std. err.(df):        0.745020(1) 

  Factor 3:   4.290812   3.632185 

              std. err.(df):        0.745020(1) 

 

 

Two-Way Means 

  Factor 1 by Factor 2: 

  3.277605   1.883670 

  3.744472   4.659474 

  4.578587   5.625184 

  std. err.(df): = 1.290412(1) 

 

  Factor 1 by Factor 3: 

  3.489899   1.671376 

  3.605455   4.798491 

  5.777082   4.426688 

  std. err.(df): = 1.290412(1) 

 

  Factor 2 by Factor 3: 

  3.980195   3.753580 
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  4.601429   3.510790 

  std. err.(df): = 1.053617(1) 

 

 

Treatment Means 

  Treatment[1][1][1] Mean: 4.427254 

  Treatment[1][1][2] Mean: 2.127955 

  Treatment[1][2][1] Mean: 2.552544 

  Treatment[1][2][2] Mean: 1.214796 

  Treatment[2][1][1] Mean: 2.475883 

  Treatment[2][1][2] Mean: 5.013061 

  Treatment[2][2][1] Mean: 4.735028 

  Treatment[2][2][2] Mean: 4.583921 

  Treatment[3][1][1] Mean: 5.037448 

  Treatment[3][1][2] Mean: 4.119725 

  Treatment[3][2][1] Mean: 6.516716 

  Treatment[3][2][2] Mean: 4.733652 

 

  Treatment Std. Err (df) 1.824919(1) 

rcbd_factorial 
Analyzes data from balanced and unbalanced randomized complete-block experiments. 
Unlike anova_factorial, function rcbd_factorial allows for missing data, 
unequal replication and one or more locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_rcbd_factorial (int n_obs, int n_locations, int n_factors, 

int n_levels[],int model[], float y[],…, 0) 
The type double function is imsls_d_rcbd_factorial. 

Required Arguments 

int n_obs  (Input) 
Number of missing and non-missing experimental observations. 

int n_locations (Input) 
Number of locations.  n_locations must be one or greater. 

int n_factors   (Input) 
Number of factors in the model. 

int n_levels[]   (Input) 
Array of length n_factors+1. The n_levels[0] through 
n_levels[n_factors-1] contain the number of levels for each factor.  The 
last element, n_levels[n_factors], contains the number of blocks at a 
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location. There must be at least two blocks and two levels for each factor, i.e., 
n_levels[i] >2 for i=0, 1, …, n_factors. 

int model[] (Input) 
A n_obs by (n_factors+2) array identifying the location, block and factor 
levels associated with each  observation in y.  The first column must contain 
the location identifier and the second column must contain the block identifier 
for the observation associated with that row.  The remaining columns, 
columns 3 through n_factors+2, should contain the factor level identifiers 
in the same order used in n_levels.  If n_locations =1, the first column 
is still required, but its contents are ignored. 

float y[] (Input) 
An array of length n_obs containing the experimental observations and any 
missing values.  Missing values are indicated by placing a NaN (not a 
number) in y. The NaN value can be set using either the function 
imsls_f_machine(6) or imsls_d_machine(6), depending upon whether 
single or double precision is being used, respectively. 

 

Return Value 
A pointer to the memory location of a two dimensional, n_anova by 6 array containing 
the ANOVA table, where: 

1

m

i

a
i=

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑

n_factors
n_anova

,  

3 if 1
5 if 1 

a ⎧= ⎨
⎩

n_locations = 

n_locations > ,  

and m= model_order = n_factors –1. 
Each row in this array contains values for one of the effects in the ANOVA table.  The 
first value in each row, anova_tablei,0 = anova_table[i*6], is the source 
identifier which identifies the type of effect associated with values in that row.  The 
remaining values in a row contain the ANOVA table values using the following 
convention: 

 
j anova_table

i,j 
= anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  
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j anova_table
i,j 

= anova_table[i*6+j] 

5 p-value for this F-statistic 

The values for the mean squares, F-statistic and p-value are set to NaN for the residual 
and corrected total effects. 
The Source Identifiers in the first column of anova_tablei,j are the only negative 
values in anova_table[]. The absolute value of the source identifier is equal to the 
order of the effect in that row.  Main effects, for example, have a source identifier  
of –1. Two-way interactions use a source identifier of –2, –3 and so on. 
 

Source 
Identifier 

 
ANOVA Source 

-1 Main Effects † 

-2 Two-Way Interactions ‡ 

-3 Three-Way Interactions ‡ 

. . 

. . 

. . 
-n_factors (n_factors)-way Interactions ‡ 

-n_factors-1 Error Term for Factors and Interactions 
-n_factors-2 Residual * 
-n_factors-3 Corrected Total 

 
Notes:  The Effects Error Term is equal to the Residual effect if  
n_locations = 1. 
† The number of main effects is equal to n_factors+2 if  
n_locations > 1, and n_factors +1 if n_locations = 1.  The first two rows, 
anova_table[0] through anova_table[10] are used to represent the location and 
block effects if n_locations > 1.  If n_locations=1, then anova_table[0] 
through anova_table[5]contain the block effects.   
‡  The number of interaction effects for the nth-way interactions is equal to  

⎛ ⎞
⎜ ⎟
⎝ ⎠
n_factors

n_way  .  

The order of these terms is in ascending order by treatment subscript.  The interactions 
for factor 1 appear first, followed by factor 2, factor 3, and so on. 
* The residual term is only produced when there is replication within blocks. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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float * imsls_f_rcbd_factorial (int n_obs, int n_locations,  
int n_factors, int n_levels[], int model[],float y[], 
IMSLS_RETURN_USER, float anova_table[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv, 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_FACTOR_MEANS, float **factor_means, 
IMSLS_FACTOR_MEANS_USER, float factor_means[], 
IMSLS_FACTOR_STD_ERRORS, float **factor_std_err, 
IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[], 
IMSLS_TWO_WAY_MEANS, float **two_way_means, 
IMSLS_TWO_WAY_MEANS_USER, float two_way_means[], 
IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err, 
IMSLS_TWO_WAY_STD_ERRORS_USER,  
 float two_way_std_err[], 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_TREATMENT_STD_ERROR, *float treatment_std_err, 
IMSLS_TREATMENT_STD_ERROR_USER,  
 float treatment_std_err[] 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float anova_table[] (Output) 
User defined n_anova by 6 array for the anova_table. 

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.  Missing values are denoted 
with a NaN (Not a Number) value. 

IMSLS_CV, float *cv (Output) 
Coefficient of Variation computed by: 
  

100 MSresidualCV
⋅

=
grand_mean . 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_FACTOR_MEANS, float **factor_means (Output) 
Address of a pointer to an internally allocated array of length 
n_levels[0]+n_levels[1]+…+n_levels[n_factors-1] containing 
the factor means. 
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IMSLS_FACTOR_MEANS_USER, float factor_means[] (Output) 
Storage for the array factor_means, provided by the user. 

IMSLS_FACTOR_STD_ERRORS, float **factor_std_err (Output) 
Address of a pointer to an internally allocated  n_factors by 2 array 
containing factor standard errors and their associated degrees of freedom.  The 
first column contains the standard errors for comparing two factor means and 
the second its associated degrees of freedom 

IMSLS_FACTOR_STD_ERRORS_USER, float factor_std_err[] (Output) 
Storage for the array factor_std_err, provided by the user. 

IMSLS_TWO_WAY_MEANS, float **two_way_means (Output) 
Address of a pointer to an internally allocated one-dimensional array 
containing the two-way means for all two by two combinations of the factors.  
The total length of this array when n_factors >1 is equal to: 
 

1

0 1

[ ] [ ]
f f

i j i

i j
+

= = +

×∑ ∑ n_levels n_levels
,  

 where  

2f = −n_factors
  

 If  n_factors = 1, NULL is returned. If n_factors>1, the means would 
first be produced for all combinations of the first two factors followed by all 
combinations of the remaining factors using the subscript order suggested by 
the above formula.  For example, if the experiment is a 2x2x2 factorial, the 12 
two-way means would appear in the following order:  A1B1,  A1B2, A2B1, 
A2B2, A1C1,  A1C2, A2C1, A2C2, B1C1, B1C2, B2C1, and B2C2.   

IMSLS_TWO_WAY_MEANS_USER, float two_way_means[] (Output) 
Storage for the array two_way_means, provided by the user. 

IMSLS_TWO_WAY_STD_ERRORS, float **two_way_std_err (Output) 
Address of a pointer to an internally allocated  n_two_way by 2 array 
containing factor standard errors and their associated degrees of freedom., 
where 

⎛ ⎞
⎜ ⎟
⎝ ⎠
n_factors

n_two_way =
2  

 The first column contains the standard errors for comparing two 2-way 
interaction means and the second its associated degrees of freedom.  The 
ordering of the rows in this array is similar to that used in 
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IMSLS_TWO_WAY_MEANS.  For example if n_factors=4, then  
n_two_way = 6 with the order AB, AC, AD, BC, BD, CD.   

IMSLS_TWO_WAY_STD_ERRORS_USER, float two_way_std_err[] (Output) 
Storage for the array two_way_std_err, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 

[0] [1] [ 1]× × × −n_levels n_levels n_levels n_factors"
 

  containing the treatment means. The order of the means is organized in ascending 
order by the value of the factor identifier.  For example, if the experiment is a 
2x2x2 factorial, the 8 means would appear in the following order:  A1B1C1, 
A1B1C2, A1B2C1, A1B1C2, A2B1C1, A2B1C2, A2B2C1, and A2B2C2. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_TREATMENT_STD_ERROR, float *treatment_std_err (Output) 
The array of length 2 containing standard error for comparing treatments 
based upon the average number of replicates per treatment and its associated 
degrees of freedom. 

IMSLS_TREATMENT_STD_ERROR_USER, float treatment_std_err[] (Output) 
Storage for the array treatment_std_err, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array containing the 
labels for each of the  n_anova rows of the returned ANOVA table.  The 
label for the ith row of the ANOVA table can be printed with  
printf("%s", anova_row_labels[i]). 

 The memory associated with anova_row_labels  can be freed with a single 
call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output) 
Storage for the array anova_row_labels, provided by the user.  The amount 
of space required will vary depending upon the number of factors and 
n_anova.   An upperbound on the required memory is  
char *anova_row_labels[100*(n_anova+1)]. 

Description 
The function imsls_f_rcbd_factorial is capable of analyzing randomized 
complete block factorial experiments replicated in different locations.  Missing 
observations are estimated using the Yates method.  Locations, if used, and blocks are 
treated as random factors.  All treatment factors are regarded as fixed effects in the 
analysis.  If n_locations > 1, then blocks are treated as nested within locations and 
the number of blocks used at each location must be the same. 
If n_locations = 1, then the residual mean square is used as the error mean square in 
calculating the F-tests for all other effects.  That is 
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effect
effect

residual

MS
F

MS
= , when n_locations = 1. 

In this case, the residual mean square is calculating by pooling all interactions between 
treatments and blocks.  For example, if treatments are formed from two factors, A and 
B, then  

residual A Blocks B Blocks A B Blocks

residual A Blocks B Blocks A B Blocks

residual
residual

residual

SS SS SS SS
df df df df

SSMS
df

× × × ×

× × × ×

= + +
= + +

=

 

When n_locations = 1, then residualMS is also used to calculate the standard errors 
between means. For example, in a two factor experiment: 

Std Err(A)

Std Err(B)  

Std Err(A B)

2     

2    

2

residual

A

residual

B

residual

A B

MS
N

MS
N

MS
N ×

=

=

× =

⋅

⋅

⋅

,  

where  

AN
, BN

 and A BN ×   

are the number of observations for each level of the effects A, B and their interaction, 
respectively. 
 If n_locations > 1, then the error mean square is used as the denominator of the  
F-test for effects: 

effect
effect

error

MS
F

MS
=

. 

The error mean square in this calculation is obtained by pooling all interactions 
between each factor and locations.  For example n_locations > 1 and n_factors=2 
then: 
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error A Locations B Locations A B Locations

error A Locations B Locations A B Locations

error
error

error

SS SS SS SS
df df df df

SSMS
df

× × × ×

× × × ×

= + +
= + +

=
 

In this case, n_locations > 1, the standard errors for means are calculated using 

 
instead of error residualMS MS

 

The F-test for differences between locations is calculated using the mean squares for 
blocks within locations: 

( )

locations
locations

blocks location

MSF
MS

=
 

Example 
This example is based upon data from an agricultural trial conducted by DOW 
Agrosciences.  This is a three factor, 3x2x2, experiment replicated in two blocks at one 
location. For illustration, two observations are set to NaN to simulate missing 
observations.  

#include <stdio.h> 

#include <math.h> 

#include "imsls.h" 

 

void main(){ 

    int n_obs       = 24; 

    int n_locations = 1; 

    int n_factors   = 3; 

    int n_levels[4] ={3, 2, 2, 2};  

    int model[]={ 

            1, 1, 1, 1, 1, 

            1, 2, 1, 1, 1, 

            1, 1, 1, 1, 2, 

            1, 2, 1, 1, 2, 

            1, 1, 1, 2, 1, 

            1, 2, 1, 2, 1, 

            1, 1, 1, 2, 2, 

            1, 2, 1, 2, 2, 

            1, 1, 2, 1, 1, 

            1, 2, 2, 1, 1, 
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            1, 1, 2, 1, 2, 

            1, 2, 2, 1, 2, 

            1, 1, 2, 2, 1, 

            1, 2, 2, 2, 1, 

            1, 1, 2, 2, 2, 

            1, 2, 2, 2, 2, 

            1, 1, 3, 1, 1, 

            1, 2, 3, 1, 1, 

            1, 1, 3, 1, 2, 

            1, 2, 3, 1, 2, 

            1, 1, 3, 2, 1, 

            1, 2, 3, 2, 1, 

            1, 1, 3, 2, 2, 

            1, 2, 3, 2, 2 

    }; 

    float y[] ={ 

            4.42725419998168950, 2.98526261840015650,  

            2.12795543670654300, 4.36357164382934570, 

            2.55254390835762020, 2.78596709668636320, 

            1.21479606628417970, 2.68143519759178160, 

            2.47588264942169190, 4.69543695449829100, 

            5.01306104660034180, 3.01919978857040410, 

            4.73502767086029050, 0.00000000000000000, 

            0.00000000000000000, 5.05780076980590820, 

            5.01421167794615030, 3.61517095565795900, 

            4.11972457170486450, 4.71947982907295230, 

            6.51671624183654790, 4.22036057710647580, 

            4.73365202546119690, 4.68545144796371460 

    }; 

         

   int page_width = 132; 

   int model_order; 

   int i, n_subscripts, n_anova_table; 

   char **aov_labels; 

   char *col_labels[] = {" ", "ID", "df", "SS",  

                         "MS", "F-Test", "P-Value"}; 

   float *anova_table; 

 

   /* Compute number of rows in the anova table. */ 

   model_order = n_subscripts = n_factors; 

   n_anova_table = 3; 

   for (i=1; i <= model_order; i++){ 
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       n_anova_table += imsls_d_binomial_coefficient(n_subscripts, i); 

   } 

    

   /* Set missing observations. */ 

   y[13] = imsls_d_machine(6); 

   y[14] = imsls_d_machine(6);  

 

   anova_table = imsls_f_rcbd_factorial(n_obs, n_locations, n_factors, 

                                        n_levels, model, y, 

                                        IMSLS_ANOVA_ROW_LABELS, &aov_labels, 

                                        0) ; 

   imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

   /* 

    * Print ANOVA table. 

    */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       10, 6, anova_table,  

                       IMSLS_ROW_LABELS, aov_labels,  

                       IMSLS_COL_LABELS, col_labels,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       0); 

} 

 

Output 
 

 

              *** ANALYSIS OF VARIANCE TABLE *** 

              ID   df        SS       MS   F-Test  P-Value 

Blocks        -1    1      0.01     0.01  .......  ....... 

[1]           -1    2     14.73     7.37     5.15    0.032 

[2]           -1    1      0.24     0.24     0.17    0.692 

[3]           -1    1      0.15     0.15     0.10    0.756 

[1]x[2]       -2    2      5.79     2.89     2.02    0.188 

[1]x[3]       -2    2      1.02     0.51     0.36    0.709 

[2]x[3]       -2    1      0.20     0.20     0.14    0.719 

[1]x[2]x[3]   -3    2      0.13     0.07     0.05    0.956 

Error         -4    9     12.88     1.43  .......  ....... 

Total         -6   21     35.15  .......  .......  ....... 
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latin_square 
Analyzes data from latin-square experiments.  Function latin_square also analyzes 
latin-square experiments replicated at several locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_latin_square (int n, int n_locations,   

int n_treatments, int row[], int col[], int treatment[],  
 float y[], …,  0) 

The type double function is imsls_d_latin_square. 

Required Arguments 

int n  (Input) 
Number of missing and non-missing experimental observations.  
imsls_f_latin_square verifies that: 

2n = ⋅n_locations n_treatments
 

hint n_locations (Input) 
Number of locations.  n_locations must be one or greater.   If 
n_locations>1 then the optional array locations[] must be included as 
input to imsls_f_latin_square. 

int n_treatments  (Input) 
Number of treatments.  n_treatments must be greater than one.  In addition 
the number of rows and columns must be equal to  n_treatments. 

int row[]  (Input) 
An array of length n containing the row identifiers for each observation in y.  
Each row must be assigned values from 1 to n_treatments.  
imsls_f_latin_square verifies that the number of unique factor A 
identifiers is equal to n_treatments. 

int col[]  (Input) 
An array of length n containing the column identifiers for each observation in 
y.  Each column must be assigned values from 1 to n_treatments.  
imsls_f_latin_square verifies that the number of unique column 
identifiers is equal to n_treatments. 

int treatment[]  (Input) 
An array of length n containing the treatment identifiers for each observation 
in y.  Each treatment must be assigned values from 1 to n_treatments.  
imsls_f_latin_square verifies that the number of unique treatment 
identifiers is equal to n_treatments. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated by 
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placing a NaN (not a number) in y. The NaN value can be set using either the 
function imsls_f_machine(6) or imsls_d_machine((6), depending upon 
whether single or double precision is being used, respectively.  The location, 
row, column, and treatment number for each observation in y are identified 
by the corresponding values in the arguments locations, row, col, and 
treatment. 

Return Value 
Address of a pointer to the memory location of a two dimensional, 7 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of the 
effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated 
with values in that row.  The remaining values in a row contain the ANOVA table 
values using the following convention: 
 

J anova_table
i,j 
= anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 

The Source Identifiers in the first column of anova_tablei,j are the only negative 
values in anova_table[]. Assignments of identifiers to ANOVA sources use the 
following coding: 
 

Source 
Identifier 

 
ANOVA Source 

-1 LOCATIONS † 

-2 ROWS  

-3 COLUMNS  

-4 TREATMENTS 

-5 LOCATIONS × TREATMENTS † 

-6 ERROR WITHIN LOCATIONS 

-7 CORRECTED TOTAL 

 
Notes: † If n_locations=1 rows involving location are set to missing (NaN). 

Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_latin_square (int n, int n_locations, int n_treatments, int 

row[], int col[], int treatment[], float y[], 
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IMSLS_RETURN_USER, float anova_table[], 
IMSLS_LOCATIONS, int locations[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv, 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER,  
 float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 

Optional Arguments 

IMSLS_RETURN_USER, float anova_table[] (Output) 
User defined array of length 42 for storage of the 7 by 6 anova table described 
as the return argument for this routine.  For a detailed description of the 
format for this table, see the previous description of the return arguments for 
imsls_f_latin_square. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each observation in 
y.  Unique integers must be assigned to each location in the study.  This 
argument is required when n_locations>1.  

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.   Missing values are denoted 
with a NaN (Not a Number) value. 

IMSLS_CV, float *cv (Output) 
The coefficient of variation computed by using the within location standard 
deviation. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size n_treatments 
containing the treatment means.  

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float **std_err (Output) 
 Address of a pointer to an internally allocated array of length 2 containing the 
standard error and  associated degrees of freedom for comparing two 
treatment means.   std_err[0] contains the standard error and its degrees of 
freedom are returned in  std_err[1]. 
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IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
 Address of a pointer to an internally allocated 3-dimensional array of size 
n_locations by 7 by 6 containing the anova tables associated with each 
location.  For each location, the 7 by 6 dimensional array corresponds to the 
anova table for that location.  For example,  
location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains the value in 
the kth column and jth row of the anova-table for the ith location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
 Storage for the array location_anova_table, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array containing the 
labels for each of the  n_anova rows of the returned ANOVA table.  The 
label for the ith row of the ANOVA table can be printed with printf("%s", 
anova_row_labels[i]). 

The memory associated with anova_row_labels  can be freed with a single 
call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the array anova_row_labels, provided by the user.  The amount 
of space required will vary depending upon the number of factors and 
n_anova.  An upperbound on the required memory is  
char *anova_row_labels[600]. 

Description 
Function imsls_f_latin_square analyzes latin-square experiments, possibly 
replicated at multiple locations.  Latin-square experiments block treatments using two 
factors:  rows and columns.  The number of levels associated with rows and columns 
must equal the number of treatments.  Treatments are blocked by rows and columns in 
a balanced arrangement to ensure that every row contain one replicate of every 
treatment. The same balance is required for every column, see Table 1.  Notice that the 
four treatments, T1, T2, T3, and T4, appear exactly once in every column and every 
row. 
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  Columns 

  C1 C2 C3 C4 

R1 T1 T2 T3 T4 

R2 T2 T3 T4 T1 

R3 T3 T4 T1 T2 

 

 
Rows

R4 T4 T1 T2 T3 

Table 1  Latin-Square Experiment with Four Treatments 

A necessary assumption in Latin-Square experiments is that there are no interactions 
between treatments and the row and column blocking factors.  For data collected at a 
single location, the Anova table for a Latin-Square experiment is usually organized into 
five rows, see Table 2. 
 

SOURCE DF Sum of Squares Mean 
Squares 

ROWS 1t −  
SSR= 2

. ..
1

( )
t

i
i

t y y
=

−∑  
MSR 

COLUMNS 1t −  
SSC= 2

. ..
1

( )
t

j
j

t y y
=

−∑  
MSC 

TREATMENTS  1t −  
SST= 2

..
1
( )

t

k
k

t y y
=

−∑  
MST 

ERROR ( 1)( 2)t t− − SSE=SSTot-SSR-SSC-SST MSE 

TOTAL 2 1t −  
SSTot= ( )2

..
1 1

t t

ij
i j

y y
= =

−∑∑  

Table 2 – The ANOVA Table for a Latin-Square Experiment at one Location 

The statistical model used to represent data is from a single location: 

( ) ( ) ( )ij k i j k ij ij ky μ ρ γ τ ε= + + + +
,  

where 

( )ij ky is the observation for the kth treatment in the ith row and jth column of the Latin 

Square, and, ( )k ijτ is the effect associated with the kth treatment. iρ and jγ are the ith 
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row and jth column effects, respectively, and ( )ij kε is the noise associated with this 
observation. 
If multiple locations are involved, imsls_f_latin_square assumes that treatments 
are crossed with locations, but that row and column effects are nested within locations, 
see Table 3.  The statistical model used to represent these data is: 

( ) ( ) ( ) ( ) ( ) ( )lij k l i l j l k ij lk ij lij ky μ α ρ γ τ ατ ε= + + + + + +
,  

where 

( )k ijτ
 

is the effect associated with the kth treatment, and  

( )lk ijατ
 

is the interaction effect between location l and treatment k. 
 

SOURCE DF Sum of Squares Mean 
Squares 

LOCATIONS 1r −  
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.. ...
1
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t y y
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ROWS ( 1)r t −  
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1 1
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r t

li l
l i

t y y
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1 1
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l j l
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1
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t

k
k

r t y y
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( 1)( 1)r t− −  SSLT by difference MSLT 
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SOURCE DF Sum of Squares Mean 
Squares 

ERROR ( 1)[ ( 1) 1]t r t− − −  
SSE=

1

r

l
l

SSE
=
∑  

MSE 

TOTAL 2 1r t⋅ −  
SSTot= ( )2

..
1 1 1

r t t

lij
l i j

y y
= = =

−∑∑∑  
 

Table 3 – The ANOVA Table for a Latin-Square Experiment at Multiple Locations 

Example 
This example uses four treatments organized into a latin square. This example also uses 
the function l_print_LSD(), which is defined in the first example for 
imsls_f_lattice(). 

 

#include <stdio.h> 

#include <math.h> 

#include "imsls.h" 

 

void l_print_LSD(int n1, int* equalMeans, float *means); 

 

void main() 

{ 

  char **anova_row_labels; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",  

                        "Mean  \nsquares", "\nF-Test", "\np-Value"}; 

  float alpha = 0.05; 

  int i, l, page_width = 132; 

   

  int n            = 16; /* Total number of observations */ 

  int n_locations  = 1;  /* Number of locations */ 

  int n_treatments = 4;  /* Number of rows, columns and treatments */ 

  int n_aov_rows   = 7;  /* Number of rows in the latin-square anova table */ 

 

  int col[]={1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4}; 

  int row[]={3, 2, 4, 1, 1, 4, 2, 3, 2, 3, 1, 4, 4, 1, 3, 2}; 

  int treatment[]={1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}; 

 

  float y[]={ 

         1.167,  1.185,  1.655, 1.345, 1.64, 1.29, 1.665, 1.29, 

         1.475, 0.71, 1.425, 0.66, 1.565, 1.29, 1.4, 1.18}; 
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  float grand_mean; 

  float cv; 

  float *aov; 

  float *treatment_means; 

  float *std_err; 

  int    df; 

  int    *equal_means; 

 

  printf("\n\n*** Experimental Design ***"); 

  printf("\n==============================="); 

  printf("\n| COL  |  1  |  2  |  3  |  4  |"); 

  printf("\n==============================="); 

  printf("\n|ROW 1 |  2  |  4  |  3  |  1  |"); 

  printf("\n==============================="); 

  printf("\n|ROW 2 |  3  |  1  |  2  |  4  |"); 

  printf("\n==============================="); 

  printf("\n|ROW 3 |  1  |  3  |  4  |  2  |"); 

  printf("\n==============================="); 

  printf("\n|ROW 4 |  4  |  2  |  1  |  3  |"); 

  printf("\n==============================="); 

 

  aov = imsls_f_latin_square(n, n_locations, n_treatments, row, col,  

                             treatment, y,  

                             IMSLS_GRAND_MEAN, &grand_mean,  

                             IMSLS_CV, &cv, 

                             IMSLS_TREATMENT_MEANS, &treatment_means,  

                             IMSLS_STD_ERRORS, &std_err, 

                             IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                             0); 

  /* Output results. */ 

   

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

  /* Print ANOVA table. */ 

  imsls_f_write_matrix("\n   *** ANALYSIS OF VARIANCE TABLE ***",  

                       7, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.3f%8.3f%8.3f%8.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  printf("\n\nGrand Mean:               %7.3f", grand_mean); 
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  printf("\n\nCoefficient of Variation: %7.3f\n\n", cv); 

  l = 0; 

  printf("Treatment Means: \n"); 

  for (i=0; i < n_treatments; i++){ 

        printf("treatment[%2d]              %7.4f \n", i+1, 
treatment_means[l++]); 

  } 

  df = (int)std_err[1]; 

  printf("\n\nStandard Error for Comparing Two Treatment Means: %f \n(df=%d)\n",  

      std_err[0], df); 

  equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df, 

                                             std_err[0]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_print_LSD(n_treatments, equal_means, treatment_means); 

} 
 

Output 
 

*** Experimental Design *** 

=============================== 

| COL  |  1  |  2  |  3  |  4  | 

=============================== 

|ROW 1 |  2  |  4  |  3  |  1  | 

=============================== 

|ROW 2 |  3  |  1  |  2  |  4  | 

=============================== 

|ROW 3 |  1  |  3  |  4  |  2  | 

=============================== 

|ROW 4 |  4  |  2  |  1  |  3  | 

=============================== 

 

                       *** ANALYSIS OF VARIANCE TABLE *** 

                                                   Mean 

                              ID   DF     SSQ     squares    F-Test   p-Value 

Locations .................   -1  ...  ........  ........  ........  ........ 

Rows within Locations .....   -2    3     0.185     0.062     2.064     0.207 

Columns within Locations ..   -3    3     0.589     0.196     6.579     0.025 

Treatments ................   -4    3     0.352     0.117     3.927     0.073 

Locations x Treatments ....   -5  ...  ........  ........  ........  ........ 

Error within Locations ....   -6    6     0.179     0.030  ........  ........ 



 

 
 

296 • lattice IMSL C Stat Library 

 

 

 

Corrected Total ...........   -7   15     1.305  ........  ........  ........ 

 

 

Grand Mean:                 1.309 

 

Coefficient of Variation:  13.204 

 

Treatment Means: 

treatment[ 1]               1.3380 

treatment[ 2]               1.4712 

treatment[ 3]               1.0675 

treatment[ 4]               1.3587 

 

 

Standard Error for Comparing Two Treatment Means: 0.122202 

(df=6) 

[group]           Mean          LSD Grouping 

  [3]           1.067500          * 

  [1]           1.338000          *       * 

  [4]           1.358750          *       * 

  [2]           1.471250                  * 
 
 

lattice 
Analyzes balanced and partially-balanced lattice experiments.  In these experiments, a 
requirement is that the number of treatments be equal to the square of an integer, such 
as 9, 16, or 25 treatments.  Function lattice also analyzes repetitions of lattice 
experiments. 

Synopsis 
#include <imsls.h> 
float * imsls_f_lattice (int n, int n_locations, int n_reps,  

int n_blocks, int n_treatments, int rep[], int block[],  
int treatment[], float y[],…, 0) 

The type double function is imsls_d_lattice. 

Required Arguments 

int n  (Input) 
Number of missing and non-missing experimental observations.  
imsls_f_balanced_lattice verifies that: 



 
 
 
 

 
 

Chapter 4: Analysis of Variance and Designed Experiments lattice • 297  

 

 

 

wheren = n_locations×t×r 
  

andt   r= =n_treatments n_reps
. 

int n_locations (Input) 
Number of locations or repetitions of the lattice experiments.  n_locations 
must be one or greater.   If n_locations>1 then the optional arguments 
IMSLS_LOCATIONS must be included as input to imsls_f_lattice. 

int n_reps  (Input) 
Number of replicates per location.  Each replicate should consist of  
t = n_treatments organized into k t=  blocks. 

int n_blocks  (Input) 
Number of blocks per location. For every location,  n_blocks must be equal 
to n_blocks= r·k, where r = n_reps and  .k t=  

int n_treatments  (Input) 
Number of treatments t = n_treatments must be equal to k2. 

int rep[]  (Input) 
An array of length n containing the replicate identifiers for each observation 
in y.  For a balanced-lattice, the number of replicate identifiers must be equal 
to n_reps=(k+1). For a partially-balanced lattice, the number of replicate 
identifiers depends upon whether the design is a simple lattice, triple lattice, 
etc.  imsls_f_lattice verifies that the number of unique replicate 
identifiers is equal to n_reps.  If multiple locations or repetitions of the 
experiment is conducted, i.e., n_locations>1, then the replicate and block 
numbers contained in rep and block must agree between repetitions. 

int block[]  (Input) 
An array of length n containing the block identifiers for each observation in 
y.  imsls_f_lattice verifies that the number of unique block identifiers is 
equal to n_blocks.  If multiple locations or repetitions of the experiment is 
conducted, i.e., n_locations>1, then block numbers must agree between 
repetitions.  That is, the ith block in every location or repetition must contain 
the same treatments. 

int treatment[]  (Input) 
An array of length n containing the treatment identifiers for each observation 
in y.  Each treatment must be assigned values from 1 to n_treatments.  
imsls_f_lattice verifies that the number of unique treatment identifiers is 
equal to n_treatments. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated by 
placing a NaN (not a number) in y. The NaN value can be set using either the 
function imsls_f_machine(6) or imsls_d_machine(6), depending upon 
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whether single or double precision is being used, respectively.  The location, 
replicate, block, and treatment number for each observation in y are identified 
by the corresponding values in the arguments locations, rep, block, and 
treatment. 

Return Value 
Address of a pointer to the memory location of a two dimensional, 7 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of the 
effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated 
with values in that row.  The remaining values in a row contain the ANOVA table 
values using the following convention: 

 
J anova_table

i,j 
= anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 
 

The Source Identifiers in the first column of anova_tablei,j are the only negative 
values in anova_table[]. Assignments of identifiers to ANOVA sources use the 
following coding: 

 
Source Identifier ANOVA Source 

-1 LOCATIONS † 

-2 REPLICATES  

-3 TREATMENTS(unadjusted) 

-4 TREATMENTS(adjusted) 

-5 BLOCKS(adjusted) 

-6 INTRA-BLOCK ERROR 

-7 CORRECTED TOTAL 
 

Notes: † If n_locations=1, all entries in this row are set to missing (NaN). 

Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_lattice(int n, int n_locations, int n_reps,  

int n_blocks, int n_treatments, int rep[], int block[],  
int  treatment[], float y[],  
IMSLS_RETURN_USER, float anova_table[] 
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IMSLS_LOCATIONS, int locations[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv, 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER,  
 float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 

Optional Arguments 

IMSLS_RETURN_USER, float anova_table[] (Output) 
User defined array of length 42 for storage of the 7 by 6 anova table described 
as the return argument for imsls_f_lattice.  For a detailed description of 
the format for this table, see the previous description of the return arguments 
for imsls_d_lattice. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location or repetition identifiers for each 
observation in y.  Unique integers must be assigned to each location in the 
study.  This argument is required when n_locations>1. 

IMSLS_N_MISSING, int *n_missing  (Output) 
 Number of missing values, if any, found in y.  Missing values are denoted 
with a NaN (Not a Number) value. 

IMSLS_CV, float *cv (Output) 
 The coefficient of variation computed by using the location standard 
deviation. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
 The overall adjusted mean averaged over every location. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size n_treatments 
containing the adjusted treatment means.  

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float  **std_err (Output) 
 Address of a pointer to an internally allocated array of length 4 containing the 
standard error and  associated degrees of freedom for comparing two 
treatment means.   std_err[0] contains the standard error for comparing 
two treatments that appear in the same block at least once.  std_err[1] 
contains the standard error for comparing two treatments that never appear in 
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the same block together.  std_err[2] contains the standard error for 
comparing, on average, two treatments from the experiment averaged over 
cases in which the treatments do or do not appear in the same block.  Finally, 
std_err[3] contains  the degrees of freedom associated with each of these 
standard errors, i.e.,  std_err[3]= degrees of freedom for intra-block error.  

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
Address of a pointer to an internally allocated 3-dimensional array of size 
n_locations  by 7 by 6 containing the anova tables associated with each 
location or repetition of the lattice experiment.  For each location, the 7 by 6 
dimensional array corresponds to the anova table for that location.   
For example, location_anova_table[(i-1)×42+(j-1)×6 + (k-1)] contains 
the value in the kth column and jth row of the anova-table for the ith location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
Storage for the array location_anova_table, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array containing the 
labels for each of the  n_anova rows of the returned ANOVA table. The label 
for the ith row of the ANOVA table can be printed with printf("%s", 
anova_row_labels[i]); 
The memory associated with anova_row_labels  can be freed with a single 
call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output) 
Storage for the array anova_row_labels, provided by the user.  The amount 
of space required will vary depending upon the number of factors and 
n_anova. An upperbound on the required memory is  
char *anova_row_labels[600]; 

Description 
The function imsls_f_lattice analyzes both balanced and partially-balanced lattice 
experiments, possibly repeated at multiple locations.  These designs were originally 
described by Yates (1936).  A defining characteristic of these classes of lattice 
experiments is that the number of treatments is always the square of an integer, such as 
t=9, 16, 25, etc. where t is equal to the number of treatments.   
Another characteristic of lattice experiments is that blocks are organized into replicates, 
where each replicate contains one observation for each treatment.  This requires  the 
number of blocks in each replicate to be equal to the number of observations per block.  
That is, the number of blocks per replicate and the number of observations per block 
are both equal to k t= . 

For balanced lattice experiments the number of replicates is always 1k +  .  For 
partially-balanced lattice experiments, the number of replicates is less than 1k + .  
Tables of balanced-lattice experiments are tabulated in Cochran & Cox (1950) for t=9, 
16, 25, 49, 64 and 81.  



 
 
 
 

 
 

Chapter 4: Analysis of Variance and Designed Experiments lattice • 301  

 

 

 

The analysis of balanced and partially-balanced experiments is detailed in Cochran & 
Cox (1950) and Kuehl (2000).   
Consider, for example, a 3x3 balanced-lattice, i.e., k=3 and t=9.  Notice that the 
number of replicates is 4 and the number of blocks per replicate is equal to 3.  The total 
number of blocks is equal to 

( 1) 1r k⋅ ⋅ − +n_blocks= n_locations
 .   

For a balanced-lattice,  

( 1) ( 1) 4 3 12b r k k k t t= = ⋅ = + ⋅ = + ⋅ = ⋅ =n_blocks
. 

Replicate I Replicate II 
Block 1 (T1, T2, T3) Block 4 (T1, T4, T7) 

Block 2 (T4, T5, T6) Block 5 (T2, T5, T8) 

Block 3 (T7, T8, T9) Block 6 (T3, T6, T9) 

Replicate III Replicate IV 
Block 7 (T1, T5, T9) Block 10 (T1, T6, T8) 

Block 8 (T2, T6, T7) Block 11 (T2, T4, T9) 

Block 9 (T3, T4, T8) Block 12 (T3, T5, T7) 

Table 1  A 3x3 Balanced-Lattice for 9 Treatments in Four Replicates. 

The analysis of variance for data from a balanced-lattice experiment, takes the form 
familiar to other balanced incomplete block experiments.  In these experiments, the 
error term is divided into two components:  the Inter-Block Error and the Intra-Block 
Error. For single and multiple locations, the general format of the anova tables is 
illustrated in the Tables 2 and 3. 

 
SOURCE DF Sum of 

Squares 
Mean 
Squares 

REPLICATES 1r −  SSR MSR 

TREATMENTS(unadj) 1t −  SST MST 

TREATMENTS(adj) 1t −  SSTa MSTa 

BLOCKS(adj)  ( 1)r k⋅ −  SSBa MSBa 

INTRA-BLOCK ERROR ( 1)( 1)k r k k− ⋅ − −  SSI MSI 

TOTAL 1r t⋅ −   SSTot 

Table  2 The ANOVA Table for a Lattice Experiment at one Location 
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SOURCE DF Sum of 
Squares 

Mean 
Squares 

LOCATIONS 1p −  SSL MSL 

REPLICATES WITHIN LOCATIONS ( 1)p r −  SSR MSR 

TREATMENTS(unadj) 1t −  SST MST 

TREATMENTS(adj) 1t −  SSTa MSTa 

BLOCKS(adj) ( 1)p r k⋅ −  SSB MSB 

INTRA-BLOCK ERROR ( 1)( 1)p k r k k⋅ − ⋅ − −  SSI MSI 

TOTAL 1p r t⋅ ⋅ −   SSTot 

Table 3  The ANOVA Table for a Lattice Experiment at Multiple Locations 

Example 1 
This example is a lattice design for 16 treatments conducted at one location.  A lattice 
design with t=k2=16 treatments is a balanced lattice design with r= k+1=5 replicates 
and r·k=5(4)=20 blocks. 
 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

 

void l_print_LSD(int n1, int* equalMeans, float *means); 

 

void main() 

{ 

  char **anova_row_labels = NULL; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",  

                        "Mean  \nsquares", "\nF-Test", "\np-Value"}; 

  float alpha = 0.05; 

  int i, l, page_width = 132;   

  int n            = 80; /* Total number of observations      */ 

  int n_locations  = 1;  /* Number of locations               */ 

  int n_treatments =16;  /* Number of treatments              */ 

  int n_reps       = 5;  /* Number of replicates              */ 

  int n_blocks     =20;  /* Total number of blocks            */ 

  int n_aov_rows   = 7;  /* Number of rows in the anova table */ 

  

  int rep[]={                         

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  
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        3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 

        4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 

        5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 

  }; 

 

  int block[]={                         

         1,  1,  1,  1,  2,  2,  2,  2,  3,  3,  3,  3,  4,  4,  4,  4, 

         5,  5,  5,  5,  6,  6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  8,  

         9,  9,  9,  9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 

        13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 

        17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20 

  }; 

 

  int treatment[]={         

         1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,  

         1,  5,  9, 13, 10,  2, 14,  6,  7, 15,  3, 11, 16,  8, 12,  4,   

         1,  6, 11, 16,  5,  2, 15, 12,  9, 14,  3,  8, 13, 10,  7,  4,   

         1, 14,  7, 12, 13,  2, 11,  8,  5, 10,  3, 16,  9,  6, 15,  4,   

         1, 10, 15,  8,  9,  2,  7, 16, 13,  6,  3, 12,  5, 14, 11,  4 

        }; 

  

  float y[] ={ 

        147, 152, 167, 150, 127, 155, 162, 172,  

        147, 100, 192, 177, 155, 195, 192, 205, 

        140, 165, 182, 152,  97, 155, 192, 142, 

        155, 182, 192, 192, 182, 207, 232, 162, 

        155, 132, 177, 152, 182, 130, 177, 165, 

        137, 185, 152, 152, 185, 122, 182, 192, 

        220, 202, 175, 205, 205, 152, 180, 187, 

        165, 150, 200, 160, 155, 177, 185, 172, 

        147, 112, 177, 147, 180, 205, 190, 167, 

        172, 212, 197, 192, 177, 220, 205, 225 

  }; 

 

  float grand_mean; 

  float cv; 

  float *aov; 

  float *treatment_means; 

  float *std_err; 

  int   *equal_means; 

  int   df; 
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  aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,   

                        n_treatments, rep, block, treatment, y,  

                        IMSLS_GRAND_MEAN, &grand_mean,  

                        IMSLS_CV, &cv, 

                        IMSLS_TREATMENT_MEANS, &treatment_means,  

                        IMSLS_STD_ERRORS, &std_err, 

                        IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                        0); 

   

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

  /* Print the ANOVA table. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                        7, 6, aov,  

                        IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                        IMSLS_ROW_LABELS, anova_row_labels, 

                        IMSLS_COL_LABELS, col_labels, 

                        0); 

 

  printf("\n\nAdjusted Grand Mean:      %7.3f", grand_mean); 

  printf("\n\nCoefficient of Variation: %7.3f\n\n", cv); 

  l = 0; 

  printf("Adjusted Treatment Means: \n"); 

  for (i=0; i < n_treatments; i++){ 

        printf("treatment[%2d]             %7.4f \n", i+1,        
  treatment_means[l++]); 

  } 

  df = (int)std_err[3]; 

  printf("\nStandard Error for Comparing Two Adjusted Treatment Means: %f \n(df=%d)\n",  

         std_err[2], df); 

  equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df, 

                                             std_err[2]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_print_LSD(n_treatments, equal_means, treatment_means); 

   

} 

 

/* 

 * Function to display means comparison. 

 */ 

void l_print_LSD(int n, int *equalMeans, float *means){ 
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        float x=0.0; 

        int i, j, k; 

        int iSwitch; 

        int *idx; 

         

        idx = (int *) malloc(n * sizeof (int)); 

 

        for (k=0; k < n; k++) { 

                idx[k]   =k+1; 

        } 

         

        /* Sort means in ascending order*/ 

         

        iSwitch=1; 

        while (iSwitch != 0){ 

                iSwitch = 0; 

                for (i = 0; i < n-1; i++){ 

                        if (means[i] > means[i+1]){ 

                                iSwitch = 1; 

                                x = means[i]; 

                                means[i] = means[i+1]; 

                                means[i+1] = x; 

                                j = idx[i]; 

                                idx[i] = idx[i+1]; 

                                idx[i+1] = j; 

                        } 

                } 

        } 

        printf("[group] \t  Mean \t\tLSD Grouping \n"); 

        for (i=0; i < n; i++){ 

                printf("  [%d] \t\t%f", idx[i], means[i]);                 

                for (j=1; j < i+1; j++){ 

                        if(equalMeans[j-1] >= i+2-j){ 

                                printf("\t  *"); 

                        }else{  

                                if(equalMeans[j-1]>0) printf("\t"); 

                        } 

                } 

                if (i < n-1 && equalMeans[i]>0) printf("\t  *"); 

                printf("\n"); 

        } 

        free(idx); 
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        idx = NULL; 

        return; 

} 

 

Output 
 

 

                      *** ANALYSIS OF VARIANCE TABLE *** 

                                                  Mean 

                              ID   DF     SSQ    squares   F-Test  p-Value 

Locations .................   -1  ...  ........  .......  .......  ....... 

Replicates ................   -2    4   6524.38  1631.10  .......  ....... 

Treatments (unadjusted) ...   -3   15  27297.13  1819.81     4.12    0.000 

Treatments (adjusted) .....   -4   15  21271.29  1418.09     4.21    0.000 

Blocks (adjusted) .........   -5   15  11339.28   755.95  .......  ....... 

Intra-Block Error .........   -6   45  15173.09   337.18  .......  ....... 

Corrected Total ...........   -7   79  60333.88  .......  .......  ....... 

 

 

Adjusted Grand Mean:      171.450 

 

Coefficient of Variation:  10.710 

 

Adjusted Treatment Means: 

treatment[ 1]             166.4533 

treatment[ 2]             160.7527 

treatment[ 3]             183.6289 

treatment[ 4]             175.6298 

treatment[ 5]             162.6806 

treatment[ 6]             167.6717 

treatment[ 7]             168.3821 

treatment[ 8]             176.5731 

treatment[ 9]             162.6928 

treatment[10]             118.5197 

treatment[11]             189.0615 

treatment[12]             190.4607 

treatment[13]             169.4514 

treatment[14]             197.0827 

treatment[15]             185.3560 

treatment[16]             168.8029 
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Standard Error for Comparing Two Adjusted Treatment Means: 13.221801 

(df=45) 

[group]           Mean          LSD Grouping 

  [10]          118.519737 

  [2]           160.752731        * 

  [5]           162.680649        *       * 

  [9]           162.692841        *       * 

  [1]           166.453323        *       *       * 

  [6]           167.671661        *       *       * 

  [7]           168.382111        *       *       * 

  [16]          168.802887        *       *       * 

  [13]          169.451370        *       *       * 

  [4]           175.629776        *       *       *       * 

  [8]           176.573090        *       *       *       * 

  [3]           183.628906        *       *       *       * 

  [15]          185.355988        *       *       *       * 

  [11]          189.061508                *       *       * 

  [12]          190.460724                        *       * 

  [14]          197.082703                                * 

Example 2 
This example consists of a 5 × 5 partially-balanced lattice repeated twice.  In this case,  
the number of replicates is not k+1 = 6, it is only n_reps = 2.  Each lattice consists of 
total of 50 observations which is repeated twice. The first observation in this 
experiment is missing. 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

 

void l_print_LSD(int n1, int* equalMeans, float *means); 

 

void main() 

{ 

  char **anova_row_labels = NULL; 

  char **loc_row_labels   = NULL; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ  ",  

                        "Mean  \nsquares", "\nF-Test", "\np-Value"}; 

  float alpha = 0.05; 

  int i, l, page_width = 132; 

   

  int n = 100;           /* Total number of observations      */ 

  int n_locations  = 2;  /* Number of locations               */ 

  int n_treatments =25;  /* Number of treatments              */ 
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  int n_reps       = 2;  /* Number of replicates/location     */ 

  int n_blocks     =10;  /* Total number of blocks/location   */ 

  int n_aov_rows   = 7;  /* Number of rows in the anova table */ 

 

  int rep[]={ 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2, 

        2, 2, 2, 2, 2 

  }; 

 

  int block[]={         

         1,  1,  1,  1,  1, 

         2,  2,  2,  2,  2, 

         3,  3,  3,  3,  3, 

         4,  4,  4,  4,  4, 

         5,  5,  5,  5,  5, 

         6,  6,  6,  6,  6,  

         7,  7,  7,  7,  7, 

         8,  8,  8,  8,  8,  

         9,  9,  9,  9,  9, 

        10, 10, 10, 10, 10, 

         1,  1,  1,  1,  1, 

         2,  2,  2,  2,  2, 

         3,  3,  3,  3,  3, 

         4,  4,  4,  4,  4, 
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         5,  5,  5,  5,  5, 

         6,  6,  6,  6,  6,  

         7,  7,  7,  7,  7, 

         8,  8,  8,  8,  8,  

         9,  9,  9,  9,  9, 

        10, 10, 10, 10, 10 

  }; 

 

  int treatment[]={  

         1,  2,  3,  4,  5, 

         6,  7,  8,  9, 10, 

        11, 12, 13, 14, 15, 

        16, 17, 18, 19, 20, 

        21, 22, 23, 24, 25, 

         1,  6, 11, 16, 21, 

         2,  7, 12, 17, 22, 

         3,  8, 13, 18, 23, 

         4,  9, 14, 19, 24, 

         5, 10, 15, 20, 25, 

         1,  2,  3,  4,  5, 

         6,  7,  8,  9, 10, 

        11, 12, 13, 14, 15, 

        16, 17, 18, 19, 20, 

        21, 22, 23, 24, 25, 

         1,  6, 11, 16, 21, 

         2,  7, 12, 17, 22, 

         3,  8, 13, 18, 23, 

         4,  9, 14, 19, 24, 

         5, 10, 15, 20, 25 

        }; 

  int location[]={ 

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1,  

        1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2,  

        2, 2, 2, 2, 2, 2, 2, 2, 2, 2 

  }; 
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  float y[] ={ 

         6,  7,  5,  8,  6, 

        16, 12, 12, 13,  8, 

        17,  7,  7,  9, 14, 

        18, 16, 13, 13, 14, 

        14, 15, 11, 14, 14, 

        24, 13, 24, 11,  8, 

        21, 11, 14, 11, 23, 

        16,  4, 12, 12, 12, 

        17, 10, 30,  9, 23, 

        15, 15, 22, 16, 19, 

        13, 26,  9, 13, 11, 

        15, 18, 22, 11, 15, 

        19, 10, 10, 10, 16, 

        21, 16, 17,  4, 17, 

        15, 12, 13, 20,  8, 

        16,  7, 20, 13, 21, 

        15, 10, 11,  7, 14, 

         7, 11, 15, 15, 16, 

        19, 14, 20,  6, 16, 

        17, 18, 20, 15, 14 

  }; 

 

  float grand_mean; 

  float cv; 

  float *aov; 

  float *location_anova_table; 

  float *loc_anova_table; 

  float *treatment_means; 

  float *std_err; 

  int   df; 

  int   n_missing; 

  int   *equal_means; 

   

  /* Set first observation to missing. */ 

  y[0] = imsls_f_machine(6); 

 

  aov = imsls_f_lattice(n, n_locations, n_reps, n_blocks,   

                           n_treatments, rep, block, treatment, y,  

                           IMSLS_LOCATIONS, location, 

                           IMSLS_GRAND_MEAN, &grand_mean,  
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                           IMSLS_CV, &cv, 

                           IMSLS_TREATMENT_MEANS, &treatment_means,  

                           IMSLS_STD_ERRORS, &std_err, 

                           IMSLS_LOCATION_ANOVA_TABLE, &location_anova_table, 

                           IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                           IMSLS_N_MISSING, &n_missing, 

                           0); 

   

  /* Output results. */ 

 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

  /* Print the ANOVA table. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       7, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  /* Print the location ANOVA tables. */ 

  for (i=0; i < n_locations; i++){ 

      printf("\n\n\t\t\t\tLOCATION %d", i+1); 

      imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                           7, 6, &(location_anova_table[i*42]),  

                           IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                           IMSLS_ROW_LABELS, anova_row_labels, 

                           IMSLS_COL_LABELS, col_labels, 

                           0); 

  } 

 

  printf("\n\nAdjusted Grand Mean:      %7.3f", grand_mean); 

  printf("\n\nCoefficient of Variation: %7.3f\n\n", cv); 

  l = 0; 

  printf("Adjusted Treatment Means: \n"); 

  for (i=0; i < n_treatments; i++){ 

        printf("treatment[%2d]              %7.4f \n", i+1, 
treatment_means[l++]); 

  } 

  df = std_err[3]; 

  printf("\nStandard Error for Comparing Two Adjusted Treatment Means: %f \n(df=%d)\n",  

         std_err[2], df); 

  equal_means = imsls_f_multiple_comparisons(n_treatments, treatment_means, df, 
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                                             std_err[2]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_print_LSD(n_treatments, equal_means, treatment_means); 

  

  printf("\n\nNumber of missing observations: %d\n", n_missing); 

 

} 

 

Output 
 

                        *** ANALYSIS OF VARIANCE TABLE *** 

                                                  Mean 

                              ID   DF     SSQ    squares   F-Test  p-Value 

Locations .................   -1    1     12.19    12.19     0.25    0.622 

Replicates within Locations   -2    2    203.99   101.99     7.44    0.001 

Treatments (unadjusted) ...   -3   24    795.46    33.14     0.02    1.000 

Treatments (adjusted) .....   -4   24    951.20    39.63     2.89    0.006 

Blocks (adjusted) .........   -5   16    770.50    48.16     3.51    0.000 

Intra-Block Error .........   -6   55    753.81    13.71  .......  ....... 

Corrected Total ...........   -7   98   2535.95  .......  .......  ....... 

 

 

                                LOCATION 1 

                      *** ANALYSIS OF VARIANCE TABLE *** 

                                                  Mean 

                              ID   DF     SSQ    squares   F-Test  p-Value 

Locations .................   -1  ...  ........  .......  .......  ....... 

Replicates within Locations   -2    1    203.67   203.67  .......  ....... 

Treatments (unadjusted) ...   -3   24    567.13    23.63     0.78    0.721 

Treatments (adjusted) .....   -4   24    661.08    27.54     2.04    0.078 

Blocks (adjusted) .........   -5    8    490.51    61.31  .......  ....... 

Intra-Block Error .........   -6   15    202.93    13.53  .......  ....... 

Corrected Total ...........   -7   48   1464.24  .......  .......  ....... 

 

 

                                LOCATION 2 

                      *** ANALYSIS OF VARIANCE TABLE *** 

                                                  Mean 

                              ID   DF     SSQ    squares   F-Test  p-Value 



 
 
 
 

 
 

Chapter 4: Analysis of Variance and Designed Experiments lattice • 313  

 

 

 

Locations .................   -1  ...  ........  .......  .......  ....... 

Replicates within Locations   -2    1      0.32     0.32  .......  ....... 

Treatments (unadjusted) ...   -3   24    622.52    25.94     1.43    0.196 

Treatments (adjusted) .....   -4   24    707.51    29.48     2.83    0.018 

Blocks (adjusted) .........   -5    8    269.76    33.72  .......  ....... 

Intra-Block Error .........   -6   16    166.92    10.43  .......  ....... 

Corrected Total ...........   -7   49   1059.52  .......  .......  ....... 

 

 

Adjusted Grand Mean:       14.011 

 

Coefficient of Variation:  26.423 

 

Adjusted Treatment Means: 

treatment[ 1]              17.1507 

treatment[ 2]              19.2200 

treatment[ 3]              11.1261 

treatment[ 4]              14.6230 

treatment[ 5]              12.6543 

treatment[ 6]              11.8133 

treatment[ 7]              11.9045 

treatment[ 8]              11.3106 

treatment[ 9]               9.5576 

treatment[10]              11.5889 

treatment[11]              22.1321 

treatment[12]              12.7233 

treatment[13]              13.1293 

treatment[14]              17.8763 

treatment[15]              18.6576 

treatment[16]              14.6568 

treatment[17]              11.4980 

treatment[18]              13.1540 

treatment[19]               5.4010 

treatment[20]              12.9323 

treatment[21]              15.4108 

treatment[22]              17.0020 

treatment[23]              13.9081 

treatment[24]              17.6550 

treatment[25]              13.1864 

 

Standard Error for Comparing Two Adjusted Treatment Means: 4.617277 

(df=55) 
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[group]           Mean          LSD Grouping 

  [19]          5.400988          * 

  [9]           9.557555          *       * 

  [3]           11.126063         *       *       * 

  [8]           11.310598         *       *       * 

  [17]          11.497972         *       *       * 

  [10]          11.588868         *       *       * 

  [6]           11.813338         *       *       * 

  [7]           11.904538         *       *       * 

  [5]           12.654334         *       *       * 

  [12]          12.723251         *       *       * 

  [20]          12.932302         *       *       *       * 

  [13]          13.129311         *       *       *       * 

  [18]          13.154031         *       *       *       * 

  [25]          13.186358         *       *       *       * 

  [23]          13.908089         *       *       *       * 

  [4]           14.623020         *       *       *       * 

  [16]          14.656771                 *       *       * 

  [21]          15.410829                 *       *       * 

  [22]          17.002029                 *       *       * 

  [1]           17.150679                 *       *       * 

  [24]          17.655045                 *       *       * 

  [14]          17.876268                 *       *       * 

  [15]          18.657581                 *       *       * 

  [2]           19.220003                         *       * 

  [11]          22.132051                                 * 

Number of missing observations: 1 

split_plot 
Analyzes a wide variety of split-plot experiments with fixed, mixed or random factors.  
The whole-plots can be assigned to experimental units using either a completely 
randomized or randomized complete block design. Function split_plot also 
analyzes split-plot experiments replicated at several locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_split_plot (int n, int n_locations, int n_whole, 

 int n_split, int rep[], int whole[], int split[], float y[],…, 0) 
The type double function is imsls_d_split_plot. 
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Required Arguments 

int n  (Input) 
Number of missing and non-missing experimental observations.  
imsls_f_split_plot verifies that: 

 
( )

1
n i

i
= ⋅ ⋅

=
∑ n_wholen_splitn_blocks

n_locations

 

int n_locations (Input) 
Number of locations.  n_locations must be one or greater.   If 
n_locations>1, then the optional array locations[] must be included as 
input to imsls_f_split_plot. 

int n_whole  (Input) 
Number of levels associated with the whole-plot factor.  n_whole must be 
greater than one. 

int n_split  (Input) 
Number of levels associated with the split-plot factor.  n_split must be 
greater than one.  

int rep[] (Input) 
 An array of length n containing the block, or replicate, identifiers for each 

observation in y.  Locations can have different numbers of blocks or 
replicates.  Each block or replicate at a single location must be assigned a 
different identifier, but different locations can have the same assignments. 

int whole[]  (Input) 
An array of length n containing the whole-plot identifiers for each observation 
in y.  Each level of the whole-plot factor must be assigned a different integer.  
imsls_f_split_plot verifies that the number of unique whole-plot 
identifiers is equal to n_whole. 

int split[]  (Input) 
 An array of length n containing the split-plot identifiers for each observation 

in y.  Each level of the split-plot factor must be assigned a different integer. 
imsls_f_split_plot verifies that the number of unique split-plot 
identifiers is equal to n_split. 

float y[]  (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated by 
placing a NaN (not a number) in y. The NaN value can be set using either the 
function imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively.  At a single 
location, only one missing value per whole-plot is allowed.  The location, 
whole-plot and split-plot for each observation in y are identified by the 
corresponding values in the arguments locations, whole and split. 
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Return Value 
Address of a pointer to the memory location of a two dimensional, 11 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of the 
effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated 
with values in that row.  The remaining values in a row contain the ANOVA table 
values using the following convention: 

j anova_tablei,j = anova_table[I*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 

The Source Identifiers in the first column of anova_tablei,j are the only negative 
values in anova_table[]. Assignments of identifiers to ANOVA sources use the 
following coding: 

 
Source 

Identifier 
 

ANOVA Source 
-1 LOCATION† 

-2 BLOCK WITHIN LOCATION‡  
-3 WHOLE-PLOT 
-4 LOCATION × WHOLE-PLOT† 
-5 WHOLE-PLOT ERROR  

-6 SPLIT-PLOT 
-7 LOCATION × SPLIT-PLOT† 
-8 WHOLE-PLOT × SPLIT-PLOT 
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT† 

-10 SPLIT-PLOT ERROR› 
-11 CORRECTED TOTAL 

Notes: † If n_locations=1 sources involving location are set to missing (NaN). 

‡  If IMSLS_CRD is set, entries for block within location are set to missing, and its sum of squares and 
degrees of freedom are pooled into the whole-plot error. 

›  Split-plot error component calculation varies depending upon the settings for 
IMSLS_RCBD, IMSLS_LOC_FIXED, IMSLS_WHOLE_FIXED, IMSLS_SPLIT_FIXED, and upon 
whether n_locations=1. See the “Description” section below for details. 
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Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_split_plot (int n, int n_locations, int n_whole,  

int n_split, int rep[], int whole[], int split[], float y[], 
IMSLS_RETURN_USER, float anova_table[] 
IMSLS_LOCATIONS, int locations[], 
IMSLS_LOC_RANDOM or IMSLS_LOC_FIXED, 
IMSLS_RCBD or IMSLS_CRD, 
IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM, 
IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM, 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float **cv, 
IMSLS_CV_USER, float cv[], 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means, 
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[], 
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means, 
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[], 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_N_BLOCKS int **n_blocks, 
IMSLS_N_BLOCKS_USER, int n_blocks[], 
IMSLS_BLOCK_SS float **block_ss, 
IMSLS_BLOCK_SS_USER, float block_ss[], 
IMSLS_WHOLE_PLOT_SS float **whole_plot_ss, 
IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[], 
IMSLS_SPLIT_PLOT_SS float **split_plot_ss, 
IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[], 
IMSLS_WHOLEXSPLIT_PLOT_SS float **wholexsplit_plot_ss, 
IMSLS_WHOLEXSPLIT_PLOT_SS_USER,  
 float wholexsplit_plot_ss[], 
IMSLS_WHOLE_PLOT_ERROR_SS float **whole_plot_error_ss, 
IMSLS_WHOLE_PLOT_ERROR_SS_USER,  
 float whole_plot_error_ss[], 
IMSLS_SPLIT_PLOT_ERROR_SS float **split_plot_error_ss, 
IMSLS_SPLIT_PLOT_ERROR_SS_USER,  
 float split_plot_error_ss[], 
IMSLS_TOTAL_SS float **total_ss, 
IMSLS_TOTAL_SS_USER, float total_ss[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 
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Optional Arguments 
IMSLS_RETURN_USER, float anova_table[] (Output) 

User defined array of length 66 for storage of the 11 by 6 Anova table 
described as the return argument for imsls_f_split_plot.  For a detailed 
description of the format for this table, see the previous description of the 
return arguments for imsls_f_split_plot. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each observation 
in y.  Unique integers must be assigned to each location in the study.  This 
argument is required when n_locations>1.  

IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM (Input) 
A characteristic controlling whether the location factor is treated as a fixed or 
random effect, when n_locations>1.  IMSLS_LOC_FIXED and 
IMSLS_LOC_RANDOM  imply that the factor is a fixed effect or random effect, 
respectively.   
Default: IMSLS_LOC_RANDOM 

IMSLS_RCBD or  

IMSLS_CRD (Input) 
Whole-plot randomization characteristic:  IMSLS_RCBD implies that whole-
plots are assigned to whole-plot experimental units using a randomized 
complete block design.  IMSLS_CRD implies that whole-plots are completely 
randomized to whole-plot experimental units.  Default: IMSLS_RCBD 

IMSLS_WHOLE_FIXED or  

IMSLS_WHOLE_RANDOM (Input) 
Whole-plot characteristic.  IMSLS_WHOLE_FIXED implies that the whole-plot 
factor is a fixed effect, and IMSLS_WHOLE_RANDOM implies that it is a random 
effect. 
Default: IMSLS_WHOLE_FIXED 

IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM (Input) 
Split-plot characteristic.  IMSLS_SPLIT_FIXED implies that the split-plot 
factor is a fixed effect, and IMSLS_SPLIT_RANDOM implies that it is a random 
effect.  
Default: IMSLS_SPLIT_FIXED. 

IMSLS_N_MISSING, int *n_missing  (Output) 
 Number of missing values, if any, found in y. Missing values are denoted 
with a NaN (Not a Number) value. 

IMSLS_CV, float **cv (Output) 
Address of a pointer to  an internally allocated array of length 2 containing the 
whole-plot and split-plot coefficients of variation.  cv[0] contains the whole-
plot C.V., and cv[1] contains the split-plot C.V. 

IMSLS_CV_USER, float cv[] (Output) 
Storage for the array cv, provided by the user. 
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IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location.  

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output) 
Address of a pointer to an internally allocated array of length n_whole 
containing the whole-plot means. 

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output) 
Storage for the array whole_plot_means, provided by the user. 

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output) 
Address of a pointer to an internally allocated array of length n_split 
containing the split-plot means. 

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output) 
Storage for the array split_plot_means, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size  
(n_whole * n_split) containing the treatment means. For  
i > 0 and  j > 0, treatment_meansi,j = treatment_means[(i-1)*n_split+j-
1] contains the mean of the observations, averaged over all locations, blocks 
and replicates, for the jth split-plot within the ith whole-plot. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float **std_err (Output) 
Address of a pointer to an internally allocated array of length 10 containing 
five standard errors and their associated degrees of freedom. 

 
 

Element 
Standard Error for 

Comparisons 
Between Two 

Degrees of 
Freedom 

std_err[0] Whole-Plot Means std_err[5] 

std_err[1] Split-Plot Means std_err[6] 

std_err[2] Split-Plots within same 
Whole-Plot 

std_err[7] 

std_err[3] Whole-Plots within same 
Split-Plot 

std_err[8] 

std_err[4] Treatment Means   
(same whole-plot, split-
plot and sub-plot) 

std_err[9] 

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_N_BLOCKS, int **n_blocks (Output) 
 Address of a pointer to an internally allocated array of length n_locations 
containing the number of blocks, or replicates, at each location. 
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IMSLS_N_BLOCKS_USER, int n_blocks[] (Output) 
Storage for the array n_blocks, provided by the user. 

IMSLS_BLOCK_SS, float **block_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of size 
n_locations  by 2 containing the sum of squares for blocks and their 
associated degrees of freedom for each location.  

IMSLS_BLOCK_SS_USER, float block_ss[] (Output) 
Storage for the array block_ss, provided by the user. Address of a pointer to 
an internally allocated 2-dimensional array of size n_locations  by 2 
containing the sum of squares for blocks and their associated degrees of 
freedom for each location. 

IMSLS_WHOLE_PLOT_SS, float **whole_plot_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of size 
n_locations  by 2 containing the sum of squares for whole-plots and their 
associated degrees of freedom for each location. 

IMSLS_WHOLE_PLOT_SS_USER, float whole_plot_ss[] (Output) 
Storage for the array whole_plot_ss, provided by the user. 

IMSLS_SPLIT_PLOT_SS, float **split_plot_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of size 
n_locations  by 2 containing the sum of squares for split-plots and their 
associated degrees of freedom for each location.  

IMSLS_SPLIT_PLOT_SS_USER, float split_plot_ss[] (Output) 
Storage for the array split_plot_ss, provided by the user. 

IMSLS_WHOLEXSPLIT_PLOT_SS, float **wholexsplit_plot_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of size 
n_locations  by 2 containing the sum of squares for whole-plot by split-plot 
interaction and their associated degrees of freedom for each location. 

IMSLS_WHOLEXSPLIT_PLOT_SS_USER, float wholexsplit_plot_ss[] (Output) 
Storage for the array wholexsplit_plot_ss, provided by the user. 

IMSLS_WHOLE_PLOT_ERROR_SS, float **whole_plot_error_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of size 
n_locations  by 2 containing the sum of squares for whole-plots and their 
associated degrees of freedom for each location. 

IMSLS_WHOLE_PLOT_ERROR_SS_USER, float whole_plot_error_ss[] (Output) 
Storage for the array whole_plot_error_ss, provided by the user. 

IMSLS_SPLIT_PLOT_ERROR_SS, float **split_plot_error_ss (Output) 
Address of a pointer to an internally allocated 2-dimensional array of size 
n_locations  by 2 containing the sum of squares for split-plots and their 
associated degrees of freedom for each location. 

IMSLS_SPLIT_PLOT_ERROR_SS_USER, float split_plot_error_ss[] (Output) 
Storage for the array split_plot_error_ss, provided by the user. 
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IMSLS_TOTAL_SS, float **total_ss  (Output) 
Address of a pointer to an internally allocated 2-dimensional array of size 
n_locations  by 2 containing the corrected total sum of squares and their 
associated degrees of freedom for each location. 

IMSLS_TOTAL_SS_USER, float total_ss[]  (Output) 
Storage for the array total_ss, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels  (Output) 
Address of a pointer to a pointer to an internally allocated array containing the 
labels for each of the n_anova rows of the returned ANOVA table.  The label 
for the i-th row of the ANOVA table can be printed with  printf("%s", 
anova_row_labels[i]); 
 
The memory associated with anova_row_labels  can be freed with a single 
call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]  (Output) 
Storage for the array anova_row_labels, provided by the user.  The amount 
of space required will vary depending upon the number of factors and 
n_anova.   An upperbound on the required memory is  
char *anova_row_labels[600]. 

Description 
Function imsls_f_split_plot is capable of analyzing a wide variety of split-plot 
experiments.   Whole-plot and split-plot factors can each be designated as either fixed 
or random, allowing for experiments with fixed, random or mixed treatment effects.  
By default, imsls_f_split_plot assumes that all treatment factors are fixed effects, 
i.e. IMSLS_WHOLE_FIXED and IMSLS_SPLIT_FIXED are default settings. Whole-plot 
or split-plot factors can each be declared as random effects by setting the optional input 
arguments IMSLS_WHOLE_RANDOM and IMSLS_SPLIT_RANDOM, respectively.   
Split-plot experimental designs can also vary in the assignment of the whole-plot factor 
to its experimental units.  In some cases, this assignment is completely random.  For 
example, in a drug study the experimental unit might be the subject receiving a 
treatment.  The whole-plot factor, possibly different treatments, could be assigned in 
one of two ways.  Each subject could receive only one treatment or each could receive 
all treatments over an appropriate period of time.  If each subject received only a single 
randomly selected treatment, then this design constitutes a completely randomized 
design for the whole-plot factor, and the optional input argument IMSLS_CRD must be 
set.   
On the other hand, if each subject receives every treatment in random order, then the 
subject is a blocking factor, and this sampling scheme constitutes a randomized 
complete block design.  In this case, it is necessary to assume that there are no carry-
over effects from one treatment to another.  This sampling scheme is the default 
setting, i.e. IMSLS_RCBD is the default setting. 
A similar randomization choice occurs in agricultural field trials.  A trial designed to 
test different fertilizers and different seed lots can be conducted in one of two ways.  
The whole-plot factor, fertilizer, can be applied to different fields, or each can be 
applied to sub-divisions of these fields. In either case, a field is the whole-plot 
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experimental unit.  In the first case in which only a single randomly selected fertilizer 
is applied to a single field, the whole-plot factor is not blocked and this scheme is 
called as a completely randomized design, and the optional input argument IMSLS_CRD 
must be set.  However, if fertilizers are applied to sub-plots within a field, then the 
whole-plot factor is blocked within fields and this assignment is referred to as a 
randomized complete block design.  By default, this routine assumes that levels of the 
whole-plot factor are randomly assigned within blocks, i.e. IMSLS_RCBD is the default 
setting for randomizing whole-plots. 
The essential distinction between split-plot experiments and completely randomized or 
randomized complete block experiments is the presence of a second factor that is 
blocked, or nested, within each level of the whole-plot factor.  This second factor is 
referred to as the split-plot factor, see Figure 1.  If levels of this factor were completely 
randomized, then two or more treatments with the same split-plot level could be 
assigned to the same whole-plot level, see Figure 2. 

 
Whole Plot Factor 

A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B2 

A2B3 A1B1 A4B3 A3B1 

A2B2 A1B2 A4B2 A3B2 

Split-Plot Experiments – Split-Plot B Nested within Whole-Plot A 

CRD 

A3B2 A1B3 A4B1 A4B3 

A2B3 A1B1 A3B2 A1B2 

A2B2 A3B1 A2B1 A4B2 

 Completely Randomized Experiments – Both Factors Randomized 

In some studies, a split-plot experiment is replicated at several locations.  Function 
imsls_f_split_plot can also analyze split-plot experiments replicated at multiple 
locations, even when the number of blocks or replicates at each location are different.  
If only a single replicate or block is used at each location, then location should be 
treated as a blocking factor, with n_locations set equal to one. If n_locations=1, 
it is assumed that the experiment was conducted at a single location with more than one 
block or replicate at that location.  In this case, the four entries associated with location 
in the Anova table will contain missing values. 
However, if n_locations>1, it is assumed the experiment was repeated at multiple 
locations, with replication or blocking occurring at each location.  Although the 
number of blocks, or replicates, at each location can be different, the number of levels 
for whole-plot and split-plot factors, n_whole and n_split, must be the same at each 
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location.  The location associated with y[i] is specified in location[i], which is a 
required input argument when n_locations>1.   
By default, locations are assumed to be random effects.  However, they can be 
specified as fixed effects by setting the optional argument IMSLS_LOC_FIXED.  This 
setting changes the calculations of the F-tests for whole-plot and split-plot factors.  If 
locations are assumed to be fixed effects, then the whole-plot and split-plot errors at 
each location are pooled to form the whole-plot and split-plot errors.  This can 
dramatically increase the degrees of freedom associated with the F-test for the 
treatment factors, resulting in smaller p-values.  However, pooling the error terms from 
different locations requires experimenters to assume that the errors at each location are 
approximately the same.  This should be verified using a test for homogeneity of 
variance, such as Bartlett’s or Levene’s test. 
On the other hand, if locations are assumed to be random effects, then tests involving 
whole-plots use the interaction between whole-plots and locations as the error term for 
testing whether there are statistically significant differences among whole-plot factor 
levels.  However, this assumes that the interaction of whole-plots and locations is not 
statistically significant.  A test of this assumption uses the pooled whole-plot error.  If 
the interaction between whole-plots and locations is statistically significant, then the 
nature of that interaction should be explored since it impacts the interpretation of the 
significance of the whole-plot treatment factor. 
Similarly, when locations are assumed to be random effects, tests involving split-plots 
do not use the split-plot errors pooled across locations.  Instead, the error term for split 
plots is the interaction between locations and split-plots.  The split-plot by whole-plot 
interaction is tested against the location by split-plot by whole-plot interaction.   
Suppose, for example, that a researcher wanted to conduct an agricultural experiment 
comparing the effectiveness of 4 fertilizers with 4 seed lots.  One replicate of the 
experiment is conducted at each of the 3 farms. That is, only a single field at each 
location is assigned to this experiment.   
The field at each farm is divided into 4 whole-plots and the fertilizers are randomly 
assigned to each of the 4 whole-plots.  Each whole-plot is then further divided into 4 
split-plots, and the seed lots are randomly assigned to these split-plots. 
In this case, each farm is a blocking factor, fertilizers are whole-plots and seed lots are 
split-plots.  The input array rep would contain integers from 1 to the number of farms. 
However, if each farm allocated more than a single field for this study, then each farm 
would be treated as a different location with n_locations set equal to the number of 
farms, and fields would be treated as blocking factor.  The array rep would contain 
integers from 1 to the number fields used in a farm, and locations[] would contain 
integers from 1 to the number of farms. 
In summary this routine can analyze 3x2x2x2=24 different experimental situations, 
depending upon the settings of: 
1. Locations (none, fixed or random): specified by setting n_locations, 

locations[] and IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM. 
2. Whole-plot sampling (CRD or RCBD):  specified by setting IMSLS_CRD or 

IMSLS_RCBD. 
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3. Whole-plot effect (fixed or random):  specified by setting either 
IMSLS_WHOLE_FIXED or IMSLS_WHOLE_RANDOM. 

4. Split-plot effect (fixed or random):  specified by setting either 
IMSLS_SPLIT_FIXED or IMSLS_SPLIT_RANDOM. 

The default condition depends upon the value for n_locations. If n_locations>1, 
locations are assumed to be a random effect.  Assignment of experimental units to 
whole-plots is assumed to use a RCBD design and both whole-plots and split-plots are 
assumed to be fixed effects. 

Example 
This example uses data from a split-plot design consisting of 2 whole-plots and 4 split-
plots. 
 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

 

void main() 

{ 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",  

                        "Mean\nsquares", "\nF", "\np-value"}; 

  int i, page_width = 132; 

   

  int n = 24;                /* Total number of observations */ 

  int n_locations = 1;       /* Number of locations */ 

  int n_whole = 2;           /* Number of Whole-plots within a location */ 

  int n_split = 4;           /* Number of Split-plots within a location, 
Whole_plot */ 

  int rep[]={ 

    1, 1, 1, 1, 1, 1, 1, 1, 

    2, 2, 2, 2, 2, 2, 2, 2, 

    3, 3, 3, 3, 3, 3, 3, 3}; 

  int whole[]={ 

    1, 1, 1, 1, 2, 2, 2, 2,  

    1, 1, 1, 1, 2, 2, 2, 2, 

    1, 1, 1, 1, 2, 2, 2, 2}; 

  int split[]={ 

    1, 2, 3, 4, 1, 2, 3, 4,  

    1, 2, 3, 4, 1, 2, 3, 4,   

    1, 2, 3, 4, 1, 2, 3, 4}; 

  float y[] ={ 

    30.0, 40.0, 38.9, 38.2, 

    41.8, 52.2, 54.8, 58.2, 
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    20.5, 26.9, 21.4, 25.1, 

    26.4, 36.7, 28.9, 35.9, 

    21.0, 25.4, 24.0, 23.3, 

    34.4, 41.0, 33.0, 34.9}; 

  float grand_mean; 

  float *aov; 

  float *treatment_means; 

  float *whole_plot_means; 

  float *split_plot_means; 

  int *equal_means; 

  char **aov_row_labels; 

 

  aov = imsls_f_split_plot(n, n_locations, n_whole, n_split,  

                           rep, whole, split, y,  

                           IMSLS_GRAND_MEAN, &grand_mean,  

                           IMSLS_TREATMENT_MEANS, &treatment_means,  

                           IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,  

                           IMSLS_SPLIT_PLOT_MEANS, &split_plot_means, 

                           IMSLS_ANOVA_ROW_LABELS, &aov_row_labels, 

                           0); 

   

  /* Output results. */ 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

 

  /* Print ANOVA table, without first column. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       11, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, aov_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  /* Print the various means. */ 

  printf("\n\nGrand mean: %f\n", grand_mean); 

  imsls_f_write_matrix("Treatment Means", n_whole, n_split, 

                       treatment_means, 0); 

  imsls_f_write_matrix("Whole-plot  Means", n_whole, 1, 

                       whole_plot_means, 0); 

  imsls_f_write_matrix("Split-plot Means", n_split, 1, 

                       split_plot_means, 0); 

 

} 
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Output 
 

                    *** ANALYSIS OF VARIANCE TABLE *** 

                                                Mean 

                          ID   DF       SSQ  squares        F  p-value 

Location                  -1  ...  ........  .......  .......  ....... 

Block Within Location     -2    2   1310.28   655.14    30.82    0.031 

Whole-Plot                -3    1    858.01   858.01    40.37    0.024 

Location x Whole-Plot     -4  ...  ........  .......  .......  ....... 

Whole-Plot Error          -5    2     42.51    21.26     2.03    0.173 

Split-Plot                -6    3    227.73    75.91     7.26    0.005 

Location x Split-Plot     -7  ...  ........  .......  .......  ....... 

Whole-Plot x Split-Plot   -8    3     13.40     4.47     0.43    0.737 

Location x Whole-Plot x   -9  ...  ........  .......  .......  ....... 

   Split-Plot 

Split-Plot Error         -10   12    125.39    10.45  .......  ....... 

Corrected Total          -11   23   2577.33  .......  .......  ....... 

 

 

Grand mean: 33.870834 

 

                   Treatment Means 

             1            2            3            4 

1        23.83        30.77        28.10        28.87 

2        34.20        43.30        38.90        43.00 

 

Whole-plot  Means 

 1        27.89 

 2        39.85 

 

Split-plot Means 

 1        29.02 

 2        37.03 

 3        33.50 

 4        35.93 
 

split_split_plot 
Analyzes data from split-split-plot experiments.  The whole-plots can be assigned to 
experimental units using either a completely randomized or randomized complete 
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block design.  Function split_split_plot also analyzes split-split-plot experiments 
replicated at several locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_split_split_plot (int n, int n_locations, int n_whole, 

int n_split, int n_sub, int rep[], int whole[], int split[],  int sub[], 
float y[],…, 0) 

The type double function is imsls_d_split_split_plot. 

Required Arguments 

int n  (Input) 
Number of missing and non-missing experimental observations.  
imsls_f_split_split_plot verifies that: 

 

1
( )i

i
n

=

= ∑
n_locations

n_whole×n_split×n_sub×n_blocks
 

 where n_blocki is equal to the number of blocks or replicates at the ith 
location.  

int n_locations (Input) 
Number of locations.  n_locations must be one or greater.   If 
n_locations>1 then the optional array locations[] must be included as 
input. See optional argument IMSLS_LOCATIONS. 

int n_whole  (Input) 
Number of levels associated with the whole-plot factor.  n_whole must be 
greater than one. 

int n_split  (Input) 
Number of levels associated with the split-plot factor.  n_split must be 
greater than one.  

int n_sub  (Input) 
Number of levels associated with the sub-plot factor.  n_sub must be greater 
than one. 

int rep[]  (Input) 
An array of length n containing the block, or replicate, identifiers for each 
observation in y.  Different locations can have different numbers of blocks or 
replicates.  Each block or replicate at a single location must be assigned a 
different identifier, but different locations can have the same assignments. 

int whole[]  (Input) 
An array of length n containing the whole-plot identifiers for each observation 
in y.  Each level of the whole-plot factor must be assigned a different integer.  
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imsls_f_split_split_plot verifies that the number of unique whole-plot 
identifiers is equal to n_whole. 

int split[]  (Input) 
An array of length n containing the split-plot identifiers for each observation 
in y.  Each level of the split-plot factor must be assigned a different integer.  
imsls_f_split_split_plot verifies that the number of unique split-plot 
identifiers is equal to n_split. 

int sub[]  (Input) 
An array of length n containing the sub-plot identifiers for each observation in 
y.  Each level of the sub-plot factor must be assigned a different integer.  
imsls_f_split_split_plot verifies that the number of unique sub-plot 
identifiers is equal to n_sub. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are included by 
placing a NaN (not a number) in y. The NaN value can be set using either the 
function imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively.  At a single 
location, only one missing value per whole-plot is allowed.  The location, 
whole-plot, split-plot and sub-plot for each observation in y are identified by 
the corresponding values in the arguments locations, whole, split and 
sub. 

Return Value 
Address of a pointer to the memory location of a two dimensional, 20 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of the 
effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated 
with values in that row.  The remaining values in a row contain the ANOVA table 
values using the following convention: 

 
J anova_table

i,j 
= anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 
 
The Source Identifiers in the first column of anova_tablei,j are the only negative 
values in anova_table[]. Assignments of identifiers to ANOVA sources use the 
following coding: 
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Source 

Identifier 
 

ANOVA Source 
-1 LOCATION† 
-2 BLOCK WITHIN LOCATION‡  
-3 WHOLE-PLOT 

-4 LOCATION × WHOLE-PLOT† 
-5 WHOLE-PLOT ERROR  

-6 SPLIT-PLOT 
-7 LOCATION × SPLIT-PLOT† 

-8 WHOLE-PLOT × SPLIT-PLOT 
-9 LOCATION × WHOLE-PLOT × SPLIT-PLOT† 
-10 SPLIT-PLOT ERROR› 
-11 CORRECTED TOTAL 

-12 LOCATION × SUB-PLOT† 

-13 WHOLE-PLOT × SUB-PLOT 
-14 LOCATION × WHOLE-PLOT × SUB-PLOT† 

-15 SPLIT-PLOT × SUB-PLOT 

-16 LOCATION × SPLIT-PLOT × SUB-PLOT† 
-17 WHOLE-PLOT × SPLIT-PLOT × SUB-PLOT 

-18 LOCATION × WHOLE-PLOT × SPLIT-PLOT × SUBPLOT† 

-19 SUB-PLOT ERROR 
-20 CORRECTED TOTAL 

Notes: † If n_locations=1 sources involving location are set to missing (NaN). 
  ‡   If IMSLS_CRD is set, entries for blocks within location are set to  
  missing, and  its sum of squares and degrees of freedom are pooled into the 
  whole-plot error. 

 *  Split-plot error component calculation varies depending upon  
 n_locations. See “Description” below for details. 

Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_split_split_plot (int n, int n_locations, int n_whole, int 

n_split, int n_sub, int rep[], int whole[], 
 int split[],int sub[], float y[], 
IMSLS_RETURN_USER, float anova_table[], 
IMSLS_LOCATIONS, int locations[], 
IMSLS_RCBD or IMSLS_CRD, 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float **cv, 
IMSLS_CV_USER, float cv[], 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means, 
IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[], 
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IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means, 
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[], 
IMSLS_SUB_PLOT_MEANS, float **sub_plot_means, 
IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[], 
IMSLS_WHOLE_SPLIT_PLOT_MEANS, 
  float **whole_split_plot_means, 
IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER,  
 float whole_split_plot_means[], 
IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means, 
IMSLS_WHOLE_SUB_PLOT_MEANS_USER 
 float whole_sub_plot_means[], 
IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means,  
IMSLS_SPLIT_SUB_PLOT_MEANS_USER,  
 float split_sub_plot_means[], 
IMSLS_TREATMENT_MEANS, float **treatment_means,  
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_N_BLOCKS int **n_blocks, 
IMSLS_N_BLOCKS_USER, int n_blocks[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER,  
 float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 

Optional Arguments 

IMSLS_RETURN_USER, float anova_table[] (Output) 
User defined array of length 120 for storage of the 20 by 6 anova table 
described as the return argument for imsls_f_split_split_plot.  For a 
detailed description of the format for this table, see the previous description of 
the return value for imsls_f_split_split_plot. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each observation in 
y.  Unique integers must be assigned to each location in the study.  This 
argument is required when n_locations>1. 

IMSLS_RCBD or IMSLS_CRD (Input) 
Whole-plot randomization characteristic:  IMSLS_RCBD implies that whole-
plots are assigned to whole-plot experimental units using a randomized 
complete block design.  IMSLS_CRD implies that whole-plots are completely 
randomized to whole-plot experimental units.  Default: IMSLS_RCBD 

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y. Missing values are denoted with 
a NaN (Not a Number) value. 
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IMSLS_CV, float **cv (Output) 
Address of a pointer to  an internally allocated array of length 3 containing the 
whole-plot, split-plot and sub-plot coefficients of variation.  cv[0] contains 
the whole-plot C.V., cv[1] contains the split-plot C.V., and cv[2] contains the 
sub-plot C.V. 

IMSLS_CV_USER, float cv[] (Output) 
Storage for the array cv, provided by the user. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_WHOLE_PLOT_MEANS, float **whole_plot_means (Output) 
 Address of a pointer to an internally allocated array of length n_whole 
containing the whole-plot means. 

IMSLS_WHOLE_PLOT_MEANS_USER, float whole_plot_means[] (Output) 
Storage for the array whole_plot_means, provided by the user. 

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output) 
Address of a pointer to an internally allocated array of length n_split 
containing the split-plot means. 

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output) 
Storage for the array split_plot_means, provided by the user. 

IMSLS_SUB_PLOT_MEANS, float **sub_plot_means (Output) 
 Address of a pointer to an internally allocated array of length n_sub 
containing the sub-plot means. 

IMSLS_SUB_PLOT_MEANS_USER, float sub_plot_means[] (Output) 
Storage for the array sub_plot_means, provided by the user. 

IMSLS_WHOLE_SPLIT_PLOT_MEANS, float **whole_split_plot_means (Output) 
 Address of a pointer to an internally allocated 2-dimensional array of size 
n_whole by n_split containing the whole-plot by split-plot means. 

IMSLS_WHOLE_SPLIT_PLOT_MEANS_USER, float whole_split_plot_means[] 
(Output) 
Storage for the array whole_split_plot_means, provided by the user. 

IMSLS_WHOLE_SUB_PLOT_MEANS, float **whole_sub_plot_means (Output) 
Address of a pointer to an internally allocated 2-dimensional array of size 
n_whole by  n_sub containing the whole-plot by sub-plot means. 

IMSLS_WHOLE_SUB_PLOT_MEANS_USER, float whole_sub_plot_means[] (Output) 
Storage for the array whole_sub_plot_means, provided by the user. 

IMSLS_SPLIT_SUB_PLOT_MEANS, float **split_sub_plot_means (Output) 
 Address of a pointer to an internally allocated 2-dimensional array of size 
n_split by n_sub containing the split-plot by sub-plot means. 
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IMSLS_SPLIT_SUB_PLOT_MEANS_USER, float split_sub_plot_means[] 
(Output) 
Storage for the array split_sub_plot_means, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 
(n_whole*n_split*n_sub) containing the treatment means.  
For i > 0, j > 0 and  k > 0, treatment_meansi,j,k = treatment_means 
[(i-1)*n_split*n_sub+(j-1)*n_sub + k-1] contains the mean of the 
observations, averaged over all locations, blocks and replicates, for the kth 
sub-plot within  the jth split-plot within the ith whole-plot. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float **std_err (Output) 
 Address of a pointer to an internally allocated array of length 8 containing 
five standard errors and their associated degrees of freedom.   The standard 
errors are in the first five elements and their associated degrees of freedom are 
reported in std_err[4] through std_err[7]. 

 
 

Element 
Standard Error for 

Comparisons Between Two 
Degrees of 

Freedom 
std_err[0] Whole-Plot Means std_err[4] 

std_err[1] Split-Plot Means std_err[5] 

std_err[2] Sub-Plot Means std_err[6] 

std_err[3] Treatment Means  (same whole-plot, split-
plot and sub-plot) 

std_err[7] 

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_N_BLOCKS, int **n_blocks (Output) 
Address of a pointer to an internally allocated array of length n_locations 
containing the number of blocks, or replicates, at each location.  

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output) 
Storage for the array n_blocks, provided by the user. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
 Address of a pointer to an internally allocated 3-dimensional array of size 
n_locations  by 20 by 6 containing the anova tables associated with each 
location.  For each location, the 20 by 6 dimensional array corresponds to the 
anova table for that location.  For example, location_anova_table[(i-
1)*120+(j-1)*6 + (k-1)] contains the value in the kth column and jth row of 
the returned anova-table for the ith location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
Storage for the array location_anova_table, provided by the user. 
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IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array containing the 
labels for each of the n_anova rows of the returned ANOVA table. The label 
for the ith row of the ANOVA table can be printed with  

  printf("%s", anova_row_labels[i]); 

 The memory associated with anova_row_labels  can be freed with a single 
call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the array anova_row_labels, provided by the user.  The amount 
of space required will vary depending upon the number of factors and 
n_anova.   An upperbound on the required memory is 
char *anova_row_labels[600]. 

Description 
Function imsls_f_split_split_plot is capable of analyzing a wide variety of 
split-split-plot experiments.   
Split-split-plot experimental designs can vary in the assignment of whole-plot factors 
to experimental units.  In some cases, this assignment is completely random.  For 
example, in a drug study the experimental unit might be the subject receiving a 
treatment.  The whole-plot factor, possibly different treatments, could be assigned in 
one of two ways.  Each subject could receive only one treatment or each could receive 
all treatments over an appropriate period of time.  If each subject received only a single 
randomly selected treatment, then this design constitutes a completely randomized 
design for the whole-plot factor, and the optional input argument IMSLS_CRD must be 
set.   
On the other hand, if each subject receives every treatment in random order, then the 
subject is a blocking factor, and this sampling scheme constitutes a randomized 
complete block design.  In this case, it is necessary to assume that there are no carry-
over effects from one treatment to another.  This sampling scheme is the default 
setting, i.e. IMSLS_RCBD is the default setting. 
This randomization choice occurs often in agricultural field trials.  A trial designed to 
test different fertilizers and different seed lots can be conducted in one of two ways.  
The whole-plot factor, fertilizer, can be applied to different fields, or each can be 
applied to sub-divisions of these fields. In either case, a field, or a sub-division of a 
field, is the whole-plot experimental unit.  In the first case, in which only one randomly 
selected fertilizer is applied to each field, the whole-plot factor is not blocked and this 
scheme is called as a completely randomized design, and the optional input argument 
IMSLS_CRD must be set.  However, if fertilizers are applied to sub-divisions within a 
field, then the whole-plot factor is blocked within fields and this assignment is referred 
to as a randomized complete block design.  By default, 
imsls_f_split_split_plot assumes that levels of the whole-plot factor are 
randomly assigned within blocks, i.e. IMSLS_RCBD is the default setting for 
randomizing whole-plots. 
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The essential distinction between split-plot  and split-split-plot experiments is the 
presence of a third factor that is blocked, or nested, within each level of the whole-plot 
and split-plot factors.  This third factor is referred to as the sub-plot factor. 

 
Whole Plot Factor 

A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B2 

A2B3 A1B1 A4B3 A3B1 

A2B2 A1B2 A4B2 A3B2 

Figure 1 – Split-Plot Experiment – Split-Plot B Nested within Whole-Plot A 

Whole Plot Factor A 
A2 A1 A4 A3 

A2B3C2 
A2B3C1 

A1B2C1 
A1B2C2 

A4B1C2 
A4B1C1 

A3B3C2 
A3B3C1 

A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2 

A4B3C2 
A4B3C1 

A3B2C2 
A3B2C1 

A2B2C2 
A2B2C1 

A1B3C1 
A1B3C2 

A4B2C1 
A4B2C2 

A3B1C2 
A3B1C1 

Figure 2 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within Split-Plot Factor B, Nested 
Within Whole-Plot Factor A 

Contrast the split-split plot experiment to the same experiment run using a strip-split 
plot design, see Figure 3.  In a strip-split plot experiment factor B is applied in strip 
across factor A; whereas, in a split-split plot experiment, factor B is randomly assigned 
to each level of factor A.  In a strip-split plot experiment, the level of factor B is 
constant across a row; whereas in a split-split plot experiment, the levels of factor B 
change as you go across a row, reflecting the fact that factor B is randomized within 
each level of factor A. 
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  Factor A Strip Plots 
  A2 A1 A4 A3 

Factor 
B 

Strip 

Plots 

B3 A2B3C2 
A2B3C1 

A1B3C1 
A1B3C2 

A4B3C2 
A4B3C1 

A3B3C2 
A3B3C1 

 B1 A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2 

A4B1C2 
A4B1C1 

A3B1C2 
A3B1C1 

 B2 A2B2C2 
A2B2C1 

A1B2C1 
A1B2C2 

A4B2C1 
A4B2C2 

A3B2C2 
A3B2C1 

Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A and B 

In some studies, a split-split-plot experiment is replicated at several locations.  
Function imsls_f_split_split_plot can analyze these, even when the number of 
blocks or replicates at each location is different.  If only a single replicate or block is 
used at each location, then location should be treated as a blocking factor, with 
n_locations set equal to one.   If n_locations=1, it is assumed that the 
experiment was conducted at a single location with more than one block or replicate at 
that location.  In this case, all entries in the anova table associated with location will 
contain missing values. 
However, if n_locations>1, it is assumed the experiment was repeated at multiple 
locations, with replication or blocking occurring at each location.  Although the 
number of blocks, or replicates, at each location can be different, the number of levels 
for whole-plot and split-plot factors, n_whole and n_split, must be the same at each 
location.  The locations associated with each of the observations in y are specified in 
the argument locations[], which is a required input argument when 
n_locations>1.   
By default, locations are assumed to be random effects. Tests involving whole-plots 
use the interaction between whole-plots and locations as the error term for testing 
whether there are statistically significant differences among whole-plot factor levels.  
This assumes that the interaction of whole-plots and locations is not statistically 
significant.  A test of this assumption uses the pooled whole-plot error.  If the 
interaction between location and whole-plots, split-plots or sub-plot is statistically 
significant, then the nature of that interaction should be explored since it impacts the 
interpretation of the significance of the treatment factors. 
When n_locations >1 are assumed to be random effects, tests involving split-plots 
do not use the split-plot errors pooled across locations.  Instead, the error term for split 
plots is the interaction between locations and split-plots.  The split-plot by whole-plot 
interaction is tested against the location by split-plot by whole-plot interaction.   
Suppose, for example, that a researcher wanted to conduct an agricultural experiment 
comparing the effectiveness of 4 fertilizers with 3 rates of application and 2 seed lots.  
One replicate of the experiment is conducted at each of the 3 farms.  That is, only a 
single field at each location is assigned to this experiment.   
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Each field is divided into 4 whole-plots and the fertilizers are randomly assigned to 
each of the 4 whole-plots.  Each whole-plot is then further sub-divided into 3 split-plots 
which are each randomly assigned one of the three fertilizer application rates.  Finally, 
each of these sub-divisions assigned a particular fertilizer and application rate is sub-
divided into 2 plots and randomly assigned one of the two seed lots. 
In this case, each farm is a blocking factor, fertilizers are whole-plots and fertilizer 
application rate are split plots, and seed lots are sub-plots.  The input array rep would 
contain integers from 1 to the number of farms, with n_whole=4, n_split=3 and 
n_sub=2. 
However, if each farm allocated more than a single field for this study, then each farm 
would be treated as a different location with n_locations set equal to the number of 
farms, and fields might be treated as blocking factor.  The array rep would contain 
integers from 1 to the number fields used in a farm, and locations[] would contain 
integers from 1 to the number of farms. 
In summary imsls_f_split_split_plot can analyze 3x2=6 different experimental 
situations, depending upon the settings of: 
1. Locations (none, fixed or random): specified by setting n_locations, 

locations[] and IMSLS_LOC_FIXED or IMSLS_LOC_RANDOM. 
2. Whole-plot sampling (CRD or RCBD):  specified by setting IMSLS_CRD or 

IMSLS_RCBD. 
The default condition depends upon the value for n_locations. If n_locations>1, 
locations are assumed to be a random effect.  Assignment of experimental units to 
whole-plots is assumed to use a RCBD design and whole-plots, split-plots and sub-
plots are all assumed to be fixed effects. 

Example 
This example uses data from a split-split plot design consisting of 2 whole-plots, 2-
split-plots and 2 sub-plots. 

 
#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include "imsls.h" 

 

void main() 

{ 

  char **anova_row_labels = NULL; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",  

                        "Mean\nsquares", "\nF", "\np-value"}; 

  int i, j, k, l, page_width = 132; 

   

  int n = 24;         /* Total number of observations */ 

  int n_locations = 1;/* Number of locations */ 
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  int n_whole = 2;    /* Number of Whole-plots within a location */ 

  int n_split = 2;    /* Number of Split-plots within a location, Whole_plot */ 

  int n_sub   = 2; 

  int rep[]={ 

    1, 1, 1, 1, 1, 1, 1, 1, 

    2, 2, 2, 2, 2, 2, 2, 2, 

    3, 3, 3, 3, 3, 3, 3, 3}; 

  int whole[]={ 

    1, 1, 1, 1, 2, 2, 2, 2,  

    1, 1, 1, 1, 2, 2, 2, 2, 

    1, 1, 1, 1, 2, 2, 2, 2}; 

  int split[]={ 

    1, 1, 2, 2, 1, 1, 2, 2,  

    1, 1, 2, 2, 1, 1, 2, 2,   

    1, 1, 2, 2, 1, 1, 2, 2}; 

  int sub[]={ 

    1, 2, 1, 2, 1, 2, 1, 2,  

    1, 2, 1, 2, 1, 2, 1, 2,   

    1, 2, 1, 2, 1, 2, 1, 2}; 

  float y[] ={ 

    30.0, 40.0, 38.9, 38.2, 

    41.8, 52.2, 54.8, 58.2, 

    20.5, 26.9, 21.4, 25.1, 

    26.4, 36.7, 28.9, 35.9, 

    21.0, 25.4, 24.0, 23.3, 

    34.4, 41.0, 33.0, 34.9}; 

  float grand_mean; 

  float *cv; 

  float *aov; 

  float *treatment_means; 

  float *whole_plot_means; 

  float *split_plot_means; 

  float *sub_plot_means; 

  float *std_err; 

  int   *equal_means;   

 

  aov = imsls_f_split_split_plot(n, n_locations, n_whole, n_split, n_sub,  

                                 rep, whole, split, sub, y,  

                                 IMSLS_GRAND_MEAN, &grand_mean,  

                                 IMSLS_CV, &cv, 

                                 IMSLS_TREATMENT_MEANS,  &treatment_means,  

                                 IMSLS_WHOLE_PLOT_MEANS, &whole_plot_means,  
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                                 IMSLS_SPLIT_PLOT_MEANS, &split_plot_means,  

                                 IMSLS_SUB_PLOT_MEANS,   &sub_plot_means, 

                                 IMSLS_STD_ERRORS,       &std_err, 

                                 IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                                 0); 

   

  /* Output results. */ 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

 

  /* Print ANOVA table. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       20, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  printf("\n\nGrand mean:    %7.3f\n", grand_mean); 

  printf("Coefficient of Variation ****\n"); 

  printf("  Whole-Plot: %7.3f\n", cv[0]); 

  printf("  Split-Plot: %7.3f\n", cv[1]); 

  printf("  Sub-Plot  : %7.3f\n", cv[2]); 

  l = 0; 

  /* 

   * Treatment Means 

   */ 

  printf("\n\n*************************************************************"); 

  printf("\nTreatment Means: \n"); 

  for (i=0; i < n_whole; i++){ 

      for(j=0; j < n_split; j++){ 

          for(k=0; k < n_sub; k++){ 

              printf("  treatment[%d][%d][%d] %f \n", i, j, k,  

                     treatment_means[l++]); 

          } 

      } 

  } 

  printf("\n  Standard Error for Comparing Two Treatment Means: %f \n  (df=%f)\n", 

         std_err[3], std_err[7]); 

  equal_means = imsls_f_multiple_comparisons(n_whole*n_split*n_sub,  

                                             treatment_means, std_err[7], 

                                             std_err[3]/sqrt(2),  

                                             IMSLS_LSD, 
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                                             IMSLS_ALPHA, .05, 

                                             0); 

  printf("\n  LSD for Treatment Means (alpha=0.05)"); 

  imsls_i_write_matrix("  Size of Groups of Means", 1, n_whole*n_split*n_sub-1, 

                        equal_means, 0); 

  /* 

   * Whole-plot Means 

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Whole-plot Means", n_whole, 1, 

                       whole_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Whole-Plot Means: %f \n(df=%f)\n", 

         std_err[0], std_err[4]); 

  equal_means = imsls_f_multiple_comparisons(n_whole, whole_plot_means,  

                                             std_err[4], std_err[0]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  printf("\nLSD for Whole-Plot Means (alpha=0.05) \n"); 

  imsls_i_write_matrix("Size of Groups of Means", 1, n_whole-1, 

                       equal_means, 0); 

  /* 

   * Split-plot Means 

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Split-plot Means", n_split, 1, 

                       split_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Split-Plot Means: %f \n(df=%f)\n", 

         std_err[1], std_err[5]); 

  equal_means = imsls_f_multiple_comparisons(n_split, split_plot_means,  

                                             std_err[5], std_err[1]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  printf("\nLSD for Split-Plot Means (alpha=0.05) \n"); 

  imsls_i_write_matrix("Size of Groups of Means", 1, n_split-1, 

                        equal_means, 0); 

  /* 

   * Sub-plot Means 

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Sub-plot Means", n_sub, 1, 
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                       sub_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Sub-Plot Means: %f \n(df=%f)\n", 

         std_err[2], std_err[6]); 

  equal_means = imsls_f_multiple_comparisons(n_sub, sub_plot_means,  

                                             std_err[6], std_err[2]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  printf("\nLSD for Sub-Plot Means (alpha=0.05) \n"); 

  imsls_i_write_matrix(": Size of Groups of Means", 1, n_sub-1, 

      equal_means, 0); 

} 

 

Output 
 

                        *** ANALYSIS OF VARIANCE TABLE *** 

                                                         Mean 

                                   ID   DF       SSQ  squares        F  p-value 

Location                           -1  ...  ........  .......  .......  ....... 

Block Within Location              -2    2   1310.28   655.14    30.82    0.031 

Whole-Plot                         -3    1    858.01   858.01    40.37    0.024 

Location x Whole-Plot              -4  ...  ........  .......  .......  ....... 

Whole-Plot Error                   -5    2     42.51    21.26     0.86    0.490 

Split-Plot                         -6    1     17.17    17.17     0.69    0.452 

Location x Split-Plot              -7  ...  ........  .......  .......  ....... 

Whole-Plot x Split-Plot            -8    1      1.55     1.55     0.06    0.815 

Location x Whole-Plot x            -9  ...  ........  .......  .......  ....... 

   Split-Plot 

Split-Plot Error                  -10    4     99.32    24.83     7.62    0.008 

Sub-Plot                          -11    1    163.80   163.80    50.27    0.000 

Location x Sub-Plot               -12  ...  ........  .......  .......  ....... 

Whole-Plot x Sub-Plot             -13    1     11.34    11.34     3.48    0.099 

Location x Whole-Plot x Sub-Plot  -14  ...  ........  .......  .......  ....... 

Split-plot x Sub-Plot             -15    1     46.76    46.76    14.35    0.005 

Location x Split-Plot x Sub-Plot  -16  ...  ........  .......  .......  ....... 

Whole_plot x Split-Plot           -17    1      0.51     0.51     0.16    0.703 

   x Sub-Plot 

Location x Whole-Plot x           -18  ...  ........  .......  .......  ....... 

   Split-Plot x Sub-Plot 

Sub-Plot Error                    -19    8     26.07     3.26  .......  ....... 

Corrected Total                   -20   23   2577.33  .......  .......  ....... 
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Grand mean:     33.871 

Coefficient of Variation **** 

  Whole-Plot:  13.612 

  Split-Plot:  14.712 

  Sub-Plot  :   5.329 

 

 

************************************************************* 

Treatment Means: 

  treatment[0][0][0] 23.833334 

  treatment[0][0][1] 30.766668 

  treatment[0][1][0] 28.100000 

  treatment[0][1][1] 28.866669 

  treatment[1][0][0] 34.200001 

  treatment[1][0][1] 43.299999 

  treatment[1][1][0] 38.899998 

  treatment[1][1][1] 43.000000 

 

  Standard Error for Comparing Two Treatment Means: 1.473846 

  (df=8.000000) 

 

  LSD for Treatment Means (alpha=0.05) 

   Size of Groups of Means 

 1   2   3   4   5   6   7 

 0   3   0   0   0   0   2 

 

 

************************************************************* 

Whole-plot Means 

 1        27.89 

 2        39.85 

 

Standard Error for Comparing Two Whole-Plot Means: 2.661792 

(df=2.000000) 

 

LSD for Whole-Plot Means (alpha=0.05) 

 

Size of Groups of Means 

           0 
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************************************************************* 

Split-plot Means 

 1        33.03 

 2        34.72 

 

Standard Error for Comparing Two Split-Plot Means: 2.876944 

(df=4.000000) 

 

LSD for Split-Plot Means (alpha=0.05) 

 

Size of Groups of Means 

           2 

 

 

************************************************************* 

Sub-plot Means 

1        31.26 

2        36.48 

 

Standard Error for Comparing Two Sub-Plot Means: 1.473846 

(df=8.000000) 

 

LSD for Sub-Plot Means (alpha=0.05) 

 

: Size of Groups of Means 

            0 

strip_plot 
Analyzes data from strip-plot experiments. Function strip_plot also analyzes strip-
plot experiments replicated at several locations. 

Synopsis 
#include <imsls.h> 
float * imsls_f_strip_plot (int n, int n_locations, int n_strip_a,  

int n_strip_b, int block[], int strip_a[], int strip_b[],  
float y[],…, 0) 

The type double function  is imsls_d_strip_plot. 
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Required Arguments 
int n  (Input) 

Number of missing and non-missing experimental observations. 
imsls_f_strip_plot verifies that: 

 

1
( )i

i
n

=

⋅ ⋅= ∑
n_locations

n_strip_a n_strip n_blocks
 

int n_locations (Input) 
Number of locations.  n_locations must be one or greater.   If 
n_locations>1 then the optional array locations[] must be included as 
input to imsls_f_strip_plot. See optional argument IMSLS_LOCATIONS. 

int n_strip_a  (Input) 
Number of levels associated with the strip factor A.  n_strip_a must be 
greater than one. 

int n_strip_b  (Input) 
Number of levels associated with the strip factor B.  n_strip_b must be 
greater than one. 

int block[]  (Input) 
 An array of length n containing the block identifiers for each observation in 

y.  Locations can have different numbers of blocks.  Each block at a single 
location must be assigned a different identifier, but different locations can 
have the same assignments. 

int strip_a[]  (Input) 
An array of length n containing the factor A strip-plot identifiers for each 
observation in y.  Each level of this factor must be assigned a different 
integer.  This routine verifies that the number of unique factor A strip-plot 
identifiers is equal to n_strip_a. 

int strip_b[]  (Input) 
An array of length n containing the factor B strip-plot identifiers for each 
observation in y.  Each level of this factor must be assigned a different 
integer.  This routine verifies that the number of unique factor B strip-plot 
identifiers is equal to n_strip_b. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated by 
placing a NaN (not a number) in y. The NaN value can be set using either 
the function imsls_f_machine(6) or imsls_d_machine(6), depending 
upon whether single or double precision is being used, respectively.  The 
location, strip-plot A, and strip-plot B for each observation in y are identified 
by the corresponding values in the arguments locations, strip_a, and 
strip_b. 
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Return Value 
Address of a pointer to the memory location of a two dimensional, 12 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of the 
effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated 
with values in that row.  The remaining values in a row contain the ANOVA table 
values using the following convention: 

 
j anova_table

i,j 
= anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 
 

The Source Identifiers in the first column of anova_tablei,j are the only negative 
values in anova_table. Assignments of identifiers to ANOVA sources use the 
following coding: 
 

Source  
Identifier 

ANOVA Source 

-1 LOCATION† 
-2 BLOCK WITHIN LOCATION 
-3 STRIP-PLOT A 
-4 LOCATION × STRIP-PLOT A† 
-5 STRIP-PLOT A ERROR  
-6 STRIP-PLOT B 
-7 LOCATION × STRIP-PLOT B† 
-8 STRIP-PLOT B ERROR 
-9 STRIP-PLOT A × STRIP-PLOT B 
-10 LOCATION × STRIP-PLOT A × STRIP-PLOT B † 
-11 STRIP-PLOT A × STRIP-PLOT B ERROR 
-12 CORRECTED TOTAL 

 
Notes: † If n_locations=1 sources involving location are set to missing (NaN). 

Synopsis with Optional Arguments 
#include <imsl.h> 
float * imsls_f_strip_plot (int n, int n_locations, int n_strip_a, int 

n_strip_b, int block[], int strip_a[], int strip_b[], float y[], 
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IMSLS_RETURN_USER, float anova_table[], 
IMSLS_LOCATIONS, int locations[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV,  float **cv, 
IMSLS_CV_USER, float cv[], 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means, 
IMSLS_STRIP_PLOT_A_MEANS_USER, 
  float strip_plot_a_means[], 
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means, 
IMSLS_STRIP_PLOT_B_MEANS_USER, 
  float strip_plot_b_means[], 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_N_BLOCKS int **n_blocks, 
IMSLS_N_BLOCKS_USER, int n_blocks[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER, 
  float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 

 0) 

Optional Arguments 

IMSLS_RETURN_USER, float anova_table[] (Output) 
User defined array of length 72 for storage of the 12 by 6 ANOVA table 
described as the return argument for imsls_f_strip_plot.  For a detailed 
description of the format for this table, see the previous description of the 
return arguments for imsls_f_strip_plot. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each observation 
in y.  Unique integers must be assigned to each location in the study.  This 
argument is required when n_locations>1.  

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.   Missing values are denoted 
with a NaN (Not a Number) value. 

IMSLS_CV, float **cv (Output) 
Address of a pointer to  an internally allocated array of length 3 containing the 
whole-plot, split-plot and sub-plot coefficients of variation.  cv[0] contains 
the whole-plot C.V., cv[1] contains the split-plot C.V., and cv[2] contains 
the sub-plot C.V. 

IMSLS_CV_USER, float cv[] (Output) 
Storage for the array cv, provided by the user. 
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IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output) 
Address of a pointer to an internally allocated array of length n_strip_a 
containing the factor A strip-plot means. 

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means [] (Output) 
Storage for the array strip_plot_a_means, provided by the user. 

IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means (Output) 
Address of a pointer to an internally allocated array of length n_strip_b 
containing the factor B strip-plot means. 

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means [] (Output) 
Storage for the array strip_plot_b_means, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 
(n_split_a×n_split_b) containing the treatment means.  
For i > 0 and  j > 0, treatment_meansi,j = treatment_means 
[(i-1)×n_split_a +(j-1)] contains the mean of the observations, averaged over 
all locations, blocks and replicates, for the ith level of the factor A strip-plot 
and  the jth level of the factor B strip-plot. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float **std_err (Output) 
Address of a pointer to an internally allocated array of length 10 containing 
five standard errors and their associated degrees of freedom.   The standard 
errors are in the first five elements and their associated degrees of freedom are 
reported in std_err[5] through std_err[9]. 

 

 

 

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

Element Standard Error for 
Comparisons Between Two 

Degrees of 
Freedom 

Std_err[0] Factor A Strip-Plot Means std_err[5] 

Std_err[1] Factor B Strip-Plot Means std_err[6] 

Std_err[2] Factor A Strip-Plot Means at the 
same level of Factor B 

std_err[7] 

Std_err[3]  Factor B Strip-Plot Means at the 
same level of Factor A 

std_err[8] 

Std_err[4] Treatment Means  (same strip-
plot A and strip-plot B) 

std_err[9] 
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IMSLS_N_BLOCKS, int **n_blocks (Output) 
Address of a pointer to an internally allocated array of length n_locations 
containing the number of blocks, or replicates, at each location. 

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output) 
Storage for the array n_blocks, provided by the user. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
Address of a pointer to an internally allocated 3-dimensional array of size 
n_locations  by 12 by 6 containing the Anova tables associated with each 
location.  For each location, the 12 by 6 dimensional array corresponds to the 
Anova table for that location.  For example, location_anova_table[(i-
1)×72+(j-1)×6 + (k-1)] contains the value in the kth column and jth row of the 
returned Anova table for the ith location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
Storage for the array location_anova_table, provided by the user. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array containing the 
labels for each of the  n_anova rows of the returned ANOVA table.  The 
label for the ith row of the ANOVA table can be printed with  

printf("%s", anova_row_labels[i]); 

The memory associated with anova_row_labels  can be freed with a single 
call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the array anova_row_labels, provided by the user.  The amount 
of space required will vary depending upon the number of factors and 
n_anova.  An upperbound on the required memory is  
char *anova_row_labels[600]. 

Description 
Function imsls_f_strip_plot is capable of analyzing a wide variety of strip-plot 
experiments.   
The essential distinction between strip-plot and split-plot experiments is the application 
of factor B.  In a split-plot experiment, levels of Factor B are nested within Factor A, 
see Table 2 below.  In strip-plot experiments, Factors A and B are completely crossed, 
see Table 1 below.  This occurs, for example, when an agricultural field is used as a 
block and the levels of factor A are applied in vertical strips across the entire field. 
Levels of factor B are assigned to horizontal strips across the same block. 
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  Strip Plot Factor A 

  A2 A1 A4 A3 

B3 A2B3 A1B3 A4B3 A3B3 

B1 A2B1 A1B1 A4B1 A3B1 

Strip 

Plot 

Factor B 
B2 A2B2 A1B2 A4B2 A3B2 

Table 1 – Strip-Plot Experiments – Strip-Plots Completely Crossed 

 
Whole Factor Plot 

A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 2 – Split-Plot Experiments – Split-Plot B Nested within Strip-Plot A 

In some studies, a strip-plot experiment is replicated at several locations.  
imsls_f_strip_plot can analyze strip-plot experiments replicated at multiple 
locations, even when the number of blocks or replicates at each location are different.  
If only a single replicate or block is used at each location, then location should be 
treated as a blocking factor, with n_locations set equal to one.   If n_locations=1, 
it is assumed that the experiment was conducted at a single location with more than one 
block or replicate at that location.  In this case, the four entries associated with location 
in the ANOVA table will contain missing values. 
However, if n_locations>1, it is assumed the experiment was repeated at multiple 
locations, with blocking occurring at each location.  Although the number of blocks at 
each location can be different, the number of levels for the factor A and B strip-plots 
must be the same at each location.  The locations associated with each of the 
observations in y are specified in the argument locations[], which is a required 
input argument when n_locations>1.   
Locations are assumed to be random effects, then tests involving factor A strip-plots 
use the interaction between factor A strip-plots and locations as the error term for 
testing whether there are statistically significant differences among the levels of factor 
A.  However, this assumes that the interaction of factor A and locations is not 
statistically significant.  A test of this assumption is included in the ANOVA table.  If 
the interaction between factor A strip-plots and locations is statistically significant, 
then the nature of that interaction should be explored since it impacts the interpretation 
of the significance of the factor A. 
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Similarly, when locations are assumed to be random effects, tests involving factor B do 
not use the strip-plot B errors pooled across locations.  Instead, the error term for factor 
B is the interaction between locations and factor B.   

Example 
This example uses data from a strip-plot design with two levels for the first strip and 
four for the last strip. 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

 

void main() 

{ 

 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",  

                        "Mean\nsquares", "\nF", "\np-value"}; 

  char **anova_row_labels = NULL; 

  int i, j, k, l, page_width = 132; 

  int n = 24;                /* Total number of observations */ 

  int n_locations = 1;       /* Number of locations */ 

  int n_strip_a   = 2;       /* Number of factor A strip-plots within a location */ 

  int n_strip_b   = 4;       /* Number of factor B strip-plots within a location */ 

 

  int block[]={ 

    1, 1, 1, 1, 1, 1, 1, 1, 

    2, 2, 2, 2, 2, 2, 2, 2, 

    3, 3, 3, 3, 3, 3, 3, 3}; 

  int strip_a[]={ 

    1, 1, 1, 1, 2, 2, 2, 2,  

    1, 1, 1, 1, 2, 2, 2, 2, 

    1, 1, 1, 1, 2, 2, 2, 2}; 

  int strip_b[]={ 

    1, 2, 3, 4, 1, 2, 3, 4,  

    1, 2, 3, 4, 1, 2, 3, 4,   

    1, 2, 3, 4, 1, 2, 3, 4}; 

  float y[] ={ 

    30.0, 40.0, 38.9, 38.2, 

    41.8, 52.2, 54.8, 58.2, 

    20.5, 26.9, 21.4, 25.1, 

    26.4, 36.7, 28.9, 35.9, 

    21.0, 25.4, 24.0, 23.3, 

    34.4, 41.0, 33.0, 34.9}; 

  float grand_mean=0; 

  float *cv; 
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  float *aov; 

  float *treatment_means; 

  float *strip_plot_a_means; 

  float *strip_plot_b_means; 

  float *std_err; 

  int n_missing; 

  int *equal_means; 

   

  aov = imsls_f_strip_plot(n, n_locations, n_strip_a, n_strip_b,  

                           block, strip_a, strip_b, y,  

                           IMSLS_GRAND_MEAN, &grand_mean,  

                           IMSLS_CV, &cv, 

                           IMSLS_N_MISSING,  &n_missing,   

                           IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,  

                           IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,  

                           IMSLS_TREATMENT_MEANS, &treatment_means, 

                           IMSLS_STD_ERRORS,  &std_err, 

                           IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                           0); 

   

  /* Output results. */ 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

 

  /* Print ANOVA table. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       12, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  printf("\nGrand mean: %f\n", grand_mean); 

 

  /* Print treatment means */ 

  imsls_f_write_matrix("Treatment Means", n_strip_a, n_strip_b, 

                       treatment_means, 0); 

  printf("\n\nStandard Error for Comparing Two Treatment Means: \n"); 

  printf("  Same Level of Factor B          %f (df=%f)\n", 

         std_err[2], std_err[7]); 

  printf("  Same Level of Factor A          %f (df=%f)\n", 

         std_err[3], std_err[8]); 

  printf("  Different Factor A and B Levels %f (df=%f)\n\n\n\n", 

         std_err[4], std_err[9]); 
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  /* Print factor A means */ 

  imsls_f_write_matrix("Factor A Means", n_strip_a, 1, 

                       strip_plot_a_means, 0); 

  printf("\nStandard Error for Comparing Two Factor A Means: \n  %f (df=%f)\n", 

         std_err[0], std_err[5]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a, strip_plot_a_means,          
std_err[5], 

                                             std_err[0]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  /* Print multiple comparison results */ 

  imsls_i_write_matrix("LSD Comparison : Size of Groups of Means", 1, n_strip_a-1, 

      equal_means, 0); 

 

 

  /* Print factor B means */ 

  imsls_f_write_matrix("\n\nFactor B Means", n_strip_b, 1, 

                       strip_plot_b_means, 0); 

  printf("\nStandard Error for Comparing Two Factor B Means: \n  %f (df=%f)\n", 

         std_err[1], std_err[6]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_b, strip_plot_b_means, 
std_err[6], 

                                             std_err[1]/sqrt(2),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, .05, 

                                             0); 

  /* Multiple comparison results */ 

  imsls_i_write_matrix("LSD Comparison : Size of Groups of Means",  

                       1, n_strip_b-1, equal_means, 0); 

} 

 

Output 
 

 

                         *** ANALYSIS OF VARIANCE TABLE *** 

                                                          Mean 

                                    ID   DF       SSQ  squares        F  p-value 

Location                            -1  ...  ........  .......  .......  ....... 

Block Within Location               -2    2   1310.28   655.14    19.89    0.009 

Strip-Plot A                        -3    1    858.01   858.01    40.37    0.024 

Location x Strip-Plot A             -4  ...  ........  .......  .......  ....... 

Strip-Plot A Error                  -5    2     42.51    21.26     4.62    0.061 
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Strip-Plot B                        -6    3    227.73    75.91     4.66    0.052 

Location x Strip-Plot B             -7  ...  ........  .......  .......  ....... 

Strip-Plot B Error                  -8    6     97.76    16.29     3.54    0.075 

Strip-Plot A x Strip-Plot B         -9    3     13.40     4.47     0.97    0.466 

Location x Strip-Plot A            -10  ...  ........  .......  .......  ....... 

   x Strip-Plot B 

Strip-Plot A x Strip-Plot B Error  -11    6     27.63     4.60  .......  ....... 

Corrected Total                    -12   23   2577.33  .......  .......  ....... 

 

 

Grand mean: 33.870834 

 

 

 

                   Treatment Means 

             1            2            3            4 

1        23.83        30.77        28.10        28.87 

2        34.20        43.30        38.90        43.00 

 

 

Standard Error for Comparing Two Treatment Means: 

  Same Level of Factor B          2.417643 (df=4.772558) 

  Same Level of Factor A          2.639322 (df=9.140633) 

  Different Factor A and B Levels 3.121075 (df=8.405353) 

 

 

Factor A Means 

1        27.89 

2        39.85 

 

Standard Error for Comparing Two Factor A Means: 

  1.882171 (df=2.000000) 

 

LSD Comparison : Size of Groups of Means 

                    0 

 

Factor B Means 

1        29.02 

2        37.03 

3        33.50 

4        35.93 

 

Standard Error for Comparing Two Factor B Means: 

  2.330465 (df=6.000000) 
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LSD Comparison : Size of Groups of Means 

                1   2   3 

                2   3   0 
 

strip_split_plot 
Analyzes data from strip-split-plot experiments.  Function strip_split_plot also 
analyzes strip-split-plot experiments replicated at several locations. 

Synopsis 
#include <imsls.h> 

float * imsls_f_strip_split_plot (int n, int n_locations, int n_strip_a, 
int n_strip_b, int n_split, int block[], int strip_a[], int strip_b[], 
int split[], float y[],…, 0) 

The type double function is imsls_d_strip_split_plot. 

Required Arguments 

int n  (Input) 
Number of missing and non-missing experimental observations.  
imsls_f_strip_split_plot verifies that: 

1
( )i

i
n

=

= ∑
n_locations

n_strip_a×n_strip_b×n_split×n_block
 

 where n_blocksi is the number of blocks at location i. 
int n_locations (Input) 

Number of locations.  n_locations must be one or greater.   If 
n_locations>1 then the optional array locations[] must be included as 
input to imsls_f_strip_split_plot. 

int n_strip_a (Input) 
Number of levels associated with the strip-plot A factor.  n_strip_a must be 
greater than one. 

int n_strip_b  (Input) 
Number of levels associated with the strip-plots B factor.  n_strip_b must 
be greater than one. 

int n_split  (Input) 
Number of levels associated with the split factor. n_split must be greater 
than one. 

int block[]  (Input) 
An array of length n containing the block identifiers for each observation in y.  
Locations can have different numbers of blocks.  Each block at a single 
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location must be assigned a different identifier, but different locations can 
have the same assignments. 

int strip_a[]  (Input) 
An array of length n containing the strip-plot A level identifiers for each 
observation in y.  Each level of this factor must be assigned a different 
integer.  imsls_f_strip_split_plot verifies that the number of unique 
strip-plot identifiers is equal to n_strip_a. 

int strip_b[]  (Input) 
An array of length n containing the strip-plot B identifiers for each 
observation in y.  Each level of this factor must be assigned a different 
integer.  imsls_f_strip_split_plot verifies that the number of unique 
strip-plot identifiers is equal to n_strip_b. 

int split[]  (Input) 
An array of length n containing the split-plot level identifiers for each 
observation in y.  Each level of this factor must be assigned a different 
integer.  imsls_f_strip_split_plot verifies that the number of unique 
split-plot identifiers is equal to n_split. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values cannot be omitted.  They are indicated by 
placing a NaN (not a number) in y. The NaN value can be set using either the 
function imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively.  The location, 
strip-plot A, strip-plot B and split-plot for each observation in y are identified 
by the corresponding values in the argument’s locations, strip_a, strip_b, 
and split. 

Return Value 
Address of a pointer to the memory location of a two dimensional, 22 by 6 array 
containing the ANOVA table.  Each row in this array contains values for one of the 
effects in the ANOVA table.  The first value in each row,  
anova_tablei,0 = anova_table[i*6], identifies the source for the effect associated 
with values in that row.  The remaining values in a row contain the ANOVA table 
values using the following convention: 

 
J anova_tablei,j = anova_table[i*6+j] 

0 Source Identifier (values described below) 

1 Degrees of freedom 

2 Sum of squares  

3 Mean squares  

4 F-statistic  

5 p-value for this F-statistic 
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The Source Identifiers in the first column of anova_tablei,j are the only negative 
values in anova_table[]. Assignments of identifiers to ANOVA sources use the 
following coding: 

Source 
Identifier 

 
ANOVA Source 

-1 LOCATION† 

-2 BLOCKs WITHIN LOCATION  

-3 STRIP-PLOT A 

-4 LOCATION × STRIP-PLOT A † 

-5 STRIP-PLOT A ERROR  

-6 SPLIT-PLOT 

-7 SPLIT-PLOT × STRIP-PLOT A 

-8 LOCATION × SPLIT-PLOT † 

-9 SPLIT-PLOT ERROR 

-10 LOCATION × SPLIT-PLOT × STRIP-PLOT A † 

-11 STRIP-PLOT B 

-12 LOCATION × STRIP-PLOT B † 

-13 STRIP_PLOT B ERROR 

-14 STRIP-PLOT A × STRIP-PLOT B 

-15 LOCATION × STRIP-PLOT A × STRIP-PLOT B 

-16 STRIP-PLOT A × STRIP-PLOT B ERROR 

-17 SPLIT-PLOT × STRIP-PLOT B 

-18 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT 

-19 LOCATION × SPLIT-PLOT × STRIP-PLOT B † 

-20 LOCATION × STRIP-PLOT A × STRIP-PLOT B × SPLIT-
PLOT † 

-21 STRIP-PLOT A × STRIP-PLOT B × SPLIT-PLOT ERROR  

-22 CORRECTED TOTAL 

 
Notes: † If n_locations=1 sources involving location are set to missing (NaN). 

Synopsis with Optional Arugments 
#include <imsl.h> 
float * imsls_f_strip_split_plot (int n, int n_locations, 

 int n_strip_a, int n_strip_b, int n_split, int block[],  
int strip_a[], int strip_b[],int split[], float y[], 
IMSLS_RETURN_USER, float anova_table[] 
IMSLS_LOCATIONS, int locations[], 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float **cv, 
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IMSLS_CV_USER, float cv[], 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means, 
IMSLS_STRIP_PLOT_A_MEANS_USER, 
  float strip_plot_a_means[], 
IMSLS_STRIP_PLOT_B_MEANS, float **strip_plot_b_means, 
IMSLS_STRIP_PLOT_B_MEANS_USER, 
  float strip_plot_b_means[], 
IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means, 
IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[], 
IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means, 
IMSLS_STRIP_PLOT_AB_MEANS_USER, 
  float strip_plot_ab_means[], 
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, 
 float **strip_plot_a_split_plot_means, 
IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER, 
 float strip_plot_a_split_plot_means[], 
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, 
 float **strip_plot_b_split_plot_means, 
IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS_USER, 
 float strip_plot_b_split_plot_means[], 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_STD_ERRORS, float **std_err, 
IMSLS_STD_ERRORS_USER, float std_err[], 
IMSLS_N_BLOCKS int **n_blocks, 
IMSLS_N_BLOCKS_USER, int n_blocks[], 
IMSLS_LOCATION_ANOVA_TABLE float **location_anova_table, 
IMSLS_LOCATION_ANOVA_TABLE_USER,  
 float location_anova_table[], 
IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels, 
IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float anova_table[] (Output) 
User defined array of length 132 for storage of the 22 by 6 anova table 
described as the return argument for imsls_f_strip_split_plot.  For a 
detailed description of the format for this table, see the previous description of 
the return arguments for imsls_f_strip_split_plot. 

IMSLS_LOCATIONS, int locations[]  (Input) 
An array of length n containing the location identifiers for each observation in 
y.  Unique integers must be assigned to each location in the study.  This 
argument is required when n_locations>1.  
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IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.  Missing values are denoted 
with a NaN (Not a Number) value.  

IMSLS_CV, float **cv (Output) 
 Address of a pointer to  an internally allocated array of length 3 containing 
the strip-plots and split-plot coefficients of variation.  cv[0] contains the 
strip-plot A C.V., cv[1] contains the strip-plot B C.V., and cv[2] contains 
the split-plot C.V. 

IMSLS_CV_USER, float cv[] (Output) 
Storage for the array cv, provided by the user. 

IMSLS_GRAND_MEAN, float *grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_STRIP_PLOT_A_MEANS, float **strip_plot_a_means (Output) 
Address of a pointer to an internally allocated array of length n_strip_a 
containing the factor A strip-plot means. 

IMSLS_STRIP_PLOT_A_MEANS_USER, float strip_plot_a_means[] (Output) 
Storage for the array strip_plot_a_means, provided by the user. 

  
IMSLS_STRIP_PLOT_B_MEANS, float **split_plot_b_means (Output) 

 Address of a pointer to an internally allocated array of length n_split_b 
containing the strip-plot B means. 

IMSLS_STRIP_PLOT_B_MEANS_USER, float strip_plot_b_means[] (Output) 
Storage for the array split_plot_b_means, provided by the user. 

IMSLS_SPLIT_PLOT_MEANS, float **split_plot_means (Output) 
 Address of a pointer to an internally allocated array of length n_split 
containing the strip-plot B means. 

IMSLS_SPLIT_PLOT_MEANS_USER, float split_plot_means[] (Output) 
Storage for the array split_plot_means, provided by the user. 

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS,  float 
**strip_plot_a_split_plot_means (Output) 
 Address of a pointer to an internally allocated 2-dimensional array of size 
n_strip_a by n_split containing the means for all combinations of the 
factor A strip-plot and split-plots. 

IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS_USER,  float 
strip_plot_a_split_plot_means [] (Output) 
Storage for the array strip_a_split_plot_means, provided by the user. 

IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS,  float 
**split_plot_b_split_plot_means (Output) 
Address of a pointer to an internally allocated 2-dimensional array of size 
n_split_b by n_split containing the means for all combinations of strip-
plot B and split-plots. 



 

 
 

358 • strip_split_plot IMSL C Stat Library 

 

 

 

IMSLS_STRIP_B_PLOT_SPLIT_PLOT_MEANS_USER, float 
strip_plot_b_split_plot_means[] (Output) 
Storage for the array strip_b_split_plot_means, provided by the user. 

IMSLS_STRIP_PLOT_AB_MEANS, float **strip_plot_ab_means (Output) 
 Address of a pointer to an internally allocated 2-dimensional array of size 
n_strip_a by n_strip_b containing the means for all combinations of 
strip-plots. 

IMSLS_STRIP_PLOT_AB_MEANS_USER,  float strip_plot_ab_means[] (Output) 
Storage for the array strip_plot_ab_means, provided by the user. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size 
(n_strip_a*n_strip_b*n_split) containing the treatment means. For i > 
0 and   j> 0, treatment_meansi, j = treatment_means 
[(i-1)*n_split +(j-1)] contains the mean of the observations, averaged over 
all locations, blocks and replicates, for the ith level of the strip-plot and  the 
jth level of the split-plot. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[] (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_STD_ERRORS, float **std_err (Output) 
 Address of a pointer to an internally allocated array of length 20 containing 
ten standard errors and their associated degrees of freedom.   The standard 
errors are in the first 10 elements and their associated degrees of freedom are 
reported in std_err[10] through std_err[19]. 

 



 
 
 
 

 
 

Chapter 4: Analysis of Variance and Designed Experiments strip_split_plot • 359  

 

 

 

 
Element 

Standard Error for 
Comparisons Between Two 

Degrees of 
Freedom 

std_err[0]  Strip-Plot A Means std_err[10]

std_err[1]  Strip-Plot B Means std_err[11]

std_err[2]  Split-Plot Means std_err[12]

std_err[3]  Strip-Plot A Means at the same level of 
split-plots 

std_err[13]

std_err[4]  Strip-Plot A Means at the same level of 
strip-plot B 

std_err[14]

std_err[5]  Strip-Plot B Means at the same level of 
split-plots 

std_err[15]

std_err[6]  Strip-Plot B Means at the same level of 
strip-plot A 

std_err[16]

std_err[7]  Split-Plot Means at the same level of split-
plot A 

std_err[17]

std_err[8]  Split-Plot Means at the same level of strip-
plot B 

std_err[18]

std_err[9] Treatment Means  (same strip-plot A, strip-
plot B and split-plot) 

std_err[19]

 

IMSLS_STD_ERRORS_USER, float std_err[] (Output) 
Storage for the array std_err, provided by the user. 

IMSLS_N_BLOCKS, int **n_blocks (Output) 
 Address of a pointer to an internally allocated array of length n_locations 
containing the number of blocks, or replicates, at each location.  This value 
must be greater than one, n_blocks > 1. 

IMSLS_N_BLOCKS_USER, int n_blocks[] (Output) 
User provided storage for the array n_blocks. 

IMSLS_LOCATION_ANOVA_TABLE, float **location_anova_table (Output) 
Address of a pointer to an internally allocated 3-dimensional array of size 
n_locations  by 22 by 6 containing the anova tables associated with each 
location.  For each location, the 22 by 6 dimensional array corresponds to the 
anova table for that location.  For example, location_anova_table[(i-
1)*132+(j-1)*6 +(k-1)] contains the value in the kth column and jth row 
of the returned anova-table for the ith location. 

IMSLS_LOCATION_ANOVA_TABLE_USER, float anova_table[] (Output) 
User provided storage for the array location_anova_table. 

IMSLS_ANOVA_ROW_LABELS, char ***anova_row_labels   (Output) 
Address of a pointer to a pointer to an internally allocated array containing the 
labels for each of the  n_anova rows of the returned ANOVA table.  The 
label for the ith row of the ANOVA table can be printed with  

printf("%s", anova_row_labels[i]); 
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The memory associated with anova_row_labels  can be freed with a single 
call to free(anova_row_labels). 

IMSLS_ANOVA_ROW_LABELS_USER, char *anova_row_labels[]   (Output) 
Storage for the array anova_row_labels, provided by the user.  The amount 
of space required will vary depending upon the number of factors and 
n_anova.   An upperbound on the required memory is  
char *anova_row_labels[800]. 

Description 
Function  imsls_f_strip_split_plot is capable of analyzing a wide variety of 
strip-split plot experiments, also referred to as strip-strip plot experiments.   By default, 
imsls_f_strip_split_plot assumes that both strip-plot factors, and split-plots are 
fixed effects, and the location effects, if any, are random effects. The nature of 
randomization used in an experiment determines analysis of the data.  Two popular 
forms of randomization in strip-plot and split-plot experiments are illustrated in the 
following two figures.  In both experiments, the strip-plot factor, factor A, has 4 levels 
that are randomly assigned to a block or field in four strips.  

 

 

 
 

 

 

 

Table 1 - Strip-Plot Experiment - Strip-Plots Completely Crossed 

In the strip-plot experiment, factor B, has 3 levels that are randomly assigned as strips 
across each of the four levels of factor A.  In this case, factors A and B are completely 
crossed.  The randomization applied to factor B is independent of the application of the 
strip-plots, factor A. 
Contrast this to the randomization depicted in Table 2 below.  In this split-plot 
experiment, the levels of factor B are nested within each level of factor A whole-plots.  
Factor B is randomized independently within each level of factor A.  Unlike the strip-
plot experiment, in the split-plot experiment different levels of factor B appear in the 
same row. 
 
 
 
 
 

 

  Factor A Strip-Plots 
  A2 A1 A4 A3 

B3 A2B3 A1B3 A4B3 A3B3

B1 A2B1 A1B1 A4B1 A3B1

 
Factor B  

Strip Plots 

B2 A2B2 A1B2 A4B2 A3B2
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Whole-Plot Factor 
A2 A1 A4 A3 

A2B1 A1B3 A4B1 A3B2

A2B3 A1B1 A4B3 A3B1

A2B2 A1B2 A4B2 A3B2

Table 2 – Split-Plot Experiment – Factor B Split-Plots Nested within Factor A Whole-Plots 

A strip-split plot experiment is a strip-plot experiment with a third factor randomized 
within each level of strip-plot factor A, see Table 3.  The third factor, referred to as the 
split-plot factor, is randomly assigned to experimental units within each level of strip-
plot factor A, see Figure 3. imsls_f_strip_split_plot analyzes strip-split plot 
experiments consisting of two strip-plot factors and one split-plot factor nested within 
strip-plot factors A and B. 
 

  Factor A Strip Plots 
  A2 A1 A4 A3 

B3 A2B3C2 
A2B3C1 

A1B3C1 
A1B3C2 

A4B3C2 
A4B3C1 

A3B3C2 
A3B3C1 

B1 A2B1C1 
A2B1C2 

A1B1C1 
A1B1C2 

A4B1C2 
A4B1C1 

A3B1C2 
A3B1C1 

Factor 
B 

Strip 

Plots B2 A2B2C2 
A2B2C1 

A1B2C1 
A1B2C2 

A4B2C1 
A4B2C2 

A3B2C2 
A3B2C1 

Table 3 – Strip-Split Plot Experiment - Split-Plots Nested Within Strip-Plot Factors A 

Strip-split plot experiments are closely related to split-split plot experiments, see Table 
4.  The main difference between the two is that in strip-split plot experiments, the order 
of the levels for factor B are not applied randomly across factor A.  Each level of factor 
B is constant across any row.  In this example, the entire first row is assigned to the 
third level of factor B.  In the equivalent split-split plot experiment, the levels of factor 
B are not constant across any row.  The levels are randomized within each level of 
factor A. 
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Whole Plot Factor A 
A2 A1 A4 A3 

A2B3C2 
A2B3C1 

A1B2C1
A1B2C2

A4B1C2 
A4B1C1 

A3B3C2 
A3B3C1 

A2B1C1 
A2B1C2 

A1B1C1
A1B1C2

A4B3C2 
A4B3C1 

A3B2C2 
A3B2C1 

A2B2C2 
A2B2C1 

A1B3C1
A1B3C2

A4B2C1 
A4B2C2 

A3B1C2 
A3B1C1 

Table  4 – Split-Split Plot Experiment – Sub-Plot Factor C Nested Within Split-Plot Factor B,  
Nested Within Whole-Plot Factor A 

In some studies, a strip-split-plot experiment is replicated at several locations.  
Function imsls_f_strip_split_plot can analyze strip-split plot experiments 
replicated at multiple locations, even when the number of blocks or replicates at each 
location might be different different.  If only a single replicate or block is used at each 
location, then location should be treated as a blocking factor, with n_locations=1. If 
n_locations=1, it is assumed that either the experiment was conducted at multiple 
locations, each with a single block, or at a single location with more than one block or 
replicate at that location.  When n_locations=1, all entries associated with location 
in the anova table will contain missing values. 
However, if n_locations>1, it is assumed the experiment was repeated at multiple 
locations, with blocking occurring at each location.  Although the number of blocks at 
each location can be different, the number of levels for the strip-plot and split-plot 
factors strip-plots must be the same at each location.  The locations associated with 
each of the observations in y are specified in the argument locations[], which is a 
required input argument when n_locations>1.   
By default, locations are assumed to be random effects. Tests involving strip-plots use 
the interaction between strip-plots and locations as the error term for testing whether 
there are statistically significant differences among strip-plots.  However, this assumes 
that the interaction of strip-plots and locations is not statistically significant.  A test of 
this assumption is included in the anova table.  If any interactions between locations 
and strip-plot or split-plot factors are statistically significant, then the nature of these 
interactions should be explored since this impacts the interpretation of the significance 
of the treatment factors. 
Similarly, when locations are assumed to be random effects, tests involving split-plots 
do not use the split-plot errors pooled across locations.  Instead, the error term for split-
plots is the interaction between locations and split-plots. 
Suppose, for example, that a researcher wanted to conduct an agricultural experiment 
comparing the effectiveness of 4 fertilizers with 3 seed lots and 3 rates of application.  
One replicate of the experiment is conducted at each of the 3 farms.  That is, only a 
single field at each location is assigned to this experiment.   
Each field is divided into 4 vertical strips and 3 horizontal strips.  The vertical strips are 
randomly assigned to fertilizers and the rows are randomly assigned to application 
rates.  Fertilizers and application rates represent strip-plot factors A and B respectively.  
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Seed lots are randomly assigned to three sub-divisions within each combination of 
strip-plots. 
 

  Fertilizer Strip Plots 

  F2 F1 F4 F3 

R3 F2R3S1 
F2R3S2 
F2R3S3 

F1R3S3 
F1R3S2 
F1R3S1 

F4R3S3 
F4R3S2 
F4R3S1 

F3R3S2 
F3R3S1 
F3R3S3 

R2 F2R1S3 
F2R1S1 
F2R1S2 

F1R1S2 
F1R1S3 
F1R1S1 

F4R1S3 
F4R1S1 
F4R1S2 

F3R1S1 
F3R1S2 
F3R1S3 

 
Application 

Rate 
Strip 
Plot 

R1 F2R2S1 
F2R2S2 
F2R2S3 

F1R2S1 
F1R2S3 
F1R2S2 

F4R2S2 
F4R2S3 
F4R2S1 

F3R2S3 
F3R2S1 
F3R2S2 

Figure 4 – Strip-Split Plot Experiment – Fertilizer Strip-Plots, Application Rate Strip-Plots,  
and Seed Lot Split-Plots 

In this case, each farm is a blocking factor, fertilizers are factor A strip-plots, fertilizer 
application rates are factor B strip-plots, and seed lots are split-plots.  The input array 
rep would contain integers from 1 to the number of farms. 
In summary, imsls_f_strip_split_plot can analyze 2x2x2x2=16 different 
experimental situations, depending upon the settings of: 

Example 
The experiment was conducted using a 2 x 2 strip_split plot arrangement with each of 
the four plots divided into 2 sub-divisions that were randomly assigned one of two 
split-plot levels.  This was replicated 3 times producing an experiment with  
n = 2x2x2x3 = 24 observations.  
 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include "imsls.h" 

 

void l_printLSD(int n1, int *equalMeans, float *means); 

void l_printLSD2Table(int n1, int n2, int* equalMeans, float *means); 

void l_printLSD3Table(int n1, int n2, int n3, int* equalMeans, float *means); 

 

void main() 

{ 

  char **anova_row_labels; 

  char *col_labels[] = {" ", "\nID", "\nDF", "\nSSQ",  
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                        "Mean\nsquares", "\nF", "\np-value"}; 

  int i, j, k, l, page_width = 132; 

   

  int n = 24;            /* Total number of observations */ 

  int n_locations = 1;   /* Number of locations */ 

  int n_strip_a = 2;     /* Number of Factor A strip-plots within a location */ 

  int n_strip_b = 2;     /* Number of Factor B strip-plots within a location */ 

  int n_split   = 2;     /* Number of split-plots within each Factor A strip-plot */ 

  int block[]={ 

        1, 1, 1, 1, 1, 1, 1, 1, 

        2, 2, 2, 2, 2, 2, 2, 2, 

        3, 3, 3, 3, 3, 3, 3, 3}; 

  int strip_a[]={ 

        1, 1, 1, 1, 2, 2, 2, 2,  

        1, 1, 1, 1, 2, 2, 2, 2, 

        1, 1, 1, 1, 2, 2, 2, 2}; 

  int strip_b[]={ 

        1, 1, 2, 2, 1, 1, 2, 2,  

        1, 1, 2, 2, 1, 1, 2, 2,   

        1, 1, 2, 2, 1, 1, 2, 2}; 

  int split[]={ 

        1, 2, 1, 2, 1, 2, 1, 2,  

        1, 2, 1, 2, 1, 2, 1, 2,   

        1, 2, 1, 2, 1, 2, 1, 2}; 

  float y[] ={ 

        30.0, 40.0, 38.9, 38.2, 

        41.8, 52.2, 54.8, 58.2, 

        20.5, 26.9, 21.4, 25.1, 

        26.4, 36.7, 28.9, 35.9, 

        21.0, 25.4, 24.0, 23.3, 

        34.4, 41.0, 33.0, 34.9}; 

  float alpha = 0.05; 

  float grand_mean = 0; 

  float *cv; 

  float *aov; 

  float *treatment_means; 

  float *strip_plot_a_means; 

  float *strip_plot_b_means; 

  float *split_plot_means; 

  float *strip_a_split_plot_means; 

  float *strip_b_split_plot_means; 

  float *strip_plot_ab_means; 
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  float *std_err; 

  int   *equal_means; 

   

  aov = imsls_f_strip_split_plot(n, n_locations, n_strip_a, n_strip_b, n_split,  

                           block, strip_a, strip_b, split, y,  

                           IMSLS_GRAND_MEAN, &grand_mean,  

                           IMSLS_CV, &cv, 

                           IMSLS_TREATMENT_MEANS,  &treatment_means,  

                           IMSLS_STRIP_PLOT_A_MEANS, &strip_plot_a_means,  

                           IMSLS_STRIP_PLOT_B_MEANS, &strip_plot_b_means,  

                           IMSLS_SPLIT_PLOT_MEANS, &split_plot_means, 

      IMSLS_STRIP_PLOT_A_SPLIT_PLOT_MEANS, 
&strip_a_split_plot_means, 

                           IMSLS_STRIP_PLOT_B_SPLIT_PLOT_MEANS, 
&strip_b_split_plot_means, 

                           IMSLS_STRIP_PLOT_AB_MEANS, &strip_plot_ab_means, 

                           IMSLS_STD_ERRORS, &std_err, 

                           IMSLS_ANOVA_ROW_LABELS, &anova_row_labels, 

                           0); 

   

  /* Output results. */ 

  imsls_page(IMSLS_SET_PAGE_WIDTH, &page_width); 

  /* Print ANOVA table, without first column. */ 

  imsls_f_write_matrix("   *** ANALYSIS OF VARIANCE TABLE ***",  

                       22, 6, aov,  

                       IMSLS_WRITE_FORMAT, "%3.0f%3.0f%8.2f%7.2f%7.2f%7.3f", 

                       IMSLS_ROW_LABELS, anova_row_labels, 

                       IMSLS_COL_LABELS, col_labels, 

                       0); 

 

  /*  

   * Print the various means. 

   */ 

  printf("\nGrand mean: %f\n\n", grand_mean); 

  printf("Coefficient of Variation\n"); 

  printf("  Strip-Plot A:      %9.4f\n", cv[0]); 

  printf("  Strip-Plot B:      %9.4f\n", cv[1]); 

  printf("  Split-Plot:        %9.4f\n\n", cv[2]); 

  l = 0; 

 

  /*  

   * Print the Treatment Means. 
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   */ 

  printf("\n\n*************************************************************"); 

  printf("\nTreatment Means\n"); 

  for (i=0; i < n_strip_a; i++){ 

     for(j=0; j < n_strip_b; j++){ 

        for(k=0; k < n_split; k++){ 

           printf("treatment[%d][%d][%d]   %9.4f \n",  

                  i+1, j+1, k+1, treatment_means[l++]); 

        } 

     } 

  } 

  printf("\nStandard Error for Comparing Two Treatment Means: %f \n(df=%f)\n", 

         std_err[9], std_err[19]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b*n_split,   

                                             treatment_means, std_err[19], 

                                             std_err[9]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD3Table(n_strip_a, n_strip_b, n_split, equal_means, treatment_means); 

   

  /*  

   * Print the Strip-plot A Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-plot A Means", n_strip_a, 1, 

                       strip_plot_a_means, 0); 

  printf("\nStandard Error for Comparing Two Strip-Plot A Means: %f \n(df=%f)\n", 

         std_err[0], std_err[10]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a, strip_plot_a_means,  

                                             std_err[10], std_err[0]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD(n_strip_a, equal_means, strip_plot_a_means); 

 

  /*  

   * Print Strip-plot B Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-plot B Means", n_strip_b, 1, 

                       strip_plot_b_means, 0); 
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  printf("\nStandard Error for Comparing Two Strip-Plot B Means: %f \n(df=%f)\n", 

         std_err[1], std_err[11]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_b, strip_plot_b_means,  

                                             std_err[11], std_err[1]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD(n_strip_b, equal_means, strip_plot_b_means); 

   

  /*  

   * Print the Split-plot Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Split-plot Means", n_split, 1, 

                       split_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Split-Plot Means: %f \n(df=%f)\n", 

         std_err[2], std_err[12]); 

  equal_means = imsls_f_multiple_comparisons(n_split, split_plot_means,  

                                             std_err[12], std_err[2]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD(n_split, equal_means, split_plot_means); 

   

  /*  

   * Print the Strip-plot A by Split-plot Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-plot A by Split-plot Means", n_strip_a, n_split, 

                       strip_a_split_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n", 

         std_err[3], std_err[13]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a*n_split,  

                                             strip_a_split_plot_means,  

                                             std_err[13], 

                                             std_err[3]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD2Table(n_strip_a, n_split, equal_means, strip_a_split_plot_means); 

 

  /*  
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   * Print the Strip-plot A by Strip-plot B Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-plot A by Strip-plot B Means", n_strip_a,  

                       n_strip_b, strip_plot_ab_means, 0); 

  printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n", 

         std_err[4], std_err[14]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_a*n_strip_b,  

                                             strip_plot_ab_means, std_err[14], 

                                             std_err[4]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD2Table(n_strip_a, n_strip_b, equal_means, strip_plot_ab_means); 

 

  /*  

   * Print the Strip-Plot B by Split-Plot Means.  

   */ 

  printf("\n\n*************************************************************"); 

  imsls_f_write_matrix("Strip-Plot B by Split-Plot Means", n_strip_b, n_split, 

                       strip_b_split_plot_means, 0); 

  printf("\nStandard Error for Comparing Two Means: %f \n(df=%f)\n", 

         std_err[5], std_err[15]); 

  equal_means = imsls_f_multiple_comparisons(n_strip_b*n_split,  

                                             strip_b_split_plot_means,  

                                             std_err[15], std_err[5]/sqrt(2.0),  

                                             IMSLS_LSD, 

                                             IMSLS_ALPHA, alpha, 

                                             0); 

  l_printLSD2Table(n_strip_b, n_split, equal_means, strip_b_split_plot_means); 

  

} 

/*  

 * Local functions to output  results of means comparisons. 

 */ 

void l_printLSD(int n, int *equalMeans, float *means){ 

        float x=0.0; 

        int i, j, k; 

        int iSwitch; 

        int *idx; 

         

        idx = (int *) malloc(n * sizeof (int)); 
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        for (k=0; k < n; k++) { 

                idx[k] =k+1; 

        }         

        /* Sort means in ascending order*/ 

        iSwitch=1; 

        while (iSwitch != 0){ 

                iSwitch = 0; 

                for (i = 0; i < n-1; i++){ 

                        if (means[i] > means[i+1]){ 

                                iSwitch = 1; 

                                x = means[i]; 

                                means[i] = means[i+1]; 

                                means[i+1] = x; 

                                j = idx[i]; 

                                idx[i] = idx[i+1]; 

                                idx[i+1] = j; 

                        } 

                } 

        } 

        printf("[group] \t  Mean \t\tLSD Grouping \n"); 

        for (i=0; i < n; i++){ 

                printf("  [%d] \t\t%f", idx[i], means[i]); 

                 

                for (j=1; j < i+1; j++){ 

                        if(equalMeans[j-1] >= i+2-j){ 

                                printf("\t  *"); 

                        }else{  

                                if(equalMeans[j-1]>=0) printf("\t"); 

                        } 

                } 

                if (i < n-1 && equalMeans[i]>0) printf("\t  *"); 

                printf("\n"); 

        } 

        free(idx); 

        return; 

 

} 

void l_printLSD2Table(int n1, int n2, int *equalMeans, float *means){ 

        float x=0.0; 

        int i, j, k, n; 

        int iSwitch; 
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        int *idx; 

        n = n1*n2; 

         

        idx = (int *) malloc(2*n * sizeof (int)); 

        i = 1; 

        j = 1; 

        for (k=0; k < n; k++) { 

                idx[2*k]   = i; 

                idx[2*k+1] = j++; 

                if (j > n2){ 

                        j = 1; 

                        i++; 

                } 

        } 

         

        /* sort means in ascending order*/ 

         

        iSwitch=1; 

        while (iSwitch != 0){ 

                iSwitch = 0; 

                for (i = 0; i < n-1; i++){ 

                        if (means[i] > means[i+1]){ 

                                iSwitch = 1; 

                                x = means[i]; 

                                means[i] = means[i+1]; 

                                means[i+1] = x; 

                                j = idx[2*i]; 

                                idx[2*i] = idx[2*(i+1)]; 

                                idx[2*(i+1)] = j; 

                                j = idx[2*i+1]; 

                                idx[2*i+1] = idx[2*(i+1)+1]; 

                                idx[2*(i+1)+1] = j; 

                        } 

                } 

        } 

        printf("[A][B] \tMean \t\tLSD Grouping \n"); 

        for (i=0; i < n; i++){ 

                printf("[%d][%d] \t%f", idx[2*i], idx[2*i+1],means[i]); 

                 

                for (j=1; j < i+1; j++){ 

                        if(equalMeans[j-1] >= i+2-j){ 

                                printf("\t*"); 
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                        }else{  

                                if(equalMeans[j-1]>0) printf("\t"); 

                        } 

                } 

                if (i < n-1 && equalMeans[i]>0) printf("\t*"); 

                printf("\n"); 

        } 

        free(idx); 

        idx = NULL; 

        return; 

 

} 

void l_printLSD3Table(int n1, int n2, int n3, int *equalMeans, float *means){ 

        float x=0.0; 

        int i, j, k, m, n; 

        int iSwitch; 

        int *idx; 

        n = n1*n2*n3; 

         

        idx = (int *) malloc(3*n * sizeof (int)); 

        i = 1; 

        j = 1; 

        k = 1; 

        for (m=0; m < n; m++) { 

                idx[3*m]   = i; 

                idx[3*m+1] = j; 

                idx[3*m+2] = k++; 

                if (k > n3){ 

                        k = 1; 

                        j++; 

                        if (j > n2){ 

                                j = 1; 

                                i++; 

                        } 

                } 

        } 

 

        /* sort means in ascending order*/ 

         

        iSwitch=1; 

        while (iSwitch != 0){ 

                iSwitch = 0; 
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                for (i = 0; i < n-1; i++){ 

                        if (means[i] > means[i+1]){ 

                                iSwitch = 1; 

                                x = means[i]; 

                                means[i] = means[i+1]; 

                                means[i+1] = x; 

                                j = idx[3*i]; 

                                idx[3*i] = idx[3*(i+1)]; 

                                idx[3*(i+1)] = j; 

                                j = idx[3*i+1]; 

                                idx[3*i+1] = idx[3*(i+1)+1]; 

                                idx[3*(i+1)+1] = j; 

                                j = idx[3*i+2]; 

                                idx[3*i+2] = idx[3*(i+1)+2]; 

                                idx[3*(i+1)+2] = j; 

                        } 

                } 

        } 

        printf("[A][B][Split] \t  Mean \t\t  LSD Grouping \n"); 

        for (i=0; i < n; i++){ 

                printf("[%d][%d]  [%d] \t%f", idx[3*i], idx[3*i+1], idx[3*i+2], 
means[i]); 

                 

                for (j=1; j < i+1; j++){ 

                        if(equalMeans[j-1] >= i+2-j){ 

                                printf("\t*"); 

                        }else{  

                                if(equalMeans[j-1]>0) printf("\t"); 

                        } 

                } 

                if (i < n-1 && equalMeans[i]>0) printf("\t*"); 

                printf("\n"); 

        } 

        free(idx); 

        return; 

 

} 
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Output 
 

 

                       *** ANALYSIS OF VARIANCE TABLE *** 

                                                      Mean 

                                ID   DF       SSQ  squares        F  p-value 

Location ....................   -1  ...  ........  .......  .......  ....... 

Blocks ......................   -2    2   1310.28   655.14    14.53    0.061 

Strip-Plot A ................   -3    1    858.01   858.01    40.37    0.024 

Location x A ................   -4  ...  ........  .......  .......  ....... 

Strip-Plot A Error ..........   -5    2     42.51    21.26     1.48    0.385 

Split-Plot ..................   -6    1    163.80   163.80    41.22    0.003 

Split-Plot x A ..............   -7    1     11.34    11.34     2.85    0.166 

Location x Split-Plot .......   -8  ...  ........  .......  .......  ....... 

Split-Plot Error ............   -9    4     15.90     3.97     1.56    0.338 

Location x Split-Plot x A ...  -10  ...  ........  .......  .......  ....... 

Strip-Plot B ................  -11    1     17.17    17.17     0.47    0.565 

Location x B ................  -12  ...  ........  .......  .......  ....... 

Strip-Plot B Error ..........  -13    2     73.51    36.75     2.85    0.260 

A x B .......................  -14    1      1.55     1.55     0.12    0.762 

Location x A x B ............  -15  ...  ........  .......  .......  ....... 

A x B Error .................  -16    2     25.82    12.91     5.08    0.080 

Split-Plot x B ..............  -17    1     46.76    46.76    18.39    0.013 

Split-Plot x A x B ..........  -18    1      0.51     0.51     0.20    0.677 

Location x Split-Plot x B ...  -19  ...  ........  .......  .......  ....... 

Location x Split-Plot x A x B  -20  ...  ........  .......  .......  ....... 

Split-Plot x A x B Error ....  -21    4     10.17     2.54  .......  ....... 

Corrected Total .............  -22   23   2577.33  .......  .......  ....... 

 

Grand mean: 33.870834 

 

Coefficient of Variation 

  Strip-Plot A:        13.6116 

  Strip-Plot B:        17.8986 

  Split-Plot:           5.8854 

 

 

************************************************************* 

Treatment Means 

treatment[1][1][1]     23.8333 

treatment[1][1][2]     30.7667 

treatment[1][2][1]     28.1000 
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treatment[1][2][2]     28.8667 

treatment[2][1][1]     34.2000 

treatment[2][1][2]     43.3000 

treatment[2][2][1]     38.9000 

treatment[2][2][2]     43.0000 

 

Standard Error for Comparing Two Treatment Means: 1.302029 

(df=4.000000) 

[A][B][Split]     Mean            LSD Grouping 

[1][1]  [1]     23.833334 

[1][2]  [1]     28.100000       * 

[1][2]  [2]     28.866669       * 

[1][1]  [2]     30.766668       *       * 

[2][1]  [1]     34.200001               * 

[2][2]  [1]     38.899998 

[2][2]  [2]     43.000000                       * 

[2][1]  [2]     43.299999                       * 

 

 

************************************************************* 

Strip-plot A Means 

  1        27.89 

  2        39.85 

 

Standard Error for Comparing Two Strip-Plot A Means: 1.882171 

(df=2.000000) 

[group]           Mean          LSD Grouping 

  [1]           27.891665 

  [2]           39.849998 

 

 

************************************************************* 

Strip-plot B Means 

  1        33.03 

  2        34.72 

 

Standard Error for Comparing Two Strip-Plot B Means: 2.474972 

(df=2.000000) 

[group]           Mean          LSD Grouping 

  [1]           33.025002         * 

  [2]           34.716667         * 
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************************************************************* 

Split-plot Means 

 1        31.26 

 2        36.48 

 

Standard Error for Comparing Two Split-Plot Means: 0.813813 

(df=4.000000) 

[group]           Mean          LSD Grouping 

  [1]           31.258331 

  [2]           36.483334 

 

 

************************************************************* 

Strip-plot A by Split-plot Means 

                1            2 

   1        25.97        29.82 

   2        36.55        43.15 

 

Standard Error for Comparing Two Means: 1.150906 

(df=4.000000) 

[A][B]  Mean            LSD Grouping 

[1][1]  25.966667 

[1][2]  29.816668 

[2][1]  36.549999 

[2][2]  43.149998 

 

 

************************************************************* 

Strip-plot A by Strip-plot B Means 

                 1            2 

    1        27.30        28.48 

    2        38.75        40.95 

 

Standard Error for Comparing Two Means: 2.074280 

(df=2.000000) 

[A][B]  Mean            LSD Grouping 

[1][1]  27.299997       * 

[1][2]  28.483335       * 

[2][1]  38.750000               * 

[2][2]  40.949997               * 
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************************************************************* 

Strip-Plot B by Split-Plot Means 

                1            2 

   1        29.02        37.03 

   2        33.50        35.93 

 

Standard Error for Comparing Two Means: 0.920673 

(df=4.000000) 

[A][B]  Mean            LSD Grouping 

[1][1]  29.016668 

[2][1]  33.500000       * 

[2][2]  35.933334       *       * 

[1][2]  37.033333               * 

homogeneity 
Conducts Bartlett’s and Levene’s tests of the homogeneity of variance assumption in 
analysis of variance. 

Synopsis 
#include <imsls.h> 
float * imsls_f_homogeneity (int n, int n_treatment, int treatment[], float 

y[],…, 0) 
The type double is imsls_d_homogeneity. 

Required Arguments 

int n  (Input) 
Number of experimental observations. 

int n_treatment  (Input) 
Number of treatments.  n_treatment must be greater than one. 

int treatment[]  (Input) 
An array of length n containing the treatment identifiers for each observation 
in y.  Each level of the treatment must be assigned a different integer.  
imsls_f_homogeneity verifies that the number of unique treatment 
identifiers is equal to n_treatment. 

float y[] (Input) 
An array of length n containing the experimental observations and any 
missing values.  Missing values can be included in this array, although they 
are ignored in the analysis.  They are indicated by placing a NaN (not a 
number) in y. The NaN value can be set using either the function 
imsls_f_machine(6) or imsls_d_machine(6), depending upon whether 
single or double precision is being used, respectively. 
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Return Value 
Address of a pointer to the memory location of an array of length 2 containing the p-
values for Bartletts and Levene’s tests.  

Synopsis with Optional Arugments 
#include <imsl.h> 

float * imsls_f_homogeneity (int n, int n_treatment,  
int n_treatment[], float y[], 
IMSLS_RETURN_USER, float p_value[] 
IMSLS_LEVENES_MEAN or IMSLS_LEVENES_MEDIAN, 
IMSLS_N_MISSING, int *n_missing, 
IMSLS_CV, float *cv, 
IMSLS_GRAND_MEAN, float *grand_mean, 
IMSLS_TREATMENT_MEANS, float **treatment_means, 
IMSLS_TREATMENT_MEANS_USER, float treatment_means[], 
IMSLS_RESIDUALS, float **residuals, 
IMSLS_RESIDUALS_USER, float residuals[], 
IMSLS_STUDENTIZED_RESIDUALS,  
 float **studentized_residuals, 
IMSLS_STUDENTIZED_RESIDUALS_USER,  
 float studentized_residuals[], 
IMSLS_STD_DEVS, float **std_devs, 
IMSLS_STD_DEVS_USER, float std_devs[], 
IMSLS_BARTLETTS, float *bartletts, 
IMSLS_LEVENES, float *levenes, 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float p_value[] (Output) 
User defined array of length 2 for storage of the p-values from Bartlett’s and 
Levene’s tests for homogeneity of variance.  The first value returned  contains 
the p-value for Bartlett’s test and the second value contains the p-value for 
Levene’s test. 

IMSLS_LEVENES_MEAN or IMSLS_LEVENES_MEDIAN (Input) 
Calculates Levene’s test using either the treatment means or medians.  
IMSLS_LEVENES_MEAN indicates that Levene’s test is calculated using the 
mean, and IMSLS_LEVENES_MEDIAN indicates that it is calculated using the 
median. 
 Default: IMSLS_LEVENES_MEAN 

IMSLS_N_MISSING, int *n_missing  (Output) 
Number of missing values, if any, found in y.   Missing values are denoted 
with a NaN (Not a Number) value in y.  In these analyses, any missing values 
are ignored. 
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IMSLS_CV, float *cv (Output) 
The coefficient of variation computed using the grand mean and pooled within 
treatment standard deviation. 

IMSLS_GRAND_MEAN, float grand_mean (Output) 
Mean of all the data across every location. 

IMSLS_TREATMENT_MEANS, float **treatment_means (Output) 
Address of a pointer to an internally allocated array of size n_treatment 
containing the treatment means. 

IMSLS_TREATMENT_MEANS_USER, float treatment_means[]  (Output) 
Storage for the array treatment_means, provided by the user. 

IMSLS_RESIDUALS, float **residuals (Output) 
Address of a pointer to an internally allocated array of length n containing the 
residuals for non-missing observations.  The ordering of the values in this 
array corresponds to the ordering of values in y and identified by the values in 
treatments. 

IMSLS_RESIDUALS_USER, float residuals[] (Output) 
Storage for the array residuals, provided by the user. 

IMSLS_STUDENTIZED_RESIDUALS, float **studentized_residuals (Output) 
Address of a pointer to an internally allocated array of length n containing the 
studentized residuals for non-missing observations.  The ordering of the 
values in this array corresponds to the ordering of values in y and identified 
by the values in treatments. 

IMSLS_STUDENTIZED_RESIDUALS_USER, float studentized_residuals[] 
(Output) 
Storage for the array studentized_residuals, provided by the user. 

IMSLS_STD_DEVS, float **std_devs (Output) 
Address of a pointer to an internally allocated array of length n_treatment 
containing the treatment standard deviations. 

IMSLS_STD_DEVS_USER, float std_devs[] (Output) 
Storage for the array std_devs, provided by the user. 

IMSLS_BARTLETTS, float *bartletts (Output) 
Test statistic for Bartlett’s test. 

IMSLS_LEVENES, float *levenes (Output) 
Test statistic for Levene’s test. 

Description 
Traditional analysis of variance assumes that variances within treatments are equal.  
This is referred to as homogeneity of variance.  The function imsls_f_homogeneity 
conducts both the Bartlett’s and Levene’s tests for this assumption: 

: 1 2oH tσ σ σ= = ="
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:Ha i jσ σ≠
  

for at least one pair (i≠j), where t=n_treatments. 
Bartlett’s test, Bartlett (1937),  uses the test statistic: 
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and 2
iS is the variance of the in non-missing observations in the ith treatment.  2

pS is 
referred to as the pooled variance, and it is also known as the error mean squares from 
a 1-way analysis of variance. 
If the usual assumptions associated with the analysis of variance are valid, then 
Bartlett’s test statistic is a chi-squared random variable with degrees of freedom equal 
to t-1. 
The original Levene’s test, Levene (1960) and Snedecor & Cochran (1967), uses a 
different test statistic, F0, equal to: 
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where  

.| |ij ij iz x x= −
, 

ijx is the jth observation from the ith treatment and .ix is the mean for the ith treatment.  
Conover, Johnson, and Johnson (1981) compared over 50 similar tests for homogeneity 
and concluded that one of the best tests was Levene’s test when the treatment mean, 
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.ix  is replaced with the treatment median, .ix� .  This version of Levene’s test can be 
requested by setting IMSLS_LEVENES_MEDIAN.  In either case, Levene’s test statistic 
is treated as a F random variable with numerator degrees of freedom equal to (t-1) and 
denominator degrees of freedom (N-t). 

The residual for the jth observation within the ith treatment, ije , returned from 

IMSLS_RESIDUALS is unstandarized, i.e. ij ij ie x x= − .  For investigating problems of 
homogeneity of variance, the studentized residuals returned by 
IMSLS_STUDENTIZED_RESIDUALS are recommended since they are standarzied by 
the standard deviation of the residual.  The formula for calculating the studentized 
residual is: 

2 1(1 )
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where the coefficient of variation, returned from IMSLS_CV, is also calculated using 
the pooled variance and the grand mean .. ij
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Example 
This example applies Bartlett’s and Levene’s test to verify the homogeneity 
assumption for a one-way analysis of variance.  There are eight treatments, each with 3 
replicates for a total of 24 observations.  The estimated treatment standard deviations 
range from 5.35 to 13.17.   
In this case, Bartlett's test is not statistically significant for a stated significance level of 
.05; whereas Levene's test is significant with p = 0.006. 
 

#include "imsls.h" 

 

void ex_homog_b() 

{ 

  int i, page_width = 132; 

   

  int n = 24;  

  int n_treatment = 8; 

  int treatment[]={ 

    1, 2, 3, 4, 5, 6, 7, 8, 

    1, 2, 3, 4, 5, 6, 7, 8, 
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    1, 2, 3, 4, 5, 6, 7, 8}; 

  float y[] ={ 

    30.0, 40.0, 38.9, 38.2, 

    41.8, 52.2, 54.8, 58.2, 

    20.5, 26.9, 21.4, 25.1, 

    26.4, 36.7, 28.9, 35.9, 

    21.0, 25.4, 24.0, 23.3, 

    34.4, 41.0, 33.0, 34.9}; 

 

  float bartletts; 

  float levenes; 

  float grand_mean; 

  float cv; 

  float *treatment_means=NULL; 

  float *residuals=NULL; 

  float *studentized_residuals=NULL; 

  float *std_devs=NULL; 

  int n_missing = 0; 

  float *p; 

 

  p = imsls_f_homogeneity(n, n_treatment, treatment, y, 

     IMSLS_BARTLETTS, &bartletts,  

     IMSLS_LEVENES, &levenes,  

     IMSLS_LEVENES_MEDIAN, 

     IMSLS_N_MISSING, &n_missing,  

     IMSLS_GRAND_MEAN, &grand_mean,  

     IMSLS_CV, &cv,  

     IMSLS_TREATMENT_MEANS, &treatment_means, 

     IMSLS_STD_DEVS, &std_devs, 

     0); 

 

  printf("\n\n\n *** Bartlett\'s Test ***\n\n"); 

  printf("Bartlett\'s p-value        = %10.3f\n", p[0]); 

  printf("Bartlett\'s test statistic = %10.3f\n", bartletts); 

 

  printf("\n\n\n *** Levene\'s Test ***\n\n"); 

  printf("Levene\'s p-value        = %10.3f\n", p[1]); 

  printf("Levene\'s test statistic = %10.3f\n", levenes); 

 

  imsls_f_write_matrix("Treatment means", n_treatment, 1, treatment_means, 0); 

  imsls_f_write_matrix("Treatment std devs", n_treatment, 1, std_devs, 0); 

  printf("\ngrand_mean = %10.3f\n", grand_mean); 
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  printf("cv         = %10.3f\n", cv); 

  printf("n_missing  = %d\n", n_missing); 

   

} 

 

Output 
 

 *** Bartlett's Test *** 

 

Bartlett's p-value        =      0.944 

Bartlett's test statistic =      2.257 

 

 

 

 *** Levene's Test *** 

 

Levene's p-value        =      0.994 

Levene's test statistic =      0.135 

 

Treatment means 

1        23.83 

2        30.77 

3        28.10 

4        28.87 

5        34.20 

6        43.30 

7        38.90 

8        43.00 

 

Treatment std devs 

  1         5.35 

  2         8.03 

  3         9.44 

  4         8.13 

  5         7.70 

  6         8.00 

  7        13.92 

  8        13.17 
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grand_mean =     33.871 

cv         =     28.378 

n_missing  = 0 

 

multiple_comparisons 
Performs multiple comparisons of means using one of  Student-Newman-Keuls, LSD, 
Bonferroni, Tukey’s, or Duncan’s MRT procedures.  

Synopsis 
#include <imsls.h> 
int *imsls_f_multiple_comparisons (int n_groups, float means[], 

int df, float std_error, ..., 0) 
The type double function is imsls_d_multiple_comparisons. 

Required Arguments 

int n_groups   (Input) 
Number of groups i.e., means, being compared. 

float means[]   (Input) 
Array of length n_groups containing the means. 

int df   (Input) 
Degrees of freedom associated with std_error. 

float std_error   (Input) 
Effective estimated standard error of a mean. In fixed effects models, 
std_error equals the estimated standard error of a mean. For example, in a 
one-way model 

2s
n

=std_error
 

where s2 is the estimate of σ2 and n is the number of responses in a sample 
mean. In models with random components, use 

2
sedif

=std_error
 

where sedif is the estimated standard error of the difference of two means. 

Return Value 
Pointer to the array of length n_groups − 1 indicating the size of the groups of means 
declared to be equal. Value equal_means [I] = J indicates the I-th smallest mean and 
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the next J − 1 larger means are declared equal. Value equal_means [I] = 0 indicates 
no group of means starts with the I-th smallest mean. 
 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_multiple_comparisons (int n_groups, float means [], int df, 

float std_error, 
IMSLS_ALPHA, float alpha, 
IMSLS_SNK, or 
IMSLS_LSD, or 
IMSLS_TUKEY, or 
IMSLS_BONFERRONI,  
IMSLS_RETURN_USER, int *equal_means, 
0) 
 

Optional Arguments 

IMSLS_ALPHA, float alpha   (Input) 
Significance level of test. Argument alpha must be in the interval  
[0.01, 0.10]. 
Default: alpha = 0.01 

IMSLS_RETURN_USER, int *equal_means   (Output) 
If specified, equal_means is an array of length n_groups − 1 specified by 
the user. On return, equal_means contains the size of the groups of means 
declared to be equal. Value equal_means [I] = J indicates the ith smallest 
mean and the next J − 1 larger means are declared equal. Value 
equal_means [I] = 0 indicates no group of means starts with the ith smallest 
mean. 

IMSLS_SNK, or 

IMSLS_LSD, or 

IMSLS_TUKEY, or 

IMSLS_BONFERRONI, or 
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Argument Method 

IMSLS_SNK Student-Newman-Keuls (default) 

IMSLS_LSD Least significant difference 

IMSLS_TUKEY Tukey’s w-procedure, also called the 
honestly significant difference procedure. 

IMSLS_BONFERRONI Bonferroni t statistic 

Description 
Function imsls_f_multiple_comparisons performs a multiple comparison 
analysis of means using one of  Student-Newman-Keuls, LSD, Bonferroni, or Tukey’s 
procedures. The null hypothesis is equality of all possible ordered subsets of a set of 
means. The methods are discussed in many elementary statistics texts, e.g., Kirk (1982, 
pp. 123–125). 
The output consists of an array of n_groups –1 integers that describe grouping of 
means that are considered not statistically significantly different.  
For example, if n_groups=4 and the returned array is equal to {0, 2, 2} then we 
conclude that: 

1. The smallest mean is significantly different from the others, 
2. The second and third smallest means are not significantly different from 

one another,  
3. The second and fourth means are significantly different 
4. The third and fourth means are not significantly different from one 

another. 
These relationships can be depicted graphically as three groups of means: 
 

Smallest 
Mean 

Group  
1 

Group  
2 

Group  
3 

1 x   
2  x  

3  x X 

4   X 

 

Examples  

Example 1 
A multiple-comparisons analysis is performed using data discussed by Kirk (1982, pp. 
123−125). The results show that there are three groups of means with three separate 
sets of values: (36.7, 40.3, 43.4), (40.3, 43.4, 47.2), and (43.4, 47.2, 48.7). 
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In this case, the ordered means are {36.7, 40.3, 43.4, 47.2, 48.7} corresponding to 
treatments {1, 5, 3, 4, 2}. Since the output table is: 

⎡ ⎤
⎢ ⎥
⎣ ⎦

1 2 3 4

3 3 3 0 , 

we can say that within each of these three groups, means are not significantly different 
from one another.  
 

Treatment  
 

Mean Group  
1 

Group  
2 

Group  
3 

1 36.7 x   
5 40.3 x x  

3 43.4 x x x 

4 47.2  x x 

2 48.7   x 

 
#include <imsls.h> 
 
void main () 
{ 
    int n_groups       =  5; 
    int df             = 45; 
    float std_error    = 1.6970563; 
    float means[5]     = {36.7, 48.7, 43.4, 47.2, 40.3}; 
    int *equal_means; 
                       /* Perform multiple comparisons tests */ 
    equal_means = imsls_f_multiple_comparisons(n_groups, means, df,  
        std_error, 0); 
                       /* Print results */ 
    imsls_i_write_matrix("Size of Groups of Means", 1, n_groups-1,  
        equal_means, 0); 
 
} 

Output 
Size of Groups of Means 
     1   2   3   4 
     3   3   3   0 

Example 2 
This example uses the same data as the previous example but also uses additional 
methods by specifying optional arguments. 
Example 2 uses the same data as Example 1: Ordered treatment means correspond to 
treatment order {1,5,3,4,2}. 
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The table produced for Bonferroni is: 

⎡ ⎤
⎢ ⎥
⎣ ⎦

1 2 3 4

3 4 0 0  

Thus, these are two groups of similar means. 
 

Treatment  
 

Mean Group  
1 

Group  
2 

1 36.7 x  
5 40.3 x x 

3 43.4 x X 

4 47.2  X 

2 48.7  X 

 
#include <imsls.h> 
void main() 
{ 
    int n_groups       =  5; 
    int df             = 45; 
    float std_error    = 1.6970563; 
    float means[5]     = {36.7, 48.7, 43.4, 47.2, 40.3}; 
    int equal_means[4]; 
     
  /* Student-Newman-Keuls */ 
       imsls_f_multiple_comparisons(n_groups, means, df, std_error,  
 IMSLS_RETURN_USER, equal_means, 0); 
       imsls_i_write_matrix("SNK         ", 1, n_groups-1, equal_means, 0); 
 
      /* Bonferroni */ 
       imsls_f_multiple_comparisons(n_groups, means, df, std_error,  
 IMSLS_BONFERRONI,  
 IMSLS_RETURN_USER, equal_means,  
 0); 
       imsls_i_write_matrix("Bonferonni  ", 1, n_groups-1, equal_means, 0); 
 
      /* Least Significant Difference */ 
       imsls_f_multiple_comparisons(n_groups, means, df, std_error,  
 IMSLS_LSD,  
 IMSLS_RETURN_USER, equal_means,  
 0); 
       imsls_i_write_matrix("LSD         ", 1, n_groups-1, equal_means, 0); 
 
      /* Tukey's */ 
       imsls_f_multiple_comparisons(n_groups, means, df, std_error,  
 IMSLS_TUKEY, 
 IMSLS_RETURN_USER, equal_means,  
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 0); 
       imsls_i_write_matrix("Tukey       ", 1, n_groups-1, equal_means, 0); 
 
 
} 

 

Output 
SNK 
1   2   3   4 
3   3   3   0 
 
Bonferonni 
1   2   3   4 
3   4   0   0 
 
LSD 
1   2   3   4 
2   2   3   0 
 
Tukey 
1   2   3   4 
3   3   3   0 

yates 
Estimates missing observations in designed experiments using Yate’s method. 

Synopsis 
#include <imsls.h> 

int   imsls_f_yates(int n, int n_independent, float x[],…, 0) 
The type double function is imsls_d_yates. 

Required Arguments 

int n (Input) 
Number of observations. 

int n_independent  (Input) 
Number of independent variables. 

float x[] (Input/Output) 
A n by (n_independent+1) 2-dimensional array containing the experimental 
observations and missing values.  The first n_independent columns contain 
values for the independent variables and the last column contains the 
corresponding observations for the dependent variable or response.  The 
columns assigned to the independent variables should not contain any missing 
values. Missing values are included in this array by placing a NaN (not a 
number) in the last column of x. The NaN value can be set using either the 
function imsls_f_machine(6) or imsls_d_machine(6), depending upon 
whether single or double precision is being used, respectively.  Upon 
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successful completion, missing values are replaced with estimates calculated 
using Yates’ method.   

Return Value 
The number of missing values replaced with estimates using the Yates procedure.  A 
negative return value  indicates that the routine was unable to successfully estimate all 
missing values.  Typically this occurs when all of the observations for a particular 
treatment combination are missing.  In this case, Yate’s missing value method does not 
produce a unique set of missing value estimates. 

Synopsis with Optional Arugments 
#include <imsls.h> 

int  imsls_f_yates (int n, int n_independent, float x[],  
IMSLS_DESIGN, int design, 
IMSLS_INITIAL_ESTIMATES, int  n_missing,   
 float initial_estimates[], 
IMSLS_GET_SS, float get_ss (int n, int n_independent, 
 int n_levels[], float dataMatrix[]), 
IMSLS_GRAD_TOL, float grad_tol, 
IMSLS_STEP_TOL, float step_tol, 
IMSLS_MAX_ITN, int **itmax, 
IMSLS_MISSING_INDEX, int **missing_index[], 
IMSLS_MISSING_INDEX_USER, int missing_index[], 
IMSLS_ERROR_SS, float *error_ss, 
0) 

Optional Arguments 

IMSLS_RETURN_USER, int n_missing (Output) 
The number of missing values replaced with Yate’s estimates.  A negative 
return value indicates that the routine was unable to successfully estimate all 
missing values. 

IMSLS_DESIGN, int design  (Input) 
An integer indicating whether a custom or standard design is being used.  The 
association of values for this variable and standard designs is described in the 
following table: 

 
Design Description 

 
0 

CRD – Completely Randomized Design.  The input matrix, x, 
is assumed to have only two columns.  The first is used to 
contain integers identifying the treatments.  The second 
column should contain corresponding observations for the 
dependent variable.  In this case, n_independent=1.  Default 
value when n_independent=1. 
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Design Description 

 
1 

RCBD – Randomized Complete Block Design.  The input 
matrix is assumed to have only three columns.  The first is 
used to contain the treatment identifiers and the second the 
block identifiers.  The last column contains the corresponding 
observations for the dependent variable.  In this case, 
n_independent=2.  This is the default value when 
n_independent=2. 

 
2 

Another design.  In this case, the function get_ss is a 
required input.  The design matrix is passed to that 
routine.  Initial values for missing observations are set 
to the grand mean of the data, unless initial values are 
specified using IMSLS_INITIAL_ESTIMATES. 

 

 Default: design=0 or design=1, depending upon whether 
n_independent=1 or 2 respectively.  If n_independent>2, then design 
must be set to 2, and get_ss must be provided as input to imsls_f_yates.  

IMSLS_INITIAL_ESTIMATES, int n_missing,  
float initial_estimates[]  (Input) 
Initial estimates for the missing values.  Argument n_missing is the number 
of missing values.  Argument initial_estimates is an array of length 
n_missing containing the initial estimates. 
Default:  For design=0 and design=1, the initial estimates are calculated 
using the Yates formula for those designs. For design=2, the mean of the 
non-missing observations is used as the initial estimate for all missing values.  

IMSLS_MAX_ITN, int itmax (Input) 
Maximum number of iterations in the optimization routine for finding the 
missing value estimates that minimize the error sum of squares in the analysis 
of variance.  
Default: itmax = 500. 

IMSLS_GET_SS, float get_ss(int n, int n_independent, int n_levels[], float 
dataMatrix[]) (Input/Output) 
A user-supplied function that returns the error sum of squares calculated using 
the n by (n_independent+1) matrix dataMatrix.  imsls_f_yates 
calculates the error sum of squares assuming that dataMatrix contains no 
missing observations.  In general, dataMatrix  should be equal to the input 
matrix x with missing values replaced by estimates.  imsls_f_yates is 
required input when design=2. The array n_levels should be of length 
n_independent and contain the number of levels associated with each of the 
first n_independent columns in the dataMatrix and x arrays. 

IMSLS_GRAD_TOL, float grad_tol (Input) 
Scaled gradient tolerance used to determine whether the difference between 
the error sum of squares is small enough to stop the search for missing value 
estimates.    
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 Default: grad_tol = 2/3ε , where ε is the machine precision. 

IMSLS_STEP_TOL, float step_tol (Input) 
Scaled step tolerance used to determine whether the difference between 
missing value estimates is small enough to stop the search for missing value 
estimates.  
Default: step_tol = 2/3ε , where ε is the machine precision. 

IMSLS_MISSING_INDEX, int *missing_index  (Output) 
An array of length n_missing containing the indices for the missing values 
in x.  The number of missing values, n_missing, is the return value of 
imsls_f_yates. 

IMSLS_MISSING_INDEX_USER, int missing_index[]  (Output) 
Storage for the array missing_index, provided by the user. 

IMSLS_ERROR_SS, float *errr_ss  (Output) 
The value of the error sum of squares calculated using the missing value 
estimates.  If design=2 then this is equal to the value returned from get_ss 
using the Yates missing value estimates. 

Description 
Several functions for analysis of variance require balanced experimental data, i.e. data 
containing no missing values within a block and an equal number of replicates for each 
treatment.  If the number of missing observations in an experiment is smaller than the 
Yates method as described in Yates (1933) and Steel and Torrie (1960), can be used to 
estimate the missing values.  Once the missing values are replaced with these 
estimates, the data can be passed to an analysis of variance that requires balanced data. 
The basic principle behind the Yates method for estimating missing observations is to 
replace the missing values with values that minimize the error sum of squares in the 
analysis of variance.  Since the error sum of squares depends upon the underlying 
model for the analysis of variance, the Yates formulas for estimating missing values 
vary from anova to anova. 
Consider, for example, the model underlying experiments conducted using a 
completely randomized design.  If ijy  is the Ith observation for the ith treatment then 
the error sum of squares for a CRD is calculated using the following formula: 

( )2

. .
1 1

is the th treatment mean.
t r

ij i i
i j

iSSE y y where y
= =

= −∑∑  

If an observation ijy  is missing then SSE is minimized by replacing that missing 
observation with the estimate  

.ˆij ix y=
. 

For a randomized complete block design (RCBD), the calculation for estimating a 
single missing observation can be derived from the RCBD error sum of squares: 
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( )2

. . ..
1 1

t r

ij i j
i j

SSE y y y y
= =

= − − +∑∑  

If only a single observation, ijy , is missing from the jth block and ith treatment, the 
estimate for this missing observation can be derived by solving the equation: 

. . ..ˆij i jx y y y= + −
. 

The solution is referred to as the Yates formula for a RCBD: 

. . ..ˆ
( 1)( 1)

j i
ij

t y r y y
x

r t
⋅ + ⋅ −

=
− − , where 

r=n_blocks, t=n_treatments, yi=total of all non-missing observations from the ith 
treatment, . jy =total of all non-missing observations from the jth block, and y=total of 
all non-missing observations.   
If more than one observation is missing, imsls_f_yates minimization procedure is 
used to estimate missing values.  For a CRD, all missing observations are set equal to 
their corresponding treatment means calculated using the non-missing observations.  
That is, .ˆij ix y= . 

For RCBD designs with more than one missing value, Yate’s formula for estimating a 
single missing observation is used to obtain initial estimates for all missing values.  
These are passed to a function minimization routine to obtain the values that minimize 
SSE. 
For other designs, specify design=2 and IMSLS_GET_SS.  The function get_ss is 
used to obtain the Yates missing value estimates by selecting the estimates that 
minimize sum of squares returned by get_ss.  When called, get_ss calculates the 
error sum of squares at each iteration assuming that the data matrix it receives is 
balanced and contains no missing values.  

Example 
Missing values can occur in any experiment.  Estimating missing values via the Yates 
method is usually done by minimizing the error sum of squares for that experiment.  If 
only a single observation is missing and there is an analytical formula for calculating 
the error sum of squares then a formula for estimating the missing value is fairly easily 
derived.  Consider for example a split-plot experiment with a single missing value. 

Suppose, for example, that ijkx , the observation for the ith whole-plot, jth split plot and 
kth block is missing. Then the estimate for a single missing observation in the ith 
whole plot is equal to: 
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( 1)( 1)
ij ir W s x x

Y
r s

⋅ + ⋅ −
=

− − , where 

 

 r = number of blocks, s = number of split-plots, W  =  total of all non-missing values 
in same block as the missing observation, .ijx = total of the non-missing observations 
across blocks of observations from ith whole-plot factor level and the jth split-plot 
level, and ..ix = the total of all observations, across split-plots and blocks of the non-
missing observations for the ith whole plot. 
If more than a single observation is missing, then an iterative solution is required to 
obtain missing value estimates that minimize the error sum of squares. 
Function imsls_f_yates simplifies this procedure. Consider, for example, a split-
plot experiment conducted at a single location using fixed-effects whole and split plots.  
If there are no missing values, then the error sum of squares can be calculated from a 3-
way analysis of variance using whole-plot, split-plot and blocks as the 3 factors.  For 
balanced data without missing values, the errors sum of squares would be equal to the 
sum of the 3-way interaction between these factors and the split-plot by block 
interaction.   
Calculating the error sum of squares using this 3-way analysis of variance is achieved 
using the anova_factorial routine. 
 

float get_ss(int n, int n_independent, int *n_levels, float *x) 
{ 
/* This routine assumes that the first three columns of dataMatrix   */ 
/* contain the whole-plot,split-plot and block identifiers in that   */ 
/* order.  The last column of this matrix, the fourth column, must   */ 
/* contain the observations from the experiment.  It is assumed that */ 
/* dataMatrix is balanced and does not contain any missing           */ 

  /* observations.                                                     */ 
 
  int i; 
  float errorSS, pValue; 
  float *test_effects = NULL; 
  float *anova_table = NULL; 
  float responses[24];  
  /* Copy responses from the last column of x into a 1-D array        */ 
  /* as expected by imsls_f_anova_factorial.                          */ 
 
  for (i=0;i<n;i++) { 
    responses[i] = x[i*(n_independent+1)+n_independent]; 
  } 
  /* Compute the error sum of squares.                                */ 
  pValue = imsls_f_anova_factorial(n_independent, n_levels, responses, 
       IMSLS_TEST_EFFECTS, &test_effects, 
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       IMSLS_ANOVA_TABLE, &anova_table, 
       IMSLS_POOL_INTERACTIONS, 0); 
  errorSS = anova_table[4] + test_effects[21];  
 
  /* Free memory returned by imsls_f_anova_factorial.                 */ 
  if (test_effects != NULL) free(test_effects); 
  if (anova_table != NULL) free(anova_table); 
  return errorSS; 
} 

 
The above function is passed to the imsls_f_yates as an argument, together with a 
matrix containing the data for the split-plot experiment. For this example, the following 
data matrix obtained from an agricultural experiment will be used.  In this experiment, 
4 whole plots were randomly assigned to two 2 blocks.  Whole-plots were subdivided 
into 2 split-plots.  The whole-plot factor consisted of 4 different seed lots, and the split-
plot factor consisted of 2 seed protectants. The data matrix of this example is a n=24 by 
4 matrix with two missing observations. 
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1 1 1
1 2 1 53.8
1 3 1 49.5
1 1 2 41.6
1 2 2
1 3 2 53.8
2 1 1 53.3
2 2 1 57.6
2 3 1 59.8
2 1 2 69.6
2 2 2 69.6
2 3 2 65.8
3 1 1 62.3
3 2 1 63.4
3 3 1 64.5
3 1 2 58.5
3 2 2 50.4
3 3 2 46.1
4 1 1 75.4
4 2 1 70.3
4 3 1 68.8
4 1 2 65.6
4 2 2 67.3
4 3 2 65.3

NaN

NaN

X

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

= ⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎦

 

The following program uses these data with imsls_f_yates to replace the two 
missing values with Yates estimates. 

 
#include <stdlib.h> 
#include "imsls.h" 
 
float get_ss(int n, int n_independent, int *n_levels, float *x); 
 
#define N 24 
#define N_INDEPENDENT 3 
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void main() 
{ 
  char *col_labels[] = {" ", "Whole", "Split", "Block", " "}; 
  int i; 
  int n = N; 
  int n_independent = N_INDEPENDENT;   
  int whole[N]={1,1,1,1,1,1, 
        2,2,2,2,2,2, 
        3,3,3,3,3,3, 
        4,4,4,4,4,4}; 
  int split[N]={1,2,3,1,2,3, 
        1,2,3,1,2,3, 
        1,2,3,1,2,3, 
        1,2,3,1,2,3}; 
  int block[N]={1,1,1,2,2,2, 
        1,1,1,2,2,2, 
        1,1,1,2,2,2, 
        1,1,1,2,2,2}; 
  float y[N] ={0.0,  53.8, 49.5, 41.6, 0.0,  53.8, 
               53.3, 57.6, 59.8, 69.6, 69.6, 65.8, 
        62.3, 63.4, 64.5, 58.5, 50.4, 46.1,  
        75.4, 70.3, 68.8, 65.6, 67.3, 65.3}; 
   
  float x[N][N_INDEPENDENT+1]; 
  float error_ss; 
  int *missing_idx; 
  int n_missing; 
 
  /* Set the first and fifth observations to missing values. */ 
  y[0] = imsls_f_machine(6); 
  y[4] = imsls_f_machine(6); 
 
  /* Fill the array x with the classification variables and observations. */ 
  for (i=0;i<n; i++) { 
    x[i][0] = (float)whole[i];  
    x[i][1] = (float)split[i];  
    x[i][2] = (float)block[i];  
    x[i][3] = y[i]; 
  } 
  /* Sort the data since imsls_f_anova_factorial expects sorted data. */ 
  imsls_f_sort_data(n, n_independent+1, (float*)x, 3, 0); 
   
  n_missing = imsls_f_yates(n, n_independent, (float *)&(x[0][0]), 
       IMSLS_DESIGN, 2,  
       IMSLS_GET_SS, get_ss, 
       IMSLS_ERROR_SS, &error_ss, 
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       IMSLS_MISSING_INDEX, &missing_idx, 
       0); 
  printf("Returned error sum of squares = %f\n\n", error_ss); 
  printf("Missing values replaced: %d\n", n_missing); 
  printf("Whole     Split    Block    Estimate\n"); 
  for (i=0;i<n_missing;i++) { 
    printf("%3d        %3d      %3d      %7.3f\n",  
    (int)x[missing_idx[i]][0], 
    (int)x[missing_idx[i]][1], 
    (int)x[missing_idx[i]][2], 
    x[missing_idx[i]][n_independent]); 
  } 
  imsls_f_write_matrix("Sorted x, with estimates", n, n_independent+1, 
              (float*)x,  
                       IMSLS_WRITE_FORMAT, "%-4.0f%-4.0f%-4.0f%5.2f",  
             IMSLS_COL_LABELS, col_labels,  
             IMSLS_NO_ROW_LABELS, 0); 
   
} 
 
float get_ss(int n, int n_independent, int *n_levels, float *x) 
{ 
  int i; 
  float errorSS, pValue; 
  float *test_effects = NULL; 
  float *anova_table = NULL; 
  float responses[24]; 
  /*  
   * Copy responses from the last column of x into a 1-D array  
   * as expected by imsls_f_anova_factorial.  
   */ 
  for (i=0;i<n;i++) { 
    responses[i] = x[i*(n_independent+1)+n_independent]; 
  } 
  /* 
   * Compute the error sum of squares. 
   */ 
  pValue = imsls_f_anova_factorial(n_independent, n_levels, responses, 
       IMSLS_TEST_EFFECTS, &test_effects, 
       IMSLS_ANOVA_TABLE, &anova_table, 
       IMSLS_POOL_INTERACTIONS, 0); 
  errorSS = anova_table[4] + test_effects[21];  
 
  /* Free memory returned by imsls_f_anova_factorial. */ 
  if (test_effects != NULL) free(test_effects); 
  if (anova_table != NULL) free(anova_table); 
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  return errorSS; 
} 
 

After running this code to replace missing values with Yates estimates, it would be followed by a 
call to the split-plot analysis of variance: 

 
float *aov_table, y[24]; 
int expunit[24], whole[24], split[24]; 
for(int i=0; i < 24; i++){whole[i]  = x[i];    split[i] = x[i+24];  
                          expunit[i]= x[i+48]; y[i]     = x[i+72];} 
float aov_table = imsls_f_split_plot (24, 1, 4, 3, expunit, whole,  
                                     split, y[], 0); 

Output 
 

Returned error sum of squares = 95.620010 
 
Missing values replaced: 2 
Whole     Split    Block    Estimate 
  1          1        1       37.300 
  1          2        2       58.100 
 
  Sorted x, with estimates 
   Whole  Split  Block 
    1      1      1     37.30 
    1      1      2     41.60 
    1      2      1     53.80 
    1      2      2     58.10 
    1      3      1     49.50 
    1      3      2     53.80 
    2      1      1     53.30 
    2      1      2     69.60 
    2      2      1     57.60 
    2      2      2     69.60 
    2      3      1     59.80 
    2      3      2     65.80 
    3      1      1     62.30 
    3      1      2     58.50 
    3      2      1     63.40 
    3      2      2     50.40 
    3      3      1     64.50 
    3      3      2     46.10 
    4      1      1     75.40 
    4      1      2     65.60 
    4      2      1     70.30 
    4      2      2     67.30 
    4      3      1     68.80 
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    4      3      2     65.30 
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Chapter 5: Categorical and Discrete 
Data Analysis 

Routines 
Statistics in the Two-Way Contingency Table 

Two-way contingency table analysis contingency_table 402 
Exact probabilities in an r × c table; 
total enumeration exact_enumeration 414 
Exact probabilities in an r × c table exact_network 416 

Generalized Categorical Models 
Generalized linear models categorical_glm 422 

Usage Notes 
Routine imsls_f_contingency_table computes many statistics of interest in a 
two-way table. Statistics computed by this routine includes the usual chi-squared 
statistics, measures of association, Kappa, and many others. Exact probabilities for 
two-way tables can be computed by imsls_f_exact_enumeration, but this routine 
uses the total enumeration algorithm and, thus, often uses orders of magnitude more 
computer time than imsls_f_exact_network, which computes the same 
probabilities by use of the network algorithm (but can still be quite expensive). 
The routine imsls_f_categorical_glm in the second section is concerned with 
generalized linear models (see McCullagh and Nelder 1983) in discrete data. This 
routine can be used to compute estimates and associated statistics in probit, logistic, 
minimum extreme value, Poisson, negative binomial (with known number of 
successes), and logarithmic models. Classification variables as well as weights, 
frequencies and additive constants may be used so that general linear models can be fit. 
Residuals, a measure of influence, the coefficient estimates, and other statistics are 
returned for each model fit. When infinite parameter estimates are required, extended 
maximum likelihood estimation may be used. Log-linear models can be fit in 
imsls_f_categorical_glm through the use of Poisson regression models. Results 
from Poisson regression models involving structural and sampling zeros will be 
identical to the results obtained from the log-linear model routines but will be fit by a 
quasi-Newton algorithm rather than through iterative proportional fitting. 
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contingency_table 
Performs a chi-squared analysis of a two-way contingency table. 

Synopsis 
#include <imsls.h> 

float imsls_f_contingency_table (int n_rows, int n_columns, 
float table[], ..., 0) 

The type double function is imsls_d_contingency_table. 

Required Arguments 

int n_rows   (Input) 
Number of rows in the table. 

int n_columns   (Input) 
Number of columns in the table. 

float table[]   (Input) 
Array of length n_rows × n_columns containing the observed counts in the 
contingency table. 

Return Value 
Pearson chi-squared p-value for independence of rows and columns. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_contingency_table (int n_rows, int n_columns, 

float table[], 
IMSLS_CHI_SQUARED, int *df, float *chi_squared,  
 float *p_value, 
IMSLS_LRT, int *df, float *g_squared, float *p_value, 
IMSLS_EXPECTED, float **expected, 
IMSLS_EXPECTED_USER, float expected[], 
IMSLS_CONTRIBUTIONS, float **chi_squared_contributions, 
IMSLS_CONTRIBUTIONS_USER,  
 float chi_squared_contributions[], 
IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats, 
IMSLS_CHI_SQUARED_STATS_USER,  
 float chi_squared_stats[], 
IMSLS_STATISTICS, float **statistics, 
IMSLS_STATISTICS_USER, float statistics[], 
0) 

Optional Arguments 

IMSLS_CHI_SQUARED, int *df, float *chi_squared, float *p_value   (Output) 
Argument df is the degrees of freedom for the chi-squared tests associated 
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with the table, chi_squared is the Pearson chi-squared test statistic, and 
argument p_value is the probability of a larger Pearson chi-squared. 

IMSLS_LRT, int *df, float *g_squared, float *p_value   (Output) 
Argument df is the degrees of freedom for the chi-squared tests associated 
with the table, argument g_squared is the likelihood ratio G2 (chi-squared), 
and argument p_value is the probability of a larger G2. 

IMSLS_EXPECTED, float **expected   (Output) 
Address of a pointer to the internally allocated array of size (n_rows + 1) ×
 (n_columns + 1) containing the expected values of each cell in the table, 
under the null hypothesis, in the first n_rows rows and n_columns columns. 
The marginal totals are in the last row and column. 

IMSLS_EXPECTED_USER, float expected[]   (Output) 
Storage for array expected is provided by the user. See IMSLS_EXPECTED. 

IMSLS_CONTRIBUTIONS, float **chi_squared_contributions   (Output) 
Address of a pointer to an internally allocated array of size (n_rows + 1) ×
 (n_columns + 1) containing the contributions to chi-squared for each cell in 
the table in the first n_rows rows and n_columns columns. The last row and 
column contain the total contribution to chi-squared for that row or column. 

IMSLS_CONTRIBUTIONS_USER, float chi_squared_contributions[]   (Output) 
Storage for array chi_squared_contributions is provided by the user. 
See IMSLS_CONTRIBUTIONS. 

IMSLS_CHI_SQUARED_STATS, float **chi_squared_stats   (Output) 
Address of a pointer to an internally allocated array of length 5 containing chi-
squared statistics associated with this contingency table. The last three 
elements are based on Pearson’s chi-square statistic (see 
IMSLS_CHI_SQUARED).  

 The chi-squared statistics are given as follows: 

Element Chi-squared Statistics 
0 exact mean 
1 exact standard deviation 
2 Phi 
3 contingency coefficient 
4 Cramer’s V 

IMSLS_CHI_SQUARED_STATS_USER, float chi_squared_stats[]   (Output) 
Storage for array chi_squared_stat is provided by the user. See 
IMSLS_CHI_SQUARED_STATS. 

IMSLS_STATISTICS, float **statistics   (Output) 
Address of a pointer to an internally allocated array of size 23 × 5 containing 
statistics associated with this table. Each row corresponds to a statistic. 
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Row Statistic 
0 Gamma 
1 Kendall’s τb 

2 Stuart’s τc 

3 Somers’ D for rows (given columns) 
4 Somers’ D for columns (given rows) 
5 product moment correlation 
6 Spearman rank correlation 
7 Goodman and Kruskal τ for rows (given columns) 
8 Goodman and Kruskal τ for columns (given rows) 
9 uncertainty coefficient U (symmetric) 
10 uncertainty Ur | c (rows) 

11 uncertainty Uc | r (columns) 

12 optimal prediction λ (symmetric) 
13 optimal prediction λr | c (rows) 

14 optimal prediction λc | r (columns) 

15 optimal prediction λr | c (rows) 

16 optimal prediction λc | r (columns) 

17 test for linear trend in row probabilities if n_rows = 2 
If n_rows is not 2, a test for linear trend in column 
probabilities if n_columns = 2. 

18 Kruskal-Wallis test for no row effect 

19 Kruskal-Wallis test for no column effect 

20 kappa (square tables only) 
21 McNemar test of symmetry (square tables only) 
22 McNemar one degree of freedom test of symmetry (square 

tables only) 

If a statistic cannot be computed, or if some value is not relevant for the 
computed statistic, the entry is NaN (Not a Number). The columns are as 
follows: 

Column Value 
0 estimated statistic 

1 standard error for any parameter value 

2 standard error under the null hypothesis 

3 t value for testing the null hypothesis 

4 p-value of the test in column 3 
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In the McNemar tests, column 0 contains the statistic, column 1 contains the 
chi-squared degrees of freedom, column 3 contains the exact p-value (1 
degree of freedom only), and column 4 contains the chi-squared asymptotic p-
value. The Kruskal-Wallis test is the same except no exact p-value is 
computed. 

IMSLS_STATISTICS_USER, float statistics[]   (Output) 
Storage for array statistics provided by the user. See 
IMSLS_STATISTICS. 

Description 
Function imsls_f_contingency_table computes statistics associated with an r × c 
(n_rows × n_columns) contingency table. The function computes the chi-squared test 
of independence, expected values, contributions to chi-squared, row and column 
marginal totals, some measures of association, correlation, prediction, uncertainty, the 
McNemar test for symmetry, a test for linear trend, the odds and the log odds ratio, and 
the kappa statistic (if the appropriate optional arguments are selected). 

Notation 
Let xij denote the observed cell frequency in the ij cell of the table and n denote the 
total count in the table. Let pij = pi•pj• denote the predicted cell probabilities under the 
null hypothesis of independence, where pi• and pj• are the row and column marginal 
relative frequencies. Next, compute the expected cell counts as eij = npij. 

Also required in the following are auv and buv for u, v = 1, …, n. Let (rs, cs) denote the 
row and column response of observation s. Then, auv = 1, 0, or −1, depending on 
whether ru < rv, ru = rv, or ru > rv, respectively. The buv are similarly defined in terms 
of the cs variables. 

Chi-squared Statistic 

For each cell in the table, the contribution to χ2 is given as (xij − eij)2/eij. The Pearson 
chi-squared statistic (denoted χ2) is computed as the sum of the cell contributions to 
chi-squared. It has (r − 1) (c − 1) degrees of freedom and tests the null hypothesis of 
independence, i.e., H0:pij = pi•pj•. The null hypothesis is rejected if the computed value 
of χ2 is too large. 

The maximum likelihood equivalent of χ2, G2 is computed as follows: 

( )2

,
2 ln /ij ij ij

i j
G x x np= − ∑  

G2 is asymptotically equivalent to χ2 and tests the same hypothesis with the same 
degrees of freedom. 
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Measures Related to Chi-squared (Phi, Contingency Coefficient, and 
Cramer’s V) 
There are three measures related to chi-squared that do not depend on sample size: 

( )
( )( )

2

2 2

2

phi, = /

contingency coefficient,  = /

Cramer's , / min ,

n

P n

V V n r c

φ χ

χ χ

χ

+

=
 

Since these statistics do not depend on sample size and are large when the hypothesis 
of independence is rejected, they can be thought of as measures of association and can 
be compared across tables with different sized samples. While both P and V have a 
range between 0.0 and 1.0, the upper bound of P is actually somewhat less than 1.0 for 
any given table (see Kendall and Stuart 1979, p. 587). The significance of all three 
statistics is the same as that of the χ2 statistic, chi_squared. 

The distribution of the χ2 statistic in finite samples approximates a chi-squared 
distribution. To compute the exact mean and standard deviation of the χ2 statistic, 
Haldane (1939) uses the multinomial distribution with fixed table marginals. The exact 
mean and standard deviation generally differ little from the mean and standard 
deviation of the associated chi-squared distribution. 

Standard Errors and p-values for Some Measures of Association 
In Columns 1 through 4 of statistics, estimated standard errors and asymptotic 
p-values are reported. Estimates of the standard errors are computed in two ways. The 
first estimate, in Column 1 of the array statistics, is asymptotically valid for any 
value of the statistic. The second estimate, in Column 2 of the array, is only correct 
under the null hypothesis of no association. The z-scores in Column 3 of statistics are 
computed using this second estimate of the standard errors. The p-values in Column 4 
are computed from this z-score. See Brown and Benedetti (1977) for a discussion and 
formulas for the standard errors in Column 2. 

Measures of Association for Ranked Rows and Columns 
The measures of association, φ, P, and V, do not require any ordering of the row and 
column categories. Function imsls_f_contingency_table also computes several 
measures of association for tables in which the rows and column categories correspond 
to ranked observations. Two of these tests, the product-moment correlation and the 
Spearman correlation, are correlation coefficients computed using assigned scores for 
the row and column categories. The cell indices are used for the product-moment 
correlation, while the average of the tied ranks of the row and column marginals is used 
for the Spearman rank correlation. Other scores are possible. 
Gamma, Kendall’s τb, Stuart’s τc, and Somers’ D are measures of association that are 
computed like a correlation coefficient in the numerator. In all these measures, the 
numerator is computed as the “covariance” between the  
auv variables and buv variables defined above, i.e., as follows: 
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uv uv
u v

a b∑∑  

Recall that auv and buv can take values −1, 0, or 1. Since the product auvbuv = 1 only if 
auv and buv are both 1 or are both −1, it is easy to show that this ‘‘covariance’’ is twice 
the total number of agreements minus the number of disagreements, where a 
disagreement occurs when auvbuv = −1. 

Kendall’s τb is computed as the correlation between the auv variables and the  
buv variables (see Kendall and Stuart 1979, p. 593). In a rectangular table  
(r ≠ c), Kendall’s τb cannot be 1.0 (if all marginal totals are positive). For this reason, 
Stuart suggested a modification to the denominator of τ in which the denominator 
becomes the largest possible value of the “covariance.” This maximizing value is 
approximately n2m/(m − 1), where m = min (r, c). Stuart’s τc uses this approximate 
value in its denominator. For large n, τc ≈ mτb/(m − 1). 

Gamma can be motivated in a slightly different manner. Because the “covariance” of 
the auv variables and the buv variables can be thought of as twice the number of 
agreements minus the disagreements, 2(A − D), where A is the number of agreements 
and D is the number of disagreements, Gamma is motivated as the probability of 
agreement minus the probability of disagreement, given that either agreement or 
disagreement occurred. This is shown as γ = (A − D)/(A + D). 
Two definitions of Somers’ D are possible, one for rows and a second for columns. 
Somers’ D for rows can be thought of as the regression coefficient for predicting auv 
from buv. Moreover, Somer’s D for rows is the probability of agreement minus the 
probability of disagreement, given that the column variable, buv, is not 0. Somers’ D 
for columns is defined in a similar manner. 
A discussion of all of the measures of association in this section can be found in 
Kendall and Stuart (1979, p. 592). 

Measures of Prediction and Uncertainty 
Optimal Prediction Coefficients: The measures in this section do not require any 
ordering of the row or column variables. They are based entirely upon probabilities. 
Most are discussed in Bishop et al. (1975, p. 385). 
Consider predicting (or classifying) the column for a given row in the table. Under the 
null hypothesis of independence, choose the column with the highest column marginal 
probability for all rows. In this case, the probability of misclassification for any row is 
1 minus this marginal probability. If independence is not assumed within each row, 
choose the column with the highest row conditional probability. The probability of 
misclassification for the row becomes 1 minus this conditional probability. 
Define the optimal prediction coefficient λc | r for predicting columns from rows as the 
proportion of the probability of misclassification that is eliminated because the random 
variables are not independent. It is estimated by 
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where m is the index of the maximum estimated probability in the row (pim) or row 
margin (p·m). A similar coefficient is defined for predicting the rows from the columns. 
The symmetric version of the optimal prediction λ is obtained by summing the 
numerators and denominators of λr | c and λc | r, then dividing. Standard errors for these 
coefficients are given in Bishop et al. (1975, p. 388). 
A problem with the optimal prediction coefficients λ is that they vary with the marginal 
probabilities. One way to correct this is to use row conditional probabilities. The 
optimal prediction λ* coefficients are defined as the corresponding λ coefficients in 
which first the row (or column) marginals are adjusted to the same number of 
observations. This yields 

| |
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−
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−
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where i indexes the rows, j indexes the columns, and pj|i is the (estimated) probability 
of column j given row i. 

|r cλ∗

 

is similarly defined. 
Goodman and Kruskal τ: A second kind of prediction measure attempts to explain 
the proportion of the explained variation of the row (column) measure given the 
column (row) measure. Define the total variation in the rows as follows: 

( )2/ 2 ( ) / 2i
i

n x n•− ∑  

Note that this is 1/(2n) times the sums of squares of the auv variables. 

With this definition of variation, the Goodman and Kruskal τ coefficient for rows is 
computed as the reduction of the total variation for rows accounted for by the columns, 
divided by the total variation for the rows. To compute the reduction in the total 
variation of the rows accounted for by the columns, note that the total variation for the 
rows within column j is defined as follows: 

( )2/ 2 ( ) / 2j j ij i
i

q x x x• •= − ∑  

The total variation for rows within columns is the sum of the qj variables. Consistent 
with the usual methods in the analysis of variance, the reduction in the total variation is 
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given as the difference between the total variation for rows and the total variation for 
rows within the columns. 
Goodman and Kruskal’s τ for columns is similarly defined. See Bishop et al. (1975, p. 
391) for the standard errors. 
Uncertainty Coefficients: The uncertainty coefficient for rows is the increase in the 
log-likelihood that is achieved by the most general model over the independence 
model, divided by the marginal log-likelihood for the rows. This is given by the 
following equation: 

( )
( )

,
|

log /

log /

ij i j ij
i j

r c
i i

i

x x x nx
U

x x n

• •

• •

=
∑

∑  

The uncertainty coefficient for columns is similarly defined. The symmetric 
uncertainty coefficient contains the same numerator as Ur | c and Uc | r but averages the 
denominators of these two statistics. Standard errors for U are given in Brown (1983). 
Kruskal-Wallis: The Kruskal-Wallis statistic for rows is a one-way analysis-of-
variance-type test that assumes the column variable is monotonically ordered. It tests 
the null hypothesis that no row populations are identical, using average ranks for the 
column variable. The Kruskal-Wallis statistic for columns is similarly defined. 
Conover (1980) discusses the Kruskal-Wallis test. 
Test for Linear Trend: When there are two rows, it is possible to test for a linear 
trend in the row probabilities if it is assumed that the column variable is monotonically 
ordered. In this test, the probabilities for row 1 are predicted by the column index using 
weighted simple linear regression. This slope is given by 

( )( )
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where 

/j
j

j x j n•= ∑  

is the average column index. An asymptotic test that the slope is 0 may then be 
obtained (in large samples) as the usual regression test of zero slope. 
In two-column data, a similar test for a linear trend in the column probabilities is 
computed. This test assumes that the rows are monotonically ordered. 
Kappa: Kappa is a measure of agreement computed on square tables only. In the 
kappa statistic, the rows and columns correspond to the responses of two judges. The 
judges agree along the diagonal and disagree off the diagonal. Let 

0 /ii
i

p x n= ∑  
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denote the probability that the two judges agree, and let 

/c ii
i

p e n= ∑  

denote the expected probability of agreement under the independence model. Kappa is 
then given by (p0 − pc)/(1 − pc). 

McNemar Tests: The McNemar test is a test of symmetry in a square contingency 
table. In other words, it is a test of the null hypothesis H0:θij = θji. The multiple 
degrees-of-freedom version of the McNemar test with r (r − 1)/2 degrees of freedom is 
computed as follows: 

( )
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The single degree-of-freedom test assumes that the differences, xij − xji, are all in one 
direction. The single degree-of-freedom test will be more powerful than the multiple 
degrees-of-freedom test when this is the case. The test statistic is given as follows: 
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The exact probability can be computed by the binomial distribution. 

Examples  

Example 1 
The following example is taken from Kendall and Stuart (1979) and involves the 
distance vision in the right and left eyes. Output contains only the p-value. 

#include <imsls.h> 
 
void main() 
{ 
    int n_rows     = 4; 
    int n_columns  = 4; 
    float table[4][4]    = {821, 112, 85, 35, 
                            116, 494, 145, 27, 
                            72, 151, 583, 87, 
                            43, 34, 106, 331}; 
    float p_value; 
 
    p_value = imsls_f_contingency_table(n_rows, n_columns,  
                                        &table[0][0], 0); 
    printf ("P-value = %10.6f.\n", p_value); 
 
} 
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Output 
P-value =   0.000000. 

Example 2 
The following example, which illustrates the use of Kappa and McNemar tests, uses 
the same distance vision data as the previous example. The available statistics are 
output using optional arguments.  

#include <imsls.h> 
 
void main() 
{ 
    int      n_rows = 4; 
    int      n_columns = 4; 
    int      df1, df2; 
    float    table[16]  =  {821.0, 112.0, 85.0, 35.0,  
                            116.0, 494.0, 145.0, 27.0,  
                            72.0, 151.0, 583.0, 87.0,  
                            43.0, 34.0, 106.0, 331.0}; 
    float    p_value1, p_value2, chi_squared, g_squared; 
    float    *expected, *chi_squared_contributions; 
    float    *chi_squared_stats, *statistics; 
    char     *labels[] = { 
             "Exact mean", 
             "Exact standard deviation", 
             "Phi", 
             "P", 
             "Cramer’s V"}; 
    char     *stat_row_labels[] = {"Gamma", "Tau B", "Tau C",  
             "D-Row", "D-Column", "Correlation", "Spearman", 
             "GK tau rows", "GK tau cols.", "U - sym.", "U - rows", 
             "U - cols.", "Lambda-sym.", "Lambda-row", "Lambda-col.", 
             "l-star-rows", "l-star-col.", "Lin. trend",  
             "Kruskal row", "Kruskal col.", "Kappa", "McNemar", 
             "McNemar df=1"}; 
    char     *stat_col_labels[] = {"","statistic", "standard error", 
             "std. error under Ho", "t-value testing Ho",  
             "p-value"}; 
 
    imsls_f_contingency_table (n_rows, n_columns, table, 
             IMSLS_CHI_SQUARED, &df1, &chi_squared, &p_value1, 
             IMSLS_LRT, &df2, &g_squared, &p_value2, 
             IMSLS_EXPECTED, &expected,  
             IMSLS_CONTRIBUTIONS, 
                        &chi_squared_contributions,  
             IMSLS_CHI_SQUARED_STATS, &chi_squared_stats, 
             IMSLS_STATISTICS, &statistics, 
             0); 
 
    printf("Pearson chi-squared statistic     %11.4f\n", chi_squared); 
    printf("p-value for Pearson chi-squared   %11.4f\n", p_value1); 
    printf("degrees of freedom                %11d\n", df1); 
    printf("G-squared statistic               %11.4f\n", g_squared); 
    printf("p-value for G-squared             %11.4f\n", p_value2); 
    printf("degrees of freedom                %11d\n", df2); 
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    imsls_f_write_matrix("* * * Table Values * * *\n", 4, 4, 
             table, 
             IMSLS_WRITE_FORMAT, "%11.1f", 
             0); 
 
    imsls_f_write_matrix("* * * Expected Values * * *\n", 5, 5, 
             expected, 
             IMSLS_WRITE_FORMAT, "%11.2f", 
             0); 
    imsls_f_write_matrix("* * * Contributions to Chi-squared* * *\n", 
             5, 5, 
             chi_squared_contributions, 
             IMSLS_WRITE_FORMAT, "%11.2f", 
             0); 
    imsls_f_write_matrix("* * * Chi-square Statistics * * *\n", 
             5, 1, 
             chi_squared_stats, 
             IMSLS_ROW_LABELS, labels, 
             IMSLS_WRITE_FORMAT, "%11.4f", 
             0); 
    imsls_f_write_matrix("* * * Table Statistics * * *\n", 
             23, 5, 
             statistics, 
             IMSLS_ROW_LABELS, stat_row_labels, 
             IMSLS_COL_LABELS, stat_col_labels, 
             IMSLS_WRITE_FORMAT, "%9.4f", 
             0); 
} 

Output 
Pearson chi-squared statistic       3304.3682 
p-value for Pearson chi-squared        0.0000 
degrees of freedom                          9 
G-squared statistic                 2781.0188 
p-value for G-squared                  0.0000 
degrees of freedom                          9 
  
              * * * Table Values * * * 
 
             1            2            3            4 
1        821.0        112.0         85.0         35.0 
2        116.0        494.0        145.0         27.0 
3         72.0        151.0        583.0         87.0 
4         43.0         34.0        106.0        331.0 
  
                   * * * Expected Values * * * 
 
             1            2            3            4            5 
1       341.69       256.92       298.49       155.90      1053.00 
2       253.75       190.80       221.67       115.78       782.00 
3       289.77       217.88       253.14       132.21       893.00 
4       166.79       125.41       145.70        76.10       514.00 
5      1052.00       791.00       919.00       480.00      3242.00 
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             * * * Contributions to Chi-squared* * * 
 
             1            2            3            4            5 
1       672.36        81.74       152.70        93.76      1000.56 
2        74.78       481.84        26.52        68.08       651.21 
3       163.66        20.53       429.85        15.46       629.50 
4        91.87        66.63        10.82       853.78      1023.10 
5      1002.68       650.73       619.88      1031.08      3304.37 
  
 * * * Chi-square Statistics * * * 
 
Exact mean                     9.0028 
Exact standard deviation       4.2402 
Phi                            1.0096 
P                              0.7105 
Cramer’s V                     0.5829 
  
                    * * * Table Statistics * * * 
 
              statistic  standard error  std. error  t-value testing 
                                           under Ho               Ho 
Gamma            0.7757          0.0123      0.0149          52.1897 
Tau B            0.6429          0.0122      0.0123          52.1897 
Tau C            0.6293          0.0121   .........          52.1897 
D-Row            0.6418          0.0122      0.0123          52.1897 
D-Column         0.6439          0.0122      0.0123          52.1897 
Correlation      0.6926          0.0128      0.0172          40.2669 
Spearman         0.6939          0.0127      0.0127          54.6614 
GK tau rows      0.3420          0.0123   .........        ......... 
GK tau cols.     0.3430          0.0122   .........        ......... 
U - sym.         0.3171          0.0110   .........        ......... 
U - rows         0.3178          0.0110   .........        ......... 
U - cols.        0.3164          0.0110   .........        ......... 
Lambda-sym.      0.5373          0.0124   .........        ......... 
Lambda-row       0.5374          0.0126   .........        ......... 
Lambda-col.      0.5372          0.0126   .........        ......... 
l-star-rows      0.5506          0.0136   .........        ......... 
l-star-col.      0.5636          0.0127   .........        ......... 
Lin. trend    .........       .........   .........        ......... 
Kruskal row   1561.4861          3.0000   .........        ......... 
Kruskal col.  1563.0300          3.0000   .........        ......... 
Kappa            0.5744          0.0111      0.0106          54.3583 
McNemar          4.7625          6.0000   .........        ......... 
McNemar df=1     0.9487          1.0000   .........           0.3459 
  
                p-value 
Gamma            0.0000 
Tau B            0.0000 
Tau C            0.0000 
D-Row            0.0000 
D-Column         0.0000 
Correlation      0.0000 
Spearman         0.0000 
GK tau rows   ......... 
GK tau cols.  ......... 
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U - sym.      ......... 
U - rows      ......... 
U - cols.     ......... 
Lambda-sym.   ......... 
Lambda-row    ......... 
Lambda-col.   ......... 
l-star-rows   ......... 
l-star-col.   ......... 
Lin. trend    ......... 
Kruskal row      0.0000 
Kruskal col.     0.0000 
Kappa            0.0000 
McNemar          0.5746 
McNemar df=1     0.3301 

Warning Errors 

IMSLS_DF_GT_30 The degrees of freedom for 
“IMSLS_CHI_SQUARED” are greater than 
30. The exact mean, standard deviation, and 
the normal distribution function should be 
used. 

IMSLS_EXP_VALUES_TOO_SMALL Some expected values are less than #. Some 
asymptotic p-values may not be good. 

IMSLS_PERCENT_EXP_VALUES_LT_5 Twenty percent of the expected values are 
calculated less than 5. 

exact_enumeration 
Computes exact probabilities in a two-way contingency table using the total 
enumeration method. 

Synopsis 
#include <imsls.h> 

float imsls_f_exact_enumeration (int n_rows, int n_columns, 
float table[], ..., 0) 

The type double function is imsls_d_exact_enumeration. 

Required Arguments 

int n_rows   (Input) 
Number of rows in the table. 

int n_columns   (Input) 
Number of columns in the table. 

float table[]   (Input) 
Array of length n_rows × n_columns containing the observed counts in the 
contingency table. 
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Return Value 
The p-value for independence of rows and columns. The p-value represents the 
probability of a more extreme table where “extreme” is taken in the Neyman-Pearson 
sense. The p-value is “two-sided”. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_exact_enumeration (int n_rows, int n_columns, float 

table[], 
IMSLS_PROB_TABLE, float *prt, 
IMSLS_P_VALUE, float *p_value, 
IMSLS_CHECK_NUMERICAL_ERROR, float *check, 
0) 

Optional Arguments 

IMSLS_PROB_TABLE, float *prt   (Output) 
Probablitity of the observed table occuring, given that the null hypothesis of 
independent rows and columns is true. 

IMSLS_P_VALUE, float *p_value   (Output) 
The p-value for independence of rows and columns. The p-value represents 
the probability of a more extreme table where “extreme” is taken in the 
Neyman-Pearson sense. The p-value is “two-sided”. 

The p-value is also returned in functional form (see “Return Value”).  

A table is more extreme if its probability (for fixed marginals) is less than or 
equal to prt. 

IMSLS_CHECK_NUMERICAL_ERROR, float *check   (Output) 
Sum of the probabilities of all tables with the same marginal totals. Parameter 
check should have a value of 1.0. Deviation from 1.0 indicates numerical 
error. 

Description 
Function imsls_f_exact_enumeration computes exact probabilities for an  
r × c contingency table for fixed row and column marginals (a marginal is the number 
of counts in a row or column), where r = n_rows and c = n_columns. Let fij denote 
the count in row i and column j of a table, and let fi• and f•j denote the row and column 
marginals. Under the hypothesis of independence, the (conditional) probability of the 
fixed marginals of the observed table is given by 
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where f•• is the total number of counts in the table. Pf  corresponds to output argument 
prt. 
A “more extreme” table X is defined in the probablistic sense as more extreme than the 
observed table if the conditional probability computed for table X (for the same 
marginal sums) is less than the conditional probability computed for the observed table. 
The user should note that this definition can be considered “two-sided” in the cell 
counts. 
Because imsls_f_exact_enumeration used total enumeration in computing the 
probability of a more extreme table, the amount of computer time required increases 
very rapidly with the size of the table. Tables with a large total count f•• or a large value 
of r × c should not be analyzed using imsls_f_exact_enumeration. In such cases, 
try using imsls_f_exact_network. 

Example 

In this example, the exact conditional probability for the 2 × 2 contingency table  

8 12
8 2

⎡ ⎤
⎢ ⎥
⎣ ⎦  

is computed. 

#include <stdio.h> 

#include <imsls.h> 
  

void main() 

{ 
    float p; 

    float table[4] = {8, 12, 

                      8,  2}; 
 

    p = imsls_f_exact_enumeration(2, 2, table, 0); 

    printf("p-value = %9.4f\n", p); 
} 

Output 
p-value =    0.0577 

exact_network 
Computes Fisher exact probabilities and a hybrid approximation of the Fisher exact 
method for a two-way contingency table using the network algorithm. 

Synopsis 
#include <imsls.h> 
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float imsls_f_exact_network (int n_rows, int n_columns, float table[], 
..., 0) 

The type double function is imsls_d_exact_network. 

Required Arguments 

int n_rows   (Input) 
Number of rows in the table. 

int n_columns   (Input) 
Number of columns in the table. 

float table[]   (Input) 
Array of length n_rows × n_columns containing the observed counts in the 
contingency table. 

Return Value 
The p-value for independence of rows and columns. The p-value represents the 
probability of a more extreme table where “extreme” is taken in the Neyman-Pearson 
sense. The p-value is “two-sided”. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_exact_network (int n_rows, int n_columns, float table[], 

IMSLS_PROB_TABLE, float *prt, 
IMSLS_P_VALUE, float *p_value, 
IMSLS_APPROXIMATION_PARAMETERS, float expect,  float percent, 
float expected_minimum,  
IMSLS_NO_APPROXIMATION,  
IMSLS_WORKSPACE, int factor1, int factor2, 
 int max_attempts, int *n_attempts,  
0) 

Optional Arguments 

IMSLS_PROB_TABLE, float *prt   (Output) 
Probability of the observed table occurring given that the null hypothesis of 
independent rows and columns is true. 

IMSLS_P_VALUE, float *p_value   (Output) 
The p-value for independence of rows and columns. The p-value represents 
the probability of a more extreme table where “extreme” is in the Neyman-
Pearson sense. The p_value is “two-sided”. The p-value is also returned in 
functional form (see “Return Value”).  

A table is more extreme if its probability (for fixed marginals) is less than or 
equal to prt. 

IMSLS_APPROXIMATION_PARAMETERS, float expect, float percent, 
float expected_minimum.   (Input) 
Parameter expect is the expected value used in the hybrid approximation to 
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Fisher’s exact test algorithm for deciding when to use asymptotic probabilities 
when computing path lengths. Parameter percent is the percentage of 
remaining cells that must have estimated expected values greater than expect 
before asymptotic probabilities can be used in computing path lengths. 
Parameter expected_minimum is the minimum cell estimated value allowed 
for asymptotic chi-squared probabilities to be used. 

Asymptotic probabilities are used in computing path lengths whenever 
percent or more of the cells in the table have estimated expected values of 
expect or more, with no cell having expected value less than 
expected_minimum. See the “Description” section for details. 

Defaults: expect = 5.0, percent = 80.0, expected_minimum = 1.0 
Note that these defaults correspond to the “Cochran” condition. 

IMSLS_NO_APPROXIMATION, 
The Fisher exact test is used. Arguments expect, percent, and 
expected_minimum are ignored. 

IMSLS_WORKSPACE, int factor1, int factor2,  
int max_attempts,   (Input) 
int *n_attempts   (Output) 
The network algorithm requires a large amount of workspace. Some of the 
workspace requirements are well-defined, while most of the workspace 
requirements can only be estimated. The estimate is based primarily on table 
size. 

Function imsls_f_exact_enumeration allocates a default amount of 
workspace suitable for small problems. If the algorithm determines that this 
initial allocation of workspace is inadaquate, the memory is freed, a larger 
amount of memory allocated (twice as much as the previous allocation), and 
the network algorithm is re-started. The algorithm allows for up to 
max_attempts attempts to complete the algorithm. 

Because each attempt requires computer time, it is suggested that factor1 
and factor2 be set to some large numbers (like 1,000 and 30,000) if the 
problem to be solved is large. It is suggested that factor2 be 30 times larger 
than factor1. Although imsls_f_exact_enumeration will eventually 
work its way up to a large enough memory allocation, it is quicker to allocate 
enough memory initially. 

The known (well-defined) workspace requirements are as follows: Define 
f•• = ΣΣfij equal to the sum of all cell frequencies in the observed table, 
nt = f•• + 1, mx = max (n_rows, n_columns), 
mn = min (n_rows, n_columns), 
t1 = max (800 + 7mx, (5 + 2mx) (n_rows + n_columns + 1) ), and 
t2 = max (400 + mx, + 1, n_rows + n_columns + 1).  

The following amount of integer workspace is allocated: 3mx + 2mn + t1. 

The following amount of float (or double, if using 
imsls_d_exact_network) workspace is allocated: nt + t2. 
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The remainder of the workspace that is required must be estimated and 
allocated based on factor1 and factor2. The amount of integer workspace 
allocated is 6n (factor1 + factor2). The amount of real workspace 
allocated is n (6factor1 + 2factor2). Variable n is the index for the 
attempt, 1 < n ≤ max_attempts.  

Defaults: factor1 = 100, factor2 = 3000, max_attempts = 10 

Description 
Function imsls_f_exact_network computes Fisher exact probabilities or a hybrid 
algorithm approximation to Fisher exact probabilities for an r × c contingency table 
with fixed row and column marginals (a marginal is the number of counts in a row or 
column), where r = n_rows and c = n_columns. Let fij denote the count in row i and 
column j of a table, and let fi and f•j denote the row and column marginals. Under the 
hypothesis of independence, the (conditional) probability of the fixed marginals of the 
observed table is given by 
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where f•• is the total number of counts in the table. Pf  corresponds to output argument 
prt. 
A “more extreme” table X is defined in the probablistic sense as more extreme than the 
observed table if the conditional probability computed for table X (for the same 
marginal sums) is less than the conditional probability computed for the observed table. 
The user should note that this definition can be considered “two-sided” in the cell 
counts. 
See Example 1 for a comparison of execution times for the various algorithms. Note 
that the Fisher exact probability and the usual asymptotic chi-squared probability will 
usually be different. (The network approximation is often 10 times faster than the 
Fisher exact test, and even faster when compared to the total enumeration method.) 

Examples   

Example 1 
The following example demonstrates and compares the various methods of computing 
the chi-squared p-value with respect to accuracy and execution time. As seen in the 
output of this example, the Fisher exact probability and the usual asymptotic chi-
squared probability (generated using function imsls_f_contingency_table) can 
be different. Also, note that the network algorithm with approximation can be up to 10 
times faster than the network algorithm without approximation, and up to 100 times 
faster than the total enumeration method. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
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{ 
    int n_rows = 3; 
    int n_columns = 5; 
    float p; 
    float table[15] = {20, 20, 0, 0, 0, 
                       10, 10, 2, 2, 1, 
                       20, 20, 0, 0, 0}; 
    double a, b; 
 
    printf("Asymptotic Chi-Squared p-value\n"); 
    p = imsls_f_contingency_table(n_rows, n_columns, table, 0); 
    printf("p-value = %9.4f\n", p); 
 
    printf("\nNetwork Algorithm with Approximation\n"); 
    a = imsls_ctime(); 
    p = imsls_f_exact_network(n_rows, n_columns, table, 0); 
    b = imsls_ctime(); 
    printf("p-value = %9.4f\n", p); 
    printf("Execution time = %10.4f\n", b-a); 
 
    printf("\nNetwork Algoritm without Approximation\n"); 
    a = imsls_ctime(); 
    p = imsls_f_exact_network(n_rows, n_columns, table,  
        IMSLS_NO_APPROXIMATION, 0); 
    b = imsls_ctime(); 
    printf("p-value = %9.4f\n", p); 
    printf("Execution time = %10.4f\n", b-a); 
 
    printf("\nTotal Enumeration Method\n"); 
    a = imsls_ctime(); 
    p = imsls_f_exact_enumeration(n_rows, n_columns, table, 0); 
    b = imsls_ctime(); 
    printf("p-value = %9.4f\n", p); 
    printf("Execution time = %10.4f\n", b-a); 

 

} 

Output 
Asymptotic Chi-Squared p-value 
p-value =    0.0323 
 
Network Algorithm with Approximation 
p-value =    0.0601 
Execution time =     0.0400 
 
Network Algoritm without Approximation 
p-value =    0.0598 
Execution time =     0.4300 
 
Total Enumeration Method 
p-value =    0.0597 
Execution time =     3.1400 
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Example 2 
This document example demonstrates the optional keyword IMSLS_WORKSPACE and 
how different workspace settings affect execution time. Setting the workspace 
available too low results in poor performance since the algorithm will fail, re-allocate a 
larger amount of workspace (a factor of 10 larger) and re-start the calculations (See 
Test #3, for which n_attempts is returned with a value of 2). Setting the workspace 
available very large will provide no improvement in performance. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int n_rows = 3; 
    int n_columns = 5; 
    float p; 
    float table[15] = {20, 20, 0, 0, 0, 
                       10, 10, 2, 2, 1, 
                       20, 20, 0, 0, 0}; 
    double a, b; 
    int i, n_attempts, simulation_size = 10; 
 
    printf("Test #1, factor1 = 1000, factor2 = 30000\n"); 
    a = imsls_ctime(); 
    for (i=0; i<simulation_size; i++) { 
        p = imsls_f_exact_network(n_rows, n_columns, table,  
            IMSLS_NO_APPROXIMATION, 
            IMSLS_WORKSPACE, 1000, 30000, 10, &n_attempts, 0); 
    } 
    b = imsls_ctime(); 
    printf("n_attempts = %2d\n", n_attempts);    
    printf("Execution time = %10.4f\n", b-a); 
 
    printf("\nTest #2, factor1 = 100, factor2 = 3000\n"); 
    a = imsls_ctime(); 
    for (i=0; i<simulation_size; i++) { 
        p = imsls_f_exact_network(n_rows, n_columns, table,  
            IMSLS_NO_APPROXIMATION, 
            IMSLS_WORKSPACE, 100, 3000, 10, &n_attempts, 0); 
    } 
    b = imsls_ctime(); 
    printf("n_attempts = %2d\n", n_attempts);    
    printf("Execution time = %10.4f\n", b-a); 
 
    printf("\nTest #3, factor1 = 10, factor2 = 300\n"); 
    a = imsls_ctime(); 
    for (i=0; i<simulation_size; i++) { 
        p = imsls_f_exact_network(n_rows, n_columns, table,  
            IMSLS_NO_APPROXIMATION, 
            IMSLS_WORKSPACE, 10, 300, 10, &n_attempts, 0); 
    } 
    b = imsls_ctime(); 
    printf("n_attempts = %2d\n", n_attempts);    
    printf("Execution time = %10.4f\n", b-a); 
} 
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Output 
Test #1, factor1 = 1000, factor2 = 30000 
n_attempts =  1 
Execution time =     4.3700 
 
Test #2, factor1 = 100, factor2 = 3000 
n_attempts =  1 
Execution time =     4.2900 
 
Test #3, factor1 = 10, factor2 = 300 
n_attempts =  2 
Execution time =     8.3700 

Warning Errors 

IMSLS_HASH_TABLE_ERROR_2 The value “ldkey” = # is too small. “ldkey” is calcu-
lated as “factor1”*pow(10,”n_attempt”−1) ending 
this execution attempt. 

IMSLS_HASH_TABLE_ERROR_3 The value “ldstp” = # is too small. “ldstp” is 
calculated as “factor2”*pow(10,”n_attempt”−1) 
ending this execution attempt. 

Fatal Errors 

IMSLS_HASH_TABLE_ERROR_1 The hash table key cannot be computed because the 
largest key is larger than the largest representable 
integer. The algorithm cannot proceed. 

categorical_glm 
Analyzes categorical data using logistic, Probit, Poisson, and other generalized linear 
models. 

Synopsis 
#include <imsls.h> 
int imsls_f_categorical_glm (int n_observations, int n_class, 

int n_continuous, int model, float x[], ..., 0) 
The type double function is imsls_d_categorical_glm. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

int n_class   (Input) 
Number of classification variables. 

int n_continuous   (Input) 
Number of continuous variables. 
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int model   (Input) 
Argument model specifies the model used to analyze the data. The six models 
are as follows: 

Model Relationship*  PDF of Response Variable 
0 Exponential Poisson 
1 Logistic Negative Binomial 
2 Logistic Logarithmic 
3 Logistic Binomial 
4 Probit Binomial 
5 Log-log Binomial 

Note that the lower bound of the response variable is 1 for model = 3 and is 0 
for all other models. See the “Description” section for more information about 
these models. 

float x[]   (Input) 
Array of size n_observations by  (n_class + n_continuous) + m 
containing data for the independent variables, dependent variable, and 
optional parameters. 

The columns must be ordered such that the first n_class columns contain 
data for the class variables, the next n_continuous columns contain data for 
the continuous variables, and the next column contains the response variable. 
The final (and optional) m − 1 columns contain the optional parameters. 

Return Value 
An integer value indicating the number of estimated coefficients  
(n_coefficients) in the model. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int imsls_f_categorical_glm (int n_observations, int n_class, 

int n_continuous, int model, float x[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_COL_FREQUENCIES, int ifrq, 
IMSLS_X_COL_FIXED_PARAMETER, int ifix, 
IMSLS_X_COL_DIST_PARAMETER, int ipar, 
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], 
 int iy, 
IMSLS_EPS, float eps, 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_INTERCEPT, 
IMSLS_NO_INTERCEPT, 
IMSLS_EFFECTS, int n_effects, int n_var_effects[],  

                                                           
*Relationship between the parameter, θ or λ, and a linear model of the explanatory variables, X β. 
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 int indices_effects, 
IMSLS_INITIAL_EST_INTERNAL, 
IMSLS_INITIAL_EST_INPUT, int n_coef_input, 
 float estimates[], 
IMSLS_MAX_CLASS, int max_class, 
IMSLS_CLASS_INFO, int **n_class_values, 
 float **class_values, 
IMSLS_CLASS_INFO_USER, int n_class_values[], 
 float class_values[], 
IMSLS_COEF_STAT, float **coef_statistics, 
IMSLS_COEF_STAT_USER, float coef_statistics[], 
IMSLS_CRITERION, float *criterion, 
IMSLS_COV, float **cov, 
IMSLS_COV_USER, float cov[], 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_CASE_ANALYSIS, float **case_analysis, 
IMSLS_CASE_ANALYSIS_USER, float case_analysis[], 
IMSLS_LAST_STEP, float **last_step,  
IMSLS_LAST_STEP_USER, float last_step[], 
IMSLS_OBS_STATUS, int **obs_status, 
IMSLS_OBS_STATUS_USER, int obs_status[], 
IMSLS_ITERATIONS, int *n, float **iterations, 
IMSLS_ITERATIONS_USER, int *n, float iterations[], 
IMSLS_N_ROWS_MISSING, int *n_rows_missing, 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of input array x. 
Default: x_col_dim = n_class + n_continuous +1 

IMSLS_X_COL_FREQUENCIES, int ifrq   (Input) 
Column number ifrg of x containing the frequency of response for each 
observation. 

IMSLS_X_COL_FIXED_PARAMETER, int ifix   (Input) 
Column number ifix in x containing a fixed parameter for each observation 
that is added to the linear response prior to computing the model parameter. 
The ‘fixed’ parameter allows one to test hypothesis about the parameters via 
the log-likelihoods. 

IMSLS_X_COL_DIST_PARAMETER, int ipar   (Input) 
Column number ipar in x containing the value of the known distribution 
parameter for each observation, where x[i][ipar] is the known distribution 
parameter associated with the i-th observation. The meaning of the 
distributional parameter depends upon model as follows: 
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model Parameter Meaning of x [i] [ipar] 
0 E ln (E) is a fixed intercept to be included in the 

linear predictor (i.e., the offset). 
1 S Number of successes required for the negative 

binomial distribution. 
2 - Not used for this model. 

3-5 N Number of trials required for the binomial 
distribution. 

Default: When model ≠ 2, each observation is assumed to have a parameter 
value of 1. When model = 2, this parameter is not referenced. 

IMSLS_X_COL_VARAIBLES, int iclass[], int icontinuous[], int iy   (Input) 
This keyword allows specification of the variables to be used in the analysis 
and overrides the default ordering of variables described for input argument x. 
Columns are numbered 0 to x_col_dim_1. To avoid errors, always specify 
the keyword IMSLS_X_COL_DIM when using this keyword. 

Argument iclass is an index vector of length n_class containing the 
column numbers of x that correspond to classification variables. 

Argument icontinuous is an index vector of length n_continuous 
containing the column numbers of x that correspond to continuous variables. 

Argument iy indicates the column of x which contains the independent 
variable.  

IMSLS_EPS, float eps   (Input) 
Argument eps is the convergence criterion. Convergence is assumed when 
the maximum relative change in any coefficient estimate is less than eps from 
one iteration to the next or when the relative change in the log-likelihood, 
criterion, from one iteration to the next is less than eps / 100.0. 
Default: eps = 0.001 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations. Use max_iterations = 0 to compute the 
Hessian, stored in cov, and the Newton step, stored in last_step, at the initial 
estimates (The initial estimates must be input. Use keyword 
IMSLS_INITIAL_EST_INPUT). 
Default: max_iterations = 30 

IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT, 

By default, or if IMSLS_INTERCEPT is specified, the intercept is 
automatically included in the model. If IMSLS_NO_INTERCEPT is specified, 
there is no intercept in the model (unless otherwise provided for by the user). 

IMSLS_EFFECTS, int n_effects, int n_var_effects[], 
int indices_effects[]   (Input) 
Variable n_effects is the number of effects (sources of variation) in the 
model. Variable n_var_effects is an array of length n_effects 
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containing the number of variables associated with each effect in the model. 
Argument indices_effects is an index array of length 
n_var_effects [0] + n_var_effects [1] +  …
+ n_var_effects [n_effects − 1]. The first n_var_effects [0] 
elements give the column numbers of x for each variable in the first effect. 
The next n_var_effects [1] elements give the column numbers for each 
variable in the second effect. The last n_var_effects [n_effects − 1] 
elements give the column  
numbers for each variable in the last effect. 

IMSLS_INITIAL_EST_INTERNAL, or 
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[]   (Input) 

By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted linear 
regression is used to obtain initial estimates. If IMSLS_INITIAL_EST_INPUT 
is specified, then the n_coef_input elements of estimates contain initial 
estimates of the parameters (which requires that the user know the number of 
coefficients in the model prior to the call to imsls_f_categorical_glm 
which can be obtained by calling imsls_f_regressors_for_glm. 

IMSLS_MAX_CLASS, int max_class   (Input) 
An upper bound on the sum of the number of distinct values taken on by each 
classification variable. 
Default: max_class = n_observations × n_class 

IMSLS_CLASS_INFO, int **n_class_values, float **class_values   (Output) 
Argument n_class_values the address of a pointer to the internally 
allocated array of length n_class containing the number of values taken by 
each classification variable; the i-th classification variable has 
n_class_values [i] distinct values. Argument class_values is the 
address of a pointer to the internally allocated array of length 

[ ]
1

0i
i

−

=
∑

n_class

n_class_values
  

containing the distinct values of the classification variables in ascending 
order. The first n_class_values [0] elements of class_values contain 
the values for the first classification variables, the next n_class_values [1] 
elements contain the values for the second classification variable, etc.  

IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[]   
(Output) 
Storage for arrays n_class_values and class_values is provided by the 
user. See IMSLS_CLASS_INFO. 

IMSLS_COEF_STAT, float **coef_statistics   (Output) 
Address of a pointer to an internally allocated array of size 
n_coefficients × 4 containing the parameter estimates and associated 
statistics, where n_coefficients can be computed by calling 
imsls_regressors_for_glm.  
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Column Statistic 
0 Coefficient Estimate. 
1 Estimated standard deviation of the estimated coefficient. 
2 Asymptotic normal score for testing that the coefficient is zero. 
3 The p-value associated with the normal score in column 2. 

IMSLS_COEF_STAT_USER, float coef_statistics[]   (Output) 
Storage for array coef_statistics is provided by the user. See 
IMSLS_COEF_STAT. 

IMSLS_CRITERION, float *criterion   (Output) 
Optimized criterion. The criterion to be maximized is a constant plus the log-
likelihood. 

IMSLS_COV, float **cov   (Output) 
Address of a pointer to the internally allocated array of size 
n_coefficients × n_coefficients containing the estimated asymptotic 
covariance matrix of the coefficients. For max_iterations = 0, this is the 
Hessian computed at the initial parameter estimates, where n_coefficients 
can be computed by calling imsls_regressors_for_glm. 

IMSLS_COV_USER, float cov[]   (Ouput) 
Storage for array cov is provided by the user. See IMSLS_COV above. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to the internally allocated array containing the means of 
the design variables. The array is of length n_coefficients if 
IMSLS_NO_INTERCEPT is specified, and of length n_coefficients − 1 
otherwise, where n_coefficients can be computed by calling 
imsls_regressors_for_glm. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_CASE_ANALYSIS, float **case_analysis   (Output) 
Address of a pointer to the internally allocated array of size 
n_observations × 5 containing the case analysis. 

Column Statistic 
0 Predicted mean for the observation if model = 0. Otherwise, 

contains the probability of success on a single trial. 
1 The residual. 
2 The estimated standard error of the residual. 
3 The estimated influence of the observation. 
4 The standardized residual. 

Case statistics are computed for all observations except where missing values 
prevent their computation.  
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IMSLS_CASE_ANALYSIS_USER, float case_analysis[]   (Output) 
Storage for array case_analysis is provided by the user. See 
IMSLS_CASE_ANALYSIS. 

IMSLS_LAST_STEP, float **last_step   (Output) 
Address of a pointer to the internally allocated array of length 
n_coefficients containing the last parameter updates (excluding step 
halvings). For max_iterations = 0, last_step contains the inverse of the 
Hessian times the gradient vector, all computed at the initial parameter 
estimates. 

IMSLS_LAST_STEP_USER, float last_step[]   (Output) 
Storage for array last_step is provided by the user. See 
IMSLS_LAST_STEP. 

IMSLS_OBS_STATUS, int **obs_status   (Output) 
Address of a pointer to the internally allocated array of length 
n_observations indicating which observations are included in the extended 
likelihood. 

Obs_status [i] Status of observation 
0 Observation i is in the likelihood 
1 Observation i cannot be in the likelihood because it 

contains at least one missing value in x. 
2 Observation i is not in the likelihood. Its estimated 

parameter is infinite. 

IMSLS_OBS_STATUS_USER, int obs_status[]   (Output) 
Storage for array obs_status is provided by the user. See 
IMSLS_OBS_STATUS. 

IMSLS_N_ROWS_MISSING, int *n_rows_missing   (Output) 
Number of rows of data that contain missing values in one or more of the 
following arrays or columns of x; ipar, iy, ifrq, ifix, iclass, 
icontinuous, or indices_effects. 

Remarks 

1. Dummy variables are generated for the classification variables as follows: An 
ascending list of all distinct values of each classification variable is obtained and 
stored in class_values. Dummy variables are then generated for each but the 
last of these distinct values. Each dummy variable is zero unless the classification 
variable equals the list value corresponding to the dummy variable, in which case 
the dummy variable is one. See keyword IMSLS_LEAVE_OUT_LAST for optional 
argument IMSLS_DUMMY in routine imsls_f_regressors_for_glm (Chapter 
2, “Regression”). 

2. The “product” of a classification variable with a covariate yields dummy 
variables equal to the product of the covariate with each of the dummy 
variables associated with the classification variable. 
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3. The “product” of two classification variables yields dummy variables in the 
usual manner. Each dummy variable associated with the first classification 
variable multiplies each dummy variable associated with the second 
classification variable. The resulting dummy variables are such that the index 
of the second classification variable varies fastest. 

Description 
Function imsls_f_categorical_glm uses iteratively reweighted least squares to 
compute (extended) maximum likelihood estimates in some generalized linear models 
involving categorized data. One of several models, including the probit, logistic, 
Poisson, logarithmic, and negative binomial models, may be fit. 
Note that each row vector in the data matrix can represent a single observation; or, 
through the use of optional argument IMSLS_X_COL_FREQUENCIES, each row can 
represent several observations. Also note that classification variables and their products 
are easily incorporated into the models via the usual regression-type specifications. 
The models available in imsls_f_categorical_glm are: 
 

Model PDF of the Response 
Variable 

Parameterization 

0 f (y) = (λy exp (−λ) ) / y! λ = N × exp (ω + η) 

1 
( ) ( )
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θ = Φ (ω + η) 

5 
( ) ( )1 N yyNf y y θ θ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 
 
θ = 1 − exp (−exp (ω + η) ) 

Here, Φ denotes the cumulative normal distribution, N and S are known distribution 
parameters specified for each observation via the optional argument 
IMSLS_X_COL_DIST_PARAMETER, and ω is an optional fixed parameter of the linear 
response, γi, specified for each observation. (If IMSLS_X_COL_FIXED_PARAMETER is not 
specified, then ω is taken to be 0.) Since the log-log model (model = 5) probabilities are 
not symmetric with respect to 0.5, quantitatively, as well as qualitatively, different models 
result when the definitions of “success” and “failure” are interchanged in this distribution. 
In this model and all other models involving θ, θ is taken to be the probability of 
a“success.” 
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Computational Details 
The computations proceed as follows: 

1. The input parameters are checked for consistency and validity. 

2. Estimates of the means of the “independent” or design variables are 
computed. The frequency or the observation in all but binomial distribution 
models is taken from vector frequencies. In binomial distribution models, the 
frequency is taken as the product of n = parameter [i] and frequencies [i]. 
Means are computed as 

i i

i

f x
x

f
= ∑

∑  

3.     By default, and when IMSLS_INITIAL_EST_INTERNAL is specified, initial 
estimates of the coefficients are obtained (based upon the observation 
intervals) as multiple regression estimates relating transformed observation 
probabilities to the observation design vector. For example, in the binomial 
distribution models, θ may be estimated as  

[ ] [ ]ˆ i iθ = y parameter
 

and, when model = 3, the linear relationship is given by  

( )( )ˆ ˆln / 1 Xθ θ β− ≈
 

while if model = 4, Φ-1 (θ) = Xβ. When computing initial estimates, standard 
modifications are made to prevent illegal operations such as division by zero. 
Regression estimates are obtained at this point, as well as later, by use of 
function imsls_f_regression (Chapter 2, “Regression”). 

4. Newton-Raphson iteration for the maximum likelihood estimates is 
implemented via iteratively re-weighted least squares. Let 

( )T
ix βΨ

 

denote the log of the probability of the i-th observation for coefficients β. In 
the least-squares model, the weight of the i-th observation is taken as the 
absolute value of the second derivative of 

( )T
ix βΨ

 

with respect to 
T

i ixγ β=
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(times the frequency of the observation), and the dependent variable is taken 
as the first derivative Ψ with respect to γi, divided by the square root of the 
weight times the frequency. The Newton step is given by 

( ) ( )1"( )T
i i i i ix x x−Ψ Ψ′Δβ = γ γ∑ ∑  

where all derivatives are evaluated at the current estimate of γ and 
βn+1 = β − Δβ. This step is computed as the estimated regression coefficients 
in the least-squares model. Step halving is used when necessary to ensure a 
decrease in the criterion. 

5. Convergence is assumed when the maximum relative change in any 
coefficient update from one iteration to the next is less than eps or when the 
relative change in the log-likelihood from one iteration to the next is less than 
eps / 100. Convergence is also assumed after maxit iterations or when step 
halving leads to a step size of less than 0.0001 with no increase in the log-
likelihood. 

6. Residuals are computed according to methods discussed by Pregibon (1981). 
Let li (γi) denote the log-likelihood of the i-th observation evaluated at γi. 
Then, the standardized residual is computed as 

( )
( )
ˆ

ˆ
i i

i

i i

l
r

l

γ

γ

′
=

′  

where 

îγ
 

is the value of γi when evaluated at the optimal  

β̂
 

The denominator of this expression is used as the “standard error of the 
residual” while the numerator is “raw” residual. Following Cook and 
Weisberg (1982), the influence of the i-th observation is assumed to be 

( ) ( ) ( )1ˆ ˆ ˆT
i i i il l lγ γ γ−′ ′′ ′

 

This quantity is a one-step approximation to the change in the estimates when 
the i-th observation is deleted. Here, the partial derivatives are with respect to 
β. 

Programming Notes 

1. Indicator (dummy) variables are created for the classification variables using 
function imsls_f_regressors_for_glm  
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(see Chapter 2, “Regression”) using keyword IMSLS_LEAVE_OUT_LAST as 
the argument to the IMSLS_DUMMY optional argument. 

2. To enhance precision, “centering” of covariates is performed if the model has 
an intercept and n_observations − n_rows_missing > 1. In doing so, 
the sample means of the design variables are subracted from each observation 
prior to its inclusion in the model. On convergence, the intercept, its variance, 
and its covariance with the remaining estimates are transformed to the 
uncentered estimate values. 

3. Two methods for specifying a binomial distribution model are possible. In the 
first method, frequencies contains the frequency of the observation while y is 
0 or 1 depending upon whether the observation is a success or failure. In this 
case, N = parameter [i] is always 1. The model is treated as repeated Bernoulli 
trials, and interval observations are not possible. A second method for 
specifying binomial models is to use y to represent the number of successes in 
parameter [i] trials. In this case, frequencies will usually be 1. 

Examples  

Example 1 
The first example is from Prentice (1976) and involves the mortality of beetles after 
five hours exposure to eight different concentrations of carbon disulphide. The table 
below lists the number of beetles exposed (N) to each concentration level of carbon 
disulphide (x, given as log dosage) and the number of deaths which result (y). The data 
is given as follows: 

Log Dosage Number of 
Beetles Exposed 

Number of Deaths 

1.690 59 6 
1.724 60 13 
1.755 62 18 
1.784 56 28 
1.811 63 52 
1.836 59 53 
1.861 62 61 
1.883 60 60 

The number of deaths at each concentration level are fitted as a binomial response 
using logit (model = 3), probit (model = 4), and log-log (model = 5) models. Note that 
the log-log model yields a smaller absolute log likelihood (14.81) than the logit model 
(18.78) or the probit model (18.23). This is to be expected since the response curve of 
the log-log model has an asymmetric appearance, but both the logit and probit models 
are symmetric about θ = 0.5. 
 

#include <imsls.h> 
#include <stdio.h> 
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main () 
 
{ 
 
    static float x[8][3] = {  1.69,  6, 59, 
                             1.724, 13, 60,   
                             1.755, 18, 62,  
                             1.784, 28, 56,  
                             1.811, 52, 63,   
                             1.836, 53, 59,  
                             1.861, 61, 62, 
                             1.883, 60, 60}; 
 
    float *coef_statistics, criterion; 
    int  n_obs=8, n_class=0, n_continuous=1; 
    int n_coef, model=3, ipar=2; 
    char *fmt = "%12.4f"; 
    static char *clabels[] = {"", "coefficients", "s.e", "z", "p"}; 
 
    n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous, 
             model, &x[0][0],  
             IMSLS_X_COL_DIST_PARAMETER, ipar, 
             IMSLS_COEF_STAT, &coef_statistics,  
             IMSLS_CRITERION, &criterion, 0); 
 
    imsls_f_write_matrix ("Coefficient statistics for model 3", n_coef, 4, 
                      coef_statistics, 
             IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS, 
                      clabels,0); 
     printf ("\nLog likelihood    %f \n", criterion); 
 
    model=4; 
   
    n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous, 
             model, &x[0][0],  
             IMSLS_X_COL_DIST_PARAMETER, ipar, 
             IMSLS_COEF_STAT, &coef_statistics,  
             IMSLS_CRITERION, &criterion, 0); 
 
 
    imsls_f_write_matrix ("Coefficient statistics for model 4", n_coef, 4, 
                     coef_statistics, 
             IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS, 
                     clabels,0); 
     printf ("\nLog likelihood    %f \n", criterion); 
 
    model=5; 
   
    n_coef = imsls_f_categorical_glm (n_obs, n_class, n_continuous, 
             model, &x[0][0],  
             IMSLS_X_COL_DIST_PARAMETER, ipar, 
             IMSLS_COEF_STAT, &coef_statistics,  
             IMSLS_CRITERION, &criterion, 0); 
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    imsls_f_write_matrix ("Coefficient statistics for model 5", n_coef, 4, 
                     coef_statistics, 
             IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS, IMSLS_COL_LABELS, 
                     clabels,0); 
     printf ("\nLog likelihood    %f \n", criterion); 
 
} 

Output 
 
 

          Coefficient statistics for model 3 
coefficients           s.e             z             p 
    -60.7568        5.1876      -11.7118        0.0000 
     34.2985        2.9164       11.7607        0.0000 
 
Log likelihood    -18.778181 
 
          Coefficient statistics for model 4 
coefficients           s.e             z             p 
    -34.9441        2.6412      -13.2305        0.0000 
     19.7367        1.4852       13.2888        0.0000 
 
Log likelihood    -18.232355 
 
          Coefficient statistics for model 5 
coefficients           s.e             z             p 
    -39.6133        3.2489      -12.1930        0.0000 
     22.0685        1.8047       12.2284        0.0000 
 
Log likelihood    -14.807850 

Example 2 
Consider the use of a loglinear model to analyze survival-time data. Laird and Oliver 
(1981) investigate patient survival post heart valve replacement surgery. Surveilance 
after surgery of the 109 patients included in the study ranged from 3 to 97 months. All 
patients were classified by heart valve type (aortic or mitral) and by age (less than 55 
years or at least 55 years). The data could be considered as a three-way contingency 
table where patients are classified by valve type, age, and survival (yes or no). 
However, it would be inappropriate to analyze this data using the standard 
methodology associated with contingency tables; since, this methodology ignores 
survival time. 
Consider a variable, say exposure time (Eij), that is defined as the sum of the length of 
times patients of each cross-classification are at risk. The length of time for a patient 
that dies is the number of months from surgery until death and for a survivor, the 
length of time is the number of months from surgery until the study ends or the patient 
withdraws from the study. Now we can model the effect of  
A = age and V = valve type on the expected number of deaths conditional on exposure 
time. Thus, for the data (shown in the table below), assume the number of deaths are 
independent Poisson random variables with means mij and fit the following model, 
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where u is the overall mean, 
A

iλ
 

is the effect of age, and 
V
jλ

 

is the effect of the valve type. 

  Heart Valve Type 
Age  Aortic (0) Mitral (1) 

< 55 years (Age = 0) Deaths        4        1 
 Exposure 1259 2082 

≥ 55 years (Age = 1) Deaths         7        9 

 Exposure 1417 1647 

From the coefficient statistics table of the output, note that the risk is estimated to be 
e1.22 = 3.39 times higher for older patients in the study. This increase in risk is 
significant (p = 0.02). However, the decrease in risk for the mitral valve patients is 
estimated to be e-0.33 = 0.72 times that of the aortic valve patients and this risk is not 
significant (p = 0.45). 
 

#include <imsls.h> 
 
main () 
{ 
    int   nobs = 4; 
    int   n_class = 2; 
    int   n_cont = 0; 
    int   model = 0; 
    float x[16] = { 
        4, 1259, 0, 0, 
        1, 2082, 0, 1, 
        7, 1417, 1, 0, 
        9, 1647, 1, 1 
    }; 
    int iclass[2] = {2, 3}; 
    int icont[1] = {-1}; 
    int   n_coef; 
    float *coef; 
 
    char  *clabels[5] = {"", "coefficient", "std error", "z-statistic", "p-  
                    value"}; 
    char  *fmt = "%10.6W"; 
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    n_coef = imsls_f_categorical_glm(nobs, n_class, n_cont, model, x, 
       IMSLS_COEF_STAT, &coef, 
       IMSLS_X_COL_VARIABLES, iclass, icont, 0, 
       IMSLS_X_COL_DIST_PARAMETER, 1, 
       0); 
 
        imsls_f_write_matrix("Coefficient Statistics", n_coef, 4, coef, 
        IMSLS_COL_LABELS, clabels, IMSLS_ROW_NUMBER_ZERO, 
        IMSLS_WRITE_FORMAT, fmt, 0); 
} 

 
 

Output 
 
 
              Coefficient Statistics 
   coefficient   std error  z-statistic     p-value 
0      -5.4210      0.3456     -15.6837      0.0000 
1      -1.2209      0.5138      -2.3763      0.0177 
2       0.3299      0.4382       0.7528      0.4517 

 

Warning Errors 

IMSLS_TOO_MANY_HALVINGS Too many step halvings. Convergence is assumed. 

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is assumed. 

Fatal Errors 

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified and 
“n_coef_input” = #. The model specified requires 
# coefficients. 

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the 
classification variables exceeds  
“max_class” = #. 

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of distinct 
values for each classification variable must be greater 
than one. 

IMSLS_NMAX_EXCEEDED The number of observations to be deleted has 
exceeded “lp_max” = #. Rerun with a different 
model or increase the workspace. 
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Chapter 6: Nonparametric Statistics 

Routines 
One sample tests  - Nonparametric Statistics 

Sign test sign_test 438 
Wilcoxon rank sum test wilcoxon_sign_rank 441 
Noehter’s test for cyclical trend noether_cyclical_trend 444 
Cox and Stuarts’ sign test for trends in location  
and dispersion  cox_stuart_trends_test 448 
Tie statistics tie_statistics 453 

Two or more samples    
Wilcoxon’s rank sum test wilcoxon_rank_sum 455 
Kruskal-Wallis test kruskal_wallis_test 459 
Friedman’s test friedmans_test 462 
Cochran's Q test cochran_q_test 466 
K-sample trends test k_trends_test 469 

Usage Notes 
Much of what is considered nonparametrik_trends_testc statistics is included in other 
chapters. Topics of possible interest in other chapters are: nonparametric measures of 
location and scale (Chapter 1, “Basic Statistics”), nonparametric measures in a 
contingency table (Chapter 5, “Categorical and Discrete Data Analysis”), measures of 
correlation in a contingency table (Chapter 3, “Correlation and Covariance”), and tests 
of goodness of fit and randomness (Chapter 7, “Tests of Goodness of Fit and 
Randomness”). 

Missing Values 
Most routines described in this chapter automatically handle missing values (NaN, 
“Not a Number”; see the introduction of this manual). 

Tied Observations 
Many of the routines described in this chapter contain an argument IMSLS_FUZZ in the 
input. Observations that are within fuzz of each other in absolute value are said to be 
tied. Moreover, in some routines, an observation within fuzz of some value is said to 
be equal to that value. In routine imsls_f_wilcoxon_sign_rank, for example, such 
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observations are eliminated from the analysis. If fuzz = 0.0, observations must be 
identically equal before they are considered to be tied. Other positive values of fuzz 
allow for numerical imprecision or roundoff error. 

sign_test 
Performs a sign test. 

Synopsis 
#include <imsls.h> 
float imsls_f_sign_test (int n_observations, float x[], ..., 0) 
The type double function is imsls_d_sign_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of length n_observations containing the input data. 

Return Value 
Binomial probability of n_positive_deviations or more positive differences in 
n_observations − n_zero_deviation trials. Call this value probability. If no 
option is chosen, the null hypothesis is that the median equals 0.0. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_sign_test (int n_observations, float x[], 

IMSLS_PERCENTAGE, float percentage, 
IMSLS_PERCENTILE, float percentile, 
IMSLS_N_POSITIVE_DEVIATIONS,  

int *n_positive_deviations, 
IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations, 
0) 

Optional Arguments 

IMSLS_PERCENTAGE, float percentage   (Input) 
Value in the range (0, 1). Argument percentile is the  
100 × percentage percentile of the population.  
Default: percentage = 0.5 

IMSLS_PERCENTILE, float percentile   (Input) 
Hypothesized percentile of the population from which x was drawn. 
Default: percentile = 0.0 
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IMSLS_N_POSITIVE_DEVIATIONS, int *n_positive_deviations   (Output) 
Number of positive differences x[j − 1] − percentile for 
j = 1, 2, …, n_observations. 

IMSLS_N_ZERO_DEVIATIONS, int *n_zero_deviations   (Output) 
Number of zero differences (ties) x[j − 1] − percentile for  
j = 1, 2, …, n_observations. 

Description 
Function imsls_f_sign_test tests hypotheses about the proportion p of a 
population that lies below a value q, where p corresponds to argument percentage 
and q corresponds to argument percentile. In continuous distributions, this can be a 
test that q is the 100 p-th percentile of the population from which x was obtained. To 
carry out testing, imsls_f_sign_test tallies the number of values above q in 
n_positive_deviations. The binomial probability of n_positive_deviations 
or more values above q is then computed using the proportion p and the sample size 
n_observations (adjusted for the missing observations and ties). 
Hypothesis testing is performed as follows for the usual null and alternative 
hypotheses: 

• H0: Pr(x ≤ q) ≥ p (the p-th quantile is at least q) 
H1: Pr(x ≤ q) < p 
Reject H0 if probability is less than or equal to the significance level 

• H0: Pr(x ≤ q) ≤ p (the p-th quantile is at least q) 
H1: Pr(x ≤ q) > p 
Reject H0 if probability is greater than or equal to 1 minus the significance 
level 

• H0: Pr (x = q) = p (the p-th quantile is q) 
H1: Pr((x ≤ q) < p) or Pr((x ≤ q) > p) 
Reject H0 if probability is less than or equal to half the significance level or 
greater than or equal to 1 minus half the significance level 

The assumptions are as follows: 

1.    They are independent and identically distributed. 

2.     Measurement scale is at least ordinal; i.e., an ordering less than, greater 
than, and equal to exists in the observations. 

Many uses for the sign test are possible with various values of p and q. For example, to 
perform a matched sample test that the difference of the medians of y and z is 0.0, let 
p = 0.5, q = 0.0, and xi = yi − zi in matched observations y and z. To test that the 
median difference is c, let q = c. 

Examples  

Example 1 
This example tests the hypothesis that at least 50 percent of a population is negative. 
Because 0.18 < 0.95, the null hypothesis at the 5-percent level of significance is not 
rejected. 
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#include <imsls.h> 
 
void main () 
{ 
    int         n_observations = 19; 
    float       probability; 
    float       x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0,  
          -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0,  
          45.0, -33.0, -45.0, -12.0}; 
 
    probability = imsls_f_sign_test(n_observations, x, 0); 
   
    printf("probability = %10.6f\n", probability); 
} 

Output 
probability =   0.179642 

Example 2 
This example tests the null hypothesis that at least 75 percent of a population is 
negative. Because 0.923 < 0.95, the null hypothesis at the 5-percent level of 
significance is rejected. 

#include <imsls.h> 
 
void main () 
{ 
    int         n_observations = 19; 
    int         n_positive_deviations, n_zero_deviations; 
    float       probability; 
    float       percentage = 0.75; 
    float       percentile = 0.0; 
    float       x[19] = {92.0, 139.0, -6.0, 10.0, 81.0, -11.0, 45.0, 
          -25.0, -4.0, 22.0, 2.0, 41.0, 13.0, 8.0, 33.0, 
          45.0, -33.0, -45.0, -12.0}; 
 
 
    probability = imsls_f_sign_test(n_observations, x, IMSLS_PERCENTAGE, 
            percentage, IMSLS_PERCENTILE, percentile,  
            IMSLS_N_POSITIVE_DEVIATIONS, &n_positive_deviations, 
            IMSLS_N_ZERO_DEVIATIONS, &n_zero_deviations, 0); 
 
    printf("probability = %10.6f.\n", probability); 
    printf("Number of positive deviations is %d.\n",  
           n_positive_deviations); 
    printf("Number of ties is %d.\n", n_zero_deviations); 
} 

Output 
probability =   0.922543. 
Number of positive deviations is 12. 
Number of ties is 0. 
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wilcoxon_sign_rank 
Performs a Wilcoxon signed rank test. 

Synopsis 
#include <imsls.h> 
float *imsls_f_wilcoxon_sign_rank (int n_observations,  

float x[], ..., 0) 
The type double function is imsls_d_wilcoxon_sign_rank. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x.  

float x[]   (Input) 
Array of length n_observations containing the data. 

Return Value 
Pointer to an array of length two containing the values described below.  
The asymptotic probability of not exceeding the standardized (to an asymptotic 
variance of 1.0) minimum of (W+, W-) using method 1 under the null hypothesis that 
the distribution is symmetric about 0.0. 
And, the asymptotic probability of not exceeding the standardized (to an asymptotic 
variance of 1.0) minimum of (W+, W-) using method 2 under the null hypothesis that 
the distribution is symmetric about 0.0. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float * imsls_f_wilcoxon_sign_rank (int n_observations,  

float  x[], 
 IMSLS_FUZZ, float fuzz, 

IMSLS_STAT, float **stat, 
IMSLS_STAT_USER, float stat[], 
IMSLS_N_MISSING, float *n_missing, 
IMSLS_RETURN_USER, float prob[], 
0) 

Optional Arguments 

IMSLS_FUZZ, float fuzz   (Input) 
Nonnegative constant used to determine ties in computing ranks in the 
combined samples. A tie is declared when two observations in the combined 
sample are within fuzz of each other. 
Default value for fuzz is 0.0. 



 

 
 

442 • wilcoxon_sign_rank IMSL C Stat Library 

 

 

 

IMSLS_STAT, float **stat   (Output) 
Address of a pointer to an internally allocated array of length  
10 containing the following statistics:  

Row Statistics 
0 The positive rank sum, W+, using method  

1 The absolute value of the negative rank sum, W-, using method 1. 

2 The standardized (to anasymptotic variance of 1.0) minimum of 
(W+, W-) using method  

3 The asymptotic probability of not exceeding stat(2) under the 
null hypothesis that the distribution is symmetric about 0.0. 

4 The positive rank sum, W+, using method 2. 

5 The absolute value of the negative rank sum, W-, using method 2. 

6 The standardized (to an asymptotic variance of 1.0) minimum of 
(W+, W-) using method 2. 

7 The asymptotic probability of not exceeding stat(6) under the 
null hypothesis that the distribution is symmetric about 0.0. 

8 The number of zero observations.  

9 The total number of observations that are tied, and that are not 
within fuzz of zero. 

IMSLS_STAT_USER, float stat[]   (Output) 
Storage for array stat is provided by the user.  
See IMSLS_STAT. 

IMSLS_N_MISSING, float *n_missing, (Output) 
Number of missing values in y. 

IMSLS_RETURN_USER, float prob[],   (Output) 
User allocated storage for return values.   
See Return Value.                      

Description 
Function imsls_f_wilcoxon_sign_rank performs a Wilcoxon signed rank  
test of symmetry about zero. In one sample, this test can be viewed as a test  
that the population median is zero. In matched samples, a test that the medians  
of the two populations are equal can be computed by first computing difference scores. 
These difference scores would then be used as input to 
imsls_f_wilcoxon_sign_rank. A general reference for the methods used is 
Conover (1980). 
Function imsls_f_wilcoxon_sign_rank computes statistics for two methods for 
handling zero and tied observations. In the first method, observations within fuzz of 
zero are not counted, and the average rank of tied observations is used. (Observations 
within fuzz of each other are said to be tied.) In the second method, observations 
within fuzz of zero are randomly assigned a positive or negative sign, and the ranks 
of tied observations are randomly permuted. 
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The W+ and W− statistics are computed as the sums of the ranks of the positive 
observations and the sum of the ranks of the negative observations, respectively. 
Asymptotic probabilities are computed using standard methods (see, e.g., Conover 
1980, page 282). 
The W+ and W− statistics may be used to test the following hypotheses about the 
median, M. In deciding whether to reject the null hypothesis, use the bracketed statistic 
if method 2 for handling ties is preferred. Possible null hypotheses and alternatives are 
given as follows: 
1. H0 : M ≤ 0        H1 : M > 0 

Reject if stat[0] [or stat[4]] is too large. 

2. H0 : M ≥ 0        H1 : M < 0  
Reject if stat[1] [or stat[5]] is too large. 

3. H0 : M = 0        H1 : M ≠ 0  
Reject if stat[2][or stat[6]] is too small. Alternatively, if an asymptotic test 
is desired, reject if 2 * stat[3] [or 2 * stat[7]] is less than the significance 
level. 

Tabled values of the test statistic can be found in the references. If possible, tabled 
values should be used. If the number of nonzero observations is too large, then the 
asymptotic probabilities computed by imsls_f_wilcoxon_sign_rank can be used. 
The assumptions required for the hypothesis tests are as follows:  

1. The distribution of each Xi is symmetric. 

2. The Xi are mutually independent. 

3. All Xi’s have the same median. 

4. An ordering of the observations exists (i.e., X1 > X2 and X2 > X3 implies that 
X1 > X3). 

If other assumptions are made, related hypotheses that are more (or less) restrictive can 
be tested. 

Example 
This example illustrates the application of the Wilcoxon signed rank test to a  
test on a difference of two matched samples (matched pairs) {X1 = 223, 216, 211, 212, 
209, 205, 201; and X2 = 208, 205, 202, 207, 206, 204, 203}. A test that the median 
difference is 10.0 (rather than 0.0) is performed by subtracting 10.0 from each of the 
differences prior to calling wilcoxon_sign_rank. As can be seen from the output, 
the null hypothesis is rejected. The warning error will always be printed when the 
number of observations is 50 or less unless printing is turned off for warning errors.  

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 
float *stat=NULL, *result=NULL; 
int nobs = 7, nmiss; 
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float fuzz = .0001; 
float x[] = {-25., -21., -19., -15., -13., -11., -8.}; 
result = imsls_f_wilcoxon_sign_rank(nobs, x,   
                                    IMSLS_N_MISSING, &nmiss, 
                                    IMSLS_FUZZ, fuzz, 
                                    IMSLS_STAT, &stat, 
                                    0); 
printf("Statistic\t\t\tMethod 1\tMethod 2\n"); 
printf("W+\t\t\t\t %3.0f\t\t %3.0f\n", stat[0], stat[4]); 
printf("W-\t\t\t\t %3.0f\t\t %3.0f\n", stat[1], stat[5]); 
printf("Standardized Minimum\t\t%6.4f\t\t%6.4f\n", stat[2], stat[6]); 
printf("p-value\t\t\t\t %6.4f\t\t %6.4f\n\n", stat[3], stat[7]); 
printf("Number of zeros\t\t\t%3.0f\n", stat[8]); 
printf("Number of ties\t\t\t%3.0f\n", stat[9]); 
printf("Number of missing\t\t  %d\n", nmiss);        

} 

Output 
 
 
*** WARNING  ERROR 4 from imsls_f_wilcoxon_sign_rank.  NOBS = 7.  The number   
***          of observations, NOBS, is less than 50, and exact  
***          tables should be referenced for probabilities. 
 
Statistic                    Method 1     Method 2 
W+.......................       0           0 
W-.......................      28          28 
Standardized Minimum.....  -2.3664      -2.3664 
p-value..................   0.0090       0.0090 
 
Number of zeros..........       0 
Number of ties...........       0 
Number of missing........       0 

noether_cyclical_trend 
Performs the Noether test for cyclical trend. 

Synopsis 
#include <imsls.h> 
float *imsls_f_noether_cyclical_trend (int n_observations, float x[], 

..., 0) 
The type double function is imsls_d_noether_cyclical_trend. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x. n_observations must be greater than or 
equal to 3.  
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float x[]   (Input) 
Array of length n_observations containing the data in chronological order. 

Return Value 
Array, p,  of length 3 containing the probabilities of stat[1] or more, stat[2] or 
more, or stat[3] or more monotonic sequences.  
If stat[0] is less than 1, p[0] is set to NaN (not a number). 

Synopsis with Optional Arguments 
#include <imsls.h>  
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float *imsls_f_noether_cyclical_trend ((int n_observations, float x[], 
 IMSLS_FUZZ, float fuzz, 
 IMSLS_STAT, int **stat, 
 IMSLS_STAT_USER, int stat[],               

IMSLS_N_MISSING, int *n_missing, 
 IMSLS_RETURN_USER, float p[], 
 0) 

Optional Arguments 

IMSLS_FUZZ, float fuzz (Input) 
Nonnegative constant used to determine ties in computing ranks in the 
combined samples. A tie is declared when two observations in the combined 
sample are within fuzz of each other. 
Default value for fuzz is 0.0.  

IMSLS_STAT, int **stat   (Output) 
Address of a pointer to an internally allocated array of length 6 containing the 
following statistics:  

Row Statistics 
Stat[0] The number of consecutive sequences of length three used to detect 

cyclical trend when tying middle elements are eliminated from the 
sequence, and the next consecutive observation is used. 

Stat[1]  The number of monotonic sequences of length three in the set defined by 
stat[0]. 

Stat[2] The number of nonmonotonic sequences where tied threesomes are 
counted as nonmonotonic. 

Stat[3]  The number of monotonic sequences where tied threesomes are counted as 
monotonic. 

Stat[4] The number of middle observations eliminated because they were tied in 
forming the stat[0] sequences. 

Stat[5] The number of tied sequences found in forming the stat[2] and 
stat[3] sequences. A sequence is called a tied sequence if the middle 
element is tied with either of the two other elements. 

IMSLS_STAT_USER, int stat[]   (Output) 
Storage for array stat is provided by the user.  
See IMSLS_STAT. 

IMSLS_N_MISSING, int *n_missing   (Output) 
Number of missing values in X. 

IMSLS_RETURN_USER, float p[]   (Input) 
User allocated array of length 3 containing the return values.    

Description 

Routine imsls_f_noether_cyclical_trend performs the Noether test for cyclical 
trend (Noether 1956) for a sequence of measurements. In this test, the observations are 
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first divided into sets of three consecutive observations. Each set is then inspected, and 
if the set is monotonically increasing or decreasing, the count variable is incremented.  
The count variables, stat[1], stat[2], and stat[3], differ in the manner in which 
ties are handled. A tie can occur in a set (of size three) only if the middle element is 
tied with either of the two ending elements. Tied ending elements are not considered. 
In stat[1], tied middle observations are eliminated, and a new set of size 3 is 
obtained by using the next observation in the sample. In stat[2], the original set of 
size three is used, and tied middle observations are counted as nonmonotonic. In 
stat[3], tied middle observations are counted as monotonic.  
The probabilities of occurrence of the counts are obtained from the binomial 
distribution with p = 1/3, where p is the probability that a random sample of size three 
from a continuous distribution is monotonic. The binomial sample size is, of course, 
the number of sequences of size three found (adjusted for ties). 
Hypothesis test: 
H0 : q = Pr(Xi > Xi - 1 > Xi - 2) + Pr(Xi < Xi - 1 < Xi - 2 ) ≤ 1/3      H1 : q > 1/3  
Reject if p[0] (or p[1] or p[2] depending on the method used for handling ties) is 
less than the significance level of the test. 
Assumption: The observations are independent and are from a continuous distribution. 

Example 
A test for cyclical trend in a sequence of 1000 randomly generated observations is 
performed. Because of the sample used, there are no ties and all three test statistics 
yield the same result. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

        float *pvalue=NULL; 

        int nobs = 1000, nmiss, *stat = NULL; 

        float *x = NULL; 

        imsls_random_seed_set(123457); 

        x = imsls_f_random_uniform(nobs, 0); 

        pvalue = imsls_f_noether_cyclical_trend(nobs, x, 

                                          IMSLS_STAT, &stat, 

                                          IMSLS_N_MISSING, &nmiss, 

                                          0); 

        imsls_f_write_matrix("P", 0, 2, pvalue, 0); 

        imsls_i_write_matrix("STAT", 0, 5, stat, 0); 

        printf("\n n missing = %d\n", nmiss); 

} 
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Output 
P 
 0        1        2 
0.6979   0.6979   0.6979 
STAT 
 0     1     2     3     4     5 
333   107   107   107     0     0 
n missing = 0 
 

cox_stuart_trends_test 
Performs the Cox and Stuart sign test for trends in location and dispersion. 

Synopsis 
#include <imsls.h> 
float *imsls_f_cox_stuart_trends_test (int n_observations, float x[], 

..., 0) 
The type double function is imsls_d_ cox_stuart_trends_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x. n_observations must be greater  
than or equal to 3.  

float x[]   (Input) 
Array of length n_observations containing the data in chronological 
order. 

Return Value 

Array, pstat, of length 8 containing the probabilities. The first four elements of 
pstat are computed from two groups of observations.  

I   pstat[I] 

0  Probability of  nstat[0] + nstat[2] or more negative signs  
(ties are considered negative). 

1 Probability of obtaining  nstat[1] or more positive signs (ties are 
considered negative). 

2 Probability of  nstat[0] + nstat[2] or more negative signs (ties are 
considered positive). 

3  Probability of obtaining nstat[1] or more positive signs (ties are considered 
positive). 

The last four elements of pstat are computed from three groups of observations. 
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4  Probability of  nstat[0] + nstat[2] or more negative signs (ties are 
considered negative). 

5  Probability of obtaining  nstat[1] or more positive signs (ties are 
considered negative). 

6  Probability of  nstat[0] + nstat[2] or more negative signs (ties are  
considered positive). 

7  Probability of obtaining  nstat[1] or more positive signs (ties are 
considered positive). 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_cox_stuart_trends_test (int n_observations, float x[], 
 IMSLS_DISPERSION, int k, int ids,                              

IMSLS_FUZZ, float fuzz, 
 IMSLS_STAT, int **nstat, 
 IMSLS_STAT_USER, int nstat[],              
 IMSLS_N_MISSING, int *n_missing, 
 IMSLS_RETURN_USER, float pstat[], 
 0) 

Optional Arguments 

IMSLS_DISPERSION, int k, int ids,  (Input) 
If IMSLS_DISPERSION is called, the Cox and Stuart tests for trends in 
dispersion are computed. Otherwise, as default, the Cox and Stuart tests for 
trends in location are computed. k is the number of consecutive x elements 
to be used to measure dispersion.                                                                                                 
If ids is zero, the range is used as a measure of dispersion.  
Otherwise, the centered sum of squares is used.  

IMSLS_FUZZ, float fuzz   (Input) 
Value used to determine when elements in x are tied.   
If |x[i] – x[j]| is less than or equal to fuzz, x[i] and x[j] are 
said to be tied.  fuzz must be nonnegative. Default value for fuzz is 0.0. 

IMSLS_STAT, int **nstat   (Output) 
Address of a pointer to an internally allocated array of length 8 containing the 
following statistics:  

I  nstat[I] 

0  Number of negative differences (two groups) 

1  Number of positive differences (two groups) 

2  Number of zero differences (two groups) 
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3  Number of differences used to calculate pstat[0] through 
pstat[3] (two groups). 

4  Number of negative differences (three groups) 

5  Number of positive differences (three groups) 

6  Number of zero differences (three groups) 

7  Number of differences used to calculate pstat 
[4] through pstat[7] (three groups). 

IMSLS_STAT_USER, int nstat[]   (Output) 
Storage for array nstat is provided by the user.  
See IMSLS_STAT. 

IMSLS_N_MISSING, int *n_missing   (Output)                                               
Number of missing values in X. 

IMSLS_RETURN_USER, float pstat[]   (Input) 
User allocated array of length 8 containing the return values. 

Description 
Function imsls_f_cox_stuart_trends_test tests for trends in dispersion or 
location in a sequence of random variables depending upon the call of 
IMSLS_DISPERSION. A derivative of the sign test is used  (see Cox and Stuart 1955). 

Location Test 
For the location test (Default) with two groups, the observations are first divided into 
two groups with the middle observation thrown out if there are an odd number of 
observations. Each observation in group one is then compared with the observation in 
group two that has the same lexicographical order. A count is made of the number of 
times a group-one observation is less than (nstat[0]), greater than (nstat[1]), or 
equal to (nstat[2]), its counterpart in group two. Two observations are counted as 
equal if they are within fuzz of one another. 
In the three-group test, the observations are divided into three groups, with the center 
group losing observations if the division is not exact. The first and third groups are 
then compared as in the two-group case, and the counts are stored in nstat[4] 
through nstat[6]. 
Probabilities in pstat are computed using the binomial distribution with sample size 
equal to the number of observations in the first group (nstat[3] or nstat[7]), and 
binomial probability p = 0.5. 

Dispersion Test 
The dispersion tests (when optional argument IMSLS_DISPERSION is called) proceed 
exactly as with the tests for location, but using one of two derived dispersion measures. 
The input value k is used to define n_observations/k groups of consecutive 
observations starting with observation 1. The first k observations define the first group, 
the next k observations define the second group, etc., with the last observations omitted 
if n_observations is not evenly divisible by k. A dispersion score is then computed 



 
 
 
 

 
 

Chapter 6: Nonparametric Statistics cox_stuart_trends_test • 451  

 

 

 

for each group as either the range (ids = 0), or a multiple of the variance (ids ≠ 0) of 
the observations in the group. The dispersion scores form a derived sample. The tests 
proceed on the derived sample as above. 

Ties 
Ties are defined as occurring when a group one observation is within fuzz of its last 
group counterpart. Ties imply that the probability distribution of X is not strictly 
continuous, which means that Pr(X1 > X2) ≠ 0.5 under the null hypothesis of no trend 
(and the assumption of independent identically distributed observations). When ties are 
present, the computed binomial probabilities are not exact, and the hypothesis tests will 
be conservative. 

Hypothesis Tests 
In the following, i indexes an observation from group 1, while j indexes the 
corresponding observation in group 2 (two groups) or group 3 (three groups). 

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5  
H1 : Pr(Xi > Xj) < Pr(Xi < Xj)  
Hypothesis of upward trend. Reject if pstat[2] (or pstat[6])is less than 
the significance level. 

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5  
H1 : Pr(Xi > Xj) > Pr(Xi < Xj) 
Hypothesis of downward trend. Reject if pstat[1] (or pstat[5]) is less 
than the significance level. 

• H0 : Pr(Xi > Xj) = Pr(Xi < Xj) = 0.5  
H1 : Pr(Xi > Xj) ≠ Pr(Xi < Xj)  
Two tailed test. Reject if 2 max(pstat[1], pstat[2]) (or 2 max(pstat[5], 
pstat[6]) is less than the significance level. 

Assumptions 

1. The observations are a random sample; i.e., the observations are 
independently and identically distributed. 

2. The distribution is continuous. 

Example 
This example illustrates both the location and dispersion tests. The data, which are 
taken from Bradley (1968), page 176, give the closing price of AT&T on the New 
York stock exchange for 36 days in 1965. Tests for trends in location (Default), and 
for trends in dispersion (IMSLS_DISPERSION) are performed. Trends in location are 
found. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 
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float *pstat=NULL; 

int nobs = 36, ids = 0, k = 2, nmiss, *stat = NULL; 

float fuzz = 0.001; 

float x[] = {9.5, 9.875, 9.25, 9.5, 9.375, 9.0, 8.75, 8.625, 8.0, 8.25, 
8.25, 8.375, 8.125, 7.875, 7.5, 7.875, 7.875, 7.75,7.75, 7.75, 8.0, 7.5, 
7.5, 7.125, 7.25, 7.25, 7.125, 6.75,6.5, 7.0, 7.0, 6.75, 6.625, 6.625, 
7.125, 7.75}; 

pstat = imsls_f_cox_stuart_trends_test(nobs, x,  

                                    IMSLS_FUZZ, fuzz, 

                                    IMSLS_STAT, &stat, 

                                    IMSLS_N_MISSING, &nmiss, 

                                     0); 

imsls_i_write_matrix("nstat", 1, 8, stat, 0); 

imsls_f_write_matrix("pstat", 1, 8, pstat, 

                     IMSLS_WRITE_FORMAT, "%10.5f", 0); 

printf("n missing = %d\n", nmiss); 

 pstat = imsls_f_cox_stuart_trends_test(nobs, x,   

                                   IMSLS_DISPERSION, k, ids, 

                                   IMSLS_FUZZ, fuzz, 

                                   IMSLS_STAT, &stat, 

                                   IMSLS_N_MISSING, &nmiss, 

                                   0); 

imsls_i_write_matrix("nstat", 0, 7, stat, 0); 

imsls_f_write_matrix("pstat", 0, 7, pstat, 0); 

printf("n missing = %d\n", nmiss); 

} 

Output 
*** WARNING  Error from imsls_cox_stuart_trends_test.  At least one tie is 
detected in X. 
 
            NSTAT 
0    1    2    3    4    5    6    7 
0   17    1   18    0   12    0   12 
 
            PSTAT 
      0             1             2             3             4 
1.00000       0.00007       1.00000       0.00000       1.00000 

 
      5             6             7 
0.00024       1.00000       0.00024 

 n missing = 0 

 
*** WARNING  Error from imsls_cox_stuart_trends_test.  At least one tie is 
detected in X. 
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            NSTAT 
0   1   2   3   4   5   6   7 
4   3   2   9   4   2   0   6 
 
                      PSTAT 
       0             1             2             3             4 
0.253906      0.910156      0.746094      0.500000      0.343750 

       5             6             7 
0.890625      0.343750      0.890625 

 n missing = 0 

 

 

 

tie_statistics 
Compute tie statistics for a sample of observations. 

Synopsis 
#include <imsls.h> 
float *imsls_f_tie_statistics (int n_oservations, float x[], ..., 0) 
The type double function is imsls_d_tie_statistics. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x.  

float x[]   (Input) 
Array of length n_observations containing the observations. 

x must be ordered monotonically increasing with all missing values removed. 

Return Value 
Array of length 4 containing the tie statistics. 
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where tj is the number of ties in the j-th group (rank) of ties, and τ is the number of tie 
groups in the sample. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float * imsls_f_tie_statistics (int n_oservations, float x[], 

IMSLS_FUZZ, float fuzz,               IMSLS_RETURN_USER, 
float ties[],  
0) 

Optional Arguments 

IMSLS_FUZZ, float fuzz, (Input) 
Value used to determine ties. 
Observations i and j are tied if the successive differences  
x[k + 1] – x[k] between observations i and j, inclusive, are all  
less than fuzz. fuzz must be nonnegative.  Default:  fuzz = 0.0 

IMSLS_RETURN_USER,  float ties[],  (Output) 
If specified ties[] returns the tie statistics.  Storage for ties[]  
is provided by the user.   See Return Value. 

Description 
Function imsls_f_tie_statistics computes tie statistics for a monotonically 
increasing sample of observations. “Tie statistics” are statistics that may be used to 
correct a continuous distribution theory nonparametric test for tied observations in the 
data. Observations i and j are tied if the successive differences X(k + 1) − X(k), 
inclusive, are all less than fuzz. Note that if each of the monotonically increasing 
observations is equal to its predecessor plus a constant, if that constant is less than 
fuzz, then all observations are contained in one tie group. For example, if  
fuzz = 0.11, then the following observations are all in one tie group. 

0.0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00 

Example 
We want to compute tie statistics for a sample of length 7. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

        float *ties=NULL; 

        int nobs = 7; 

        float fuzz = .001; 

        float x[] = {1.0, 1.0001, 1.0002, 2., 3., 3., 4.}; 

        ties = imsls_f_tie_statistics(nobs, x,   

                                      IMSLS_FUZZ, fuzz, 

                                      0); 
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 imsls_f_write_matrix("TIES\n", 0, 3, ties,  

      IMSLS_WRITE_FORMAT, "%5.2f", 

      0); 

 } 

Output 
TIES 
0       1       2       3 
4.00    2.50   84.00    6.00 

wilcoxon_rank_sum 
Performs a Wilcoxon rank sum test. 

Synopsis 
#include <imsls.h> 
float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],  

int n2_observations, float x2[], ..., 0) 
The type double function is imsls_d_wilcoxon_rank_sum. 

Required Arguments 

int n1_observations   (Input) 
Number of observations in the first sample. 

float x1[]   (Input) 
Array of length n1_observations containing the first sample. 

int n2_observations   (Input) 
Number of observations in the second sample. 

float x2[]   (Input) 
Array of length n2_observations containing the second sample. 

Return Value 
The two-sided p-value for the Wilcoxon rank sum statistic that is computed with 
average ranks used in the case of ties. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_wilcoxon_rank_sum (int n1_observations, float x1[],  

int n2_observations, float x2[], 
IMSLS_FUZZ, float fuzz, 
IMSLS_STAT, float **stat, 
IMSLS_STAT_USER, float stat[], 
0) 
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Optional Arguments 

IMSLS_FUZZ, float fuzz   (Input) 
Nonnegative constant used to determine ties in computing ranks in the 
combined samples. A tie is declared when two observations in the combined 
sample are within fuzz of each other. 
Default: fuzz = 100 × imsls_f_machine(4) × max {|xi1|, |xj2|} 

IMSLS_STAT, float **stat   (Output) 
Address of a pointer to an internally allocated array of length 10 containing 
the following statistics:  

 
Row Statistics 

0 Wilcoxon W statistic (the sum of the ranks of the x 
observations) adjusted for ties in such a manner that W is  
as small as possible 

1 2 × E(W) − W, where E(W) is the expected value of W 
2 probability of obtaining a statistic less than or equal to 

min{W, 2 × E(W) − W} 
3 W statistic adjusted for ties in such a manner that W is as 

large as possible 
4 2 × E(W) − W, where E(W) is the expected value of W, 

adjusted for ties in such a manner that W is as large as 
possible 

5 probability of obtaining a statistic less than or equal to 
min{W, 2 × E(W) − W}, adjusted for ties in such a manner 
that W is as large as possible 

6 W statistic with average ranks used in case of ties 
7 estimated standard error of stat [6] under the null 

hypothesis of no difference 
8 standard normal score associated with stat [6] 
9 two-sided p-value associated with stat[8] 

IMSLS_STAT_USER, float stat[]   (Output) 
Storage for array stat is provided by the user. See IMSLS_STAT. 

Description 
Function imsls_f_wilcoxon_rank_sum performs the Wilcoxon rank sum test for 
identical population distribution functions. The Wilcoxon test is a linear transformation 
of the Mann-Whitney U test. If the difference between the two populations can be 
attributed solely to a difference in location, then the Wilcoxon test becomes a test of 
equality of the population means (or medians) and is the nonparametric equivalent of 
the two-sample t-test. Function imsls_f_wilcoxon_rank_sum obtains ranks in the 
combined sample after first eliminating missing values from the data. The rank sum 
statistic is then computed as the sum of the ranks in the x1 sample. Three methods for 
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handling ties are used. (A tie is counted when two observations are within fuzz of 
each other.) Method 1 uses the largest possible rank for tied observations in the 
smallest sample, while Method 2 uses the smallest possible rank for these observations. 
Thus, the range of possible rank sums is obtained.  
Method 3 for handling tied observations between samples uses the average rank of the 
tied observations. Asymptotic standard normal scores are computed for the W score 
(based on a variance that has been adjusted for ties) when average ranks are used (see 
Conover 1980, p. 217), and the probability associated with the two-sided alternative is 
computed. 

Hypothesis Tests 
In each of the following tests, the first line gives the hypothesis (and its alternative) 
under the assumptions 1 to 3 below, while the second line gives the hypothesis when 
assumption 4 is also true. The rejection region is the same for both hypotheses and is 
given in terms of Method 3 for handling ties. Another output statistic should be used, 
(stat[0] or stat[3]), if another method for handling ties is desired. 

Test Null Hypothesis Alternative 
Hypothesis 

Action 

1 H0:Pr(x1 < x2) = 0.5 H1:Pr(x1 < x2) ≠ 0.5 Reject if stat [9] is less than the 
significance level of the test. 
Alternatively,  

 H0:E(x1) = E(x2) H1:E(x1) ≠ E(x2) reject the null hypothesis if stat 
[6] is too large or too small. 

2 H0:Pr(x1 < x2) ≤ 0.5 H1:Pr(x1 < x2) > 0.5 Reject if stat [6] is too small 
 H0:E(x1) ≥ E(x2) H1:E(x1) < E(x2)  

3 H0:Pr(x1 < x2) ≥ 0.5 H1:Pr(x1 < x2) < 0.5 Reject if stat [6] is too large 
 Ho:E(x1) ≤ E(x2)) H1:E(x1) > E(x2)  

Assumptions 

1. Arguments x1 and x2 contain random samples from their respective 
populations. 

2. All observations are mutually independent. 

3. The measurement scale is at least ordinal (i.e., an ordering less than, greater 
than, or equal to exists among the observations). 

4. If f(x) and g(y) are the distribution functions of x and y, then g(y) = f(x + c) for 
some constant c(i.e., the distribution of y is, at worst, a translation of the 
distribution of x). 

The p-value is calculated using the large-sample normal approximation. This 
approximate calculation is only valid when the size of one or both samples is greater 
than 50. For smaller samples, see the exact tables for the Wilcoxon Rank Sum Test.  
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Examples  

Example 1 
The following example is taken from Conover (1980, p. 224). It involves the mixing 
time of two mixing machines using a total of 10 batches of a certain kind of batter, five 
batches for each machine. The null hypothesis is not rejected at the 5-percent level of 
significance. The warning error is always printed when one or more ties are detected, 
unless printing for warning errors is turned off. See function imsls_error_options 
(Chapter 15, “Utilties”). 

#include <imsls.h> 
 
void main() 
{ 
    int    n1_observations = 5; 
    int    n2_observations = 5; 
    float  x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2}; 
    float  x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1}; 
    float  p_value; 
 
    p_value = imsls_f_wilcoxon_rank_sum(n1_observations, x1, 
                   n2_observations, x2, 0); 
    printf("p-value = %11.4f\n", p_value); 
 
} 

Output 
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum. 
***         At least one tie is detected between the samples. 
 
p-value =      0.1412 

Example 2 
The following example uses the same data as the previous example. Now, all the 
statistics are output in the array stat. 

#include <imsls.h> 
 
void main() 
{ 
    int    n1_observations = 5; 
    int    n2_observations = 5; 
    float  x1[5] = {7.3, 6.9, 7.2, 7.8, 7.2}; 
    float  x2[5] = {7.4, 6.8, 6.9, 6.7, 7.1}; 
    float  *stat; 
    char   *labels[10] = {"Wilcoxon W statistic ......................", 
                     "2*E(W) - W ................................", 
                     "p-value ...................................", 
                     "Adjusted Wilcoxon statistic ...............", 
                     "Adjusted 2*E(W) - W .......................", 
                     "Adjusted p-value ..........................", 
                     "W statistics for averaged ranks............", 
                     "Standard error of W (averaged ranks) ......", 
                     "Standard normal score of W (averaged ranks)", 
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                     "Two-sided p-value of W (averaged ranks ...."}; 
    imsls_f_wilcoxon_rank_sum(n1_observations, x1, 
                   n2_observations, x2,  
                   IMSLS_STAT, &stat, 
                   0); 
    imsls_f_write_matrix("statistics", 10, 1, stat,  
                   IMSLS_ROW_LABELS, labels, 
                   IMSLS_WRITE_FORMAT, "%7.3f",  
                   0); 
} 

Output 
*** WARNING Error IMSLS_AT_LEAST_ONE_TIE from imsls_f_wilcoxon_rank_sum. 
***         At least one tie is detected between the samples. 
 
                     statistics 
Wilcoxon W statistic ......................   34.000 
2*E(W) - W ................................   21.000 
p-value ...................................    0.110 
Adjusted Wilcoxon statistic ...............   35.000 
Adjusted 2*E(W) - W .......................   20.000 
Adjusted p-value ..........................    0.075 
W statistics for averaged ranks............   34.500 
Standard error of W (averaged ranks) ......    4.758 
Standard normal score of W (averaged ranks)    1.471 
Two-sided p-value of W (averaged ranks ....    0.141 

Warning Errors 

IMSLS_NOBSX_NOBSY_TOO_SMALL “n1_observations” = # and 
“n2_observations” = #. Both sample sizes, 
“n1_observations” and “n2_observations”, 
are less than 25. Significance levels should 
be obtained from tabled values.  

IMSLS_AT_LEAST_ONE_TIE At least one tie is detected between the 
samples. 

Fatal Errors 

IMSLS_ALL_X_Y_MISSING Each element of “x1” and/or “x2” is a 
missing (NaN, Not a Number) value. 

kruskal_wallis_test 
Performs a Kruskal-Wallis test for identical population medians. 

Synopsis 
#include <imsls.h> 
float *imsls_f_kruskal_wallis_test (int n_groups, int ni[],  

float y[], ..., 0) 
The type double function is imsls_d_kruskal_wallis_test. 
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Required Arguments 

int n_groups   (Input) 
Number of groups.  

int ni[]   (Input) 
Array of length n_groups containing the number of responses for each of the 
n_groups groups. 

float y[]   (Input) 
Array  of length ni[0] + ... + ni[n_groups-1] that contains the 
responses for each of the n_groups groups. y must be sorted by group, with 
the ni[0] observations in group 1 coming first, the ni[1] observations in 
group two coming second, and so on. 

Return Value 
Array of length 4 containing the Kruskal-Wallis statistics.  

I stat[I] 

0  Kruskal-Wallis H statistic. 

1  Asymptotic probability of a larger H under the null hypothesis of identical 
population medians. 

2  H corrected for ties. 

3  Asymptotic probability of a larger H (corrected for ties) under the null 
hypothesis of identical populations 

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_kruskal_wallis_test (int n_groups, int ni, float y[],  
IMSLS_FUZZ, float fuzz, 
IMSLS_RETURN_USER, float stat[], 
0)         

Optional Arguments 

IMSLS_FUZZ, float fuzz   (Input) 
Constant used to determine ties in y.  If (after sorting)  
|y[i] – y[i + 1]| is less than or equal to fuzz, then a tie  
is counted. fuzz must be nonnegative. 

IMSLS_RETURN_USER, float stat[]  (Output) 
User defined array for storage of Kruskal-Wallis statistics. 

Description 
The function imsls_f_kruskal_wallis_test generalizes the Wilcoxon two-
sample test computed by routine imsls_f_wilcoxon_rank_sum to more than two 
populations. It computes a test statistic for testing that the population distribution 
functions in each of K populations are identical. Under appropriate assumptions, this is 
a nonparametric analogue of the one-way analysis of variance. Since more than two 
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samples are involved, the alternative is taken as the analogue of the usual analysis of 
variance alternative, namely that the populations are not identical. 
The calculations proceed as follows: All observations are ranked regardless of the 
population to which they belong. Average ranks are used for tied observations 
(observations within fuzz of each other). Missing observations (observations equal to 
NaN, not a number) are not included in the ranking. Let Ri denote the sum of the ranks 
in the i-th population. The test statistic H is defined as: 
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where N is the total of the sample sizes, ni is the number of observations in the  
i-th sample, and S2 is computed as the (bias corrected) sample variance of the Ri.  

The null hypothesis is rejected when stat[3] (or stat[1]) is less than the 
significance level of the test. If the null hypothesis is rejected, then the procedures 
given in Conover (1980, page 231) may be used for multiple comparisons. The routine 
imsls_f_kruskal_wallis_test computes asymptotic probabilities using the chi-
squared distribution when the number of groups is 6 or greater, and a Beta 
approximation (see Wallace 1959) when the number of groups is 5 or less. Tables 
yielding exact probabilities in small samples may be obtained from Owen (1962). 

Example 
The following example is taken from Conover (1980, page 231). The data represents 
the yields per acre of four different methods for raising corn. Since  
H = 25.5, the four methods are clearly different. The warning error is always printed 
when the Beta approximation is used, unless printing for warning errors is turned off.  

#include <imsls.h> 
void main() 
{ 
 int ngroup = 4, ni[] = {9, 10, 7, 8}; 

float y[] = {83., 91., 94., 89., 89., 96., 91., 92., 90., 91., 90.,  
      81., 83., 84., 83., 88., 91., 89., 84., 101., 100., 91., 
      93., 96., 95., 94., 78., 82., 81., 77., 79., 81., 80., 
      81.}; 

 float fuzz = .001, stat[4]; 
 char *rlabel[] = {"H (no ties)    =", 
        "Prob (no ties) =", 
        "H (ties)       =", 
        "Prob (ties)    ="}; 
 imsls_f_kruskal_wallis_test(ngroup, ni, y, 
        IMSLS_FUZZ, fuzz, 
        IMSLS_RETURN_USER, stat, 
           0); 
 imsls_f_write_matrix(" ", 4, 1, stat, 
       IMSLS_ROW_LABELS, rlabel, 
       0);         
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}       

Output 
*** WARNING  ERROR  from imsls_kruskal_wallis_test.  The chi-squared degrees 
***   of freedom are less than 5, so the Beta approximation is used. 

 
H (no ties)    =     25.46 
Prob (no ties) =      0.00 
H (ties)       =     25.63 
Prob (ties)    =      0.00 

friedmans_test 
Performs Friedman’s test for a randomized complete block design. 

Synopsis 
#include <imsls.h> 
float imsls_f_friedmans_test (int n_blocks, int n_treatments,  

float y[], ..., 0) 
The type double function is imsls_d_friedmans_test. 

Required Arguments 

int n_blocks   (Input) 
Number of blocks.  

int n_treatments   (Input) 
Number of treatments. 

float y[]   (Input) 
Array of size n_blocks * n_treatments containing the observations. 
The first n_treatments positions of y[] contain the observations on 
treatments 1, 2, …, n_treatments in the first block. The second 
n_treatments positions contain the observations in the second block, etc., 
and so on. 

Return Value 
The Chi-squared approximation of the asymptotic p-value for Friedman’s  
two-sided test statistic.  

Synopsis with Optional Arguments 
#include <imsls.h>  
float imsls_f_friedmans_test (int n_blocks, int n_treatments,  

float y[], 
IMSLS_FUZZ, float fuzz, 
IMSLS_ALPHA, float alpha, 
IMSLS_STAT, float **stat,  
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IMSLS_STAT_USER, float stat[],  
IMSLS_SUM_RANK, int **sum_ranks, 

 IMSLS_SUM_RANK_USER, int  sum_rank[] 
IMSLS_DIFFERENCE, float *difference, 

 0) 

Optional Arguments 

IMSLS_FUZZ, float fuzz   (Input) 
Constant used to determine ties. In the ordered observations, if  
|y[i] –y[i + 1]| is less than or equal to fuzz, then  
y[i] and y[i + 1] are said to be tied.   
Default value is 0.0. 

IMSLS_ALPHA, float alpha   (Input) 
Critical level for multiple comparisons.  alpha should be between 0 and 1 
exclusive.  Default value is 0.05. 

 IMSLS_STAT, float **stat   (Output) 
Address of a pointer to an array of length 6 containing the Friedman statistics.  
Probabilities reported are computed under the appropriate null hypothesis. 

I stat(I) 

0 Friedman two-sided test statistic. 

1 Approximate F value for stat[0]. 

2 Page test statistic for testing the ordered alternative that the median of 
treatment i is less than or equal to the median of treatment i + 1, with strict 
inequality holding for some i. 

3 Asymptotic p-value for stat[0]. Chi-squared approximation. 

4. Asymptotic p-value for stat[1]. F approximation. 

5. Asymptotic p-value for stat[2]. Normal approximation. 

IMSLS_STAT_USER, float stat[]  (Output) 
Storage for array stat is provided by the user. See IMSLS_STAT. 

IMSLS_SUM_RANK, float **sum_rank,  (Output)  
Address of a pointer to an array of length n_treatments  
containing the sum of the ranks of each treatment. 

IMSLS_SUM_RANK_USER, float sum_rank[], (Output) 
Storage for array sum_rank is provided by the user.  
See IMSLS_SUM_RANK. 

IMSLS_DIFFERENCE, float *difference,  (Output 
Minimum absolute difference in two elements of sum_rank to infer at the 
alpha level of significance that the medians of the corresponding treatments 
are different. 
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Description 
Function imsls_f_friedmans_test may be used to test the hypothesis of equality 
of treatment effects within each block in a randomized block design. No missing values 
are allowed. Ties are handled by using the average ranks. The test statistic is the 
nonparametric analogue of an analysis of variance F test statistic.  
The test proceeds by first ranking the observations within each block. Let A denote the 
sum of the squared ranks, i.e., let 
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where Rank(Yij) is the rank of the i-th observation within the j-th block, b = NB is the 
number of blocks, and k = NT is the number of treatments. Let 
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The Friedman test statistic (stat[0]) is given by: 
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that, under the null hypothesis, has an approximate chi-squared distribution with  
k − 1 degrees of freedom. The asymptotic probability of obtaining a larger chi-squared 
random variable is returned in stat[3].  
If the F distribution is used in place of the chi-squared distribution, then the usual 
oneway analysis of variance F-statistic computed on the ranks is used. This statistic, 
reported in stat[1], is given by  
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and asymptotically follows an F distribution with (k − 1) and (b − 1)(k − 1) degrees of 
freedom under the null hypothesis. stat[4] is the asymptotic probability of obtaining 
a larger F random variable. (If A = B, stat[0] and stat[1] are set to machine 
infinity, and the significance levels are reported as k!/(k!)b, unless this computation 
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would cause underflow, in which case the significance levels are reported as zero.) 
Iman and Davenport (1980) discuss the relative advantages of the chi-squared and F 
approximations. In general, the F approximation is considered best.  
The Friedman T statistic is related both to the Kendall coefficient of concordance and 
to the Spearman rank correlation coefficient. See Conover (1980) for a discussion of 
the relationships.  

If, at the α = alpha level of significance, the Friedman test results in rejection of the 
null hypothesis, then an asymptotic test that treatments i and j are different is given by: 
reject H0 if |Ri − Rj| > D, where 

( ) ( )( )( )1 / 2D 2 / 1 1t b A B b kα−= − − −
 

where t has (b − 1)(k − 1) degrees of freedom. Page’s statistic (stat[2]) is used to test 
the same null hypothesis as the Friedman test but is sensitive to a monotonic increasing 
alternative. The Page test statistic is given by 
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It is largest (and thus most likely to reject) when the Ri are monotonically increasing. 

Assumptions 
The assumptions in the Friedman test are as follows: 

1. The k-vectors of responses within each of the b blocks are mutually 
independent (i.e., the results within one block have no effect on the results 
within another block). 

2. Within each block, the observations may be ranked. 
The hypothesis tested is that each ranking of the random variables within each block is 
equally likely. The alternative is that at least one of the treatments tends to have larger 
values than one or more of the other treatments. The Friedman test is a test for the 
equality of treatment means or medians. 

Example 
The following example is taken from Bradley (1968), page 127, and tests the 
hypothesis that 4 drugs have the same effects upon a person’s visual acuity.  
Five subjects were used. 

#include <imsls.h> 

void main() 

{  

int n_blocks = 5, n_treatments = 4; 

float y[20] = {.39,.55,.33,.41,.21,.28,.19,.16,.73,.69,.64, 

               .62,.41,.57,.28,.35,.65,.57,.53,.60}; 

float fuzz = .001,  
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alpha = .05;        

float pvalue, *sum_rank, stat[6], difference; 

pvalue = imsls_f_friedmans_test(n_blocks,  

  n_treatments, y,    

  IMSLS_SUM_RANK, &sum_rank,  

                            IMSLS_STAT_USER, stat,    

                            IMSLS_DIFFERENCE, &difference,  

    0); 

printf("\np value for Friedman's T = %f\n\n", pvalue); 

printf("Friedman's T = ............  %4.2f\n", stat[0]); 

printf("Friedman's F = ............  %4.2f\n", stat[1]); 

printf("Page Test = ...............%5.2f\n", stat[2]); 

printf("Prob Friedman's T = .......  %7.5f\n", stat[3]); 

printf("Prob Friedman's F = .......  %7.5f\n", stat[4]); 

printf("Prob Page Test = ..........  %7.5f\n", stat[5]); 

printf("Sum of Ranks = ............  %4.2f %4.2f %4.2 %4.2f\n"                       

        sum_rank[0], sum_rank[1], sum_rank[2], sum_rank[3]); 

printf("difference = ..............  %7.5f\n", difference); 

} 

 

Output 
P value for Friedman’s T = 0.040566 

Friedman T.........    8.28 
Friedman F.........    4.93 
Page test..........  111.00 
Prob Friedman T....    0.04057 
Prob Friedman F....    0.01859 
Prob Page test.....    0.98495 
Sum of Ranks.......   16.00   17.00    7.00   10.00 
D..................    6.65638 

The Friedman null hypothesis is rejected at the α = .05 while the Page null hypothesis 
is not. (A Page test with a monotonic decreasing alternative would be rejected, 
however.) Using sum_rank and difference, one can conclude that treatment 3 is 
different from treatments 1 and 2, and that treatment 4 is different from treatment 2, all 
at the α = .05 level of significance. 

cochran_q_test 
Performs a Cochran Q test for related observations. 

Synopsis 
#include <imsls.h>  
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float imsls_f_cochran_q_test (int n_observations, int n_variables,  
float *x, ..., 0) 

The type double function is imsls_d_cochran_q_test. 

Required Arguments 

int n_observations   (Input) 
Number of blocks for each treatment. 

int n_variables   (Input) 
Number of treatments. 

float *x   (Input) 
Array of size n_observations × n_variables containing the matrix of 
dichotomized data. There are n_observations readings of zero or one on 
each of the n_variables treatments. 

Return Value 
The p-value, p_value, for the Cochran Q statistic. 

Synopsis with Optional Arguments 
#include <imsls.h> 

float imsls_f_cochran_q_test (int n_observations, int n_variables, 
float *x, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_Q_STATISTIC, float *q, 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Number of columns in x. 
Default: x_col_dim = n_variables 

IMSLS_Q_STATISTIC, float *q   (Output) 
Cochran’s Q statistic. 

Description 
Function imsls_f_cochran_q_test computes the Cochran Q test statistic that may 
be used to determine whether or not M matched sets of responses differ significantly 
among themselves. The data may be thought of as arising out of a randomized block 
design in which the outcome variable must be success or failure, coded as 1.0 and 0.0, 
respectively. Within each block, a multivariate vector of 1’s of 0’s is observed. The 
hypothesis is that the probability of success within a block does not depend upon the 
treatment. 

Assumptions 

1. The blocks are a random sample from the population of all possible blocks. 

2. The outcome of each treatment is dichotomous. 
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Hypothesis 

The hypothesis being tested may be stated in at least two ways. 

1. H0 : All treatments have the same effect. 
H1 : The treatments do not all have the same effect. 

2. Let pij denote the probability of outcome 1.0 in block i, treatment j. 
H0:pi1 = pi2 = … = pic for each i. 
H1:pij ≠ pik for some i, and some j ≠ k. 
where c (equal to n_variables) is the number of treatments. 

The null hypothesis is rejected if Cochrans’s Q statistic is too large. 

Remarks 

1. The input data must consist of zeros and ones only. For example, the data may 
be pass-fail information on n_variables questions asked of 
n_observations people or the test responses of n_observations 
individuals to n_variables different conditions. 

2. The resulting statistic is distributed approximately as chi-squared with 
n_variables − 1 degrees of freedom if n_observations is not too small. 
n_observations greater than or equal to 5 × n_variables is a 
conservative recommendation. 

Example 
The following example is taken from Siegal (1956, p. 164). It measures the responses 
of 18 women to 3 types of interviews. 

#include <imsls.h> 
main() 
{ 
    float pq; 
    float x[54] = { 
        0.0, 0.0, 0.0, 
        1.0, 1.0, 0.0, 
        0.0, 1.0, 0.0, 
        0.0, 0.0, 0.0, 
        1.0, 0.0, 0.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 0.0, 
        0.0, 1.0, 0.0, 
        1.0, 0.0, 0.0, 
        0.0, 0.0, 0.0, 
        1.0, 1.0, 1.0, 
        1.0, 1.0, 1.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 1.0, 
        1.0, 1.0, 0.0, 
        1.0, 1.0, 0.0}; 
 
    pq = imsls_f_cochran_q_test(18, 3, x, 0); 



 
 
 
 

 
 

Chapter 6: Nonparametric Statistics k_trends_test • 469  

 

 

 

    printf("pq = %9.5f\n", pq); 
    return; 

} 

Output 
pq =   0.00024 

Warning Errors 

IMSLS_ALL_0_OR_1 “x” consists of either all ones or all zeros. “q” is set 
to NaN (not a number). “pq” is set to 1.0. 

Fatal Errors 

IMSLS_INVALID_X_VALUES “x[#][#]” = #. “x” must consist of zeros and ones 
only. 

k_trends_test 
Performs a k-sample trends test against ordered alternatives. 

Synopsis 
#include <imsls.h> 
float *imsls_f_ k_trends_test (int n_groups, int ni[], float y[], ..., 0) 
The type double function is imsls_d_ k_trends_test. 

Required Arguments 

int n_groups   (Input) 
Number of groups.  Must be greater than or equal to 3. 

int ni[]   (Input) 
Array of length n_groups containing the number of responses for each of the 
n_groups groups. 

float y[]   (Input) 
Array  of length ni[0] + ... + ni[n_groups-1] that contains the 
responses for each of the n_groups groups. y must be sorted by group, with 
the ni[0] observations in group 1 coming first, the ni[1] observations in 
group two coming second, and so on. 

Return Value 
Array of length 17 containing the test results.  

I stat[I] 

0  Test statistic (ties are randomized). 

1  Conservative test statistic with ties counted in favor of the null hypothesis. 

2 p-value associated with stat[0]. 
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3 p-value associated with stat[1]. 

4  Continuity corrected stat[2]. 

5  Continuity corrected stat [3]. 

6  Expected mean of the statistic. 

7  Expected kurtosis of the statistic. (The expected skewness is zero.) 

8  Total sample size. 

9  Coefficient of rank correlation based upon stat[0]. 

10  Coefficient of rank correlation based upon stat[1]. 

11  Total number of ties between samples. 

12  The t-statistic associated with stat [2]. 

13  The t-statistic associated with stat[3]. 

14 The t-statistic associated with stat [4]. 

15 The t-statistic associated with stat[5].  

16 Degrees of freedom for each t-statistic. 

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_k_trends_test (int n_groups, int ni, float y[],  
IMSLS_RETURN_USER, float stat[],  
0)         

Optional Arguments 

IMSLS_RETURN_USER, float stat[]  (Output) 
User defined array for storage of test results. 

Description 
Function imsls_f_k_trends_test performs a k-sample trends test against ordered 
alternatives. The alternative to the null hypothesis of equality is that  
F1(X) < F2(X) < … Fk(X), where F1, F2, etc., are cumulative distribution functions, and 
the operator < implies that the less than relationship holds for all values of X. While the 
trends test used in k_trends_test requires that the background populations be 
continuous, ties occurring within a sample have no effect on the test statistic or 
associated probabilities. Ties between samples are important, however. Two methods 
for handling ties between samples are used. These are: 

1. Ties are randomly split (stat[0]). 

2. Ties are counted in a manner that is unfavorable to the alternative hypothesis 
(stat[1]). 

Computational Procedure 
Consider the matrices  
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( ) 2 if

0 otherwise
ki mjkm km

ij

X X
M m

<⎛ ⎞
= = ⎜ ⎟

⎝ ⎠  

where Xki is the i-th observation in the k-th population, Xmj is the j-th observation in the 

m-th population, and each matrix Mkm is nk by nm where ni = ni(i). Let Skm denote the 

sum of all elements in Mkm. Then, stat[1] is computed as the sum over all elements 
in Skm, minus the expected value of this sum (computed as 

k mk m n n<∑
 

when there are no ties and the distributions in all populations are equal). In stat[0], 
ties are broken randomly, and the element in the summation is taken as 2.0 or 0.0 
depending upon the result of breaking the tie.  
stat[2] and stat[3] are computed using the t distribution. The probabilities 
reported are asymptotic approximations based upon the t statistics in stat[12] and 
stat[13], which are computed as in Jonckheere (1954, page 141).  
Similarly, stat[4] and stat[5] give the probabilities for stat[14] and stat[15], 
the continuity corrected versions of stat[2] and stat[3]. The degrees of freedom 
for each t statistic (stat[16]) are computed so as to make  
the t distribution selected as close as possible to the actual distribution of the statistic 
(see Jonckheere 1954, page 141).  
stat[6], the variance of the test statistic stat[0], and stat[7], the kurtosis of the 
test statistic, are computed as in Jonckheere (1954, page 138). The coefficients of rank 
correlation in stat[8] and stat[9] reduce to the  
Kendall τ statistic when there are just two groups.  
Exact probabilities in small samples can be obtained from tables in Jonckheere (1954). 
Note, however, that the t approximation appears to be a good one. 

Assumptions 

1. The Xmi for each sample are independently and identically distributed 
according to a single continuous distribution. 

2. The samples are independent. 

Hypothesis tests 
H0 : F1(X) ≥ F2(X) ≥ … ≥ Fk(X)  
H1 : F1(X) < F2(X) < … < Fk(X)  
Reject if stat[2] (or stat[3], or stat[4] or stat[5], depending upon the 
method used) is too large. 

Example 
The following example is taken from Jonckheere (1954, page 135). It involves four 
observations in four independent samples. 

 #include <imsls.h> 
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 #include <stdio.h> 

 void main() 

 { 

       float *stat; 

       int n_groups = 4; 

       int ni[] = {4, 4, 4, 4}; 

 char *fmt = "%9.5f"; 

 char *rlabel[] = { 

 "stat[0] - Test Statistic  (random) ............", 

 "stat[1] - Test Statistic  (null hypothesis) ...", 

       "stat[2] - p-value for stat[0] .................", 

"stat[3] - p-value for stat[1] .................", 

"stat[4] - Continuity corrected for stat[2] ....", 

 "stat[5] - Continuity corrected for stat[3] ....", 

 "stat[6] - Expected mean .......................", 

 "stat[7] - Expected kurtosis ...................", 

 "stat[8] - Total sample size ...................", 

 "stat[9] - Rank corr. coef. based on stat[0] ...", 

 "stat[10]- Rank corr. coef. based on stat[1] ...", 

 "stat[11]- Total number of ties ................", 

 "stat[12]- t-statistic associated w/stat[2] ....", 

 "stat[13]- t-statistic asscoiated w/stat[3] ....", 

 "stat[14]- t-statistic associated w/stat[4] ....", 

 "stat[15]- t-statistic asscoiated w/stat[5] ....", 

"stat[16]- Degrees of freedom .................."}; 

 

       float y[] = {19., 20., 60., 130., 21., 61., 80., 129., 

                 40., 99., 100., 149., 49., 110., 151., 160.}; 

 

       stat = imsls_f_k_trends_test(n_groups, ni, y, 0); 

  

       imsls_f_write_matrix("stat", 17, 1, stat,  

        IMSLS_WRITE_FORMAT, fmt,  

        IMSLS_ROW_LABELS, rlabel, 

        0); 

} 

Output 
stat(0) - Test statistic (random) ...........    46.00000 
stat(1) - Test statistic (null hypothesis) ..    46.00000 
stat(2) - p-value for stat(0) ...............     0.01483 
stat(3) - p-value for stat(1) ...............     0.01483 
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stat(4) - Continuity corrected stat(2) ......     0.01683 
stat(5) - Continuity corrected stat(3) ......     0.01683 
stat(6) - Expected mean .....................   458.66666 
stat(7) - Expected kurtosis .................    -0.15365 
stat(8) - Total sample size .................    16.00000 
stat(9)- Rank corr. coef. based on stat(0) .     0.47917 
stat(10)- Rank corr. coef. based on stat(1) .     0.47917 
stat(11)- Total number of ties ..............     0.00000 
stat(12)- t-statistic associated w/stat(2) ..     2.26435 
stat(13)- t-statistic associated w/stat(3) ..     2.26435 
stat(14)- t-statistic associated w/stat(4) ..     2.20838 
stat(15)- t-statistic associated w/stat(5) ..     2.20838 
stat(16)- Degrees of freedom ................    36.04963 
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Chapter 7: Tests of Goodness of Fit 

Routines 
General Goodness-of-fit tests 

Chi-squared goodness-of-fit test chi_squared_test 475 
Shapiro-Wilk W test for normality normality_test 483 
One-sample continuous data  
Kolmogorov-Smirnov kolmogorov_one 487 
Two-sample continuous data  
Kolmogorov-Smirnov kolmogorov_two 490 
Mardia’s test for multivariate  
normality multivar_normality_test 493 

Tests for Randomness  
Runs test, Paris-serial test, d2 test or triplets  
tests randomness_test 497 

Usage Notes 
The routines in this chapter are used to test for goodness of fit and randomness. The 
goodness-of-fit tests are described in Conover (1980). There are two goodness-of-fit 
tests for general distributions, a Kolmogorov-Smirnov test and a chi-squared test. The 
user supplies the hypothesized cumulative distribution function for these two tests. 
There are three routines that can be used to test specifically for the normal or 
exponential distributions. 
The tests for randomness are often used to evaluate the adequacy of pseudorandom 
number generators. These tests are discussed in Knuth (1981). 
The Kolmogorov-Smirnov routines in this chapter compute exact probabilities  
in small to moderate sample sizes. The chi-squared goodness-of-fit test may be used 
with discrete as well as continuous distributions. 
The Kolmogorov-Smirnov and chi-squared goodness-of-fit test routines allow for 
missing values (NaN, not a number) in the input data. The routines that test for 
randomness do not allow for missing values. 

chi_squared_test 
Performs a chi-squared goodness-of-fit test. 
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Synopsis 
#include <imsls.h> 
float imsls_f_chi_squared_test (float user_proc_cdf(), 

int n_observations, int n_categories, float x[], ..., 0) 
The type double function is imsls_d_chi_squared_test. 

Required Arguments 

float user_proc_cdf (float y)   (Input) 
User-supplied function that returns the hypothesized, cumulative distribution 
function at the point y. 

int n_observations   (Input) 
Number of data elements input in x. 

int n_categories   (Input) 
Number of cells into which the observations are to be tallied. 

float x[]   (Input) 
Array with n_observations components containing the vector of data 
elements for this test. 

Return Value 
The p-value for the goodness-of-fit chi-squared statistic. 

Synopsis with Optional Arguments 

#include <imsls.h> 
float imsls_f_chi_squared_test (float user_proc_cdf(), 

int n_observations, int n_categories, float x[],  
IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters, 
IMSLS_CUTPOINTS, float **cutpoints, 
IMSLS_CUTPOINTS_USER, float cutpoints[], 
IMSLS_CUTPOINTS_EQUAL, 
IMSLS_CHI_SQUARED, float *chi_squared, 
IMSLS_DEGREES_OF_FREEDOM, float *df, 
IMSLS_FREQUENCIES, float frequencies[], 
IMSLS_BOUNDS, float lower_bound, float upper_bound, 
IMSLS_CELL_COUNTS, float **cell_counts, 
IMSLS_CELL_COUNTS_USER, float cell_counts[], 
IMSLS_CELL_EXPECTED, float **cell_expected, 
IMSLS_CELL_EXPECTED_USER, float cell_expected[], 
IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared, 
IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[], 
IMSLS_FCN_W_DATA, float fcn(), void *data, 
0) 
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Optional Arguments 

IMSLS_N_PARAMETERS_ESTIMATED, int n_parameters   (Input) 
Number of parameters estimated in computing the cumulative distribution 
function. 

IMSLS_CUTPOINTS, float **cutpoints   (Output) 
Address of a pointer to an internally allocated array of length 
n_categories − 1 containing the vector of cutpoints defining the cell 
intervals. The intervals defined by the cutpoints are such that the lower 
endpoint is not included and the upper endpoint is included in any interval. If 
IMSLS_CUTPOINTS_EQUAL is specified, equal probability cutpoints are 
computed and returned in cutpoints.  

IMSLS_CUTPOINTS_USER, float cutpoints []   (Input/Output) 
Storage for array cutpoints is provided by the user. See 
IMSLS_CUTPOINTS. 

IMSLS_CUTPOINTS_EQUAL 
If IMSLS_CUTPOINTS_USER is specified, then equal probability cutpoints can 
still be used if, in addition, the IMSLS_CUTPOINTS_EQUAL option is 
specified. If IMSLS_CUTPOINTS_USER is not specified, equal probability 
cutpoints are used by default. 

IMSLS_CHI_SQUARED, float *chi_squared   (Output) 
If specified, the chi-squared test statistic is returned in *chi_squared. 

IMSLS_DEGREES_OF_FREEDOM, float *df   (Output) 
If specified, the degrees of freedom for the chi-squared goodness-of-fit test is 
returned in *df. 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array with n_observations components containing the vector frequencies 
for the observations stored in x. 

IMSLS_BOUNDS, float lower_bound, float upper_bound   (Input) 
If IMSLS_BOUNDS is specified, then lower_bound is the lower bound of the 
range of the distribution and upper_bound is the upper bound of this range. 
If lower_bound = upper_bound, a range on the whole real line is used (the 
default). If the lower and upper endpoints are different, points outside the 
range of these bounds are ignored. Distributions conditional on a range can be 
specified when IMSLS_BOUNDS is used. By convention, lower_bound is 
excluded from the first interval, but upper_bound is included in the last 
interval. 

IMSLS_CELL_COUNTS, float **cell_counts   (Output) 
Address of a pointer to an internally allocated array of length n_categories 
containing the cell counts. The cell counts are the observed frequencies in 
each of the n_categories cells.  
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IMSLS_CELL_COUNTS_USER, float cell_counts[]   (Output) 
Storage for array cell_counts is provided by the user. See 
IMSLS_CELL_COUNTS. 

IMSLS_CELL_EXPECTED, float **cell_expected   (Output) 
Address of a pointer to an internally allocated array of length n_categories 
containing the cell expected values. The expected value of a cell is the 
expected count in the cell given that the hypothesized distribution is correct. 

IMSLS_CELL_EXPECTED_USER, float cell_expected[]   (Output) 
Storage for array cell_expected is provided by the user. See 
IMSLS_CELL_EXPECTED. 

IMSLS_CELL_CHI_SQUARED, float **cell_chi_squared   (Output) 
Address of a pointer to an internally allocated array of length n_categories 
containing the cell contributions to chi-squared.  

IMSLS_CELL_CHI_SQUARED_USER, float cell_chi_squared[]   (Output) 
Storage for array cell_chi_squared is provided by the user. See 
IMSLS_CELL_CHI_SQUARED. 

IMSLS_FCN_W_DATA, float user_proc_cdf (float y), void *data, (Input) 
User-supplied function that returns the hypothesized, cumulative distribution 
function, which also accepts a pointer to data that is supplied by the user.  
data is a pointer to the data to be passed to the user-supplied function.  See 
the Introduction, Passing Data to User-Supplied Functions at the beginning of 
this manual for more details. 

Description 
Function imsls_f_chi_squared_test performs a chi-squared goodness-of-fit test 
that a random sample of observations is distributed according to a specified theoretical 
cumulative distribution. The theoretical distribution, which can be continuous, discrete, 
or a mixture of discrete and continuous distributions, is specified by the user-defined 
function user_proc_cdf. Because the user is allowed to give a range for the 
observations, a test that is conditional on the specified range is performed. 
Argument n_categories gives the number of intervals into which the observations 
are to be divided. By default, equiprobable intervals are computed by 
imsls_f_chi_squared_test, but intervals that are not equiprobable can be 
specified through the use of optional argument IMSLS_CUTPOINTS. 
Regardless of the method used to obtain the cutpoints, the intervals are such that the 
lower endpoint is not included in the interval, while the upper endpoint is always 
included. If the cumulative distribution function has discrete elements, then user-
provided cutpoints should always be used since imsls_f_chi_squared_test 
cannot determine the discrete elements in discrete distributions. 
By default, the lower and upper endpoints of the first and last intervals are  
−∞ and +∞, respectively. If IMSLS_BOUNDS is specified, the endpoints are user-defined 
by the two arguments lower_bound and upper_bound. 
A tally of counts is maintained for the observations in x as follows: 
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1. If the cutpoints are specified by the user, the tally is made in the interval to 
which xi belongs, using the user-specified endpoints. 

2. If the cutpoints are determined by imsls_f_chi_squared_test, then the 
cumulative probability at xi, F(xi), is computed by the function 
user_proc_cdf. 

The tally for xi is made in interval number ⎣mF(xi) + 1⎦, where m = n_categories 
and ⎣·⎦ is the function that takes the greatest integer that is no larger than the argument 
of the function. Thus, if the computer time required to calculate the cumulative 
distribution function is large, user-specified cutpoints may be preferred to reduce the 
total computing time. 
If the expected count in any cell is less than 1, then the chi-squared approximation may 
be suspect. A warning message to this effect is issued in this case, as well as when an 
expected value is less than 5. 

Examples  

Example 1 
This example illustrates the use of imsls_f_chi_squared_test on a randomly 
generated sample from the normal distribution. One-thousand randomly generated 
observations are tallied into 10 equiprobable intervals. The null hypothesis, that the 
sample is from a normal distribution, is specified by use of imsls_f_normal_cdf 
(Chapter 11, Probability Distribution Functions and Inverses) as the hypothesized 
distribution function. In this example, the null hypothesis is not rejected. 

#include <imsls.h> 
 
#define SEED                    123457 
#define N_CATEGORIES                10 
#define N_OBSERVATIONS            1000 
 
main() 
{ 
    float       *x, p_value; 
 
    imsls_random_seed_set(SEED); 
                                /* Generate Normal deviates */ 
    x = imsls_f_random_normal (N_OBSERVATIONS, 0); 
                                /* Perform chi squared test */ 
    p_value = imsls_f_chi_squared_test (imsls_f_normal_cdf,  
                                        N_OBSERVATIONS, 
                                        N_CATEGORIES, x, 0); 
                                /* Print results */ 
    printf ("p-value = %7.4f\n", p_value); 
} 

Output 
p-value =  0.1546 

Example 2 
In this example, optional arguments are used for the data in the initial example. 
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#include <imsls.h> 
 
#define SEED                    123457 
#define N_CATEGORIES                10 
#define N_OBSERVATIONS            1000 
 
main() 
{ 
    float       *cell_counts, *cutpoints, *cell_chi_squared; 
    float       chi_squared_statistics[3], *x; 
    char        *stat_row_labels[] = {"chi-squared", 
                                      "degrees of freedom","p-value"}; 
    imsls_random_seed_set(SEED); 
                                /* Generate normal deviates */ 
    x = imsls_f_random_normal (N_OBSERVATIONS, 0); 
                                /* Perform chi squared test */ 
    chi_squared_statistics[2] =  
        imsls_f_chi_squared_test (imsls_f_normal_cdf,  
                                 N_OBSERVATIONS,  N_CATEGORIES, x,  
                  IMSLS_CUTPOINTS,         &cutpoints,  
                  IMSLS_CELL_COUNTS,        &cell_counts,  
                  IMSLS_CELL_CHI_SQUARED,   &cell_chi_squared,  
                  IMSLS_CHI_SQUARED,        &chi_squared_statistics[0], 
                  IMSLS_DEGREES_OF_FREEDOM, &chi_squared_statistics[1], 
                  0); 
                                /* Print results */ 
    imsls_f_write_matrix ("\nChi Squared Statistics\n", 3, 1,  
        chi_squared_statistics, 
        IMSLS_ROW_LABELS, stat_row_labels, 
        0); 
    imsls_f_write_matrix ("Cut Points", 1, N_CATEGORIES-1,  
        cutpoints, 0); 
    imsls_f_write_matrix ("Cell Counts", 1, N_CATEGORIES,  
        cell_counts, 0); 
    imsls_f_write_matrix ("Cell Contributions to Chi-Squared", 1,  
        N_CATEGORIES, cell_chi_squared,  
        0); 
} 

Output 
    Chi Squared Statistics 
 
chi-squared              13.18 
degrees of freedom        9.00 
p-value                   0.15 
  
                              Cut Points 
         1           2           3           4           5           6 
    -1.282      -0.842      -0.524      -0.253      -0.000       0.253 
  
         7           8           9 
     0.524       0.842       1.282 
  
                              Cell Counts 
         1           2           3           4           5           6 
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       106         109          89          92          83          87 
  
         7           8           9          10 
       110         104         121          99 
  

                   Cell Contributions to Chi-Squared 
         1           2           3           4           5           6 
      0.36        0.81        1.21        0.64        2.89        1.69 
  
         7           8           9          10 
      1.00        0.16        4.41        0.01 

Example 3 
In this example, a discrete Poisson random sample of size 1,000 with parameter θ = 5.0 
is generated by function imsls_f_random_poisson (Chapter 12, Random Number 
Generation”). In the call to imsls_f_chi_squared_test, function 
imsls_f_poisson_cdf (Chapter 11, “Probability Distribution Functions and 
Inverses”) is used as function user_proc_cdf. 

#include <imsls.h> 
 
#define SEED                    123457 
#define N_CATEGORIES            10 
#define N_PARAMETERS_ESTIMATED  0 
#define N_NUMBERS               1000 
#define THETA                   5.0 
 
float           user_proc_cdf(float); 
 
main() 
{ 
    int         i, *poisson; 
    float       cell_statistics[3][N_CATEGORIES]; 
    float       chi_squared_statistics[3], x[N_NUMBERS]; 
    float       cutpoints[]       = {1.5, 2.5, 3.5, 4.5, 5.5, 6.5,  
                                      7.5, 8.5, 9.5}; 
    char        *cell_row_labels[] = {"count", "expected count",  
                                      "cell chi-squared"}; 
    char        *cell_col_labels[] = {"Poisson value", "0", "1", "2", 
                                      "3", "4", "5", "6", "7",  
                                      "8", "9"}; 
    char        *stat_row_labels[] = {"chi-squared", 
                                      "degrees of freedom","p-value"}; 
 
    imsls_random_seed_set(SEED); 
                                /* Generate the data */ 
    poisson = imsls_random_poisson(N_NUMBERS, THETA, 0); 
                               /* Copy data to a floating point vector*/ 
    for (i = 0; i < N_NUMBERS; i++)  
         x[i] = poisson[i]; 
 
    chi_squared_statistics[2] =  
        imsls_f_chi_squared_test(user_proc_cdf, N_NUMBERS,  
            N_CATEGORIES, x, 
                IMSLS_CUTPOINTS_USER,        cutpoints, 
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                IMSLS_CELL_COUNTS_USER,      &cell_statistics[0][0],  
                IMSLS_CELL_EXPECTED_USER,    &cell_statistics[1][0],  
                IMSLS_CELL_CHI_SQUARED_USER, &cell_statistics[2][0], 
                IMSLS_CHI_SQUARED,           &chi_squared_statistics[0], 
                IMSLS_DEGREES_OF_FREEDOM,    &chi_squared_statistics[1], 
                0); 
                                /* Print results */ 
    imsls_f_write_matrix("\nChi-squared Statistics\n", 3, 1,  
                                            &chi_squared_statistics[0], 
                        IMSLS_ROW_LABELS,     stat_row_labels, 
                        0); 
    imsls_f_write_matrix("\nCell Statistics\n", 3, N_CATEGORIES,  
                                            &cell_statistics[0][0], 
                        IMSLS_ROW_LABELS,     cell_row_labels, 
                        IMSLS_COL_LABELS,     cell_col_labels, 
                        IMSLS_WRITE_FORMAT,   "%9.1f", 
                        0); 
} 
 
 
float user_proc_cdf(float k) 
{ 
    float           cdf_v; 
 
    cdf_v = imsls_f_poisson_cdf ((int) k, THETA); 
    return cdf_v; 
} 

Output 
    Chi-squared Statistics 
 
chi-squared              10.48 
degrees of freedom        9.00 
p-value                   0.31 
  
  
 

 

                           Cell Statistics 
 
Poisson value             0          1          2          3          4 
count                  41.0       94.0      138.0      158.0      150.0 
expected count         40.4       84.2      140.4      175.5      175.5 
cell chi-squared        0.0        1.1        0.0        1.7        3.7 
  
Poisson value             5          6          7          8          9 
count                 159.0      116.0       75.0       37.0       32.0 
expected count        146.2      104.4       65.3       36.3       31.8 
cell chi-squared        1.1        1.3        1.4        0.0        0.0 

Programming Notes 
Function user_proc_cdf must be supplied with calling sequence 
user_proc_cdf(y), which returns the value of the cumulative distribution function at 
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any point y in the (optionally) specified range. Many of the cumulative distribution 
functions in Chapter 11, “Probability Distribution Functions and Inverses,” can be used 
for user_proc_cdf, either directly if the calling sequence is correct or indirectly if, 
for example, the sample means and standard deviations are to be used in computing the 
theoretical cumulative distribution function. 

Warning Errors 

IMSLS_EXPECTED_VAL_LESS_THAN_1 An expected value is less than 1. 

IMSLS_EXPECTED_VAL_LESS_THAN_5 An expected value is less than 5. 

Fatal Errors 

IMSLS_ALL_OBSERVATIONS_MISSING All observations contain missing values. 

IMSLS_INCORRECT_CDF_1 Function user_proc_cdf is not a 
cumulative distribution function. The value 
at the lower bound must be nonnegative, and 
the value at the upper bound must not be 
greater than 1. 

IMSLS_INCORRECT_CDF_2 Function user_proc_cdf is not a 
cumulative distribution function. The 
probability of the range of the distribution is 
not positive. 

IMSLS_INCORRECT_CDF_3 Function user_proc_cdf is not a 
cumulative distribution function. Its 
evaluation at an element in x is inconsistent 
with either the evaluation at the lower or 
upper bound. 

IMSLS_INCORRECT_CDF_4 Function user_proc_cdf is not a 
cumulative distribution function. Its 
evaluation at a cutpoint is inconsistent with 
either the evaluation at the lower or upper 
bound. 

 

IMSLS_INCORRECT_CDF_5 An error has occurred when inverting the 
cumulative distribution function. This 
function must be continuous and defined 
over the whole real line. 

normality_test 
Performs a test for normality. 

Synopsis 
#include <imsls.h> 



 

 
 

484 • normality_test IMSL C Stat Library 

 

 

 

float imsls_f_normality_test (int n_observations, float x[], ..., 0) 
The type double function is imsls_d_normality_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations. Argument n_observations must be in the range 
from 3 to 2,000, inclusive, for the Shapiro-Wilk W test and must be greater 
than 4 for the Lilliefors test. 

float x[]   (Input) 
Array of size n_observations containing the observations. 

Return Value 
The p-value for the Shapiro-Wilk W test or the Lilliefors test for normality. The 
Shapiro-Wilk test is the default. If the Lilliefors test is used, probabilities less than 0.01 
are reported as 0.01, and probabilities greater than 0.10 for the normal distribution are 
reported as 0.5. Otherwise, an approximate probability is computed. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float imsls_f_normality_test (int n_observations, float x[], 

IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w, 
IMSLS_LILLIEFORS, float *max_difference, 
IMSLS_CHI_SQUARED, int n_categories, float *df, 
 float *chi_squared, 
0) 

Optional Arguments 

IMSLS_SHAPIRO_WILK_W, float *shapiro_wilk_w   (Output) 
Indicates the Shapiro-Wilk W test is to be performed. The Shapiro-Wilk W 
statistic is returned in shapiro_wilk_w. Argument 
IMSLS_SHAPIRO_WILK_W is the default test. 

IMSLS_LILLIEFORS, float *max_difference   (Output) 
Indicates the Lilliefors test is to be performed. The maximum absolute 
difference between the empirical and the theoretical distributions is returned 
in max_difference. 

IMSLS_CHI_SQUARED, int n_categories   (Input),  
float *df, float *chi_squared   (Output) 
Indicates the chi-squared goodness-of-fit test is to be performed. Argument 
n_categories is the number of cells into which the observations are to be 
tallied. The degrees of freedom for the test are returned in argument df, and 
the chi-square statistic is returned in argument chi_squared. 

Description 
Three methods are provided for testing normality: the Shapiro-Wilk W test, the 
Lilliefors test, and the chi-squared test. 
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Shapiro-Wilk W Test 
The Shapiro-Wilk W test is thought by D’Agostino and Stevens (1986, p. 406) to be 
one of the best omnibus tests of normality. The function is based on the approximations 
and code given by Royston (1982a, b, c). It can be used in samples as large as 2,000 or 
as small as 3. In the Shapiro and Wilk test, W is given by 

( )( ) ( )( )2 2/i iiW a x x x= −∑ ∑
 

where x(i) is the i-th largest order statistic and x is the sample mean. Royston (1982) 
gives approximations and tabled values that can be used to compute the coefficients 
ai, i = 1, …, n, and obtains the significance level of the W statistic. 

Lilliefors Test 
This function computes Lilliefors test and its p-values for a normal distribution in 
which both the mean and variance are estimated. The one-sample, two-sided 
Kolmogorov-Smirnov statistic D is first computed. The p-values are then computed 
using an analytic approximation given by Dallal and Wilkinson (1986). Because Dallal 
and Wilkinson give approximations in the range  
(0.01, 0.10) if the computed probability of a greater D is less than 0.01, an 
IMSLS_NOTE is issued and the p-value is set to 0.50. Note that because parameters are 
estimated, p-values in Lilliefors test are not the same as in the Kolmogorov-Smirnov 
Test. 
Observations should not be tied. If tied observations are found, an informational 
message is printed. A general reference for the Lilliefors test is Conover (1980). The 
original reference for the test for normality is Lilliefors (1967). 

Chi-Squared Test 
This function computes the chi-squared statistic, its p-value, and the degrees of 
freedom of the test. Argument n_categories finds the number of intervals into 
which the observations are to be divided. The intervals are equiprobable except for the 
first and last interval which are infinite in length.  
If more flexibility is desired for the specification of intervals, the same test can be 
performed with a call to function imsls_f_chi_squared_test using the optional 
arguments described for that function. 

Examples  

Example 1 
The following example is taken from Conover (1980, pp. 195, 364). The data consists 
of 50 two-digit numbers taken from a telephone book. The W test fails to reject the null 
hypothesis of normality at the .05 level of significance. 

#include <imsls.h> 
 
void main() 
{ 
 
  int    n_observations = 50; 
  float  x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,  
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                37.0, 54.0, 61.0, 73.0, 24.0, 40.0,  
                56.0, 62.0, 74.0, 27.0, 42.0, 57.0,  
                63.0, 75.0, 29.0, 43.0, 57.0, 64.0,  
                77.0, 31.0, 43.0, 58.0, 65.0, 81.0,  
                32.0, 44.0, 58.0, 66.0, 87.0, 33.0,  
                45.0, 58.0, 68.0, 89.0, 33.0, 48.0,  
                58.0, 68.0, 93.0, 35.0, 48.0, 59.0,  
                70.0, 97.0}; 
  float  p_value; 
 
                                   /* Shapiro-Wilk test */ 
  p_value = imsls_f_normality_test (n_observations, x, 
                                    0); 
  printf ("p-value = %11.4f.\n", p_value); 
 
} 

Output 
p-value =      0.2309 

Example 2 
The following example uses the same data as the previous example. Here, the Shapiro-
Wilk W statistic is output. 

#include <imsls.h> 
 
void main() 
{ 
 
  int    n_observations = 50; 
  float  x[] = {23.0, 36.0, 54.0, 61.0, 73.0, 23.0,  
                37.0, 54.0, 61.0, 73.0, 24.0, 40.0,  
                56.0, 62.0, 74.0, 27.0, 42.0, 57.0,  
                63.0, 75.0, 29.0, 43.0, 57.0, 64.0,  
                77.0, 31.0, 43.0, 58.0, 65.0, 81.0,  
                32.0, 44.0, 58.0, 66.0, 87.0, 33.0,  
                45.0, 58.0, 68.0, 89.0, 33.0, 48.0,  
                58.0, 68.0, 93.0, 35.0, 48.0, 59.0,  
                70.0, 97.0}; 
  float  p_value, shapiro_wilk_w; 
 
                                   /* Shapiro-Wilk test */ 
  p_value = imsls_f_normality_test (n_observations, x, 
                                    IMSLS_SHAPIRO_WILK_W, 
                                    &shapiro_wilk_w, 
                                    0); 
  printf ("p-value = %11.4f.\n", p_value); 
  printf ("Shapiro Wilk W statistic = %11.4f.\n",  
          shapiro_wilk_w); 
 
} 

Output 
p-value =      0.2309. 
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Shapiro Wilk W statistic =      0.9642 

Warning Errors 

IMSLS_ALL_OBS_TIED All observations in “x” are tied. 

Fatal Errors 

IMSLS_NEED_AT_LEAST_5 All but # elements of “x” are missing. At least five 
nonmissing observations are necessary to continue. 

IMSLS_NEG_IN_EXPONENTIAL In testing the exponential distribution, an invalid ele-
ment in “x” is found (“x[]” = #). Negative values are 
not possible in exponential distributions. 

IMSLS_NO_VARIATION_INPUT There is no variation in the input data. All 
nonmissing observations are tied. 

kolmogorov_one 
Performs a Kolmogorov-Smirnov one-sample test for continuous distributions. 

Synopsis 
#include <imsls.h> 
float *imsls_f_kolmogorov_one (float cdf(), int n_observations, 

float x[], ..., 0) 
The type double function is imsls_d_kolmogorov_one. 

Required Arguments 

float cdf (float x)  (Input) 
User-supplied function to compute the cumulative distribution function (CDF) 
at a given value.  The form is CDF(x), where x is the value at which cdf is to 
be evaluated  (Input) 
and cdf is the value of CDF at x. (Output) 

int n_observations   (Input) 
Number of observations. 

float x[]   (Input) 
Array of size n_observations containing the observations. 

Return Value 
Pointer to an array of length 3 containing  Z, p 1 , and p 2  . 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_kolmogorov_one (float cdf(), int n_observations,  

float x[], 
IMSLS_DIFFERENCES, int **differences, IMSLS_DIFFERENCES_USER, 
int differences[] 
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IMSLS_N_MISSING, int *n_missing,  
IMSLS_RETURN_USER, , float test_statistic[], 
IMSLS_FCN_W_DATA, float cdf (), void *data, 
0) 

Optional Arguments 

IMSLS_DIFFERENCES, int **differences   (Output) 
Address of a pointer to the internally allocated array containing  
Dn , Dn

+, Dn
-. 

IMSLS_DIFFERENCES_USER, int differences[]  
Storage for the array differences is provided by the user.   
See IMSLS_DIFFERENCES. 

IMSLS_N_MISSING, int *n_missing   (Ouput) 
Number of missing values is returned in *n_missing. 

IMSLS_RETURN_USER, float test_statistics[]   (Output) 
If specified, the Z-score and the p-values for hypothesis test against both one-
sided and two-sided alternatives is stored in array test_statistics  
provided by the user.  

IMSLS_FCN_W_DATA, float cdf (float x) , void *data, (Input) 
User-supplied function to compute the cumulative distribution function, which 
also accepts a pointer to data that is supplied by the user.  data is a pointer to 
the data to be passed to the user-supplied function.  See the Introduction, 
Passing Data to User-Supplied Functions at the beginning of this manual for 
more details. 

Description 
The routine imsls_f_kolmogorov_one performs a Kolmogorov-Smirnov goodness-
of-fit test in one sample. The hypotheses tested follow: 

0 1

0 1

0 1
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where F is the cumulative distribution function (CDF) of the random variable, and the 
theoretical cdf, F* , is specified via the user-supplied function cdf. Let  
n = n_observations − n_missing. The test statistics for both one-sided 
alternatives  

[1]nD differences+ =
 

and 

[2]nD differences− =
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and the two-sided (Dn = differences[0]) alternative are computed as well as an 
asymptotic z-score (test_statistics[0]) and p-values associated with the one-
sided (test_statistics[1]) and two-sided (test_statistics[2]) hypotheses. 
For n > 80, asymptotic p-values are used (see Gibbons 1971). For  
n ≤ 80, exact one-sided p-values are computed according to a method given by 
Conover (1980, page 350). An approximate two-sided test p-value is obtained as twice 
the one-sided p-value. The approximation is very close for one-sided  
p-values less than 0.10 and becomes very bad as the one-sided p-values get larger. 

Programming Notes 

1. The theoretical CDF is assumed to be continuous. If the CDF is not continuous, 
the statistics 

nD∗

 

will not be computed correctly. 

2. Estimation of parameters in the theoretical CDF from the sample data will 
tend to make the p-values associated with the test statistics too liberal. The 
empirical CDF will tend to be closer to the theoretical CDF than it should be. 

3. No attempt is made to check that all points in the sample are in the support of 
the theoretical CDF. If all sample points are not in the support of the CDF, the 
null hypothesis must be rejected. 

Example 
In this example, a random sample of size 100 is generated via routine 
imsls_f_random_uniform (Chapter 12, “Random Number Generation”) for the 
uniform (0, 1) distribution. We want to test the null hypothesis that the cdf is the 
standard normal distribution with a mean of 0.5 and a variance equal to the uniform 
(0, 1) variance (1/12). 

#include <imsls.h> 

#include <stdio.h> 

float cdf(float); 

void main() 

{ 

  float *statistics=NULL, *diffs = NULL, *x=NULL; 

  int nobs = 100, nmiss; 

  imsls_random_seed_set(123457); 

  x = imsls_f_random_uniform(nobs, 0); 

  statistics = imsls_f_kolmogorov_one(cdf, nobs, x,  

                                   IMSLS_N_MISSING, &nmiss, 

                                   IMSLS_DIFFERENCES, &diffs, 

                                   0); 

  printf("D      = %8.4f\n", diffs[0]); 
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  printf("D+     = %8.4f\n", diffs[1]); 

  printf("D-     = %8.4f\n", diffs[2]); 

  printf("Z      = %8.4f\n", statistics[0]); 

  printf("Prob greater D one sided  = %8.4f\n", statistics[1]); 

  printf("Prob greater D two sided  = %8.4f\n", statistics[2]); 

  printf("N missing = %d\n", nmiss); 

} 

float cdf(float x) 

{ 

  float mean = .5, std = .2886751, z; 

  z = (x-mean)/std; 

  return(imsls_f_normal_cdf(z)); 

} 

Output 
 
D     =   0.1471 
D+    =   0.0810 
D-    =   0.1471 
Z     =   1.4708 
Prob greater D one-sided =   0.0132 
Prob greater D two-sided =   0.0264 
N missing =    0 

kolmogorov_two 
Performs a Kolmogorov-Smirnov two-sample test. 

Synopsis 
#include <imsls.h> 
float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int 

n_observations_y, float y[], ..., 0) 
The type double function is imsls_d_kolmogorov_two. 

Required Arguments 

int n_observations_x   (Input) 
Number of observations in sample one. 

float x[]   (Input) 
Array of size n_observations_x containing the observations from sample 
one. 

int n_observations_y   (Input) 
Number of observations in sample two. 
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float y[]   (Input) 
Array of size n_observations_y containing the observations from sample 
two. 

Return Value 
Pointer to an array of length 3 containing  Z, p 1 , and p 2  . 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_kolmogorov_two (int n_observations_x, float x[], int 

n_observations_y, float y[], ... 
IMSLS_DIFFERENCES, int **differences,  
IMSLS_DIFFERENCES_USER, int differences[], 
IMSLS_N_MISSING_X, int *xmissing,        
IMSLS_N_MISSING_Y, int *ymissing, 
IMSLS_RETURN_USER, float test_statistic[], 
0) 

Optional Arguments 

IMSLS_DIFFERENCES, int **differences   (Output) 
Address of a pointer to the internally allocated array containing  
Dn , Dn

+, Dn
-. 

IMSLS_DIFFERENCES_USER, int differences[]  (Output)                 
Storage for array differences is provided by the user.   
See IMSLS_DIFFERENCES. 

IMSLS_N_MISSING_X, int *xmissing   (Ouput) 
Number of missing values in the x sample is returned in *xmissing. 

IMSLS_N_MISSING_Y, int *ymissing   (Ouput) 
Number of missing values in the y sample is returned in *ymissing. 

IMSLS_RETURN_USER, float test_statistics[]   (Output) 
If specified, the Z-score and the p-values for hypothesis test against both one-
sided and two-sided alternatives is stored in array test_statistics  
provided by the user.  

Description 
Function imsls_f_kolmogorov_two computes Kolmogorov-Smirnov two-sample 
test statistics for testing that two continuous cumulative distribution functions (CDF’s) 
are identical based upon two random samples. One- or two-sided alternatives are 
allowed. Exact p-values are computed for the two-sided test when 
n_observations_x * n_observations_y is less than 104.  
Let Fn(x) denote the empirical CDF in the X sample, let Gm(y) denote the empiri- 
cal CDF in the Y sample, where n = n_observations_x −  n_missing_x  
and m = n_observations_y −  n_missing_y, and let the corresponding population 
distribution functions be denoted by F(x) and G(y), respectively. Then, the hypotheses 
tested by imsls_f_kolmogorov_two are as follows: 
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The test statistics are given as follows: 

( )max , (diffs[0])

max ( ( ) ( )) (diffs[1])
max (G ( ) ( )) (diffs[2])
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Asymptotically, the distribution of the statistic 

( ) /( * )mnZ D m n m n= +
 

(returned in test_statistics[0]) converges to a distribution given by Smirnov 
(1939).  
Exact probabilities for the two-sided test are computed when n*m is less than or equal 
to 104, according to an algorithm given by Kim and Jennrich (1973). When n*m is 
greater than 104, the very good approximations given by Kim and Jennrich are used to 
obtain the two-sided p-values. The one-sided probability is taken as one half the two-
sided probability. This is a very good approximation when the p-value is small (say, 
less than 0.10) and not very good for large  
p-values. 

Example 
The following example illustrates the imsls_f_kolmogorov_two routine with two 
randomly generated samples from a uniform(0,1) distribution. Since the two theoretical 
distributions are identical, we would not expect to reject the null hypothesis. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

        float *statistics=NULL, *diffs = NULL, *x=NULL, *y=NULL; 

        int nobsx = 100,  nobsy = 60, nmissx, nmissy; 

        imsls_random_seed_set(123457); 

        x = imsls_f_random_uniform(nobsx, 0); 

        y = imsls_f_random_uniform(nobsy, 0); 

        statistics = imsls_f_kolmogorov_two(nobsx, x, nobsy, y,  

                                        IMSLS_N_MISSING_X, &nmissx, 

                                        IMSLS_N_MISSING_Y, &nmissy, 
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                                        IMSLS_DIFFERENCES, &diffs, 

                                        0); 

  printf("D      = %8.4f\n", diffs[0]); 

        printf("D+     = %8.4f\n", diffs[1]); 

  printf("D-     = %8.4f\n", diffs[2]); 

        printf("Z      = %8.4f\n", statistics[0]); 

  printf("Prob greater D one sided  = %8.4f\n", statistics[1]); 

        printf("Prob greater D two sided  = %8.4f\n", statistics[2]); 

        printf("Missing X = %d\n", nmissx); 

        printf("Missing Y = %d\n", nmissy); 

}  

Output 
3.  D     =   0.1800 

D+    =   0.1800 
D-    =   0.0100 
Z     =   1.1023 
Prob greater D one sided  =   0.0720 
Prob greater D two sided  =   0.1440 
Missing X =   0 
Missing Y =   0   

multivar_normality_test 
Computes Mardia’s multivariate measures of skewness and kurtosis and tests for 
multivariate normality. 

Synopsis 
#include <imsls.h> 
float *imsls_f_multivar_normality_test (int n_observations,  

int n_variables, float x[], ..., 0) 
The type double function is imsls_d_multivar_normality_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations (number of rows of data) x. 

int n_variables   (Input) 
Dimenionality of the multivariate space for which the skewness and kurtosis 
are to be computed. Number of variables in x. 

float x[]   (Input) 
Array of size n_observations by n_variables containing the data.   
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Return Value 
A pointer to an array of dimension 13 containing output statistics  
I stat[ I ] 

0 estimated skewness 

1            expected skewness assuming a multivariate normal distribution 

2            asymptotic chi-squared statistic assuming a multivariate normal distribution 

3 probability of a greater chi-squared 

4 Mardia and Foster's standard normal score for skewness 

5 estimated kurtosis 

6 expected kurtosis assuming a multivariate normal distribution 

7 asymptotic standard error of the estimated kurtosis 

8 standard normal score obtained from stat[5] through stat[7] 

9 p-value corresponding to stat[8] 

10 Mardia and Foster's standard normal score for kurtosis 

11 Mardia's SW statistic based upon stat[4] and stat[10] 

12 p-value for stat[11] 

Synopsis with Optional Arguments 
#include <imsls.h>  
float imsls_f_multivar_normality_test (int n_observations_x, int 

n_variables, float x[], ... 
 IMSLS_FREQUENCIES, float frequencies[], 

IMSLS_WEIGHTS, float weights[], 
IMSLS_SUM_FREQ, int *sum_frequencies, 
IMSLS_SUM_WEIGHTS, float *sum_weights, 
IMSLS_N_ROWS_MISSING, int *nrmiss, 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_R, float **R_matrix, 
IMSLS_R_USER, float R_matrix[], 
IMSLS_RETURN_USER, float test_statistics[], 
0) 

Optional Arguments 
IMSLS_FREQUENCIES, float  frequencies[]  (Input) 

Array of size n_rows containing the frequencies.  Frequencies must be 
integer valued.  Default assumes all frequencies equal one. 

IMSLS_WEIGHTS, float weights[]  (Input) 
Array of size n_rows containing the weights.  Weights must be greater than 
non-negative.  Default assumes all weights equal one. 
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IMSLS_SUM_FREQ, int *sum_frequencies  (Output) 
The sum of the frequencies of all observations used in the computations. 

IMSLS_SUM_WEIGHTS, float *weights[]  (Output) 
The sum of the weights times the frequencies for all observations used in the 
computations. 

IMSLS_N_ROWS_MISSING, int **nrmiss  (Output) 
Number of rows of data in x[] containing any missing values (NaN). 

IMSLS_MEANS, float **means  (Output) 
The address of a pointer to an array of length n_variables containing the 
sample means. 

IMSLS_MEANS_USER, float means[] (Output) 
Storage for array means is provided by user.  See IMSLS_MEANS. 

IMSLS_R,  float **R_matrix  (Output) 
The address of a pointer to an n_variables by n_variables upper 
triangular matrix containing the Cholesky RTR factorization of the covariance 
matrix. 

IMSLS_R_USER,  float R_matrix[]  (Output) 
Storage for array R_matrix is provided by user.  See IMSLS_R. 

IMSLS_RETURN_USER, float stat[]   (Output) 
User supplied array of dimension 13 containing the estimates and their 
associated test statistics.  

Description 
Function imsls_f_multivar_normality_test computes Mardia’s (1970) 
measures b1,p and b2,p of multivariate skewness and kurtosis, respectfully, for  
p = n_variables. These measures are then used in computing tests for multivariate 
normality. Three test statistics, one based upon b1,p alone, one based upon b2,p alone, 
and an omnibus test statistic formed by combining normal scores obtained from b1,p 
and b2,p are computed. On the order of np3, operations are required in computing  
b1,p when the method of Isogai (1983) is used, where n = n_observations. On the 

order of np2, operations are required in computing b2,p.  

Let  
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fi is the frequency of the i-th observation, and wi is the weight for this observation. 
(Weights wi are defined such that xi is distributed according to a multivariate normal, 
N(μ, Σ/wi) distribution, where Σ is the covariance matrix.) Mardia’s multivariate 
skewness statistic is defined as: 

3
1, 2

1 1

1 n n

p i j ij
i j

b f f d
n = =

= ∑∑  

while Mardia’s kurtosis is given as: 

2
2,

1

1 n

p i ii
i

b f d
n =

= ∑  

Both measures are invariant under the affine (matrix) transformation AX + D,  
and reduce to the univariate measures when p = n_variables = 1. Using formulas 
given in Mardia and Foster (1983), the approximate expected value, asymptotic 
standard error, and asymptotic p-value for b2,p, and the approximate expected value, an 
asymptotic chi-squared statistic, and p-value for the b1,p statistic are computed. These 
statistics are all computed under the null hypothesis of a multivariate normal 
distribution. In addition, standard normal scores W1(b1,p) and W2(b2,p) (different from 
but similar to the asymptotic normal and chi-squared statistics above) are computed. 
These scores are combined into an asymptotic chi-squared statistic with two degrees of 
freedom: 

( ) ( )2 2
1 1, 2 2,W p pS W b W b= +

 

This chi-squared statistic may be used to test for multivariate normality.  
A p-value for the chi-squared statistic is also computed. 

Example 
In the following example, 150 observations from a 5 dimensional standard normal 
distribution are generated via routine imsls_f_random_normal (Chapter 12, “Random 
Number Generation”). The skewness and kurtosis statistics are then computed for these 
observations. 

 
#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

  float *x, swt, *xmean, *r,  *stats; 

  int nobs = 150, ncol = 5, nvar = 5, izero = 0, ni, nrmiss; 

  imsls_random_seed_set(123457); 

  x = imsls_f_random_normal(nobs*nvar,  0); 

  stats = imsls_f_multivar_normality_test(nobs, nvar, x,  
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                                 IMSLS_SUM_FREQ, &ni, 

                                 IMSLS_SUM_WEIGHTS, &swt, 

                                 IMSLS_N_ROWS_MISSING, &nrmiss,  

                                 IMSLS_R, &r,IMSLS_MEANS, &xmean, 
                               0); 
  printf("Sum of frequencies  = %d\nSum of the weights =%8.3f\nNumber                   

rows missing = %3d\n", ni, swt, nrmiss); 

  imsls_f_write_matrix("stat", 13, 1, stats, 

 IMSLS_ROW_NUMBER_ZERO, 

 0) 

} 
  

Output 
Sum of frequencies  = 150  
Sum of the weights  = 150.000  
Number rows missing =   0 
 
   stat 
0  0.73 
1  1.36 
2 18.62 
3  0.99 
4 -2.37 
5 32.67 
6 34.54 
7  1.27 
8      -1.48 
9  0.14 
10  1.62 
11  8.24 
12  0.02 
 
                  means 
     1        2        3        4        5 
0.02623   0.09238   0.06536   0.09819   0.05639 
 
                    R 
        1       2       3       4       5 
1   1.033  -0.084  -0.065   0.108  -0.067 
2   0.000   1.049  -0.097  -0.042  -0.021 
3   0.000   0.000   1.063   0.006  -0.145 
4   0.000   0.000   0.000   0.942  -0.084 
5   0.000   0.000   0.000   0.000   0.949 

randomness_test 
Performs a test for randomness. 
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Synopsis 
#include <imsls.h> 
float imsls_f_randomness_test (int n_observations, float x[],  

int n_run..., 0) 
The type double function is imsls_d_randomness_test. 

Required Arguments 

int n_observations   (Input) 
Number of observations in x. 

float x[]   (Input) 
Array of size n_observations  containing the data. 

int n_run   (Input) 
Length of longest run for which tabulation is desired.  For optional arguments 
IMSLS_PAIRS, IMSLS_DSQUARE, and IMSLS_DCUBE, n_run stands for the 
number of equiprobable cells into which the statistics are to be tabulated. 

Return Value               

The probability of a larger chi-squared statistic for testing the null hypothesis of a 
uniform distribution. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float imsls_f_randomness_test (int n_observations_x, float x[], int 

n_run, ... 
 IMSLS_RUNS, float **runs_count,  float **covariances, 
 IMSLS_RUNS_USER, float runs_count[], float covariances[], 

IMSLS_PAIRS, int pairs_lag,  float **pairs_count,  
 IMSLS_PAIRS_USER, int pairs_lag, float pairs_count[], 
 IMSLS_DSQUARE, float **dsquare_count, 
 IMSLS_DSQUARE_USER, float dsquare_count[], 
 IMSLS_DCUBE, float **dcube_count, 
 IMSLS_DCUBE_USER, float dcube_count[], 
 IMSLS_RUNS_EXPECT, float **runs_expect, 
 IMSLS_RUNS_EXPECT_USER, float runs_expect[], 
 IMSLS_EXPECT,  float *expect, 
 IMSLS_CHI_SQUARED,  float *chi_squared, 
 IMSLS_DF,  float *df, 
 IMSLS_RETURN USER,  float *pvalue, 
  0) 
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Optional Arguments 
IMSLS_RUNS, float **runs_count, float **covariances, (Output)  or 
IMSLS_PAIRS, int pairs_lag   (Input),   float **pairs_count,(Output) or 
IMSLS_DSQUARE, float **dsquare_count,   (Output) or 
IMSLS_DCUBE, float **dcube_count,   (Output) 
 IMSLS_RUNS indicates the runs test is to be performed.  Array of length 

n_run containing the counts of the number of runs up of each length is 
returned in *runs_counts. n_run by n_observations matrix containing 
the variances and covariances of the counts is returned in *covariances.  
IMSLS_RUNS is the default test, however, to return the counts and covariances 
IMSLS_RUNS argument must be used. 

 IMSLS_PAIRS indicates the pairs test is to be performed.  The lag to be used in 
computing the pairs statistic is stored in pairs_lag.  Pairs (X[i], X[i + 
pairs_lag]) for i = 0,…, N – pairs_lag -1 are tabulated, where N is 
the total sample size. n_run by n_run matrix containing the count of the 
number of pairs in each cell is returned in pairs_user. 

 IMSLS_DSQUARE indicates the d2 test is to be performed.  
**dsquare_counts is an address of a pointer to an internally allocated array 
of length n_run containing the tabulations for the d2 test. 

 IMSLS_DCUBE indicates the triplets test is to be performed.  
**dcube_counts is an address of a pointer to an internally allocated array of 
length n_run by n_run by n_run containing the tabulations for the triplets 
test. 

IMSLS_RUNS_USER, float runs_counts[], float covariances[] (Output) 
Storage for runs_counts and covariances is provided by the user.  See 
IMSLS_RUNS. 

IMSLS_PAIRS_USER, int pairs_lag, float pairs_counts[] (Output) 
Storage for pairs_lag and pairs_counts is provided by the user.  See 
IMSLS_PAIRS. 

IMSLS_DSQUARE_USER, float dsquare_count[] (Output) 
Storage for dsquare_count is provided by the user.   
See IMSLS_DSQUARE. 

IMSLS_DCUBE_USER, float dcube_count[] (Output) 
Storage for dcube_count is provided by the user.  See IMSLS_DCUBE. 

IMSLS_CHI_SQUARED, float *chi_squared  (Output) 
Chi-squared statistic for testing the null hypothesis of a uniform distribution. 

IMSLS_DF, float *df  (Output) 
Degrees of freedom for chi-squared. 

IMSLS_RETURN_USER, float *pvalue  (Output) 
If specified, pvalue returns the probability of a larger chi-squared statistic 
for testing the null hypothesis of a uniform distribution. 

If IMSLS_RUNS is specified:          
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IMSLS_RUNS_EXPECT,  float **runs_expect  (Output) 
The address of a pointer to an internally allocated array of length  
n_run containing the expected number of runs of each length. 

IMSLS_RUNS_EXPECT_USER,  float runs_expect[]  (Output) 
Storage for runs_expect is provided by the user.   
See IMSLS_RUNS_EXPECT. 

If IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is specified:   
IMSLS_EXPECT, float **expect  (Output) 

Expected number of counts for each cell.  This argument is optional only if 
one of IMSLS_PAIRS, IMSLS_DSQUARE, or IMSLS_DCUBE is used. 

Description  

Runs Up Test 
Function imsls_f_randomness_test performs one of four different tests for 
randomness. Optional argument IMSLS_RUNS computes statistics for the runs up test. 
Runs tests are used to test for cyclical trend in sequences of random numbers. If the 
runs down test is desired, each observation should first be multiplied by −1 to change 
its sign, and IMSLS_RUNS called with the modified vector of observations.  
IMSLS_RUNS first tallies the number of runs up (increasing sequences) of each desired 
length. For i = 1, …, r − 1, where r = n_run, runs_count[i] contains the number of 
runs of length i. runs_count[n_run] contains the number of runs of length n_run or 
greater. As an example of how runs are counted, the sequence (1, 2, 3, 1) contains 1 run 
up of length 3, and one run up of length 1. 
After tallying the number of runs up of each length, IMSLS_RUNS computes the  
expected values and the covariances of the counts according to methods given by 
Knuth (1981, pages 65−67). Let R denote a vector of length n_run containing  
the number of runs of each length so that the i-th element of R, ri, contains the count of 
the runs of length i. Let ΣR denote the covariance matrix of R under the null hypothesis 
of randomness, and let μR denote the vector of expected values for R under this null 
hypothesis, then an approximate chi-squared statistic with n_run degrees of freedom is 
given as  

2 1( ) ( )T
R R RR Rχ μ μ−= − ∑ −

 

In general, the larger the value of each element of μR, the better the chi-squared 
approximation. 

Pairs Test 
IMSLS_PAIRS computes the pairs test (or the Good’s serial test) on a hypothesized 
sequence of uniform (0,1) pseudorandom numbers. The test proceeds as follows. 
Subsequent pairs (X(i), X(i + pairs_lag)) are tallied into a k × k matrix, where  
k = n_run. In this tally, element (j, m) of the matrix is incremented, where 
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where l = pairs_lag, and the notation ⎣ ⎦ represents the greatest integer function, ⎣Y⎦ 
is the greatest integer less than or equal to Y, where Y is a real number. If l = 1, then  
i = 1, 3, 5, …, n − 1. If l > 1, then i = 1, 2, 3, …, n − l, where n is the total number of 
pseudorandom numbers input on the current invocation of IMSLS_PAIRS  
(i.e., n = n_observations).  
Given the tally matrix in pairs_count, chi-squared is computed as 
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where e = ∑oij/k2, and oij is the observed count in cell (i, j) (oij = pairs_count(i, j)).  

Because pair statistics for the trailing observations are not tallied on any call, the user 
should call IMSLS_PAIRS with n_observations as large as possible. For 
pairs_lag < 20 and  n_observations = 2000, little power is lost. 

d 2 Test 

IMSLS_DSQAR computes the d2 test for succeeding quadruples of hypothesized 
pseudorandom uniform (0, 1) deviates. The d 2 test is performed as follows. Let X, X2, 
X3, and X4 denote four pseudorandom uniform deviates, and consider 

D2 = (X3 −X1)2 + (X4 − X2)2 

The probability distribution of D2 is given as 
3 4

2 2 2 8Pr( )
3 2
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when D2 ≤ 1, where π denotes the value of pi. If D2 > 1, this probability is given as 
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See Gruenberger and Mark (1951) for a derivation of this distribution.  
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For each succeeding set of 4 pseudorandom uniform numbers input in X, d2 and the 
cumulative probability of d2 (Pr(D2 ≤ d 2)) are computed. The resulting probability is 
tallied into one of k = n_run equally spaced intervals.  
Let n denote the number of sets of four random numbers input (n = the total number of 
observations/4). Then, under the null hypothesis that the numbers input are random 
uniform (0, 1) numbers, the expected value for each element in dsquare_count is  
e = n/k. An approximate chi-squared statistic is computed as 
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where oi = dsquare_count(i) is the observed count. Thus, χ2 has k − 1 degrees of 
freedom, and the null hypothesis of pseudorandom uniform (0, 1) deviates is rejected if 
χ2 is too large. As n increases, the chi-squared approximation becomes better. A useful 
generalization is that e > 5 yields a good chi-squared approximation. 

Triplets Test 
IMSLS_DCUBE computes the triplets test on a sequence of hypothesized pseudorandom 
uniform(0, 1) deviates. The triplets test is computed as follows:  
 
Each set of three successive deviates, X1, X2, and X3, is tallied into one of m3 equal sized 
cubes, where m = n_run. Let i = [mX1] + 1, j = [mX2] + 1, and  
k = [mX3] +  1. For the triplet (X1, X2, X3), dcube_count(i, j, k) is incremented.  

Under the null hypothesis of pseudorandom uniform(0, 1) deviates, the m3 cells are 
equally probable and each has expected value e = n/m3, where n is the number of 
triplets tallied. An approximate chi-squared statistic is computed as 

21
2

, , 0

( )k
ijk

i j k

o e
e

χ
−

=

−
= ∑  

where oijk = dcube_count(i, j, k).  

The computed chi-squared has m3 − 1 degrees of freedom, and the null hypothesis of 
pseudorandom uniform (0, 1) deviates is rejected if χ2 is too large. 

Examples  

Example 1 

The following example illustrates the use of the runs test on 104 pseudo-random 
uniform deviates. In the example, 2000 deviates are generated for each call to 
IMSLS_RUNS. Since the probability of a larger chi-squared statistic is 0.1872, there is 
no strong evidence to support rejection of this null hypothesis of randomness. 

 

#include <imsls.h> 
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#include <stdio.h> 

void main() 

{  

       int nran = 10000, n_run = 6; 

 char *fmt = "%8.1f"; 

 float *x, pvalue, *runs_counts, *runs_expect, chisq, df; 

 imsls_random_seed_set(123457);  

 x = imsls_f_random_uniform(nran, 0); 

 pvalue = imsls_f_randomness_test(nran, x, n_run,  

     IMSLS_CHI_SQUARED, &chisq, 

     IMSLS_DF, &df,  

     IMSLS_RUNS_EXPECT, &runs_expect, 

     IMSLS_RUNS, &runs_counts, &covariances,  

     0); 

 imsls_f_write_matrix("runs_counts", 1, n_run, runs_counts, 0); 

 imsls_f_write_matrix("runs_expect", 1, n_run, runs_expect,  

           IMSLS_WRITE_FORMAT, fmt, 

           0); 

 imsls_f_write_matrix("covariances", n_run, n_run, covariances, 

           IMSLS_WRITE_FORMAT, fmt, 

              0); 

 printf("chisq  =  %f\n", chisq); 

 printf("df     =  %f\n", df); 

 printf("pvalue =  %f\n", pvalue); 

 

} 

Output 
                runs_count   
     1        2        3        4        5        6 
1709.0   2046.0    953.0    260.0     55.0      4.0 
 
                  runs_expect 
     1        2        3        4        5        6 
1667.3   2083.4    916.5    263.8     57.5     11.9 
 
                  covariances 
         1        2        3        4        5        6 
1   1278.2   -194.6   -148.9    -71.6    -22.9     -6.7 
2   -194.6   1410.1   -490.6   -197.2    -55.2    -14.4 
3   -148.9   -490.6    601.4   -117.4    -31.2     -7.8 
4    -71.6   -197.2   -117.4    222.1    -10.8     -2.6 
5    -22.9    -55.2    -31.2    -10.8     54.8     -0.6 
6     -6.7    -14.4     -7.8     -2.6     -0.6     11.7 
chisq   =     8.76514 
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df      =     6.00000 
pvalue  =    0.187225 

Example 2 
The following example illustrates the calculations of the IMSLS_PAIRS statistics when 
a random sample of size 104 is used and the pairs_lag is 1. The results are not 
significant. IMSL routine imsls_f_random_uniform (Chapter 12, “Random Number 
Generation) is used in obtaining the pseudorandom deviates. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

  int nran = 10000, n_run = 10; 

 float *x, pvalue, *pairs_counts, expect, chisq, df; 

 imsls_random_seed_set(123467);  

 x = imsls_f_random_uniform(nran, 0); 

 pvalue = imsls_f_randomness_test(nran, x, n_run,  

     IMSLS_CHI_SQUARED, &chisq, 

     IMSLS_DF, &df,  

     IMSLS_EXPECT, &expect, 

     IMSLS_PAIRS, 5, &pairs_counts,  

     0); 

 imsls_f_write_matrix("pairs_counts", n_run, n_run, pairs_counts, 0); 

 printf("expect =  %8.2f\n", expect); 

 printf("chisq  =  %8.2f\n", chisq); 

 printf("df     =  %8.2f\n", df); 

 printf("pvalue =  %10.4f\n", pvalue); 

} 

Output 
pairs_counts 
      1     2     3     4     5     6     7     8     9     10 
 1   112    82    95   118   103   103   113   84    90     74 
 2   104   106   109   108   101    98   102   92    109    88 
 3    88   111    86   106   112    79   103  105    106   101 
 4    91   110   108   92     88   108   113   93    105   114 
 5   104   105   103   104   101    94    96   87     93   104 
 6    98   104   103   104    79    89    92   104    92   100 
 7   103    91    97   101   116    83   118   118   106    99 
 8   105   105   111    91    93    82   100   104   110    89 
 9    92   102    82   101    94    128  102   110   125    98 
10    79    99   103    98   104    101   93    93    98   105 
  
expect =     99.95 
chisq  =    104.86 
df     =     99.00 
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pvalue =      0.3242 

Example 3 
In the following example, 2000 observations generated via  IMSL routine  
imsls_f_random_uniform (Chapter 12, “Random Number Generation) are input to 
IMSLS_DSQAR in one call. In the example, the null hypothesis of a uniform distribution 
is not rejected. 

 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

 int nran = 2000, n_run = 6; 

 float *x, pvalue, *dsquare_counts, *covariances, expect, chisq, df; 

 imsls_random_seed_set(123457);  

 x = imsls_f_random_uniform(nran, 0); 

 pvalue = imsls_f_randomness_test(nran, x, n_run,  

     IMSLS_CHI_SQUARED, &chisq, 

     IMSLS_DF, &df,  

     IMSLS_EXPECT, &expect, 

     IMSLS_DSQUARE, &dsquare_counts,  

     0); 

 imsls_f_write_matrix("dsquare_counts", 1, n_run, dsquare_counts, 0); 

 printf("expect = %10.4f\n", expect); 

 printf("chisq  = %10.4f\n", chisq); 

 printf("df     = %8.2f\n", df); 

 printf("pvalue = %10.4f\n", pvalue); 

} 

Output 
             dsquare_counts 
    1       2       3       4       5       6 
   87      84      78      76      92      83 
expect   =     83.3333 
chisq    =      2.0560 
df       =      5.00 
pvalue   =      0.8413 

Example 4 
In the following example, 2001 deviates generated by IMSL routine  
imsls_f_random_uniform (Chapter 12, “Random Number Generation) are input to 
IMSLS_DCUBE, and tabulated in 27 equally sized cubes. In the example, the null 
hypothesis is not rejected. 
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#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

  int nran = 2001, n_run = 3; 

 float *x, pvalue, *dcube_counts, expect, chisq, df; 

 imsls_random_seed_set(123457);  

 x = imsls_f_random_uniform(nran, 0); 

 pvalue = imsls_f_randomness_test(nran, x, n_run,  

     IMSLS_CHI_SQUARED, &chisq, 

     IMSLS_DF, &df,  

     IMSLS_EXPECT, &expect, 

     IMSLS_DCUBE, &dcube_counts,  

     0); 

imsls_f_write_matrix("dcube_counts", n_run, n_run, dcube_counts, 0); 

imsls_f_write_matrix("dcube_counts", n_run, n_run,         
&dcube_counts[n_run*n_run], 0); 

imsls_f_write_matrix("dcube_counts", n_run, n_run, 
&dcube_counts[2*n_run*n_run], 0); 

 printf("expect = %10.4f\n", expect); 

 printf("chisq  = %10.4f\n", chisq); 

 printf("df     = %8.2f\n", df); 

 printf("pvalue = %10.4f\n", pvalue); 

} 

Output 
           dcube_counts 

  1      2      3 
1    26  27     24 
2    20  17    32 
3    30 18    21 
 
           dcube_counts 
  1      2      3 
1    20 16    26 
2    22 22    27 
3    30  24    26 
 
           dcube_counts 
 1       2      3 
1    28 30    22 
2    23 24    22 
3    33 30     27 
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expect =     24.7037 
chisq  =     21.7631 
df     =     26.0000 
pvalue =    0.701586 
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Chapter 8: Time Series and 
Forecasting 

Routines 
 ARIMA Models 

Computes least-squares or method of moments estimates  
of parameters arma 511 
Computes maximum likelihood estimates of parameters max_arma 521 
Computes forecasts and 
their associated probability limits arma_forecast 527 
Automatic selection and fitting of a univariate  
autoregressive time series model. auto_uni_ar 532 
Detects and determines outliers and simultaneously estimates  
the model parameters in a time series ts_outlier_identification 537 
Computes forecasts for an outlier contaminated  
time series  ts_outlier_forecast 547 
Automatically identifies time series outliers, determines parameters of a 
multiplicative seasonal ARIMA ( ,0, ) (0, ,0)sp q d×  model and  
produces forecasts that incorporate the effects of outliers  
whose effects persist beyond the end of the series auto_arima 555 
Performs differencing on a time series difference 563 
Estimates the optimum seasonality parameters for a  
time series using an autoregressive model seasonal_fit 576 
Model Construction and Evaluation Utilities 
Performs a Box-Cox transformation box_cox_transform 584 
Sample autocorrelation function autocorrelation 588 
Computes the sample cross correlation function crosscorrelation 593 
Computes the multichannel cross-correlation 
function multi_crosscorrelation 599  
Sample partial autocorrelation function partial_autocorrelation 608 
Lack-of-fit test based on the corrleation function lack_of_fit 611 
Estimates missing values in a time series estimate_missing 614  
GARCH Modeling 
Computes estimates of the parameters of a GARCH(p,q) model garch 618 
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Frequency Domain Modeling 
Performs Kalman filtering and evaluates the likelihood  
function for the state-space model kalman 626 

Usage Notes 
The functions in this chapter assume the time series does not contain any missing 
observations. If missing values are present, they should be set to NaN  
(see Chapter 15, “Utilities”) routine imsls_f_machine), and the routine will return 
an appropriate error message. To enable fitting of the model, the missing values must 
be replaced by appropriate estimates.  

General Methodology 
A major component of the model identification step concerns determining  
if a given time series is stationary. The sample correlation functions  
computed by routines imsls_f_autocorrelation,  
imsls_f_crosscorrelation, imsls_f_multi_crosscorrelation, and 
imsls_f_partial_autocorrelation may be used to diagnose  
the presence of nonstationarity in the data, as well as to indicate the type of 
transformation required to induce stationarity. The family of power transformations 
provided by routine imsls_f_box_cox_transform coupled with the ability to 
difference the transformed data using routine imsls_f_difference affords a 
convenient method of transforming a wide class of nonstationary time series to 
stationarity. 
The “raw” data, transformed data, and sample correlation functions also provide insight 
into the nature of the underlying model. Typically, this information is displayed in 
graphical form via time series plots, plots of the lagged data, and various correlation 
function plots.  
The observed time series may also be compared with time series generated from 
various theoretical models to help identify possible candidates for model fitting. The 
routine imsls_f_random_uniform (Chapter 12, “Random Number Generation) may 
be used to generate a time series according to a specified autoregressive moving 
average model. 

Time Domain Methodology 
Once the data are transformed to stationarity, a tentative model in the time domain is 
often proposed and parameter estimation, diagnostic checking and forecasting are 
performed. 

ARIMA Model (Autoregressive Integrated Moving Average)  
A small, yet comprehensive, class of stationary time-series models consists of the 
nonseasonal ARMA processes defined by 

φ(B) (Wt − μ) = θ(B)At, t ∈ Z 
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where Z = {..., −2, −1, 0, 1, 2, ...} denotes the set of integers, B is the backward shift 
operator defined by BkWt = Wt-k, μ is the mean of Wt, and the following equations are 
true: 

φ(B) = 1 − φ1B − φ2B2 − ... − φpBp, p ≥ 0 

θ(B) = 1 − θ1B − θ2B2 − ... − θqBq, q ≥ 0 

The model is of order (p, q) and is referred to as an ARMA (p, q) model. 
An equivalent version of the ARMA (p, q) model is given by 
 

φ(B) Wt = θ0 + θ(B)At, t ∈ Z 

where θ0 is an overall constant defined by the following: 

0
1

1
p

i
i

θ μ φ
=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑  

See Box and Jenkins (1976, pp. 92−93) for a discussion of the meaning and usefulness 
of the overall constant. 
If the “raw” data, {Zt}, are homogeneous and nonstationary, then differencing using 
imsls_f_difference induces stationarity, and the model is called ARIMA 
(AutoRegressive Integrated Moving Average). Parameter estimation is performed on 
the stationary time series Wt, = ∇dZt , where ∇d = (1 − B)d is the backward difference 
operator with period 1 and order d, d > 0. 
Typically, the method of moments includes argument IMSLS_METHOD_OF_MOMENTS in a 
call to function imsls_f_arma for preliminary parameter estimates. These estimates can 
be used as initial values into the least-squares procedure by including argument 
IMSLS_LEAST_SQUARES in a call to function imsls_f_arma. Other initial estimates 
provided by the user can be used. The least-squares procedure can be used to compute 
conditional or unconditional least-squares estimates of the parameters, depending on the 
choice of the backcasting length. The parameter estimates from either the method of 
moments or least-squares procedures can be input to function imsls_f_arma_forecast  
through the arma_info structure. The functions for preliminary parameter estimation, 
least-squares parameter estimation, and forecasting follow the approach of Box and 
Jenkins (1976, Programs 2−4, pp. 498−509). 

arma 
Computes least-square estimates of parameters for an ARMA model. 
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Synopsis 
#include <imsls.h> 
float *imsls_f_arma (int n_observations, float z[], int p, int q, ..., 0) 
The type double function is imsls_d_arma. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float z[]   (Input) 
Array of length n_observations containing the observations. 

int p   (Input) 
Number of autoregressive parameters. 

int q   (Input) 
Number of moving average parameters. 

Return Value 
Pointer to an array of length 1 + p + q with the estimated constant, AR, and MA 
parameters. If IMSLS_NO_CONSTANT is specified, the 0-th element of this array is 0.0. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_arma (int n_observations, float z[], int p, int q, 

IMSLS_NO_CONSTANT, or 
IMSLS_CONSTANT, 
IMSLS_AR_LAGS, int ar_lags[], 
IMSLS_MA_LAGS,vint ma_lags[], 
IMSLS_METHOD_OF_MOMENTS, or 
IMSLS_LEAST_SQUARES, 
IMSLS_BACKCASTING, int length, float tolerance, 
IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance, 
IMSLS_RELATIVE_ERROR, floatvrelative_error, 
IMSLS_MAX_ITERATIONS,vintvmax_iterations, 
IMSLS_MEAN_ESTIMATE, float *z_mean, 
IMSLS_INITIAL_ESTIMATES, float ar[], float ma[], 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_PARAM_EST_COV, float **param_est_cov, 
IMSLS_PARAM_EST_COV_USER, float param_est_cov[], 
IMSLS_AUTOCOV, float **autocov, 
IMSLS_AUTOCOV_USER, float autocov[], 
IMSLS_SS_RESIDUAL, float *ss_residual, 
IMSLS_RETURN_USER, float *constant, float ar[], float ma[], 
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info, 
0) 
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Optional Arguments 

IMSLS_NO_CONSTANT, or 
IMSLS_CONSTANT 

If IMSLS_NO_CONSTANT is specified, the time series is not centered about its 
mean, z_mean. If IMSLS_CONSTANT, the default, is specified, the time series 
is centered about its mean. 

IMSLS_AR_LAGS, int ar_lags[]   (Input) 
Array of length p containing the order of the autoregressive parameters. The 
elements of ar_lags must be greater than or equal to 1. 
Default: ar_lags = [1, 2, ..., p] 

IMSLS_MA_LAGS, int ma_lags[]   (Input) 
Array of length q containing the order of the moving average parameters. The 
ma_lags elements must be greater than or equal to 1. 
Default: ma_lags = [1, 2, ..., q] 

IMSLS_METHOD_OF_MOMENTS, or 
IMSLS_LEAST_SQUARES 

If IMSLS_METHOD_OF_MOMENTS is specified, the autoregressive and moving 
average parameters are estimated by a method of moments procedure. If 
IMSLS_LEAST_SQUARES is specified, the autoregressive and moving average 
parameters are estimated by a least-squares procedure. 

IMSLS_BACKCASTING, int length, float tolerance   (Input) 
If IMSLS_BACKCASTING is specified, length is the maximum length of 
backcasting and must be greater than or equal to 0. Argument tolerance is 
the tolerance level used to determine convergence of the backcast algorithm. 
Typically, tolerance is set to a fraction of an estimate of the standard 
deviation of the time series. 
Default: length = 10; tolerance = 0.01 × standard deviation of z  

IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance   (Input) 
Tolerance level used to determine convergence of the nonlinear least-squares 
algorithm. Argument convergence_tolerance represents the minimum 
relative decrease in sum of squares between two iterations required to 
determine convergence. Hence, convergence_tolerance must be greater 
than or equal to 0. The default value is max {10-10, eps2/3} for single precision 
and max {10-20, eps2/3} for double precision, where 
eps = imsls_f_machine(4) for single precision and 
eps = imsls_d_machine(4) for double precision. 

IMSLS_RELATIVE_ERROR, float relative_error   (Input) 
Stopping criterion for use in the nonlinear equation solver used in both the 
method of moments and least-squares algorithms. 
Default: relative_error = 100 × imsls_f_machine(4)  
See documentation for function imsls_f_machine (Chapter 15, “Utilities”). 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations allowed in the nonlinear equation solver used 
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in both the method of moments and least-squares algorithms. 
Default: max_iterations = 200 

IMSLS_MEAN_ESTIMATE, float *z_mean   (Input or Input/Output) 
On input, z_mean is an initial estimate of the mean of the time series z. On 
return, z_mean contains an update of the mean. 
If IMSLS_NO_CONSTANT and IMSLS_LEAST_SQUARES are specified, z_mean 
is not used in parameter estimation. 

IMSLS_INITIAL_ESTIMATES, float ar[], float ma[]   (Input) 
If specified, ar is an array of length p containing preliminary estimates of the 
autoregressive parameters, and ma is an array of length q containing 
preliminary estimates of the moving average parameters; otherwise, these are 
computed internally. IMSLS_INITIAL_ESTIMATES is only applicable if 
IMSLS_LEAST_SQUARES is also specified. 

IMSLS_RESIDUAL, float **residual   (Output) 
Address of a pointer to an internally allocated array of length  
n_observations − max (ar_lags [i]) + length containing the residuals 
(including backcasts) at the final parameter estimate point in the first 
n_observations − max (ar_lags [i]) + nb, where nb is  
the number of values backcast. 

IMSLS_RESIDUAL_USER, float residual[]   (Output) 
Storage for array residual is provided by the user. See IMSLS_RESIDUAL. 

IMSLS_PARAM_EST_COV, float **param_est_cov   (Output) 
Address of a pointer to an internally allocated array of size np × np, where 
np = p + q + 1 if z is centered about z_mean, and np = p + q  
if z is not centered. The ordering of variables in param_est_cov is z_mean, 
ar, and ma. Argument np must be 1 or larger. 

IMSLS_PARAM_EST_COV_USER, float param_est_cov[]   (Output) 
Storage for array param_est_cov is provided by the user. See 
IMSLS_PARAM_EST_COV. 

IMSLS_AUTOCOV, float **autocov   (Output) 
Address of a pointer to an array of length p + q + 1 containing the variance 
and autocovariances of the time series z. Argument autocov [0] contains the 
variance of the series z. Argument autocov [k] contains the autocovariance 
of lag k, where k = 1, ..., p + q + 1. 

IMSLS_AUTOCOV_USER, float autocov[]   (Output) 
Storage for array autocov is provided by the user. See IMSLS_AUTOCOV. 

IMSLS_SS_RESIDUAL, float *ss_residual   (Output) 
If specified, ss_residual contains the sum of squares of the random shock, 
ss_residual = residual [1]2 + ... + residual [na]2. 

IMSLS_RETURN_USER, float *constant, float ar[], float ma[]   (Output) 
If specified, constant is the constant parameter estimate, ar is an array of 
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length p containing the final autoregressive parameter estimates, and ma is an 
array of length q containing the final moving average parameter estimates.  

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info   (Output) 
Address of a pointer to an internally allocated structure of type Imsls_f_arma 
that contains information necessary in the call to imsls_forecast. 

Description 
Function imsls_f_arma computes estimates of parameters for a nonseasonal ARMA 
model given a sample of observations, {Wt}, for t = 1, 2, ..., n, where 
n = n_observations. There are two methods, method of moments and least squares, 
from which to choose. The default is method of moments. 
Two methods of parameter estimation, method of moments and least squares, are 
provided. The user can choose the method of moments algorithm with the optional 
argument IMSLS_METHOD_OF_MOMENTS. The least-squares algorithm is used if the 
user specifies IMSLS_LEAST_SQUARES. If the user wishes to use the least-squares 
algorithm, the preliminary estimates are the method of moments estimates by default. 
Otherwise, the user can input initial estimates by specifying optional argument 
IMSLS_INITIAL_ESTIMATES. The following table lists the appropriate optional 
arguments for both the method of moments and least-squares algorithm: 

Method of Moments only Least Squares only Both Method of Moments 
and Least Squares 

IMSLS_METHOD_OF_MOMENTS IMSLS_LEAST_SQUARES IMSLS_RELATIVE_ERROR 
 IMSLS_CONSTANT  

(or IMSLS_NO_CONSTANT) 
IMSLS_MAX_ITERATIONS 

 IMSLS_AR_LAGS IMSLS_MEAN_ESTIMATE 

 IMSLS_MA_LAGS IMSLS_AUTOCOV(_USER) 

 IMSLS_BACKCASTING IMSLS_RETURN_USER 

 IMSLS_CONVERGENCE_TOLERANCE IMSLS_ARMA_INFO 

 IMSLS_INITIAL_ESTIMATES  

 IMSLS_RESIDUAL (_USER)  

 IMSLS_PARAM_EST_COV (_USER)  

 IMSLS_SS_RESIDUAL  

Method of Moments Estimation 
Suppose the time series {Zt} is generated by an ARMA (p, q) model of the form 

φ(B)Zt = θ0 + θ(B)At 

for t ∈ {0, ±1, ±2, ...} 
Let μ̂  = w_mean be the estimate of the mean μ of the time series{Zt}, where  
μ̂  equals the following: 



 

 
 

516 • arma IMSL C Stat Library 

 

 

 

1

for   known
ˆ 1 for   unknown

n

t
t

Z
n

μ μ
μ

μ
=

⎧
⎪= ⎨
⎪⎩

∑  

The autocovariance function is estimated by 
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for k = 0, 1, ..., K, where K = p + q. Note that σ̂ (0) is an estimate of the sample 
variance. 
Given the sample autocovariances, the function computes the method of moments 
estimates of the autoregressive parameters using the extended Yule-Walker equations 
as follows: 
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The overall constant θ0 is estimated by the following: 

0

1

ˆ for 0
ˆ

ˆˆ 1 for 0
p

i
i

p

p

μ
θ

μ φ
=

=⎧
⎪= ⎛ ⎞⎨ − >⎜ ⎟⎪

⎝ ⎠⎩
∑  

The moving average parameters are estimated based on a system of nonlinear equations 
given K = p + q + 1 autocovariances, σ(k) for k = 1, ..., K, and p autoregressive 
parameters φi for i = 1, ..., p. 

Let Z′t = φ(B)Zt. The autocovariances of the derived moving average process 
Z′t = θ(B)At are estimated by the following relation: 
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The iterative procedure for determining the moving average parameters is based on the 
relation 
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where σ(k) denotes the autocovariance function of the original Zt process. 

Let τ = (τ0, τ1, ..., τq)T and f =  (f0, f1, ..., fq)T, where 
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Then, the value of τ at the (i + 1)-th iteration is determined by the following: 
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The estimation procedure begins with the initial value 
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and terminates at iteration i when either ||f i|| is less than relative_error or  
i equals max_iterations. The moving average parameter estimates are obtained 
from the final estimate of τ by setting 
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The random shock variance is estimated by the following: 
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See Box and Jenkins (1976, pp. 498−500) for a description of a function that performs 
similar computations. 

Least-squares Estimation 
Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form, 
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φ(B) (Zt − μ) = θ(B)At for t ∈ {0, ±1, ±2, …} 

where B is the backward shift operator, μ is the mean of Zt, and 
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with p autoregressive and q moving average parameters. Without loss of generality, the 
following is assumed: 

1 ≤ lf (1) ≤ lf (2) ≤ … ≤ lf (p) 

1 ≤ lq (1) ≤ lq (2) ≤ … ≤ lq (q) 

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lq (p) and q′ = lq 
(q). Note that the usual hierarchical model assumes the following: 

lf (i) = i, 1 ≤ i ≤ p  

lq (j) = j, 1 ≤ j ≤ q  

Consider the sum-of-squares function 
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and T is the backward origin. The random shocks {At} are assumed to be independent 
and identically distributed 
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random variables. Hence, the log-likelihood function is given by 
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where f (μ, φ, θ) is a function of μ, φ, and θ. 
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For T = 0, the log-likelihood function is conditional on the past values of both  
Zt and At required to initialize the model. The method of selecting these initial values 
usually introduces transient bias into the model (Box and Jenkins 1976, pp. 210−211). 
For T = ∞, this dependency vanishes, and estimation problem concerns maximization 
of the unconditional log-likelihood function. Box and Jenkins (1976, p. 213) argue that 

( ) ( )2, , / 2 AS μ φ θ σ∞  

dominates 

( )2, , , Al μ φ θ σ
 

The parameter estimates that minimize the sum-of-squares function are called least-
squares estimates. For large n, the unconditional least-squares estimates are 
approximately equal to the maximum likelihood-estimates. 
In practice, a finite value of T will enable sufficient approximation of the unconditional 
sum-of-squares function. The values of [AT] needed to compute  
the unconditional sum of squares are computed iteratively with initial values of  
Zt obtained by back forecasting. The residuals (including backcasts), estimate of 
random shock variance, and covariance matrix of the final parameter estimates also are 
computed. ARIMA parameters can be computed by using imsls_f_difference  
with imsls_f_arma. 

Examples  

Example 1 
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of 
sunspots observed each year from 1749 through 1924. The data set for this example 
consists of the number of sunspots observed from 1770 through 1869. The method of 
moments estimates 

0 1 2 1
ˆ ˆˆ ˆθ ,φ ,φ , and θ

 

for the ARMA(2, 1) model  

0 0 1 2 2 1 1t t t t tz z z A A− − −= θ + φ + φ − θ +
 

where the errors At are independently normally distributed with mean zero and variance 
2
Aσ

 

#include <imsls.h> 
 
void main() 
{ 
    int    p = 2; 
    int    q = 1; 
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    int    i; 
    int    n_observations = 100; 
    int    max_iterations = 0; 
    float  w[176][2]; 
    float  z[100]; 
    float  *parameters; 
    float  relative_error = 0.0; 
 
    imsls_f_data_sets(2, IMSLS_X_COL_DIM,  
                      2, IMSLS_RETURN_USER, w,  
                      0); 
    for (i=0; i<n_observations; i++) z[i] = w[21+i][1]; 
     
    parameters = imsls_f_arma(n_observations, &z[0], p, q, 
                              IMSLS_RELATIVE_ERROR, relative_error, 
                              IMSLS_MAX_ITERATIONS, max_iterations, 
                              0); 
    printf("AR estimates are %11.4f and %11.4f.\n",  
           parameters[1], parameters[2]); 
    printf("MA estimate is %11.4f.\n", parameters[3]); 
} 

Output 
AR estimates are      1.2443 and     -0.5751. 
MA estimate is     -0.1241. 

Example 2 
The data for this example are the same as that for the initial example. Preliminary 
method of moments estimates are computed by default, and the method of least squares 
is used to find the final estimates. Note that at the end of the output, a warning error 
appears. In most cases, this error message can be ignored. There are three general 
reasons this error can occur: 

1. Convergence is declared using the criterion based on tolerance, but the 
gradient of the residual sum-of-squares function is nonzero. This occurs in this 
example. Either the message can be ignored or tolerance can be reduced to 
allow more iterations and a slightly more accurate solution. 

2. Convergence is declared based on the fact that a very small step was taken, 
but the gradient of the residual sum-of-squares function was nonzero. This 
message can usually be ignored. Sometimes, however, the algorithm is 
making very slow progress and is not near a minimum. 

3. Convergence is not declared after 100 iterations. 
Trying a smaller value for tolerance can help determine what caused the error 
message. 

#include <imsls.h> 
 
void main() 
{ 
    int    p = 2; 
    int    q = 1; 
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    int    i; 
    int    n_observations = 100; 
    float  w[176][2]; 
    float  z[100]; 
    float  *parameters; 
    float  tolerance = 0.125; 
 
    imsls_f_data_sets(2, IMSLS_X_COL_DIM,  
                      2, IMSLS_RETURN_USER, w,  
                      0); 
    for (i=0; i<n_observations; i++) z[i] = w[21+i][1]; 
     
    parameters = imsls_f_arma(n_observations, &z[0], p, q, 
                              IMSLS_LEAST_SQUARES,  
                              IMSLS_CONVERGENCE_TOLERANCE, 
                                 tolerance, 
                              0); 
    printf("AR estimates are %11.4f and %11.4f.\n",  
           parameters[1], parameters[2]); 
    printf("MA estimate is %11.4f.\n", parameters[3]); 
 
} 

Output 
*** WARNING  Error IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma.  Least 
***          squares estimation of the parameters has failed to converge. 
***          Increase "length" and/or "tolerance" and/or 
***          "convergence_tolerance". The estimates of the parameters at  
              the 
***          last iteration may be used as new starting values. 
 
AR estimates are      1.3926 and     -0.7329. 
MA estimate is     -0.1375. 

Warning Errors 

IMSLS_LEAST_SQUARES_FAILED Least-squares estimation of the parameters 
has failed to converge. Increase “length” 
and/or “tolerance” and/or 
“convergence_tolerance.” The estimates of 
the parameters at the last iteration may be 
used as new starting values. 

max_arma 
Exact maximum likelihood estimation of the parameters in a univariate ARMA 
(autoregressive, moving average) time series model.  

Synopsis 

#include <imsls.h> 

 float  *imsls f max_arma (int n_obs, float w[], int p, int q,…,0) 
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The type double function is imsls_d_max_arma. 

Required Arguments 

int  n_obs  (Input) 
Number of observations in the time series. 

float w[] (Input) 
Array of length n_obs containing the time series. 

int  p (Input) 
Non-negative number of autoregressive parameters. 

int  q  (Input) 
Non-negative number of moving average parameters. 

Return Value 
Pointer to an array of length 1+p+q with the estimated constant, AR and MA 
parameters. If no value can be computed, NULL is returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 
float   *imsls_f_max_arma (int n_obs, float w[], int p, int q, 

IMSLS_INITIAL_ESTIMATES, float init_ar[] float init_ma[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_MAX_ITERATIONS, int maxit, 
IMSLS_LOG_LIKELIHOOD, float *log_likeli, 
IMSLS_VAR_NOISE, float *avar, 
IMSLS_ARMA_INFO, Imsls_f_arma **arma_info, 
IMSLS_MEAN_ESTIMATE, float *w_mean, 
IMSLS_RETURN_USER, float *constant, float ar[], float ma[], 
0) 

Optional Arguments 

IMSLS_INITIAL_ESTIMATES, float init ar[], float init ma[] (Input)  
If specified, init ar is an array of length p containing preliminary estimates 
of the autoregressive parameters, and init ma is an array of length q 
containing preliminary estimates of the moving average parameters; 
otherwise, they are computed internally. If p=0 or q=0, then the corresponding 
arguments are ignored. 

IMSLS_PRINT LEVEL, int iprint (Input) 
Printing option: 
0 — No printing. 
1 — Prints final results only. 
2  — Prints intermediate and final results. 
Default: iprint = 0 

IMSLS_MAX_ITERATIONS, int maxit (Input) 
Maximum number of estimation iterations. 
Default: maxit = 300 

IMSLS_VAR_NOISE, float *avar (Output) 
Estimate of innovation variance.  
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IMSLS_LOG_LIKELIHOOD, float *log_likeli (Output) 
Value of  -2*(ln(likelihood)) for the fitted model. 

IMSLS_ARMA_INFO, Imsls_f_arma **arma_info (Output) 
Address of a pointer to an internally allocated structure of type Imsls_f_arma 
that contains information necessary in the call to 
imsls_f_arma_forecast. 

IMSLS_MEAN_ESTIMATE, float *w_mean (Input/Output) 
Estimate of the mean of the time series w. On return, w_mean contains an 
update of the mean.  
Default: Time series w is centered about its sample mean.  

IMSLS_RETURN_USER, float *constant, float ar[], float ma[] (Output) 
If specified, constant is the constant parameter estimate, ar is an array of 
length p containing the final autoregressive parameter estimates, and ma is an 
array of length q containing the final moving average parameter estimates. 

Description 
The function imsls_f_max_arma is derived from the maximum likelihood estimation 
algorithm described by Akaike, Kitagawa, Arahata and Tada (1979), and the 
XSARMA routine published in the TIMSAC-78 Library. 
Using the notation developed in the Time Domain Methodology at the beginning of 
this chapter, the stationary time series tW with mean μ  can be represented by the 
nonseasonal autoregressive moving average (ARMA) model by the following 
relationship: 

( )( ) ( )t tB W B aφ μ θ− =
 

where 

{ , 2, 1,0,1,2, },t ZZ∈ = − −" "
 

B is the backward shift operator defined by k
t t kB W W −= , 

2
1 2( ) 1 , 0,p

pB B B B pφ φ φ φ= − − − − ≥"
  

and  
2

1 2( ) 1 , 0.q
qB B B B qθ θ θ θ= − − − − ≥"

 

Function imsls_f_max_arma estimates the AR coefficients 1 2, , , pφ φ φ" and the MA 
coefficients 1 2, , , qθ θ θ" using maximum likelihood estimation.  

Function imsls_f_max_arma checks the initial estimates for both the autoregressive 
and moving average coefficients to ensure that they represent a stationary and 
invertible series respectively.   
If  
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1 2, , , pφ φ φ"
  

are the initial estimates for a stationary series then all (complex) roots of the following 
polynomial will fall outside the unit circle: 

2
1 21 .p

pz z zφ φ φ− − − −"
 

If  

1 2, , , qθ θ θ"
 

are initial estimates for an invertible series then all (complex) roots of the polynomial 
2

1 21 q
qz z zθ θ θ− − − −"

 

will fall outside the unit circle. 
Initial values for the AR and MA coefficients can be supplied by vectors init_ar and 
init_ma. Otherwise, estimates are computed internally by the method of moments. 
imsls_f_max_arma computes the roots of the associated polynomials.  If the AR 
estimates represent a non-stationary series, imsls_f_max_arma issues a warning 
message and replaces init_ar with initial values that are stationary. If the MA 
estimates represent a non-invertible series, imsls_f_max_arma issues a terminal 
error, and new initial values have to be sought. 
imsls_f_max_arma also validates the final estimates of the AR coefficients to ensure 
that they too represent a stationary series.  This is done to guard against the possibility 
that the internal log-likelihood optimizer converged to a non-stationary solution.  If 
non-stationary estimates are encountered, imsls_f_max_arma issues a fatal error 
message.   Routines imsls_error_options and imsls_error_code (see Chapter 
15, Utilities) can be used to verify that the stationarity condition was met. 
For model selection, the ARMA model with the minimum value for AIC might be 
preferred, 

( )+2 p+qAIC = log_likeli
 

Function imsls_f_max_arma can also handle white noise processes, i.e. ARMA(0,0) 
Processes. 

Examples  

Example 1 

Consider the Wolfer Sunspot data (Anderson 1971, p. 660) consisting of the number of 
sunspots observed each year from 1770 through 1869. In this example, 
imsls_f_max_arma is used to fit the following ARMA(2,1) model: 

     1 1 2 2 1 1t t t t tw w w a aφ φ θ− − −= + + −� � � , 
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with  :t tw w μ= −�  ,  μ  the sample mean of the time series { }tw . 

For these data, imsls_f_max_arma calculated the following model: 

   1 2 11.23 0.56 0.38t t t t tw w w a a− − −= − + +� � � . 

Defining the overall constant 0φ  by  0 1
: (1 )p

ii
φ μ φ

=
= − ∑ , we obtain the following 

equivalent representations: 

   0 1 1 2 2 1 1 ,t t t t tw w w a aφ φ φ θ− − −= + + + −   

and 

   1 2 115.73 1.23 0.56 0.38 .t t t t tw w w a a− − −= + − + +   
#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
void main() 
{ 
  int i; 
  int n_obs = 100; 
  int p = 2, q = 1; 
  float z[176][2]; 
  float w[100]; 
  float *parameters = NULL; 
  float avar, log_likeli; 
 
  /* get wolfer sunspot data */ 
  imsls_f_data_sets (2, IMSLS_X_COL_DIM, 2, 
                     IMSLS_RETURN_USER, w, 
                     0); 
                      
  for (i=0; i<n_obs; i++) 
      w[i] = z[21+i][1]; 
 
  parameters = imsls_f_max_arma (n_obs, w, p, q, 
                       IMSLS_MAX_ITERATIONS, 12000, 
                       IMSLS_VAR_NOISE, &avar, 
                       IMSLS_LOG_LIKELIHOOD, &log_likeli, 
                       0); 
 
  printf("AR estimates are %11.4f and %11.4f.\n", 
          parameters[1], parameters[2]); 
  printf("MA estimate is %11.4f.\n", parameters[3]); 
  printf("Constant estimate is %11.4f.\n", parameters[0]); 
  printf("-2*ln(Maximum Log Likelihood) = %11.4f.\n", log_likeli); 
  printf("White noise variance = %11.4f.\n", avar); 
   
                          
  if (parameters) 
  { 
     free(parameters); 
     parameters = NULL; 
  } 
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  return; 
} 

 

Output 
 

AR estimates are      1.2273 and     -0.5626. 
MA estimate is     -0.3808. 
Constant estimate is     15.7508. 
-2*ln(Maximum Log Likelihood) =    539.5843. 
White noise variance =    214.5020. 

 

Example 2 

This is the same as  

Example 1, but now initial values for the AR and MA parameters are explicitly given. 

 
#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
void main() 
{ 
  int i; 
  int n_obs = 100; 
  int p = 2, q = 1; 
  float z[176][2]; 
  float w[100]; 
  float parameters[4]; 
  float avar, log_likeli; 
  float init_ar[2] = {1.244e0, -0.575e0}; 
  float init_ma[1] = {-0.1241e0}; 
 
 
  /* get wolfer sunspot data */ 
  imsls_f_data_sets (2, IMSLS_X_COL_DIM, 2, 
                     IMSLS_RETURN_USER, w, 
                     0); 
                      
  for (i=0; i<n_obs; i++) 
      z[i] = w[21+i][1]; 
 
  imsls_f_max_arma (n_obs, w, p, q, 
                       IMSLS_MAX_ITERATIONS, 12000, 
                       IMSLS_VAR_NOISE, &avar, 
                       IMSLS_LOG_LIKELIHOOD, &log_likeli, 
                       IMSLS_INITIAL_ESTIMATES, init_ar, init_ma, 
                       IMSLS_RETURN_USER, &parameters[0], &parameters[1], 
                                          &parameters[3], 
                       0); 
 
  printf("AR estimates are %11.4f and %11.4f.\n", 
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          parameters[1], parameters[2]); 
  printf("MA estimate is %11.4f.\n", parameters[3]); 
  printf("Constant estimate is %11.4f.\n", parameters[0]); 
  printf("-2*ln(Maximum Log Likelihood) = %11.4f.\n", log_likeli); 
  printf("White noise variance = %11.4f.\n", avar); 
   
   
  return; 
} 

 

Output 
 

AR estimates are      1.2273 and     -0.5623. 
MA estimate is     -0.3804. 
Constant estimate is     15.7373. 
-2*ln(Maximum Log Likelihood) =    539.5843. 
White noise variance =    214.5052. 

arma_forecast 
Computes forecasts and their associated probability limits for an ARMA model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, int n_predict, 

..., 0) 
The type double function is imsls_d_arma_forecast. 

Required Arguments 

Imsls_f_arma *arma_info   (Input) 
Pointer to a structure of type Imsls_f_arma that is passed from the 
imsls_f_arma function. 

int n_predict   (Input) 
Maximum lead time for forecasts. Argument n_predict must be greater than 
0. 

Return Value 
Pointer to an array of length n_predict × (backward_origin + 3) containing the 
forecasts up to n_predict steps ahead and the information necessary to obtain 
pairwise confidence intervals. More information is given in the description of argument 
IMSLS_RETURN_USER. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_arma_forecast (Imsls_f_arma *arma_info, int n_predict, 

IMSLS_CONFIDENCE, float confidence, 
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IMSLS_BACKWARD_ORIGIN, int backward_origin, 
IMSLS_RETURN_USER, float forecasts[], 
0) 

Optional Arguments 

IMSLS_CONFIDENCE, float confidence   (Input) 
Value in the exclusive interval (0, 100) used to specify the confidence 
percent probability limits of the forecasts. Typical choices for confidence 
are 90.0, 95.0, and 99.0. 
Default: confidence = 95.0 

IMSLS_BACKWARD_ORIGIN, int backward_origin   (Input) 
If specified, the maximum backward origin. Argument backward_origin 
must be greater than or equal to 0 and less than or equal to 
n_observations − max (maxar, maxma), where maxar = max (ar_lags 
[i]), maxma = max (ma_lags [j]), and n_observations = the number of 
observations in the series, as input in function imsls_f_arma. Forecasts at 
origins n_observations − backward_origin through n_observations 
are generated. 
Default: backward_origin = 0 

IMSLS_RETURN_USER, float forecasts[]   (Output) 
If specified, a user-specified array of length  
n_predict × (backward_origin + 3) as defined below. 

Column Content 
J forecasts for lead times l = 1, ..., n_predict at 

origins 
n_observations − backward_origin − 1 + j, 
where j = 0, ..., backward_origin 

backward_origin + 2 deviations from each forecast that give the 
confidence percent probability limits 

backward_origin + 3 psi weights of the infinite order moving average 
form of the model 

If specified, the forecasts for lead times l = 1, ..., n_predict at origins 
n_observations − backward_origin − 1 + j, where j = 1, ..., 
backward_origin + 1. 

Description 
The Box-Jenkins forecasts and their associated probability limits for a nonseasonal 
ARMA model are computed given a sample of  n = n_observations {Zt} for  
t = 1, 2, ..., n, where n_observations = the number of observations in the series, as 
input in function imsls_f_arma. 
Suppose the time series {Zt} is generated by a nonseasonal ARMA model of the form 

φ(B)Zt = θ0 + θ(B)At 



 
 
 
 

 
 

Chapter 8: Time Series and Forecasting arma_forecast • 529  

 

 

 

for t ∈ {0, ±1, ±2, ...}, where B is the backward shift operator, θ0 is the constant, and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

2
2

2
1

1

1

1

1

...

...

l l p
p

l l q

l

l
q

B B B B

B B B B

φ φ

θ θ

φ

θ

φ = − φ − φ − − φ

θ = − θ − θ − − θ  

with p autoregressive and q moving average parameters. Without loss of generality, the 
following is assumed: 

1 ≤ lf (1) ≤ lf (2) ≤ … ≤ lf (p) 

1 ≤ lq (1) ≤ lq (2) ≤ … ≤ lq (q) 

so that the nonseasonal ARMA model is of order (p′, q′), where p′ = lq(p) and  
q′ = lq(q). Note that the usual hierarchical model assumes the following: 

lf (i) = i, 1 ≤ i ≤ p 

lq (j) = j, 1 ≤ j ≤ q 

The Box-Jenkins forecast at origin t for lead time l of Zt+1 is defined in terms of the 
difference equation 

( ) ( ) ( )

[ ] ( ) [ ] ( ) ( )

0 1 1

1 11 1

ˆ ...

... ...

t pt l l t l l p

t l t l t l l qt l l t l l q

Z l Z Z

A A A A A

φ φ

θ θ

+ − + −

+ + + −+ − θ + −

= θ + φ + + φ

+ − θ − − − θ − − θ

⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

where the following is true: 

[ ]
( )

for 0, 1, 2, ...
ˆ for 1, 2, ...

t k

t k

t

Z k
Z

Z k k
+

+

= − −⎧⎪= ⎨
=⎪⎩  

[ ] ( )1
ˆ 1 for 0, 1, 2, ...

0 for 1, 2, ...
t k t k

t k

Z Z k
A

k
+ + −

+

⎧ − = − −⎪= ⎨
=⎪⎩  

The 100(1 − α) percent probability limits for Zt+l are given by 

( )
1/ 2

1
2

1/ 2
1

ˆ 1
l

t j A
j

Z l z ψ σ
−

=

⎧ ⎫
± +⎨ ⎬

⎩ ⎭
∑  

where z(1-a/2) is the 100(1 − α/2) percentile of the standard normal distribution 
2
Aσ
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(returned from imsls_f_arma) and 

{ }2
jψ

 

are the parameters of the random shock form of the difference equation. Note that the 
forecasts are computed for lead times l = 1, 2, ..., L at origins  
t = (n − b), (n − b + 1), ..., n, where L = n_predict and b = backward_origin. 
The Box-Jenkins forecasts minimize the mean-square error 

( )
2ˆ

t l tE Z Z l+
⎡ ⎤−⎣ ⎦  

Also, the forecasts can be easily updated according to the following equation: 

( ) ( )1 1
ˆ ˆ 1t t l tZ l Z l Aψ+ += + +

 

This approach and others are discussed in Chapter 5: “Forecasting” of Box and Jenkins 
(1976). 

Example 
Consider the Wolfer Sunspot Data (Anderson 1971, p. 660) consisting of the number of 
sunspots observed each year from 1749 through 1924. The data set for this example 
consists of the number of sunspots observed from 1770 through 1869. Function 
imsls_f_arma_forecast computes forecasts and 95-percent probability limits for 
the forecasts for an ARMA(2, 1) model fit using function imsls_f_max_arma with 
the method of moments option. With  backward_origin = 3, columns zero through 
three of forecasts provide forecasts given the data through 1866, 1867, 1868, and 
1869, respectively. Column four gives the deviations from the forecast for computing 
probability limits, and column six gives the psi weights, which can be used to update 
forecasts when more data is available. For example, the forecast for the 102nd 
observation (year 1871) given the data through the 100th observation (year 1869) is 
77.21; and 95-percent probability limits are given by 77.21 ∓ 56.30. After observation 
101 ( Z101 for year 1870) is available, the forecast can be updated by using 

( )
1/ 2

1
2

/ 2
1

ˆ 1
l

t j A
j

Z l zα ψ σ
−

=

⎧ ⎫
± +⎨ ⎬

⎩ ⎭
∑  

with the psi weight (ψ1 = 1.37) and the one-step-ahead forecast error for observation 
101 (Z101 − 83.72) to give the following: 

77.21 + 1.37 × (Z101 − 83.72) 

Since this updated forecast is one step ahead, the 95-percent probability limits are now 
given by the forecast ∓ 33.22. 

#include <imsls.h> 
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void main() 
{ 
    int    p = 2; 
    int    q = 1; 
    int    i; 
    int    n_observations = 100; 
    int    max_iterations = 0; 
    int    n_predict = 12; 
    int    backward_origin = 3; 
    float  w[176][2]; 
    float  z[100]; 
    float  *parameters; 
    float  rel_error = 0.0; 
    float  *forecasts; 
    Imsls_f_arma *arma_info; 
 
    char   *col_labels[] = { 
           "Lead Time", 
           "Forecast From 1866", 
           "Forecast From 1867", 
           "Forecast From 1868", 
           "Forecast From 1869", 
           "Dev. for Prob. Limits", 
           "Psi"}; 
 
    imsls_f_data_sets(2, IMSLS_X_COL_DIM,  
                      2, IMSLS_RETURN_USER, w,  
                      0); 
    for (i=0; i<n_observations; i++) z[i] = w[21+i][1]; 
     
    parameters = imsls_f_arma(n_observations, &z[0], p, q, 
                              IMSLS_RELATIVE_ERROR, 
                                 rel_error, 
                              IMSLS_MAX_ITERATIONS, 
                                 max_iterations, 
                              IMSLS_ARMA_INFO, 
                                 &arma_info, 
                              0); 
    printf("Method of Moments initial estimates:\n"); 
    printf("AR estimates are %11.4f and %11.4f.\n",  
           parameters[1], parameters[2]); 
    printf("MA estimate is %11.4f.\n", parameters[3]); 
 
    forecasts = imsls_f_arma_forecast(arma_info, n_predict, 
                              IMSLS_BACKWARD_ORIGIN, 
                                 backward_origin, 
                              0); 
   
    imsls_f_write_matrix("* * * Forecast Table * * *\n", 
                         n_predict, backward_origin+3, 
                         forecasts, 
                         IMSLS_COL_LABELS, col_labels, 
                         IMSLS_WRITE_FORMAT, "%11.4f", 
                         0); 



 

 
 

532 • auto_uni_ar IMSL C Stat Library 

 

 

 

} 

Output 
Method of Moments initial estimates: 
AR estimates are      1.2443 and     -0.5751. 
MA estimate is     -0.1241. 
  
                     * * * Forecast Table * * * 
 
Lead Time  Forecast From  Forecast From  Forecast From  Forecast From 
                    1866           1867           1868           1869 
        1        18.2833        16.6151        55.1893        83.7196 
        2        28.9182        32.0189        62.7606        77.2092 
        3        41.0101        45.8275        61.8922        63.4608 
        4        49.9387        54.1496        56.4571        50.0987 
        5        54.0937        56.5623        50.1939        41.3803 
        6        54.1282        54.7780        45.5268        38.2174 
        7        51.7815        51.1701        43.3221        39.2965 
        8        48.8417        47.7072        43.2631        42.4582 
        9        46.5335        45.4736        44.4577        45.7715 
       10        45.3524        44.6861        45.9781        48.0758 
       11        45.2103        44.9909        47.1827        49.0371 
       12        45.7128        45.8230        47.8072        48.9080 
  
Lead Time  Dev. for Prob.          Psi 
                   Limits              
        1         33.2179       1.3684 
        2         56.2980       1.1274 
        3         67.6168       0.6158 
        4         70.6432       0.1178 
        5         70.7515      -0.2076 
        6         71.0869      -0.3261 
        7         71.9074      -0.2863 
        8         72.5337      -0.1687 
        9         72.7498      -0.0452 
       10         72.7653       0.0407 
       11         72.7779       0.0767 
       12         72.8225       0.0720 

auto_uni_ar 
Automatic selection and fitting of a univariate autoregressive time series model. The 
lag for the model is automatically selected using Akaike’s information criterion (AIC). 
Estimates of the autoregressive parameters for the model with minimum AIC are 
calculated using method of moments, method of least squares, or maximum likelihood. 

Synopsis 

#include  <imsls.h> 

float  *imsls_f_auto_uni_ar(int n_obs, float z[], int maxlag, 
                   int *p,…,0) 

The type double function is imsls_d_auto_uni_ar. 
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Required Arguments 

int  n_obs  (Input) 
Number of observations in the time series. 

float z[]  (Input) 
Array of length n_obs containing the stationary time series. 

int  maxlag  (Input) 
Maximum number of autoregressive parameters requested. It is required that 
1≤ maxlag ≤ n_obs/2. 

int  *p  (Output) 
Number of autoregressive parameters in the model with minimum AIC. 

Return Value 
Vector of length 1+ maxlag containing the estimates for the constant and the 
autoregressive parameters in the model with minimum AIC. The estimates are located 
in the first  1+ p locations of this array. 

Synopsis with Optional Arguments 

#include <imsls.h> 

float   *imsls_f_auto_uni_ar (int n_obs, float z[], int maxlag, 
int *p, 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_MAX_ITERATIONS, int maxit, 
IMSLS_METHOD, int method, 
IMSLS_VAR_NOISE, float *avar, 
IMSLS_AIC, float *aic, 
IMSLS_MEAN_ESTIMATE, float *z_mean, 
IMSLS_RETURN_USER, float *constant, float ar[], 
0) 

Optional Arguments 

IMSLS_PRINT_LEVEL, int iprint (Input) 
Printing option: 
0 — No printing. 
1 — Prints final results only. 
2 — Prints intermediate and final results. 
Default: iprint = 0 

IMSLS_MAX_ITERATIONS, int maxit (Input) 
Maximum number of estimation iterations. 
Default: maxit = 300 

IMSLS_METHOD, int method (Input) 
Estimation method option: 
0 — Method of moments 
1 — Method of least squares realized through Householder transformations 
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2 — Maximum likelihood 
Default: method = 1 

IMSLS_VAR_NOISE, float *avar (Output) 
Estimate of innovation variance.  

IMSLS_AIC, float *aic  (Output) 
Minimum AIC. 

IMSLS_MEAN_ESTIMATE, float *z_mean (Input/Output) 
Estimate of the mean of the time series z. On return, z_mean contains an 
update of the mean.  
Default: Time series z is centered about its sample mean. 

IMSLS_RETURN_USER, float *constant, float ar[] (Output) 
If specified, constant is the constant parameter estimate, ar is an array of 
length maxlag containing the final autoregressive parameter estimates in its 
first p locations. 

Description 
Function auto_uni_ar automatically selects the order of the AR model that best fits 
the data and then computes the AR coefficients. The algorithm used in 2auto_uni_ar 
is derived from the work of Akaike, H., et. al (1979) and Kitagawa and Akaike (1978). 
This code was adapted from the UNIMAR procedure published as part of the 
TIMSAC-78 Library. 
The best fit AR model is determined by successively fitting AR models with 0, 1, 2, ..., 
maxlag autoregressive coefficients.  For each model, Akaike’s Information Criterion 
(AIC) is calculated based on the formula 

2 ln( ) 2AIC likelihood= − + p  

Function 2auto_uni_ar uses the approximation to this formula developed by Ozaki 
and Oda (1979), 

( ) ( ) ( ) ( )( )2ˆln 2 ln 2 1 ,AIC σ π= − + + − +n_obs maxlag p n_obs maxlag
 

where  
2σ̂  is an estimate of the residual variance of the series, commonly known in 

time series analysis as the innovation variance. 
The best fit model is the model with minimum AIC.  If the number of parameters in 
this model is equal to the highest order autoregressive model fitted, i.e., p=maxlag, 
then a model with smaller AIC might exist for larger values of maxlag.  In this case, 
increasing maxlag to explore AR models with additional autoregressive parameters 
might be warranted. 
If method = 0, estimates of the autoregressive coefficients for the model with 
minimum AIC are calculated using method of moments.  If method =1, the 
coefficients are determined by the method of least squares applied in the form 
described by Kitagawa and Akaike (1978). Otherwise, if method =2, the coefficients 
are estimated using maximum likelihood. 
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Example 
Consider the Wolfer Sunspot data (Anderson 1971, p. 660) consisting of the number of 
sunspots observed each year from 1770 through 1869. In this example, 
imsls_f_auto_uni_ar found the minimum AIC fit is an autoregressive model with 
3 lags: 

1 1 2 2 3 3 ,t t t t tw w w w aφ φ φ− − −= + + +� � � �
 

where   

: ,t tw w μ= −�
   

μ the sample mean of the time series { }tw . Defining the overall constant 0φ  by  
3

0 1
: (1 )ii

φ μ φ
=

= − ∑ , we obtain the following equivalent representation: 

0 1 1 2 2 3 3 .t t t t tw w w w aφ φ φ φ− − −= + + + +
 

The example computes estimates for 0 1 2 3, , ,φ φ φ φ  for every of the three parameter 
estimation methods available. 

 
#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
void main() 
{ 
  int i; 
  int maxlag = 20; 
  int n_obs = 100; 
  int p; 
  float w[176][2]; 
  float z[100]; 
  float *parameters = NULL; 
  float avar, aic, constant; 
  float ar[20]; 
 
  /* get wolfer sunspot data */ 
  imsls_f_data_sets (2, IMSLS_X_COL_DIM, 2, 
                     IMSLS_RETURN_USER, w, 
                     0); 
                      
  for (i=0; i<n_obs; i++) 
      z[i] = w[21+i][1]; 
   
  /* Compute AR parameters for minimum AIC by method of moments */ 
   
  printf("\n\nAIC Automatic Order selection\n"); 
  printf("AR coefficients estimated using method of moments\n"); 
   
  parameters = imsls_f_auto_uni_ar(n_obs, z, maxlag, &p, 
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                                   IMSLS_VAR_NOISE, &avar, 
                                   IMSLS_METHOD, 0, 
                                   IMSLS_AIC, &aic, 
                                   0); 
 
  printf("Order selected: %d\n", p); 
  printf("AIC =  %11.4f,  Variance = %11.4f\n", aic, avar); 
  printf("Constant estimate is %11.4f.\n", parameters[0]); 
  imsls_f_write_matrix("Final AR coefficients estimated by method of 
moments",  
           p, 1, &parameters[1], 0); 
                         
  if (parameters) 
  { 
     free(parameters); 
     parameters = NULL; 
  } 
   
  /* Compute AR parameters for minimum AIC by method of least squares */ 
   
  printf("\n\nAIC Automatic Order selection\n"); 
  printf("AR coefficients estimated using method of least squares\n"); 
   
  imsls_f_auto_uni_ar(n_obs, z, maxlag, &p, 
                      IMSLS_VAR_NOISE, &avar, 
                      IMSLS_METHOD, 1, 
                      IMSLS_AIC, &aic, 
                      IMSLS_RETURN_USER, &constant, ar, 
                      0); 
 
  printf("Order selected: %d\n", p); 
  printf("AIC =  %11.4f,  Variance = %11.4f\n", aic, avar); 
  printf("Constant estimate is %11.4f.\n", constant); 
  imsls_f_write_matrix("Final AR coefficients estimated by method of least 
squares", \ 
                     p, 1, ar, 0); 
   
  /* Compute AR parameters for minimum AIC by maximum likelihood estimation 
*/ 
   
  printf("\n\nAIC Automatic Order selection\n"); 
  printf("AR coefficients estimated using maximum likelihood\n"); 
   
  imsls_f_auto_uni_ar(n_obs, z, maxlag, &p, 
                      IMSLS_VAR_NOISE, &avar, 
                      IMSLS_METHOD, 2, 
                      IMSLS_AIC, &aic, 
                      IMSLS_RETURN_USER, &constant, ar, 
                      0); 
 
  printf("Order selected: %d\n", p); 
  printf("AIC =  %11.4f,  Variance = %11.4f\n", aic, avar); 
  printf("Constant estimate is %11.4f.\n", constant); 
  imsls_f_write_matrix("Final AR coefficients estimated by maximum 
likelihood", \ 
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                   p, 1, ar, 0);                        
 
 
  return; 
} 
 

Output 
 
AIC Automatic Order selection 
AR coefficients estimated using method of moments 
Order selected: 3 
AIC =     554.0114,  Variance =    287.2694 
Constant estimate is     13.7098. 
  
Final AR coefficients estimated by method of moments 
                    1       1.368 
                    2      -0.738 
                    3       0.078 
 
 
              AIC Automatic Order selection 
AR coefficients estimated using method of least squares 
Order selected: 3 
AIC =     554.0114,  Variance =    144.7149 
Constant estimate is      9.8934. 
  
Final AR coefficients estimated by method of least squares 
                    1       1.604 
                    2      -1.024 
                    3       0.209 
 
 
AIC Automatic Order selection 
AR coefficients estimated using maximum likelihood 
Order selected: 3 
AIC =     554.0114,  Variance =    218.8337 
Constant estimate is     11.3902. 
  
Final AR coefficients estimated by maximum likelihood 
                    1       1.553 

2 -1.001 
3  0.205 

ts_outlier_identification 
Detects and determines outliers and simultaneously estimates the model parameters in 
a time series whose underlying outlier free series follows a general seasonal or 
nonseasonal ARMA model. 

Synopsis 
#include <imsls.h> 
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float  *imsls_f_ts_outlier_identification (int n_obs, int model[],  
float w[],…,0) 

The type double function is imsls_d_ts_outlier_identification. 

Required Arguments 

int n_obs (Input) 
Number of observations in the time series. 

int model[] (Input) 
Vector of length 4 containing the numbers p, q, s, d of the 
ARIMA ( ,0, ) (0, ,0)sp q d×  model the outlier free series is following. 

float w[] (Input) 
An array of length n_obs containing the time series. 

Return Value 
Pointer to an array of length n_obs containing the outlier free time series.  
If an error occurred, NULL is returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 

float  *imsls_f_ts_outlier_identification (int n_obs, 
int model[], float w[],  
IMSLS_RETURN_USER, float x[], 
IMSLS_DELTA, float delta, 
IMSLS_CRITICAL, float critical, 
IMSLS_EPSILON, float epsilon, 
IMSLS_RELATIVE_ERROR, float relative_error, 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_RESIDUAL_SIGMA, float *res_sigma, 
IMSLS_NUM_OUTLIERS, int *num_outliers, 
IMSLS_OUTLIER_STATISTICS, int **outlier_stat, 
IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[], 
IMSLS_TAU_STATISTICS, float **tau_stat, 
IMSLS_TAU_STATISTICS_USER, float tau_stat[], 
IMSLS_OMEGA_WEIGHTS, float **omega, 
IMSLS_OMEGA_WEIGHTS_USER, float omega[], 
IMSLS_ARMA_PARAM, float **parameters, 
IMSLS_ARMA_PARAM_USER, float parameters[], 
IMSLS_AIC, float *aic, 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float x[]  (Output) 

A user supplied array of length n_obs containing the outlier free series. 
IMSLS_DELTA, float delta (Input) 

The dampening effect parameter used in the detection of a Temporary 



 
 
 
 

 
 

Chapter 8: Time Series and Forecasting ts_outlier_identification • 539  

 

 

 

Change Outlier (TC), 0<delta < 1.  
Default: delta = 0.7 

IMSLS_CRITICAL, float critical  (Input) 
Critical value used as a threshold for outlier detection, critical > 0. 
Default: critical = 3.0 

IMSLS_EPSILON, float epsilon  (Input) 
Positive tolerance value controlling the accuracy of parameter estimates 
during outlier detection. 
Default: epsilon = 0.001 

IMSLS_RELATIVE_ERROR, float relative_error (Input) 
Stopping criterion for the nonlinear equation solver used in function 
imsls_f_arma. 
Default:  relative_error = 1010− . 

IMSLS_RESIDUAL, float **residual  (Output) 
Address of a pointer to an internally allocated array of length n_obs 
containing the residuals for the outlier free series. 

IMSLS_RESIDUAL_USER, float residual[]  (Output) 
Storage for array residual is provided by the user. See IMSLS_RESIDUAL.  

IMSLS_RESIDUAL_SIGMA, float *res_sigma  (Output) 
Residual standard error of the outlier free series. 

IMSLS_NUM_OUTLIERS, int *num_outliers  (Output) 
The number of outliers detected. 

IMSLS_OUTLIER_STATISTICS, int **outlier_stat  (Output) 
Address of a pointer to an internally allocated array of length 
num_outliers × 2 containing  outlier statistics.  The first column contains 
the time at which the outlier was observed (t=1,2,...,n_obs) and the second 
column contains an identifier indicating the type of outlier observed.   
Outlier types fall into one of five categories:  

0 Innovational Outliers (IO) 

1 Additive outliers (AO) 

2 Level Shift Outliers (LS) 

3 Temporary Change Outliers (TC) 

4 Unable to Identify (UI). 

  Use IMSLS_NUM_OUTLIERS to obtain num_outliers, the number of 
detected outliers.  
If num_outliers = 0, NULL is returned.  

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[]  (Output) 
A user allocated array of length n_obs × 2 containing outlier statistics in the 
first num_outliers locations.  Use IMSLS_NUM_OUTLIERS to obtain the 
number of outliers, num_outliers, detected by 
ts_outlier_identification. See IMSLS_OUTLIER_STATISTICS. 
If num_outliers = 0, outlier_stat stays unchanged. 
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IMSLS_TAU_STATISTICS, float **tau_stat  (Output) 
Address of a pointer to an internally allocated array of length num_outliers 
containing the t value for each detected outlier.  
If num_outliers = 0, NULL is returned. 

IMSLS_TAU_STATISTICS_USER, float tau_stat[] (Output) 
A user allocated array of length n_obs containing the t value for each 
detected outlier in its first num_outliers locations. 
If num_outliers = 0, tau_stat stays unchanged.  

IMSLS_OMEGA_WEIGHTS, float **omega (Output) 
Address of a pointer to an internally allocated array of length num_outliers 
containing the computed ω weights for the detected outliers. 
If num_outliers = 0, NULL is returned.  

IMSLS_OMEGA_WEIGHTS_USER   float omega[] (Output) 
A user allocated array of length n_obs containing the computed ω weights 
for the detected outliers in its first num_outliers locations.  
If num_outliers = 0, omega stays unchanged. 

IMSLS_ARMA_PARAM,   float **parameters (Output) 
Address of a pointer to an internally allocated array of length 1+p+q 
containing the estimated constant, AR and MA parameters. 

IMSLS_ARMA_PARAM_USER   float parameters[] (Output) 
A user allocated array of length 1+p+q containing the estimated constant, AR 
and MA parameters.  

IMSLS_AIC,   float   *aic (Output) 
Akaike’s information criterion (AIC). 

Description 
Consider a univariate time series { }tY that can be described by the following 
multiplicative seasonal ARIMA model of order ( ,0, ) (0, ,0)sp q d× : 

( )
( )

, 1, , .t td
s

B
Y a

B
t nθ

μ
φ

− =
Δ

= …
 

Here, (1 )d s d
s BΔ = − , 1( ) 1 ,q

qB B Bθ θ θ= − − −…  1( ) 1 p
pB B Bφ φ φ= − − −… . B  is the lag 

operator, k
t t kB Y Y −= , { }ta  is a white noise process, and μ  denotes the mean of the 

series { }tY . 

In general, { }tY  is not directly observable due to the influence of outliers. Chen and 
Liu (1993) distinguish between four types of outliers: innovational outliers (IO), 
additive outliers (AO), temporary changes (TC)  and level shifts (LS). If an outlier 
occurs as the last observation of the series, then Chen and Liu’s algorithm is unable to 
determine the outlier’s classification. In imsls_f_ts_outlier_identification, 
such an outlier is called a UI (unable to identify) and is treated as an innovational 
outlier. 
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In order to take the effects of multiple outliers occurring at time points 1 2, , , mt t t…  into 
account, Chen and Liu consider the following model: 

1

( )
( ) ( )

( )
.m

t j j t j tdj
s

B
Y L B I t a

B
θ

μ ω
φ

∗

=
− = +

Δ
∑  

Here, { }tY ∗  is the observed outlier contaminated series, and jω  and ( )jL B  denote the 
magnitude and dynamic pattern of outlier j , respectively.  ( )t jI t  is an indicator 
function that determines the temporal course of the outlier effect, ( ) 1

jt jI t = , ( ) 0t jI t =  

otherwise. Note that ( )jL B  operates on tI  via , 0,1,k
t t kB I I k−= = … .  

The last formula shows that the outlier free series { }tY  can be obtained from the 
original series { }tY ∗  by removing all occurring outlier effects: 

1
( ) ( )m

j j t jjt tY Y L B I tω
=

∗= − ∑ . 

The different types of outliers are charaterized by different values for ( )jL B : 

1.  ( )
( )

( )j d
s

B
L B

B
θ

φ
=

Δ
 for an innovational outlier, 

2.  ( ) 1jL B =  for an additive outlier, 

3.  1( ) (1 )jL B B −= −  for a level shift outlier and 

4.  1( ) (1 ) , 0 1,jL B Bδ δ−= − < <  for a temporary change outlier. 

Function imsls_f_ts_outlier_identification is an implementation of Chen 
and Liu’s algorithm. It determines the coefficients in ( ), ( )B Bφ θ  and the outlier effects 
in the model for the observed series jointly in three stages. The magnitude of the outlier 
effects is determined by least squares estimates. Outlier detection itself is realized by 
examination of the maximum value of the standardized statistics of the outlier effects. 
For a detailed description, see Chen and Liu’s original paper (1993). 
Intermediate and final estimates for the coefficients in ( )Bφ  and ( )Bθ  are computed by 
functions imsls_f_arma and imsls_f_max_arma.  If the roots of ( )Bφ or ( )Bθ  lie 
on or within the unit circle, then the algorithm stops with an appropriate error message. 
In this case, different values for p and q should be tried. 

Examples 

Example 1 
This example is based on estimates of the Canadian lynx population. Function 
imsls_f_ts_outlier_identification is used to fit an ARIMA(2,2,0) model of 
the form 2 2

1 2(1 ) (1 ) t tB B B Y aφ φ− − − = , 1, 2, ,144t = … ,{ }ta  Gaussian White noise, to 
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the given series. Function ts_outlier_identification computes parameters 
1 0.123609φ =  and 2 0.178963φ = −  and identifies a LS outlier at time point 16t = . 

 
#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
void main() 
{ 
  float series[114]={ 
   0.24300E01,0.25060E01,0.27670E01,0.29400E01,0.31690E01,0.34500E01, 
   0.35940E01,0.37740E01,0.36950E01,0.34110E01,0.27180E01,0.19910E01, 
   0.22650E01,0.24460E01,0.26120E01,0.33590E01,0.34290E01,0.35330E01, 
   0.32610E01,0.26120E01,0.21790E01,0.16530E01,0.18320E01,0.23280E01, 
   0.27370E01,0.30140E01,0.33280E01,0.34040E01,0.29810E01,0.25570E01, 
   0.25760E01,0.23520E01,0.25560E01,0.28640E01,0.32140E01,0.34350E01, 
   0.34580E01,0.33260E01,0.28350E01,0.24760E01,0.23730E01,0.23890E01, 
   0.27420E01,0.32100E01,0.35200E01,0.38280E01,0.36280E01,0.28370E01, 
   0.24060E01,0.26750E01,0.25540E01,0.28940E01,0.32020E01,0.32240E01, 
   0.33520E01,0.31540E01,0.28780E01,0.24760E01,0.23030E01,0.23600E01, 
   0.26710E01,0.28670E01,0.33100E01,0.34490E01,0.36460E01,0.34000E01, 
   0.25900E01,0.18630E01,0.15810E01,0.16900E01,0.17710E01,0.22740E01, 
   0.25760E01,0.31110E01,0.36050E01,0.35430E01,0.27690E01,0.20210E01, 
   0.21850E01,0.25880E01,0.28800E01,0.31150E01,0.35400E01,0.38450E01, 
   0.38000E01,0.35790E01,0.32640E01,0.25380E01,0.25820E01,0.29070E01, 
   0.31420E01,0.34330E01,0.35800E01,0.34900E01,0.34750E01,0.35790E01, 
   0.28290E01,0.19090E01,0.19030E01,0.20330E01,0.23600E01,0.26010E01, 
   0.30540E01,0.33860E01,0.35530E01,0.34680E01,0.31870E01,0.27230E01, 
   0.26860E01,0.28210E01,0.30000E01,0.32010E01,0.34240E01,0.35310E01}; 
 
  int n_obs = 114; 
  float *parameters = NULL, *result = NULL; 
  float res_sigma, aic; 
  int *outlier_stat = NULL; 
  int num_outliers; 
 
  model[0] = 2; 
  model[1] = 0; 
  model[2] = 1; 
  model[3] = 2; 
   
  result = imsls_f_ts_outlier_identification(n_obs, model, series, 
                            IMSLS_CRITICAL, 3.5, 
                            IMSLS_NUM_OUTLIERS, &num_outliers, 
                            IMSLS_OUTLIER_STATISTICS, &outlier_stat, 
                            IMSLS_ARMA_PARAM, &parameters, 
                            IMSLS_RESIDUAL_SIGMA, &res_sigma, 
                            IMSLS_AIC, &aic, 
                            0); 
                             
  printf("Number of outliers: %d\n\n", num_outliers); 
  printf("Outlier statistics:\n"); 
  printf("Time point\t\tOutlier type\n"); 
  for (i=0; i<num_outliers; i++) 
     printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]); 
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  printf("\n\n"); 
  printf("ARMA parameters:\n"); 
  for (i=0; i<=model[0]+model[1]; i++) 
      printf("%d\t\t%lf\n", i, parameters[i]); 
 
  printf("\n\n"); 
  printf("RSE:%lf\n", res_sigma); 
  printf("\n\n"); 
  printf("AIC:%lf\n", aic); 
 
  if (parameters) 
  { 
    free(parameters); 
    parameters = NULL; 
  } 
   
  if (outlier_stat) 
  { 
    free(outlier_stat); 
    outlier_stat = NULL; 
  } 
   
  if (result) 
  { 
    free(result); 
    result = NULL; 
  } 
 
  return; 
} 
  

 

Output 
ARMA parameters: 
0               0.000000 
1               0.123609 
2               -0.178963 
 
Number of outliers: 1 
 
Outlier statistics: 
Time point      Outlier type 
16              2 
 
RSE:0.319653 
AIC:282.997314 
 
Extract from the series: 
 
time point      original series         outlier free series 
 
1                 2.430000                2.430000 
2                 2.506000                2.506000 
3                 2.767000                2.767000 
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4                 2.940000                2.940000 
5                 3.169000                3.169000 
6                 3.450000                3.450000 
7                 3.594000                3.594000 
8                 3.774000                3.774000 
9                 3.695000                3.695000 
10                3.411000                3.411000 
11                2.718000                2.718000 
12                1.991000                1.991000 
13                2.265000                2.265000 
14                2.446000                2.446000 
15                2.612000                2.612000 
16                3.359000                2.702106 
17                3.429000                2.772106 
18                3.533000                2.876106 
19                3.261000                2.604106 
20                2.612000                1.955106 
21                2.179000                1.522106 
22                1.653000                0.996106 
23                1.832000                1.175106 
24                2.328000                1.671106 
25                2.737000                2.080106 
26                3.014000                2.357106 
27                3.328000                2.671106 
28                3.404000                2.747107 
29                2.981000                2.324106 
30                2.557000                1.900106 
31                2.576000                1.919106 
32                2.352000                1.695106 
33                2.556000                1.899106 
34                2.864000                2.207107 
35                3.214000                2.557106 
36                3.435000                2.778106 

Example 2 
This example is an artificial realization of an ARMA(1,1) process via formula 

1 10.8 10.0 0.5 , 1, ,300,t t t tY Y a a t− −− = + + = … { }ta  Gaussian white noise, [ ] 50.0tE Y = . 

An additive outlier with 1 4.5ω =  was added at time point 150t = , a temporary change 
outlier with 2 3.0ω =  was added at time point 200t = . 

 
#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
void main() 
{   
   
  int i, n_obs = 300; 
  float parameters_user[300], result_user[300]; 
  float res_sigma, aic; 
  int  outlier_stat[600]; 
  int num_outliers; 
  int outlier_stat_user[300]; 
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  float omega_user[300]; 
  int model[4]; 
   
  float series[300]={ 
    50.0000000,50.2728081,50.6242599,51.0373917,51.9317627,50.3494759, 
    51.6597252,52.7004929,53.5499802,53.1673279,50.2373505,49.3373871, 
    49.5516472,48.6692696,47.6606636,46.8774185,45.7315445,45.6469727, 
    45.9882355,45.5216560,46.0479660,48.1958656,48.6387749,49.9055367, 
    49.8077278,47.7858467,47.9386749,49.7691956,48.5425873,49.1239853, 
    49.8518791,50.3320694,50.9146347,51.8772049,51.8745689,52.3394470, 
    52.7273712,51.4310036,50.6727448,50.8370399,51.2843437,51.8162918, 
    51.6933670,49.7038231,49.0189247,49.455703,50.2718010,49.9605980, 
    51.3775749,50.2285385,48.2692299,47.6495590,49.2938499,49.1924858, 
    49.6449242,50.0446815,51.9972496,54.2576981,52.9835434,50.4193535, 
    50.3617897,51.8276901,53.1239929,54.0682144,54.9238319,55.6877632, 
    54.8896332,54.0701065,52.2754097,52.2522354,53.1248703,51.1287193, 
    50.5003815,49.6504173,47.2453079,45.4555626,45.8449707,45.9765129, 
    45.7682228,45.2343674,46.6496811,47.0894432,49.3368340,50.8058052, 
    49.9132500,49.5893288,48.2470627,46.9779968,45.6760864,45.7070389, 
    46.6158409,47.5303612,47.5630417,47.0389214,46.0352287,45.8161545, 
    45.7974396,46.0015373,45.3796463,45.3461685,47.6444016,49.3327446, 
    49.3810692,50.2027817,51.4567032,52.3986320,52.5819206,52.7721825, 
    52.6919098,53.3274345,55.1345940,56.8962631,55.7791634,55.0616989, 
    52.3551178,51.3264084,51.0968323,51.1980476,52.8001442,52.0545082, 
    50.8742943,51.5150337,51.2242050,50.5033989,48.7760124,47.4179192, 
    49.7319527,51.3320541,52.3918304,52.4140434,51.0845947,49.6485748, 
    50.6893463,52.9840813,53.3246994,52.4568024,51.9196091,53.6683121, 
    53.4555359,51.7755814,49.2915611,49.8755112,49.4546776,48.6171913, 
    49.9643021,49.3766441,49.2551308,50.1021881,51.0769119,55.8328133, 
    52.0212708,53.4930801,53.2147255,52.2356453,51.9648819,52.1816330, 
    51.9898071,52.5623627,51.0717278,52.2431946,53.6943054,54.3752098, 
    54.1492615,53.8523254,52.1093712,52.3982697,51.2405128,50.3018112, 
    51.3819618,49.5479546,47.5024452,47.4447708,47.8939056,48.4070015, 
    48.2440681,48.7389755,49.7309227,49.1998024,49.5798340,51.1196213, 
    50.6288414,50.3971405,51.6084099,52.4564743,51.6443901,52.4080658, 
    52.4643364,52.6257210,53.1604691,51.9309731,51.4137230,52.1233368, 
    52.9867249,53.3180733,51.9647636,50.7947655,52.3815842,50.8353729, 
    49.4136009,52.8355217,52.2234840,51.1392517,48.5245132,46.8700218, 
    46.1607285,45.2324257,47.4157829,48.9989090,49.6230736,50.4352913, 
    51.1652985,50.2588654,50.7820129,51.0448799,51.2880516,49.6898804, 
    49.0288200,49.9338837,48.2214432,46.2103348,46.9550171,47.5595894, 
    47.7176018,48.4502945,50.9816895,51.6950073,51.6973495,52.1941261, 
    51.8988075,52.5617599,52.0218391,49.5236053,47.9684906,48.2445183, 
    48.8275146,49.7176971,51.5649338,52.5627213,52.0182419,50.9688835, 
    51.5846901,50.9486771,48.8685837,48.5600624,48.4760094,48.5348396, 
    50.4187813,51.2542381,50.1872864,50.4407692,50.6222687,50.4972000, 
    51.0036087,51.3367500,51.7368202,53.0463791,53.6261253,52.0728683, 
    48.9740753,49.3280830,49.2733917,49.8519020,50.8562126,49.5594254, 
    49.6109200,48.3785629,48.0026474,49.4874268,50.1596375,51.8059540, 
    53.0288620,51.3321075,49.3114815,48.7999306,47.7201881,46.3433914, 
    46.5303612,47.6294632,48.6012459,47.8567657,48.0604057,47.1352806, 
    49.5724792,50.5566483,49.4182968,50.5578079,50.6883736,50.6333389, 
    51.9766159,51.0595245,49.3751640,46.9667702,47.1658173,47.4411278, 
    47.5360374,48.9914742,50.4747620,50.2728043,51.9117165,53.7627792}; 
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  model[0] = 1; 
  model[1] = 1; 
  model[2] = 1; 
  model[3] = 0; 
 
  imsls_f_ts_outlier_identification(n_obs, model, series, 
                            IMSLS_NUM_OUTLIERS, &num_outliers, 
                            IMSLS_OUTLIER_STATISTICS_USER, 
outlier_stat_user, 
                            IMSLS_OMEGA_WEIGHTS_USER, omega_user, 
                            IMSLS_ARMA_PARAM_USER, parameters_user, 
                            IMSLS_RETURN_USER, result_user, 
                            IMSLS_RESIDUAL_SIGMA, &res_sigma, 
                            IMSLS_AIC, &aic, 
                            IMSLS_RELATIVE_ERROR, 1.0e-05, 
                            0); 
                             
   printf("\n"); 
   printf("ARMA parameters:\n"); 
   for (i=0; i<=model[0]+model[1]; i++) 
      printf("%d\t\t%lf\n", i, parameters_user[i]); 
 
   printf("\nNumber of outliers: %d\n\n", num_outliers); 
   printf("Outlier statistics:\n"); 
   printf("Time point\tOutlier type\n"); 
   for (i=0; i<num_outliers; i++) 
     printf("%d\t\t%d\n", outlier_stat_user[2*i], outlier_stat_user[2*i+1]); 
 
  printf("\nOmega statistics:\n"); 
  printf("Time point\tomega\n"); 
  for (i=0; i<num_outliers; i++) 
     printf("%d\t%18.6f\n", outlier_stat_user[2*i], omega_user[i]); 
 
  printf("\n"); 
  printf("RSE:%lf\n", res_sigma); 
  printf("AIC:%lf\n\n", aic); 
 
  return; 
} 
 

 Output 
ARMA parameters: 
0               10.808282 
1               0.785631 
2               -0.496392 
 
Number of outliers: 2 
 
Outlier statistics: 
Time point      Outlier type 
150             1 
200             3 
 
Omega statistics: 
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Time point      omega 
150               4.477811 
200               3.382051 
 
RSE:1.007220 
AIC:1417.042480 

ts_outlier_forecast 
Computes forecasts, their associated probability limits and ψ weights for an outlier 
contaminated time series whose underlying outlier free series follows a general 
seasonal or nonseasonal ARMA model. 

Synopsis 

#include <imsls.h> 

float *imsls_f_ts_outlier_forecast (int n_obs, float series[],  
int num_outliers, int outlier_statistics[], float omega[],  
float delta, int model[], float parameters[], int n_predict,…,0) 

The type double function is imsls_d_ts_outlier_forecast. 

Required Arguments 

int n_obs  (Input) 
Number of observations in the time series. 

float  series[]  (Input) 
An array of length n_obs by 2 containing the outlier free time series in its 
first column and the residuals of the series in the second column. 

int num_outliers  (Input) 
Number of detected outliers in the original outlier contaminated series as 
computed in imsls_f_ts_outlier_identification. 

int outlier_statistics[]  (Input) 
An array of length num_outliers by 2 containing the outlier statistics from 
imsls_f_ts_outlier_identification.  If num_outliers=0, this 
array is ignored. 

float omega[]  (Input) 
Array of length num_outliers containing the ψ weights for the outliers 
determined in imsls_f_ts_outlier_identification.  Ignored, if 
num_outliers=0. 

float  delta  (Input) 
The dynamic dampening effect parameter used in the outlier detection. 

int  model[]  (Input)  
Vector of length 4 containing the numbers p, q, s, d  of the 
ARIMA ( ,0, ) (0, ,0)sp q d×  model the outlier free series is following. 
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float parameters[]  (Input) 
Vector of length 1+p+q containing the estimated constant, AR and MA parameters 
as output from imsls_f_ts_outlier_identification. 

int n_predict  (Input) 
Maximum lead time for forecasts. The forecasts are taken at origin t=n_obs, the 
time point of the last observed value, for lead times 1,2,...,n_predict. 

Return Value 
Pointer to an array of length n_predict by 3.  The first column contains the 
forecasted values for the original outlier contaminated series.  The second column 
contains  the deviations from each forecast for computing confidence probability 
limits, and the third column contains the ψ weights of the infinite moving average 
form of the model. 
If an error occurred, NULL is returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 

float  *imsls_f_ts_outlier_forecast(int n_obs, float series[],  
int num_outliers, int outlier_statistics[], 
float omega[], float delta, int model[], 
float parameters[], int n_predict, 
IMSLS_RETURN_USER, float forecast[], 
IMSLS_CONFIDENCE, float confidence, 
IMSLS_OUT_FREE_FORECAST, float **outfree_forecast, 
IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float forecast[] (Output) 

An array of length n_predict by 3 supplied by the user containing the 
forecasts for the original outlier contaminated series in column 1, deviations 
from each forecast in column 2 and the ψ weights of the infinite moving 
average form of the model in column 3. 

IMSLS_CONFIDENCE, float confidence (Input) 
Value in the exclusive interval (0,100) used to specify the confidence 
percent probability limits of the forecast.Typical choices for confidence  
are 90.0, 95.0 and 99.0. 
Default: confidence = 95.0 

IMSLS_OUT_FREE_FORECAST, float **outfree_forecast (Output) 
Address of a pointer to an array of length n_predict by 3 containing the 
forecasts for the original outlier free series in column 1, deviations from each 
forecast in column 2 and the ψ weights of the infinite moving average form 
of the model in column 3. 

IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[] Output) 
Storage for array outfree_forecast is provided by the user. For a 
description, see IMSLS_OUT_FREE_FORECAST. 
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Description 
Consider the following model for a given outlier contaminated univariate time series 

1, ,{ }t t nY ∗
= … : 

1
( ) ( ).m

t t j j t jj
Y Y L B I tω∗

=
= + ∑   

For an explanation of the notation, see the “Description” section for 
imsls_f_ts_outlier_identification.  It follows from the formula above that 
the Box-Jenkins forecast at origin t  for lead time l , ˆ ( )tY l∗ , can be computed as: 

1
ˆ ˆ( ) ( ) ( ) ( ), 1, , .m
t t j j t l jj

Y l Y l L B I t lω∗
+=

= + =∑ n_predict…
 

Therefore, computation of the forecasts for { }tY ∗  is done in two steps: 
1.     Computation of  the forecasts for the outlier free series { }tY . 
2.     Computation of  the forecasts for the original series { }tY ∗  by adding the multiple 

outlier effects to the forecasts for  { }tY . 

Step 1 above:  
Since 

( )( ) ( ) ,t tB Y B aϕ μ θ− =
 

where 

1( ) : ( ) 1 ,d p sd
s p sdB B B Bϕ φ ϕ ϕ +

+= Δ = − − −…
 

the Box-Jenkins forecast at origin t  for lead time l , ˆ ( )tY l , can be computed 
recursively as: 

1 1
ˆ ˆ( ) (1 ) ( ) .p sd p sd q
t j j t j t l jj j j l

Y l Y l j aϕ μ ϕ θ+ +

+ −= = =
= − + − −∑ ∑ ∑  

Here, 

for 0ˆ ( ) ,ˆ ( ) for 0
t l j

t
t

Y l j
Y l j

Y l j l j
+ − − ≤⎧⎪− = ⎨
− − >⎪⎩   

and 

1

    0 for max{1, }
.ˆ (1) for max{1, } 1, ,k

k k

k p sd
a

Y Y k p sd n−

≤ +⎧⎪= ⎨
− = + +⎪⎩ …   

Step 2 above:   
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The formulas for ( )jL B  for the different types of outliers are as follows: 

Innovational outliers (IO) 
00

( )( ) : ( ) , 1
( )

k
j kd k

s

BL B B B
B

θ ψ ψ ψ
φ

∞

=
= = = =

Δ ∑  

Additive outliers (AO) ( ) 1jL B =  

Level shifts (LS) 
0

1( )
1

k
j k

L B B
B

∞

=
= =

− ∑  

Temporary changes (TC) 
0

1( )
1

k k
j k

L B B
B

δ
δ

∞

=
= =

− ∑  

Assuming the outlier occurs at time point jt , the outlier impact is therefore: 

Innovational outliers (IO) 0 for ,
( ) ( )

for , 0,
j

j j t j
j k j

t t
L B I t

t t k k
ω

ω ψ
<⎧⎪= ⎨ = + ≥⎪⎩

 

Additive outliers (AO) 0 for ,
( ) ( )

for ,
j

j j t j
j j

t t
L B I t

t t
ω

ω
≠⎧⎪= ⎨ =⎪⎩

 

Level shifts (LS) 0 for ,
( ) ( )

for , 0,
j

j j t j
j j

t t
L B I t

t t k k
ω

ω
<⎧⎪= ⎨ = + ≥⎪⎩

 

Temporary changes (TC) 0 for ,
( ) ( )

for , 0.
j

kj j t j
j j

t t
L B I t

t t k k
ω

ω δ
<⎧⎪= ⎨ = + ≥⎪⎩

 

 

From these formulas, the forecasts ˆ ( )tY l∗  can be computed easily. 

The 100(1 )α−  percent probability limits for t lY ∗
+  and  t lY +  are given by  

1 2 1/ 2
/ 2 1

ˆ ˆ( ) (or ( ),  resp.) (1 ) ,l
t t j aj

Y l Y l u sα ψ−∗
=

± + ∑  

where / 2uα  is the 100(1 / 2)α−  percentile of the standard normal distribution, 2
as  is an 

estimate of the variance 2
aσ  of the random shocks (returned from 

imsls_f_ts_outlier_identification), and the ψ weights { }jψ are the 
coefficients in  
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For a detailed explanation of these concepts, see Chapter 5: “Forecasting,” Box, 
Jenkins and Reinsel (1994). 

Example 
This example is a realization of an ARMA(2,1) process described by the model 

1 2 10.24 10.0 0.5t t t t tY Y Y a a− − −− + = + + ,{ }ta  a Gaussian white noise process. 

Outliers were artificially added to the outlier free series 1, ,280{ }t tY = …  at time points 
150t = (level shift, 1 2.5ω = + ) and 200t = (additive outlier, 2 3.2ω = + ), resulting in 

the outlier contaminated series 1, ,280{ }t tZ = … .  For both series, forecasts were determined 
for time points 281, , 290t = …  and compared with the actual values of the series. 

 
#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
void main() 
{ 
  float time_series[290] ={ 
    41.6699982,41.6699982,42.0752144,42.6123962,43.6161919,42.1932831, 
    43.1055450,44.3518715,45.3961258,45.0790215,41.8874397,40.2159805, 
    40.2447319,39.6208458,38.6873589,37.9272423,36.8718872,36.8310852, 
    37.4524879,37.3440933,37.9861374,40.3810501,41.3464622,42.6495285, 
    42.6096764,40.3134537,39.7971268,41.5401535,40.7160759,41.0363541, 
    41.8171883,42.4190292,43.0318832,43.9968109,44.0419617,44.3225212, 
    44.6082611,43.2199631,42.0419197,41.9679718,42.4926224,43.2091255, 
    43.2512283,41.2301674,40.1057358,40.4510574,41.5329170,41.5678177, 
    43.0090141,42.1592140,39.9234505,38.8394127,40.4319878,40.8679352, 
    41.4551926,41.9756317,43.9878922,46.5736389,45.5939293,42.4487762, 
    41.5325394,42.8830910,44.5771217,45.8541985,46.8249474,47.5686378, 
    46.6700745,45.4120026,43.2305107,42.7635345,43.7112923,42.0768661, 
    41.1835632,40.3352280,37.9761467,35.9550056,36.3212509,36.9925880, 
    37.2625008,37.0040665,38.5232544,39.4119797,41.8316803,43.7091446, 
    42.9381447,42.1066780,40.3771248,38.6518707,37.0550499,36.9447708, 
    38.1017685,39.4727097,39.8670387,39.3820763,38.2180786,37.7543488, 
    37.7265244,38.0290642,37.5531158,37.4685936,39.8233147,42.0480766, 
    42.4053535,43.0117416,44.1289330,45.0393829,45.1114540,45.0086479, 
    44.6560631,45.0278931,46.7830849,48.7649765,47.7991905,46.5339661, 
    43.3679199,41.6420822,41.2694893,41.5959740,43.5330009,43.3643608, 
    42.147129  1,42.5552788,42.4521446,41.7629128,39.9476891,38.3217010, 
    40.5318718,42.8811569,44.4796944,44.6887932,43.1670265,41.2226143, 
    41.8330154,44.3721924,45.2697029,44.4174194,43.5068550,44.9793015, 
    45.0585403,43.2746620,40.3317070,40.3880501,40.2627106,39.6230278, 
    41.0305252,40.9262009,40.8326912,41.7084885,42.9038048,45.8650513, 
    46.5231590,47.9916115,47.8463135,46.5921936,45.8854408,45.9130440, 
    45.7450371,46.2964249,44.9394569,45.8141251,47.5284042,48.5527802, 
    48.3950577,47.8753052,45.8880005,45.7086983,44.6174774,43.5567932, 
    44.5891113,43.1778679,40.9405632,40.6206894,41.3330421,42.2759552, 
    42.4744949,43.0719833,44.2178459,43.8956337,44.1033440,45.6241455, 
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    45.3724861,44.9167595,45.9180603,46.9077835,46.1666603,46.6013489, 
    46.6592331,46.7291603,47.1908340,45.9784355,45.1215782,45.6791115, 
    46.7379875,47.3036957,45.9968834,44.4669495,45.7734680,44.6315041, 
    42.9911766,46.3842583,43.7214432,43.5276833,41.3946495,39.7013168, 
    39.1033401,38.5292892,41.0096245,43.4535828,44.6525154,45.5725899, 
    46.2815285,45.2766647,45.3481712,45.5039482,45.6745682,44.0144806, 
    42.9305000,43.6785469,42.2500534,40.0007210,40.4477005,41.4432716, 
    42.0058670,42.9357758,45.6758842,46.8809929,46.8601494,47.0449791, 
    46.5420647,46.8939934,46.2963371,43.5479164,41.3864059,41.4046364, 
    42.3037987,43.6223717,45.8602371,47.3016396,46.8632469,45.4651413, 
    45.6275482,44.9968376,42.7558670,42.0218239,41.9883728,42.2571678, 
    44.3708687,45.7483635,44.8832512,44.7945862,44.8922577,44.7409401, 
    45.1726494,45.5686874,45.9946709,47.3151054,48.0654068,46.4817467, 
    42.8618279,42.4550323,42.5791168,43.4230957,44.7787971,43.8317108, 
    43.6481781,42.4183960,41.8426285,43.3475227,44.4749908,46.3498306, 
    47.8599319,46.2449913,43.6044006,42.4563484,41.2715340,39.8492508, 
    39.9997292,41.4410820,42.9388237,42.5687332,42.6384087,41.7088661, 
    43.9399033,45.4284401,44.4558411,45.1761856,45.3489113,45.1892662, 
    46.3754730,45.6082802 }; 
 
  int n_obs = 280, i; 
  float *parameters = NULL, *result = NULL, *forecast = NULL; 
  float *outfree_forecast = NULL, *omega = NULL, *residual = NULL; 
  float res_sigma, aic; 
  float delta = 0.7; 
  float series[560]; 
  int *outlier_stat = NULL; 
  int num_outliers; 
  int n_predict = 10; 
  int model[4]; 
  float forecast_table[40]; 
 
  model[0] = 2; 
  model[1] = 1; 
  model[2] = 1; 
  model[3] = 0; 
   
  result = imsls_f_ts_outlier_identification(n_obs, model, 
                            time_series, 
                            IMSLS_RELATIVE_ERROR, 1.0e-5, 
                            IMSLS_NUM_OUTLIERS, &num_outliers, 
                            IMSLS_RESIDUAL, &residual, 
                            IMSLS_OUTLIER_STATISTICS, &outlier_stat, 
                            IMSLS_OMEGA_WEIGHTS, &omega, 
                            IMSLS_ARMA_PARAM, &parameters, 
                            IMSLS_RESIDUAL_SIGMA, &res_sigma, 
                            IMSLS_AIC, &aic, 
                            0); 
                             
  printf("\nARMA parameters:\n"); 
  for (i=0; i<=model[0]+model[1]; i++) 
      printf("%d\t\t%lf\n", i, parameters[i]); 
 
  printf("\nNumber of outliers: %d\n\n", num_outliers); 
  printf("Outlier statistics:\n"); 
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  printf("Time point\t\tOutlier type\n"); 
  for (i=0; i<num_outliers; i++) 
     printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]); 
      
  printf("\n"); 
  printf("RSE:%lf\n", res_sigma); 
  printf("AIC:%lf\n", aic); 
 
  for (i=0; i<n_obs; i++) 
   { 
      series[2*i] = time_series[i]; 
      series[2*i+1] = residual[i]; 
   } 
 
  forecast = imsls_f_ts_outlier_forecast(n_obs, series, 
                  num_outliers, outlier_stat, omega, delta, 
                  model, parameters, n_predict, 
                  IMSLS_OUT_FREE_FORECAST,&outfree_forecast, 0); 
 
  for (i=0; i<n_predict; i++) 
  { 
     forecast_table[4*i] = time_series[n_obs+i]; 
     forecast_table[4*i+1] = forecast[3*i]; 
     forecast_table[4*i+2] = forecast[3*i+1]; 
     forecast_table[4*i+3] = forecast[3*i+2]; 
  } 
              
  imsls_f_write_matrix("\t* * * Forecast Table for outlier" 
                       "contaminated series * * *\nOrig. Series" 
                       "\tforecast\tprob. limits\tpsi weights\n", 
                       n_predict, 4, forecast_table, 
                       IMSLS_WRITE_FORMAT, "%11.4f", 0); 
 
  for (i=0; i<n_predict; i++) 
  { 
     forecast_table[4*i] = time_series[n_obs+i] - 2.5; 
     forecast_table[4*i+1] = outfree_forecast[3*i]; 
     forecast_table[4*i+2] = outfree_forecast[3*i+1]; 
     forecast_table[4*i+3] = outfree_forecast[3*i+2]; 
  } 
 
  printf("\n"); 
  imsls_f_write_matrix("\t* * * Forecast Table for outlier free" 
                       "series * * *\n\nOutlier free series\tforecast" 
                       "\tprob. limits\tpsi weights\n", 
                       n_predict, 4, forecast_table, 
                       IMSLS_WRITE_FORMAT, "%11.4f", 0); 
 
  if (parameters) 
  { 
    free(parameters); 
    parameters = NULL; 
  } 
   
  if (outlier_stat) 
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  { 
    free(outlier_stat); 
    outlier_stat = NULL; 
  } 
   
  if (result) 
  { 
    free(result); 
    result = NULL; 
  } 
   
  if (forecast) 
  { 
    free(forecast); 
    forecast = NULL; 
  } 
   
  if (outfree_forecast) 
  { 
    free(outfree_forecast); 
    outfree_forecast = NULL; 
  } 
   
  if (omega) 
  { 
    free(omega); 
    omega = NULL; 
  } 
 
  if (residual) 
  { 
    free(residual); 
    residual = NULL; 
  }  
 
  return; 
} 
 

Output 
 
ARMA parameters: 
0               8.839014 
1               0.948735 
2               -0.153870 
3               -0.553387 
 
Number of outliers: 2 
 
Outlier statistics: 
Time point              Outlier type 
150             2 
200             1 
 
RSE:1.004321 
AIC:1323.625977 
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        * * * Forecast Table for outlier contaminated series * * *          
                                          
           Orig. series    forecast      prob. limits    psi weights 
 
                     1            2            3            4 
        1      42.6384      43.6883       1.9684       1.5021 
        2      41.7089      43.8260       3.5521       1.2712 
        3      43.9399      44.0496       4.3450       0.9749 
        4      45.4284      44.2406       4.7500       0.7294 
        5      44.4558      44.3874       4.9622       0.5420 
        6      45.1762      44.4973       5.0756       0.4019 
        7      45.3489      44.5790       5.1369       0.2979 
        8      45.1893      44.6395       5.1703       0.2208 
        9      46.3755      44.6844       5.1885       0.1637 
       10      45.6083      44.7177       5.1985       0.1213 
 
  
        * * * Forecast Table for outlier free series * * *                       
  
         Outlier free series    forecast   prob. limits    psi weights 
 
                       1            2            3            4 
          1      40.1384      41.9641       1.9684       1.5021 
          2      39.2089      42.1018       3.5521       1.2712 
          3      41.4399      42.3254       4.3450       0.9749 
          4      42.9284      42.5164       4.7500       0.7294 
          5      41.9558      42.6632       4.9622       0.5420 
          6      42.6762      42.7731       5.0756       0.4019 
          7      42.8489      42.8548       5.1369       0.2979 
          8      42.6893      42.9153       5.1703       0.2208 
          9      43.8755      42.9602       5.1885       0.1637 
         10      43.1083      42.9935       5.1985       0.1213 

auto_arima 
Automatically identifies time series outliers, determines parameters of a multiplicative 
seasonal ARIMA ( ,0, ) (0, ,0)sp q d×  model and produces forecasts that incorporate the 
effects of outliers whose effects persist beyond the end of the series. 

Synopsis 
#include <imsls.h> 
float  *imsls_f_auto_arima (int n_obs, int tpoints[], float x[],...,0) 

The type double function is imsls_d_auto_arima. 

Required Arguments 

int  n_obs  (Input) 
Number of observations in the original time series. Assuming that the series 
is defined at time points 1, ,t tn_obs… , the actual length of the series, including 
missing observations is 1 1n t t= − +n_obs . 
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int  tpoints[]  (Input) 
A vector of  length n_obs containing the time points 1 2 _, , n obst t t…  the time 
series was observed. It is required that  1 2 _, , n obst t t…  are in strictly ascending 
order. 

float x[]  (Input) 
A vector of length n_obs containing the observed time series values 

* * *
1 2 _, , , n obsY Y Y" .  This series can contain outliers and missing observations. 

Outliers are identified by this routine and missing values are identified by the 
time values in vector tpoints. If the time interval between two consecutive 
time points is greater than one, i.e.  1 1i it t m+ − = > , then 1m −  missing 
values are assumed to exist between it and 1it +  at times 11, 2, , 1i i it t t ++ + −… . 
Therefore, the gap free series is assumed to be defined for equidistant time 
points 1 1 _, 1, , n obst t t+ … . Missing values are automatically estimated prior to 
identifying outliers and producing forecasts.  Forecasts are generated for both 
missing and observed values. 

Return Value 
Pointer to an array of length 1 + p + q with the estimated constant, AR and MA 
parameters used to fit the outlier-free series using an ARIMA ( ,0, ) (0, ,0)sp q d×  model.  
Upon completion, if d=model[3]=0, then an ARMA(p, q) model or AR(p) model is 
fitted to the outlier-free version of the observed series *

tY .  If d=model[3]>0, these 
parameters are computed for an ARMA(p,q) representation of the seasonally adjusted 
series * * *(1 )d d

t s t s tZ Y B Y= Δ ⋅ = − ⋅ , where * *
s t t sB Y Y −=  and s=model[2]≥1. 

If an error occurred, NULL is returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 

 float  *imsls_f_auto_arima(int n_obs, int tpoints[], float x[], 
IMSLS_METHOD, int method, 
IMSLS_MAX_LAG, int maxlag, 
IMSLS_MODEL, int model[], 
IMSLS_DELTA, float delta, 
IMSLS_CRITICAL, float critical, 
IMSLS_EPSILON, float epsilon, 
IMSLS_RESIDUAL, float **residual, 
IMSLS_RESIDUAL_USER, float residual[], 
IMSLS_RESIDUAL_SIGMA, float *res_sigma, 
IMSLS_NUM_OUTLIERS, int *num_outliers, 
IMSLS_P_INITIAL, int n_p_initial, int p_initial[], 
IMSLS_Q_INITIAL, int n_q_initial, int q_initial[], 
IMSLS_S_INITIAL, int n_s_initial, int s_initial[], 
IMSLS_D_INITIAL, int n_d_initial, int d_initial[], 
IMSLS_OUTLIER_STATISTICS, int **outlier_stat, 
IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[], 
IMSLS_AIC, float *aic, 
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IMSLS_OUT_FREE_SERIES, float **outfree_series, 
IMSLS_OUT_FREE_SERIES_USER, float outfree_series[], 
IMSLS_CONFIDENCE, float confidence, 
IMSLS_NUM_PREDICT, int n_predict, 
IMSLS_OUT_FREE_FORECAST, float **outfree_forecast, 
IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[], 
IMSLS_OUTLIER_FORECAST, float **outlier_forecast, 
IMSLS_OUTLIER_FORECAST_USER, float outlier_forecast[], 
IMSLS_RETURN_USER, float parameters[], 
0) 

Optional Arguments 

IMSLS_METHOD, int method  (Input) 
The method used in model selection: 
1 — Automatic ARIMA ( ,0,0) (0, ,0)sp d×  selection  
2 — Grid search (Requires arguments IMSLS_P_INITIAL and 
IMSLS_Q_INITIAL.)  
3 — Specified ARIMA ( ,0, ) (0, ,0)sp q d×  model (Requires argument 
IMSLS_MODEL. ) 
Default:  method = 1 
For more information, see the “Description” section. 
 

IMSLS_MAX_LAG, int maxlag (Input) 
The maximum lag allowed when fitting an AR(p) model. 
Default: maxlag = 10 

IMSLS_MODEL, int model[]  (Input/Output) 
Array of length 4 containing the values for p, q, s, d.  If method=3 is chosen, 
then the values for p and q must be defined.  If IMSLS_S_INITIAL and 
IMSLS_D_INITIAL are not defined, then also s and d must be given.  If 
method=1 or method=2, then model is ignored as an input array.  On output, 
model contains the optimum values for  p, q, s, d in model[0], model[1], 
model[2] and model[3], respectively. 

IMSLS_DELTA, float delta  (Input) 
The dampening effect parameter used in the detection of a Temporary 
Change Outlier (TC), 0<delta<1.  
Default: delta = 0.7 

IMSLS_CRITICAL, float critical  (Input) 
Critical value used as a threshold for outlier detection, critical > 0. 
Default: critical = 3.0 

IMSLS_EPSILON, float epsilon  (Input) 
Positive tolerance value controlling the accuracy of parameter estimates 
during outlier detection. 
Default: epsilon = 0.001 

IMSLS_RESIDUAL, float **residual  (Output) 
Address of a pointer to an internally allocated array of length 
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_ 1 1n obsn t t= − + ≥ n_obs  , containing t̂e , the estimates of the white noise in 
the outlier free original series. 

IMSLS_RESIDUAL_USER, float residual[]  (Output) 
Storage for array residual is provided by the user. See IMSLS_RESIDUAL. 

IMSLS_RESIDUAL_SIGMA, float *res_sigma  (Output) 
Residual standard error (RSE) of the outlier free original series. 

IMSLS_NUM_OUTLIERS, int *num_outliers  (Output) 
The number of outliers detected. 

IMSLS_P_INITIAL, int n_p_initial, int p_initial[]  (Input) 
An array with n_p_initial elements containing the candidate values for p, 
from which the optimum is being selected. All candidate values in 
p_initial[] must be non-negative and n_p_initial ≥ 1. If method=2, 
then IMSLS_P_INITIAL must be defined. Otherwise, n_p_initial and 
p_initial are ignored. 

IMSLS_Q_INITIAL, int n_q_initial, int q_initial[]  (Input) 
An array with n_q_initial elements containing the candidate values for q, 
from which the optimum is being selected.  All candidate values in 
q_initial[] must be non-negative and n_q_initial ≥ 1. If method=2, 
then IMSLS_Q_INITIAL must be defined. Otherwise, n_q_initial and 
q_initial are ignored. 

IMSLS_S_INITIAL, int n_s_initial, int s_initial[]  (Input) 
A vector of length n_s_initial containing the candidate values for s, from 
which the optimum is being selected.  All candidate values in s_initial[] 
must be positive and  n_s_initial ≥ 1. 
Default: n_s_initial=1, s_initial={1} 

IMSLS_D_INITIAL, int n_d_initial, int d_initial[]  (Input) 
A vector of length n_d_initial containing the candidate values for d, from 
which the optimum is being selected.  All candidate values in d_initial[] 
must be non-negative and n_d_initial ≥ 1. 
Default: n_d_initial=1, d_initial={0} 

IMSLS_OUTLIER_STATISTICS, int **outlier_stat  (Output) 
Address of a pointer to an internally allocated array of length 
num_outliers by 2 containing outlier statistics.  The first column contains 
the time at which the outlier was observed ( 1 1 1, 1, 2, ,t t t t t= + + n_obs… ) and 
the second column contains an identifier indicating the type of outlier 
observed.  Outlier types fall into one of five categories: 
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0 Innovational Outliers (IO) 

1 Additive Outliers (AO) 

2 Level Shift Outliers (LS) 

3 Temporary Change Outliers (TC) 

4 Unable to Identify (UI). 

  If  num_outliers=0, NULL is returned. 

IMSLS_OUTLIER_STATISTICS_USER, int outlier_stat[]  (Output) 
A user allocated array of length n × 2 containing outlier statistics in its first 
num_outliers rows. Here, 1 1n t t= − + ≥n_obs n_obs .  
See IMSLS_OUTLIER_STATISTICS. 
If  num_outliers = 0, outlier_stat stays unchanged. 

IMSLS_AIC, float  *aic  (Output) 
Akaike’s information criterion (AIC) for the optimum model. 

IMSLS_OUT_FREE_SERIES, float **outfree_series  (Output) 
Address of a pointer to an internally allocated array of length n by 2, where 

1 1n t t= − +n_obs .  The first column of outfree_series contains the n_obs 
observations from the original series, *

tY ,  plus estimated values for any time 
gaps.  The second column contains the same values as the first column 
adjusted by removing any outlier effects. In effect, the second column 
contains estimates of the underlying outlier-free series, tY .  If no outliers are 
detected then both columns will contain identical values. 

IMSLS_OUT_FREE_SERIES_USER,  float outfree_series[] (Output) 
A user allocated array of length n by 2, where 1 1n t t= − +n_obs .  For further 
details, see IMSLS_OUT_FREE_SERIES. 

IMSLS_CONFIDENCE, float confidence (Input) 
Confidence level for computing forecast confidence limits, taken from the 
exclusive interval (0, 100). Typical choices for confidence are 90.0, 95.0 
and 99.0. 
Default:  confidence = 95.0 

IMSLS_NUM_PREDICT, int n_predict  (Input) 
The number of forecasts requested. Forecasts are made at origin tn_obs , i.e. 
from the last observed value of the series. 
Default: n_predict = 0 

IMSLS_OUT_FREE_FORECAST, float **outfree_forecast  (Output) 
Address of a pointer to an internally allocated array of length n_predict by 3. 
The first column contains the forecasted values for the original outlier free 
series for t= tn_obs +1, _n obst + 2,..., tn_obs + n_predict. The second column 
contains standard errors for these forecasts, and the third column contains the 
psi weights of the infinite order moving average form of the model. 
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IMSLS_OUT_FREE_FORECAST_USER, float outfree_forecast[] (Output) 
A user allocated array of length n_predict by 3. For more information, see 
IMSLS_OUT_FREE_FORECAST. 

IMSLS_OUTLIER_FORECAST, float **outlier_forecast  (Output) 
Address of a pointer to an internally allocated array of length n_predict by 3. 
The first column contains the forecasted values for the original series for 
t= tn_obs +1, tn_obs +2,..., tn_obs +n_predict. The second column contains 
standard errors for these forecasts, and the third column contains the ψ weights 
of the infinite order moving average form of the model. 

IMSLS_OUTLIER_FORECAST_USER, float outlier_forecast[]  (Output) 
A user allocated array of length n_predict by 3. For more information, see 
IMSLS_OUTLIER_FORECAST. 

IMSLS_RETURN_USER, float parameters[]  (Output) 
A user allocated array containing the estimated constant, AR and MA 
parameters in its first 1+p+q locations.  The values p and q can be estimated 
by upper bounds: If method=1, an upper bound for p would be maxlag, and 
q= 0. If method=2, upper bounds for p and q would be the maximum values 
in arrays p_initial and q_initial, respectively. If method=3,  
p= model[0] and q= model[1]. 

Description 
Overview 
Function imsls_f_auto_arima determines the parameters of a multiplicative 
seasonal ARIMA ( ,0, ) (0, ,0)sp q d×  model, and then uses the fitted model to identify 
outliers and prepare forecasts. The order of this model can be specified or 
automatically determined.  
The ARIMA ( ,0, ) (0, ,0)sp q d×  model handled by imsls_f_auto_arima has the 
following form: 

( ) ( ) ( ) , 1, 2, , ,d
s t tB Y B a t nφ μ θΔ − = = …

 

where  
2

1 2( ) 1 ,p
pB B B Bφ φ φ φ= − − − −"

 
2

1 2( ) 1 ,q
qB B B Bθ θ θ θ= − − − −"

  
(1 )d s d

s BΔ = −
 

and 

.k
t t kB Y Y −=

 

It is assumed that all roots of ( )Bφ  and ( )Bθ  lie outside the unit circle. Clearly, if 
1s =  this reduces to the traditional ARIMA(p, d, q) model. 

tY is the unobserved, outlier-free time series with mean μ , and white noise ta . This 
model is referred to as the underlying, outlier-free model. Function  
imsls_f_auto_arima does not assume that this series is observable. It assumes that 
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the observed values might be contaminated by one or more outliers, whose effects are 
added to the underlying outlier-free series: 

* _ .t t tY Y outlier effect= +
 

Outlier identification uses the algorithm developed by Chen and Liu (1993). Outliers 
are classified into 1 of 5 types: 
0.    innovational 
1.    additive 
2.    level shift 
3.   temporary change and  
4.   unable to identify 
Once outliers are identified, imsls_f_auto_arima estimates tY , the outlier-free 
series representation of the data, by removing the estimated outlier effects. 
Using the information about the adjusted ARIMA ( ,0, ) (0, ,0)sp q d×  model and the 
removed outliers, forecasts are then prepared for the outlier-free series. Outlier effects 
are added to these forecasts to produce a forecast for the observed series, *

tY .  If there 
are no outliers, then the forecasts for the outlier-free series and the observed series will 
be identical. 
Model Selection 
Users have an option of either specifying specific values for p, q , s and d or have 
imsls_f_auto_arima automatically select best fit values. Model selection can be 
conducted in one of three methods listed below depending upon the value of variable 
method. 

Method 1: Automatic ARIMA ( ,0,0) (0, ,0)sp d×  Selection 

This method initially searches for the AR(p) representation with minimum AIC for the 
noisy data, where p =0,...,maxlag. 

If IMSLS_D_INITIAL is defined then the values in s_initial and d_initial are 
included in the search to find an optimum ARIMA ( ,0,0) (0, ,0)sp d×  representation of 
the series. Here, every possible combination of values for p, s in s_initial and d in 
d_initial is examined. The best found ARIMA ( ,0,0) (0, ,0)sp d×  representation is 
then used as input for the outlier detection routine. 

The optimum values for p, q, s and d are returned in model[0], model[1], model[2] 
and model[3], respectively. 
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Method 2: Grid Search 

The second automatic method conducts a grid search for p and q using all possible 
combinations of candidate values in p_initial and q_initial. Therefore, for this 
method the definition of IMSLS_P_INITIAL and IMSLS_Q_INITIAL is required. 

If IMSLS_D_INITIAL is defined, the grid search is extended to include the candidate 
values for s and d given in s_initial and d_initial, respectively. 

If IMSLS_D_INITIAL is not defined, no seasonal adjustment is attempted, and the grid 
search is restricted to searching for optimum values of p and q only. 

The optimum values of p, q, s and d are returned in model[0], model[1], model[2] 
and model[3], respectively. 

Method 3: Specified ARIMA ( ,0, ) (0, ,0)sp q d× Model 

In the third method, specific values for p, q, s and d are given. The values for p and q 
must be defined in model[0] and model[1], respectively.  If IMSLS_S_INITIAL and  
IMSLS_D_INITIAL are not defined, then values 0s >  and 0d ≥  must be specified in 
model[2] and model[3]. If IMSLS_S_INITIAL and IMSLS_D_INITIAL are defined, 
then a grid search for the optimum values of s and d is conducted using all possible 
combinations of input values in s_initial and d_initial. The optimum values of  
s and d can be found in model[2] and model[3], respectively. 

Outliers 

The algorithm of Chen and Liu (1993) is used to identify outliers.  The number of 
outliers identified is returned in num_outliers. Both the time and classification for 
these outliers are returned in outlier_stat[].  Outliers are classified into one of five 
categories based upon the standardized statistic for each outlier type.  The time at 
which the outlier occurred is given in the first column of outlier_stat.  The outlier 
identifier returned in the second column is according to the descriptions in the 
following table: 
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Except for additive outliers (AO), the effect of an outlier persists to observations 
following that outlier.  Forecasts produced by imsls_f_auto_arima take this into 
account. 

Examples  

Example 1 
This example uses time series LNU03327709 from the US Department of Labor, 
Bureau of Labor Statistics. It contains the unadjusted special unemployment rate, taken 
monthly from Janurary 1994  through September 2005. The values 01/2004 – 03/2005 
are used by imsls_f_auto_arima for outlier detection and parameter estimation. In 
this example, Method 1 without seasonal adjustment is chosen to find an appropriate 
AR(p) model. A forecast is done for the following six months and compared with the 
actual values 04/2005 – 09/2005. 

 
#include <imsls.h> 

Outlier 
Identifier 

Name General Description 

 
0 

(IO) 
Innovational 

Outlier 

Innovational outliers persist.  That is, there is an initial 
impact at the time the outlier occurs.  This effect continues 
in a lagged fashion with all future observations.  The lag 
coefficients are determined by the coefficient of the 
underlying ARIMA ( ,0, ) (0, ,0)sp q d× model. 

1 (AO) 
Additive 
Outlier 

Additive outliers do not persist.  As the name implies, an 
additive outlier effects only the observation at the time the 
outlier occurs.  Hence additive outliers have no effect on 
future forecasts. 

2 (LS) 
Level Shift 

Level shift outliers persist.  They have the effect of either 
raising or lowering the mean of the series starting at the 
time the outlier occurs.  This shift in the mean is abrupt and 
permanent. 

3 (TC) 
Temporary 

Change 

Temporary change outliers persist and are similar to level 
shift outliers with one major exception.  Like level shift 
outliers, there is an abrupt change in the mean of the series 
at the time this outlier occurs.  However, unlike level shift 
outliers, this shift is not permanent. The TC outlier 
gradually decays, eventually bringing the mean of the 
series back to its original value.  The rate of this decay is 
modeled using the parameter delta. The default of 
delta= 0.7 is the value recommended for general use by 
Chen and Liu (1993). 

4 (UI) 
Unable to 
Identify 

If an outlier is identified as the last observation, then the 
algorithm is unable to determine the outlier’s classification.  
For forecasting, a UI outlier is treated as an IO outlier.  
That is, its effect is lagged into the forecasts.  
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#include <stdlib.h> 
#include <stdio.h> 
 
void main(void) 
{ 
  float *parameters = NULL, *outlier_forecast = NULL; 
  int *outlier_stat = NULL; 
  int n_obs, n_predict, i, num_outliers; 
  float aic, res_sigma; 
  int model[4]; 
  float forecast_table[24]; 
 
  float x[141] = { 
    12.8,12.2,11.9,10.9,10.6,11.3,11.1,10.4,10.0,9.7,9.7,9.7, 
    11.1,10.5,10.3,9.8,9.8,10.4,10.4,10.0,9.7,9.3,9.6,9.7, 
    10.8,10.7,10.3,9.7,9.5,10.0,10.0,9.3,9.0,8.8,8.9,9.2, 
    10.4,10.0,9.6,9.0,8.5,9.2,9.0,8.6,8.3,7.9,8.0,8.2, 
    9.3,8.9,8.9,7.7,7.6,8.4,8.5,7.8,7.6,7.3,7.2,7.3, 
    8.5,8.2,7.9,7.4,7.1,7.9,7.7,7.2,7.0,6.7,6.8,6.9, 
    7.8,7.6,7.4,6.6,6.8,7.2,7.2,7.0,6.6,6.3,6.8,6.7, 
    8.1,7.9,7.6,7.1,7.2,8.2,8.1,8.1,8.2,8.7,9.0,9.3, 
    10.5,10.1,9.9,9.4,9.2,9.8,9.9,9.5,9.0,9.0,9.4,9.6, 
    11.0,10.8,10.4,9.8,9.7,10.6,10.5,10.0,9.8,9.5,9.7,9.6, 
    10.9,10.3,10.4,9.3,9.3,9.8,9.8,9.3,8.9,9.1,9.1,9.1, 
    10.2,9.9,9.4,8.7,8.6,9.3,9.1,8.8,8.5}; 
 
  int times[141] = { 
       1,2,3,4,5,6,7,8,9,10,11,12, 
      13,14,15,16,17,18,19,20,21,22,23,24, 
      25,26,27,28,29,30,31,32,33,34,35,36, 
      37,38,39,40,41,42,43,44,45,46,47,48, 
      49,50,51,52,53,54,55,56,57,58,59,60, 
      61,62,63,64,65,66,67,68,69,70,71,72, 
      73,74,75,76,77,78,79,80,81,82,83,84, 
      85,86,87,88,89,90,91,92,93,94,95,96, 
      97,98,99,100,101,102,103,104,105,106,107,108, 
     109,110,111,112,113,114,115,116,117,118,119,120, 
     121,122,123,124,125,126,127,128,129,130,131,132, 
     133,134,135,136,137,138,139,140,141}; 
 
   n_predict = 6; 
   n_obs = 135; 
 
   parameters = imsls_f_auto_arima(n_obs, times, x, IMSLS_MODEL, model, 
                       IMSLS_AIC, &aic, 
                       IMSLS_MAX_LAG, 5, 
                       IMSLS_CRITICAL, 4.0, 
                       IMSLS_NUM_OUTLIERS, &num_outliers, 
                       IMSLS_OUTLIER_STATISTICS, &outlier_stat, 
                       IMSLS_RESIDUAL_SIGMA, &res_sigma, 
                       IMSLS_NUM_PREDICT, n_predict, 
                       IMSLS_OUTLIER_FORECAST, &outlier_forecast, 
                       0); 
                        
   printf("\nMethod 1: Automatic ARIMA model selection," 
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           " no differencing\n"); 
   printf("\nModel chosen: p=%d, q=%d, s=%d, d=%d\n", model[0], 
              model[1], model[2], model[3]); 
   printf("\nNumber of outliers: %d\n\n", num_outliers); 
 
   printf("Outlier statistics:\n\n"); 
   printf("Time point\t\tOutlier type\n"); 
   for (i=0; i<num_outliers; i++) 
     printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]); 
 
   printf("\nAIC = %lf\n", aic); 
   printf("RSE = %lf\n\n", res_sigma); 
 
   printf("Parameters:\n"); 
   for (i=0; i<=model[0]+model[1]; i++) 
     printf("parameters[%d]=%lf\n", i,  parameters[i]); 
 
   for (i=0; i<n_predict; i++) 
   { 
      forecast_table[4*i] = x[n_obs+i]; 
      forecast_table[4*i+1] = outlier_forecast[3*i]; 
      forecast_table[4*i+2] = outlier_forecast[3*i+1]; 
      forecast_table[4*i+3] = outlier_forecast[3*i+2]; 
   } 
 
   imsls_f_write_matrix("\t* * * Forecast Table * * *" 
      "\nOrig. series\t  forecast\tprob. limits\tpsi weights\n", 
      n_predict, 4, forecast_table, IMSLS_WRITE_FORMAT, "%11.4f", 0); 
 
   if (parameters) 
   { 
      free(parameters); 
      parameters = NULL; 
   } 
 
   if (outlier_forecast) 
   { 
      free(outlier_forecast); 
      outlier_forecast = NULL; 
   } 
 
   if (outlier_stat) 
   { 
      free(outlier_stat); 
      outlier_stat = NULL; 
   } 
 
   return; 
} 

 

Output 
Method 1: Automatic ARIMA model selection, no differencing 
 
Model chosen: p=5, q=0, s=1, d=0 
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Number of outliers: 6 
 
Outlier statistics: 
 
Time point      Outlier type 
13              0 
37              3 
85              0 
97              0 
109             0 
121             0 
 
AIC = 380.951660 
RSE = 0.372990 
 
Parameters: 
parameters[0]=0.078454 
parameters[1]=0.905531 
parameters[2]=-0.101995 
parameters[3]=-0.184992 
parameters[4]=0.218070 
parameters[5]=0.154951 
  
                * * * Forecast Table * * * 
  Orig. series    forecast      prob. limits    psi weights 
 
             1            2            3            4 
1       8.7000       9.0883       0.7310       0.9055 
2       8.6000       9.1523       0.9862       0.7180 
3       9.3000       9.4397       1.1172       0.3728 
4       9.1000       9.5955       1.1500       0.3149 
5       8.8000       9.5500       1.1728       0.4667 
6       8.5000       9.4054       1.2214       0.6184 
 

Example 2 

This is the same as Example 1, except now imsls_f_auto_arima uses Method 2 
with a possible seasonal adjustment. As a result, the unadjusted model with 

3, 2, 1, 0p q s d= = = =  is chosen as optimum. 
 
#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
void main(void) 
{ 
  int n_obs, n_predict, i, num_outliers; 
  float aic, res_sigma; 
  int model[4]; 
  int n_s_initial = 2; 
  int n_d_initial = 3; 
  int s_initial[2] = {1,2}; 
  int d_initial[3] = {0,1,2}; 
  int n_p_initial = 4, n_q_initial = 4; 
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  int p_initial[4] = {0,1,2,3}; 
  int q_initial[4] = {0,1,2,3}; 
  float parameters_user[141]; 
  float outfree_series_user[282]; 
  int outlier_stat_user[282]; 
  float outlier_forecast_user[24]; 
  float forecast_table[24]; 
 
  float x[141] = { 
    12.8,12.2,11.9,10.9,10.6,11.3,11.1,10.4,10.0,9.7,9.7,9.7, 
    11.1,10.5,10.3,9.8,9.8,10.4,10.4,10.0,9.7,9.3,9.6,9.7, 
    10.8,10.7,10.3,9.7,9.5,10.0,10.0,9.3,9.0,8.8,8.9,9.2, 
    10.4,10.0,9.6,9.0,8.5,9.2,9.0,8.6,8.3,7.9,8.0,8.2, 
    9.3,8.9,8.9,7.7,7.6,8.4,8.5,7.8,7.6,7.3,7.2,7.3, 
    8.5,8.2,7.9,7.4,7.1,7.9,7.7,7.2,7.0,6.7,6.8,6.9, 
    7.8,7.6,7.4,6.6,6.8,7.2,7.2,7.0,6.6,6.3,6.8,6.7, 
    8.1,7.9,7.6,7.1,7.2,8.2,8.1,8.1,8.2,8.7,9.0,9.3, 
    10.5,10.1,9.9,9.4,9.2,9.8,9.9,9.5,9.0,9.0,9.4,9.6, 
    11.0,10.8,10.4,9.8,9.7,10.6,10.5,10.0,9.8,9.5,9.7,9.6, 
    10.9,10.3,10.4,9.3,9.3,9.8,9.8,9.3,8.9,9.1,9.1,9.1, 
    10.2,9.9,9.4,8.7,8.6,9.3,9.1,8.8,8.5}; 
 
  int times[141] = { 
       1,2,3,4,5,6,7,8,9,10,11,12, 
      13,14,15,16,17,18,19,20,21,22,23,24, 
      25,26,27,28,29,30,31,32,33,34,35,36, 
      37,38,39,40,41,42,43,44,45,46,47,48, 
      49,50,51,52,53,54,55,56,57,58,59,60, 
      61,62,63,64,65,66,67,68,69,70,71,72, 
      73,74,75,76,77,78,79,80,81,82,83,84, 
      85,86,87,88,89,90,91,92,93,94,95,96, 
      97,98,99,100,101,102,103,104,105,106,107,108, 
     109,110,111,112,113,114,115,116,117,118,119,120, 
     121,122,123,124,125,126,127,128,129,130,131,132, 
     133,134,135,136,137,138,139,140,141}; 
 
   n_predict = 6; 
   n_obs = 135; 
    
   imsls_f_auto_arima(n_obs, times, x, IMSLS_MODEL, model, 
       IMSLS_AIC, &aic, 
                  IMSLS_CRITICAL, 4.0, 
                  IMSLS_MAX_LAG, 5, 
                  IMSLS_METHOD, 2, 
                  IMSLS_P_INITIAL, n_p_initial, p_initial, 
                  IMSLS_Q_INITIAL, n_q_initial, q_initial, 
                  IMSLS_S_INITIAL, n_s_initial, s_initial, 
                  IMSLS_D_INITIAL, n_d_initial, d_initial, 
                  IMSLS_NUM_OUTLIERS, &num_outliers, 
                  IMSLS_OUTLIER_STATISTICS_USER, outlier_stat_user, 
                  IMSLS_RESIDUAL_SIGMA, &res_sigma, 
                  IMSLS_NUM_PREDICT, 6, 
                  IMSLS_OUTLIER_FORECAST_USER, outlier_forecast_user, 
                  IMSLS_RETURN_USER, parameters_user, 
                  0); 
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   for (i=0; i<n_predict; i++) 
   { 
      forecast_table[4*i] = x[n_obs+i]; 
      forecast_table[4*i+1] = outlier_forecast_user[3*i]; 
      forecast_table[4*i+2] = outlier_forecast_user[3*i+1]; 
      forecast_table[4*i+3] = outlier_forecast_user[3*i+2]; 
   } 
 
   printf("\nMethod 2: Grid search, differencing allowed\n"); 
 
   printf("\nModel chosen: p=%d, q=%d, s=%d, d=%d\n", model[0], 
                  model[1], model[2], model[3]); 
   printf("\nNumber of outliers: %d\n\n", num_outliers); 
 
   printf("Outlier statistics:\n\n"); 
   printf("Time point\t\tOutlier type\n"); 
   for (i=0; i<num_outliers; i++) 
     printf("%d\t\t%d\n", outlier_stat_user[2*i], 
                           outlier_stat_user[2*i+1]); 
 
   printf("\nAIC = %lf\n", aic); 
   printf("RSE = %lf\n\n", res_sigma); 
 
   printf("Parameters:\n"); 
   for (i=0; i<=model[0]+model[1]; i++) 
     printf("parameters[%d]=%lf\n", i,  parameters_user[i]); 
 
   imsls_f_write_matrix("\n\t* * * Forecast Table * * *" 
      "\nOrig. series\t  forecast\tprob. limits\tpsi weights\n", 
      n_predict, 4, forecast_table, IMSLS_WRITE_FORMAT, "%11.4f", 0); 
 
   return; 
} 

Output 
 
Method 2: Grid search, differencing allowed 
 
Model chosen: p=3, q=2, s=1, d=0 
 
Number of outliers: 1 
 
Outlier statistics: 
 
Time point              Outlier type 
109             0 
 
AIC = 408.076813 
RSE = 0.412409 
 
Parameters: 
parameters[0]=0.509478 
parameters[1]=1.944665 
parameters[2]=-1.901104 
parameters[3]=0.901657 
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parameters[4]=1.113017 
parameters[5]=-0.914998 
  
  
                * * * Forecast Table * * * 
  Orig. series    forecast      prob. limits    psi weights 
 
             1            2            3            4 
1       8.7000       9.1109       0.8083       0.8316 
2       8.6000       9.1811       1.0513       0.6312 
3       9.3000       9.5185       1.1686       0.5480 
4       9.1000       9.7804       1.2497       0.6157 
5       8.8000       9.7117       1.3451       0.7245 
6       8.5000       9.3842       1.4671       0.7326 
 

Example 3 
This example is the same as Example 2 but now Method 3 with the optimum model 
parameters 3, 2, 1, 0p q s d= = = =  from Example 2 are chosen for outlier detection 
and forecasting. 

 
#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
void main(void) 
{ 
  float *parameters = NULL, *outlier_forecast = NULL; 
  int *outlier_stat = NULL; 
  int n_obs, n_predict, i, num_outliers; 
  float aic, res_sigma; 
  int model[4]; 
  float forecast_table[24]; 
 
  float x[141] = { 
    12.8,12.2,11.9,10.9,10.6,11.3,11.1,10.4,10.0,9.7,9.7,9.7, 
    11.1,10.5,10.3,9.8,9.8,10.4,10.4,10.0,9.7,9.3,9.6,9.7, 
    10.8,10.7,10.3,9.7,9.5,10.0,10.0,9.3,9.0,8.8,8.9,9.2, 
    10.4,10.0,9.6,9.0,8.5,9.2,9.0,8.6,8.3,7.9,8.0,8.2, 
    9.3,8.9,8.9,7.7,7.6,8.4,8.5,7.8,7.6,7.3,7.2,7.3, 
    8.5,8.2,7.9,7.4,7.1,7.9,7.7,7.2,7.0,6.7,6.8,6.9, 
    7.8,7.6,7.4,6.6,6.8,7.2,7.2,7.0,6.6,6.3,6.8,6.7, 
    8.1,7.9,7.6,7.1,7.2,8.2,8.1,8.1,8.2,8.7,9.0,9.3, 
    10.5,10.1,9.9,9.4,9.2,9.8,9.9,9.5,9.0,9.0,9.4,9.6, 
    11.0,10.8,10.4,9.8,9.7,10.6,10.5,10.0,9.8,9.5,9.7,9.6, 
    10.9,10.3,10.4,9.3,9.3,9.8,9.8,9.3,8.9,9.1,9.1,9.1, 
    10.2,9.9,9.4,8.7,8.6,9.3,9.1,8.8,8.5}; 
 
  int times[141] = { 
       1,2,3,4,5,6,7,8,9,10,11,12, 
      13,14,15,16,17,18,19,20,21,22,23,24, 
      25,26,27,28,29,30,31,32,33,34,35,36, 
      37,38,39,40,41,42,43,44,45,46,47,48, 
      49,50,51,52,53,54,55,56,57,58,59,60, 
      61,62,63,64,65,66,67,68,69,70,71,72, 
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      73,74,75,76,77,78,79,80,81,82,83,84, 
      85,86,87,88,89,90,91,92,93,94,95,96, 
      97,98,99,100,101,102,103,104,105,106,107,108, 
     109,110,111,112,113,114,115,116,117,118,119,120, 
     121,122,123,124,125,126,127,128,129,130,131,132, 
     133,134,135,136,137,138,139,140,141}; 
 
   n_predict = 6; 
   n_obs = 135; 
 
   model[0] = 3; 
   model[1] = 2; 
   model[2] = 1; 
   model[3] = 0; 
    
   parameters = imsls_f_auto_arima(n_obs, times, x, IMSLS_MODEL, model, 
                       IMSLS_AIC, &aic, 
                       IMSLS_CRITICAL, 4.0, 
                       IMSLS_METHOD, 3, 
                       IMSLS_NUM_OUTLIERS, &num_outliers, 
                       IMSLS_OUTLIER_STATISTICS, &outlier_stat, 
                       IMSLS_RESIDUAL_SIGMA, &res_sigma, 
                       IMSLS_NUM_PREDICT, 6, 
                       IMSLS_OUTLIER_FORECAST, &outlier_forecast, 
                       0); 
 
   printf("\nMethod 3: Specified ARIMA model\n"); 
   printf("\nModel: p=%d, q=%d, s=%d, d=%d\n", model[0], model[1], 
                         model[2], model[3]); 
   printf("\nNumber of outliers: %d\n\n", num_outliers); 
 
   printf("Outlier statistics:\n\n"); 
   printf("Time point\t\tOutlier type\n"); 
   for (i=0; i<num_outliers; i++) 
     printf("%d\t\t%d\n", outlier_stat[2*i], outlier_stat[2*i+1]); 
 
   printf("\nAIC = %lf\n", aic); 
   printf("RSE = %lf\n", res_sigma); 
 
   printf("\nParameters:\n"); 
   for (i=0; i<=model[0]+model[1]; i++) 
     printf("parameters[%d]=%lf\n", i,  parameters[i]); 
     
   for (i=0; i<n_predict; i++) 
   { 
      forecast_table[4*i] = x[n_obs+i]; 
      forecast_table[4*i+1] = outlier_forecast[3*i]; 
      forecast_table[4*i+2] = outlier_forecast[3*i+1]; 
      forecast_table[4*i+3] = outlier_forecast[3*i+2]; 
   } 
 
   imsls_f_write_matrix("\t* * * Forecast Table * * *" 
       "\nOrig. series\t  forecast\tprob. limits\tpsi weights\n", 
       n_predict, 4, forecast_table, IMSLS_WRITE_FORMAT, "%11.4f", 0); 
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   if (parameters) 
   { 
      free(parameters); 
      parameters = NULL; 
   } 
 
   if (outlier_forecast) 
   { 
      free(outlier_forecast); 
      outlier_forecast = NULL; 
   } 
 
   if (outlier_stat) 
   { 
      free(outlier_stat); 
      outlier_stat = NULL; 
   } 
 
   return; 
 
} 

Output 
Method 3: Specified ARIMA model 
 
Model: p=3, q=2, s=1, d=0 
 
Number of outliers: 1 
 
Outlier statistics: 
 
Time point              Outlier type 
109             0 
 
AIC = 408.076813 
RSE = 0.412409 
 
Parameters: 
parameters[0]=0.509478 
parameters[1]=1.944665 
parameters[2]=-1.901104 
parameters[3]=0.901657 
parameters[4]=1.113017 
parameters[5]=-0.914998 
  
                * * * Forecast Table * * * 
  Orig. series    forecast      prob. limits    psi weights 
 
             1            2            3            4 
1       8.7000       9.1109       0.8083       0.8316 
2       8.6000       9.1811       1.0513       0.6312 
3       9.3000       9.5185       1.1686       0.5480 
4       9.1000       9.7804       1.2497       0.6157 
5       8.8000       9.7117       1.3451       0.7245 
6       8.5000       9.3842       1.4671       0.7326 
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difference 
Differences a seasonal or nonseasonal time series. 

Synopsis 
#include <imsls.h> 

float *imsls_f_difference (int n_observations, float z[], 
int n_differences, int periods[], ..., 0) 

The type double function is imsls_d_difference. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

float z[]   (Input) 
Array of length n_observations containing the time series. 

int n_differences   (Input) 
Number of differences to perform. Argument n_differences must be 
greater than or equal to 1. 

int periods[]   (Input) 
Array of length n_differences containing the periods at which z is to be 
differenced. 

Return Value 
Pointer to an array of length n_observations containing the differenced series. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_difference (int n_observations, float z[], 

int n_differences, int periods[], 
IMSLS_ORDERS, int orders[], 
IMSLS_LOST, intv*n_lost, 
IMSLS_EXCLUDE_FIRST, or 
IMSLS_SET_FIRST_TO_NAN,  
IMSLS_RETURN_USER, float w[],  
0) 

Optional Arguments 
IMSLS_ORDERS, int orders[]   (Input) 

Array of length n_differences containing the order of each difference 
given in periods. The elements of orders must be greater than or equal to 0. 

IMSLS_LOST, int *n_lost   (Output) 
Number of observations lost because of differencing the time series z. 
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IMSLS_EXCLUDE_FIRST, or 
IMSLS_SET_FIRST_TO_NAN 

If IMSLS_EXCLUDE_FIRST is specified, the first n_lost are excluded from w 
due to differencing. The differenced series w is of length n_observations − 
n_lost. If IMSLS_SET_FIRST_TO_NAN is specified, the first n_lost 
observations are set to NaN (Not a Number). This is the default if neither 
IMSLS_EXCLUDE_FIRST nor IMSLS_SET_FIRST_TO_NAN is specified. 

IMSLS_RETURN_USER, float w[]   (Output) 
If specified, w contains the differenced series. If IMSLS_EXCLUDE_FIRST also 
is specified, w is of length n_observations. If IMSLS_SET_FIRST_TO_NAN 
is specified or neither IMSLS_EXCLUDE_FIRST nor 
IMSLS_SET_FIRST_TO_NAN is specified, w is of length 
n_observations − n_lost. 

Description 
Function imsls_f_difference performs m = n_differences successive backward 
differences of period si = periods [i − 1] and order  
di = orders [i − 1] for i = 1, ..., m on the n = n_observations observations {Zt} for  
t = 1, 2, ..., n. 
Consider the backward shift operator B given by 

k
t t kB Z Z −=

 

for all k. Then, the backward difference operator with period s is defined by the 
following: 

   
(1 )s

s t t t t sZ B Z Z Z −Δ = − = −
  for   

0s >
. 

Note that s
tB Z and s

tZΔ  are defined only for t = (s + 1), ..., n. Repeated differencing 
with period s is simply 

( ) ( ) ( )
0

!1 1
! !

dd jd s sj
s t t t

j

dZ B Z B Z
j d j=

Δ = − = −
−∑  

where d ≥ 0 is the order of differencing. Note that 
d
s tZΔ

 

is defined only for t = (sd + 1), ..., n. 
The general difference formula used in the function imsls_f_difference is given 
by 
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for 1, ...,m
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t dd d
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Z t n n

=⎧⎪= ⎨Δ Δ Δ = +⎪⎩ …  

where nL represents the number of observations “lost” because of differencing and 
NaN represents the missing value code. See the functions imsls_f_machine and 
imsls_d_machine (Chapter 15, “Utilities”) to retrieve missing values. Note that 

L j j
j

n s d= ∑  

A homogeneous, stationary time series can be arrived at by appropriately differencing a 
homogeneous, nonstationary time series (Box and Jenkins 1976, p. 85). Preliminary 
application of an appropriate transformation followed by differencing of a series can 
enable model identification and parameter estimation in the class of homogeneous 
stationary autoregressive moving average models. 

Examples  

Example 1 
Consider the Airline Data (Box and Jenkins 1976, p. 531) consisting of the monthly 
total number of international airline passengers from January 1949 through December 
1960. Function imsls_f_difference is used to compute 

1 12 12 1 13( ) ( )t t t t t tW Z Z Z Z Z− − −= Δ Δ = − − −  

for  t = 14, 15, ..., 24. 
#include <imsls.h> 
 
void main() 
 
{ 
    int    i; 
    int    n_observations = 24; 
    int    n_differences = 2; 
    int    periods[2] = {1, 12}; 
    float  *z; 
    float  *difference; 
 
    z = imsls_f_data_sets (4, 0); 
    difference = imsls_f_difference (n_observations, z, 
                                     n_differences, periods, 
                                     0); 
    printf ("i\tz[i]\tdifference[i]\n"); 
    for (i = 0; i < n_observations; i++) 
        printf ("%d\t%f\t%f\n", i, z[i], difference[i]); 
 
} 
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Output 
 i      z[i]         difference[i] 
 0      112.000000   NaN 
 1      118.000000   NaN 
 2      132.000000   NaN 
 3      129.000000   NaN 
 4      121.000000   NaN 
 5      135.000000   NaN 
 6      148.000000   NaN 
 7      148.000000   NaN 
 8      136.000000   NaN 
 9      119.000000   NaN 
10      104.000000   NaN 
11      118.000000   NaN 
12      115.000000   NaN 
13      126.000000   5.000000 
14      141.000000   1.000000 
15      135.000000  -3.000000 
16      125.000000  -2.000000 
17      149.000000  10.000000 
18      170.000000   8.000000 
19      170.000000   0.000000 
20      158.000000   0.000000 
21      133.000000  -8.000000 
22      114.000000  -4.000000 
23      140.000000  12.000000 

Example 2 
The data for this example is the same as that for the initial example. The first n_lost 
observations are excluded from W due to differencing, and n_lost is also output. 

#include <imsls.h> 
 
void main() 
{ 
 
    int    i; 
    int    n_observations = 24; 
    int    n_differences = 2; 
    int    periods[2] = {1, 12}; 
    int    n_lost; 
    float  *z; 
    float  *difference; 
                  /* Get airline data */ 
    z = imsls_f_data_sets (4, 0); 
                  /* Compute differenced time series when observations 
                     lost are excluded from the differencing */ 
    difference = imsls_f_difference (n_observations, z, 
                                     n_differences, periods, 
                                     IMSLS_EXCLUDE_FIRST, 
                                     IMSLS_LOST, &n_lost, 
                                     0); 
                  /* Print the number of lost observations */ 
    printf ("n_lost equals %d\n", n_lost); 
    printf ("\n\ni\tz[i]\t        difference[i]\n"); 
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                  /* Print the original time series and the differenced 
                     time series */ 
    for (i = 0; i < n_observations - n_lost; i++) 
        printf ("%d\t%f\t%f\n", i, z[i], difference[i]); 
} 

Output 
n_lost equals 13 
 
 
 i      z[i]          difference[i] 
 0      112.000000    5.000000 
 1      118.000000    1.000000 
 2      132.000000   -3.000000 
 3      129.000000   -2.000000 
 4      121.000000   10.000000 
 5      135.000000    8.000000 
 6      148.000000    0.000000 
 7      148.000000    0.000000 
 8      136.000000   -8.000000 
 9      119.000000   -4.000000 
10      104.000000   12.000000 

Fatal Errors 

IMSLS_PERIODS_LT_ZERO “period[#]” = #. All elements of “period” must be 
greater than 0. 

IMSLS_ORDER_NEGATIVE  “order[#]” = #. All elements of “order” must be 
nonnegative. 

IMSLS_Z_CONTAINS_NAN “z[#]” = NaN; “z” can not contain missing values. 
There may be other elements of “z” that are equal to 
NaN. 

seasonal_fit 
Estimates the optimum seasonality parameters for a time series using an autoregressive 
model, AR(p), to represent the time series. 

Synopsis 

#include <imsls.h> 

float  * imsls_f_seasonal_fit(int n_obs, float z[], int maxlag, 
 int n_differences, int n_s_initial, int s_initial[],…,0) 

The type double function is imsls_d_seasonal_fit. 

Required Arguments 

int n_obs  (Input) 
Number of observations in the time series. 
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float z[] (Input) 
An array of length n_obs containing the time series.  No missing values in 
the series are allowed. 

int  maxlag (Input) 
The maximum lag allowed when fitting an AR(p) model. 

int  n_differences  (Input) 
The number of differences to perform. Argument n_differences must be 
greater than or equal to one. 

int  n_s_initial  (Input) 
The number of rows of the array containing the seasonal differences. 

int  s_initial[]  (Input) 
Array of dimension n_s_initial by n_differences containing the seasonal 
differences to test. All values of s_initial must be greater than or equal to one.  

Return Value 
Pointer to an array of length n_obs or n_obs-n_lost containing the optimum 
seasonally adjusted, autoregressive series.  The first n_lost observations in this series 
are set to NaN, missing values.  The seasonal adjustment is done by selecting optimum 
values for 1 , , md d… , 1 , , ms s…  (m=n_differences) and p  in the AR model: 

1 2

1 2
( )( )m

m

dd d
p s s s t tB Z aφ μΔ Δ Δ − =" ,  

where { }tZ  is the original time series, B is the backward shift operator defined by 
k

t t kB Z Z −= , 0k ≥ , ta is Gaussian white noise with [ ] 0tE a = and 2[ ]tVAR a σ= , 
2

1 2( ) 1 ,  0p
pp B B B B pφ φ φ φ= − − − − ≤ ≤ maxlag" , 

(1 ) , d s d
s BΔ = − with 0, 0s d> ≥ , and μ  is a centering parameter for the 

differenced series. 

NOTE that  0 1sΔ = , the identity operator, i.e.  0
s t tY YΔ = .  

If an error occurred, then NULL is returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 

float * imsls_f_seasonal_fit (int n_obs, float z[], int maxlag,  
int n_differences, int n_s_initial, int s_initial[], 
IMSLS_RETURN_USER, float w[], 
IMSLS_D_INITIAL, int n_d_initial, int d_initial[], 
IMSLS_SET_FIRST_TO_NAN, or IMSLS_EXCLUDE_FIRST, 
IMSLS_CENTER, int n_center, 
IMSLS_LOST, int *n_lost, 
IMSLS_BEST_PERIODS, int **s, 
IMSLS_BEST_PERIODS_USER, int s[], 
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IMSLS_BEST_ORDERS, int **d, 
IMSLS_BEST_ORDERS_USER, int d[], 
IMSLS_AR_ORDER, int *p, 
IMSLS_AIC, float *aic, 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float w[]  (Output) 

An array of length n_obs supplied by the user to hold the seasonally adjusted 
series returned by imsls_f_seasonal_fit. 

IMSLS_D_INITIAL, int n_d_initial, int d_initial[]  (Input) 
An array of dimension n_d_initial by n_differences containing the 
candidate values for d[], from which the optimum is being selected.  All 
candidate values in d_initial[] must be non-negative and  
n_d_initial ≥ 1.  
Default: n_d_initial=1, d_initial an array of length n_differences 
filled with ones. 

IMSLS_SET_FIRST_TO_NAN, or IMSLS_EXCLUDE_FIRST  (Input) 
If IMSLS_EXCLUDE_FIRST is specified, the first n_lost values are excluded 
from w due to differencing.  The differenced series w is of length  
n_obs–n_lost.  If IMSLS_SET_FIRST_TO_NAN is specified, the first 
n_lost observations are set to NaN (Not a Number).  
Default: IMSLS_SET_FIRST_TO_NAN. 

IMSLS_CENTER, int n_center  (Input) 
If supplied, IMSLS_CENTER controls the method used to center the 
differenced series.  If n_center=0 then the series is not centered.  If 
n_center=1, the mean of the series is used to center the data, and if 
n_center=2, the median is used. 
Default:  n_center=1. 

IMSLS_LOST, int *n_lost  (Output) 
The number of observations lost due to differencing the time series.  This is 
also equal to the number of NaN values that appear in the first n_lost 
locations of the returned seasonally adjusted series. 

IMSLS_BEST_PERIODS, int **s  (Output) 
Address of a pointer to an internally allocated array of length 
m=n_differences containing the optimum values for the seasonal 
adjustment parameters 1 2, , , ms s s…  selected from the list of candidates 
contained in s_initial[]. 

IMSLS_BEST_PERIODS_USER, int s[]  (Output) 
A user supplied array of length n_differences for storage of the array s. 

IMSLS_BEST_ORDERS, int **d  (Output) 
Address of a pointer to an internally allocated array of length 
m=n_differences containing the optimum values for the seasonal 
adjustment parameters 1 2, , , md d d…  selected from the list of candidates 
contained in d_initial[]. 

IMSLS_BEST_ORDERS_USER, int d[]  (Output) 
A user supplied array of length n_differences for storage of the array d. 
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IMSLS_AR_ORDER, int *p  (Output) 
The optimum value for the autoregressive lag. 

IMSLS_AIC, float *aic  (Output) 
Akaike’s Information Criterion (AIC) for the optimum seasonally adjusted 
model. 

Description 
Many time series contain seasonal trends and cycles that can be modeled by first 
differencing the series.  For example, if the correlation is strong from one period to the 
next, the series might be differenced by a lag of 1.  Instead of fitting a model to the 
series tZ , the model is fitted to the transformed series: 1t t tW Z Z −= − .  Higher order 
lags or differences are warranted if the series has a cycle every 4 or 13 weeks. 
Function imsls_f_seasonal_fit does not center the original series. If 
IMSLS_CENTER is specified with either n_center =1 or  n_center =2, then the 
differenced series, tW , is centered before determination of minimum AIC and optimum 

lag.  For every combination of rows in s_initial and d_initial, the series tZ is 
converted to the seasonally adjusted series using the following computation 

 1 2

1 2
01 1

( , ) (1 ) ( 1)
i

j sm i i i

m

dm m
id s dd d j

t s s s t t t
ji i

d
W s d Z B Z B Z

j
⋅

== =

⎛ ⎞
= Δ Δ Δ = − = −⎜ ⎟

⎝ ⎠
∑∏ ∏" . 

where 1: ( , , )ms s s= … , 1: ( , , )md d d= …  represent specific rows of arrays s_initial 
and d_initial respectively, and m =n_differences. 

This transformation of the series tZ  to ( , )tW s d  is accomplished using function 
imsls_f_difference().  After this transformation,  

( , )tW s d
 

is (optionally) centered and a call is made to imsls_f_auto_uni_ar to automatically 
determine the optimum lag for an AR(p) representation for ( , )tW s d . This procedure is 
repeated for every possible combination of rows of s_initial and d_initial. The 
series with the minimum AIC is identified as the optimum representation and returned. 

Example 
Consider the Airline Data (Box, Jenkins and Reinsel 1994, p. 547) consisting of the 
monthly total number of international airline passengers from January 1949 through 
December 1960. Function imsls_f_seasonal_fit is used to compute the optimum 
seasonality representation of  the adjusted series 

  
1 2 1 1 2 2

1 2
( , ) (1 ) (1 ) ,s sd d d d

t s s t tW s d Z B B Z= Δ Δ = − −
 

where  

(1,1)s =
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or  

(1,12)s =
  

and  

(1,1).d =
 

As differenced series with minimum AIC, 

( ) ( )1 2
1 12 12 1 13 ,t t t t t tW Z Z Z Z Z− − −= Δ Δ = − − −

 

is identified. 

 
#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
 
void main() 
{ 
  int i; 
  int maxlag = 10; 
  int nobs = 144; 
  int n_differences = 2; 
  int n_s_initial = 2; 
  int nlost; 
  int npar; 
  float aic; 
  int s_init[] = { 1, 1, 
                   1, 12}; 
  int *s = NULL; 
  int *d = NULL; 
  float *z = NULL; 
  float *difference = NULL; 
   
  z = imsls_f_data_sets(4, 0); 
   
  difference = imsls_f_seasonal_fit(nobs, z, maxlag, n_differences, 
                                    n_s_initial, s_init, 
                                    IMSLS_LOST, &nlost, 
                                    IMSLS_BEST_PERIODS, &s, 
                                    IMSLS_BEST_ORDERS, &d, 
                                    IMSLS_AIC, &aic, 
                                    IMSLS_AR_ORDER, &npar, 
                                    0); 
                                        
  printf("\nnlost = %d\n", nlost); 
  printf("s = (%d, %d)\n", s[0], s[1]); 
  printf("d = (%d, %d)\n", d[0], d[1]); 
  printf("Order of optimum AR process: %d\n", npar); 
  printf("aic = %lf\n", aic); 
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  printf("\ni\tz[i]\tdifference[i]\n"); 
  for (i=0; i<nobs; i++) 
    printf("%d\t%f\t%f\n", i, z[i], difference[i]); 
                                         
  if (s) 
  { 
     free(s); 
     s = NULL; 
  } 
   
  if (d) 
  { 
     free(d); 
     d = NULL; 
  } 
   
  if (z) 
  { 
     free(z); 
     z = NULL; 
  } 
   
  if (difference) 
  { 
     free(difference); 
     difference = NULL;  
  } 
   
  return; 
} 

 

Output 

 
nlost = 13 
s = (1, 12) 
d = (1, 1) 
Order of optimum AR process: 1 
aic = 829.780334 
 
i       z[i]    difference[i] 
0       112.000000      NaN 
1       118.000000      NaN 
2       132.000000      NaN 
3       129.000000      NaN 
4       121.000000      NaN 
5       135.000000      NaN 
6       148.000000      NaN 
7       148.000000      NaN 
8       136.000000      NaN 
9       119.000000      NaN 
10      104.000000      NaN 
11      118.000000      NaN 
12      115.000000      NaN 
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13      126.000000      5.000000 
14      141.000000      1.000000 
15      135.000000      -3.000000 
16      125.000000      -2.000000 
17      149.000000      10.000000 
18      170.000000      8.000000 
19      170.000000      0.000000 
20      158.000000      0.000000 
21      133.000000      -8.000000 
22      114.000000      -4.000000 
23      140.000000      12.000000 
24      145.000000      8.000000 
25      150.000000      -6.000000 
26      178.000000      13.000000 
27      163.000000      -9.000000 
28      172.000000      19.000000 
29      178.000000      -18.000000 
30      199.000000      0.000000 
31      199.000000      0.000000 
32      184.000000      -3.000000 
33      162.000000      3.000000 
34      146.000000      3.000000 
35      166.000000      -6.000000 
36      171.000000      0.000000 
37      180.000000      4.000000 
38      193.000000      -15.000000 
39      181.000000      3.000000 
40      183.000000      -7.000000 
41      218.000000      29.000000 
42      230.000000      -9.000000 
43      242.000000      12.000000 
44      209.000000      -18.000000 
45      191.000000      4.000000 
46      172.000000      -3.000000 
47      194.000000      2.000000 
48      196.000000      -3.000000 
49      196.000000      -9.000000 
50      236.000000      27.000000 
51      235.000000      11.000000 
52      229.000000      -8.000000 
53      243.000000      -21.000000 
54      264.000000      9.000000 
55      272.000000      -4.000000 
56      237.000000      -2.000000 
57      211.000000      -8.000000 
58      180.000000      -12.000000 
59      201.000000      -1.000000 
60      204.000000      1.000000 
61      188.000000      -16.000000 
62      235.000000      7.000000 
63      227.000000      -7.000000 
64      234.000000      13.000000 
65      264.000000      16.000000 
66      302.000000      17.000000 
67      293.000000      -17.000000 
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68      259.000000      1.000000 
69      229.000000      -4.000000 
70      203.000000      5.000000 
71      229.000000      5.000000 
72      242.000000      10.000000 
73      233.000000      7.000000 
74      267.000000      -13.000000 
75      269.000000      10.000000 
76      270.000000      -6.000000 
77      315.000000      15.000000 
78      364.000000      11.000000 
79      347.000000      -8.000000 
80      312.000000      -1.000000 
81      274.000000      -8.000000 
82      237.000000      -11.000000 
83      278.000000      15.000000 
84      284.000000      -7.000000 
85      277.000000      2.000000 
86      317.000000      6.000000 
87      313.000000      -6.000000 
88      318.000000      4.000000 
89      374.000000      11.000000 
90      413.000000      -10.000000 
91      405.000000      9.000000 
92      355.000000      -15.000000 
93      306.000000      -11.000000 
94      271.000000      2.000000 
95      306.000000      -6.000000 
96      315.000000      3.000000 
97      301.000000      -7.000000 
98      356.000000      15.000000 
99      348.000000      -4.000000 
100     355.000000      2.000000 
101     422.000000      11.000000 
102     465.000000      4.000000 
103     467.000000      10.000000 
104     404.000000      -13.000000 
105     347.000000      -8.000000 
106     305.000000      -7.000000 
107     336.000000      -4.000000 
108     340.000000      -5.000000 
109     318.000000      -8.000000 
110     362.000000      -11.000000 
111     348.000000      -6.000000 
112     363.000000      8.000000 
113     435.000000      5.000000 
114     491.000000      13.000000 
115     505.000000      12.000000 
116     404.000000      -38.000000 
117     359.000000      12.000000 
118     310.000000      -7.000000 
119     337.000000      -4.000000 
120     360.000000      19.000000 
121     342.000000      4.000000 
122     406.000000      20.000000 
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123     396.000000      4.000000 
124     420.000000      9.000000 
125     472.000000      -20.000000 
126     548.000000      20.000000 
127     559.000000      -3.000000 
128     463.000000      5.000000 
129     407.000000      -11.000000 
130     362.000000      4.000000 
131     405.000000      16.000000 
132     417.000000      -11.000000 
133     391.000000      -8.000000 
134     419.000000      -36.000000 
135     461.000000      52.000000 
136     472.000000      -13.000000 
137     535.000000      11.000000 
138     622.000000      11.000000 
139     606.000000      -27.000000 
140     508.000000      -2.000000 
141     461.000000      9.000000 
142     390.000000      -26.000000 
143     432.000000      -1.000000 

box_cox_transform 
Performs a forward or an inverse Box-Cox (power) transformation. 

Synopsis 
#include <imsls.h> 
float *imsls_f_box_cox_transform (int n_observations, float z[], float 

power, ..., 0) 
The type double function is imsls_d_box_cox_transform. 

Required Arguments 

int n_observations   (Input) 
Number of observations in z. 

float z[]   (Input) 
Array of length n_observations containing the observations. 

float power   (Input) 
Exponent parameter in the Box-Cox (power) transformation. 

Return Value 
Pointer to an internally allocated array of length n_observations containing the 
transformed data. To release this space, use free. If no value can be computed, then 
NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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float *imsls_f_box_cox_transform (int n_observations, float z[], float 
power, 
IMSLS_SHIFT, float shift, 
IMSLS_INVERSE_TRANSFORM,  
IMSLS_RETURN_USER, float x[] 
0) 

Optional Arguments 

IMSLS_SHIFT, float shift   (Input) 
Shift parameter in the Box-Cox (power) transformation. Parameter shift must 
satisfy the relation min (z(i)) + shift > 0. 
Default: shift = 0.0. 

IMSLS_INVERSE_TRANSFORM 
If IMSLS_INVERSE_TRANSFORM is specified, the inverse transform is 
performed. 

IMSLS_RETURN_USER, float x[]   (Output) 
User-allocated array of length n_observations containing the transformed 
data. 

Description 
Function imsls_f_box_cox_transform performs a forward or an inverse Box-Cox 
(power) transformation of n = n_observations observations {Zt} for t = 1, 2, ..., n. 

The forward transformation is useful in the analysis of linear models or models with 
nonnormal errors or nonconstant variance (Draper and Smith 1981, p. 222). In the time 
series setting, application of the appropriate transformation and subsequent 
differencing of a series can enable model identification and parameter estimation in the 
class of homogeneous stationary autoregressive-moving average models. The inverse 
transformation can later be applied to certain results of the analysis, such as forecasts 
and prediction limits of forecasts, in order to express the results in the scale of the 
original data. A brief note concerning the choice of transformations in the time series 
models is given in Box and Jenkins (1976, p. 328). 
The class of power transformations discussed by Box and Cox (1964) is defined by 
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the family of power transformations is continuous. 
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Let λ = power and ξ = shift; then, the computational formula used by 
imsls_f_box_cox_transform is given by 
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where Zt + ξ > 0 for all t. The computational and Box-Cox formulas differ only in the 
scale and origin of the transformed data. Consequently, the general analysis of the data 
is unaffected (Draper and Smith 1981, p. 225). 
The inverse transformation is computed by 
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where {Zt} now represents the result computed by imsls_f_box_cox_transform 
for a forward transformation of the original data using parameters λ and ξ. 

Examples  

Example 1 
The following example performs a Box-Cox transformation with power = 2.0 on 10 
data points. 

#include <imsls.h> 
  
void main() { 
    int n_observations = 10; 
    float power = 2.0; 
    float *x; 
    static float z[10] ={ 
        1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0}; 
 
    /* Transform Data using Box Cox Transform */ 
    x = imsls_f_box_cox_transform(n_observations, z, power, 0); 
     
    imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);  
  
    free(x); 
} 

Output 
                           Transformed Data 
         1           2           3           4           5           6 
       1.0         4.0         9.0        16.0        25.0        30.2 
  
         7           8           9          10 
      42.2        56.2        64.0       100.0 
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Example 2 
This example extends the first example—an inverse transformation is applied to the 
transformed data to return to the orignal data values. 

#include <imsls.h> 
  
void main() { 
    int n_observations = 10; 
    float power = 2.0; 
    float *x, *y; 
    static float z[10] ={ 
        1.0, 2.0, 3.0, 4.0, 5.0, 5.5, 6.5, 7.5, 8.0, 10.0}; 
 
    /* Transform Data using Box Cox Transform */ 
    x = imsls_f_box_cox_transform(n_observations, z, power, 0); 
     
    imsls_f_write_matrix("Transformed Data", 1, n_observations, x, 0);  
 
    /* Perform an Inverse Transform on the Transformed Data */ 
    y = imsls_f_box_cox_transform(n_observations, x, power,  
            IMSLS_INVERSE_TRANSFORM, 0); 
     
    imsls_f_write_matrix("Inverse Transformed Data", 1, n_observations, y, 
0);  
  
    free(x); 
    free(y); 
} 

Output 
                           Transformed Data 
         1           2           3           4           5           6 
       1.0         4.0         9.0        16.0        25.0        30.2 
  
         7           8           9          10 
      42.2        56.2        64.0       100.0 
  
                       Inverse Transformed Data 
         1           2           3           4           5           6 
       1.0         2.0         3.0         4.0         5.0         5.5 
  
         7           8           9          10 
       6.5         7.5         8.0        10.0 

Fatal Errors 

IMSLS_ILLEGAL_SHIFT “shift” = # and the smallest element of “z” is “z[#]” = 
#. “shift” plus “z[#]” = #. “shift” + “z[i]” must be 
greater than 0 for i = 1, ..., “n_observations”. 
“n_observations” = #. 

IMSLS_BCTR_CONTAINS_NAN One or more elements of “z” is equal to NaN (Not a 
number). No missing values are allowed. The 
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smallest index of an element of “z” that is equal to 
NaN is #. 

IMSLS_BCTR_F_UNDERFLOW Forward transform. “power” = #. “shift” = #. The 
minimum element of “z” is “z[#]” = #. (“z[#]”+ 
“shift”) ^ “power” will underflow. 

IMSLS_BCTR_F_OVERFLOW Forward transformation. “power” = #. “shift” = #. 
The maximum element of “z” is “z[#]” = #. (“z[#]” + 
“shift”) ^ “power” will overflow. 

IMSLS_BCTR_I_UNDERFLOW Inverse transformation. “power” = #. The minimum 
element of “z” is “z[#]” = #. exp(“z[#]”) will 
underflow. 

IMSLS_BCTR_I_OVERFLOW Inverse transformation. “power” = #. The maximum 
element of “z[#]” = #. exp(“z[#]”) will overflow. 

IMSLS_BCTR_I_ABS_UNDERFLOW Inverse transformation. “power” = #. 
The element of “z” with the smallest absolute value is 
“z[#]” = #. “z[#]” ^ (1/ “power”) will underflow. 

IMSLS_BCTR_I_ABS_OVERFLOW Inverse transformation. “power” = #. 
The element of “z” with the largest absolute value is 
“z[#]” = #. “z[#]” ^ (1/ “power”) will overflow. 

autocorrelation 
Computes the sample autocorrelation function of a stationary time series. 

Synopsis 
#include <imsls.h> 
float *imsls_f_autocorrelation (int n_observations, float x[],  

int lagmax, ... 
0) 

The type double function is imsls_d_autocorrelation. 

Required Arguments 

int n_observations  (Input) 
Number of observations in the time series x.  n_observations must be 
greater than or equal to 2. 

float x[]  (Input)  
Array of length n_observations containing the time series. 

int lagmax  (Input)  
Maximum lag of autocovariance, autocorrelations, and standard errors of 
autocorrelations to be computed.  lagmax must be greater than or equal to 1 
and less than n_observations. 
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Return Value 
Pointer to an array of length lagmax + 1 containing the autocorrelations of the time 
series x.  The 0-th element of this array is 1.  The k-th element of this array contains the 
autocorrelation of lag k where k = 1, ..., lagmax. 

Synopsis with Optional Arguments 
 

#include <imsls.h> 
float imsls_f_autocorrelation (int n_observations, float x[],  

int lagmax,  
IMSLS_RETURN_USER,  float autocorrelations[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_ACV, float **autocovariances, 
IMSLS_ACV_USER, float autocovariances[], 
IMSLS_SEAC, float **standard_errors,  
int se_option,  
IMSLS_SEAC_USER, float standard_errors[],  
int se_option, 
IMSLS_X_MEAN_IN, float x_mean_in, 
IMSLS_X_MEAN_OUT, float *x_mean_out, 
0) 

Optional Arguments 
IMSLS_RETURN_USER,  float autocorrelations[]  (Output) 

If specified, autocorrelations is an array of length lagmax + 1 
containing the autocorrelations of the time series x. The  
oth element of this array is 1.  The kth element of this array contains the 
autocorrelation of lag k where k = 1, ..., lagmax. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.   
Default = 0. 
 
Iprint Action 

0 No printing is performed. 
1 Prints the mean and variance. 
2 Prints the mean, variance, and autocovariances. 
3 Prints the mean, variance, autocovariances, 

autocorrelations, and standard errors of 
autocorrelations. 

IMSLS_ACV, float **autocovariances  (Output) 
Address of a pointer to an array of length lagmax + 1 containing the variance 
and autocovariances of the time series x.  The 0-th element of this array is the 
variance of the time series x.  The kth element contains the autocovariance of 
lag k where k = 1, ..., lagmax. 
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IMSLS_ACV_USER, float autocovariances[]  (Output) 
If specified, autocovariances is an array of length lagmax + 1 containing 
the variance and autocovariances of the time series x.   
See IMSLS_ACV. 

IMSLS_SEAC, float **standard_errors, int se_option  (Output) 
Address of a pointer to an array of length lagmax containing the standard 
errors of the autocorrelations of the time series x.  
Method of computation for standard errors of the autocorrelations is chosen 
by se_option. 

se_option Action 
1 Compute the standard errors of autocorrelations using 

Barlett’s formula. 
2 Compute the standard errors of autocorrelations using 

Moran’s formula. 
  

IMSLS_SEAC_USER, float standard_errors[], int se_option  (Output) 
If specified, autocovariances is an array of length lagmax containing the 
standard errors of the autocorrelations of the time series x.  
See IMSLS_SEAC. 

IMSLS_X_MEAN_IN, float x_mean_in  (Input) 
User input the estimate of the time series x. 

IMSLS_X_MEAN_OUT, float *x_mean_out  (Output) 
If specified, x_mean_out is the estimate of the mean of the time  
series x. 

Description 
Function imsls_f_autocorrelation estimates the autocorrelation function of a 
stationary time series given a sample of  n  =  n_observations observations {Xt} for 
t = 1, 2, …, n. 
Let  

μ̂ = x_mean
 

be the estimate of the mean μ of the time series {Xt} where 

1

, known
ˆ 1 unknown

n

t
t

X
n

μ μ
μ

μ
=

⎧
⎪= ⎨
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∑  

The autocovariance function σ(k) is estimated by 
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where K = lagmax. Note that  

( )ˆ 0σ
 

is an estimate of the sample variance. The autocorrelation function ρ(k) is estimated by 

ˆ ( )ˆ ( ) , 0,1, ,
ˆ (0)

kk k Kσρ
σ

= = …
 

Note that  

( )ˆ 0 1ρ ≡
 

by definition. 
The standard errors of the sample autocorrelations may be optionally computed 
according to argument se_option for the optional argument IMSLS_SEAC. One 
method (Bartlett 1946) is based on a general asymptotic expression for the variance of 
the sample autocorrelation coefficient of a stationary time series with independent, 
identically distributed normal errors. The theoretical formula is 

{ } 2 2 21ˆvar (k) ( ) ( ) ( ) 4 ( ) ( ) ( ) 2 ( ) ( )
i

i i k i k i k i k i k
n

ρ ρ ρ ρ ρ ρ ρ ρ ρ
∞

=−∞

⎡ ⎤= + − + − − +⎣ ⎦∑  

where  

ˆ ( )kρ
 

assumes μ is unknown. For computational purposes, the autocorrelations r(k) are 
replaced by their estimates  

ˆ ( )kρ
 

for |k| ≤ K, and the limits of summation are bounded because of the assumption that  
r(k) = 0 for all k such that |k| > K. 
A second method (Moran 1947) utilizes an exact formula for the variance of the sample 
autocorrelation coefficient of a random process with independent, identically 
distributed normal errors. The theoretical formula is 

( ){ } ( )
ˆvar

2
n kk
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where μ is assumed to be equal to zero. Note that this formula does not depend on the 
autocorrelation function. 

Example 
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set for this 
example consists of the number of sunspots observed from 1770 through 1869. 
Function imsls_f_autocorrelation with optional arguments computes the 
estimated autocovariances, estimated autocorrelations, and estimated standard errors of 
the autocorrelations. 

#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
   float *result=NULL, data[176][2], x[100], xmean; 
   int i, nobs = 100, lagmax = 20; 
   float *acv=NULL, *seac=NULL; 
 
 
   imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0); 
   for (i=0;i<nobs;i++) x[i] = data[21+i][1]; 
  
   result = imsls_f_autocorrelation(nobs, x, lagmax,  
                            IMSLS_X_MEAN_OUT, &xmean, 
                            IMSLS_ACV, &acv,  
                            IMSLS_SEAC, &seac, 1, 
                            0);     
   printf("Mean     = %8.3f\n", xmean); 
   printf("Variance = %8.1f\n", acv[0]); 
   printf("\nLag\t   ACV\t\t   AC\t\t   SEAC\n"); 
   printf("%2d\t%8.1f\t%8.5f\n", 0, acv[0], result[0]); 
   for(i=1; i<21; i++) 
      printf("%2d\t%8.1f\t%8.5f\t%8.5f\n", i, acv[i], result[i],  
      seac[i-1]); 
       
} 

Output 
 

Mean     =     46.976 
Variance =     1382.9 
 
Lag         ACV           AC          SEAC 
 
 0         1382.9      1.00000 
 1         1115.0      0.80629      0.03478 
 2          592.0      0.42809      0.09624 
 3           95.3      0.06891      0.15678 
 4         -236.0     -0.17062      0.20577 
 5         -370.0     -0.26756      0.23096 
 6         -294.3     -0.21278      0.22899 
 7          -60.4     -0.04371      0.20862 
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 8          227.6      0.16460      0.17848 
 9          458.4      0.33146      0.14573 
10          567.8      0.41061      0.13441 
11          546.1      0.39491      0.15068 
12          398.9      0.28848      0.17435 
13          197.8      0.14300      0.19062 
14           26.9      0.01945      0.19549 
15          -77.3     -0.05588      0.19589 
16         -143.7     -0.10394      0.19629 
17         -202.0     -0.14610      0.19602 
18         -245.4     -0.17743      0.19872 
19         -230.8     -0.16691      0.20536 
20         -142.9     -0.10332      0.20939 

 
Figure 8-1 Sample Autocorrelation Function 

crosscorrelation 
Computes the sample cross-correlation function of two stationary time series. 

Synopsis 
#include <imsls.h> 
float *imsls_f_crosscorrelation (int n_observations, float x[],  

float y[], int lagmax, ..., 0) 
The type double function is imsls_d_crosscorrelation. 
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Required Arguments 

int n_observations  (Input) 
Number of observations in each time series.  n_observations must be 
greater than or equal to 2. 

float x[]  (Input)  
Array of length n_observations containing the first time series. 

float y[]  (Input)  
Array of length n_observations containing the second time series. 

int lagmax  (Input)  
Maximum lag of cross-covariances and cross-correlations to be computed.  
lagmax must be greater than or equal to 1 and less than n_observations. 

Return Value 
Pointer to an array of length 2*lagmax + 1 containing the cross-correlations between 
the time series x and y.  The kth element of this array contains the cross-correlation 
between x and y at lag (k-lagmax) where k = 0, 1, …, 2*lagmax.  To release this 
space, use free.  If no solution can be computed, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_crosscorrelation (int n_observations, float x[], float 

y[], int lagmax,  
IMSLS_RETURN_USER,  float crosscorrelations[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_VARIANCES, float *x_variance, float *y_variance 
IMSLS_SE_CCF, float **standard_errors, int se_option, 
IMSLS_SE_CCF_USER, float standard_errors[], int se_option,  
IMSLS_CROSS_COVARIANCES, float **cross_covariances,  
IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[], 
IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in, 
IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out, 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float crosscorrelations[]  (Output) 

If specified, crosscorrelations is an array of length  
2*lagmax + 1 containing the cross-correlations between the time series x 
and y.  The kth element of this array contains the cross-correlation between x 
and y at lag (k-lagmax) where k = 0, 1, …, 2*lagmax. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  Default = 0. 
iprint Action 

0 No printing is performed. 
1 Prints the means and variances. 
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iprint Action 
2 Prints the means, variances, and cross-covariances. 
3 Prints the means, variances, cross-covariances, cross-

correlations, and standard errors of cross-correlations. 

IMSLS_VARIANCES, float *x_variance, float *y_variance  (Output) 
If specified, x_variance is variance of the time series x and y_variance is 
variance of the time series y. 

IMSLS_SE_CCF, float **standard_errors, int se_option  (Output) 
Address of a pointer to an array of length 2*lagmax + 1containing the 
standard errors of the cross-correlations between the time series x and y.  
Method of computation for standard errors of the cross-correlations is chosen 
by se_option. 

se_option Action 
1 Compute standard errors of cross-correlations using 

Bartlett’s formula. 
2 Compute standard errors of cross-correlations using 

Bartlett’s formula with the assumption of no cross-
correlation. 

IMSLS_SE_CCF_USER, float standard_errors[], int se_option  (Output) 
If specified, standard_errors is an array of length 2*lagmax + 1 containing 
the standard errors of the cross-correlations between the time series x and y.  
See IMSLS_SE_CC. 

IMSLS_CROSS_COVARIANCES, float **cross_covariances  (Output) 
Address of a pointer to an array of length 2*lagmax + 1 containing the cross-
covariances between the time series x and y.  The kth element of this array 
contains the cross-covariances between x and y at lag 
 (k-lagmax) where k = 0, 1, …, 2*lagmax. 

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[]  (Output) 
If specified, cross_covariances is an array of length 2*lagmax + 1 the 
cross-covariances between the time series x and y.  See 
IMSLS_CROSS_COVARIANCES. 

IMSLS_INPUT_MEANS, float x_mean_in, float y_mean_in  (Input) 
If specified, x_mean_in is the user input of the estimate of the mean of the 
time series x and y_mean_in is the user input of the estimate of the mean of 
the time series y. 

IMSLS_OUTPUT_MEANS, float *x_mean_out, float *y_mean_out  (Output) 
If specified, x_mean_out is the mean of the time series x and y_mean_out 
is the mean of the time series y. 
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Description 
Function imsls_f_crosscorrelation estimates the cross-correlation 
function of two jointly stationary time series given a sample of  
n = n_observations observations {Xt} and {Yt} for t = 1, 2, …, n.  

Let 

ˆ xμ = x_mean
 

be the estimate of the mean μX of the time series {Xt} where 

1
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The autocovariance function of {Xt}, σX(k), is estimated by 
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where K = lagmax. Note that  

ˆ (0)Xσ
 

is equivalent to the sample variance x_variance. The autocorrelation function ρX(k) 
is estimated by 
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Note that 

ˆ (0) 1Xρ ≡
 

by definition. Let  

( ) ( )ˆˆ ˆy_mean, ,andY Y Yk kμ σ ρ=
 

be similarly defined. 
The cross-covariance function σXY(k) is estimated by 

1

1

1 ˆ ˆ( )( ) 0,1, ,
ˆ ( )

1 ˆ ˆ( )( ) 1, 2, ,

n k

t X t k Y
t

XY n

t X t k Y
t k

X Y k K
n

k
X Y k K

n

μ μ
σ

μ μ

−

+
=

+
= −

⎧ − − =⎪⎪= ⎨
⎪ − − = − − −⎪⎩

∑

∑

…

…  



 
 
 
 

 
 

Chapter 8: Time Series and Forecasting crosscorrelation • 597  

 

 

 

The cross-correlation function ρXY(k) is estimated by 
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The standard errors of the sample cross-correlations may be optionally computed 
according to argument se_option for the optional argument IMSLS_SE_CCF. One 
method is based on a general asymptotic expression for the variance of the sample 
cross-correlation coefficient of two jointly stationary time series with independent, 
identically distributed normal errors given by Bartlett (1978, page 352). The theoretical 
formula is 
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For computational purposes, the autocorrelations ρX(k) and ρY(k) and the cross-
correlations ρXY(k) are replaced by their corresponding estimates for |k| ≤ K, and the 
limits of summation are equal to zero for all k such that |k| > K. 
A second method evaluates Bartlett’s formula under the additional assumption that the 
two series have no cross-correlation. The theoretical formula is 

{ }XY
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= ≥
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For additional special cases of Bartlett’s formula, see Box and Jenkins (1976, page 
377). 
An important property of the cross-covariance coefficient is σXY(k) = σYX(−k) for k ≥ 0. 
This result is used in the computation of the standard error of the sample cross-
correlation for lag k < 0. In general, the cross-covariance function is not symmetric 
about zero so both positive and negative lags are of interest. 

Example 
Consider the Gas Furnace Data (Box and Jenkins 1976, pages 532–533) where  
X is the input gas rate in cubic feet/minute and Y is the percent CO2 in the outlet gas. 
Function imsls_f_crosscorrelation is used to compute the cross-covariances and 
cross-correlations between time series X and Y with lags from −lagmax = −10 through 
lag lagmax = 10. In addition, the estimated standard errors of the estimated cross-
correlations are computed.  The standard errors are based on the additional assumption 
that all cross-correlations for X and Y are zero. 
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#include "imsls.h" 
#include <stdio.h> 
 
#define nobs 296 
#define lagmax 10 
 
void main () 
{ 
  int i; 
  float data[nobs][2], x[nobs], y[nobs]; 
  float *secc = NULL, *ccv = NULL, *cc = NULL; 
  float xmean, ymean, xvar, yvar; 
 
  imsls_f_data_sets (7, IMSLS_X_COL_DIM, 2, IMSLS_RETURN_USER, data, 0); 
 
  for (i = 0; i < nobs; i++) 
    { 
      x[i] = data[i][0]; 
      y[i] = data[i][1]; 
    } 
 
  cc = imsls_f_crosscorrelation (nobs, x, y, lagmax, 
     IMSLS_OUTPUT_MEANS, &xmean, &ymean, 
     IMSLS_VARIANCES, &xvar, &yvar, 
     IMSLS_SE_CCF, &secc, 2, 
     IMSLS_CROSS_COVARIANCES, &ccv, 0); 
 
  printf ("Mean of series X     = %g\n", xmean); 
  printf ("Variance of series X = %g\n\n", xvar); 
  printf ("Mean of series Y     = %g\n", ymean); 
  printf ("Variance of series Y = %g\n\n", yvar); 
 
  printf ("Lag            CCV           CC         SECC\n\n"); 
  for (i = 0; i < 2 * lagmax + 1; i++) 
    printf ("%-5d%13g%13g%13g\n", i - lagmax, ccv[i], cc[i], secc[i]); 
} 

Output 
Mean of series X     = -0.0568344 
Variance of series X = 1.14694 
 
Mean of series Y     = 53.5091 
Variance of series Y = 10.2189 
 
Lag            CCV           CC         SECC 
 
-10      -0.404502    -0.118154     0.162754 
-9       -0.508491    -0.148529      0.16247 
-8        -0.61437    -0.179456     0.162188 
-7       -0.705476    -0.206067     0.161907 
-6       -0.776167    -0.226716     0.161627 
-5       -0.831474    -0.242871     0.161349 
-4       -0.891316    -0.260351     0.161073 
-3       -0.980605    -0.286432     0.160798 
-2        -1.12477    -0.328542     0.160524 
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-1        -1.34704    -0.393467     0.160252 
0         -1.65853    -0.484451     0.159981 
1         -2.04865    -0.598405     0.160252 
2         -2.48217    -0.725033     0.160524 
3         -2.88541     -0.84282     0.160798 
4         -3.16536    -0.924592     0.161073 
5         -3.25344    -0.950319     0.161349 
6         -3.13113    -0.914593     0.161627 
7         -2.83919     -0.82932     0.161907 
8         -2.45302    -0.716521     0.162188 
9         -2.05269    -0.599584      0.16247 
10        -1.69466    -0.495004     0.162754 

multi_crosscorrelation 
Computes the multichannel cross-correlation function of two mutually stationary 
multichannel time series. 

Synopsis 
#include <imsls.h> 
float *imsls_f_multi_crosscorrelation (int n_observations_x,  

int n_channel_x, float x[], int n_observations_y,  
int n_channel_y, float y[], int lagmax, ..., 0) 

The type double function is imsls_d_multi_crosscorrelation. 

Required Arguments 

int n_observations_x  (Input) 
Number of observations in each channel of the first time series x.  
n_observations_x must be greater than or equal to two. 

int n_channel_x  (Input) 
Number of channels in the first time series x.  n_channel_x must be greater 
than or equal to one. 

float x[]  (Input)  
Array of length n_observations_x by n_channel_x containing the first 
time series. 

int n_observations_y  (Input) 
Number of observations in each channel of the second time series y.  
n_observations_y must be greater than or equal to two. 

int n_channel_y  (Input) 
Number of channels in the second time series y.  n_channel_y must be 
greater than or equal to one. 

float y[]  (Input)  
Array of length n_observations_y by n_channel_y containing the second 
time series. 
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int lagmax  (Input)  
Maximum lag of cross-covariances and cross-correlations to be computed.  
lagmax must be greater than or equal to one and less than the minimum of 
n_observations_x and n_observations_y. 

Return Value 
Pointer to an array of length n_channel_x * n_channel_y * (2 * lagmax + 1) 
containing the cross-correlations between the channels of x and y.  The mth element of 
this array contains the cross-correlation between channel i of the x series and channel j 
of the y series at lag (k-lagmax) where  
 i = 1, …, n_channel_x 
 j = 1, …, n_channel_y 
 k = 0, 1, …, 2*lagmax, and  
 m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j)) 
To release this space, use free.  If no solution can be computed, NULL is return. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_multi_crosscorrelation (int n_observations_x, 

int n_channel_x, float x[], int n_observations_y,  
int n_channel_y, float y[], int lagmax,  
IMSLS_RETURN_USER,  float crosscorrelations[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_VARIANCES, float **x_variance, float **y_variance, 
IMSLS_VARIANCES_USER, float x_variance[],  
float y_variance[],  
IMSLS_CROSS_COVARIANCES, float **cross_covariances,  
IMSLS_CROSS_COVARIANCES_USER,  
float cross_covariances[], 
IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in, 
IMSLS_OUTPUT_MEANS, float **x_mean_out,  
float **y_mean_out, 
IMSLS_OUTPUT_MEANS_USER, float x_mean_out[],  
float y_mean_out[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float crosscorrelations[]  (Output) 

If specified, crosscorrelations is a user-specified array of length 
n_channel_x * n_channel_y * (2*lagmax + 1) containing the 
cross-correlations between the channels of x and y.  See Return Value. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  Default = 0. 
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iprint Action 
0 No printing is performed. 
1 Prints the means and variances. 
2 Prints the means, variances, and cross-covariances. 
3 Prints the means, variances, cross-covariances, and cross-

correlations. 

IMSLS_VARIANCES, float **x_variance, float **y_variance  (Output) 
If specified, x_variance is the address of a pointer to an array of length 
n_channel_x containing the variances of the channels of x and y_variance 
is the address of a pointer to an array of length n_channel_y containing the 
variances of the channels of y. 

IMSLS_VARIANCES_USER, float x_variance[], float y_variance[] (Output) 
If specified, x_variance is an array of length n_channel_x containing the 
variances of the channels of x and y_variance is an array of length 
n_channel_y containing the variances of the channels of y.  See 
IMSLS_VARIANCES. 

IMSLS_CROSS_COVARIANCES, float **cross_covariances  (Output) 
Address of a pointer to an array of length n_channel_x * n_channel_y * 
(2*lagmax + 1) containing the cross-covariances between the channels of x and 
y.  The mth element of this array contains the cross-covariance between channel i 
of the x series and channel j of the y series at lag (k-lagmax) where  
 i = 1, …, n_channel_x 
 j = 1, …, n_channel_y 
 k = 0, 1, …, 2*lagmax, and 
 m = (n_channel_x*n_channel_y*k +(i*n_channel_x+ j)). 

IMSLS_CROSS_COVARIANCES_USER, float cross_covariances[]  (Output) 
If specified, cross_covariances is an array of length n_channel_x * 
n_channel_y * (2*lagmax + 1) containing  the cross-covariances between 
the channels of x and y.  See IMSLS_CROSS_COVARIANCES. 

IMSLS_INPUT_MEANS, float *x_mean_in, float *y_mean_in  (Input) 
If specified, x_mean_in is an array of length n_channel_x containing the 
user input of the estimate of the means of the channels of x and y_mean_in 
is an array of length n_channel_y containing the user input of the estimate 
of the means of the channels of y. 

IMSLS_OUTPUT_MEANS, float **x_mean_out, float **y_mean_out  (Output) 
If specified, x_mean_out is the address of a pointer to an array of length 
n_channel_x containing the means of the channels of x and y_mean_out is 
the address of a pointer to an array of length n_channel_y containing the 
means of the channels of y. 

IMSLS_OUTPUT_MEANS_USER, float x_mean_out[], float y_mean_out[]  (Output) 
If specified, x_mean_out is an array of length n_channel_x containing the 
means of the channels of x and y_mean_out is an array of length 
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n_channel_y containing the means of the channels of y.  See 
IMSLS_OUTPUT_MEANS. 

Description 
Function imsls_f_multi_crosscorrelation estimates the multichannel 
cross-correlation function of two mutually stationary multichannel time series. 
Define the multichannel time series X by 

X = (X1, X2, …, Xp) 

where 

Xj = (X1j, X2j, …, Xnj)T, j = 1, 2, …, p 

with n = n_observations_x and p = n_channel_x. Similarly, define the 
multichannel time series Y by 

Y = (Y1, Y2, …, Yq) 

where  

Yj = (Y1j, Y2j, …, Ymj)T, j = 1, 2, …, q 

with m = n_observations_y and q = n_channel_y. The columns of X and Y 
correspond to individual channels of multichannel time series and may be 
examined from a univariate perspective. The rows of X and Y correspond to 
observations of p-variate and q-variate time series, respectively, and may be 
examined from a multivariate perspective. Note that an alternative 
characterization of a multivariate time series X considers the columns to be 
observations of the multivariate time series while the rows contain univariate 
time series. For example, see Priestley (1981, page 692) and Fuller (1976, page 
14). 
Let 

ˆ x_meanXμ =
 

be the row vector containing the means of the channels of X. In particular, 

( )1 2
ˆ ˆ ˆ ˆ, , ,

pX X X Xμ μ μ μ= …
 

where for j = 1, 2, …, p  

1

known
ˆ 1 unknown

j j

j

j

X X

n
X

tj X
t

X
n

μ μ
μ

μ
=

⎧
⎪= ⎨
⎪
⎩

∑  
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Let 
ˆ _meanY yμ =  

be similarly defined. The cross-covariance of lag k between channel i of X and 
channel j of Y is estimated by  

,

,

1 ˆ ˆ( )( ) 0,1, ,
ˆ ( )

1 ˆ ˆ( )( ) 1, 2, ,

i j

i j

i j

ti X t k j Y
t

X Y

ti X t k j Y
t

X Y k K
N

k
X Y k K

N

μ μ
σ

μ μ

+

+

⎧ − − =⎪⎪= ⎨
⎪ − − = − − −
⎪⎩

∑

∑

…

…  

where i = 1, …, p, j = 1, …, q, and K = lagmax. The summation on t extends 
over all possible cross-products with N equal to the number of cross-products in 
the sum  
Let 

( )ˆ 0 x_varianceXσ =
 

be the row vector consisting of the estimated variances of the channels of X. In 
particular, 

1 2
ˆ ˆ ˆ ˆ(0) ( (0), (0), , (0))

pX X X Xσ σ σ σ= …
 

where 

2

1

1ˆ ˆ(0) ) 1,2, ,
j j

n

X tj X
t

X j p
n

σ μ
=

= − =∑ …
 

Let 
ˆ (0) y_varianceYσ =  

be similarly defined. The cross-correlation of lag k between channel i of X and 
channel j of Y is estimated by 

( )

1 2

ˆ
ˆ ( ) 0, 1, ,

ˆ ˆ(0) (0)

i j

i j

i j

X Y k
X Y

X Y

k k K
σ

ρ
σ σ

= = ± ±
⎡ ⎤
⎣ ⎦

…  

Example 
Consider the Wolfer Sunspot Data (Y ) (Box and Jenkins 1976, page 530) along with 
data on northern light activity (X1) and earthquake activity (X2) (Robinson 1967, page 
204) to be a three-channel time series. Function 
imsls_f_multi_crosscorrelation is used to compute the cross-covariances and 
cross-correlations between X1 and Y and between X2 and Y with lags from  
−lagmax = −10 through lag lagmax = 10. 
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#include "imsls.h" 
 
void main () { 
  int i, lagmax, nobsx, nchanx, nobsy, nchany; 
  float x[100 * 2], y[100], *result = NULL, *xvar = NULL, *yvar = NULL, 
    *xmean = NULL, *ymean = NULL, *ccv = NULL; 
  float data[100][4]; 
  char line[20]; 
 
  nobsx = nobsy = 100; 
  nchanx = 2; 
  nchany = 1; 
  lagmax = 10; 
 
  imsls_f_data_sets (8, IMSLS_X_COL_DIM, 4, IMSLS_RETURN_USER, data, 0); 
  for (i = 0; i < 100; i++) 
    { 
      y[i] = data[i][1]; 
      x[i * 2] = data[i][2]; 
      x[i * 2 + 1] = data[i][3]; 
    } 
 
  result = 
    imsls_f_multi_crosscorrelation (nobsx, nchanx, &x[0], nobsy, nchany, 
        &y[0], lagmax, IMSLS_VARIANCES, &xvar, 
        &yvar, IMSLS_OUTPUT_MEANS, &xmean, &ymean, 
        IMSLS_CROSS_COVARIANCES, &ccv, 0); 
 
  imsls_f_write_matrix ("Channel means of x", 1, nchanx, xmean, 0); 
  imsls_f_write_matrix ("Channel variances of x", 1, nchanx, xvar, 0); 
  imsls_f_write_matrix ("Channel means of y", 1, nchany, ymean, 0); 
  imsls_f_write_matrix ("Channel variances of y", 1, nchany, yvar, 0); 
 
  printf ("\nMultichannel cross-covariance between x and y\n"); 
  for (i = 0; i < (2 * lagmax + 1); i++) 
    { 
      sprintf (line, "Lag K = %d", i - lagmax); 
      imsls_f_write_matrix (line, nchanx, nchany, 
       &ccv[nchanx * nchany * i], 0); 
    } 
 
  printf ("\nMultichannel cross-correlation between x and y\n"); 
  for (i = 0; i < (2 * lagmax + 1); i++) 
    { 
      sprintf (line, "Lag K = %d", i - lagmax); 
      imsls_f_write_matrix (line, nchanx, nchany, 
       &result[nchanx * nchany * i], 0); 
    } 
} 

Output 
 
   Channel means of x 
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          1            2 
      63.43        97.97 
  
 Channel variances of x 
          1            2 
       2644         1978 
  
Channel means of y 
          46.94 
  
Channel variances of y 
             1384 
 
Multichannel cross-covariance between x and y 
  
  Lag K = -10 
1       -20.51 
2        70.71 
  
  Lag K = -9 
1        65.02 
2        38.14 
  
  Lag K = -8 
1        216.6 
2        135.6 
  
  Lag K = -7 
1        246.8 
2        100.4 
  
  Lag K = -6 
1        142.1 
2         45.0 
  
  Lag K = -5 
1        50.70 
2       -11.81 
  
  Lag K = -4 
1        72.68 
2        32.69 
  
  Lag K = -3 
1        217.9 
2        -40.1 
  
  Lag K = -2 
1        355.8 
2       -152.6 
  
  Lag K = -1 
1        579.7 
2       -213.0 
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   Lag K = 0 
1        821.6 
2       -104.8 
  
   Lag K = 1 
1        810.1 
2         55.2 
  
   Lag K = 2 
1        628.4 
2         84.8 
  
   Lag K = 3 
1        438.3 
2         76.0 
  
   Lag K = 4 
1        238.8 
2        200.4 
  
   Lag K = 5 
1        143.6 
2        283.0 
  
   Lag K = 6 
1        253.0 
2        234.4 
  
   Lag K = 7 
1        479.5 
2        223.0 
  
   Lag K = 8 
1        724.9 
2        124.5 
  
   Lag K = 9 
1        925.0 
2        -79.5 
  
  Lag K = 10 
1        922.8 
2       -279.3 
 
Multichannel cross-correlation between x and y 
  
  Lag K = -10 
1     -0.01072 
2      0.04274 
  
  Lag K = -9 
1      0.03400 
2      0.02305 
  
  Lag K = -8 
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1       0.1133 
2       0.0819 
  
  Lag K = -7 
1       0.1290 
2       0.0607 
  
  Lag K = -6 
1      0.07431 
2      0.02718 
  
  Lag K = -5 
1      0.02651 
2     -0.00714 
  
  Lag K = -4 
1      0.03800 
2      0.01976 
  
  Lag K = -3 
1       0.1139 
2      -0.0242 
  
  Lag K = -2 
1       0.1860 
2      -0.0923 
  
  Lag K = -1 
1       0.3031 
2      -0.1287 
  
   Lag K = 0 
1       0.4296 
2      -0.0633 
  
   Lag K = 1 
1       0.4236 
2       0.0333 
  
   Lag K = 2 
1       0.3285 
2       0.0512 
  
   Lag K = 3 
1       0.2291 
2       0.0459 
  
   Lag K = 4 
1       0.1248 
2       0.1211 
  
   Lag K = 5 
1       0.0751 
2       0.1710 
  



 

 
 

608 • partial_autocorrelation IMSL C Stat Library 

 

 

 

   Lag K = 6 
1       0.1323 
2       0.1417 
  
   Lag K = 7 
1       0.2507 
2       0.1348 
  
   Lag K = 8 
1       0.3790 
2       0.0752 
  
   Lag K = 9 
1       0.4836 
2      -0.0481 
  
  Lag K = 10 
1       0.4825 
2      -0.1688 

partial_autocorrelation 
Computes the sample partial autocorrelation function of a stationary time series. 

Synopsis 
#include <imsls.h> 
float *imsls_f_partial_autocorrelation (int lagmax, int cf[], …, 0) 
The type double function is imsls_d_partial_autocorrelation. 

Required Arguments 

int lagmax   (Input) 
Maximum lag of partial autocorrelations to be computed.  

float cf[]   (Input) 
Array of length lagmax + 1 containing the autocorrelations of the time series 
x. 

Return Value 
Pointer to an array of length lagmax containing the partial autocorrelations of the time 
series x. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_partial_autocorrelation (int lagmax, float cf[],  

 IMSLS_RETURN_USER, float partial_autocorrelations[],  
 0) 
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Optional Arguments 
IMSLS_RETURN_USER, float partial_autocorrelations[]   (Output) 

If specified, the partial autocorrelations are stored in an array of length 
lagmax provided by the user.  

Description 
Function imsls_f_partial_autocorrelation estimates the partial 
autocorrelations of a stationary time series given the K = lagmax sample 
autocorrelations  

( )ˆ kρ
 

for k = 0, 1, …, K. Consider the AR(k) process defined by 

1 1 2 2 ...t k t k t kk t k tX X X X A− − −= φ + φ + + φ +
 

where φkj denotes the j-th coefficient in the process. The set of estimates  

{ }k̂kφ
 

for k = 1, …, K is the sample partial autocorrelation function. The autoregressive 
parameters 

{ }k̂jφ
 

for j = 1, …, k are approximated by Yule-Walker estimates for successive AR(k) 
models where k = 1, …, K. Based on the sample Yule-Walker equations 

1 2
ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ( 1) ( 2) ... ( ), 1, 2,...,k k kkj j j j k j kρ = φ ρ − + φ ρ − + + φ ρ − =

 

a recursive relationship for k = 1, …, K was developed by Durbin (1960). The 
equations are given by  

1
1 1,

1
1 1,

ˆ (1) 1
ˆ ˆˆ ˆ( ) ( )

2, ...,ˆ ˆ1 ( )

k
kk j k j

k
j k j

k

k k j
k K

j

−
= −

−
= −

ρ =

φ = ρ − ∑ φ ρ −
=

− ∑ φ ρ

⎧
⎪
⎨
⎪
⎩

 

and  

1
1 1,

1
1 1,

ˆ (1) 1
ˆ ˆˆ ˆ( ) ( )

2, ...,ˆ ˆ1 ( )

k
kk j k j

k
j k j

k

k k j
k K

j

−
= −

−
= −

ρ =

φ = ρ − ∑ φ ρ −
=

− ∑ φ ρ

⎧
⎪
⎨
⎪
⎩
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This procedure is sensitive to rounding error and should not be used if the parameters 
are near the nonstationarity boundary. A possible alternative would be to estimate 
{φkk} for successive AR(k) models using least or maximum likelihood. Based on the 
hypothesis that the true process is AR(p), Box and Jenkins (1976, page 65) note  

1ˆvar{ } 1kk k p
n

φ − ≥ +�
 

See Box and Jenkins (1976, pages 82–84) for more information concerning the partial 
autocorrelation function. 

Example 
Consider the Wolfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set for this 
example consists of the number of sunspots observed from 1770 through 1869. Routine 
imsls_f_partial_autocorrelation is used to compute the estimated partial 
autocorrelations. 

 
#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
   float *partial=NULL, data[176][2], x[100]; 
   int i, nobs = 100, lagmax = 20; 
   float *ac; 
 
   imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0); 
   for (i=0;i<nobs;i++) x[i] = data[21+i][1]; 
    
   ac = imsls_f_autocorrelation(100, x, lagmax, 0); 
   partial = imsls_f_partial_autocorrelation(lagmax, ac, 0); 
   imsls_f_write_matrix("Lag      PACF", 20, 1, partial, 0); 
} 
 

Output 
 Lag      PACF 
 1     0.806 
 2    -0.635 
 3     0.078 
 4    -0.059 
 5    -0.001 
 6     0.172 
 7     0.109 
 8     0.110 
 9     0.079 
10     0.079 
11     0.069 
12    -0.038 
13     0.081 
14     0.033 
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15    -0.035 
16    -0.131 
17    -0.155 
18    -0.119 
19    -0.016 
20    -0.004 

lack_of_fit 
Performs lack-of-fit test for a univariate time series or transfer function given the 
appropriate correlation function. 

Synopsis 

#include <imsls.h> 
float imsls_lack_of_fit (int n_observations, float cf[],  
int lagmax, int npfree,..., 0)  

Required Arguments 

int n_observations   (Input) 
Number of observations of the stationary time series.   

float cf[]  (Input) 
Array of length lagmax+1 containing the correlation function. 

int lagmax  (Input) 
Maximum lag of the correlation function. 

int npfree  (Input) 
Number of free parameters in the formulation of the time series model. 
npfree must be greater than or equal to zero and less than lagmax.   
Woodfield (1990) recommends npfree = p + q. 

Return Value 
Pointer to an array of length 2 with the test statistic, Q, and its p-value, p.  Under the 
null hypothesis, Q has an approximate chi-squared distribution with  
lagmax-lagmin+1-npfree degrees of freedom. 

Synopsis with Optional Arguments 

  #include <imsls.h> 

  float *imsls_f_lack_of_fit (int n_observations, float cf[], int lagmax,  
int npfree, 
IMSLS_RETURN_USER, float stat[], 
IMSLS_LAGMIN, int lagmin,  
0) 

Optional Arguments 

  IMSLS_RETURN_USER, float stat[]  (Input) 
User defined array for storage of lack-of-fit statistics. 
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  IMSLS_LAGMIN, int lagmin  (Input) 
Minimum lag of the correlation function.  lagmin corresponds to the lower 
bound of summation in the lack of fit test statistic.  Default value is 1. 

Description 
Routine imsls_f_lack_of_fit may be used to diagnose lack of fit in both ARMA 
and transfer function models. Typical arguments for these situations are:  

 
Model LAGMIN LAGMAX NPFREE 

ARMA (p, q)  1 NOBS  p + q  

Transfer function  0 NOBS  R + s 

 
Function  imsls_f_lack_of_fit performs a portmanteau lack of fit test for a time 
series or transfer function containing n observations given the appropriate sample 
correlation function 

ˆ ( )kρ
 

for k = L, L + 1, …, K where L = lagmin and K = lagmax.  
The basic form of the test statistic Q is 

1 ˆ( 2) ( ) ( )
K

k L
Q n n n k kρ−

=

= + −∑                                  

with L = 1 if  

( )ˆ kρ
 

is an autocorrelation function. Given that the model is adequate, Q has a chi-squared 
distribution with K − L + 1 − m degrees of freedom where m =  npfree is the number 
of parameters estimated in the model. If the mean of the time series is estimated, 
Woodfield (1990) recommends not including this in the count of the parameters 
estimated in the model. Thus, for an ARMA(p, q) model set npfree= p + q regardless 
of whether the mean is estimated or not. The original derivation for time series models 
is due to Box and Pierce (1970) with the above modified version discussed by Ljung 
and Box (1978). The extension of the test to transfer function models is discussed by 
Box and Jenkins (1976, pages 394–395). 

Example 
Consider the Wölfer Sunspot Data (Anderson 1971, page 660) consisting of the 
number of sunspots observed each year from 1749 through 1924. The data set  
for this example consists of the number of sunspots observed from 1770 through 1869. 
An ARMA(2,1) with nonzero mean is fitted using routine imsls_f_arma. The 
autocorrelations of the residuals are estimated using routine 
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imsls_f_autocorrelation. A portmanteau lack of fit test is computed using 10 
lags with imsls_f_lack_of_fit.  
The warning message from imsls_f_arma in the output can be ignored.  
(See the example for routine imsls_f_arma for a full explanation of the warning 
message.) 

 
#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
  int   p = 2; 
  int   q = 1; 
  int   i; 
  int   n_observations = 100; 
  int   max_itereations = 0; 
  int   lagmin = 1; 
  int   lagmax = 10; 
  int   npfree = 4; 
  float data[176][2], x[100]; 
  float *parameters; 
  float *correlations;  
  float *residuals; 
  float tolerance = 0.125; 
  float *result; 
  
  /* Get sunspot data for 1770 through 1869, store it in x[].      */ 
  imsls_f_data_sets(2, IMSLS_RETURN_USER, data, 0); 
  for (i=0;i<n_observations;i++) x[i] = data[21+i][1]; 
  
  /* Get residuals from ARMA(2,1) for autocorrelation/lack of fit  */ 
  parameters = imsls_f_arma(n_observations, x, p, q, 
                            IMSLS_LEAST_SQUARES, 
                            IMSLS_CONVERGENCE_TOLERANCE, tolerance, 
                            IMSLS_RESIDUAL, &residuals, 
                            0); 
  /* Get autocorrelations from residuals for lack of fit test      */ 
  /*     NOTE:  number of OBS is equal to number of residuals      */ 
 
correlations = imsls_f_autocorrelation(n_observations-p+lagmax, 
   residuals, lagmax, 
                                       0); 
 
  /*  Get lack of fit test statistic and p-value                   */ 
  /*     NOTE:  number of OBS is equal to original number of data  */ 
 
   result = imsls_f_lack_of_fit(n_observations,  correlations, lagmax,  
  npfree, 0); 
 
  /*  Print parameter estimates, test statistic, and p-value       */ 
  /*     NOTE: Test Statistic Q follows a Chi-squared dist.        */ 
 
 printf("Lack of Fit Statistic,  Q = \t%3.5f\n             P-value of Q 
          = \t %1.5f\n\n",result[0], result[1]); 



 

 
 

614 • estimate_missing IMSL C Stat Library 

 

 

 

 
}  

Output 
 

***WARNING  ERROR  IMSLS_LEAST_SQUARES_FAILED from imsls_f_arma.  Least  
***         squares estimation of the parameters has failed to converge. 
***         Increase “length” and/or “tolerence” and/or  
***         “convergence_tolerence”.  The estimates of the parameters at 
***         the last iteration may be used as new starting values. 
 
Lack of Fit statistic (Q) =       14.572 
 
         P-value (PVALUE) =       0.9761 

estimate_missing 
Estimates missing values in a time series. 

Synopsis 

#include  <imsls.h> 

float  *imsls_f_estimate_missing(int n_obs, int tpoints[],  
float z[],…,0) 

 The type double function is imsls_d_estimate_missing. 

Required Arguments 

int  n_obs  (Input) 
Number of non-missing observations in the time series. The time series must 
not contain gaps with more than 3 missing values. 

int  tpoints[] (Input) 
Vector of length n_obs containing the time points 1 _, , n obst t…  at which the 
time series values were observed. The time points must be in strictly 
increasing order. Time points for missing values must lie in the open interval 

1 _( ), n obst t . 

float z[] (Input) 
Vector of length n obs containing the time series values. The values must be 
ordered in accordance with the values in vector tpoints. It is assumed that 
the time series after estimation of missing values contains values at 
equidistant time points where the distance between two consecutive time 
points is one. If the non-missing time series values are observed at time points 

1 _, , n obst t… , then missing values between it  and 1it +
, 1, , 1i = −n_obs… , 

exist if 1 1i it t
+

− > . The size of the gap between it  and  1it +
 is then 1 1i it t

+
− − . 

The total length of the time series with non-missing and estimated missing 
values is _ 1 1n obst t− + , or tpoints[n_obs-1]-tpoints[0]+1. 
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Return Value 

Pointer to an array of length  (tpoints[n_obs-1]-tpoints[0]+1) containing the 
time series together with estimates for the missing values.  If an error occurred, NULL is 
returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 

 float   *imsls_f_estimate_missing (int n_obs, int tpoints[], float z[], 
IMSLS_METHOD, int method, 
IMSLS_MAX_LAG, int maxlag, 
IMSLS_NTIMES, int *ntimes, 
IMSLS_MEAN_ESTIMATE, float mean_estimate, 
IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance, 
IMSLS_RELATIVE_ERROR,  float relative_error, 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_TIMES_ARRAY, int **times, 
IMSLS_TIMES_ARRAY_USER,  int times[], 
IMSLS_MISSING_INDEX, int **missing_index, 
IMSLS_MISSING_INDEX_USER, int missing_index[], 
IMSLS_RETURN_USER, float u_z[], 
0) 

Optional Arguments 
IMSLS_METHOD, int method (Input) 

The method used for estimating the missing values: 
0 — Use median. 
1 — Use cubic spline interpolation. 
2 — Use one-step-ahead forecasts from an AR(1) model. 
3  — Use one-step-ahead forecasts from an AR(p) model. 
Default: method = 3 
If  method = 2 is chosen, then all values of gaps beginning at time points 

1 1t +  or 1 2t +  are estimated by method 0. If method = 3 is chosen and the 
first gap starts at 1 1t + , then the values of this gap are also estimated by 
method 0. If the length of the series before a gap, denoted len, is greater than 
1 and less than 2 ⋅ maxlag, then maxlag is reduced to len/2 for the 
computation of the missing values within this gap. 

IMSLS_MAX_LAG, int maxlag (Input) 
Maximum lag number when method = 3 was chosen. 
Default: maxlag =  10 

IMSLS_NTIMES, int *ntimes (Output) 
Number of elements in the time series with estimated missing values. Note 
that ntimes = tpoints[n_obs-1]-tpoints[0]+1. 

IMSLS_MEAN_ESTIMATE, float mean_estimate (Input) 
Estimate of the mean of the time series.  

IMSLS_CONVERGENCE_TOLERANCE, float convergence_tolerance (Input) 
Tolerance level used to determine convergence of the nonlinear least squares 
algorithm used in method 2.  Argument convergence_tolerance represents 
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the minimum relative decrease in the sum of squares between two iterations 
required to determine convergence. Hence, convergence_tolerance must be 
greater than or equal to 0.  
Default: 10 2 / 3max{10 , eps }−  for single precision and 20 2 / 3max{10 , eps }−  for 
double precision, where eps =imsls_f_machine(4) for single precision and  
eps =imsls_d_machine(4) for double precision. 

IMSLS_RELATIVE_ERROR, float relative_error (Input) 
Stopping criterion for use in the nonlinear equation solver used by method 2.  
Default: relative_error = 100 × imsls_f_machine(4) for single 
precision, relative_error = 100 × imsls_d_machine(4) for double 
precision.. 

IMSLS_MAX_ITERATIONS, int max_iterations (Input) 
Maximum number of iterations allowed in the nonlinear equations solver used 
by method 2. 
Default: max_iterations = 200. 

IMSLS_TIMES_ARRAY,  int **times (Output) 
Address of a pointer to an internally allocated array of length  
ntimes = tpoints[n_obs-1]-tpoints[0]+1 containing the time points of 
the time series with estimates for the missing values. 

IMSLS_TIMES_ARRAY_USER,  int times[] (Output) 
Storage for array times is provided by the user. See IMSLS_TIMES_ARRAY. 

IMSLS_MISSING_INDEX,  int **missing_index (Output) 
Address of a pointer to an internally allocated array of length (ntimes-
n_obs) containing the indices for the missing values in array times. If  
ntimes-n_obs = 0, then no missing value could be found and NULL is 
returned. 

IMSLS_MISSING_INDEX_USER,  int missing_index[] (Output) 
Storage for array missing_index is provided by the user. See 
IMSLS_MISSING_INDEX. 

IMSLS_RETURN_USER,  float u_z[] (Output) 
If specified, u_z is a vector of length tpoints[n_obs-1]-tpoints[0]+1 
containing the time series values together with estimates for missing values. 

Description 
Traditional time series analysis as described by Box, Jenkins and Reinsel (1994) 
requires the observations made at equidistant time points 1 1 1, 1, 2, , nt t t t+ + … . When 
observations are missing, the problem occurs to determine suitable estimates. Function 
imsls_f_estimate_missing offers 4 estimation methods:  
Method 0 estimates the missing observations  in a gap by the median of  the last four 
time series values before and the first four values after the gap. If not enough values are 
available before or after the gap then the number  is reduced accordingly.  This method 
is very fast and simple, but its use is limited to stationary ergodic series without 
outliers and level shifts.  
Method 1 uses a cubic spline interpolation method to estimate missing values. Here the 
interpolation is again done over the last four time series values before and the first four 
values after the gap. The missing values are estimated by the resulting interpolant. This 
method gives smooth transitions across  missing values. 
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Method 2 assumes that the time series before the gap can be well described by an 
AR(1) process. If the last observation prior to the gap is made at time point mt  then it 
uses the time series values at 1 1, , ,1 mt t t+ …   to compute the one-step-ahead forecast at 

origin mt . This value is taken as an estimate for the missing value at time point 1mt + . 
If the value at 2mt +  is also missing then the values at time points 1 1, , ,1 1mt t t+ +…  are 
used to recompute the AR(1) model, estimate the value at  2mt +  and so on. The 

coefficient 1φ  in the AR(1) model is computed internally by the method of least 
squares from routine imsls_f_arma. 
Finally, method 3 uses an AR(p) model to estimate missing values by a one-step-ahead 
forecast . First, function imsls_f_auto_uni_ar, applied to the time series prior to 
the missing values, is used to determine the optimum p from the set {0, 1, …, maxlag} 
of possible values and to compute the parameters 1, , pφ φ…   of the resulting AR(p) 
model. The parameters are estimated by the least squares method based on 
Householder transformations as described in Kitagawa and Akaike (1978).  Denoting 
the mean of the series 

1 1 1, , ,
mt t ty y y+ …  by μ the one-step-ahead forecast at origin mt  , 

ˆ (1)
mt

y ,  can be computed by the formula 

11 1
.ˆ (1) (1 )

m m

p p

t j j t jj j
y yμ φ φ + −= =

= − +∑ ∑   

This value is used as an estimate for the missing value. The procedure starting with 
imsls_f_auto_uni_ar is then repeated for every further missing value in the gap. 
All four estimation methods treat gaps of missing values in increasing time order.  

Example 
Consider the AR(1) process  

1 1 1, 2, 3,,t tY Y a tt φ −= + = …
 

We assume that { }ta is a Gaussian white noise process, 2(0, )ta N σ∼ . Then, 

[ ] 0tE Y =  and  2 2
1[ ] /(1 )tVAR Y σ φ= −  (see Anderson, p. 174). 

The time series in the code below was artificially generated from an AR(1) process 
characterized by 1 0.7φ = −  and 2 2

11 0.51σ φ= − = . This process is stationary with 

[ ] 1tVAR Y = .  As initial value, 0 0:Y a=  was taken. The sequence { }ta was generated 
by a random number generator. 
From the original series, we remove the observations at time points t=130, t=140, 
t=141, t=160, t=175, t=176. Then, imsls_f_estimate_missing is used to compute 
estimates for the missing values by all 4 estimation methods available. The estimated 
values are compared with the actual values. 
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#include <imsls.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <math.h> 
 
void main() 
{ 
  int i, j, k; 
  int maxlag = 20; 
  int times_1[200], times_2[200]; 
  float x_1[200], x_2[200]; 
  int ntemp; 
  int n_obs, n_miss; 
  int ntimes; 
  float *result = NULL; 
  int *times = NULL, *missing_index = NULL; 
  int miss_ind; 
 
   
  float   y[200] = { 
       1.30540,-1.37166,1.47905,-0.91059,1.36191,-2.16966,3.11254, 
      -1.99536,2.29740,-1.82474,-0.25445,0.33519,-0.25480,-0.50574, 
      -0.21429,-0.45932,-0.63813,0.25646,-0.46243,-0.44104,0.42733, 
       0.61102,-0.82417,1.48537,-1.57733,-0.09846,0.46311,0.49156, 
      -1.66090,2.02808,-1.45768,1.36115,-0.65973,1.13332,-0.86285, 
       1.23848,-0.57301,-0.28210,0.20195,0.06981,0.28454,0.19745, 
      -0.16490,-1.05019,0.78652,-0.40447,0.71514,-0.90003,1.83604, 
      -2.51205,1.00526,-1.01683,1.70691,-1.86564,1.84912,-1.33120, 
       2.35105,-0.45579,-0.57773,-0.55226,0.88371,0.23138,0.59984, 
       0.31971,0.59849,0.41873,-0.46955,0.53003,-1.17203,1.52937, 
      -0.48017,-0.93830,1.00651,-1.41493,-0.42188,-0.67010,0.58079, 
      -0.96193,0.22763,-0.92214,1.35697,-1.47008,2.47841,-1.50522, 
       0.41650,-0.21669,-0.90297,0.00274,-1.04863,0.66192,-0.39143, 
       0.40779,-0.68174,-0.04700,-0.84469,0.30735,-0.68412,0.25888, 
      -1.08642,0.52928,0.72168,-0.18199,-0.09499,0.67610,0.14636, 
       0.46846,-0.13989,0.50856,-0.22268,0.92756,0.73069,0.78998, 
      -1.01650,1.25637,-2.36179,1.99616,-1.54326,1.38220,0.19674, 
      -0.85241,0.40463,0.39523,-0.60721,0.25041,-1.24967,0.26727, 
       1.40042,-0.66963,1.26049,-0.92074,0.05909,-0.61926,1.41550, 
       0.25537,-0.13240,-0.07543,0.10413,1.42445,-1.37379,0.44382, 
      -1.57210,2.04702,-2.22450,1.27698,0.01073,-0.88459,0.88194, 
      -0.25019,0.70224,-0.41855,0.93850,0.36007,-0.46043,0.18645, 
       0.06337,0.29414,-0.20054,0.83078,-1.62530,2.64925,-1.25355, 
       1.59094,-1.00684,1.03196,-1.58045,2.04295,-2.38264,1.65095, 
      -0.33273,-1.29092,0.14020,-0.11434,0.04392,0.05293,-0.42277, 
       0.59143,-0.03347,-0.58457,0.87030,0.19985,-0.73500,0.73640, 
       0.29531,0.22325,-0.60035,1.42253,-1.11278,1.30468,-0.41923, 
      -0.38019,0.50937,0.23051,0.46496,0.02459,-0.68478,0.25821, 
       1.17655,-2.26629,1.41173,-0.68331 
  }; 
 
    int tpoints[200] = { 
     1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24, 
     25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45, 
     46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66, 
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     67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87, 
     88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106, 
     107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122, 
     123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138, 
     139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154, 
     155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170, 
     171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186, 
     187,188,189,190,191,192,193,194,195,196,197,198,199,200 
  }; 
 
     
    n_miss = 0; 
    times_1[0] = times_2[0] = tpoints[0]; 
    x_1[0] = x_2[0] = y[0]; 
    k = 0; 
 
    for (i=1; i<200;i++) 
    { 
       times_1[i] = tpoints[i]; 
       x_1[i] = y[i]; 
    
       /* Generate series with missing values  */ 
       if ( i!=129 && i!= 139 && i!=140 && i!=159 && i!=174 && i!=175 ) 
       { 
          k += 1; 
          times_2[k] = times_1[i]; 
          x_2[k] = x_1[i]; 
       } 
    } 
    
    n_obs = k + 1; 
 
    for (j=0;j<=3;j++) 
    { 
       if (j <= 2) 
         result = imsls_f_estimate_missing(n_obs, times_2, x_2, 
                                          IMSLS_METHOD, j, 
                                          IMSLS_NTIMES, &ntimes, 
                                          IMSLS_TIMES_ARRAY, &times, 
                                          IMSLS_MISSING_INDEX, 
&missing_index, 
                                          0); 
       else 
         result = imsls_f_estimate_missing(n_obs, times_2, x_2, 
                                          IMSLS_METHOD, j, 
                                          IMSLS_NTIMES, &ntimes, 
                                          IMSLS_MAX_LAG, 20, 
                                          IMSLS_TIMES_ARRAY, &times, 
                                          IMSLS_MISSING_INDEX, 
&missing_index, 
                                          0); 
 
        
       if (!result) 
       { 
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          if (times) 
          { 
             free(times); 
             times = NULL; 
          } 
          if (missing_index) 
          { 
             free(missing_index); 
             missing_index = NULL; 
          } 
 
          return; 
       } 
 
       if (j == 0) printf("\nMethod: Median\n"); 
       if (j == 1) printf("\nMethod: Cubic Spline Interpolation\n"); 
       if (j == 2) printf("\nMethod: AR(1) Forecast\n"); 
       if (j == 3) printf("\nMethod: AR(p) Forecast\n"); 
 
       printf("ntimes = %d\n", ntimes); 
       printf("time\tactual\tpredicted\tdifference\n"); 
 
       n_miss = ntimes-n_obs; 
 
       for (i = 0; i < n_miss; i++) 
         { 
           miss_ind = missing_index[i]; 
           printf("%d, %10.5f, %10.5f, %18.6f\n", times[miss_ind], 
                       x_1[miss_ind], result[miss_ind],  
                       fabs(x_1[miss_ind]-result[miss_ind])); 
         } 
 
       if (result) 
       { 
         free(result); 
         result = NULL; 
       } 
       if (times) 
       { 
         free(times); 
         times = NULL; 
       } 
       if (missing_index) 
       { 
         free(missing_index); 
         missing_index = NULL; 
       } 
  } 
 
  return; 
} 

Output 
 
Method: Median 
ntimes = 200 
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time    actual      predicted        difference 
130,   -0.92074,    0.26132,           1.182060 
140,    0.44382,    0.05743,           0.386390 
141,   -1.57210,    0.05743,           1.629530 
160,    2.64925,    0.04680,           2.602450 
175,   -0.42277,    0.04843,           0.471195 
176,    0.59143,    0.04843,           0.543005 
 
Method: Cubic Spline Interpolation 
ntimes = 200 
time    actual      predicted        difference 
130,   -0.92074,    1.54109,           2.461829 
140,    0.44382,   -0.40730,           0.851119 
141,   -1.57210,    2.49709,           4.069194 
160,    2.64925,   -2.94712,           5.596371 
175,   -0.42277,    0.25066,           0.673430 
176,    0.59143,    0.38032,           0.211107 
 
Method: AR(1) Forecast 
ntimes = 200 
time    actual     predicted           difference 
130,   -0.92074,   -0.92971,           0.008968 
140,    0.44382,    1.02824,           0.584424 
141,   -1.57210,   -0.74527,           0.826832 
160,    2.64925,    1.22880,           1.420454 
175,   -0.42277,    0.01049,           0.433259 
176,    0.59143,    0.03683,           0.554601 
 
Method: AR(p) Forecast 
ntimes = 200 
time    actual      predicted        difference 
130,   -0.92074,   -0.86385,           0.056894 
140,    0.44382,    0.98098,           0.537164 
141,   -1.57210,   -0.64489,           0.927206 
160,    2.64925,    1.18966,           1.459592 
175,   -0.42277,   -0.00105,           0.421722 
176,    0.59143,    0.03773,           0.553705 

garch 
Computes estimates of the parameters of a GARCH(p,q) model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[], …, 0) 
The type double function is imsls_d_garch. 

Required Arguments 

int p   (Input) 
Number of GARCH parameters. 
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int q   (Input) 
Number of ARCH parameters. 

int m   (Input) 
Length of the observed time series. 

 float y[]   (Input) 
Array of length m containing the observed time series data. 

float xguess[]   (Input) 
Array of length p + q + 1 containing the initial values for the parameter array 
x[]. 

Return Value 
Pointer to the parameter array x[] of length p + q + 1 containing the estimated values 
of sigma squared, followed by the q ARCH parameters, and the p GARCH parameters. 

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_garch (int p, int q, int m, float y[], float xguess[], 

IMSLS_MAX_SIGMA,   float  max_sigma, 
 IMSLS_A,   float  *a, 
 IMSLS_AIC,   float  *aic, 
 IMSLS_VAR,   float  *var, 
 IMSLS_VAR_USER,   float  var[], 
 IMSLS_VAR_COL_DIM,   int  var_col_dim, 
 IMSLS_RETURN_USER,   float  x[], 
 0) 

Optional Arguments 
IMSLS_MAX_SIGMA,   float  max_sigma,  (Input) 

Value of the upperbound on the first element (sigma) of the array of returned 
estimated coefficients.  Default = 10. 

IMSLS_A,   float  *a,  (Output) 
Value of Log-likelihood function evaluated at the estimated parameter array 
x. 

IMSLS_AIC,   float  *aic,  (Output) 
Value of Akaike Information Criterion evaluated at the estimated parameter 
array x. 

IMSLS_VAR,   float  *var,  (Output) 
Array of size (p+q+1)x(p+q+1) containing the variance-covariance matrix. 

IMSLS_VAR_USER,   float  var[],  (Output) 
Storage for array var is provided by the user.   
See IMSLS_VAR. 
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IMSLS_VAR_COL_DIM,   int  var_col_dim,  (Input) 
Column dimension (p+q+1)of the variance-covariance matrix. 

IMSLS_RETURN_USER,   float  x[],  (Output)  
If specified, x returns an array of length p +q + 1 containing the estimated 
values of sigma squared, followed by the q ARCH parameters, and the p 
GARCH parameters.  Storage for estimated parameter array x is provided by 
the user. 

Description 
The Generalized Autoregressive Conditional Heteroskedastic (GARCH) model for a 
time series { }tw is defined as 

2 2 2 2
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where zt’s are independent and identically distributed standard normal random 
variables,  
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The above model is denoted as GARCH(p,q).   The βi and αi  coeffecients will be 
referred to as GARCH and ARCH coefficents, respectively.   When βi = 0,  
i = 1,2,…,p, the above model reduces to ARCH(q) which was proposed by Engle 
(1982). The nonnegativity conditions on the parameters imply a nonnegative variance 
and the condition on the sum of the βi’s and α i’s is required for wide sense stationarity. 
In the empirical analysis of observed data, GARCH(1,1) or GARCH(1,2) models have 
often found to appropriately account for conditional heteroskedasticity (Palm 1996).  
This finding is similar to linear time series analysis based on ARMA models.  
It is important to notice that for the above models positive and negative past values 
have a symmetric impact on the conditional variance. In practice, many series may 
have strong asymmetric influence on the conditional variance.  To take into account 
this phenomena, Nelson (1991) put forward Exponential GARCH (EGARCH). Lai 
(1998) proposed and studied some properties of a general class of models that extended 
linear relationship of the conditional variance in ARCH and GARCH into nonlinear 
fashion.     
The maximum likelihood method is used in estimating the parameters in GARCH(p,q). 
The log-likelihood of the model for the observed series {wt} with length m = nobs is 
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Thus log(L) is maximized subject to the constraints on the αi, βi, and σ. 
In this model, if q = 0, the GARCH model is singular since the estimated Hessian 
matrix is singular. 
The initial values of the parameter vector x entered in vector xguess must satisfy 
certain constraints.  The first element of xguess refers to σ2 and must be greater than 
zero and less than max_sigma. The remaining p+q initial values must each be greater 
than or equal to zero and sum to a value less than one. 
To guarantee stationarity in model fitting,  

1

2 1 1

( ) 1
p q p q

i i
i i i

x i β α
+ +

= = =

= + <∑ ∑ ∑  

is checked internally. The initial values should selected from values between zero and 
one.  
AIC is computed by  

     - 2 log (L) + 2(p+q+1), 

where log(L) is the value of the log-likelihood function. 
Statistical inferences can be performed outside the routine GARCH based on the output 
of the log-likelihood function (A), the Akaike Information Criterion (AIC), and the 
variance-covariance matrix (VAR). 

Example 
The data for this example are generated to follow a GARCH(p,q) process by using a 
random number generation function sgarch. The data set is analyzed and estimates of 
sigma, the ARCH parameters, and the GARCH parameters are returned.  The values of 
the Log-likelihood function and the Akaike Information Criterion are returned from the 
optional arguments IMSLS_A and IMSLS_AIC. 

 
#include <imsls.h> 
#include <math.h> 
 
static void  sgarch (int p, int q, int m, float x[], 
                float y[], float z[], float y0[], float sigma[]); 
#define M 1000 
#define N (P + Q + 1) 
#define P 2 
#define Q 1 
 
void main () 
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{ 
    int        n, p, q, m; 
    float      a, aic, wk1[M + 1000], wk2[M + 1000], 
                wk3[M + 1000], x[N], xguess[N],  y[M]; 
    float      *result; 
 
    imsls_random_seed_set (182198625); 
    m = M; 
    p = P; 
    q = Q; 
    n = p+q+1; 
    x[0] = 1.3; 
    x[1] = .2; 
    x[2] = .3; 
    x[3] = .4; 
    xguess[0] = 1.0; 
    xguess[1] = .1; 
    xguess[2] = .2; 
    xguess[3] = .3; 
    sgarch (p, q, m, x, y, wk1, wk2, wk3); 
    result = imsls_f_garch(p, q, m, y, xguess, 
   IMSLS_A, &a, 
   IMSLS_AIC, &aic,  
   0); 
    printf("Sigma estimate is\t%11.4f\n", result[0]); 
    printf("ARCH(1) estimate is\t%11.4f\n", result[1]); 
    printf("GARCH(1) estimate is\t%11.4f\n", result[2]); 
    printf("GARCH(2) estimate is\t%11.4f\n", result[3]); 
    printf("\nLog-likelihood function value is\t%11.4f\n", a); 
    printf("Akaike Information Criterion value is\t%11.4f\n", aic); 
    return; 
} 
 
static void sgarch (int p, int q, int m, float x[], 
                float y[], float z[], float y0[], float sigma[]) 
{ 
    int        i, j, l; 
    float      s1, s2, s3; 
 
   imsls_f_random_normal ( m + 1000, IMSLS_RETURN_USER, z, 0); 
 
    l = imsls_i_max (p, q); 
    l = imsls_i_max (l, 1); 
    for (i = 0; i < l; i++) y0[i] = z[i] * x[0]; 
 
    /* COMPUTE THE INITIAL VALUE OF SIGMA */ 
    s3 = 0.0; 
    if (imsls_i_max (p, q) >= 1) { 
 for (i = 1; i < (p + q + 1); i++) s3 += x[i]; 
    } 
    for (i = 0; i < l; i++) sigma[i] = x[0] / (1.0 - s3); 
 
    for (i = l; i < (m + 1000); i++) { 
 s1 = 0.0; 
 s2 = 0.0; 
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 if (q >= 1) { 
     for (j = 0; j < q; j++) 
       s1 += x[j + 1] * y0[i - j - 1] * y0[i - j - 1]; 
 } 
 if (p >= 1) { 
     for (j = 0; j < p; j++)  
       s2 += x[q + 1 + j] * sigma[i - j - 1]; 
 } 
 sigma[i] = x[0] + s1 + s2; 
 y0[i] = z[i] * sqrt (sigma[i]); 
    } 
    /* 
     * DISCARD THE FIRST 1000 SIMULATED OBSERVATIONS 
     */ 
    for (i = 0; i < m; i++) y[i] = y0[1000 + i]; 
    return; 
}    /* end of function */ 
 
Output 
Sigma estimate is 1.6480 
ARCH(1) estimate is 0.2427 
GARCH(1) estimate is 0.3175 
GARCH(2) estimate is 0.3335 
 
Log-likelihood function value is -2707.0903 
Akaike Information Criterion value is 5422.1807 
 

kalman 
Performs Kalman filtering and evaluates the likelihood function for the state-space 
model. 

Synopsis 
#include <imsls.h> 
void imsls_f_kalman (int nb, float nb[], float covb[],  int *n,  

float *ss,  float *alndet, ..., 0) 
The type double function is imsls_d_kalman. 

Required Arguments 

int nb   (Input) 
Number of elements in the state vector. 

float b[]   (Input/Output) 
Array of length nb containing the estimated state vector. The input is the 
estimated state vector at time k given the observations through time  
k − 1. The output is the estimated state vector at time k + 1 given the 
observations through time k. On the first call to imsls_f_kalman, the input 
b must be the prior mean of the state vector at time 1. 
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float covb[]   (Input/Output) 
Array of size nb  by nb  such that covb* σ2 is the mean squared error matrix 
for b. 
Before the first call to imsls_f_kalman, covb * σ2 must equal the 
variance-covariance matrix of the state vector. 

int *n   (Input/Output) 
Pointer to the rank of the variance-covariance matrix for all the observations. 
n must be initialized to zero before the first call to imsls_f_kalman. In the 
usual case when the variance-covariance matrix is nonsingular, n equals the 
sum of the ny’s from the invocations to imsls_f_kalman. See optional 
argument IMSLS_UPDATE below for the definition of ny. 

float *ss   (Input/Output) 
Pointer to the generalized sum of squares. 
ss must be initialized to zero before the first call to imsls_f_kalman. The 
estimate of σ2 is given by ss

n
. 

float *alndet   (Input/Output) 
Pointer to the natural log of the product of the nonzero eigenvalues of  
P where P * σ2 is the variance-covariance matrix of the observations.   
Although alndet is computed, imsls_f_kalman avoids the explicit 
computation of P. alndet must be initialized to zero before the first call to  
imsls_f_kalman. In the usual case when P is nonsingular, alndet is the 
natural log of the determinant of P. 

Synopsis with Optional Arguments 
#include <imsls.h> 
voidt *imsls_f_random_sample (int nb, float nb[], float covb[],  

 int *n,  float *ss, float *alndet,  
IMSLS_UPDATE, int ny, float *y, float *z, float *r, 
IMSLS_Z_COL_DIM, int z_col_dim, 
IMSLS_R_COL_DIM, int r_col_dim, 
IMSLS_T, float *t, 
IMSLS_T_COL_DIM, int t_col_dim, 
IMSLS_Q, float *q, 
IMSLS_Q_COL_DIM, int t_col_dim, 
IMSLS_TOLERANCE, float tolerance, 
IMSLS_V, float **v, 
IMSLS_V_USER, float v[], 
IMSLS_COVV, float **v, 
IMSLS_COVV_USER, float v[], 
 0) 

Optional Arguments 

IMSLS_UPDATE, int ny,  float *y,  float *z,  float *r   (Input) 
Perform computation of the update equations.  
ny: Number of observations for current update. 
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 y: Array of length ny containing the observations. 

 z: ny by nb array containing the matrix relating the observations to the state 
vector in the observation equation. 

 r: ny by ny array containing the matrix such that r * σ2 is the variance-
covariance matrix of errors in the observation equation.  
σ2 is a positive unknown scalar. Only elements in the upper triangle of r are 
referenced. 

IMSLS_Z_COL_DIM, int z_col_dim   (Input) 
Column dimension of the matrix z. 
Default: z_col_dim = nb  

IMSLS_R_COL_DIM, int r_col_dim   (Input) 
Column dimension of the matrix r. 
Default: r_col_dim = ny  

IMSLS_T, float *t   (Input) 
nb by nb transition matrix in the state equation  
Default: t = identity matrix  

IMSLS_T_COL_DIM, int r_col_dim   (Input) 
Column dimension of the matrix t. 
Default: t_col_dim = nb  

IMSLS_Q, float *q   (Input) 
nb by nb matrix such that q * σ2 is the variance-covariance matrix of the 
error vector in the state equation.   
Default: There is no error term in the state equation. 

IMSLS_Q_COL_DIM, int q_col_dim   (Input) 
Column dimension of the matrix q. 
Default: q_col_dim = nb  

IMSLS_TOLERANCE, float tolerance   (Input) 
Tolerance used in determining linear dependence.    
Default: tolerance = 100.0*imsls_f_machine(4)  

IMSLS_V, float **v   (Output) 
Address to a pointer v to an array of length ny containing the one-step-ahead 
prediction error. 

IMSLS_V_USER, float v[]   (Output) 
Storage for v is provided by the user. See IMSLS_V. 

IMSLS_COVV, float **covv   (Output) 
The address to a pointer of size ny by ny containing a matrix such that covv * 
σ2 is the variance-covariance matrix of v. 

IMSLS_COVV_USER, float covv[]   (Output) 
Storage for covv is provided by the user. See IMSLS_COVV. 
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Description 
Routine imsls_f_kalman is based on a recursive algorithm given by Kalman (1960), 
which has come to be known as the Kalman filter. The underlying model is known as 
the state-space model. The model is specified stage by stage where the stages generally 
correspond to time points at which the observations become available. The routine 
imsls_f_kalman avoids many of the computations and storage requirements that 
would be necessary if one were to process all the data at the end of each stage in order 
to estimate the state vector. This is accomplished by using previous computations and 
retaining in storage only those items essential for processing of future observations. 
The notation used here follows that of Sallas and Harville (1981). Let yk (input in y 
using optional argument IMSLS_UPDATE) be the nk × 1 vector of observations that 
become available at time k. The subscript k is used here rather than t, which is more 
customary in time series, to emphasize that the model is expressed in stages k = 1, 2, … 
and that these stages need not correspond to equally spaced time points. In fact, they 
need not correspond to time points of any kind. The observation equation for the state-
space model is 

yk = Zkbk + ek k = 1, 2, … 

Here, Zk (input in z using optional argument IMSLS_UPDATE) is an nk × q known 
matrix and bk is the q × 1 state vector. The state vector bk is allowed to change with 
time in accordance with the state equation 

bk+1 = Tk+1bk + wk+1 k = 1, 2, … 

starting with b1 = μ1 + w1. 
The change in the state vector from time k to k + 1 is explained in part by the transition 
matrix Tk+1 (the identity matrix by default, or optionally input using IMSLS_T), which 
is assumed known. It is assumed that the q-dimensional wks  
(k = 1, 2,…) are independently distributed multivariate normal with mean vector 0 and 
variance-covariance matrix σ2Qk, that the nk-dimensional eks (k = 1, 2,…) are 
independently distributed multivariate normal with mean vector 0 and variance-
covariance matrix σ2Rk, and that the wks and eks are independent of each other. Here, 

μ1is the mean of b1 and is assumed known, σ2 is an unknown positive scalar. 
Qk+1(input in Q) and Rk (input in R) are assumed known. 

Denote the estimator of the realization of the state vector bk given the observations y1, 
y2, …, yj by  

|
ˆ

k jβ
 

By definition, the mean squared error matrix for  

|
ˆ

k jβ
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is 
2 ˆ ˆ( )( )T

k kk j k j k jC E b bσ β β= − −
 

At the time of the k-th invocation, we have 

1
ˆ

k kβ −  

and  
Ck|k−1, which were computed from the (k−1)-st invocation, input in b and covb, 
respectively. During the k-th invocation, function imsls_f_kalman computes the 
filtered estimate 

|
ˆ

k kβ
 

along with Ck|k. These quantities are given by the update equations: 

1
1 1

1
1 1 1

ˆ ˆ T
k k kk k k k k k

T
k k kk k k k k k k k

C Z H v

C C C Z H Z C

β β −
− −

−
− − −

= +

= −  

where 

1
ˆ

k k k k kv y Z β −= −
 

and where  

1
T

k k k kk kH R Z C Z−= +
 

Here, vk (stored in v) is the one-step-ahead prediction error, and σ2Hk is the variance-
covariance matrix for vk. Hk is stored in covv. The “start-up values” needed on the first 
invocation of imsls_f_kalman are 

11 0β̂ μ=
 

and C1|0 = Q1 input via b and covb, respectively. Computations for the k-th invocation 
are completed by imsls_f_kalman computing the one-step-ahead estimate  

1
ˆ

k kβ +  

along with Ck+1|k given by the prediction equations: 
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1 1 11

ˆ ˆ
kk k k k

T
k k kk k k k

T

C T C T Q

β β++

+ + ++

=

= +  

If both the filtered estimates and one-step-ahead estimates are needed by the user at 
each time point, imsls_f_kalman can be invoked twice for each time point—first 
without IMSLS_T and IMSLS_Q  to produce 

ˆ
k kβ

 

and Ck|k, and second without IMSLS_UPDATE to produce 

1
ˆ

k kβ +  

and Ck+1|k (Without IMSLS_T and IMSLS_Q, the prediction equations are skipped. 
Without IMSLS_UPDATE, the update equations are skipped.).  
Often, one desires the estimate of the state vector more than one-step-ahead, i.e., an 
estimate of 

ˆ
k jβ

 

is needed where k > j + 1. At time j, imsls_f_kalman is invoked with 
IMSLS_UPDATE to compute 

1
ˆ

j jβ +  

Subsequent invocations of imsls_f_kalman without IMSLS_UPDATE can compute 

2 3
ˆ ˆ ˆ, , ...,j j j j k j+ +β β β

 

Computations for 

ˆ
k jβ

 

and Ck|j assume the variance-covariance matrices of the errors in the observation 

equation and state equation are known up to an unknown positive scalar multiplier, σ2. 
The maximum likelihood estimate of σ2 based on the observations y1, y2, …, ym, is 
given by 

2ˆ /SS Nσ =
 

where 
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1
1 1andm m T

k k k k k kN n SS v H v−
= == ∑ = ∑

 

N and SS are the input/output arguments n and ss. 

If σ2 is known, the Rks and Qks can be input as the variance-covariance matrices 

exactly. The earlier discussion is then simplified by letting σ2 = 1.  
In practice, the matrices Tk, Qk, and Rk are generally not completely known. They may 
be known functions of an unknown parameter vector θ. In this case, imsls_f_kalman 
can be used in conjunction with an optimization program (see routine 
imsl_f_min_uncon_multivar, IMSL C/Math/Library, Chapter 8, “Optimization”) 
to obtain a maximum likelihood estimate of θ. The natural logarithm of the likelihood 
function for y1, y2, …, ym differs by no more than an additive constant from 

2 2
1 2

2 1

1 1

1( , ; , , , ) ln
2

1 1ln[det( )]
2 2

m

m m
T

k k k k
k k

L y y y N

H v H v

θ σ σ

σ − −

= =

= −

− −∑ ∑

…

 

(Harvey 1981, page 14, equation 2.21).  
Here, 

=1 ln[det( )]m
k kH∑

 

(stored in alndet) is the natural logarithm of the determinant of V where σ2V is the 
variance-covariance matrix of the observations.  

Minimization of −2L(θ, σ2; y1, y2, …, ym) over all θ and σ2 produces maximum 
likelihood estimates. Equivalently, minimization of −2Lc(θ; y1, y2, …, ym) where 

1 2
1

1 1( ; , , , ) ln ln[det( )]
2 2

m

c m k
k

SSL y y y N H
N

θ
=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑…
 

produces maximum likelihood estimates  
2ˆ ˆand /SS Nθ σ =

 

The minimization of −2Lc(θ; y1, y2, …, ym) instead of −2L(θ, σ2; y1, y2, …, ym), 
reduces the dimension of the minimization problem by one. The two optimization 
problems are equivalent since  

2ˆ ( ) ( ) /SS Nσ θ θ=
 

minimizes −2L(θ, σ2; y1, y2, …, ym) for all θ, consequently,  
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2ˆ ( )σ θ
 

can be substituted for σ2 in L(θ, σ2; y1, y2, …, ym) to give a function that differs by no 
more than an additive constant from Lc(θ; y1, y2, …, ym).  

The earlier discussion assumed Hk to be nonsingular. If Hk is singular, a modification 
for singular distributions described by Rao (1973, pages 527–528) is used. The 
necessary changes in the preceding discussion are as follows: 

1.  Replace  
1

kH −

 

      by a generalized inverse. 

2.  Replace det(Hk) by the product of the nonzero eigenvalues of Hk.  

3.  Replace N by  

( )1
rankm

kk
H

=∑  

Maximum likelihood estimation of parameters in the Kalman filter is discussed by 
Sallas and Harville (1988) and Harvey (1981, pages 111–113). 

Example 1 
Function imsls_f_kalman is used to compute the filtered estimates and one-step-
ahead estimates for a scalar problem discussed by Harvey (1981, pages  
116–117). The observation equation and state equation are given by 

1 1 1, 2,3, 4
k k k

k k k

y b e
b b w k+ +

= +
= + =  

where the eks are identically and independently distributed normal with mean 0 and 

variance σ2, the wks are identically and independently distributed normal with mean 0 

and variance 4σ2, and b1is distributed normal with mean 4 and variance 16σ2. Two 
invocations of imsls_f_kalman are needed for each time point in order to compute 
the filtered estimate and the one-step-ahead estimate. The first invocation does not use 
the optional arguments IMSLS_T and IMSLS_Q so that the prediction equations are 
skipped in the computations. The update equations are skipped in the computations in 
the second invocation. 
This example also computes the one-step-ahead prediction errors. Harvey (1981, page 
117) contains a misprint for the value v4 that he gives as 1.197. The correct value of  
v4 = 1.003 is computed by imsls_f_kalman. 

.  
#include <stdio.h> 
#include <imsls.h> 
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#define NB 1 
#define NOBS 4 
#define NY 1 
 
void main() 
{ 
    int         nb = NB, nobs = NOBS, ny = NY; 
    int         ldcovb, ldcovv, ldq, ldr, ldt, ldz; 
    int         i, iq, it, n, nout; 
    float       alndet, b[NB], covb[NB][NB], covv[NY][NY],  
                q[NB][NB], r[NY][NY], ss, 
                t[NB][NB], tol, v[NY], y[NY], z[NY][NB]; 
    float       ydata[] = {4.4, 4.0, 3.5, 4.6}; 
 
    z[0][0] = 1.0; 
    r[0][0] = 1.0; 
    q[0][0] = 4.0; 
    t[0][0] = 1.0; 
    b[0] = 4.0; 
    covb[0][0] = 16.0; 
 
    /* Initialize arguments for initial call to imsls_f_kalman. */ 
    n = 0; 
    ss = 0.0; 
    alndet = 0.0; 
    printf("k/j      b       covb n     ss      alndet     v       covv\n"); 
 
    for (i = 0; i < nobs; i++) { 
      /* Update */ 
      y[0] = ydata[i]; 
      imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet,  
       IMSLS_UPDATE, ny, y, z, r,  
       IMSLS_V_USER, v,  
       IMSLS_COVV_USER, covv,  
       0); 
       
      printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",  
      i, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]); 
 
      /* Prediction */ 
      imsls_f_kalman(nb, b, (float*)covb, &n, &ss, &alndet, 
       IMSLS_T, t, 
       IMSLS_Q, q, 
       0); 
       
      printf("%d/%d %8.3f %8.3f %d %8.3f %8.3f %8.3f %8.3f\n",  
      i+1, i, b[0], covb[0][0], n, ss, alndet, v[0], covv[0][0]); 
    } 
 
} 

Output 
k/j      b       covb n     ss      alndet     v       covv 
0/0    4.376    0.941 1    0.009    2.833    0.400   17.000 
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1/0    4.376    4.941 1    0.009    2.833    0.400   17.000 
1/1    4.063    0.832 2    0.033    4.615   -0.376    5.941 
2/1    4.063    4.832 2    0.033    4.615   -0.376    5.941 
2/2    3.597    0.829 3    0.088    6.378   -0.563    5.832 
3/2    3.597    4.829 3    0.088    6.378   -0.563    5.832 
3/3    4.428    0.828 4    0.260    8.141    1.003    5.829 
4/3    4.428    4.828 4    0.260    8.141    1.003    5.829 

 

Example 2 
Function imsls_f_kalman is used with routine imsl_f_min_uncon_multivar, 
(see IMSL C/Math/Library, Chapter 8, “Optimization”) to find a maximum likelihood 
estimate of the parameter θ in a MA(1) time series represented by yk = εk − θεk−1. 
Function imsls_f_random_arma  (see IMSL C/Stat/Library, Chapter 12, “Random 
Number Generation”) is used to generate 200 random observations from an MA(1) 
time series with θ = 0.5 and σ2 = 1. 
The MA(1) time series is cast as a state-space model of the following form (see Harvey 
1981, pages 103–104, 112): 

( )

1

1 0

0 1
0 0

k k

k k k

y b

b b w−

=

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 

where the two-dimensional wks are independently distributed bivariate normal with 

mean 0 and variance σ2 Qk and 

2

1 2

2

1

1
2, 3, ..., 200k

Q

Q k

+ θ −θ
=

−θ θ

−θ
= =

−θ θ

⎛ ⎞
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

The warning error that is printed as part of the output is not serious and indicates that 
imsl_f_min_uncon_multivar (See Chapter 8, “Optimization” in the math manual) 
is generally used for multi-parameter minimization. 

 
#include <stdio.h> 
#include <math.h> 
#include <imsls.h> 
 
#define NOBS 200 
#define NTHETA 1 
#define NB 2 
#define NY 1 
 
float fcn(int ntheta, float theta[]); 
float *ydata; 
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void main () 
{ 
    int  lagma[1]; 
    float pma[1]; 
    float *theta;  
 
    imsls_random_seed_set(123457); 
    pma[0] = 0.5; 
    lagma[0] = 1; 
    ydata = imsls_f_random_arma(200, 0, NULL, 1, pma,  

IMSLS_ACCEPT_REJECT_METHOD, 
IMSLS_NONZERO_MALAGS, lagma, 

    0); 
 
    theta = imsl_f_min_uncon_multivar(fcn, NTHETA, 0); 
 
    printf("* * * Final Estimate for THETA * * *\n"); 
    printf("Maximum likelihood estimate, THETA = %f\n", theta[0]); 
 
} 
 
float fcn(int ntheta, float theta[]) 
{ 
  int i, n; 
  float res, ss, alndet; 
  float t[] = {0.0, 1.0, 0.0, 0.0}; 
  float z[] = {1.0, 0.0}; 
  float q[NB][NB], r[NY][NY], b[NB], covb[NB][NB], y[NY]; 
  if (fabs(theta[0]) > 1.0) { 
    res = 1.0e10; 
  } else { 
    q[0][0] = 1.0; 
    q[0][1] = -theta[0]; 
    q[1][0] = -theta[0]; 
    q[1][1] = theta[0]*theta[0]; 
     
    r[0][0] = 0.0; 
     
    b[0] = 0.0; 
    b[1] = 0.0; 
     
    covb[0][0] = 1.0 + theta[0]*theta[0]; 
    covb[0][1] = -theta[0]; 
    covb[1][0] = -theta[0]; 
    covb[1][1] = theta[0]*theta[0]; 
     
    n = 0; 
    ss = 0.0; 
    alndet = 0.0; 
     
    for (i = 0; i<NOBS; i++) { 
      y[0] = ydata[i]; 
      imsls_f_kalman(NB, b, (float*)covb, &n, &ss, &alndet,  
       IMSLS_UPDATE, NY, y, z, r,  
       IMSLS_Q, q,  
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       IMSLS_T, t,  
       0); 
    } 
    res = n*log(ss/n) + alndet; 
  } 
  return(res); 
} 

Output 
 
*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar.  This routine 
***          may be inefficient for a problem of size "n" = 1. 
 
 
*** WARNING_IMMEDIATE Error from imsl_f_min_uncon_multivar.  The last global 
***          step failed to locate a lower point than the current X value.  
***          The current X may be an approximate local minimizer and no more 
***          accuracy is possible or the step tolerance may be too large 
***          where "step_tol" = 2.422181e-05 is given. 
 
* * * Final Estimate for THETA * * * 
Maximum likelihood estimate, THETA = 0.453256 
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Chapter 9: Multivariate Analysis 

Routines 
Hierarchical Cluster Analysis 

Computes matrix of dissimilarities or similarities dissimilarities 641 
Hierarchical cluster analysis cluster_hierarchical 645 
Retrieves cluster numbers in hierarchical  
cluster analysis cluster_number 649 

K-means Cluster Analysis 
Performs a K-means (centroid) cluster analysis cluster_k_means 653 

Principal Component Analysis 
Computes principal components principal_components 657 

Factor Analysis 
Extracts factor-loading estimates factor_analysis 663 
Performs discriminant function analysis discriminant_analysis 682 

Usage Notes 

Cluster Analysis 
Function imsls_f_cluster_k_means performs a K-means cluster analysis. Basic K-
means clustering attempts to find a clustering that minimizes the within-cluster sums-
of-squares. In this method of clustering the data, matrix X is grouped so that each 
observation (row in X) is assigned to one of a fixed number, K, of clusters. The sum of 
the squared difference of each observation about its assigned cluster’s mean is used as 
the criterion for assignment. In the basic algorithm, observations are transferred from 
one cluster or another when doing so decreases the within-cluster sums-of-squared 
differences. When no transfer occurs in a pass through the entire data set, the algorithm 
stops. Function imsls_f_cluster_k_means is one implementation of the basic 
algorithm. 
The usual course of events in K-means cluster analysis is to use 
imsls_f_cluster_k_means to obtain the optimal clustering. The clustering is then 
evaluated by functions described in Chapter 1, “Basic Statistics,” and/or other chapters 
in this manual. Often, K-means clustering with more than one value of K is performed, 
and the value of K that best fits the data is used. 
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Clustering can be performed either on observations or variables. The discussion of the 
function imsls_f_cluster_k_means assumes the clustering is to be performed on 
the observations, which correspond to the rows of the input  
data matrix. If variables, rather than observations, are to be clustered, the  
data matrix should first be transposed. In the documentation for 
imsls_f_cluster_k_means, the words “observation” and “variable” are 
interchangeable. 

Principal Components 
The idea in principal components is to find a small number of linear combinations of 
the original variables that maximize the variance accounted for in the original data. 
This amounts to an eigensystem analysis of the covariance (or correlation) matrix. In 
addition to the eigensystem analysis, imsls_f_principal_components computes 
standard errors for the eigenvalues. Correlations of the original variables with the 
principal component scores also are computed. 

Factor Analysis 
Factor analysis and principal component analysis, while quite different in assumptions, 
often serve the same ends. Unlike principal components in which linear combinations 
yielding the highest possible variances are obtained, factor analysis generally obtains 
linear combinations of the observed variables according to a model relating the 
observed variable to hypothesized underlying factors, plus a random error term called 
the unique error or uniqueness. In factor analysis, the unique errors associated with 
each variable are usually assumed to be independent of the factors. Additionally, in the 
common factor model, the unique errors are assumed to be mutually independent. The 
factor analysis model is expressed in the following equation: 

x − μ = Λf + e 

where x is the p vector of observed values, μ is the p vector of variable means,  
Λ is the p × k matrix of factor loadings, f is the k vector of hypothesized underlying 
random factors, e is the p vector of hypothesized unique random errors, p is the number 
of variables in the observed variables, and k is the number of factors. 
Because much of the computation in factor analysis was originally done by hand or 
was expensive on early computers, quick (but dirty) algorithms that made the 
calculations possible were developed. One result is the many factor extraction methods 
available today. Generally speaking, in the exploratory or model building phase of a 
factor analysis, a method of factor extraction that is not computationally intensive 
(such as principal components, principal factor, or image analysis) is used. If desired, a 
computationally intensive method is then used to obtain the final factors. 
In exploratory factor analysis, the unrotated factor loadings obtained from the factor 
extraction are generally transformed (rotated) to simplify the interpretation of the 
factors. Rotation is possible because of the overparameterization in the factor analysis 
model. The method used for rotation may result in factors that are independent 
(orthogonal rotations) or correlated (oblique rotations). Prior information may be 
available (or hypothesized) in which case a Procrustes rotation could be used. When no 
prior information is available, an analytic rotation can be performed.  
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The steps generally used in a factor analysis are summarized as follows: 

Steps in a Factor Analysis 
Step 1 

Calculate Covariance (Correlation) Matrix 
IMSL routine imsls_f_covariances  

(see Chapter 3, “Correlation and Covariance”) 

Step 2 
Initial Factor Extraction 

imsls_f_factor_analysis 

Step 3 
Factor Rotation  

using imsls_f_factor_analysis’ optional arguments 
Orthogonal Oblique 

No Prior Info.    

IMSLS_ORTHOMAX_ROTATION,  

No Prior Info. 
IMSLS_OBLIQUE_PROMAX_ROTATION 
 
IMSLS_DIRECT_OBLIMIN_ROTATION 
 
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION 

Prior Info. 
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION 

Prior Info. 
IMSLS_OBLIQUE_PROCRUSTES_ROTATION 

 
       Step 4 

Factor Structure and Variance 
imsls_f_factor_analysis 

optional argument 
IMSLS_FACTOR_STRUCTURE 

dissimilarities 
Computes a matrix of dissimilarities (or similarities) between the columns (or rows) of 
a matrix. 

Synopsis 
#include <imsls.h> 

float *imsls_f_dissimilarities (int nrow, int ncol, float *x, …, 0) 

The type double function is imsls_d_dissimilarities. 

Required Arguments 

int nrow  (Input) 
Number of rows in the matrix. 
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int ncol  (Input) 
Number of columns in the matrix. 

float *x  (Input) 
Array of size nrow by ncol containing the matrix. 

Return Value 
An array of size m by m containing the computed dissimilarities or similarities, where 
m = nrow if optional argument IMSLS_ROWS is used, and m = ncol otherwise. 

Synopsis with Optional Arugments 
#include <imsls.h> 
float *imsls_f_dissimilarities (int nrow, int ncol, float *x, 

IMSLS_ROWS, or IMSLS_COLUMNS, 
IMSLS_INDEX, int ndstm,  int ind[], 
IMSLS_METHOD, int imeth, 
IMSLS_SCALE, int iscale, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_RETURN_USER, float dist[], 
0) 

Optional Arguments 

IMSLS_ROWS,  
or 

IMSLS_COLUMNS, (Input) 
Exactly one of these options can be present to indicate whether distances are 
computed between rows or columns of x. 
Default: Distances are computed between rows. 

IMSLS_INDEX, int ndstm,  int ind[],  (Input) 
Argument ind is an array of length ndstm containing the indices of the rows 
(columns if IMSLS_ROWS is used) to be used in computing the distance 
measure. 
Default:  All rows(columns) are used. 

IMSLS_METHOD, int imeth  (Input) 
Method to be used in computing the dissimilarities or similarities.   
Default: imeth = 0. 

imeth Method 

0 Euclidean distance (L2 norm) 

1 Sum of the absolute differences (L1 norm) 

2 Maximum difference (L∞ norm) 

3 Mahalanobis distance 

4 Absolute value of the cosine of the angle 
between the vectors 
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imeth Method 

5 Angle in radians (0, π) between the lines 
through the origin defined by the vectors 

6 Correlation coefficient 

7 Absolute value of the correlation 
coefficient 

8 Number of exact matches  
See the  Description section for a more detailed description of each measure. 

IMSLS_SCALE, int iscale  (Input) 
Scaling option.   (Input)  
iscale is not used for methods 3 through 8.  
Default: iscale = 0. 

iscale Scaling Performed 

0 No scaling is performed. 

1 Scale each column (row, if IMSLS_ROWS is 
used) by the standard deviation of the 
column (row). 

2 Scale each column (row, if IMSLS_ROWS is 
used) by the range of the column (row). 

IMSLS_X_COL_DIM, int x_col_dim  (Input) 
Column dimension of x. 
Default: x_col_dim = ncol. 

IMSLS_RETURN_USER, float dist[]  (Output) 
User allocated array of size m by m containing the computed dissimilarities or 
similarities, where m = nrow if IMSLS_ROWS is used, and m = ncol 
otherwise.  

Description 
Function imsls_f_dissimilarities computes an upper triangular matrix 
(excluding the diagonal) of dissimilarities (or similarities) between the columns or 
rows of a matrix. Nine different distance measures can be computed. For the first three 
measures, three different scaling options can be employed. Output from 
imsls_f_dissimilarities is generally used as input to clustering or 
multidimensional scaling functions. 
The following discussion assumes that the distance measure is being computed 
between the columns of the matrix, i.e., that IMSLS_COLUMNS is used. If distances 
between the rows of the matrix are desired, use optional argument IMSLS_ROWS. 
For imeth = 0 to 2, each row of x is first scaled according to the value of iscale. The 
scaling parameters are obtained from the values in the row scaled as either the standard 
deviation of the row or the row range; the standard deviation is computed from the 
unbiased estimate of the variance. If iscale is 0, no scaling is performed, and the 
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parameters in the following discussion are all 1.0. Once the scaling value (if any) has 
been computed, the distance between column i and column j is computed via the 
difference vector zk = (xk − yk)/sk, i = 1, …, ndstm, where xk denotes the k-th element 
in the i-th column, and yk denotes the corresponding element in the j-th column. For 
given zi, the metrics 0 to 2 are defined as: 

imeth Metric 

0     ( )ndstm 2
1 ii

z
=∑  Euclidean distance 

1       ndstm

1 ii
z

=∑  L1 norm 

2     max i iz  L• norm 

Distance measures corresponding to imeth = 3 to 8 do not allow for scaling. These 
measures are defined via the column vectors X = (xi), Y = (yi), and  
Z = (xi − yi) as follows: 

imeth Scaling Performed 

3 1ˆZ Z−′Σ =  Mahalanobis distance, where Σ̂  
is the usual unbiased sample estimate of 
the covariance matrix of the rows. 

4 ( ) ( )cos /T T TX Y X X Y Yθ = =  the dot 
product of X and Y divided by the length of 
X times the length of Y . 

5 θ, where θ is defined in 4. 

6 ρ = the usual (centered) estimate of the 
correlation between X and Y. 

7 The absolute value of ρ (where ρ is defined 
in 6). 

8 The number of times xi = yi, where xi and yi 
are elements of X and Y. 

For the Mahalanobis distance, any variable used in computing the distance measure 
that is (numerically) linearly dependent upon the previous variables in the ind vector is 
omitted from the distance measure. 

Example 
The following example illustrates the use of imsls_f_dissimilarities for 
computing the Euclidean distance between the rows of a matrix. 

 
#include "imsls.h" 
 
void main() 
{ 
  int ncol=2, nrow = 4; 
  float x [4][2] = {1., 1.,  
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       1., 0.,  
       1.,-1.,  
          1., 2.}; 
  float *dist; 
 
  dist = imsls_f_dissimilarities(nrow, ncol, (float*)x, 0); 
  imsls_f_write_matrix("dist", 4, 4, dist, 0); 
} 
 

Output 
 
                      dist 
            1           2           3           4 
1           0           1           2           1 
2           0           0           1           2 
3           0           0           0           3 
4           0           0           0           0 
     

cluster_hierarchical 
Performs a hierarchical cluster analysis given a distance matrix. 

Synopsis  
#include <imsls.h> 
void imsls_f_cluster_hierarchical (int npt, float *dist, …, 0) 
The type double function is imsls_d_cluster_hierarchical. 

Required Arguments 

int npt  (Input) 
Number of data points to be clustered. 

float *dist  (Input/Ouput) 
An npt by npt symmetric matrix containing the distance (or similarity) 
matrix. 
dist is a symmetric matrix. On input, only the upper triangular part needs to 
be present. The function imsls_f_cluster_hierarchical saves the 
upper triangular part of dist in the lower triangle. On return from 
imsls_f_cluster_hierarchical, the upper triangular part of dist is 
restored, and the matrix is made symmetric.  

Synopsis with Optional Arugments 
#include <imsls.h> 
void *imsls_f_cluster_hierarchical (int npt, float *dist, 

IMSLS_METHOD, int imeth, 
IMSLS_TRANSFORMATION, int itrans, 
IMSLS_CLUSTERS, float **clevel,  int **iclson,  int **icrson, 
IMSLS_CLUSTERS_USER, float clevel[],  int iclson[],  int icrson[], 
0)  
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Optional Arguments 

IMSLS_METHOD, int imeth  (Input) 
Option giving the clustering method to be used.   
Default: imeth = 0. 

imeth Method 

0 Single linkage (minimum distance) 

1 Complete linkage (maximum distance) 

2 Average distance within (average distance 
between objects within the merged cluster) 

3 Average distance between (average 
distance between objects in the two 
clusters) 

4 Ward’s method (minimize the within-
cluster sums of squares). For Ward’s 
method, the elements of dist are assumed 
to be Euclidean distances. 

IMSLS_TRANSFORMATION, int itrans  (Input) 
Option giving the method to be used for clustering.   
Default: itrans = 0. 

Imeth Method 

0 No transformation is required. The 
elements of dist are distances. 

1 Convert similarities to distances by 
multiplication by −1.0. 

2 Convert similarities (usually correlations) 
to distances by taking the reciprocal of the 
absolute value. 

IMSLS_CLUSTERS, float **clevel,  int **iclson,  int **icrson   (Output) 
Argument clevel is the address of an array of length npt − 1 containing the 
level at which the clusters are joined.  clevel[k-1] contains the distance (or 
similarity) level at which cluster npt + k was formed. If the original data in 
dist was transformed via the optional argument IMSLS_TRANSFORMATION, 
the inverse transformation is applied to the values in clevel prior to exit 
from imsls_f_cluster_hierarchical. Argument iclson is the address 
of an array of length npt − 1 containing the left sons of each merged cluster.   
Argument icrson is the address of an array of length npt − 1 containing the 
right sons of each merged cluster.   Cluster  
npt + k is formed by merging clusters iclson[k-1] and icrson[k-1]. 
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IMSLS_CLUSTERS_USER, float clevel[],  int iclson[],  int icrson[]   (Output) 
Storage for arrays clevel, iclson, and icrson is provided by the user.  See 
IMSLS_CLUSTERS.    

Description 
Function imsls_f_cluster_hierarchical conducts a hierarchical cluster analysis 
based upon the distance matrix, or by appropriate use of the IMSLS_TRANSFORMATION 
optional argument, based upon a similarity matrix. Only the upper triangular part of the 
matrix dist is required as input to imsls_f_cluster_hierarchical.  
Hierarchical clustering in imsls_f_cluster_hierarchical proceeds as follows. 
Initially, each data point is considered to be a cluster, numbered 1 to  
n = npt. 

1. If the data matrix contains similarities, they are converted to distances by the 
method specified by IMSLS_TRANSFORMATION. Set k = 1. 

2. A search is made of the distance matrix to find the two closest clusters. These 
clusters are merged to form a new cluster, numbered n + k. The cluster 
numbers of the two clusters joined at this stage are saved in icrson and 
iclson, and the distance measure between the two clusters is stored in 
clevel. 

3. Based upon the method of clustering, updating of the distance measure in the 
row and column of dist corresponding to the new cluster is performed. 

4. Set k = k + 1. If k < n, go to Step 2. 
The five methods differ primarily in how the distance matrix is updated after two 
clusters have been joined. The IMSLS_METHOD optional argument specifies how the 
distance of the cluster just merged with each of the remaining clusters will be updated. 
Function imsls_f_cluster_hierarchical allows five methods for computing the 
distances. To understand these measures, suppose in the following discussion that 
clusters “A” and “B” have just been joined to form cluster “Z”, and interest is in 
computing the distance of Z with another cluster called “C”. 

Z

dist

CBA  

Imeth Method 

0 Single linkage method. The distance from Z to C is the minimum 
of the distances (A to C, B to C). 

1 Complete linkage method. The distance from Z to C is the 
maximum of the distances (A to C, B to C). 

2 Average-distance-within-clusters method. The distance from Z to 
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Imeth Method 
C is the average distance of all objects that would be within the 
cluster formed by merging clusters Z and C. This average may be 
computed according to formulas given by Anderberg (1973, page 
139). 

3 Average-distance-between-clusters method. The distance from Z 
to C is the average distance of objects within cluster Z to objects 
within cluster C. This average may be computed according to 
methods given by Anderberg (1973, page 140). 

4 Ward’s method. Clusters are formed so as to minimize the 
increase in the within-cluster sums of squares. The distance 
between two clusters is the increase in these sums of 
squares if the two clusters were merged. A method for 
computing this distance from a squared Euclidean distance 
matrix is given by Anderberg (1973, pages 142−145). 

In general, single linkage will yield long thin clusters while complete linkage will yield 
clusters that are more spherical. Average linkage and Ward’s linkage tend to yield 
clusters that are similar to those obtained with complete linkage. 
Function imsls_f_cluster_hierarchical produces a unique representation of the 
binary cluster tree via the following three conventions; the fact that the tree is unique 
should aid in interpreting the clusters. First, when two clusters are joined and each 
cluster contains two or more data points, the cluster that was initially formed with the 
smallest level (in clevel) becomes the left son. Second, when a cluster containing 
more than one data point is joined with a cluster containing a single data point, the 
cluster with the single data point becomes the right son. Finally, when two clusters 
containing only one object are joined, the cluster with the smallest cluster number 
becomes the right son. 

Comments 

1. The clusters corresponding to the original data points are numbered from 1 to 
npt. The npt − 1 clusters formed by merging clusters are numbered npt + 1 
to npt + (npt − 1). 

2. Raw correlations, if used as similarities, should be made positive and 
transformed to a distance measure. One such transformation can be performed 
by specifying optional argument IMSLS_TRANSFORMATION, with itrans = 2 
in imsls_f_cluster_hierarchical. 

3. The user may cluster either variables or observations in 
imsls_f_cluster_hierarchical since a dissimilarity matrix, not the 
original data, is used. Function imsls_f_dissimilarities  may be used 
to compute the matrix dist for either the variables or observations. 

Example 
In the following example, the average distance within clusters method is used to 
perform a hierarchical cluster analysis of the Fisher iris data. Function 
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imsls_f_data_sets (see Chapter 15,   “Utilities”) is first used to obtain the Fisher 
iris data. The example is typical in that after the program obtains the data, function 
imsls_f_dissimilarities computes the distance matrix (dist) prior to calling 
imsls_f_cluster_hierarchical. 

 
#include "imsls.h" 
 
void main() 
{ 
  int  iscale=1, ncol=5, nrow=150, nvar=4, npt = 150;   
  int i, iclson[149], icrson[149], ind[4] = {1, 2, 3, 4}; 
  float clevel[149], *dist, *x; 
   
  x = imsls_f_data_sets(3, 0); 
   
  dist = imsls_f_dissimilarities(nrow, ncol, x,  
     IMSLS_INDEX, nvar, ind, 
     IMSLS_SCALE, iscale, 
     0); 
  imsls_f_cluster_hierarchical(npt, dist,  
  IMSLS_CLUSTERS_USER, clevel, iclson, icrson,  
  IMSLS_METHOD, 2, 
  0); 
   
  for (i=0;i<149;i+=15) printf("%6.2f\t", clevel[i]); 
  printf("\n"); 
  for (i=0;i<149;i+=15) printf("%6d\t", iclson[i]); 
  printf("\n"); 
  for (i=0;i<149;i+=15) printf("%6d\t", icrson[i]); 
  printf("\n");  
} 
 

Output 
  0.00    0.17    0.23    0.27    0.31    0.37    0.41    0.48    0.60    0.78 
   143     153      17     140      53     198     186     218     261     249 
   102      29       6     113      51      91     212     243     266     262  
     

cluster_number 
Computes cluster membership for a hierarchical cluster tree. 

Synopsis  
#include <imsls.h> 

int *imsls_cluster_number (int npt, int *iclson, int *icrson, int k, …, 0) 

Required Arguments 

int npt  (Input) 
Number of data points to be clustered. 
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int *iclson  (Input) 
Vector of length npt − 1 containing the left son cluster numbers.   
Cluster npt + i is formed by merging clusters iclson[i-1] and 
icrson[i-1]. 

int *icrson  (Input) 
Vector of length npt − 1 containing the left son cluster numbers.   
Cluster npt + i is formed by merging clusters iclson[i-1] and 
icrson[i-1]. 

int k  (Input) 
Desired number of clusters.  

Return Value 
Vector of length npt containing the cluster membership of each observation.   

Synopsis with Optional Arugments 
#include <imsls.h> 
int *imsls_cluster_number (int npt, int *iclson, int *icrson, int k, 

IMSLS_OBS_PER_CLUSTERS, int **nclus, 
IMSLS_OBS_PER_CLUSTERS_USER, int nclus[], 
IMSLS_RETURN_USER, int iclus[], 
0) 

Optional Arguments 

IMSLS_OBS_PER_CLUSTERS, int **nclus   (Output) 
Address of a pointer to an internally allocated array of length k containing the 
number of observations in each cluster. 

IMSLS_OBS_PER_CLUSTERS_USER, int nclus[]   (Output)  
Storage for array nclus is provided by the user.  See 
IMSLS_OBS_PER_CLUSTERS.  

IMSLS_RETURN_USER, float iclus[]  (Output) 
User allocated array of length npt containing the cluster membership of each 
observation.  

Description 
Given a fixed number of clusters (K) and the cluster tree (vectors icrson and iclson) 
produced by the hierarchical clustering algorithm (see function 
imsls_f_cluster_hierarchical, function imsls_cluster_number determines 
the cluster membership of each observation. The function imsls_cluster_number 
first determines the root nodes for the K distinct subtrees forming the K clusters and 
then traverses each subtree to determine the cluster membership of each observation. 
The function imsls_cluster_number also returns the number of observations found 
in each cluster. 
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Example 1 
In the following example, cluster membership for K = 2 clusters is found for the 
displayed cluster tree. The output vector iclus contains the cluster numbers for each 
observation. 

9
8

6
7

5 3 1 4 2  

 
#include "imsls.h" 
 
void main() 
{ 
  int  k = 2, npt = 5, *iclus; 
  int iclson[] = {5, 6, 4, 7}; 
  int icrson[] = {3, 1, 2, 8}; 
   
  iclus = imsls_cluster_number(npt, iclson, icrson, k, 0); 
  imsls_i_write_matrix("iclus", 1, 5, iclus, 0);  
} 

Output 
       iclus 
 1   2   3   4   5 
 1   2   1   2   1     

Example 2 
This example illustrates the typical usage of imsls_cluster_number. The Fisher iris 
data (see function imsls_f_data_sets, see Chapter 15,   “Utilities”) is clustered. 
First the distance between the irises are computed using function 
imsls_f_dissimilarities. The resulting distance matrix is then clustered using 
function imsls_f_cluster_hierarchical. The cluster membership for 5 clusters 
is then obtained via function imsls_cluster_number using the output from 
imsls_f_cluster_hierarchical. The need for 5 clusters can be obtained either by 
theoretical means or by examining a cluster tree. The cluster membership for each of 
the iris observations is printed. 

 
 

#include "imsls.h" 
#define MAX(A,B) ((A)>(B)?(A): (B)) 
 
 
void main() 
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{ 
  int ncol = 5, nrow = 150, nvar = 4, npt = 150, k = 5; 
  int i, j, *iclson, *icrson, *iclus, *nclus; 
  int ind[4] = {1, 2, 3, 4}; 
  float *clevel, dist[150][150], *x, f_rand; 
  int *p_iclus = NULL, *p_nclus = NULL; 
   
  x = imsls_f_data_sets (3, 0); 
  imsls_f_dissimilarities(nrow, ncol, x,  
     IMSLS_INDEX, nvar, ind, 
     IMSLS_RETURN_USER, dist, 
     0); 
   
  imsls_random_seed_set (4); 
  for (i = 0; i < npt; i++) 
    { 
      for (j = i + 1; j < npt; j++) 
 { 
   imsls_f_random_uniform (1, IMSLS_RETURN_USER, &f_rand, 0); 
   dist[i][j] = MAX (0.0, dist[i][j] + .001 * f_rand); 
   dist[j][i] = dist[i][j]; 
 } 
      dist[i][i] = 0.; 
    } 
  imsls_f_cluster_hierarchical (npt, (float*)dist,  
   IMSLS_CLUSTERS, &clevel, &iclson, &icrson,  
   0);   
   
  iclus = imsls_cluster_number (npt, iclson, icrson, k,  
    IMSLS_OBS_PER_CLUSTER, &nclus,  
    0); 
   
  imsls_i_write_matrix ("iclus", 25, 5, iclus, 0); 
  imsls_i_write_matrix ("nclus", 1, 5, nclus, 0); } 

Output 
         iclus 
     1   2   3   4   5 
 1   5   5   5   5   5 
 2   5   5   5   5   5 
 3   5   5   5   5   5 
 4   5   5   5   5   5 
 5   5   5   5   5   5 
 6   5   5   5   5   5 
 7   5   5   5   5   5 
 8   5   5   5   5   5 
 9   5   5   5   5   5 
10   5   5   5   5   5 
11   2   2   2   2   2 
12   2   2   1   2   2 
13   1   2   2   2   2 
14   2   2   2   2   2 
15   2   2   2   2   2 
16   2   2   2   2   2 
17   2   2   2   2   2 
18   2   2   2   2   2 
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19   2   2   2   1   2 
20   2   2   2   1   2 
21   2   2   2   2   2 
22   2   3   2   2   2 
23   2   2   2   2   2 
24   2   2   4   2   2 
25   2   2   2   2   2 
  
         nclus 
  1    2    3    4    5 
  4   93    1    2   50 

cluster_k_means 
Performs a K-means (centroid) cluster analysis. 

Synopsis 
#include <imsls.h> 
int *imsls_f_cluster_k_means (int n_observations, int n_variables, 

float x[], int n_clusters, float cluster_seeds, ..., 0) 
The type double function is imsls_d_cluster_k_means. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

int n_variables   (Input) 
Number of variables to be used in computing the metric. 

float x[]   (Input) 
Array of length n_observations × n_variables containing the 
observations to be clustered. 

int n_clusters   (Input) 
Number of clusters. 

float cluster_seeds[]   (Input) 
Array of length n_clusters × n_variables containing the cluster seeds, 
i.e., estimates for the cluster centers. 

Return Value 
The cluster membership for each observation is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_cluster_k_means (int n_observations, int n_variables, 

float x[], int n_clusters, float cluster_seeds, 
IMSLS_WEIGHTS, float weights[], 
IMSLS_FREQUENCIES, float frequencies[], 
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IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_CLUSTER_MEANS, float **cluster_means, 
IMSLS_CLUSTER_MEANS_USER, float cluster_means[], 
IMSLS_CLUSTER_SSQ, float **cluster_ssq, 
IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[], 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim, 
IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim, 
IMSLS_CLUSTER_COUNTS, int **cluster_counts, 
IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[], 
IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[], 
IMSLS_RETURN_USER, int cluster_group[], 
0) 

Optional Arguments 

IMSLS_WEIGHTS, float weights[]   (Input) 
Array of length n_observations containing the weight of each observation 
of matrix x. 
Default: weights [ ] = 1 

IMSLS_FREQUENCIES, float frequencies[]   (Input) 
Array of length n_observations containing the frequency of each 
observation of matrix x. 
Default: frequencies [ ] = 1 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations. 
Default: max_iterations = 30 

IMSLS_CLUSTER_MEANS, float **cluster_means   (Output) 
The address of a pointer to an internally allocated array of length 
n_clusters × n_variables containing the cluster means. 

IMSLS_CLUSTER_MEANS_USER, float cluster_means[]   (Output) 
Storage for array cluster_means is provided by the user. See 
IMSLS_CLUSTER_MEANS. 

IMSLS_CLUSTER_SSQ, float **cluster_ssq   (Output) 
The address of a pointer to internally allocated array of length n_clusters 
containing the within sum-of-squares for each cluster. 

IMSLS_CLUSTER_SSQ_USER, float cluster_ssq[]   (Output) 
Storage for array cluster_ssq is provided by the user. See 
IMSLS_CLUSTER_SSQ. 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of x. 
Default: x_col_dim = n_variables 
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IMSLS_CLUSTER_MEANS_COL_DIM, int cluster_means_col_dim   (Input) 
Column dimension for the vector cluster_means. 
Default: cluster_means_col_dim = n_variables 

IMSLS_CLUSTER_SEEDS_COL_DIM, int cluster_seeds_col_dim   (Input) 
Column dimension for the vector cluster_seeds. 
Default: cluster_seeds_col_dim = n_variables 

IMSLS_CLUSTER_COUNTS, int **cluster_counts   (Output) 
The address of a pointer to an internally allocated array of length 
n_clusters containing the number of observations in each cluster. 

IMSLS_CLUSTER_COUNTS_USER, int cluster_counts[]   (Output) 
Storage for array cluster_counts is provided by the user. See 
IMSLS_CLUSTER_COUNTS. 

IMSLS_CLUSTER_VARIABLE_COLUMNS, int cluster_variables[]   (Input) 
Vector of length n_variables containing the columns of x to be used in 
computing the metric. Columns are numbered 0, 1, 2, ..., n_variables 
Default: cluster_variables [ ] = 0, 1, 2, …, n_variables 

IMSLS_RETURN_USER, int cluster_group[]   (Output) 
User-allocated array of length n_observations containing the cluster 
membership for each observation. 

Description 
Function imsls_f_cluster_k_means is an implementation of Algorithm AS 136 by 
Hartigan and Wong (1979). It computes K-means (centroid) Euclidean metric clusters 
for an input matrix starting with initial estimates of the K-cluster means. The function 
allows for missing values coded as NaN (Not a Number) and for weights and 
frequencies. 
Let p = n_variables be the number of variables to be used in computing the 
Euclidean distance between observations. The idea in K-means cluster analysis is to 
find a clustering (or grouping) of the observations so as to minimize the total within-
cluster sums-of-squares. In this case, the total sums-of-squares within each cluster is 
computed as the sum of the centered sum-of-squares over all nonmissing values of 
each variable. That is, 
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where νim denotes the row index of the m-th observation in the i-th cluster in the matrix 
X; ni is the number of rows of X assigned to group i; f denotes the frequency of the 
observation; w denotes its weight; δ is 0 if the j-th variable on observation νim is 
missing, otherwise δ is 1; and 
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is the average of the nonmissing observations for variable j in group i. This method 
sequentially processes each observation and reassigns it to another cluster if doing so 
results in a decrease of the total within-cluster sums-of-squares. See 
Hartigan and Wong (1979) or Hartigan (1975) for details. 

Example 
This example performs K-means cluster analysis on Fisher’s iris data, which is 
obtained by function imsls_f_data_sets (see Chapter 15,  “Utilities”). The initial 
cluster seed for each iris type is an observation known to be in the iris type. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
#define N_OBSERVATIONS 150 
#define N_VARIABLES    4 
#define N_CLUSTERS     3 
    float        x[N_OBSERVATIONS][5]; 
    float        cluster_seeds[N_CLUSTERS][N_VARIABLES]; 
    float        cluster_means[N_CLUSTERS][N_VARIABLES]; 
    float        cluster_ssq[N_CLUSTERS]; 
    int          cluster_variables[N_VARIABLES] = {1, 2, 3, 4}; 
    int          cluster_counts[N_CLUSTERS]; 
    int          cluster_group[N_OBSERVATIONS]; 
    int          i; 
 
                 /* Retrieve the data set */ 
    imsls_f_data_sets(3, IMSLS_RETURN_USER, x, 0); 
                 /* Assign initial cluster seeds */ 
    for (i=0; i<N_VARIABLES; i++) { 
        cluster_seeds[0][i] = x[0][i+1]; 
        cluster_seeds[1][i] = x[50][i+1]; 
        cluster_seeds[2][i] = x[100][i+1]; 
    } 
 
                 /* Perform the analysis */ 
    imsls_f_cluster_k_means(N_OBSERVATIONS, N_VARIABLES, (float*)x, 
        N_CLUSTERS, (float*)cluster_seeds, 
        IMSLS_X_COL_DIM,          5, 
        IMSLS_CLUSTER_VARIABLE_COLUMNS,  cluster_variables, 
        IMSLS_CLUSTER_COUNTS_USER,     cluster_counts, 
        IMSLS_CLUSTER_MEANS_USER, cluster_means, 
        IMSLS_CLUSTER_SSQ_USER,   cluster_ssq, 
        IMSLS_RETURN_USER,        cluster_group,  
        0); 
                /* Print results */ 
    imsls_i_write_matrix("Cluster Membership", 1, N_OBSERVATIONS, 
        cluster_group, 0); 
    imsls_f_write_matrix("Cluster Means", N_CLUSTERS, N_VARIABLES, 
        (float*)cluster_means, 0); 
    imsls_f_write_matrix("Cluster Sum of Squares", 1, N_CLUSTERS, 
        cluster_ssq, 0); 
    imsls_i_write_matrix("# Observations in Each Cluster", 1,  
        N_CLUSTERS, cluster_counts, 0); 
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} 
  
                              Cluster Membership 
 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20 
 1  1  1  1  1  1  1  1  1   1   1   1   1   1   1   1   1   1   1   1 
  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
 1  1  1  1  1  1  1  1  1  1  2  2  3  2  2  2  2  2  2  2 
  
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  3  2  2 
  
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 
 2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 
  
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 
  2   3   2   3   3   3   3   2   3   3   3   3   3   3   2   2 
  
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 
  3   3   3   3   2   3   2   3   2   3   3   2   2   3   3   3 
  
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 
  3   3   2   3   3   3   3   2   3   3   3   2   3   3   3   2 
  
148 149 150 
  3   3   2 
  
                  Cluster Means 
            1           2           3           4 
1       5.006       3.428       1.462       0.246 
2       5.902       2.748       4.394       1.434 
3       6.850       3.074       5.742       2.071 
  
      Cluster Sum of Squares 
         1           2           3 
     15.15       39.82       23.88 
  
# Observations in Each Cluster 
           1    2    3 
          50   62   38 

Warning Errors 

IMSLS_NO_CONVERGENCE Convergence did not occur. 

principal_components 
Computes principal components. 

Synopsis 
#include <imsls.h> 
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float *imsls_f_principal_components (int n_variables, 
float covariances[], ..., 0) 

The type double function is imsls_d_principal_components. 

Required Arguments 

int n_variables   (Input) 
Order of the covariance matrix. 

float covariances[]   (Input) 
Array of length n_variables × n_variables containing the covariance or 
correlation matrix. 

Return Value 
An array of length n_variables containing the eigenvalues of the matrix 
covariances ordered from largest to smallest. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_principal_components (int n_variables, 

float covariances[], 
IMSLS_COVARIANCE_MATRIX, or 
IMSLS_CORRELATION_MATRIX, 
IMSLS_CUM_PERCENT, float **cum_percent, 
IMSLS_CUM_PERCENT_USER, float cum_percent[], 
IMSLS_EIGENVECTORS, float **eigenvectors, 
IMSLS_EIGENVECTORS_USER, float eigenvectors[], 
IMSLS_CORRELATIONS, float **correlations, 
IMSLS_CORRELATIONS_USER, float correlations[], 
IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev, 
IMSLS_STD_DEV_USER, int n_degrees_freedom,  float std_dev[], 
IMSLS_COV_COL_DIM, int cov_col_dim,  
IMSLS_RETURN_USER, float eigenvalues[], 
0) 

Optional Arguments 

IMSLS_COVARIANCE_MATRIX 
Treat the input vector covariances as a covariance matrix. This option is 
the default. 
or 

IMSLS_CORRELATION_MATRIX 
Treat the input vector covariances as a correlation matrix. 

IMSLS_CUM_PERCENT, float **cum_percent   (Output) 
The address of a pointer to an internally allocated array of length 
n_variables containing the cumulative percent of the total variances 
explained by each principal component. 
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IMSLS_CUM_PERCENT_USER, float cum_percent[]   (Output) 
Storage for array cum_percent is provided by the user. See 
IMSLS_CUM_PERCENT. 

IMSLS_EIGENVECTORS, float **eigenvectors   (Output) 
The address of a pointer to an internally allocated array of length 
n_variables × n_variables containing the eigenvectors of 
covariances, stored columnwise. Each vector is normalized to have 
Euclidean length equal to the value one. Also, the sign of each vector is set so 
that the largest component in magnitude (the first of the largest if there are 
ties) is made positive. 

IMSLS_EIGENVECTORS_USER, float eigenvectors[]   (Output) 
Storage for array eigenvectors is provided by the user. See 
IMSLS_EIGENVECTORS. 

IMSLS_CORRELATIONS, float **correlations   (Output) 
The address of a pointer to an internally allocated array of length 
n_variables * n_variables containing the correlations of the principal 
components (the columns) with the observed/standardized variables (the 
rows). If IMSLS_COVARIANCE_MATRIX is specified, then the correlations are 
with the observed variables. Otherwise, the correlations are with the 
standardized (to a variance of 1.0) variables. In the principal component 
model for factor analysis, matrix correlations is the matrix of unrotated 
factor loadings. 

IMSLS_CORRELATIONS_USER, float correlations[]   (Output) 
Storage for array correlations is provided by the user. See 
IMSLS_CORRELATIONS. 

IMSLS_STD_DEV, int n_degrees_freedom, float **std_dev   (Input/Output) 
Argument n_degrees_freedom contains the number of degrees of freedom 
in covariances. Argument std_dev is the address of a pointer to an 
internally allocated array of length n_variables containing the estimated 
asymptotic standard errors of the eigenvalues. 

IMSLS_STD_DEV_USER, int n_degrees_freedom, float std_dev[]   
(Input/Output) 
Storage for array std_dev is provided by the user. See IMSLS_STD_DEV. 

IMSLS_COV_COL_DIM int cov_col_dim   (Input) 
Column dimension of covariances. 
Default: cov_col_dim = n_variables 

IMSLS_RETURN_USER, float eigenvalues[]   (Output) 
User-supplied array of length n_variables containing the eigenvalues of 
covariances ordered from largest to smallest. 

Description 
Function imsls_f_principal_components finds the principal components of a set 
of variables from a sample covariance or correlation matrix. The characteristic roots, 
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characteristic vectors, standard errors for the characteristic roots, and the correlations 
of the principal component scores with the original variables are computed. Principal 
components obtained from correlation matrices are the same as principal components 
obtained from standardized (to unit variance) variables. 

The principal component scores are the elements of the vector y = ΓTx, where  
Γ is the matrix whose columns are the characteristic vectors (eigenvectors) of the 
sample covariance (or correlation) matrix and x is the vector of observed (or 
standardized) random variables. The variances of the principal component scores are 
the characteristic roots (eigenvalues) of the covariance (correlation) matrix. 
Asymptotic variances for the characteristic roots were first obtained by Girschick 
(1939) and are given more recently by Kendall et al. (1983, p. 331). These variances 
are computed either for covariance matrices or for correlation matrices. 
The correlations of the principal components with the observed (or standardized) 
variables are given in the matrix correlations. When the principal components are 
obtained from a correlation matrix, correlations is the same as the matrix of 
unrotated factor loadings obtained for the principal components model for factor 
analysis. 

Examples  

Example 1 
In this example, eigenvalues of the covariance matrix are computed. 

#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 
 
main() 
{ 
#define N_VARIABLES 9 
 
    float  *values; 
    static float covariances[N_VARIABLES][N_VARIABLES] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, 
        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 0.505, 
        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 0.409, 
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 0.472, 
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 
 
                     /* Perform analysis */ 
    values = imsls_f_principal_components(N_VARIABLES, covariances, 0); 
             
                     /* Print results. */ 
    imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0); 
 
                     /* Free allocated memory. */ 
    free(values); 
} 
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Output 
                              Eigenvalues 
         1           2           3           4           5           6 
     4.677       1.264       0.844       0.555       0.447       0.429 
  
         7           8           9 
     0.310       0.277       0.196 

Example 2 
In this example, principal components are computed for a nine-variable correlation 
matrix. 

#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 
 
main() 
{ 
#define N_VARIABLES 9 
 
    float  *values, *eigenvectors, *std_dev, *cum_percent, *a; 
    static float covariances[N_VARIABLES][N_VARIABLES] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, 
        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 0.505, 
        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 0.409, 
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 0.472, 
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 
 
                        /* Perform analysis */ 
    values = imsls_f_principal_components(N_VARIABLES, covariances, 
        IMSLS_CORRELATION_MATRIX,  
        IMSLS_EIGENVECTORS,                    &eigenvectors, 
        IMSLS_STD_DEV,                         100, &std_dev,  
        IMSLS_CUM_PERCENT,                     &cum_percent,  
        IMSLS_CORRELATIONS, &a,  
        0); 
 
                       /* Print results */ 
    imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, values, 0); 
    imsls_f_write_matrix("Eigenvectors", N_VARIABLES, N_VARIABLES,  
        eigenvectors, 0); 
    imsls_f_write_matrix("STD", 1, N_VARIABLES, std_dev, 0); 
    imsls_f_write_matrix("PCT", 1, N_VARIABLES, cum_percent, 0); 
    imsls_f_write_matrix("A", N_VARIABLES, N_VARIABLES, a, 0); 
 
                      /* Free allocated memory */ 
    free(values); 
    free(eigenvectors); 
    free (cum_percent); 
    free (std_dev); 
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    free(a); 
} 

Output 
                              Eigenvalues 
         1           2           3           4           5           6 
     4.677       1.264       0.844       0.555       0.447       0.429 
  
         7           8           9 
     0.310       0.277       0.196 
  
 

                              Eigenvectors 
            1           2           3           4           5           6 
1      0.3462     -0.2354      0.1386     -0.3317     -0.1088      0.7974 
2      0.3526     -0.1108     -0.2795     -0.2161      0.7664     -0.2002 
3      0.2754     -0.2697     -0.5585      0.6939     -0.1531      0.1511 
4      0.3664      0.4031      0.0406      0.1196      0.0017      0.1152 
5      0.3144      0.5022     -0.0733     -0.0207     -0.2804     -0.1796 
6      0.3455      0.4553      0.1825      0.1114      0.1202      0.0697 
7      0.3487     -0.2714     -0.0725     -0.3545     -0.5242     -0.4355 
8      0.2407     -0.3159      0.7383      0.4329      0.0861     -0.1969 
9      0.3847     -0.2533     -0.0078     -0.1468      0.0459     -0.1498 
  
            7           8           9 
1      0.1735     -0.1240     -0.0488 
2      0.1386     -0.3032     -0.0079 
3      0.0099     -0.0406     -0.0997 
4     -0.4022     -0.1178      0.7060 
5      0.7295      0.0075      0.0046 
6     -0.3742      0.0925     -0.6780 
7     -0.2854     -0.3408     -0.1089 
8      0.1862     -0.1623      0.0505 
9     -0.0251      0.8521      0.1225 
  
                                  STD 
         1           2           3           4           5           6 
    0.6498      0.1771      0.0986      0.0879      0.0882      0.0890 
  
         7           8           9 
    0.0944      0.0994      0.1113 
  
                                  PCT 
         1           2           3           4           5           6 
     0.520       0.660       0.754       0.816       0.865       0.913 
  
         7           8           9 
     0.947       0.978       1.000 
  
                                    A 
            1           2           3           4           5           6 
1      0.7487     -0.2646      0.1274     -0.2471     -0.0728      0.5224 
2      0.7625     -0.1245     -0.2568     -0.1610      0.5124     -0.1312 
3      0.5956     -0.3032     -0.5133      0.5170     -0.1024      0.0990 
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4      0.7923      0.4532      0.0373      0.0891      0.0012      0.0755 
5      0.6799      0.5646     -0.0674     -0.0154     -0.1875     -0.1177 
6      0.7472      0.5119      0.1677      0.0830      0.0804      0.0456 
7      0.7542     -0.3051     -0.0666     -0.2641     -0.3505     -0.2853 
8      0.5206     -0.3552      0.6784      0.3225      0.0576     -0.1290 
9      0.8319     -0.2848     -0.0071     -0.1094      0.0307     -0.0981 
  
            7           8           9 
1      0.0966     -0.0652     -0.0216 
2      0.0772     -0.1596     -0.0035 
3      0.0055     -0.0214     -0.0442 
4     -0.2240     -0.0620      0.3127 
5      0.4063      0.0039      0.0021 
6     -0.2084      0.0487     -0.3003 
7     -0.1589     -0.1794     -0.0482 
8      0.1037     -0.0854      0.0224 
9     -0.0140      0.4485      0.0543 

Warning Errors 

IMSLS_100_DF Because the number of degrees of freedom in 
“covariances” and “n_degrees_freedom” is less than 
or equal to 0, 100 degrees of freedom will be used. 

IMSLS_COV_NOT_NONNEG_DEF “eigenvalues[#]” = #. One or more eigenvalues much 
less than zero are computed. The matrix 
“covariances” is not nonnegative definite. In order to 
continue computations of “eigenvalues” and 
“correlations,” these eigenvalues are treated as 0. 

IMSLS_FAILED_TO_CONVERGE The iteration for the eigenvalue failed to converge in 
100 iterations before deflating. 

 

factor_analysis 
Extracts initial factor-loading estimates in factor analysis with rotation options. 

Synopsis 
#include <imsls.h> 
float *imsls_f_factor_analysis (int n_variables, float covariances[], 

int n_factors, ..., 0) 
The type double function is imsls_d_factor_analysis. 

Required Arguments 

int n_variables   (Input) 
Number of variables. 
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float covariances[]   (Input) 
Array of length n_variables*n_variables containing the variance-
covariance or correlation matrix. 

int n_factors   (Input) 
Number of factors in the model. 

Return Value 
An array of length n_variables*n_factors containing the matrix of factor 
loadings. 

Synopsis with Optional Arguments 
#include <imsls.h> 

float *imsls_f_factor_analysis (int n_variables, 
float covariances[], int n_factors, 
IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances, or 
IMSLS_PRINCIPAL_COMPONENT, or 
IMSLS_PRINCIPAL_FACTOR, or 
IMSLS_UNWEIGHTED_LEAST_SQUARES,or 
IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances, or 
IMSLS_IMAGE, or 
IMSLS_ALPHA, int df_covariances, 
IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[], 
IMSLS_UNIQUE_VARIANCES_OUTPUT,  
 float unique_variances[], 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_MAX_STEPS_LINE_SEARCH,  int max_steps_line_search, 
IMSLS_CONVERGENCE_EPS, float convergence_eps, 
IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon, 
IMSLS_EIGENVALUES, float **eigenvalues, 
IMSLS_EIGENVALUES_USER, float eigenvalues[], 
IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, 
 float *p_value, 
IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient, 
IMSLS_N_ITERATIONS, int *n_iterations, 
IMSLS_FUNCTION_MIN, float *function_min, 
IMSLS_LAST_STEP, float **last_step, 
IMSLS_LAST_STEP_USER, float last_step[], 
IMSLS_ORTHOMAX_ROTATION,  float w, int norm,  float **b,  
 float **t, 
IMSLS_ORTHOMAX_ROTATION_USER,  float w, int norm,  float b[],  
  float t[], 
IMSLS_ORTHOGONAL_PROCUSTES_ROTATION,  float target[],  
 float **b,  float **t, 
IMSLS_ORTHOGONAL_PROCUSTES_ROTATION_USER,   
 float target[],  float b[],  float t[], 
IMSLS_DIRECT_OBLIMIN_ROTATION,  float w, int norm,  float **b, 
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  float **t, float **factor_correlations, 
IMSLS_DIRECT_OBLIMIN_ROTATION_USER,  float w, int norm,   
 float b[],  float t[],  float factor_correlations[], 
IMSLS_OBLIQUE_PROMAX_ROTATION,  float w,  float power[],  
 int norm,  float  **target,  float **b,  float **t, 
 float **factor_correlations, 
IMSLS_OBLIQUE_PROMAX_ROTATION_USER,  float w, float power[], nt 
norm,  float  target[], float b[],  float t[],  
 loat factor_correlations[], 
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION,  float w,   
 float pivot[], int norm,  float  **target,  float **b,  
 float **t, float **factor_correlations, 
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER,  float w,  
 loat pivot[], int norm,  float  target[], float b[],  
 float t[],  float factor_correlations[], 
IMSLS_OBLIQUE_PROCRUSTES_ROTATION,   float  target[],    
 float **b,  float **t, float **factor_correlations, 
IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER,   float  target[], 
 float b[],  float t[],  float factor_correlations[], 
IMSLS_FACTOR_STRUCTURE, float  **s, float  **fvar, 
IMSLS_FACTOR_STRUCTURE_USER, float s[], float  fvar[], 
IMSLS_COV_COL_DIM, int cov_col_dim, 
IMSLS_RETURN_USER, float factor_loadings[], 
0)  

Optional Arguments 

IMSLS_MAXIMUM_LIKELIHOOD, int df_covariances   (Input) 
Maximum likelihood (common factor model) method used to obtain the 
estimates. Argument df_covariances is the number of degrees of freedom 
in covariances. 
or 

IMSLS_PRINCIPAL_COMPONENT 
Principal component (principal component model) method used to obtain the 
estimates. 
or 

IMSLS_PRINCIPAL_FACTOR 
Principal factor (common factor model) method used to obtain the estimates. 
or 

IMSLS_UNWEIGHTED_LEAST_SQUARES 
Unweighted least-squares (common factor model) method used to obtain the 
estimates. This option is the default. 
or 

IMSLS_GENERALIZED_LEAST_SQUARES, int df_covariances   (Input) 
Generalized least-squares (common factor model) method used to obtain the 
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estimates. 
or 

IMSLS_IMAGE 
Image-factor analysis (common factor model) method used to obtain the 
estimates. 
or 

IMSLS_ALPHA, int df_covariances   (Input) 
Alpha-factor analysis (common factor model) method used to obtain the 
estimates. Argument df_covariances is the number of degrees of freedom 
in covariances. 

IMSLS_UNIQUE_VARIANCES_INPUT, float unique_variances[]   (Input) 
Array of length n_variables containing the initial estimates of the unique 
variances. 
Default: Initial estimates are taken as the constant 
1 − n_factors/2 * n_variables divided by the diagonal elements of the 
inverse of covariances. 

IMSLS_UNIQUE_VARIANCES_OUTPUT, float unique_variances[]   (Output) 
User-allocated array of length n_variables containing the estimated unique 
variances. 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations in the iterative procedure. 
Default: max_iterations = 60 

IMSLS_MAX_STEPS_LINE_SEARCH, int max_steps_line_search   (Input) 
Maximum number of step halvings allowed during any one iteration. 
Default: max_steps_line_search = 10 

IMSLS_CONVERGENCE_EPS, float convergence_eps   (Input) 
Convergence criterion used to terminate the iterations. For the unweighted 
least squares, generalized least squares or maximum likelihood methods, 
convergence is assumed when the relative change in the criterion is less than 
convergence_eps. For alpha-factor analysis, convergence is assumed when 
the maximum change (relative to the variance) of a uniqueness is less than 
convergence_eps. 
Default: convergence_eps = 0.0001 

IMSLS_SWITCH_EXACT_HESSIAN, float switch_epsilon   (Input) 
Convergence criterion used to switch to exact second derivatives. When the 
largest relative change in the unique standard deviation vector is less than 
switch_epsilon, exact second derivative vectors are used. Argument 
switch_epsilon is not used with the principal component, principal factor, 
image-factor analysis, or alpha-factor analysis methods. 
Default: switch_epsilon = 0.1 

IMSLS_EIGENVALUES, float **eigenvalues   (Output) 
The address of a pointer to an internally allocated array of length 
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n_variables containing the eigenvalues of the matrix from which the 
factors were extracted. 

IMSLS_EIGENVALUES_USER, float eigenvalues[]   (Output) 
Storage for array eigenvalues is provided by the user. See 
IMSLS_EIGENVALUES. 

IMSLS_CHI_SQUARED_TEST, int *df, float *chi_squared, float *p_value   
(Output) 
Number of degrees of freedom in chi-squared is df; chi_squared is the chi-
squared test statistic for testing that n_factors common factors are adequate 
for the data; p_value is the probability of a greater chi-squared statistic. 

IMSLS_TUCKER_RELIABILITY_COEFFICIENT, float *coefficient   (Output) 
Tucker reliability coefficient. 

IMSLS_N_ITERATIONS, int *n_iterations   (Output) 
Number of iterations. 

IMSLS_FUNCTION_MIN, float *function_min   (Output) 
Value of the function minimum. 

IMSLS_LAST_STEP, float **last_step   (Output) 
Address of a pointer to an internally allocated array of length n_variables 
containing the updates of the unique variance estimates when convergence 
was reached (or the iterations terminated). 

IMSLS_LAST_STEP_USER, float last_step[]   (Output) 
Storage for array last_step is provided by the user. See 
IMSLS_LAST_STEP. 

IMSLS_ORTHOMAX_ROTATION,  float w, int norm, float **b, float **t (Input/Output) 
Nonnegative constant w defines the rotation.  If norm =1, row normalization 
is performed.  Otherwise, row normalization is not performed.    b contains the 
address of a pointer to the internally allocated array of length 
n_variables*n_factors containing the rotated factor loading matrix.  t 
contains the address of a pointer to the internally allocated array of length 
n_factors*n_factors containing the rotation transformation matrix.   
w = 0.0 results in quartimax rotations, w = 1.0 results in varimax rotations, 
and w = n_factors/2.0 results in equamax rotations.  Other nonnegative 
values of w may also be used, but the best values for w are in the range  
(0.0, 5 * n_factors). 

IMSLS_ORTHOMAX_ROTATION_USER,  float w, int norm, float b[],  float t[] 
(Input/Output) 
Storage for b and t are provided by the user.  See 
IMSLS_ORTHOMAX_ROTATION. 

IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION,  float target[],  float **b,  float **t 
(Input/Output) 
If specified,  the n_variables by n_factors target matrix target will be 
used to compute an orthogonal Procrustes rotation of the factor-loading 
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matrix.   b contains the address of a pointer to the internally allocated array of 
length n_variables*n_factors containing the rotated factor loading 
matrix.  t contains the address of a pointer to the internally allocated array of 
length n_factors*n_factors containing the rotation transformation 
matrix.   

IMSLS_ORTHOGONAL_PROCRUTES_ROTATION_USER,  float target[],   
float b[],  float t[] (Input/Output) 
Storage for b and t are provided by the user.  See 
IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION. 

IMSLS_DIRECT_OBLIMIN_ROTATION,  float w , int norm,  float **b,  
float **t, float **factor_correlations (Input/Output) 
Computes a direct oblimin rotation. Nonpositive constant w defines the 
rotation.  If norm =1, row normalization is performed.  Otherwise, row 
normalization is not performed.  b contains the address of a pointer to the 
internally allocated array of length n_variables*n_factors containing the 
rotated factor loading matrix.  t contains the address of a pointer to the 
internally allocated array of length n_factors*n_factors containing the 
rotation transformation matrix.  factor_correlations contains the address 
of a pointer to the internally allocated array of length 
n_factors*n_factors containing the factor correlations.  The parameter w 
determines the type of direct oblimin rotation to be performed. In general w 
must be negative.   w = 0.0 results in direct quartimin rotations.   As w 
approaches negative infinity, the orthogonality among factors will increase. 

IMSLS_DIRECT_OBLIMIN_ROTATION_USER,  float w, int norm,  float b[],   
float t[], float factor_correlations[] (Input/Output) 
Storage for b, t and factor_correlations are provided by the user.  See 
IMSLS_DIRECT_OBLIMIN_ROTATION. 

IMSLS_OBLIQUE_PROMAX_ROTATION,  float w,  float power[], int norm,    
float **target,  float **b,  float **t, float **factor_correlations,  
(Input/Output) 
Computes an oblique promax rotation of the factor loading matrix using a 
power vector. Nonnegative constant w defines the rotation.  power, a vector of 
length n_factors containing the power vector.  If norm =1, row (Kaiser) 
normalization is performed.  Otherwise, row normalization is not performed.  
b contains the address of a pointer to the internally allocated array of length 
n_variables*n_factors containing the rotated factor loading matrix.  t 
contains the address of a pointer to the internally allocated array of length 
n_factors*n_factors containing the rotation transformation matrix.  
factor_correlations contains the address of a pointer to the internally 
allocated array of length n_factors*n_factors containing the factor 
correlations.  target contains the address of a pointer to the internally 
allocated array of length n_variables*n_factors containing the target 
matrix for rotation, derived from the orthomax rotation.   w is used in the 
orthomax rotation, see the optional argument  IMSLS_ORTHOMAX_ROTATION 
for common values of w. 
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 All power[j] should be greater than 1.0, typically 4.0. Generally, the larger the 
values of power [j], the more oblique the solution will be. 

IMSLS_OBLIQUE_PROMAX_ROTATION_USER,  float w, float power[], int norm,  float  
target[],  float b[],  float  t[],  float factor_correlations[], 
(Input/Output) 
 Storage for b, t, factor_correlations, and target are provided by the 
user.  See IMSLS_OBLIQUE_PROMAX_ROTATION. 

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION,  float w,  float pivot[],  
int norm,  float  **target ,  float **b,  float **t, 
float **factor_correlations, (Input/Output) 
Computes an oblique pivotal promax rotation of the factor loading matrix 
using pivot constants. Nonnegative constant w defines the rotation.  pivot, a 
vector of length n_factors containing the pivot constants.  pivot[j] 
should be in the interval (0.0, 1.0). If norm =1, row (Kaiser) normalization is 
performed.  Otherwise, row normalization is not performed.    b contains the 
address of a pointer to the internally allocated array of length 
n_variables*n_factors containing the rotated factor loading matrix.  t 
contains the address of a pointer to the internally allocated array of length 
n_factors*n_factors containing the rotation transformation matrix.  
factor_correlations contains the address of a pointer to the internally 
allocated array of length n_factors*n_factors containing the factor 
correlations.  target contains the address of a pointer to the internally 
allocated array of length n_variables*n_factors containing the target 
matrix for rotation, derived from the orthomax rotation.   w is used in the 
orthomax rotation, see the optional argument IMSLS_ORTHOMAX_ROTATION 
for common values of w. 

IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION_USER,  float w, float pivot[], int 
norm,  float  target[], float b[],  float t[],  
float factor_correlations[],    (Input/Output) 
 Storage for b, t, factor_correlations, and target are provided by the 
user.  See IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION. 

IMSLS_OBLIQUE_PROCRUSTES_ROTATION,   float  **target,  float **b,  float **t, 
float **factor_correlations (Input/Output) 
Computes an oblique procrustes rotation of the factor loading matrix using a 
target matrix. target is a hypothesized rotated factor loading matrix based 
upon prior knowledge with loadings chosen to the enhance interpretability. A 
simple structure solution will have most of the weights target[i][j] either 
zero or large in magnitude.  b contains the address of a pointer to the 
internally allocated array of length n_variables*n_factors containing the 
rotated factor loading matrix.  t contains the address of a pointer to the 
internally allocated array of length n_factors*n_factors containing the 
rotation transformation matrix.  factor_correlations contains the address 
of a pointer to the internally allocated array of length  
n_factors*n_factors containing the factor correlations.  
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IMSLS_OBLIQUE_PROCRUSTES_ROTATION_USER,   float  target[],    
float b[],  float t[],  float factor_correlations[] (Input/Output) 
Storage for b, t, and factor_correlations are provided by the user.  See 
IMSLS_PROCRUSTES_ROTATION. 

IMSLS_FACTOR_STRUCTURE,float  **s, float  **fvar, (Output) 
Computes the factor structure and the variance explained by each factor.   s 
contains the address of a pointer to the internally allocated array of length 
n_variables*n_factors containing the factor structure matrix. fvar 
contains the address of a pointer to the internally allocated array of length 
n_factors containing the variance accounted for by each of the n_factors 
rotated factors.  A factor rotation matrix is used to compute the factor 
structure and the variance.  One and only one rotation option argument can be 
specified.  

IMSLS_FACTOR_STRUCTURE_USER, float  s[], float  fvar[], (Output) 
Storage for s, and fvar are provided by the user.   
See IMSLS_FACTOR_STRUCTURE. 

IMSLS_COV_COL_DIM, int cov_col_dim   (Input) 
Column dimension of the matrix covariances. 
Default: cov_col_dim = n_variables 

IMSLS_RETURN_USER, float factor_loadings[]   (Output) 
User-allocated array of length n_variables*n_factors containing the 
unrotated factor loadings. 

Description 
Function imsls_f_factor_analysis computes factor loadings in exploratory factor 
analysis models. Models available in imsls_f_factor_analysis are the principal 
component model for factor analysis and the common factor model with additions to 
the common factor model in alpha-factor analysis and image analysis. Methods of 
estimation include principal components, principal factor, image analysis, unweighted 
least squares, generalized least squares, and maximum likelihood. 
In the factor analysis model used for factor extraction, the basic model is given as 
Σ = ΛΛT + Ψ, where Σ is the p × p population covariance matrix, Λ is the p × k matrix 
of factor loadings relating the factors f to the observed variables x, and Ψ is the p × p 
matrix of covariances of the unique errors e. Here, p = n_variables and 
k = n_factors. The relationship between the factors, the unique errors, and the 
observed variables is given as x = Λf + e, where in addition, the expected values of e, f, 
and x are assumed to be 0. (The sample means can be subtracted from x if the expected 
value of x is not 0.) It also is assumed that each factor has unit variance, the factors are 
independent of each other, and that the factors and the unique errors are mutually 
independent. In the common factor model, the elements of unique errors e also are 
assumed to be independent of one another so that the matrix Ψ is diagonal. This is not 
the case in the principal component model in which the errors may be correlated. 
Further differences between the various methods concern the criterion that is optimized 
and the amount of computer effort required to obtain estimates. Generally speaking, the 
least-squares and maximum likelihood methods, which use iterative algorithms, require 
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the most computer time with the principal factor, principal component and the image 
methods requiring much less time since the algorithms in these methods are not 
iterative. The algorithm in alpha-factor analysis is also iterative, but the estimates in 
this method generally require somewhat less computer effort than the least-squares and 
maximum likelihood estimates. In all methods, one eigensystem analysis is required on 
each iteration. 

Principal Component and Principal Factor Methods 
Both the principal component and principal factor methods compute the factor-loading 
estimates as 

1/ 2ˆˆ −ΓΔ
 

where Γ and the diagonal matrix Δ are the eigenvectors and eigenvalues of a matrix. In 
the principal component model, the eigensystem analysis is performed on the sample 
covariance (correlation) matrix S, while in the principal factor model, the matrix 
(S + Ψ) is used. If the unique error variances Ψ are not known in the principal factor 
mode, then imsls_f_factor_analysis obtains estimates for them. 
The basic idea in the principal component method is to find factors that maximize the 
variance in the original data that is explained by the factors. Because this method 
allows the unique errors to be correlated, some factor analysts insist that the principal 
component method is not a factor analytic method. Usually, however, the estimates 
obtained by the principal component model and factor analysis model will be quite 
similar. 
It should be noted that both the principal component and principal factor methods give 
different results when the correlation matrix is used in place of the covariance matrix. 
Indeed, any rescaling of the sample covariance matrix can lead to different estimates 
with either of these methods. A further difficulty with the principal factor method is the 
problem of estimating the unique error variances. Theoretically, these must be known 
in advance and be passed to imsls_f_factor_analysis using optional argument 
IMSLS_UNIQUE_VARIANCES_INPUT. In practice, the estimates of these parameters are 
produced by imsls_f_factor_analysis when 
IMSLS_UNIQUE_VARIANCES_INPUT is not specified. In either case, the resulting 
adjusted covariance (correlation) matrix 

ˆS ψ−
 

may not yield the n_factors positive eigenvalues required for n_factors factors to 
be obtained. If this occurs, the user must either lower the number of factors to be 
estimated or give new unique error variance values. 

Least-squares and Maximum Likelihood Methods 
Unlike the previous two methods, the algorithm used to compute estimates in this 
section is iterative (see Jöreskog 1977). As with the principal factor model, the user 
may either initialize the unique error variances or allow imsls_f_factor_analysis 
to compute initial estimates. Unlike the principal factor method, 
imsls_f_factor_analysis optimizes the criterion function with respect to both Ψ 
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and Γ. (In the principal factor method, Ψ is assumed to be known. Given Ψ, estimates 
for Λ may be obtained.) 
The major difference between the methods discussed in this section is in the criterion 
function that is optimized. Let S denote the sample covariance (correlation) matrix, and 
let Σ denote the covariance matrix that is to be estimated by the factor model. In the 
unweighted least-squares method, also called the iterated principal factor method or the 
minres method (see Harman 1976, p. 177), the function minimized is the sum-of-
squared differences between S and Σ. This is written as Φul = 0.5 (trace (S − Σ)2). 

Generalized least-squares and maximum likelihood estimates are asymptotically 
equivalent methods. Maximum likelihood estimates maximize the (normal theory) 
likelihood {Φml = trace (Σ-1S) − log (|Σ-1S|)}, while generalized least squares optimizes 
the function Φgs = trace (ΣS-1 − I)2. 

In all three methods, a two-stage optimization procedure is used. This proceeds by first 
solving the likelihood equations for Λ in terms of Ψ and substituting the solution into 
the likelihood. This gives a criterion φ (Ψ, Λ (Ψ)), which is optimized with respect to 
Ψ. In the second stage, the estimates Λ̂  are obtained from the estimates for Ψ. 
The generalized least-squares and maximum likelihood methods allow for the 
computation of a statistic (IMSLS_CHI_SQUARED_TEST) for testing that n_factors 
common factors are adequate to fit the model. This is a chi-squared test that all 
remaining parameters associated with additional factors are 0. If the probability of a 
larger chi-squared is so small that the null hypothesis is rejected, then additional factors 
are needed (although these factors may not be of any practical importance). Failure to 
reject does not legitimize the model. The statistic IMSLS_CHI_SQUARED_TEST is a 
likelihood ratio statistic in maximum likelihood estimation. As such, it asymptotically 
follows a chi-squared distribution with degrees of freedom given by df. 

The Tucker and Lewis reliability coefficient, ρ, is returned by 
IMSLS_TUCKER_RELIABILITY_COEFFICIENT when the maximum likelihood or 
generalized least-squares methods are used. This coefficient is an estimate of the ratio 
of explained variation to the total variation in the data. It is computed as follows: 
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where |S| is the determinant of covariances, p = n_variables, k = n_variables, φ is 
the optimized criterion, and d = df_covariances. 

Image Analysis Method 
The term image analysis is used here to denote the noniterative image method of 
Kaiser (1963). It is not the image analysis discussed by Harman (1976, p. 226). The 
image method (as well as the alpha-factor analysis method) begins with the notion that 
only a finite number from an infinite number of possible variables have been measured. 
The image factor pattern is calculated under the assumption that the ratio of the number 
of factors to the number of observed variables is near 0, so that a very good estimate 
for the unique error variances (for standardized variables) is given as 1 minus the 
squared multiple correlation of the variable under consideration with all variables in the 
covariance matrix. 

First, the matrix D2 = (diag (S-1) )-1 is computed where the operator “diag” results in a 
matrix consisting of the diagonal elements of its argument and S is the sample 
covariance (correlation) matrix. Then, the eigenvalues Λ and eigenvectors Γ of the 
matrix D-1SD-1 are computed. Finally, the unrotated image-factor pattern is computed 
as DΓ [(Λ − I)2Λ-1]1/2. 

Alpha-factor Analysis Method 
The alpha-factor analysis method of Kaiser and Caffrey (1965) finds factor-loading 
estimates to maximize the correlation between the factors and the complete universe of 
variables of interest. The basic idea in this method is that only a finite number of 
variables out of a much larger set of possible variables is observed. The population 
factors are linearly related to this larger set, while the observed factors are linearly 
related to the observed variables. Let f denote the factors obtainable from a finite set of 
observed random variables, and let ξ denote the factors obtainable from the universe of 
observable variables. Then, the alpha method attempts to find factor-loading estimates 
so as to maximize the correlation between f and ξ. In order to obtain these estimates, 
the iterative algorithm of Kaiser and Caffrey (1965) is used. 

Rotation Methods 
The IMSLS_ORTHOMAX_ROTATION optional argument performs an orthogonal rotation 
according to an orthomax criterion. In this analytic method of rotation, the criterion 
function 

2
4 2
ir ir
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is minimized by finding an orthogonal rotation matrix T such that (λij) = Λ = AT where 
A is the matrix of unrotated factor loadings. Here, γ ≥ 0 is a user-specified constant (W) 
yielding a family of rotations, and p is the number of variables.  
Kaiser (row) normalization can be performed on the factor loadings prior to rotation by 
specifying the parameter norm =1. In Kaiser normalization, the rows of A are first 
“normalized” by dividing each row by the square root of the sum of its squared 
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elements (Harman 1976). After the rotation is complete, each row of b is 
“denormalized” by multiplication by its initial normalizing constant.  
The method for optimizing Q proceeds by accumulating simple rotations where a 
simple rotation is defined to be one in which Q is optimized for two columns in Λ and 
for which the requirement that T be orthogonal is satisfied. A single iteration is defined 
to be such that each of the n_factors(n_factors − 1)/2 possible simple rotations is 
performed where n_factors is the number of factors. When the relative change in Q 
from one iteration to the next is less than EPS (the user-specified convergence 
criterion), the algorithm stops. eps = 0.0001 is usually sufficient. Alternatively, the 
algorithm stops when the user-specified maximum number of iterations, 
max_iterations, is reached. max_iterations = 30 is usually sufficient.  

The parameter in the rotation, γ, is used to provide a family of rotations. When  
γ = 0.0, a direct quartimax rotation results. Other values of γ yield other rotations. 
The IMSLS_ORTHOGONAL_PROCRUSTES_ROTATION optional argument performs 
orthogonal Procrustes rotation according to a method proposed by Schöneman (1966). 
Let k = n_factors denote the number of factors, p = n_variables denote the 
number of variables, A denote the p × k matrix of unrotated factor loadings, T denote 
the k × k orthogonal rotation matrix (orthogonality requires that TT T be a k × k identity 
matrix), and let X denote the target matrix. The basic idea in orthogonal Procrustes 
rotation is to find an orthogonal rotation matrix T such that B = AT and T provides a 
least-squares fit between the target matrix X and the rotated loading matrix B. 
Schöneman’s algorithm proceeds by finding the singular value decomposition of the 
matrix AT X = UΣVT. The rotation matrix is computed as T = UVT. 
The IMSLS_DIRECT_OBLIMIN_ROTATION optional argument performs direct oblimin 
rotation. In this analytic method of rotation, the criterion function 
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is minimized by finding a rotation matrix T such that (λir) = Λ = AT and (TT T )−1 is a 
correlation matrix. Here, γ ≤ 0 is a user-specified constant (w) yielding a family of 
rotations, and p is the number of variables. The rotation is said to be direct because it 
minimizes Q with respect to the factor loadings directly, ignoring the reference 
structure. 
Kaiser normalization can be performed on the factor loadings prior to rotation via the 
parameter norm. In Kaiser normalization (see Harman 1976), the rows of the factor 
loading matrix are first “normalized” by dividing each row by the square root of the 
sum of its squared elements. After the rotation is complete, each row of b is 
“denormalized” by multiplication by its initial normalizing constant. 
The method for optimizing Q is essentially the method first proposed by Jennrich and 
Sampson (1966). It proceeds by accumulating simple rotations where a simple rotation 
is defined to be one in which Q is optimized for a given factor in the plane of a second 
factor, and for which the requirement that  (TTT)−1 be a correlation matrix is satisfied. 
An iteration is defined to be such that each of the n_factors[n_factors − 1] 
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possible simple rotations is performed, where n_factors is the number of factors. 
When the relative change in Q from one iteration to the next is less than eps (the user-
specified convergence criterion), the algorithm stops. eps = .0001 is usually sufficient. 
Alternatively, the algorithm stops when the user-specified maximum number of 
iterations, max_iterations, is reached. max_iterations = 30 is usually sufficient. 

The parameter in the rotation, γ, is used to provide a family of rotations. Harman 
(1976) recommends that γ be strictly less than or equal to zero. When γ = 0.0, a direct 
quartimin rotation results. Other values of γ yield other rotations. Harman (1976) 
suggests that the direct quartimin rotations yield the most highly correlated factors 
while more orthogonal factors result as γ approaches −∞. 
IMSLS_OBLIQUE_PROMAX_ROTATION, 
IMSLS_OBLIQUE_PIVOTAL_PROMAX_ROTATION, 
IMSLS_OBLIQUE_PROCRUSTES_ROTATION, optional arguments performs oblique 
rotations using the Promax, pivotal Promax, or oblique Procrustes methods. In all of 
these methods, a target matrix X is first either computed or specified by the user. The 
differences in the methods relate to how the target matrix is first obtained. 
Given a p × k target matrix, X, and a p × k orthogonal matrix of unrotated factor 
loadings, A, compute the rotation matrix T as follows: First regress each column of A 
on X yielding a k × k matrix β. Then, let γ = diag(βT β) where diag denotes the 
diagonal matrix obtained from the diagonal of the square matrix. Standardize β to 
obtain  
T = γ−1/2 β. The rotated loadings are computed as B = AT while the factor correlations 
can be computed as the inverse of the T TT matrix. 
In the Promax method, the unrotated factor loadings are first rotated according to an 
orthomax criterion via optional argument IMSLS_ORTHOMAX_ROTATION . The target 
matrix X is taken as the elements of the B raised to a power greater than one but 
retaining the same sign as the original loadings. The column i of the rotated matrix B is 
raised to the power power[i]. A power of four is commonly used. Generally, the 
larger the power, the more oblique the solution. 
In the pivotal Promax method, the unrotated matrix is first rotated to an orthomax 
orthogonal solution as in the Promax case. Then, rather than raising the i-th column in 
B to the power pivot[i], the elements xij of X are obtained from the elements bij of B 
by raising the ij element of B to the power pivot[i]/bij. This has the effects of greatly 
increasing in X those elements in B that are greater in magnitude than the pivot 
elements pivot[i], and of greatly decreasing those elements that are less than 
pivot[i]. 
In the oblique Procrustes method, the elements of X are specified by the user as input to 
the routine via the target argument. No orthogonal rotation is performed in the 
oblique Procrustes method. 

Factor Structure and Variance  
The IMSLS_FACTOR_STRUCTURE optional argument computes the factor structure 
matrix (the matrix of correlations between the observed variables and the hypothesized 
factors) and the variance explained by each of the factors (for orthogonal rotations). 
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For oblique rotations, IMSLS_FACTOR_STRUCTURE computes a measure of the 
importance of the factors, the sum of the squared elements in each column.  
Let Δ denote the diagonal matrix containing the elements of the variance of the original 
data along its diagonal. The estimated factor structure matrix S is computed as 

1
2 1( )TS A T− −= Δ

 

while the elements of fvar are computed as the diagonal elements of 
1
2TS ATΔ

 

If the factors were obtained from a correlation matrix (or the factor variances for 
standardized variables are desired), then the variances should all be 1.0.   

Comments 

1. Function imsls_f_factor_analysis makes no attempt to solve for 
n_factors. In general, if n_factors is not known in advance, several 
different values of n_factors should be used and the most reasonable value 
kept in the final solution. 

2. Iterative methods are generally thought to be superior from a theoretical point 
of view, but in practice, often lead to solutions that differ little from the 
noniterative methods. For this reason, it is usually suggested that a 
noniterative method be used in the initial stages of the factor analysis and that 
the iterative methods be used when issues such as the number of factors have 
been resolved. 

3. Initial estimates for the unique variances can be input. If the iterative methods 
fail for these values, new initial estimates should be tried. These can be 
obtained by use of another factoring method. (Use the final estimates from the 
new method as the initial estimates in the old method.) 

Examples  

Example 1 
In this example, factor analysis is performed for a nine-variable matrix using the 
default method of unweighted least squares. 

#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 

main() 
{ 
#define N_VARIABLES 9 
#define N_FACTORS   3 
    float *a; 
 
    float covariances[N_VARIABLES][N_VARIABLES] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, 
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        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 0.505, 
        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 0.409, 
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 0.472, 
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 
 
                        /* Perform analysis */ 
    a = imsls_f_factor_analysis (9, covariances, 3, 0); 
 
                        /* Print results */ 
    imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,  
        a, 0); 
 
    free(a); 
} 

Output 
         Unrotated Loadings 
            1           2           3 
1      0.7018     -0.2316      0.0796 
2      0.7200     -0.1372     -0.2082 
3      0.5351     -0.2144     -0.2271 
4      0.7907      0.4050      0.0070 
5      0.6532      0.4221     -0.1046 
6      0.7539      0.4842      0.1607 
7      0.7127     -0.2819     -0.0701 
8      0.4835     -0.2627      0.4620 
9      0.8192     -0.3137     -0.0199 

Example 2 
The following data were originally analyzed by Emmett (1949). There are 211 
observations on 9 variables. Following Lawley and Maxwell (1971), three factors are 
obtained by the method of maximum likelihood. 

#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 

main() 
{ 
#define N_VARIABLES 9 
#define N_FACTORS   3 
    float *a; 
    float *evals; 
    float chi_squared, p_value, reliability_coef, function_min; 
    int   chi_squared_df, n_iterations; 
    float uniq[N_VARIABLES]; 
 
    float covariances[N_VARIABLES][N_VARIABLES] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 0.645, 
        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 0.505, 
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        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 0.409, 
        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 0.472, 
        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 
 
                           /* Perform analysis */ 
    a = imsls_f_factor_analysis (9, covariances, 3,  
        IMSLS_MAXIMUM_LIKELIHOOD,           210, 
        IMSLS_SWITCH_EXACT_HESSIAN,         0.01, 
        IMSLS_CONVERGENCE_EPS,              0.000001, 
        IMSLS_MAX_ITERATIONS,               30, 
        IMSLS_MAX_STEPS_LINE_SEARCH,        10, 
        IMSLS_EIGENVALUES,                  &evals, 
        IMSLS_UNIQUE_VARIANCES_OUTPUT,      uniq, 
        IMSLS_CHI_SQUARED_TEST, 
            &chi_squared_df, 
            &chi_squared, 
            &p_value, 
        IMSLS_TUCKER_RELIABILITY_COEFFICIENT, &reliability_coef, 
        IMSLS_N_ITERATIONS,                 &n_iterations, 
        IMSLS_FUNCTION_MIN,                 &function_min, 
        0); 
 
                         /* Print results */ 
    imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS,  
        a, 0); 
    imsls_f_write_matrix("Eigenvalues", 1, N_VARIABLES, evals, 0); 
    imsls_f_write_matrix("Unique Error Variances", 1, N_VARIABLES,  
        uniq, 0); 
    printf("\n\nchi_squared_df =    %d\n", chi_squared_df); 
    printf("chi_squared =       %f\n", chi_squared); 
    printf("p_value =           %f\n\n", p_value); 
    printf("reliability_coef = %f\n", reliability_coef); 
    printf("function_min =      %f\n", function_min); 
    printf("n_iterations =      %d\n", n_iterations); 
 
    free(evals); 
    free(a); 
} 

Output 
         Unrotated Loadings 
            1           2           3 
1      0.6642     -0.3209      0.0735 
2      0.6888     -0.2471     -0.1933 
3      0.4926     -0.3022     -0.2224 
4      0.8372      0.2924     -0.0354 
5      0.7050      0.3148     -0.1528 
6      0.8187      0.3767      0.1045 
7      0.6615     -0.3960     -0.0777 
8      0.4579     -0.2955      0.4913 
9      0.7657     -0.4274     -0.0117 
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                              Eigenvalues 
         1           2           3           4           5           6 
     0.063       0.229       0.541       0.865       0.894       0.974 
  
         7           8           9 
     1.080       1.117       1.140 
  
                        Unique Error Variances 
         1           2           3           4           5           6 
    0.4505      0.4271      0.6166      0.2123      0.3805      0.1769 
  
         7           8           9 
    0.3995      0.4615      0.2309 
 
 
chi_squared_df =    12 
chi_squared =       7.149356 
p_value =           0.847588 
 
reliability_coef = 1.000000 
function_min =      0.035017 
n_iterations =      5 

Example 3 
This example is a continuation of example 1 and illustrates the use of the 
IMSLS_FACTOR_STRUCTURE optional argument when the structure and an index of 
factor importance for obliquely rotated loadings are desired.   A direct oblimin rotation 
is used to compute the factors, derived from nine variables and using γ = −1.  Note in 
this example that the elements of fvar are not variances since the rotation is oblique. 
 

#include <stdio.h> 
#include <imsls.h> 
#include <stdlib.h> 
void main() 
{ 
#define N_VARIABLES 9 
#define N_FACTORS   3 
    float *a; 
    float w= -1.0; 
    int   norm=1; 
    float *b, *t, *fcor; 
    float *s, *fvar; 
    float covariances[9][9] = { 
        1.0,   0.523, 0.395, 0.471, 0.346, 0.426, 0.576, 0.434, 

0.639, 
        0.523, 1.0,   0.479, 0.506, 0.418, 0.462, 0.547, 0.283, 

0.645, 
        0.395, 0.479, 1.0,   0.355, 0.27,  0.254, 0.452, 0.219, 

0.504, 
        0.471, 0.506, 0.355, 1.0,   0.691, 0.791, 0.443, 0.285, 

0.505, 
        0.346, 0.418, 0.27,  0.691, 1.0,   0.679, 0.383, 0.149, 

0.409, 
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        0.426, 0.462, 0.254, 0.791, 0.679, 1.0,   0.372, 0.314, 
0.472, 

        0.576, 0.547, 0.452, 0.443, 0.383, 0.372, 1.0,   0.385, 0.68, 
        0.434, 0.283, 0.219, 0.285, 0.149, 0.314, 0.385, 1.0,   0.47, 
        0.639, 0.645, 0.504, 0.505, 0.409, 0.472, 0.68,  0.47,  1.0}; 

 
                           /* Perform analysis */ 
    a = imsls_f_factor_analysis (9, (float *)covariances, 3, 
        IMSLS_MAXIMUM_LIKELIHOOD,           210, 
        IMSLS_SWITCH_EXACT_HESSIAN,         0.01, 
        IMSLS_CONVERGENCE_EPS,              0.00001, 
        IMSLS_MAX_ITERATIONS,               30, 
        IMSLS_MAX_STEPS_LINE_SEARCH,        10, 
        IMSLS_DIRECT_OBLIMIN_ROTATION, w, norm, &b, &t, &fcor, 
        IMSLS_FACTOR_STRUCTURE, &s, &fvar, 
        0); 
 
                         /* Print results */ 
 
    imsls_f_write_matrix("Unrotated Loadings", N_VARIABLES, N_FACTORS, 
        a, 0); 
    imsls_f_write_matrix("Rotated Loadings", N_VARIABLES, N_FACTORS, 
        b, 0); 
    imsls_f_write_matrix("Transformation Matrix", N_FACTORS, N_FACTORS, 
        t, 0);  
    imsls_f_write_matrix("Factor Correlation Matrix", N_FACTORS, N_FACTORS, 
        fcor, 0); 
    imsls_f_write_matrix("Factor Structure",  N_VARIABLES,  
        N_FACTORS,s,0); 
    imsls_f_write_matrix("Factor Variance", 1, N_FACTORS, fvar, 0); 
} 

Output 
         Unrotated Loadings 
            1           2           3 
1      0.6642     -0.3209      0.0735 
2      0.6888     -0.2471     -0.1933 
3      0.4926     -0.3022     -0.2224 
4      0.8372      0.2924     -0.0354 
5      0.7050      0.3148     -0.1528 
6      0.8187      0.3767      0.1045 
7      0.6615     -0.3960     -0.0777 
8      0.4579     -0.2955      0.4913 
9      0.7657     -0.4274     -0.0117 
  
          Rotated Loadings 
            1           2           3 
1      0.1128     -0.5144      0.2917 
2      0.1847     -0.6602     -0.0018 
3      0.0128     -0.6354     -0.0585 
4      0.7797     -0.1751      0.0598 
5      0.7147     -0.1813     -0.0959 
6      0.8520      0.0039      0.1820 
7      0.0354     -0.6844      0.1510 
8      0.0276     -0.0941      0.6824 



 
 
 
 

 
 

Chapter 9: Multivariate Analysis factor_analysis • 681  

 

 

 

9      0.0729     -0.7100      0.2493 
  
        Transformation Matrix 
            1           2           3 
1       0.611      -0.462       0.203 
2       0.923       0.813      -0.249 
3       0.042       0.728       1.050 
  
      Factor Correlation Matrix 
            1           2           3 
1       1.000      -0.427       0.217 
2      -0.427       1.000      -0.411 
3       0.217      -0.411       1.000 
  
          Factor Structure 
            1           2           3 
1      0.3958     -0.6824      0.5275 
2      0.4662     -0.7383      0.3094 
3      0.2714     -0.6169      0.2052 
4      0.8675     -0.5326      0.3011 
5      0.7713     -0.4471      0.1339 
6      0.8899     -0.4347      0.3656 
7      0.3605     -0.7616      0.4398 
8      0.2161     -0.3861      0.7271 
9      0.4302     -0.8435      0.5568 
  
          Factor Variance 
         1           2           3 
     2.170       2.560       0.914 
  
 

Warning Errors 

IMSLS_VARIANCES_INPUT_IGNORED When using the 
IMSLS_PRINCIPAL_COMPONENT 
option, the unique variances are 
assumed to be zero. Input for 
IMSLS_UNIQUE_VARIANCES_INPUT is 
ignored. 

IMSLS_TOO_MANY_ITERATIONS Too many iterations. Convergence is 
assumed. 

IMSLS_NO_DEG_FREEDOM  There are no degrees of freedom for the 
significance testing. 

IMSLS_TOO_MANY_HALVINGS  Too many step halvings. Convergence is 
assumed. 

IMSLS_NO_ROTATION n_factors = 1. No rotation is possible. 

IMSLS_SVD_ERROR An error occurred in the singular value 
decomposition of tran(A)*X.  The 
rotation matrix, T, may not be correct. 



 

 
 

682 • discriminant_analysis IMSL C Stat Library 

 

 

 

Fatal Errors 

IMSLS_HESSIAN_NOT_POS_DEF  The approximate Hessian is not semi-
definite on iteration #. The computations cannot 
proceed. Try using different initial estimates. 

IMSLS_FACTOR_EVAL_NOT_POS  “eigenvalues[#]” = #. An eigenvalue 
corresponding to a factor is negative or zero. Either 
use different initial estimates for “unique_variances” 
or reduce the number of factors. 

IMSLS_COV_NOT_POS_DEF  “covariances” is not positive semi-definite. The 
computations cannot proceed. 

IMSLS_COV_IS_SINGULAR  The matrix “covariances” is singular. The 
computations cannot continue because variable # is 
linearly related to the remaining variables. 

IMSLS_COV_EVAL_ERROR  An error occurred in calculating the eigenvalues of 
the adjusted (inverse) covariance matrix. Check 
“covariances.” 

IMSLS_ALPHA_FACTOR_EVAL_NEG In alpha factor analysis on iteration #, 
eigenvalue # is #. As all eigenvalues corresponding to 
the factors must be positive, either the number of 
factors must be reduced or new initial estimates for 
“unique_variances” must be given. 

IMSLS_RANK_LESS_THAN The rank of TRAN(A)*target = #. This must be 
greater than or equal to n_factors = #. 

discriminant_analysis 
Performs a linear or a quadratic discriminant function analysis among several known 
groups. 

Synopsis 
#include <imsls.h> 
void imsls_f_discriminant_analysis (int n_rows, int n_variables, float 

*x, int n_groups, ..., 0) 
The type double function is imsls_d_discriminant_analysis. 

Required Arguments 

int n_rows   (Input) 
Number of rows of x to be processed. 

int n_variables   (Input) 
Number of variables to be used in the discrimination. 
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float *x   (Input) 
Array of size n_rows by n_variables + 1 containing the data. The first 
n_variables columns correspond to the variables, and the last column 
(column n_variables) contains the group numbers. The groups must be 
numbered 1, 2, ..., n_groups. 

int n_groups   (Input) 
Number of groups in the data. 

Synopsis with Optional Arguments 
#include <imsls.h> 

void imsls_f_discriminant_analysis (int n_rows, int n_variables, 
float *x, int n_groups,  
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt,  
IMSLS_METHOD, int method, 
IMSLS_IDO, int ido, 
IMSLS_ROWS_ADD, 
IMSLS_ROWS_DELETE, 
IMSLS_PRIOR_EQUAL, 
IMSLS_PRIOR_PROPORTIONAL, 
IMSLS_PRIOR_INPUT, float prior_input[], 
IMSLS_PRIOR_OUTPUT, float **prior_output 
IMSLS_PRIOR_OUTPUT_USER, float prior_output[] 
IMSLS_GROUP_COUNTS, int **gcounts, 
IMSLS_GROUP_COUNTS_USER, int gcounts[] 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_COV, float **covariances, 
IMSLS_COV_USER, float covariances[], 
IMSLS_COEF, float **coefficients 
IMSLS_COEF_USER, float coefficients[], 
IMSLS_CLASS_MEMBERSHIP, int **class_membership, 
IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[], 
IMSLS_CLASS_TABLE, float **class_table, 
IMSLS_CLASS_TABLE_USER, float class_table[], 
IMSLS_PROB, float **prob, 
IMSLS_PROB_USER, float prob[], 
IMSLS_MAHALANOBIS, float **d2, 
IMSLS_MAHALANOBIS_USER, float d2[], 
IMSLS_STATS, float **stats, 
IMSLS_STATS_USER, float stats[], 
IMSLS_N_ROWS_MISSING, int *nrmiss, 
0) 
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Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of array x. 
Default: x_col_dim = n_variables + 1 

IMSLS_X_INDICES, int igrp, int ind[], int ifrq, int iwt   (Input) 
Each of the four arguments contains indices indicating column numbers of x 
in which particular types of data are stored. Columns are numbered 0 … 
x_col_dim − 1. 

Parameter igrp contains the index for the column of x in which the group 
numbers are stored. 

Parameter ind contains the indices of the variables to be used in the analysis.  

Parameters ifrq and iwt contain the column numbers of x in which the 
frequencies and weights, respectively, are stored. Set ifrq = −1 if there will 
be no column for frequencies. Set iwt = −1 if there will be no column for 
weights. Weights are rounded to the nearest integer. Negative weights are not 
allowed. 

Defaults: igrp = n_variables, ind[] = 0, 1, ..., n_variables − 1, 
ifrq = −1, and iwt = −1  

IMSLS_METHOD, int method   (Input) 
Method of discrimination. The method chosen determines whether linear or 
quadratic discrimination is used, whether the group covariance matrices are 
computed (the pooled covariance matrix is always computed), and whether 
the leaving-out-one or the reclassification method is used to classify each 
observation. 

method discrimination 
method 

covariances 
computed 

classification 
method 

1 linear pooled, group Reclassification 
2 quadratic pooled, group Reclassification 
3 linear pooled Reclassification 
4 linear pooled, group leaving-out-one 
5 quadratic pooled, group leaving-out-one 
6 linear pooled leaving-out-one 

In the leaving-out-one method of classification, the posterior probabilities are 
adjusted so as to eliminate the effect of the observation from the sample 
statistics prior to its classification. In the classification method, the effect of 
the observation is not eliminated from the classification function. 

When optional argument IMSLS_IDO is specified, the following rules for 
mixing methods apply; Methods 1, 2, 4, and 5 can be intermixed, as can 
methods 3 and 6. Methods 1, 2, 4, and 5 cannot be intermixed with methods 3 
and 6.  
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Default: method = 1 

IMSLS_IDO, int ido   (Input) 
Processing option. See Comments 3 and 4 for more information. 

ido Action 
0 This is the only invocation; all the data are input at once. (Default) 
1 This is the first invocation with this data; additional calls will be 

made. Initialization and updating for the n_rows observations of x 
will be performed. 

2 This is an intermediate invocation; updating for the n_rows 
observations of x will be performed. 

3 All statistics are updated for the n_rows observations. The 
discriminant functions and other statistics are computed. 

4 The discriminant functions are used to classify each of the n_rows 
observations of x. 

5 The covariance matrices are computed, and workspace is released. No 
further call to discriminant_analysis with ido greater than 
1 should be made without first calling discriminant_analysis 
with ido = 1. 

6 Workspace is released. No further calls to 
discriminant_analysis with ido greater than 1 should be 
made without first calling discriminant_analysis with 
ido = 1. Invocation with this option is not required if a call has 
already been made with ido = 5. 

Default: ido = 0 
IMSLS_ROWS_ADD, or 
IMSLS_ROWS_DELETE   (Input) 

By default (or if IMSLS_ROWS_ADD is specified), then the observations in x 
are added to the discriminant statistics. If IMSLS_ROWS_DELETE is specified, 
then the observations are deleted. 

If ido = 0, these optional arguments are ignored (data is always added if there 
is only one invocation). 

IMSLS_PRIOR_EQUAL, or 
IMSLS_PRIOR_PROPORTIONAL, or 
IMSLS_PRIOR_INPUT, float prior_input[]   (Input) 

By default, (or if IMSLS_PRIOR_EQUAL is specified), equal prior probabilities 
are calculated as 1.0/n_groups. 

If IMSLS_PRIOR_PROPORTIONAL is specified, prior probabilities are 
calculated to be proportional to the sample size in each group.  

If IMSLS_PRIOR_INPUT is specified, then array prior_input is an array of 
length n_groups containing the prior probabilities for each group, such that 
the sum of all prior probabilities is equal to 1.0. Prior probabilities are not 
used if ido is equal to 1, 2, 5, or 6. 
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IMSLS_PRIOR_OUTPUT, float **prior_output   (Output) 
Address of a pointer to an array of length n_groups containing the most 
recently calculated or input prior probabilities. If 
IMSLS_PRIOR_PROPORTIONAL is specified, every element of 
prior_output is equal to −1 until a call is made with ido equal to 0 or 3, at 
which point the priors are calculated. Note that subsequent calls to 
discriminant_analysis with IMSLS_PRIOR_PROPORTIONAL specified, 
and ido not equal to 0 or 3 will result in the elements of prior_output being 
reset to −1. 

IMSLS_PRIOR_OUTPUT_USER, float prior_output[]   (Output) 
Storage for array prior_output is provided by the user. See 
IMSLS_PRIOR_OUTPUT. 

IMSLS_GROUP_COUNTS, int **gcounts   (Output) 
Address of a pointer to an integer array of length n_groups containing the 
number of observations in each group. Array gcounts is updated when ido is 
equal to 0, 1, or 2. 

IMSLS_GROUP_COUNTS_USER, int gcounts[]   (Output) 
Storage for integer array gcounts is provided by the user. See 
IMSLS_GROUP_COUNTS. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to an array of size n_groups by n_variables. The i-th 
row of means contains the group i variable means. Array means is updated 
when ido is equal to 0, 1, 2, or 5. The means are unscaled until a call is made 
with ido = 5. where the unscaled means are calculated as Σwifi xi and the 
scaled means as 

i i i

i i

w f x
w f

∑
∑  

where xi is the value of the i-th observation, wi is the weight of the i-th 
observation, and fi is the frequency of the i-th observation. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_COV, float **covariances   (Output) 
Address of a pointer to an array of size g by n variables by n_variables 
containing the within-group covariance matrices (methods 1, 2, 4, and 5 
only) as the first g-1 matrices, and the pooled covariance matrix as the g-th 
matrix (that is, the first n_variables ∗ n_variables elements comprise 
the group 1 covariance matrix, the next n_variables ∗ n_variables 
elements comprise the group 2 covariance, ..., and the last 
n_variables ∗ n_variables elements comprise the pooled covariance 
matrix). If method is 3 or 6 then g is equal to 1. Otherwise, g is equal to 
n_groups + 1. Argument cov is updated when ido is equal to 0, 1, 2, 3, or 5. 
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IMSLS_COV_USER, float covariances[]   (Output) 
Storage for array covariances is provided by the user. See 
IMSLS_COVARIANCES. 

IMSLS_COEF, float **coefficients   (Output) 
Address of a pointer to an array of size n_groups by  
(n_variables + 1) containing the linear discriminant coefficients. The first 
column of coefficients contains the constant term, and the remaining 
columns contain the variable coefficients. Row i − 1 of coefficients 
corresponds to group i, for  
i = 1, 2, ..., n_variables + 1. Array coefficients are always computed 
as the linear discriminant function coefficients even when quadratic 
discrimination is specified. 

Array coefficients is updated when ido is equal to 0 or 3. 

IMSLS_COEF_USER, float coefficients[]   (Output) 
Storage for array coefficients is provided by the user. See 
IMSLS_COEFFICIENTS. 

IMSLS_CLASS_MEMBERSHIP, int **class_membership   (Output) 
Address of a pointer to an integer array of length n_rows containing the 
group to which the observation was classified. Array class_membership is 
updated when ido is equal to 0 or 4. 

If an observation has an invalid group number, frequency, or weight when the 
leaving-out-one method has been specified, then the observation is not 
classified and the corresponding elements of class_membership (and prob, 
see IMSLS_PROB) are set to zero. 

IMSLS_CLASS_MEMBERSHIP_USER, int class_membership[]   (Ouput) 
Storage for array class_membership is provided by the user. See 
IMSLS_CLASS_MEMBERSHIP. 

IMSLS_CLASS_TABLE, float **class_table   (Output) 
Address of a pointer to an array of size n_groups by n_groups containing 
the classification table. Array class_table is updated when ido is equal to 
0, 1, or 4. Each observation that is classified and has a group number 1.0, 2.0, 
..., n_groups is entered into the table. The rows of the table correspond to the 
known group membership. The columns refer to the group to which the 
observation was classified. Classification results accumulate with each call to 
imsls_f_discriminant_analysis with ido equal to 4. For example, if 
two calls with ido equal to 4 are made, the elements in class_table sum to 
the total number of valid observations in the two calls. 

IMSLS_CLASS_TABLE_USER, float class_table[]   (Output) 
Storage for array class_table is provided by the user. See 
IMSLS_CLASS_TABLE. 

IMSLS_PROB, float **prob   (Output) 
Address of a pointer to an array of size n_rows by n_groups containing the 
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posterior probabilities for each observation. Argument prob is updated when 
ido is equal to 0 or 4. 

IMSLS_PROB_USER, float prob[]   (Output) 
Storage for array prob is provided by the user. See IMSLS_PROB. 

IMSLS_MAHALANOBIS, float **d2   (Output) 
Address of a pointer to an array of size n_groups by n_groups containing 
the Mahalanobis distances  

2
ijD

 

between the group means. Argument d2 is updated when ido is equal to 0 or 
3. 

For linear discrimination, the Mahalanobis distance is computed using the 
pooled covariance matrix. Otherwise, the Mahalanobis distance  

2
ijD

 

between group means i and j is computed using the within covariance matrix 
for group i in place of the pooled covariance matrix. 

IMSLS_MAHALANOBIS_USER, float d2[]   (Output) 
Storage for array d2 is provided by the user. See IMSLS_MAHALANOBIS. 

IMSLS_STATS, float **stats   (Output) 
Address of a pointer to an array of length 4 + 2 × (n_groups + 1) containing 
various statistics of interest. Array stats is updated when ido is equal to 0, 
1, 3, or 5. The first element of stats is the sum of the degrees of freedom for 
the within-covariance matrices. The second, third, and fourth elements of 
stats correspond to the chi-squared statistic, its degrees of freedom, and the 
probability of a greater  
chi-squared, respectively, of a test of the homogeneity of the within-
covariance matrices (not computed if method is equal to 3 or 6). The fifth 
through 5 + n_groups elements of stats contain the log of the determinants 
of each group’s covariance matrix (not computed if method is equal to 3 or 6) 
and of the pooled covariance matrix (element 4 + n_groups). Finally, the last 
n_groups + 1 elements of stats contain the sum of the weights within each 
group, and in the last position, the sum of the weights in all groups. 

IMSLS_STATS_USER, float stats[]   (Output) 
Storage for array stats is provided by the user. See IMSLS_STATS_USER. 

IMSLS_N_ROWS_MISSING, int *nrmiss   (Output) 
Number of rows of data encountered in calls to discriminant_analysis 
containing missing values (NaN) for the classification, group, weight, and/or 
frequency variables. If a row of data contains a missing value (NaN) for any 
of these variables, that row is excluded from the computations. 
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Array nrmiss is updated when ido is equal to 0, 1, 2, or 3. 

Comments 

1. Common choices for the Bayesian prior probabilities are given by: 
prior_input[i] = 1.0/n_groups   (equal priors) 
prior_input[i] = gcounts/n_rows   (proportional priors) 
prior_input[i] = Past history or subjective judgment. 
In all cases, the priors should sum to 1.0. 

2. Two passes of the data are made. In the first pass, the statistics required to 
compute the discriminant functions are obtained (ido equal to 1, 2, and 3). In 
the second pass, the discriminant functions are used to classify the 
observations. When ido is equal to 0, all of the data are memory resident, and 
both passes are made in one call to imsls_f_discriminant_analysis. 
When ido > 0 (optional argument IMSLS_IDO is specified), a third call to 
imsls_f_discriminant_analysis involving no data is required with ido 
equal to 5 or 6. 

3. Here are a few rules and guidelines for the correct value of ido in a series of 
calls: 

1 Calls with ido = 0 or ido = 1 may be made at any time, 
subject to rule 2. These calls indicate that a new analysis is to 
begin, and therefore allocate memory and destroy all statistics 
from previous calls. 

2 Each series of calls to imsls_f_discriminant_analysis 
which begins with ido = 1 must end with ido equal to 5 or 6 
to ensure the proper release of workspace, subject to rule 3. 

3 ido may not be 4 or 5 before a call with ido = 3 has been 
made. 

4 ido may not be 2, 3, 4, 5, or 6 
a) Immediately after a call with ido = 0. 
b) Before a call with ido = 1 has been made. 
c) Immediately after a call with ido equal to 5 or 6 has been 
made. 

The following is a valid sequence of ido’s: 

ido Explanation 
0 Data Set A: Perform a complete analysis. All data to be used in the analysis 

must be present in x. Since cleanup of workspace is automatic for ido = 0, no 
further calls are necessary. 

1 Data Set B: Begin analysis. The n_rows observations in x are used for 
initialization. 

2 Data Set B: Continue analysis. New observations placed in x are added to (or 
deleted from, see IMSLS_ROWS_DELETE) the analysis. 
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ido Explanation 
2 Data Set B: Continue analysis. n_rows new observations placed in x are 

added to (or deleted from, see IMSLS_ROWS_DELETE) the analysis. 
3 Data Set B: Continue analysis. n_rows new observations are added (or 

deleted) and discriminant functions and other statistics are computed. 
4 Data Set B: Classification of each of the n_rows observations in the current x 

matrix. 
5 Data Set B: End analysis. Covariance matrices are computed and workspace is 

released. This analysis could also have been ended by choosing ido = 6 
1 Data Set C: Begin analysis. Note that for this call to be valid the previous call 

must have been made with ido equal to 5 or 6. 
3 Data Set C: Continue analysis. 
4 Data Set C: Continue analysis. 
3 Data Set C: Continue analysis. 
6 Data Set C: End analysis. 

4. Because of the internal workspace allocation and saved variables, function 
imsls_f_discriminant_analysis must complete the analysis of a data 
set before beginning processing of the next data set. 

Return Value 
The return value is void. 

Description 
Function imsls_f_discriminant_analysis performs discriminant function 
analysis using either linear or quadratic discrimination. The output includes a measure 
of distance between the groups, a table summarizing the classification results, a matrix 
containing the posterior probabilities of group membership for each observation, and 
the within-sample means and covariance matrices. The linear discriminant function 
coefficients are also computed. 
By default (or if optional argument IMSLS_IDO is specified with ido = 0) all 
observations are input during one call, a method of operation that has the advantage of 
simplicity. Alternatively, one or more rows of observations can be input during 
separate calls. This method does not require that all observations be memory resident, a 
significant advantage with large data sets. Note, however, that the algorithm requires 
two passes of the data. During the first pass the discriminant functions are computed 
while in the second pass, the observations are classified. Thus, with the second method 
of operation, the data will usually need to be input twice. 
Because both methods result in the same operations being performed, the algorithm is 
discussed as if only a few observations are input during each call. The operations 
performed during each call depend upon the ido parameter.  
The ido = 1 step is the initialization step. “Private” internally allocated saved variables 
corresponding to means, class_table, and covariances are initialized to zero, and 
other program parameters are set (copies of these private variables are written to the 
corresponding output variables upon return from the function call, assuming ido 
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values such that the results are to be returned). Parameters n_rows, x, and method can 
be changed from one call to the next within the two sets {1, 2, 4, 5} and {3, 6} but not 
between these sets when ido > 1. That is, do not specify method = 1 in one call and 
method = 3 in another call without first making a call with ido = 1. 
After initialization has been performed in the ido = 1 step, the within-group means are 
updated for all valid observations in x. Observations with invalid group numbers are 
ignored, as are observation with missing values. The LU factorization of the covariance 
matrices are updated by adding (or deleting) observations via Givens rotations. 
The ido = 2 step is used solely for adding or deleting observations from the model as 
in the above paragraph. 
The ido = 3 step begins by adding all observations in x to the means and the 
factorizations of the covariance matrices. It continues by computing some statistics of 
interest: the linear discriminant functions, the prior probabilities (by default, or if 
IMSLS_PROPORTIONAL_PRIORS is specified), the log of the determinant of each of 
the covariance matrices, a test statistic for testing that all of the within-group 
covariance matrices are equal, and a matrix of Mahalanobis distances between the 
groups. The matrix of Mahalanobis distances is computed via the pooled covariance 
matrix when linear discrimination is specified; the row covariance matrix is used when 
the discrimination is quadratic. 
Covariance matrices are defined as follows: Let Ni denote the sum of the frequencies of 
the observations in group i and Mi denote the number of observations in group i. Then, 
if Si denotes the within-group i covariance matrix, 

( )( )
1

1
1

iM
T

i j j j j
ji

S w f x x x x
N =

= − −
− ∑  

Where wj is the weight of the j-th observation in group i, fj is the frequency, xj is the  
j-th observation column vector (in group i), and x  denotes the mean vector of the 
observations in group i. The mean vectors are computed as 

1 1

1( ) where 
i iM M

j j j i j j
j ji

x w f x W w f
W = =

= =∑ ∑  

Given the means and the covariance matrices, the linear discriminant function for 
group i is computed as: 

( ) 1 1ln 0.5 T T
i i i p i p iz p x S x x S x− −= − +

 

where ln (pi) is the natural log of the prior probability for the i-th group, x is the 
observation to be classified, and Sp denoted the pooled covariance matrix. 

Let S denote either the pooled covariance matrix of one of the within-group covariance 
matrices Si. (S will be the pooled covariance matrix in linear discrimination, and Si 
otherwise.) The Mahalanobis distance between group i and group j is computed as: 
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Finally, the asymptotic chi-squared test for the equality of covariance matrices is 
computed as follows (Morrison 1976, p. 252): 

( ) ( ){ }1

1

ln ln
k

i p i
i

C n S Sγ −

=

= −∑  

where ni is the number of degrees of freedom in the i-th sample covariance matrix, k is 
the number of groups, and  

( )( )
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∑ ∑  

where p is the number of variables. 
When ido = 4, the estimated posterior probability of each observation x belonging to 
group is computed using the prior probabilities and the sample mean vectors and 
estimated covariance matrices under a multivariate normal assumption. Under 
quadratic discrimination, the within-group covariance matrices are used to compute the 
estimated posterior probabilities. The estimated posterior probability of an observation 
x belonging to group i is  

( )
( )( )

( )( )
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For the leaving-out-one method of classification (method equal to 4, 5 or 6), the 
sample mean vector and sample covariance matrices in the formula for  

2
iD

 

are adjusted so as to remove the observation x from their computation. For linear 
discrimination (method equal to 1, 3, 4, or 6), the linear discriminant function 
coefficients are actually used to compute the same posterior probabilities. 
Using the posterior probabilities, each observation in x is classified into a group; the 
result is tabulated in the matrix class_table and saved in the vector 
class_membership. Matrix class_table is not altered at this stage if 
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x[i][x_group] (by default, x_igrp = 0; see optional argument IMSLS_INDICES) 
contains a group number that is out of range. If the reclassification method is specified, 
then all observations with no missing values in the n_variables classification 
variables are classified. When the leaving-out-one method is used, observations with 
invalid group numbers, weights, frequencies, or classification variables are not 
classified. Regardless of the frequency, a 1 is added (or subtracted) from 
class_table for each row of x that is classified and contains a valid group number. 
When method > 3, adjustment is made to the posterior probabilities to remove the 
effect of the observation in the classification rule. In this adjustment, each observation 
is presumed to have a weight of x[i][iwt] if  
iwt > −1 (and a weight of 1.0 if iwt = −1), and a frequency of 1.0. See Lachenbruch 
(1975, p. 36) for the required adjustment. 
Finally, when ido = 5, the covariance matrices are computed from their LU 
factorizations. Internally allocated and saved variables are cleaned up at this step (ido 
equal to 5 or 6). 

Example 1 
The following example uses liner discrimination with equal prior probabilities on 
Fisher’s (1936) iris data. This example illustrates the execution of 
imsls_f_discriminant_analysis when one call is made (i.e. using the default of 
ido = 0). 

#include <stdio.h> 
#include <stdlib.h> 
#include <imsls.h> 
 
main() { 
    int   n_groups = 3; 
    int   nrow, nvar, ncol, nrmiss; 
    float *x, *xtemp; 
    float *prior_out, *means, *cov, *coef; 
    float *table, *d2, *stats, *prob; 
    int   *counts, *cm; 
    static int perm[5] = {1, 2, 3, 4, 0}; 
 
    /* Retrieve the Fisher Iris Data Set */ 
    xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow, 
        IMSLS_N_VARIABLES, &ncol, 0); 
    nvar = ncol - 1; 
 
    /* Move the group column to end of the the matrix */ 
    x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm, 
        IMSLS_PERMUTE_COLUMNS, 0); 
    free(xtemp); 
 
    imsls_f_discriminant_analysis (nrow, nvar, x, n_groups,  
        IMSLS_METHOD, 3,  
        IMSLS_GROUP_COUNTS, &counts, 
        IMSLS_COEF, &coef, 
        IMSLS_MEANS, &means, 
        IMSLS_STATS, &stats, 
        IMSLS_CLASS_MEMBERSHIP, &cm, 



 

 
 

694 • discriminant_analysis IMSL C Stat Library 

 

 

 

        IMSLS_CLASS_TABLE, &table, 
        IMSLS_PROB, &prob, 
        IMSLS_MAHALANOBIS, &d2, 
        IMSLS_COV, &cov, 
        IMSLS_PRIOR_OUTPUT, &prior_out, 
        IMSLS_N_ROWS_MISSING, &nrmiss, 
        IMSLS_PRIOR_EQUAL,  
        IMSLS_METHOD, 3, 0); 
 
    imsls_i_write_matrix("Counts", 1, n_groups, counts, 0); 
    imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0); 
    imsls_f_write_matrix("Means", n_groups, nvar, means, 0); 
    imsls_f_write_matrix("Stats", 12, 1, stats, 0); 
    imsls_i_write_matrix("Membership", 1, nrow, cm, 0); 
    imsls_f_write_matrix("Table", n_groups, n_groups, table, 0); 
    imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0); 
    imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);   
    imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0); 
    imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);  
    printf("\nnrmiss = %3d\n", nrmiss); 
 
    free(means); 
    free(stats); 
    free(counts); 
    free(coef); 
    free(cm); 
    free(table); 
    free(prob); 
    free(d2); 
    free(prior_out); 
    free(cov); 
} 

Output 
   Counts 
  1    2    3 
 50   50   50 
  
                            Coef 
            1           2           3           4           5 
1       -86.3        23.5        23.6       -16.4       -17.4 
2       -72.9        15.7         7.1         5.2         6.4 
3      -104.4        12.4         3.7        12.8        21.1 
  
                      Means 
            1           2           3           4 
1       5.006       3.428       1.462       0.246 
2       5.936       2.770       4.260       1.326 
3       6.588       2.974       5.552       2.026 
  
     Stats 
 1         147 
 2  .......... 
 3  .......... 
 4  .......... 
 5  .......... 
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 6  .......... 
 7  .......... 
 8         -10 
 9          50 
10          50 
11          50 
12         150 
  
                            Membership 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
 1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2 
  
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 
 2  2  2  2  2  2  2  2  2  2  3  2  2  2  2  2  2  2  2  2 
  
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 
 2  2  2  3  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 
  
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 
  2   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 
  3   3   2   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
148  149  150 
  3    3    3 
  
                Table 
            1           2           3 
1          50           0           0 
2           0          48           2 
3           0           1          49 
  
                 Prob 
              1           2           3 
  1       1.000       0.000       0.000 
  2       1.000       0.000       0.000 
  3       1.000       0.000       0.000 
  4       1.000       0.000       0.000 
  5       1.000       0.000       0.000 
  6       1.000       0.000       0.000 
  7       1.000       0.000       0.000 
  8       1.000       0.000       0.000 
  9       1.000       0.000       0.000 
 10       1.000       0.000       0.000 
 11       1.000       0.000       0.000 
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 12       1.000       0.000       0.000 
 13       1.000       0.000       0.000 
 14       1.000       0.000       0.000 
 15       1.000       0.000       0.000 
 16       1.000       0.000       0.000 
 17       1.000       0.000       0.000 
 18       1.000       0.000       0.000 
 19       1.000       0.000       0.000 
 20       1.000       0.000       0.000 
 21       1.000       0.000       0.000 
 22       1.000       0.000       0.000 
 23       1.000       0.000       0.000 
 24       1.000       0.000       0.000 
 25       1.000       0.000       0.000 
 26       1.000       0.000       0.000 
 27       1.000       0.000       0.000 
 28       1.000       0.000       0.000 
 29       1.000       0.000       0.000 
 30       1.000       0.000       0.000 
 31       1.000       0.000       0.000 
 32       1.000       0.000       0.000 
 33       1.000       0.000       0.000 
 34       1.000       0.000       0.000 
 35       1.000       0.000       0.000 
 36       1.000       0.000       0.000 
 37       1.000       0.000       0.000 
 38       1.000       0.000       0.000 
 39       1.000       0.000       0.000 
 40       1.000       0.000       0.000 
 41       1.000       0.000       0.000 
 42       1.000       0.000       0.000 
 43       1.000       0.000       0.000 
 44       1.000       0.000       0.000 
 45       1.000       0.000       0.000 
 46       1.000       0.000       0.000 
 47       1.000       0.000       0.000 
 48       1.000       0.000       0.000 
 49       1.000       0.000       0.000 
 50       1.000       0.000       0.000 
 51       0.000       1.000       0.000 
 52       0.000       0.999       0.001 
 53       0.000       0.996       0.004 
 54       0.000       1.000       0.000 
 55       0.000       0.996       0.004 
 56       0.000       0.999       0.001 
 57       0.000       0.986       0.014 
 58       0.000       1.000       0.000 
 59       0.000       1.000       0.000 
 60       0.000       1.000       0.000 
 61       0.000       1.000       0.000 
 62       0.000       0.999       0.001 
 63       0.000       1.000       0.000 
 64       0.000       0.994       0.006 
 65       0.000       1.000       0.000 
 66       0.000       1.000       0.000 
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 67       0.000       0.981       0.019 
 68       0.000       1.000       0.000 
 69       0.000       0.960       0.040 
 70       0.000       1.000       0.000 
 71       0.000       0.253       0.747 
 72       0.000       1.000       0.000 
 73       0.000       0.816       0.184 
 74       0.000       1.000       0.000 
 75       0.000       1.000       0.000 
 76       0.000       1.000       0.000 
 77       0.000       0.998       0.002 
 78       0.000       0.689       0.311 
 79       0.000       0.993       0.007 
 80       0.000       1.000       0.000 
 81       0.000       1.000       0.000 
 82       0.000       1.000       0.000 
 83       0.000       1.000       0.000 
 84       0.000       0.143       0.857 
 85       0.000       0.964       0.036 
 86       0.000       0.994       0.006 
 87       0.000       0.998       0.002 
 88       0.000       0.999       0.001 
 89       0.000       1.000       0.000 
 90       0.000       1.000       0.000 
 91       0.000       0.999       0.001 
 92       0.000       0.998       0.002 
 93       0.000       1.000       0.000 
 94       0.000       1.000       0.000 
 95       0.000       1.000       0.000 
 96       0.000       1.000       0.000 
 97       0.000       1.000       0.000 
 98       0.000       1.000       0.000 
 99       0.000       1.000       0.000 
100       0.000       1.000       0.000 
101       0.000       0.000       1.000 
102       0.000       0.001       0.999 
103       0.000       0.000       1.000 
104       0.000       0.001       0.999 
105       0.000       0.000       1.000 
106       0.000       0.000       1.000 
107       0.000       0.049       0.951 
108       0.000       0.000       1.000 
109       0.000       0.000       1.000 
110       0.000       0.000       1.000 
111       0.000       0.013       0.987 
112       0.000       0.002       0.998 
113       0.000       0.000       1.000 
114       0.000       0.000       1.000 
115       0.000       0.000       1.000 
116       0.000       0.000       1.000 
117       0.000       0.006       0.994 
118       0.000       0.000       1.000 
119       0.000       0.000       1.000 
120       0.000       0.221       0.779 
121       0.000       0.000       1.000 



 

 
 

698 • discriminant_analysis IMSL C Stat Library 

 

 

 

122       0.000       0.001       0.999 
123       0.000       0.000       1.000 
124       0.000       0.097       0.903 
125       0.000       0.000       1.000 
126       0.000       0.003       0.997 
127       0.000       0.188       0.812 
128       0.000       0.134       0.866 
129       0.000       0.000       1.000 
130       0.000       0.104       0.896 
131       0.000       0.000       1.000 
132       0.000       0.001       0.999 
133       0.000       0.000       1.000 
134       0.000       0.729       0.271 
135       0.000       0.066       0.934 
136       0.000       0.000       1.000 
137       0.000       0.000       1.000 
138       0.000       0.006       0.994 
139       0.000       0.193       0.807 
140       0.000       0.001       0.999 
141       0.000       0.000       1.000 
142       0.000       0.000       1.000 
143       0.000       0.001       0.999 
144       0.000       0.000       1.000 
145       0.000       0.000       1.000 
146       0.000       0.000       1.000 
147       0.000       0.006       0.994 
148       0.000       0.003       0.997 
149       0.000       0.000       1.000 
150       0.000       0.018       0.982 
  
                 D2 
            1           2           3 
1         0.0        89.9       179.4 
2        89.9         0.0        17.2 
3       179.4        17.2         0.0 
  
                   Covariance 
            1           2           3           4 
1      0.2650      0.0927      0.1675      0.0384 
2      0.0927      0.1154      0.0552      0.0327 
3      0.1675      0.0552      0.1852      0.0427 
4      0.0384      0.0327      0.0427      0.0419 
  
                   Prior OUT 
         1           2           3 
    0.3333      0.3333      0.3333 
 
nrmiss =   0 

Example 2 
Continuing with Fisher’s iris data, the example below computes the quadratic 
discriminant functions using values of IDO greater than 0. In the first loop, all 
observations are added to the functions, one at a time. In the second loop, each of the 
observations is classified, one by one, using the leaving-out-one method. 
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#include <stdio.h> 
#include <stdlib.h> 
#include <imsls.h> 
 
main() { 
    int   n_groups = 3; 
    int   nrow, nvar, ncol, i, nrmiss; 
    float *x, *xtemp; 
    float *prior_out, *means, *cov, *coef; 
    float *table, *d2, *stats, *prob; 
    int   *counts, *cm; 
    static int perm[5] = {1, 2, 3, 4, 0}; 
 
    /* Retrieve the Fisher Iris Data Set */ 
    xtemp = imsls_f_data_sets(3, IMSLS_N_OBSERVATIONS, &nrow, 
        IMSLS_N_VARIABLES, &ncol, 0); 
    nvar = ncol - 1; 
 
    /* Move the group column to end of the the matrix */ 
    x = imsls_f_permute_matrix(nrow, ncol, xtemp, perm,  
        IMSLS_PERMUTE_COLUMNS, 0); 
    free(xtemp); 
 
    prior_out = (float *) malloc(n_groups*sizeof(float)); 
    counts    = (int *)   malloc(n_groups*sizeof(int)); 
    means     = (float *) malloc(n_groups*nvar*sizeof(float)); 
    cov       = (float *) malloc(nvar*nvar*(ngroups+1)*sizeof(float)); 
    coef      = (float *) malloc(n_groups*(nvar+1)*sizeof(float)); 
    table     = (float *) malloc(n_groups*n_groups*sizeof(float)); 
    d2        = (float *) malloc(n_groups*n_groups*sizeof(float)); 
    stats     = (float *) malloc((4+2*(n_groups+1))*sizeof(float)); 
    cm        = (int *)   malloc(nrow*sizeof(int)); 
    prob      = (float *) malloc(nrow*n_groups*sizeof(float)); 
 
    /*Initialize Analysis*/ 
    imsls_f_discriminant_analysis (0, nvar, x, n_groups,  
         IMSLS_IDO, 1, 
         IMSLS_METHOD, 2, 0); 
 
    /*Add In Each Observation*/ 
    for (i=0;i<nrow;i=i+1) { 
      imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,  
         IMSLS_IDO, 2, 0); 
    } 
 
    /*Remove observation 0 from the analysis */ 
    imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,  
         IMSLS_ROWS_DELETE, 
         IMSLS_IDO, 2, 0); 
 
    /*Add observation 0 back into the analysis */ 
    imsls_f_discriminant_analysis (1, nvar, (x+0), n_groups,  
         IMSLS_IDO, 2, 0); 
 
    /*Compute statistics*/ 
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    imsls_f_discriminant_analysis (0, nvar, x, n_groups,  
         IMSLS_PRIOR_PROPORTIONAL, 
         IMSLS_PRIOR_OUTPUT_USER, prior_out, 
         IMSLS_IDO, 3, 0); 
 
    imsls_f_write_matrix("Prior OUT", 1, n_groups, prior_out, 0);  
 
    /*Classify One observation at a time, using proportional priors*/ 
    for (i=0;i<nrow;i=i+1) { 
      imsls_f_discriminant_analysis (1, nvar, (x+i*ncol), n_groups,  
         IMSLS_IDO, 4, 
         IMSLS_CLASS_MEMBERSHIP_USER, (cm+i), 
         IMSLS_PROB_USER, (prob+i*n_groups), 0); 
    } 
 
    /*Compute covariance matrices and release internal workspace*/ 
    imsls_f_discriminant_analysis (0, nvar, x, n_groups,  
         IMSLS_IDO, 5,  
         IMSLS_COV_USER, cov,  
         IMSLS_GROUP_COUNTS_USER, counts, 
         IMSLS_COEF_USER, coef, 
         IMSLS_MEANS_USER, means, 
         IMSLS_STATS_USER, stats, 
         IMSLS_CLASS_TABLE_USER, table, 
         IMSLS_MAHALANOBIS_USER, d2, 
         IMSLS_N_ROWS_MISSING, &nrmiss, 0); 
 
    imsls_i_write_matrix("Counts", 1, n_groups, counts, 0); 
    imsls_f_write_matrix("Coef", n_groups, nvar+1, coef, 0); 
    imsls_f_write_matrix("Means", n_groups, nvar, means, 0); 
    imsls_f_write_matrix("Stats", 12, 1, stats, 0); 
    imsls_i_write_matrix("Membership", 1, nrow, cm, 0); 
    imsls_f_write_matrix("Table", n_groups, n_groups, table, 0); 
    imsls_f_write_matrix("Prob", nrow, n_groups, prob, 0); 
    imsls_f_write_matrix("D2", n_groups, n_groups, d2, 0);   
    imsls_f_write_matrix("Covariance", nvar, nvar, cov, 0); 
    printf("\nnrmiss = %3d\n", nrmiss); 
 
    free(means); 
    free(stats); 
    free(counts); 
    free(coef); 
    free(cm); 
    free(table); 
    free(prob); 
    free(d2); 
    free(prior_out); 
    free(cov); 
  
} 

Output 
             Prior OUT 
         1           2           3 
    0.3333      0.3333      0.3333 
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   Counts 
  1    2    3 
 50   50   50 
  
                            Coef 
            1           2           3           4           5 
1       -86.3        23.5        23.6       -16.4       -17.4 
2       -72.9        15.7         7.1         5.2         6.4 
3      -104.4        12.4         3.7        12.8        21.1 
  
                      Means 
            1           2           3           4 
1       5.006       3.428       1.462       0.246 
2       5.936       2.770       4.260       1.326 
3       6.588       2.974       5.552       2.026 
  
     Stats 
 1       147.0 
 2       143.8 
 3        20.0 
 4         0.0 
 5       -13.1 
 6       -10.9 
 7        -8.9 
 8       -10.0 
 9        50.0 
10        50.0 
11        50.0 
12       150.0 
  
                                Membership 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1 
  
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 
 1  1  1  1  1  1  1  1  1  1  2  2  2  2  2  2  2  2  2  2 
  
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 
 2  2  2  2  2  2  2  2  2  2  3  2  2  2  2  2  2  2  2  2 
  
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 
 2  2  2  3  2  2  2  2  2  2  2  2  2  2  2  2  2  2  2 
  
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 
  2   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 
  3   3   3   3   3   3   3   3   3   3   3   3   3   3   3   3 
  
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 
  3   3   2   3   3   3   3   3   3   3   3   3   3   3   3   3 
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148 149 150 
  3   3   3 
  
                Table 
            1           2           3 
1          50           0           0 
2           0          48           2 
3           0           1          49 
  
                 Prob 
              1           2           3 
  1       1.000       0.000       0.000 
  2       1.000       0.000       0.000 
  3       1.000       0.000       0.000 
  4       1.000       0.000       0.000 
  5       1.000       0.000       0.000 
  6       1.000       0.000       0.000 
  7       1.000       0.000       0.000 
  8       1.000       0.000       0.000 
  9       1.000       0.000       0.000 
 10       1.000       0.000       0.000 
 11       1.000       0.000       0.000 
 12       1.000       0.000       0.000 
 13       1.000       0.000       0.000 
 14       1.000       0.000       0.000 
 15       1.000       0.000       0.000 
 16       1.000       0.000       0.000 
 17       1.000       0.000       0.000 
 18       1.000       0.000       0.000 
 19       1.000       0.000       0.000 
 20       1.000       0.000       0.000 
 21       1.000       0.000       0.000 
 22       1.000       0.000       0.000 
 23       1.000       0.000       0.000 
 24       1.000       0.000       0.000 
 25       1.000       0.000       0.000 
 26       1.000       0.000       0.000 
 27       1.000       0.000       0.000 
 28       1.000       0.000       0.000 
 29       1.000       0.000       0.000 
 30       1.000       0.000       0.000 
 31       1.000       0.000       0.000 
 32       1.000       0.000       0.000 
 33       1.000       0.000       0.000 
 34       1.000       0.000       0.000 
 35       1.000       0.000       0.000 
 36       1.000       0.000       0.000 
 37       1.000       0.000       0.000 
 38       1.000       0.000       0.000 
 39       1.000       0.000       0.000 
 40       1.000       0.000       0.000 
 41       1.000       0.000       0.000 
 42       1.000       0.000       0.000 
 43       1.000       0.000       0.000 
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 44       1.000       0.000       0.000 
 45       1.000       0.000       0.000 
 46       1.000       0.000       0.000 
 47       1.000       0.000       0.000 
 48       1.000       0.000       0.000 
 49       1.000       0.000       0.000 
 50       1.000       0.000       0.000 
 51       0.000       1.000       0.000 
 52       0.000       1.000       0.000 
 53       0.000       0.998       0.002 
 54       0.000       0.997       0.003 
 55       0.000       0.997       0.003 
 56       0.000       0.989       0.011 
 57       0.000       0.995       0.005 
 58       0.000       1.000       0.000 
 59       0.000       1.000       0.000 
 60       0.000       0.994       0.006 
 61       0.000       1.000       0.000 
 62       0.000       0.999       0.001 
 63       0.000       1.000       0.000 
 64       0.000       0.988       0.012 
 65       0.000       1.000       0.000 
 66       0.000       1.000       0.000 
 67       0.000       0.973       0.027 
 68       0.000       1.000       0.000 
 69       0.000       0.813       0.187 
 70       0.000       1.000       0.000 
 71       0.000       0.336       0.664 
 72       0.000       1.000       0.000 
 73       0.000       0.699       0.301 
 74       0.000       0.972       0.028 
 75       0.000       1.000       0.000 
 76       0.000       1.000       0.000 
 77       0.000       0.998       0.002 
 78       0.000       0.861       0.139 
 79       0.000       0.992       0.008 
 80       0.000       1.000       0.000 
 81       0.000       1.000       0.000 
 82       0.000       1.000       0.000 
 83       0.000       1.000       0.000 
 84       0.000       0.154       0.846 
 85       0.000       0.943       0.057 
 86       0.000       0.996       0.004 
 87       0.000       0.999       0.001 
 88       0.000       0.999       0.001 
 89       0.000       1.000       0.000 
 90       0.000       0.999       0.001 
 91       0.000       0.981       0.019 
 92       0.000       0.997       0.003 
 93       0.000       1.000       0.000 
 94       0.000       1.000       0.000 
 95       0.000       0.999       0.001 
 96       0.000       1.000       0.000 
 97       0.000       1.000       0.000 
 98       0.000       1.000       0.000 
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 99       0.000       1.000       0.000 
100       0.000       1.000       0.000 
101       0.000       0.000       1.000 
102       0.000       0.000       1.000 
103       0.000       0.000       1.000 
104       0.000       0.006       0.994 
105       0.000       0.000       1.000 
106       0.000       0.000       1.000 
107       0.000       0.004       0.996 
108       0.000       0.000       1.000 
109       0.000       0.000       1.000 
110       0.000       0.000       1.000 
111       0.000       0.006       0.994 
112       0.000       0.001       0.999 
113       0.000       0.000       1.000 
114       0.000       0.000       1.000 
115       0.000       0.000       1.000 
116       0.000       0.000       1.000 
117       0.000       0.033       0.967 
118       0.000       0.000       1.000 
119       0.000       0.000       1.000 
120       0.000       0.041       0.959 
121       0.000       0.000       1.000 
122       0.000       0.000       1.000 
123       0.000       0.000       1.000 
124       0.000       0.028       0.972 
125       0.000       0.001       0.999 
126       0.000       0.007       0.993 
127       0.000       0.057       0.943 
128       0.000       0.151       0.849 
129       0.000       0.000       1.000 
130       0.000       0.020       0.980 
131       0.000       0.000       1.000 
132       0.000       0.009       0.991 
133       0.000       0.000       1.000 
134       0.000       0.605       0.395 
135       0.000       0.000       1.000 
136       0.000       0.000       1.000 
137       0.000       0.000       1.000 
138       0.000       0.050       0.950 
139       0.000       0.141       0.859 
140       0.000       0.000       1.000 
141       0.000       0.000       1.000 
142       0.000       0.000       1.000 
143       0.000       0.000       1.000 
144       0.000       0.000       1.000 
145       0.000       0.000       1.000 
146       0.000       0.000       1.000 
147       0.000       0.000       1.000 
148       0.000       0.001       0.999 
149       0.000       0.000       1.000 
150       0.000       0.061       0.939 
  
                 D2 
            1           2           3 
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1         0.0       323.1       706.1 
2       103.2         0.0        17.9 
3       168.8        13.8         0.0 
  
  
                   Covariance 
            1           2           3           4 
1      0.1242      0.0992      0.0164      0.0103 
2      0.0992      0.1437      0.0117      0.0093 
3      0.0164      0.0117      0.0302      0.0061 
4      0.0103      0.0093      0.0061      0.0111 
 
nrmiss =   0 

Warning Errors 

IMSLS_BAD_OBS_1 In call #, row # of the data matrix, “x”, has group 
number = #. The group number must be an integer 
between 1.0 and “n_groups” = #, inclusively. This 
observation will be ignored. 

IMSLS_BAD_OBS_2 The leaving out one method is specified but this obser-
vation does not have a valid group number (Its group 
number is #.). This observation (row #) is ignored. 

IMSLS_BAD_OBS_3 The leaving out one method is specified but this obser-
vation does not have a valid weight or it does not have 
a valid frequency. This observation (row #) is ignored. 

IMSLS_COV_SINGULAR_3 The group # covariance matrix is singular. “stats[1]” 
cannot be computed. “stats[1]” and “stats[3]” are set to 
the missing value code (NaN). 

Fatal Errors 

IMSLS_BAD_IDO_1 “ido” = #. Initial allocations must be performed by 
making a call to discriminant_analysis with “ido” = 1. 

IMSLS_BAD_IDO_2 “ido” = #. A new analysis may not begin until the pre-
vious analysis is terminated with “ido” equal to 5 or 6. 

IMSLS_COV_SINGULAR_1 The variance-covariance matrix for population number 
# is singular. The computations cannot continue. 

IMSLS_COV_SINGULAR_2 The pooled variance-covariance matrix is singular. 
The computations cannot continue. 

IMSLS_COV_SINGULAR_4 A variance-covariance matrix is singular. The index of 
the first zero element is equal to #. 



 

 
 

706 • discriminant_analysis IMSL C Stat Library 

 

 

 

 



 
 
 
 

 
 

Chapter 10: Survival and Reliability Analysis Routines • 707  

 

 

 

Chapter 10: Survival and Reliability 
Analysis 

Routines 
Survival Analysis 

Computes Kaplan-Meier estimates of survival  
probabilties kaplan_meier_estimates 708 
Analyzes survival and reliability data using Cox’s  
proportional hazards model prop_hazards_gen_lin 713  
Analyzes survival data using the generalized  
linear model survival_glm 727 
Estimates using various parametric modes survival_estimates 750 

Reliability Analysis 
Estimates a reliability hazard function using a 
nonparametric approach nonparam_hazard_rate 756  

Actuarial Tables 
Produces population and cohort life tables life_tables 764 

Usage Notes 
The functions described in this chapter have primary application in the areas of 
reliability and life testing, but they may find application in any situation in which 
analysis of binomial events over time is of interest. Kalbfleisch and Prentice (1980), 
Elandt-Johnson and Johnson (1980), Lee (1980), Gross and Clark (1975), Lawless 
(1982), and Chiang (1968) and Tanner and Wong (1984) are references for discussing 
the models and methods desribed in this chapter.  
Function imsls_f_kaplan_meier_estimates produces Kaplan-Meier (product-
limit) estimates of the survival distribution in a single population, and these can be 
printed using the IMSLS_PRINT optional argument.  
Function imsls_f_prop_hazards_gen_lin computes the parameter estimates in a 
proportional hazards model.  
Function imsls_f_survival_glm fits any of several generalized linear models for 
survival data, and imsls_f_survival_estimates  computes estimates of survival 
probabilities based upon the same models. 
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Function imsls_f_nonparam_hazard_rate performs nonparametric hazard rate 
estimation using kernel functions and quasi-likelihoods.  
Function imsls_f_life_tables computes and (optionally) prints an actuarial table 
based either upon a cohort followed over time or a cross-section of a population. 

kaplan_meier_estimates 
Computes Kaplan-Meier estimates of survival probabilities in stratified samples. 

Synopsis 
#include <imsls.h> 
float *imsls_f_kaplan_meier_estimates (int n_observations, int ncol, 

float x[],  ..., 0) 
The type double function is imsls_d_kaplan_meier_estimates. 

Required Arguments 

int n_observations  (Input) 
Number of observations. 

int ncol  (Input) 
Number of columns in x. 

float x[]  (Input)  
Two-dimensional data array of size n_observations*ncol. 

Return Value 
Pointer to an array of length n_observations*2.  The first column contains the 
estimated survival probabilities, and the second column contains Greenwood’s estimate 
of the standard deviation of these probabilities. If the i-th observation contains censor 
codes out of range or if a variable is missing, then the corresponding elements of the 
return value are set to missing (NaN, not a number). Similarly, if an element in the 
return value is not defined, then it is set to missing. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_kaplan_meier_estimates (int n_observations, int ncol, 

float x[], 
IMSLS_RETURN_USER,  float table[], 
IMSLS_PRINT, 
IMSLS_X_RESPONSE_COL, int irt, 
IMSLS_CENSOR_CODES_COL, int icen, 
IMSLS_FREQ_RESPONSE_COL_COL, int ifrq, 
IMSLS_STRATUM_NUMBER_COL, int igrp, 
IMSLS_SORTED, 
IMSLS_N_MISSING, int *nrmiss,  
0) 
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Optional Arguments 

IMSLS_RETURN_USER, float table[]  (Output) 
User supplied storage of an array of length n_observations*2 containing the 
estimated survival probabilities and their associated standard deviations. See 
Return Value section. 

IMSLS_PRINT, (Input) 
Print Kaplan-Meier estimates of survival probabilities in stratified samples. 

IMSLS_X_RESPONSE_COL, int irt  (Input) 
Column index for the response times in the data array, x. The interpretation of 
these times as either right-censored or exact failure times depends on 
IMSLS_CENSOR_CODES_COL. 
Default:  irt = 0. 

IMSLS_CENSOR_CODES_COL, int icen (Input) 
Column index for the optional censoring codes in the data array, x.  If x[i, 
icen]= 0, the failure time x[i, irt] is treated as an exact time of failure.  
Otherwise it is treated as a right-censored time.  
Default:  It is assumed that there is no censor code column in x. All 
observations are assumed to be exact failure times. 

IMSLS_FREQ_RESPONSE_COL_COL, int ifrq  (Input) 
Column index for the number of responses associated with each row in the 
data array, x.  
Default:  It is assumed that there is no frequency response column in x.  Each 
observation in the data array is assumed to be for a single failure. 

IMSLS_STRATUM_NUMBER_COL, int igrp  (Input) 
Column index for the stratum number for each observation in the data array, 
x.  Column igrp of x contains a unique value for each stratum in the data. 
Kaplan-Meier estimates are computed within each stratum. 
Default: It is assumed that there is no stratum number column in x. The data is 
assumed to come from one stratum. 

IMSLS_SORTED,   (Input) 
If this option is used, column irt of x is assumed to be sorted in ascending 
order within each stratum. Otherwise, a detached sort is conducted prior to 
analysis. If sorting is performed, all censored individuals are assumed to 
follow tied failures. 
Default:  Column irt of x is not sorted. 

IMSLS_N_MISSING, int *nrmiss  (Output) 
Number of rows of data in x containing missing values. 

Description 
Function imsls_f_kaplan_meier_estimates computes Kaplan-Meier (or product-
limit) estimates of survival probabilities for a sample of failure times that can be right 
censored or exact times. A survival probability S(t) is defined as  
1 − F(t), where F(t) is the cumulative distribution function of the failure times (t). 
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Greenwood’s estimate of the standard errors of the survival probability estimates are 
also computed. (See Kalbfleisch and Prentice, 1980, pages 13 and 14.)  
Let (ti, δi), for i = 1,…, n denote the failure censoring times and the censoring codes for 
the n observations in a single sample. Here, ti = xi-1, irt is a failure time if δi is 0, where 
δi = xi-1, icen. Also, ti is a right censoring time if δi is 1. Rows in x containing values 
other than 0 or 1 for δi are ignored. Let the number of observations in the sample that 
have not failed by time s(ι) be denoted by n(ι), where s(ι) is an ordered (from smallest to 
largest) listing of the distinct failure times (censoring times are omitted). Then the 
Kaplan-Meier estimate of the survival probabilities is a step function, which in the 
interval from s(ι) to s(i+1) (including the lower endpoint) is given by 

( ) ( )

1 ( )

ˆ( )
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j j

j j
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where d(j) denotes the number of failures occurring at time s(j), and n(ϕ)  is the number 
of observation that have not failed prior tos(j).  
Note that one row of X may correspond to more than one failed (or censored) 
observation when the frequency option is in effect (ifrq is specified). The Kaplan-
Meier estimate of the survival probability prior to time s(1) is 1.0, while the Kaplan-
Meier estimate of the survival probability after the last failure time is not defined.  
Greenwood’s estimate of the variance of 

ˆ( )S t
 

in the interval from s(i) to s(i+1) is given as  
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Function imsls_f_kaplan_meier_estimates computes the single sample 
estimates of the survival probabilities for all samples of data included in x during a 
single call. This is accomplished through the igrp column of x, which if present, must 
contain a distinct code for each sample of observations. If igrp is not specified, there 
is no grouping column, and all observations are assumed to come from the same 
sample.  
When failures and right-censored observations are tied and the data are to be sorted by 
imsls_f_kaplan_meier_estimates (IMSLS_SORTED optional argument is not 
used), imsls_f_kaplan_meier_estimates assumes that the time of censoring for 
the tied-censored observations is immediately after the tied failure (within the same 
sample). When the IMSLS_SORTED optional argument is used, the data are assumed to 
be sorted from smallest to largest according to column irt of x within each stratum. 
Furthermore, a small increment of time is assumed (theoretically) to elapse between the 
failed and censored observations that are tied (in the same sample). Thus, when the 
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IMSLS_SORTED optional argument is used, the user must sort all of the data in x from 
smallest to largest according to column irt (and column igrp, if present). By 
appropriate sorting of the observations, the user can handle censored and failed 
observations that are tied in any manner desired. 
The IMSLS_PRINT option prints life tables.  One table for each stratum is printed. In 
addition to the survival probabilities at each failure point, the following is also printed: 
the number of individuals remaining at risk, Greenwood’s estimate of the standard 
errors for the survival probabilities, and the Kaplan-Meier log-likelihood. The Kaplan-
Meier log-likelihood is computed as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ln ( )ln( ) lnj j j j j j j j
j

d d n d n d n n= + − − −∑A
 

where the sum is with respect to the distinct failure times s(j), d(j). 

Example 
The following example is taken from Kalbfleisch and Prentice (1980, page 1). The first 
column in x contains the death/censoring times for rats suffering from vaginal cancer. 
The second column contains information as to which of two forms of treatment were 
provided, while the third column contains the censoring code. Finally, the fourth 
column contains the frequency of each observation. The product-limit estimates of the 
survival probabilities are computed for both groups with one call to 
imsls_f_kaplan_meier_estimates.   
Function imsls_f_kaplan_meier_estimates could have been called with the 
IMSLS_SORTED optional argument if the censored observations had been sorted with 
respect to the failure time variable.  IMSLS_PRINT option is used to print the life 
tables. 
 

#include "imsls.h" 
 
void main () 
{ 
  int icen = 2, ifrq = 3, igrp = 1, ncol = 4, n_observations = 33; 
  float x[] = { 
    143, 5, 0, 1, 
    164, 5, 0, 1, 
    188, 5, 0, 2, 
    190, 5, 0, 1, 
    192, 5, 0, 1, 
    206, 5, 0, 1, 
    209, 5, 0, 1, 
    213, 5, 0, 1, 
    216, 5, 0, 1, 
    220, 5, 0, 1, 
    227, 5, 0, 1, 
    230, 5, 0, 1, 
    234, 5, 0, 1, 
    246, 5, 0, 1, 
    265, 5, 0, 1, 
    304, 5, 0, 1, 
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    216, 5, 1, 1, 
    244, 5, 1, 1, 
    142, 7, 0, 1, 
    156, 7, 0, 1, 
    163, 7, 0, 1, 
    198, 7, 0, 1, 
    205, 7, 0, 1, 
    232, 7, 0, 2, 
    233, 7, 0, 4, 
    239, 7, 0, 1, 
    240, 7, 0, 1, 
    261, 7, 0, 1, 
    280, 7, 0, 2, 
    296, 7, 0, 2, 
    323, 7, 0, 1, 
    204, 7, 1, 1, 
    344, 7, 1, 1 
  }; 
 
  imsls_f_kaplan_meier_estimates (n_observations, ncol, x, 
      IMSLS_PRINT, 
      IMSLS_FREQ_RESPONSE_COL_COL, ifrq, 
      IMSLS_CENSOR_CODES_COL, icen, 
      IMSLS_STRATUM_NUMBER_COL, igrp,  
      0); 
} 

Output 
 
                   Kaplan Meier Survival Probabilities 
                      For Group Value = 5 
  
       Number      Number                 Survival     Estimated 
      at risk     Failing        Time  Probability    Std. Error 
           19           1         143      0.94737      0.051228 
  
           18           1         164      0.89474      0.070406 
  
           17           2         188      0.78947      0.093529 
  
           15           1         190      0.73684       0.10102 
  
           14           1         192      0.68421       0.10664 
  
           13           1         206      0.63158       0.11066 
  
           12           1         209      0.57895       0.11327 
  
           11           1         213      0.52632       0.11455 
  
           10           1         216      0.47368       0.11455 
  
            8           1         220      0.41447       0.11452 
  
            7           1         227      0.35526       0.11243 



 
 
 
 

 
 

Chapter 10: Survival and Reliability Analysis prop_hazards_gen_lin • 713  

 

 

 

  
            6           1         230      0.29605       0.10816 
  
            5           1         234      0.23684       0.10145 
  
            3           1         246      0.15789      0.093431 
  
            2           1         265     0.078947      0.072792 
  
            1           1         304            0  ............ 
 
 Total number in group    =      19 
 Total number failing     =      17 
 Product Limit Likelihood = -49.1692 
 
                   Kaplan Meier Survival Probabilities 
                      For Group Value = 7 
  
       Number      Number                 Survival     Estimated 
      at risk     Failing        Time  Probability    Std. Error 
           21           1         142      0.95238      0.046471 
  
           20           1         156      0.90476      0.064056 
  
           19           1         163      0.85714       0.07636 
  
           18           1         198      0.80952      0.085689 
  
           16           1         205      0.75893      0.094092 
  
           15           2         232      0.65774       0.10529 
  
           13           4         233      0.45536       0.11137 
  
            9           1         239      0.40476       0.10989 
  
            8           1         240      0.35417       0.10717 
  
            7           1         261      0.30357       0.10311 
  
            6           2         280      0.20238      0.090214 
  
            4           2         296      0.10119      0.067783 
  
            2           1         323     0.050595      0.049281 
 
 Total number in group    =      21 
 Total number failing     =      19 
 Product Limit Likelihood = -50.4277 
 

prop_hazards_gen_lin 
Analyzes survival and reliability data using Cox’s proportional hazards model. 
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Synopsis 
#include <imsls.h> 
float *imsls_f_prop_hazards_gen_lin (int n_observations,  

int n_columns, float x[], int nef, int n_var_effects[],  
int indices_effects[], int max_class, int *ncoef,  ..., 0) 

The type double function is imsls_d_prop_hazards_gen_lin. 

Required Arguments 

int n_observations  (Input) 
Number of observations. 

int n_columns  (Input) 
Number of columns in x. 

float x[]  (Input)  
Array of length n_observations * n_columns containing the data.  When 
optional argument itie = 1, the observations in x must be grouped by 
stratum and sorted from largest to smallest failure time within each stratum, 
with the strata separated. 

int nef  (Input) 
Number of effects in the model.  In addition to effects involving classification 
variables, simple covariates and the product of simple covariates are also 
considered effects. 

int n_var_effects[]  (Input) 
Array of length nef containing the number of variables associated with each 
effect in the model. 

int indices_effects[]  (Input) 
Index array of length n_var_effects[0] + … + n_var_effects[nef-1] 
containing the column indices of x associated with each effect.  The first 
n_var_effects[0] elements of indices_effects contain the column 
indices of x for the variables in the first effect. The next n_var_effects[1] 
elements in indices_effects contain the column indices for the second 
effect, etc. 

int max_class  (Input) 
An upper bound on the total number of different values found among the 
classification variables in x.  For example, if the model consisted of two class 
variables, one with the values {1, 2, 3, 4} and a second with the values {0, 1}, 
then then the total number of different classification values is 4+2=6, and 
max_class >= 6.  

int *ncoef  (Output)  
Number of estimated coefficients in the model. 

Return Value 

Pointer to an array of length ncoef*4, coef, containing the parameter estimates and 
associated statistics. 
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Column Statistic 
1 Coefficient estimate β̂  

2 Estimated standard deviation of the estimated coefficient. 
3 Asymptotic normal score for testing that the coefficient is zero 

against the two-sided alternative. 
4 p-value associated with the normal score in column 3. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_prop_hazards_gen_lin (int n_observations,  

int n_columns, float x[], int nef, int n_var_effects[],  
int indices_effects[], int max_class, int *ncoef, 
IMSLS_RETURN_USER,  float cov[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_CONVERGENCE_EPS, float eps, 
IMSLS_RATIO, float ratio,  
IMSLS_X_RESPONSE_COL, int irt, 
IMSLS_CENSOR_CODES_COL, int icen,  
IMSLS_STRATIFICATION_COL, int istrat, 
IMSLS_CONSTANT_COL, int ifix, 
IMSLS_FREQ_RESPONSE_COL, int ifrq, 
IMSLS_TIES_OPTION, int itie, 
IMSLS_MAXIMUM_LIKELIHOOD, float algl,  
IMSLS_N_MISSING, int *nrmiss,  
IMSLS_STATISTICS, float **case,  
IMSLS_STATISTICS_USER, float case[], 
IMSLS_X_MEAN, float **xmean,  
IMSLS_X_MEAN_USER, float xmean[], 
IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov,  
IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[], 
IMSLS_INITIAL_EST_INPUT, float in_coef[], 
IMSLS_UPDATE, float **gr,  
IMSLS_UPDATE_USER, float gr[], 
IMSLS_DUMP, int n_class_var, int index_class_var[], 
IMSLS_STRATUM_NUMBER, int **igrp,  
IMSLS_STRATUM_NUMBER_USER, int igrp[], 
IMSLS_CLASS_VARIABLES, int **n_class_values,  
 float **class_values, 
IMSLS_CLASS_VARIABLES_USER, int n_class_values[], 
  float class_values[], 
0) 
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Optional Arguments 
IMSLS_RETURN_USER, float coef[]  (Output) 

If specified, coef is an array of length ncoef*4 containing the parameter 
estimates and associated statistics.  See Return Value. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  Default:  iprint = 0. 
Iprint Action 

0 No printing is performed. 
1 Printing is performed, but observational statistics are not 

printed. 
2 All output statistics are printed. 

IMSLS_MAX_ITERATIONS, int max_iterations  (Input) 
Maximum number of iterations.  max_iterations = 30 will usually be 
sufficient. Use  max_iterations = 0 to compute the Hessian and gradient, 
stored in cov and gr, at the initial estimates. When max_iterations = 0, 
IMSLS_INITIAL_EST_INPUT must be used. 
Default:  max_iterations = 30. 

IMSLS_CONVERGENCE_EPS, float eps  (Input) 
Convergence criterion.  Convergence is assumed when the relative change in 
algl from one iteration to the next is less than eps. If eps is zero,  
eps = 0.0001 is assumed. 
Default: eps = 0.0001. 

IMSLS_RATIO, float ratio  (Input) 
Ratio at which a stratum is split into two strata.  
Default: ratio = 1000.0. 
Let 

 
ˆ=exp( )k k kr z wβ +

 

 be the observation proportionality constant, where zk is the design row vector 
for the k-th observation and wk is the optional fixed parameter specified by 
xk, ifix. Let r∃ be the minimum value rk in a stratum, where, for failed 
observations, the minimum is over all times less than or equal to the time of 
occurrence of the k-th observation. Let r∀ be the maximum value of rk for 
the remaining observations in the group. Then, if r∃ > ratio r∀, the 
observations in the group are divided into two groups at k. ratio = 1000 is 
usually a good value. Set ratio = −1.0 if no division into strata is to be made. 

IMSLS_X_RESPONSE_COL, int irt  (Input) 
Column index in x containing the response variable.  For point observations, 
xi, irt contains the time of the i-th event. For right-censored observations, xi, 

irt contains the right-censoring time. Note that because 
imsls_f_prop_hazards_gen_lin only uses the order of the events, 
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negative “times” are allowed. 
Default:  irt = 0. 

IMSLS_CENSOR_CODES_COL, int icen (Input) 
Column index in x containing the censoring code for each observation.  
Default:  A censoring code of 0 is assumed for all observations. 

 
x
i,icen

 Censoring 
0 Exact censoring time xi, irt. 
1 Right censored. The exact censoring time is greater than xi, irt. 

IMSLS_STRATIFICATION_COL, int istrat  (Input) 
Column number in x containing the stratification variable.  Column istrat 
in x contains a unique number for each stratum. The risk set for an 
observation is determined by its stratum. 
Default: All observations are considered to be in one stratum. 

IMSLS_CONSTANT_COL, int ifix  (Input) 
Column index in x containing a constant, wi, to be added to the linear 
response.  The linear response is taken to be ˆ

i iw z β+  
where wi is the observation constant, zi is the observation design row vector, 
and β̂  is the vector of estimated parameters. The “fixed” constant allows one 
to test hypotheses about parameters via the log-likelihoods. 
Default: wi is assumed to be 0 for all observations. 

IMSLS_FREQ_RESPONSE_COL, int ifrq  (Input) 
Column index in x containing the number of responses for each observation. 
Default: A response frequency of 1 for each observation is assumed. 

IMSLS_TIES_OPTION, int itie  (Input) 
Method for handling ties.  Default:  itie = 0. 

 
Itie Method 
0 Breslow’s approximate method. 
1 Failures are assumed to occur in the same order as the observations 

input in x. The observations in x must be sorted from largest to 
smallest failure time within each stratum, and grouped by stratum. 
All observations are treated as if their failure/censoring times were 
distinct when computing the log-likelihood. 

IMSLS_MAXIMUM_LIKELIHOOD, float *algl  (Output) 
The maximized log-likelihood. 

IMSLS_N_MISSING, int *nrmiss  (Output) 
Number of rows of data in X that contain missing values in one or more 
columns irt, ifrq, ifix, icen, istrat, index_class_var, or 
indices_effects of x. 
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IMSLS_STATISTICS, float **case  (Output) 
Address of a pointer to an array of length n_observations * 5  containing 
the case statistics for each observation. 

 
Column Statistic 

1 Estimated survival probability at the observation time. 
2 Estimated observation influence or leverage. 
3 A residual estimate. 
4 Estimated cumulative baseline hazard rate. 
5 Observation proportionality constant. 

IMSLS_STATISTICS_USER, float case[]  (Output) 
Storage for case is provided by the user.  See IMSLS_STATISTICS. 

IMSLS_X_MEAN, float **xmean  (Output) 
Address of a pointer to an array of length ncoef containing the means of the 
design variables. 

IMSLS_X_MEAN_USER, float xmean[]  (Output) 
Storage for xmean is provided by the user.  See IMSLS_X_MEAN. 

IMSLS_VARIANCE_COVARIANCE_MATRIX, float **cov  (Output) 
Address of a pointer to an array of length ncoef*ncoef containing the 
estimated asymptotic variance-covariance matrix of the parameters.  For 
max_iterations = 0, the return value is the inverse of the Hessian of the 
negative of the log-likelihood, computed at the estimates input in in_coef. 

IMSLS_VARIANCE_COVARIANCE_MATRIX_USER, float cov[]  (Output) 
Storage for cov is provided by the user.  See 
IMSLS_VARIANCE_COVARIANCE_MATRIX. 

IMSLS_INITIAL_EST_INPUT, float *in_coef  (Input) 
An array of length ncoef containing the initial estimates on input to 
prop_hazards_gen_lin.  
Default: all initial estimates are taken to be 0. 

IMSLS_UPDATE, float **gr  (Output) 
Address of a pointer to an array of length ncoef containing the last parameter 
updates (excluding step halvings).  For  
max_iterations = 0, gr contains the inverse of the Hessian times the 
gradient vector computed at the estimates input in in_coef. 

IMSLS_UPDATE_USER, float gr[]  (Output) 
Storage for gr is provided by the user.  See IMSLS_UPDATE. 

IMSLS_DUMP, int n_class_var, int index_class_var[]  (Input) 
Variable n_class_var is the number of classification variables.  Dummy 
variables are generated for classification variables using the dummy_method 
= IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY option of 
imsls_f_regressors_for_glm function (see Chapter 2, Regression).  
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Argument index_class_var is an index array of length n_class_var 
containing the column numbers of x that are the classification variables. (if 
n_class_var is is equal to zero, index_class_var is not used). 
Default: n_class_var = 0. 

IMSLS_STRATUM_NUMBER, int **igrp  (Output) 
Address of a pointer to an array of length n_observations giving the 
stratum number used for each observation.  If ratio is not −1.0, additional 
“strata” (other than those specified by column  
istrat of x) may be generated.  igrp also contains a record of the generated 
strata. See the “Description” section for more detail. 

IMSLS_STRATUM_NUMBER_USER, int igrp[]  (Output) 
Storage for igrp is provided by the user.  See IMSLS_STRATUM_NUMBER. 

IMSLS_CLASS_VARIABLES, int **n_class_values, float **class_values  
(Output) 
n_class_values is an address of a pointer to an array of length 
n_class_var containing the number of values taken by each classification 
variable.  n_class_values[i] is the number of distinct values for the i-th 
classification variable.  class_values is an address of a pointer to an array 
of length n_class_values[0] + n_class_values[1] + … + 
n_class_values[n_class_var-1] containing the distinct values of the 
classification variables.   The first n_class_values[0] elements of 
class_values contain the values for the first classification variable, the next 
n_class_values[1] elements contain the values for the second 
classification variable, etc. 

IMSLS_CLASS_VARIABLES_USER, int n_class_values[], float class_values[]  
(Output) 
Storage for n_class_values and class_values is provided by the user.  
The length of class_values will not be known in advance, use max_class 
as the maximum length of class_values.  See IMSLS_CLASS_VARIABLES. 

Description 
Function imsls_f_prop_hazards_gen_lin computes parameter estimates and 
other statistics in Proportional Hazards Generalized Linear Models. These models were 
first proposed by Cox (1972). Two methods for handling ties are allowed in 
imsls_f_prop_hazards_gen_lin. Time-dependent covariates are not allowed. The 
user is referred to Cox and Oakes (1984), Kalbfleisch and Prentice (1980), Elandt-
Johnson and Johnson (1980), Lee (1980), or Lawless (1982), among other texts, for a 
thorough discussion of the Cox proportional hazards model. 
Let λ(t, zi) represent the hazard rate at time t for observation number i with covariables 
contained as elements of row vector zi. The basic assumption in the proportional 
hazards model (the proportionality assumption) is that the hazard rate can be written as 
a product of a time varying function λ0(t), which depends only on time, and a function 
ƒ(zi), which depends only on the covariable values. The function ƒ(zi) used in 
imsls_f_prop_hazards_gen_lin is given as ƒ(zi) = exp(wi + βzi) where wi is a 
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fixed constant assigned to the observation, and β is a vector of coefficients to be 
estimated. With this function one obtains a hazard rate λ(t, zi) = λ0(t) exp(wi + βzi). The 
form of λ0(t) is not important in proportional hazards models. 

The constants wi may be known theoretically. For example, the hazard rate may be 
proportional to a known length or area, and the wi can then be determined from this 
known length or area. Alternatively, the wi may be used to fix a subset of the 
coefficients β (say, β1) at specified values. When wi is used in this way, constants  
wi = β1z1i are used, while the remaining coefficients in β are free to vary in the 
optimization algorithm. If user-specified constants are not desired, the user should set 
ifix to 0 so that wi = 0 will be used. 

With this definition of λ(t, zi), the usual partial (or marginal, see Kalbfleisch and 
Prentice (1980)) likelihood becomes 

1 ( )
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where R(ti) denotes the set of indices of observations that have not yet failed at time ti 
(the risk set), ti denotes the time of failure for the i-th observation, nd is the total 
number of observations that fail. Right-censored observations (i.e., observations that 
are known to have survived to time ti, but for which no time of failure is known) are 
incorporated into the likelihood through the risk set R(ti). Such observations never 
appear in the numerator of the likelihood. When itie = 0, all observations that are 
censored at time ti are not included in R(ti), while all observations that fail at time ti are 
included in R(ti). 

If it can be assumed that the dependence of the hazard rate upon the covariate values 
remains the same from stratum to stratum, while the time-dependent term, λ0(t), may 
be different in different strata, then imsls_f_prop_hazards_gen_lin allows the 
incorporation of strata into the likelihood as follows. Let k index the m = istrat 
strata. Then, the likelihood is given by 
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In imsls_f_prop_hazards_gen_lin, the log of the likelihood is maximized with 
respect to the coefficients β. A quasi-Newton algorithm approximating the Hessian via 
the matrix of sums of squares and cross products of the first partial derivatives is used 
in the initial iterations (the “Q-N” method in the output). When the change in the log-
likelihood from one iteration to the next is less than 100*eps, Newton-Raphson 
iteration is used (the “N-R” method). If, during any iteration, the initial step does not 
lead to an increase in the log-likelihood, then step halving is employed to find a step 
that will increase the log-likelihood. 
Once the maximum likelihood estimates have been computed, 
imsls_f_prop_hazards_gen_lin computes estimates of a probability associated 
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with each failure. Within stratum k, an estimate of the probability that the i-th 
observation fails at time ti given the risk set R(tki) is given by 

( )

exp( )
exp( )

ki

ki ki
ki

j R t kj kj

w z
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w z
β

β∈

+
=

∑ +  

A diagnostic “influence” or “leverage” statistic is computed for each noncensored 
observation as: 

1
ki ki s kil g H g−′ ′= −

 

where Hs is the matrix of second partial derivatives of the log-likelihood, and  

kig ′
 

is computed as:  
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Influence statistics are not computed for censored observations. 
A “residual” is computed for each of the input observations according to methods 
given in Cox and Oakes (1984, page 108). Residuals are computed as 

( ) ( )

ˆexp( ) ˆexp( )ki kj

kj
ki ki ki
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d
r w z
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= +
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∑  

where dkj is the number of tied failures in group k at time tkj. Assuming that the 
proportional hazards assumption holds, the residuals should approximate a random 
sample (with censoring) from the unit exponential distribution. By subtracting the 
expected values, centered residuals can be obtained. (The j-th expected order statistic 
from the unit exponential with censoring is given as 

1
1j l j h le ≤ − += ∑

 

where h is the sample size, and censored observations are not included in the 
summation.) 
An estimate of the cumulative baseline hazard within group k is given as 

0
( )

ˆ ( ) ˆexp( )kj ki kj

kj
k ik

t t l R t kl kl

d
H t

w z β≤ ∈

=
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∑  

The observation proportionality constant is computed as  
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Programming Notes 

1. The covariate vectors zki are computed from each row of the input matrix x 
via function imsls_f_regressors_for_glm (see Chapter 2, Regression). 
Thus, class variables are easily incorporated into the zki. The reader is referred 
to the document for imsls_f_regressors_for_glm in the regression 
chapter for a more detailed discussion.  
Note that imsls_f_prop_hazards_gen_lin calls 
imsls_f_regressors_for_glm  with  
dummy_method = IMSLS_LEAVE_OUT_LAST of the IMSLS_DUMMY option. 

2. The average of each of the explanatory variables is subtracted from the 
variable prior to computing the product zkiβ. Subtraction of the mean values 
has no effect on the computed log-likelihood or the estimates since the 
constant term occurs in both the numerator and denominator of the likelihood. 
Subtracting the mean values does help to avoid invalid exponentiation in the 
algorithm and may also speed convergence. 

3. Function imsls_f_prop_hazards_gen_lin allows for two methods of 
handling ties. In the first method (itie = 1), the user is allowed to break ties 
in any manner desired. When this method is used, it is  
assumed that the user has sorted the rows in X from largest to smallest with 
respect to the failure/censoring times xi, irt within each stratum (and across 
strata), with tied observations (failures or censored) broken in the manner 
desired. The same effect can be obtained with itie = 0 by adding (or 
subtracting) a small amount from each of the tied observations failure/ 
censoring times ti = xi, irt so as to break the ties in the desired manner. 

The second method for handling ties (itie = 0) uses an approximation for the tied 
likelihood proposed by Breslow (1974). The likelihood in Breslow’s method is as 
specified above, with the risk set at time ti including all observations that fail at time ti, 
while all observations that are censored at time ti are not included. (Tied censored 
observations are assumed to be censored immediately prior to the time ti). 
4. IMSLS_INITIAL_EST_INPUT option is used, then it is assumed that the user 

has provided initial estimates for the model coefficients β in in_coef. When 
initial estimates are provided by the user, care should be taken to ensure that 
the estimates correspond to the generated covariate vector zki. If 
IMSLS_INITIAL_EST_INPUT option is not used, then initial estimates of 
zero are used for all of the coefficients. This corresponds to no effect from any 
of the covariate values. 

5. If a linear combination of covariates is monotonically increasing or decreasing 
with increasing failure times, then one or more of the estimated coefficients is 
infinite and extended maximum likelihood estimates must be computed. Such 
estimates may be written as ˆ ˆ ˆfβ β ργ= + where ρ = ∞ at the supremum of the 
likelihood so that ˆ

fβ is the finite part of the solution. In 
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imsls_f_prop_hazards_gen_lin, it is assumed that extended maximum 
likelihood estimates must be computed if, within any group k, for any time t, 

ˆ ˆmin exp( ) max exp( )
ki ki

ki ki ki kit t t t
w z w zβ ρ β

< <
+ > +

 

where ρ = ratio is specified by the user. Thus, for example, if ρ = 10000, 
then imsls_f_prop_hazards_gen_lin does not compute  extended 
maximum likelihood estimates until the estimated proportionality constant 

ˆexp( )ki kiw z β+
 

is 10000 times larger for all observations prior to t than for all observations 
after t. When this occurs, imsls_f_prop_hazards_gen_lin computes 
estimates for ˆ

fβ by splitting the failures in stratum k into two strata at t (see 
Bryson and Johnson 1981). Censored observations in stratum k are placed 
into a stratum based upon the associated value for  

ˆexp( )ki kiw z β+
 

The results of the splitting are returned in igrp. 
The estimates ˆ

fβ based upon the stratified likelihood represent the finite part 
of the extended maximum likelihood solution. Function 
imsls_f_prop_hazards_gen_lin does not compute γ̂ explicitly, but an 
estimate for γ̂ may be obtained in some circumstances by setting ratio = −1 
and optimizing the log-likelihood without forming additional strata. The 
solution β̂ obtained will be such that ˆ ˆ ˆfβ β ργ= + for some finite value of  
ρ > 0. At this solution, the Newton-Raphson algorithm will not have 
“converged” because the Newton-Raphson step sizes returned in gr will be 
large, at least for some variables. Convergence will be declared, however, 
because the relative change in the log-likelihood during the final iterations 
will be small.  

Example 
The following data are taken from Lawless (1982, page 287) and involve the survival 
of lung cancer patients based upon their initial tumor types and treatment type. In the 
first example, the likelihood is maximized with no strata present in the data. This 
corresponds to Example 7.2.3 in Lawless (1982, page 367). The input data is printed in 
the output. The model is given as:  

1 1 2 2 3 3ln( )= i jx x xλ β β β α γ+ + + +
 

where αi and γj correspond to dummy variables generated from column indices 5 and 6 
of x, respectively, x1 corresponds to column index 2, x2 corresponds to column index 3, 
and x3 corresponds to column index 4 of x. 

#include "imsls.h" 
 
#define NOBS 40 
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#define NCOL 7 
#define NCLVAR 2 
#define NEF 5 
 
void main () 
{ 
  int icen = 1, iprint = 2, maxcl = 6, ncoef; 
  int indef[NEF] = { 2, 3, 4, 5, 6 }; 
  int nvef[NEF] = { 1, 1, 1, 1, 1 }; 
  int indcl[NCLVAR] = { 5, 6 }; 
  float *coef, ratio = 10000.0; 
  float x[NOBS * NCOL] = { 
    411, 0, 7, 64, 5, 1, 0, 
    126, 0, 6, 63, 9, 1, 0, 
    118, 0, 7, 65, 11, 1, 0, 
    92, 0, 4, 69, 10, 1, 0, 
    8, 0, 4, 63, 58, 1, 0, 
    25, 1, 7, 48, 9, 1, 0, 
    11, 0, 7, 48, 11, 1, 0, 
    54, 0, 8, 63, 4, 2, 0, 
    153, 0, 6, 63, 14, 2, 0, 
    16, 0, 3, 53, 4, 2, 0, 
    56, 0, 8, 43, 12, 2, 0, 
    21, 0, 4, 55, 2, 2, 0, 
    287, 0, 6, 66, 25, 2, 0, 
    10, 0, 4, 67, 23, 2, 0, 
    8, 0, 2, 61, 19, 3, 0, 
    12, 0, 5, 63, 4, 3, 0, 
    177, 0, 5, 66, 16, 4, 0, 
    12, 0, 4, 68, 12, 4, 0, 
    200, 0, 8, 41, 12, 4, 0, 
    250, 0, 7, 53, 8, 4, 0, 
    100, 0, 6, 37, 13, 4, 0, 
    999, 0, 9, 54, 12, 1, 1, 
    231, 1, 5, 52, 8, 1, 1, 
    991, 0, 7, 50, 7, 1, 1, 
    1, 0, 2, 65, 21, 1, 1, 
    201, 0, 8, 52, 28, 1, 1, 
    44, 0, 6, 70, 13, 1, 1, 
    15, 0, 5, 40, 13, 1, 1, 
    103, 1, 7, 36, 22, 2, 1, 
    2, 0, 4, 44, 36, 2, 1, 
    20, 0, 3, 54, 9, 2, 1, 
    51, 0, 3, 59, 87, 2, 1, 
    18, 0, 4, 69, 5, 3, 1, 
    90, 0, 6, 50, 22, 3, 1, 
    84, 0, 8, 62, 4, 3, 1, 
    164, 0, 7, 68, 15, 4, 1, 
    19, 0, 3, 39, 4, 4, 1, 
    43, 0, 6, 49, 11, 4, 1, 
    340, 0, 8, 64, 10, 4, 1, 
    231, 0, 7, 67, 18, 4, 1 
  }; 
 
  coef = imsls_f_prop_hazards_gen_lin (NOBS, NCOL, x, NEF, 
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          nvef, indef, maxcl, &ncoef, 
          IMSLS_PRINT_LEVEL, iprint, 
          IMSLS_CENSOR_CODES_COL, icen, 
          IMSLS_RATIO, ratio, 
          IMSLS_DUMMY, NCLVAR, &indcl[0], 0); 
} 

Output 
 
                      Initial Estimates 
      1        2        3        4        5        6        7 
 0.0000   0.0000   0.0000   0.0000   0.0000   0.0000   0.0000 
 
Method  Iteration  Step size  Maximum scaled     Log 
                               coef. update      likelihood 
  Q-N        0                                       -102.4 
  Q-N        1      1.0000           0.5034          -91.04 
  Q-N        2      1.0000           0.5782          -88.07 
  N-R        3      1.0000           0.1131          -87.92 
  N-R        4      1.0000          0.06958          -87.89 
  N-R        5      1.0000        0.0008145          -87.89 
 
Log-likelihood                -87.88778 
  
                 Coefficient Statistics 
    Coefficient      Standard    Asymptotic    Asymptotic 
                        error   z-statistic       p-value 
1        -0.585         0.137        -4.272         0.000 
2        -0.013         0.021        -0.634         0.526 
3         0.001         0.012         0.064         0.949 
4        -0.367         0.485        -0.757         0.449 
5        -0.008         0.507        -0.015         0.988 
6         1.113         0.633         1.758         0.079 
7         0.380         0.406         0.936         0.349 
  
                   Asymptotic Coefficient Covariance 
              1             2             3             4             5 
1       0.01873      0.000253     0.0003345      0.005745       0.00975 
2                   0.0004235    -4.12e-005     -0.001663    -0.0007954 
3                                 0.0001397     0.0008111     -0.001831 
4                                                   0.235       0.09799 
5                                                                0.2568 
  
              6             7 
1      0.004264      0.002082 
2     -0.003079     -0.002898 
3     0.0005995      0.001684 
4        0.1184       0.03735 
5        0.1253      -0.01944 
6        0.4008       0.06289 
7                      0.1647 
  
                              Case Analysis 
        Survival     Influence      Residual    Cumulative         Prop. 
     Probability                                    hazard      constant 
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 1          0.00          0.04          2.05          6.10          0.34 
 2          0.30          0.11          0.74          1.21          0.61 
 3          0.34          0.12          0.36          1.07          0.33 
 4          0.43          0.16          1.53          0.84          1.83 
 5          0.96          0.56          0.09          0.05          2.05 
 6          0.74  ............          0.13          0.31          0.42 
 7          0.92          0.37          0.03          0.08          0.42 
 8          0.59          0.26          0.14          0.53          0.27 
 9          0.26          0.12          1.20          1.36          0.88 
10          0.85          0.15          0.97          0.17          5.76 
11          0.55          0.31          0.21          0.60          0.36 
12          0.74          0.21          0.96          0.31          3.12 
13          0.03          0.06          3.02          3.53          0.86 
14          0.94          0.09          0.17          0.06          2.71 
15          0.96          0.16          1.31          0.05         28.89 
16          0.89          0.23          0.59          0.12          4.82 
17          0.18          0.09          2.62          1.71          1.54 
18          0.89          0.19          0.33          0.12          2.68 
19          0.14          0.23          0.72          1.96          0.37 
20          0.05          0.09          1.66          2.95          0.56 
21          0.39          0.22          1.17          0.94          1.25 
22          0.00          0.00          1.73         21.11          0.08 
23          0.08  ............          2.19          2.52          0.87 
24          0.00          0.00          2.46          8.89          0.28 
25          0.99          0.31          0.05          0.01          4.28 
26          0.11          0.17          0.34          2.23          0.15 
27          0.66          0.25          0.16          0.41          0.38 
28          0.87          0.22          0.15          0.14          1.02 
29          0.39  ............          0.45          0.94          0.48 
30          0.98          0.25          0.06          0.02          2.53 
31          0.77          0.26          1.03          0.26          3.90 
32          0.63          0.35          1.80          0.46          3.88 
33          0.82          0.26          1.06          0.19          5.47 
34          0.47          0.26          1.65          0.75          2.21 
35          0.51          0.32          0.39          0.67          0.58 
36          0.22          0.18          0.49          1.53          0.32 
37          0.80          0.26          1.08          0.23          4.77 
38          0.70          0.16          0.26          0.36          0.73 
39          0.01          0.23          0.87          4.66          0.19 
40          0.08          0.20          0.81          2.52          0.32 
  
                           Last Coefficient Update 
          1            2            3            4            5            6 
-1.296e-008   2.269e-009  -5.894e-009  -4.782e-007  -1.787e-007   1.509e-007 
  
          7 
 4.327e-008 
  
                               Covariate Means 
          1            2            3            4            5            6 
       5.65        56.58        15.65         0.35         0.28         0.13 
  
          7 
       0.53 
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Distinct Values For Each Class Variable  
Variable 1:           1           2           3           4 
  
Variable 2:           0           1 
  
                     Stratum Numbers For Each Observation 
 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  
20 
 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   
1 
  
21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38  39  
40 
 1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   
1 
 
Number of Missing Values          0 

 

survival_glm 
Analyzes censored survival data using a generalized linear model. 

Synopsis 
#include <imsls.h> 
int imsls_f_survival_glm (int n_observations, int n_class, 

int n_continuous, int model, float x[], ..., 0) 
The type double function is imsls_d_survival_glm. 

Required Arguments 

int n_observations   (Input) 
Number of observations. 

int n_class   (Input) 
Number of classification variables. 

int n_continuous   (Input) 
Number of continuous variables. 

int model   (Input) 
Argument model specifies the model used to analyze the data. 

Model PDF of the Response Variable 
0 Exponential 
1 Linear hazard 
2 Log-normal 
3 Normal 
4 Log-logistic 
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Model PDF of the Response Variable 
5 Logistic 
6 Log least extreme value 
7 Least extreme value 
8 Log extreme value 
9 Extreme value 
10 Weibull 

See the “Description” section for more information about these models. 

float x[]   (Input) 
Array of size n_observations by (n_class + n_continuous) + m 
containing data for the independent variables, dependent variable, and 
optional parameters. 

The columns must be ordered such that the first n_class columns contain 
data for the class variables, the next n_continuous columns contain data for 
the continuous variables, and the next column contains the response variable. 
The final (and optional) m − 1 columns contain the optional parameters.  

Return Value 
An integer value indicating the number of estimated coefficients in the model. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int imsls_f_survival_glm (int n_observations, int n_class, 

int n_continuous, int model, float x[],  
IMSLS_X_COL_CENSORING, int icen, int ilt, int irt, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_X_COL_FREQUENCIES, int ifrq, 
IMSLS_X_COL_FIXED_PARAMETER, int ifix, 
IMSLS_X_COL_VARIABLES, int iclass[], int icontinuous[], 
 int iy 
IMSLS_EPS, float eps, 
IMSLS_MAX_ITERATIONS, int max_iterations, 
IMSLS_INTERCEPT, 
IMSLS_NO_INTERCEPT, 
IMSLS_INFINITY_CHECK, int lp_max 
IMSLS_NO_INFINITY_CHECK 
IMSLS_EFFECTS, int n_effects, int n_var_effects[],  
 int indices_effects, 
IMSLS_INITIAL_EST_INTERNAL, 
IMSLS_INITIAL_EST_INPUT, int n_coef_input, 
 float estimates[], 
IMSLS_MAX_CLASS, int max_class, 
IMSLS_CLASS_INFO, int **n_class_values, 
 float **class_values, 
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IMSLS_CLASS_INFO_USER, int n_class_values[], 
 float class_values[], 
IMSLS_COEF_STAT, float **coef_statistics, 
IMSLS_COEF_STAT_USER, float coef_statistics[], 
IMSLS_CRITERION, float *criterion, 
IMSLS_COV, float **cov, 
IMSLS_COV_USER, float cov[], 
IMSLS_MEANS, float **means, 
IMSLS_MEANS_USER, float means[], 
IMSLS_CASE_ANALYSIS, float **case_analysis, 
IMSLS_CASE_ANALYSIS_USER, float case_analysis[], 
IMSLS_LAST_STEP, float **last_step,  
IMSLS_LAST_STEP_USER, float last_step[], 
IMSLS_OBS_STATUS, int **obs_status, 
IMSLS_OBS_STATUS_USER, int obs_status[], 
IMSLS_ITERATIONS, int *n, float **iterations,  
IMSLS_ITERATIONS_USER, int *n, float iterations[], 
IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info 
IMSLS_N_ROWS_MISSING, int *n_rows_missing, 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of input array x. 
Default: x_col_dim = n_class + n_continuous + 1 

IMSLS_X_COL_CENSORING, int icen, int ilt, int irt   (Input) 
Parameter icen is the column in x containing the censoring code for each 
observation. 

x [i] [icen] Censoring type 
0 Exact failure at x [i] [irt] 
1 Right Censored. The response is greater than 

x [i] [irt]. 
2 Left Censored. The response is less than or equal 

to x [i] [irt]. 
3 Interval Censored. The response is greater than 

x [i] [irt], but less than or equal to x [i] [ilt]. 

Parameter ilt is the column number of x containing the upper endpoint of 
the failure interval for interval- and left-censored observations. If there are no 
left-censored or interval-censored observations, ilt should be set to −1. 

Parameter irt is the column number of x containing the lower endpoint of 
the failure interval for interval- and right-censored observations. If there are 
no left-censored or interval-censored observations, irt should be set to −1.  
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Exact failure times are specified in column iy of x. By default, iy is column 
n_class + n_continuous of x. The default can be changed if keyword 
IMSLS_X_COL_VARIABLES is specified. 

Note that it is allowable to set iy = irt, since a row with an iy value will 
never have an irt value, and vice versa. This use is illustrated in Example 2. 

IMSLS_FREQUENCIES, int ifrq   (Input) 
Column number of x containing the frequency of response for each 
observation. 

IMSLS_FIXED_PARAMETER, int ifix   (Input) 
Column number in x containing a fixed parameter for each observation that is 
added to the linear response prior to computing the model parameter. The 
“fixed” parameter allows one to test hypothesis about the parameters via the 
log-likelihoods. 

IMSLS_X_COL_VARIABLES int iclass[], int icontinuous[], int iy   (Input) 
This keyword allows specification of the variables to be used in the analysis, 
and overrides the default ordering of variables described for input argument x. 
Columns are numbered from 0 to x_col_dim − 1. To avoid errors, always 
specify the keyword IMSLS_X_COL_DIM when using this keyword. 

Argument iclass is an index vector of length n_class containing the 
column numbers of x that correspond to classification variables.  

Argument icontinuous is an index vector of length n_continuous 
containing the column numbers of x that correspond to continuous variables.  

Argument iy corresponds to the column of x which contains the dependent 
variable.  

IMSLS_EPS, float eps   (Input) 
Argument eps is the convergence criterion. Convergence is assumed when 
the maximum relative change in any coefficient estimate is less than eps from 
one iteration to the next or when the relative change in the log-likelihood, 
criterion, from one iteration to the next is less than eps/100.0. 
Default: eps = 0.001 

IMSLS_MAX_ITERATIONS, int max_iterations   (Input) 
Maximum number of iterations. Use max_iterations = 0 to compute the 
Hessian, stored in cov, and the Newton step, stored in last_step, at the 
initial estimates (The initial estimates must be input. Use keyword 
IMSLS_INITIAL_EST_INPUT). 
Default: max_iterations = 30 

IMSLS_INTERCEPT, or 
IMSLS_NO_INTERCEPT, 

By default, or if IMSLS_INTERCEPT is specified, the intercept is 
automatically included in the model. If IMSLS_NO_INTERCEPT is specified, 
there is no intercept in the model (unless otherwise provided for by the user). 
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IMSLS_INFINITY_CHECK, int lp_max   (Input) 
Remove a right- or left-censored observation from the log-likelihood 
whenever the probability of the observation exceeds 0.995. At convergence, 
use linear programming to check that all removed observations actually have 
infinite linear response 

ˆ
iz β

 

obs_status [i] is set to 2 if the linear response is infinite (See optional 
argument IMSLS_OBS_STATUS). If not all removed observations have infinite 
linear response, re-compute the estimates based upon the observations with 
finite 

ˆ
iz β

 

Parameter lp_max is the maximum number of observations that can be 
handled in the linear programming. Setting lp_max = n_observations is 
always sufficient.  
Default: No infinity checking; lp_max = 0 

IMSLS_NO_INFINITY_CHECK 
Iterates without checking for infinite estimates. This option is the default. 

IMSLS_EFFECTS, int n_effects, int n_var_effects[], 
int indices_effects[]   (Input) 
Use this keyword to specify the effects in the model. 

Variable n_effects is the number of effects (sources of variation) in the 
model. Variable n_var_effects is an array of length n_effects 
containing the number of variables associated with each effect in the model.  

Argument indices_effects is an index array of length 
n_var_effects [0] + n_var_effects [1] + … + 
n_var_effects [n_effects − 1]. The first n_var_effects [0] elements 
give the column numbers of x for each variable in the first effect. The next 
n_var_effects[1] elements give the column numbers for each variable in 
the second effect. The last n_var_effects [n_effects − 1] elements give 
the column numbers for each variable in the last effect. 

IMSLS_INITIAL_EST_INTERNAL, or 
IMSLS_INITIAL_EST_INPUT, int n_coef_input, float estimates[]   (Input) 
 By default, or if IMSLS_INIT_INTERNAL is specified, then unweighted linear 

regression is used to obtain initial estimates. If IMSLS_INITIAL_EST_INPUT 
is specified, then the n_coef_input elements of estimates contain initial 
estimates of the parameters (which requires that the user know the number of 
coefficients in the model prior to the call to survival_glm). See optional 
argument IMSLS_COEF_STAT for a description of the “nuisance” parameter, 
which is the first element of array estimates. 
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IMSLS_MAX_CLASS, int max_class   (Input) 
An upper bound on the sum of the number of distinct values taken on by each 
classification variable. Internal workspace usage can be significantly reduced 
with an appropriate choice of max_class. 
Default: max_class = n_observations ∗ n_class 

IMSLS_CLASS_INFO, int **n_class_values, float **class_values   (Output) 
Argument n_class_values is the address of a pointer to the internally 
allocated array of length n_class containing the number of values taken by 
each classification variable; the i-th classification variable has 
n_class_values [i] distinct values. Argument class_values is the 
address of a pointer to the internally allocated array of length 

-1

0

[ ]
i

i
=
∑

n_class

n_class_values
 

containing the distinct values of the classification variables in ascending 
order. The first n_class_values [0] elements of class_values contain 
the values for the first classification variables, the next n_class_values [1] 
elements contain the values for the second classification variable, etc.  

IMSLS_CLASS_INFO_USER, int n_class_values[], float class_values[]   
(Output) 
Storage for arrays n_class_values and class_values is provided by the 
user. See IMSLS_CLASS_INFO. 

IMSLS_COEF_STAT, float **coef_statistics   (Output) 
Address of a pointer to an internally allocated array of size 
n_coefficients ∗ 4 containing the parameter estimates and associated 
statistics: 

Column Statistic 
0 Coefficient estimate. 
1 Estimated standard deviation of the estimated coefficient. 
2 Asymptotic normal score for testing that the coefficient is 

zero. 
3 The p-value associated with the normal score in Column 2. 

When present in the model, the first coefficient in coef_statistics is the 
estimate of the “nuisance” parameter, and the remaining coefficients are 
estimates of the parameters associated with the “linear” model, beginning with 
the intercept, if present. Nuisance parameters are as follows: 
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model  
0 No nuisance parameter 
1 Coefficient of the quadratic term in time, θ 

2-9 Scale parameter, σ 
10 Shape parameter, θ 

IMSLS_COEF_STAT_USER, float coef_statistics[]   (Output) 
Storage for array coef_statistics is provided by the user. See 
IMSLS_COEF_STAT. 

IMSLS_CRITERION, float *criterion   (Output) 
Optimized criterion. The criterion to be maximized is a constant plus the log-
likelihood. 

IMSLS_COV, float **cov   (Output) 
Address of a pointer to the internally allocated array of size 
n_coefficients by  n_coefficients containing the estimated 
asymptotic covariance matrix of the coefficients. For max_iterations = 0, 
this is the Hessian computed at the initial parameter estimates. 

IMSLS_COV_USER, float cov[]   (Ouput) 
Storage for array cov is provided by the user. See IMSLS_COV. 

IMSLS_MEANS, float **means   (Output) 
Address of a pointer to the internally allocated array containing the means of 
the design variables. The array is of length n_coefficients − m if 
IMSLS_NO_INTERCEPT is specified, and of length n_coefficients − m − 1 
otherwise. Here, m is equal to 0 if model = 0, and equal to 1 otherwise. 

IMSLS_MEANS_USER, float means[]   (Output) 
Storage for array means is provided by the user. See IMSLS_MEANS. 

IMSLS_CASE_ANALYSIS, float **case_statistics   (Output) 
Address of a pointer to the internally allocated array of size 
n_observations by 5 containing the case analysis below: 

Column Statistic 
0 Estimated predicted value. 
1 Estimated influence or leverage. 
2 Estimated residual. 
3 Estimated cumulative hazard. 
4 Non-censored observations: Estimated density at the 

observation failure time and covariate values. 
Censored observations: The corresponding estimated 
probability. 

If max_iterations = 0, case_statistics is an array of length 
n_observations containing the estimated probability (for censored 
observations) or the estimated density (for non-censored observations) 
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IMSLS_CASE_ANALYSIS_USER, float case_statistics[]   (Output) 
Storage for array case_statistics is provided by the user. See 
IMSLS_CASE_ANALYSIS. 

IMSLS_LAST_STEP, float **last_step   (Output) 
Address of a pointer to the internally allocated array of length 
n_coefficients containing the last parameter updates (excluding step 
halvings). Parameter last_step is computed as the inverse of the matrix of 
second partial derivatives times the vector of first partial derivatives of the 
log-likelihood. When max_iterations = 0, the derivatives are computed at 
the initial estimates. 

IMSLS_LAST_STEP_USER, float last_step[]   (Output) 
Storage for array last_step is provided by the user. See 
IMSLS_LAST_STEP. 

IMSLS_OBS_STATUS, int **obs_status   (Output) 
Address of a pointer to the internally allocated array of length 
n_observations indicating which observations are included in the extended 
likelihood. 

Obs_status [i] Status of Observation 
0 Observation I is in the likelihood 
1 Observation i cannot be in the likelihood because it 

contains at least one missing value in x. 
2 Observation i is not in the likelihood. Its estimated 

parameter is infinite. 

IMSLS_OBS_STATUS_USER, int obs_status[]   (Output) 
Storage for array obs_status is provided by the user. See 
IMSLS_OBS_STATUS. 

IMSLS_ITERATIONS, int *n, float **iterations   (Output) 
Address of a pointer to the internally allocated array of size, n by 5 containing 
information about each iteration of the analysis, where n is equal to the 
number of iterations. 

Column Statistic 
0 Method of iteration 

Q-N Step = 0 
N-R Step = 1 

1 Iteration number 
2 Step size 
3 Maximum scaled coefficient update 
4 Log-likelihood 

IMSLS_ITERATIONS_USER, int *n, float iterations[]   (Output) 
Storage for array iterations is provided by the user. See IMSLS_ITERATIONS. 
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IMSLS_SURVIVAL_INFO, Imsls_f_survival **survival_info   (Output) 
Address of the pointer to an internally allocated structure of type 
Imsls_f_survival containing information about the survival analysis. This 
structure is required input for function imsls_f_survival_estimates. 

IMSLS_N_ROWS_MISSING, int *n_rows_missing   (Output) 
Number of rows of data that contain missing values in one or more of the 
following vectors or columns of x: iy, icen, ilt, irt, ifrq, ifix, iclass, 
icontinuous, or indices_effects. 

Comments 

1. Dummy variables are generated for the classification variables as follows: An 
ascending list of all distinct values of each classification variable is obtained 
and stored in class_values. Dummy variables are then generated for each 
but the last of these distinct values. Each dummy variable is zero unless the 
classification variable equals the list value corresponding to the dummy 
variable, in which case the dummy variable is one. See keyword 
IMSLS_LEAVE_OUT_LAST for optional argument IMSLS_DUMMY in 
imsls_f_regressors_for_glm (Chapter 2, “Regression”). 

2. The “product” of a classification variable with a covariate yields dummy 
variables equal to the product of the covariate with each of the dummy 
variables associated with the classification variable. 

3. The “product” of two classification variables yields dummy variables in the 
usual manner. Each dummy variable associated with the first classification 
variable multiplies each dummy variable associated with the second 
classification variable. The resulting dummy variables are such that the index 
of the second classification variable varies fastest. 

Description 
Function imsls_f_survival_glm computes the maximum likelihood estimates of 
parameters and associated statistics in generalized linear models commonly found in 
survival (reliability) analysis. Although the terminology used will be from the survival 
area, the methods discussed have applications in many areas of data analysis, including 
reliability analysis and event history analysis. These methods can be used anywhere a 
random variable from one of the discussed distributions is parameterized via one of the 
models available in imsls_f_survival_glm. Thus, while it is not advisable to do so, 
standard multiple linear regression can be performed by routine 
imsls_f_survival_glm. Estimates for any of 10 standard models can be computed. 
Exact, left-censored, right-censored, or interval-censored observations are allowed 
(note that left censoring is the same as interval censoring with the left endpoint equal to 
the left endpoint of the support of the distribution). 

Let η = xTβ be the linear parameterization, where x is a design vector obtained by 
imsls_f_survival_glm via function imsls_f_regressors_for_glm from a row 
of x, and β is a vector of parameters associated with the linear model. Let  
T denote the random response variable and S(t) denote the probability that T > t. All 
models considered also allow a fixed parameter wi for observation i (input in column 



 

 
 

736 • survival_glm IMSL C Stat Library 

 

 

 

ifix of x). Use of this parameter is discussed below. There also may be nuisance 
parameters θ > 0, or σ > 0 to be estimated (along with β) in the various models. Let Φ 
denote the cumulative normal distribution. The survival models available in 
imsls_f_survival_glm are: 

Model Name S (t) 
0 Exponential exp [−t exp (wi + η)] 

1 Linear hazard 
( )

2

exp exp
2 i
tt wθ η

⎡ ⎤⎛ ⎞
− + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

2 Log-normal ( )ln
1 it wη

σ
− −⎛ ⎞

− Φ ⎜ ⎟
⎝ ⎠

 

3 Normal 
1 it wη

σ
− −⎛ ⎞− Φ ⎜ ⎟

⎝ ⎠
 

4 Log-logistic ( ) 1ln
{1 exp }it wη

σ
−− −⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 

5 Logistic 
1{1 exp }it wη

σ
−− −⎛ ⎞+ ⎜ ⎟

⎝ ⎠
 

6 Log least extreme 
value 

( )ln
exp{ exp }it wη

σ
− −⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 

7 Least extreme value 
exp{ exp }it wη

σ
− −⎛ ⎞− ⎜ ⎟

⎝ ⎠
 

8 Log extreme value ( )ln
1 exp{ exp }it wη

σ
− −⎛ ⎞

− − ⎜ ⎟
⎝ ⎠

 

9 Extreme value 
1 exp{ exp }it wη

σ
− −⎛ ⎞− − ⎜ ⎟

⎝ ⎠
 

10 Weibull 

( )
exp{ }

exp i

t
w

θ

η
⎡ ⎤

− ⎢ ⎥
+⎢ ⎥⎣ ⎦

 

Note that the log-least-extreme-value model is a reparameterization of the Weibull 
model. Moreover, models 0, 1, 2, 4, 6, 8, and 10 require that T > 0, while all of the 
remaining models allow any value for T, −∞ < T < ∞. 
Each row vector in the data matrix can represent a single observation; or, through the 
use of vector frequencies, each row can represent several observations. Also note that 
classification variables and their products are easily incorporated into the models via 
the usual regression-type specifications. 
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The constant parameter Wi is input in x and may be used for a number of purposes. For 
example, if the parameter in an exponential model is known to depend upon the size of 
the area tested, volume of a radioactive mass, or population density, etc., then a 
multiplicative factor of the exponential parameter λ = exp (xβ) may be known apriori. 
This factor can be input in Wi (Wi is the log of the factor). 

An alternate use of Wi is as follows: It may be that λ = exp (x1β1 + x2β2), where  
β2 is known. Letting Wi = x2β2, estimates for β1 can be obtained via 
imsls_f_survival_glm with the known fixed values for β2.  Standard methods can 
then be used to test hypothesis about β1 via computed log-likelihoods. 

Computational Details 

The computations proceed as follows: 

1.   The input parameters are checked for consistency and validity. 
• Estimates of the means of the “independent” or design variables are 

computed. Means are computed as 

i i

i

f x
x

f
= ∑

∑  

2. If initial estimates are not provided by the user (see optional argument 
IMSLS_INITIAL_EST_INPUT), the initial estimates are calculated as follows: 
• Models 2-10  

A. Kaplan-Meier estimates of the survival probability, 

( )Ŝ t
 

at the upper limit of each failure interval are obtained. (Because upper 
limits are used, interval- and left-censored data are assumed to be exact 
failures at the upper endpoint of the failure interval.) The Kaplan-Meier 
estimate is computed under the assumption that all failure distributions 
are identical (i.e., all β’s but the intercept, if present, are assumed to be 
zero).  

B. If there is an intercept in the model, a simple linear regression is 
performed predicting 

( )( )1 ˆ
iS S t w tα φ− ′− = +

 

where t′ is computed at the upper endpoint of each failure interval,  
t′ = t in models 3, 5, 7, and 9, and t′ = ln (t) in models 2, 4, 6, 8, and 10, 
and wi is the fixed constant, if present.  

If there is no intercept in the model, then α is fixed at zero, and the 
model  
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( )( )1 ˆ ˆ T
iS S t t w xφ β− ′− − =

 

is fit instead. In this model, the coefficients β are used in place of the 
location estimate α above. Here 

φ̂
 

is estimated from the simple linear regression with α = 0. 

C. If the intercept is in the model, then in log-location-scale models 
(models 1-8),  

ˆσ̂ φ=
 

and the initial estimate of the intercept is assumed to be α̂ . 

 In the Weibull model 

ˆ ˆ1/θ φ=
 

and the intercept is assumed to be α̂ . 

Initial estimates of all parameters β, other than the intercept, are 
assumed to be zero. 

 If there is no intercept in the model, the scale parameter is estimated as          
above, and the estimates  

β̂
 

from Step 2 are used as initial estimates for the β’s. 
• Models 0 and 1 

For the exponential models (model = 0 or 1), the “average total time 
on” test statistic is used to obtain an estimate for the intercept. 
Specifically, let Tt denote the total number of failures divided by the 
total time on test. The initial estimates for the intercept is then ln(Tt). 
Initial estimates for the remaining parameters β are assumed to be zero, 
and if model = 1, the initial estimate for the linear hazard parameter θ is 
assumed to be a small positive number. When the intercept is not in the 
model, the initial estimate for the parameter θ is assumed to be a small 
positive number, and initial estimates of the parameters β are computed 
via multiple linear regression as in Part A. 

3. A quasi-Newton algorithm is used in the initial iterations based on a Hessian 
estimate 
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ˆ
j l j li i

i
H lκ κ α α′= ∑  

 where l′iαj is the partial derivative of the i-th term in the log-likelihood with 
respect to the parameter αj, and aj denotes one of the parameter to be 
estimated. 

When the relative change in the log-likelihood from one iteration to the next is 0.1 or 
less, exact second partial derivatives are used for the Hessian so the Newton-Rapheson 
iteration is used. 
If the initial step size results in an increase in the log-likelihood, the full step is used. If 
the log-likelihood decreases for the initial step size, the step size is halved, and a check 
for an increase in the log-likelihood performed. Step-halving is performed (as a simple 
line search) until an increase in the log-likelihood is detected, or until the step size 
becomes very small (the initial step size is 1.0). 

4. Convergence is assumed when the maximum relative change in any 
coefficient update from one iteration to the next is less than eps or when the 
relative change in the log-likelihood from one iteration to the next is less than 
eps/100. Convergence is also assumed after maxit iterations or when step 
halving leads to a very small step size with no increase in the log-likelihood. 

5. If requested (see optional argument IMSLS_INFINITY_CHECK), then the 
methods of Clarkson and Jennrich (1988) are used to check for the existence 
of infinite estimates in 

T
i ixη β=

 

As an example of a situation in which infinite estimates can occur, suppose that 
observation j is right-censored with tj > 15 in a normal distribution model in which the 
mean is 

T
j j jxμ β η= =

 

where xj is the observation design vector. If the design vector xj for parameter βm is 
such that xjm = 1 and xim = 0 for all i ≠ j, then the optimal estimate of βm occurs at 

ˆ
mβ = ∞

 

leading to an infinite estimate of both βm and ηj. In imsls_f_survival_glm, such 
estimates can be “computed”. 
In all models fit by imsls_f_survival_glm, infinite estimates can only occur when 
the optimal estimated probability associated with the left- or right-censored observation 
is 1. If infinity checking is on, left- or right-censored observations that have estimated 
probability greater than 0.995 at some point during the iterations are excluded from the 
log-likelihood, and the iterations proceed with a log-likelihood based on the remaining 
observations. This allows convergence of the algorithm when the maximum relative 
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change in the estimated coefficients is small and also allows for a more precise 
determination of observations with infinite 

T
i ixη β=

 

At convergence, linear programming is used to ensure that the eliminated observations 
have infinite ηi. If some (or all) of the removed observations should not have been 
removed (because their estimated ηi’s must be finite), then the iterations are restarted 
with a log-likelihood based upon the finite ηi observations. See Clarkson and Jennrich 
(1988) for more details. 
When infinity checking is turned off (see optional argument 
IMSLS_NO_INFINITY_CHECK), no observations are eliminated during the iterations. 
In this case, the infinite estimates occur, some (or all) of the coefficient estimates 

β̂
 

will become large, and it is likely that the Hessian will become (numerically) singular 
prior to convergence. 

6. The case statistics are computed as follows: Let Ii (θi)denote the log-
likelihood  
of the i-th observation evaluated at θi, let I′i denote the vector of derivatives of  
Ii with respect to all parameters, I′h,i denote the derivative of Ii with respect to 
η = xTβ, H denote the Hessian, and E denote expectation. Then the columns 
of case_statistics are: 

A. Predicted values are computed as E (T/x) according to standard formulas. 
If model is 4 or 8, and if s ≥ 1, then the expected values cannot be computed 
because they are infinite. 

B. Following Cook and Weisberg (1982), the influence (or leverage) of the 
i-th observation is assumed to be 

( ) 1T

i iI H I−′ ′
 

This quantity is a one-step approximation of the change in the estimates when 
the i-th observation is deleted (ignoring the nuisance parameters). 

C. The “residual” is computed as I′h,i. 

D. The cumulative hazard is computed at the observation covariate values 
and, for interval observations, the upper endpoint of the failure interval. The 
cumulative hazard also can be used as a “residual” estimate. If the model is 
correct, the cumulative hazards should follow a standard exponential 
distribution. See Cox and Oakes (1984).  
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Programming Notes 
Indicator (dummy) variables are created for the classification variables using function 
imsls_f_regressors_for_glm (Chapter 2, “Regression”) using keyword 
IMSLS_LEAVE_OUT_LAST as the argument to the IMSLS_DUMMY optional argument. 

Examples  

Example 1 
This example is taken from Lawless (1982, p. 287) and involves the mortality of 
patients suffering from lung cancer. An exponential distribution is fit for the model 

η = μ + αi + γk + β6x3 + β7x4 + β8x5 

where αi is associated with a classification variable with four levels, and γk  is 
associated with a classification variable with two levels. Note that because the 
computations are performed in single precision, there will be some small variation in 
the estimated coefficients across different machine environments. 

#include <imsls.h> 
 
main() { 
    static float x[40][7] = { 
        1.0,    0.0,    7.0,   64.0,    5.0,  411.0,    0.0,  
        1.0,    0.0,    6.0,   63.0,    9.0,  126.0,    0.0, 
        1.0,    0.0,    7.0,   65.0,   11.0,  118.0,    0.0, 
        1.0,    0.0,    4.0,   69.0,   10.0,   92.0,    0.0, 
        1.0,    0.0,    4.0,   63.0,   58.0,    8.0,    0.0, 
        1.0,    0.0,    7.0,   48.0,    9.0,   25.0,    1.0, 
        1.0,    0.0,    7.0,   48.0,   11.0,   11.0,    0.0, 
        2.0,    0.0,    8.0,   63.0,    4.0,   54.0,    0.0, 
        2.0,    0.0,    6.0,   63.0,   14.0,  153.0,    0.0, 
        2.0,    0.0,    3.0,   53.0,    4.0,   16.0,    0.0, 
        2.0,    0.0,    8.0,   43.0,   12.0,   56.0,    0.0, 
        2.0,    0.0,    4.0,   55.0,    2.0,   21.0,    0.0, 
        2.0,    0.0,    6.0,   66.0,   25.0,  287.0,    0.0, 
        2.0,    0.0,    4.0,   67.0,   23.0,   10.0,    0.0, 
        3.0,    0.0,    2.0,   61.0,   19.0,    8.0,    0.0, 
        3.0,    0.0,    5.0,   63.0,    4.0,   12.0,    0.0, 
        4.0,    0.0,    5.0,   66.0,   16.0,  177.0,    0.0, 
        4.0,    0.0,    4.0,   68.0,   12.0,   12.0,    0.0, 
        4.0,    0.0,    8.0,   41.0,   12.0,  200.0,    0.0, 
        4.0,    0.0,    7.0,   53.0,    8.0,  250.0,    0.0, 
        4.0,    0.0,    6.0,   37.0,   13.0,  100.0,    0.0, 
        1.0,    1.0,    9.0,   54.0,   12.0,  999.0,    0.0, 
        1.0,    1.0,    5.0,   52.0,    8.0,  231.0,    1.0, 
        1.0,    1.0,    7.0,   50.0,    7.0,  991.0,    0.0, 
        1.0,    1.0,    2.0,   65.0,   21.0,    1.0,    0.0, 
        1.0,    1.0,    8.0,   52.0,   28.0,  201.0,    0.0, 
        1.0,    1.0,    6.0,   70.0,   13.0,   44.0,    0.0, 
        1.0,    1.0,    5.0,   40.0,   13.0,   15.0,    0.0, 
        2.0,    1.0,    7.0,   36.0,   22.0,  103.0,    1.0, 
        2.0,    1.0,    4.0,   44.0,   36.0,    2.0,    0.0, 
        2.0,    1.0,    3.0,   54.0,    9.0,   20.0,    0.0, 
        2.0,    1.0,    3.0,   59.0,   87.0,   51.0,    0.0, 
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        3.0,    1.0,    4.0,   69.0,    5.0,   18.0,    0.0, 
        3.0,    1.0,    6.0,   50.0,   22.0,   90.0,    0.0, 
        3.0,    1.0,    8.0,   62.0,    4.0,   84.0,    0.0, 
        4.0,    1.0,    7.0,   68.0,   15.0,  164.0,    0.0, 
        4.0,    1.0,    3.0,   39.0,    4.0,   19.0,    0.0, 
        4.0,    1.0,    6.0,   49.0,   11.0,   43.0,    0.0, 
        4.0,    1.0,    8.0,   64.0,   10.0,  340.0,    0.0, 
        4.0,    1.0,    7.0,   67.0,   18.0,  231.0,    0.0}; 
    int   n_observations = 40; 
    int   n_class = 2; 
    int   n_continuous = 3; 
    int   model = 0; 
    int   n_coef; 
    int   icen = 6, ilt = -1, irt = 5; 
    int   lp_max = 40; 
    float *coef_stat; 
    char *fmt = "%12.4f"; 
    static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"}; 
 
    n_coef = imsls_f_survival_glm(n_observations, n_class,  
        n_continuous, model, &x[0][0],  
        IMSLS_X_COL_CENSORING, icen, ilt, irt,  
        IMSLS_INFINITY_CHECK, lp_max, 
        IMSLS_COEF_STAT, &coef_stat, 
        0);  
 
    imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,  
        coef_stat,  
        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_NO_ROW_LABELS, 
        IMSLS_COL_LABELS, clabels, 
        0); 
} 

Output 
                Coefficient Statistics 
 coefficient          s.e.             z             p 
     -1.1027        1.3140       -0.8392        0.4016 
     -0.3626        0.4446       -0.8156        0.4149 
      0.1271        0.4863        0.2613        0.7939 
      0.8690        0.5861        1.4825        0.1385 
      0.2697        0.3882        0.6948        0.4873 
     -0.5400        0.1081       -4.9946        0.0000 
     -0.0090        0.0197       -0.4594        0.6460 
     -0.0034        0.0117       -0.2912        0.7710 

Example 2 
This example is the same as Example 1, but more optional arguments are 
demonstrated. 

#include <imsls.h> 
 
main() { 
    static float x[40][7] = { 
        1.0,    0.0,    7.0,   64.0,    5.0,  411.0,    0.0,  
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        1.0,    0.0,    6.0,   63.0,    9.0,  126.0,    0.0, 
        1.0,    0.0,    7.0,   65.0,   11.0,  118.0,    0.0, 
        1.0,    0.0,    4.0,   69.0,   10.0,   92.0,    0.0, 
        1.0,    0.0,    4.0,   63.0,   58.0,    8.0,    0.0, 
        1.0,    0.0,    7.0,   48.0,    9.0,   25.0,    1.0, 
        1.0,    0.0,    7.0,   48.0,   11.0,   11.0,    0.0, 
        2.0,    0.0,    8.0,   63.0,    4.0,   54.0,    0.0, 
        2.0,    0.0,    6.0,   63.0,   14.0,  153.0,    0.0, 
        2.0,    0.0,    3.0,   53.0,    4.0,   16.0,    0.0, 
        2.0,    0.0,    8.0,   43.0,   12.0,   56.0,    0.0, 
        2.0,    0.0,    4.0,   55.0,    2.0,   21.0,    0.0, 
        2.0,    0.0,    6.0,   66.0,   25.0,  287.0,    0.0, 
        2.0,    0.0,    4.0,   67.0,   23.0,   10.0,    0.0, 
        3.0,    0.0,    2.0,   61.0,   19.0,    8.0,    0.0, 
        3.0,    0.0,    5.0,   63.0,    4.0,   12.0,    0.0, 
        4.0,    0.0,    5.0,   66.0,   16.0,  177.0,    0.0, 
        4.0,    0.0,    4.0,   68.0,   12.0,   12.0,    0.0, 
        4.0,    0.0,    8.0,   41.0,   12.0,  200.0,    0.0, 
        4.0,    0.0,    7.0,   53.0,    8.0,  250.0,    0.0, 
        4.0,    0.0,    6.0,   37.0,   13.0,  100.0,    0.0, 
        1.0,    1.0,    9.0,   54.0,   12.0,  999.0,    0.0, 
        1.0,    1.0,    5.0,   52.0,    8.0,  231.0,    1.0, 
        1.0,    1.0,    7.0,   50.0,    7.0,  991.0,    0.0, 
        1.0,    1.0,    2.0,   65.0,   21.0,    1.0,    0.0, 
        1.0,    1.0,    8.0,   52.0,   28.0,  201.0,    0.0, 
        1.0,    1.0,    6.0,   70.0,   13.0,   44.0,    0.0, 
        1.0,    1.0,    5.0,   40.0,   13.0,   15.0,    0.0, 
        2.0,    1.0,    7.0,   36.0,   22.0,  103.0,    1.0, 
        2.0,    1.0,    4.0,   44.0,   36.0,    2.0,    0.0, 
        2.0,    1.0,    3.0,   54.0,    9.0,   20.0,    0.0, 
        2.0,    1.0,    3.0,   59.0,   87.0,   51.0,    0.0, 
        3.0,    1.0,    4.0,   69.0,    5.0,   18.0,    0.0, 
        3.0,    1.0,    6.0,   50.0,   22.0,   90.0,    0.0, 
        3.0,    1.0,    8.0,   62.0,    4.0,   84.0,    0.0, 
        4.0,    1.0,    7.0,   68.0,   15.0,  164.0,    0.0, 
        4.0,    1.0,    3.0,   39.0,    4.0,   19.0,    0.0, 
        4.0,    1.0,    6.0,   49.0,   11.0,   43.0,    0.0, 
        4.0,    1.0,    8.0,   64.0,   10.0,  340.0,    0.0, 
        4.0,    1.0,    7.0,   67.0,   18.0,  231.0,    0.0}; 
    int   n_observations = 40; 
    int   n_class = 2; 
    int   n_continuous = 3; 
    int   model = 0; 
    int   n_coef; 
    int   icen = 6, ilt = -1, irt = 5; 
    int   lp_max = 40; 
    int   n, *ncv, nrmiss, *obs; 
    float *iterations, *cv, criterion; 
    float *coef_stat, *casex; 
    char *fmt = "%12.4f"; 
    char *fmt2 = "%4d%4d%6.4f%8.4f%8.1f"; 
    static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"}; 
    static char *clabels2[] = {"", "Method", "Iteration", "Step Size", 
        "Coef Update", "Log-Likelihood"}; 
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    n_coef = imsls_f_survival_glm(n_observations, n_class,  
        n_continuous, model, &x[0][0],  
        IMSLS_X_COL_CENSORING, icen, ilt, irt,  
        IMSLS_INFINITY_CHECK, lp_max, 
        IMSLS_COEF_STAT, &coef_stat, 
        IMSLS_ITERATIONS, &n, &iterations,  
        IMSLS_CASE_ANALYSIS, &casex, 
        IMSLS_CLASS_INFO, &ncv, &cv,  
        IMSLS_OBS_STATUS, &obs,  
        IMSLS_CRITERION, &criterion, 
        IMSLS_N_ROWS_MISSING, &nrmiss,  
        0);  
 
    imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,  
        coef_stat,  
        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_NO_ROW_LABELS, 
        IMSLS_COL_LABELS, clabels, 
        0); 
 
    imsls_f_write_matrix("Iteration Information", n, 5, iterations, 
        IMSLS_WRITE_FORMAT, fmt2,  
        IMSLS_NO_ROW_LABELS, 
        IMSLS_COL_LABELS, clabels2, 0); 
 
    printf("\nLog-Likelihood = %12.5f\n", criterion); 
 
    imsls_f_write_matrix("Case Analysis", 1, n_observations, casex,  
        IMSLS_WRITE_FORMAT, fmt,  
        0); 
 
    imsls_f_write_matrix( 
        "Distinct Values for Classification Variable 1", 
        1, ncv[0], &cv[0], IMSLS_NO_COL_LABELS, 0); 
 
    imsls_f_write_matrix( 
        "Distinct Values for Classification Variable 2", 
        1, ncv[1], &cv[ncv[0]], IMSLS_NO_COL_LABELS, 0); 
 
    imsls_i_write_matrix("Observation Status", 1, n_observations,  
        obs, 0);  
 
    printf("\nNumber of Missing Values = %2d\n", nrmiss); 
} 

Output 
                Coefficient Statistics 
 coefficient          s.e.             z             p 
     -1.1027        1.3140       -0.8392        0.4016 
     -0.3626        0.4446       -0.8156        0.4149 
      0.1271        0.4863        0.2613        0.7939 
      0.8690        0.5861        1.4825        0.1385 
      0.2697        0.3882        0.6948        0.4873 
     -0.5400        0.1081       -4.9946        0.0000 
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     -0.0090        0.0197       -0.4594        0.6460 
     -0.0034        0.0117       -0.2912        0.7710 
  
                  Iteration Information 
Method  Iteration  Step Size  Coef Update  Log-Likelihood 
     0          0     ......     ........          -224.0 
     0          1     1.0000       0.9839          -213.4 
     1          2     1.0000       3.6033          -207.3 
     1          3     1.0000      10.1236          -204.3 
     1          4     1.0000       0.1430          -204.1 
     1          5     1.0000       0.0117          -204.1 
 
Log-Likelihood =   -204.13916 
  
                            Case Analysis 
           1             2             3             4             5 
    262.6884        0.0450       -0.5646        1.5646        0.0008 
  
           6             7             8             9            10 
    153.7777        0.0042        0.1806        0.8194        0.0029 
  
          11            12            13            14            15 
    270.5347        0.0482        0.5638        0.4362        0.0024 
  
          16            17            18            19            20 
     55.3168        0.0844       -0.6631        1.6631        0.0034 
  
          21            22            23            24            25 
     61.6845        0.3765        0.8703        0.1297        0.0142 
  
          26            27            28            29            30 
    230.4414        0.0025       -0.1085        0.1085        0.8972 
  
          31            32            33            34            35 
    232.0135        0.1960        0.9526        0.0474        0.0041 
  
          36            37            38            39            40 
    272.8432        0.1677        0.8021        0.1979        0.0030 
  
 Distinct Values for Classification Variable 1 
         1           2           3           4 
  
Distinct Values for Classification Variable 2 
                    0           1 
  
                              Observation Status 
 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 
 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0 
 
Number of Missing Values =  0 
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Example 3 
In this example, the same data and model as Example 1 are used, but 
max_iterations is set to zero iterations with model coefficients restricted such that 
μ = −1.25, β6 = −0.6, and the remaining six coefficients are equal to zero. A chi-
squared statistic, with 8 degrees of freedom for testing the coefficients is specified as 
above (versus the alternative that it is not as specified), can be computed, based on the 
output, as  

2 1ˆTg gχ −= Σ
 

where  

Σ̂
 

is output in cov. The resulting test statistic, χ2 = 6.107, based upon no iterations is 
comparable to likelihood ratio test that can be computed from the log-likelihood output 
in this example (−206.6835) and the log-likelihood output in Example 2 (−204.1392). 

( )2 2 206.6835 204.1392 5.0886LRχ = − =
 

Neither statistic is significant at the α = 0.05 level. 
#include <imsls.h> 
 
main() { 
    static float x[40][7] = { 
        1.0,    0.0,    7.0,   64.0,    5.0,  411.0,    0.0,  
        1.0,    0.0,    6.0,   63.0,    9.0,  126.0,    0.0, 
        1.0,    0.0,    7.0,   65.0,   11.0,  118.0,    0.0, 
        1.0,    0.0,    4.0,   69.0,   10.0,   92.0,    0.0, 
        1.0,    0.0,    4.0,   63.0,   58.0,    8.0,    0.0, 
        1.0,    0.0,    7.0,   48.0,    9.0,   25.0,    1.0, 
        1.0,    0.0,    7.0,   48.0,   11.0,   11.0,    0.0, 
        2.0,    0.0,    8.0,   63.0,    4.0,   54.0,    0.0, 
        2.0,    0.0,    6.0,   63.0,   14.0,  153.0,    0.0, 
        2.0,    0.0,    3.0,   53.0,    4.0,   16.0,    0.0, 
        2.0,    0.0,    8.0,   43.0,   12.0,   56.0,    0.0, 
        2.0,    0.0,    4.0,   55.0,    2.0,   21.0,    0.0, 
        2.0,    0.0,    6.0,   66.0,   25.0,  287.0,    0.0, 
        2.0,    0.0,    4.0,   67.0,   23.0,   10.0,    0.0, 
        3.0,    0.0,    2.0,   61.0,   19.0,    8.0,    0.0, 
        3.0,    0.0,    5.0,   63.0,    4.0,   12.0,    0.0, 
        4.0,    0.0,    5.0,   66.0,   16.0,  177.0,    0.0, 
        4.0,    0.0,    4.0,   68.0,   12.0,   12.0,    0.0, 
        4.0,    0.0,    8.0,   41.0,   12.0,  200.0,    0.0, 
        4.0,    0.0,    7.0,   53.0,    8.0,  250.0,    0.0, 
        4.0,    0.0,    6.0,   37.0,   13.0,  100.0,    0.0, 
        1.0,    1.0,    9.0,   54.0,   12.0,  999.0,    0.0, 
        1.0,    1.0,    5.0,   52.0,    8.0,  231.0,    1.0, 
        1.0,    1.0,    7.0,   50.0,    7.0,  991.0,    0.0, 
        1.0,    1.0,    2.0,   65.0,   21.0,    1.0,    0.0, 
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        1.0,    1.0,    8.0,   52.0,   28.0,  201.0,    0.0, 
        1.0,    1.0,    6.0,   70.0,   13.0,   44.0,    0.0, 
        1.0,    1.0,    5.0,   40.0,   13.0,   15.0,    0.0, 
        2.0,    1.0,    7.0,   36.0,   22.0,  103.0,    1.0, 
        2.0,    1.0,    4.0,   44.0,   36.0,    2.0,    0.0, 
        2.0,    1.0,    3.0,   54.0,    9.0,   20.0,    0.0, 
        2.0,    1.0,    3.0,   59.0,   87.0,   51.0,    0.0, 
        3.0,    1.0,    4.0,   69.0,    5.0,   18.0,    0.0, 
        3.0,    1.0,    6.0,   50.0,   22.0,   90.0,    0.0, 
        3.0,    1.0,    8.0,   62.0,    4.0,   84.0,    0.0, 
        4.0,    1.0,    7.0,   68.0,   15.0,  164.0,    0.0, 
        4.0,    1.0,    3.0,   39.0,    4.0,   19.0,    0.0, 
        4.0,    1.0,    6.0,   49.0,   11.0,   43.0,    0.0, 
        4.0,    1.0,    8.0,   64.0,   10.0,  340.0,    0.0, 
        4.0,    1.0,    7.0,   67.0,   18.0,  231.0,    0.0}; 
    int   n_observations = 40; 
    int   n_class = 2; 
    int   n_continuous = 3; 
    int   model = 0; 
    int   icen = 6, ilt = -1, irt = 5; 
    int   lp_max = 40; 
    int   n_coef_input = 8; 
    static float estimates[8] = {-1.25, 0.0, 0.0, 0.0,  
        0.0, -0.6, 0.0, 0.0}; 
 
    int   n_coef; 
    float *coef_stat, *means, *cov; 
    float criterion, *last_step; 
 
    char *fmt = "%12.4f"; 
    static char *clabels[] = {"", "coefficient", "s.e.", "z", "p"}; 
 
    n_coef = imsls_f_survival_glm(n_observations, n_class,  
        n_continuous, model, &x[0][0],  
        IMSLS_X_COL_CENSORING, icen, ilt, irt,  
        IMSLS_INFINITY_CHECK, lp_max, 
        IMSLS_INITIAL_EST_INPUT, n_coef_input, estimates,  
        IMSLS_MAX_ITERATIONS, 0,  
        IMSLS_COEF_STAT, &coef_stat, 
        IMSLS_MEANS, &means, 
        IMSLS_COV, &cov,  
        IMSLS_CRITERION, &criterion,  
        IMSLS_LAST_STEP, &last_step,  
        0);  
 
    imsls_f_write_matrix("Coefficient Statistics", n_coef, 4,  
        coef_stat,  
        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_NO_ROW_LABELS, 
        IMSLS_COL_LABELS, clabels, 
        0); 
 
    imsls_f_write_matrix("Covariate Means", 1, n_coef-1, means, 0); 
 
    imsls_f_write_matrix("Hessian", n_coef, n_coef, cov,  
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        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_PRINT_UPPER,  
        0); 
 
    printf("\nLog-Likelihood = %12.5f\n", criterion); 
 
    imsls_f_write_matrix("Newton-Raphson Step", 1, n_coef, last_step,  
        IMSLS_WRITE_FORMAT, fmt, 0); 
 
} 

Output 
                Coefficient Statistics 
 coefficient          s.e.             z             p 
     -1.2500        1.3833       -0.9036        0.3664 
      0.0000        0.4288        0.0000        1.0000 
      0.0000        0.5299        0.0000        1.0000 
      0.0000        0.7748        0.0000        1.0000 
      0.0000        0.4051        0.0000        1.0000 
     -0.6000        0.1118       -5.3652        0.0000 
      0.0000        0.0215        0.0000        1.0000 
      0.0000        0.0109        0.0000        1.0000 
  
                            Covariate Means 
         1           2           3           4           5           6 
      0.35        0.28        0.12        0.53        5.65       56.58 
  
         7 
     15.65 
  
                                Hessian 
              1             2             3             4             5 
1        1.9136       -0.0906       -0.1641       -0.1681        0.0778 
2                      0.1839        0.0996        0.1191        0.0358 
3                                    0.2808        0.1264       -0.0226 
4                                                  0.6003        0.0460 
5                                                                0.1641 
  
              6             7             8 
1       -0.0818       -0.0235       -0.0012 
2       -0.0005       -0.0008        0.0006 
3        0.0104        0.0005       -0.0021 
4        0.0193       -0.0016        0.0007 
5        0.0060       -0.0040        0.0017 
6        0.0125        0.0000        0.0003 
7                      0.0005       -0.0001 
8                                    0.0001 
 
Log-Likelihood =   -206.68349 
  
                         Newton-Raphson Step 
           1             2             3             4             5 
      0.1706       -0.3365        0.1333        1.2967        0.2985 
  
           6             7             8 
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      0.0625       -0.0112       -0.0026 

Warning Errors 

IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. Convergence is 
assumed. 

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. Convergence is 
assumed. 

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected value for 
the log logistic distribution (“model” = 4) 
does not exist. Predicted values will not be 
calculated. 

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected value for 
the log extreme value distribution(“model” 
= 8) does not exist. Predicted values will not 
be calculated. 

IMSLS_NEG_EIGENVALUE The Hessian has at least one negative 
eigenvalue. An upper bound on the absolute 
value of the minimum eigenvalue is # 
corresponding to variable index #. 

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and “x[#][“irt”= #]” = #. 
The censoring interval has length 0.0. The 
censoring code for this observation is being 
set to 0.0. 

Fatal Error 

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the 
classification variables exceeds “max_class” 
= #. 

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified, 
and “n_coef_input” = #. The model 
specified requires # coefficients. 

IMSLS_TOO_FEW_VALID_OBS “n_observations” = # and “n_rows_missing” 
= #. “n_observations”−”n_rows_missing” 
must be greater than or equal to 2 in order to 
estimate the coefficients. 

IMSLS_SVGLM_1 For the exponential model (“model” = 0) 
with “n_effects” = # and no intercept, 
“n_coef” has been determined to equal 0. 
With no coefficients in the model, 
processing cannot continue. 

IMSLS_INCREASE_LP_MAX Too many observations are to be deleted 
from the model. Either use a different model 
or increase the workspace. 
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IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of 
distinct values for each classification 
variable must be greater than one. 

survival_estimates 
Estimates survival probabilities and hazard rates for the various parametric models. 

Synopsis 
#include <imsls.h> 
int *imsls_f_survival_estimates (Imsls_f_survival *survival_info, 

int n_observations, float xpt[], float time, int npt, float delta, 
..., 0) 

The type double function is imsls_d_survival_estimates. 

Required Arguments 

Imsls_f_survival *survival_info   (Input) 
Pointer to structure of type Imsls_f_survival containing the estimated survival 
coefficients and other related information. See imsls_f_survival_glm. 

int n_observations   (Input) 
Number of observations for which estimates are to be calculated. 

float xpt[]   (Input) 
Array xpt is an array of size n_observations by x_col_dim containing 
the groups of covariates for which estimates are desired, where x_col_dim is 
described in the documentation for imsls_f_survival_glm. The covariates 
must be specified exactly as in the call to imsls_f_survival_glm which 
produced survival_info. 

float time   (Input) 
Beginning of the time grid for which estimates are desired. Survival 
probabilities and hazard rates are computed for each covariate vector over the 
grid of time points time + i*delta for i = 0, 1, …, npt − 1. 

int npt   (Input) 
Number of points on the time grid for which survival probabilities are desired. 

float delta   (Input) 
Increment between time points on the time grid. 

Return Value 
An array of size npt by (2 ∗ n_observations + 1) containing the estimated survival 
probabilities for the covariate groups specified in xpt. Column 0 contains the survival 
time. Columns 1 and 2 contain the estimated survival probabilities and hazard rates, 
respectively, for the covariates in the first row of xpt. In general, the survival and 
hazard for row i of xpt is contained in columns 2i − 1 and 2i, respectively, for 
i = 1, 2, …, npt. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_survival_estimates (Imsls_f_survival survival_info, 

int n_observations, float xpt[], float time, int npt, float delta, 
IMSLS_XBETA, float **xbeta, 
IMSLS_XBETA_USER, float xbeta[], 
IMSLS_RETURN_USER, float sprob[], 
0) 

Optional Arguments 

IMSLS_XBETA, float **xbeta   (Output) 
Address of a pointer to an array of length n_observations containing the 
estimated linear response 

ˆw xβ+
 

for each row of xpt. 

IMSLS_XBETA_USER, float xbeta[]   (Output) 
Storage for array xbeta is provided by the user. See IMSLS_XBETA. 

IMSLS_RETURN_USER, float sprob[]   (Output) 
User supplied array of size npt by (2 ∗ n_observations + 1) containing the 
estimated survival probabilities for the covariate groups specified in xpt. 
Column 0 contains the survival time. Columns 1 and 2 contain the estimated 
survival probabilities and hazard rates, respectively, for the covariates in the 
first row of xpt. In general, the survival and hazard for row i of xpt is 
contained in columns 2i − 1 and 2i, respectively, for i = 1, 2, …, npt. 

Description 
Function imsls_f_survival_estimates computes estimates of survival 
probabilities and hazard rates for the parametric survival/reliability models fit by 
function imsls_f_survival_glm. 

Let η = xTβ be the linear parameterization, where x is the design vector corresponding 
to a row of xpt (imsls_f_survival_estimates generates the design vector using 
function imsls_f_regressors_for_glm), and β is a vector of parameters 
associated with the linear model. Let T denote the random response variable and S(t) 
denote the probability that T > t. All models considered also allow a fixed parameter w 
(input in column ifix of xpt). Use of the parameter is discussed in function 
imsls_f_survival_glm. There also may be nuisance parameters θ > 0 or σ > 0. Let 
Φ denote the cumulative normal distribution. The survival models available in 
imsls_f_survival_estimates are: 
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Model Name S (t) 
0 Exponential exp [−t exp (wi + η)] 

1 Linear hazard 
( )

2

exp exp
2 i
tt wθ η

⎡ ⎤⎛ ⎞
− + +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

2 Log-normal ( )ln
1 it wη

σ
− −⎛ ⎞

− Φ ⎜ ⎟
⎝ ⎠

 

3 Normal 
1 it wη

σ
− −⎛ ⎞− Φ ⎜ ⎟

⎝ ⎠
 

4 Log-logistic ( ) 1ln
{1 exp }it wη

σ
−− −⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

 

5 Logistic 
1{1 exp }it wη

σ
−− −⎛ ⎞+ ⎜ ⎟

⎝ ⎠
 

6 Log least extreme value ( )ln
exp{ exp }it wη

σ
− −⎛ ⎞

− ⎜ ⎟
⎝ ⎠

 

7 Least extreme value 
exp{ exp }it wη

σ
− −⎛ ⎞− ⎜ ⎟

⎝ ⎠
 

8 Log extreme value ( )ln
1 exp{ exp }it wη

σ
− −⎛ ⎞

− − ⎜ ⎟
⎝ ⎠

 

9 Extreme value 
1 exp{ exp }it wη

σ
− −⎛ ⎞− − ⎜ ⎟

⎝ ⎠
 

10 Weibull 

( )
exp{ }

exp i

t
w

θ

η
⎡ ⎤

− ⎢ ⎥
+⎢ ⎥⎣ ⎦

 

Let λ(t) denote the hazard rate at time t. Then λ(t) and S(t) are related at 

( ) ( )exp( )
t

S t s dsλ
−∞

= ∫  

Models 0, 1, 2, 4, 6, 8, and 10 require that T > 0 (in which case assume  
λ(s) = 0 for s < 0), while the remaining models allow arbitrary values for  
T, −∞ < T < ∞. The computations proceed in function 
imsls_f_survival_estimates as follows: 

1. The input arguments are checked for consistency and validity. 

2. For each row of xpt, the explanatory variables are generated from the 
classification and variables and the covariates using function 
imsls_f_regressors_for_glm (See Chapter 2, “Regression”) with 



 
 
 
 

 
 

Chapter 10: Survival and Reliability Analysis survival_estimates • 753  

 

 

 

dummy_method = IMSLS_LEAVE_OUT_LAST. Given the explanatory 
variables x, η is computed as η = xTβ, where β is input in survival_info. 

3. For each point requested in the time grid, the survival probabilities and hazard 
rates are computed. 

Example 
This example is a continuation of the first example given for function 
imsls_f_survival_glm. Prior to calling survival_estimates, 
imsls_f_survival_glm is invoked to compute the parameter estimates (contained in 
the structure survival_info). The example is taken from Lawless (1982, p. 287) and 
involves the mortality of patients suffering from lung cancer. 

#include <imsls.h> 
#include <stdlib.h> 
main() { 
    static float x[40][7] = { 
        1.0,    0.0,    7.0,   64.0,    5.0,  411.0,    0.0,  
        1.0,    0.0,    6.0,   63.0,    9.0,  126.0,    0.0, 
        1.0,    0.0,    7.0,   65.0,   11.0,  118.0,    0.0, 
        1.0,    0.0,    4.0,   69.0,   10.0,   92.0,    0.0, 
        1.0,    0.0,    4.0,   63.0,   58.0,    8.0,    0.0, 
        1.0,    0.0,    7.0,   48.0,    9.0,   25.0,    1.0, 
        1.0,    0.0,    7.0,   48.0,   11.0,   11.0,    0.0, 
        2.0,    0.0,    8.0,   63.0,    4.0,   54.0,    0.0, 
        2.0,    0.0,    6.0,   63.0,   14.0,  153.0,    0.0, 
        2.0,    0.0,    3.0,   53.0,    4.0,   16.0,    0.0, 
        2.0,    0.0,    8.0,   43.0,   12.0,   56.0,    0.0, 
        2.0,    0.0,    4.0,   55.0,    2.0,   21.0,    0.0, 
        2.0,    0.0,    6.0,   66.0,   25.0,  287.0,    0.0, 
        2.0,    0.0,    4.0,   67.0,   23.0,   10.0,    0.0, 
        3.0,    0.0,    2.0,   61.0,   19.0,    8.0,    0.0, 
        3.0,    0.0,    5.0,   63.0,    4.0,   12.0,    0.0, 
        4.0,    0.0,    5.0,   66.0,   16.0,  177.0,    0.0, 
        4.0,    0.0,    4.0,   68.0,   12.0,   12.0,    0.0, 
        4.0,    0.0,    8.0,   41.0,   12.0,  200.0,    0.0, 
        4.0,    0.0,    7.0,   53.0,    8.0,  250.0,    0.0, 
        4.0,    0.0,    6.0,   37.0,   13.0,  100.0,    0.0, 
        1.0,    1.0,    9.0,   54.0,   12.0,  999.0,    0.0, 
        1.0,    1.0,    5.0,   52.0,    8.0,  231.0,    1.0, 
        1.0,    1.0,    7.0,   50.0,    7.0,  991.0,    0.0, 
        1.0,    1.0,    2.0,   65.0,   21.0,    1.0,    0.0, 
        1.0,    1.0,    8.0,   52.0,   28.0,  201.0,    0.0, 
        1.0,    1.0,    6.0,   70.0,   13.0,   44.0,    0.0, 
        1.0,    1.0,    5.0,   40.0,   13.0,   15.0,    0.0, 
        2.0,    1.0,    7.0,   36.0,   22.0,  103.0,    1.0, 
        2.0,    1.0,    4.0,   44.0,   36.0,    2.0,    0.0, 
        2.0,    1.0,    3.0,   54.0,    9.0,   20.0,    0.0, 
        2.0,    1.0,    3.0,   59.0,   87.0,   51.0,    0.0, 
        3.0,    1.0,    4.0,   69.0,    5.0,   18.0,    0.0, 
        3.0,    1.0,    6.0,   50.0,   22.0,   90.0,    0.0, 
        3.0,    1.0,    8.0,   62.0,    4.0,   84.0,    0.0, 
        4.0,    1.0,    7.0,   68.0,   15.0,  164.0,    0.0, 
        4.0,    1.0,    3.0,   39.0,    4.0,   19.0,    0.0, 
        4.0,    1.0,    6.0,   49.0,   11.0,   43.0,    0.0, 
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        4.0,    1.0,    8.0,   64.0,   10.0,  340.0,    0.0, 
        4.0,    1.0,    7.0,   67.0,   18.0,  231.0,    0.0}; 
 
    int   n_observations = 40; 
    int   n_estimates = 2; 
    int   n_class = 2; 
    int   n_continuous = 3; 
    int   model = 0; 
    int   icen = 6, ilt = -1, irt = 5; 
    int   lp_max = 40; 
    float time = 10.0; 
    int   npt = 10; 
    float delta = 20.0; 
 
    int   n_coef; 
    float *sprob; 
    Imsls_f_survival *survival_info; 
    char *fmt = "%12.2f%10.4f%10.6f%10.4f%10.6f"; 
    char *clabels[] = {"", "Time", "S1", "H1", "S2", "H2"}; 
 
    n_coef = imsls_f_survival_glm(n_observations, n_class,  
        n_continuous,  
        model, &x[0][0],  
        IMSLS_X_COL_CENSORING, icen, ilt, irt,  
        IMSLS_INFINITY_CHECK, lp_max, 
        IMSLS_SURVIVAL_INFO, &survival_info, 
        0);  
 
    sprob = imsls_f_survival_estimates(survival_info, n_estimates,  
        &x[0][0], time, npt, delta, 0);  
 
    imsls_f_write_matrix("Survival and Hazard Estimates",  
        npt, 2*n_estimates+1, sprob,  
        IMSLS_WRITE_FORMAT, fmt, IMSLS_NO_ROW_LABELS,  
        IMSLS_COL_LABELS, clabels, 0); 
 
    free (survival_info); 
    free (sprob); 
} 

Output 

                Survival and Hazard Estimates 

        Time          S1          H1          S2          H2 
       10.00      0.9626    0.003807      0.9370    0.006503 
       30.00      0.8921    0.003807      0.8228    0.006503 
       50.00      0.8267    0.003807      0.7224    0.006503 
       70.00      0.7661    0.003807      0.6343    0.006503 
       90.00      0.7099    0.003807      0.5570    0.006503 
      110.00      0.6579    0.003807      0.4890    0.006503 
      130.00      0.6096    0.003807      0.4294    0.006503 
      150.00      0.5649    0.003807      0.3770    0.006503 
      170.00      0.5235    0.003807      0.3310    0.006503 
      190.00      0.4852    0.003807      0.2907    0.006503 
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Note that the hazard rate is constant over time for the exponential model. 

Warning Errors 

IMSLS_CONVERGENCE_ASSUMED_1 Too many step halvings. Convergence is 
assumed. 

IMSLS_CONVERGENCE_ASSUMED_2 Too many step iterations. Convergence is 
assumed. 

IMSLS_NO_PREDICTED_1 “estimates[0]” > 1.0. The expected value for 
the log logistic distribution (“model” = 4) 
does not exist. Predicted values will not be 
calculated. 

IMSLS_NO_PREDICTED_2 “estimates[0]” > 1.0. The expected value for 
the log extreme value distribution (“model” 
= 8) does not exist. Predicted values will not 
be calculated. 

IMSLS_NEG_EIGENVALUE  The Hessian has at least one negative 
eigenvalue. An upper bound on the absolute 
value of the minimum eigenvalue is # 
corresponding to variable index #. 

IMSLS_INVALID_FAILURE_TIME_4 “x[#][“ilt”= #]” = # and “x[#][“irt”= #]” = #. 
The censoring interval has length 0.0. The 
censoring code for this observation is being 
set to 0.0. 

Fatal Error 

IMSLS_MAX_CLASS_TOO_SMALL The number of distinct values of the 
classification variables exceeds “max_class” 
= #. 

IMSLS_TOO_FEW_COEF IMSLS_INITIAL_EST_INPUT is specified, 
and “n_coef_input” = #. The model 
specified requires # coefficients. 

IMSLS_TOO_FEW_VALID_OBS “n_observations” = %(i1) and 
“n_rows_missing” = #. “n_observations”−
”n_rows_missing” must be greater than or 
equal to 2 in order to estimate the 
coefficients. 

IMSLS_SVGLM_1 For the exponential model (“model” = 0) 
with “n_effects” = # and no intercept, 
“n_coef” has been determined to equal 0. 
With no coefficients in the model, 
processing cannot continue. 
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IMSLS_INCREASE_LP_MAX Too many observations are to be deleted 
from the model. Either use a different model 
or increase the workspace. 

IMSLS_INVALID_DATA_8 “n_class_values[#]” = #. The number of 
distinct values for each classification 
variable must be greater than one. 

nonparam_hazard_rate 
Performs nonparametric hazard rate estimation using kernel functions and quasi-
likelihoods. 

Synopsis 
#include <imsls.h> 
float *imsls_f_nonparam_hazard_rate (int n_observations,  

float t[], int n_hazard,  float hazard_min,   
float hazard_increment, ..., 0) 

The type double function is imsls_d_nonparam_hazard_rate. 

Required Arguments 

int n_observations  (Input) 
Number of observations. 

float t[]  (Input)  
An array of n_observations containing the failure times.   If optional 
argument IMSLS_CENSOR_CODES is used, the values of t may be treated as 
exact failure times, as right-censored times, or a combination of exact and 
right censored times.  By default, all times in t are assumed to be exact failure 
times.  

int n_hazard (Input) 
Number of grid points at which to compute the hazard.   The function 
computes the hazard rates over the range given by:   
hazard_min + j * hazard_increment, for j = 0, …, n_hazard − 1. 

float hazard_min (Input) 
First grid value. 

float hazard_increment (Input) 
Increment between grid values. 

Return Value 
Pointer to an array of length n_hazard containing the estimated hazard rates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_nonparam_hazard_rate (int n_observations,  

float t[], int n_hazard,  float hazard_min,  
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float hazard_increment 
IMSLS_RETURN_USER,  float haz[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_CENSOR_CODES, int censor_codes[],  
IMSLS_WEIGHT, int iwto,  
IMSLS_SORT_OPTION, int isort, 
IMSLS_K_GRID, int n_k, float k_min, float k_increment, 
IMSLS_BETA_GRID, int n_beta_grid, float beta_start,  
float beta_increment, 
IMSLS_N_MISSING, int *nmiss,  
IMSLS_ALPHA, float *alpha,  
IMSLS_BETA, float *beta, 
IMSLS_CRITERION, float *vml,  
IMSLS_K, int *k, 
IMSLS_SORTED_EVENT_TIMES, float **event_times,  
IMSLS_SORTED_EVENT_TIMES_USER, float event_times[], 
IMSLS_SORTED_CENSOR_CODES, int **isorted_censor, 
IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[],  
0) 

Optional Arguments 
IMSLS_RETURN_USER, float haz[] (Output) 

If specified, haz is a user supplied array of length n_hazard containing the 
estimated hazard rates.  

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  Default:  iprint = 0. 

 
iprint Action 

0 No printing is performed. 
1 The grid estimates and the optimized estimates are printed for each 

value of k. 

IMSLS_CENSOR_CODES, int censor_codes[] (Input) 
censor_codes is an array of length n_observations containing the 
censoring codes for each time in t.   If censor_codes[i]=0 the failure time 
t[i] is treated as an exact time of failure.  Otherwise it is treated as a right-
censored time; that is, the exact time of failure is greater than t[i]. 
Default: All failure times are treated as exact times of failure with no 
censoring. 

IMSLS_WEIGHT_OPTION, int iwto  (Input) 
Weight option .  If iwto = 1, then  

( )( )ln 1 1/ i= + −weight n_observations is used for the i-th smallest observation. 
Otherwise, ( )1/ i−weight = n_observations is used. 
Default:  iwto = 0. 
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IMSLS_SORT_OPTION, int isort  (Input) 
Sorting option .  If isort = 1, then the event times are not automatically 
sorted by the function. Otherwise, sorting is performed with exact failure 
times following tied right-censored times. 
Default:  isort = 0. 

IMSLS_K_GRID, int n_k, float k_min, float k_increment  (Input) 
Finds the optimal value of k over the range given by: kmin + (j − 1) * 
k_increment, for j = 1, …, n_k.  Where n_k is the number of values of k to 
be considered.  k_min is the minimum value for parameter k.   k_increment 
is the increment between successive values of parameter k.  Parameter k is the 
number of nearest neighbors to be used in computing the k-th nearest neighbor 
distance.   
Default:  k_min is the smallest possible value of k, k_increment =2, and 
n_k will be at most 10 points. 

 IMSLS_BETA_GRID, int n_beta_grid, float beta_start, float 
beta_increment  (Input) 
For n_beta_grid > 0, a user-defined grid is used. This grid is defined as 
beta_start + (j − 1)*beta_increment, for j = 1, …, n_beta_grid.  
beta_start is the first value to be used in the user-defined grid and 
beta_increment is the increment between successive grid values of beta.  
Default:  The values in the initial beta search are given as follows: Let β∗ = − 
8, − 4, − 2, − 1, − 0.5,0.5,1, and 2, and 

ββ e
∗−=
 

   For each value of β, vml is computed at the optimizing β. The maximizing β 
is used to initiate the iterations.  If the initial β∗ is determined from the search 
to be less than −6, then it is presumed that β is infinite, and an analytic 
estimate of α based upon infinite β is used. Infinite β corresponds to a flat 
hazard rate. 

IMSLS_N_MISSING, int *nmiss  (Output) 
Number of missing (NaN, not a number) failure times in t. 

IMSLS_ALPHA, float *alpha  (Output) 
Optimal estimate for the parameter α. 

IMSLS_BETA, float *beta  (Output) 
Optimal estimate for the parameter β. 

IMSLS_CRITERION, float *vml  (Output) 
Optimum value of the criterion function. 

IMSLS_K, int *k  (Output) 
Optimal estimate for the parameter k. 

IMSLS_SORTED_EVENT_TIMES, float **event_times  (Output) 
Address of a pointer to an array of length n_observations containing the 
times of occurrence of the events, sorted from smallest to largest. 
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IMSLS_SORTED_EVENT_TIMES_USER, float event_times[]  (Output) 
Storage for event_times is provided by the user.  See 
IMSLS_SORTED_EVENT_TIMES. 

IMSLS_SORTED_CENSOR_CODES, int **isorted_censor  (Output) 
Address of a pointer to an array of length n_observations containing the 
sorted censor codes.  Censor codes are sorted corresponding to the events 
event_times[i], with censored observations preceding tied failures. 

IMSLS_SORTED_CENSOR_CODES_USER, int isorted_censor[]  (Output) 
Storage for isorted_censor is provided by the user.  See 
IMSLS_SORTED_CENSOR_CODE. 

Description 
Function imsls_f_nonparam_hazard_rate is an implementation of the methods 
discussed by Tanner and Wong (1984) for estimating the hazard rate in survival or 
reliability data with right censoring. It uses the biweight kernel, 

2 215
16 (1 ) for 1

( )
0 elsewhere

x x
K x

⎧ − <
= ⎨

⎩  

and a modified likelihood to obtain data-based estimates of the smoothing parameters 
α, β, and k needed in the estimation of the hazard rate. For kernel K(x), define the 
“smoothed” kernel  
Ks(x − x(j) as follows: 

( )
( )

1( )
α βS j

jk jk

x x j
K x x K

d d
⎛ ⎞−

− = ⎜ ⎟⎜ ⎟
⎝ ⎠  

where djk is the distance to the k-th nearest failure from x(j), and x(j) is the j-th ordered 
observation (from smallest to largest). For given α and β, the hazard at point x is then 

( )
1

( ) {(1 ) ( )}
N

i i s i
i

h x w K x xδ
=

= − −∑  

where N = n_observations, δi is the i-th observation’s censor code (1 = censored, 
0 = failed), and wi is the i-th ordered observation’s weight, which may be chosen as 
either 1/(N − i + 1), or  
ln(1 + 1/(N − i + 1)). Let 

0
( ) ( )

x
H x h s ds= ∫  

The likelihood is given by 
(1 )

1 ( ){ ( ) exp( ( ))}iN
i i iL h x H xδ−
== −∏ , 
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where Π denotes product. Since the likelihood leads to degenerate estimates, Tanner 
and Wong (1984) suggest the use of a modified likelihood. The modification consists 
of deleting observation xi in the calculation of h(xi) and H(xi) when the likelihood term 
for xi is computed using the usual optimization techniques. α and β for given k can then 
be estimated. 
Estimates for α and β are computed as follows: for given β, a closed form solution is 
available for α. The problem is thus reduced to the estimation of β.  
A grid search for β is first performed. Experience indicates that if the initial estimate of 
β from this grid search is greater than, say, e6, then the modified likelihood is 
degenerate because the hazard rate does not change with time. In this situation, β 
should be taken to be infinite, and an estimate of α corresponding to infinite β should 
be directly computed. When the estimate of β from the grid search is less than e6, a 
secant algorithm is used to optimize the modified likelihood. The secant algorithm 
iteration stops when the change in β from one iteration to the next is less than 10−5. 
Alternatively, the iterations may cease when the value of β becomes greater than e6, at 
which point an infinite β with a degenerate likelihood is assumed. 
To find the optimum value of the likelihood with respect to k, a user-specified grid of 
k-values is used. For each grid value, the modified likelihood is optimized with respect 
to α and β. That grid point, which leads to the smallest likelihood, is taken to be the 
optimal k. 

Programming Notes 
1. If sorting of the data is performed by imsls_f_nonparam_hazard_rate, then the 
sorted array will be such that all censored observations at a given time precede all 
failures at that time. To specify an arbitrary pattern of censored/failed observations at a 
given time point, the isort = 1 option must be used. In this case, it is assumed that the 
times have already been sorted from smallest to largest. 
2.  The smallest value of k must be greater than the largest number of tied failures since 
djk must be positive for all j. (Censored observations are not counted.) Similarly, the 
largest value of k must be less than the total number of failures. If the grid specified for 
k includes values outside the allowable range, then a warning error is issued; but k is 
still optimized over the allowable grid values. 
3.  The secant algorithm iterates on the transformed parameter β∗ = exp(− β). This 
assures a positive β, and it also seems to lead to a more desirable grid search. All 
results returned to the user are in the original parameterization, however. 
4.  Since local minimums have been observed in the modified likelihood, it is 
recommended that more than one grid of initial values for α and β be used. 
5.  Function imsls_f_nonparam_hazard_rate assumes that the hazard grid points 
are new data points. 

Example 
The following example is taken from Tanner and Wong (1984). The data are from 
Stablein, Carter, and Novak (1981) and involve the survival times of individuals with 
nonresectable gastric carcinoma. Only individuals treated with both radiation and 
chemotherapy are used. For each value of k from 18 to 22 with increment of 2, the 
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default grid search for β is performed. Using the optimal value of β in the grid, the 
optimal parameter estimates of α and β are computed for each value of k. The final 
solution is the parameter estimates for the value of k which optimizes the modified 
likelihood (vml). Because the iprint = 1 is in effect, 
imsls_f_nonparam_hazard_rate prints all of the results in the output. 

#include "imsls.h" 
 
void main () 
{ 
  int n_observations = 45, iprint = 1, kmin = 18; 
  int increment_k = 2, n_k = 3, isort = 1, nmiss, *isorted_censor; 
  float *event_times, *haz; 
  int n_hazard=100; 
  float hazard_min = 0.0, hazard_inc = 10; 
 
  float t[] = { 17.0, 42.0, 44.0, 48.0, 60.0, 72.0, 74.0, 95.0, 
                         103.0, 108.0, 122.0, 144.0, 167.0, 170.0, 183.0, 
                         185.0, 193.0, 195.0, 197.0, 208.0, 234.0, 235.0, 
                         254.0, 307.0, 315.0, 401.0, 445.0, 464.0, 484.0, 
                         528.0, 542.0, 567.0, 577.0, 580.0, 795.0, 855.0, 
                         882.0, 892.0,1031.0,1033.0,1306.0,1335.0,1366.0, 
                         1452.0, 1472.0}; 
  float censor_codes[] = { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
                           0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
                           0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
                           0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 
                           1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; 
 
  haz = imsls_f_nonparam_hazard_rate I  (n_observations, t, 
                                         n_hazard, hazard_min, hazard_inc, 
                                         IMSLS_K_GRID, n_k, kmin,  

increment_k, 
                                         IMSLS_PRINT_LEVEL, iprint, 
                                         IMSLS_N_MISSING, &nmiss, 
                                         IMSLS_SORT_OPTION, isort, 
                                         IMSLS_CENSOR_CODES, censor_codes, 
                                         IMSLS_SORTED_EVENT_TIMES,  

       &event_times, 
                                         IMSLS_SORTED_CENSOR_CODES, 
                                               &isorted_censor, 
                                         0); 
 
  printf ("\nnmiss = %d\n", nmiss); 
  imsls_f_write_matrix ("Sorted Event Times", 1, n_observations, 
                         event_times, IMSLS_WRITE_FORMAT, "%7.1f", 0);                       
  imsls_i_write_matrix ("Sorted Censors", 1, n_observations,  
                         isorted_censor, 0); 
  imsls_f_write_matrix ("Hazard Rates", 1, n_hazard, haz, 0); 
 
} 
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Output 
 

                 *** Grid search for k =    18 *** 
         alpha                    beta                   vml 
         4.57832                 2980.96              -266.805 
         4.54312                 54.5982               -266.62 
         4.33646                 20.0855              -265.541 
         4.01933                 12.1825              -264.001 
         3.54274                 7.38906               -262.54 
         2.99058                 4.48169              -262.512 
         2.35154                 2.71828              -262.634 
         1.58417                 1.64872              -262.158 
        0.966332                       1              -262.868 

 
                 *** Optimal parameter estimates *** 

         alpha                    beta                   vml 
         1.69515                 1.76926              -262.119 

 
                 *** Grid search for k =    20 *** 

         alpha                    beta                   vml 
         4.05393                 2980.96              -266.526 
         4.03284                 54.5982              -266.401 
         3.90505                 20.0855              -265.648 
         3.68782                 12.1825              -264.402 
         3.30434                 7.38906              -262.666 
         2.82272                 4.48169               -262.08 
         2.25276                 2.71828              -262.445 
         1.55578                 1.64872              -261.772 
        0.955586                       1              -262.618 

 
                 *** Optimal parameter estimates *** 

         alpha                    beta                   vml 
         1.54053                 1.63155              -261.771 

 
                 *** Grid search for k =    22 *** 

         alpha                    beta                   vml 
         3.65641                 2980.96              -267.595 
         3.64159                 54.5982              -267.499 
         3.55056                 20.0855              -266.904 
         3.38875                 12.1825              -265.859 
         3.07147                 7.38906              -264.066 
         2.64504                 4.48169              -263.039 
          2.1374                 2.71828              -263.335 
         1.51261                 1.64872               -262.64 
        0.936368                       1              -262.683 
 
                 *** Optimal parameter estimates *** 
         alpha                    beta                   vml 
         1.34217                 1.45001              -262.561 
 
             *** The final solution     (k =    20) *** 
         alpha                    beta                   vml 
         1.54053                 1.63155              -261.771 
 
nmiss = 0 
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                          Sorted Event Times 
      1        2        3        4        5        6        7        8 
   17.0     42.0     44.0     48.0     60.0     72.0     74.0     95.0 
 
      9       10       11       12       13       14       15       16 
  103.0    108.0    122.0    144.0    167.0    170.0    183.0    185.0 
 
     17       18       19       20       21       22       23       24 
  193.0    195.0    197.0    208.0    234.0    235.0    254.0    307.0 
 
     25       26       27       28       29       30       31       32 
  315.0    401.0    445.0    464.0    484.0    528.0    542.0    567.0 
 
     33       34       35       36       37       38       39       40 
  577.0    580.0    795.0    855.0    882.0    892.0   1031.0   1033.0 
 
     41       42       43       44       45 
 1306.0   1335.0   1366.0   1452.0   1472.0 
 
                                Sorted Censors 
 1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19   
 0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0    
 
20 21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38     
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   1    
 
39  40  41  42  43  44  45 
1    1   1   1   1   1   1 
 
                             Hazard Rates 
         1           2           3           4           5           6 
  0.000962    0.001111    0.001276    0.001451    0.001634    0.001819 
 
         7           8           9          10          11          12 
  0.002004    0.002185    0.002359    0.002523    0.002675    0.002813 
 
        13          14          15          16          17          18 
  0.002935    0.003040    0.003126    0.003193    0.003240    0.003266 
 
        19          20          21          22          23          24 
  0.003273    0.003260    0.003229    0.003179    0.003114    0.003034 
 
        25          26          27          28          29          30 
  0.002941    0.002838    0.002727    0.002612    0.002495    0.002381 
 
        31          32          33          34          35          36 
  0.002273    0.002175    0.002084    0.001998    0.001917    0.001841 
 
        37          38          39          40          41          42 
  0.001771    0.001709    0.001655    0.001608    0.001569    0.001537 
 
        43          44          45          46          47          48 
  0.001510    0.001484    0.001459    0.001435    0.001411    0.001388 
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        49          50          51          52          53          54 
  0.001365    0.001343    0.001323    0.001304    0.001285    0.001266 
 
        55          56          57          58          59          60 
  0.001247    0.001228    0.001208    0.001188    0.001167    0.001146 
 
        61          62          63          64          65          66 
  0.001125    0.001103    0.001081    0.001060    0.001040    0.001020 
 
        67          68          69          70          71          72 
  0.000999    0.000979    0.000958    0.000936    0.000913    0.000891 
 
        73          74          75          76          77          78 
  0.000868    0.000845    0.000821    0.000798    0.000775    0.000752 
 
        79          80          81          82          83          84 
  0.000730    0.000708    0.000685    0.000662    0.000640    0.000617 
 
        85          86          87          88          89          90 
  0.000595    0.000573    0.000552    0.000530    0.000510    0.000490 
 
        91          92          93          94          95          96 
  0.000471    0.000452    0.000434    0.000416    0.000399    0.000383 
 
        97          98          99         100 
  0.000366    0.000351    0.000336    0.000321 
 

Fatal Errors 

IMSLS_ALL_OBSERVATIONS_MISSING 

  All observations are missing (NaN, not a number) values. 

life_tables 
Produces population and cohort life tables. 

Synopsis 
#include <imsls.h> 
float *imsls_f_life_tables (int n_classes, float age[], float a[], 

int n_cohort[],  ..., 0) 
The type double function is imsls_d_life_tables. 

Required Arguments 

int n_classes  (Input) 
Number of age classes. 

float age[]  (Input)  
Array of length n_classes + 1 containing the lowest age in each age 
interval, and in age[n_classes], the endpoint of the last age interval.  
Negative age[0] indicates that the age intervals are all of length |age[0]| 
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and that the initial age interval is from 0.0 to |age[0]|. In this case, all other 
elements of age need not be specified.  age[n_classes] need not be 
specified when getting a cohort table. 

float a[]  (Input)  
Array of length n_classes containing the fraction of those dying within each 
interval who die before the interval midpoint.  A common choice for all a[i] 
is 0.5. This choice may also be specified by setting a[0] to any negative 
value. In this case, the remaining values of a need not be specified. 

int n_cohort[]  (Input) 
Array of length n_classes containing the cohort sizes during each interval.  
If the IMSL_POPULATION_LIFE_TABLE option is used, then n_cohort[i] 
contains the size of the population at the midpoint of interval i.  Otherwise, 
n_cohort[i] contains the size of the cohort at the beginning of interval i. 
When requesting a population table, the population sizes in n_cohort may 
need to be adjusted to correspond to the number of deaths in n_deaths. See 
the Description section for more information. 

Return Value 

Pointer to an array of length n_classes by 12 containing the life table.  The 
function returns a cohort table by default.  If the 
IMSL_POPULATION_LIFE_TABLE option is used, a population table is returned.  
Entries in the ith row are for the age interval defined by age[i].  Column 
definitions are described in the following table. 

 
Column Description 

0 Lowest age in the age interval. 
1 Fraction of those dying within the interval who die before the 

interval midpoint. 
2 Number surviving to the beginning of the interval. 
3 Number of deaths in the interval. 
4 Death rate in the interval. For cohort table, this column is set to NaN 

(not a number). 
5 Proportion dying in the interval. 
6 Standard error of the proportion dying in the interval. 
7 Proportion of survivors at the beginning of the interval. 
8 Standard error of the proportion of survivors at the beginning of the 

interval. 
9 Expected lifetime at the beginning of the interval. 
10 Standard error of the expected life at the beginning of the interval. 
11 Total number of time units lived by all of the population in the 

interval. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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float * imsls_f_life_tables (int n_classes, float age[],  
float a[], int n_cohort[], 
IMSLS_RETURN_USER,  float table[], 
IMSLS_PRINT_LEVEL, int iprint, 
IMSLS_POPULATION_SIZE, int initial_pop, 
IMSLS_POPULATION_LIFE_TABLE, int *n_deaths,  
0) 

Optional Arguments 
IMSLS_RETURN_USER, float table[]  (Output) 

If specified, table is an user-specified array of length n_classes*12 
containing the life table. 

IMSLS_PRINT_LEVEL, int iprint  (Input) 
Printing option.  
Default:  iprint = 0. 

Iprint  Action 
0 No printing is performed. 
1 The life table is printed. 

IMSLS_POPULATION_SIZE, int initial_pop  (Input) 
The population size at the beginning of the first age interval in requesting 
population table. A default value of 10,000 is used to allow easy entry of 
n_cohorts and n_deaths when numbers are available as percentages. 
Default:  initial_pop = 10000. 

IMSLS_POPULATION_LIFE_TABLE, int *n_deaths  (Input) 
Compute a population table.  n_deaths is an array of length n_classes 
containing the number of deaths in each age interval. 

Description 
Function imsls_f_life_tables computes population (current) or cohort life tables 
based upon the observed population sizes at the middle (for population table) or the 
beginning (for cohort table) of some userspecified age intervals. The number of deaths 
in each of these intervals must also be observed. 
The probability of dying prior to the middle of the interval, given that death occurs 
somewhere in the interval, may also be specified. Often, however, this probability is 
taken to be 0.5. For a discussion of the probability models underlying the life table 
here, see the references. 
Let ti, for i = 0, 1, …, tn denote the time grid defining the n age intervals, and note that 
the length of the age intervals may vary. Following Gross and Clark (1975, page 24), 
let di denote the number of individuals dying in age interval i, where age interval i ends 
at time ti. For population table, the death rate at the middle of the interval is given by  
ri = di/(Mihi), where Mi is the number of individuals alive at the middle of the interval, 
and hi = ti − ti-1, t0 = 0. The number of individuals alive at the beginning of the interval 
may be estimated by Pi = Mi + (1 − ai)di where ai is the probability that an individual 
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dying in the interval dies prior to the interval midpoint. For cohort table, Pi is input 
directly while the death rate in the interval, ri, is not needed. 

The probability that an individual dies during the age interval from ti-1 to ti is given by 
qi = di/Pi. It is assumed that all individuals alive at the beginning of the last interval die 
during the last interval. Thus, qn = 1.0. The asymptotic variance of qi can be estimated 
by 

2 (1 ) /i i i iq q Pσ = −
 

For population table, the number of individuals alive in the middle of the time interval 
(input in n_cohort[i]) must be adjusted to correspond to the number of deaths 
observed in the interval. Function imsls_f_life_tables assumes that the number 
of deaths observed in interval hi occur over a time period equal to hi. If di is measured 
over a period ui, where ui ≠ di, then n_cohort[i] must be adjusted to correspond to  
di by multiplication by ui/hi, i.e., the value Mi input into imsls_f_life_tables as 
n_cohort[i] is computed as  

/i i i iM M u h∗ =
 

Let Si denote the number of survivors at time ti from a hypothetical (for population 
table) or observed (for cohort table) population. Then, S0 = initial_pop for 
population table, and S0 = n_cohort[0] for cohort table, and Si is given by  
Si = Si−1 − δi-1 where δi = Siqi is the number of individuals who die in the i-th interval. 
The proportion of survivors in the interval is given by Vi = Si/S0 while the asymptotic 
variance of Vi can be estimated as follows. 

21
2

2
1

var( )
(1 )

i
j

i i
j j
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=

=
−∑  

The expected lifetime at the beginning of the interval is calculated as the total lifetime 
remaining for all survivors alive at the beginning of the interval divided by the number 
of survivors at the beginning of the interval. If ei denotes this average expected 
lifetime, then the variance of ei can be estimated as (see Chiang 1968) 
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where var(en) = 0.0. 

Finally, the total number of time units lived by all survivors in the time interval can be 
estimated as: 

[ (1 )]i i i i iU h S aδ= − −
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Example 
This example is taken from Chiang (1968). The cohort life table has thirteen equally 
spaced intervals, so age[0] is set to −5.0. Similarly, the probabilities of death prior to 
the middle of the interval are all taken to be 0.5, so a[0] is set to −1.0. Since 
IMSLS_PRINT_LEVEL option is used, imsls_f_life_tables prints the life table. 

#include "imsls.h" 
 
#define N_CLASSES 13 
 
void main () 
{ 
  int iprint = 1; 
  int n_cohort[] = 
    { 270, 268, 264, 261, 254, 251, 248, 232, 166, 130, 76, 34, 13 }; 
  float age[N_CLASSES + 1], a[N_CLASSES]; 
  float *result; 
 
  age[0] = -5.0; 
  a[0] = -1.0; 
  result = imsls_f_life_tables (N_CLASSES, age, a, n_cohort, 
    IMSLS_PRINT_LEVEL, iprint, 0); 
} 

Output 
 
 
                             Life Table 
Age Class         Age      PDHALF       Alive      Deaths  Death Rate 
        1           0         0.5         270           2  .......... 
        2           5         0.5         268           4  .......... 
        3          10         0.5         264           3  .......... 
        4          15         0.5         261           7  .......... 
        5          20         0.5         254           3  .......... 
        6          25         0.5         251           3  .......... 
        7          30         0.5         248          16  .......... 
        8          35         0.5         232          66  .......... 
        9          40         0.5         166          36  .......... 
       10          45         0.5         130          54  .......... 
       11          50         0.5          76          42  .......... 
       12          55         0.5          34          21  .......... 
       13          60         0.5          13          13  .......... 
  
Age Class        P(D)   Std(P(D))        P(S)   Std(P(S))    Lifetime 
        1    0.007407    0.005218           1           0       43.19 
        2     0.01493    0.007407      0.9926    0.005218       38.49 
        3     0.01136    0.006523      0.9778    0.008971       34.03 
        4     0.02682        0.01      0.9667     0.01092        29.4 
        5     0.01181    0.006779      0.9407     0.01437       25.14 
        6     0.01195    0.006859      0.9296     0.01557       20.41 
        7     0.06452      0.0156      0.9185     0.01665       15.63 
        8      0.2845     0.02962      0.8593     0.02116       11.53 
        9      0.2169     0.03199      0.6148     0.02962       10.12 
       10      0.4154     0.04322      0.4815     0.03041       7.231 
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       11      0.5526     0.05704      0.2815     0.02737       5.592 
       12      0.6176     0.08334      0.1259     0.02019       4.412 
       13           1           0     0.04815     0.01303         2.5 
  
Age Class   Std(Life)  Time Units 
        1      0.6993        1345 
        2      0.6707        1330 
        3       0.623        1313 
        4       0.594        1288 
        5      0.5403        1263 
        6      0.5237        1248 
        7      0.5149        1200 
        8      0.4982         995 
        9      0.4602         740 
       10      0.4328         515 
       11      0.4361         275 
       12      0.4167       117.5 
       13           0        32.5 
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Chapter 11: Probability Distribution 
Functions and Inverses 

Routines 
Discrete Random Variables: Distribution Functions and Probability Functions 

Distribution Functions 
Binomial distribution function binomial_cdf 774 
Binomial probability function binomial_pdf 775 
Hypergeometric distribution function hypergeometric_cdf 777 
Hypergeometric probability function hypergeometric_pdf 778 
Poisson distribution function poisson_cdf 779 
Poisson probability function poisson_pdf 781 

Continuous Random Variables 
Distribution Functions and Their Inverses 
Beta distribution function beta_cdf 783 
Inverse beta distribution function beta_inverse_cdf 785 
Bivariate normal distribution function bivariate_normal_cdf 786 
Chi-squared distribution function chi_squared_cdf 788 
Inverse chi-squared  
distribution function chi_squared_inverse_cdf 789 
Noncentral chi-squared  
distribution function non_central_chi_sq 791 
Inverse of the noncentral chi-squared 
distribution function non_central_chi_sq_inv 793 
F distribution function F_cdf 794 
Inverse F distribution function F_inverse_cdf 796 
Gamma distribution function gamma_cdf 798 
Inverse gamma distribution function gamma_inverse_cdf 799 
Normal (Gaussian) distribution function normal_cdf 801 
Inverse normal distribution function normal_inverse_cdf 802 
Student’s t distribution function t_cdf 804 
Inverse Student’s t distribution function t_inverse_cdf 805 
Noncentral Students’s t distribution function  non_central_t_cdf 807 
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Inverse of the noncentral Student’s t  
distribution function non_central_t_inv_cdf 809 

Usage Notes 
Definitions and discussions of the terms basic to this chapter can be found in Johnson 
and Kotz (1969, 1970a, 1970b). These are also good references for the specific 
distributions. 
In order to keep the calling sequences simple, whenever possible, the subprograms 
described in this chapter are written for standard forms of statistical distributions. 
Hence, the number of parameters for any given distribution may be fewer than the 
number often associated with the distribution. For example, while a gamma distribution 
is often characterized by two parameters (or even a third, “location”), there is only one 
parameter that is necessary, the “shape”.  
The “scale” parameter can be used to scale the variable to the standard gamma 
distribution. Also, the functions relating to the normal distribution, 
imsls_f_normal_cdf and imsls_f_normal_inverse_cdf , are for a normal 
distribution with mean equal to zero and variance equal to one. For other means and 
variances, it is very easy for the user to standardize the variables by subtracting the 
mean and dividing by the square root of the variance. 
The distribution function for the (real, single-valued) random variable X is the function 
F defined for all real x by  

F(x) = Prob(X ≤ x) 

where Prob(⋅) denotes the probability of an event. The distribution function is often 
called the cumulative distribution function (CDF). 
For distributions with finite ranges, such as the beta distribution, the CDF is 0 for 
values less than the left endpoint and 1 for values greater than the right endpoint. The 
subprograms described in this chapter return the correct values for the distribution 
functions when values outside of the range of the random variable are input, but 
warning error conditions are set in these cases. 

Discrete Random Variables 
For discrete distributions, the function giving the probability that the random variable 
takes on specific values is called the probability function, defined by 

p(x) = Prob(X = x) 

The “PR” routines described in this chapter evaluate probability functions.  
The CDF for a discrete random variable is 

( ) ( )
A

F x p k= ∑  
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where A is the set such that k ≤ x. The “DF” routines in this chapter evaluate cumulative 
distribution functions. Since the distribution function is a step function, its inverse does 
not exist uniquely. 

Continuous Distributions 
For continuous distributions, a probability function, as defined above, would not be 
useful because the probability of any given point is 0. For such distributions, the useful 
analog is the probability density function (PDF). The integral of the PDF is the 
probability over the interval, if the continuous random variable X has PDF f, then 

Prob( ) ( )b
aa X b f x dx< ≤ = ∫  

The relationship between the CDF and the PDF is 

( ) ( )xF x f t dt−∞= ∫ . 

The “_cdf” functions described in this chapter evaluate cumulative distribution 
functions. 
For (absolutely) continuous distributions, the value of F(x) uniquely determines  
x within the support of the distribution. The “_inverse_cdf” functions described in 
this chapter compute the inverses of the distribution functions, that is, given F(x) 
(called “P” for “probability”), a routine such as imsls_f_beta_inverse_cdf 
computes x. The inverses are defined only over the open interval (0,1). 

Additional Comments 
Whenever a probability close to 1.0 results from a call to a distribution function or is to 
be input to an inverse function, it is often impossible to achieve good accuracy because 
of the nature of the representation of numeric values. In this case, it may be better to 
work with the complementary distribution function (one minus the distribution 
function). If the distribution is symmetric about some point (as the normal distribution, 
for example) or is reflective about some point (as the beta distribution, for example), 
the complementary distribution function has a simple relationship with the distribution 
function. For example, to evaluate the standard normal distribution at 4.0, using 
imsls_f_normal_inverse_cdf directly, the result to six places is 0.999968. Only 
two of those digits are really useful, however. A more useful result may be 1.000000 
minus this value, which can be obtained to six significant figures as 3.16713E-05 by 
evaluating imsls_f_normal_inverse_cdf at −4.0. For the normal distribution, the 
two values are related by Φ(x) = 1 − Φ(−x), where Φ(⋅) is the normal distribution 
function. Another example is the beta distribution with parameters 2 and 10. This 
distribution is skewed to the right, so evaluating imsls_f_beta_cdf at 0.7, 0.999953 
is obtained. A more precise result is obtained by evaluating imsls_f_beta_cdf with 
parameters 10 and 2 at 0.3. This yields 4.72392E-5. (In both of these examples, it is 
wise not to trust the last digit.) 
Many of the algorithms used by routines in this chapter are discussed by Abramowitz 
and Stegun (1964). The algorithms make use of various expansions and recursive 
relationships and often use different methods in different regions.  
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Cumulative distribution functions are defined for all real arguments, however, if the 
input to one of the distribution functions in this chapter is outside the range of the 
random variable, an error of Type 1 is issued, and the output is set to zero or one, as 
appropriate. A Type 1 error is of lowest severity, a “note”, and, by default, no printing 
or stopping of the program occurs. The other common errors that occur in the routines 
of this chapter are Type 2, “alert”, for a function value being set to zero due to 
underflow, Type 3, “warning”, for considerable loss of accuracy in the result returned, 
and Type 5, “terminal”, for incorrect and/or inconsistent input, complete loss of 
accuracy in the result returned, or inability to represent the result (because of 
overflow). When a Type 5 error occurs, the result is set to NaN (not a number, also 
used as a missing value code). 

binomial_cdf 
Evaluates the binomial distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_binomial_cdf (int k, int n, float p) 
The type double function is imsls_d_binomial_cdf. 

Required Arguments 

int k   (Input) 
Argument for which the binomial distribution function is to be evaluated. 

int n   (Input) 
Number of Bernoulli trials. 

float p   (Input) 
Probability of success on each trial. 

Return Value 
The probability that k or fewer successes occur in n independent Bernoulli trials, each 
of which has a probability p of success. 

Description 
The imsls_f_binomial_cdf function evaluates the distribution function of a 
binomial random variable with parameters n and p. It does this by summing 
probabilities of the random variable taking on the specific values in its range. These 
probabilities are computed by the recursive relationship: 

( ) ( )
( ) ( )
1

1
1

n j p
Pr X j Pr X j

j p
+ −

= = = −
−  

To avoid the possibility of underflow, the probabilities are computed forward from 0 if 
k is not greater than n × p; otherwise, they are computed backward from n. The 
smallest positive machine number, ε, is used as the starting value for summing the 
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probabilities, which are rescaled by (1 − p)nε if forward computation is performed and 
by pnε if backward computation is used. 
For the special case of p = 0, imsls_f_binomial_cdf is set to 1; for the case p = 1, 
imsls_f_binomial_cdf is set to 1 if k = n and is set to 0 otherwise. 

Example 
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, the 
function finds the probability that X is less than or equal to 3. 

#include <imsls.h> 
 
void main() 
{ 
    int         k = 3; 
    int         n = 5; 
    float       p = 0.95; 
    float       pr; 
 
    pr = imsls_f_binomial_cdf(k,n,p); 
    printf("Pr(x <= 3) = %6.4f\n", pr); 
} 

Output 
Pr(x <= 3) = 0.0226 

Informational Errors 

IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution 
function is set to zero. 

IMSLS_GREATER_THAN_N The input argument, k, is greater than the number of 
Bernoulli trials, n. 

 

binomial_pdf 
Evaluates the binomial probability function. 

Synopsis 
#include <imsls.h> 
float imsls_f_binomial_pdf (int k, int n, float p,..., 0) 
The type double function is imsls_d_binomial_pdf. 

Required Arguments 

int k   (Input) 
Argument for which the binomial probability function is to be evaluated. 

int n   (Input) 
Number of Bernoulli trials. 
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float p   (Input) 
Probability of success on each trial. 

Return Value 
The probability that a binomial random variable takes on a value equal to k. 

Description 
The function imsls_f_binomial_pdf evaluates the probability that a binomial 
random variable with parameters n and p takes on the value k. It does this by 
computing probabilities of the random variable taking on the values in its range less 
than (or the values greater than) k. These probabilities are computed by the recursive 
relationship 

( 1 )Pr( ) Pr( 1)
(1 )

n j pX j X j
j p
+ −

= = = −
−  

To avoid the possibility of underflow, the probabilities are computed forward from 0, if 
k is not greater than n times p, and are computed backward from n, otherwise. The 
smallest positive machine number, ε, is used as the starting value for computing the 
probabilities, which are rescaled by (1 − p)nε if forward computation is performed and 
by pnε if backward computation is done. 
For the special case of p = 0, imsls_f_binomial_pdf is set to 0 if k is greater than 0 
and to 1 otherwise; and for the case p = 1, imsls_f_binomial_pdf is set to 0 if k is 
less than n and to 1 otherwise. 

Example 1 
Suppose X is a binomial random variable with n = 5 and p = 0.95. In this example, we 
find the probability that X is equal to 3.  

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int k, n; 
  float p, prob; 
 
  k = 3; 
  n = 5; 
  p = 0.95; 
  prob = imsls_f_binomial_pdf(k, n, p); 
 
  printf("The probability that X is equal to 3 is %f\n", prob); 
 } 

Output 
The probability that X is equal to 3 is 0.021434 
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hypergeometric_cdf 
Evaluates the hypergeometric distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_hypergeometric_cdf (int k, int n, int m, int l) 
The type double function is imsls_d_hypergeometric_cdf. 

Required Arguments 

int k   (Input) 
Argument for which the hypergeometric distribution function is to be 
evaluated. 

int n   (Input) 
Sample size. Argument n must be greater than or equal to k. 

int m   (Input) 
Number of defectives in the lot. 

int l   (Input) 
Lot size. Argument l must be greater than or equal to n and m. 

Return Value 
The probability that k or fewer defectives occur in a sample of size n drawn from a lot 
of size l that contains m defectives. 

Description 
Function imsls_f_hypergeometric_cdf evaluates the distribution function of a 
hypergeometric random variable with parameters n, l, and m. The hypergeometric 
random variable x can be thought of as the number of items of a given type in a random 
sample of size n that is drawn without replacement from a population of size l 
containing m items of this type. The probability function is 

( )
( )( )

( ) ( )for , 1, , min ,
m l m
j n j

l
n

Pr x = j j i i n m
−
−= = + …

 

where i = max (0, n − l + m). 
If k is greater than or equal to i and less than or equal to min (n, m), 
imsls_f_hypergeometric_cdf sums the terms in this expression for j going from i 
up to k; otherwise, 0 or 1 is returned, as appropriate. To avoid rounding in the 
accumulation, imsls_f_hypergeometric_cdf performs the summation differently, 
depending on whether or not k is greater than the mode of the distribution, which is the 
greatest integer less than or equal to (m + 1) (n + 1)/(l + 2). 

Example 
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In 
this example, evaluate the distribution function at 7. 
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#include <imsls.h> 
 
void main() 
{ 
    int         k = 7; 
    int         l = 1000; 
    int         m = 70; 
    int         n = 100; 
    float       p; 
 
    p = imsls_f_hypergeometric_cdf(k,n,m,l); 
    printf("\nPr (x <= 7) = %6.4f", p); 
} 

Output 
Pr (x <= 7) = 0.599 

Informational Errors 

IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution 
function is set to zero. 

IMSLS_K_GREATER_THAN_N The input argument, k, is greater than the sample 
size. 

Fatal Errors 

IMSLS_LOT_SIZE_TOO_SMALL Lot size must be greater than or equal to  
n and m. 

 

hypergeometric_pdf 
Evaluates the hypergeometric probability function. 

Synopsis 
#include <imsls.h> 
float imsls_f_hypergeometric_pdf (int k, int n, int m, int l) 
The type double function is imsls_d_hypergeometric_pdf. 

Required Arguments 

int k  (Input) 
Argument for which the hypergeometric probability function is to be 
evaluated. 

int n  (Input) 
Sample size.  n must be greater than zero and greater than or equal to k. 

int m  (Input) 
Number of defectives in the lot.  
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int l   (Input) 
Lot size.  l must be greater than or equal to n and m. 

Return Value  
The probability that a hypergeometric random variable takes a value equal to k. This 
value is the probability that exactly k defectives occur in a sample of size n drawn from 
a lot of size l that contains m defectives. 

Description 
The function imsls_f_hypergeometic_pdf evaluates the probability function of a 
hypergeometric random variable with parameters n, l, and m. The hypergeometric 
random variable X can be thought of as the number of items of a given type in a 
random sample of size n that is drawn without replacement from a population of size l 
containing m items of this type. The probability function is  

( )( )
( )

Pr( ) for , 1, 2, min( , )
m l m
k n kX k k i i i n m

l
n

−
−= = = + + …

 

where i = max(0, n − l + m). imsls_f_hypergeometic_pdf evaluates the expression 
using log gamma functions.  

Example  
Suppose X is a hypergeometric random variable with n = 100, l = 1000, and m = 70. In 
this example, we evaluate the probability function at 7. 
 

include "imsls.h" 

void main() 

{ 

  int k=7, n=100, l=1000, m=70; 

  float pr; 

  pr = imsls_f_hypergeometic_pdf(k, n, m, l); 

  printf("  The probability that X is equal to 7 is %6.4f\n", pr); 

} 

Output 
  The probability that X is equal to 7 is 0.1628 
 

poisson_cdf 
Evaluates the Poisson distribution function. 

Synopsis 
#include <imsls.h>  
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float imsls_f_poisson_cdf (int k, float theta) 
The type double function is imsls_d_poisson_cdf. 

Required Arguments 

int k   (Input) 
Argument for which the Poisson distribution function is to be evaluated. 

float theta   (Input) 
Mean of the Poisson distribution. Argument theta must be positive. 

Return Value 
The probability that a Poisson random variable takes a value less than or equal  
to k. 

Description 
Function imsls_f_poisson_cdf evaluates the distribution function of a Poisson 
random variable with parameter theta. The mean of the Poisson random variable, 
theta, must be positive. The probability function (with θ = theta) is as follows: 

( ) / !, for 0, 1, 2,xf x e x xθθ−= = …
 

The individual terms are calculated from the tails of the distribution to the mode of the 
distribution and summed. Function imsls_f_poisson_cdf uses the recursive 
relationship  

( ) ( ) ( )( )1 / 1 for 0, 1, 2, , 1f x f x x x kθ+ = + = −…
 

with f (0) = e-q. 
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Figure 11-1   Plot of Fp (k, θ) 

Example 
Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the 
probability that X is less than or equal to 7. 

#include <imsls.h> 
 
void main() 
{ 
    int         k = 7; 
    float       theta = 10.0; 
    float       p; 
 
    p = imsls_f_poisson_cdf(k, theta); 
    printf("Pr(x <= 7) = %6.4f\n", p); 
} 

Output 
Pr(x <= 7) = 0.2202 

Informational Errors 

IMSLS_LESS_THAN_ZERO Since “k” = # is less than zero, the distribution 
function is set to zero. 

poisson_pdf 
Evaluates the Poisson probability function. 
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Synopsis 
#include <imsls.h> 
float imsls_f_poisson_pdf (int k, float theta) 
The type double function is imsls_d_poisson_pdf. 

Required Arguments 

int k  (Input) 
Argument for which the Poisson distribution function is to be evaluated. 

float theta  (Input)  
Mean of the Poisson distribution.  theta must be positive. 

Return Value 
Function value, the probability that a Poisson random variable takes a value equal to k. 

Description 
Function imsls_f_poisson_pdf evaluates the probability function of a Poisson 
random variable with parameter theta. theta, which is the mean of the Poisson 
random variable, must be positive. The probability function (with θ = theta) is 

f(x) = e−θ θk/k!, for k = 0, 1, 2,… 

imsls_f_poisson_pdf evaluates this function directly, taking logarithms and using 
the log gamma function. 
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Figure 11-2   Poisson Probability Function 

Example 
Suppose X is a Poisson random variable with θ = 10. In this example, we evaluate the 
probability function at 7. 

#include "imsls.h" 
 
void main () { 
  int k = 7; 
  float theta = 10.0; 
 
  printf ("The probability that X is equal to 7 is %g.\n", 
   imsls_f_poisson_pdf (k, theta)); 
} 

Output 
 
The probability that X is equal to 7 is 0.0900792. 

 

beta_cdf 
Evaluates the beta probability distribution function. 

Synopsis 
#include <imsls.h> 
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float imsls_f_beta_cdf (float x, float pin, float qin) 
The type double function is imsls_d_beta_cdf. 

Required Arguments 

float x   (Input) 
Argument for which the beta probability distribution function is to be 
evaluated. 

float pin   (Input) 
First beta distribution parameter. Argument pin must be positive. 

float qin   (Input) 
Second beta distribution parameter. Argument qin must be positive. 

Return Value 
The probability that a beta random variable takes on a value less than or equal  
to x. 

Description 
Function imsls_f_beta_cdf evaluates the distribution function of a beta random 
variable with parameters pin and qin. This function is sometimes called the 
incomplete beta ratio and, with p = pin and q = qin, is denoted by Ix (p, q). It is given 
by 

( ) ( ) ( )
( ) ( ) 11

0
, 1

x qp
x

p q
I p q t t dt

p q
−−Γ Γ

= −
Γ + ∫  

where Γ (⋅) is the gamma function. The value of the distribution function by Ix (p, q) is 
the probability that the random variable takes a value less than or equal to x. 
The integral in the expression above is called the incomplete beta function and is 
denoted by βx(p, q). The constant in the expression is the reciprocal of the beta function 
(the incomplete function evaluated at 1) and is denoted by β(p, q). 
Function imsls_f_beta_cdf uses the method of Bosten and Battiste (1974). 

Example 
Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric 
distribution). This example finds the probability that X is less than 0.6 and the 
probability that X is between 0.5 and 0.6. (Since X is a symmetric beta random 
variable, the probability that it is less than 0.5 is 0.5.) 

#include <imsls.h> 
 
main() 
{ 
        float           p, pin, qin, x; 
 
        pin = 12.0; 
        qin = 12.0; 
        x = 0.6; 
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        p = imsls_f_beta_cdf(x, pin, qin); 
        printf("The probability that X is less than 0.6 is %6.4f\n", 
                p); 
        x = 0.5; 
        p -= imsls_f_beta_cdf(x, pin, qin); 
        printf("The probability that X is between 0.5 and"); 
        printf(" 0.6 is %6.4f\n", p); 
} 

Output 
The probability that X is less than 0.6 is 0.8364 
The probability that X is between 0.5 and 0.6 is 0.3364 

beta_inverse_cdf 
Evaluates the inverse of the beta distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_beta_inverse_cdf (float p, float pin, float qin) 
The type double function is imsls_d_beta_inverse_cdf. 

Required Arguments 

float p   (Input) 
Probability for which the inverse of the beta distribution function is to be 
evaluated. Argument p must be in the open interval (0.0, 1.0). 

float pin   (Input) 
First beta distribution parameter. Argument pin must be positive. 

float qin   (Input) 
Second beta distribution parameter. Argument qin must be positive. 

Return Value 
Function imsls_f_beta_inverse_cdf returns the inverse distribution function of a 
beta random variable with parameters pin and qin.  

Description 
With P = p, p = pin, and q = qin, the beta_inverse_cdf returns x such that 

( )
( ) ( ) ( ) 11

0
1

x qpp q
P t t dt

p q
−−Γ +

= −
Γ Γ ∫  

where Γ (⋅) is the gamma function. The probability that the random variable takes a 
value less than or equal to x is P. 
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Example 
Suppose X is a beta random variable with parameters 12 and 12 (X has a symmetric 
distribution). In this example, we find the value x such that the probability that X is less 
than or equal to x is 0.9. 

#include <imsls.h> 
 
main() 
{ 
        float           p, pin, qin, x; 
 
 
        pin = 12.0; 
        qin = 12.0; 
        p = 0.9; 
        x = imsls_f_beta_inverse_cdf(p, pin, qin); 
        printf(" X is less than %6.4f with probability 0.9.\n", 
                x); 
} 

Output 
X is less than 0.6299 with probability 0.9. 

bivariate_normal_cdf 
Evaluates the bivariate normal distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_bivariate_normal_cdf (float x, float y, float rho) 
The type double function is imsls_d_bivariate_normal_cdf. 

Required Arguments 

float x   (Input) 
The x-coordinate of the point for which the bivariate normal distribution 
function is to be evaluated. 

float y   (Input) 
The y-coordinate of the point for which the bivariate normal distribution 
function is to be evaluated. 

float rho   (Input) 
Correlation coefficient. 

Return Value 
The probability that a bivariate normal random variable with correlation rho takes a 
value less than or equal to x and less than or equal to y. 
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Description 
Function imsls_f_bivariate_normal_cdf evaluates the distribution function F of 
a bivariate normal distribution with means of zero, variances of one, and correlation of 
rho; that is, with ρ = rho, and |ρ| < 1, 

2 2

22

1 2( , ) exp
2(1 )2 1

yx u uv vF x y du dvρ
ρπ ρ −∞ −∞

⎛ ⎞− +
= −⎜ ⎟−− ⎝ ⎠

∫ ∫  

To determine the probability that U ≤ u0 and V ≤ v0, where (U, V)T is a bivariate 

normal random variable with mean μ = (μU, μV)T and variance-covariance matrix 

2

2
U UV

UV V

σ σ
σ σ

⎛ ⎞
∑ = ⎜ ⎟

⎝ ⎠  

transform (U, V)T to a vector with zero means and unit variances. The input  
to imsls_f_bivariate_normal_cdf would be X = (u0 − μU)/σU, Y = (v0 − μV)/σV, 
and ρ = σUV/(σUσV). 

Function imsls_f_bivariate_normal_cdf uses the method of Owen (1962, 1965). 
Computation of Owen’s T-function is based on code by M. Patefield and D. Tandy 
(2000). For |ρ| = 1, the distribution function is computed based on the univariate 
statistic, Z = min(x, y), and on the normal distribution function 
imsls_f_normal_cdf. 

Example 
Suppose (X, Y) is a bivariate normal random variable with mean (0, 0) and variance-
covariance matrix as follows: 

1.0 0.9
0.9 1.0

⎡ ⎤
⎢ ⎥
⎣ ⎦  

In this example, we find the probability that X is less than −2.0 and Y is less than 0.0. 
#include <imsls.h> 
 
main() 
{ 
        float           p, rho, x, y; 
 
        x = -2.0; 
        y = 0.0; 
        rho = 0.9; 
        p = imsls_f_bivariate_normal_cdf(x, y, rho); 
        printf(" The probability that X is less than -2.0\n" 
               " and Y is less than 0.0 is %6.4f\n", p); 
 
} 
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Output 
The probability that X is less than -2.0 
and Y is less than 0.0 is 0.0228 

chi_squared_cdf 
Evaluates the chi-squared distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_chi_squared_cdf (float chi_squared, float df) 
The type double function is imsls_d_chi_squared_cdf. 

Required Arguments 

float chi_squared   (Input) 
Argument for which the chi-squared distribution function is to be evaluated. 

float df   (Input) 
Number of degrees of freedom of the chi-squared distribution. Argument df 
must be greater than or equal to 0.5. 

Return Value 
The probability that a chi-squared random variable takes a value less than or equal to 
chi_squared. 

Description 
Function imsls_f_chi_squared_cdf evaluates the distribution function, F, of a chi-
squared random variable x = chi_squared with ν = df. Then, 

( ) ( )
/ 2 / 2 1

/ 2 0

1
2 / 2

x t v
vF x e t dt

v
− −=

Γ ∫  

where Γ (⋅) is the gamma function. The value of the distribution function at the point x 
is the probability that the random variable takes a value less than or equal to x. 

For ν > 65, imsls_f_chi_squared_cdf uses the Wilson-Hilferty approximation 
(Abramowitz and Stegun 1964, Equation 26.4.17) to the normal distribution, and 
function imsls_f_normal_cdf is used to evaluate the normal distribution function. 

For ν ≤ 65, imsls_f_chi_squared_cdf uses series expansions to evaluate the 
distribution function. If x < max (ν / 2, 26), imsls_f_chi_squared_cdf uses the 
series 6.5.29 in Abramowitz and Stegun (1964); otherwise, it uses the asymptotic 
expansion 6.5.32 in Abramowitz and Stegun. 

Example 
Suppose X is a chi-squared random variable with two degrees of freedom. In this 
example, we find the probability that X is less than 0.15 and the probability that  
X is greater than 3.0. 
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#include <imsls.h> 
 
void main() 
{ 
    float       chi_squared = 0.15;  
    float       df = 2.0; 
    float       p; 
 
    p    = imsls_f_chi_squared_cdf(chi_squared, df); 
    printf("%s %s %6.4f\n", "The probability that chi-squared\n", 
        "with 2 df is less than 0.15 is", p); 
 
    chi_squared = 3.0; 
    p    = 1.0 - imsls_f_chi_squared_cdf(chi_squared, df); 
    printf("%s %s %6.4f\n", "The probability that chi-squared\n", 
        "with 2 df is greater than 3.0 is", p); 
} 

Output 
The probability that chi-squared 
 with 2 df is less than 0.15 is 0.0723 
The probability that chi-squared 
 with 2 df is greater than 3.0 is 0.2231 

Informational Errors 

IMSLS_ARG_LESS_THAN_ZERO Since “chi_squared” = # is less than zero, the 
distribution function is zero at “chi_squared.” 

Alert Errors 

IMSLS_NORMAL_UNDERFLOW Using the normal distribution for large degrees of 
freedom, underflow would have occurred. 

chi_squared_inverse_cdf 
Evaluates the inverse of the chi-squared distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_chi_squared_inverse_cdf (float p, float df) 
The type double function is imsls_d_chi_squared_inverse_cdf. 

Required Arguments 

float p   (Input) 
Probability for which the inverse of the chi-squared distribution function is to 
be evaluated. Argument p must be in the open interval (0.0, 1.0). 

float df   (Input) 
Number of degrees of freedom of the chi-squared distribution. Argument df 
must be greater than or equal to 0.5. 
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Return Value 
The inverse at the chi-squared distribution function evaluated at p. The probability that 
a chi-squared random variable takes a value less than or equal to 
imsls_f_chi_squared_inverse_cdf is p. 

Description 
Function imsls_f_chi_squared_inverse_cdf evaluates the inverse distribution 
function of a chi-squared random variable with ν = df and with probability p. That is, 
it determines x = imsls_f_chi_squared_inverse_cdf (p, df), such that  

( )
/ 2 / 2 1

/ 2 0

1
2 / 2

x t v
vp e t dt

v
− −=

Γ ∫  

where Γ (⋅) is the gamma function. The probability that the random variable takes a 
value less than or equal to x is p. 

For ν < 40, imsls_f_chi_squared_inverse_cdf uses bisection (if ν ≤ 2 or 
p > 0.98) or regula falsi to find the point at which the chi-squared distribution function 
is equal to p. The distribution function is evaluated using IMSL function 
imsls_f_chi_squared_cdf. 
For 40 ≤ ν < 100, a modified Wilson-Hilferty approximation (Abramowitz and Stegun 
1964, Equation 26.4.18) to the normal distribution is used. IMSL function 
imsls_f_normal_cdf is used to evaluate the inverse of the normal distribution 
function. For ν ≥ 100, the ordinary Wilson-Hilferty approximation (Abramowitz and 
Stegun 1964, Equation 26.4.17) is used. 

Example 
In this example, we find the 99-th percentage point of a chi-squared random variable 
with 2 degrees of freedom and of one with 64 degrees of freedom. 

#include <imsls.h> 
 
void main () 
{     
    float       df, x; 
    float       p = 0.99; 
 
    df = 2.0; 
    x  = imsls_f_chi_squared_inverse_cdf(p, df); 
    printf("For p = .99 with  2 df, x = %7.3f.\n", x); 
 
    df = 64.0; 
    x  = imsls_f_chi_squared_inverse_cdf(p,df); 
    printf("For p = .99 with 64 df, x = %7.3f.\n", x); 
} 

Output 
For p = .99 with  2 df, x =   9.210. 
For p = .99 with 64 df, x =  93.217. 
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Warning Errors 

IMSLS_UNABLE_TO_BRACKET_VALUE The bounds that enclose “p” could not be 
found. An approximation for 
imsls_f_chi_squared_inverse_cdf is 
returned. 

IMSLS_CHI_2_INV_CDF_CONVERGENCE The value of the inverse chi-squared could not 
be found within a specified number of 
iterations. An approximation for 
imsls_f_chi_squared_inverse_cdf is 
returned. 

non_central_chi_sq 
Evaluates the noncentral chi-squared distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_non_central_chi_sq (float chi_squared, float df , float delta) 
The type double function is imsls_d_non_central_chi_sq. 

Required Arguments 
float chi_squared   (Input) 

Argument for which the noncentral chi-squared distribution function is to be 
evaluated. 

float df   (Input) 
Number of degrees of freedom of the noncentral chi-squared distribution. 
Argument df must be greater than or equal to 0.5 

float delta (Input) 
The noncentrality parameter.  delta must be nonnegative, and   delta + 
df must be less than or equal to 200,000. 

Return Value 
The probability that a noncentral chi-squared random variable takes a value less than or 
equal to chi_squared. 

Description 
Function imsls_f_non_central_chi_sq evaluates the distribution function of a 
noncentral chi-squared random variable with df degrees of freedom and noncentrality 
parameter alam, that is, with v = df, λ = alam, and x = chi_squared, 

2
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where Γ(⋅) is the gamma function. This is a series of central chi-squared distribution 
functions with Poisson weights. The value of the distribution function at the point x is 
the probability that the random variable takes a value less than or equal to x.  
The noncentral chi-squared random variable can be defined by the distribution function 
above, or alternatively and equivalently, as the sum of squares of independent normal 
random variables. If Yi have independent normal distributions with means μi and 
variances equal to one and 

2
1

n
i iX Y== ∑

 

then X has a noncentral chi-squared distribution with n degrees of freedom and 
noncentrality parameter equal to 

2
1

n
i iμ=∑

 

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the 
same as the chi-squared distribution.  
Function imsls_f_non_central_chi_sq determines the point at which the Poisson 
weight is greatest, and then sums forward and backward from that point, terminating 
when the additional terms are sufficiently small or when a maximum of 1000 terms 
have been accumulated. The recurrence relation 26.4.8 of Abramowitz and Stegun 
(1964) is used to speed the evaluation of the central chi-squared distribution functions. 

 

Figure 11-3   Noncentral Chi-squared Distribution Function 
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Example 
In this example, imsls_f_non_central_chi_sq is used to compute the probability 
that a random variable that follows the noncentral chi-squared distribution with 
noncentrality parameter of 1 and with 2 degrees of freedom is less than or equal to 
8.642. 

#include <imsls.h> 
#include <stdio.h> 
void main() 
{ 
        float chsq = 8.642; 
        float df = 2.0; 
        float alam = 1.0; 
        float p; 
        p = imsls_f_non_central_chi_sq(chsq, df, alam); 
        printf("The probability that a noncentral chi-squared random\n" 
  "variable with %2.0f df and noncentrality parameter %3.1f is less\n" 
  "than %5.3f is %5.3f.\n", df, alam, chsq, p); 
}  

Output 
The probability that a noncentral chi-squared random 
variable with 2 df and noncentrality parameter 1.0 is less 
than 8.642 is 0.950 

1.  

non_central_chi_sq_inv 
Evaluates the inverse of the noncentral chi-squared function. 

Synopsis 
#include <imsls.h> 
float imsls_f_non_central_chi_sq_inv (float p, float df, float delta) 
The type double function is imsls_d_non_central_chi_sq_inv. 

Required Arguments 
float p   (Input) 

Probability for which the inverse of the noncentral chi-squared distribution 
function is to be evaluated. p must be in the open interval (0.0, 1.0). 

float df   (Input) 
Number of degrees of freedom of the noncentral chi-squared distribution. 
Argument df must be greater than or equal to 0.5 

float delta (Input) 
The noncentrality parameter.  delta must be nonnegative, and    delta + 
df  must be less than or equal to 200,000. 
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Return Value 
The probability that a noncentral chi-squared random variable takes a value less than or 
equal to imsls_f_non_central_chi_sq_inv is p.  

Description 
Function imsls_f_non_central_chi_sq_inv evaluates the inverse distribution 
function of a noncentral chi-squared random variable with  
df degrees of freedom and noncentrality parameter delta; that is, with P = p, v = df, 
and  λ = delta, it determines c0 (= imsls_f_non_central_chi_sq_inv (p, df, 
delta)), such that 
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where Γ(⋅) is the gamma function. The probability that the random variable takes a 
value less than or equal to c0 is P. 

Function imsls_f_non_central_chi_sq_inv uses bisection and modified regula 
falsi to invert the distribution function, which is evaluated using  
routine imsls_f_non_central_chi_sq. See imsls_f_non_central_chi_sq for an 
alternative definition of the noncentral chi-squared random variable in terms of normal 
random variables. 

Example 
In this example, we find the 95-th percentage point for a noncentral chi-squared 
random variable with 2 degrees of freedom and noncentrality parameter 1. 

#include <imsls.h> 

#include <stdio.h> 

void main() 

{ 

        float p = .95; 

        int df = 2; 

        float delta = 1.0; 

        float chi_squared; 

        chi_squared = imsls_f_non_central_chi_sq_inv(p, df, delta); 

 printf("The 0.05 noncentral chi-squared critical value is %6.4f.\n", 

        chi_squared); 

} 

Output 
The 0.05 noncentral chi-squared critical value is  8.6422. 

F_cdf 
Evaluates the F distribution function.  
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Synopsis 
#include <imsls.h> 
float imsls_f_F_cdf (float f, float df_numerator, float df_denominator) 
The type double function is imsls_d_F_cdf. 

Required Arguments 

float f   (Input) 
Point at which the F distribution function is to be evaluated. 

float df_numerator   (Input) 
The numerator degrees of freedom. Argument df_numerator must be 
positive. 

float df_denominator   (Input) 
The denominator degrees of freedom. Argument df_denominator must be 
positive. 

Return Value 
The probability that an F random variable takes a value less than or equal to the input 
point, f. 

Description 
Function imsls_f_F_cdf evaluates the distribution function of a Snedecor’s F 
random variable with df_numerator and df_denominator. The function is 
evaluated by making a transformation to a beta random variable, then evaluating the 
incomplete beta function. If X is an F variate with ν1 and ν2 degrees of freedom and 
Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and q = ν2/2. 
Function imsls_f_F_cdf also uses a relationship between F random variables that 
can be expressed as 

FF(f, v1, v2) = 1 − FF(1/f, v2, v1) 

where FF is the distribution function for an F random variable. 
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Figure 11-4   Plot of FF(f, 1.0, 1.0) 

Example 
This example finds the probability that an F random variable with one numerator and 
one denominator degree of freedom is greater than 648. 

#include <imsls.h> 
 
main() 
{ 
    float       p; 
    float       F = 648.0; 
    float       df_numerator = 1.0; 
    float       df_denominator = 1.0; 
 
    p = 1.0 - imsls_f_F_cdf(F,df_numerator, df_denominator); 
    printf("%s %s %6.4f.\n", "The probability that an F(1,1) variate", 
        "is greater than 648 is", p); 
} 

Output 
The probability that an F(1,1) variate is greater than 648 is 0.0250. 

F_inverse_cdf 
Evaluates the inverse of the F distribution function. 
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Synopsis 
#include <imsls.h> 
float imsls_f_F_inverse_cdf (float p, float df_numerator, 

float df_denominator) 
The type double function is imsls_d_F_inverse_cdf. 

Required Arguments 

float p   (Input) 
Probability for which the inverse of the F distribution function is to be 
evaluated. Argument p must be in the open interval (0.0, 1.0). 

float df_numerator   (Input) 
Numerator degrees of freedom. Argument df_numerator must be positive. 

float df_denominator   (Input) 
Denominator degrees of freedom. Argument df_denominator must be 
positive. 

Return Value 
The value of the inverse of the F distribution function evaluated at p. The probability 
that an F random variable takes a value less than or equal to 
imsls_f_F_inverse_cdf is p. 

Description 
Function imsls_f_F_inverse_cdf evaluates the inverse distribution function of a 
Snedecor’s F random variable with ν1 = df_numerator numerator degrees of 
freedom and  ν2 = df_denominator denominator degrees of freedom. The function is 
evaluated by making a transformation to a beta random variable, then evaluating the 
inverse of an incomplete beta function. If X is an F variate with ν1 and ν2 degrees of 
freedom and Y = (ν1X)/(ν2 + ν1X), then Y is a beta variate with parameters p = ν1/2 and 
q = ν2/2. If p ≤ 0.5, imsls_f_F_ inverse_cdf uses this relationship directly; 
otherwise, it also uses a relationship between F random variables that can be expressed 
as follows: 

FF(f, v1, v2) = 1 − FF(1/f, v2, v1) 

Example 
This example finds the 99-th percentage point for an F random variable with 7 and 1 
degrees of freedom. 

#include <imsls.h> 
 
main() 
{ 
    float        df_denominator = 1.0; 
    float        df_numerator = 7.0; 
    float        f; 
    float        p = 0.99; 
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    f = imsls_f_F_inverse_cdf(p, df_numerator, df_denominator); 
 
    printf("The F(7,1) 0.01 critical value is %6.3f\n", f); 
} 

Output 
The F(7,1) 0.01 critical value is 5928.370 

Fatal Errors 

IMSLS_F_INVERSE_OVERFLOW Function imsls_f_F_inverse_cdf overflows. 
This is because df_numerator or 
df_denominator and p are too large. The return 
value is set to machine infinity. 

gamma_cdf 
Evaluates the gamma distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_gamma_cdf (float x, float a) 
The type double function is imsls_d_gamma_cdf. 

Required Arguments 

float x   (Input) 
Argument for which the gamma distribution function is to be evaluated. 

float a   (Input) 
Shape parameter of the gamma distribution. This parameter must be positive. 

Return Value 
The probability that a gamma random variable takes a value less than or equal to x. 

Description 
Function imsls_f_gamma_cdf evaluates the distribution function, F, of a gamma 
random variable with shape parameter a, 
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1

0

1 x
t aF x e t dt

a
− −=

Γ ∫  

where Γ(⋅) is the gamma function. (The gamma function is the integral from 0 to ∞ of 
the same integrand as above.) The value of the distribution function at the point x is the 
probability that the random variable takes a value less than or equal to x. 
The gamma distribution is often defined as a two-parameter distribution with a scale 
parameter b (which must be positive) or as a three-parameter distribution in which the 
third parameter c is a location parameter. In the most general case, the probability 
density function over (c, ∞) is as follows: 
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If T is a random variable with parameters a, b, and c, the probability that T ≤ t0 can be 
obtained from imsls_f_gamma_cdf by setting x = (t0 − c)/b. 

If x is less than a or less than or equal to 1.0, imsls_f_gamma_cdf uses a  
series expansion; otherwise, a continued fraction expansion is used.  
(See Abramowitz and Stegun 1964.) 

Example 
Let X be a gamma random variable with a shape parameter of four. (In this case, it has 
an Erlang distribution since the shape parameter is an integer.) This example finds the 
probability that X is less than 0.5 and the probability that  
X is between 0.5 and 1.0. 

#include <imsls.h> 
 
main() 
{ 
    float       p, x; 
    float       a = 4.0; 
 
    x = 0.5; 
    p = imsls_f_gamma_cdf(x,a); 
    printf("The probability that X is less than 0.5 is %6.4f\n", p); 
 
    x = 1.0; 
    p = imsls_f_gamma_cdf(x,a) - p; 
    printf("The probability that X is between 0.5 and 1.0 is %6.4f\n", 
        p); 
} 

Output 
The probability that X is less than 0.5 is 0.0018 
The probability that X is between 0.5 and 1.0 is 0.0172 

Informational Errors 

IMSLS_ARG_LESS_THAN_ZERO Since “x” = # is less than zero, the distribution 
function is zero at “x.” 

Fatal Errors 

IMSLS_X_AND_A_TOO_LARGE Since “x” = # and “a” = # are so large, the algorithm 
would overflow. 

 

gamma_inverse_cdf 
Evaluates the inverse of the gamma distribution function. 
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Synopsis 
#include <imsls.h> 
float imsls_f_gamma_inverse_cdf (float p, float a) 
The type double function is imsls_d_gamma_inverse_cdf. 

Required Arguments 

float p (Input) 
Probability for which the inverse of the gamma distribution function is to be 
evaluated. p must be in the open interval (0.0, 1.0). 

float a (Input) 
The shape parameter of the gamma distribution.  This parameter must be 
positive. 

Return Value 
The probability that a gamma random variable takes a value less than or equal to 
the returned value is p. 

Description 

Function imsls_f_gamma_inverse_cdf evaluates the inverse distribution 
function of a gamma random variable with shape parameter a, that is, it 
determines x (=imsls_f_gamma_inverse_cdf (p, a)), such that 
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where Γ(⋅) is the gamma function. The probability that the random variable takes 
a value less than or equal to x is P. See the documentation for function 
imsls_f_gamma_cdf for further discussion of the gamma distribution.  

Function imsls_f_gamma_inverse_cdf uses bisection and modified regula 
falsi to invert the distribution function, which is evaluated using function 
imsls_f_gamma_cdf. 

Example  
In this example, we find the 95-th percentage point for a gamma random variable 
with shape parameter of 4. 

 

include "imsls.h" 

void main() 

{ 

  float p = .95, a = 4.0, x; 

  x = imsls_f_gamma_inverse_cdf(p,a); 

  printf("The 0.05 gamma(4) critical value is %6.4f\n", x); 

} 
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Output 
The 0.05 gamma(4) critical value is 7.7537 

normal_cdf 
Evaluates the standard normal (Gaussian) distribution function. 

Synopsis 
#include <imsls.h>  
float imsls_f_normal_cdf (float x) 
The type double function is imsls_d_normal_cdf. 

Required Arguments 

float x   (Input) 
Point at which the normal distribution function is to be evaluated. 

Return Value 
The probability that a normal random variable takes a value less than or equal  
to x. 

Description 
Function imsls_f_normal_cdf evaluates the distribution function, Φ, of a standard 
normal (Gaussian) random variable as follows: 
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The value of the distribution function at the point x is the probability that the random 
variable takes a value less than or equal to x. 
The standard normal distribution (for which imsls_f_normal_cdf is the distribution 
function) has mean of 0 and variance of 1. The probability that a normal random 
variable with mean μ and variance σ2 is less than y is given by imsls_f_normal_cdf 
evaluated at (y − μ)/σ. 
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Figure 11-5   Plot of Φ(x) 

Example 
Suppose X is a normal random variable with mean 100 and variance 225. This example 
finds the probability that X is less than 90 and the probability that X is between 105 and 
110. 

#include <imsls.h>  
 
main() 
{ 
    float      p, x1, x2; 
 
    x1  = (90.0-100.0)/15.0; 
    p   = imsls_f_normal_cdf(x1); 
    printf("The probability that X is less than 90 is %6.4f\n", p); 
 
    x1 = (105.0-100.0)/15.0; 
    x2 = (110.0-100.0)/15.0; 
    p  = imsls_f_normal_cdf(x2) - imsls_f_normal_cdf(x1); 
    printf("The probability that X is between 105 and 110 is %6.4f\n", 
        p);  
} 

Output 
The probability that X is less than 90 is 0.2525 
The probability that X is between 105 and 110 is 0.1169 

normal_inverse_cdf 
Evaluates the inverse of the standard normal (Gaussian) distribution function. 
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Synopsis 
#include <imsls.h> 
float imsls_f_normal_inverse_cdf (float p) 
The type double function is imsls_d_normal_inverse_cdf. 

Required Arguments 

float p   (Input) 
Probability for which the inverse of the normal distribution function is to be 
evaluated. Argument p must be in the open interval (0.0, 1.0). 

Return Value 
The inverse of the normal distribution function evaluated at p. The probability that a 
standard normal random variable takes a value less than or equal to 
imsls_f_normal_inverse_cdf is p. 

Description 
Function imsls_f_normal_inverse_cdf evaluates the inverse of the distribution 
function, Φ, of a standard normal (Gaussian) random variable, 
imsls_f_normal_inverse_cdf(p) = Φ-1(x), where 
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The value of the distribution function at the point x is the probability that the random 
variable takes a value less than or equal to x. The standard normal distribution has a 
mean of 0 and a variance of 1. 
Function imsls_f_normal_inverse_cdf (p) is evaluated by use of minimax 
rational-function approximations for the inverse of the error function. General 
descriptions of these approximations are given in Hart et al. (1968) and Strecok (1968). 
The rational functions used in imsls_f_normal_inverse_cdf are described by 
Kinnucan and Kuki (1968). 

Example 
This example computes the point such that the probability is 0.9 that a standard normal 
random variable is less than or equal to this point. 

#include <imsls.h> 
 
main() 
{ 
    float       x; 
    float       p = 0.9; 
 
    x = imsls_f_normal_inverse_cdf(p); 
    printf("The 90th percentile of a standard normal is %6.4f.\n", x); 
} 
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Output 
The 90th percentile of a standard normal is 1.2816. 

t_cdf 
Evaluates the Student’s t distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_t_cdf (float t, float df) 
The type double function is imsls_d_t_cdf. 

Required Arguments 

float t   (Input) 
Argument for which the Student’s t distribution function is to be evaluated. 

float df   (Input) 
Degrees of freedom. Argument df must be greater than or equal to 1.0. 

Return Value 
The probability that a Student’s t random variable takes a value less than or equal to 
the input t. 

Description 
Function imsls_f_t_cdf evaluates the distribution function of a Student’s t random 
variable with ν = df degrees of freedom. If the square of t is greater than or equal to ν, 
the relationship of a t to an F random variable (and subsequently, to a beta random 
variable) is exploited, and percentage points from a beta distribution are used. 
Otherwise, the method described by Hill (1970) is used. If ν is not an integer, is greater 
than 19, or is greater than 200, a Cornish- Fisher expansion is used to evaluate the 
distribution function. If ν is less than 20 and |t| is less than 2.0, a trigonometric series is 
used (see Abramowitz and Stegun 1964, Equations 26.7.3 and 26.7.4 with some 
rearrangement). For the remaining cases, a series given by Hill (1970) that converges 
well for large values of t is used. 
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Figure 11-6   Plot of Ft (t, 6.0) 

Example 
This example finds the probability that a t random variable with 6 degrees of freedom 
is greater in absolute value than 2.447. The fact that t is symmetric about 0 is used. 

#include <imsls.h> 
 
main () 
{ 
    float       p; 
    float       t = 2.447; 
    float       df = 6.0; 
 
    p  = 2.0*imsls_f_t_cdf(-t,df); 
    printf("Pr(|t(6)| > 2.447) = %6.4f\n", p); 
} 

Output 
Pr(|t(6)| > 2.447) = 0.0500 

t_inverse_cdf 
Evaluates the inverse of the Student’s t distribution function. 

Synopsis 
#include <imsls.h>  
float imsls_f_t_inverse_cdf (float p, float df) 
The type double function is imsls_d_t_inverse_cdf. 
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Required Arguments 

float p   (Input) 
Probability for which the inverse of the Student’s t distribution function is to 
be evaluated. Argument p must be in the open interval (0.0, 1.0). 

float df   (Input) 
Degrees of freedom. Argument df must be greater than or equal to 1.0. 

Return Value 
The inverse of the Student’s t distribution function evaluated at p. The probability that 
a Student’s t random variable takes a value less than or equal to 
imsls_f_t_inverse_cdf is p. 

Description 
Function imsls_f_t_inverse_cdf evaluates the inverse distribution function of a 
Student’s t random variable with ν = df degrees of freedom. If ν equals 1 or 2, the 
inverse can be obtained in closed form. If ν is between 1 and 2, the relationship of a t to 
a beta random variable is exploited and the inverse of the beta distribution is used to 
evaluate the inverse; otherwise, the algorithm of Hill (1970) is used. For small values 
of ν greater than 2, Hill’s algorithm inverts an integrated expansion in 1/(1 + t2/ν) of 
the t density. For larger values, an asymptotic inverse Cornish-Fisher type expansion 
about normal deviates is used. 

Example 
This example finds the 0.05 critical value for a two-sided t test with 6 degrees of 
freedom. 

#include <imsls.h> 
 
void main() 
{ 
    float       df = 6.0; 
    float       p = 0.975; 
    float       t; 
 
    t  = imsls_f_t_inverse_cdf(p,df); 
 
    printf("The two-sided t(6) 0.05 critical value is %6.3f\n", t); 
} 

Output 
The two-sided t(6) 0.05 critical value is  2.447 

Informational Errors 

IMSLS_OVERFLOW Function imsls_f_t_inverse_cdf is set to 
machine infinity since overflow would occur upon 
modifying the inverse value for the F distribution with 
the result obtained from the inverse beta distribution. 
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non_central_t_cdf 
Evaluates the noncentral Student’s t distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_non_central_t_cdf  (float t, int df , float delta) 
The type double function is imsls_d_non_central_t_cdf. 

Required Arguments 
float t   (Input) 
 Argument for which the noncentral Student’s t distribution function is to be 

evaluated. 
int df   (Input) 
 Number of degrees of freedom of the noncentral Student’s t  distribution. 

Argument df must be greater than or equal to 0.0 
float delta (Input)                                                                                             The 

noncentrality parameter. 

Return Value 
The probability that a noncentral Student’s t random variable takes a value less than or 
equal to t. 

Description 
Function imsls_f_non_central_t_cdf evaluates the distribution function  
F of a noncentral t random variable with df degrees of freedom and noncentrality 
parameter delta; that is, with v = df, δ = delta , and t0 = t, 
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where Γ(⋅) is the gamma function. The value of the distribution function at the point t0 
is the probability that the random variable takes a value less than or equal to t0. 

The noncentral t random variable can be defined by the distribution function above, or 
alternatively and equivalently, as the ratio of a normal random variable and an 
independent chi-squared random variable. If w has a normal distribution with mean δ 
and variance equal to one, u has an independent chi-squared distribution with v degrees 
of freedom, and 

/ /x w u v=
 

then x has a noncentral t distribution with degrees of freedom and noncentrality 
parameter δ. 
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The distribution function of the noncentral t can also be expressed as a double integral 
involving a normal density function (see, for example, Owen 1962, page 108). The 
function TNDF uses the method of Owen (1962, 1965), which uses repeated integration 
by parts on that alternate expression for the distribution function. 

 

Figure 11-7   Noncentral Student’s t Distribution Function 

Example 
Suppose t is a noncentral t random variable with 6 degrees of freedom and 
noncentrality parameter 6. In this example, we find the probability that t is less than 
12.0. (This can be checked using the table on page 111 of Owen 1962, with η = 0.866, 
which yields λ = 1.664.) 

#include <imsls.h> 
#include <stdio.h> 
void main() 
{ 
        float t = 12.0; 
        int df = 6; 
        float delta = 6.0; 
        float p; 
        p = imsls_f_non_central_t_cdf(t, df, delta); 
        printf("The probability that t is less than 12 is %6.4f.\n", p); 
} 
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Output 
The probability that T is less than 12.0 is 0.9501 

non_central_t_inv_cdf 
Evaluates the inverse of the noncentral Student’s t distribution function. 

Synopsis 
#include <imsls.h> 
float imsls_f_non_central_t_inv_cdf (float p, int df , float delta) 
The type double function is imsls_d_non_central_t_inv_cdf. 

Required Arguments 
float p   (Input) 

A Probability for which the inverse of the noncentral Student’s t distribution 
function is to be evaluated.  p must be in the open interval (0.0, 1.0). 

int df   (Input) 
Number of degrees of freedom of the noncentral Student’s t  distribution. 
Argument df must be greater than or equal to 0.0 

float delta (Input) 
The noncentrality parameter. 

Return Value 
The probability that a noncentral Student’s t random variable takes a value less than or 
equal to t is p. 

Description 
Function imsls_f_non_central_t_inv_cdf evaluates the inverse distribution 
function of a noncentral t random variable with df degrees of freedom and 
noncentrality parameter delta; that is, with P = p, v = df, and  
δ = delta, it determines t0 (= imsls_f_non_central_t_inv_cdf  
(p, df, delta )), such that 
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where Γ(⋅) is the gamma function. The probability that the random variable takes a 
value less than or equal to t0 is P. See imsls_f_non_central_t_cdf  
(page ) for an alternative definition in terms of normal and chi-squared random 
variables. The function  imsls_f_non_central_t_inv_cdf  uses bisection and 
modified regula falsi to invert the distribution function, which is evaluated using 
routine imsls_f_non_central_t_cdf. 

Example 
In this example, we find the 95-th percentage point for a noncentral t random variable 
with 6 degrees of freedom and noncentrality parameter 6. 
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#include <imsls.h> 
#include <stdio.h> 
void main() 
{ 
        float p = .95; 
        int df = 6; 
        float delta = 6.0; 
        float t; 
        t = imsls_f_non_central_t_inv_cdf(p, df, delta); 
        printf("The 0.05 noncentral t critical value is %6.4f.\n", t); 
} 

Output 
The 0.05 noncentral t critical value is 11.995. 
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Chapter 12: Random Number 
Generation 

Routines 
Univariate Discrete Distributions 

Generates pseudorandom binomial numbers random_binomial 816 
Generates pseudorandom geometric  
numbers random_geometric 818 
Generates pseudorandom  
hypergeometric numbers random_hypergeometric 819 
Generates pseudorandom  
logarithmic numbers random_logarithmic 822 
Generates pseudorandom negative  
binomial numbers random_neg_binomial 823 
Generates pseudorandom Poisson numbers random_poisson 825 
Generates pseudorandom discrete  
uniform numbers random_uniform_discrete 826 
Generates pseudorandom numbers from  
a general discrete distribution random_general_discrete 828 
Sets up a table to generate pseudorandom numbers from  
a general discrete distribution discrete_table_setup 832 
 

Univariate Continuous Distributions 
Generates pseudorandom beta numbers random_beta 837 
Generates pseudorandom Cauchy numbers random_cauchy 838 
Generates pseudorandom chi_squared  
numbers random_chi_squared 840 
Generates pseudorandom exponential  
numbers random_exponential 841 
Generates pseudorandom mixed  
exponential numbers random_exponential_mix 843 
Generates pseudorandom gamma numbers random_gamma 845 
Generates peudorandom lognormal numbers random_lognormal 846 
Generates pseudorandom normal numbers random_normal 848 
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Generates pseudorandom numbers from a  
stable distribution random_stable 850 
Generates pseudorandom Student’s t random_student_t 852 
Generates pseudorandom triangular numbers random_triangular 853 
Generates pseudorandom uniform numbers random_uniform 854 
Generates pseudorandom Von Mises  
numbers random_von_mises 856 
Generates pseudorandom Weibull numbers random_weibull 857 
Generates pseudorandom numbers from a  
general continuous distribution random_general_continuous 859 
Sets up table to generate pseudorandom numbers  
from a general continuous distribution continuous_table_setup 862 

Multivariate Continuous Distributions 
Generates multivariate  
normal vectors random_normal_multivariate 864 
Generates a pseudorandom orthogonal matrix  
or a correlation matrix random_orthogonal_matrix 866 
Generates pseudorandom numbers from a multivariate distribution  
determined from a given sample random_mvar_from_data 868 
Generates pseudorandom numbers from a  
multinomial distribution random_multinomial 871 
Generates pseudorandom points on a unit circle or  
K-dimensional sphere random_sphere 873 
Generates a pseudorandom  
two-way table random_table_twoway 875 

Order Statistics 
Generates pseudorandom order statistics from a standard  
normal distribution random_order_normal 876 
Generates pseudorandom order statistics from a  
uniform (0, 1) distribution  random_order_uniform 878 

Stochastic Processes 
Generates pseudorandom ARMA  
process numbers random_arma 880 
Generates pseudorandom numbers from a  
nonhomogeneous Poisson process random_npp 884 

Samples and Permutations 
Generates a pseudorandom permutation random_permutation 887 
Generates a simple pseudorandom sample  
of indices random_sample_indices 889 
Generates a simple pseudorandom sample from  
a finite population random_sample 890 

Utility Functions 
Selects the uniform (0, 1) generator random_option 894 
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Retrieves the uniform (0, 1) multiplicative congruential  
pseudorandom number generator random_option_get 895 
Retrieves the current value of the seed random_seed_get 896 
Retrieves a seed for the congruential  
generators  random_substream_seed_get 897 
Initializes a random seed random_seed_set 899 
Sets the current table used in the  
shuffled generator random_table_set 900 
Retrieves the current table used in the 
shuffled generator random_table_get 900 
Sets the current able used in the 
GFSR generator random_GFSR_table_set 901 
Retrieves the current table used in the 
GFSR generator random_GFSR_table_get 902 
Initializes the 32-bit Mersenne Twister  
generator using an array. random_MT32_init 905 
Retrieves the current table used in the 32-bit  
Mersenne Twister generator. random_MT32_table_get 905 
Sets the current table used in the 32-bit  
Mersenne Twister generator. random_MT32_table_set 907 
Initializes the 64-bit Mersenne Twister  
generator using an array. random_MT64_init 908 
Retrieves the current table used in the 64-bit  
Mersenne Twister generator random_MT64_table_get 908 
Sets the current table used in the 64-bit  
Mersenne Twister generator. random_MT64_table_set 910 

Low-discrepancy sequence 
Generates a shuffled Faure sequence faure_next_point 911 

Usage Notes 
Overview of Random Number Generation 
This chapter describes functions for the generation of random numbers that are useful 
for applications in Monte Carlo or simulation studies. Before using any of the random 
number generators, the generator must be initialized by selecting a seed or starting 
value. The user can do this by calling the function imsls_random_seed_set. If the 
user does not select a seed, one is generated using the system clock. A seed needs to be 
selected only once in a program, unless two or more separate streams of random 
numbers are maintained. Other utility functions in this chapter can be used to select the 
form of the basic generator to restart simulations and to maintain separate simulation 
streams. 
In the following discussions, the phrases “random numbers,” “random deviates,” 
“deviates,” and “variates” are used interchangeably. The phrase “pseudorandom” is 
sometimes used to emphasize that the numbers generated are really not “random” since 
they result from a deterministic process. The usefulness of pseudorandom numbers is 
derived from the similarity, in a statistical sense, of samples of the pseudorandom 
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numbers to samples of observations from the specified distributions. In short, while the 
pseudorandom numbers are completely deterministic and repeatable, they simulate the 
realizations of independent and identically distributed random variables. 

Basic Uniform Generators 
The random number generators in this chapter use either a multiplicative congruential 
method or a generalized feedback shift register. The selection of the type of generator 
is made by calling the routine imsls_random_option. If no selection is made 
explicitly, a multiplicative generator (with multiplier 16807) is used. Whatever 
distribution is being simulated, uniform (0, 1) numbers are first generated and then 
transformed if necessary. These routines are portable in the sense that, given the same 
seed and for a given type of generator, they produce the same sequence in all 
computer/compiler environments. There are many other issues that must be considered 
in developing programs for the methods described below (see Gentle 1981 and 1990). 

The Multiplicative Congruential Generators 
The form of the multiplicative congruential generators is 

xi ≡ cxi-1mod (231 − 1) 

Each xi is then scaled into the unit interval (0,1). If the multiplier, c, is a primitive root 
modulo 231 − 1 (which is a prime), then the generator will have a maximal period of 
231 − 2. There are several other considerations, however. See Knuth (1981) for a good 
general discussion. The possible values for c in the generators are 16807, 397204094, 
and 950706376. The selection is made by the function imsls_random_option. The 
choice of 16807 will result in the fastest execution time, but other evidence suggests 
that the performance of 950706376 is best among these three choices 
(Fishman and Moore 1982). If no selection is made explicitly, the functions use the 
multiplier 16807, which has been in use for some time (Lewis et al. 1969). 
The generation of uniform (0,1) numbers is done by the function 
imsls_f_random_uniform. This function is portable in the sense that, given the 
same seed, it produces the same sequence in all computer/compiler environments. 

Shuffled Generators  
The user also can select a shuffled version of these generators using 
imsls_random_option. The shuffled generators use a scheme due to Learmonth and 
Lewis (1973). In this scheme, a table is filled with the first 128 uniform (0,1) numbers 
resulting from the simple multiplicative congruential generator. Then, for each xi from 
the simple generator, the low-order bits of xi are used to select a random integer, j, 
from 1 to 128. The j-th entry in the table is then delivered as the random number; and 
xi, after being scaled into the unit interval, is inserted into the j-th position in the table. 
This scheme is similar to that of Bays and Durham (1976), and their analysis is 
applicable to this scheme as well. 
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The Generalized Feedback Shift Register Generator 
The GFSR generator uses the recursion Xt = Xt-1563 ⊕ Xt-96. This generator, which is 
different from earlier GFSR generators, was proposed by Fushimi (1990), who 
discusses the theory behind the generator and reports on several empirical tests of it. 
Background discussions on this type of generator can be found in Kennedy and Gentle 
(1980), pages 150−162. 

Setting the Seed 
The seed of the generator can be set in imsls_random_seed_set and can be 
retrieved by imsls_random_seed_get. Prior to invoking any generator in this 
section, the user can call imsls_random_seed_set to initialize the seed, which is an 
integer variable with a value between 1 and 2147483647. If it is not initialized by 
imsls_random_seed_set, a random seed is obtained from the system clock. Once it 
is initialized, the seed need not be set again. 
If the user wants to restart a simulation, imsls_random_seed_get can be used to 
obtain the final seed value of one run to be used as the starting value in a subsequent 
run. Also, if two simultaneous random number streams are desired in one run, 
imsls_random_seed_set and imsls_random_seed_get can be used before and 
after the invocations of the generators in each stream. 
If a shuffled generator or the GFSR generator is used, in addition to resetting the seed, 
the user must also reset some values in a table. For the shuffled generators, this is done 
using the routines imsls_f_random_table_get and 
imsls_f_random_table_set; and for the GFSR generator; the table is retrieved and 
set by the routines imsls_random_GFSR_table_get and 
imsls_random_GFSR_table_set. The tables for the shuffled generators are separate 
for single and double precision; so, if precisions are mixed in a program, it is necessary 
to manage each precision separately for the shuffled generators. 

Timing Considerations 
The generation of the uniform (0,1) numbers is done by the routine 
imsls_f_random_uniform. The particular generator selected in 
imsls_random_option, that is, the value of the multiplier and whether shuffling is 
done or whether the GFSR generator is used, affects the speed of 
imsls_f_random_uniform. The smaller multiplier (16807, selected by iopt = 1) is 
faster than the other multipliers. The multiplicative congruential generators that do not 
shuffle are faster than the ones that do. The GFSR generator is roughly as fast as the 
fastest multiplicative congruential generator, but the initialization for it (required only 
on the first invocation) takes longer than the generation of thousands of uniform 
random numbers. Precise statements of relative speeds depend on the computing 
system. 

Distributions Other than the Uniform 
The nonuniform generators use a variety of transformation procedures. All of the 
transformations used are exact (mathematically). The most straightforward 
transformation is the inverse CDF technique, but it is often less efficient than others 
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involving acceptance/rejection and mixtures. See Kennedy and Gentle (1980) for 
discussion of these and other techniques. 
Many of the nonuniform generators in this chapter use different algorithms depending 
on the values of the parameters of the distributions. This is particularly true of the 
generators for discrete distributions. Schmeiser (1983) gives an overview of techniques 
for generating deviates from discrete distributions. 
Although, as noted above, the uniform generators yield the same sequences on 
different computers, because of rounding, the nonuniform generators that use 
acceptance/rejection may occasionally produce different sequences on different 
computer/compiler environments. 
Although the generators for nonuniform distributions use fast algorithms, if a very 
large number of deviates from a fixed distribution are to be generated, it might be 
worthwhile to consider a table-sampling method, as implemented in the routines 
imsls_f_random_general_discrete, imsls_f_discrete_table_setup, 
imsls_f_random_general_continuous, and 
imsls_f_continuous_table_setup. After an initialization stage, which may take 
some time, the actual generation may proceed very fast. 

Tests 
Extensive empirical tests of some of the uniform random number generators available 
in imsls_f_random_uniform are reported by Fishman and Moore (1982 and 1986). 
Results of tests on the generator using the multiplier 16807 with and without shuffling 
are reported by Learmonth and Lewis (1973b). If the user wishes to perform additional 
tests, the routines in Chapter 7, “Tests of Goodness of Fit and Randomness,” may be of 
use. Often in Monte Carlo applications, it is appropriate to construct an ad hoc test that 
is sensitive to departures that are important in the given application. For example, in 
using Monte Carlo methods to evaluate a one-dimensional integral, autocorrelations of 
order one may not be harmful, but they may be disastrous in evaluating a two-
dimensional integral. Although generally the routines in this chapter for generating 
random deviates from nonuniform distributions use exact methods, and, hence, their 
quality depends almost solely on the quality of the underlying uniform generator, it is 
often advisable to employ an ad hoc test of goodness of fit for the transformations that 
are to be applied to the deviates from the nonuniform generator. 

Additional Notes on Usage 
The generators for continuous distributions are available in both single and double-
precision versions. This is merely for the convenience of the user; the double-precision 
versions should not be considered more “accurate,” except possibly for the multivariate 
distributions. 

random_binomial 
Generates pseudorandom numbers from a binomial distribution. 

Synopsis 
#include <imsls.h> 
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int *imsls_f_random_binomial (int n_random, int n, float p, ..., 0) 
The type double function is imsls_d_random_binomial. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int n   (Input) 
Number of Bernoulli trials. 

float p   (Input) 
Probability of success on each trial. Parameter p must be greater than 0.0 and 
less than 1.0. 

Return Value 
An integer array of length n_random containing the random binomial deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_binomial (int n_random, int n, float p,  

IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, int ir[]   (Output) 
User-supplied integer array of length n_random containing the random 
binomial deviates. 

Description 
Function imsls_f_random_binomial generates pseudorandom numbers from a 
binomial distribution with parameters n and p. Parameters n and p must be positive, 
and p must less than 1. The probability function (with n = n and p = p) is  

( ) ( ) ( )1 n xn x
xf x p p −= −

 

for x = 0, 1, 2, …, n. 
The algorithm used depends on the values of n and p. If np < 10 or p is less than 
machine epsilon (see imsls_f_machine, Chapter 15, “Utilities”), the inverse CDF 
technique is used; otherwise, the BTPE algorithm of Kachitvichyanukul and Schmeiser 
(see Kachitvichyanukul 1982) is used. This is an acceptance/rejection method using a 
composition of four regions. (TPE=Triangle, Parallelogram, Exponential, left and 
right.) 

Example 
In this example, imsls_f_random_binomial generates five pseudorandom binomial 
deviates from a binomial distribution with parameters 20 and 0.5. 

#include <stdio.h> 
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#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    int   n = 20; 
    float p = 0.5; 
    int   *ir; 
 
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_binomial(n_random, n, p, 0); 
    imsls_i_write_matrix("Binomial (20, 0.5) random deviates:",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 

Output 
Binomial (20, 0.5) random deviates: 
       14    9   12   10   12 

random_geometric 
Generates pseudorandom numbers from a geometric distribution. 

Synopsis 
#include <imsls.h> 
int *imsls_f_random_geometric (int n_random, float p, ..., 0) 
The type double function is imsls_d_random_geometric.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float p   (Input) 
Probability of succes on each trial. Parameter p must be positive and less than 
1.0. 

Return Value 
An integer array of length n_random containing the random geometric deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_geometric (int n_random, float p,  

IMSLS_RETURN_USER, int ir[], 
0) 
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Optional Arguments 

IMSLS_RETURN_USER, int ir[]   (Output) 
User-supplied integer array of length n_random containing the random 
geometric deviates. 

Description 
Function imsls_f_random_geometric generates pseudorandom numbers from a 
geometric distribution with parameter P, where P is the probability of getting a success 
on any trial. A geometric deviate can be interpreted as the number of trials until the 
first success (including the trial in which the first success is obtained). The probability 
function is 

f(x) = P(1 − P)x-1 

for x = 1, 2, … and 0 < P < 1. 
The geometric distribution as defined above has mean 1/P. 
The i-th geometric deviate is generated as the smallest integer not less than 
(log (Ui))/(log (1 − P)), where the Ui are independent uniform(0, 1) random numbers 
(see Knuth 1981). 
The geometric distribution is often defined on 0, 1, 2, ..., with mean (1 − P)/P. Such 
deviates can be obtained by subtracting 1 from each element of ir (the returned vector 
of random deviates). 

Example 
In this example, imsls_f_random_geometric generates five pseudorandom 
geometric deviates from a geometric distribution with parameter an equal to 0.3. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float p = 0.3; 
    int *ir; 
 
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_geometric(n_random, p, 0); 
    imsls_i_write_matrix("Geometric(0.3) random deviates:",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 

Output  
Geometric(0.3) random deviates: 
       1   4   1   2   1 

random_hypergeometric 
Generates pseudorandom numbers from a hypergeometric distribution. 
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Synopsis 
#include <imsls.h> 
int *imsls_f_random_hypergeometric (int n_random, int n, int m,  

int l, ..., 0) 
The type double function is imsls_d_random_hypergeometric. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int n   (Input) 
Number of items in the sample. Parameter n must be positive. 

int m   (Input) 
Number of special items in the population, or lot. Parameter m must be 
positive. 

int l   (Input) 
Number of items in the lot. Parameter l must be greater than both n and m. 

Return Value 
An integer array of length n_random containing the random hypergeometric deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_hypergeometric (int n_random, int n, int m,  

int l, 
IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, int ir[]   (Output) 
User-supplied integer array of length n_random containing the random 
hypergeometric deviates. 

Description 
Function imsls_f_random_hypergeometric generates pseudorandom numbers 
from a hypergeometric distribution with parameters N, M, and L. The hypergeometric 
random variable X can be thought of as the number of items of a given type in a 
random sample of size N that is drawn without replacement from a population of size L 
containing M items of this type. The probability function is 

( )
( )( )

( )
M L M
x N x

L
N

f x
−
−=

 

for x = max (0, N − L + M), 1, 2, …, min (N, M) 
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If the hypergeometric probability function with parameters N, M, and L evaluated at 
N − L + M (or at 0 if this is negative) is greater than the machine epsilon  
(see imsls_f_machine, Chapter 15, “Utilities”), and less than 1.0 minus the machine 
epsilon, then imsls_f_random_hypergeometric uses the inverse CDF technique. 
The routine recursively computes the hypergeometric probabilities, starting at 
x = max (0, N − L + M) and using the ratio 

( )
( )

1f X x
f X x

= +
=  

(see Fishman 1978, p. 475). 
If the hypergeometric probability function is too small or too close to 1.0, the 
imsls_f_random_hypergeometric generates integer deviates uniformly in the 
interval [1, L − i] for i = 0, 1, ..., and at the i-th step, if the generated deviate is less than 
or equal to the number of special items remaining in the lot, the occurence of one 
special item is tallied and the number of remaining special items is decreased by one. 
This process continues until the sample size of the number of special items in the lot is 
reached, whichever comes first. This method can be much slower than the inverse CDF 
technique. The timing depends on N. If N is more than half of L (which in practical 
examples is rarely the case), the user may wish to modify the problem, replacing N by 
L − N, and to consider the generated deviates to be the number of special items not 
included in the sample. 

Example 
In this example, imsls_f_random_hypergeometric generates five pseudorandom 
hypergeometric deviates from a hypergeometric distribution to simulate taking random 
samples of size 4 from a lot containing 20 items, of which 12 are defective. The 
resulting hypergeometric deviates represent the numbers of defectives in each of the 
five samples of size 4. 

#include <imsls.h> 
#include <stdio.h> 
  
void main() 
{ 
    int n_random = 5; 
    int n = 4; 
    int m = 12; 
    int l = 20; 
    int *ir; 
 
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_hypergeometric(n_random, n, m, l, 0); 
    imsls_i_write_matrix("Hypergeometric random deviates: ",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 

Output 
Hypergeometric random deviates:  
        4   2   3   3   3 
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Fatal Errors 

IMSLS_LOT_SIZE_TOO_SMALL The lot size must be greater than the sample size and 
the number of defectives in the lot. Lot size = #. Sam-
ple size = #. Number of defectives in the lot = #. 

random_logarithmic 
Generates pseudorandom numbers from a logarithmic distribution. 

Synopsis 
#include <imsls.h> 
int *imsls_f_random_logarithmic (int n_random, float a, ..., 0) 
The type double function is imsls_d_random_logarithmic. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float a   (Input) 
Parameter of the logarithmic distribution. Parameter a must be positive and 
less than 1.0. 

Return Value 
An integer array of length n_random containing the random logarithmic deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_logarithmic (int n_random, float a, 

IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, int ir[]   (Output) 
User-supplied integer array of length n_random containing the random 
logarithmic deviates. 

Description 
Function imsls_f_random_logarithmic generates pseudorandom numbers from a 
logarithmic distribution with parameter a. The probability function is  

( ) ( )ln 1

xaf x
x a

= −
−  

for x = 1, 2, 3, ..., and 0 < a < 1 
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The methods used are described by Kemp (1981) and depend on the value of a. If a is 
less than 0.95, Kemp’s algorithm LS, which is a “chop-down” variant of an inverse 
CDF technique, is used. Otherwise, Kemp’s algorithm LK, which gives special 
treatment to the highly probable values of 1 and 2 is used. 

Example 
In this example, imsls_f_random_logarithmic generates five pseudorandom 
logarithmic deviates from a logarithmic distribution with parameter a equal to 0.3. 

#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
    int   n_random = 5; 
    float a = 0.3; 
    int   *ir; 
 
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_logarithmic(n_random, a, 0); 
    imsls_i_write_matrix("logarithmic random deviates:",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 

Output  
logarithmic random deviates: 
      2   1   1   1   2 

random_neg_binomial 
Generates pseudorandom numbers from a negative binomial distribution. 

Synopsis 
#include <imsls.h> 
int *imsls_f_random_neg_binomial (int n_random, float rk, float p, ..., 0) 
The type double function is imsls_d_random_neg_binomial. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float rk   (Input) 
Negative binomial parameter. Parameter rk must be positive. If rk is an 
integer, the generated deviates can be thought of as the number of failures in a 
sequence of Bernoulli trials before rk successes occur. 

float p   (Input) 
Probability of failure on each trial. Parameter p must be greater than machine 
epsilon (see imsls_f_machine, Chapter 15, “Utilities”) and less than 1.0. 
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Return Value 
An integer array of length n_random containing the random negative binomial 
deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_neg_binomial (int n_random, float rk, float p, 

IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, int ir[]   (Output) 
User-supplied integer array of length n_random containing the random 
negative binomial deviates. 

Description 
Function imsls_f_random_neg_binomial generates pseudorandom numbers from 
a negative binomial distribution with parameters rk and p. Parameters rk and p must 
be positive and p must be less than 1. The probability function (with r = rk and p = p) 
is 

( ) ( )( )1 1 rr x x
xf x p p+ −= −

 

for x = 0, 1, 2, ... 
If r is an integer, the distribution is often called the Pascal distribution and can be 
thought of as modeling the length of a sequence of Bernoulli trials until r successes are 
obtained, where p is the probability of getting a failure on any trial. In this form, the 
random variable takes values r, r + 1, r + 2, … and can be obtained from the negative 
binomial random variable defined above by adding r to the negative binomial variable. 
This latter form is also equivalent to the sum of r geometric random variables defined 
as taking values 1, 2, 3, ... 

If rp/(1 − p) is less than 100 and (1 − p)r is greater than the machine epsilon, 
imsls_f_random_neg_binomial uses the inverse CDF technique; otherwise, for 
each negative binomial deviate, imsls_f_random_neg_binomial generates a 
gamma (r, p/(1 − p)) deviate Y and then generates a Poisson deviate with parameter Y. 

Example 
In this example, imsls_f_random_neg_binomial generates five pseudorandom 
negative binomial deviates from a negative binomial (Pascal) distribution with 
parameters r equal to 4 and p equal to 0.3. 

#include <imsls.h> 
#include <stdio.h> 
 
void main() 
{ 
    int   n_random = 5; 
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    float rk = 4.0; 
    float p = 0.3; 
    int   *ir; 
 
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_neg_binomial(n_random, rk, p, 0); 
    imsls_i_write_matrix( 
        "Negative Binomial (4.0, 0.3) random deviates: ",  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
} 

Output 
Negative Binomial (4.0, 0.3) random deviates:  
               5   1   3   2   3 

random_poisson 
Generates pseudorandom numbers from a Poisson distribution. 

Synopsis 
#include <imsls.h> 
int *imsls_random_poisson (int n_random, float theta, ..., 0) 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float theta   (Input) 
Mean of the Poisson distribution. Argument theta must be positive. 

Return Value 
An array of length n_random containing the random Poisson deviates.  

Synopsis with Optional Arguments 

#include <imsls.h> 
int *imsls_random_poisson (int n_random, float theta, 

IMSLS_RETURN_USER, int r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, int r[]   (Output) 
User-supplied array of length n_random containing the random Poisson 
deviates. 

Description 
Function imsls_random_poisson generates pseudorandom numbers from a Poisson 
distribution with positive mean theta. The probability function (with θ = theta) is 
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If theta is less than 15, imsls_random_poisson uses an inverse CDF method; 
otherwise, the PTPE method of Schmeiser and Kachitvichyanukul (1981) (see also 
Schmeiser 1983) is used. The PTPE method uses a composition of four regions, a 
triangle, a parallelogram, and two negative exponentials. In each region except the 
triangle, acceptance/rejection is used. The execution time of the method is essentially 
insensitive to the mean of the Poisson. 
Function imsls_random_seed_set can be used to initialize the seed of the random 
number generator; function imsls_random_option can be used to select the form of 
the generator. 

Example 
In this example, imsls_random_poisson is used to generate five pseudorandom 
deviates from a Poisson distribution with mean equal to 0.5. 

#include <imsls.h> 
 
#define N_RANDOM  5 
 
void main() 
{ 
    int         *r; 
    int         seed = 123457; 
    float       theta = 0.5; 
 
    imsls_random_seed_set (seed); 
    r = imsls_random_poisson (N_RANDOM, theta, 0); 
    imsls_i_write_matrix ("Poisson(0.5) random deviates", 1, N_RANDOM, r, 
0); 
} 

Output 
Poisson(0.5) random deviates 
      1   2   3   4   5 
      2   0   1   0   1 

 

random_uniform_discrete 
Generates pseudorandom numbers from a discrete uniform distribution. 

Synopsis 
#include <imsls.h> 
int *imsls_f_random_uniform_discrete (int n_random, int k, ..., 0) 
The type double function is imsls_d_random_uniform_discrete.  
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Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int k   (Input) 
Parameter of the discrete uniform distribution. The integers 1, 2, ..., k occur 
with equal probability. Parameter k must be positive. 

Return Value 
An integer array of length n_random containing the random discrete uniform deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 

int *imsls_f_random_uniform_discrete (int n_random, int k,  
IMSLS_RETURN_USER, int ir[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, int ir[]   (Output) 
User-supplied integer array of length n_random containing the random 
discrete uniform deviates. 

Description 
Function imsls_f_random_uniform_discrete generates pseudorandom numbers 
from a uniform discrete distribution over the integers 1, 2, ...k. A random integer is 
generated by multiplying k by a uniform (0, 1) random number, adding 1.0, and 
truncating the result to an integer. This, of course, is equivalent to sampling with 
replacement from a finite population of size k 

Example 
In this example, imsls_f_random_uniform_discrete generates five 
pseudorandom discrete uniform deviates from a discrete uniform distribution over the 
integers 1 to 6. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int n_random = 5; 
    int k = 6; 
    int *ir; 
  
    imsls_random_seed_set(123457); 
    ir = imsls_f_random_uniform_discrete(n_random, k, 0); 
    imsls_i_write_matrix("Discrete uniform (1, 6) random deviates:" ,  
        1, n_random, ir, IMSLS_NO_COL_LABELS, 0); 
  
} 
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Output 
Discrete uniform (1, 6) random deviates: 

            6   2   5   4   6 
 

random_general_discrete 
Generates pseudorandom numbers from a general discrete distribution using an alias 
method or optionally a table lookup method. 

Synopsis 
#include <imsls.h> 
int *imsls_f_random_general_discrete (int n_random, int imin, int 

nmass, float probs[],..., 0) 
The type double function is imsls_d_random_general_discrete. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int imin   (Input) 
Smallest value the random deviate can assume.    
This is the value corresponding to the probability in probs[0]. 

int nmass   (Input) 
Number of mass points in the discrete distribution. 

float probs[]   (Input) 
Array of length nmass containing probabilities associated with the individual 
mass points.  The elements of probs must be nonnegative and must sum to 
1.0.  

 If the optional argument IMSLS_TABLE is used, then probs is a vector of 
length at least nmass + 1 containing in the first nmass positions the 
cumulative probabilities and, possibly, indexes to speed access to the 
probabilities.  
IMSL routine imsls_f_discrete_table_setup can be used to initialize 
probs properly. If no elements of probs are used as indexes, probs [nmass] 
is 0.0 on input. The value in probs[0] is the probability of imin. The value in 
probs [nmass-1] must be exactly 1.0 (since this is the CDF at the upper range 
of the distribution.)  

Return Value 
An integer array of length n_random containing the random discrete deviates.  To 
release this space, use free. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_general_discrete (int n_random, int imin, int 

nmass, float probs[], 
IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk, 
IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[], 
IMSLS_SET_INDEX_VECTORS, int iwk[], float wk[], 
IMSLS_RETURN_USER, int ir[], 
IMSLS_TABLE,  
 0) 

Optional Arguments 

IMSLS_GET_INDEX_VECTORS, int **iwk, float **wk   (Output) 
Retrieve indexing vectors that can be used to increase efficiency when 
multiple calls will be made to imsls_f_random_general_discrete  with 
the same values in probs. 

IMSLS_GET_INDEX_VECTORS_USER, int iwk[], float wk[]   (Output) 
User-supplied arrays of length nmass used for retrieve indexing vectors that 
can be used to increase efficiency when multiple calls will be made to 
imsls_f_random_general_discrete with the same values in probs.   

IMSLS_SET_INDEX_VECTORS,  int *iwk, float *wk   (Input) 
Arrays of length nmass  that can be used to increase efficiency when multiple 
calls will be made to imsls_f_random_general_discrete  the same 
values in probs.  These arrays are obtained by using one of the options 
IMSLS_GET_INDEX_VECTORS or IMSLS_GET_INDEX_VECTORS_USER  in 
the first call to imsls_f_random_general_discrete. 

IMSLS_TABLE (Input) 
Generate pseudorandom numbers from a general discrete distribution using a 
table lookup method.  If this option is used, then probs is a vector of length at 
least nmass + 1 containing in the first nmass positions the cumulative 
probabilities and, possibly, indexes to speed access to the probabilities.  

IMSLS_RETURN_USER, int ir[]  (Output) 
User-supplied array of length n_random containing the random discrete 
deviates. 

Description 
Routine imsls_f_random_general_discrete generates pseudorandom numbers 
from a discrete distribution with probability function given in the vector probs; that is 

Pr(X = i) = pj 

for i = i∃, i∃ + 1, …, i∃ + nm − 1 where j = i − i∃ + 1, pj = probs[j-1],  
i∃ = imin, and nm = nmass. 
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The algorithm is the alias method, due to Walker (1974), with modifications suggested 
by Kronmal and Peterson (1979). The method involves a setup phase, in which the 
vectors iwk and wk are filled. After the vectors are filled, the generation phase is very 
fast.  To increase efficiency, the first call to imsls_f_random_general_discrete 
can retrieve the arrays iwk and wk using the optional arguments 
IMSLS_GET_INDEX_VECTORS or IMSLS_GET_INDEX_VECTORS_USER , then 
subsequent calls can be made using the optional argument 
IMSLS_SET_INDEX_VECTORS. 
If the optional argument IMSLS_TABLE is used, 
imsls_f_random_general_discrete generates pseudorandom deviates from a 
discrete distribution, using the table probs, which contains the cumulative 
probabilities of the distribution and, possibly, indexes to speed the search of the table. 
The routine imsls_f_discrete_table_setup can be used to set up the table 
probs. imsls_f_random_general_discrete uses the inverse CDF method to 
generate the variates. 

Example 1 
In this example, imsls_f_random_general_discrete is used to generate five 
pseudorandom variates from the discrete distribution: 

Pr(X = 1) = .05 

Pr(X = 2) = .45 

Pr(X = 3) = .31 

Pr(X = 4) = .04 

Pr(X = 5) = .15 

When imsls_f_random_general_discrete is called the first time, 
IMSLS_GET_INDEX_VECTORS is used to initialize the index vectors iwk and wk. In the 
next call, IMSLS_GET_INDEX_VECTORS is used, so the setup phase is bypassed. 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int nr = 5, nmass = 5, iopt = 0, imin = 1, *iwk, *ir; 
 
  float probs[] = {.05, .45, .31, .04, .15}; 
  float *wk; 
 
  imsls_random_seed_set(123457); 
 
   
  ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,  
           IMSLS_GET_INDEX_VECTORS, &iwk, &wk,  
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           0); 
   
  imsls_i_write_matrix("Random deviates", 1, 5, ir, 
         IMSLS_NO_COL_LABELS, 
         0); 
  free(ir); 
 
  ir = imsls_f_random_general_discrete(nr, imin, nmass, probs,  
           IMSLS_SET_INDEX_VECTORS, iwk, wk,  
           0); 
 
  imsls_i_write_matrix("Random deviates", 1, 5, ir,  
         IMSLS_NO_COL_LABELS,  
         0); 
 
} 

Output 
  Random deviates 
 3   2   2   3   5 
  
  Random deviates 
 1   3   4   5   3 
 

Example 2 
In this example, imsls_f_discrete_table_setup is used to set up a table and then 
imsls_f_random_general_discrete is used to generate five pseudorandom 
variates from the binomial distribution with parameters 20 and 0.5. 
 

#include <stdio.h> 
#include <imsls.h> 
 
float prf(int ix); 
void main() 
{ 
  int nndx = 12, imin = 0, nmass = 21, nr = 5; 
  float del = 0.00001, *cumpr;  
  int *ir = NULL; 
 
 
  cumpr = imsls_f_discrete_table_setup (prf,  del, nndx,  &imin, &nmass, 0); 
 
  imsls_random_seed_set(123457); 
 
  ir = imsls_f_random_general_discrete(nr, imin, nmass, cumpr,  
           IMSLS_TABLE, 0); 
 
  imsls_i_write_matrix("Binomial (20, 0.5) random deviates", 1, 5, ir,   
         IMSLS_NO_COL_LABELS,  
         0); 
 
} 
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float prf(int ix) 
{ 
  int n = 20; 
  float  p = .5; 
  return imsls_f_binomial_probability (ix, n, p); 
} 

Output 
 
Binomial (20, 0.5) random deviates 
       14    9   12   10   12 

discrete_table_setup 
 Sets up table to generate pseudorandom numbers from a general discrete distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_discrete_table_setup (float prf(),  float del,  

int nndx, int *imin, int *nmass, ..., 0) 
The type double function is imsls_d_discrete_table_setup. 

Required Arguments 

float prf(int ix) (Input) 
User-supplied function to compute the probability associated with each mass 
point of the distribution  The argument to the function is the point at which the 
probability function is to be evaluated. ix can range from imin to the value at 
which the cumulative probability is greater than or equal to 1.0 − del. 

float del   (Input) 
Maximum absolute error allowed in computing the cumulative probability.  
Probabilities smaller than del are ignored; hence, del should be a small 
positive number. If del is too small, however, the return value, cumpr 
[nmass-1] must be exactly 1.0 since that value is compared to  
1.0 − del. 

int nndx   (Input) 
The number of elements of cumpr available to be used as indexes.    
nndx must be greater than or equal to 1. In general, the larger nndx is, to 
within sixty or seventy percent of nmass, the more efficient the generation of 
random numbers using imsls_f_random_general_discrete will be. 

int *imin   (Input/Output) 
Pointer to a scalar containing the smallest value the random deviate can 
assume.   (Input/Output) 
imin is not used if optional argument  IMSLS_INDEX_ONLY is used. By 
default, prf is evaluated at imin. If this value is less than del, imin is 
incremented by 1 and again prf is evaluated at imin. This process is 
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continued until prf(imin) ≥ del. imin is output as this value and the return 
value cumpr [0] is output as prf(imin). 

int *nmass   (Input/Output) 
Pointer to a scalar containing  the number of mass points in the distribution.   
Input, if IMSLS_INDEX_ONLY is used; otherwise, output. 
By default, nmass is the smallest integer such that  
prf(imin + nmass − 1) > 1.0 − del. nmass does include the points iminin + 
j for which prf(iminin + j) < del, for j = 0, 1, …,  
iminout − iminin, where iminin denotes the input value of imin and iminout 
denotes its output value. 

Return Value 
Array, cumpr, of length nmass + nndx containing in the first nmass positions, the 
cumulative probabilities and in some of the remaining positions, indexes to speed 
access to the probabilities. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_discrete_table_setup (float prf(), float del, int nndx, int 

*imin, int *nmass, 
IMSLS_INDEX_ONLY,  
IMSLS_RETURN_USER, float cumpr[], int lcumpr, 
IMSLS_FCN_W_DATA, float prf(), void *data, 
 0) 

Optional Arguments 

IMSLS_INDEX_ONLY (Intput) 
Fill only the index portion of the result, cumpr, using the values in the first 
nmass positions. prf is not used and may be a dummy function; also, imin is 
not used.  The optional argument IMSLS_RETURN_USER is required if 
IMSLS_INDEX_ONLY is used. 

IMSLS_RETURN_USER, float cumpr[], int lcumpr  (Input/Output) 
cumpr is a user-allocated array of length nmass + nndx containing in the first 
nmass positions, the cumulative probabilities and in some of the remaining 
positions, indexes to speed access to the probabilities. lcumpr  is the actual 
length of cumpr as specified in the calling function. Since, by default,  the 
logical length of cumpr is determined in 
imsls_f_discrete_table_setup, lcumpr is used for error checking.  If 
the option  IMSLS_INDEX_ONLY is used,  then only the index portion of 
cumpr are filled. 

IMSLS_FCN_W_DATA, float prf(int ix), void *data, (Input) 
User-supplied function to compute the probability associated with each mass 
point of the distribution, which also accepts a pointer to data that is supplied 
by the user.  data is a pointer to the data to be passed to the user-supplied 
function.  See the Introduction, Passing Data to User-Supplied Functions at 
the beginning of this manual for more details. 
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Description 
Routine imsls_f_discrete_table_setup sets up a table that routine 
imsls_f_random_general_discrete uses to generate pseudorandom deviates 
from a discrete distribution. The distribution can be specified either by its probability 
function prf or by a vector of values of the cumulative probability function. Note that 
prf is not the cumulative probability distribution function. If the cumulative 
probabilities are already available in cumpr, the only reason to call 
imsls_f_discrete_table_setup is to form an index vector in the upper portion of 
cumpr so as to speed up the generation of random deviates by the routine 
imsls_f_random_general_discrete. 

Example 1 
In this example, imsls_f_discrete_table_setup is used to set up a table to 
generate pseudorandom variates from the discrete distribution: 

Pr(X = 1) = .05 

Pr(X = 2) = .45 

Pr(X = 3) = .31 

Pr(X = 4) = .04 

Pr(X = 5) = .15 

In this simple example, we input the cumulative probabilities directly in cumpr and 
request 3 indexes to be computed (nndx = 4). Since the number of mass points is so 
small, the indexes would not have much effect on the speed of the generation of the 
random variates. 
 

#include <stdio.h> 
#include <imsls.h> 
 
float prf(int ix); 
void main() 
{ 
  int i, lcumpr = 9, ir[5]; 
  int nndx = 4, imin = 1, nmass = 5, nr = 5; 
 
  float cumpr[9], del = 0.00001, *p_cumpr = NULL; 
  i = 0; 
  cumpr[i++] = .05; 
  cumpr[i++] = .5; 
  cumpr[i++] = .81; 
  cumpr[i++] = .85; 
  cumpr[i++] = 1.0; 
   
 imsls_f_discrete_table_setup (prf,  del, 



 
 
 
 

 
 

Chapter 12: Random Number Generation discrete_table_setup • 835  

 

 

 

          nndx,  &imin, &nmass,  
          IMSLS_INDEX_ONLY,  
          IMSLS_RETURN_USER, cumpr, lcumpr,  
          0); 
 imsls_f_write_matrix("Cumulative probabilities and indexes", 
        1, lcumpr, cumpr, 0); 
 
} 
 
float prf(int ix) 
{ 
  return 0.; 
 
} 

Output 
1.  

                 Cumulative probabilities and indexes 
         1           2           3           4           5           6 
      0.05        0.50        0.81        0.85        1.00        3.00 
  
         7           8           9 
      1.00        2.00        5.00 

Example 2 
This example, imsls_f_random_general_discrete is used to set up a table to 
generate binomial variates with parameters 20 and 0.5. The routine 
imsls_f_binomial_probabililty  (Chapter 11, Probability Distribution 
Functions and Inverses) is used to compute the probabilities. 
 

#include <stdio.h> 
#include <imsls.h> 

 
float prf(int ix); 
void main() 
{ 
  int lcumpr = 33; 
  int nndx = 12, imin = 0, nmass = 21, nr = 5; 
  float del = 0.00001, *cumpr;  
  int *ir = NULL; 
 
 
  cumpr = imsls_f_discrete_table_setup (prf,  del, nndx,  &imin, &nmass, 0); 
 
  printf("The smallest point with positive probability using \n"); 
  printf("the given del is %d and all points after \n", imin); 
  printf("point number %d (counting from the input value\n", nmass); 
  printf("of IMIN) have zero probability.\n"); 
  imsls_f_write_matrix("Cumulative probabilities and indexes",  
         nmass+nndx, 1, cumpr,   
         IMSLS_WRITE_FORMAT, "%11.7f", 0); 
 
} 
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float prf(int ix) 
{ 
  int n = 20; 
  float  p = .5; 
  return imsls_f_binomial_probability(ix, n, p); 
} 
 
 

Output 
2.  

The smallest point with positive probability using  
the given del is 1 and all points after  
point number 19 (counting from the input value 
of IMIN) have zero probability. 
  
Cumulative probabilities and indexes 
            1    0.0000191 
            2    0.0002003 
            3    0.0012875 
            4    0.0059080 
            5    0.0206938 
            6    0.0576583 
            7    0.1315873 
            8    0.2517219 
            9    0.4119013 
           10    0.5880987 
           11    0.7482781 
           12    0.8684127 
           13    0.9423417 
           14    0.9793062 
           15    0.9940920 
           16    0.9987125 
           17    0.9997997 
           18    0.9999809 
           19    1.0000000 
           20   11.0000000 
           21    1.0000000 
           22    7.0000000 
           23    8.0000000 
           24    9.0000000 
           25    9.0000000 
           26   10.0000000 
           27   11.0000000 
           28   11.0000000 
           29   12.0000000 
           30   13.0000000 
           31   19.0000000 
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random_beta 
Generates pseudorandom numbers from a beta distribution. 

Synopsis 
#include <imsls.h>  
float *imsls_f_random_beta (int n_random, float pin, float qin, ..., 0) 
The type double function is imsls_d_random_beta. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float pin   (Input) 
First beta distribution parameter. Argument pin must be positive. 

float qin   (Input) 
Second beta distribution parameter. Argument qin must be positive. 

Return Value 
If no optional arguments are used, imsls_f_random_beta returns an array of length 
n_random containing the random standard beta deviates. To release this space, use 
free. 

Synopsis with Optional Arguments 

#include <imsls.h>  
float *imsls_f_random_beta (int n_random, float pin, float qin, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
Array of length n_random containing the random standard beta deviates. 

Description 
Function imsls_f_random_beta generates pseudorandom numbers from a beta 
distribution with parameters pin and qin, both of which must be positive. With 
p = pin and q = qin, the probability density function is  

( ) ( )
( ) ( ) ( ) 11 1 for 0 1qpp q

f x x x x
p q

−−Γ +
= − ≤ ≤

Γ Γ  

where Γ (⋅) is the gamma function. 
The algorithm used depends on the values of p and q. Except for the trivial cases of 
p = 1 or q = 1, in which the inverse CDF method is used, all of the methods use 
acceptance/rejection. If p and q are both less than 1, the method of Jöhnk (1964) is 



 

 
 

838 • random_cauchy IMSL C Stat Library 

 

 

 

used. If either p or q is less than 1 and the other is greater than 1, the method of 
Atkinson (1979) is used. If both p and q are greater than 1, algorithm BB (Cheng 
1978), which requires very little setup time, is used if n_random is less than 4; and 
algorithm B4PE of Schmeiser  and Babu (1980) is used if n_random is greater than or 
equal to 4. Note that for p and q both greater than 1, calling imsls_f_random_beta 
in a loop getting less than four variates on each call will not yield the same set of 
deviates as calling imsls_f_random_beta once and getting all the deviates at once 
because two different algorithms are used. 

The values returned in r are less than 1.0 and greater than ε, where ε is the smallest 
positive number such that 1.0 − ε is less than 1.0. 
Function imsls_random_seed_set can be used to initialize the seed of the random 
number generator; function imsls_random_option can be used to select the form of 
the generator. 

Example 
In this example, imsls_f_random_beta generates five pseudorandom beta  
(3, 2) variates. 

#include <imsls.h> 
 
main() 
{ 
 
    int         n_random = 5; 
    int         seed = 123457; 
    float       pin = 3.0; 
    float       qin = 2.0; 
    float       *r; 
 
    imsls_random_seed_set (seed);       
    r = imsls_f_random_beta (n_random, pin, qin, 0); 
    imsls_f_write_matrix("Beta (3,2) random deviates", 1, n_random,  
                          r, 0); 
} 

Output 
                Beta (3,2) random deviates 
         1           2           3           4           5 
    0.2814      0.9483      0.3984      0.3103      0.8296 

random_cauchy 
Generates pseudorandom numbers from a Cauchy distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_cauchy (int n_random, ..., 0) 
The type double function is imsls_d_random_cauchy. 
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Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random Cauchy deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_cauchy (int n_random, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random Cauchy 
deviates. 

Description 
Function imsls_f_random_cauchy generates pseudorandom numbers from a 
Cauchy distribution. The probability density function is  

( )
( )22[ ]
Sf x

S x Tπ
=

+ −  

where T is the median and T − S is the first quartile. This function first generates 
standard Cauchy random numbers (T = 0 and S = 1) using the technique described 
below, and then scales the values using T and S.  
Use of the inverse CDF technique would yield a Cauchy deviate from a uniform (0, 1) 
deviate, u, as tan [π (u − 0.5)]. Rather than evaluating a tangent directly, however, 
random_cauchy generates two uniform (−1, 1) deviates, x1 and x2. These values can 
be thought of as sine and cosine values. If  

2 2
1 2x x+

 

is less than or equal to 1, then x1/x2 is delivered as the unscaled Cauchy deviate; 
otherwise, x1 and x2 are rejected and two new uniform (−1, 1) deviates are generated. 
This method is also equivalent to taking the ration of two independent normal deviates. 

Example 
In this example, imsls_f_random_cauchy generates five pseudorandom Cauchy 
numbers. The generator used is a simple multiplicative congruential with a multiplier 
of 16807. 

#include <imsls.h> 
#include <stdio.h> 
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void main() 
{ 
    int n_random = 5; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_cauchy(n_random, 0); 
    printf("Cauchy random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n",  
        r[0], r[1], r[2], r[3], r[4]); 
 
} 

Output 
Cauchy random deviates:   3.5765  0.9353 15.5797  2.0815 -0.1333 

random_chi_squared 
Generates pseudorandom numbers from a chi-squared distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_chi_squared (int n_random, float df, ..., 0) 
The type double function is imsls_d_random_chi_squared. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float df   (Input) 
Degrees of freedom. Parameter df must be positive. 

Return Value 
An array of length n_random containing the random chi-squared deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_chi_squared (int n_random, float df,  

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random chi-squared 
deviates. 
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Description 
Function imsls_f_random_chi_squared generates pseudorandom numbers from a 
chi-squared distribution with df degrees of freedom. If df is an even integer less than 
17, the chi-squared deviate r is generated as  

1

2 ln
n

i
i

r u
=

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∏  

where n = df/2 and the ui are independent random deviates from a uniform (0, 1) 
distribution. If df is an odd integer less than 17, the chi-squared deviate is generated in 
the same way, except the square of a normal deviate is added to the expression above. 
If df is is greater than 16 or is not an integer, and if it is not too large to cause overflow 
in the gamma random number generator, the chi-squared deviate is generated as a 
special case of a gamma deviate, using function imsls_f_random_gamma. If 
overflow would occur in imsls_f_random_gamma, the chi-squared deviate is 
generated in the manner described above, using the logarithm of the product of 
uniforms, but scaling the quantities to prevent underflow and overflow. 

Example 
In this example, imsls_f_random_chi_squared generates five pseudorandom chi-
squared deviates with five degrees of freedom. 

#include <imsls.h> 
#include <stdio.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float df = 5.0; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_chi_squared(n_random, df, 0); 
    imsls_f_write_matrix("Chi-Squared random deviates: ",  
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
  
} 

Output  
               Chi-Squared random deviates:  
     12.09        0.48        1.80       14.87        1.75 

random_exponential 
Generates pseudorandom numbers from a standard exponential distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_exponential (int n_random, ..., 0) 
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The type double function is imsls_d_random_exponential. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random standard exponential deviates. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_exponential (int n_random, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random standard 
exponential deviates. 

Description 
Function imsls_f_random_exponential generates pseudorandom numbers from a 
standard exponential distribution. The probability density function is f (x) = e-x, for 
x > 0. Function imsls_f_random_exponential uses an antithetic inverse CDF 
technique; that is, a uniform random deviate U is generated, and the inverse of the 
exponential cumulative distribution function is evaluated at 1.0 − U to yield the 
exponential deviate. 
Deviates from the exponential distribution with mean θ can be generated by using 
imsls_f_random_exponential and then multiplying each entry in r by θ. 

Example 
In this example, imsls_f_random_exponential generates five pseudorandom 
deviates from a standard exponential distribution. 

#include <imsls.h> 
 
#define N_RANDOM    5 
 
main() 
 
{ 
        int             seed = 123457; 
        int             n_random = N_RANDOM; 
        float           *r; 
 
        imsls_random_seed_set(seed); 
        r = imsls_f_random_exponential(n_random, 0); 
        printf("%s: %8.4f%8.4f%8.4f%8.4f\n", 
               "Exponential random deviates", 
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               r[0], r[1], r[2], r[3], r[4]); 
} 

Output 
Exponential random deviates:   0.0344  1.3443  0.2662  0.5633  0.1686 

random_exponential_mix 
Generates pseudorandom numbers from a mixture of two exponential distributions. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_exponential_mix (int n_random, float theta1, 

float theta2, float p, ..., 0) 
The type double function is imsls_d_random_exponential_mix.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float theta1   (Input) 
Mean of the exponential distribution which has the larger mean. 

float theta2   (Input) 
Mean of the exponential distribution which has the smaller mean. Parameter 
theta2 must be positive and less than or equal to theta1. 

float p   (Input) 
Mixing parameter. Parameter p must be non-negative and less than or equal to 
theta1/(theta1 − theta2). 

Return Value 
An array of length n_random containing the random deviates of a mixture of two 
exponential distributions. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_exponential_mix (int n_random, float theta1, 

float theta2, float p,  
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random deviates. 
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Description 
Function imsls_f_random_exponential_mix generates pseudorandom numbers 
from a mixture of two exponential distributions. The probability density function is  

( ) 1 2/ /

1 2

1x xp pf x e eθ θ

θ θ
− −−

= +
 

for x > 0, where p = p, θ1 = theta1, and θ2 = theta2. 

In the case of a convex mixture, that is, the case 0 < p < 1, the mixing parameter  
p is interpretable as a probability; and imsls_f_random_exponential_mix with 
probability p generates an exponential deviate with mean θ1, and with probability 1 − p 
generates an exponential with mean θ2. When p is greater than 1, but less than 
θ1/(θ1 − θ2), then either an exponential deviate with mean θ1 or the sum of two 
exponentials with means θ1 and θ2 is generated. The probabilities are 
q = p − (p − 1) (θ1/θ2) and 1 − q, respectively, for the single exponential and the sum of 
the two exponentials. 

Example 
In this example, imsls_f_random_exponential_mix is used to generate five 
pseudorandom deviates from a mixture of exponentials with means 2 and 1, 
respecctively, and with mixing parameter 0.5. 

#include <imsls.h> 
#include <stdio.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float theta1 = 2.0; 
    float theta2 = 1.0; 
    float p = 0.5; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_exponential_mix(n_random, theta1, theta2, p, 0); 
    imsls_f_write_matrix("Mixed exponential random deviates: ",  
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
  
} 

Output  
            Mixed exponential random deviates:  
     0.070       1.302       0.630       1.976       0.372 
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random_gamma 
Generates pseudorandom numbers from a standard gamma distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_gamma (int n_random, float a, ..., 0) 
The type double function is imsls_d_random_gamma. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float a   (Input) 
Shape parameter of the gamma distribution. This parameter must be positive. 

Return Value 
An array of length n_random containing the random standard gamma deviates.  

Synopsis with Optional Arguments 

#include <imsls.h> 
float *imsls_f_random_gamma (int n_random, float a, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_USER_RETURN, float r[]   (Output) 
User-supplied array of length n_random containing the random standard 
gamma deviates. 

Description 
Function imsls_f_random_gamma generates pseudorandom numbers from a gamma 
distribution with shape parameter a and unit scale parameter. The probability density 
function is 

( ) ( )
11 for 0a xf x x e x

a
− −= ≥

Γ  

Various computational algorithms are used depending on the value of the shape 
parameter a. For the special case of a = 0.5, squared and halved normal deviates are 
used; for the special case of a = 1.0, exponential deviates are generated. Otherwise, if a 
is less than 1.0, an acceptance-rejection method due to Ahrens, described in 
Ahrens and Dieter (1974), is used. If a is greater than 1.0, a ten-region rejection 
procedure developed by Schmeiser and Lal (1980) is used. 
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Deviates from the two-parameter gamma distribution with shape parameter a and scale 
parameter b can be generated by using imsls_f_random_gamma and then multiplying 
each entry in r by b. The following statements (in single precision) would yield random 
deviates from a gamma (a, b) distribution. 
float *r; 
r = imsls_f_random_gamma(n_random, a, 0); 
for (i=0; i<n_random; i++) *(r+i) *= b; 

The Erlang distribution is a standard gamma distribution with the shape parameter 
having a value equal to a positive integer; hence, imsls_f_random_gamma generates 
pseudorandom deviates from an Erlang distribution with no modifications required. 
Function imsls_random_seed_set can be used to initialize the seed of the random 
number generator; function imsls_random_option can be used to select the form of 
the generator. 

Example 
In this example, imsls_f_random_gamma generates five pseudorandom deviates 
from a gamma (Erlang) distribution with shape parameter equal to 3.0. 

#include <imsls.h> 
 
void main() 
{ 
    int         seed = 123457; 
    int         n_random = 5; 
    float       a = 3.0; 
    float       *r; 
 
    imsls_random_seed_set(seed); 
    r = imsls_f_random_gamma(n_random, a, 0); 
    imsls_f_write_matrix("Gamma(3) random deviates", 1, n_random, r, 0); 
} 

Output 
                 Gamma(3) random deviates 
         1           2           3           4           5 
     6.843       3.445       1.853       3.999       0.779 

random_lognormal 
Generates pseudorandom numbers from a lognormal distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_lognormal (int n_random, float mean, float std, ..., 

0) 
The type double function is imsls_d_random_lognormal.  
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Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float mean   (Input) 
Mean of the underlying normal distribution. 

float std   (Input) 
Standard deviation of the underlying normal distribution. 

Return Value 
An array of length n_random containing the random deviates of a lognormal 
distribution. The log of each element of the vector has a normal distribution with mean 
mean and standard deviation std. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_lognormal (int n_random, float mean, float std,  

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random lognormal 
deviates. 

Description 
Function imsls_f_random_lognormal generates pseudorandom numbers from a 
lognormal distribution with parameters mean and std. The scale parameter in the 
underlying normal distribution, std, must be positive. The method is to generate 
normal deviates with mean mean and standard deviation std and then to exponentiate 
the normal deviates. 

With μ = mean and σ = std, the probability density function for the lognormal 
distribution is 

( ) ( )2
2

1 1exp ln
22

f x x
x

μ
σσ π

⎡ ⎤= − −⎢ ⎥⎣ ⎦  

for x > 0. The mean and variance of the lognormal distribution are exp (μ + σ2/2) and 
exp (2μ + 2σ2) − exp (2μ + σ2), respectively. 

Example 
In this example, imsls_f_random_lognormal is used to generate five 
pseudorandom lognormal deviates with a mean of 0 and standard deviation of 1. 

#include <stdio.h> 
#include <imsls.h> 
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void main() 
{ 
    int   n_random = 5; 
    float mean = 0.0; 
    float std = 1.0; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_lognormal(n_random, mean, std, 0); 
    imsls_f_write_matrix("lognormal random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output  
                lognormal random deviates: 
     7.780       2.954       1.086       3.588       0.293 

random_normal 
Generates pseudorandom numbers from a normal, N (μ, σ2), distribution. 

Synopsis 
#include <imsls.h>  
float *imsls_f_random_normal (int n_random, ..., 0) 
The type double function is imsls_d_random_normal. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random normal deviates.  

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_random_normal (int n_random, 
IMSLS_MEAN, float mean, 
IMSLS_VARIANCE, float variance, 
IMSLS_ACCEPT_REJECT_METHOD, 
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_MEAN, float mean   (Input) 
Parameter mean contains the mean, μ, of the N(μ, σ2) from which random 
normal deviates are to be generated. 
Default: mean = 0.0 
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IMSLS_VARIANCE, float variance   (Input) 
Parameter variance contains the variance of the N (μ, σ2) from which random 
normal deviates are to be generated. 
Default: variance = 1.0 

IMSLS_ACCEPT_REJECT_METHOD 
By default, random numbers are generated using an inverse CDF technique. 
When optional argument IMSLS_ACCEPT_REJECT_METHOD is specified, an 
acceptance/ rejection method is used instead. See the “Description” section for 
details about each method. 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the generated random 
standard normal deviates. 

Description 
By default, function imsls_f_random_normal generates pseudorandom numbers 
from a normal (Gaussian) distribution using an inverse CDF technique. In this method, 
a uniform (0, 1) random deviate is generated. The inverse of the normal distribution 
function is then evaluated at that point, using the function 
imsls_f_normal_inverse_cdf (Chapter 11, Probablility Distribution Functions 
and Inverses). 
If optional argument IMSLS_ACCEPT_REJECT_METHOD is specified, function 
imsls_f_random_normal generates pseudorandom numbers using an 
acceptance/rejection technique due to Kinderman and Ramage (1976). In this method, 
the normal density is represented as a mixture of densities over which a variety of 
acceptance/rejection method due to Marsaglia (1964), Marsaglia and Bray (1964), and 
Marsaglia et al. (1964) are applied. This method is faster than the inverse CDF 
technique. 

Remarks 
Function imsls_random_seed_set can be used to initialize the seed of the random 
number generator; function imsls_random_option can be used to select the form of 
the generator. 

Example 
In this example, imsls_f_random_normal generates five pseudorandom deviates 
from a standard normal distribution. 

#include <imsls.h> 
#define N_RANDOM  5 
 
void main() 
{ 
    int         seed = 123457; 
    int         n_random = N_RANDOM; 
    float       *r; 
 
    imsls_random_seed_set (seed); 
    r = imsls_f_random_normal(n_random, 0); 
    printf("%s:\n%8.4f%8.4f%8.4f%8.4f%8.4f\n", 
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           "Standard normal random deviates", 
           r[0], r[1], r[2], r[3], r[4]); 
} 

Output 
Standard normal random deviates: 
1.8279 -0.6412  0.7266  0.1747  1.0145 

random_stable 
Generates pseudorandom numbers from a stable distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_stable (int n_random, float alpha,  

float bprime, ..., 0) 
The type double function is imsls_d_random_stable. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float alpha   (Input) 
Characteristic exponent of the stable distribution.  This parameter must be 
positive and less than or equal to 2. 

float bprime   (Input) 
Skewness parameter of the stable distribution. When bprime = 0, the 
distribution is symmetric. Unless alpha = 1, bprime is not the usual 
skewness parameter of the stable distribution. bprime must be greater than or 
equal to − 1 and less than or equal to 1. 

Return Value 
An integer array of length n_random containing the random deviates. To release this 
space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_binomial (int n_random, float alpha,  

float bprime,  
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random deviates. 
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Description 
Function imsls_f_random_stable generates pseudorandom numbers from a stable 
distribution with parameters alpha and bprime. alpha is the usual characteristic 
exponent parameter α and bprime is related to the usual skewness parameter β of the 
stable distribution. With the restrictions 0 < α ≤ 2 and − 1 ≤ β ≤ 1, the characteristic 
function of the distribution is 

ϕ(t) = exp[−| t |α exp(−πiβ(1 − |1 − α|)sign(t)/2)]    for α ≠ 1 

and 

ϕ(t) = exp[−| t |(1 + 2iβ ln| t |)sign(t)/π)]    for α = 1 

When β = 0, the distribution is symmetric. In this case, if α = 2, the distribution is 
normal with mean 0 and variance 2; and if α = 1, the distribution is Cauchy. 
The parameterization using bprime and the algorithm used here are due to Chambers, 
Mallows, and Stuck (1976). The relationship between bprime = β′ and the standard β 
is 

β′ = −tan(π(1 − α)/2) tan(−πβ(1 − |1 − α|)/2) for α ≠ 1 

and 

β′ = β for α = 1 

The algorithm involves formation of the ratio of a uniform and an exponential random 
variate. 

Example 
In this example, imsls_f_random_stable is used to generate five pseudorandom 
symmetric stable variates with characteristic exponent 1.5. The tails of this distribution 
are heavier than those of a normal distribution, but not so heavy as those of a Cauchy 
distribution. The variance of this distribution does not exist, however. (This is the case 
for any stable distribution with characteristic exponent less than 2.) 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int  nr = 5; 
  float alpha = 1.5, bprime = 0.0, *r; 
 
  imsls_random_seed_set(123457); 
   
  r = imsls_f_random_stable(nr, alpha, bprime, 0); 
  imsls_f_write_matrix("Stable random deviates", 5, 1, r,  
            IMSLS_NO_ROW_LABELS, 0); 
 
} 
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 Output 
Stable random deviates 
           4.409 
           1.056 
           2.546 
           5.672 
           2.166 

random_student_t 
Generates pseudorandom numbers from a Student’s t distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_student_t (int n_random, float df, ..., 0) 
The type double function is imsls_d_random_student_t. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float df   (Input) 
Degrees of freedom. Parameter df must be positive. 

Return Value 
An array of length n_random containing the random deviates of a Student’s t 
distribution. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_student_t (int n_random, float df, 

IMSLS_RETURN_USER, float r[], 
IMSLS_MEAN, float mean,  
IMSLS_VARIANCE, float variance, 
0) 

Optional Arguments 

IMSLS_MEAN, float mean   (Input) 
Mean of the Student’s t distribution. 
Default: mean = 0.0 

IMSLS_VARIANCE, float variance   (Input) 
Variance of the Student’s t distribution. 
Default: variance = 1.0 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random Student’s t 
deviates. 
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Description 
Function imsls_f_random_student_t generates pseudorandom numbers from a 
Student’s t distribution with df degrees of freedom, using a method suggested by 
Kinderman et al. (1977). The method (“TMX” in the reference) involves a 
representation of the t density as the sum of a triangular density over (−2, 2) and the 
difference of this and the t density. The mixing probabilities depend on the degrees of 
freedom of the t distribution. If the triangular density is chosen, the variate is generated 
as the sum of two uniforms; otherwise, an acceptance/rejection method is used to 
generate the difference density. 

random_triangular 
Generates pseudorandom numbers from a triangular distribution on the interval (0, 1). 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_triangular (int n_random, ..., 0) 
The type double function is imsls_d_random_triangular. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random deviates of a triangular 
distribution. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_triangular (int n_random, 

IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random triangular 
deviates. 

Description 
Function imsls_f_random_triangular generates pseudorandom numbers from a 
triangular distribution over the unit interval. The probability density function is 
f (x) = 4x, for 0 ≤ x ≤ 0.5, and f (x) = 4 (1 − x), for 0.5 < x ≤ 1. An inverse CDF 
technique is used. 
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Example 
In this example, imsls_f_random_triangular is used to generate five 
pseudorandom deviates from a triangular distribution. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_triangular(n_random, 0); 
    imsls_f_write_matrix("Triangular random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output  
                Triangular random deviates: 
    0.8700      0.3610      0.6581      0.5360      0.7215 

random_uniform 
Generates pseudorandom numbers from a uniform (0, 1) distribution. 

Synopsis 
#include <imsls.h>  

float *imsls_f_random_uniform (int n_random, …, 0) 
The type double function is imsls_d_random_uniform. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

Return Value 
An array of length n_random containing the random uniform (0, 1) deviates. 

Synopsis with Optional Arguments 

#include <imsls.h>  
float *imsls_f_random_uniform (int n_random, 

IMSLS_RETURN_USER, float r[], 
0) 
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Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random uniform (0, 1) 
deviates. 

Description 
Function imsls_f_random_uniform generates pseudorandom numbers from a 
uniform (0, 1) distribution using a multiplicative congruential method. The form of the 
generator is as follows: 

xi ≡ cxi-1mod (231 − 1) 

Each xi is then scaled into the unit interval (0, 1). The possible values for c in the 
generators are 16807, 397204094, and 950706376. The selection is made by the 
function imsls_random_option. The choice of 16807 will result in the fastest 
execution time. If no selection is made explicitly, the functions use the multiplier 
16807. 
Function imsls_random_seed_set can be used to initialize the seed of the random 
number generator; function imsls_random_option can be used to select the form of 
the generator. 
The user can select a shuffled version of these generators. In this scheme, a table is 
filled with the first 128 uniform (0, 1) numbers resulting from the simple multiplicative 
congruential generator. Then, for each xi from the simple generator, the low-order bits 
of xi are used to select a random integer, j, from 1 to 128. The j-th entry in the table is 
then delivered as the random number, and xi, after being scaled into the unit interval, is 
inserted into the j-th position in the table. 
The values returned by imsls_f_random_uniform are positive and less than 1.0. 
However, some values returned may be smaller than the smallest relative spacing; 
hence, it may be the case that some value, for example r [i], is such that 
1.0 − r [i] = 1.0. 
Deviates from the distribution with uniform density over the interval (a, b) can be 
obtained by scaling the output from imsls_f_random_uniform. The following 
statements (in single precision) would yield random deviates from a uniform  
(a, b) distribution. 
float *r; 
r = imsls_f_random_uniform (n_random, 0); 
for (i=0; i<n_random; i++) r[i] = r[i]*(b-a) + a; 

Example 
In this example, imsls_f_random_uniform generates five pseudorandom uniform 
numbers. Since function imsls_random_option is not called, the generator used is a 
simple multiplicative congruential one with a multiplier of 16807. 

#include <imsls.h> 
#include <stdio.h> 
 
#define N_RANDOM  5 
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void main() 
{ 
    float     *r; 
 
    imsls_random_seed_set(123457); 
 
    r = imsls_f_random_uniform(N_RANDOM, 0); 
 
    printf("Uniform random deviates: %8.4f%8.4f%8.4f%8.4f%8.4f\n", 
            r[0], r[1], r[2], r[3], r[4]); 
} 

Output 
Uniform random deviates:   0.9662  0.2607  0.7663  0.5693  0.8448 

random_von_mises 
Generates pseudorandom numbers from a von mises distribution. 

Synopsis 
#include <imsls.h> 

float *imsls_f_random_von_mises (int n_random, float c, …, 0) 
The type double function is imsls_d_random_von_mises.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float c   (Input) 
Parameter of the von Mises distribution. This parameter must be greater than 
one-half of machine epsilon (On many machines, the lower bound for c is 10-

3). 

Return Value 
An array of length n_random containing the random deviates of a von Mises 
distribution. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_von_mises (int n_random, float c, 

IMSLS_RETURN_USER, float r[], 
0) 
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Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random von mises 
deviates. 

Description 
Function imsls_f_random_von_mises generates pseudorandom numbers from a 
von Mises distribution with parameter c, which must be positive. With c = c, the 
probability density function is  

( ) ( ) ( )
0

1 exp cos
2

f x c x
I cπ

= ⎡ ⎤⎣ ⎦  

for −π < x < π, where I0 (c) is the modified Bessel function of the first kind of order 0. 
The probability density is equal to 0 outside the interval (−π, π). 
The algorithm is an acceptance/rejection method using a wrapped Cauchy distribution 
as the majorizing distribution. It is due to Nest and Fisher (1979). 

Example 
In this example, imsls_f_random_von_mises is used to generate five 
pseudorandom von Mises variates with c = 1. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float c = 1.0; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_von_mises(n_random, c, 0); 
    imsls_f_write_matrix("Von Mises random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output 
                Von Mises random deviates: 
     0.247      -2.433      -1.022      -2.172      -0.503 

random_weibull 
Generates pseudorandom numbers from a Weibull distribution. 

Synopsis 
#include <imsls.h> 

float *imsls_f_random_weibull (int n_random, float a, …, 0) 
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The type double function is imsls_d_random_weibull.  

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

float a   (Input) 
Shape parameter of the Weibull distribution. This parameter must be positive. 

Return Value 
An array of length n_random containing the random deviates of a Weibull distribution. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_weibull (int n_random, float a, 

IMSLS_B, float b, 
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_B, float b   (Input) 
Scale parameter of the two parameter Weibull distribution. 
Default: b = 1.0 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the random Weibull 
deviates. 

Description 
Function imsls_f_random_weibull generates pseudorandom numbers from a 
Weibull distribution with shape parameter a and scale parameter b. The probability 
density function is 

( ) ( )1 expa af x abx bx−= −
 

for x ≥ 0, a > 0, and b > 0. Function imsls_f_random_weibull uses an antithetic 
inverse CDF technique to generate a Weibull variate; that is, a uniform random deviate 
U is generated and the inverse of the Weibull cumulative distribution function is 
evaluated at 1.0 − U to yield the Weibull deviate. 
Note that the Rayleigh distribution with probability density function 

( ) ( )( )2 2/ 2

2

1 x
r x xe

α

α
−

=
 

for x ≥ 0 is the same as a Weibull distribution with shape parameter a equal to 2 and 
scale parameter b equal to  
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Example 
In this example, imsls_f_random_weibull is used to generate five pseudorandom 
deviates from a two-parameter Weibull distribution with shape parameter equal to 2.0 
and scale parameter equal to 6.0—a Rayleigh distribution with the following 
parameter: 

3 2α =
 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    float a = 3.0; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_weibull(n_random, a, 0); 
    imsls_f_write_matrix("Weibull random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output 
                 Weibull random deviates: 
     0.325       1.104       0.643       0.826       0.552 

Warning Errors 

IMSLS_SMALL_A The shape parameter is so small that a relatively large 
proportion of the values of deviates from the Weibull 
cannot be represented.  

random_general_continuous 
Generates pseudorandom numbers from a general continuous distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_general_continuous (int n_random, int ndata, float 

table[],..., 0) 
The type double function is imsls_d_random_general_continuous. 
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Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int ndata   (Input) 
Number of points at which the CDF is evaluated for interpolation. ndata 
must be greater than or equal to 4.  

float *table   (Input/Ouput) 
ndata by 5 table to be used for interpolation of the cumulative distribution 
function. 
The first column of table contains abscissas of the cumulative distribution 
function in ascending order, the second column contains the values of the 
CDF (which must be strictly increasing beginning with 0.0 and ending at 1.0) 
and the remaining columns contain values used in interpolation. This table is 
set up using routine imsls_f_continous_table_setup. 

Return Value 
An array of length n_random containing the random discrete deviates. To release this 
space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_f_random_general_continuous (int n_random, int ndata, float 

table[], 
IMSLS_TABLE_COL_DIM, int table_col_dim,  
IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 

IMSLS_TABLE_COL_DIM, int table_col_dim   (Intput) 
Column dimension of the matrix table. 
Default: table_col_dim = 5  

IMSLS_RETURN_USER, float r[]  (Output) 
User-supplied array of length n_random containing the random continuous 
deviates. 

Description 
Routine imsls_f_random_general_continuous generates pseudorandom numbers 
from a continuous distribution using the inverse CDF technique, by interpolation of 
points of the distribution function given in table, which is set up by routine 
imsls_f_continuous_table_setup. A strictly monotone increasing distribution 
function is assumed. The interpolation is by an algorithm attributable to Akima (1970), 
using piecewise cubics. The use of this technique for generation of random numbers is 
due to Guerra, Tapia, and Thompson (1976), who give a description of the algorithm 
and accuracy comparisons between this method and linear interpolation. The relative 
errors using the Akima interpolation are generally considered very good. 
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Example 1 
In this example, imsls_f_continuous_table_setup is used to set up a table for 
generation of beta pseudorandom deviates. The CDF for this distribution is computed 
by the routine imsls_f_beta_cdf (Chapter 11, Probability Distribution Functions 
and Inverses). The table contains 100 points at which the CDF is evaluated and that are 
used for interpolation. 

 
#include <stdio.h> 
#include <imsls.h> 
 
float cdf(float); 
void main() 
{ 
  int i, iopt=0, ndata= 100; 
  float table[100][5], x = 0.0, *r; 
 
  for (i=0;i<ndata;i++) { 
    table[i][0] = x; 
    x += .01; 
  } 
 
  imsls_f_continuous_table_setup(cdf, iopt, ndata, (float*)table); 
 
  imsls_random_seed_set(123457); 
  r = imsls_f_random_general_continuous (5,  ndata, table, 0); 
  imsls_f_write_matrix("Beta (3, 2) random deviates", 5, 1, r, 0);  
 
} 
 
float cdf(float x) 
{ 
  return imsls_f_beta_cdf(x, 3., 2.); 
} 

Output 
*** WARNING  Error  from imsls_f_continuous_table_setup.  The values of the 
***          CDF in the second column of table did not begin at 0.0 and end 
***          at 1.0, but they have been adjusted. Prior to adjustment, 
***          table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01. 
  
Beta (3, 2) random deviates 
       1      0.9208 
       2      0.4641 
       3      0.7668 
       4      0.6536 
       5      0.8171 
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continuous_table_setup 
Sets up table to generate pseudorandom numbers from a general continuous 
distribution. 

Synopsis 
#include <imsls.h> 
void imsls_f_continuous_table_setup (float cdf(), int iopt, int ndata, 

float *table, ..., 0) 
The type double function is imsls_d_continuous_table_setup. 

Required Arguments 

float cdf(float x) (Input) 
User-supplied function to compute the cumulative distribution function.  The 
argument to the function is the point at which the distribution function is to be 
evaluated 

int iopt   (Input) 
Indicator of the extent to which table is initialized prior to calling 
imsls_f_continuous_table_setup.   

iopt Action 
0 imsls_f_continuous_table_setup fills the last four 

columns of table. The user inputs the points at which the 
CDF is to be evaluated in the first column of table. These 
must be in ascending order. 

1 imsls_f_continuous_table_setup fills the last three 
columns of table. The user supplied function cdf is not used 
and may be a dummy function; instead, the cumulative 
distribution function is specified in the first two columns of 
table. The abscissas (in the first column) must be in 
ascending order and the function must be strictly monotonically 
increasing. 

int ndata   (Input) 
Number of points at which the CDF is evaluated for interpolation. ndata 
must be greater than or equal to 4.  

float *table   (Input/Ouput) 
ndata by 5 table to be used for interpolation of the cumulative distribution 
function. 
The first column of table contains abscissas of the cumulative distribution 
function in ascending order, the second column contains the values of the 
CDF (which must be strictly increasing), and the remaining columns contain 
values used in interpolation. The first row of table corresponds to the left 
limit of the support of the distribution and the  
last row corresponds to the right limit of the support; that is,  
table[0][1] = 0.0 and table[ndata-1][ 1] = 1.0. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_continuous_table_setup (float cdf(), int iopt,  

int ndata, float table[], 
IMSLS_TABLE_COL_DIM,  
IMSLS_FCN_W_DATA, float cdf(), void *data, 
 0) 

Optional Arguments 

IMSLS_TABLE_COL_DIM, int table_col_dim   (Intput) 
Column dimension of the array table. 
Default: table_col_dim = 5  

IMSLS_FCN_W_DATA, float cdf(float x), void *data, (Input) 
User-supplied function to compute the cumulative distribution function, which 
also accepts a pointer to data that is supplied by the user.  data is a pointer to 
the data to be passed to the user-supplied function.  See the Introduction, 
Passing Data to User-Supplied Functions at the beginning of this manual for 
more details. 

Description 
Routine imsls_f_continuous_table_setup sets up a table that routine 
imsls_f_random_general_continuous can use to generate pseudorandom 
deviates from a continuous distribution. The distribution is specified by its cumulative 
distribution function, which can be supplied either in tabular form in table or by a 
function cdf. See the documentation for the routine 
imsls_f_random_general_continuous for a description of the method. 

Example 1 
In this example, imsls_f_continuous_table_setup is used to set up a  
table to generate pseudorandom variates from a beta distribution. This example  
is continued in the documentation for routine 
imsls_f_random_general_continuous to generate the random variates. 
 

#include <stdio.h> 
#include <imsls.h> 
 
float cdf(float); 
void main() 
{ 
  int i, iopt=0, ndata= 100; 
  float table[100][5], x = 0.0; 
 
  for (i=0;i<ndata;i++) { 
    table[i][0] = x; 
    x += .01; 
  } 
 
  imsls_f_continuous_table_setup(cdf, iopt, ndata, table); 
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  printf("The first few values from the table:\n"); 
  for (i=0;i<10;i++) printf("%4.2f\t%8.4f\n", table[i][0], table[i][1]); 
 
} 
 
float cdf(float x) 
{ 
  return imsls_f_beta_cdf(x, 3., 2.); 
} 

Output 
 
*** WARNING  Error  from imsls_f_continuous_table_setup.  The values of the 
***          CDF in the second column of table did not begin at 0.0 and end 
***          at 1.0, but they have been adjusted. Prior to adjustment, 
***          table[0][1] = 0.000000e+00 and table[ndata-1][1]= 9.994079e-01. 
  
The first few values from the table: 
0.00   0.0000 
0.01   0.0000 
0.02   0.0000 
0.03   0.0001 
0.04   0.0002 
0.05   0.0005 
0.06   0.0008 
0.07   0.0013 
0.08   0.0019 
0.09   0.0027  

random_normal_multivariate 
Generates pseudorandom numbers from a multivariate normal distribution. 

Synopsis 
#include <imsls.h>  
float *imsls_f_random_normal_multivariate (int n_vectors, int length, 

float *covariances, …, 0) 
The type double function is imsls_d_random_normal_multivariate. 

Required Arguments 

int n_vectors   (Input) 
Number of random multivariate normal vectors to generate. 

int length   (Input) 
Length of the multivariate normal vectors. 

float *covariances   (Input) 
Array of size length × length containing the variance-covariance matrix. 
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Return Value 
An array of length n_vectors × length containing the random multivariate normal 
vectors stored consecutively.  

Synopsis with Optional Arguments 

#include <imsls.h>  
float *imsls_f_random_normal_multivariate (int n_vectors, int length, 

float *covariances, 
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_vectors × length containing the random 
multivariate normal vectors stored consecutively. 

Description 
Function imsls_f_random_normal_multivariate generates pseudorandom 
numbers from a multivariate normal distribution with mean vector consisting of all 
zeros and variance-covariance matrix imsls_f_covariances. First, the Cholesky 
factor of the variance-covariance matrix is computed. Then, independent random 
normal deviates with mean 0 and variance 1 are generated, and the matrix containing 
these deviates is postmultiplied by the Cholesky factor. Because the Cholesky 
factorization is performed in each invocation, it is best to generate as many random 
vectors as needed at once. 
Deviates from a multivariate normal distribution with means other than 0 can be 
generated by using imsls_f_random_normal_multivariate and then by adding 
the vectors of means to each row of the result. 

Example 
In this example, imsls_f_random_normal_multivariate generates five 
pseudorandom normal vectors of length 2 with variance-covariance matrix equal to the 
following: 

0.500 0.375
0.375 0.500

⎡ ⎤
⎢ ⎥
⎣ ⎦  

#include <imsls.h> 
 
void main() 
{ 
    int n_vectors = 5; 
    int length = 2; 
    float covariances[] = {.5, .375, .375, .5}; 
    float *random; 
 
    imsls_random_seed_set (123457); 
    random = imsls_f_random_normal_multivariate (n_vectors, length,  
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        covariances, 0); 
 
    imsls_f_write_matrix ("multivariate normal random deviates", 
        n_vectors, length, random, 0); 
} 

Output 
multivariate normal random deviates 
                 1           2 
     1       1.451       1.246 
     2       0.766      -0.043 
     3       0.058      -0.669 
     4       0.903       0.463 
     5      -0.867      -0.933 
 

random_orthogonal_matrix 
Generates a pseudorandom orthogonal matrix or a correlation matrix. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_orthogonal_matrix (int n, ..., 0) 
The type double function is imsls_d_random_orthogonal_matrix. 

Required Arguments 

int n   (Input) 
The order of the matrix to be generated. 

Return Value 
n by n random orthogonal matrix. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_orthogonal_matrix (int n,  

IMSLS_EIGENVALUES, float *eignevalues[], 
IMSLS_A_MATRIX, float *a, 
IMSLS_A_COL_DIM, int a_col_dim, 
IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 

IMSLS_EIGENVALUES, float *eigenvalues   (Input) 
A vector of length n containing the eigenvalues of the correlation matrix to be 
generated.   The elements of eigenvalues must be positive, they must sum 
to n, and they cannot all be equal. 
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IMSLS_A_MATRIX, float *a   (Input) 
n by n random orthogonal matrix.   A random correlation matrix is generated 
using the orthogonal matrix input in a.  The option IMSLS_EIGENVALUES 
must also be supplied if IMSLS_A_MATRIX is used. 

IMSLS_A_COL_DIM, int a_col_dim   (Input) 
Column dimension of the matrix a. 
Default: a_col_dim = n  

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n × n containing the random correlation matrix. 

Description 
Routine imsls_f_random_orthogonal_matrix generates a pseudorandom 
orthogonal matrix from the invariant Haar measure. For each column, a random vector 
from a uniform distribution on a hypersphere is selected and then is projected onto the 
orthogonal complement of the columns already formed. The method is described by 
Heiberger (1978). (See also Tanner and Thisted 1982.) 
If the optional argument IMSLS_EIGENVALUES is used, a correlation matrix is formed 
by applying a sequence of planar rotations to the matrix AT DA, where  
D = diag(eigenvalues[0], …, eigenvalues [n-1]), so as to yield ones along the 
diagonal. The planar rotations are applied in such an order that in the two by two 
matrix that determines the rotation, one diagonal element is less than 1.0 and one is 
greater than 1.0. This method is discussed by Bendel and Mickey (1978) and by Lin 
and Bendel (1985). 
The distribution of the correlation matrices produced by this method is not known. 
Bendel and Mickey (1978) and Johnson and Welch (1980) discuss the distribution. 
For larger matrices, rounding can become severe; and the double precision results may 
differ significantly from single precision results. 

Example 
In this example, imsls_f_random_orthogonal_matrix is used to generate a 4 by 4 
pseudorandom correlation matrix with eigenvalues in the ratio 1:2:3:4.  
 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int   i, n = 4; 
  float *a, *cor; 
  float ev[] = {1., 2., 3., 4.}; 
   
  for (i=0;i<4;i++) ev[i] = 4.*ev[i]/10.; 
 
  imsls_random_seed_set(123457); 
   
  a = imsls_f_random_orthogonal_matrix(n, 0); 
  imsls_f_write_matrix("Random orthogonal matrix",  
         4, 4, (float*)a, 0); 
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  cor = imsls_f_random_orthogonal_matrix(n,  
       IMSLS_EIGENVALUES, ev,  
       IMSLS_A_MATRIX, a,  
       0); 
  imsls_f_write_matrix("Random correlation matrix",  
         4, 4, (float*)cor, 0); 
 
} 

 Output 
 
            Random orthogonal matrix 
            1           2           3           4 
1     -0.8804     -0.2417      0.4065     -0.0351 
2      0.3088     -0.3002      0.5520      0.7141 
3     -0.3500      0.5256     -0.3874      0.6717 
4     -0.0841     -0.7584     -0.6165      0.1941 
  
            Random correlation matrix 
            1           2           3           4 
1       1.000      -0.236      -0.326      -0.110 
2      -0.236       1.000       0.191      -0.017 
3      -0.326       0.191       1.000      -0.435 
4      -0.110      -0.017      -0.435       1.000 
 

random_mvar_from_data 
Generates pseudorandom numbers from a multivariate distribution determined from a 
given sample. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_mvar_from_data (int n_random,  int ndim,  int 

nsamp,  float x[],  int nn, ..., 0) 
The type double function is imsls_d_random_mvar_from_data. 

Required Arguments 

int n_random   (Input) 
Number of random multivariate vectors to generate. 

int ndim   (Input) 
The length of the multivariate vectors, that is, the number of dimensions. 

int nsamp   (Input) 
Number of given data points from the distribution to be simulated. 

float x[]   (Input) 
Array of size nsamp  ×  ndim matrix containing the given sample. 
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int nn   (Input) 
Number of nearest neighbors of the randomly selected point in x that are used 
to form the output point in the result. 

Return Value 
n_random × ndim matrix containing the random multivariate vectors in its rows. To 
release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float * imsls_f_random_mvar_from_data (int n_random,  int ndim,   

int nsamp,  float x[],  int nn, 
IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of the matrix x. 
Default: x_col_dim = ndim  

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random × ndim containing the random 
correlation matrix. 

Description 
Given a sample of size n (= nsamp) of observations of a k-variate random variable, 
imsls_f_random_mvar_from_data generates a pseudorandom sample with 
approximately the same moments as the given sample. The sample obtained is 
essentially the same as if sampling from a Gaussian kernel estimate of the sample 
density. (See Thompson 1989.) Routine imsls_f_random_mvar_from_data uses 
methods described by Taylor and Thompson (1986). 
Assume that the (vector-valued) observations xi are in the rows of x. An observation, xj, 
is chosen randomly; its nearest m (= nn) neighbors, 

1 2
, ,...,

mj j jx x x
 

are determined; and the mean 

jx
 

of those nearest neighbors is calculated. Next, a random sample 
u1, u2, …, um is generated from a uniform distribution with lower bound 

( )
2

3 11 m
m m

−
−
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and upper bound 

( )
2

3 11 
m

m m
−

+
 

The random variate delivered is 

( )
1

m

l jl j j
l

u x x x
=

− +∑  

The process is then repeated until n_random such simulated variates are generated and 
stored in the rows of the result. 

Example 
In this example, imsls_f_random_mvar_from_data  is used to generate 5 
pseudorandom vectors of length 4 using the initial and final systolic pressure and the 
initial and final diastolic pressure from Data Set A in Afifi and Azen (1979) as the 
fixed sample from the population to be modeled. (Values of these four variables are in 
the seventh, tenth, twenty-first, and twenty-fourth columns of data set number nine in 
routine imsls_f_data_sets, Chapter 15, “Utilities”.) 
 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int i, nrrow, nrcol, nr = 5, k=4, nsamp = 113, nn = 5; 
  float x[113][4], rdata[113][34], *r; 
 
  imsls_random_seed_set(123457); 
 
 
  imsls_f_data_sets(9,  
      IMSLS_N_OBSERVATIONS, &nrrow, 
      IMSLS_N_VARIABLES, &nrcol,  
      IMSLS_RETURN_USER, rdata,  
      0); 
  for (i=0;i<nrrow;i++) x[i][0] = rdata[i][6]; 
  for (i=0;i<nrrow;i++) x[i][1] = rdata[i][9]; 
  for (i=0;i<nrrow;i++) x[i][2] = rdata[i][20]; 
  for (i=0;i<nrrow;i++) x[i][3] = rdata[i][23]; 
 
  r = imsls_f_random_mvar_from_data(nr, k, nsamp, x, nn, 0); 
  imsls_f_write_matrix("Random variates", 5, 4, r, 0); 
 } 

 Output 
 
                 Random variates 
            1           2           3           4 
1       162.8        90.5       153.7       104.9 
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2       153.4        78.3       176.7        85.2 
3        93.7        48.2       153.5        71.4 
4       101.8        54.2       113.1        56.3 
5        91.7        58.8        48.4        28.1 
 

random_multinomial 
Generates pseudorandom numbers from a multinomial distribution. 

Synopsis 
#include <imsls.h> 
int *imsls_random_multinomial (int n_random, int n, int k,  

float p[], ..., 0) 

Required Arguments 

int n_random   (Input) 
Number of random multinomial vectors to generate. 

int n   (Input) 
Multinomial parameter indicating the number of independent trials. 

int k   (Input) 
The number of mutually exclusive outcomes on any trial.  k is the length of 
the multinomial vectors. k must be greater than or equal to 2. 

float p[]   (Input) 
Vector of length k containing the probabilities of the possible outcomes. The 
elements of p must be positive and must sum to 1.0. 

Return Value 
n_random by k matrix containing the random multinomial vectors in its rows.  To 
release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_random_multinomial (int n_random, int n, int k,  

float p[], 
IMSLS_RETURN_USER, float r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random × k containing the random deviates. 

Description 
Routine imsls_random_multinomial generates pseudorandom numbers from a K-
variate multinomial distribution with parameters n and p. k and n must be positive. 
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Each element of p must be positive and the elements must sum to 1. The probability 
function (with n = n, k = k, and pi = p[i+1]) is 

( ) 1 2
1 2 1 2

1 2

!, ,..., ...
! !... !

kxx x
k k

k

nf x x x p p p
x x x

=
 

for xi ≥ 0 and 

1

0

k

i
i

x n
−

=

=∑  

The deviate in each row of r is produced by generation of the binomial deviate x0 with 
parameters n and pi and then by successive generations of the conditional binomial 
deviates xj given x0, x1, …, xj-2 with parameters n − x0 − x1 − … − xj-2 and  
pj /(1 − p0 − p1 − … − pj-2). 

Example 
In this example, imsls_random_multinomial is used to generate five 
pseudorandom 3-dimensional multinomial variates with parameters n = 20 and  
p = [0.1, 0.3, 0.6]. 
 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int nr = 5, n = 20, k = 3, *ir; 
  float p[3] = {.1, .3, .6}; 
 
  imsls_random_seed_set(123457); 
 
  ir = imsls_random_multinomial(nr, n, k, p, 0); 
 
  imsls_i_write_matrix("Multinomial random_deviates", 5, 3, ir,  
         IMSLS_NO_ROW_LABELS,  
         IMSLS_NO_COL_LABELS, 0); 
} 

 Output 
Multinomial random_deviates 
         5    4   11 
         3    6   11 
         3    3   14 
         5    5   10 
         4    5   11 
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random_sphere 
Generates pseudorandom points on a unit circle or K-dimensional sphere 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_sphere (int n_random, int k,..., 0) 
The type double function is imsls_d_random_sphere. 

Required Arguments 

int n_random   (Input) 
Number of random numbers to generate. 

int k (Input) 
Dimension of the circle (k = 2) or of the sphere. 

Return Value 
n_random by k matrix containing the random Cartesian coordinates on the unit circle 
or sphere. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_sphere (int n_random, int k,  

IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]  (Output) 
User-supplied array of size n_random by k containing the random Cartesian 
coordinates on the unit circle or sphere. 

Description 
Routine imsls_f_random_sphere generates pseudorandom coordinates of points 
that lie on a unit circle or a unit sphere in K-dimensional space. For points on a circle  
(k = 2), pairs of uniform (− 1, 1) points are generated and accepted only if they fall 
within the unit circle (the sum of their squares is less than 1), in which case they are 
scaled so as to lie on the circle. 
For spheres in three or four dimensions, the algorithms of Marsaglia (1972) are used. 
For three dimensions, two independent uniform (− 1, 1) deviates U1 and U2 are 
generated and accepted only if the sum of their squares S1 is less than 1. Then, the 
coordinates 

1 1 1 2 2 1 3 12 1 , 2 1 , and 1 2Z U S Z U S Z S= − = − = −
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are formed. For four dimensions, U1, U2, and S1 are produced as described above. 
Similarly, U3, U4, and S2 are formed. The coordinates are then 

( )1 1 2 2 3 3 1 2, , 1 /Z U Z U Z U S S= = = −
 

and 

( )4 4 1 21 /Z U S S= −
 

For spheres in higher dimensions, K independent normal deviates are generated and 
scaled so as to lie on the unit sphere in the manner suggested by Muller (1959). 

Example 
In this example, imsls_f_random_sphere is used to generate two uniform random 
deviates from the surface of the unit sphere in three space. 
 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int n_random = 2; 
  int k = 3; 
  float *z; 
  char *rlabel[] = {"First point",  
      "Second point"}; 
 
  imsls_random_seed_set(123457); 
 
  z = imsls_f_random_sphere(n_random, k, 0); 
   
  imsls_f_write_matrix("Coordinates", n_random, k, z,  
         IMSLS_ROW_LABELS, rlabel,  
         IMSLS_NO_COL_LABELS, 
         0); 
 } 
 

Output 
 
                   Coordinates 
First point       0.8893      0.2316      0.3944 
Second point      0.1901      0.0396     -0.9810 
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random_table_twoway 
Generates a pseudorandom two-way table. 

Synopsis 
#include <imsls.h> 
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],  

int nctot[],..., 0) 

Required Arguments 

int nrow   (Input) 
Number of rows in the table. 

int ncol   (Input) 
Number of columns in the table. 

int nrtot[]   (Input) 
Array of length nrow containing the row totals. 

int nctot[]   (Input) 
Array of length ncol containing the column totals.   (Input) 
The elements of nrtot and nctot must be nonnegative and must sum to the 
same quantity. 

Return Value 
nrow by ncol random matrix with the given row and column totals. To release this 
space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_random_table_twoway (int nrow, int ncol, int nrtot[],  

int nctot[], 
IMSLS_RETURN_USER, int ir[], 
 0) 

Optional Arguments 

IMSLS_RETURN_USER, int ir[]  (Output) 
User-supplied array of size nrow by ncol containing the random matrix with 
the given row and column totals. 

Description 
Routine imsls_random_table_twoway generates pseudorandom entries for a two-
way contingency table with fixed row and column totals. The method depends on the 
size of the table and the total number of entries in the table. If the total number of 
entries is less than twice the product of the number of rows and columns, the method 
described by Boyette (1979) and by Agresti, Wackerly, and Boyette (1979) is used. In 
this method, a work vector is filled with row indices so that the number of times each 
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index appears equals the given row total. This vector is then randomly permuted and 
used to increment the entries in each row so that the given row total is attained. 
For tables with larger numbers of entries, the method of Patefield (1981) is used. This 
method can be considerably faster in these cases. The method depends on the 
conditional probability distribution of individual elements, given the entries in the 
previous rows. The probabilities for the individual elements are computed starting from 
their conditional means. 

Example 
In this example, imsls_random_table_twoway is used to generate a two by three 
table with row totals 3 and 5, and column totals 2, 4, and 2. 
 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int *itable, nrow = 2, ncol = 3; 
  int nrtot[2] = {3, 5}; 
  int nctot[3] = {2, 4, 2}; 
  char *title = "A random contingency table with fixed marginal totals"; 
 
  imsls_random_seed_set(123457); 
 
 
  itable = imsls_random_table_twoway(nrow, ncol, nrtot, nctot, 0); 
      
  imsls_i_write_matrix(title, nrow, ncol, itable,  
         IMSLS_NO_ROW_LABELS, 
         IMSLS_NO_COL_LABELS, 
         0); 
  } 

Output 
A random contingency table with fixed marginal totals 
                      0   2   1 
                      2   2   1 

random_order_normal 
Generates pseudorandom order statistics from a standard normal distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_order_normal (int ifirst, int ilast, int n,..., 0) 
The type double function is imsls_d_random_order_normal. 
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Required Arguments 

int ifirst (Input) 
First order statistic to generate. 

int ilast (Input) 
Last order statistic to generate.   
ilast must be greater than or equal to ifirst. The full set of order statistics 
from ifirst to ilast is generated. If only one order statistic is desired, set 
ilast = ifirst.  

int n (Input) 
Size of the sample from which the order statistics arise. 

Return Value 
An array of length ilast + 1 − ifirst containing the random order statistics in 
ascending order.  
The first element is the ifirst order statistic in a random sample of size n from the 
standard normal distribution. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_order_normal (int ifirst, int ilast, int n,  

IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]  (Output) 
User-supplied array of length ilast + 1 − ifirst containing the random 
order statistics in ascending order. 

Description 
Routine imsls_f_random_order_normal generates the ifirst through the ilast 
order statistics from a pseudorandom sample of size N from a normal  
(0, 1) distribution. Routine imsls_f_random_order_normal uses the routine 
imsls_f_random_order_uniform to generate order statistics from the uniform (0, 
1) distribution and then obtains the normal order statistics using the inverse CDF 
transformation. 
Each call to imsls_f_random_order_normal yields an independent event so order 
statistics from different calls may not have the same order relations with each other. 

Example 
In this example, imsls_f_random_order_normal is used to generate the fifteenth 
through the nineteenth order statistics from a sample of size twenty. 
 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
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{ 
  float *r = NULL; 
 
  imsls_random_seed_set(123457); 
 
  r = imsls_f_random_order_normal(15, 19, 20, 0); 
 
  printf("The 15th through the 19th order statistics from a \n"); 
  printf("random sample of size 20 from a normal distribution\n"); 
  imsls_f_write_matrix("", 5, 1, r, 0); 
} 
 

Output 
The 15th through the 19th order statistics from a  
random sample of size 20 from a normal distribution 
  
1      0.4056 
2      0.4681 
3      0.4697 
4      0.9067 
5      0.9362 

 

random_order_uniform 
Generates pseudorandom order statistics from a uniform (0, 1) distribution. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_order_uniform (int ifirst, int ilast,  

int n,..., 0) 
The type double function is imsls_d_random_order_uniform. 

Required Arguments 

int ifirst (Input) 
First order statistic to generate. 

int ilast   (Input) 
Last order statistic to generate.   
ilast must be greater than or equal to ifirst. The full set of order statistics 
from ifirst to ilast is generated. If only one order statistic is desired, set 
ilast = ifirst.  

int n (Input) 
Size of the sample from which the order statistics arise. 
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Return Value 
An array of length ilast + 1 − ifirst containing the random order statistics in 
ascending order.   
The first element is the ifirst order statistic in a random sample of size n from the 
uniform (0, 1) distribution. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_order_uniform (int ifirst, int ilast, int n,  

IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]  (Output) 
User-supplied array of length ilast + 1 − ifirst containing the random 
order statistics in ascending order. 

Description 
Routine imsls_f_random_order_uniform generates the ifirst through the 
ilast order statistics from a pseudorandom sample of size n from a uniform  
(0, 1) distribution. Depending on the values of ifirst and ilast, different methods 
of generation are used to achieve greater efficiency. If ifirst = 1 and ilast = n, that 
is, if the full set of order statistics are desired, the spacings between successive order 
statistics are generated as ratios of exponential variates. If the full set is not desired, a 
beta variate is generated for one of the order statistics, and the others are generated as 
extreme order statistics from conditional uniform distributions. Extreme order statistics 
from a uniform distribution can be obtained by raising a uniform deviate to an 
appropriate power. 
Each call to imsls_f_random_order_uniform yields an independent event. This 
means, for example, that if on one call the fourth order statistic is requested and on a 
second call the third order statistic is requested, the “fourth” may be smaller than the 
“third”. If both the third and fourth order statistics from a given sample are desired, 
they should be obtained from a single call to imsls_f_random_order_uniform (by 
specifying ifirst less than or equal to 3 and ilast greater than or equal to 4). 

Example 
In this example, imsls_f_random_order_uniform is used to generate the fifteenth 
through the nineteenth order statistics from a sample of size twenty. 
 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  float *r = NULL; 
 
  imsls_random_seed_set(123457); 
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  r = imsls_f_random_order_uniform(15, 19, 20, 0); 
 
  printf("The 15th through the 19th order statistics from a \n"); 
  printf("random sample of size 20 from a uniform distribution\n"); 
  imsls_f_write_matrix("", 5, 1, r, 0); 
} 
 

Output 
The 15th through the 19th order statistics from a  
random sample of size 20 from a uniform distribution 
  
1      0.6575 
2      0.6802 
3      0.6807 
4      0.8177 
5      0.8254 

random_arma 
Generates a time series from a specific ARMA model. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_arma (int n_observations, int p, float ar[], int q, 

float ma[], ..., 0) 
The type double function is imsls_d_random_arma.  

Required Arguments 

int n_observations   (Input) 
Number of observations to be generated. Parameter n_observations must 
be greater than or equal to one. 

int p   (Input) 
Number of autoregressive parameters. Paramater p must be greater than or 
equal to zero. 

float ar[]   (Input) 
Array of length p containing the autoregressive parameters. 

int q   (Input) 
Number of moving average parameters. Parameter q must be greater than or 
equal to zero. 

float ma[]   (Input) 
Array of length q containing the moving average parameters. 

Return Value 
An array of length n_observations containing the generated time series. 
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Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_arma (int n_observations, int p, float ar[],  

int q, float ma[],  
IMSLS_ARMA_CONSTANT, float constant, 
IMSLS_VAR_NOISE, float *a_variance, 
IMSLS_INPUT_NOISE, float *a_input, 
IMSLS_OUTPUT_NOISE, float **a_return, 
IMSLS_OUTPUT_NOISE_USER, float a_return[], 
IMSLS_NONZERO_ARLAGS, int *ar_lags, 
IMSLS_NONZERO_MALAGS, int *ma_lags, 
IMSLS_INITIAL_W, float *w_initial, 
IMSLS_ACCEPT_REJECT_METHOD, 
IMSLS_RETURN_USER, float w[], 
0) 

Optional Arguments 

IMSLS_ARMA_CONSTANT, float constant   (Input) 
Overall constant. See “Description”. 
Default: constant = 0 

IMSLS_VAR_NOISE, float a_variance   (Input) 
If IMSLS_VAR_NOISE is specified (and IMSLS_INPUT_NOISE is not 
specified) the noise at will be generated from a normal distribution with mean 
0 and variance a_variance. 
Default: a_variance = 1.0 

IMSLS_INPUT_NOISE, float *a_input   (Input) 
If IMSLS_INPUT_NOISE is specified, the user will provide an array of length 
n_observations + max (ma_lags[i]) containing the random noises. If this 
option is specified, then IMSLS_VAR_NOISE should not be specified (a 
warning message will be issued and the option IMSLS_VAR_NOISE will be 
ignored). 

IMSLS_OUTPUT_NOISE, float **a_return   (Output) 
An address of a pointer to an internally allocated array of length 
n_observations + max (ma_lags[i]) containing the random noises. 

IMSLS_OUTPUT_NOISE_USER, float a_return[]   (Output) 
Storage for array a_return is provided by user. See IMSLS_OUTPUT_NOISE. 

IMSLS_NONZERO_ARLAGS, int ar_lags[]   (Input) 
An array of length p containing the order of the nonzero autoregressive 
parameters. 
Default: ar_lags = [1, 2, ..., p] 

IMSLS_NONZERO_MALAGS, int ma_lags   (Input) 
An array of length q containing the order of the nonzero moving average 
parameters. 
Default: ma_lags = [1, 2, ..., q] 
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IMSLS_INITIAL_W, float w_initial[]   (Input) 
Array of length max (ar_lags[i]) containing the initial values of the time 
series. 
Default: all the elements in w_initial = 
constant/(1 − ar [0] − ar [1] − … − ar [p − 1]) 

IMSLS_ACCEPT_REJECT_METHOD   (Input) 
If IMSLS_ACCEPT_REJECT_METHOD is specified, the random noises will be 
generated from a normal distribution using an acceptance/rejection method. If 
IMSLS_ACCEPT_REJECT_METHOD is not specified, the random noises will be 
generated using an inverse normal CDF method. This argument will be 
ignored if IMSLS_INPUT_NOISE is specified. 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length n_random containing the generated time series. 

Description 
Function imsls_f_random_arma simulates an ARMA(p, q) process, {Wt}, for  
t = 1, 2, ..., n (with n = n_observations, p = p, and q = q). The model is  

( ) ( )0t tB W B A t Zφ θ θ= + ∈
 

( )
( )

2
1 2

2
1 2

1 ...

1 ...

P
p

q
q

B B B B

B B B B

φ φ φ φ

θ θ θ θ

= − − − −

= − − − −  

Let μ be the mean of the time series {Wt}. The overall constant θ0 (constant) is  

( )0
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i i

p
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μ
θ

μ φ=

=⎧⎪= ⎨ − >⎪⎩ ∑  

Time series whose innovations have a nonnormal distribution may be simulated by 
providing the appropriate innovations in a_input and start values in w_initial. 
The time series is generated according to the followng model: 

X[i] = constant + ar[0] ⋅ X[i − ar_lags[0] ] + … + 

ar[p − 1] ⋅ X[i − ar_lags[p − 1] ] + 

A[i] − ma[0] ⋅ A[i − ma_lags[0] ] − … − 

ma[q − 1] ⋅ A[i − ma_lags[q − 1] ] 
where the constant is related to the mean of the series,  

W
 

as follows: 

[ ]constant (1 ar 0 ... ar[q 1])W= ⋅ − − − −
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and where 

X[t] = W[t], t = 0, 1, …, n_observations − 1 

and 

W[t] = w_initial[t + p],  t = −p, −p + 1, …, −2, −1 

and A is either a_input (if IMSLS_INPUT_NOISE is specified) or a_return 
(otherwise). 

Examples 

Example 1 
In this example, imsls_f_random_arma is used to generate a time series of length 
five, using an ARMA model with three autoregressive parameters and two moving 
average parameters. The start values are 0.1000, 0.0500, and 0.0375. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    int   np = 3; 
    float phi[3] = {0.5, 0.25, 0.125}; 
    int   nq = 2; 
    float theta[2] = {-0.5, -0.25}; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_arma(n_random, np, phi, nq, theta, 0); 
    imsls_f_write_matrix("ARMA random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output 
                   ARMA random deviates: 
     0.863       0.809       1.904       0.110       2.266 

Example 2 
In this example, a time series of length 5 is generated using an ARMA model with 4 
autoregressive parameters and 2 moving average parameters. The start values are 0.1, 
0.05 and 0.0375. 

#include <stdio.h> 
#include <imsls.h> 
  
void main() 
{ 
    int   n_random = 5; 
    int   np = 3; 
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    float phi[3] = {0.5, 0.25, 0.125}; 
    int   nq = 2; 
    float theta[2] = {-0.5, -0.25}; 
    float wi[3] = {0.1, 0.05, 0.0375}; 
    float theta0 = 1.0; 
    float avar   = 0.1; 
    float *r; 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_arma(n_random, np, phi, nq, theta,  
        IMSLS_ACCEPT_REJECT_METHOD, 
        IMSLS_INITIAL_W, wi, 
        IMSLS_ARMA_CONSTANT, theta0, 
        IMSLS_VAR_NOISE, avar, 
        0); 
    imsls_f_write_matrix("ARMA random deviates:", 
        1, n_random, r, IMSLS_NO_COL_LABELS, 0); 
} 

Output 
                   ARMA random deviates: 
     1.403       2.220       2.286       2.888       2.832 

Warning Errors 

IMSLS_RNARM_NEG_VAR VAR(a) = “a_variance” = #, VAR(a) must be greater 
than 0. The absolute value of # is used for VAR(a). 

IMSLS_RNARM_IO_NOISE Both IMSLS_INPUT_NOISE and IMSLS_OUTPUT_-
NOISE are specified. IMSLS_INPUT_NOISE is used. 

random_npp 
Generates pseudorandom numbers from a nonhomogeneous Poisson process. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(), float 

theta_min, float theta_max,  int neub, int *ne, ..., 0) 
The type double function is imsls_d_random_npp. 

Required Arguments 

float tbegin   (Input) 
Lower endpoint of the time interval of the process.  
tbegin must be nonnegative. Usually, tbegin = 0. 

float tend   (Input) 
Upper endpoint of the time interval of the process.  
tend must be greater than tbegin. 
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float ftheta(float t) (Input) 
User-supplied function to provide the value of the rate of the process as a 
function of time. This function must be defined over the interval from tbegin 
to tend and must be nonnegative in that interval.  

float theta_min   (Input) 
Minimum value of the rate function ftheta() in the interval (tbegin, 
tend).    
If the actual minimum is unknown, set theta_min = 0.0. 

float theta_max   (Input) 
Maximum value of the rate function ftheta() in the interval (tbegin, 
tend).  
If the actual maximum is unknown, set theta_max to a known upper bound 
of the maximum. The efficiency of imsls_f_random_npp is less the greater 
theta_max exceeds the true maximum. 

int neub   (Input) 
Upper bound on the number of events to be generated. 
In order to be reasonably sure that the full process through time tend is 
generated, calculate neub as neub = X + 10.0 * SQRT(X), where  
X = theta_max * (tend − tbegin).  

int *ne    (Output) 
Number of events actually generated. 
If ne is less that neub, the time tend is reached before neub events are 
realized. 

Return Value 
An array of length neub containing the the times to events in the first ne elements. To 
release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_npp (float tbegin, float tend, float ftheta(), float 

theta_min, float theta_max,  int neub, int *ne, IMSLS_RETURN_USER, 
float r[], 
IMSLS_FCN_W_DATA, float ftheta(), void *data, 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length neub containing the the times to events in the 
first ne elements. 

IMSLS_FCN_W_DATA, float ftheta(float t), void *data, (Input) 
User-supplied function to provide the value of the rate of the process as a 
function of time, which also accepts a pointer to data that is supplied by the 
user.  data is a pointer to the data to be passed to the user-supplied function.  



 

 
 

886 • random_npp IMSL C Stat Library 

 

 

 

See the “Introduction”, Passing Data to User-Supplied Functions at the 
beginning of this manual for more details. 

Description 
Routine imsls_f_random_npp simulates a one-dimensional nonhomogeneous 
Poisson process with rate function ftheta in a fixed interval (tbegin, tend]. 

Let λ(t) be the rate function and t0 = tbegin and t1 = tend. Routine 
imsls_f_random_npp uses a method of thinning a nonhomogeneous Poisson process 
{N∗(t), t ≥ t0} with rate function λ∗(t) ≥ λ(t) in (t0, t1], where the number of events, N∗, 
in the interval (t0, t1] has a Poisson distribution with parameter 

( )1

0
0

t

t
t dtμ λ= ∫  

The function 

( ) ( )
0

t
t t dtλ

′
Λ = ∫  

 

is called the integrated rate function.) In imsls_f_random_npp, λ∗(t) is taken to be a 
constant λ∗(= theta_max) so that at time ti, the time of the next event  
ti + 1 is obtained by generating and cumulating exponential random numbers  

* *
1, 2,, ,...,i iE E

 

with parameter λ∗, until for the first time 
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where the uj,i are independent uniform random numbers between 0 and 1. This process 
is continued until the specified number of events, neub, is realized or until the time, 
tend, is exceeded. This method is due to Lewis and Shedler (1979), who also review 
other methods. The most straightforward (and most efficient) method is by inverting 
the integrated rate function, but often this is not possible. 
If theta_max is actually greater than the maximum of λ(t) in (t0, t1], the routine will 
work, but less efficiently. Also, if λ(t) varies greatly within the interval, the efficiency 
is reduced. In that case, it may be desirable to divide the time interval into subintervals 
within which the rate function is less variable. This is possible because the process is 
without memory. 
If no time horizon arises naturally, tend must be set large enough to allow for the 
required number of events to be realized. Care must be taken, however, that ftheta is 
defined over the entire interval. 
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After simulating a given number of events, the next event came be generated by setting 
tbegin to the time of the last event (the sum of the elements in R) and calling 
imsls_f_random_npp again. Cox and Lewis (1966) discuss modeling applications of 
nonhomogeneous Poisson processes. 

Example 
In this example, imsls_f_random_npp is used to generate the first five events in the 
time 0 to 20 (if that many events are realized) in a nonhomogeneous process with rate 
function 

λ(t) = 0.6342 e0.001427t 

for 0 < t ≤ 20. 
Since this is a monotonically increasing function of t, the minimum is at t = 0 and is 
0.6342, and the maximum is at t = 20 and is 0.6342 e0.02854 = 0.652561. 
 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int i, neub = 5, ne; 
  float  *r, tmax= .652561, tmin = .6342, tbeg=0., tend=20.; 
 
  imsls_random_seed_set(123457); 
 
  r = imsls_f_random_npp(tbeg, tend, ftheta, tmin, tmax, neub, &ne, 0); 
   
  printf("Inter-event times for the first %d events in the process:\n", ne); 
  for (i=0; i<ne; i++) printf("\t%f\n", r[i]); 
 
} 
 

Output 
Inter-event times for the first 5 events in the process: 
 0.052660 
 0.407979 
 0.258399 
 0.019767 
 0.167641  

random_permutation 
Generates a pseudorandom permutation. 

Synopsis 
#include <imsls.h> 
int *imsls_random_permutation (int k, ..., 0) 
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Required Arguments 

int k   (Input) 
Number of integers to be permuted. 

Return Value 
An array of length k containing the random permutation of the integers from  
1 to k. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_random_permutation (int k,  

 IMSLS_RETURN_USER, int ir[], 
 0) 

Optional Arguments 

IMSLS_RETURN_USER, int ir[]  (Output) 
User-supplied array of length k containing the random permutation of the 
integers from 1 to k. 

Description 
Routine imsls_random_permutation generates a pseudorandom permutation of the 
integers from 1 to k. It begins by filling a vector of length k with the consecutive 
integers 1 to k. Then, with M initially equal to k, a random index J between 1 and M 
(inclusive) is generated. The element of the vector with the index M and the element 
with index J swap places in the vector. M is then decremented by 1 and the process 
repeated until M = 1. 

Example 
In this example, imsls_random_permutation is called to produce a pseudorandom 
permutation of the integers from 1 to 10. 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int *ir, k = 10; 
 
  imsls_random_seed_set(123457); 
 
  ir = imsls_random_permutation(k, 0); 
   
  printf("Random permutation of the integers from 1 to 10\n");   
  imsls_i_write_matrix("", 1, k, ir,  
         IMSLS_NO_COL_LABELS, 0); 
 } 
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Output 
Random permutation of the integers from 1 to 10 
  
  5    9    2    8    1    6    4    7    3   10 

 

random_sample_indices 
Generates a simple pseudorandom sample of indices. 

Synopsis 
#include <imsls.h> 
int *imsls_random_sample_indices (int nsamp, int npop, ..., 0) 

Required Arguments 

int nsamp   (Input) 
Sample size desired. 

int npop  (Input) 
Number of items in the population. 

Return Value 
An array  of length nsamp containing the indices of the sample. To release this space, 
use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int *imsls_random_sample_indices (int nsamp, int npop,  

 IMSLS_RETURN_USER, int ir[], 
 0) 

Optional Arguments 

IMSLS_RETURN_USER, int ir[]  (Output) 
User-supplied array of length nsamp containing the indices of the sample. 

Description 
Routine imsls_random_sample_indices generates the indices of a pseudorandom 
sample,without replacement, of size nsamp numbers from a population of size npop. If 
nsamp is greater than npop/2, the integers from 1 to npop are selected sequentially 
with a probability conditional on the number selected and the number remaining to be 
considered. If, when the i-th population index is considered, j items have been included 
in the sample, then the index i is included with probability (nsamp − j)/(npop + 1 − i). 
If nsamp is not greater than npop/2, a O(nsamp) algorithm due to Ahrens and Dieter 
(1985) is used. Of the methods discussed by Ahrens and Dieter, the one called SG* is 
used in imsls_random_sample_indices. It involves a preliminary selection of q 
indices using a geometric distribution for the distances between each index and the 
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next one. If the preliminary sample size q is less than nsamp, a new preliminary sample 
is chosen, and this is continued until a preliminary sample greater in size than nsamp is 
chosen. This preliminary sample is then thinned using the same kind of sampling as 
described above for the case in which the sample size is greater than half of the 
population size. Routine imsls_random_sample_indices does not store the 
preliminary sample indices, but rather restores the state of the generator used in 
selecting the sample initially, and then passes through once again, making the final 
selection as the preliminary sample indices are being generated. 

Example 
In this example, imsls_random_sample_indices is used to generate the indices of 
a pseudorandom sample of size 5 from a population of size 100. 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int *ir, nsamp = 5, npop = 100; 
 
  imsls_random_seed_set(123457); 
 
  ir = imsls_random_sample_indices(nsamp, npop, 0); 
   
  imsls_i_write_matrix("Random Sample", 1, nsamp, ir,  
         IMSLS_NO_COL_LABELS, 0); 
 } 
 
 

Output 
                    
     Random Sample 

  2   22   53   61   79 

random_sample 
Generates a simple pseudorandom sample from a finite population. 

Synopsis 
#include <imsls.h> 
float *imsls_f_random_sample (int nrow, int nvar, float population[], int 

nsamp,..., 0) 
The type double function is imsls_d_random_sample. 

Required Arguments 

int nrow   (Input) 
Number of rows of data in population. 
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int nvar   (Input) 
Number of variables in the population and in the sample. 

float population[]   (Input) 
nrow by nvar matrix containing the population to be sampled. If either of the 
optional arguments IMSLS_FIRST_CALL or IMSLS_ADDITIONAL_CALL are 
specified, then population contains a different part of the population on 
each invocation, otherwise population contains the entire population. 

int nsamp   (Input) 
The sample size desired. 

Return Value 
nsamp by nvar matrix containing the sample. To release this space, use free. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *imsls_f_random_sample (int nrow, int nvar, float population[], int 

nsamp, 
IMSLS_FIRST_CALL, int **index, int *npop 
IMSLS_FIRST_CALL_USER, int index[], int *npop 
IMSLS_ADDITIONAL_CALL, int *index, int *npop, float *samp, 
IMSLS_POPULATION_COL_DIM, int population_col_dim, 
IMSLS_RETURN_USER, int samp[], 
 0) 

Optional Arguments 

IMSLS_FIRST_CALL, int **index,  int *npop   (Output) 
This is the first invocation with this data; additional calls  to  
imsls_f_random_sample may be made to add to the population.  
Additional calls  should be made using the optional argument 
IMSLS_ADDITIONAL_CALL .  Argument index is the address of a pointer to 
an internally allocated array of length nsamp containing the indices of the 
sample in the population.  Argument npop returns the  number of items in the 
population.  If the population is input a few items at a time, the first call to 
imsls_f_random_sample should use IMSLS_FIRST_CALL, and subsequent 
calls should use IMSLS_ADDITIONAL_CALL.  See example 2.        

IMSLS_FIRST_CALL_USER, int index[], int *npop   (Output) 
Storage for index is provided by the user.  See IMSLS_FIRST_CALL.  

IMSLS_ADDITIONAL_CALL, int *index,  int *npop, float *samp   (Input/Output) 
This is an additional invocation of imsls_f_random_sample, and updating 
for the subpopulation in population is performed. Argument index is a 
pointer to an array of length nsamp containing the indices of the sample in the 
population, as returned using optional argument IMSLS_FIRST_CALL.  
Argument npop, also obtained using optional argument IMSLS_FIRST_CALL, 
returns the  number of items in the population.  It is not necessary to know the 
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number of items in the population in advance. npop is used to cumulate the 
population size and should not be changed between calls to 
imsls_f_random_sample.  Argument samp  is a pointer to the array of size 
nsamp by nvar containing the sample.  samp  is the result of calling 
imsls_f_random_sample with optional argument IMSLS_FIRST_CALL.   
See example 2 

IMSLS_POPULATION_COL_DIM, int population_col_dim   (Input) 
Column dimension of the matrix population. 
Default: x_col_dim = nvar  

IMSLS_RETURN_USER, int samp[]  (Output) 
User-supplied array of size nrow by nvar containing the sample.  This option 
should not be used if IMSLS_ADDITIONAL_CALL is used. 

Description 
Routine imsls_f_random_sample generates a pseudorandom sample from a given 
population, without replacement, using an algorithm due to McLeod and Bellhouse 
(1983). 
The first nsamp items in the population are included in the sample. Then, for each 
successive item from the population, a random item in the sample is replaced by that 
item from the population with probability equal to the sample size divided by the 
number of population items that have been encountered at that time. 

Example 1 
In this example, imsls_f_random_sample is used to generate a sample of size 5 
from a population stored in the matrix population.  

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int nrow = 176, nvar = 2, nsamp = 5; 
  float *population;  
  float *sample;  
 
  population = imsls_f_data_sets(2, 0); 
 
  imsls_random_seed_set(123457); 
 
  sample = imsls_f_random_sample(nrow, nvar, population, nsamp, 0); 
      
  imsls_f_write_matrix("The sample", nsamp, nvar, sample,  
         IMSLS_NO_ROW_LABELS, 
         IMSLS_NO_COL_LABELS, 
         0); 
} 

Output 
      The sample 
      1764          36 
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      1828          62 
      1923           6 
      1773          35 
      1769         106 

 

Example 2 
Routine imsls_f_random_sample is now used to generate a sample of size 5 from 
the same population as in the example above except the data are input to RNSRS one 
observation at a time. This is the way imsls_f_random_sample may be used to 
sample from a file on disk or tape. Notice that the number of records need not be 
known in advance. 

#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  int i, nrow = 176, nvar = 2, nsamp = 5; 
  int *index, npop; 
  float *population;  
  float *sample;  
 
  population = imsls_f_data_sets(2, 0); 
 
  imsls_random_seed_set(123457); 
 
  sample = imsls_f_random_sample(1, 2, population, nsamp,  
     IMSLS_FIRST_CALL, &index, &npop, 
     0); 
  for (i = 1; i < 176; i++) { 
    imsls_f_random_sample(1, 2, &population[2*i], nsamp,  
     IMSLS_ADDITIONAL_CALL, index, &npop, sample,  
     0); 
  } 
  printf("The population size is %d\n", npop); 
  imsls_i_write_matrix("Indices of random sample", 5, 1, index, 0); 
 
 
  imsls_f_write_matrix("The sample", nsamp, nvar, sample,  
         IMSLS_NO_ROW_LABELS, 
         IMSLS_NO_COL_LABELS, 
         0); 
 } 

Output 
The population size is 176 
  
Indices of random sample 
         1    16 
         2    80 
         3   175 
         4    25 
         5    21 
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      The sample 
      1764          36 
      1828          62 
      1923           6 
      1773          35 
      1769         106 

random_option 
Selects the uniform (0, 1) multiplicative congruential pseudorandom number generator 
or a generalized feedback shift register (GFSR) method. 

Synopsis 
#include <imsls.h> 
void imsls_random_option (int generator_option) 

Required Arguments 

int generator_option   (Input) 
Indicator of the generator. Argument generator_option is used to choose 
the multiplier and whether or not shuffling is done, or the GFSR method. 

generator_option Generator 
1 The multiplier 16807 is used. 
2 The multiplier 16807 is used with shuffling. 
3 The multiplier 397204094 is used. 
4 The multiplier 397204094 is used with shuffling. 
5 The multiplier 950706376 is used. 
6 The multiplier 950706376 is used with shuffling. 
7 GFSR, with the recursion Xt = Xt-1563 ⊕ Xt-96 is used. 

8 A 32-bit Mersenne Twister generator is used. The float 
and double random numbers are generated from 32-bit 
integers. 

9 A 64-bit Mersenne Twister generator is used. The float 
and double random numbers are generated from 64-bit 
integers.  This ensures that all bits of both float and 
doubles are random. 

Description 
The uniform pseudorandom number generators use a multiplicative congruential 
method, with or without shuffling. The value of the multiplier and whether or not to 
use shuffling are determined by imsls_random_option. The description of function 
imsls_f_random_uniform may provide some guidance in the choice of the form of 
the generator. If no selection is made explicitly, the generators use the multiplier 16807 
without shuffling. This form of the generator has been in use for some time (see Lewis 
et al. 1969). 



 
 
 
 

 
 

Chapter 12: Random Number Generation random_option_get • 895  

 

 

 

Both of the Mersenne Twister generators have a period of 219937-1 and a 623-
dimensional equidistribution property. See Matsumoto et al. 1998 for details.  
The IMSL Mersenne Twister generators are derived from code copyright (C) 1997 - 
2002, Makoto Matsumoto and Takuji Nishimura, All rights reserved. It is subject to the 
following notice: 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, 
EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 
The IMSL 32-bit Mersenne Twister generator is based on the Matsumoto and 
Nishimura  code ‘mt19937ar’ and the 64-bit code is based on ‘mt19937-64’. 

Example 
See function imsls_random_GFSR_table_get. 

random_option_get 
Retrieves the uniform (0, 1) multiplicative congruential pseudorandom number 
generator. 

Synopsis 
#include <imsls.h> 
int imsls_random_option_get () 

Return Value 
Indicator of the generator. 
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Result Generator 
1 The multiplier 16807 is used. 
2 The multiplier 16807 is used with shuffling. 
3 The multiplier 397204094 is used. 
4 The multiplier 397204094 is used with shuffling. 
5 The multiplier 950706376 is used. 
6 The multiplier 950706376 is used with shuffling. 
7 GFSR, with the recursion Xt = Xt-1563 ⊕ Xt-96 is used 

Description 
The routine imsls_random_option_get retrieves the uniform (0, 1) multiplicative 
congruential pseudorandom number generator or the GRSR method. The uniform 
pseudorandom number generators use a multiplicative congruential method, with or 
without shuffling. The value of the multiplier and whether or not to use shuffling are 
determined by imsls_random_option.  

random_seed_get 
Retrieves the current value of the seed used in the random number generators. 

Synopsis 
#include <imsls.h> 
int imsls_random_seed_get ( ) 

Return Value 
The value of the seed. 

Description 
Function imsls_random_seed_get retrieves the current value of the “seed” used in 
the random number generators. A reason for doing this would be to restart a 
simulation, using function imsls_random_seed_set to reset the seed. 

Example 
This example illustrates the statements required to restart a simulation using 
imsls_random_seed_get and imsls_random_seed_set. The example shows that 
restarting the sequence of random numbers at the value of the seed last generated is the 
same as generating the random numbers all at once. 

#include <imsls.h> 
 
#define     N_RANDOM     5 
 
main() 
{ 
    int         seed = 123457; 
    float      *r1, *r2, *r; 
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    imsls_random_seed_set(seed); 
    r1 = imsls_f_random_uniform(N_RANDOM, 0); 
    imsls_f_write_matrix ("First Group of Random Numbers", 1, 
                           N_RANDOM, r1, 0); 
    seed = imsls_random_seed_get(); 
 
    imsls_random_seed_set(seed); 
    r2 = imsls_f_random_uniform(N_RANDOM, 0); 
    imsls_f_write_matrix ("Second Group of Random Numbers", 1,  
                           N_RANDOM, r2, 0); 
 
    imsls_random_seed_set(123457); 
    r = imsls_f_random_uniform(2*N_RANDOM, 0); 
    imsls_f_write_matrix ("Both Groups of Random Numbers", 1,  
                           2*N_RANDOM, r, 0); 
} 

Output 
               First Group of Random Numbers 
         1           2           3           4           5 
    0.9662      0.2607      0.7663      0.5693      0.8448 
  
              Second Group of Random Numbers 
         1           2           3           4           5 
    0.0443      0.9872      0.6014      0.8964      0.3809 
  
                     Both Groups of Random Numbers 
         1           2           3           4           5           6 
    0.9662      0.2607      0.7663      0.5693      0.8448      0.0443 
  
         7           8           9          10 
    0.9872      0.6014      0.8964      0.3809 

random_substream_seed_get 
Retrieves a seed for the congruential generators that do not do shuffling that will 
generate random numbers beginning 100,000 numbers farther along. 

Synopsis 
#include <imsls.h> 
int imsls_random_substream_seed_get (int iseed1) 

Required Arguments 

int iseed1   (Input) 
The seed that yields the first stream. 

Return Value 
The seed that yields a stream beginning 100,000 numbers beyond the stream that 
begins with iseed1. 
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Description 
Given a seed, iseed1, imsls_random_substream_seed_get determines another 
seed, such that if one of the IMSL multiplicative congruential generators, using no 
shuffling, went through 100,000 generations starting with iseed1, the next number in 
that sequence would be the first number in the sequence that begins with the returned 
seed. 
Note that imsls_random_substream_seed_get works only when a multiplicative 
congruential generator without shuffling is used. This means that either the routine 
imsls_random_option has not been called at all or that it has been last called with 
generator_option taking a value of 1, 3, or 5. 
For many of the IMSL generators for nonuniform distributions that do not use the 
inverse CDF method, the distance between the sequences generated starting with 
iseed1 and starting with the returned seed may be less than 100,000. This is because 
the nonuniform generators that use other techniques may require more than one 
uniform deviate for each output deviate. 
The reason that one may want two seeds that generate sequences a known distance 
apart is for blocking Monte Carlo experiments or for running parallel streams 

Example 
In this example, imsls_random_substream_seed_get is used to determine seeds 
for 4 separate streams, each 200,000 numbers apart, for a multiplicative congruential 
generator without shuffling. (Since imsls_random_option is not invoked to select a 
generator, the multiplier is 16807.) Since the streams are 200,000 numbers apart,  each 
seed requires two invocations of imsls_random_substream_seed_get. All of the 
streams are non-overlapping, since the period of the underlying generator is 
2,147,483,646.  The resulting seed are then verified by checking the seed after 
generating random sequences of length 200,000. 
 

#include <imsls.h> 
 
main() 
{ 
  int i, is1, is2, is3, is4; 
  float *r; 
 
  is1 = 123457; 
  is2 = imsls_random_substream_seed_get(is1); 
  is2 = imsls_random_substream_seed_get(is2); 
  is3 = imsls_random_substream_seed_get(is2); 
  is3 = imsls_random_substream_seed_get(is3); 
  is4 = imsls_random_substream_seed_get(is3); 
  is4 = imsls_random_substream_seed_get(is4); 
  printf("Seeds for four separate streams:\n"); 
  printf("%d\t%d\t%d\t%d\n\n", is1, is2, is3, is4); 
 
  imsls_random_seed_set(is1); 
  for (i=0;i<3;i++) { 
    r = imsls_f_random_uniform(200000, 0); 
    printf("seed after %d random numbers: %d\n", (i+1)*200000,  
    imsls_random_seed_get()); 
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    if (r) free(r); 
  } 
} 

Output 
Seeds for four separate streams: 
123457 2016130173 85016329 979156171 
 
seed after 200000 random numbers: 2016130173 
seed after 400000 random numbers: 85016329 
seed after 600000 random numbers: 979156171 
 

random_seed_set 
Initializes a random seed for use in the random number generators. 

Synopsis 
#include <imsls.h> 
void imsls_random_seed_set (int seed) 

Required Arguments 

int seed   (Input) 
The seed of the random number generator. The argument seed must be in the 
range (0, 2147483646). If seed is 0, a value is computed using the system 
clock; hence, the results of programs using the random number generators will 
be different at various times. 

Description 
Function imsls_random_seed_set is used to initialize the seed used in the random 
number generators. The form of the generators is as follows: 

xi ≡ cxi-1mod (231 − 1) 

The value of x0 is the seed. If the seed is not initialized prior to invocation of any of the 
functions for random number generation by calling imsls_random_seed_set, the 
seed is initialized by the system clock. The seed can be reinitialized to a clock-
dependent value by calling imsls_random_seed_set with seed set to 0. 
The effect of imsls_random_seed_set is to set some global values used by the 
random number generators. A common use of imsls_random_seed_set is in 
conjunction with function imsls_random_seed_get to restart a simulation. 

Example 
See function imsls_random_seed_get. 
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random_table_set 
Sets the current table used in the shuffled generator. 

Synopsis 
#include <imsls.h> 
void imsls_f_random_table_set (float table[]) 
The type double function is imsls_d_random_table_set. 

Required Arguments 

float table[]   (Input) 
Array of length 128 used in the shuffled generators. 

Description 
The values in table are initialized by the IMSL random number generators.  The 
values are all positive in except if the user wishes to reinitialize the array, in which case 
the first element of the array is input as a nonpositive value. (Usually, one should avoid 
reinitializing these arrays, but it might be necessary sometimes in restarting a 
simulation.) If the first element of table is set to a nonpositive value on the call to 
imsls_random_table_set, on the next invocation of a routine to generate random 
numbers using a shuffled method, the appropriate array will be reinitialized. 

Example 
See function imsls_random_GFSR_table_get. 
 

random_table_get 
Retrieves the current table used in the shuffled generator. 

Synopsis 
#include <imsls.h> 
void  imsls_f_random_table_get (float **table, ..., 0) 
The type double function is imsls_d_random_table_get. 

Required Arguments 

float **table   (Output) 
Address of a pointer to an array of length 128 containing the table used in the  
shuffled generators. Typically,  float *table is  declared and &table is used 
as an argument. 

Synopsis with Optional Arguments 
#include <imsls.h> 
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void imsls_random_table_get (float **table, 
IMSLS_RETURN_USER, float r[], 
 0) 

Optional Arguments 

IMSLS_RETURN_USER, float r[]   (Output) 
User-supplied array of length 1565 containing the table used in the  GFSR 
generators. 

Description 
The values in table are initialized by the IMSL random number generators.  The 
values are all positive except if the user wishes to reinitialize the array, in which case 
the first element of the array is input as a nonpositive value. (Usually, one should avoid 
reinitializing these arrays, but it might be necessary sometimes in restarting a 
simulation.) If the first element of table is set to a nonpositive value on the call to 
imsls_random_table_set, on the next invocation of a routine to generate random 
numbers using a shuffled method, the appropriate array will be reinitialized. 

Example 
See function imsls_random_GFSR_table_get. 

random_GFSR_table_set 
Sets the current table used in the GFSR generator. 

Synopsis 
#include <imsls.h> 
void imsls_random_GFSR_table_set (int table[]) 

Required Arguments 

int table []  (Input) 
Array of length 1565 used in the GFSR generators. 

Description 
The values in table are initialized by the IMSL random number generators.  The 
values are all positive except if the user wishes to reinitialize the array, in which case 
the first element of the array is input as a nonpositive value.  (Usually, one should 
avoid reinitializing these arrays, but it might be necessary sometimes in restarting a 
simulation.)  If the first element of table is set to a nonpositive value on the call to 
imsls_random_GFSR_table_set, on the next invocation of a routine to generate 
random numbers using a GFSR method, the appropriate array will be reinitialized. 

Example 
See function imsls_random_GFSR_table_get. 
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random_GFSR_table_get 
Retrieves the current table used in the GFSR generator. 

Synopsis 
#include <imsls.h> 
void imsls_random_GFSR_table_get (int **table, ..., 0) 

Required Arguments 

int **table   (Output) 
Address of a pointer to an array of length 1565 containing the table used in the  
GFSR generators.  Typically, int *table is  declared and &table is used as 
an argument. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_random_GFSR_table_get (int **table, 

IMSLS_RETURN_USER, int r[], 
 0) 

Optional Arguments 

IMSLS_RETURN_USER, int r[]   (Output) 
User-supplied array of length 1565 containing the table used in the GFSR 
generators. 

Description 
The values in table are initialized by the IMSL random number generators. The 
values are all positive except if the user wishes to reinitialize the array, in which case 
the first element of the array is input as a nonpositive value. (Usually, one should avoid 
reinitializing these arrays, but it might be necessary sometimes in restarting a 
simulation.) If the first element of table is set to a nonpositive value on the call to 
imsls_random_GFSR_table_set, on the next invocation of a routine to generate 
random numbers using a GFSR method, the appropriate array will be reinitialized. 

Example 
In this example, three separate simulation streams are used, each with a different form 
of the generator. Each stream is stopped and restarted. (Although this example is 
obviously an artificial one, there may be reasons for maintaining separate streams and 
stopping and restarting them because of the nature of the usage of the random numbers 
coming from the separate streams.) 

 
#include <stdio.h> 
#include <imsls.h> 
 
void main() 
{ 
  float *r, *table; 
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  int  nr, iseed1, iseed2, iseed7; 
  int *itable; 
 
  nr = 5; 
  iseed1 = 123457; 
  iseed2 = 123457; 
  iseed7 = 123457; 
 
  /* Begin first stream, iopt = 1 (by default) */ 
  imsls_random_seed_set (iseed1); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed1 = imsls_random_seed_get (); 
  imsls_f_write_matrix ("First stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed1); 
  free(r); 
 
  /* Begin second stream, iopt = 2 */ 
  imsls_random_option (2); 
  imsls_random_seed_set (iseed2); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed2 = imsls_random_seed_get (); 
  imsls_f_random_table_get (&table, 0); 
  imsls_f_write_matrix ("Second stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed2); 
  free(r); 
 
  /* Begin third stream, iopt = 7 */ 
  imsls_random_option (7); 
  imsls_random_seed_set (iseed7); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed7 = imsls_random_seed_get (); 
  imsls_random_GFSR_table_get (&itable, 0); 
  imsls_f_write_matrix ("Third stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed7); 
  free(r); 
 
  /* Reinitialize seed and resume first stream */ 
  imsls_random_option (1); 
  imsls_random_seed_set (iseed1); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed1 = imsls_random_seed_get (); 
  imsls_f_write_matrix ("First stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed1); 
  free(r); 
 
  /*  
   * Reinitialize seed and table for shuffling and 
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   * resume second stream  
   */ 
  imsls_random_option (2); 
  imsls_random_seed_set (iseed2); 
  imsls_f_random_table_set (table); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed2 = imsls_random_seed_get (); 
  imsls_f_write_matrix ("Second stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed2); 
  free(r); 
 
  /*  
   * Reinitialize seed and table for GFSR and  
   * resume third stream. 
   */ 
  imsls_random_option (7); 
  imsls_random_seed_set (iseed7); 
  imsls_random_GFSR_table_set (itable); 
  r = imsls_f_random_uniform (nr, 0); 
  iseed7 = imsls_random_seed_get (); 
  imsls_f_write_matrix ("Third stream output", 1, 5, r, 
   IMSLS_NO_COL_LABELS, 
   IMSLS_NO_ROW_LABELS, 0); 
  printf("    Output seed\t%d\n\n", iseed7); 
  free(r); 

 
} 

 Output 
 
                    First stream output 
    0.9662      0.2607      0.7663      0.5693      0.8448 
 Output seed 1814256879 
 
  
                   Second stream output 
    0.7095      0.1861      0.4794      0.6038      0.3790 
 Output seed 1965912801 
 
  
                    Third stream output 
    0.3914      0.0263      0.7622      0.0281      0.8997 
 Output seed 1932158269 
 
  
                    First stream output 
    0.0443      0.9872      0.6014      0.8964      0.3809 
 Output seed 817878095 
 
  
                   Second stream output 
    0.2557      0.4788      0.2258      0.3455      0.5811 
 Output seed 2108806573 
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                    Third stream output 
    0.7519      0.5084      0.9070      0.0910      0.6917 
 Output seed 1485334679 

random_MT32_init 
Initializes the 32-bit Mersenne Twister generator using an array. 

Synopsis 
#include <imsls.h> 
void imsls_random_MT32_table_init (int key_length, unsigned int key[]) 

Required Arguments 

int key_length (Input) 
Length of the array key. 

unsigned int key [] (Input) 
Array of length key_length used to initialize the 32-bit Mersenne Twister 
generator. 

Description 
By default, the Mersenne Twister random number generator is initialized using the 
current seed value (see imsls_random_seed_get). The seed is limited to one integer 
for initialization. This function allows an arbitrary length array to be used for 
initialization.  
This function completely replaces the use of the seed for initialization of the 32-bit 
Mersenne Twister generator.  

Example 
See function imsls_random_MT32_table_get. 

random_MT32_table_get 
Retrieves the current table used in the 32-bit Mersenne Twister generator. 

Synopsis 
#include <imsls.h> 
void imsls_random_MT32_table_get (unsigned int **table, ..., 0) 

Required Arguments 

unsigned int **table (Output) 
Address of a pointer to an array of length 625 containing the table used in the 
32-bit Mersenne Twister generator. Typically, unsigned int *table is 
declared and &table is used as an argument. 
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Synopsis with Optional Arguments 
#include <imsls.h> 

void imsls_random_MT32_table_get (int **table, 
IMSLS_RETURN_USER, int r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, int r[] (Output) 
User-supplied array of length 625 containing the table used in the 32-bit 
Mersenne Twister generator. 

Description 
The values in table contain the state of the 32-bit Mersenne Twister random number 
generator.  The table can be used by imsls_random_MT32_table_set to set the 
generator back to this state. 

Example 
In this example, four simulation streams are generated. The first series is generated 
with the seed used for initialization. The second series is generated using an array for 
initialization.  The third series is obtained by resetting the generator back to the state it 
had at the beginning of the second stream. Therefore, the second and third streams are 
identical. The fourth stream is obtained by resetting the generator back to its original, 
uninitialized state, and having it reinitialize using the seed.  The first and fourth 
streams are therefore the same. 

 
#include <imsls.h> 
 
void main() 
{ 
       const unsigned int init[] = {0x123, 0x234, 0x345, 0x456}; 
       float   *r; 
       int     iseed = 123457;  
       int     *itable; 
       int     nr = 5; 
 
       /* Initialize Mersenne Twister series with a seed */ 
       imsls_random_option (8); 
       imsls_random_seed_set (iseed); 
       r = imsls_f_random_uniform (nr, 0); 
       imsls_f_write_matrix ("First stream output", 1, 5, r, 
              IMSLS_NO_COL_LABELS, 
              IMSLS_NO_ROW_LABELS, 
              0); 
       free(r); 
 
       /* Reinitialize Mersenne Twister series with an array */ 
       imsls_random_option (8); 
       imsls_random_MT32_init(4, init); 
       /* Save the state of the series */ 
        imsls_random_MT32_table_get(&itable, 0); 
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       r = imsls_f_random_uniform (nr, 0); 
       imsls_f_write_matrix ("Second stream output", 1, 5, r, 
              IMSLS_NO_COL_LABELS, 
              IMSLS_NO_ROW_LABELS, 
              0); 
       free(r); 
 
       /* Restore the state of the series */ 
       imsls_random_MT32_table_set(itable); 
 
       r = imsls_f_random_uniform (nr, 0); 
       imsls_f_write_matrix ("Third stream output", 1, 5, r, 
              IMSLS_NO_COL_LABELS, 
              IMSLS_NO_ROW_LABELS, 
              0); 
       free(r); 
 
       /* Reset the series - it will reinitialize from the seed */ 
       itable[0] = 1000; 
       imsls_random_MT32_table_set(itable); 
 
       r = imsls_f_random_uniform (nr, 0); 
       imsls_f_write_matrix ("Fourth stream output", 1, 5, r, 
              IMSLS_NO_COL_LABELS, 
              IMSLS_NO_ROW_LABELS, 
              0); 
       free(r); 
} 

 

Output 
                     First stream output 
    0.4347       0.3522       0.0139       0.2091       0.4956 
 
                    Second stream output 
    0.2486       0.2226       0.1111       0.9563       0.9846 
 
                     Third stream output 
    0.2486       0.2226       0.1111       0.9563       0.9846 
 
                    Fourth stream output 
    0.4347       0.3522       0.0139       0.2091       0.4956 

random_MT32_table_set 
Sets the current table used in the 32-bit Mersenne Twister generator. 

Synopsis 
#include <imsls.h> 

void imsls_random_MT32_table_set (unsigned int table[]) 

Required Arguments 
unsigned int table [] (Input) 
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Array of length 625 used in the 32-bit Mersenne Twister generator. 

Description 
The values in table are the state of the 32-bit Mersenne Twister random number 
generator obtained by a call to imsls_random_MT32_table_set. The values in the 
table can be used to restore the state of the generator. 
Alternatively, if table[0] > 625 then the generator is set to its original, uninitialized, 
state. 

Example 
See function imsls_random_MT32_table_get. 

random_MT64_init 
Initializes the 64-bit Mersenne Twister generator using an array. 

Synopsis 
#include <imsls.h> 
void imsls_random_MT64_table_init (int key_length, unsigned long long 

key[]) 

Required Arguments 

int key_length (Input) 

Length of the array key. 

unsigned long long key [] (Input) 

Array of length key_length used to initialize the 64-bit Mersenne Twister generator. 

Description 
By default, the Mersenne Twister random number generator is initialized using the 
current seed value (see imsls_random_seed_get). The seed is limited to one 
integer for initialization. This function allows an arbitrary length array to be used for 
initialization.  
This function completely replaces the use of the seed for initialization of the 64-bit 
Mersenne Twister generator.  

Example 
See function imsls_random_MT64_table_get. 

random_MT64_table_get 
Retrieves the current table used in the 64-bit Mersenne Twister generator. 

Synopsis 

#include <imsls.h> 

void imsls_random_MT64_table_get (unsigned long long **table, ..., 0) 
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Required Arguments 

unsigned long long **table (Output) 
Address of a pointer to an array of length 625 containing the table used in the 64-bit 
Mersenne Twister generator. Typically, unsigned long long *table is declared and 
&table is used as an argument. 

Synopsis with Optional Arguments 

#include <imsls.h> 

void imsls_random_MT64_table_get (unsigned long long **table, 
IMSLS_RETURN_USER, unsigned long long r[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, unsigned long long r[] (Output) 
User-supplied array of length 625 containing the table used in the 64-bit 
Mersenne Twister generator. 

Description 
The values in the table contain the state of the 64-bit Mersenne Twister random 
number generator.  The table can be used by imsls_random_MT64_table_set to set 
the generator back to this state. 

Example 
In this example, four simulation streams are generated.  The first series is generated 
with the seed used for initialization.  The second series is generated using an array for 
initialization.  The third series is obtained by resetting the generator back to the state it 
had at the beginning of the second stream.  Therefore the second and third streams are 
identical.  The fourth stream is obtained by resetting the generator back to its original, 
uninitialized state, and having it reinitialize using the seed.  The first and  fourth 
streams are therefore the same. 

 
#include <imsls.h> 
 
void main() 
{ 
 const unsigned long long init[] = {0x123, 0x234, 0x345, 0x456}; 
 float   *r; 
 int     iseed = 123457;  
 unsigned long long *itable; 
 int     nr = 5; 
 
 /* Initialize 64-bit Mersenne Twister series with a seed */ 
 imsls_random_option (9); 
 imsls_random_seed_set (iseed); 
 r = imsls_f_random_uniform (nr, 0); 
 imsls_f_write_matrix ("First stream output", 1, 5, r, 
  IMSLS_NO_COL_LABELS, 
  IMSLS_NO_ROW_LABELS, 
  0); 
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 free(r); 
 
 /* Reinitialize Mersenne Twister series with an array */ 
 imsls_random_option (9); 
 imsls_random_MT64_init(4, init); 
 /* Save the state of the series */ 
     imsls_random_MT64_table_get(&itable, 0); 
 
 r = imsls_f_random_uniform (nr, 0); 
 imsls_f_write_matrix ("Second stream output", 1, 5, r, 
  IMSLS_NO_COL_LABELS, 
  IMSLS_NO_ROW_LABELS, 
  0); 
 free(r); 
 
 /* Restore the state of the series */ 
 imsls_random_MT64_table_set(itable); 
 
 r = imsls_f_random_uniform (nr, 0); 
 imsls_f_write_matrix ("Third stream output", 1, 5, r, 
  IMSLS_NO_COL_LABELS, 
  IMSLS_NO_ROW_LABELS, 
  0); 
 free(r); 
 
 /* Reset the series - it will reinitialize from the seed */ 
 itable[0] = 1000; 
 imsls_random_MT64_table_set(itable); 
 
 r = imsls_f_random_uniform (nr, 0); 
 imsls_f_write_matrix ("Fourth stream output", 1, 5, r, 
  IMSLS_NO_COL_LABELS, 
  IMSLS_NO_ROW_LABELS, 
  0); 
 free(r); 
} 

 

Output 
 

                      First stream output 
     0.5799       0.9401       0.7102       0.1640       0.5457 
 
                     Second stream output 
     0.4894       0.7397       0.5725       0.0863       0.7588 
 
                      Third stream output 
     0.4894       0.7397       0.5725       0.0863       0.7588 
 
                     Fourth stream output 
     0.5799       0.9401       0.7102       0.1640       0.5457 

random_MT64_table_set 
Sets the current table used in the 64-bit Mersenne Twister generator. 
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Synopsis 
#include <imsls.h> 

void imsls_random_MT64_table_set (unsigned long long table[]) 

Required Arguments 

unsigned long long table [] (Input) 

Array of length 625 used in the 64-bit Mersenne Twister generator. 

Description 
The values in table are the state of the 64-bit Mersenne Twister random number 
generator obtained by a call to imsls_random_MT64_table_set. The values in the 
table can be used to restore the state of the generator. 
Alternatively, if table[0] > 625 then the generator is set to its original, uninitialized, 
state. 

Example 
See function imsls_random_MT64_table_get. 

faure_next_point 
Computes a shuffled Faure sequence. 

Synopsis 
#include <imsls.h> 
Imsls_faure* imsls_faure_sequence_init (int ndim, …, 0) 
float* imsls_f_faure_next_point (Imsls_faure *state, …, 0) 
void imsls_faure_sequence_free (Imsls_faure *state) 
The type double function is imsls_d_faure_next_point. The functions 
imsls_faure_sequence_init and imsls_faure_sequence_free  
are precision independent. 

Required Arguments for imsls_faure_sequence_init 

int ndim   (Input) 
The dimension of the hyper-rectangle. 

Return Value for imsls_faure_sequence_init 

Returns a structure that contains information about the sequence. The structure should 
be freed using imsls_faure_sequence_free after it is no longer needed. 

Required Arguments for imsls_faure_next_point 

Imsls_faure *state   (Input/Output) 
Structure created by a call to imsls_faure_sequence_init. 
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Return Value for imsls_faure_next_point 

Returns the next point in the shuffled Faure sequence.  To release this space, use 
imsls_faure_sequence_free. 

Required Arguments for imsls_faure_sequence_free 

Imsls_faure *state   (Input/Output) 
Structure created by a call to imsls_faure_sequence_init. 

Synopsis with Optional Arguments 

#include <imsls.h> 
Imsls_faure *imsls_faure_sequence_init (int ndim, 

IMSLS_BASE, int base, 
IMSLS_SKIP, int skip, 
0) 

float*  imsls_f_faure_next_point (Imsls_faure *state, 
IMSLS_RETURN_USER, float *user, 
IMSLS_RETURN_SKIP, int *skip, 
0) 

Optional Arguments 

IMSLS_BASE, int base   (Input) 
The base of the Faure sequence. 
Default: The smallest prime greater than or equal to ndim. 

IMSLS_SKIP, int *skip   (Input) 
The number of points to be skipped at the beginning of the Faure sequence. 
Default: / 2 1m −⎢ ⎥⎣ ⎦base , where log  /logBm = ⎢ ⎥⎣ ⎦base  and B is the largest 
representable integer.  

IMSLS_RETURN_USER, float *user   (Output) 
User-supplied array of length ndim containing the current point in the 
sequence. 

IMSLS_RETURN_SKIP, int *skip   (Output) 
The current point in the sequence. The sequence can be restarted by 
initializing a new sequence using this value for IMSLS_SKIP, and using the 
same dimension for ndim. 

Description 
Discrepancy measures the deviation from uniformity of a point set.  

The discrepancy of the point set [ ]1,..., 0,1 , 1d
nx x d∈ ≥ , is   

( ) ( ) ( )
;

sup ,
E

A E ndD En n
λ= −

 

where the supremum is over all subsets of [0, 1]d of the form 
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) )1
0, 0 0 1, 1... , ,

d jE t t t j d≤ ≤ ≤ ≤⎡⎡= × ×⎣ ⎣ ,  

λ is the Lebesque measure, and ( );A E n is the number of the xj contained in E.  

The sequence x1, x2, … of points [0,1]d is a low-discrepancy sequence if there exists a 
constant c(d), depending only on d, such that  

( ) ( ) ( )log dndD c dn n
≤

 

for all n>1. 
Generalized Faure sequences can be defined for any prime base b≥d.  The lowest 
bound for the discrepancy is obtained for the smallest prime b≥d, so the optional 
argument IMSLS_BASE defaults to the smallest prime greater than or equal to the 
dimension. 
The generalized Faure sequence x1, x2, …, is computed as follows:  
Write the positive integer n in its b-ary expansion,  

0

( ) i
i

i

n a n b
∞

=

= ∑  

where ai(n) are integers, ( )0 ia n b≤ < . 

The j-th coordinate of xn is 

( ) ( ) 1

0 0

( ) , 1j j k
n kd d

k d

x c a n b j d
∞ ∞

− −

= =

= ≤ ≤∑∑  

The generator matrix for the series, ( )jck d ,  is defined to be 

( )j d k
k d k dc j c−=

 

and k dc  is an element of the Pascal matrix, 

( )
!

! !
0

k d

d k d
c d cc

k d

⎧ ≤⎪ −= ⎨
⎪ >⎩

 

It is faster to compute a shuffled Faure sequence than to compute the Faure sequence 
itself.  It can be shown that this shuffling preserves the low-discrepancy property. 
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The shuffling used is the b-ary Gray code.  The function G(n) maps the positive integer 
n into the integer given by its b-ary expansion. 
The sequence computed by this function is x(G(n)), where x is the generalized Faure 
sequence.  

Example 
In this example, five points in the Faure sequence are computed.  The points are in the 
three-dimensional unit cube. 
Note that imsls_faure_sequence_init is used to create a structure that holds the 
state of the sequence.  Each call to imsls_f_faure_next_point returns the next 
point in the sequence and updates the Imsls_faure structure.  The final call to 
imsls_faure_sequence_free frees data items, stored in the structure, that were 
allocated by imsls_faure_sequence_init.  

 
#include "stdio.h" 
#include "imsl.h" 
 
 
void main() 
{ 
 Imsl_faure *state; 
 float  *x; 
 int        ndim = 3; 
 int        k; 
  
 state = imsl_faure_sequence_init(ndim, 0); 
 
 for (k = 0;  k < 5;  k++) { 
  x = imsl_f_faure_next_point(state, 0); 
  printf("%10.3f %10.3f  %10.3f\n", x[0], x[1], x[2]); 
             free(x); 
 } 
 
 imsl_faure_sequence_free(state); 
} 
 

Output 
 
     0.334      0.493       0.064 
     0.667      0.826       0.397 
     0.778      0.270       0.175 
     0.111      0.604       0.509 
     0.445      0.937       0.842 
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Chapter 13: Neural Networks 

Routines 
Network 

Multilayered feedforward neural network  mlff_network 934 
Training mlff_network_trainer 944 
Forecasting mlff_network_forecast 954 

Preprocessing Filters 
Scales or unscales continuous data prior to its use in  
neural network training, testing, or forecasting. scale_filter 960 
Converts time series data to the format required  
for processing by a neural network. time_series_filter 966 
Converts time series data sorted within  
nominal classes. time_series_class_filter 969 
Converts nominal data into a series of binary encoded 
columns for input to a neural network. unsupervised_nominal_filter 973 
Converts ordinal data into  proportions. unsupervised_ordinal_filter 976 

Usage Notes 

Neural Networks – An Overview 
Today, neural networks are used to solve a wide variety of problems, some of which 
have been solved by existing statistical methods, and some of which have not. These 
applications fall into one of the following three categories: 
• Forecasting: predicting one or more quantitative outcomes from both 

quantitative and categorical input data,  
• Classification: classifying input data into one of two or more categories, or 
• Statistical pattern recognition: uncovering patterns, typically spatial or 

temporal, among a set of variables. 
Forecasting, pattern recognition and classification problems are not new.  They existed 
years before the discovery of neural network solutions in the 1980’s.  What is new is 
that neural networks provide a single framework for solving so many traditional 
problems and, in some cases, extend the range of problems that can be solved.   
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Traditionally, these problems were solved using a variety of widely known statistical 
methods: 
• linear regression and general least squares,  
• logistic regression and discrimination,  
• principal component analysis, 
• discriminant analysis, 
• k-nearest neighbor classification, and  
• ARMA and NARMA time series forecasts.   
In many cases, simple neural network configurations yield the same solution as many 
traditional statistical applications.  For example, a single-layer, feedforward neural 
network with linear activation for its output perceptron is equivalent to a general linear 
regression fit.  Neural networks can provide more accurate and robust solutions for 
problems where traditional methods do not completely apply.   
Mandic and Chambers (2001) identify the traditional methods for time series 
forecasting that are unsuitable when a time series: 
• is non-stationary, 
• has large amounts of noise, such as a biomedical series, or 
• is too short. 
ARIMA and other traditional time series approaches can produce poor forecasts when 
one or more of the above conditions exist.  The forecasts of ARMA and non-linear 
ARMA (NARMA) depend heavily upon key assumptions about the model or 
underlying relationship between the output of the series and its patterns.   
Neural networks, on the other hand, adapt to changes in a non-stationary series and can 
produce reliable forecasts even when the series contains a good deal of noise or when 
only a short series is available for training.  Neural networks provide a single tool for 
solving many problems traditionally solved using a wide variety of statistical tools and 
for solving problems when traditional methods fail to provide an acceptable solution.   
Although neural network solutions to forecasting, pattern recognition and classification 
problems can vary vastly, they are always the result of computations that proceed from 
the network inputs to the network outputs.  The network inputs are referred to as 
patterns, and outputs are referred to as classes.  Frequently the flow of these 
computations is in one direction, from the network input patterns to its outputs.  
Networks with forward-only flow are referred to as feedforward networks.   
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Figure 13-1:  A 2-layer, Feedforward Network with 4 inputs and 2 outputs 

Other networks, such as recurrent neural networks, allow data and information to flow 
in both directions, see Mandic and Chambers' (2001). 

Hidden Layer

H0

H2

X0

X1

X2

Input Layer

X3

Output Layer

Z0 Y0

Z1 Y1

 
Figure 13-2:  A recurrent neural network with 4 inputs and 2 outputs 

A neural network is defined not only by its architecture and flow, or interconnections, 
but also by computations used to transmit information from one node or input to 
another node.  These computations are determined by network weights.  The process of 
fitting a network to existing data to determine these weights is referred to as training 
the network, and the data used in this process are referred to as patterns.  Individual 
network inputs are referred to as attributes and outputs are referred to as classes. The 
table below lists terms used to describe neural networks that are synonymous to 
common statistical terminology. 
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Neural Network 

Terminology 
Traditional Statistical 

Terminology 
Description 

Training Model Fitting Estimating unknown parameters or 
coefficients in the analysis 

Patterns Cases or Observations A single observation of all input and 
output variables 

Attributes Independent Variables Inputs to the network or model 

Classes Dependent Variables Outputs from the network or model 
calculations 

Table 1.   Synonyms between Neural Network and Common Statistical Terminology 

Neural Networks – History and Terminology 
The Threshold Neuron 
McCulloch and Pitts' (1943) wrote one of the first published works on neural networks.  
This paper describes the threshold neuron as a model for which the human brain stores 
and processes information. 

X0
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W2

Inputs
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Y

McCulloch & 
Pitts Neuron

Output

 
Figure 13-3: The McCulloch & Pitts Threshold Neuron 

All inputs to a threshold neuron are combined into a single number, Z, using the 
following weighted sum: 

1

m

i i
i

Z w x μ
=

= −∑ , 
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where iw is the weight associated with the ith input (attribute) ix .  The term μ in this 
calculation is referred to as the bias term.  In traditional statistical terminology it might 
be referred to as the intercept.  The weights and bias terms in this calculation are 
estimated during network training.   
In McCulloch and Pitts’ (1943) description of the threshold neuron, the neuron does 
not respond to its inputs unless Z is greater than zero.  If Z is greater than zero then the 
output from this neuron is set to 1.  If Z is less than or equal to zero the output is zero: 

1 if 0
0 if 0

Z
Y

Z
>⎧

= ⎨ ≤⎩ , 

where Y is the neuron’s output. 
Years following McCulloch and Pitts’ (1943) article, interest in McCulloch and Pitts 
neural network was limited to theoretical discussions, such as Hebb (1949), which 
describe learning, memory and the brain’s structure. 

The Perceptron 
The McCulloch and Pitts’ neuron is also referred to as a threshold neuron since it 
abruptly changes its output from 0 to 1 when its potential, Z, crosses a threshold. 
Mathematically, this behavior can be viewed as a step function that maps the neuron’s 
potential, Z, to the neuron’s output, Y. 
Rosenblatt (1958) extended the McCulloch and Pitts threshold neuron by replacing this 
step function with a continuous function that maps Z to Y.  The Rosenblatt neuron is 
referred to as the perceptron, and the continuous function mapping Z to Y makes it 
easier to train a network of perceptrons than a network of threshold neurons.   
Unlike the threshold neuron, the perceptron produces analog output rather than the 
threshold neuron’s purely binary output.  Carefully selecting the analog function, 
makes Rosenblatt’s perceptron differentiable, whereas the threshold neuron is not.  
This simplifies the training algorithm.   
Like the threshold neuron, Rosenblatt’s perceptron starts by calculating a weighted 
sum of its inputs,  

1

m

i i
i

Z w x μ
=

= −∑ .   

This is referred to as the perceptron’s potential.   
Rosenblatt’s perceptron calculates its analog output from its potential.  There are many 
choices for this calculation.  The function used for this calculation is referred to as the 
activation function as shown in Figure 13-4 below. 
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Figure 13-4: A Neural Net Perceptron 

As shown in Figure 13-4, perceptrons consist of the following five components: 
1. Inputs – x1, x2, and x3, 
2. Input Weights – W1, W2, and W3, 

3. Potential – 
3

1
i i

i

Z W x μ
=

= −∑ , where μ is a bias correction, 

4. Activation Function – g(Z), and 
5. Output – Y = g(Z) . 
Like threshold neurons, perceptron inputs can be either the initial raw data inputs or the 
output from another perceptron.  The primary purpose of network training is to 
estimate the weights associated with each perceptron’s potential.  The activation 
function maps this potential to the perceptron’s output.   

The Activation Function 
Although theoretically any differentiable function can be used as an activation 
function, the identity and sigmoid functions are the two most commonly used. 
The identity activation function, also referred to as a linear activation function, is a 
flow-through mapping of the perceptron’s potential to its output:  

( )g Z Z=
. 

Output perceptrons in a forecasting network often use the identity activation function.   
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Z  
Figure 13-5: An Identity (Linear) Activation Function 

If the identity activation function is used throughout the network, then it is easily 
shown that the network is equivalent to fitting a linear regression model of the form 

0 1 1i k kY x xβ β β= + + +" , where 1 2, , , kx x x" are the k network inputs, iY is the ith 
network output and 0 1, , , kβ β β" are the coefficients in the regression equation.  As a 
result, it is uncommon to find a neural network with identity activation used in all its 
perceptrons. 
Sigmoid activation functions are differentiable functions that map the perceptron’s 
potential to a range of values, such as 0 to 1, i.e., Kℜ → ℜ  where K  is the number of 
perceptron inputs.  

1

Z  
Figure 13-6: A Sigmoid Activation Function 



 

 
 

922 • Usage Notes IMSL C Stat Library 

 

 

 

In practice, the most common sigmoid activation function is the logistic function that 
maps the potential into the range 0 to 1: 

1( )
1 Zg Z

e−=
+

, 

Since 0 < g(Z) < 1, the logistic function is very popular for use in networks that output 
probabilities. 
Other popular sigmoid activation functions include:  

• the hyperbolic-tangent ( ) tanh( )
Z Z

Z Z

e eg Z Z
e e

α α

α α

−

−

−
= =

+
, 

• the arc-tangent 2( ) arctan
2
Zg Z π

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

, and 

• the squash activation function, see Elliott (1993), ( )
1

Zg Z
Z

=
+

. 

It is easy to show that the hyperbolic-tangent and logistic activation functions are 
linearly related.  Consequently, forecasts produced using logistic activation should be 
close to those produced using hyperbolic-tangent activation.  However, one function 
may be preferred over the other when training performance is a concern.  Researchers 
report that the training time using the hyperbolic-tangent activation function is shorter 
than using the logistic activation function. 

Network Applications 
Forecasting using Neural Networks 
There are numerous good statistical forecasting tools.  Most require assumptions about 
the relationship between the variables being forecasted and the variables used to 
produce the forecast, as well as the distribution of forecast errors. Such statistical tools 
are referred to as parametric methods.  ARIMA time series models, for example, 
assume that the time series is stationary, that the errors in the forecasts follow a 
particular ARIMA model, and that the probability distribution for the residual errors is 
Gaussian, see Box and Jenkins (1970).  If these assumptions are invalid, then ARIMA 
time series forecasts can be substandard. 
Neural networks, on the other hand, require few assumptions.  Since neural networks 
can approximate highly non-linear functions, they can be applied without an extensive 
analysis of underlying assumptions.   
Another advantage of neural networks over ARIMA modeling is the number of 
observations needed to produce a reliable forecast.  ARIMA models generally require 
50 or more equally spaced, sequential observations in time.  In many cases, neural 
networks can also provide adequate forecasts with fewer observations by incorporating 
exogenous, or external, variables in the network’s input.   
For example, a company applying ARIMA time series analysis to forecast business 
expenses would normally require each of its departments, and each sub-group within 
each department, to prepare its own forecast.  For large corporations this can require 
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fitting hundreds or even thousands of ARIMA models.  With a neural network 
approach, the department and sub-group information could be incorporated into the 
network as exogenous variables.  Although this can significantly increase the 
network’s training time, the result would be a single model for predicting expenses 
within all departments. 
Linear least squares models are also popular statistical forecasting tools. These 
methods range from simple linear regression for predicting a single quantitative 
outcome to logistic regression for estimating probabilities associated with categorical 
outcomes.  It is easy to show that simple linear least squares forecasts and logistic 
regression forecasts are equivalent to a feedforward network with a single layer. For 
this reason, single-layer feedforward networks are rarely used for forecasting.  Instead 
multilayer networks are used. 
Hutchinson (1994) and Masters (1995) describe using multilayer feedforward neural 
networks for forecasting.  Multilayer feedforward networks are characterized by the 
forward-only flow of information in the network.  The flow of information and 
computations in a feedforward network is always in one direction, mapping an  
M-dimensional vector of inputs to a C-dimensional vector of outputs, i.e., CM ℜ→ℜ  
where C M< .   
There are many other types of networks without this feed forward requirement.  
Information and computations in a recurrent neural network, for example, flow in both 
directions.  Output from one level of a recurrent neural network can be fed back, with 
some delay, as input into the same network (see Figure 13-2).  Recurrent networks are 
very useful for time series prediction, see Mandic and Chambers (2001). 

Pattern Recognition using Neural Networks 
Neural networks are also extensively used in statistical pattern recognition.  Pattern 
recognition applications that make wide use of neural networks include: 
• natural language processing: Manning and Schütze (1999) 
• speech and text recognition:  Lippmann (1989) 
• face recognition: Lawrence, et al. (1997) 
• playing backgammon, Tesauro (1990) 
• classifying financial news, Calvo (2001).  
The interest in pattern recognition using neural networks has stimulated the 
development of important variations of feedforward networks.  Two of the most 
popular are: 
• Self-Organizing Maps, also called Kohonen Networks, Kohonen (1995), 
• and Radial Basis Function Networks, Bishop (1995). 
Useful mathematical descriptions of the neural network methods underlying these 
applications are given by Bishop (1995), Ripley (1996), Mandic and Chambers (2001), 
and Abe (2001).  From a statistical viewpoint, Warner and Misra (1996) describes an  
excellent overview of neural networks. 
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Neural Networks for Classification 
Classifying observations using prior concomitant information is possibly the most 
popular application of neural networks.  Data classification problems abound in 
business and research.  When decisions based upon data are needed, they can often be 
treated as a neural network data classification problem.  Decisions to buy, sell, hold or 
remain with a stock are decisions involving four choices. Classifying loan applicants as 
good or bad credit risks, based upon their application, is a classification problem 
involving two choices.  Neural networks are powerful tools for making decisions or 
choices based upon data. 
These same tools are ideally suited for automatic selection or decision-making.  
Incoming email, for example, can be examined to separate spam from important email 
using a neural network trained for this task.  A good overview of solving classification 
problems using multilayer feedforward neural networks is found in Abe (2001) and 
Bishop (1995). 
There are two popular methods for solving data classification problems using 
multilayer feedforward neural networks, depending upon the number of choices 
(classes) in the classification problem.  If the classification problem involves only two 
choices, then it can be solved using a neural network with a single logistic output.  This 
output estimates the probability that the input data belong to one of the two choices. 
For example, a multilayer feedforward network with a single logistic output can be 
used to determine whether a new customer is credit-worthy.  The network’s input 
would consist of information on the applicants credit application, such as age, income, 
etc.  If the network output probability is above some threshold value (such as 0.5 or 
higher) then the applicant’s credit application is approved. 
This is referred to as binary classification using a multilayer feedforward neural 
network.  If more than two classes are involved then a different approach is needed.  A 
popular approach is to assign logistic output perceptrons to each class in the 
classification problem.  The network assigns each input pattern to the class associated 
with the output perceptron that has the highest probability for that input pattern.  
However, this approach produces invalid probabilities since the sum of the individual 
class probabilities for each input is not equal to one, which is a requirement for any 
valid multivariate probability distribution.   
To avoid this problem, the softmax activation function, see Bridle (1990), applied to 
the network outputs ensures that the outputs conform to the mathematical requirements 
of multivariate classification probabilities.  If the classification problem has C 
categories, or classes, then each category is modeled by one of the network outputs.  If 
Zi is the weighted sum of products between its weights and inputs for the ith output, 
i.e.,  

i ji ji
j

Z w y= ∑   

then  
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The softmax activation function ensures that all outputs conform to the requirements 
for multivariate probabilities. That is, 
•  0 < softmaxi< 1, for all i = 1, 2, …, C and 

• 
C

i
i=1

1softmax =∑  

A pattern is assigned to the ith classification when softmaxi is the largest among all  
C classes. 
However, multilayer feedforward neural networks are only one of several popular 
methods for solving classification problems. Others include: 
• Support Vector Machines (SVM Neural Networks), Abe (2001), 
• Classification and Regression Trees (CART), Breiman, et al. (1984), 
• Quinlan’s classification algorithms C4.5 and C5.0, Quinlan (1993), and 
• Quick, Unbiased and Efficient Statistical Trees (QUEST), Loh and Shih (1997). 
Support Vector Machines are simple modifications of traditional multilayer 
feedforward neural networks (MLFF) configured for pattern classification. 

Multilayer Feedforward Neural Networks 
A multilayer feedforward neural network is an interconnection of perceptrons in which 
data and calculations flow in a single direction, from the input data to the outputs.  The 
number of layers in a neural network is the number of layers of perceptrons.  The 
simplest neural network is one with a single input layer and an output layer of 
perceptrons.  The network in Figure 13-7 illustrates this type of network.  Technically, 
this is referred to as a one-layer feedforward network with two outputs because the 
output layer is the only layer with an activation calculation. 
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Figure 13- 7:  A Single-Layer Feedforward Neural Net 

In this single-layer feedforward neural network, the network’s inputs are directly 
connected to the output layer perceptrons, Z1 and Z2.   
The output perceptrons use activation functions, g1 and g2, to produce the outputs Y1 
and Y2. 
Since  

3 3

1 1, 1 2 2, 2
1 1

andi i i i
i i

Z W x Z W xμ μ
= =

= − = −∑ ∑  , 

3

1 1 1 1 1, 1
1

( ) ( )i i
i

Y g Z g W x μ
=

= = −∑ ,  

and  
3

2 2 2 2 2, 2
1

( ) ( )i i
i

Y g Z g W x μ
=

= = −∑ . 

When the activation functions g1 and g2 are identity activation functions, the single-
layer neural net is equivalent to a linear regression model.  Similarly, if g1 and g2 are 
logistic activation functions, then the single-layer neural net is equivalent to logistic 
regression.  Because of this correspondence between single-layer neural networks and 
linear and logistic regression, single-layer neural networks are rarely used in place of 
linear and logistic regression. 
The next most complicated neural network is one with two layers.  This extra layer is 
referred to as a hidden layer.  In general there is no restriction on the number of hidden 
layers.  However, it has been shown mathematically that a two-layer neural network 
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can accurately reproduce any differentiable function, provided the number of 
perceptrons in the hidden layer is unlimited. 
However, increasing the number of perceptrons increases the number of weights that 
must be estimated in the network, which in turn increases the execution time for the 
network.  Instead of increasing the number of perceptrons in the hidden layers to 
improve accuracy, it is sometimes better to add additional hidden layers, which 
typically reduce both the total number of network weights and the computational time.  
However, in practice, it is uncommon to see neural networks with more than two or 
three hidden layers. 

Neural Network Error Calculations 
Error Calculations for Forecasting 
The error calculations used to train a neural network are very important.  Researchers 
have investigated many error calculations in an effort to find a calculation with a short 
training time appropriate for the network’s application.  Typically error calculations are 
very different depending primarily on the network’s application.   
For forecasting, the most popular error function is the sum-of-squared errors, or one of 
its scaled versions.  This is analogous to using the minimum least squares optimization 
criterion in linear regression.  Like least squares, the sum-of-squared errors is 
calculated by looking at the squared difference between what the network predicts for 
each training pattern and the target value, or observed value, for that pattern.  Formally, 
the equation is the same as one-half the traditional least squares error:  

( )21
2

1 1

ˆ
N C

ij ij
i j

E t t
= =

= −∑∑
, 

where N is the total number of training cases, C is equal to the number of network 
outputs, ijt  is the observed output for the ith training case and the jth network output, 

and îjt  is the network’s forecast for that case. 

Common practice recommends fitting a different network for each forecast variable.  
That is, the recommended practice is to use C=1 when using a multilayer feedforward 
neural network for forecasting.  For classification problems with more than two 
classes, it is common to associate one output with each classification category, i.e., 
C=number of classes.   
Notice that in ordinary least squares, the sum-of-squared errors are not multiplied by 
one-half.  Although this has no impact on the final solution, it significantly reduces the 
number of computations required during training. 
Also note that as the number of training patterns increases, the sum-of-squared errors 
increases.  As a result, it is often useful to use the root-mean-square (RMS) error 
instead of the unscaled sum-of-squared errors: 
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where t is the average output: 

1 1

N C

ij
i j

t
t

N C
= ==

⋅

∑∑
. 

Unlike the unscaled sum-of-squared errors, RMSE  does not increase as N increases.  
The smaller values for RMSE , indicate that the network predicts its training targets 
closer.  The smallest value, 0RMSE = , indicates that the network predicts every 
training target exactly.  The largest value, 1RMSE = , indicates that the network predicts 
the training targets only as well as setting each forecast equal to the mean of the 
training targets. 
Notice that the root-mean-squared error is related to the sum-of-squared error by a 
simple scale factor: 

2RMSE E
t

= ⋅
 

Another popular error calculation for forecasting from a neural network is the 
Minkowski-R error.  The sum-of-squared error, E, and the root-mean-squared error, 

RMSE , are both theoretically motivated by assuming the noise in the target data is 
Gaussian.  In many cases, this assumption is invalid.  A generalization of the Gaussian 
distribution to other distributions gives the following error function, referred to as the 
Minkowski-R error: 

1 1

ˆ
N C RR

ij ij
i j

E t t
= =

= −∑∑
. 

Notice that 2RE E= when R=2. 

A good motivation for using RE  instead of E is to reduce the impact of outliers in the 
training data.  The usual error measures, E and RMSE , emphasize larger differences 
between the training data and network forecasts since they square those differences.  If 
outliers are expected, then it is better to de-emphasize larger differences.  This can be 
done by using the Minkowski-R error with R=1.  When R=1, the Mindowski-R error 
simplifies to the sum of absolute differences: 



 
 
 
 

 
 

Chapter 13: Neural Networks Multilayer Feedforward Neural Networks • 929  

 

 

 

1

1 1

ˆ
N C

ij ij
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L E t t
= =

= = −∑∑
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L  is also referred to as the Laplacian error.  This name is derived from the fact that it 
can be theoretically justified by assuming the noise in the training data follows a 
Laplacian, rather than Gaussian, distribution. 
Of course, similar to E, L  generally increases when the number of training cases 
increases.  Similar to RMSE , a scaled version of the Laplacian error can be calculated 
using the following formula: 

1 1

1 1

ˆ
N C

ij ij
i jRMS

N C

ij
i j

t t
L

t t

= =

= =

−
=

−

∑∑

∑∑ . 

Cross-Entropy Error for Binary Classification 
As previously mentioned, multilayer feedforward neural networks can be used for both 
forecasting and classification applications.  Training a forecasting network involves 
finding the network weights that minimize either the Gaussian or Laplacian 
distributions, E or L  respectively, or equivalently their scaled versions, RMSE or RMSL .  
Although these error calculations can be adapted for use in classification by setting the 
target classification variable to zeros and ones, this is not recommended. Use of the 
sum-of-squared and Laplacian error calculations is based on the assumption that the 
target variable is continuous.  In classification applications, the target variable is a 
discrete random variable with C possible values, where C=number of classes. 
A multilayer feedforward neural network for classifying patterns into one of only two 
categories is referred to as a binary classification network.  It has a single output: the 
estimated probability that the input pattern belongs to one of the two categories.  The 
probability that it belongs to the other category is equal to one minus this probability, 
i.e., 2 1 1( ) (not C ) 1 ( )P C P P C= = − .   

Binary classification applications are very common.  Any problem requiring yes/no 
classification is a binary classification application.  For example, deciding to sell or 
buy a stock is a binary classification problem.  Deciding to approve a loan application 
is also a binary classification problem.  Deciding whether to approve a new drug or to 
provide one of two medical treatments are binary classification problems. 
For binary classification problems, only a single output is used, C=1.  This output 
represents the probability that the training case should be classified as “yes.”  A 
common choice for the activation function of the output of a binary classification 
network is the logistic activation function, which always results in an output in the 
range 0 to 1, regardless of the perceptron’s potential. 
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One choice for training binary classification networks is to use sum-of-squared errors 
with the class value of yes patterns coded as a 1 and the no classes coded as a 0, i.e.: 

 
1 if training pattern i = "yes"
0 if training pattern i = " no"it

⎧
= ⎨

⎩ . 

However, using either the sum-of-squared or Laplacian errors for training a network 
with these target values assumes that the noise in the training data are Gaussian.  In 
binary classification, the zeros and ones are not Gaussian.  They follow the Bernoulli 
distribution: 

1( ) (1 )t t
iP t t p p −= = −

,   

where p is equal to the probability that a randomly selected case belongs to the “yes” 
class. 
Modeling the binary classes as Bernoulli observations leads to the use of the cross-
entropy error function described by Hopfield (1987) and Bishop (1995): 

{ }
1

ˆ ˆln( ) (1 ) ln(1 )
N

C
i i i i

i

E t t t t
=

= − + − −∑ , 

where N is the number of training patterns, it  is the target value for the ith case (either 

1 or 0), and ît  is the network output for the ith training pattern.  This is equal to the 
neural network’s estimate of the probability that the ith training pattern should be 
classified as “yes.” 
For situations in which the target variable is a probability in the range 0 1ijt< < , the 
value of the cross-entropy at the network’s optimum is equal to: 

{ }min
1

ln( ) (1 ) ln(1 )
N

C
i i i i

i

E t t t t
=

= − + − −∑  

Subtracting min
CE  from CE  gives an error term bounded below by zero, i.e., 

0CEE ≥
 

where: min
1

ˆ ˆ1
ln (1 ) ln

1

N
CE C C i i

i i
i i i

t t
E E E t t

t t=

⎧ ⎫⎡ ⎤ ⎡ ⎤−⎪ ⎪= − = − + −⎨ ⎬⎢ ⎥ ⎢ ⎥−⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
∑ . 

This adjusted cross-entropy, CEE , is normally reported when training a binary 
classification network where 0 1ijt< < .  Otherwise CE , the unadjusted cross-entropy 

error,  is used.  For CEE  small values, i.e. values near zero, indicate that the training 
resulted in a network able to classify the training cases with a low error rate. 
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Cross-Entropy Error for Multiple Classes 
Using a multilayer feedforward neural network for binary classification is relatively 
straightforward.  A network for binary classification only has a single output that 
estimates the probability that an input pattern belongs to the “yes” class, i.e., 1it = .  In 
classification problems with more than two mutually exclusive classes, the calculations 
and network configurations are not as simple. 
One approach is to use multiple network outputs, one for each of the C classes.  Using 
this approach, the jth output for the ith training pattern, ijt , is the estimated probability 

that the ith pattern belongs to the jth class, denoted by îjt .  An easy way to estimate 
these probabilities is to use logistic activation for each output.  This ensures that each 
output satisfies the univariate probability requirements, i.e., ˆ0 1ijt≤ ≤ .   

However, since the classification categories are mutually exclusive, each pattern can 
only be assigned to one of the C classes, which means that the sum of these individual 
probabilities should always equal 1.  However, if each output is the estimated 

probability for that class, it is very unlikely that 
1

ˆ 1
C

ij
j

t
=

=∑ .  In fact, the sum of the 

individual probability estimates can easily exceed 1 if logistic activation is applied to 
every output. 
Support Vector Machine (SVM) neural networks use this approach with one 
modification.  An SVM network classifies a pattern as belonging to the ith category if 
the activation calculation for that category exceeds a threshold and the other 
calculations do not exceed this value.  That is, the ith pattern is assigned to the jth 
category if and only if îjt δ>  and îkt δ≤ for all k j≠ , where δ is the threshold.  If 
this does not occur, then the pattern is marked as unclassified.   
Another approach to multi-class classification problems is to use the softmax activation 
function developed by Bridle (1990) on the network outputs.  This approach produces 
outputs that conform to the requirements of a multinomial distribution. That is 

1

ˆ ˆ1 for all 1,2, , and 0 1 for all 1, 2, ,
C

ij ij
j

t i N t i N
=

= = ≤ ≤ =∑ " "
 

and 

 
1, 2, ,j C= "

 

The softmax activation function estimates classification probabilities using the 
following softmax activation function: 

1

ˆ
ij

ij

Z

ij C
Z

j

et
e

=

=

∑ ,  
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where ijZ is the potential for the jth output perceptron, or category, using the ith 
pattern. 
For this activation function, it is clear that: 

1. ˆ0 1ijt≤ ≤  for all 1, 2, ,i N= "  , 1, 2, ,j C= "  and 

2. 
1

ˆ 1
C

ij
j

t
=

=∑  for all 1, 2, ,i N= "  

Modeling the C network outputs as multinomial observations leads to the cross-entropy 
error function described by Hopfield (1987) and Bishop (1995): 

1 1

ˆln( )
N C

C
ij ij

i j

E t t
= =

= −∑∑ , 

where N is the number of training patterns, ijt  is the target value for the jth class of ith 

pattern (either 1 or 0), and îjt  is the network’s jth output for the ith pattern.  îjt  is equal 
to the neural network’s estimate of the probability that the ith pattern should be 
classified into the jth category. 
For situations in which the target variable is a probability in the range 0 1ijt< < , the 
value of the cross-entropy at the networks optimum is equal to: 

min
1 1

ln( )
N C

C
ij ij

i j

E t t
= =

= −∑∑  

Subtracting this from CE  gives an error term bounded below by zero, i.e., 
0CEE ≥ where: 

min
1 1

ˆ
ln

N C
ijCE C C

ij
i j ij

t
E E E t

t= =

⎡ ⎤
= − = − ⎢ ⎥

⎢ ⎥⎣ ⎦
∑∑  

This adjusted cross-entropy is normally reported when training a binary classification 
network where 0 1ijt< < .  Otherwise CE , the non-adjusted cross-entropy error, is 
used.  That is, when 1-in-C encoding of the target variable is used,  

1 if the th pattern belongs to the th category
0 if the th pattern does not belong to the th categoryij

i j
t

i j
⎧

= ⎨
⎩  

Small values, values near zero, indicate that the training resulted in a network with a 
low error rate and that patterns are being classified correctly most of the time. 
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Back-Propagation in Multilayer Feedforward Neural Networks 
Sometimes a multilayer feedforward neural network is referred to incorrectly as a back-
propagation network.  The term back-propagation does not refer to the structure or 
architecture of a network.  Back-propagation refers to the method used during network 
training.  More specifically, back-propagation refers to a simple method for calculating 
the gradient of the network, that is the first derivative of the weights in the network. 
The primary objective of network training is to estimate an appropriate set of network 
weights based upon a training dataset.  Many ways have been researched for estimating 
these weights, but they all involve minimizing some error function.  In forecasting the 
most commonly used error function is the sum-of-squared errors: 

( )21
2

1 1

ˆ
N C

ij ij
i j

E t t
= =

= −∑∑
. 

Training uses one of several possible optimization methods to minimize this error term.  
Some of the more common are: steepest descent, quasi-Newton, conjugant gradient and 
many various modifications of these optimization routines. 
Back-propagation is a method for calculating the first derivative, or gradient, of the 
error function required by some optimization methods.  It is certainly not the only 
method for estimating the gradient.  However, it is the most efficient.  In fact, some 
will argue that the development of this method by Werbos (1974), Parker (1985) and 
Rumelhart, Hinton and Williams (1986) contributed to the popularity of neural network 
methods by significantly reducing the network training time and making it possible to 
train networks consisting of a large number of inputs and perceptrons. 
Simply stated, back-propagation is a method for calculating the first derivative of the 
error function with respect to each network weight.  Bishop (1995) derives and 
describes these calculations for the two most common forecasting error functions – the 
sum-of-squared errors and Laplacian error functions.  Abe (2001) gives the description 
for the classification error function - the cross-entropy error function.  For all of these 
error functions, the basic formula for the first derivative of the network weight jiw  at 
the ith perceptron applied to the output from the jth  
perceptron is: 

j i
ji

E Z
w

δ∂
=

∂ , 

where ( )i iZ g a= is the output from the ith perceptron after activation, and 
ji

E
w
∂

∂
is the 

derivative for a single output and a single training pattern.  The overall estimate of the 
first derivative of jiw  is obtained by summing this calculation over all N training 
patterns and C network outputs. 
The term back-propagation gets its name from the way the term jδ in the back-
propagation formula is calculated: 
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( )j j kj k
k

g a wδ δ′= ⋅∑ , 

where the summation is over all perceptrons that use the activation from the jth 
perceptron, ( )jg a . 

The derivative of the activation functions, ( )g a′ , varies among these functions. See the 
following table: 
 

Activation Function ( )g a  ( )g a′  
Linear ( )g a a=  ( ) 1g a′ =  

Logistic 1( )
1 ag a

e−=
+

 
 

( ) ( )(1 ( ))g a g a g a′ = −  

Hyperbolic-tangent ( ) ( )g a tanh a=  2 2( ) ( ) 1 ( )g a sech a tanh a′ = = −  

Squash 
( )

1
ag a

a
=

+
 

( )
( )2

2

1( ) 1 ( )
1

g a g a
a

′ = = −
+

 

Table 2.  Activation Functions and Their Derivatives 

mlff_network 
Creates a multilayered feedforward neural network.  

Synopsis 
#include <imsls.h> 
Imsls_f_NN_Network *ffnet imsls_f_mlff_network_init  

(int n_inputs, int n_outputs) 
void imsls_f_mlff_network (Imsls_f_NN_Network *ff_net, ..., 0) 
void imsls_f_mlff_network_free (Imsls_f_NN_Network *ff_net) 
The type double functions are imsls_d_mlff_network_init, 
imsls_d_mlff_network,  and imsls_d_mlff_network_free. 
The function imsl_f_mlff_network_init is used to initialize the network, the 
function imsl_f_mlff_network is used to build up the network in preparation for 
training, and the function imsl_f_mlff_network_free is used to free the internally 
allocated structure ff_net.  Descriptions of these functions are provided below. 

Required Arguments for imsls_f_mlff_network_init 

int n_inputs   (Input/Output) 
Number of input attributes in the network.   

int n_outputs   (Input) 
Number of output attributes in the network.  
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Return Value for imsls_f_mlff_network_init 

Pointer to structure of type Imsls_f_NN_Network containing the multilayered feed 
forward network.  

Required Argument for imsls_f_mlff_network 

Imsls_f_NN_Network *ff_net   (Input/Output) 
Pointer to structure of type Imsls_f_NN_Network containing the multilayered  
feed forward network.  

Required Argument for imsls_f_mlff_network_free 

Imsls_f_NN_Network *ff_net   (Input) 
Pointer to structure of type Imsls_f_NN_Network containing the  multilayered 
feed forward network.  

Synopsis with Optional Arguments 
#include <imsls.h>  
void imsls_f_mlff_network (Imsls_f_NN_Network *ff_net, 

IMSLS_CREATE_HIDDEN_LAYER, int n_perceptrons, 
IMSLS_ACTIVATION_FCN, int layer_id,  int activation_fcn[], 
IMSLS_BIAS, int layer_id,  float bias[], 
IMSLS_LINK_ALL,  
IMSLS_LINK_LAYER, int to,  int from,  
IMSLS_LINK_NODE, int to, int from,  
IMSLS_REMOVE_LINK, int to, int from, 
IMSLS_WEIGHTS,  float weights[], 
IMSLS_N_LINKS, int *n_links, 
 0) 

Optional Arguments for imsls_f_mlff_network 

IMSLS_CREATE_HIDDEN_LAYER, int n_perceptrons   (Input) 
Creates a hidden layer with n_perceptrons.  To create one or more hidden 
layers imsls_f_mlff_network must be called multiple times with optional 
argument IMSLS_CREATE_HIDDEN_LAYER. 
Default: No hidden layer is created. 

IMSLS_ACTIVATION_FCN, int layer_id, int activation_fcn[]  (Input) 
Specifies the activation function for each perceptron in a hidden layer or the 
output layer,  indicated by layer_id.   layer_id must be between 1 and the 
number of layers.  If a hidden layer has been created, layer_id set to 1 will 
indicate the first hidden layer.  If there are zero hidden layers, layer_id set 
to 1 indicates the output layer.   Argument activation_fcn is an array of 
length n_perceptrons in layer_id, where n_perceptrons is the number 
of perceptrons in layer_id. activation_fcn  contains the activation 
function for the ith perceptron.  Valid values for activation_fcn are: 
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IMSLS_LINEAR Linear 
IMSLS_LOGISTIC Logistic 
IMSLS_TANH Hyperbolic-tangent 
IMSLS_SQUASH Squash 

 Default: Output Layer activation_fcn[i]  = IMSLS_LINEAR. All hidden 
layers activation_fcn[i]  = IMSLS_LOGISTIC. 

IMSLS_BIAS, int layer_id,  float bias[],   (Input) 
Specifies the bias values for each perceptron in a hidden layer or the output 
layer, indicated by layer_id.   layer_id must be between 1 and the number 
of layers.  If a hidden layer has been created, layer_id set to 1 indicates the 
first hidden layer. If there are zero hidden layers, layer_id set to 1 indicates 
the output layer.   Argument bias is an array of length n_perceptrons in 
layer_id, where n_perceptrons is the number of perceptrons in 
layer_id.  bias contains the initial bias values for the ith perceptron.     
Default: bias[i] = 0.0  

IMSLS_LINK_ALL,   (Input) 
Connects all nodes in a layer to each node in the next layer, for all layers in 
the network. To create a valid network, use IMSLS_LINK_ALL, 
IMSLS_LINK_LAYER, or IMSLS_LINK_NODE. 

IMSLS_LINK_LAYER, int to, int from   (Input) 
Creates a link between all nodes in layer from to all nodes in layer to. Layers 
are numbered starting at zero with the input layer, then the hidden layers in 
the order they are created, and finally the output layer. To create a valid 
network, use IMSLS_LINK_ALL, IMSLS_LINK_LAYER, or 
IMSLS_LINK_NODE. 

or 

IMSLS_LINK_NODE, int to,  int from   (Input) 
Links node from to node to.  Nodes are numbered starting at zero with the 
input nodes, then the hidden layer perceptrons, and finally the output 
perceptrons.  To create a valid network, use IMSLS_LINK_ALL, 
IMSLS_LINK_LAYER, or IMSLS_LINK_NODE. 

or 

IMSLS_REMOVE_LINK, int to, int from   (Input) 
Removes the link between node from and node to.  Nodes are numbered 
starting at zero with the input nodes, then the hidden layer perceptrons, and 
finally output perceptrons. 

IMSLS_WEIGHTS, float weights[]    (Input) 
Array of length n_links containing the initial weight for the ith link in the 
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network.   See keyword IMSLS_N_LINKS.  
Default: weights[] = 1.0.  

IMSLS_N_LINKS, int *n_links    (Output) 
Returns the number of links in the network. 

Description 
A multilayerd feedforward network contains an input layer, an output layer and zero or 
more hidden layers. The input and output layers are created by the function 
imsls_f_mlff_network_init, where n_inputs specifies the number of inputs in 
the input layer and n_outputs specifies the number of perceptrons in the output layer.   
The hidden layers are created by one or more calls to imsls_f_mlff_network with 
the keyword IMSLS_CREATE_HIDDEN_LAYER, where n_perceptrons specifies the 
number of perceptrons in the hidden layer.   
The network also contains links or connections between nodes.  Links are created by 
using one of the three optional arguments in the imsls_f_mlff_network function, 
IMSLS_LINK_ALL, IMSLS_LINK_LAYER, IMSLS_LINK_NODE.  The most useful is the 
IMSLS_LINK_ALL, which connects every node in each layer to every node in the next 
layer.  A feed forward network is a network in which links are only allowed from one 
layer to a following layer. 
Each link has a weight and gradient value.  Each  perceptron node has a bias value.  
When the network is trained, the weight and bias values are used as initial guesses. 
After the network is trained using imsls_f_mlff_network_trainer, the weight, 
gradient and bias values are updated in the Imsls_f_NN_Network structure. 
Each perceptron has an activation function g, and a biasμ. The value of the percepton is 
given by g(Z), where g is the activation function and z is the potential calculated using  

1

m

i i
i

Z w x μ
=

= −∑  

where xi are the values of nodes input to this perceptron with weights wi. 
All information for the network is stored in the structure called Imsls_f_NN_Network.  
(If the type is double, then the structure name is Imsls_d_NN_Network.)  This structure 
describes the network that is trained by imsls_f_mlff_network_trainer.   
The following code gives a detailed description of this structure: 
 

typedef struct 
{ 
  int               n_layers; 
  Imsls_NN_Layer    *layers; 
  int               n_links; 
  int               next_link; 
  Imsls_f_NN_Link   *links; 
  int               n_nodes; 
  Imsls_f_NN_Node   *nodes; 
} Imsls_f_NN_Network; 
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Where Imsls_NN_Layer is:  
typedef struct 
{ 
  int          n_nodes; 
  int          *nodes;  
                        
} Imsls_NN_Layer; 

 
Imsls_NN_Link is:  

typedef struct 
{ 
  float        weight; 
  int          to_node; 
  int          from_node; 
} Imsls_f_NN_Link; 

 
And, Imsls_NN_Node is: 

typedef struct 
{ 
  int          layer_id; 
  int          n_inLinks; 
  int          n_outLinks; 
  int          *inLinks;    
  int          *outLinks;    
  float        delta; 
  float        bias; 
  int          ActivationFcn;  
} Imsls_f_NN_Node; 

 
In particular, if ff_net is a pointer to the structure of type Imsls_f_NN_Network , 
then: 
 

Structure member Description 
ff_net->n_layers Number of layers in 

network. Layers are 
numbered starting at 0 for 
the input layer. 

ff_net->n_nodes Total number of nodes in 
network, including the 
input attributes. 

ff_net->n_links Total number of links or 
connections between input 
attributes and perceptrons 
and between perceptrons 
from layer to layer. 

ff_net->layers[0] Input layer with 
n_inputs attributes. 
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Structure member Description 
ff_net->layers[ff_net->n_layers-1] Output layer with 

n_outputs perceptrons. 
ff_net->layers[0].n_nodes n_inputs (number of 

input attributes). 
ff_net->layers[ffnet->n_layers-1].n_nodes n_outputs (number of 

output perceptrons). 
ff_net->layers[1].n_nodes Number of output 

perceptrons in first hidden 
layer. 

ff_net->n_links[i].weight Initial weight for the ith 
link in network. After the 
training has completed the 
structure menber contains 
the weight used for 
forecasting. 

ff_net->n_nodes[i].bias Initial bias value for the ith 
node. After the training 
has completed the bias 
value is updated. 

Table 3. Structure Members and Their Descriptions 

Nodes are numbered starting at zero with the input nodes, then the hidden layer 
perceptrons and finally the output perceptrons.   
Layers are numbered starting at zero with the input layer, then the hidden layers and 
finally the output layer.  If there are zero hidden layers, the output layer is numbered 
one. 
Use function imsls_f_mlff_network_free to free memory allocated by 
imsls_f_mlff_network_init.  

Examples  

Example 1 
This code fragment creates a single-layer feedforward network.  The network inputs 
are directly connected to the output perceptrons.  The output perceptrons use the 
default linear activation function and default bias values of 0.0. 
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Figure 13- 8:  A Single-Layer Feedforward Neural Net 

 
#include "imsls.h" 
void main() 
{ 
    Imsls_f_NN_Network *ffnet; 
    float *stats; 
    int n_obs= 100, n_cat=2, n_cont=1; 
 
    /* Data for categorical,continuous, and output omitted  
       See imsls_f_mlff_network_trainer Example 1 for a complete  
       source code example */ 
       … 
  
 
    ffnet = imsls_f_mlff_network_init(3,2); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_ALL, 0); 
 
    stats = imsls_f_mlff_network_trainer(ffnet, n_obs, n_cat, n_cont, 
  categorical,continuous, output,0); 
 
    imsls_f_mlff_network_free(ffnet); 
 
} 

Example 2 
This code fragment creates a two-layer feedforward network with four inputs, one 
hidden layer with three perceptrons and two outputs. 
Since the default activation function is linear for output and logistic for the hidden 
layers, to create a network that uses only linear activation you must specify the linear 
activation for each hidden layer in the network.  This code fragment demonstrates how 
to change the activation function and bias values for hidden and output layer 
perceptrons as shown in Figure 13- 9 below. 
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Figure 13- 9: A 2-layer, Feedforward Network with 4 Inputs and 2 Outputs 

 
#include "imsls.h" 
void main() 
{ 
    Imsls_f_NN_Network *ffnet; 
    float *stats; 
    int n_obs= 100, n_cat=5, n_cont=1; 
    int hidActFcn[3] ={IMSLS_LINEAR, IMSLS_LINEAR, IMSLS_LINEAR}; 
    int outbias[1] = {1.0}; 
    int hidbias[3] = {1.0, 1.0, 1.0}; 
 
    /* Data for categorical,continuous, and output Omitted  
       See imsls_f_mlff_network_trainer Example 1 for a complete  
       source code example */ 
       … 
 
 
    ffnet = imsls_f_mlff_network_init(4,2); 
    imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 3, 
        IMSLS_ACTIVATION_FCN, 1, &hidActFcn, 
        IMSLS_BIAS, 2, &outbias, 
        IMSLS_LINK_ALL,  0); 
    imsls_f_mlff_network(ffnet, IMSLS_BIAS, 1, &hidbias, 0); 
 
 
    stats = imsls_f_mlff_trainer(ffnet, n_obs, n_cat, n_cont, 
           categorical,continuous, output, 
                                  0); 
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    imsls_f_mlff_network_free(ffnet); 
} 

 

Example 3 
This example creates a three-layer feedforward network with six input nodes and they 
are not all connected to every node in the first hidden layer. 
Note also that the four perceptrons in the first hidden layer are not connected to every 
node in the second hidden layer, and the perceptrons in the second hidden layer are not 
all connected to the two outputs. 
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Figure 13- 10: This network uses a total of nine perceptrons to produce two forecasts 

 from six input attributes. 

Links among the input nodes and perceptrons can be created using one of several 
approaches.  If all inputs are connected to every perceptron in the first hidden layer, 
and if all perceptrons are connected to every perceptron in the following layer, which is 
a standard architecture for feed forward networks, then a call to the IMSLS_LINK_ALL 
method can be used to create these links. 
However, this example does not use that standard configuration.  Some links are 
missing.  The keyword IMSLS_LINK_NODE can be used is to construct individual links 
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or an alternative approach is to first create all links and then remove those that are not 
needed.  The code fragment below illustrates this approach. 
 

#include "imsls.h" 
void main() 
{ 
    Imsls_f_NN_Network *ffnet; 
    float *stats; 
    int n_obs= 100, n_cat=4, n_cont=2; 

 
    ffnet = imsls_f_mlff_network_init(6,2); 
    /* Create 2 hidden layers and link all nodes 0 */ 
    imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 4, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 3, 
        IMSLS_LINK_ALL,  0); 
    /* Remove unwanted links from Input 0 */ 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,8,0, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,9,0, 0); 
    /* Remove unwanted links from Input 1 */ 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,9,1, 0); 
    /* Remove unwanted links from Input 2 */ 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,6,2, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,9,2, 0); 
    /* Remove unwanted links from Input 3*/ 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,6,3, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,7,3, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,8,3, 0); 
    /* Remove unwanted links from Input 4 */ 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,6,4, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,7,4, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,8,4, 0); 
    /* Remove unwanted links from Input 5 */ 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,6,5, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,7,5, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,8,5, 0); 
    /* Add link from Input 0 to Output Perceptron 0 */ 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,13,0, 0); 
   
    /* Remove unwanted links between hidden Layer 1 and hidden layer 2 */ 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,11,8, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,10,9, 0); 
 
    /* Remove unwanted links between hidden Layer 2 and output layer */ 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,14,10, 0); 
 
    stats = imsls_f_network_trainer(ffnet, n_obs, n_cat, n_cont, 
             categorical,continuous, output, 
                                    0); 
 
    imsls_f_mlff_network_free(ffnet); 
} 

Another approach is to use keywords LINK_NODE and LINK_LAYER to combine links 
between the two hidden layers, create individual links, and remove the links that are 
not needed.  The following code fragment illustrates this approach: 
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#include "imsls.h" 
void main() 
{ 
    Imsls_f_NN_Network *ffnet; 
    double *stats; 
    int n_obs= 100, n_cat=4, n_cont=2; 
 
    /* Data for categorical,continuous, and output Omitted  
       See imsls_network_trainer Example 1 for complete  
       source code example */ 
       … 
 
 
    ffnet = imsls_f_mlff_network_init(6,2); 
    imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 4, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 3, 0); 
 
    /* Link input attributes to first hidden layer */ 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,6,0, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,7,0, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,6,1, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,7,1, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,8,1, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,7,2, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,8,2, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,9,3, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,9,4, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_NODE,9,5, 0); 
 
    /* Link hidden layer 1 to hidden layer 2 then remove unwanted links */ 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_LAYER,2,1, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,11,8, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,10,9, 0); 
 
    /* Link hidden layer 2 to output layer then remove unwanted links */ 
    imsls_f_mlff_network(ffnet, IMSLS_LINK_LAYER,3,2, 0); 
    imsls_f_mlff_network(ffnet, IMSLS_REMOVE_LINK,14,10, 0); 
 
 
    stats = imsls_f_mlff_network_trainer(ffnet, n_obs, n_cat, n_cont, 

   categorical,continuous, output, 
                                    0); 
 
    imsls_f_mlff_network_free(ffnet); 
} 

mlff_network_trainer 
Trains a multilayered feedforward neural network.  

Synopsis 
#include <imsls.h> 
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float *imsls_f_mlff_network_trainer (Imsls_f_NN_Network *ff_net,   
int  n_observations,  int n_categorical, int n_continuous,  
int categorical[],  float  continuous[],  float output[], ..., 0) 

The type double function is imsls_d_mlff_network_trainer. 

Return Value 
An array of length 5 containing the summary statistics from the network training, 
organized as follows: 
 
z[0] = Error sum of squares at the optimum 
z[1] = Total number of Stage I iterations 
z[2] = Smallest error sum of squares after Stage I training  
z[3] = Total number of Stage II iterations 
z[4] = Smallest error sum of squares after Stage II training 

If training is unsuccessful, NULL is returned. 

Required Arguments 

Imsls_f_NN_Network *ff_net   (Input/Output) 
Pointer to a structure of type Imsls_f_NN_Network containing the feedforward 
network.  See imsls_f_mlff_network. On return, the weights and bias 
values are updated.  

int n_observations  (Input) 
Number of network training patterns.  

int n_categorical (Input) 
Number of categorical attributes.  n_categorical +  n_continuous must 
equal  n_inputs, where n_inputs is the number of input attributes in the 
network. n_inputs = ff_net->layers[0].n_nodes. For more details, 
see imsls_f_mlff_network. 

int n_continuous (Input) 
Number of continuous attributes.  n_categorical + n_continuous must 
equal n_inputs, where n_inputs is the number of input attributes in the 
network. n_inputs = ff_net->layers[0].n_nodes. For more details, 
see imsls_f_mlff_network. 

int categorical[] (Input) 
Array of size n_observations by n_categorical containing the input 
training patterns.  Each row of categorical contains a training pattern.    

float continuous[] (Input) 
Array of  size n_observations by  n_continuous containing the input 
training patterns.  Each row of continuous contains a training pattern.  

float output[]  (Input) 
Array of size n_observations by n_outputs containing the output training 
patterns, where n_outputs is the number of output perceptrons in the network. 
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n_outputs = ff_net->layers[ff_net->n_layers-1].n_nodes. For 
more details, see imsls_f_mlff_network.  

Synopsis with Optional Arguments 
#include <imsls.h>  

float *imsls_f_mlff_network_trainer (Imsls_f_NN_Network *ff_net,  
int n_observations , int n_categorical, int n_continuous,  
float categorical[], int continuous[], float output[], 
IMSLS_STAGE_I, int n_epochs, int epoch_size,   
IMSLS_NO_STAGE_II, 
IMSLS_MAX_STEP, float max_step,  
IMSLS_MAX_ITN, int max_itn,  
IMSLS_MAX_FCN, int max_fcn,  
IMSLS_REL_FCN_TOL, float rfcn_tol,  
IMSLS_GRAD_TOL, float grad_tol,  
IMSLS_TOLERANCE, float tolerance,  
IMSLS_PRINT,   
IMSLS_RESIDUAL, float *residuals,  
IMSLS_RESIDUAL_USER, float residuals[],  
IMSLS_GRADIENT, float *gradients,  
IMSLS_GRADIENT_USER, float gradients[],  
IMSLS_FORECASTS, float *forecasts,  
IMSLS_FORECASTS_USER, float forecasts[],  
IMSLS_WEIGHTS, float *weights,  
IMSLS_WEIGHTS_USER, float weights[],  
IMSLS_RETURN_USER, float z[], 
 0) 

Optional Arguments 

IMSLS_STAGE_I, int   n_epochs, int epoch_size  (Input) 
Argument  n_epochs is the number epochs used for Stage I training and 
argument epoch_size is the number of observations used during each epoch.   
If epoch training is not needed, set epoch_size = n_observations and 
n_epochs=1.    
Default: n_epochs=15, epoch_size = n_observations. 

IMSLS_NO_STAGE_II  (Input) 
Specifies no Stage II training is performed.   
Default: Stage II training is performed. 

IMSLS_MAX_STEP, float max_step    (Input) 
Maximum allowable step size in the optimizer.   
Default: max_step = 1000 

IMSLS_MAX_ITN, int max_itn  (Input) 
Maximum number of iterations in the optimizer, per epoch.   
Default: max_itn=1000  
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IMSLS_MAX_FCN, int max_fcn  (Input) 
Maximum number of function evaluations in the optimizer, per epoch.   
Default: max_fcn=400  

IMSLS_REL_FCN_TOL, float rfcn_tol   (Input) 
Relative function tolerance in the optimizer. 
Default: rfcn_tol = max (10-10, ε2/3), max (10-20, ε2/3) in double. 

IMSLS_GRAD_TOL, float grad_tol   (Input) 
Scaled gradient tolerance in the optimizer.  
Default: = εgrad_tol , 3 ε in double where ε is the machine precision. 

IMSLS_TOLERANCE, float tolerance   (Input) 
Absolute accuracy tolerance for the sum of squared errors in the optimizer.   
Default: tolerance = 0.1 

IMSLS_PRINT   (Input) 
Printing is performed.  
Default:  No printing is performed. 

IMSLS_RESIDUAL float **residuals   (Output) 
The address of a pointer to an array with  n_observations by n_outputs 
containing the residuals for each observation in the training data, where 
n_outputs is the number of output perceptrons in the network.  
n_outputs = ff_net->layers[ff_net->n_layers-1].n_nodes.  

IMSLS_RESIDUAL_USER float residuals[]   (Output) 
Storage for array residuals is provided by user. See IMSLS_RESIDUAL.  

IMSLS_GRADIENT float **gradients   (Output) 
The address of a pointer gradients to an array of size  
n_links + n_nodes – n_inputs to store the gradients for each weight 
found at the optimum training stage, where n_links = ffnet->n_links, 
n_nodes = ff_net->n_nodes, and  
n_inputs = ff_net->layers[0].nodes. 

IMSLS_GRADIENT_USER float gradients[]   (Output) 
Storage for array gradients is provided by user. See IMSLS_GRADIENT.    

IMSLS_FORECASTS float **forecasts   (Output) 
The address of a pointer forecasts to an array of size n_observations by 
n_outputs, where n_outputs is the number of output perceptrons in the 
network.  
n_outputs = ff_net->layers[ff_net->n_layers-1].n_nodes. The 
values of the ith row are the forecasts for the outputs for the ith training 
pattern. 

IMSLS_FORECASTS_USER float forecasts[]   (Output) 
Storage for array forecasts is provided by user. See IMSLS_FORECASTS.  

IMSLS_RETURN_USER, float z[]   (Output) 
User-supplied array of length 5.  Upon completion, z contains the return array 
of training statistics. 
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Description 
Function imsls_f_mlff_network_trainer trains a multilayered feedforward 
neural network returning the forecasts for the training data, their residuals, the 
optimum weights and the gradients associated with those weights.  Linkages among 
perceptrons allow for skipped layers, including linkages between inputs and 
perceptrons. The linkages and activation function for each perceptron, including output 
perceptrons, can be individually configured. For more details, see optional arguments 
IMSLS_LINK_ALL, IMSLS_LINK_LAYER, and IMSLS_LINK_NODE in  
imsls_f_mlff_network. 

Training Data 
Neural network training patterns consist of the following three types of data: 
1.   categorical input attributes 

2.   continuous input attributes 

3.   continuous output classes 

The first data type contains the encoding of any nominal input attributes.  If binary 
encoding is used, this encoding consists of creating columns of zeros and ones for each 
class value associated with every nominal attribute.  If only one attribute is used for 
input, then the number of columns is equal to the number of classes for that attribute.  
If more columns appear in the data, then each nominal attribute is associated with 
several columns, one for each of its classes. 
Each column consists of zeros, if that classification is not associated with this case, 
otherwise, one if that classification is associated. Consider an example with one 
nominal variable and two classes: male and female (male, male, female, male, female).  
With binary encoding, the following matrix is sent to the training engine to represent 
this data: 

 

1 0
1 0
0 1
1 0
0 1

categoricalAtt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Continuous input and output data are passed to the training engine using two double 
precision arrays: continuous and outputs.  The number of rows in each of these 
matrices is n_observations.  The number of columns in continuous and outputs, 
corresponds to the number of input and output variables, respectively. 

Network Configuration 
The network configuration consists of the following:  
• the number of inputs and outputs  
• the number of hidden layers 



 
 
 
 

 
 

Chapter 13: Neural Networks mlff_network_trainer • 949  

 

 

 

• a description of the number of perceptrons in each layer  
• and a description of the linkages among the perceptrons   
This description is passed into imsls_f_mlff_network_trainer using the 
structure Imsls_f_NN_Network.  See imsls_f_mlff_network. 

Training Efficiency 
The training efficiency determines the time it takes to train the network. This is 
controlled by several factors.  One of the most important factors is the initial weights 
used by the optimization algorithm.  These are taken from the initial values provided in 
the structure Imsls_f_NN_Network, ff_net->links[i].weight.  Equally important 
are the scaling and filtering applied to the training data. 
In most cases, all variables, particularly output variables, should be scaled to fall within 
a narrow range, such as [0, 1].  If variables are unscaled and have widely varied ranges, 
then numerical overflow conditions can terminate network training before an optimum 
solution is calculated.   

Output 
Output from imsls_f_mlff_network_trainer consists of scaled values for the 
network outputs, a corresponding forecast array for these outputs, a weights array for 
the trained network, and the training statistics.  The Imsls_f_NN_Network structure is 
updated with the weights and bias values and can be used as input to 
imsls_f_mlff_network_forecast. For more details about the weights and bias 
values, see Table 3.  

Examples 

Example 1 
This example trains a two-layer network using 100 training patterns from one nominal 
and one continuous input attribute.  The nominal attribute has three classifications 
which are encoded using binary encoding.  This results in three binary network input 
columns.  The continuous input attribute is scaled to fall in the interval [0,1]. 
The network training targets were generated using the relationship: 

Y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4,  

where X1, X2, X3 are the three binary columns, corresponding to the categories 1-3 of 
the nominal attribute, and X4 is the scaled continuous attribute. 
The structure of the network consists of four input nodes and two layers, with three 
perceptrons in the hidden layer and one in the output layer.  The following figure 
illustrates this structure: 
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Figure 13- 11: A 2-layer, Feedforward Network with 4 Inputs and 1 Output 

There are a total of 15 weights and 4 bias weights in this network.  The activation 
functions are all linear.   
Since the target output is a linear function of the input attributes, linear activation 
functions guarantee that the network forecasts will exactly match their targets.  Of 
course, the same result could have been obtained using multiple regression.  Printing is 
turned on to show progress during the training session.  

 
#include "imsls.h" 
#include <stdio.h> 
 
void main() 
{ 
    /* A 2D matrix of values for the categorical training 
    attribute.  In this example,  the single categorical 
    attribute has 3 categories that are encoded using binary 
    encoding for input into the network.   
 
    {1,0,0} = category 1 
    {0,1,0} = category 2 
    {0,0,1} = category 3 
    */ 
    int categorical[300] =  
    { 
        1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0, 
        1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0, 
        1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0, 
        1,0,0,1,0,0,1,0,0,1,0,0,1,0,0, 
 
        0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0, 
        0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0, 
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        0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0, 
 
        0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1, 
        0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1, 
        0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,0,0,1, 
        0,0,1,0,0,1,0,0,1,0,0,1,0,0,1 
    }; 
 
    /* A matrix of values for the continuous training attribute */ 
    float continuous[100] = { 
        4.007054658,7.10028447,4.740350984,5.714553211,6.205437459, 
        2.598930065,8.65089967,5.705787357,2.513348184,2.723795955, 
        4.1829356,1.93280416,0.332941608,6.745567628,5.593588463, 
        7.273544478,3.162117939,4.205381208,0.16414745,2.883418275, 
        0.629342241,1.082223406,8.180324708,8.004894314,7.856215418, 
        7.797143157,8.350033996,3.778254431,6.964837082,6.13938006, 
        0.48610387,5.686627923,8.146173848,5.879852653,4.587492779, 
        0.714028533,7.56324211,8.406012623,4.225261454,6.369220241, 
        4.432772218,9.52166984,7.935791508,4.557155333,7.976015058, 
        4.913538616,1.473658514,2.592338905,1.386872932,7.046051685, 
        1.432128376,1.153580985,5.6561491,3.31163251,4.648324851, 
        5.042514515,0.657054195,7.958308093,7.557870384,7.901990083, 
        5.2363088,6.95582150,8.362167045,4.875903563,1.729229471, 
        4.380370223,8.527875685,2.489198107,3.711472959,4.17692681, 
        5.844828801,4.825754155,5.642267843,5.339937786,4.440813223, 
        1.615143829,7.542969339,8.100542684,0.98625265,4.744819569, 
        8.926039258,8.813441887,7.749383991,6.551841576,8.637046998, 
        4.560281415,1.386055087,0.778869034,3.883379045,2.364501589, 
        9.648737525,1.21754765,3.908879368,4.253313879,9.31189696, 
        3.811953836,5.78471629,3.414486452,9.345413015,1.024053777 
    }; 
    /* A 2D matrix containing the training outputs for this network. 
    In this case there is an exact linear relationship between these  
    outputs and the inputs: output = 10*X1 +20*X2 + 30*X3 +2*X4,  
    where X1-X3 are the categorical variables and X4 is the continuous 
    attribute variable.   Output is unscaled. 
    */ 
    float output[100];   
    Imsls_f_NN_Network *ffnet; 
    float *stats; 
    int n_obs= 100, n_cat=3, n_cont=1; 
    int i; 
    float *residuals, *forecasts, *weights; 
    float bias, coef1, coef2, coef3, coef4; 
    int hidActFcn[3] = {IMSLS_LINEAR,IMSLS_LINEAR,IMSLS_LINEAR}; 
 
    /* Scale continuous attribute into the interval [0, 1]  
    and generate outputs */ 
    for(i=0; i < 100; i++)  
    { 
        continuous[i] = continuous[i]/10.0; 
        output[i] = (10 * categorical[i*3]) + (20 * categorical[i*3+1]) + 
            (30 * categorical[i*3+2]) + (20 * continuous[i]); 
    } 
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    /* Create network */ 
    ffnet = imsls_f_mlff_network_init(4,1); 
    imsls_f_mlff_network(ffnet, IMSLS_CREATE_HIDDEN_LAYER, 3, 
        IMSLS_ACTIVATION_FCN, 1, &hidActFcn, 
        IMSLS_LINK_ALL,  0); 
 
    /*  Set initial weights */ 
    for (i=0; i<ffnet->n_links; i++) 
    { 
        /* hidden layer 1 */ 
        if (ffnet->nodes[ffnet->links[i].to_node].layer_id == 1) 
            ffnet->links[i].weight = .25; 
        /* output layer */ 
        if (ffnet->nodes[ffnet->links[i].to_node].layer_id == 2) 
            ffnet->links[i].weight = .33; 
    } 
 
    /* Initialize seed for consisten results */ 
    imsls_random_seed_set(12345); 
    stats = imsls_f_mlff_network_trainer(ffnet, n_obs, n_cat, n_cont, 
        categorical,continuous, output, 
        IMSLS_STAGE_I, 10, 100, 
        IMSLS_MAX_FCN, 1000, 
        IMSLS_REL_FCN_TOL, 1.0e-20, 
        IMSLS_GRAD_TOL, 1.0e-20, 
        IMSLS_MAX_STEP, 5.0, 
        IMSLS_TOLERANCE, 1.0e-5, 
        IMSLS_PRINT, 
        IMSLS_RESIDUAL, &residuals, 
        IMSLS_FORECASTS, &forecasts, 
        0); 
 
    printf("Predictions for Last Ten Observations: \n"); 
 
    for(i=90; i < 100; i++){ 
        printf("observation[%d] %f Prediction %f Residual %f \n", i,         
output[i], 
            forecasts[i], residuals[i]); 
    } 
    /* hidden layer nodes bias value * link weight */ 
    bias   = ffnet->nodes[ffnet->n_nodes-4].bias * ffnet->links[12].weight +  
        ffnet->nodes[ffnet->n_nodes-3].bias * ffnet->links[13].weight +  
        ffnet->nodes[ffnet->n_nodes-2].bias * ffnet->links[14].weight; 
    bias  += ffnet->nodes[ffnet->n_nodes-1].bias;  /* the bias of the output 
node */ 
    coef1  = ffnet->links[0].weight * ffnet->links[12].weight; 
    coef1 += ffnet->links[4].weight * ffnet->links[13].weight; 
    coef1 += ffnet->links[8].weight * ffnet->links[14].weight; 
    coef2  = ffnet->links[1].weight * ffnet->links[12].weight; 
    coef2 += ffnet->links[5].weight * ffnet->links[13].weight; 
    coef2 += ffnet->links[9].weight * ffnet->links[14].weight; 
    coef3  = ffnet->links[2].weight * ffnet->links[12].weight; 
    coef3 += ffnet->links[6].weight * ffnet->links[13].weight; 
    coef3 += ffnet->links[10].weight * ffnet->links[14].weight; 
    coef4  = ffnet->links[3].weight * ffnet->links[12].weight; 
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    coef4 += ffnet->links[7].weight * ffnet->links[13].weight; 
    coef4 += ffnet->links[11].weight * ffnet->links[14].weight; 
    coef1 += bias; 
    coef2 += bias; 
    coef3 += bias; 
 
    printf("Bias: %f \n", bias);     
    printf("X1: %f \n", coef1);   
    printf("X2: %f \n", coef2);   
    printf("X3: %f \n", coef3);   
    printf("X4: %f \n", coef4); 
 
    imsls_f_mlff_network_free(ffnet); 
 
} 

Output 
 
TRAINING PARAMETERS: 
  Stage II Opt.   = 1  
  n_epochs        = 10  
  epoch_size      = 100  
  max_itn         = 1000  
  max_fcn         = 1000  
  max_step        = 5.000000  
  rfcn_tol        = 1e-20  
  grad_tol        = 1e-20  
  tolerance       = 0.000010  
 
STAGE I TRAINING STARTING  
Stage I: Epoch 1 - Epoch Error SS = 3.57886e-10 (Iterations=34) 
Stage I Training Converged at Epoch = 1  
 
 
STAGE I FINAL ERROR SS = 0.000000  
 
OPTIMUM WEIGHTS AFTER STAGE I TRAINING:  
weight[0] = 0.262463    weight[1] = 1.30687     weight[2] = 1.32345     
weight[3] = 0.929833  
weight[4] = -1.40295    weight[5] = 1.46973     weight[6] = 4.50657     
weight[7] = 6.25732  
weight[8] = 2.05971     weight[9] = 2.55983     weight[10] = 3.40746    
weight[11] = 3.52705  
weight[12] = 0.371129   weight[13] = 3.43777    weight[14] = -0.526312  
weight[15] = 1.41332  
weight[16] = 4.33401    weight[17] = 6.28003    weight[18] = 3.69105  
 
STAGE I TRAINING CONVERGED 
STAGE I ERROR SS = 0.000000  
 
 
GRADIENT AT THE OPTIMUM WEIGHTS  
g[0] =       0.000001         weight[0] =    0.262463  
g[1] =       -0.000023        weight[1] =    1.306865  
g[2] =       0.000027         weight[2] =    1.323447  
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g[3] =       0.000007         weight[3] =    0.929833  
g[4] =       0.000010         weight[4] =    -1.402949  
g[5] =       -0.000216        weight[5] =    1.469729  
g[6] =       0.000249         weight[6] =    4.506571  
g[7] =       0.000063         weight[7] =    6.257323  
g[8] =       -0.000002        weight[8] =    2.059708  
g[9] =       0.000033         weight[9] =    2.559830  
g[10] =      -0.000038        weight[10] =   3.407457  
g[11] =      -0.000010        weight[11] =   3.527051  
g[12] =      0.000049         weight[12] =   0.371129  
g[13] =      0.000399         weight[13] =   3.437771  
g[14] =      0.000235         weight[14] =   -0.526312  
g[15] =      0.000005         weight[15] =   1.413319  
g[16] =      0.000043         weight[16] =   4.334013  
g[17] =      -0.000007        weight[17] =   6.280032  
g[18] =      0.000012         weight[18] =   3.691053  
 
Training Completed   
 
Predictions for Last Ten Observations:  
observation[90] 49.297478 Prediction 49.297482 Residual 0.000004  
observation[91] 32.435097 Prediction 32.435097 Residual 0.000000  
observation[92] 37.817757 Prediction 37.817760 Residual 0.000004  
observation[93] 38.506630 Prediction 38.506630 Residual 0.000000  
observation[94] 48.623795 Prediction 48.623802 Residual 0.000008  
observation[95] 37.623909 Prediction 37.623913 Residual 0.000004  
observation[96] 41.569431 Prediction 41.569435 Residual 0.000004  
observation[97] 36.828972 Prediction 36.828976 Residual 0.000004  
observation[98] 48.690826 Prediction 48.690826 Residual 0.000000  
observation[99] 32.048107 Prediction 32.048107 Residual 0.000000  
Bias: 15.809660  
X1: 9.999999  
X2: 19.999996  
X3: 30.000000  
X4: 20.000002   

mlff_network_forecast 
Calculates forecasts for trained multilayered feedforward neural networks. 

Synopsis 
#include <imsls.h> 
float *imsls_f_mlff_network_forecast (Imsls_f_NN_Network *ff_net,   

int n_categorical,  int n_continuous,   
int categorical[],  float continuous[], ..., 0) 

The type double function is imsls_d_mlff_network_forecast. 

Return Value 
Pointer to an array of size n_outputs containing the forecasts, where n_outputs is 
the number of output perceptrons in the network.  
n_outputs = ff_net->layers[ff_net->n_layers-1].n_nodes.  
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Required Arguments 

Imsls_f_NN_Network *ff_net   (Input) 
Pointer to a structure of type Imsls_f_NN_Network containing the trained 
feedforward network.  See imsls_f_mlff_network.  

int n_categorical   (Input) 
Number of categorical attributes.  

int n_continuous   (Input) 
Number of continous attributes.   

int categorical[]   (Input) 
Array of size n_categorical containing the categorical input variables.   

float continuous[]   (Input) 
Array of size n_continuous containing the continuous input variables.  

Synopsis with Optional Arguments 
#include <imsls.h>  
float *imsls_f_mlff_network_forecast (Imsls_f_NN_Network *ff_net,  

int n_categorical,  int n_continuous,  int categorical[],  
float continuous[],  
IMSLS_RETURN_USER, float forecasts[],   
0) 

Optional Arguments 
IMSLS_RETURN_USER, float  forecasts[]  (Output) 

If specified, the forecasts for the trained network is stored in array 
forecasts of size n_outputs, where n_outputs is the number of 
perceptrons in the network. 
n_outputs = ff_net->layers[ff_net->n_layers -1].n_nodes.  

Description 
Function imsls_f_mlff_network calculates a forecast for a previously trained 
multilayered feedforward neural network using the same network structure and scaling 
applied during the training.   The structure Imsls_f_NN_Network describes the network 
structure used to originally train the network. The weights, which are the key output 
from training, are used as input to this routine.  The weights are stored in the 
Imsls_f_NN_Network structure.  
In addition, two one-dimensional arrays are used to describe the values of the 
categorical and continuous attributes that are to be used as network inputs for 
calculating the forecast. 
Function imsls_f_mlff_network returns a forecast, calculated using the network 
input attributes provided.   

Training Data 
Neural network training data consist of the following three types of data: 
1. categorical input attribute data 
2. continuous input attribute data 
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3. continuous output data 
The first data type contains the encoding of any nominal input attributes.  If binary 
encoding is used, this encoding consists of creating columns of zeros and ones for each 
class value associated with every nominal attribute.  If only one attribute is used for 
input, then the number of columns is equal to the number of classes for that attribute.  
If more columns appear in the data, then each nominal attribute is associated with 
several columns, one for each of its classes. 
Each column consists of zeros, if that classification is not associated with this case, 
otherwise, one if that classification is associated.  Consider an example with one 
nominal variable and two classes: male and female (male, male, female, male, female).  
With binary encoding, the following matrix is sent to the training engine to represent 
this data: 

1 0
1 0
0 1
1 0
0 1

categoricalAtt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Continuous input and output data are passed to the training engine using two double 
precision arrays: continuous and outputs.  The number of rows in each of these 
matrices is n_observations.  The number of columns in continuous and outputs, 
corresponds to the number of input and output variables, respectively. 

Network Configuration 
The configuration of the network consists of a description of the number of perceptrons 
for each layer, the number of hidden layers, the number of inputs and outputs, and a 
description of the linkages among the perceptrons.  This description is passed into this 
training routine through the structure Imsls_f_NN_Network.  See 
imsls_f_mlff_network. 

Forecast Calculation 
The forecast is calculated from the input attributes, network structure and weights 
provided in the structure Imsls_f_NN_Network. 

Examples  

Example 1 
This example trains a two-layer network using 90 training patterns from one nominal 
and one continuous input attribute.  The nominal attribute has three classifications 
which are encoded using binary encoding.  This results in three binary network input 
columns.  The continuous input attribute is scaled to fall in the interval [0,1]. 
The network training targets were generated using the relationship: 

Y = 10*X1 + 20*X2 + 30*X3 + 2.0*X4,  



 
 
 
 

 
 

Chapter 13: Neural Networks mlff_network_forecast • 957  

 

 

 

where X1, X2, X3 are the three binary columns, corresponding to the categories 1-3 of 
the nominal attribute, and X4 is the scaled continuous attribute. 
The structure of the network consists of four input nodes ands two layers, with three 
perceptrons in the hidden layer and one in the output layer.  The following figure 
illustrates this structure: 

Hidden Layer

X4

X5

X6

X0

X1

X2

Input Layer

X3

Output Layer

X7 Y0

 
Figure 13- 12:  A 2-layer, Feedforward Network with 4 Inputs and 1 Output 

There are a total of 100 outputs.  Training the first 90 and forecasting the 10 and 
compare the forecasted values with the actual outputs. 

 
#include "imsls.h" 
#include <stdio.h> 
void 
main () 
{ 
  static int categorical[300] = { 
    1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 
    0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 
    0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 
    1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 
    0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 
    0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 
    0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 
    0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 
    1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 
    0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 
    1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 
    0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 
    0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 
    1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 
    0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 
  }; 
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  static float continuous[100] = { 
    4.007054658, 7.10028447, 4.740350984, 5.714553211, 6.205437459, 
    2.598930065, 8.65089967, 5.705787357, 2.513348184, 2.723795955, 
    4.1829356, 1.93280416, 0.332941608, 6.745567628, 5.593588463, 
    7.273544478, 3.162117939, 4.205381208, 0.16414745, 2.883418275, 
    0.629342241, 1.082223406, 8.180324708, 8.004894314, 7.856215418, 
    7.797143157, 8.350033996, 3.778254431, 6.964837082, 6.13938006, 
    0.48610387, 5.686627923, 8.146173848, 5.879852653, 4.587492779, 
    0.714028533, 7.56324211, 8.406012623, 4.225261454, 6.369220241, 
    4.432772218, 9.52166984, 7.935791508, 4.557155333, 7.976015058, 
    4.913538616, 1.473658514, 2.592338905, 1.386872932, 7.046051685, 
    1.432128376, 1.153580985, 5.6561491, 3.31163251, 4.648324851, 
    5.042514515, 0.657054195, 7.958308093, 7.557870384, 7.901990083, 
    5.2363088, 6.95582150, 8.362167045, 4.875903563, 1.729229471, 
    4.380370223, 8.527875685, 2.489198107, 3.711472959, 4.17692681, 
    5.844828801, 4.825754155, 5.642267843, 5.339937786, 4.440813223, 
    1.615143829, 7.542969339, 8.100542684, 0.98625265, 4.744819569, 
    8.926039258, 8.813441887, 7.749383991, 6.551841576, 8.637046998, 
    4.560281415, 1.386055087, 0.778869034, 3.883379045, 2.364501589, 
    9.648737525, 1.21754765, 3.908879368, 4.253313879, 9.31189696, 
    3.811953836, 5.78471629, 3.414486452, 9.345413015, 1.024053777 
  }; 
  static float output[100] = { 
    18.01410932, 24.20056894, 19.48070197, 21.42910642, 22.41087492, 
    15.19786013, 27.30179934, 21.41157471, 15.02669637, 15.44759191, 
    18.3658712, 13.86560832, 10.66588322, 23.49113526, 21.18717693, 
    24.54708896, 16.32423588, 18.41076242, 10.3282949, 15.76683655, 
    11.25868448, 12.16444681, 26.36064942, 26.00978863, 25.71243084, 
    25.59428631, 26.70006799, 17.55650886, 23.92967416, 22.27876012, 
    10.97220774, 21.37325585, 26.2923477, 21.75970531, 19.17498556, 
    21.42805707, 35.12648422, 36.81202525, 28.45052291, 32.73844048, 
    28.86554444, 39.04333968, 35.87158302, 29.11431067, 35.95203012, 
    29.82707723, 22.94731703, 25.18467781, 22.77374586, 34.09210337, 
    22.86425675, 22.30716197, 31.3122982, 26.62326502, 29.2966497, 
    30.08502903, 21.31410839, 35.91661619, 35.11574077, 35.80398017, 
    30.4726176, 33.91164302, 36.72433409, 29.75180713, 23.45845894, 
    38.76074045, 47.05575137, 34.97839621, 37.42294592, 38.35385362, 
    41.6896576, 39.65150831, 41.28453569, 40.67987557, 38.88162645, 
    33.23028766, 45.08593868, 46.20108537, 31.9725053, 39.48963914, 
    47.85207852, 47.62688377, 45.49876798, 43.10368315, 47.274094, 
    39.1205628, 32.77211017, 31.55773807, 37.76675809, 34.72900318, 
    49.29747505, 32.4350953, 37.81775874, 38.50662776, 48.62379392, 
    37.62390767, 41.56943258, 36.8289729, 48.69082603, 32.04810755 
  }; 
 
  /* 2D Array Definitions */ 
#define CATEGORICAL(i,j) categorical[i*n_cat+j] 
#define CATEGORICALOBS(i,j) categoricalObs[i*n_cat+j] 
 
  Imsls_f_NN_Network *ffnet; 
 
  float *stats; 
  int n_obs = 100, n_cat = 3, n_cont = 1; 
  int i, j; 
  float *forecasts; 
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  /*  for forecasting */ 
  int categoricalObs[3] = { 0, 0, 0 }; 
  float continuousObs[1] = { 0 }; 
  float x, y; 
  float forecast[5]; 
  float *cont; 
 
  /* Scale continuous attribute to the interval [0, 1] */ 
  cont = imsls_f_scale_filter (n_obs, continuous, 1, 
          IMSLS_SCALE_LIMITS, 0.0, 10.0, 0.0, 1.0, 0); 
 
 
  ffnet = imsls_f_mlff_network_init (4, 1); 
 
  imsls_f_mlff_network (ffnet, 
   IMSLS_CREATE_HIDDEN_LAYER, 3, IMSLS_LINK_ALL, 0); 
 
  for (i = 0; i < ffnet->n_links; i++) 
    { 
 
      /* hidden layer 1 */ 
      if (ffnet->nodes[ffnet->links[i].to_node].layer_id == 1) 
 { 
   ffnet->links[i].weight = .25; 
 } 
 
 
      /* output layer */ 
      if (ffnet->nodes[ffnet->links[i].to_node].layer_id == 2) 
 { 
   ffnet->links[i].weight = .33; 
 } 
 
    } 
 
  imsls_random_seed_set (12345); 
  stats = imsls_f_mlff_network_trainer (ffnet, n_obs - 10, n_cat,  
     n_cont, categorical, continuous, output, 
     0); 
 
  printf ("Predictions for Observations 90 to 100: \n"); 
 
  for (i = 90; i < 100; i++) 
    { 
      continuousObs[0] = continuous[i]; 
      for (j = 0; j < n_cat; j++) 
 { 
   CATEGORICALOBS (0, j) = CATEGORICAL (i, j); 
 } 
 
      forecasts = imsls_f_mlff_network_forecast (ffnet, n_cat, n_cont, 
       categoricalObs, 
       continuousObs, 0); 
 
      x = output[i]; 
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      y = forecasts[0]; 
      printf 
 ("observation[%d] %8.4f    Prediction %8.4f    Residual %8.4f \n", 
  i, x, y, x - y); 
 
    } 
 
 
  imsls_f_mlff_network_free (ffnet); 
#undef CATEGORICAL 
#undef CATEGORICALOBS 
} 

Output 
 

NOTE: Because multiple optima are possible during training, the output of 
this example can vary by platform.  
 
Predictions for Observations 90 to 100:  
 
observation[90]  49.2975    Prediction  43.8761    Residual   5.4213  
observation[91]  32.4351    Prediction  23.6643    Residual   8.7708  
observation[92]  37.8178    Prediction  30.4261    Residual   7.3916  
observation[93]  38.5066    Prediction  31.2768    Residual   7.2298  
observation[94]  48.6238    Prediction  43.1369    Residual   5.4869  
observation[95]  37.6239    Prediction  30.1860    Residual   7.4379  
observation[96]  41.5694    Prediction  35.0006    Residual   6.5688  
observation[97]  36.8290    Prediction  29.1978    Residual   7.6311  
observation[98]  48.6908    Prediction  43.2108    Residual   5.4800  
observation[99]  32.0481    Prediction  23.1740    Residual   8.8742  

scale_filter 
Scales or unscales continuous data prior to its use in neural network training, testing, or 
forecasting.  

Synopsis 
#include <imsls.h> 

float * imsls_f_scale_filter (int n_obs,  float x[], int method,   
      …,0) 

The type double function is imsls_d_scale_filter. 

Required Arguments 

int n_obs   (Input) 
Number of observations. 

float x[]   (Input) 
An array of length  n_obs.  The values in x are either the scaled or unscaled 
values of a  continuous variable.  Missing values are allowed, and are 
indicated by placing a NaN (not a number) in x.  See imsls_f_machine(6). 
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int method   (Input) 
The scaling method to apply to each variable.  The association of the value in 
method and the scaling algorithm is summarized in the table below.  The sign 
of method determines whether the values in x are scaled or unscaled. If 
method is positive then values in x are scaled.  If method is negative then 
values in x are unscaled.  

 
Method Algorithm 

0 No scaling. 

±1 Bounded scaling and unscaling. 

±2 Unbounded z-score scaling using the mean and standard deviation. 

±3 Unbounded z-score scaling using the median and mean absolute 
difference. 

±4 Bounded z-score scaling using the mean and standard deviation. 

±5 Bounded z-score scaling  using the median mean absolute difference. 

Return Value 
A pointer to an internally allocated array of length n_obs containing either the scaled 
or unscaled value of x, depending upon whether method is positive or negative, 
respectively.  If errors are encountered, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float *  imsls_f_scale_filter (int n_obs,  float x[],  int method, 

IMSLS_RETURN_USER,  float z[],  
IMSLS_SCALE_LIMITS,  float real_min,  float real_max,   
float target_min,  float target_max,  
IMSLS_SUPPLY_CENTER_SPREAD, float center, float spread,  
IMSLS_RETURN_CENTER_SPREAD, float *center,  
float *spread,  
 0) 

Optional Arguments 

IMSLS_RETURN_USER, float z[]   (Output) 
A user-supplied array of length n_obs containing either the scaled or unscaled 
values of x, depending upon whether method is positive or negative, 
respectively. 

IMSLS_SCALE_LIMITS, float real_min, float real_max, float target_min, 
float target_max   (Input) 
The real and target limits for x. This optional argument is required when 
bounded scaling is performed, i.e., method=±1,  ±4, or ±5. real_min is the 
lowest value expected for each input variable in x.  real_max is the largest 
value expected.  target_min is lowest value allowed for the output variable, 
z.  target_max is the largest value allowed for the output variable.   
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IMSLS_SUPPLY_CENTER_SPREAD, float center, float spread   (Input) 
The values center and spread  are only used for z-score scaling or 
unscaling of x, that is, when method is one of ±2, ±3, ±4, and ±5.  The value 
of center is either the mean or median, and the value of spread  is either 
the standard deviation or mean absolute difference.  When method is positive, 
this optional argument can be used to supply a user-defined center and spread 
rather than allowing imsls_f_scale_filter to compute the center and 
spread from the data in x.  When method is one of  -2, -3, -4, or -5, this 
optional argument must be used to supply the center and spread used during 
scaling.     

IMSLS_RETURN_CENTER_SPREAD, float *center, float *spread   (Output) 
Pointers to scalars containing the computed center and spread of x.  The 
values center and spread  are only used for z-score scaling or unscaling of 
x.  These methods, ±2, ±3, ±4, and ±5, require two numbers, either the mean 
or median, and either the standard deviation, or mean absolute difference.  
The value of  center is either the mean or median for x.  The value of  
spread is either the standard deviation or mean absolute difference.  

Description 
The function imsls_f_scale_filter is designed to either scale or unscale a 
continuous variable using one of four methods prior to their use as neural network 
input or output.   
The specific encoding computations employed are specified by argument method.   
Scaling limits are supplied with the optional argument IMSLS_SCALE_LIMITS, and are 
required  for the bounded scaling methods, i.e., method=±1,  ±4, or ±5. Bounded 
scaling ensures that the scaled values in the returned array fall between a lower and 
upper bound. 
If method=1 then the bounded method of scaling and unscaling is applied to x using 
the scaling limits in scale_limit. 
If method=±2, ±3, ±4, or ±5, then the z-score method of scaling is used.  These 
calculations are based upon the following scaling calculation: 

( )
b

aixiz −
=

][][
, 

where a is a measure of center for x, and b is a measure of the spread of x.   
If method=±2 or ±4, then by default  a and b are the arithmetic average and sample 
standard deviation of the training data.  These values can be overridden using the 
optional argument IMSLS_SUPPLY_CENTER_SPREAD. 

If method=±3 or ±5, then by default  a and b are the median and s~ , where s~  is a 
robust estimate of the population standard deviation: 

 0.6745
MADs =�

, where MAD is the Mean Absolute Deviation 



 
 
 
 

 
 

Chapter 13: Neural Networks scale_filter • 963  

 

 

 

{ { }}jMAD median x median x= −
. 

Again, the values of  a and b can be overridden using the optional argument 
IMSLS_SUPPLY_CENTER_SPREAD. 

Method ±1:  Bounded Scaling and Unscaling 
If method=1, then the optional argument IMSLS_SCALE_LIMITS is required and a 
scaling operation is conducted using the scale limits for x using the following 
calculation: 

( )[ ] [ ]z i r x i real_min target_min= − +
,  

where 

target_max target_minr
real_max real_min

−
=

− . 

If method=-1, then optional argument IMSLS_SCALE_LIMITS is required and an 
unscaling operation is conducted by inverting the following calculation: 

( )[ ]
[ ]

z i target_min
x i real_min

r
−

= +
. 

Method +2 or +3:  Unbounded z-score Scaling 
If method=2 or method=3, then a scaling operation is conducted using the scale limits 
of x using a z-score calculation: 

( )[ ]
[ ]

x i center
z i

spread
−

=
,  

If either center or spread are missing, (a NaN), then appropriate values are 
calculated from the non-missing values of x. If method=2, then center is set equal to 
the arithmetic average x , and spread is set equal to the sample standard deviation,  
s . 
If method=3, then center is set equal to the median m� , and center is set equal to 
the Mean Absolute Difference (MAD). 

Method -2 or -3: Unbounded z-score Unscaling 
If method=-2 or method=-3, then an unscaling operation is conducted using the 
inverse calculation for the equation shown in the above section, “Method +2 or +3:  
Unbounded z-score Scaling.” 

[ ] [ ]x i spread z i center= ⋅ +
. 
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For these values of method, missing values for center and spread are not allowed.  
If method=-2, then center and spread are assumed to be equal to the arithmetic 
average and standard deviation, respectively.  These values would normally be the 
same used in scaling the variable with method=+2.  If method= -3, then center and 
spread are assumed to be equal to the median and mean absolute difference, 
respectively.  These values would normally be the same used in scaling the variable 
with method=+3. 

Method +4 or +5: Bounded z-score Scaling 
This method is essentially the same as the z-score calculation described for 
method=+2 and method=+3 with additional scaling or unscaling using the scale 
limits.  If method=4, then the optional argument IMSLS_SCALE_LIMITS is required 
and a scaling operation is conducted using the scale limits for x using the  widely 
known z-score calculation: 

( )[ ]
[ ]

r x i center
z i r real_min target_min

spread
⋅ −

= − ⋅ +
. 

If either center or spread are missing, (a NaN), then appropriate values are 
calculated from the non-missing values in x.  If center is missing and method=+4, 
then center is set equal to the arithmetic average x , and spread is set equal to the 
Sample Standard Deviation, s . If center is missing and method=+5, then 
x_stats[i] is set equal to the median m~ , and spread is set equal to the MAD. 

In bounded scaling, if z[i] exceeds its bounds, it is set to the boundary it exceeded. 

Method -4 or -5:  Bounded z-score unscaling 
If method=-4 or method=-5, then the optional argument IMSLS_SCALE_LIMITS is 
required and an unscaling operation is conducted using the inverse calculation for the 
equation below. 

( )[ ]
[ ]

spread z i target_min
x i spread real_min center

r
⋅ −

= + ⋅ +
  

For these values of method, missing values for center and spread are not allowed.  
If method=-4, then center and spread are assumed to be equal to the arithemetic 
average and standard deviation, respectively.  These values would normally be the 
same used in scaling x with method=+4.  If method=-5, then center and spread are 
assumed to be equal to the median and mean absolute difference, respectively.  These 
values would normally be the same used in scaling the x with method=+5. 

Examples  

Example 1 
In this example two data sets are filtered using bounded z-score scaling.  

 
#include <imsls.h> 
void main() 
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{ 
    int n_obs=5; 
    float x1[] = {3.5, 2.4, 4.4, 5.6, 1.1}; 
    float x2[] = {3.1, 1.5, - 1.5, 2.4, 4.2}; 
    float *z1, *z2; 
    float *y1, *y2; 
    float center1, spread1; 
    float center2, spread2; 
 
    z1 = imsls_f_scale_filter(n_obs, x1, 4,  
         IMSLS_SCALE_LIMITS, -6.0, 6.0, -3.0, 3.0, 
         IMSLS_RETURN_CENTER_SPREAD, &center1, &spread1,  
         0); 
    z2 = imsls_f_scale_filter(n_obs, x2, 5,  
         IMSLS_SCALE_LIMITS, -3.0, 3.0, -3.0, 3.0, 
         IMSLS_RETURN_CENTER_SPREAD, &center2, &spread2,  
         0); 
 
    imsls_f_write_matrix("z1", n_obs, 1, z1, 0); 
    printf("Center = %f\nSpread = %f\n", center1, spread1); 
    imsls_f_write_matrix("z2", n_obs, 1, z2, 0); 
    printf("Center = %f\nSpread = %f\n", center2, spread2); 
     
    /* Un-scale z1 and z2. */ 
    y1 = imsls_f_scale_filter(n_obs, z1, -4,  
         IMSLS_SCALE_LIMITS, -6.0, 6.0, -3.0, 3.0, 
         IMSLS_SUPPLY_CENTER_SPREAD, center1, spread1,  
         0); 
    y2 = imsls_f_scale_filter(n_obs, z2, -5,  
         IMSLS_SCALE_LIMITS, -3.0, 3.0, -3.0, 3.0, 
         IMSLS_SUPPLY_CENTER_SPREAD, center2, spread2,  
         0); 
    imsls_f_write_matrix("y1", n_obs, 1, y1, 0); 
    imsls_f_write_matrix("y2", n_obs, 1, y2, 0); 

}  

Output 
3.  

     z1 
1      0.0287 
2     -0.2870 
3      0.2870 
4      0.6314 
5     -0.6601 
Center = 3.400000 
Spread = 1.742125 
  
     z2 
1       0.525 
2      -0.674 
3      -2.923 
4       0.000 
5       1.349 
Center = 2.400000 
Spread = 1.334342 
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     y1 
1         3.5 
2         2.4 
3         4.4 
4         5.6 
5         1.1 
  
     y2 
1         3.1 
2         1.5 
3        -1.5 
4         2.4 
5         4.2 

time_series_filter 
Converts time series data to the format required for processing by a neural network.  

Synopsis 
#include <imsls.h> 
float* imsls_f_time_series_filter (int n_obs, int n_var,  int max_lag,  

float x[],  …,0) 
The type double function is imsls_d_time_series_filter. 

Required Arguments 

int n_obs   (Input) 
Number of observations.  The number of observations must be greater than 
n_lags. 

int n_var   (Input) 
Number of variables (columns) in x.  The number of variables must be one or 
greater, n_var>0. 

int max_lag   (Input) 
The number of lags.  The number of lags must be one or greater, max_lag>0. 

float x[]   (Input) 
An array of size n_obs by n_var.  All data must be sorted in chronological 
order from most recent to oldest observations. 

Return Value 
A pointer to an internally allocated array of size (n_obs-max_lag) by 
n_var*(max_lag+1))  If errors are encountered, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float* imsls_f_time_series_filter (int n_obs,  int n_var, 

 int max_lag,  float x[], 
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IMSLS_RETURN_USER, float z[], 
0) 

Optional Arguments 
IMSLS_RETURN_USER, float z[]   (Output) 
User supplied array of size (n_obs-max_lag) by n_var*(max_lag+1) containing the 
filtered data. 

Description 
Function imsls_f_time_series_filter accepts a data matrix and lags every 
column to form a new data matrix.  The input matrix, x, contains n_var columns.  
Each column is transformed into (max_lag+1) columns by lagging its values.  
Since a lag of zero is always included in the output matrix z, the total number of lags is 
n_lags = max_lag+1.  
The output data array, z, can be represented symbolically as: 

z = |x(0) : x(1) : x(2) : … : x(max_lag)|,  

where x(i) is the ith lag of the incoming data matrix, x.  For example, if  
x={1, 2, 3, 4, 5} and n_var=1, then n_obs=5, and x(0)=x, x(1)={2, 3, 4, 5},  
x(2)={3, 4, 5}, etc. 
Consider, an example in which n_obs=5 and n_var=2 with all variables continuous 
input attributes.  It is assumed that the most recent observations are in the first row and 
the oldest are in the last row. 

1 6
2 7
3 8
4 9
5 10

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

If max_lag=1, then the number of columns will be n_var*(max_lag+1)=2*2=4, and 
the number of rows will be n_obs–max_lag=5-1=4:  

1 6 2 7
2 7 3 8
3 8 4 9
4 9 5 10

z

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

. 

If max_lag=2, then the number of columns will be n_var*(max_lag+1)=2*3=6. , and 
the number of rows will be n_obs–max_lag=5-2=3:  



 

 
 

968 • time_series_filter IMSL C Stat Library 

 

 

 

1 6 2 7 3 8
2 7 3 8 4 9
3 8 4 9 5 10

z
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Example 1 
In this example, the matrix x with 5 rows and 2 columns is lagged twice, i.e. 
max_lag=2. This produces an output two-dimensional matrix with  
5(n_obs-max_lag)=5-2=3 rows, but 2*3=6 columns. The first two columns 
correspond to lag=0, which simply places the original data into these columns. The 3rd 
and 4th columns contain the first lags of the original 2 columns and the 5th and 6th 
columns contain the second lags. Note that the number of rows for the output  matrix z 
is less than the number for the input matrix x.  
 

 
#include <imsls.h> 
void main () 
{ 
#define N_OBS 5 
#define N_VAR 2 
#define MAX_LAG 2 
  float x[N_OBS*N_VAR] = {1, 6, 
         2, 7, 
         3, 8, 
         4, 9, 
         5, 10}; 
 
 
  float *z; 
 
  z = imsls_f_time_series_filter(N_OBS, N_VAR, MAX_LAG, (float*)x, 0); 
  imsls_f_write_matrix("X", N_OBS, N_VAR, (float*)x, 0); 
  imsls_f_write_matrix("Z", N_OBS-MAX_LAG, N_VAR*(MAX_LAG+1), z, 0); 
} 

Output 
 
            X 
            1           2 
1           1           6 
2           2           7 
3           3           8 
4           4           9 
5           5          10 
  
                                    Z 
            1           2           3           4           5           6 
1           1           6           2           7           3           8 
2           2           7           3           8           4           9 
3           3           8           4           9           5          10 
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time_series_class_filter 
Converts time series data sorted within nominal classes in decreasing chronological 
order to a useful format for processing by a neural network.  

Synopsis 
#include <imsls.h> 
float* imsls_f_time_series_class_filter (int n_obs,  int n_lags,  

int n_classes, int i_class[], float x[], …,0) 
The type double function is imsls_d_time_series_class_filter. 

Required Arguments 

int n_obs   (Input) 
Number of observations.  The number of observations must be greater than 
n_lags. 

int n_lags   (Input) 
The number of lags.  The number of lags must be one or greater. 

int n_classes   (Input) 
The number of classes associated with these data.  The number of classes must 
be one or greater. 

int i_class[]   (Input) 
An array of length n_obs.  The ith element in i_class is equal to the class 
associated with the ith element of x. The classes must be numbered from 1 to 
n_classes. 

float x[]   (Input) 
A sorted array of length n_obs.  This array is assumed to be sorted first by 
class designations and then descending by chronological order, i.e., most 
recent observations appear first within a class. 

Return Value 
A pointer to an internally allocated array of size n_obs by n_lags columns.   If errors 
are encountered, then NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
float* imsls_f_time_series_class_filter (int n_obs,  int n_lags,  

int n_classes, int i_class[], float x[], 
IMSLS_RETURN_USER, float z[], 
IMSLS_LAGS, int lag[],  
0) 

The type double function is imsls_d_time_series_class_filter. 
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Optional Arguments 

IMSLS_RETURN_USER, float z[]   (Output) 
A user-supplied array of size n_obs by n_lags.  The ith column contains the 
lagged values of x for a lag equal to the number of lags in lag[i]. 

IMSLS_LAGS, int lag[]   (Input) 
An array of length n_lags.  The ith element in lag is equal to the lag 
requested for the ith column of z.  Every lag must be non-negative. 
Default:  lag[i]=i 

Description 
The function imsls_f_time_series_class_filter accepts a data array, x[], and 
returns a new data array, z[], containing n_lags columns, each containing a lagged 
version of x.   
The output data array, z, can be represented symbolically as: 

z = |x(0) : x(1) : x(2) : … : x(n_lags-1)|,  
where x(i) is the ith lagged column of the incoming data array, x.   Notice that  n_lags 
is the number of lags and not the maximum lag.  The maximum number of lags is 
max_lag= n_lags-1, unless the optional input log[] is given, the highest lag is 
max_lags.  If n_lags = 2 and the optional input log[] is not given, then the output 
array contains the lags 0, 1. 
Consider, an example in which n_obs=10, n_lags =2 and  

{1,2,3,4,5,6,7,8,9,10}Tx =
. 

If {0, 2}Tlag = and  

_ {1,1,1,1,1,1,1,1,1,1}Ti class =
. 

then, n_classes=1 and z would contain 2 columns and 10 rows: 

1 3
2 4
3 5
4 6
5 7
6 8
7 9
8 10
9

10

z

NaN
NaN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

. 
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Note that since lagT = [0,1], the first column of z is formed using a lag of zero and the 
second is formed using a lag of two.  A zero lag corresponds to no lag, which is why 
the first column of z in this example is equal to the original data in x.  
On the other hand, if the data were organized into two classes with 

_ {1,1,1,1,1, 2, 2,2,2,2}Ti class =
, 

then z is still a 2 by 10 matrix, but with the following values: 

1 3
2 4
3 5
4
5
6 8
7 9
8 10
9

10

NaN
NaNz

NaN
NaN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

The first 5 rows of z are the lagged columns for the first class, and the last five are the 
lagged columns for the second class. 

Example 1 
Suppose that the training data to the neural network consists of the following data 
matrix consisting of a single nominal variable coded into two binary columns and a 
single time series variable: 

0 1 2.1
0 1 2.3
0 1 2.4
0 1 2.5
1 0 1.1
1 0 1.2
1 0 1.3
1 0 1.4

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

In this case, n_obs=8 and n_classes=2.  If we wanted to lag the 3rd column by 2 
time lags, i.e., n_lags=2,  

{0,1}Tlag =
, 
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_ {1,1,1,1, 2, 2,2,2}Ti class =
, and 

{2.1, 2.3, 2.4, 2.5,1.1,1.2,1.3,1.4}Tx =
. 

The resulting data matrix would have 4 rows and 2 columns: 

[ ]

2.1 2.3
2.3 2.4
2.4 2.5
2.5(0) (1)
1.1 1.2
1.2 1.3
1.3 1.4
1.4

NaNz x x

NaN

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

 

void main(){ 

#define N_OBS 8 

#define N_LAGS 2 

        float x[N_OBS] = {2.1, 2.3, 2.4, 2.5, 1.1, 1.2, 1.3, 1.4}; 

        float *z; 

        int n_classes = 2; 

        int i_class[] =  {1,1,1,1,2,2,2,2}; 

        z = imsls_f_time_series_class_filter(N_OBS, N_LAGS, n_classes, 

                                             i_class, x,  

                                             0); 

        imsls_f_write_matrix("z", N_OBS, N_LAGS, (float*)z, 0); 

} 

Output 
 
               z 
             1            2 
1          2.1          2.3 
2          2.3          2.4 
3          2.4          2.5 
4          2.5  ........... 
5          1.1          1.2 
6          1.2          1.3 
7          1.3          1.4 
8          1.4  ........... 
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unsupervised_nominal_filter 
Converts nominal data into a series of binary encoded columns for input to a neural 
network. Optionally, it can also reverse the binary encoding, accepting a series of 
binary encoded columns and returning a single column of nominal classes. 

Synopsis 
#include <imsls.h> 
int* imsls_unsupervised_nominal_filter (int n_obs,  

int n_classes, int x[],  …, 0) 

Required Arguments 

int n_obs   (Input) 
Number of observations. 

int * n_classes   (Input/Output) 
A pointer to the number of classes in x[].  n_classes is output for 
IMSLS_ENCODE and input for IMSLS_DECODE.  

int x[]   (Input) 
A one or two-dimensional array depending upon whether encoding or 
decoding is requested.  If encoding is requested, x is an array of length n_obs 
containing the categories for a nominal variable numbered from 1 to 
n_classes.  If decoding is requested, then x is an array of size n_obs by 
n_classes.  In this case, the columns contain only zeros and ones that are 
interpreted as binary encoded representations for a single nominal variable.   

Return Value 
A pointer to an internally allocated array, z[].  The values in z are either the encoded 
or decoded values for x, depending upon whether IMSLS_ENCODE or IMSLS_DECODE 
is requested. If errors are encountered, NULL is returned. 

Synopsis with Optional Arguments 
#include <imsls.h> 
int* imsls_f_unsupervised_nominal_filter (int n_obs, int x[],  

IMSLS_RETURN_USER, int z[],  
IMSLS_ENCODE or  
IMSLS_DECODE,  
0) 

Optional Arguments 

IMSLS_ENCODE or IMSLS_DECODE  (Input) 
If IMSLS_ENCODE is specified, binary encoding is requested.  Classes must be 
numbered sequentially from 1 to n_classes. IMSLS_DECODE is used to 
request that x be decoded.  The values in each column should be zeros and 
ones.  The values in the ith column of x are associated with the ith class of the 
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nominal variable. 
Default:  IMSLS_ENCODE. 

IMSLS_RETURN_USER, int z[]   (Output) 
A user-supplied array of size n_obs by n_classes.  If IMSLS_DECODE is 
specified, then z should be length n_obs.  The value in z[i] is either the 
encoded or decoded value for x[i], depending upon whether IMSLS_ENCODE 
or IMSLS_DECODE is specified. 

Description 
The function imsls_unsupervised_nominal_filter is designed to either encode 
or decode nominal variables using a simple binary mapping.  

Binary Encoding:  IMSLS_ENCODE 
In this case, x[] is an input array to which a binary filter is applied.  Binary encoding 
takes each category in x[], and creates a column in z[], the output matrix, containing 
all zeros and ones.   A value of zero indicates that this category is not present and a 
value of one indicates that it is present. 
For example, if x[]={2, 1, 3, 4, 2, 4} then n_classes=4, and  

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

z

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Notice that the number of columns in z is equal to the number of distinct classes in x.  
The number of rows in z is equal to the length of x. 

Binary Decoding:  IMSLS_DECODE 
Binary decoding takes each column in x[], and returns the appropriate class in z[]. 
For example, if x[] is the same as described above: 

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 0 1

x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

then z[] would be returned as z[]={2, 1, 3, 4, 2, 4}.  Notice this is the same as the 
original array because classes are numbered sequentially from 1 to n_classes.  This 
ensures that the ith column of x[] is associated with the ith class in the output array. 
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#include <imsls.h> 
 
void main () 
{ 
#define N_OBS 7 
    int x[N_OBS] = {3, 3, 1, 2, 2, 1, 2}; 
    int *x2; 
    int *z, n_classes; 
    /* Binary Filtering. */ 
    z = imsls_unsupervised_nominal_filter(N_OBS, &n_classes, x, 0); 
 printf("n_classes = %d\n",n_classes); 
    imsls_i_write_matrix("X", N_OBS, 1, (int*)x, 0); 
    imsls_i_write_matrix("Z", N_OBS, n_classes, z, 0); 
    /* Binary Unfiltering. */ 
    x2 = imsls_unsupervised_nominal_filter(N_OBS, &n_classes, z,  
                                           IMSLS_DECODE, 0); 
    imsls_i_write_matrix("Unfiltering result", N_OBS, 1, x2, 0); 
 } 

Output 
 

7 n_classes = 3 
8   
9   X 
10 1   3 
11 2   3 
12 3   1 
13 4   2 
14 5   2 
15 6   1 
16 7   2 
17   
18       Z 
19     1   2   3 
20 1   0   0   1 
21 2   0   0   1 
22 3   1   0   0 
23 4   0   1   0 
24 5   0   1   0 
25 6   1   0   0 
26 7   0   1   0 
27   
28 Unfiltering result 
29        1   3 
30        2   3 
31        3   1 
32        4   2 
33        5   2 
34        6   1 
35        7   2 
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unsupervised_ordinal_filter 
Converts ordinal data into proportions.  Optionally, it can also reverse encoding, 
accepting proportions and converting them into ordinal values. 

Synopsis 
#include <imsls.h> 

void imsls_f_unsupervised_ordinal_filter (int n_obs,  
 int x[], float z[]…,0) 

The type double function is imsls_d_unsupervised_ordinal_filter. 

Required Arguments 

int n_obs   (Input) 
Number of observations. 

int x[]   (Input/Output) 
An array of length n_obs containing the classes for the ordinal data.  Classes 
must be numbered 1 to IMSLS_N_CLASSES. This is an output argument if 
IMSLS_DECODE is specified, otherwise it is input.   

float z[]   (Input/Output) 
An array of length n_obs containing the encoded values for x represented as 
cumulative proportions associated with each ordinal class (values between 0.0 
and 1.0 inclusive). This is an input argument if IMSLS_DECODE is specified, 
otherwise it is output. 

Synopsis with Optional Arguments 
#include <imsls.h> 
void imsls_f_unsupervised_ordinal_filter (int n_obs, int x[],  

float z[], 
IMSLS_ENCODE or  
IMSLS_DECODE, 
IMSLS_NO_TRANSFORM, or 
IMSLS_SQUARE_ROOT, or 
IMSLS_ARC_SIN, 
IMSLS_N_CLASSES, int * n_classes, 
0) 

The type double function is imsls_d_unsupervised_ordinal_filter. 

Optional Arguments 

IMSLS_ENCODE or IMSLS_DECODE   (Input) 
If IMSLS_ENCODE is specified, z is an output array and x is an input array that 
is filtered by converting each ordinal class value into a cumulative proportion 
(a value between 0.0 and 1.0 inclusive).  If IMSLS_DECODE is specified, x is 
an output array and z is an input array that contains  transformed cumulative 
proportions.  In this case, the  transformed cumulative proportions are 
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converted into ordinal class values using the coding class=1, 2, … etc.     
Default: IMSLS_ENCODE. 

IMSLS_SQUARE_ROOT or IMSLS_ARC_SIN or IMSLS_NO_TRANSFORM  (Input) 
IMSLS_NO_TRANSFORM indicates that the cumulative proportions used to 
encode the ordinal variable are not transformed.  If IMSLS_SQUARE_ROOT is 
specified, cumulative proportions are transformed using the square root 
transformation.  If IMSLS_ARC_SIN is specified, the cumulative proportions  
are transformed using the arcsin of the square root of the cumulative 
proportions.  
Default: IMSLS_NO_TRANSFORM . 

IMSLS_N_CLASSES, int * n_classes   (Output) 
The number of ordinal classes in x and the number of unique proportions in z. 

Description 
The function imsls_f_unsupervised_ordinal_filter is designed to either 
encode or decode ordinal variables.  Filtering consists of transforming the ordinal 
classes into proportions, with each proportion being equal to the proportion of the data 
at or below this class. 

Ordinal Filtering:  IMSLS_ENCODE 
In this case, x is an input array that is filtered by converting each ordinal class value 
into a cumulative  proportion. 
For example, if x[]={2, 1, 3, 4, 2, 4, 1, 1, 3, 3} then n_obs=10 and 
IMSLS_N_CLASSES=4.  This function then fills z with cumulative proportions 
represented as proportions displayed in the table below.  Cumulative proportions are 
equal to the proportion of the data in this class or a lower class. 
 

Ordinal Class Frequency Cumulative Proportion 
1 3 30% 

2 2 50% 

3 3 80% 

4 2 100% 

 

If IMSLS_NO_TRANSFORM  is specified, then the equivalent proportions in z are 
z[]={0.50, 0.30, 0.80, 1.00, 0.50, 1.00, 0.30, 0.30, 0.80, 0.80}.  

 If IMSLS_SQUARE_ROOT is specified, then the square root of these values is returned, 
i.e.,  

[ ][ ]
100
z iz i =

 

z[]={0.71, 0.55 , 0.89, 1.0, 0.71, 1.0, 0.55, 0.55, 0.89, 0.89}; 
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If IMSLS_ARC_SIN is specified, then the arcsin square root of these values is returned 
using the following calculation: 

[ ][ ] arcsin
100
z iz i

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠  

Ordinal UnFiltering:  IMSLS_DECODE 
Ordinal Unfiltering takes the transformed cumulative proportions in z and converts 
them into ordinal class values using the coding class=1, 2, … etc. 
For example, if IMSLS_NO_TRANSFORM  is specified and z[]={0.20, 1.00, 0.20, 0.40, 
1.00, 1.00, 0.40, 0.10, 1.00, 1.00} then upon return, the output array would consist of 
the ordinal classes x[]={2, 4, 2, 3, 4, 4, 3, 1, 4, 4}.  
If one of the transforms is specified, the same operation is performed since the 
transformations of the proportions are monotonically increasing.  For example, if the 
original observations consisted of {2.8, 5.6, 5.6, 1.2, 4.5, 7.1}, then input x for 
encoding would be x[]={2, 4, 4, 1, 3, 5} and output IMSLS_N_CLASSES=5. The 
output array x after decoding would consist of the ordinal classes  
x[]={2, 4, 4, 1, 3, 5}. 

Example 1 
A taste test was conducted yielding the following data: 
 

Individual Rating 
1 Poor 

2 Good 

3 Very Good 

4 Very Poor 

5 Very Good 

The data in the table above would have the coded values shown below. This assumes 
that the rating scale is: very poor, poor, good, and very good. 

x={2, 3, 4, 1, 4} 
The returned values are: 

z={0.40, 0.60, 1.00, 0.20, 1.00}. 
 

#include <imsls.h> 
 
void main () { 
#define N_OBS 5 
 int x[N_OBS] = {2,3,4,1,4}; 
 int x2[N_OBS], n_classes; 
 float z[N_OBS]; 
 
 /* Filtering. */ 
 imsls_f_unsupervised_ordinal_filter(N_OBS, x, z,  
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  IMSLS_N_CLASSES, &n_classes,  
  0); 
 printf("n_classes = %d\n", n_classes); 
 imsls_i_write_matrix("x", N_OBS, 1, x, 0); 
 imsls_f_write_matrix("z", N_OBS, 1, z, 0); 
 
 /* Unfiltering. */ 
 imsls_f_unsupervised_ordinal_filter(N_OBS, x2, z, 
  IMSLS_DECODE,  
  IMSLS_N_CLASSES, &n_classes, 
  0); 
 printf("\nn_classes = %d\n", n_classes); 
 imsls_i_write_matrix("x-unfiltered", N_OBS, 1, x2, 0);  
} 

Output 
 
n_classes = 4 
  
  x 
1   2 
2   3 
3   4 
4   1 
5   4 
  
       z 
1          0.4 
2          0.6 
3          1.0 
4          0.2 
5          1.0 
 
n_classes = 4 
  
x-unfiltered 
    1   2 
    2   3 
    3   4 
    4   1 
    5   4 
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Chapter 14: Printing Functions 

Routines 
Print a matrix or vector write_matrix 981 
Set the page width and length page 986 
Set the printing options write_options 987 

write_matrix 
Prints a rectangular matrix (or vector) stored in contiguous memory locations. 

Synopsis 
#include <imsls.h> 
void imsls_f_write_matrix (char *title, int nra, int nca, float a[], …, 

0) 
For int a[], use imsls_i_write_matrix.  
For double a[], use imsls_d_write_matrix. 

Required Arguments 

char *title   (Input) 
Matrix title. Use \n within a title to create a new line. Long titles are 
automatically wrapped. 

int nra   (Input) 
Number of rows in the matrix. 

int nca   (Input) 
Number of columns in the matrix. 

float a[]   (Input) 
Array of size nra × nca containing the matrix to be printed. 

Synopsis with Optional Arguments 

#include <imsls.h> 
void imsls_f_write_matrix (char *title, int nra, int nca, float a[], 

IMSLS_TRANSPOSE, 
IMSLS_A_COL_DIM, int a_col_dim, 
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IMSLS_PRINT_ALL, or 
IMSLS_PRINT_LOWER, or 
IMSLS_PRINT_UPPER, or 
IMSLS_PRINT_LOWER_NO_DIAG, or 
IMSLS_PRINT_UPPER_NO_DIAG, 
IMSLS_WRITE_FORMAT, char *fmt, 
IMSLS_NO_ROW_LABELS, or 
IMSLS_ROW_NUMBER, or 
IMSLS_ROW_NUMBER_ZERO, or 
IMSLS_ROW_LABELS, char *rlabel[], 
IMSLS_NO_COL_LABELS, or 
IMSLS_COL_NUMBER, or 
IMSLS_COL_NUMBER_ZERO, or 
IMSLS_COL_LABELS, char *clabel[], 
0) 

Optional Arguments 

IMSLS_TRANSPOSE 
Print aT. 

IMSLS_A_COL_DIM, int a_col_dim   (Input) 
Column dimension of a. 
Default: a_col_dim = nca 

IMSLS_PRINT_ALL, or 
IMSLS_PRINT_LOWER, or 
IMSLS_PRINT_UPPER, or 
IMSLS_PRINT_LOWER_NO_DIAG, or 
IMSLS_PRINT_UPPER_NO_DIAG 

Exactly one of these optional arguments can be specified to 
indicate that either a triangular part of the matrix or the entire 
matrix is to be printed. If omitted, the entire matrix is printed. 

Keyword Action 
IMSLS_PRINT_ALL Entire matrix is printed (the 

default). 
IMSLS_PRINT_LOWER Lower triangle of the matrix is 

printed, including the diagonal. 
IMSLS_PRINT_UPPER Upper triangle of the matrix is 

printed, including the diagonal. 
IMSLS_PRINT_LOWER_NO_DIAG Lower triangle of the matrix is 

printed, without the diagonal. 
IMSLS_PRINT_UPPER_NO_DIAG Upper triangle of the matrix is 

printed, without the diagonal. 

IMSLS_WRITE_FORMAT, char *fmt   (Input) 
Character string containing a list of C conversion specifications (formats) to be 
used when printing the matrix. Any list of C conversion specifications suitable 
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for the data type can be given. For example, fmt = "%10.3f" specifies the 
conversion character f for the entire matrix. For the conversion character f, the 
matrix must be of type float or double. 
Alternatively,fmt = "%10.3e%10.3e%10.3f%10.3f%10.3f" specifies the 
conversion character e for columns 1 and 2 and the conversion character f for 
columns 3, 4, and 5. If the end of fmt is encountered and if some columns of 
the matrix remain, format control continues with the first conversion 
specification in fmt. 

Aside from restarting the format from the beginning, other exceptions to the 
usual C formatting rules are as follows: 

Characters not associated with a conversion specification are not allowed. For 
example, in the format fmt = "1%d2%d", the characters 1 and 2 are not 
allowed and result in an error. 

A conversion character d can be used for floating-point values (matrices of 
type float or double). The integer part of the floating-point value is 
printed. 

For printing numbers whose magnitudes are unknown, the conversion 
character g is useful; however, the decimal points will generally not be 
aligned when printing a column of numbers. The w (or W) conversion 
character is a special conversion character used by this function to select 
a conversion specification so that the decimal points will be aligned. The 
conversion specification ending with w is specified as "%n.dw". Here, n 
is the field width and d is the number of significant digits generally 
printed. Valid values for n are 3, 4, …, 40. Valid values for d are 1, 2, …, 
n − 2. If fmt specifies one conversion specification ending with w, all 
elements of a are examined to determine one conversion specification for 
printing. If fmt specifies more than one conversion specification, separate 
conversion specifications are generated for each conversion specification 
ending with w. Set fmt = "10.4w" for a single conversion specification 
selected automatically with field width 10 and with four significant digits. 

IMSLS_NO_ROW_LABELS, or 
IMSLS_ROW_NUMBER, or 
IMSLS_ROW_NUMBER_ZERO, or 
IMSLS_ROW_LABELS, char *rlabel[]   (Input) 

If IMSLS_ROW_LABELS is specified, rlabel is a vector of length nra 
containing pointers to the character strings comprising the row labels. Here, 
nra is the number of rows in the printed matrix. Use \n within a label to 
create a new line. Long labels are automatically wrapped. If no row labels are 
desired, use the IMSLS_NO_ROW_LABELS optional argument. If the numbers 
1, 2,  …, nra are desired, use the IMSLS_ROW_NUMBER optional argument. If 
the numbers 0, 1, 2, …, nra − 1 are desired, use the 
IMSLS_ROW_NUMBER_ZERO optional argument. If none of these optional 
arguments is used, the numbers 1, 2, 3, …, nra are used for the row labels by 
default whenever nra > 1.  
If nra = 1, the default is no row labels. 
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IMSLS_NO_COL_LABELS, or 
IMSLS_COL_NUMBER, or 
IMSLS_COL_NUMBER_ZERO, or 
IMSLS_COL_LABELS, char *clabel[]   (Input) 

If IMSLS_COL_LABELS is specified, clabel is a vector of length nca + 1 
containing pointers to the character strings comprising the column headings. 
The heading for the row labels is clabel [0]; clabel [i], i = 1, …, nca, is 
the heading for the i-th column. Use \n within a label to create a new line. 
Long labels are automatically wrapped. If no column labels are desired, use 
the IMSLS_NO_COL_LABELS optional argument. If the numbers 1, 2, …, nca, 
are desired, use the IMSLS_COL_NUMBER optional argument. If the numbers 0, 
1, …, nca − 1 are desired, use the IMSLS_COL_NUMBER_ZERO optional 
argument. If none of these optional arguments is used, the numbers 
1, 2, 3, …, nca are used for the column labels by default whenever nca > 1. 
If nca = 1, the default is no column labels. 

Description 
Function imsls_write_matrix prints a real rectangular matrix (stored in a) with 
optional row and column labels (specified by rlabel and clabel, respectively, 
regardless of whether a or aT is printed). An optional format, fmt, can be used to 
specify a conversion specification for each column of the matrix. 
In addition, the write matrix functions can restrict printing to the elements of the upper 
or lower triangles of a matrix by using the IMSLS_PRINT_UPPER, 
IMSLS_PRINT_LOWER, IMSLS_PRINT_UPPER_NO_DIAG, and 
IMSLS_PRINT_LOWER_NO_DIAG options. Generally, these options are used with 
symmetric matrices, but this is not required. Vectors can be printed by specifying a row 
or column dimension of 1. 
Output is written to the file specified by the function imsls_output_file (Chapter 
15, “Utilities”). The default output file is standard output (corresponding to the file 
pointer stdout). A page width of 78 characters is used. Page width and page length 
can be reset by invoking function imsls_page. 
Horizontal centering, the method for printing large matrices, paging, the method for 
printing NaN (Not a Number), and whether or not a title is printed on each page can be 
selected by invoking function imsls_write_options. 

Examples  

Example 1 
This example is representative of the most common situation in which no optional 
arguments are given. 

#include <imsls.h> 
 
#define NRA 3 
#define NCA 4 
 
main() 
{ 
    int     i, j; 
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    float   a[NRA][NCA]; 
 
    for (i = 0; i < NRA; i++) { 
        for (j = 0; j < NCA; j++) { 
            a[i][j] = (i+1+(j+1)*0.1); 
        } 
 
    } 
                                /* Write matrix */ 
    imsls_f_write_matrix ("matrix\na", NRA, NCA, (float*) a, 0); 
} 

Output 
                     matrix 
                        a 
            1           2           3           4 
1         1.1         1.2         1.3         1.4 
2         2.1         2.2         2.3         2.4 
3         3.1         3.2         3.3         3.4 

Example 2 
In this example, some of the optional arguments available in the 
imsls_write_matrix functions are demonstrated. 

#include <imsls.h> 
 
#define NRA     3 
#define NCA     4 
 
main() 
{ 
    int         i, j; 
    float       a[NRA][NCA]; 
    char        *fmt = "%10.6W"; 
    char        *rlabel[] = {"row 1", "row 2", "row 3"}; 
    char        *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"}; 
 
    for (i = 0; i < NRA; i++) { 
        for (j = 0; j < NCA; j++) { 
            a[i][j] = (i+1+(j+1)*0.1); 
        } 
    } 
                                /* Write matrix */ 
    imsls_f_write_matrix ("matrix\na", NRA, NCA, (float *)a,  
        IMSLS_WRITE_FORMAT, fmt,  
        IMSLS_ROW_LABELS, rlabel,  
        IMSLS_COL_LABELS, clabel,  
        IMSLS_PRINT_UPPER_NO_DIAG, 
        0); 
} 
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Output 
                       matrix 
                          a 
            col 2       col 3       col 4             
row 1         1.2         1.3         1.4             
row 2                     2.3         2.4             
row 3                                 3.4             

Example 3 
In this example, a row vector of length four is printed. 

#include <imsls.h> 
 
#define NRA 1 
#define NCA 4 
 
main() 
{ 
    int         i; 
    float       a[NCA]; 
    char        *clabel[] = {"", "col 1", "col 2", "col 3", "col 4"}; 
 
    for (i = 0; i < NCA; i++) {    
    a[i] = i + 1; 
   } 
                                /* Write matrix */ 
    imsls_f_write_matrix ("matrix\na", NRA, NCA, a,  
        IMSLS_COL_LABELS, clabel, 
        0); 
} 

Output 
                    matrix 
                       a 
     col 1       col 2       col 3       col 4 
         1           2           3           4 

page 
Sets or retrieves the page width or length. 

Synopsis 
#include <imsls.h> 
void imsls_page (Imsls_page_options option, int *page_attribute) 

Required Arguments 

Imsls_page_options option   (Input) 
Option giving which page attribute is to be set or retrieved. The possible 
values are shown in the table below. 
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Keyword Description 
IMSLS_SET_PAGE_WIDTH Sets the page width. 
IMSLS_GET_PAGE_WIDTH Retrieves the page width. 
IMSLS_SET_PAGE_LENGTH Sets the page length. 
IMSLS_GET_PAGE_LENGTH Retrieves the page length. 

int *page_attribute   (Input, if the attribute is set; Output, otherwise.) 
The value of the page attribute to be set or retrieved. The page width is the 
number of characters per line of output (default 78), and the page length is the 
number of lines of output per page (default 60). Ten or more characters per 
line and 10 or more lines per page are required. 

Example 
The following example illustrates the use of imsls_page to set the page width to 40 
characters. Function imsls_f_write_matrix is then used to print a  
3 × 4 matrix A, where aij = i + j/10. 

#include <imsls.h> 
 
#define NRA 3 
#define NCA 4 
main() 
{ 
    int         i, j, page_attribute; 
    float       a[NRA][NCA]; 
 
    for (i = 0; i < NRA; i++) { 
        for (j = 0; j < NCA; j++) { 
            a[i][j] = (i+1) + (j+1)/10.0; 
        } 
    } 
    page_attribute = 40; 
    imsls_page(IMSLS_SET_PAGE_WIDTH, &page_attribute); 
    imsls_f_write_matrix("a", NRA, NCA, (float *)a, 0); 
} 

Output 
                  a 
            1           2           3 
1         1.1         1.2         1.3 
2         2.1         2.2         2.3 
3         3.1         3.2         3.3 
  
            4 
1         1.4 
2         2.4 
3         3.4 

write_options 
Sets or retrieves an option for printing a matrix. 
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Synopsis 
#include <imsls.h> 
void imsls_write_options (Imsls_write_options option, int *option_value) 

Required Arguments 

Imsls_write_options option   (Input) 
Option giving the type of the printing attribute to set or retrieve. 

Keyword for Setting Keyword for Retrieving Attribute Description 
IMSLS_SET_DEFAULTS  uses the default settings for 

all parameters 
IMSLS_SET_CENTERING IMSLS_GET_CENTERING horizontal centering 
IMSLS_SET_ROW_WRAP IMSLS_GET_ROW_WRAP row wrapping 
IMSLS_SET_PAGING IMSLS_GET_PAGING paging 
IMSLS_SET_NAN_CHAR IMSLS_GET_NAN_CHAR method for printing NaN 
IMSLS_SET_TITLE_PAGE IMSLS_GET_TITLE_PAGE whether or not titles appear 

on each page 
IMSLS_SET_FORMAT IMSLS_GET_FORMAT default format for real and 

complex numbers 

int *option_value   (Input, if option is to be set; Output, otherwise) 
Value of the option attribute selected by option. The values to be used when 
setting attributes are described in a table in the description section. 

Description 
Function imsls_write_options allows the user to set or retrieve an option for 
printing a matrix. Options controlled by imsls_write_options are horizontal 
centering, method for printing large matrices, paging, method for printing NaN, 
method for printing titles, and the default format for real and complex numbers. (NaN 
can be retrieved by functions imsls_f_machine and imsls_d_machine (Chapter 
15, “Utilities”).  
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The following values can be used for the attributes: 

Keyword Value Meaning 
CENTERING 0 

1 
Matrix is left justified. 
Matrix is centered. 

ROW_WRAP 0 
 

m 

Complete row is printed before the next row 
is printed. Wrapping is used if necessary. 
Here, m is a positive integer. Let n1 be the 
maximum number of columns that fit across 
the page, as determined by the widths in the 
conversion specifications starting with 
column 1. First, columns 1 through n1 are 
printed for rows 1 through m. Let n2 be the 
maximum number of columns that fit across 
the page, starting with column n1+1. Second, 
columns n1+1 through n1+n2 are printed for 
rows 1 through m. This continues until the 
last columns are printed for rows 1 through 
m. Printing continues in this fashion for the 
next m rows, etc. 

PAGING −2 

−1 
 
 
0 
 
 
 
k 

No paging occurs. 
Paging is on. Every invocation of an function 
imsls_write_matrix begins on a new 
page, and paging occurs within each 
invocation as is needed. 
Paging is on. The first invocation of an 
imsls_f_write_f_matrix function 
begins on a new page, and subsequent paging 
occurs as is needed. Paging occurs in the 
second and all subsequent calls to an 
imsls_f_write_matrix function only 
as needed. 
Turn paging on and set the number of lines 
printed on the current page to k lines. If k is 
greater than or equal to the page length, then 
the first invocation of an 
imsls_write_matrix function begins 
on a new page. In any case, subsequent 
paging occurs as is needed. 

NAN_CHAR 0 
1 

. . . . . . . . . . is printed for NaN. 
A blank field is printed for NaN. 

TITLE_PAGE 0 
1 

Title appears only on first page. 
Title appears on the first page and all 
continuation pages. 

FORMAT 0 
1 
2 

Format is "%10.4x". 

Format is "%12.6w". 

Format is "%22.5e". 
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The w conversion character used by the FORMAT option is a special conversion character 
that can be used to automatically select a pretty C conversion specification ending in 
either e, f, or d. The conversion specification ending with w is specified as "%n.dw". 
Here, n is the field width, and d is the number of significant digits generally printed. 
Function imsls_write_options can be invoked repeatedly before using a function 
imsls_f_write_matrix to print a matrix. The matrix printing functions retrieve the 
values set by imsls_write_options to determine the printing options. It is not 
necessary to call imsls_write_options if a default value of a printing option is 
desired. The defaults are as follows: 

Keyword Default Value Meaning 
CENTERING 0 left justified 
ROW_WRAP 1000 lines before wrapping 
PAGING −2 no paging 
NAN_CHAR 0 . . . . . . . . . . . . . . 
TITLE_PAGE 0 title appears only on the 

first page 
FORMAT 0 %10.4w 

Example 
The following example illustrates the effect of imsls_write_options when printing 
a 3 × 4 real matrix A with function imsls_f_write_matrix, where aij = i + j/10. The 
first call to imsls_write_options sets horizontal centering so that the matrix is 
printed centered horizontally on the page. In the next invocation of 
imsls_f_write_matrix, the left-justification option has been set by function 
imsls_write_options so the matrix is left justified when printed. 

#include <imsls.h> 
 
#define NRA 4 
#define NCA 3 
 
main() 
{ 
    int         i, j, option_value; 
    float       a[NRA][NCA]; 
 
    for (i = 0; i < NRA; i++) { 
        for (j = 0; j < NCA; j++) { 
            a[i][j] = (i+1) + (j+1)/10.0; 
        } 
    } 
                                /* Activate centering option */ 
    option_value = 1; 
    imsls_write_options (IMSLS_SET_CENTERING, &option_value); 
                                /* Write a matrix */ 
    imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0); 
                                /* Activate left justification */ 
    option_value = 0; 
    imsls_write_options (IMSLS_SET_CENTERING, &option_value); 
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    imsls_f_write_matrix ("a", NRA, NCA, (float*) a, 0); 
} 

Output 
                                       a 
                                 1           2           3 
                     1         1.1         1.2         1.3 
                     2         2.1         2.2         2.3 
                     3         3.1         3.2         3.3 
                     4         4.1         4.2         4.3 
  
                  a 
            1           2           3 
1         1.1         1.2         1.3 
2         2.1         2.2         2.3 
3         3.1         3.2         3.3 
4         4.1         4.2         4.3 
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Chapter 15: Utilities 

Routines 
Set Output Files 

Set output files output_file 993 
Get library version and license number version 997 

Error Handling 
Error message options error_options 998 
Get error code error_code 1004 

Constants 
Integer machine constants machine (integer) 1005 
Float machine constants machine (float) 1007 
Common data sets data_sets 1009 

Mathematical Support 
Matrix-vector, matrix-matrix,  
vector-vector products mat_mul_rect 1012 
Rearrange elements of vector permute_vector 1015 
Interchange rows and columns of matrices permute_matrix 1017 
Evaluate the binomial coeficient binomial_coefficient 1018 
Evaluate the complete beta function beta 1020 
Evaluate the real incomplete beta function beta_incomplete 1021 
Evaluate the log of the real beta function log_beta 1022 
Evaluate the real gamma function gamma 1023 
Evaluate the incomplete gamma function gamma_incomplete 1025 
Evaluate the logarithm of the absolute value 
of the gamma function log_gamma 1027 
Return the number of CPU seconds used ctime 1029 

output_file 
Sets the output file or the error message output file. 

Synopsis with Optional Arguments 

#include <imsls.h> 
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void imsls_output_file ( 
IMSLS_SET_OUTPUT_FILE, FILE *ofile, 
IMSLS_GET_OUTPUT_FILE, FILE **pofile, 
IMSLS_SET_ERROR_FILE, FILE *efile, 
IMSLS_GET_ERROR_FILE, FILE **pefile, 
0) 

Optional Arguments 

IMSLS_SET_OUTPUT_FILE, FILE *ofile   (Input) 
Sets the output file to ofile. 
Default: ofile = stdout 

IMSLS_GET_OUTPUT_FILE, FILE **pofile   (Output) 
Sets the FILE pointed to by pofile to the current output file. 

IMSLS_SET_ERROR_FILE, FILE *efile   (Input) 
Sets the error message output file to efile. 
Default: efile = stderr 

IMSLS_GET_ERROR_FILE, FILE **pefile   (Output) 
Sets the FILE pointed to by pefile to the error message output file. 

Description 
This function allows the file used for printing by IMSL functions to be changed.  
If multiple threads are used then default settings are valid for each thread. When using 
threads it is possible to set different output files for each thread by calling 
imsls_output_file from within each thread.  See Example 2 for more details. 

Example 1 
This example opens the file myfile and sets the output file to this new file. Function 
imsls_f_write_matrix then writes to this file. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    FILE         *ofile; 
    float       x[] = {3.0, 2.0, 1.0}; 
 
    imsls_f_write_matrix ("x (default file)", 1, 3, x, 0); 
 
    ofile = fopen("myfile", "w"); 
    imsls_output_file(IMSLS_SET_OUTPUT_FILE, ofile, 
                     0); 
    imsls_f_write_matrix ("x (myfile)", 1, 3, x, 0); 
} 

Output 
         x (default file) 
         1           2           3 
         3           2           1 
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File myfile 
x (myfile) 
1           2           3 
3           2           1 
 

Example 2 
The following example illustrates how to direct output from IMSL routines that run in 
separate threads to different files.  First, two threads are created, each calling a 
different IMSL function, then the results are printed by calling 
imsls_f_write_matrix from within each thread. Note that imsls_output_file 
is called from within each thread to change the default output file.   

 

#include <pthread.h> 

#include <stdio.h> 

#include "imsls.h" 

void *ex1(void* arg); 

void *ex2(void* arg); 

void main() 

{ 

  pthread_t       thread1; 

  pthread_t       thread2; 

 

  /* Disable IMSL signal trapping. */ 

  imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 

 

  /* Create two threads. */ 

  if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0) 

    perror("pthread_create"), exit(1);  

  if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0) 

    perror("pthread_create"), exit(1);  

   

  /* Wait for threads to finish. */ 

  if (pthread_join(thread1, NULL) != 0) 

    perror("pthread_join"),exit(1); 

  if (pthread_join(thread2, NULL) != 0) 

    perror("pthread_join"),exit(1); 

   

} 

void *ex1(void* arg) 

{ 

  float *rand_nums = NULL; 
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  FILE  *file_ptr; 

  /* Open a file to write the result in. */ 

  file_ptr = fopen("ex1.out", "w"); 

  /* Set the output file for this thread. */ 

  imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0); 

  /* Compute 5 random numbers. */ 

  imsls_random_seed_set(12345); 

  rand_nums = imsls_f_random_uniform(5, 0); 

  /* Output random numbers. */ 

  imsls_f_write_matrix("Random Numbers", 5, 1, rand_nums, 0); 

  if (rand_nums) free(rand_nums); 

  fclose(file_ptr); 

} 

void *ex2(void* arg) 

{  

  int n_intervals=10; 

  int n_observations=30; 

  float *table; 

  float x[] = {0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 

        2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 

        0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 

        1.89, 0.90, 2.05}; 

  FILE  *file_ptr; 

  /* Open a file to write the result in. */ 

  file_ptr = fopen("ex2.out", "w"); 

  /* Set the output file for this thread. */ 

  imsls_output_file(IMSLS_SET_OUTPUT_FILE, file_ptr, 0); 

  table = imsls_f_table_oneway (n_observations, x, n_intervals, 0); 

  imsls_f_write_matrix("counts", 1, n_intervals, table, 0); 

   

  if (table) free(table); 

  fclose(file_ptr); 

} 

ex1.out 

Random Numbers 

 1      0.4919 

 2      0.3909 

 3      0.2645 

 4      0.1814 

 5      0.7546 
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ex2.out 

                                counts 

         1           2           3           4           5           6 

         4           8           5           5           3           1 

  

         7           8           9          10 

         3           0           0           1 
 

version 
Returns information describing the version of the library, serial number, operating 
system, and compiler. 

Synopsis 

#include <imsls.h> 
char *imsls_version (Imsls_keyword code) 

Required Arguments 

Imsls_keyword code   (Input) 
Index indicating which value is to be returned. It must be 
IMSLS_LIBRARY_VERSION, IMSLS_OS_VERSION, 
IMSLS_COMPILER_VERSION, or IMSLS_LICENSE_NUMBER. 

Return Value 
The requested value is returned. If code is out of range, then NULL is returned. Use 
free to release the returned string. 

Description 
Function imsls_version returns information describing the version of the library, the 
version of the operating system under which it was compiled, the compiler used, and 
the IMSL serial number.  

Example 
This example prints all the values returned by imsls_version on a particular 
machine. The output is omitted because the results are system dependent. 

#include <imsls.h> 
 
main() 
{ 
    char    *library_version, *os_version; 
    char    *compiler_version, *license_number; 
 
    library_version  = imsls_version(IMSLS_LIBRARY_VERSION); 
    os_version       = imsls_version(IMSLS_OS_VERSION); 
    compiler_version = imsls_version(IMSLS_COMPILER_VERSION); 
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    license_number   = imsls_version(IMSLS_LICENSE_NUMBER); 
 
    printf("Library version = %s\n", library_version); 
    printf("OS version = %s\n", os_version); 
    printf("Compiler version = %s\n", compiler_version); 
    printf("Serial number = %s\n", license_number); 
} 

error_options 
Sets various error handling options. 

Synopsis with Optional Arguments 

#include <imsls.h>  

void imsls_error_options ( 
IMSLS_SET_PRINT, Imsls_error type, int setting,  
IMSLS_SET_STOP, Imsls_error type, int setting,  
IMSLS_SET_TRACEBACK, Imsls_error type, int setting,  
IMSLS_FULL_TRACEBACK, int setting,  
IMSLS_GET_PRINT, Imsls_error type, int *psetting,  
IMSLS_GET_STOP, Imsls_error type, int *psetting,  
IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting,  
IMSLS_SET_ERROR_FILE, FILE *file, 
IMSLS_GET_ERROR_FILE, FILE **pfile, 
IMSLS_ERROR_MSG_PATH, char *path, 
IMSLS_ERROR_MSG_NAME, char *name, 
IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc, 
IMSLS_SET_SIGNAL_TRAPPING, int setting,  
 0) 

Optional Arguments 

IMSLS_SET_PRINT, Imsls_error type, int setting   (Input) 
Printing of type type error messages is turned off if setting is 0; otherwise, 
printing is turned on. 
Default: Printing turned on for IMSLS_WARNING, IMSLS_FATAL, 
IMSLS_TERMINAL, IMSLS_FATAL_IMMEDIATE, and 
IMSLS_WARNING_IMMEDIATE messages 

IMSLS_SET_STOP, Imsls_error type, int setting   (Input) 
Stopping on type type error messages is turned off if setting is 0; 
otherwise, stopping is turned on.  
Default: Stopping turned on for IMSLS_FATAL and IMSLS_TERMINAL and 
IMSLS_FATAL_IMMEDIATE messages 

IMSLS_SET_TRACEBACK, Imsls_error type, int setting   (Input) 
Printing of a traceback on type type error messages is turned off if setting 
is 0; otherwise, printing of the traceback turned on.  
Default: Traceback turned off for all message types 
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IMSLS_FULL_TRACEBACK, int setting   (Input) 
Only documented functions are listed in the traceback if setting is 0; 
otherwise, internal function names also are listed. 
Default: Full traceback turned off 

IMSLS_GET_PRINT, Imsls_error type, int *psetting   (Output) 
Sets the integer pointed to by psetting to the current setting for printing of 
type type error messages. 

IMSLS_GET_STOP, Imsls_error type, int *psetting   (Output) 
Sets the integer pointed to by psetting to the current setting for stopping on 
type type error messages. 

IMSLS_GET_TRACEBACK, Imsls_error type, int *psetting   (Output) 
Sets the integer pointed to by psetting to the current setting for printing of a 
traceback for type type error messages. 

IMSLS_SET_ERROR_FILE, FILE *file   (Input) 
Sets the error output file. 
Default: file = stderr 

IMSLS_GET_ERROR_FILE, FILE **pfile   (Output) 
Sets the FILE * pointed to by pfile to the error output file. 

IMSLS_ERROR_MSG_PATH, char *path   (Input) 
Sets the error message file path. On UNIX systems, this is a colon-separated 
list of directories to be searched for the file containing the error messages. 
Default: system dependent 

IMSLS_ERROR_MSG_NAME, char *name   (Input) 
Sets the name of the file containing the error messages. 
Default: file = "imsls_e.bin" 

IMSLS_ERROR_PRINT_PROC, Imsls_error_print_proc print_proc   (Input) 
Sets the error printing function. The procedure print_proc has the form 
void print_proc (Imsls_error type, long code, 
char *function_name, char *message). 

In this case, type is the error message type number (IMSLS_FATAL, etc.), 
code is the error message code number (IMSLS_MAJOR_VIOLATION, etc.), 
function_name is the name of the function setting the error, and message is 
the error message to be printed. If print_proc is NULL, then the default error 
printing function is used. 

IMSLS_SET_SIGNAL_TRAPPING, int setting   (Input) 
C/Stat/Library will use its own signal handler if setting is 1; otherwise the 
C/Stat/Library signal handler is not used.  If C/Stat/Library is called from a 
multi-threaded application, signal handling by C/Stat/Library must be turned 
off.  See Example 3 for details. 
Default: setting = 1 
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Return Value 
The return value is void. 

Description 
This function allows the error handling system to be customized.  
If multiple threads are used then default settings are valid for each thread but can be 
altered for each individual thread. When using threads it is necessary to set options 
(excluding IMSLS_SET_SIGNAL_TRAPPING ) for each thread by calling 
imsls_error_options  from within each thread.  
The IMSL signal-trapping mechanism must be disabled when multiple threads are 
used. The IMSL signal-trapping mechanism can be disabled by making the following 
call before any threads are created: 
imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 

 See Example 3 and Example 4 for multithreaded examples. 
NOTE: Signal handlers are installed when a C/Stat/Library  function is called, then 
uninstalled prior to returning from the C/Stat/Library function.    The library function 
imsls_error_options can be used to perform many different tasks with regard to 
error handling and it will install signal handlers when first called, even if the call is 
being made to disable signal handling through the use of the optional argument 
IMSLS_SET_SIGNAL_TRAPPING. However, there may be cases when it is desirable to 
completely avoid any installation of signal handlers by C/Stat/Library functions.  In 
these cases, the following function can be called. 

 

#include <imsls.h> 

void imsls_skip_signal_handler( ); 
 

Examples 

Example 1 
In this example, the IMSLS_TERMINAL print setting is retrieved. Next, stopping on 
IMSLS_TERMINAL errors is turned off, output to standard output is redirected, and an 
error is deliberately caused by calling imsls_error_options with an illegal value. 

#include <imsls.h> 
#include <stdio.h> 
 
main() 
{ 
    int         setting; 
                              /* Turn off stopping on IMSLS_TERMINAL */ 
                              /* error messages and write error */ 
                              /* messages to standard output */ 
    imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
                       IMSLS_SET_ERROR_FILE, stdout, 
                       0); 
                              /* Call imsls_error_options() with */ 
                              /* an illegal value */ 
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    imsls_error_options(-1); 
                              /* Get setting for IMSLS_TERMINAL */ 
    imsls_error_options(IMSLS_GET_PRINT, IMSLS_TERMINAL, &setting, 
                       0); 
    printf("IMSLS_TERMINAL error print setting = %d\n", setting); 
} 

Output 
*** TERMINAL Error from imsls_error_options.  There is an error with 
*** argument number 1.  This may be caused by an incorrect number of 
*** values following a previous optional argument name. 
 
IMSLS_TERMINAL error print setting = 1 

Example 2 
In this example, IMSL’s error printing function has been substituted for the standard 
function. Only the first four lines are printed below. 

#include <imsls.h> 
#include <stdio.h> 
 
void         print_proc(Imsls_error, long, char*, char*); 
 
main() 
{ 
                           /* Turn off tracebacks on IMSLS_TERMINAL */ 
                           /* error messages and use a custom */ 
                           /* print function */ 
    imsls_error_options(IMSLS_ERROR_PRINT_PROC, print_proc, 
                       0); 
                           /* Call imsls_error_options() with an */ 
                           /* illegal value */ 
    imsls_error_options(-1); 
} 
 
void print_proc(Imsls_error type, long code, char *function_name, 
                char *message) 
{ 
    printf("Error message type %d\n", type); 
    printf("Error code %d\n", code); 
    printf("From function %s\n", function_name); 
    printf("%s\n", message); 
} 

Output  
Error message type 5 
Error code 103 
From function imsls_error_options 
There is an error with argument number 1.  This may be caused by an 
incorrect number of values following a previous optional argument name. 

Example 3 
In this example, two threads are created and error options is called within each thread 
to set the error handling options slightly different for each thread.  Since we expect to 
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generate terminal errors in each thread, we must turn off stopping on terminal errors for 
each thread. Also notice that imsls_error_options is called from main to disable 
the IMSL signal-trapping mechanism.   
See Example 4 for a similar example, using WIN32 threads. Note since multiple 
threads are executing, the order of the errors output may differ on some systems. 
 

#include <pthread.h> 
#include <stdio.h> 
#include "imsls.h" 
 
void *ex1(void* arg); 
void *ex2(void* arg); 
void main() 
{ 
  pthread_t       thread1; 
  pthread_t       thread2; 
 
  /* Disable IMSL signal trapping. */ 
  imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 
 
  /* Create two threads. */ 
  if (pthread_create(&thread1, NULL ,ex1, (void *)NULL) != 0) 
    perror("pthread_create"), exit(1);  
  if (pthread_create(&thread2, NULL ,ex2, (void *)NULL) != 0) 
    perror("pthread_create"), exit(1);  
   
  /* Wait for threads to finish. */ 
  if (pthread_join(thread1, NULL) != 0) 
    perror("pthread_join"),exit(1); 
  if (pthread_join(thread2, NULL) != 0) 
    perror("pthread_join"),exit(1); 
   
} 
 
void *ex1(void* arg) 
{ 
  float res; 
  /*  
   * Call imsls_error_options to set the error handling 
   * options for this thread. 
   */ 
  imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 0); 
  res = imsls_f_beta(-1.0, .5); 
} 
void *ex2(void* arg) 
{  
  float res; 
  /*  
   * Call imsls_error_options to set the error handling 
   * options for this thread.  Notice that tracebacks are 
   * turned on for IMSLS_TERMINAL errors. 
   */ 
  imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
           IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1, 0); 
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  res = imsls_f_gamma(-1.0); 
} 

 

Output  
 
*** TERMINAL Error from imsls_f_beta.  Both "x" = -1.000000e+00 and "y" = 
***          5.000000e-01 must be greater than zero. 
 
 
*** TERMINAL Error from imsls_f_gamma.  The argument for the function can 
***          not be a negative integer. Argument "x" = -1.000000e+00. 
 
Here is a traceback of the calls in reverse order. 
  Error Type        Error Code               Routine 
  ----------        ----------               ------- 
 IMSLS_TERMINAL    IMSLS_NEGATIVE_INTEGER    imsls_f_gamma 
   

Example 4 
In this example the WIN32 API is used to demonstrate the same functionality as shown 
in Example 3 above.  Note since multiple threads are executing, the order of the errors 
output may differ on some systems. 

 
#include <windows.h> 
#include <stdio.h> 
#include "imsls.h" 
 
DWORD WINAPI ex1(void *arg);   
DWORD WINAPI ex2(void *arg); 
   
int main(int argc, char* argv[])  
{ 
 HANDLE thread[2]; 
   
 imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 
 
 thread[0] = CreateThread(NULL, 0, ex1, NULL, 0, NULL); 
 thread[1] = CreateThread(NULL, 0, ex2, NULL, 0, NULL); 
 
 WaitForMultipleObjects(2, thread, TRUE, INFINITE); 
   
} 
DWORD WINAPI ex1(void *arg)   
{ 
  float res; 
  /*  
   * Call imsls_error_options to set the error handling 
   * options for this thread. 
   */ 
imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
        0); 
  res = imsls_f_beta(-1.0, .5); 
 return(0); 
}  
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DWORD WINAPI ex2(void *arg)   
{ 
  float res; 
  /*  
   * Call imsls_error_options to set the error handling 
   * options for this thread.  Notice that tracebacks are 
   * turned on for IMSLS_TERMINAL errors. 
   */ 
  imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
        IMSLS_SET_TRACEBACK, IMSLS_TERMINAL, 1, 
        0); 
  res = imsls_f_gamma(-1.0); 
  return(0); 
}  
 
 

Output  
 
*** TERMINAL Error from imsls_f_beta.  Both "x" = -1.000000e+000 and "y" = 
***          5.000000e-001 must be greater than zero. 
 
 
*** TERMINAL Error from imsls_f_gamma.  The argument for the function can 
***          not be a negative integer. Argument "x" = -1.000000e+000. 
 
Here is a traceback of the calls in reverse order. 
  Error Type        Error Code               Routine 
  ----------        ----------               ------- 
 IMSLS_TERMINAL    IMSLS_NEGATIVE_INTEGER    imsls_f_gamma USER 

error_code 
Gets the code corresponding to the error message from the last function called. 

Synopsis 

#include <imsls.h> 
long imsls_error_code ( ) 

Return Value 
This function returns the error message code from the last function called.  The include 
file imsls.h defines a name for each error code. 

Example 
In this example, stopping on IMSLS_TERMINAL error messages is turned off and an 
error is then generated by calling function imsls_error_options with an illegal 
value for IMSLS_SET_PRINT. The error message code number is then retrieved and 
printed. In imsls.h, IMSLS_INTEGER_OUT_OF_RANGE is defined to be 132. 

#include <imsls.h> 
#include <stdio.h> 
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main() 
{ 
    long        code; 
                                /* Turn off stopping IMSLS_TERMINAL */ 
                                /* messages and print error messages */ 
                                /* on standard output */ 
    imsls_error_options(IMSLS_SET_STOP, IMSLS_TERMINAL, 0, 
                       IMSLS_SET_ERROR_FILE, stdout, 
                       0); 
                                /* Call imsls_error_options() with */ 
                                /* an illegal value */ 
    imsls_error_options(IMSLS_SET_PRINT, 100, 0, 
                       0); 
                                /* Get the error message code */ 
    code = imsls_error_code(); 
    printf("error code = %d\n", code); 
} 

Output 
*** TERMINAL error from imsls_error_options.  "type" must be between 1 and 
***          5, but "type" = 100. 
 
error code = 132 

machine (integer) 
Returns integer information describing the computer’s arithmetic. 

Synopsis 

#include <imsls.h> 
int imsls_i_machine (int n) 

Required Arguments 

int n   (Input) 
Index indicating which value is to be returned. It must be between 0 and 12. 

Return Value 
The requested value is returned. If n is out of range, NaN is returned. 

Description 
Function imsls_i_machine returns information describing the computer’s arithmetic. 
This can be used to make programs machine independent. 

imsls_i_machine(0) = Number of bits per byte 

Assume that integers are represented in M-digit, base-A form as  

0

M
k

k
k

x Aσ
=

∑  
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where σ is the sign and 0 ≤ xk < A for k = 0, …, M. Then, 
 

N Definition 
0 C, bits per character 
1 A, the base 
2 Ms, the number of base-A digits in a short int 

3 1,sMA − the largest short int 

4 Ml, the number of base-A digits in a long int 

5 1,lMA − the largest long int 

Assume that floating-point numbers are represented in N-digit, base B form as 

1

N
E k

k
k

B x Bσ −

−
∑  

where σ is the sign and 0 ≤ xk < B for k = 1, …, N and E$ ≤ E ≤ E". Then 

N Definition 
6 B, the base 
7 Nf, the number of base-B digits in float 

8 
min ,

f
E  the smallest float exponent 

9 
max ,

f
E  the largest float exponent 

10 Nd, the number of base-B digits in double 

11 
max ,

f
E  the largest long  int 

12 
max ,

d
E  the number of base-B digits in double 

Example 
In this example, all the values returned by imsls_i_machine on a machine with 
IEEE (Institute for Electrical and Electronics Engineer) arithmetic are printed. 

#include <imsls.h> 
 
main() 
{ 
    int         n, ans; 
 
    for (n = 0;  n <= 12;  n++) { 
        ans = imsls_i_machine(n); 
        printf("imsls_i_machine(%d) = %d\n", n, ans); 
    } 
} 
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Output 
imsls_i_machine(0) = 8 
imsls_i_machine(1) = 2 
imsls_i_machine(2) = 15 
imsls_i_machine(3) = 32767 
imsls_i_machine(4) = 31 
imsls_i_machine(5) = 2147483647 
imsls_i_machine(6) = 2 
imsls_i_machine(7) = 24 
imsls_i_machine(8) = -125 
imsls_i_machine(9) = 128 
imsls_i_machine(10) = 53 
imsls_i_machine(11) = -1021 
imsls_i_machine(12) = 1024 

machine (float) 
Returns information describing the computer’s floating-point arithmetic. 

Synopsis 

#include <imsls.h>  
float imsls_f_machine (int n) 
The type double function is imsls_d_machine. 

Required Arguments 

int n   (Input) 
Index indicating which value is to be returned. The index must be between 1 
and 8. 

Return Value 
The requested value is returned. If n is out of range, NaN is returned. 

Description 
Function imsls_f_machine returns information describing the computer’s floating-
point arithmetic. This can be used to make programs machine independent. In addition, 
some of the functions are also important in setting missing values. 
Assume that float numbers are represented in Nf-digit, base B form as 

1

fN
E k

k
k

B x Bσ −

=
∑  

where σ is the sign; 0 ≤ xk < B for k = 1, 2, …, Nf; and 

min maxf f
E E E≤ ≤

 

Note that B = imsls_i_machine(6); Nf = imsls_i_machine(7);  
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min (8)
f

E = imsls_i_machine
 

and 

max (9)
f

E = imsls_i_machine
 

The ANSI/IEEE 754-1985 standard for binary arithmetic uses NaN as the result of 
various otherwise illegal operations, such as computing 0/0. On computers that do not 
support NaN, a value larger than imsls_d_machine(2) is returned for 
imsls_f_machine(6). On computers that do not have a special representation for 
infinity, imsls_f_machine(2) returns the same value as imsls_f_machine(7). 
Function imsls_f_machine is defined by the following table: 

N Definition 
1 min 1

,  the smallest positive numberfE
B

−
 

2 max (1 ),  the largest numberf fE NB B−−  

3 ,fNB− the smallest relative spacing 

4 1 ,fNB − the largest relative spacing 

5 log10(B) 

6 NaN 
7 positive machine infinity 
8 negative machine infinity 

Function imsls_d_machine retrieves machine constants that define the computer’s 
double arithmetic. Note that for double B = imsls_i_machine(6), 
Nd = imsls_i_machine(10),  

min (11)
d

E = imsls_i_machine
 

and 

max (12)
d

E = imsls_i_machine
 

Missing values in functions are always indicated by NaN. This is 
imsls_f_machine(6) in single precision and imsls_d_machine(6) in double 
precision. There is no missing-value indicator for integers. Users will almost always 
have to convert from their missing value indicators to NaN. 

Example 
In this example, all eight values returned by imsls_f_machine and by 
imsls_d_machine on a machine with IEEE arithmetic are printed. 
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#include <imsls.h> 
 
main() 
{ 
    int             n; 
    float           fans; 
    double          dans; 
 
    for (n = 1;  n <= 8;  n++) { 
        fans = imsls_f_machine(n); 
        printf("imsls_f_machine(%d) = %g\n", n, fans); 
    } 
 
    for (n = 1;  n <= 8;  n++) { 
        dans = imsls_d_machine(n); 
        printf("imsls_d_machine(%d) = %g\n", n, dans); 
    } 
} 

Output 
imsls_f_machine(1) = 1.17549e-38 
imsls_f_machine(2) = 3.40282e+38 
imsls_f_machine(3) = 5.96046e-08 
imsls_f_machine(4) = 1.19209e-07 
imsls_f_machine(5) = 0.30103 
imsls_f_machine(6) = NaN 
imsls_f_machine(7) = Inf 
imsls_f_machine(8) = -Inf 
imsls_d_machine(1) = 2.22507e-308 
imsls_d_machine(2) = 1.79769e+308 
imsls_d_machine(3) = 1.11022e-16 
imsls_d_machine(4) = 2.22045e-16 
imsls_d_machine(5) = 0.30103 
imsls_d_machine(6) = NaN 
imsls_d_machine(7) = Inf 
imsls_d_machine(8) = -Inf 

data_sets 
Retrieves a commonly analyzed data set. 

Synopsis 

#include <imsls.h> 
float *imsls_f_data_sets (int data_set_choice, ..., 0) 
The type double function is imsls_d_data_sets. 

Required Arguments 

int data_set_choice   (Input) 
Data set indicator. Set data_set_choice = 0 to print a description of all 
nine data sets. In this case, any optional arguments are ignored. 
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data_set_choice N_observations n_variables Description of 
Data Set 

1 16 7 Longley 
2 176 2 Wolfer sunspot 
3 150 5 Fisher iris 
4 144 1 Box and Jenkins 

Series G 
5 13 5 Draper and Smith 

Appendix B 
6 197 1 Box and Jenkins 

Series A 
7 296 2 Box and Jenkins 

Series J 
8 100 4 Robinson 

Multichannel Time 
Series 

9 113 34 Afifi and Azen 
Data Set A 

Return Value  
If data_set_choice ≠ 0, the requested data set is returned. If 
data_set_choice = 0 or an error occurs, NULL is returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 
float *imsls_f_data_sets (int data_set_choice, 

IMSLS_X_COL_DIM, int x_col_dim, 
IMSLS_N_OBSERVATIONS, int *n_observations, 
IMSLS_N_VARIABLES, int *n_variables, 
IMSLS_PRINT_NONE, 
IMSLS_PRINT_BRIEF, 
IMSLS_PRINT_ALL, 
IMSLS_RETURN_USER, float x[], 
0) 

Optional Arguments 

IMSLS_X_COL_DIM, int x_col_dim   (Input) 
Column dimension of user allocated space. 

IMSLS_N_OBSERVATIONS, int *n_observations   (Output) 
Number of observations or rows in the output matrix. 

IMSLS_N_VARIABLES, int *n_variables   (Output) 
Number of variables or columns in the output matrix. 

IMSLS_PRINT_NONE 
No printing is performed. This option is the default. 
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IMSLS_PRINT_BRIEF 
Rows 1 through 10 of the data set are printed. 

IMSLS_PRINT_ALL 
All rows of the data set are printed. 

IMSLS_RETURN_USER, float x[]   (Output) 
User-supplied array containing the data set. 

Description 
Function imsls_f_data_sets retrieves a standard data set frequently cited in 
statistics text books or in this manual. The following tables gives the references for 
each data set: 

Data_set_choice Reference 
1 Longley (1967) 
2 Anderson (1971, p.660) 
3 Fisher (1936); Mardia et al. (1979, Table 1.2.2) 
4 Box and Jenkins (1976, p. 531) 
5 Draper and Smith (1981, pp. 629-630) 
6 Box and Jenkins (1976, p. 525) 
7 Box and Jenkins (1976, pp. 532-533) 
8 Robinson (1976, p. 204) 
9 Afifi and Azen (1979, pp. 16-22) 

Example 
In this example, imsls_f_data_sets is used to copy the Draper and Smith (1981, 
Appendix B) data set into x. 

#include <imsls.h> 
 
main() 
{ 
    float *x; 
 
    x = imsls_f_data_sets (5, 0); 
 
    imsls_f_write_matrix("Draper and Smith, Appendix B", 13, 5, x, 0); 
} 

Output 
                 Draper and Smith, Appendix B 
             1           2           3           4           5 
 1         7.0        26.0         6.0        60.0        78.5 
 2         1.0        29.0        15.0        52.0        74.3 
 3        11.0        56.0         8.0        20.0       104.3 
 4        11.0        31.0         8.0        47.0        87.6 
 5         7.0        52.0         6.0        33.0        95.9 
 6        11.0        55.0         9.0        22.0       109.2 
 7         3.0        71.0        17.0         6.0       102.7 
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 8         1.0        31.0        22.0        44.0        72.5 
 9         2.0        54.0        18.0        22.0        93.1 
10        21.0        47.0         4.0        26.0       115.9 
11         1.0        40.0        23.0        34.0        83.8 
12        11.0        66.0         9.0        12.0       113.3 
13        10.0        68.0         8.0        12.0       109.4 

mat_mul_rect 
Computes the transpose of a matrix, a matrix-vector product, a matrix-matrix product, 
a bilinear form, or any triple product. 

Synopsis 

#include <imsls.h> 

float *imsls_f_mat_mul_rect (char *string, ..., 0) 
The type double function is imsls_d_mat_mul_rect. 

Required Arguments 

char *string (Input) 
String indicating operation to be performed. See the “Description” section 
below for more details.” 

Return Value 
The result of the operation. This is always a pointer to a float, even if the result is a 
single number. If no answer was computed, NULL is returned. 

Synopsis with Optional Arguments 

#include <imsls.h> 
float *imsls_f_mat_mul_rect (char *string, 

IMSLS_A_MATRIX, int nrowa, int ncola, float a[], 
IMSLS_A_COL_DIM, int a_col_dim, 
IMSLS_B_MATRIX, int nrowb, int ncolb, float b[], 
IMSLS_B_COL_DIM, int b_col_dim, 
IMSLS_X_VECTOR, int nx, float *x, 
IMSLS_Y_VECTOR, int ny, float *y, 
IMSLS_RETURN_USER, float ans[], 
IMSLS_RETURN_COL_DIM, int return_col_dim, 
0) 

Optional Arguments 

IMSLS_A_MATRIX, int nrowa, int ncola, float a[]   (Input) 
The nrowa × ncola matrix A. 

IMSLS_A_COL_DIM, int a_col_dim   (Input) 
Column dimension of A.  
Default: a_col_dim = ncola 
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IMSLS_B_MATRIX, int nrowb, int ncolb, float b[]   (Input) 
The nrowb × ncolb matrix A.  

IMSLS_B_COL_DIM, int b_col_dim   (Input) 
Column dimension of B. 
Default: b_col_dim = ncolb 

IMSLS_X_VECTOR, int nx, float *x   (Input) 
Vector x of size nx. 

IMSLS_Y_VECTOR, int ny, float *y   (Input) 
Vector y of size ny. 

IMSLS_RETURN_USER, float ans[]   (Output) 
User-allocated array containing the result. 

IMSLS_RETURN_COL_DIM, int return_col_dim   (Input) 
Column dimension of the answer. 
Default: return_col_dim = the number of columns in the answer 

Description 
This function computes a matrix-vector product, a matrix-matrix product, a bilinear 
form of a matrix, or a triple product according to the specification given by string. 
For example, if “A*x” is given, Ax is computed. In string, the matrices A and B and 
the vectors x and y can be used. Any of these four names can be used with trans, 
indicating transpose. The vectors x and y are treated as n × 1 matrices. 
If string contains only one item, such as “x” or “trans(A)”, then a copy of the 
array, or its transpose, is returned. If string contains one multiplication, such as 
“A*x” or “B*A”, then the indicated product is returned. Some other legal values for 
string are “trans(y)*A”, “A*trans(B)”, “x*trans(y)”, or “trans(x)*y”. 
The matrices and/or vectors referred to in string must be given as optional 
arguments. If string is “B*x”, then IMSLS_B_MATRIX and IMSLS_X_VECTOR must 
be given. 

Example 
Let A, B, x, and y equal the following matrices: 

3 2 7 3
1 2 9

7 4 2 4
5 4 7

9 1 1 2
A B x y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The arrays AT, Ax, xTAT, AB, BTAT, xTy, xyT and xTAy are computed and printed. 
#include <imsls.h> 
 
main() 
{ 
    float       A[] = {1, 2, 9, 
                       5, 4, 7}; 
    float       B[] = {3, 2, 
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                       7, 4, 
                       9, 1}; 
    float       x[] = {7, 2, 1}; 
    float       y[] = {3, 4, 2}; 
    float       *ans; 
 
    ans = imsls_f_mat_mul_rect("trans(A)", 
        IMSLS_A_MATRIX, 2, 3, A, 
        0); 
    imsls_f_write_matrix("trans(A)", 3, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("A*x", 
        IMSLS_A_MATRIX, 2, 3, A, 
        IMSLS_X_VECTOR, 3, x, 
        0); 
    imsls_f_write_matrix("A*x", 1, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("trans(x)*trans(A)", 
        IMSLS_A_MATRIX, 2, 3, A, 
        IMSLS_X_VECTOR, 3, x, 
        0); 
    imsls_f_write_matrix("trans(x)*trans(A)", 1, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("A*B", 
        IMSLS_A_MATRIX, 2, 3, A, 
        IMSLS_B_MATRIX, 3, 2, B, 
        0); 
    imsls_f_write_matrix("A*B", 2, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("trans(B)*trans(A)", 
        IMSLS_A_MATRIX, 2, 3, A, 
        IMSLS_B_MATRIX, 3, 2, B, 
        0); 
    imsls_f_write_matrix("trans(B)*trans(A)", 2, 2, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("trans(x)*y", 
        IMSLS_X_VECTOR, 3, x, 
        IMSLS_Y_VECTOR, 3, y, 
        0); 
    imsls_f_write_matrix("trans(x)*y", 1, 1, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("x*trans(y)", 
        IMSLS_X_VECTOR, 3, x, 
        IMSLS_Y_VECTOR, 3, y, 
        0); 
    imsls_f_write_matrix("x*trans(y)", 3, 3, ans, 0); 
 
    ans = imsls_f_mat_mul_rect("trans(x)*A*y", 
        IMSLS_A_MATRIX, 2, 3, A, 
                                /* use only the first 2 components of x */ 
        IMSLS_X_VECTOR, 2, x, 
        IMSLS_Y_VECTOR, 3, y, 
        0); 
    imsls_f_write_matrix("trans(x)*A*y", 1, 1, ans, 0); 
} 
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Output 
        trans(A) 
            1           2 
1           1           5 
2           2           4 
3           9           7 
  
          A*x 
         1           2 
        20          50 
  
   trans(x)*trans(A) 
         1           2 
        20          50 
  
           A*B 
            1           2 
1          98          19 
2         106          33 
  
    trans(B)*trans(A) 
            1           2 
1          98         106 
2          19          33 
  
trans(x)*y 
        31 
  
             x*trans(y) 
            1           2           3 
1          21          28          14 
2           6           8           4 
3           3           4           2 
  
trans(x)*A*y 
        293 

permute_vector 
Rearranges the elements of a vector as specified by a permutation. 

Synopsis 

#include <imsls.h> 

float *imsls_f_permute_vector (int n_elements, float x[], 
int permutation[], Imsls_permute permute, ..., 0) 

The type double function is imsls_d_permute_vector. 

Required Arguments 

int n_elements   (Input) 
Number of elements in the input vector x. 
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float x[]   (Input) 
Array of length n_elements to be permuted. 

int permutation[]   (Input) 
Array of length n_elements containing the permutation. 

Imsls_permute permute (Input) 
Keyword of type Imsls_permute. Argument permute must be either 
IMSLS_FORWARD_PERMUTATION or IMSLS_BACKWARD_PERMUTATION. If 
IMSLS_FORWARD_PERMUTATION is specified, then a forward permutation is 
performed, i.e., x(permutation[i]) is moved to location i in the return 
vector. If IMSLS_BACKWARD_PERMUTATION is specified, then a backward 
permutation is performed, i.e., x[i] is moved to location permutation[i] 
in the return vector. 

Return Value 
An array of length n_elements containing the input vector x permuted. 

Synopsis with Optional Arguments 

#include <imsls.h> 
float *imsls_f_permute_vector (int n_elements, float x[], 

int permutation[], Imsls_permute permute, 
IMSLS_RETURN_USER, float permuted_result[], 
0) 

Optional Arguments 

IMSLS_RETURN_USER, float permuted_result[](Output) 
User-allocated array containing the result of the permutation. 

Description 
Function imsls_f_permute_vector rearranges the elements of a vector according 
to a permutation vector. The function can perform both forward and backward 
permutation. 

Example 
This example rearranges the vector x using permutation. A forward permutation is 
performed. 

#include <imsls.h> 
 
void main() 
{ 
    float x[] = {5.0, 6.0, 1.0, 4.0}; 
    int permutation[] = {2, 0, 3, 1}; 
    float     *output; 
    int        n_elements = 4; 
 
    output = imsls_f_permute_vector (n_elements, x, permutation, 
        IMSLS_FORWARD_PERMUTATION, 0); 
 
    imsls_f_write_matrix ("permuted result", 1, n_elements, output, 
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                           IMSLS_COL_NUMBER_ZERO, 0); 
} 

Output 
                permuted result 
         0           1           2           3 
         1           5           4           6 

permute_matrix 
Permutes the rows or columns of a matrix. 

Synopsis 

#include <imsls.h> 

float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[], 
int permutation[], Imsls_permute permute, ..., 0) 

The type double function is imsls_d_permute_matrix. 

Required Arguments 

int n_rows   (Input) 
Number of rows in the input matrix a. 

int n_columns   (Input) 
Number of columns in the input matrix a. 

float a[]   (Input) 
Matrix of size n_rows × n_columns to be permuted. 

int permutation[]   (Input) 
Array of length n_elements containing the permutation. 

Imsls_permute permute   (Input) 
Keyword of type Imsls_permute. Argument permute must be either 
IMSLS_PERMUTE_ROWS, if the rows of a are to be interchanged, or 
IMSLS_PERMUTE_COLUMNS, if the columns of a are to be interchanged.  

Return Value 
Array of size n_rows × n_columns containing the permuted input matrix a. 

Synopsis with Optional Arguments 

#include <imsls.h> 
float *imsls_f_permute_matrix (int n_rows, int n_columns, float a[],  

int permutation[], Imsls_permute permute, 
IMSLS_RETURN_USER, float permuted_result[], 
0) 
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Optional Arguments 

IMSLS_RETURN_USER, float permuted_result[]   (Output) 
User-allocated array of size n_rows × n_columns containing the result of the 
permutation. 

Description 
Function imsls_f_permute_matrix interchanges the rows or columns of a matrix 
using a permutation vector. The function permutes a column (row) at a time using 
function imsls_f_permute_vector. This process is continued until all the columns 
(rows) are permuted. On completion, let B = result and pi = permutation [i], then 
Bij = Apij for all i, j. 

Example 
This example permutes the columns of a matrix a. 

#include <imsls.h> 
 
void main() 
{ 
    float a[] = {3.0, 5.0, 1.0, 2.0, 4.0, 
                 3.0, 5.0, 1.0, 2.0, 4.0, 
                 3.0, 5.0, 1.0, 2.0, 4.0}; 
    int permutation[] = {2, 3, 0, 4, 1}; 
    float     *output; 
    int        n_rows = 3; 
    int        n_columns = 5; 
 
    output = imsls_f_permute_matrix (n_rows, n_columns, a, permutation, 
        IMSLS_PERMUTE_COLUMNS, 
        0); 
 
    imsls_f_write_matrix ("permuted matrix", n_rows, n_columns, output, 
        IMSLS_ROW_NUMBER_ZERO,  
        IMSLS_COL_NUMBER_ZERO, 
        0); 
} 

Output 
                       permuted matrix 
            0           1           2           3           4 
0           1           2           3           4           5 
1           1           2           3           4           5 
2           1           2           3           4           5 

binomial_coefficient 
Evaluates the binomial coefficient. 

Synopsis 
#include <imsls.h> 
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int imsls_f_binomial_coefficient (int n, int m) 
The type double procedure is imsls_d_binomial_coefficient. 

Required Arguments 

int n   (Input) 
First parameter of the binomial coefficient. Argument n must be nonnegative. 

int m   (Input) 
Second parameter of the binomial coefficient. Argument m must be 
nonnegative. 

Return Value 
The binomial coefficient  

n
m

⎛ ⎞
⎜ ⎟
⎝ ⎠  

is returned. 

Description 
The binomial function is defined to be  

( )
!

! !
n n
m m n m

⎛ ⎞
=⎜ ⎟ −⎝ ⎠  

with n ≥ m ≥ 0. Also, n must not be so large that the function overflows. 

Example 

In this example, ( )9
5  is computed and printed. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    int       n = 9; 
    int       m = 5; 
    int       ans; 
     
    ans = imsls_f_binomial_coefficient(n, m); 
    printf("binomial coefficient = %d\n", ans); 
} 

Output 
   
binomial coefficient = 126 
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beta 
Evaluates the complete beta function. 

Synopsis 
#include <imsls.h> 
float imsls_f_beta (float a, float b) 
The type double procedure is imsls_d_beta. 

Required Arguments 

float a   (Input) 
First beta parameter. It must be positive. 

float b   (Input) 
Second beta parameter. It must be positive. 

Return Value 
The value of the beta function β(a, b). If no result can be computed, then NaN is 
returned. 

Description 
The beta function, β(a, b), is defined to be 

( ) ( ) ( )
( ) ( )

1 11

0
, 1 baa b

a b t t dt
a b

β −−Γ Γ
= = −

Γ + ∫  

Example 
Evaluate the beta function β(0.5, 0.2). 

#include <imsls.h> 
 
main() 
{ 
    float       x = 0.5; 
    float       y = 0.2; 
    float       ans; 
 
    ans = imsls_f_beta(x, y); 
    printf("beta(%f,%f) = %f\n", x, y, ans); 
} 

Output 
beta(0.500000,0.200000) = 6.268653 
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Figure 15-1  Plot of β (x, b) 

The beta function requires that a > 0 and b > 0. It underflows for large arguments. 

Alert Errors 

IMSLS_BETA_UNDERFLOW The arguments must not be so large that the result 
underflows. 

Fatal Errors 

IMSLS_ZERO_ARG_OVERFLOW One of the arguments is so close to zero that the 
result overflows. 

beta_incomplete 
Evaluates the real incomplete beta function Ix = βx (a, b)/β(a, b). 

Synopsis 
#include <imsls.h> 
float imsls_f_beta_incomplete (float x, float a, float b) 
The type double procedure is imsls_d_beta_incomplete. 

Required Arguments 

float x   (Input) 
Point at which the incomplete beta function is to be evaluated. 

float a   (Input) 
Point at which the incomplete beta function is to be evaluated. 
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float b   (Input) 
Point at which the incomplete beta function is to be evaluated. 

Return Value 
The value of the incomplete beta function. 

Description 
The incomplete beta function is defined to be 

( ) ( )
( ) ( ) ( ) 11

0

, 1, 1
, ,

x bx a
x

a b
I a b t t dt

a b a b
β
β β

−−= = −∫  

The incomplete beta function requires that 0 ≤ x ≤ 1, a > 0, and b > 0. It underflows for 
sufficiently small x and large a. This underflow is not reported as an error. Instead, the 
value zero is returned. 

Example 
Evaluate the log of the incomplete beta function I0.61 =β0.61 (2.2,3.7)/β(2.2,3.7). 

 

#include <imsls.h> 
 
main() 
{ 
    float       x = 0.61; 
    float       a = 2.2; 
    float       b = 3.7; 
    float       ans; 
 
    ans = imsls_f_beta_incomplete(x, a, b); 
    printf("beta incomplete = %f\n", ans); 
} 
beta incomplete = 0.8822; 

log_beta 
Evaluates the logarithm of the real beta function ln β(x, y). 

Synopsis 
#include <imsls.h> 
float imsls_f_log_beta (float x, float y) 
The type double procedure is imsls_d_log_beta. 

Required Arguments 

float x   (Input) 
Point at which the logarithm of the beta function is to be evaluated. It must be 
positive. 
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float y   (Input) 
Point at which the logarithm of the beta function is to be evaluated. It must be 
positive. 

Return Value 
The value of the logarithm of the beta function β(x, y). 

Description  
The beta function, β(x, y), is defined to be 

( ) ( ) ( )
( ) ( )

1 11

0
, 1 yxx y

x y t t dt
x y

β −−Γ Γ
= = −

Γ + ∫  

and imsls_f_log_beta returns ln β(x, y). 
The logarithm of the beta function requires that x > 0 and y > 0. It can overflow for 
very large arguments. 

Warning Errors 

IMSLS_X_IS_TOO_CLOSE_TO_NEG_1 The result is accurate to less than one 
precision because the expression −x/(x + y) 
is too close to −1. 

Example 
Evaluate the log of the beta function ln β(0.5, 0.2). 

#include <imsls.h> 
 
main() 
{ 
    float       x = 0.5; 
    float       y = 0.2; 
    float       ans; 
 
    ans = imsls_f_log_beta(x, y); 
    printf("log beta(%f,%f) = %f\n", x, y, ans); 
} 

Output 
log beta(0.500000,0.200000) = 1.835562 

gamma 
Evaluates the real gamma function. 

Synopsis 
#include <imsls.h> 
float imsls_f_gamma (float x) 
The type double procedure is imsls_d_gamma. 
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Required Arguments 

float x   (Input) 
Point at which the gamma function is to be evaluated. 

Return Value 
The value of the gamma function Γ(x). 

Description 
The gamma function, Γ(x), is defined to be 

( ) 1

0

x tx t e dt
∞ − −Γ = ∫  

For x < 0, the above definition is extended by analytic continuation. 
The gamma function is not defined for integers less than or equal to zero. It underflows 
for x << 0 and overflows for large x. It also overflows for values near negative integers. 

 
Figure 15-2   Plot of Γ(x) and 1/Γ(x) 

Alert Errors 

IMSLS_SMALL_ARG_UNDERFLOW The argument x must be large enough that 
Γ(x) does not underflow. The underflow 
limit occurs first for arguments close to 
large negative half integers. Even though 
other arguments away from these half 
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integers may yield machine-representable 
values of Γ(x), such arguments are 
considered illegal.  

Warning Errors 

IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than one-half 
precision because x is too close to a negative 
integer. 

Example 
In this example, Γ(1.5) is computed and printed. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    float       x = 1.5; 
    float       ans; 
     
    ans = imsls_f_gamma(x); 
    printf("Gamma(%f) = %f\n", x, ans); 
} 

Output 
Gamma(1.500000) = 0.886227 

Fatal Errors 

IMSLS_ZERO_ARG_OVERFLOW The argument for the gamma function is too close to 
zero. 

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close to a 
negative integer. 

IMSLS_LARGE_ARG_OVERFLOW The function overflows because x is too large. 

IMSLS_CANNOT_FIND_XMIN The algorithm used to find x$ failed. This error 
should never occur. 

IMSLS_CANNOT_FIND_XMAX The algorithm used to find x" failed. This error 
should never occur. 

gamma_incomplete 
Evaluates the incomplete gamma function γ(a, x). 

Synopsis 
#include <imsls.h> 
float imsls_f_gamma_incomplete (float a, float x) 
The type double procedure is imsls_d_gamma_incomplete. 
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Required Arguments 

float a   (Input) 
Parameter of the incomplete gamma function is to be evaluated. It must be 
positive. 

float x   (Input) 
Point at which the incomplete gamma function is to be evaluated. It must be 
nonnegative. 

Return Value  
The value of the incomplete gamma function γ(a, x). 

Description 
The incomplete gamma function, γ(a, x), is defined to be 

( ) 1

0
,

x a ta x t e dtγ − −= ∫  

for x > 0. The incomplete gamma function is defined only for a > 0. Although  
γ(a, x) is well defined for x > −∞, this algorithm does not calculate γ(a, x) for negative 
x. For large a and sufficiently large x, γ(a, x) may overflow. γ(a, x) is bounded by Γ(a), 
and users may find this bound a useful guide in determining legal values for a. 

 
Figure 15-3   Contour Plot of γ(a, x) 

Example  
Evaluates the incomplete gamma function at a = 1 and x = 3. 
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#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    float       x = 3.0; 
    float       a = 1.0; 
    float       ans; 
 
    ans = imsls_f_gamma_incomplete(a, x); 
    printf("incomplete gamma(%f,%f) = %f\n", a, x, ans); 
} 

Output   
incomplete gamma(1.000000,3.000000) = 0.950213 

Fatal Errors 

IMSLS_NO_CONV_200_TS_TERMS The function did not converge in 200 terms 
of Taylor series. 

IMSLS_NO_CONV_200_CF_TERMS The function did not converge in 200 terms 
of the continued fraction. 

log_gamma 
Evaluates the logarithm of the absolute value of the gamma function log |Γ(x)|. 

Synopsis 
#include <imsls.h> 
float imsls_f_log_gamma (float x) 
The type double procedure is imsls_d_log_gamma. 

Required Arguments 

float x   (Input) 
Point at which the logarithm of the absolute value of the gamma function is to 
be evaluated. 

Return Value  
The value of the logarithm of gamma function log |Γ(x)|. 

Description 
The logarithm of the absolute value of the gamma function log |Γ(x)| is computed. 
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Figure 15-4   Plot of log|Γ(x)| 

Example 
In this example, log |Γ(3.5)| is computed and printed. 

#include <stdio.h> 
#include <imsls.h> 
 
main() 
{ 
    float       x = 3.5; 
    float       ans; 
    ans = imsls_f_log_gamma(x); 
    printf("log gamma(%f) = %f\n", x, ans); 
} 

Output 
log gamma(3.500000) = 1.200974 

 

 

 

Warning Errors 

IMSLS_NEAR_NEG_INT_WARN The result is accurate to less than one-half 
precision because x is too close to a negative 
integer. 
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Fatal Errors 

IMSLS_NEGATIVE_INTEGER The argument for the function cannot be a 
negative integer. 

IMSLS_NEAR_NEG_INT_FATAL The argument for the function is too close to 
a negative integer. 

IMSLS_LARGE_ABS_ARG_OVERFLOW |x| must not be so large that the result 
overflows. 

ctime 
Returns the number of CPU seconds used. 

Synopsis 
#include <imsls.h> 
double imsls_ctime () 

Return Value 
The number of CPU seconds used by the program. 

Example 
The CPU time needed to compute 

1,000,000

0k

k
=

∑  

is obtained and printed. The time needed is machine dependent. The CPU time needed 
will varies slightly from run to run on the same machine. 

#include <imsls.h> 
 
main() 
{ 
    int     k; 
    double  sum, time; 
                                /* Sum 1 million values */ 
    for (sum=0, k=1;  k<=1000000; k++) 
         sum += k; 
                                /* Get amount of CPU time used */ 
    time = imsls_ctime(); 
    printf("sum = %f\n", sum); 
 
    printf("time = %f\n", time); 
} 

Output 
sum = 500000500000.000000 
time = 0.820000 
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Reference Material 

User Errors 
IMSL functions attempt to detect user errors and handle them in a way that provides as 
much information to the user as possible. To do this, various levels of severity of errors 
are recognized, and the extent of the error in the context of the purpose of the function 
also is considered; a trivial error in one situation can be serious in another. IMSL 
attempts to report as many errors as can reasonably be detected. Multiple errors present 
a difficult problem in error detection because input is interpreted in an uncertain 
context after the first error is detected. 

What Determines Error Severity 
In some cases, the user’s input may be mathematically correct, but because of 
limitations of the computer arithmetic and of the algorithm used, it is not possible to 
compute an answer accurately. In this case, the assessed degree of accuracy determines 
the severity of the error. In cases where the function computes several output 
quantities, some are not computable but most are, an error condition exists. The 
severity of the error depends on an assessment of the overall impact of the error. 

Kinds of Errors and Default Actions 
Five levels of severity of errors are defined in IMSL C/Stat/Library. Each level has an 
associated PRINT attribute and a STOP attribute. These attributes have default settings 
(YES or NO), but they may also be set by the user. The purpose of having multiple 
error types is to provide independent control of actions to be taken for errors of 
different levels of severity. Upon return from an IMSL function, exactly one error state 
exists. (A code 0 “error” is no error.) Even if more than one informational error occurs, 
only one message is printed (if the PRINT attribute is YES). Multiple errors for which 
no corrective action within the calling program is reasonable or necessary result in the 
printing of multiple messages (if the PRINT attribute for their severity level is YES). 
Errors of any of the severity levels except IMSLS_TERMINAL may be informational 
errors. The include file, imsls.h, defines each of IMSLS_NOTE, IMSLS_ALERT, 
IMSLS_WARNING, IMSLS_FATAL, IMSLS_TERMINAL, IMSLS_WARNING_IMMEDIATE, 
and IMSLS_FATAL_IMMEDIATE as enumerated data type Imsls_error. 
IMSLS_NOTE. A note is issued to indicate the possibility of a trivial error or simply to 
provide information about the computations.  
Default attributes: PRINT=NO, STOP=NO 
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IMSLS_ALERT. An alert indicates that a function value has been set to 0 due to 
underflow.  
Default attributes: PRINT=NO, STOP=NO 
IMSLS_WARNING. A warning indicates the existence of a condition that may require 
corrective action by the user or calling function. A warning error may be issued 
because the results are accurate to only a few decimal places; because some of the 
output may be erroneous, but most of the output is correct; or because some 
assumptions underlying the analysis technique are violated. Usually no corrective 
action is necessary, and the condition can be ignored. 
Default attributes: PRINT=YES, STOP=NO 
IMSLS_FATAL. A fatal error indicates the existence of a condition that may be serious. 
In most cases, the user or calling function must take corrective action to recover.  
Default attributes: PRINT=YES, STOP=YES 
IMSLS_TERMINAL. A terminal error is serious. It usually is the result of an incorrect 
specification, such as specifying a negative number as the number of equations. These 
errors can also be caused by various programming errors impossible to diagnose 
correctly in C. The resulting error message may be perplexing to the user. In such 
cases, the user is advised to compare carefully the actual arguments passed to the 
function with the dummy argument descriptions given in the documentation. Special 
attention should be given to checking argument order and data types. 
A terminal error is not an informational error, because corrective action within the 
program is generally not reasonable. In normal use, execution is terminated 
immediately when a terminal error occurs. Messages relating to more than one terminal 
error are printed if they occur.  
Default attributes: PRINT=YES, STOP=YES 
IMSLS_WARNING_IMMEDIATE. An immediate warning error is identical to a warning 
error, except it is printed immediately.  
Default attributes: PRINT=YES, STOP=NO 
IMSLS_FATAL_IMMEDIATE. An immediate fatal error is identical to a fatal error, 
except it is printed immediately.  
Default attributes: PRINT=YES, STOP=YES 
The user can set PRINT and STOP attributes by calling function  
imsls_error_options as described in Chapter 14, “Utilities.” 

Errors in Lower-level Functions 
It is possible that a user’s program may call an IMSL function that in turn calls a nested 
sequence of lower-level IMSL functions. If an error occurs at a lower level in such a 
nest of functions and if the lower-level function cannot pass the information up to the 
original user-called function, then a traceback of the functions is produced. The only 
common situation in which this can occur is when an IMSL function calls a user-
supplied routine that in turn calls another IMSL function. 

Functions for Error Handling 
The user may interact in two ways with the IMSL error-handling system: (1) to change 
the default actions and (2) to determine the code of an informational error so as to take 
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corrective action. The IMSL functions to use are imsls_error_options and 
imsls_error_code. Function imsls_error_options sets the actions to be taken 
when errors occur. Function imsls_error_code retrieves the integer code for an 
informational error. These functions are documented in Chapter 15, “Utilities.” 

Threads and Error Handling 
If multiple threads are used then default settings are valid for each thread  
but can be altered for each individual thread. When using threads it is  
necessary to set options using imsls_error_options (excluding 
IMSLS_SET_SIGNAL_TRAPPING ) for each thread by calling imsls_error_options  
from within each thread.  
The IMSL signal-trapping mechanism must be disabled when multiple threads  
are used. The IMSL signal-trapping mechanism can be disabled by making the 
following call before any threads are created: 
imsls_error_options(IMSLS_SET_SIGNAL_TRAPPING, 0, 0); 

 See Chapter 15, “Utilities”, examples 3 and 4 of imsls_error_options for 
multithreaded examples. 

Use of Informational Error to Determine Program Action 
In the program segment below, a factor analysis is to be performed on the matrix 
covariances. If it is determined that the matrix is singular (and often this is not 
immediately obvious), the program is to take a different branch. 
     x = imsls_f_factor_analysis (nobs, covariances,  
             n_factors, 0); 
     if (imsls_error_code() == IMSLS_COV_IS_SINGULAR) { 
            /*  Handle a singular matrix  */ 
     } 

Additional Examples 
See functions imsls_error_options and imsls_error_code in Chapter 15, 
“Utilities” for additional examples. 
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Product Support 

Contacting Visual Numerics Support 
Users within support warranty may contact Visual Numerics regarding the use of the 
IMSL C Numerical Libraries.  Visual Numerics can consult on the following topics: 
•   Clarity of documentation 
•   Possible Visual Numerics-related programming problems 
•   Choice of IMSL Libraries functions or procedures for a particular problem 

Not included in these topics are mathematical/statistical consulting and debugging of 
your program. 
Contact Visual Numerics Product Support emailing: 
•   http://www.vni.com/tech/imsl/phone.html 

Electronic addresses are not handled uniformly across the major networks, and some 
local conventions for specifying electronic addresses might cause further variations to 
occur;  contact your E-mail postmaster for further details. 
The following describes the procedure for consultation with Visual Numerics: 

1. Include your VNI license number 

2. Include the product name and version number:  IMSL C Numerical Library  
Version 6.0 

3. Include compiler and operating system version numbers 

4. Include the name of the routine for which assistance is needed and a description 
of the problem

http://www.vni.com/contact.worldwideoffices.html
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Appendix B:  Alphabetical Summary 
of Routines 

Routines 
 

Function/Page  Purpose Statement 

A 
anova_balanced on page 
254 

Analyzes a balanced complete experimental design for a 
fixed, random, or mixed model. 

anova_factorial on 
page 237 

Analyzes a balanced factorial design with fixed effects. 

anova_nested on page 
245 

Analyzes a completely nested random model with possibly 
unequal numbers in the subgroups. 

anova_oneway on page 
228 

Analyzes a one-way classification model. 

arma on page 511 Computes least-square estimates of parameters for an 
ARMA model. 

arma_forecast on page 
527 

Computes forecasts and their associated probability limits 
for an ARMA model. 

autocorrelation on 
page 588 

Computes the sample autocorrelation function of a 
stationary time series. 

auto_arima on page 555 Automatically identifies time series outliers, determines 
parameters of a multiplicative seasonal 
ARIMA ( ,0, ) (0, ,0)sp q d×  model and produces forecasts 
that incorporate the effects of outliers whose effects persist 
beyond the end of the series 

auto_uni_ar on page 
532 

Automatic selection and fitting of a univariate 
autoregressive time series model. 

B 
beta on page 1020 Evaluates the complete beta function. 
beta_cdf on page 783 Evaluates the beta probability distribution function. 
beta_incomplete on 

1021
Evaluates the real incomplete beta function. 
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page 1021 

beta_inverse_cdf on 
page 785 

Evaluates the inverse of the beta distribution function. 

binomial_cdf on page 
774 

Evaluates the binomial distribution function. 

binomial_coefficient 
on page 1018 

Evaluates the binomial coefficient. 

binomial_pdf on page 
775 

Evaluates the binomial probability function. 

bivariate_normal_cdf 
on page 786 

Evaluates the bivariate normal distribution function. 

box_cox_transform on 
page 584 

Performs a Box-Cox transformation. 

C 
categorical_glm on page 
422 

Analyzes categorical data using logistic, Probit, Poisson, 
and other generalized linear models. 

chi_squared_cdf on page 
788 

Evaluates the chi-squared distribution function. 

chi_squared_inverse_cdf 
on page 789 

Evaluates the inverse of the chi-squared distribution 
function. 

chi_squared_test on 
page 475 

Performs a chi-squared goodness-of-fit test. 

cluster_hierarchical on 
page 645 

Performs a hierarchical cluster analysis given a distance 
matrix. 

cluster_k_means on page 
653 

Performs a K-means (centroid) cluster analysis. 

cluster_number on page 
649 

Computes cluster membership for a hierarchical cluster tree. 

cochran_q_test on page 
466 

Performs a Cochran Q test for related observations. 

contingency_table on 
page 402 

Performs a chi-squared analysis of a two-way contingency 
table. 

continuous_table_setup 
on page 862 

Sets up table to generate pseudorandom numbers from a 
general continuous distribution. 

covariances on page 185 Computes the sample variance-covariance or correlation 
matrix. 

cox_stuart_trends_test 
on page 448 

Performs the Cox and Stuart’ sign test for trends in location 
and dispersion. 

crd_factorial on page 
266 

Analyzes data from balanced and unbalanced completely 
randomized experiments. 

crosscorrelation on 
page 593 

Computes the sample cross-correlation function of two 
stationary time series 

D 
data_sets on page 1009 Retrieves a commonly analyzed data set. 
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difference on page 572 Differences a seasonal or nonseasonal time series. 
discrete_table_setup 
on page 832 

Sets up a table to generate pseudorandom numbers from a 
general discrete distribution. 

discriminant_analysis 
on page 682 

Performs discriminant function analysis. 

E 
error_code on page 
1004 

Returns the code corresponding to the error message from 
the last function called. 

error_options on page 
998 

Sets various error handling options. 

estimate_missing on 
page 614 

Estimates missing values in a time series. 

exact_enumeration on 
page 414 

Computes exact probabilities in a two-way contingency 
table, using the total enumeration method. 

exact_network on page 
416 

Computes exact probabilities in a two-way contingency 
table using the network algorithm. 

F 
factor_analysis on 
page 640 

Extracts initial factor-loading estimates in factor analysis. 

faure_next_point on 
page 911 

Computes a shuffled Faure sequence 

friedmans_test on page 
462 

Performs Friedman’s test for a randomized complete block 
design. 

G 
gamma on page 1023 Evaluates the real gamma functions. 
gamma_cdf on page 798 Evaluates the gamma distribution function. 
gamma_incomplete on 
page 1025 

Evaluates the incomplete gamma function. 

gamma_inverse_cdf on 
page 799 

Evaluates the inverse of the gamma distribution function. 

garch on page 621 Computes estimates of the parameters of a GARCH 
(p, q) model 

H 
homogeneity on page 
376 

Conducts Bartlett’s and Levene’s tests of the homogeneity 
of variance assumption in analysis of variance. 

hypergeometric_cdf on 
page 777 

Evaluates the hypergeometric distribution function. 

hypergeometric_pdf on 
page 778 

Evaluates the hypergeometric probability function. 

hypothesis_partial on 
page 95 

Constructs a completely testable hypothesis. 
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hypothesis_scph on 
page 100 

Sums of cross products for a multivariate hypothesis. 

hypothesis_test on 
page 105 

Tests for the multivariate linear hypothesis. 

I 

J 

K 
kalman on page 626 Performs Kalman filtering and evaluates the likelihood 

function for the state-space model.  
kaplan_meier_estimates 
on page 708 

Computes Kaplan-Meier estimates of survival probabilities 
in stratified samples. 

kolmogorov_one on page 
487 

Performs a Kolmogorov-Smirnov’s one-sample test for 
continuos distributions. 

kolmogorov_two on page 
490 

Performs a Kolmogorov-Smirnov’s two-sample test 

kruskal_wallis_test on 
page 459 

Performs a Kruskal-Wallis’s test for identical population 
medians.  

k_trends_test on page 
469 

Performs k-sample trends test against ordered alternatives. 

L 
lack_of_fit on page 
611 

Performs lack-of-fit test for an univariate time series or 
transfer function given the appropriate correlation function. 

latin_square on page 
287 

Analyzes data from latin-square experiments. 

lattice on page 296 Analyzes balanced and partially-balanced lattice 
experiments. 

life_tables on page 
764 

Produces population and cohort life tables. 

Lnorm_regression on 
page 166 

Fits a multiple linear regression model using criteria other 
than least squares. 

log_beta on page 1022 Evaluates the log of the real beta function. 
log_gamma on page 1027 Evaluates the logarithm of the absolute value of the gamma 

function. 

M 
machine (float) on page 
1007 

Returns information describing the computer's floating-
point arithmetic. 

machine (integer) on 
page 1005 

Returns integer information describing the computer's 
arithmetic. 

mat_mul_rect on page 
1012 

Computes the transpose of a matrix, a matrix-vector 
product, a matrix-matrix product, a bilinear form, or any 
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triple product. 
max_arma on page 521 Exact maximum likelihood estimation of the parameters in a 

univariate ARMA (autoregressive, moving average) time 
series model. 

mlff_network on page 
934 

Creates a multilayered feedforward neural network. 

mlff_network_forecast 
on page 954 

Calculates forecasts for trained multilayered feedforward 
neural networks. 

mlff_network_trainer on 
page 944 

Trains a multilayered feedforward neural network. 

multi_crosscorrelation 
on page 599 

Computes the multichannel cross-correlation function of 
two mutually stationary multichannel time series. 

multiple_comparisons on 
page 383 

Performs Student-Newman-Keuls multiple comparisons 
test. 

multivar_normality_test 
on page 493 

Computes Mardia’s multivariate measures of skewness and 
kurtosis and tests for multivariate normality. 

N 
noether_cyclical_trend 
on page 444 

Performs the Noether’s test for cyclical trend. 

non_central_chi_sq on 
page 791 

Evaluates the noncentral chi-squared distribution function. 

non_central_chi_sq_inv 
on page 793 

Evaluates the inverse of the noncentral chi-squared 
function. 

non_central_t_cdf on 
page 807 

Evaluates the noncentral Student’s t distribution function. 

non_central_t_inv_cdf 
on page 809 

Evaluates the inverse of the noncentral Student’s t 
distribution function. 

nonlinear_optimization 
on page 157 

Fits a nonlinear regression model using Powell's algorithm. 

nonlinear_regression 
on page 147 

Fits a nonlinear regression model. 

nonparam_hazard_rate 
on page 756 

Performs nonparametric hazard rate estimation using kernel 
functions and quasi-likelihoods. 

normal_cdf on page 801 Evaluates the standard normal (Gaussian) distribution 
function. 

normal_inverse_cdf on 
page 802 

Evaluates the inverse of the standard normal (Gaussian) 
distribution function. 

normal_one_sample on 
page 7 

Computes statistics for mean and variance inferences using 
a sample from a normal population. 

normal_two_sample on 
page 11 

Computes statistics for mean and variance inferences using 
samples from two normal population. 

normality_test on page 
483 

Performs a test for normality. 
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O 
output_file on page 
993 

Sets the output file or the error message output file. 

P 
page on page 986 Sets or retrieves the page width or length. 
partial_autocorrelation on 
page 608 

Computes the sample partial autocorrelation function 
of a stationary time series.  

partial_covariances on 
page 192 

Computes partial covariances or partial correlations 
from the covariance or correlation matrix. 

permute_matrix on page 
1017 

Permutes the rows or columns of a matrix. 

permute_vector on page 
1015 

Rearranges the elements of a vector as specified by a 
permutation. 

poisson_cdf on page 779 Evaluates the Poisson distribution function. 
poisson_pdf on page 781 Evaluates the Poisson probability function. 
poly_prediction on page 
137 

Computes predicted values, confidence intervals, and 
diagnostics after fitting a polynomial regression model. 

poly_regression on page 
130 

Performs a polynomial least-squares regression. 

pooled_covariances on page 
197 

Computes a pooled variance-covariance from the 
observations. 

principal_components on 
page 640 

Computes principal components. 

prop_hazards_gen_lin on 
page 713 

Analyzes time event data via the proportional hazards 
model.  

  

Q 

R 
random_arma on page 880 Generates pseudorandom ARMA process numbers. 
random_beta on page 837 Generates pseudorandom numbers from a beta distribution. 
random_binomial on page 
816 

Generates pseudorandom binomial numbers. 

random_cauchy on page 838 Generates pseudorandom numbers from a Cauchy 
distribution. 

random_chi_squared on page 
840 

Generates pseudorandom numbers from a chi-squared 
distribution. 

random_exponential on page 
841 

Generates pseudorandom numbers from a standard 
exponential distribution. 

random_exponential_mix on 
page 843 

Generates pseudorandom mixed numbers from a standard 
exponential distribution. 

random_gamma on page 845 Generates pseudorandom numbers from a standard gamma 
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distribution. 
random_general_continuous 
on page 859 

Generates pseudorandom numbers from a general 
continuous distribution. 

random_general_discrete on 
page 828 

Generates pseudorandom numbers from a general discrete 
distribution using an alias method or optionally a table 
lookup method.  

random_geometric on page 
818 

Generates pseudorandom numbers from a geometric 
distribution. 

random_GFSR_table_get on 
page 902 

Retrieves the current table used in the GFSR generator. 

random_GFSR_table_set on 
page 901 

Sets the current table used in the GFSR generator. 

random_hypergeometric on 
page 819 

Generates pseudorandom numbers from a hypergeometric 
distribution. 

random_logarithmic on page 
822 

Generates pseudorandom numbers from a logarithmic 
distribution. 

random_lognormal on page 
846 

Generates pseudorandom numbers from a lognormal 
distribution. 

random_MT32_init on page 
905 

Initializes the 32-bit Mersenne Twister generator using an 
array. 

random_MT32_table_get on 
page 905 

Retrieves the current table used in the 32-bit Mersenne 
Twister generator. 

random_MT32_table_set on 
page 907 

Sets the current table used in the 32-bit Mersenne Twister 
generator. 

random_MT64_init on page 
908 

Initializes the 64-bit Mersenne Twister generator using an 
array. 

random_MT64_table_get on 
page 908 

Retrieves the current table used in the 64-bit Mersenne 
Twister generator. 

random_MT64_table_set on 
page 910 

Sets the current table used in the 64-bit Mersenne Twister 
generator. 

random_multinomial on page 
871 

Generates pseudorandom numbers from a multinomial 
distribution. 

random_mvar_from_data on 
page 868 

Generates pseudorandom numbers from a multivariate 
distribution determined from a given sample. 

random_neg_binomial on 
page 823 

Generates pseudorandom numbers from a negative binomial 
distribution. 

random_normal on page 848 Generates pseudorandom numbers from a standard normal 
distribution using an inverse CDF method. 

random_normal_multivariate 
on page 864 

Generates pseudorandom numbers from a multivariate 
normal distribution. 

random_npp on page 884 Generates pseudorandom numbers from a nonhomogeneous 
Poisson process. 

random_option on page 894 Selects the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

random_option_get on page 
895 

Retrieves the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 
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random_order_normal on 
page 876 

Generates pseudorandom order statistics from a standard 
normal distribution. 

random_order_uniform on 
page 878 

Generates pseudorandom order statistics from a uniform (0, 
1) distribution  

random_orthogonal_matrix 
on page 866 

Generates a pseudorandom orthogonal matrix or a 
correlation matrix. 

random_permutation on page 
887 

Generates a pseudorandom permutation. 

random_poisson on page 825 Generates pseudorandom numbers from a Poisson 
distribution. 

random_sample on page 890 Generates a simple pseudorandom sample from a finite 
population. 

random_sample_indices on 
page 889 

Generates a simple pseudorandom sample of indices. 

random_seed_get on page 
896 

Retrieves the current value of the seed used in the IMSL 
random number generators. 

random_seed_set on page 
899 

Initializes a random seed for use in the IMSL random 
number generators. 

random_sphere on page 873 Generates pseudorandom points on a unit circle or K-
dimensional sphere. 

random_stable on page 850 Sets up a table to generate pseudorandom numbers from a 
general discrete distribution. 

random_student_t on page 
852 

Generates pseudorandom Student's  t. 

random_substream_seed_get 
on page 897 

Retrieves  a seed for the congruential generators that do not 
do shuffling that will generate random numbers beginning 
100,000 numbers farther along. 

random_table_get on page 
900 

Retrieves the current table used in the shuffled generator. 

random_table_set on page 
900 

Sets the current table used in the shuffled generator. 

random_table_twoway on 
page 875 

Generates a pseudorandom two-way table. 

random_triangular on page 
853 

Generates pseudorandom numbers from a triangular 
distribution. 

random_uniform on page 854 Generates pseudorandom numbers from a uniform (0, 1) 
distribution. 

random_uniform_discrete on 
page 826 

Generates pseudorandom numbers from a discrete uniform 
distribution. 

random_von_mises on page 
856 

Generates pseudorandom numbers from a von Mises 
distribution. 

random_weibull on page 857 Generates pseudorandom numbers from a Weibull 
distribution. 

randomness_test on page 
497 

Performs a test for randomness. 

ranks on page 34 Computes the ranks, normal scores, or exponential scores 
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for a vector of observations. 
rcbd_factorial on page 277 Analyzes data from balanced and unbalanced randomized 

complete-block experiments. 
regression on page 64 Fits a multiple linear regression model using least squares. 
regression_prediction on 
page 84 

Computes predicted values, confidence intervals, and 
diagnostics after fitting a regression model. 

regression_selection on 
page 112 

Selects the best multiple linear regression models. 

regression_stepwise on 
page 122 

Builds multiple linear regression models using forward 
selection, backward selection or stepwise selection. 

regression_summary on page 
76 

Produces summary statistics for a regression model given 
the information from the fit. 

regressors_for_glm on page 
55 

Generates regressors for a general linear model. 

robust_covariances on page 
203 

Computes a robust estimate of a covariance matrix and 
mean vector. 

random_arma on page 880 Generates pseudorandom ARMA process numbers. 
random_beta on page 837 Generates pseudorandom numbers from a beta distribution. 
random_binomial on page 
816 

Generates pseudorandom binomial numbers. 

random_cauchy on page 838 Generates pseudorandom numbers from a Cauchy 
distribution. 

random_chi_squared on page 
840 

Generates pseudorandom numbers from a chi-squared 
distribution. 

random_exponential on page 
841 

Generates pseudorandom numbers from a standard 
exponential distribution. 

random_exponential_mix on 
page 843 

Generates pseudorandom mixed numbers from a standard 
exponential distribution. 

random_gamma on page 845 Generates pseudorandom numbers from a standard gamma 
distribution. 

random_general_continuous 
on page 859 

Generates pseudorandom numbers from a general 
continuous distribution. 

random_general_discrete on 
page 828 

Generates pseudorandom numbers from a general discrete 
distribution using an alias method or optionally a table 
lookup method.  

random_geometric on page 
818 

Generates pseudorandom numbers from a geometric 
distribution. 

random_GFSR_table_get on 
page 902 

Retrieves the current table used in the GFSR generator. 

random_GFSR_table_set on 
page 901 

Sets the current table used in the GFSR generator. 

random_hypergeometric on 
page 819 

Generates pseudorandom numbers from a hypergeometric 
distribution. 

random_logarithmic on page 
822 

Generates pseudorandom numbers from a logarithmic 
distribution. 

random_lognormal on page Generates pseudorandom numbers from a lognormal 
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846 distribution. 
random_multinomial on page 
871 

Generates pseudorandom numbers from a multinomial 
distribution. 

random_mvar_from_data on 
page 868 

Generates pseudorandom numbers from a multivariate 
distribution determined from a given sample. 

random_neg_binomial on 
page 823 

Generates pseudorandom numbers from a negative binomial 
distribution. 

random_normal on page 848 Generates pseudorandom numbers from a standard normal 
distribution using an inverse CDF method. 

random_normal_multivariate 
on page 864 

Generates pseudorandom numbers from a multivariate 
normal distribution. 

random_npp on page 884 Generates pseudorandom numbers from a nonhomogeneous 
Poisson process. 

random_option on page 894 Selects the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

random_option_get on page 
895 

Retrieves the uniform (0, 1) multiplicative congruential 
pseudorandom number generator. 

random_order_normal on 
page 876 

Generates pseudorandom order statistics from a standard 
normal distribution. 

random_order_uniform on 
page 878 

Generates pseudorandom order statistics from a uniform (0, 
1) distribution  

random_orthogonal_matrix 
on page 866 

Generates a pseudorandom orthogonal matrix or a 
correlation matrix. 

random_permutation on page 
887 

Generates a pseudorandom permutation. 

random_poisson on page 825 Generates pseudorandom numbers from a Poisson 
distribution. 

random_sample on page 890 Generates a simple pseudorandom sample from a finite 
population. 

random_sample_indices on 
page 889 

Generates a simple pseudorandom sample of indices. 

random_seed_get on page 
896 

Retrieves the current value of the seed used in the IMSL 
random number generators. 

random_seed_set on page 
899 

Initializes a random seed for use in the IMSL random 
number generators. 

random_sphere on page 873 Generates pseudorandom points on a unit circle or K-
dimensional sphere. 

random_stable on page 850 Sets up a table to generate pseudorandom numbers from a 
general discrete distribution. 

random_student_t on page 
852 

Generates pseudorandom Student's t. 

random_substream_seed_get 
on page 897 

Retrieves  a seed for the congruential generators that do not 
do shuffling that will generate random numbers beginning 
100,000 numbers farther along.  

random_table_get on page 
900 

Retrieves the current table used in the shuffled generator. 
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random_table_set on page 
900 

Sets the current table used in the shuffled generator. 

random_table_twoway on 
page 875 

Generates a pseudorandom two-way table. 

random_triangular on page 
853 

Generates pseudorandom numbers from a triangular 
distribution. 

random_uniform on page 854 Generates pseudorandom numbers from a uniform (0, 1) 
distribution. 

random_uniform_discrete on 
page 826 

Generates pseudorandom numbers from a discrete uniform 
distribution. 

random_von_mises on page 
856 

Generates pseudorandom numbers from a von Mises 
distribution. 

random_weibull on page 857 Generates pseudorandom numbers from a Weibull 
distribution. 

randomness_test on page 
497 

Performs a test for randomness. 

ranks on page 34 Computes the ranks, normal scores, or exponential scores 
for a vector of observations. 

rcbd_factorial on page 277 Analyzes data from balanced and unbalanced randomized 
complete-block experiments. 

regression on page 64 Fits a multiple linear regression model using least squares. 
regression_prediction on 
page 84 

Computes predicted values, confidence intervals, and 
diagnostics after fitting a regression model. 

regression_selection on 
page 112 

Selects the best multiple linear regression models. 

regression_stepwise on 
page 122 

Builds multiple linear regression models using forward 
selection, backward selection or stepwise selection. 

regression_summary on page 
76 

Produces summary statistics for a regression model given 
the information from the fit. 

regressors_for_glm on page 
55 

Generates regressors for a general linear model. 

robust_covariances on page 
203 

Computes a robust estimate of a covariance matrix and 
mean vector. 

S 
scale_filter on page 960 Scales or unscales continuous data prior to its use in 

neural network training, testing, or forecasting. 
seasonal_fit on page 576 Estimates the optimum seasonality parameters for a 

time series using an autoregressive model, AR(p), to 
represent the time series. 

sign_test on page 438 Performs a sign test. 
simple_statistics on page 
1 

Computes basic univariate statistics. 

sort_data on page 26 Sorts observations by specified keys, with option to 
tally cases into a multi-way frequency table. 
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split_plot on page 314 Analyzes a wide variety of split-plot experiments 
with fixed, mixed or random factors. 

split_split_plot on page 
326 

Analyzes data from split-split-plot experiments. 

strip_plot on page 342 Analyzes data from strip-plot experiments. 
strip_split_plot on page 
353 

Analyzes data from strip-split-plot experiments. 

survival_estimates on page 
750 

Estimates using various parametric models. 

survival_glm on page 727 Analyzes survival data using a generalized linear 
model. 

T 
t_cdf on page 804 Evaluates the Student's t distribution function. 
t_inverse_cdf on page 805 Evaluates the inverse of the Student's  t distribution 

function. 
table_oneway on page 17 Tallies observations into one-way frequency table. 
table_twoway on page 22 Tallies observations into a two-way frequency table. 
tie_statistics on page 453 Computes tie statistics for a sample of observations. 
time_series_class_filter 
on page 969 

Converts time series data sorted with nominal classes 
in decreasing chronological order to useful format for 
processing by a neural network. 

time_series_filter on page 
966 

Converts time series data to the format required for 
processing by a neural network. 

ts_outlier_forecast on 
page 547 

Computes forecasts, their associated probability limits 
and ψ -weights for an outlier contaminated time 
series whose underlying outlier free series follows a 
general seasonal or nonseasonal ARMA model 

ts_outlier_identification 
on page 537 

Detects and determines outliers and simultaneously 
estimates the model parameters in a time series whose 
underlying outlier free series follows a general 
seasonal or nonseasonal ARMA model. 

U 
unsupervised_nominal_filter 
on page 973 

Converts nominal data into a series of binary 
encoded columns for input to a neural network. 

unsupervised_ordinal_filter 
on page 976 

Converts ordinal data into percentages. 

V 
version on page 997 Returns integer information describing the version 

of the library, license number, operating system, and 
compiler. 
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W 
wilcoxon_rank_sum on page 
455 

Performs a Wilcoxon rank sum test. 

wilcoxon_sign_rank on page 
441 

Performs a Wilcoxon sign rank test. 

write_matrix on page 981 Prints a rectangular matrix (or vector) stored in 
contiguous memory locations. 

write_options on page 987 Sets or retieves an option for printing a matrix. 
  

X 

Y 

Z 
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Index 

A 

additive (AO) 539 
AIC 535, 579, 580 
Airline Data 579 
Akaike’s information criterion  532 
alpha factor analysis 673 
ANOVA 

balanced 254 
factorial 237 
multiple comparisons 383 
nested 245 
oneway 228 

ANSI C ix 
ARIMA models 555 

forecasts 527 
least squares estimates  537 
least-square estimates 511 
maximum likelihood estimates  

537 
method of moments 513 
method of moments estimates 524 
method of moments estimation 515 
multiplicative seasonal 560 

ARIMA models XE "ARIMA 
models:least squares 
estimates" \r "ARIMA"  XE 
537 

ARMA model 521 
association, measures of 407 
Autoregressive model (AR) 617 
Autoregressive Moving Average 

Model 510 

B 

backward selection 122 
balanced 254 
balanced experimental design 254 
beta distribution function 783 

inverse 785 
beta distribution, simulation 837 

beta functions 1020, 1021, 1022 
binary encoded 973 
binomial coefficient 1018 
binomial distribution 774 
binomial distributions 816, 823, 832, 

862 
binomial probability 775 
bivariate normal distribution 

function 786 
Bonferroni method 232 
bounded scaling 961 
Box-Cox transformation 584 

C 

Cartesian coordinates 873 
cauchy distributions 838 
chi-squared analysis 402 
chi-squared distribution function 

788, 789 
chi-squared distributions 840 
chi-squared goodness-of-fit test 475 
chi-squared statistics 401, 405 
chi-squared test 475 
classification model 

one-way 228 
cluster analysis 639, 653 
cluster membership 649 
cluster_hierarchical 645 
cluster_number 649 
Cochran Q test 466 
coefficient 

excess (kurtosis) 2 
skewness 2 
variation 5 

compiler 997 
computer constants 1005, 1007 
confidence intervals 137 

mean 2 
constants 1005, 1007 
contingency coefficient 406 
contingency tables 414, 416 

two-way 402 
correlation matrix 185, 866 
correlations 192 
counts 2, 26 
covariances 203 
Cox and Stuart sign test 448 
CPU 1029 
Cramer’s V 406 
Crd factorial 266 

factorial experiments 271 
pooled location interaction 271 
unbalanced 266 
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unbalanced completely 
randomized experiments 266 

crosscorrelation 593 
cross-correlation function 593, 599, 

708, 714, 756, 764 
cubic spline interpolation  617 

D 

data sets 1009 
detection 538 
deviation, standard 2 
diagnostic checking 510 
diagnostics 137 
discrete uniform distributions 826 
discriminant function analysis 682 
dissimilarities 641 
distribution functions 

beta 783 
inverse 785 

bivariate normal 786 
chi-squared 788 

inverse 789 
chi-squared, noncentral 791, 793 

inverse 793 
F_cdf 

inverse 794 
F_inverse_cdf 796 
gamma 798 
Gaussian 801 
hypergeometric 777 
inverse 802 
normal 801 
Poisson 779 
Student’s t 804 

inverse 805 
Student’s t, noncentral 807 

inverse 809 
Dunn-Sidák method 232 

E 

eigensystem analysis 640 
empirical tests 816 
error handling xiv, 998, 1004, 1031 
error messages 993 
estimate of scale 

simple robust 6 
excess 5 
exponential distribution, simulation 

841 
exponential scores 34 

F 

F statistic 15 
factor analysis 640, 663 
factorial 237 
factorial design 

analysis 237 
Faure 913 
Faure sequence 911, 912 

faure_next_point 912 
finite difference gradient 157 
finite population 890 
Fisher’s LSD 233 
forecasting 510 
forecasts 547 

ARMA models 527, 547 
GARCH 547, 621 

forward selection 122 
frequency tables 17, 22 

multi-way 26 
Friedman’s test 462 

G 

gamma distribution function 798 
gamma distribution, simulation 845 
gamma functions 1023, 1025, 1027 
gamma_inverse_cdf 799 
GARCH 

(Generalized Autoregressive 
Conditional Heteroskedastic ) 
621 

Gaussian distribution functions 801 
inverse 802 

general continuous distribution 859 
general discrete distribution 828, 

829, 832, 862 
general distributions 475 
general linear models 55 
Generalized Feedback Shift Register 

815 
generalized feedback shift register 

method 814 
generalized linear models 401 
geometric distributions 818 
GFSR 894 
GFSR generator 815, 901, 902 
goodness-of-fit tests 475 
Gray code 914 

H 

Haar measure 867 
hierarchical cluster analysis 645 
hierarchical cluster tree 649 
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homogeneity 376 
hypergeometric distribution function 

777 
hypergeometric distributions 819 
hypergeometric_pdf 778 
hyper-rectangle 911 
hypothesis 95, 100, 105 

I 
image analysis 673 
innovational (AO) 563 
innovational (IO) 539, 563 
integrated rate function 886 
invertible/invertiblility  525 

K 

Kalman filtering 626 
Kaplan_meier estimates 709 
Kaplan_meier_estimates 708 
Kaplan-Meier estimates 

computes 708 
Kappa analysis 401 
K-dimensional sphere 873 
kernel functions 708, 756 
K-means analysis 653 
Kolmogorov one-sample test 487 
Kolmogorov two-sample test 490 
Kruskal-Wallis test 459 
k-sample trends test 469 
kurtosis 2, 5 

L 

lack-of-fit test 611 
lack-of-fit tests 52 
Latin square 287 
Lattice 296 

3x3 balanced-lattice 301 
balanced lattice experiments 300 
intra-Block Error 301 
partially-balanced lattice 

experiments 296, 300 
Least Absolute Value 54, 166, 170, 

178 
Least Maximum Value 54, 166, 183 
Least Squares 

Alternatives 
Least Absolute Value 54 
Least Maximum Value 54 
Lp Norm 54 

least-squares fit 64, 166, 245, 254, 
441, 444, 448, 453, 462, 487, 
490, 608 

Lebesque measure 913 
level shift (LS) 563 
level Shift (LS) 539 
library version 997 
linear dependence 48 
linear discriminant function analysis 

682 
linear regression 

multiple 44 
simple 44 

logarithmic distributions 822 
low-discrepancy 913 
Lp Norm 54, 171 

M 

MAD (Median Absolute Deviation) 
6 

Mardia’s multivariate measures 495 
Mardia’s multivariate tests 493 
matrices 641, 1012 
matrix of dissimilarities 641 
matrix storage modes xi 
maximum 2, 5 
maximum likelihood estimates 632 
mean 2, 5, 7, 9 

for two normal populations 11 
normal population 7 

Mean Absolute Deviation 962 
measures of association 401, 406 
measures of prediction 407 
measures of uncertainty 407 
median 6,  617 

absolute deviation 6 
memory allocation xii 
Mersenne Twister 905, 907, 908, 

910, 1071 
minimum 2, 5 
missing values 55,  617 
models 147 

general linear 55 
multiple linear regression 112 
nonlinear regression 49 
polynomial 45 
polynomial regression 137 

Monte Carlo applications 816 
multinomial distribution 871 
Multiple comparisons 383 
Multiple comparisons test 

Bonferroni, Tukey’s, or Duncan’s 
MRT 383 
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Student-Newman-Keuls 383 
multiple linear regression models 64, 

112, 122, 166, 245, 254, 441, 
444, 448, 453, 462, 487, 490, 
608 

multiple_crosscorrelation 599 
multiplicative congruential generator 

814 
multiplicative generator 814 
multiplying matrices 1012 
multivariate distribution 868 
multivariate general linear 

hypothesis 100, 105 
multivariate normal distribution, 

simulation 864 

N 

nested 245 
nested random model 245, 249 
network 934 
Noether test 444 
nominal data 973 
non-ANSI C ix 
noncentral chi-squared distribution 

function 791 
inverse 793 

noncentral Student’s t distribution 
function 807, 809 

nonhomogeneous Poisson process 
884 

nonlinear model 157 
nonlinear regression 147 
nonlinear regression models 49, 147 
nonparam_hazard_rate 756 
nonparametric hazard rate estimation 

756 
nonuniform generators 816 
normal distribution function 802 
normal distribution, simulation 848 
normal populations 

mean 7 
variance 7 

normal scores 34 
normality test 483 

O 

observations 
number of 2 

one-step-ahead forecasts 615 
oneway 228 
one-way classification model 228 
one-way frequency table 17 

operating system 997 
order statistics 876, 878 
ordinal data 976 
orthogonal matrix 866 
outlier 

description 563 
outlier contaminated series 547 
output files 993 
overflow xiv 

P 

parameter estimation 510 
partial correlations 192 
partial covariances 192 
partially tested hypothesis 95 
permutations 1015, 1017 
phi 406 
Poisson distribution function 779 
Poisson distribution, simulation 825 
poisson_pdf 781 
polynomial models 45 
polynomial regression 130 
polynomial regression models 137 
pooled variance-covariance 197 
population 764 
predicted values 137 
prediction coefficient 407 
principal components 657 
printing 

matrices 981 
options 987 
retrieving page size 986 
setting paper size 986 
vectors 981 

probability limits 
ARMA models 527, 547 
outlier contaminated series 549 

prop_hazards_gen_lin 713 
pseudorandom number generators 

475 
pseudorandom numbers 829, 832, 

846, 852, 856, 857, 862 
pseudorandom permutation 887 
pseudorandom sample 889 
p-values 406 

Q 

quadratic discriminant function 
analysis 682 
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R 

random number generator 905, 906, 
908, 909, 911 

random numbers 
beta distribution 837 
exponential distribution 841 
gamma distribution 845 
Poisson distribution 825 
seed 

current value 896 
initializing 899 

selecting generator 894, 895 
random numbers generators 848 
random_MT32_init 905 
random_MT32_table_get 905 
random_MT32_table_set 907 
random_MT64_init 908 
random_MT64_table_get 908 
random_MT64_table_set 910 
randomness test 497 
range 2, 5 
ranks 34 
Rcbd factorial 277 
regression models 44, 76, 84 
regressors 55 
robust covariances 203 

S 

sample autocorrelation function 588 
sample correlation function 510 
sample partial autocorrelation 

function 608 
scale filter 960 
scales 960 
Scheffé method 232 
scores 

exponential 34 
normal 34 

seasonal adjustment 577 
seasonality parameters 576 
seed 897 
Seed 815 
serial number 997 
shuffled generator 900 
sign test 438 
simulation of random variables 813 
skewness 2, 5 
Split plot 314 

blocking factor 321 
completely randomized 314 
completely randomized design 321 
experiments 314 
fixed effects 321 

IMSLS_RCBD default setting 322 
random effects 323 
randomized complete block design 

314, 321 
randomizing whole-plots 322 
split plot factor 322 
split plot factors 321 
whole plot 321 
whole plot factor 322 
whole plot factors 321 

Split Plots 
whole-plots 314 

Split-split plot 326 
split-plot factors 327 
split-split-plot experiments 326 
sub-plot factors 327 
whole plot factors 327 

stable distribution 850 
standard deviation 2, 9 
standard errors 406 
state vector 626 
statespace model 626 
stationary/stationarity  525 
stepwise selection 122 
Strip plot 342 
Strip-split plot 353 
Student’s t distribution function 804 

inverse 805 
summary statistics 50 
survival probabilities 708, 709 

T 

t statistic 15 
temporary change (TC) 539, 563 
tests for randomness 475 
Thread Safe x 

multithreaded application x 
single-threaded application xi 
threads and error handling 1033 

tie statistics 453 
time domain methodology 510 
time event data 707, 713 
time series 510, 880 

difference 572 
time series class filter 969 
time series data 966, 969 
time series filter 966 
transformation 510 
transformations 54 
transposing matrices 1012 
triangular distributions 853 
Tukey method 231 
Tukey-Kramer method 231 
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two-way contingency table 875 
two-way frequency tables 22 
two-way table 875 

U 

unable to identify (UI) 539, 563 
uncertainty, measures of 407 
underflow xiv 
uniform distribution, simulation 854 
unit sphere 873 
univariate statistics 1, 422, 727, 750, 

843 
unscales 960 
unsupervised nominal filter 973 
unsupervised ordinal filter 976 
update equations 627 
user-supplied gradient 157 

V 

variable selection 45 
variance 2, 5, 7 

for two normal populations 11 
normal population 7 

variance-covariance matrix 185 
variation, coefficient of 5 

W 

weighted least squares 50 
white noise 

Gaussian 541, 544, 551 
process 540 

white noise process 524 
Wilcoxon rank sum test 455 
Wilcoxon signed rank test 441 
Wilcoxon two-sample test 460 
Wolfer Sunspot series 524, 535 

Y 

yates 388 

Z 

z-score scaling 961 
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