
Add-On Developer’s Kit
User’s Manual
Version 10, Release 3

Tecplot, Inc.
Bellevue, Washington
February, 2004

ii
Copyright © 1988-2004 Tecplot, Inc. All rights reserved worldwide. This manual may not be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated in any form, in whole or in part, without the express written per-
mission of Tecplot, Inc., 13920 Southeast Eastgate Way, Suite 220, Bellevue, Washington, 98005, U.S.A.

This software and documentation are furnished under license for utilization and duplication only according to the
license terms. Documentation is provided for information only. It is subject to change without notice. It should not be
interpreted as a commitment by Tecplot, Inc. Amtec assumes no liability or responsibility for documentation errors or
inaccuracies.

SOFTWARE COPYRIGHTS

Tecplot © 1988-2004 Tecplot, Inc. All rights reserved worldwide.

ENCSA Hierarchical Data Format (HDF) Software Library and Utilities © 1988-1998 The Board of Trustees of the
University of Illinois. All rights reserved. Contributors include National Center for Supercomputing Applications
(NCSA) at the University of Illinois, Fortner Software (Windows and Mac), Unidata Program Center (netCDF), The
Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip). Bmptopnm, Netpbm © 1992 David W.
Sanderson. Dlcompat © 2004 Jorge Acereda, additions and modifications by Peter O’Gorman. Ppmtopict © 1990 Ken
Yap.

TRADEMARKS

Tecplot, Preplot, Framer and Amtec are registered trademarks or trademarks of Tecplot, Inc.

Encapsulated PostScript, FrameMaker, PageMaker, PostScript, Premier—Adobe Systems, Incorporated. Ghost-
script—Aladdin Enterprises. Linotronic, Helvetica, Times—Allied Corporation. LaserWriter, Mac OS X—Apple
Computers, Incorporated. AutoCAD, DXF—Autodesk, Incorporated. Alpha, DEC, Digital—Compaq Computer Cor-
poration. Élan License Manager is a trademark of Élan Computer Group, Incorporated. LaserJet, HP-GL, HP-GL/2,
PaintJet—Hewlett-Packard Company. X-Designer—Imperial Software Technology. Builder Xcessory—Integrated
Computer Solutions, Incorporated. IBM, RS6000, PC/DOS—International Business Machines Corporation.
Bookman—ITC Corporation. X Windows—Massachusetts Institute of Technology. MGI VideoWave—MGI Software
Corporation. ActiveX, Excel, MS-DOS, Microsoft, Visual Basic, Visual C++, Visual J++, Visual Studio, Windows,
Windows Metafile—Microsoft Corporation. HDF, NCSA—National Center for Supercomputing Applications. UNIX,
OPEN LOOK—Novell, Incorporated. Motif—Open Software Foundation, Incorporated. Gridgen—Pointwise, Incor-
porated. IRIS, IRIX, OpenGL—Silicon Graphics, Incorporated. Open Windows, Solaris, Sun, Sun Raster—Sun
MicroSystems, Incorporated. All other product names mentioned herein are trademarks or registered trademarks of
their respective owners.

NOTICE TO U.S. GOVERNMENT END-USERS

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraphs (a)
through (d) of the Commercial Computer-Restricted Rights clause at FAR 52.227-19 when applicable, or in subpara-
graph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, and/or in
similar or successor clauses in the DOD or NASA FAR Supplement. Contractor/manufacturer is Tecplot, Inc., Post
Office Box 3633, Bellevue, WA 98009-3633.

Table Of Contents

CHAPTER 1 About Add-ons 3

CHAPTER 2 Creating Add-ons under UNIX 5

CHAPTER 3 Creating Add-ons under Windows 9

CHAPTER 4 Porting Add-ons between Windows and UNIX 21

CHAPTER 5 Migrating Add-ons 23

CHAPTER 6 Running Tecplot with Add-ons (UNIX and Windows) 33

CHAPTER 7 Add-on Initialization and Cleanup 37

CHAPTER 8 Tecplot GUI Builder 39

CHAPTER 9 Building Data Set Reader Add-ons 61

CHAPTER 10 Building Extended Curve Fit Add-ons 73

CHAPTER 11 Locking and Unlocking Tecplot 83

CHAPTER 12 Modal and Modeless Dialogs in Windows 87

CHAPTER 13 Accessing Field Data 93

CHAPTER 14 Handling Tecplot State Changes from an Add-on 101

CHAPTER 15 Augmenting Tecplot’s Macro Language 115

CHAPTER 16 Implementing Data Journaling 119

2

CHAPTER 17 Adding Online Help to Your Add-on 125

CHAPTER 18 Working With Picked Objects 129

CHAPTER 19 Using Argument Lists 135

CHAPTER 20 Using String Lists 139

CHAPTER 21 Using Sets 143

CHAPTER 22 Using Standardized Auxiliary Data 149

CHAPTER 23 Building Add-ons with FORTRAN 153

Index 161

CHAPTER 1 About Add-ons

Tecplot add-ons are executable modules that extend Tecplot’s basic functionality in a well-defined,
systematic way. Add-ons are implemented as compiled function libraries, called variously shared objects,
shared libraries, or dynamic-link libraries (DLLs). Using the Tecplot Application Programming Interface
described in this manual and its companion, the Tecplot Add-on Developer’s Kit Online Reference, you
can create add-ons to generate plots, manipulate or analyze data, or perform a broad variety of specialized
tasks involving Tecplot. Because the add-ons are shared runtime objects, however, you do not need to
link them into Tecplot. This means that you are not limited to using the compilers Amtec uses, and you do
not have to compile (or recompile) large libraries of Tecplot function calls.

Different operating systems have different ways of creating and using shared objects. The Tecplot Add-
on Developer’s Kit provides utilities that mask most of these differences for related platforms (that is, all
UNIX systems will behave approximately the same and all Windows systems will behave approximately
the same—the ADK tools will resolve the differences).

ADK documentation is occasionally updated. The latest release may be downloaded from
www.tecplot.com/support/tecplot_documentation.htm.
3

Chapter 1. About Add-ons

4

2.1. Setting Up to Build Add-ons
CHAPTER 2 Creating Add-ons under UNIX

2.1. Setting Up to Build Add-ons
To create add-ons in Tecplot you must set up a working directory where source code can be
created and edited. This directory will hereafter be called the Add-on Development Root
Directory. You may create any number of add-ons in the Add-on Development Root Directory.

To set up for building add-ons do the following:

1. Install Tecplot if you have not done so already. Make sure the Add-on Development Tools option was
selected during the installation process.

2. Create the Add-on Development Root Directory if you have not done so already. This can be
anywhere you choose.

3. Be sure that you have the TEC100HOME environment variable defined and assigned to the directory
where Tecplot was installed.

4. Be sure your PATH environment variable includes the following:

 $TEC100HOME/bin:$TEC100HOME/adk/bin

5. Create a new file called tecdev.add in the directory created in step 2 (i.e. your Add-on
Development Root Directory). Edit the file and add the following line:

#!MC 100

6. (Optional) If you plan on using the Tecplot GUI builder, then add the following line to the
tecdev.add file in your Add-on Development Root Directory:

$!LoadAddon "|TECHOME|/lib/libguibld"

7. Set the environment variable TECADDONDEVDIR to the path of the directory created in step 2.
8. Set the environment variable TECADDONDEVPLATFORM to one of the valid platform names. A

list of valid platforms can be obtained by running tecplot -platlist

From this point on, when you want to test the add-ons you are developing, use the -develop flag
when running Tecplot. Later when you want to make your add-on accessible to all who run Tecplot, just
5

Chapter 2. Creating Add-ons under UNIX

6

copy the shared object library to the lib subdirectory below the Tecplot Home Directory and include the
command:

$!LoadAddOn "|TECHOME|/lib/libMyAddOnName"

in the tecplot.add file in the Tecplot Home Directory.

2.2. Creating a New Add-on
1. Go to the Add-on Development Root Directory (i.e., the directory created in step 2 of Section 2.1,

“Setting Up to Build Add-ons.”).
2. Type:

CreateNewAddOn

This will ask you a few questions about the add-on to be built, including whether or not you intend
to use the Tecplot GUI Builder. When this is finished, you will have a new sub-directory named
MyAddOnName, where MyAddOnName is the name that you supplied in step 2 while running Cre-
ateNewAddOn. This subdirectory contains a set of file. These files can be compiled to create a min-
imal add-on.

3. Edit the tecdev.add file located in the Add-on Development Root directory and add the
following line:

$!LoadAddOn "|$TECADDONDIR|/libMyAddOnName"

where MyAddOnName is the name you supplied in step 2 while running CreateNewAddOn.

For your add-on to communicate with Tecplot it must do the following:

4. Make public an “initialization” function named InitTecAddOn. When you run
CreateNewAddOn this function is created automatically for you and is located in the file
main.c (or main.cpp). When Tecplot starts up it scans the tecdev.add file, loads named
shared object libraries and makes a call to the InitTecAddOn function.

The initialization function typically includes a call to add a converter, add a loader, register
a curve fit, or add an item to the Tools menu, so the add-on can be accessed from the Tec-
plot interface.

5. Make calls to the TecUtil functions available from the libtec shared object library. These
functions allow you to do a wider range of tasks than can be done through the Tecplot interface itself.

6. If your add-on does not require a custom built GUI, you will, at this point, have a source file named
main.c, and perhaps a source file named engine.c. The latter file contains callback functions
for data loaders, data convertors, or curve fits.

2.3. Creating the Graphical User Interface for Your Add-on
2.3. Creating the Graphical User Interface for Your Add-on

The Tecplot Add-on Developers Kit includes a simple GUI builder called Tecplot GUI Builder (TGB).
You are not restricted to this GUI builder. You may use a commercial GUI builder like Builder Xcessory
or X-Designer. Chapter 8 of this document outlines how to use the Tecplot GUI Builder. It is provided on
the Tecplot CD. When you run CreateNewAddOn and choose to use the TGB, a starter set of TGB
files is created for you.

2.4. Compiling the Add-on

2.4.1. Using Runmake

If you used CreateNewAddOn, compiling the add-on is straightforward. Go to the subdirectory
where your add-on source code is located and type:

Runmake

You will be prompted for the platform type and what type of executable to create.

If you know the platform name and the build option ahead of time then you can run Runmake without
the questions. For example, to compile on an SGI machine under IRIX 6.5 and create a debug version
use:

Runmake sgix.65 -debug

To make a release version use:

Runmake sgix.65 -release

If all goes well with the compile, you will end up with a shared object library located in
../lib/platform/buildtype. Running Tecplot with the -develop flag automatically directs it to
look for your library in this directory.

Note: If the Tecplot Home Directory and your Add-on Development Directory are located in directories
that can be remotely mounted by other UNIX computers, then you can log on to those computers and use
Runmake as described earlier. The resulting shared library will be stored in the appropriate subdirec-
tory for the computer platform.
7

Chapter 2. Creating Add-ons under UNIX

8

2.4.2. Editing the CustomMake File

The Runmake command used to build your add-on actually invokes the UNIX make program with a
large list of flags that customize the make process for your platform. Just prior to calling make, the
Runmake shell script checks to see if a local file called CustomMake exists and is executable. If so,
it runs the CustomMake shell script in place and then runs make. This process allows you to add to or
completely replace any assignments made by Runmake.

For example, suppose you want to add an additional flag called -xg to the cc compile command. You
could do so by editing the local CustomMake shell script in the sub-directory of your add-on and
adding:

 CFLAGS="$CFLAGS -xg"

This replaces CFLAGS (i.e. the flags used with the cc command) with its old contents plus the -xg
flag.

The default CustomMake file created in your add-on directory when you run CreateNewAddOn
contains edit instructions including an explanation of the flags available for you to change.

CHAPTER 3 Creating Add-ons under Windows

3.1. Licensing of Microsoft-Supplied Dynamic-Link Libraries
The Tecplot ADK is supplied with dynamic-link libraries created by Microsoft. This is in
compliance with the Visual Studio license agreement. The license agreement, however, also
states that licenses cannot be transferred a second time unless the party distributing the
libraries also has a Visual Studio license agreement. In other words, if you develop a Tecplot
add-on and you plan on distributing it outside of your organization, then you must also have
the right to distribute the Microsoft dynamic link libraries yourself (if you own Microsoft
Visual Studio then you have this right).

3.2. Setting Up to Build Add-ons

The Tecplot Add-On Developers Kit contains the necessary include files (.h) as well as a
tecplot.lib file with which to link add-on source code. Tecplot makes its functions
available by exporting them from "tecplot.exe".

To setup your system for building add-ons, install Tecplot Version 10 if you have not done so
already. Make sure the Add-on Developers Kit option was selected during the installation
process. The SETUP program will automatically set your TEC100HOME environment variable
and include the bin sub-directory, below the Tecplot Home directory, in your path.

3.3. Creating an Add-on with Visual C++

This section assumes that you are using Visual C++ 5.0 or later and that you are familiar with
its use and concepts such as DLLs and callback functions.

Creating an add-on for Tecplot requires creating a DLL. If you are not familiar with this
process, please refer to your Visual C++ documentation and online help. It would be a good
idea to go through several examples of creating DLLs before attempting to create an add-on.
9

Chapter 3. Creating Add-ons under Windows

10
3.3.1. Using the Tecplot Visual C++ Add-on Wizard

If you are using Developer Studio 5 or 6 to build your add-on, you can use the Tecplot 10 Add-
on Wizard to create a starter set of C++ source files.

To integrate the Tecplot Add-on Wizard with Developer Studio:

1. Be sure you are using Developer Studio Version 5 or 6.
2. Run Developer Studio and select "New..." from the File menu. Click on the "Projects" tab

and you should see "Tecplot 10 Addon Wizard" as one of the project types. If not, copy the
files TGBAddOn.awx and TGBAddOn.hlp from the |TEC100HOME|\bin\ide
directory into the %MSDEVDIR%\Bin\IDE directory and run Developer Studio again. If
you are unsure where to copy these files, search for where awx files are located on your
computer (i.e. search for TGBAddOn.awx) and copy TGBAddOn.awx and
TGBAddOn.hlp to this location.

3. Select "OK" and follow the prompts.
4. From the Developer Studio "Build" menu, select "Build MyProject".

The Tecplot add-on wizard also gives instructions for running Tecplot directly from your DLL
project:

1. Select Project/Settings.
2. Click on the Debug tab.
3. Select the “General” category.
4. Set the “Executable for debug session” file to be tecplot.exe (include the full path).
5. Set the working directory to be “Debug.”
6. Set the program arguments to be -loadaddon project_name where project_name is the base

name of your DLL (that is, without the .dll extension).

You can now set a breakpoint anywhere in your code to debug your add-on.

3.3.2. Creating an Add-on by Hand Using Visual Studio
The steps described below are done automatically by the Tecplot add-on wizard. We
recommend using the Tecplot add-on wizard instead of the procedure below.

1. To create an add-on for Tecplot using Visual C++, your project workspace must be of type
“MFC AppWizard (dll)” or “Dynamic-Link Library”. (In other words, your project must
create a DLL.) You can select this when starting a new project workspace. Note: You must
select “Regular DLL using shared MFC DLL” when prompted for the type of DLL.

3.3. Creating an Add-on with Visual C++
2. In order to have access to Tecplot's functions and data, you will need to make sure that your
project can find the Tecplot include files. These files are located in the include subdirectory
of the Tecplot Home Directory. You can add this directory to your project in the Project
Settings dialog on the C/C++ tab in the Preprocessor page with the “Additional include
directories” field. These files declare Tecplot's functions and data types so that they will be
available to your add-on. The functions (with names starting with TecUtil) allow you to do
any tasks Tecplot can do, and other tasks that meet your specialized needs.

3. You will also need to make the tecplot.lib file available to your project to resolve the
Tecplot functions at link time. There are two ways to do this. One is to actually insert the
tecplot.lib file into your project with the “Project/Add to Project/Files” menu. The
other is to add the tecplot.lib file to the “Object/library modules” field on the Link
tab of the Project Settings dialog. The tecplot.lib file is located in the bin
subdirectory of the Tecplot Home Directory.

4. In order for your add-on to communicate with Tecplot, it must export a STDCALL

initialization function called InitTecAddOn. In C/C++ the function should look like:

EXPORTFROMADDON void STDCALL InitTecAddOn (void)
{
 .
 .
 .
}

5. Note: If you are using MFC, the following line must be added to your initialization
function and any other functions which Tecplot will call:

MANAGESTATE

6. When you are ready to test your add-on with Tecplot, you need to create your DLL file,
which you do by building your project. Make sure you know where your DLL file is
located.

7. The easiest way to test your add-on with Tecplot is to run Tecplot from your DLL project.
To do this:

1. Select Project/Settings.

2. Click on the Debug tab.

3. Select the “General” category.

4. Set the “Executable for debug session” file to be tecplot.exe (include the full path if
necessary).

5. Set the working directory to be “Debug.”
11

Chapter 3. Creating Add-ons under Windows

12
6. Set the program arguments to be -loadaddon project_name where project_name is the
base name of your DLL (that is, without the .dll extension).

You can now set a breakpoint anywhere in your code to debug your add-on.

3.3.3. What If My Add-on Is Not Working?

There are several things to look at if your add-on is not working. The first clue should come
from Tecplot, which attempts to let you know where the problem with your add-on occurred.
(For example, it couldn't load it or couldn't find its initialization function).

Tecplot expects that all of the functions that are passed to it from an add-on are STDCALL.
Please note that this is not the default calling convention in Visual C++. STDCALL is
automatically included if you use the EXPORTFROMADDON keyword.

You may want to check your DLL to see what functions are actually being exported. You can
do this with the DUMPBIN utility with the /EXPORTS flag. (For example, “DUMPBIN/
EXPORTS myaddon.dll”.) If InitTecAddOn is not listed, Tecplot will not be able to
access it.

If you are using an MFC DLL make sure you are using MFC in a shared library. Also check
your preprocessor definitions: _AFXDLL must be defined and _USRDLL must not be defined.

3.3.4. Getting Started—A Simple Example of an MFC DLL

Following is an example of how an MFC DLL can be created (note that using the Tecplot add-
on Wizard will accomplish many of the following steps automatically - see section 3.3.1,
“Using the Tecplot Visual C++ Add-on Wizard.”):

1. To begin creating an add-on for Tecplot using Visual C++, start with a new project
workspace. Select a project type of “MFC AppWizard (dll)”. Name the project SimpMFC.
When prompted, select “Regular DLL using shared MFC DLL.” (This example will
assume that your project is located in c:\projects\simpmfc and that the Tecplot Home
Directory is c:\tec100. Please substitute the names of your own project directories in the
example below.)

2. To add a dialog to your add-on, choose the Insert menu and then the Resource menu. Select
“Dialog” and press OK. Add a “Static Text” to your dialog and change its Caption to read
“This is an MFC add-on.” Double click on the dialog and change the dialog ID
from “IDD_DIALOG1” to “IDD_ADDONDLG” and the Caption to “Simple MFC Add-
On.”

3.3. Creating an Add-on with Visual C++
3. In order to use the dialog in the add-on, you need to create a class for it. Bring up the Class
Wizard, and choose to create a new class. Type in a Name of “CSimpDlg.” Select a Base
Class of “CDialog” and the Dialog ID “IDD_ADDONDLG.” Press Create to create the
class, and then you can close the Class Wizard.

4. Edit the file SimpMFC.cpp. Near the top of the file, just after the line
“#include SimpMFC.h”, add the following lines:

#include "TECADDON.h"
#include "SimpDlg.h"

At the bottom of the file, after the line "CSimpMFCApp theApp", add the following lines:

static void STDCALL LaunchSimpleDialog(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 CSimpDlg modal;
 modal.DoModal();
}

EXPORTFROMADDON void STDCALL InitTecAddOn (void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 TecUtilLockOn();
 AddOnId=TecUtilAddOnRegisterInfo(100,"Simple MFC Test",
 "1.0",
 "My Company");
 TecUtilMenuAddOption("Tools",
 "Simple MFC Addon",
 'S',
 LaunchSimpleDialog);
 TecUtilLockOff();

}

5. In the Project Settings dialog, make the following changes:
- Select the Debug tab and change to the General page.
- Set the “Executable for debug sessions” field to be:

 "c:\tec100\bin\tecplot.exe".

- Set the “Working directory” to be "Debug".
- Set the “Program arguments” to be:

 "-loadaddon simpmfc"
13

Chapter 3. Creating Add-ons under Windows

14
- Select the C/C++ tab and change to the Preprocessor page. Add to the “Additional
include directories” field:

 "c:\tec100\include"

- Select the Link tab and change to the General page. In the Object/library modules field,
add:

 "c:\tec100\bin\tecplot.lib"

6. Build the debug version of your project and run it. When Tecplot is launched, go to the
Tools menu and select “Simple MFC Addon”. Your dialog will be launched.

3.3.5. Getting Started - A Simple Example of a Non-MFC DLL

Following is an example of how a non-MFC DLL can be created:

1. To begin creating an add-on for Tecplot using Visual C++, start with a new project
workspace. Select a project type of “Win32 Dynamic-Link Library.” Name the project
“Simple.” This example will assume that your project is located in
c:\projects\simple and that the Tecplot Home Directory is c:\tec100. Substitute the
names of your own project directories in the example below.

2. Start up a new text file, and type in the following lines. Then, save the file as
“SIMPLE.C.”

#include "TECADDON.h"

static void STDCALL LaunchSimpleDialog(void)
{
 TecUtilLockStart(AddOnID);
 TecUtilDialogMessageBox("This is the Simple dialog!",
 MessageBox_Information);
 TecUtilLockFinish(AddOnID);
}

EXPORTFROMADDON void STDCALL InitTecAddOn(void)
{

 TecUtilLockOn();
 AddOnID=TecUtilAddOnRegisterInfo(100,"Simple non-MFC Test",
 "1.0",
 "My Company");
 TecUtilMenuAddOption("Tools",
 "Simple non-MFC Test",

3.4. Creating an Add-on with Digital (Compaq) Visual Fortran
 'S',
 LaunchSimpleDialog);

 TecUtilLockOff();
}

3. In the Project Settings dialog, make the following changes: Select the Debug tab and
change to the General page. Set the “Executable for debug sessions” field to be
c:\tec100\bin\tecplot.exe. Set the “Working directory” to be "Debug". Set the
“Program arguments” to be -loadaddon simple.
Select the C/C++ tab and change to the Preprocessor page. Add c:\tec100\include to
the “Additional include directories” field.
Select the Link tab and change to the General page. In the Object/library modules field, add
c:\tec100\bin\tecplot.lib to the list of files.

4. Add the SIMPLE.C file to your project.
Build the debug version of your project and then run it. When Tecplot comes up, go to the
Tools menu and select “Simple non-MFC Test.” Your dialog is launched with the
message, “This is the Simple dialog!”

3.4. Creating an Add-on with Digital (Compaq) Visual Fortran

This section assumes that you are using Digital (now Compaq) Visual Fortran 5.0 or later and
that you are familiar with its use and concepts such as DLLs.

Creating an add-on for Tecplot requires creating a DLL. If you are not familiar with this
process, please refer to your Visual Fortran documentation and online help. It would be a good
idea to go through several examples of creating DLLs before attempting to create an add-on.

3.4.1. Using the Tecplot GUI Builder Add-on Wizard

If you are using Developer Studio 5 or later to build your add-on, you can use the Tecplot GUI
Builder add-on wizard to create a starter set of Fortran source files. Note: This wizard gives
you the option of using the Tecplot GUI Builder to construct a user interface for your add-on.
If you intend to build the interface some other way, you may still use this wizard—simply do
not select the "Launch a dialog from the menu" option (for the General Purpose add-on wizard
option).

To integrate the Tecplot add-on wizard with Developer Studio:

1. Be sure you are using Developer Studio Version 5 or 6.
15

Chapter 3. Creating Add-ons under Windows

16
2. Run Developer Studio and select "New..." from the File menu. Click on the "Projects" tab
and you should see "Tecplot 10 Addon Wizard" as one of the project types. If not, copy the
files TGBAddOn.awx and TGBAddOn.hlp from the |TEC100HOME|\bin\ide
directory into the %MSDEVDIR%\Bin\IDE directory and run Developer Studio again. If
you are unsure where to copy these files, search for where awx files are located on your
computer (i.e. search for TGBAddOn.awx) and copy TGBAddOn.awx and
TGBAddOn.hlp to this location.

3. Select "OK" and follow the prompts. Ensure you select the Fortran language.
4. From the Developer Studio "Build" menu, select "Build MyProject".

The Tecplot GUI Builder add-on wizard also gives instructions for running Tecplot directly
from your DLL project:

1. Select Project/Settings.
2. Click on the Debug tab.
3. Select the “General” category.
4. Set the “Executable for debug session” file to be tecplot.exe (include the full path if

necessary).
5. Set the working directory to be “Debug.”
6. Set the program arguments to be -loadaddon project_name where project_name is the base

name of your DLL (that is, without the .dll extension).

You can now set a breakpoint anywhere in your code to debug your add-on.

3.4.2. Creating an Add-on by Hand Using Visual Studio
The steps described below are done automatically by the Tecplot GUI Builder add-on wizard.
If you intend to use the Tecplot GUI Builder to create your add-on’s user interface, it is
recommended that you use the wizard instead of the procedure below.

1. To create an add-on for Tecplot using Visual Fortran, your project workspace must be of
type “Dynamic-Link Library”. (In other words, your project must create a DLL.) You can
select this when starting a new project workspace.

2. In order to have access to Tecplot's functions and data, you will need to make sure that your
project can find the Tecplot include files. These files are located in the include subdirectory
of the Tecplot Home Directory. You can add this directory to your project in the Project
Settings dialog on the Fortran tab in the Preprocessor page with the “Custom INCLUDE
and USE Paths” field. These files declare Tecplot's functions and data types so that they
will be available to your add-on. The functions (with names starting with TECUTIL) allow
you to do any tasks Tecplot can do, and other tasks that meet your specialized needs.

3.4. Creating an Add-on with Digital (Compaq) Visual Fortran
3. You will also need to make the tecplot.lib and fglue.lib files available to your
project to resolve the Tecplot functions at link time. If you will be using the Tecplot GUI
Builder to create your add-on’s user interface, file WinGUI.lib is also required. There
are two ways to do this. One is to actually insert the files into your project with the
“Project/Add to Project/Files” menu. The other is to add the files to the “Object/library
modules” field on the Link tab of the Project Settings dialog. The files are located in the
bin subdirectory of the Tecplot Home Directory.

4. In order for your add-on to communicate with Tecplot, it must export an initialization
subroutine called InitTecAddOn (case is not important). This subroutine should look like:

subroutine InitTecAddOn ()
!DEC$attributes DLLEXPORT::InitTecAddOn
 .
 .
 .
end

5. When you are ready to try out your add-on with Tecplot, you need to create your DLL file,
which you do by building your project. Make sure you know where your DLL file is
located. When you build the Debug version of your project, you may get a warning
message recommending you use the "/NODEFAULTLIB" link option. You may generally
ignore this warning, but if you wish to eliminate it, you may check the "Ignore all default
libraries" link option, and explicitly add the additional Fortran and C libraries required
(refer to your Fortran documentation for a list of these).

6. The easiest way to run your add-on with Tecplot is to run Tecplot from your DLL project.
To do this:

1. Select Project/Settings.

2. Click on the Debug tab.

3. Select the “General” category.

4. Set the “Executable for debug session” file to be tecplot.exe (include the full path if
necessary).

5. Set the working directory to be “Debug.”

6. Set the program arguments to be -loadaddon project_name where project_name is the
base name of your DLL (that is, without the .dll extension).

You can now set a breakpoint anywhere in your code to debug your add-on.
17

Chapter 3. Creating Add-ons under Windows

18
3.4.3. What If My Add-on Is Not Working?

There are several things to look at if your add-on is not working. The first clue should come
from Tecplot, which attempts to let you know where the problem with your add-on occurred.
(For example, it couldn't load it or couldn't find its initialization function).

Tecplot expects that all of the functions and subroutines that are passed to it from an add-on are
STDCALL. This is the default calling convention in Visual Fortran version 5 (you should not
explicitly set the STDCALL attribute for these subroutines).

You may want to check your DLL to see what functions are actually being exported. You can
do this with the DUMPBIN function with the /EXPORTS flag. (For example,
“DUMPBIN/EXPORTS myaddon.dll”.) If INITTECADDON is not listed, Tecplot will not
be able to access it. Note that the name of your initialization function will be decorated as
follows: “_INITTECADDON@0”. If it is not, make sure you are compiling using the default
External Procedures options for Fortran. You can do this by displaying the Project Settings
dialog, selecting the Fortran tab, then selecting the External Procedures option, and choosing
the options marked with an asterisk. Also make sure you have set the DLLEXPORT attribute as
shown in the InitTecAddOn example above.

3.4.4. Getting Started - A Simple Example of a DLL

Following is an example of how a DLL can be created:

1. To begin creating an add-on for Tecplot using Visual Fortran, start with a new project
workspace. Select a project type of “Win32 Dynamic-Link Library.” Name the project
“Simpfor.” This example will assume that your project is located in
c:\projects\simpfor and that the Tecplot Home Directory is c:\tec100. Substitute
the names of your own project directories in the example below.

2. Start up a new text file, and type in the following lines. Then, save the file as
“SIMPFOR.F.”

 subroutine LaunchSimpforDialog()
 include "FGLUE.INC"
 integer i
 call TecUtilLockStart(AddOnID)
 i = TecUtilDialogMessageBox(
 & "This is the Simpfor dialog!"//char(0),
 & MessageBox_Information)
 call TecUtilLockFinish(AddOnID)
 return

3.4. Creating an Add-on with Digital (Compaq) Visual Fortran
 end

 subroutine InitTecAddOn()
 !DEC$ attributes DLLEXPORT::InitTecAddOn
 include "FGLUE.INC"
 integer i
 external LaunchSimpforDialog

 call TecUtilLockOn
 call TecUtilAddOnRegister(100,
 & "Simple Fortran Test"//char(0),
 & "1.0"//char(0),
 & "My Company"//char(0)AddOnID)
 i = TecUtilMenuAddOption(
 & "Tools"//char(0),
 & "Simple Fortran Test"//char(0),
 & 'S'//char(0),
 & LaunchSimpforDialog)

 call TecUtilLockOff
 return
 end

3. In the Project Settings dialog, make the following changes: Select the Debug tab and
change to the General page. Set the “Executable for debug sessions” field to be
c:\tec100\bin\tecplot.exe. Set the “Working directory” to be "Debug". Set the
“Program arguments” to be -loadaddon simpfor.
Select the Fortran tab and change to the Preprocessor page. Add c:\tec100\include to
the “Custom INCLUDE and USE Paths” field (separated from any other listed paths by a
semi-colon).
Select the Link tab and change to the General page. In the Object/library modules field, add
c:\tec100\bin\tecplot.lib and c:\tec100\bin\fglue.lib to the list of files.

4. If you did not add the SIMPFOR.F file to your project when you created it, add it to your
project now.

5. Build the debug version of your project and then run it. When Tecplot comes up, go to the
Tools menu and select “Simple Fortran Test.” Your dialog is launched with the
message, “This is the Simpfor dialog!”
19

Chapter 3. Creating Add-ons under Windows

20

4.1. Porting Add-ons from Windows to UNIX
CHAPTER 4 Porting Add-ons between Windows
and UNIX

Ideally, the process of transferring an add-on between operating systems begins when you
write the first version of the add-on. The cross-platform strategy revolves around creating the
original add-on with cross-platform-compatible ingredients. For many users, this means
writing the add-on in C, since many UNIX machines have C compilers more readily available.

If your add-on has a graphical user interface, we recommend that you use the Tecplot GUI
Builder (TGB), or some other code library which is portable between platforms. If your add-on
uses MFC, then you must isolate the MFC code as much as possible and rewrite the user
interface on the Motif side.

4.1. Porting Add-ons from Windows to UNIX

Here is the general procedure for porting add-ons from Windows to UNIX:

1. If your code is in C++ files, create a C file to compile on UNIX by doing the following:
a. For each .cpp file, create a .c file with the same name.
b. Move all of the code from the .cpp file into the .c file.
c. Delete the code from the .cpp file and add the line: #include "xxx.c".
d. If this was an MFC project, add the line #include "stdafx.h" to the top of the
file.

2. In UNIX, run the CreateNewAddOn script to start a new add-on. Be sure to select the TGB
option if your add-on used the TGB option under Windows. See Chapter 2 for more
information on how to use CreateNewAddOn.

3. Move all of the *.c and *.h files from your Windows project into the UNIX project
directory.

4. Edit the UNIX Makefile to include the new *.c and *.h files.
5. Compile your add-on under UNIX.
21

Chapter 4. Porting Add-ons between Windows and UNIX

22
4.2. Porting Add-ons from UNIX to Windows

Here is the general procedure for porting add-ons from UNIX to Windows:

1. Follow the directions in Chapter 3 for creating a non-MFC DLL in Visual Studio. It is
important that you select "Win32 Dynamic Link Library" as the project type. Alternatively,
you can use the new TGB Add-On Wizard to create this project for you (if your add-on
used the TGB in UNIX; access the wizard via the New option on the File menu).

2. Move all of the *.c, and *.h files from your UNIX project directory to the new project
directory in Windows.

3. In Visual Studio, select Project/Add to Project/Files... and add all of the *.c and *.h files.
If you used the TGB in UNIX, you must tell Developer Studio not to compile the file
guibld.c. Select Project/Settings..., choose settings for All Configurations, select the file
guibld.c, set the toggle “Exclude file from Build,” and click OK.

4. If you did not use the TGB Add-On Wizard, be sure that you link with wingui.lib.
5. Select Project/Build to build your add-on.

5.1. Migrating Add-ons from Version 9 to Version 10
CHAPTER 5 Migrating Add-ons

5.1. Migrating Add-ons from Version 9 to Version 10

5.1.1. Updating Fortran Add-ons
In most cases, you will only need to rename GUIF_ functions to TecGUI. There are a few
exceptions to this rule, however. They are:

GUIF_DeallocItemList has been removed. You must replace this with
TecUtilArrayDealloc.

Any TecGUI function which returns a string must pass the length after the result. This is
different from the GUIF_ functions, which passed the length before the result. For example,
GUIF_TextFieldGetString(TextField,MaxChars,Result)becomes
TecGUITextFieldGetString(TextField,Result,MaxChars). See the syntax for
TecGUITextGetString and TecGUITextFieldGetString in the ADK Online Reference for
complete information.

5.1.2. Binary Compatibility
Most add-ons written for Tecplot version 9 will run without modification with Tecplot version
10. However, in order to take advantage of all of the new features in version 10, some sections
of add-on source code will have to be revised and the add-on will need to be recompiled.

Although most changes are optional, some changes are required for add-ons which manage
Tecplot data. Add-ons which manage Tecplot data must be aware that it may encounter cell-
centered or shared data. If the add-on is not aware of these new data features, it will not work
properly when the user loads or creates this type of data in Tecplot. Additonally, we strongly
recommend that add-on developers not use raw data pointers.

In particular, if an add-on obtains a variable reference for zone A and intends on writing to the
reference and assumes that writing to that reference only effects zone A, then it must first call
TecUtilDataValueBranchShared() before obtaining the reference.
23

Chapter 5. Migrating Add-ons

24
For more complete information about the TecUtil functions mentioned below, see the ADK
Online Reference.

5.1.3. Source Code Compatibility

Although no TecUtil functions have been removed from Version 10 ADK, some TecUtil
functions and state changes have been superseded by new equivalent functions and state
changes (see Section 5.7 for a list of deprecated functions). Therefore, while your add-on
source code should compile without changes, use the new functions wherever possible to help
ensure maximum future compatibility. Using the new functions and or state changes will,
however, prevent your add-on from running with earlier versions of Tecplot.

If your add-on is written in FORTRAN, the new Version 10 ADK includes many new glue
functions, enabling you to more fully utilize the new features of Version10. The new Windows
Add-on Wizard can also generate FORTRAN code directly.

5.1.4. Access to Tecplot Data
NOTE: This section only applies if your add-on queries and/or manipulates Tecplot data that
the user has loaded or created.

The most important consideration when converting add-ons from an earlier version of Tecplot
is that in Tecplot 10 your add-on may encounter cell centered or shared data. If the addpon
makes an assumption that the data is not cell-centered or shared, then it may not work properly
when encountering such data. More importantly, in the case of shared data the user may not
even be aware that there is a problem. For example, if an add-on obtains avariable reference for
zone A and intends on writing to the reference and assumes that writing to that reference only
effects zone A, then it must first call TecUtilDataValueBranchShared before
obtaining the reference.

5.1.4.1. Data Sharing

If you are running an add-on built prior to V10 which attempts to modify shared data, a
warning will be generated. To avoid this, you must use the new "share" family of functions
when working with shared data.

5.1. Migrating Add-ons from Version 9 to Version 10
5.1.5. Nodal and Cell-Centered Data
Add-ons written prior to Version 10 are assumed to have no knowledge of cell centered data.
Thus, any add-on which does not register itself as a Version 10 add-on (using the locking/
registration functions described below) will generate an error if any of the following TecUtil
functions are used when a cell centered variable is involved:

TecUtilDataValueGetRef
TecUtilDataValueGetByZoneVar
TecUtilDataValueSetByZoneVar
TecUtilDataValueGetRawPtr

If your add-on uses any of the above functions in conjunction with cell centered data, you will
need to change your registration so that it uses the new TecTuilAddOnRegister function
to identify itself as a Version 10 add-on. See section 5.5 for more information.

Note that an add-on can query a variable’s value location (nodal or cell centered) with the
following function:

ValueLocation_e TecUtilDataValueGetLocation(EntIndex_t Zone,
EntIndex_t Var)

5.1.6. Locking/Add-on Registration
Tecplot Version 10 contains the following new locking and add-on registration functions. Note
that in order to use the new locking functions, you must also use the new registration functions.
One reason to use the new locking functions is that they provide Tecplot with more
information about which add-ons are loaded and what they are doing, which can help with add-
on debugging problems.

Addon_pa TecUtilAddOnRegister(int TecplotAPIVersionNumber,
const char *name
const char *addon_version_string
const char *author

Returns a handle to use with TecUtilLockStart and TecUtilLockFinish. The first parameter is
the TecUtilAPIVersion, 100 for version 10. This number informs Tecplot of the level of
expertise of your Add-on. Add-ons registered with 100 will be assumed to know how to handle
new features and thus are allowed to access some functions without errors or warning.

- To Lock Tecplot for add-on AddonID.

void TecUtilLockStart(AddOn_pa AddonID)
25

Chapter 5. Migrating Add-ons

26
- Unlocks Tecplot

void TecUtilLockFinish(AddOn_pa Addon)

- Returns the name of the object currently locking Tecplot.

char *TecUtilLockGetCurrentOwnerName(void)

Note that there remains one instance where you must use the older TecUtilLockOn and
TecUtilLockOff functions and that is for the start and end of InitTecAddOn itself. This
is because prior to this point, TecUtilAddOnRegister has not been called and thus there
is no valid AddonID handle.

5.1.7. State Changes

5.1.7.1. New State Changes in V10: The new state changes in V10 allow an add-on to know
when auxiliary data has been added, changed or removed.

5.1. Migrating Add-ons from Version 9 to Version 10
5.1.8. New State Change Registration Function

New add-ons can use the TecUtilStateChangeAddCallbackX function to register state changes
(see Chapter 12 "Handling Tecplot State Changes From an Add-on"). The callback registered
with this function is more flexible and can provide more information and is used in conjunction
with the other new StateChange functions TecUtilStateChangeGetIndex,
TecUtilStateChangeGetArbEnum, TecUtilStateChangeGetZone,
TecUtilStateChangeGetZoneSet and TecUtilStateChangeGetStyleParam.

5.1.9. Deprecated TecUtil Functions
Note that the old functions are still available for backward compatibility.

State Change Value Example Supplemental Information When This
Occurs

StateChange_AuxDataAdded Auxiliary data has
been added to the
zone, dataset or
frame.

An AuxDataLocation_e
type which indicates what
kind of auxiliary data was
added. The zone number is
also provided if the auxil-
iary data type is
AuxDataLocation_Zone

See family of
TecUtilAux-
Data functions

StateChange_AuxDataDeleted Auxiliary data has
been deleted from
the zone, dataset or
frame.

An AuxDataLocation_e
type which indicates what
kind of auxiliary data was
deleted. The zone number is
also provided if the auxil-
iary data type is
AuxDataLocation_Zone

See family of
TecUtilAux-
Data functions

StateChange_AuxDataAltered Auxiliary data has
been altered from
the zone, dataset or
frame.

An AuxDataLocation_e
type which indicates what
kind of auxiliary data was
altered. The zone number is
also provided if the auxil-
iary data type is
AuxDataLocation_Zone

See family of
TecUtilAux-
Data functions

Figure 5-1.

Deprecated V9 Function Equivalent V10 Function
TecUtilAddOnRegisterInfo TecUtilAddOnRegister

TecUtilAnimateXYMapsX TecUtilAnimatedLineMapsX

Figure 5-2.
27

Chapter 5. Migrating Add-ons

28
TecUtilContourLabelAdd TecUtilContourLabelX

TecUtilContourLabelDeleteAll TecUtilContourLabelX

TecUtilContourLevelAdd TecUtilContourLabelX

TecUtilContourLevelDeleteRange TecUtilContourLabelX

TecUtilContourLevelDelNearest TecUtilContourLabelX

TecUtilContourLevelNew TecUtilContourLabelX

TecUtilContourLevelReset TecUtilContourLabelX

TecUtilContourSetVariable TecUtilContourLabelX

TecUtilCreateSimpleXYZone TecUtilCreateSimpleZone

TecUtilFrameGetLinking TecUtilLinkingGetValue

TecUtilFrameGetMode TecUtilFrameGetPlotType

TecUtilFrameSetLinking TecUtilLinkingSetValue

TecUtilFrameSetMode TecUtilFrameGetPlotType

TecUtilGeomGetXYZAnchorPos TecUtilGeomGetAnchorPos

TecUtilGeomSetXYZAnchorPos TecUtil GeomSetAnchorPos

TecUtilLockOff TecUtilLockFinish

TecUtilLockOn TecUtilLockStart

TecUtilPickAddXYMaps TecUtilPickAddLineMaps

TecUtilPickListGetXYMapIndex TecUtilPickListGetLineMapIndex

TecUtilPickListGetXYMapNumber TecUtilPickListGetLineMapNumber

TecUtilPolarToRectangular TecUtilTransformCoordinates

TecUtilProbeXYGetDepValue TecUtilProbeLinePlotGetDepValue

TecUtilProbeXYGetIndValue TecUtilProbeLinePlotGetIndValue

TecUtilProbeXYGetSourceMap TecUtilProbeLinePlotGetSourceMap

TecUtilStateChangeAddCallback TecUtilStateChangeAddCallbackX

TecUtilStyleSetLowLevel TecUtilStyleSetLowLevelX

TecUtilTextGetXYPos TecUtilTextGetAnchorPos

TecUtilTextSetXYPos TecUtilTextSetAnchorPos

TecUtilXYMapCopy TecUtilLineMapCopy

TecUtilXYMapCreate TecUtilLineMapCreate

TecUtilXYMapDelete TecUtilLineMapDelete

TecUtilXYMapGetActive TecUtilLineMapGetActive

Deprecated V9 Function Equivalent V10 Function

Figure 5-2.

5.1. Migrating Add-ons from Version 9 to Version 10
5.1.10. Deprecated Macro Subcommands in Version 10
TecUtilStyleSetLowLevel and TecUtilStyleSetLowLevelX operate using the equivalent macro
commands and sub-commands required to set style attributesin Techplot. If you are calling
TecUtilStyleSetLowLevelX with any older sub commands it will still work, however you can
not take advantage of any of the new style settings in Tecplot.

5.1.10.1. Deprecated Version 9 Style Subcommands:

TecUtilXYMapGetAssignment TecUtilLineMapGetAssignment

TecUtilXYMapGetCount TecUtilLineMapGetCount

TecUtilXYMapGetName TecUtilLineMapGetName

TecUtilXYMapIsActive TecUtilLineMapIsActive

TecUtilXYMapGetAssignment TecUtilLineMapSetActive

TecUtilXYMapGetCount TecUtilLineMapGetCount

TecUtilXYMapGetName TecUtilLineMapGetName

TecUtilXYMapIsActive TecUtilLineMapIsActive

TecUtilXYMapSetActive TecUtilLineMapSetActive

TecUtilXYMapSetAssignment TecUtilLineMapSetAssignment

TecUtilXYMapSetBarChart TecUtilLineMapSetBarChart

TecUtilXYMapSetCurve TecUtilLineMapMapSetCurve

TecUtilXYMapSetErrorBar TecUtilLineMapSetErrorBar

TecUtilXYMapSetName TecUtilLineMapSetName

TecUtilXYMapSetSymbol TecUtilLineMapSetSymbol

TecUtilXYMapSetSymbolShape TecUtilLineMapSetSymbolShape

TecUtilXYMapShiftToBottom TecUtilLineMapShiftToBottom

TecUtilXYMapShiftToTop TecUtilLineMapShiftToTop

TecUtilXYMapStyleGetArbValue TecUtilLineMapStyleGetArbValue

TecUtilXYMapStyleGetDouble Value TecUtilLineMapStyleGetDoubleValue

TecUtilXYSetLayer TecUtilLinePlotSetLayer

TecUtilZoneSetIJKMode TecUtilZoneSetVolumeMode

Deprecated V9 Function Equivalent V10 Function

Figure 5-2.
29

Chapter 5. Migrating Add-ons

30
5.2. Migrating Add-ons From Tecplot 10 Release 1 to Release 3
Add-ons written using the Tecplot GUI Builder (TGB) should be updated if you plan on doing
further development of these add-ons with Tecplot 10 Release 3. All other add-ons do not need
any modifications.

For the most part the change involves renaming all functions starting with "GUI_" to
"TecGUI", plus a couple of other minor changes.

Steps to Update

Old Constant New Constant(s)
SV_VALUEBLANKINGCELLMODE SV_VALUEBLANKCELLMODE

SV_CUTBELOW SV_CONSTRAINT,SV_RELOP

SV_FRAMEMODE SV_PLOTTYPE

SV_USERELATIVEPATHSINLAYOUTS SV_USERRELATIVEPATHS

SV_FNAMEEXTENSION SV_FNAMEFILTER

SV_TIMEOUT NONE - NOW IGNORED BY TECPLOT

SV_MAXTRACELINES NONE - NOW IGNORED BY TECPLOT

SV_THREEDVIEWCHANGEDRAWLEVEL SV_USEAPPROXIMATEPLOTS,
SV_PLOTAPPROXIMATIONMODE

SV_NONCURRENTFRAMEREDRAWLEVEL SV_USEAPPROXIMATEPLOTS,
SV_PLOTAPPROXIMATIONMODE

SV_FORCEGOURAUDFOR3DCONFLOOD SV_GLOBALTHREED,SV_LIGHTSOURCE,SV_FOR
CEGOURAUDFOR3DCONTFLOOD

SV_MOUSEBUTTON2MODE SV_MOUSEACTIONS

SV_MOUSEBUTTON3MODE SV_MOUSEACTIONS

SV_MIDDLEMOUSEBUTTONMODE SV_MOUSEACTIONS

SV_RIGHTMOUSEBUTTONMODE SV_MOUSEACTIONS

SV_COLORMAPSHADERATIO SV_PRINTSETUP,MS_NUMLIGHTSOURCESHADES

SV_AUTOREDRAW SV_AUTOREDRAWISACTIVE

SV_SOFTWARE3DRENDERING SV_USESSOFTWARERENDERING

SV_TIMEDREDRAWTIMEOUT NONE - NOW IGNORED BY TECPLOT

SV_INITIALFRAMEMODE SV_INITIALPLOTTYPE

Figure 5-3.

5.2. Migrating Add-ons From Tecplot 10 Release 1 to Release 3
1. Make a backup copy of the source code for our add-on.
2. Go to the source code directory for your add-on.
3. Run: UpdateAddOn

This script is available under UNIX only. Under Windows, you must edit all source code
that contains calls to GUI_ functions and replace "GUI_" with "TecGUI".
If add-on is FORTRAN then rename "GUIF_" to be "TecGUI".

4. If your add-on uses the Tecplot GUI builder then bring up Tecplot with the new GUI
builder and choose Build.

5. If you make use of adkutil.c functions then obtain the latest copies of adkutil.c
and ADKUTIL.h from any sample add-on in the Tecplot distribution that uses this module.

6. (UNIX only) Edit Makefile and remove the reference to $(LIBGUI) from the link
instruction.

7. (Windows only) In Developer Studio:
- Select Project/Settings
- Click in the Link tab.
- Remove $(TEC100HOME)/bin/wingui.lib from the list of library modules.
31

Chapter 5. Migrating Add-ons

32

6.1. Specifying Which Add-ons to Load
CHAPTER 6 Running Tecplot with Add-ons (UNIX
and Windows)

When Tecplot is started, it goes through various initialization phases, including the processing
of the tecplot.cfg file, the loading of the Tecplot stroke font file (tecplot.fnt), and
the initialization of the graphics. After all of this has been completed, Tecplot looks for add-
ons.

6.1. Specifying Which Add-ons to Load
You can customize lists of add-ons to be loaded by different Tecplot users on your network, or
by a single user by starting Tecplot with different commands.

6.1.1. Add-ons Loaded by All Users

In a normal installation of Tecplot, the add-ons you want loaded by all users of Tecplot are
named in an add-on load file called tecplot.add, located in the Tecplot Home Directory.
The only command allowed in a tecplot.add file is the $!LoadAddOn command. The
following is an example of a typical tecplot.add file:

#!MC 100
$!LoadAddOn "myaddon"

6.1.2. Specifying a Secondary Add-on Load File

You may also instruct Tecplot to load a different list of add-ons by naming a second add-on
load file using one of the following methods:
• Include -addonfile addonfilename on the command line, or
• Set the environment variable TECADDONFILE.

Both of these methods tell Tecplot the name of another add-on load file to process.
33

Chapter 6. Running Tecplot with Add-ons (UNIX and Windows)

34
6.1.3. Specifying Add-ons on the Command Line
You can also instruct Tecplot to load a particular add-on via the command line. Simply include
the file name (include path and extension) of the add-on on the command line. You may spec-
ify as many add-ons on the command line as you want. After add-ons are loaded, Tecplot re-
processes all command line arguments not processed earlier (for graphics and add-on initial-
ization). This ordering allows for a data reader add-on (discussed later) to be used to load data
specified on the command line.

6.2. Using the $!LoadAddOn Command

The tecplot.add file is a special macro file that is executed at startup time and contains
one or more $!LoadAddOn commands to load add-ons into Tecplot. $!LoadAddOn is, in
fact, the only macro command allowed in a tecplot.add file. The syntax for the
$!LoadAddOn command is:

$!LoadAddOn "libname"

where
libnameThe name of the shared object library file or DLL (see below). This
 must be in quotes.

Special rules govern how libname name is specified. In all cases the filename extension is
omitted.

If you assign libname to just the basename of the shared object library then Tecplot will do the
following:

UNIX:

The shared library to load will come from the file specified by:

 Tecplot-Home-Directory/lib/lib+basename+platform-specific-extension

Where platform-specific-extension is .sl for HP platforms and .so for all others.

WINDOWS:

The add-on basename.dll will be searched for in the following directories (in this order):
1. The directory where the Tecplot executable resides.
2. The Windows system directories.

6.3. Specifying Add-ons under Development
3. The directories in your PATH environment variable.

If an absolute pathname is used in libname, then in Windows, .dll is appended, and in UNIX
.so or .sl is appended.

6.3. Specifying Add-ons under Development
Bugs in an add-on can cause Tecplot, and all other add-ons loaded into it, to crash. While you
are developing an add-on, we recommend that you keep it isolated so that other users of Tec-
plot in your network are not forced to use something that is potentially unstable. The way this
is accomplished is somewhat different under UNIX and Windows.

6.3.1. Developing Add-ons in UNIX

We recommend that each add-on developer set up a separate “Add-On Development Root
Directory.” Below this directory you will create a separate sub-directory for each add-on. You
then create a file called tecdev.add and put it in the Add-On Development Root Directory.
Entries in this tecdev.add file must look like:

$!LoadAddOn "|$TECADDONDIR|/libmyaddon"

Where myaddon is the name of the add-on you are developing. To launch Tecplot so that it
will load your add-on that is under development, you use:

tecplot -develop

This launches Tecplot in a manner such that the tecdev.add file in your Add-On Develop-
ment Root Directory is processed and also sets up the environment variable TECADDONDIR
so the specific add-on for your platform can be found. If you don’t want to load the standard
add-ons listed in the main tecplot.add file (located in the Tecplot Home Directory), then
include the -nostdadd-ons flag on the command line.

See Chapter 2, “Creating Add-ons under UNIX,” for more details about developing add-ons.

6.3.2. Developing Add-ons in Windows

If you’re using Developer Studio to develop your add-ons in C or C++, we recommend the fol-
lowing setup. The directions below assume that the add-on MyAddon is being developed in
c:\dev\MyAddon, and that the TEC100HOME environment variable has been set.
35

Chapter 6. Running Tecplot with Add-ons (UNIX and Windows)

36
1. In Visual C++, select Settings... from the Project menu.
2. Click the Debug tab.
 (a) Set “Executable for Debug Sessions” to be the full path of tecplot.exe.
 (b) Set “Program Arguments” to be -loadaddon MyAddon.dll
3. Click the “Custom Build” tab, and select “All configurations”.
 (a) Set “Build Commands” to xcopy /d /q $(TargetPath) $(TEC100HOME)\bin
 (b) Set “Output files” to $(TEC100HOME)\$(TargetPath)

This will copy your DLL from c:\dev\MyAddon\Debug (or \Release) to the
TEC100HOME\bin directory after each build, so that when you select Build\Go, Tecplot will
load and run your add-on. See Chapter 3, “Creating Add-ons under Windows,” for more details
about developing add-ons.

7.1. Add-on Initialization
CHAPTER 7 Add-on Initialization and Cleanup

7.1. Add-on Initialization

When Tecplot loads an add-on, it makes a call to initialize the add-on. This function must be
named InitTecAddOn. The function TecUtilAddOnRegister is the only function that
is required to be called from your initialization function. The following example shows
TecUtilAddOnRegisterAddOn_pa AddOn_id being called from the initialization func-
tion.

AddOn_pa AddOnId;
void InitTecAddOn(void)
{
 TecUtilLockOn();
 AddOnId = TecUtilAddOnRegister(100,

"CFD Add-On",
"V1.0-09/10/98",
"Amtec Engineering Inc.");

 TecUtilLockOff():
 }

Note this is the only instance where you must use the older TecUtilLockOn and TecUtilLock-
Off functions. TecUtilAddOnRegister registers information which is then accessible to
the user via the "Help/About Add-Ons" menu option. It also informs Tecplot of the version of
Tecplot (100) that your add-on was built for.

In addition to TecUtilAddOnRegister, one or more of the following function calls are
almost always found in the add-on initialization function:

TecUtilImportAddConverter()
TecUtilImportAddLoader()
TecUtilMenuAddOption()
TecUtilCurveRegisterExtCrvFit()

Each of the above function calls, in one way or another, adds a means by which the user can
access the add-on via the Tecplot interface. TecUtilMenuAddOption will add a menu option
(currently confined to the Tools menu). TecUtilImportAddConverter and TecUtilIm-
portAddLoader register the add-on as a special type of add-on that is used to load non-
37

Chapter 7. Add-on Initialization and Cleanup

38
Tecplot format data into Tecplot. The user gains access to these options from a scrolled list of
loaders and converters that is launched when the File/Import menu is selected.
TecUtilCurveRegisterExtCrvFit registers the add-on as a special type that is used to
extend Tecplot’s XY-plot curve fit capability. The user gains access to these curve fits from the
Curve Type option on the Curve Attributes dialog. At initialization time, an add-on may also
elect to launch one or more dialogs immediately in addition to, or in place of, adding menu
options to the Tecplot interface.

7.2. Add-on Cleanup

When the user elects to quit Tecplot, the following happens:

1. Tecplot queries all add-ons (which have previously made a call to
TecUtilQuitAddQueryCallback) to determine if their status permits terminating the
Tecplot session. Tecplot shutdown only occurs if all add-ons agree that it is okay to do so. If
an add-on does not want to terminate then it brings up an error-message dialog informing
the user of the problem (and returns FALSE to the call).

2. If step one is successful, Tecplot will call all of the registered state change functions in add-
ons with StateChange_QuitTecplot. An add-on can register a state change function by call-
ing TecUtilStateChangeAddCallback. When an add-on receives a state change
callback with StateChange_QuitTecplot, it must assume that the add-on has already
given permission to terminate and should only do things like free previously allocated
memory, close open files, etc.

3. Tecplot cleans itself up and terminates.

8.1. New in Tecplot GUI Builder 4.0
CHAPTER 8 Tecplot GUI Builder

The Tecplot GUI Builder (TGB) is a tool for building a platform-independent graphical user
interface for a Tecplot add-on. It is not necessary to use TGB—you can use other commercial
graphical layout tools. However, using TGB will allow you to quickly generate platform-inde-
pendent user-interface code in C, C++ or FORTRAN.

The remainder of this document presumes you have already run CreateNewAddOn under
UNIX or Mac OS X, or the Tecplot Add-On Wizard under Windows, to get your add-on devel-
opment started. (See chapters 2 and 3 for more details on using these utilities.)

8.1. New in Tecplot GUI Builder 4.0
Updated TGB options include:

• TGB API is now part of Tecplot.

The TGB API has been fully merged with the TecUtil API. It is no longer necessary to link
with a separate TGB library. All of the TGB GUI_* functions have been renamed TecGUI*,
and are provided in Tecplot itself. The old API functions are still provided for backward com-
patibility, but you must use the new API to use the new TGB features described below.

• Redesigned GUI Builder Add-on.

The TGB Gui Builder add-on has been enhanced to use bitmap buttons and menus, and has a
more streamlined design. Also included in the new GUI builder add-on is a “Preview Dialog”
function, and a set of Widget alignment options, such as “space evenly across”, and “space
evenly down”. When designing an add-on with the TGB, you may also “anchor” the dialog
controls to the paper. This allows you to resize a dialog while keeping all of the controls in a
fixed location.

• Sidebars

Add-ons may now create sidebars that can be swapped with Tecplot’s sidebar. Sidebars are
designed using the TGB in a way very similar to using the TGB to design dialogs.

• Bitmap Buttons
39

Chapter 8. Tecplot GUI Builder

40
Create bitmap buttons directly in the TGB. Bitmap buttons can be created using “bmp, png, or
jpeg” bitmaps of any color depth The bitmap data is written directly in the guibld.c file as a
static byte array, so button image files are not needed at runtime.

• Bitmap toggles:

Bitmap toggles are identical to bitmap buttons, however they stay in the “pushed” state when
selected. Your add-on receives a value changed callback exactly as it would with a non-bitmap
toggle.

• Tooltips:

A Tooltip provides pop-up help when the cursor hovers over the control. Any TGB control
may now have a tool tip associated with it. Tooltips are particularly useful for bitmap buttons
and toggles. Tooltips may be globally enabled/disabled at any time with the $!INTERFACE
SHOWTOOLTIPS=<Boolean> macro command or by changing the “Show Tool Tips”
toggle in Tecplot's “Performance” dialog.

• Menu status line:

TGB Menu items may have descriptive text which is displayed in the Tecplot status line
whenever the menu selection is highlighted. See the TecGUIMenu* API functions for more
information.

• Optional action area buttons:

The “Okay/Close”, “Help”, “Cancel” and “Apply” action area buttons are no longer required.
You may select any set of action area buttons when designing a TGB dialog.

Tabtest and Sidebartest, sample TGB add-ons, demonstrate how to use TGB’s new
features.

8.2. Migrating Add-ons From Tecplot 10 Release 1 to Release 3
Add-ons written using the Tecplot GUI Builder (TGB) should be updated if you plan on doing
further development of these add-ons with Tecplot 10 Release 3. All other add-ons do not need
any modifications.

For the most part the change involves renaming all functions starting with "GUI_" to
"TecGUI", plus a couple of other minor changes.

Steps to Update

8.3. Using Tecplot GUI Builder
1. Make a backup copy of the source code for our add-on.
2. Go to the source code directory for your add-on.
3. Run: UpdateAddOn

This script is available under UNIX only. Under Windows, you must edit all source code
that contains calls to GUI_ functions and replace "GUI_" with "tecGUI".
If add-on is FORTRAN then rename "GUIF_" to be "TecGUI".

4. If your add-on uses the Tecplot GUI builder then bring up Tecplot with the new GUI
builder and choose Build.

5. If you make use of adkutil.c functions then obtain the latest copies of adkutil.c
and ADKUTIL.h from any sample add-on in the Tecplot distribution that uses this module.

6. (UNIX only) Edit Makefile and remove the reference to $(GUILIB) from the link
instruction.

7. (Windows only) Remove reference to libgui.lib in the link instructions.
8. Note that in place of GUI_ListDeallocItemList, you should use TecGUIArray-

Dealloc.

8.3. Using Tecplot GUI Builder

TGB is an add-on which generates the C, C++ or FORTRAN source code used to create
dialogs and controls (push buttons, text fields, scales, and so on).

Dialogs are laid out by creating frames in Tecplot and adding text and geometries to the
frames. TGB distinguishes among different controls based on the style of the text and on key-
words that appear in the text. TGB’s controls allow you to place new controls in a dialog easily,
without requiring you to remember the particular text style for each type of control.

If you have enabled TGB from your tecplot.add file, it will be accessible via the Tools
menu in Tecplot.

8.3.1. How TGB Works

Figure Figure 8-1 shows the main steps in building a graphical user interface for your add-on
using TGB. These steps are:

1. Using Tecplot and TGB (accessed via Tecplot’s Tools menu), create or open an existing
layout file that stores all information needed to define dialogs and the controls that go into
the dialogs.
41

Chapter 8. Tecplot GUI Builder

42
2. On the TGB dialog, select a language and the control buttons you need, then click the Go
Build button. TGB generates source code (FORTRAN, C++, or C) to operates the controls
on your GUI.

3. Modify the source code files as desired.
4. Compile and link the source code to create a shared library add-on.
5. Inform Tecplot of your new add-on.
6. Restart Tecplot—your add-on is attached.

You can repeat steps 1 through 6 as needed to make modifications to the graphical user inter-
face for your add-on. The rest of this chapter describes each step above in detail.

8.4. Step 1: Building and Maintaining the GUI

If you used the Tecplot Add-on Wizard or CreateNewAddOn shell script to create your add-
on, there will already be a default gui.lay file in your add-on directory, along with a number

1

2

3

4

5

Tecplot
TGB

Source code
for your addon

Compile and link
Your Addon

Tecplot
Layout

File

Figure 8-1. Building a graphical user interface using TGB.

8.4. Step 1: Building and Maintaining the GUI
of default source code files, unless a Simple Callback has been chosen in CreateNewAddOn.
You are now ready to modify and/or extend the default GUI.

The following sections describe how to create and add controls to the dialogs. Before you add
dialogs or controls to your GUI you must first start Tecplot and open the layout file that defines
your GUI.

8.4.1. Adding Dialogs

This section assumes you are running Tecplot, have loaded the layout file defining your GUI,
and have the Tecplot GUI Builder dialog up on the screen.

Dialogs are added by choosing either the Modeless Dialog or Modal Dialog buttons from the
TGB dialog. This will create a new frame in Tecplot. The frame will have a default size and
position. The frame name contains three important pieces of information that determine char-
acteristics of the dialog to be generated. Different keywords are used in the frame name. These
keywords are listed below along with a description.

Keyword Default Description

ID=n Dynamic (TGB
automatically generates
a unique number)

The dialog ID is assigned to be n. Do not
change this once you start generating source
code. Each dialog must have a unique dialog
ID.

TITLE=string “Untitled” The title at the top of the dialogue.

MODE=mode Dynamic (the mode is
set based on the type of
dialog selected from the
GUI Builder

MODE can be either "MODAL" or
"MODELESS".

OKCLOSEBUTTON=boolean TRUE Includes an okay/close button in the dialog.

CANCELBUTTON=boolean TRUE Includes a cancel button in the dialog (applies
to modal dialoges only).

HELPBUTTON=boolean TRUE Includes a help button in the dialog.

APPLYBUTTON=boolean FALSE Includes an apply button in the dialogue.
43

Chapter 8. Tecplot GUI Builder

44
In addition, the frame title may also begin with a comment enclosed in square brackets. The
text inside the brackets is ignored by TGB. This is useful if you have a lot of dialogs and want
to quickly identify and pop them using Tecplot’s frame ordering function.

For example, the frame title could be:

 [This is the main dialog] ID=1 TITLE="Main Dialog" MODE=MODAL

The comment shows up first in the frame ordering dialog, so you can quickly see which dialog
this frame represents.

You can edit the frame name by double clicking on the frame’s edge in Tecplot and editing the
frame name text field. (Or choose the Edit Current Frame option from the Frame menu.)

8.4.2. Adding Sidebar Dialogs

Note: the sidebartest example add-on illustrates the TGB sidebar API described below.

8.4.2.1. About Sidebars. A sidebar dialog is a dialog which replaces the Tecplot sidebar. An
add-on may create any number of sidebar dialogs, but only one sidebar dialog may be dis-
played at a time, including Tecplot's own sidebar. Sidebar dialogs are limited to the width and
height of the Tecplot sidebar, and will be clipped if they are too wide or too tall. They may
contain any controls available in the TGB, including Text Fields, Bitmap Buttons, etc. All
controls in a sidebar receive the same callbacks that they would receive if they were in a modal
or modeless dialog. They may not contain menus. An add-on may create several sidebar
dialogs and switch between them using TecGUISidebarActivate(). The Tecplot
sidebar may also be restored by calling TecGUISidebarActivate() with the special id
value of TECGUITECPLOTSIDEBAR.

Add-ons may create sidebars which are wider or narrower than the Tecplot sidebar. The han-
dling of different sized sidebars may be changed with the following macro command:

$!Interface SidebarSizing = {Dynamic | MaxOfAll}

If SidebarSizing is set to MaxOfAll (which is the default), the sidebar size will be set the
maximum width of all registered sidebars, including Tecplot. If SidebarSizing is set to
Dynamic, the sidebar size will be adjusted each time a new sidebar is displayed.

8.4. Step 1: Building and Maintaining the GUI
8.4.2.2. Creating Sidebars. Designing a sidebar in the TGB is no different than designing a
dialog. To create a sidebar in TGB, click on the Sidebar button in the TGB dialog. A dialog
will be created in the TGB which is the approximate width and height of the Tecplot sidebar.
Resizing the width of this dialog is not recommended, since it represents all of the space avail-
able to create a sidebar. Tecplot will clip any sidebars that are too large before displaying them.
After you have created the sidebar in the TGB, you may add any controls just as you would a
modal or modeless dialog. TGB will generate the code to create the sidebar and add controls to
it in a function BuildSidebarNN(), which is placed in guibld.c. This function call
must be called before activating a sidebar.

8.4.2.3. Activating Sidebars. At most, one sidebar is active at any given time. Activating a
sidebar deactivates the previous sidebar. The active sidebar is shown in Tecplot’s main
window, unless you are in print preview mode or the workspace is maximized. The user can
activate sidebars through the workspace sidebar menu.

After calling BuildSidebarNN(), you can activate it by calling TecGUISidebarActi-
vate(SidebarNN). You can activate the Tecplot sidebar by calling TecGUISidebar-
Activate(TECGUITECPLOTSIDEBAR);

8.4.2.4. Deactivating Sidebars. You "deactivate" a sidebar by replacing it with another one
(which could be the Tecplot sidebar). To remove all sidebars including Tecplot's, call
TecGUISidebarDeactivateAll(). The user can deactivate all sidebars by using the
None option in the workspace sidebar menu.

8.4.2.5. TGB Sidebar Keywords. Sidebar dialogs are identified as sidebars in the TGB with
the keyword SIDEBAR=TRUE in frame title. Normally you do not have to add this keyword.
The TGB will add it for you when you click the Sidebar button to create a new sidebar.

8.4.2.6. Adding Controls to Dialogs. This section assumes you are running Tecplot, have
loaded the layout file defining your GUI, and have the Tecplot GUI Builder dialog up on the
screen.

Controls are added to dialogs by choosing any one of the controls buttons in TGB. The control
is immediately added to the current frame in Tecplot. You can reposition the control and edit
the text of the control.

8.4.2.7. Variable Names. Controls which generate events must have a unique variable name
so that TGB can output correct source code. This variable name is specified in the "Macro
Command" text field using the VARNAME= keyword. To change the "Macro command" text
field, click Options on the Text Details dialog for the control.
45

Chapter 8. Tecplot GUI Builder

46
For example, to assign the variable name "banana" to a toggle, in the "Macro Command" field,
type:

varname=banana

Note that since variable names may not contain spaces, double quotes are not used.

8.4.2.8. ToolTips. You can add a tool tip for any control by using the new ToolTip keyword in
the "Macro Command" field. For example, to add a tooltip to the "banana" variable, type the
following:

varname=banana tooltip="This is the banana toggle"

Note that since a tool tip is a string, double quotes are required. You may add a tool tip to any
type of TGB control.

IMPORTANT: In previous versions of TGB, you could specify a variable name simply by
typing it into the "Macro Command" text field. This syntax is still supported, however, if you
want to use a tool tip then you must use the VARNAME= syntax so that TGB can differenti-
ate the variable name from the tool tip text.

For example, if the Macro Command text in an existing add-on is "banana", and you want to
add a tool tip, you must edit the line as follows:

Varname=banana tooltip="This is the tooltip"

If a name is not assigned as the Macro Function Command, TGB assigns a name by looking at
the text used for the control. Some controls must begin with a keyword identifying the control
type. The following table lists the controls, the keyword, and text style that TGB uses to iden-
tify the control type:

 Control (X Motif) Control (Windows) Keyword Tecplot text style

Label. Static text. None. Plain text (no text
box).

Form. Form. FM:Group=NN Filled text box.

Multi-line text field. Multi-line edit. T: Filled text box (multi-
line).

Figure 8-2.

8.4. Step 1: Building and Maintaining the GUI
For all controls except labels and push buttons, TGB can use the text after the keyword to
determine a name for the control. This is only used if the Macro Function Command field,
mentioned earlier, is not used. In order for TGB to identify the control type correctly, the key-
words above must be used at the beginning of the actual text used for the control. TGB does
not look for these keywords in the Macro Function Control field.

For example, if you have a toggle with the text 7 Include Banana,
TGB will name the control “Include Banana.” Note that 7 signifies
toggles and the radio box because it resembles a check box when it is displayed on the screen.
For labels, TGB just uses the label text. By default, variable names are limited to 30 characters.
To remove this limitation, select Layout/Options in the GUI Builder dialog and uncheck the
“Limit variable name length to 30 characters” toggle. Note that if you uncheck this option on
an existing add-on project, you may have to edit your guicb.c file before compiling your
add-on, since the variable names may change with the longer length limit.

8.4.2.9. Adding Group Boxes and Separators. Group boxes are rectangles that surround
groups of controls in a dialog. A group box can be added by simply adding a rectangle geome-

Multi-selection list. Multi-selection list
box.

MLST: Filled text box.

Option menu. Combo box (drop-
down menu).

OPT: Filled text box.

Push button. Push button. None. Filled text box.

Radio box. Radio box. 7 Hollow text box.

Read only multi-line
text field.

Multi-line read only. TRO: Filled text box.

Scale. Slider. SC: Filled text box.

Set of tabs. Property sheet. TAB:Group=NN Filled text box.

Single-selection list. Single-selection list. SLIST: Filled text box.

Text field. Edit. TF: Filled text box.

Text field with spin. Text field with spin. TFS: Filled text box.

Toggle. Toggle. 7 Plain text.

Bitmap Button Bitmap Button None Image geometry

Bitmap Toggle Bitmap Toggle None Image geometry

 Control (X Motif) Control (Windows) Keyword Tecplot text style

Figure 8-2.
47

Chapter 8. Tecplot GUI Builder

48
try to a frame in Tecplot. In addition, you can add a label to the group box. This is done by
adding the text for the label into the Macro Function field for the rectangle geometry.

Horizontal and Vertical separators can also be added by creating a simple two point line
segment geometry that is either horizontal or vertical. Note that you can press the “H” or “V”
keys on the keyboard while drawing the line segment and Tecplot will force it to be horizontal
or vertical, respectively.

8.4.3. Bitmap Buttons

About Bitmap Buttons A "Bitmap button" is a button which contain a bitmap rather than
text. Bitmap buttons have two sizes:

1. The dimensions of the button itself.

2. The pixel dimensions of the bitmap which is to be placed in the button

When you run an add-on, Tecplot will create a bitmap button as follows:

1. A button will be created using the button dimensions.

2. A bitmap will be created using the pixel bitmap dimensions and centered in the button.

Note that the bitmap is never resized to fit onto the button. If the bitmap is too large, then it will
be clipped to the size of the button. If it is too small, then there will be additional empty space
on the button.

When you add a bitmap button in TGB, TGB will create an image geometry of the appropriate
size for the bitmap dimensions. Resizing the button is not recommend. You may resize this
button, but note that the original bitmap size does not change and will be centered on the
button, or clipped if it is too large.

8.4.4. Creating Bitmap Buttons in TGB

You create bitmap buttons in TGB by clicking bitmap button. A bitmap button in TGB is rep-
resented by an image geometry.

8.4. Step 1: Building and Maintaining the GUI
TGB will launch another dialog, where you can select the following:

Bitmap file name: Enter the file name of the bitmap. Note that this file is not needed when
you run your add-on. It is only needed when TGB generates source code for the add-on. TGB
will generate a static array of bytes in the guicb.c file which represent the bitmap. The bitmap
is generated in true color (24bit RGB) format.

Tool tip text: It is recommended that bitmap buttons have Tooltip text associated with
them, since it is not always clear to users what a bitmap button does. The text you enter in the
"tool tip" field will be added to "Macro Command" text field of the image geometry in
the form:

Tooltip = "Tool Tip Text"

TGB adds this for you only as a convenience. You may edit the tool tip at any time after creat-
ing the bitmap button by editing the "Macro Command" callback of the image geom..

Button Type: Select a bitmap button or bitmap toggle.

Use transparent color: Most bitmaps have a transparent color. Check this toggle to enable
the bitmap to have a transparent color. The transparent color will be replaced by the button
background color when you run your add-on.

Transparent color: Enter the transparent color in as RGB in 6 digit hex format (similar to
HTML).

Examples: Red: FF0000 Black: 000000, White: FFFFFF, Blue: 0000FF

8.4.5. Bitmap Toggles

Bitmap toggles are identical to bitmap buttons, except that they will stay "pushed" when
selected, with the pushed state representing "toggle on". To create a bitmap toggle, press the
"bitmap toggle" button in TGB.

8.4.6. Adding Form Controls

A form control is a rectangular region of a dialog which can show and hide different sets of
controls at different times.

A parent form control is a rectangular region of a dialog. A form page is a set of dialog con-
trols which can be shown or hidden inside the parent form control. Form pages are shown as
49

Chapter 8. Tecplot GUI Builder

50
separate dialogs in TGB. You can add controls to them just as you would a regular TGB dialog.
The difference is that the size of a form page dialog is always exactly the same as the size as its
parent form control. Child form dialogs in TGB have a cyan background in order to distinguish
them from normal dialogs.

To create a new form in a TGB dialog, click Form. This will create a new control on the dialog
with the type FM:Group=NN, where NN is an automatically generated link group number. Do
not edit this text or the group number, since it is needed by TGB to identify the control as a
form and to identify the form pages associated with this control. When you add a new form to
a dialog it is initially empty. In order to create sets of controls, you must add form pages.

To add a form page, click Form Page. The button is active only if you have selected a form
control. This will create a new dialog in TGB which is actually a form page. This new dialog (a
Tecplot frame) will have the same link group number as the Group=NN text in its parent form
control. It will also be exactly the same size as the form control it is linked to. Do not edit or
remove the group linking from this frame, or it will not be recognized by TGB as a form page.
In the frame name will be an additional keyword, FORMPAGE=T, which identifies this dialog
as a form page. See Section 1.3.1.2 for a complete list of keywords for form and tab pages.

You may add any number of form pages to a form control. Controls are added to form pages
exactly like dialogs and they are built by TGB exactly like dialogs.

In your source code, TGB will generate a variable representing each form page using the
parent form. This variable is similar to the DialogNManager variable that TGB creates for
each dialog.

To set the controls for a form control to this set, call:

 TecGUIFormSetCurrentPage(FormN_GManager)

Where G is the group number associated with the form and N is the form page number.

For a sample TGB Add-on which uses forms, tabs and spin controls, see the source code for
Tabtest.

Note: An add-on can have no more than twenty form or tab controls. This is because forms and
tabs make use of frame-linking, which is limited to twenty distinct linking groups. Each form
or tab may have an unlimited # of pages, however.

8.4. Step 1: Building and Maintaining the GUI
8.4.7. Adding Tab Controls

Tabs are identical to forms except that tabs have an additional set of controls above the parent
form area. The form is automatically changed for you when the user clicks a tab. Everything
documented about using forms also applies to tab controls. Individual tab pages are added
using the Tab, and Tab Page buttons on the TGB dialog.

Tab pages have the additional keyword, POS=NN, in the frame name. This specifies the posi-
tion from left to right. See Section 1.3.1.7 for a complete list of keywords for form and tab
pages.

For a sample TGB Add-on which uses forms, tabs and spin controls, see the source code for
Tabtest.

8.4.7.1. The Resize Button. If you change the size of a parent frame or tab control, you must
click Resize on the TGB dialog. This resizes all of the linked forms or tab pages to reflect the
new size of the parent form or tab. If you do not resize the tab or form pages to match the new
size of the parent control they will not be sized correctly in the final GUI.

8.4.7.2. New Frame Name Keywords. Generally, you never have to specify the FORMPAGE,
TABPAGE, and POS keywords yourself. They are automatically generated when the appropri-
ate TGB buttons are clicked. You should not edit these keywords manually. However, if you
wish to reorder a set of tab pages, you may edit the POS=n value. Note that the ordinal n's do
not have to be consecutive, since tab pages are sorted by TGB in ascending order before gener-
ating source code. For example:

 POS=1, POS=8, POS=10

is equivalent to

 POS=1,POS=2,POS=3

You will want to change the TITLE association with the tab. This is done using the Edit
Current Frame dialog.
51

Chapter 8. Tecplot GUI Builder

52
Each form and tab page frame must also have a linked group number, allowing TGB to associ-
ate a set of pages with a parent control. This is done automatically when you use Add Form,
Add Tab, Add Form Page, or Add Tab Page buttons.

8.4.7.3. Text Field Spin Controls. In TGB a text field spin control is a text field with two
small arrow buttons anchored at the right end of the text field control. Spin controls are inter-
changeable with text field controls, and may be passed to any TecGUI function requiring a
text field control.

In addition to the text changed callback, spin controls also receive a callback when users click
up or down arrows. It is up to the add-on to manage the text inside the control. This typically
involves incrementing or decrementing a numeric value in the text control then re-displaying
it. However, this is not a requirement. Spin controls may contain any text which may be
changed in any way when up or down arrows are clicked.

8.4.8. New options in the TGB

8.4.8.1. Selecting a language. To select a language, go to Layout/Options…

You may select C, C++, or FORTRAN

The only difference between C and C++ is that C++ will generate files with the .cpp extension.
Internally, the files are identical with the C files. In the remainder of this document, reference
to .c/.cpp files are interchangeable.

8.4.8.2. Anchor Controls To Paper. When you select this toggle, all of the controls will be
anchored to the paper. This allows you to resize a dialog without changing the position of any

Keyword Default Description

FORM-
PAGE=boolean

FALSE TRUE if this dialog is a form page.

TABPAGE=bool-
ean

FALSE TRUE if this dialog is a tab page.

POS=n None. If this dialog is a form page, the NN is its
position, with NN=1 at the left.

TITLE="string" Page n. Title of the tab page.

8.5. Step 2: Building the Source Code
controls. Note that you should check this toggle only when you are resizing the dialog. Nor-
mally it should be unchecked.

8.4.8.3. Alignment Options. To align controls using the alignment options, select 1 or more
controls and press the appropriate alignment button. Note that, when appropriate, the first
control selected controls the alignment. For example, clicking the Align Left button will align
all of the controls based on the left margin of the first selected control.

8.4.8.4. Previewing Dialogs. You may preview a dialog by selecting it and clicking the
Preview button on the TGB dialog. Previewing is useful for checking the layout of a dialog
before generating the source code. Only one dialog may be previewed at a time, and the only
buttons which have any effect on a preview dialog are the action area buttons "Ok", "Cancel",
etc.

8.4.8.5. Note on Previewing Dialogs and System Resources. Each time you preview a
dialog, that dialog's resources are created from scratch. Since dialog resources are not released
until you exit Tecplot, excessive previewing during the same Tecplot session will gradually
reduce the available resources. Normally this is not an issue unless you preview a dialog an
excessive number of times. However, when designing a dialog in TGB, we recommend that
you periodically close and restart Tecplot if you are frequently previewing dialogs.

8.5. Step 2: Building the Source Code

To build source code,, click Go Build at the bottom of the dialog. TGB will generate the
source code for your GUI and at the same time update the Tecplot layout file so it reflects the
changes you have made. You can now exit Tecplot, merge the generated GUI code with the
previous GUI code, and compile your add-on.

TGB-Generated Text Files When you finish laying out one or more dialogs, save them as
a Tecplot layout file, and click Go Build at the bottom of the TGB dialog, TGB creates the fol-
lowing files:

C language:

• guicb.tmp: Template for the callback module.
• guibld.c: Interface builder module.
• GUIDEFS.h: Include file naming all of the controls plus some other stuff.
• guidefs.c: Contains definitions of global variables.

FORTRAN language:
53

Chapter 8. Tecplot GUI Builder

54
• guicb.tmp: Template for the callback module.
• guibld.F: Interface builder module.
• GUICB.INC: Include file naming all of the callback functions.
• GUIDEFS.INC: Include file naming all of the controls plus some other items.

C++ language:

• guicb.tmp

• guibld.cpp

• GUIDEFS.h

• guidefs.cpp

The file guicb.tmp is the template for the guicb.c (or guicb.f) module you will be
editing to customize all of the callbacks generated by your interface. A callback is a function
that is called when the user interacts with one of the controls in your dialogs. The first time you
run TGB, just rename guicb.tmp to guicb.c (or guicb.f). Section 8.6.1, “Adding or
Removing Controls,” goes into detail on what the guicb.c module is and how to modify it.

The files guibld.c and guibld.f are the C and FORTRAN interface build modules. You
should never edit these as they simply reflect any changes made to dialogs or controls in your
interface.

Note: You should never edit the file guidefs.c or the include files, GUIDEFS.h (C lan-
guage), GUIDEFS.INC and GUICB.INC (FORTRAN language). If you ever modify any of
these files, be aware that they will be overwritten the next time you run Tecplot GUI Builder.

8.6. Step 3: Modifying Your Source Code

The file guicb.c (or guicb.F for FORTRAN) contains the functions called whenever a
control (that is, a button or a text field) in your interface is operated by the end user. For exam-
ple, suppose you have a push button that is labeled “Eject.” TGB will then create code for a
function called Eject_BTN_CB_D1 that is called when the button is pressed. TGB names
the functions according to some base string that you provide (“Eject” in this case, see
Section 8.4.2, “Adding Sidebar Dialogs,” above) plus some other decoration to uniquely iden-
tify the function. Here BTN_CB means this is a push button callback and D1 means the button
resides in dialog number 1.

8.6. Step 3: Modifying Your Source Code
8.6.1. Adding or Removing Controls

If you later decide to make changes to the interface, and the changes involve more than just the
placement of controls or shape of the dialog, you must make changes to the guicb.c or
guicb.F file.

For example, if you add a new push button to a dialog you would perform the following steps:

• Look at the guicb.tmp template file that is generated. It contains a new callback function
for the new button.

• Cut and paste this new function from guicb.tmp to the existing guicb.c or guicb.F
file. You can then add code to carry out the button press action.

If you remove a control from a dialog, it is not necessary to edit guicb.c or guicb.F. How-
ever, if you do not, you will end up with a callback function that is never called.

If you rename a control, you should look at guicb.tmp and see how TGB has now named
things, then edit guicb.c or guicb.F. Change the name of the callback function to match.

Special Coding For Option Menus Option menus require special callback coding.

8.6.2. Dynamic Option Menus:

In addition to specifying a static string for the options, you may also call the new dynamic
option menu functions. These dynamically add and remove strings from the option menu at run
time.

The new dynamic option menu APIs are similar to the TecGUIList APIs. For example,
TecGUIOptionMenuDeleteAllItems() removes all items in an option menu. (See the
API reference for further information.)

8.6.3. Static Option Menus

Using C/C++:

When generating interface code in C, TGB creates a static string in the guicb.tmp file that is
used to store the options for the option menu. For example, if you have an option menu control
with the name “Fruit” then guicb.tmp will contain the declaration:

static char *Fruit_OPT_D1_List = "Option 1,Option 2,Option 3";
55

Chapter 8. Tecplot GUI Builder

56
After transferring this to guicb.c you can edit the string and put the items you want to
appear in the option menu in the static string. Separate items with a comma. For example, the
resulting declaration in guicb.c may appear as:

static char *Fruit_OPT_D1_List = "apple,banana,orange";

Using FORTRAN: Option menu coding in FORTRAN is different than C, because TGB does
not give you any hints as to what to add. The procedure is the following:

• Find the spelling of the character string created to hold the option menu items. It will be
located in the file GUIDEFS.INC. For example, if an option menu to assign colors is
named coloropt and is in the first dialog, then you will find the variable
coloropt_OPT_D1_List in GUIDEFS.INC. It is of type character*100 by
default.

• Put all assignments for the character strings that define the option menus into the
InitTecAddon function. It is critical that this assignment is made at the very beginning.
If the color choices are “red,” “blue,” and “green,” then the statement to add to the initial-
ization function is as follows:

Subroutine IntTecAddOn()
 .
 .
 .
Call TecUtilLockOn()
coloropt_OPT_D1_List = "Red,Blue,Green"

8.6.4. Adding a Menu Bar to a Dialog

 Menu Bars currently must be added by hand. A menu bar is constructed as follows:

• Call TecGUIMenuBarAdd.
• For each menu option to add to the menu bar call TecGUIMenuAdd using the ID of the

menu bar as the parent.
• For each menu item added to a menu option call TecGUIMenuAddItem.

Other TecGUIMenu functions are available to add things such as toggled menu items and to
modify the menu structure once it is in place. Also note that TecGUIMenuAdd can be used to
create walking menus by using another menu as the parent instead of the menu bar.

8.6. Step 3: Modifying Your Source Code
The menu creation code must only be executed once and should be done so immediately after
the creation of the dialog. The best place to put the code is just after the call to BuildDia-
log() for the dialog. The example below demonstrates how to do this in a way that guaran-
tees the menu bar code will only be executed once.

Create a menu bar that has the following menu structure:
Main Menu Bar
 +-> File
 +-> New Project ..
 +-> Open Project ...
 +-> Save Project ...
 +-> Setup
 +-> Solver Setup ...
 +-> Reference Values ...
 +-> Define Output
 +-> Print ...
 +-> Integeration ...
 +-> History Plot ...
 +-> Solution Plot ...

... in the callback to launch the dialog....

if (Dialog1Manager == BADDIALOGID)
 {
 BuildDialog1(MAINDIALOGID);

 MenuBar = TecGUIMenuBarAdd(Dialog1Manager);

 FileMenu = TecGUIMenuAdd(MenuBar,"File");
 NewProject_item = TecGUIMenuAddItem(FileMenu,"New Project...",
 NewProject_MN1_D1_CB);
 OpenProject_item = TecGUIMenuAddItem(FileMenu,"Open Project...",
 OpenProject_MN1_D1_CB);
 SaveProject_item = TecGUIMenuAddItem(FileMenu,"Save Project...",
 SaveProject_MN1_D1_CB)

 SetupMenu = TecGUIMenuAdd(MenuBar,"Setup");

 SolverSetup_item = TecGUIMenuAddItem(SetupMenu,"Solver Setup...",
 SolverSetup_MN2_D1_CB);

 ReferenceVal_item = TecGUIMenuAddItem(SetupMenu,"Reference Values...",
 ReferenceVal_MN2_D1_CB);

 DefineOutput_menu = TecGUIMenuAdd(SetupMenu,"Define Output");
 PrintOutput_item = TecGUIMenuAddItem(DefineOutput_menu,"Print...",
 PrintOutput_MN2_D1_CB);
 IntegrationO_item = TecGUIMenuAddItem(DefineOutput_menu,"Integration...",
 IntegrationO_MN2_D1_CB);
 HistoryPlotO_item = TecGUIMenuAddItem(DefineOutput_menu,"History Plot...",
 HistoryPlotO_MN2_D1_CB);
 SolutionPlot_item = TecGUIMenuAddItem(DefineOutput_menu,"Solution Plot...",
 SolutionPlot_MN2_D1_CB);
 }
...
57

Chapter 8. Tecplot GUI Builder

58
8.7. Step 4: Compiling Your Add-On
UNIX and Mac OS X: Compiling the add-on consists of running the Runmake shell

script provided in the distribution. You can run Runmake with no parameters and you will be
prompted for the options, or you can put the options on the command line. For example, if your
platform is sgix.62, use:

Runmake sgix.62 -debug
Note: Always use the -debug flag when developing add-ons. Only when you are ready

to make a release version use the -release flag. Using -debug puts the resulting shared
library in the appropriate location so that Tecplot will know where to get it when using the
-develop flag.

Windows: In Developer Studio, click Build.

8.8. Step 5: Informing Tecplot of Your New Add-On
This step is only required if you are developing add-ons under UNIX or Mac OS X.

If you have just created this TGB add-on, then you must inform Tecplot of its existence by
editing the tecdev.add file in the add-on development root directory and adding the entry

$!LoadAddon "|TECADDONDIR|/libmyaddon"

Where myaddon is the base name of your add-on.

8.9. Step 6: Running Your New Add-On

8.9.0.1. UNIX or Mac OS X: To run the debug version of your new add-on you must set the
environment variables:

TECADDONDEVDIR=myaddondevdir
TECADDONPLATFORM=myplatform

where myaddondevdir is the path to the directory above your add-on projects. This is the direc-
tory from which you run CreatNewAddOn, to create your add-on in the first place. We rec-
ommend that you add the above environment variable settings to your .cshrc or .profile
files.

myplatform is the same platform name you used with Runmake.

After setting up these environment variables, run Tecplot using:

8.9. Step 6: Running Your New Add-On
tecplot -develop

Windows: In Developer Studio, click Go or press F5.
59

Chapter 8. Tecplot GUI Builder

60

9.1. Data Set Converters
CHAPTER 9 Building Data Set Reader Add-ons

A data set reader add-on allows you to load non-Tecplot format data into Tecplot. Once regis-
tered with Tecplot, the data reader can then be accessed with the Import dialog and referenced
with the $!ReadDataSet macro command. This then enables layout files generated by
Tecplot to reference your data set reader add-on.

Data set readers are divided into two different types: “data set converters” and “data set load-
ers.”

9.1. Data Set Converters

A data set converter is the easier of the two to write. The main part of a data set converter is a
function that knows how to read a non-Tecplot data format and turn around and write out a
binary Tecplot data file. Functions are provided that make it easy to write out a Tecplot binary
data file once you have read in your own data. A data set converter does not have to worry
about any interface dialogs, etc. The standard Tecplot file dialogs are used and Tecplot takes
care of reading in multiple files, doing partial reads, and so on. Data set converters are regis-
tered with Tecplot by making the following call:

TecUtilImportAddConverter(MyConverterFunction,
 "MyConverterName",
 "FNameExtension");

where

 MyConverterFunction is the function that converts the data. It looks like:

 Boolean_t MyConverterFunction(
 const char *DataFName,
 const char *TempBinFName,
 char **MessageString);

MyConverterFunction reads from the file DataFName, writes to the file TempBinFName,
and if and only if there are any errors, places the error messages in the string
MessageString. MessageString must be allocated inside MyConverterFunction using
61

Chapter 9. Building Data Set Reader Add-ons

62
TecUtilStringAlloc as follows:

*MessageString = TecUtilStringAlloc(Size,
 "Error message string");

You can use strcpy to assign an error string. For example:

strcpy(*MessageString, "My Error");
return FALSE;

MyConverterName is a unique name assigned to your data set converter. It must be less
than 32 characters long. This is also used as the text in the Import dialog in the Tecplot
interface.

FNameExtension is the extension you want as the default for the file dialog when it is dis-
played by Tecplot.

A data set converter should use only the following functions to write out the binary Tecplot
data file:

TecUtilTecIni
TecUtilTecZne
TecUtilTecZneX
TecUtilTecDat
TecUtilTecNod
TecUtilTecEnd
TecUtilTecLab
TecUtilTecFil

These functions duplicate the capabilities of the TECIO functions as described in the
Tecplot Reference Manual.

9.1.1. Example Data Set Converter

Included in the Add-On Developer's Kit is a simple data set converter which reads a comma
delimited spreadsheet file. This converter is located in TEC100HOME/adk/samples/
cnvss.

9.2. Data Set Loaders
9.2. Data Set Loaders

Data set loaders are a bit more involved than data set converters. Data set loaders must supply
their own user interface and must read the data and place the results into Tecplot directly. At
first this seems complicated, but it is in fact a fairly straightforward process.

Typical coding for the initialization function in your data set loader will look like:

void STDCALL LaunchMyLoaderInterface()
{
 TecUtilLockStart(AddOnID);
 /* Collect loading parameters from the user,
 * build a string list and call MyLoaderEngine() below.
 */
 TecUtilLockFinish(AddOnID);
}

Boolean_t STDCALL MyLoaderEngine(StringList_pa sl)
{
 Boolean_t IsOk = TRUE;
 TecUtilLockStart(AddOnID);
 /* Read the instructions from sl and load my data */
 TecUtilLockFinish(AddOnID);
 return IsOk;
}

Boolean_t STDCALL MyLoaderInstructionOverride(StringList_pa sl)
{
 Boolean_t IsOk = TRUE;
 TecUtilLockStart(AddOnID);
 /* Code here to override data source instructions */
 TecUtilLockFinish(AddOnID);
 return IsOk;
}

void STDCALL InitTecAddOn(void)
{
 TecUtilLockOn();
 AddOnId=TecUtilAddOnRegister("My 100 Loader","V1.00",
 "My Company, Inc.");
 TecUtilImportAddLoader(MyLoaderEngine,"My Loader",
 LaunchMyLoaderInterface,MyLoaderInstructionOverride);

 /*
63

Chapter 9. Building Data Set Reader Add-ons

64
 * Other initialization you may want should be added here
 */

 TecUtilLockOff();
}

The data set loader is registered with Tecplot by calling TecUtilImportAddLoader in
the InitTecAddOn function, as shown above. This identifies your data set loader by name
and associates a set of callback functions for the core of Tecplot to reference.

In the example above, LaunchMyLoaderInterface is the name of the function called by
Tecplot when the user (chooses from the Tecplot interface) to load data using your data set
loader. A discussion of the requirements for the interface used with a data set loader is dis-
cussed in Section 9.2.1, “The Data Set Loader User Interface.”

MyLoaderEngine is the name of the function that does the actual loading of the data. It
must be exported so instructions in layout files and other macros can be used to load data using
your loader. This function is discussed in more detail in Section 9.2.2, “Coding the Data Set
Loader Engine.”

MyLoaderInstructionOverride is the function that Tecplot will call if the user is
requesting to open a layout file that contains instructions to load data with your data set loader,
and the user wants to override the instructions used to load the data. Use of this function is
more advanced and is discussed in Section 9.2.4, “Overriding Data Set Loader Instructions.”
You can pass NULL for this parameter if you do not wish to support this capability.

Note: If your add-on uses the standard instruction syntax, then the MyLoaderInstruc-
tionOverride may not be necessary. See Section 8.2.5 for more detail.

9.2. Data Set Loaders
Figure 9-1. How the Loader Engine gets Instructions

9.2.1. The Data Set Loader User Interface

You must provide a set (one or more) of dialogs to prompt the user for information on how and
what to load into Tecplot. When the user has completed the process, create a string list
(StringList_pa) variable, add the loading instructions, and pass it to the data set loader
engine.

The loading instruction can be in just about any format you want, however if you follow a few
simple guidelines, it will make your job a lot easier. Keep in mind that these instructions will
appear in layout and macro files and so they should be somewhat readable. Athough not neces-
sary, it is highly recommended that you follow the "Standard Instruction Syntax" because

My Loader Interface

[] One loader option
[] Another loader other option

CancelOK

More Options...

Select File...

example.lay

$!ReadDataSet ’ InstructionStringList ’
DataSetReader = ’My Loader’

InstructionStringList

InstructionStringList

My Loader Engine

InstructionStringList

1

2

3

4

5

6

7

8

9

1

1

2

3

4

5

6

Command
Line
Arguments
65

Chapter 9. Building Data Set Reader Add-ons

66
doing so allows you to take advantage of built in services in Tecplot (see section 9.2.5.)See the
sample loader mentioned in Section 9.2.7, “Data Set Loader Example,” for an example
instruction string format.

The instructions as they appear in a layout file will be contained within a single string.
Internally in Tecplot this string is broken down into a series of substrings where substrings are
separated from one another with double quotes.

 Example Instructions:

Each instruction is added to the string list that is passed to your loader function.

Data set loader instructions may not contain single quotes.

9.2.2. Coding the Data Set Loader Engine

The data set loader engine function (MyLoaderEngine in the prior example code) takes a
single parameter, which is a string list that contains all the instructions necessary to identify the
data to load and how to load it. The actual function prototype looks like:

Boolean_t MyLoaderEngine(StringList_pa sl)

You must use the TecUtilStringListxxx functions to read each individual instruction.
For example, if your loader uses the following set of flags:

-banana
-apple
-sourcefile <sourcefilename>

Instructions in layout Internal representation

' "My" "Instruction" ' My

Instructions

 ' "Load/X" "C:\My Documents\abc" ' Load/X

C:\My Documents\abc

 ' "Fetch" "Experiment" "J 9" "Table 7" ' Fetch

Experiment

J 9

Table 7

9.2. Data Set Loaders
An instruction string sent to your data set loader engine could look like:

'"-banana""-apple""-sourcefile myfile.dat"'

After decoding the instructions, your loader should do the following:

1. (Optional) Call TecUtilDialogLaunchPercentDone to show a percent done dialog
on the screen.

2. Call TecUtilDataSetCreate to create a new data set.
3. Call TecUtilDataSetAddZone for each zone created.
4. (Optional) Call TecUtilDialogCheckPercentDone every once in a while to update

the percent done dialog.
5. Call TecUtilDataValueGetRef to obtain handles to the field data and then:

Call TecUtilDataValueSetByRef to stuff the values (faster)
or
Call TecUtilDataValueSetByZoneVar (slower).

6. (Optional) Call TecUtilDialogDropPercentDone.
7. Call TecUtilFrameSetMode to set the frame mode.
8. Call TecUtilRedraw to show the first image.

See the sample loader mentioned in Section 9.2.7, “Data Set Loader Example.”

9.2.3. Appending Data with a Data Loader

A data loader can provide the capability to append data. Data loaders can also append data to
an existing dataset. If your loader wishes to do this you must do the following:

 1. Prior to appending it is a good idea to query the existing dataset in Tecplot to make
sure it is compatible with the data you wish to append.

 2. Prior to calling any TecUtil functions that modify data you must suspend dataset
marking in tecplot by calling: TecUtilDataSetSuspendMarking(TRUE);

 3. Do not call TecUtilDataSetCreate(). Just call TecUtilDataSetAddVar and/or
TecUtilDataSetAddZone.

 4. After appending data call TecUtilStateChanged (or TecUtilStateChangedX) with
StateChanged_ZonesAdded and/or StateChanged_VarsAltered - depending on what
you did.
67

Chapter 9. Building Data Set Reader Add-ons

68
 5. Turn off the suspension of dataset marking:
TecUtilDataSetSuspendMarking(FALSE);

 6. As with normal loading, call TecUtilImportSetLoaderInstr to register the instructions
needed for the append.

Tecplot will journal this new command along with any other existing data creation/loading
commands. The suspension of dataset marking prevents the data journal in tecplot from being
invalidated with the activity of adding variables or zones..

9.2.4. Overriding Data Set Loader Instructions

When opening a layout in Tecplot, you are given the opportunity to override the data source
instructions for the layout file. This allows you to apply a given layout to different data. If you
choose this option then Tecplot will do the following:

1. Scan the layout file and determine the instructions needed to load the data for each ref-
erenced data set.
2. Determine the data set reader type required to load each data set.
3. Allow the user to select the Reader/Instructions to override.

If you need the capability in your loader to only allow overide of the filenames then a much
simpler approach is to use the standard instruction syntax (see section 8.2.5).

At this point Tecplot determines if in fact there is even a way to override the data source
instructions. If your data set loader has registered a data set loader override function, then it
will be called, and it is up to the function to show the user what the instructions were and allow
the user to change them.

Adding this capability to your data set loader is optional. To omit this capability just supply
NULL for the data set loader override function parameter in the TecUtilImportAd-
dLoader function:

TecUtilImportAddLoader(MyLoaderEngine,
 "MYLOADER",
 LaunchMyLoaderInterface,
 NULL);

If you do supply the function, then create it as follows:

9.2. Data Set Loaders
Boolean_t MyLoaderInstructionOverride(StringList_pa sl)
{
 /*
 * First step is to decode the instructions and display the current
 * settings. Use the TecUtilStringListxxx functions to read each
 * instruction and to create a new set of instructions.
 */

 /* return TRUE if all goes well, otherwise FALSE. */
}

9.2.5. Using Standard Instruction Syntax

Another way to enable data set overriding with your loader which does not require writing an
override function is to use a standard instruction syntax. When the standard loader instruction
syntax is used, Tecplot will parse the instructions, identify file names and directory names
within those instructions, and prompt the user for replacements as necessary. Once the user has
selected the new names, Tecplot will insert them into the loader instructions and call the loader
engine with the revised filenames and/or directory names.

An advantage of loader standard syntax is that it allows Tecplot to save loader instructions with
relative or absolute path names. If a user saves a layout and elects to use relative path names,
Tecplot will scan through the loader instructions for all file and directory names identified via
the above mechanism, and replace them with paths relative to the layout file path, just as it
does with Tecplot data file names.

Standard loader instructions are specified as tag/value string pairs in the instruction string list.
That is, the "tag" string and "value" strings must be consecutive strings in the string list. Except
for the standard syntax identifier tag (which must be the first string in the string list), tag/value
pairs may appear at any ordinal location in the string list and may be interspersed with you own
custom instructions which are ignored by Tecplot. Note that each custom instruciton must be in
the Tag/Value form.

The standard syntax tags are summarized as follows:

Tag Name Value Required? Notes
STANDARDSYNTAX 1.0 YES To use loader standard instruc-

tion syntax, the loader must
have the this tag/value as the
first two strings in the string list.

DIRNAME_[directory_n
ame_identifier]

[Directory Name] NO If the loader uses a directory
name as part of it’s instruction
string, then use this tag. Nor-
mally this tag is not used.
69

Chapter 9. Building Data Set Reader Add-ons

70
Notes: Any text may follow the underscore in the DIRNAME_, FILENAME_, and
FILELIST_ tags.

Examples:

"DIRNAME_MyDirectory"
"FILENAME_FilesToLoad",etc.

Using the FILELIST tag

The FILELIST tag is followed by a string which contains an integer number indicating the
number of file names in the list.

Example:

"STANDARDSYNTAX"
"1.0"
"DIRNAME_MyDirectory"
"c:\Users\Joe"
"FILENAME_MyConfigFile"
"c:\Users\Joe\MyConfigFile.cfg"
"FILELIST_FilesToLoad"
"3"
"c:\Users\Joe?le1.fil"
"c:\Users\Joe?le2.fil"
"c:\Users\Joe?le3.fil"

A limitation of data overriding via this mechanism is that Tecplot will prompt the user only
once for all files in a particular loader instruction-the user must select all files and directories at
once. For example, the above instructions contain one directory and four file names, a total of
five items. A user who opens a layout containing the above instructions and elects to override
the layout data would have to select 5 items in the resulting file selection dialog. If the user
selected only 3 items, then only the first 3 standard items in the loader instructions would be
replaced.

FILENAME_[file_name_
identifier]

[File Name] NO If your loader uses a filename
as part of it’s instructions, use
this tag.

FILELIST_[file_list_
identifier]

[N] [FileName1,
FileName2,.FileNameN]

NO If your loader uses a list of file
names, use this tag. See the
notes below for more informa-
tion

9.3. Accessing Non-Tecplot Format Data Sets via the Command Line
9.2.6. Setting Styles with Data Loaders
Setting of style is generally frowned upon in a data loader. The reason for this preference is
that it is cleaner to keep the data loading focused on data loading and make the assignment of
style secondary.

For example, it probably is not a good idea to turn on the contour layer and assign contour
levels in a data loader, which confuses layout files. Suppose you read in data with your data
loader and then set up the style for a plot. Then you save a layout file. In the layout file Tecplot
writes:

• Read the data using the data loader.
• Assign style.

The assign style section assumes that the plot up to this point has a factory default style and
some style settings are omitted based on this assumption.

9.2.7. Data Set Loader Example

Included in the Add-On Developer's Kit is a sample data set loader. This loader is located in
TEC100HOME/adk/samples/loadss.

9.3. Accessing Non-Tecplot Format Data Sets via the Command Line

To access non-Tecplot format data via the Tecplot command line use:

tecplot [tecplot options] -datasetreader <readername> [reader options]

No Tecplot-specific options may follow the -datasetreader flag. What follows must be
the name of the data set reader followed by the options for the reader itself.

Each option is placed into a separate string in the string list argument sent to the loader.
71

Chapter 9. Building Data Set Reader Add-ons

72

10.1. Registering the External Curve Fit
CHAPTER 10 Building Extended Curve Fit Add-ons

An extended curve fit add-on allows you to extend Tecplot’s XY-plot curve fitting capability.
Once registered with Tecplot, the extended curve fit can be activated from the Curve Attributes
dialog (Curves page of the Mapping Style dialog) by selecting the maps to which it will apply,
clicking Curve Type, choosing Extended from the drop-down menu, and choosing the curve fit
from the list in the Choose Extended Curve Fit dialog. If the extended curve fit has settings
which may be modified (optional), the dialog for modifying the settings may be accessed by
clicking Curve Settings with the appropriate map selected.

The extended curve fit consists of an initialization routine and one or more callback functions,
which are called by Tecplot when appropriate. These callback functions will in turn call func-
tions to compute the curve fit from the raw data. They may also call functions to launch dialogs
for entry of user configurable settings and output of the curve fit coefficients.

10.1. Registering the External Curve Fit

Extended curve fit add-ons are registered with Tecplot by calling the following function:
Boolean_t TecUtilCurveRegisterExtCrvFit(

const char *CurveFitName,
GetXYDataPointsCallback_pf XYDataPointsCallback,
GetProbeValueCallback_pf ProbeValueCallback,
GetCurveInfoStringCallback_pf CurveInfoStringCallback,
GetCurveSettingsCallback_pf CurveSettingsCallback,
GetAbbreviatedSettingsStringCallback_pf

AbbreviatedSettingsStringCallback);

which returns TRUE if the extended curve fit was added successfully.

CurveFitName is a unique name given to the extended curve fit. This name is used in the list
of extended curve fits in the Choose Extended Curve Fit dialog, launched from Extended
option on the Curves page of the Mapping Style dialog.

XYDataPointsCallback is the name of the function that will calculate the curve fit. This is the
only function that needs to be defined to create an extended curve fit add-on.
73

Chapter 10. Building Extended Curve Fit Add-ons

74
ProbeValueCallback is the name of the function that will return the dependent value when the
extended curve fit is probed at a given independent value. If ProbeValueCallback is set to
NULL, Tecplot will perform a linear interpolation based on the values returned by the
XYDataPointsCallback function.

CurveInfoStringCallback is the name of the function that will create a string to be presented in
the Data/XY-Plot Curve Info dialog. CurveInfoStringCallback may be set to NULL if you do
not wish to present a string to the XY-Plot Curve Info dialog.

CurveSettingsCallback is the name of the function that is called when the Curve Settings
button on the Curves page of the Mapping Style dialog is pressed while the extended curve fit
is set as the Curve Type. CurveSettingsCallback may be set to NULL if there are no config-
urable settings for the extended curve fit. If settings are changed, it is the responsibility of the
add-on writer to inform Tecplot of the change by calling the function TecUtilCurveSetExtend-
edSettings. This function is usually called when the OK button is pressed on the add-on dialog.

AbbreviatedSettingsStringCallback is the name of the function that will return a short version
of your curve settings string. This string will be presented in the Curve Settings text field on
the Curves page of the Mapping Style dialog. AbbrevieatedSettingsStringCallback may be set
to NULL if you do not wish to assign anything to this string. Even if you do not assign any-
thing to the CurveSettings string, you may define this function and return any string you wish.
The Curve Settings option on the Curves of the Mapping Style dialog is roughly 50 characters
wide, so strings longer than roughly 50 characters will be truncated.

Since extended curve fit add-ons aren’t compatible with Tecplot versions earlier than 10, it is
important to check the Tecplot version number before registering the curve fit. The version
number may be obtained using the TecUtilGetTecplotVersion function. If this function returns a
value less that 1000000, display an error message and don’t call
TecUtilCurveRegisterExtCrvFit.

It you are creating your add-on using the Tecplot GUI builder, and have created templates by
running the Add-on Wizard (Windows) or CreateNewAddOn script (Unix), the add-on regis-
tration code (including the Tecplot version test) will be found in the module main.c, the above
callback functions will be found in the module engine.c, and the curve settings dialog callback
functions will be found in guicb.c (if configurable settings were requested). Typically it won’t
be necessary to modify main.c.

10.2. Calculating the Curve Fit
10.2. Calculating the Curve Fit

Curve fitting is modeling the data with an analytical function containing adjustable parameters
(curve fit coefficients). In many cases, the values of these coefficients are computed such that
the curve is “best” in some statistical sense (the Least Squares method, for example). In other
cases, the values of the coefficients are computed so that the curve passes through the raw data
points and represents one possible interpolation between the points (splines, for example).
Occasionally, a curve fit add-on may be used to compute and display a variable derived from
the raw data points (for example, see the Running Average add-on provided as a sample with
Tecplot).

Tecplot represents the curve by a number of points connected by line segments. The number of
points used is specified in the Curve Points field of the Curve-Fit Attributes dialog.
XYDataPointsCallback is the name of the callback function where the curve points of the
curve fit are calculated. This is the only callback function that needs to be defined to create an
extended curve fit add-on. It looks like:

Boolean_t STDCALL XYDataPointsCallback(
 FieldData_pa RawIndV,
 FieldData_pa RawDepV,
 CoordScale_e IndVCoordScale,
 CoordScale_e DepVCoordScale,
 LgIndex_t NumRawPts,
 LgIndex_t NumCurvePts,
 EntIndex_t XYMapNum,
 char *CurveSettings,
 double *IndCurveValues,
 double *DepCurveValues);

Where:

XYDataPointsCallback is the name of your functions that calculates the curve fit.

RawIndV is the handle to the raw field data of the independent variable.

RawDepV is the handle to the raw field data of the dependent variable.

IndVCoordScale is an enumerated variable specifying whether the independent variable axis
has a linear or log scale.
75

Chapter 10. Building Extended Curve Fit Add-ons

76
DepVCoordScale is an enumerated variable specifying whether the dependent variable axis has
a linear or log scale.

NumRawPts is the number of raw field data values.

NumCurvePts is the number of points that will construct the curve fit.

XYMapNum is the map number that is currently being operated on.

CurveSettings is the curve settings string for the current xy-map.

IndCurveValues is a pre-allocated array of size NumCurvePts which the add-on will populate
with the independent values for the curve fit.

DepCurveValues is a pre-allocated array of size NumCurvePts which the add-on will populate
with the dependent values for the curve fit.

The arrays, IndCurveValues and DepCurveValues are the main result of this function call.

Generally speaking, the XYDataPointCallback consists of two parts: the first computes the
curve fit coefficients and the second populates the curve values arrays. The process for com-
puting the curve fit coefficients is beyond the scope of this manual. For common techniques
such as linear least squares and splines, there are several good books you can refer to for theory
(see Numerical Recipes, for example) and various libraries are available on the internet and
elsewhere. For less common techniques, or simpler fits, you may write your own functions to
compute the curve fit coefficients.

Regardless of what method you use to compute the curve fit parameters, you will need to
extract data from the raw data arrays. This may be done with the TecUtilDataValueGetByRef
utility. For example, with:

int I;
DepVar = TecUtilDataValueGetByRef(RawDepV, I)

DepVar will contain the Ith element of the raw dependent variable array.

Populating the dependent variable arrays is relatively easy to do. Determine the spacing of the
independent curve variable with the following code

double IndVarMin, IndVarMax;
TecUtilDataValuesGetMinMaxByRef(RawIndV,

&IndVarMin,

10.3. Improving the Probe Value
&IndVarMax);
Delta = (IndVarMax-IndVarMin)/(NumCurvePts-1);

Then set the independent and dependent curve variables in the following loop

for (ii = 0; ii < NumCurvePts; ii++)
{
 IndCurveValues[ii] = ii*Delta + IndVarMin;
 DepCurveValues[ii] = CurveFunction(IndCurveValues[ii],

Parameters);
}

If you use the Add-on Wizard (Windows) or the CreateNewAddOn script (Unix), most of the
code for populating the curve variable arrays is created for you. You will only need to modify
the line that computes DepCurveValues[ii] (the default code sets this to the mean value of the
raw dependent variable).

One final note, there are three items in the XYDataPointCallback parameter list that are not
needed every time. The CurveSettings string is only needed if the curve fit has user config-
urable curve settings. The other two are IndVCoordScale and DepVCoordScale, which are only
needed if the nature of the curve fit will depend upon the axis scale used (log or linear). Gener-
ally this is not the case. Tecplot’s standard curve fits, for example, are not dependent upon the
axis scale.

10.3. Improving the Probe Value

Unless something special is done, a probe of an xy-map with an extended curve fit will
perform a linear interpolation based upon the IndCurveValues and DepCurveValues arrays
(discussed in previous section). This will be correct at the curve points and off by some error at
points between the curve points. The magnitude of this error will depend upon the curve func-
tion and the data, and it will reduce as the number of curve points increases. If this error is
acceptable, set ProbeValueCallback to NULL in the TecUtilCurveRegisterExtCrvFit call. If
this error is unacceptable, provide a ProbeValueCallback function, which returns the depen-
dent variable for a given independent variable. The syntax for this function is:

Boolean_t STDCALL ProbeValueCallback (
 FieldData_pa RawIndV,
 FieldData_pa RawDepV,
 CoordScale_eIndVCoordScale,
 CoordScale_eDepVCoordScale,
 LgIndex_t NumRawPts,
 LgIndex_t NumCurvePts,
77

Chapter 10. Building Extended Curve Fit Add-ons

78
 EntIndex_t XYMapNum,
 char *CurveSettings,
 doubleProbeIndValue,
 double*ProbeDepValue);

Where:

ProbeValueCallback is the name of your ProbeValueCallback function.

RawIndV is the handle to the raw field data of the independent variable.

RawDepV is the handle to the raw field data of the dependent variable.

IndVCoordScale is an enumerated variable specifying whether the independent variable axis
has a linear or log scale.

DepVCoordScale is an enumerated variable specifying whether the dependent variable axis has
a linear or log scale.

NumRawPts is the number of raw field data values.

NumCurvePts is the number of points that will construct the curve fit.

XYMapNum is the map number that is currently being operated on.

CurveSettings is the curve settings string for the current xy-map.

ProbeIndValue is the value of the independent variable at the location of the probe.

ProbeDepValue is the calculated value of the dependent variable at the location of the probe,
based on the value of ProbeIndValue.

Much of the discussion in the previous section, “Calculating the Curve Fit,” applies here as
well. The main difference is that you are computing a scalar variable, ProbeDepValue, instead
of an array. It will be necessary to recompute the curve fit parameters and call the same curve
function as discussed previously.

*ProbeDepValue = CurveFunction(ProbeIndValue, Parameters);

10.4. Providing Curve Fit Information
10.4. Providing Curve Fit Information

Once a user has utilized a curve fit, they will often want to view and/or save the Parameters
computed by the curve fit for their data. This information is displayed in the XY-Plot Curve
Info dialog, which is launched from the Data menu. CurveInfoStringCallback is the name of
the function that will create a string to be displayed in the Data/XY-Plot Curve Info dialog.
This callback may be set to NULL if you do not wish to present a string to the XY-Plot Curve
Info dialog. The syntax for this function is:

Boolean_t STDCALL CurveInfoStringCallback (
FieldData_pa RawIndV,
FieldData_pa RawDepV,
CoordScale_eIndVCoordScale,
CoordScale_e DepVCoordScale,
LgIndex_t NumRawPts,
EntIndex_t XYMapNum,
char*CurveSettings,
char**CurveInfoString);

Where:

CurveInfoStringCallback is the name of your CurveInfoString Callback function,

RawIndV is the handle to the raw field data of the independent variable.

RawDepV is the handle to the raw field data of the dependent variable.

IndVCoordScale is an enumerated variable specifying whether the independent variable axis
has a linear or log scale.

DepVCoordScale is an enumerated variable specifying whether the dependent variable axis has
a linear or log scale.

NumRawPts is the number of raw field data values.

XYMapNum is the map number that is currently being operated on.

CurveSettings is the curve settings string for the current XY-map.

CurveInfoString is the string that is to be presented in the Data/XY-Plot Curve Info dialog.
79

Chapter 10. Building Extended Curve Fit Add-ons

80
The CurveInfoString must be allocated inside CurveInfoStringCallback using
TecUtilStringAlloc as follows:

*CurveInfoString = TecUtilStringAlloc(Size, “CurveInfoString”);

The string may then be written to using sprintf. In general, you should provide enough infor-
mation in the CurveInfoString that the user can independently create the curve fit. Curve fit
coefficients should be provided, for example, along with the ranges of applicability (if they
aren’t obvious). You may also include statistical information about the curve fit or the data, as
seen with the General curve fit, which is distributed with Tecplot.

10.5. Curve Fit Settings

Extended curve fit add-ons may have user configurable settings. If so, the settings for each XY-
map are saved in a character string maintained by Tecplot. Your add-on must initialize this
string, update it when settings are changed, and inform Tecplot by calling TecUtilCurveSetEx-
tendedSettings or TecUtilXYMapSetCurve (with the first parameter being “EXTENDEDSET-
TINGS”). Your add-on must also parse this string to extract the configurable curve fit
parameters.

The curve settings string can be in just about any format you like. However, if you follow a
few simple guidelines, it will make your job a lot easier. Keep in mind that these instructions
will appear in layout and macro files, so they should be somewhat readable. Also, the string
must not contain single quotes since the entire curve settings string is surrounded by single
quotes in Tecplot layout and macro files.

CurveSettingsCallback is the name of the function that is called when the Curve Settings
button on the Curves page of the Mapping Style dialog is pressed while the extended curve fit
is set as the Curve Type. If CurveSettingsCallback is set to NULL in the call to TecUtilCur-
veRegisterExterCrvFit, there are no configurable settings for the extended curve fit. The
syntax for this function is:

void STDCALL CurveSettingsCallback(
Set_pa XYMapSet
StringList_pa SelectedXYMapSettings);

Where:

CurveSettingsCallback is the name of your function that launches your extended curve settings
dialog.

10.6. Creating the Curve Settings Text Field
XYMapSet is the set of XY-Maps that are selected in the Plot-Attributes dialog.

SelectedXYMapSettings is a string list of the curve settings for the XY-maps that are selected
on the Mapping Style dialog.

CurveSettingsCallback usually just sets any global variables and launches the curve settings
dialog.

You must provide one or more dialogs to prompt the user for the curve fit settings. It is highly
recommended that this be a modal dialog to minimize the complexity of monitoring for
changes while the dialog is up. When the OK button is pushed on the Curve Settings dialog,
update the curve settings string and inform Tecplot by calling
TecUtilCurveSetExtendedSettings or TecUtilXYMapSetCurve (with the first
parameter being “EXTENDEDSETTINGS”). Remember that the settings must be modified
for all XY-maps that were selected when the dialog was launched. These map numbers are pro-
vided by Tecplot in XYMapSet. If TecUtilCurveSetExtendedSettings is used, you
must loop through the maps in XYMapSet and set each one. In contrast, TecUtilXY-
MapCurve only needs to be called once, with XYMapSet as an argument.

It you are creating your add-on using Tecplot GUI Builder, and have created templates by
running the Add-on Wizard (Windows) or CreateNewAddOn script (UNIX) (with config-
urable settings requested), the CurveSettingsCallback function will be found in the
module engine.c. This function, which saves XYMapSet and XYMapSettings in global
variables and launches the Curve Settings dialog, will probably not need to be modified. The
curve settings dialog callback functions will be found in guicb.c. See the Tecplot GUI
Builder Manual for more information on modifying this dialog.

10.6. Creating the Curve Settings Text Field

Below the Curve Settings button in the Curve Attributes dialog is a text field providing a brief
description of the curve settings for each map. This text field is set in the
AbbreviatedSettingsStringCallback function. If you do not want to provide an
AbbreviatedSettings string, set AbbreviatedSettingsStringCallback to NULL in the call to
TecUtilCurveRegisterExtCrvFit.

Note: Even if you do not have configurable settings, you may define this function and return
any string you wish. The Curve Settings option on the Curves page of the Mapping Style
dialog is roughly 50 characters wide, so strings longer than roughly 50 characters will be trun-
cated. The syntax for this function is:

void STDCALL GetAbbreviatedSettingsStringCallback(
81

Chapter 10. Building Extended Curve Fit Add-ons

82
EntIndex_t XYMapNum,
const char *CurveSettings,
char **AbbreviatedSettings);

Where:

AbbreviatedSettingsStringCallback is the name of your function that will return the Abbrevi-
ated Settings string.

XYMapNum is the map number that is currently being operated on.

CurveSettings is the string that Tecplot maintains which contains the extended curve fit set-
tings for the current xy-map.

AbbreviatedSettings is the short form of the CurveSettings that are passed into your function by
Tecplot.

The AbbreviatedSettings string must be allocated inside the AbbreviatedSettingsStringCallback
function using TecUtilStringAlloc as follows:

*AbbreviatedSettings = TecUtilStringAlloc(Size,
“AbbreviatedSetting”);

The string may then be written to using sprintf.

11.1. Locking Functions
CHAPTER 11 Locking and Unlocking Tecplot

Locking is the method by which add-ons can determine if it is safe to call TecUtil functions.
All add-ons must use locking, but only add-ons with callbacks from timers or other asynchro-
nous operations need to monitor locking. In a timer callback, when Tecplot is locked, it is not
safe to call TecUtil functions (except for the TecUtilLockxxx functions, described below).
When Tecplot is unlocked, it is safe to call TecUtil functions. Tecplot is locked if add-ons are
performing operations or if the user is interacting with the Tecplot interface.

11.1. Locking Functions
The following table lists the seven add-on functions that control or monitor locking and
unlocking in Tecplot:

void TecUtilLockStart(AddonId_pa AddonID) Locks Tecplot. You may call TecUtil-
LockStart any number of times, as long as
each call is matched with a call to TecUtil-
LockFinish().

void TecUtilLockFinish(AddonID_pa AddonID) Unlocks Tecplot. You must have exactly one
call to TecUtilLockFinish() for each
call to TecUtilLockStart().

Boolean_t TecUtilLockIsOn(void) Returns TRUE if Tecplot is currently locked.

int TecUtilLockGetCount(void) Returns the number of levels of locking that
are currently active in Tecplot. In other words,
the number of calls to TecUtilLock-
Start() without matching calls to
TecUtilLockFinish().

char * TecUtilLockGetCurrentOwnerName Returns the name of the entity currently lock-
ing Tecplot (or NULL if unknown). You must
use TecUtilStringDealloc to free this string
when you are finished using it.
83

Chapter 11. Locking and Unlocking Tecplot

84
11.2. Using the Locking Functions
1. Most TecUtil functions require that Tecplot be locked. The only exceptions to this are for

the four lock functions listed above and, in general for most query type functions like
TecUtilFrameGetMode etc. If you are not sure you should call TecUtilLockStart at
the beginning of any function that calls TecUtil functions and call TecUtilLockFinish
at the end. The only exception to using the Start/End forms of the lock functions is for the
initialization of your add-on (i.e. the function InitTecAddOn). Here you must use
TecUtilLockOn and TecUtilLockOff because the AddOnID handle has not been
set.

Example:

void STDCALL InitTecAddOn()
{

/* Since we will call a TecUtilxxx function, Tecplot must
 be locked. */
AddonID = TecUtilLockOn();
TecUtilAddOnRegister(100, "My Addon","1.0","My Company");
TecUtilMenuAddOption("Tools","Simple Add-on",’S’,
 MenuCallback);
TecUtilLockOff();

}

2. Calls to launch modal dialogs must call TecUtilLockStart prior to the launch, and
should call TecUtilLockFinish in the close/cancel button callback. If you are using
the Tecplot GUI Builder (TGB) to build your interface, the TGB will generate the appropri-
ate code; otherwise you must insert this code by hand.

Here is a Visual C++ example:
void MenuCallback()
{

/* Assumes we are using Visual C++/MFC. */

void TecUtilLockOn() Locks Tecplot anonymously. Must be used in
InitTecAddOn. Should use TecUtilLockStart
elsewhere.

void TecUtilLockOff() Unlocks Tecplot anonymously. Must be used
in InitTecAddOn. Should use TecUtilLock-
Finish elsewhere

11.2. Using the Locking Functions
CMyDialog dlg;
TecUtilLockStart(AddonID);
/* Be sure to call
 TecUtilStateChanged(StateChange_ModalDialogLaunch,NULL);
 in your override of OnInitDialog(). */
dlg.DoModal(); /* This function will not return until the
 dialog is closed. */
TecUtilLockFinish(AddonID);

}

3. Callbacks from timers or other asynchronous means that need to modify data in real time-
should be coded as follows:

void MyTimerCallback
{

if (!TecUtilLockIsOn())
{

/* No other add-on has Tecplot locked, so it is safe
 to modify internal Tecplot data. */
TecUtilLockStart(AddonID);
/* Modify some data here with TecUtilxxx functions. */
TecUtilLockOff(AddonID);

}
else
{

/* Some other add-on has Tecplot locked, so do not
 do anything. */

}
}

85

Chapter 11. Locking and Unlocking Tecplot

86

12.1. Modal Dialogs
CHAPTER 12 Modal and Modeless Dialogs in
Windows

As far as Tecplot is concerned, there are two types of dialogs — “modal” and “modeless.”
Modal dialogs lock out the rest of Tecplot from being used. Modeless dialogs do not. Exam-
ples of modal dialogs are file dialogs, error messages, and the Print dialog. All of these dialogs
require you to OK or Cancel them before doing anything else inside Tecplot. Examples of
modeless dialogs are the Quick Edit dialog, the Rotate dialog, and the Zone Style/Mapping
Style dialogs. You may have these dialogs up and still interact with the rest of Tecplot.

This modal/modeless dialog paradigm does not exactly match that used by Windows, so add-
ons must inform Tecplot when a modal dialog is launched and dismissed so that Tecplot (and
other add-ons) can disable its interface. Add-ons with modeless dialogs must keep track of
when to enable and disable their modeless dialogs. This is easily done by using Tecplot's state
change mechanism. Modal dialogs must inform Tecplot (and other add-ons) of their launch/
dismissal with TecUtilStateChanged. Add-ons with modeless dialogs must monitor
Tecplot's state with TecUtilStateChangeAddCallback and disable the modeless
dialogs at the appropriate times.

Note: This is done for you automatically if you are using TGB for your interface.

12.1. Modal Dialogs

Whenever a modal dialog is launched, the add-on must inform Tecplot of the launch. Do this
by calling

TecUtilStateChanged(StateChange_ModalDialogLaunch, NULL);

when processing WM_INITDIALOG or (in MFC) in the dialog's OnInitDialog.

Whenever a modal dialog is dismissed (closed), the add-on must inform Tecplot of dismissal.
Do this by calling:

TecUtilStateChanged(StateChange_ModalDialogDismiss, NULL);
87

Chapter 12. Modal and Modeless Dialogs in Windows

88
when processing WM_NCDESTROY or (in MFC) in the dialog's PostNcDestroy.

That is all that is needed for modal dialogs. If you do not call these functions, Tecplot may
appear to work, but other add-ons may fail to work with your add-on.

Note: Failure to call these functions in balanced pairs (i.e., calling one but not the other) is a
serious error.

Dialogs created by Tecplot itself (error messages, file dialogs, and so on; basically any func-
tion starting with “TecUtilDialog”) already process the state change. You do not need to
add state change calls when using those functions.

12.2. Modeless Dialogs

Note: The following section applies only if you are NOT using TGB for your interface.

If your add-on uses modeless dialogs like Tecplot does, you have a little more work to do.
First, you must monitor Tecplot's state changes. You do this by creating a state change call-
back function (see chapter 12). Within the state change callback, you must put the following:

 {
 /* When using MFC, the following line is always required on callbacks. */
 /* Do not include this line if you are not using MFC. */
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 static int nDisabledCount = 0;

 if (StateChange == StateChange_ModalDialogLaunch)
 {
 nDisabledCount++;
 if (nDisabledCount > 0)
 {
 /* Disable all modeless dialogs, e.g., in Win32 SDK. */
 if (hwndModelessDialog)
 EnableWindow(hwndModelessDialog, FALSE);
 /* Or, under MFC. */
 if (modeless_dlg)
 modeless_dlg->EnableWindow(FALSE);
 }
 }
 else if (StateChange == StateChange_ModalDialogDismiss)

12.3. PreTranslateMessage Function for Modeless Dialogs
 {
 nDisabledCount--;
 if (nDisabledCount <= 0)
 {
 DisabledCount = 0;
 /* Enable all modeless dialogs, e.g. in Win32 SDK. */
 if (hwndModelessDialog)
 EnableWindow(hwndModelessDialog, TRUE);
 /* Or, under MFC. */
 if (modeless_dlg)
 modeless_dlg->EnableWindow(TRUE);
 }
 }
 }

 Each modeless dialog must be individually enabled or disabled, so if there are many such dia-
logs, a function to enable or disable all modeless dialogs would be a good idea.

If you do not monitor Tecplot's state, your add-on’s modeless dialogs will not disable them-
selves at the appropriate times, and the user may be able to access your add-on at an unex-
pected time.

Note: This could cause any number of serious problems, including a crash of Tecplot.

On the plus side, if you use both modal and modeless dialogs in your add-on, monitoring state
changes for the modeless dialogs, and informing Tecplot of the launch/dismiss of the modal
dialogs, will automatically make your add-on’s modeless dialogs disable themselves when the
add-on itself brings up a modal dialog.

Note: If you use the Tecplot GUI Builder for your interface, then the code above is done for
you.

12.3. PreTranslateMessage Function for Modeless Dialogs

In order to get keyboard navigation of your modeless dialog working under Windows, you
must add a PreTranslateMessage function and inform Tecplot of this function. If you do not do
this, the tab key, the escape key, the return key, and other keys will not work in your dialog.

Under MFC, the PreTranslateMessage function almost always looks like this:
 Boolean_t STDCALL PreTranslateMessage(MSG *pMsg)
89

Chapter 12. Modal and Modeless Dialogs in Windows

90
 {
 AFX_MANAGE_STATE(AfxGetStaticModuleState());
 return AfxGetApp()->PreTranslateMessage(pMsg);
 }

This will handle any number of modeless dialogs in your add-on.

Under Win32 SDK, the function should look something like this:

 HWND hwndModelessDialog1; /* a modeless dialog */
 HWND hwndModelessDialog2; /* another modeless dialog */

 Boolean_t STDCALL PreTranslateMessage(MSG *pMsg)
 {
 Boolean_t Result = FALSE;
 if (hwndModelessDialog1 != NULL)
 Result = IsDialogMessage(hwndModelessDialog1);
 if (!Result && hwndModelessDialog2 != NULL)
 Result = IsDialogMessage(hwndModelessDialog2);
 return Result;
 }

If you have more than one modeless dialog in SDK, you need to call IsDialogMessage
on each modeless dialog as long as IsDialogMessage does not return TRUE.

The TecUtil function to inform Tecplot of your PreTranslateMessage function is
TecUtilInterfaceWinAddPreMsgFn. You will usually call this function in your
InitTecAddon function:

 EXPORTFROMADDON void STDCALL InitTecAddOn(void)
 {
 /* When using MFC, the following line is always required
 on callbacks. */
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 AddonID = TecUtilLockOn();

 TecUtilAddOnRegister(100,
"MyAddon",
"1.0",
"Amtec Engineering, Inc.");

 /* When using modeless dialogs, you must include a
 StateChange callback. */

12.3. PreTranslateMessage Function for Modeless Dialogs
 TecUtilStateChangeAddCallback(StateChangeCallback);

 /* And a PreTranslateMessage function. */
 TecUtilInterfaceWinAddPreMsgFn(PreTranslateMessage);

 /* Now, perform the rest of initialization. */

 TecUtilLockOff();
 }
91

Chapter 12. Modal and Modeless Dialogs in Windows

92

CHAPTER 13 Accessing Field Data

There are three ways to query and set field data. Each method has advantages and drawbacks
with respect to speed and ease-of-use. Complete examples of methods 2 and 3 can be found in
the showdata sample.

13.1. Indexing into the Data
All data access via the TecUtil layer is “1 based.” For example, the first value in the data set is
at offset 1.

In addition, all functions used to access data only take a single LgIndex_t value to index into
the data. This section describes how to calculate this index for various zone types and variable
locations.

13.1.1. Value Location
Starting with version 10 of Tecplot, add-ons must be aware of the data value location. In tec-
plot 10 data values can be stored at the nodes or at the cell centers. Future versions of tecplot
will likely add other locations. When accessing data you must know ahead of time where the
values are stored because the offset into the data will mean one thing for nodal values and
another for cell centered values.

You determine the value location by calling TecUtilDataValueGetLocation.

 Example:

 ValueLoction_e ValueLocation;
 ValueLocation = TecUtilDataValueGetLocation(Zone,Var);
 switch (ValueLocation)
 {
 case ValueLocation_Nodal :
 {
 data is stored at the nodes.
 Access the data accordingly.
 }
 case ValueLocation_CellCentered :
 {
93

Chapter 13. Accessing Field Data

94
 data is stored at the cell centers.
 Access the data accordingly.
 }
 }

13.1.2. Indexing Nodal Ordered Data
For Ordered data, the access is done by treating the n-dimensional array of values in tecplot as
a one dimensional array. For example, suppose you have an IJK-Ordered zone dimensioned by
10x20x30. To access the value at I=3, J=4, K=5 (one based) you would use:

IMax = 10
JMax = 20
KMax = 30
I = 3
J = 4
K = 5

Index = I + (J-1)*IMax + (K-1)*IMax*JMax
 or
Index = I + IMax*((J-1) + (K-1)*JMax)

13.1.3. Indexing Nodal Finite Element Data
For finite element data there is a one-to-one correspondence between the nodal values sup-
plied in the data file and the index you use to access these values. Thus to access the 5th nodal
value for the 5th data point use an index of 5.

13.1.4. Indexing Cell Centered Ordered Data
For ordered data, the index that represents the cell center is the same as the nodal index that
represents the lowest indexed corner of the cell.

For example, the figure in this section shows an IJ-Ordered zone dimensioned 3x4. To access a
cell centered value for the cell in the upper right had corner use the following:

IMax = 3
JMax = 4
KMax = 1
I = 2
J = 3
K = 1

13.1. Indexing into the Data
Index = I + (J-1)*IMax + (K-1)*IMax*JMax
 or
Index = I + IMax*((J-1) + (K-1)*JMax)

You’ll notice that the equations are exactly the same as with nodal data. As a result there are
gaps of unused values at IMax, JMax, and KMax that must be left unassigned.

13.1.5. Indexing Cell Centered Finite Element Data
For finite element data there is a one-to-one correspondence between the cell centered values
supplied in the data file and index you use to access these values. For example, to access the
cell centered value for the 5th cell in the connectivity list use an index of 5.

1,1 2,1

1,2 2,2

1,3 2,3

1,1 2,1 3,1

1,2 2,2 3,2

1,3 2,3 3,3

1,4 2,4 3,4

Cell Index = 8

Cell Index = 1 Cell Index = 2

Cell Index = 4 Cell Index = 5

Cell Index = 7
95

Chapter 13. Accessing Field Data

96
13.2. Accessing Data Using TecUtilDataValueSetByZoneVar and
TecUtilDataValueGetByZoneVar

This method is the easiest to use, but it is also the slowest. if your add-on does not need to
access large amounts of field data, you may find these functions to be the most convenient as
there is no setup required to use these functions.

To set the first data point of the second variable of zone 5 to 3.14, you would call:

TecUtilDataValueSetByZoneVar(5,2,1,3.14);

To query this value:

double Value = TecUtilDataValueGetByZoneVar(5,2,1);

All indices are one-based. Also, you must be sure that the variable, index, and zone number
parameters are valid. If not, this function will issue an error.

Note also that these functions use the double data type, regardless of the field data type of
the zone. If the field data type is not double, then these functions will perform an appropriate
conversion for you. If needed, you may find out the type of the field data by calling:

FieldDataType_e fd_type = TecUtilDataValueGetRefType(FD);

(References like FD in the above call will be discussed in the next section.)

13.3. Accessing Data Using TecUtilDataValueSetByRef and
TecUtilDataValueGetByRef

This method requires that you set up a FieldData_pa pointer to reference the data, but it is
much faster than method 1, while still offering error checking and parameter conversion.

Add one to the first data point of the second variable of zone 5:

double value;
FieldData_pa FD = TecUtilDataValueGetRef(5,2); /* Zone 5,
Variable 2 */
/* You can now use FD to get/set the data. */
value = TecUtilDataValueGetByRef(FD,1);

value += 1.0;
TecUtilDataValueSetByRef(FD,1,value);

13.4. Accessing Data using Raw Data Pointers
/* No need to free FD. */

Note also that these functions use the double data type, regardless of the field data type of
the zone. If the field data type is not double, then these functions will perform an appropriate
conversion for you. If needed, you may find out the type of the field data by calling:

FieldDataType_e fd_type = TecUtilDataValueGetRefType(FD);

We strongly recommend using either this method or method 1 to access field data. The error
checking that these functions perform will most likely save you development time and will
help ensure that your code is bug-free.

13.4. Accessing Data using Raw Data Pointers
This method is the fastest way to get/set field data, but it must be used with extreme care. The
ADK API allows you to retrieve the data pointers used internally by Tecplot to display the
data. Once you have these pointers, you can get/set data values just as you would using any C
or FORTRAN array pointer.

The drawback to this method is that you must be certain that you know both the data type (that
is, what type of data does the pointer point to), and the number of data points (that is, the
maximum index). The risks of using a raw field data pointer incorrectly include:

• De-referencing an invalid memory location.
• De-referencing one type of memory pointer as a different type of pointer.
• Not handling cell-centered or shared data connectivity.

All errors will most likely result in a crash or random behavior in Tecplot.

We recommend using this method only if maximum speed is a necessity. Usually, however,
there is no discernible difference in speed between this method and method 2, thus method 2 is
preferred.

Example: Add one to the first data point of the second variable of zone 5. Assume the data
type is double.

{
 double *FieldDataArray;
 FieldDataType_e fd_type;
 TecUtilDataValueGetRawPtr(5,2,&FieldDataArray,&fd_type);
 if (fd_type == FieldDataType_Double)
97

Chapter 13. Accessing Field Data

98
 {
 double Value;
 Set_pa set = TecUtilSetAlloc(FALSE);

 FieldDataArray[0] += 1.0;

 /*
 * Inform Tecplot that we changed a variable.
 */
 TecUtilSetAddMember(set,2,FALSE); /* Var 2 */
 TecUtilStateChanged(StateChange_VarsAltered,
 (ArbParam_t)set);
 TecUtilSetDealloc(&set);
 }
 else
 {
 /* Handle error of unexpected type.
 }
 }

13.5. Working with Shared Data
Tecplot allows for the sharing of data to help save on the use of physical memory. Variables
and connectivity information may be shared between zones. Each variable in each zone may
be shared with the same variable in any other zone.

Some operations in tecplot will automatically share variables and/or connectivity information.
For example, duplicating a zone will share all variables and the connectivity information
between the original zone and the newly created zone.

Likewise, some operations in tecplot will automatically force the branching of shared variables
and/or connectivity information. Branching simply means that the variable or connectivity is
no longer shared and every zone subsequently has its own copy. An example where tecplot
automatically branches is if you executed the equation X = X + 1 exclusively on zone 1 where
prior to the operation zone 1 and zone 2 shared X.

Add-ons registering themselves as "V10 Aware" (i.e., they used the new TecUtilAddOnRegis-
ter function) must be aware and know how to handle shared data.

13.5. Working with Shared Data
13.5.1. TecUtil functions.
The following functions are provided to work with shared data:

Note that there are essentially two types of functions - ones that deal with variables and ones
that deal with connectivity information.

13.5.2. Allowing Data Sharing
The function TecUtilDataSetIsSharingAllowed should be called prior to using any of the
TecUtil sharing functions if your add-on has any reason to believe that customers may shut
down sharing. This should be an isolated occurrence and most likely limited to cases where an
older add-on must be used that cannot handle shared data and the user is forced to tell tecplot
to shut down sharing.

 To shut down data sharing add the following entry to the tecplot.cfg file:

 $!Compatibility AllowDataSharing = No

13.5.3. Querying or Modifying shared data
Variable and connectivity sharing information in Tecplot may be queried or altered using the
standard methods described earlier in this chapter. If the variable or connectivity information
is shared, any modifications will be realized by all zones that share the information.

State changes can be sent to Tecplot identifying the variable (or connectivity information) that
was changed. Only those zones that were altered need to be identified and Tecplot will recog-
nize that other zones may be affected because of sharing.

TecUtilDataConnectBranchShared Branch connectivity information that was previ-
ously shared between two zones.

TecUtilDataConnectShare Share connectivity information between two
zones.

TecUtilDataValueBranchShared Branch a variable that was previously shared
between two zones.

TecUtilDataValueShare Share a variable between two zones.

TecUtilDataConnectGetShareCount Get the number of zones sharing connectivity
information

TecUtilDataValueGetShareCount Get the number of zones sharing a variable.

Figure 13-1.
99

Chapter 13. Accessing Field Data

10
13.5.4. Sharing
A variable or connectivity information can be shared between zones. When you do this, the
memory allocated for the variable in the destination zone is freed and the variable in the desti-
nation zone will point to the memory used by the variable in the source zone. The share count
is then incremented by 1.

13.5.5. Branching
It may be the case that you wish to modify a variable in a zone and also require that these mod-
ifications occur exclusively in that zone. If this is the case, and you have no previous knowl-
edge of sharing of this variable then it is best to branch the variable prior to modification. If
previously shared, branching will allocate memory for the variable (or connectivity informa-
tion) and make a copy of all the values. The share count for the original data is decremented
by 1. Branching an already branched variable does nothing.

 Example: Do some data operation to variable 3 exclusively in zone 7.

if (TecUtilDataValueBranchShared(7, /* Zone */
 3)) /* Var */
 {
 do data operation on variable 3 in zone 7.
 }
0

14.1. State Change Values
CHAPTER 14 Handling Tecplot State Changes from
an Add-on

State changes are Tecplot's method for propagating information when an event occurs. The
basic sequence of events is:

1. An action is taken,
2. A state change message is sent to Tecplot, and
3. Tecplot transmits the state change message to any add-ons which have registered state

change callbacks.

Some examples of actions which cause state changes are loading a data file, changing the color
of a mesh plot, creating a new zone, and changing the frame mode.

There are two main issues in handling Tecplot state changes from an add-on. The first is how
to listen for Tecplot state change messages from your add-on. The second is how and when to
send state change messages to Tecplot from your add-on.

For details on any TecUtil function mentioned in this chapter, please see the ADK Online Ref-
erence.

In general, your add-on should listen for state changes if it needs to take some action based on
the state of Tecplot. For example, if your add-on displays a dialog which deals with 3-D plots,
you may want to drop the dialog if the frame mode is changed to XY. Or, you may need to
update the dialog if a new data set is loaded.

Most state changes are generated automatically for you by Tecplot. Only under certain circum-
stances will your add-on be required to explicitly "Send" a state change notification. See 14.3,
“Sending State Changes,” for details on when your add-on needs to explicitly send a state
change.

14.1. State Change Values
Table 14-1, “State change values,” on page 102 shows the available state change values. Col-
umn 1 shows the state change value constants that appear in GLOBAL.h. New versions of tec-
plot may add new state changes so you may want to refer to GLOBAL.h in case this
documentation is out of date.
101

Chapter 14. Handling Tecplot State Changes from an Add-on

10
Table 14-1. State change values
State Change Value Explanation Example of when

this occurs using
the user inter-
face

Example of when this
occurs using TecUtil
functions

StateChange_VarsAdded One or more variables
were added.

Adding a new vari-
able in the Data/
Alter/Specify Equa-
tions dialog.

TecUtilDataSetAd-
dVar

StateChange_ZonesAdded One or more zones were
created.

Data/Create Zone/
Circular dialog.

TecUtilCreateR-
ectangularZone

StateChange_ZonesDeleted One or more zones were
deleted.

Data/Delete Zones
dialog.

TecUtilZoneDelete

StateChange_VarsAltered Values of one or more
variables were altered.

Alter variable val-
ues in the Data/
Alter/Specify Equa-
tions dialog.

TecUtilDataAlter

StateChange_NodeMapsAlter
ed

The node map for one or
more zones was altered.

Cannot do this from
the interface.

TecUtilDataN-
odeSetByZone

StateChange_DataSetReset A new data set has been
loaded.

File/Load DataFile
dialog.

TecUtilReadD-
ataSet

StateChange_DataSetFileNa
me

The current data set has
been saved to a file.

File/Write DataFile
dialog.

TecUtilWrite-
DataSet

StateChange_DataSetTitle The current data set title
has been changed.

Change data set title
in Data/Data Set
Info dialog.

TecUtilDataSet-
SetTitle

StateChange_NewLayout The current layout has
been cleared and reset.

File/New Layout
menu.

TecUtilNewLayout

StateChange_NewTopFrame A new frame has become
the current frame.

Frame/Order
Frames dialog.

TecUtilFrameCre-
ateNew

StateChange_FrameDeleted A frame was deleted. Frame/Delete Cur-
rent Frame menu.

TecUtilFrameDele-
teTop

StateChange_Style The style of the plot has
been altered.

Zone Style/Mapping
Style dialogs.

TecUtilZoneSet-
Mesh TecUtil-
StyleSetLowLevel

StateChange_Text One or more text ele-
ments have changed.

Adding, removing,
or modifying text.

Explicitly by
calling TecUtil-
StateChanged with
StateChange_Text.
2

14.1. State Change Values
StateChange_Geom One or more geometry
elements have changed.

Adding, removing,
or modifying geom-
etries.

Explicitly by
calling TecUtil-
StateChanged with
StateChanged_Geom
.

StateChange_LineMapAssign
ment

An X-Y mapping defini-
tion has been altered
(includes zone and axis
information).

Definitions page of
the Mapping Style
dialog.

TecUtilLine-
MapSetAssignment

StateChange_ContourLevels The contour levels have
been altered.

Field/Contour Lev-
els.

TecUtilContour-
LevelAdd

StateChange_ZoneName The name of a zone has
been altered.

Rename a zone in
the Data/Data Set
Info dialog.

TecUtilZoneRename

StateChange_VarName The name of a variable
has been altered.

Rename a variable
in the Data/Data Set
Info dialog.

TecUtilVarRename

StateChange_LineMapName The name of an line map-
ping has been altered.

Rename a line map
in an XY Line plot.

TecUtilL-
ineMapSetName

StateChange_LineMapAddDel
eteOrReorder

The set of existing line
mappings has been
altered.

Mapping Style dia-
log, Create Map
button.

TecUtilLineMapDe-
lete

StateChange_View The view of the plot has
been altered (usually a
translate, scale, or fit
action).

View/Translate-
Magnify dialog.

TecUtilViewTrans-
late

StateChange_ColorMap The color mapping has
been altered.

Workspace/Color-
Map dialog.

TecUtilColor-
MapResetToFactory

StateChange_ContourVar The contour variable has
been reassigned.

Field/Contour Vari-
able dialog.

TecUtilCon-
tourSetVariable

StateChange_Streamtrace The set of streamtraces, a
termination line, or the
streamtrace delta time has
been altered.

Field/Streamtrace
Placement dialog.

TecUtil-
StreamtraceAdd

StateChange_NewAxisVariab
les

The axis variables have
been reassigned.

Plot/Assign XYZ
dialog.

TecUtilStyleSet-
LowLevel

Table 14-1. State change values
State Change Value Explanation Example of when

this occurs using
the user inter-
face

Example of when this
occurs using TecUtil
functions
103

Chapter 14. Handling Tecplot State Changes from an Add-on

10
StateChange_MouseModeUpda
te

A new mouse mode (tool)
has been selected.

Select a new mouse
mode (tool) in the
sidebar.

TecUtilPickSet-
MouseMode

StateChange_PickListClear
ed

All picked objects are
unpicked.a

Click on the paper
in the workspace.

TecUtilPickDese-
lectAll

StateChange_PickListGroup
Select

A group of objects has
been added to the pick
list.a.

Draw a box around
a group of objects
with the selector or
adjuster tool.

TecUtilPickAddAll

StateChange_PickListSingl
eSelect

A single object has been
added to or removed from
the pick list.a.

Select an object
with the selector or
adjuster tool.

TecUtilPickAtPo-
sition

StateChange_PickListStyle An action has been per-
formed on all of the
objects in the pick list.a.

Quick Edit dialog. TecUtilPickEdit

StateChange_ModalDialogLa
unch

A modal dialog has been
launched (see Chapter 12,
“Modal and Modeless
Dialogs in Windows”).

Workspace/Ruler-
Grid dialog.

TecUtilDialogMes-
sageBox

StateChange_ModalDialogDi
smiss

A modal dialog has been
dismissed (see Chapter
12, “Modal and Modeless
Dialogs in Windows”).

Workspace/Ruler-
Grid dialog.

TecUtilDialogMes-
sageBox

StateChange_CompleteReset Anything could have hap-
pened (see Section 14.2.1,
“State Change Modes,”
below).

File/Open Layout
dialog.

TecUtilOpenLayout

StateChange_DrawGraphicsO
n

Graphics have been
turned back on.

Execute the macro
command
$!DRAWGRAPH-
ICS ON.

TecUtilDrawGraph-
ics(TRUE);

StateChange_DrawGraphicsO
ff

Graphics have been
turned back off.

Execute the macro
command
$!DRAWGRAPH-
ICS OFF.

TecUtilDrawGraph-
ics(FALSE);

Table 14-1. State change values
State Change Value Explanation Example of when

this occurs using
the user inter-
face

Example of when this
occurs using TecUtil
functions
4

14.2. Listening for State Changes
14.2. Listening for State Changes
In order to listen for Tecplot state changes, your add-on must register a callback function
which Tecplot will call whenever a state change occurs.

State change add-on callback functions are of the type
StateChangeAddOnCallbackV2_pf and look like:

 void StateChangeCallback (StateChange_e StateChange);

where StateChange is one of the types listed above in Table 14-1, “State change values,” on
page 102. When called, your callback can then turnaround and query Tecplot for supplemental
information using one or more of the following functions:

TecUtilStateChangeGetArbEnum
TecUtilStateChangeGetIndex
TecUtilStateChangeGetStyleParam
TecUtilStateChangeGetVarSet

StateChange_DataSetLockOn The dataset attached to
the active frame in tecplot
has been locked.

Cannot be done via
user interface.

TecUtilDataSet-
LockOn

StateChange_DataSetLockOf
f

The dataset attached to
the active frame in tecplot
has been unlocked.

Cannot be done via
user interface.

TecUtilDataSet-
LockOff

StateChange_DrawingInterr
upted

The user has interrupted
the drawing.

User clicks with the
mouse in the
workarea..

TecUtilInter-
rupt().

StateChange_QuitTecplot Tecplot is about to exit. File/Exit menu. TecUtilQuit

StateChange_AuxDataAdded Auxiliary data was added. Cannot do this via
the user interface

TecUtilAuxDataSe-
tItem

StateChange_AuxDataDelete
d

Auxiliary data was
deleted

Cannot do this via
the user interface.

TecUtilAuxData-
DeleteItemByName

StateChange_AuxDataAltere
d

Auxiliary data was
altered.

Cannot do this via
the user interface.

TecUtilAuxDataSe-
tItem

a. See Chapter 18, “Working With Picked Objects,” for more information on picked objects and the pick list.

Table 14-1. State change values
State Change Value Explanation Example of when

this occurs using
the user inter-
face

Example of when this
occurs using TecUtil
functions
105

Chapter 14. Handling Tecplot State Changes from an Add-on

10
TecUtilStateChangeGetZone
TecUtilStateChangeGetZoneSet

The state changes that have supplemental information that can be queried are:

Note that not all supplemental information may be available all the time. It is up to the supplier
of the state change to supply the supplemental information and in some cases (like older add-
ons calling TecUtilStateChange) it may not be supplied. If information is not supplied then
you must assume the worst case. For example, on a StateChange_VarsAltered, if the ZoneSet
is not supplied you must assume that the variables were altered in all zones. For the vars
altered state change, you can assum that the VarSet is supplied.

As an example, the following code registers a state change callback called
StateChangeCallback which monitors contour level and contour variable changes and
updates a dialog when those changes occur.

 void StateChangeCallback (StateChange_e StateChange)
 {

Table 14-2. State changes and supplemental infromation.

State Change Supplemental Information
StateChange_VarsAltered VarSet, ZoneSet (optional),Index (optional)

StateChange_VarsAdded VarSet

StateChange_ZoneDeleted ZoneSet

StateChange_NodeMapAltered ZoneSet

StateChange_MouseModeUpdate Enum for the new mouse mode
(MouseButtonMode_e)

StateChange_Style Style parameters P1, P2, P3, P4, P5, P6
(P2-P6 are optional)

StateChange_View Enum for view action (View_e)

StateChange_Streamtrace Enum for Streamtrace action (Streamtrace_e)

StateChange_AuxDataAltered Enum for Auxiliary Location
(AuxDataLocation_e),Zone if location is
AuxDataLocation_Zone

StateChange_AuxDataAdded Enum for Auxiliary Location
(AuxDataLocation_e),Zone if location is
AuxDataLocation_Zone

StateChange_AuxDataDeleted Enum for Auxiliary Location
(AuxDataLocation_e),Zone if location is
AuxDataLocation_Zone
6

14.2. Listening for State Changes
 TecUtilLockStart(AddonID);
 if ((StateChange == StateChange_ContourLevels) ||
 (StateChange == StateChange_ContourVar) ||
 (StateChange == StateChange_CompleteReset))
 UpdateMyContourDialog();
 TecUtilLockFinish(AddonID);
}

void LaunchMyContourDialog (void)

 ArgList_pa ArgList;
 TecUtilLockStart(AddonID);
 ArgList = TecUtilArgListAlloc();
 TecUtilArgListAppendFunction(ArgList,
 SV_CALLBACKFUNCTION,
 (Void *)StateChangeCallback);
 TecUtilArgListAppendInt(SV_STATECHANGEMODE,
 StateChangeMode_v100);
 TecUtilStateChangeAddCalbackX(ArgList);
 TecUtilArgListDealloc(&ArgList);
 TecUtilLockFinish(AddonID);
}

void InitTecAddOn (void)
{
 TecUtilLockOn();
 AddonID = TecUtilAddOnRegisterInfo(
 "Contour Plot Enhancer", "1.0",
 "My Company");
 TecUtilMenuAddOption("Tools", "Contour Dialog",
 ’C', LaunchMyContourDialog);
 TecUtilLockOff();
}

Only certain state changes will probably be of interest to your add-on. For example, the above
add-on only monitors state changes which involve the contour variable or the contour levels.
StateChange_CompleteReset must be listened for as well, since anything could have
happened to cause it. See Section 14.2.1, “State Change Modes,” for an in depth discussion of
when to listen for the StateChange_CompleteReset state change.).

For an example where supplemental infromation is used, look at the case where the above add-
on instead wants to update its dialog when the contour variable value was altered:
107

Chapter 14. Handling Tecplot State Changes from an Add-on

10
 void StateChangeCallback (StateChange_e StateChange)
 {
 TecUtilLockStart(AddonID);
 if (StateChange == StateChange_VarsAltered
 {
 EntIndex_t ContourVarNum =
 TecUtilVarGetNumByAssignment('C');
 Set_pa VarSet = NULL;
 TecUtilStateChangeGetVarSet(&VarSet);
 if (TecUtilSetIsMember(VarSet,ContourVarNum
 UpdateMyContourDialog();
 }
 else if (StateChange == StateChange_CompleteReset)
 UpdateMyContourDialog();
 TecUtilLockFinish(AddonID);

 }

Do not deallocate VarSet after use, as Tecplot just hands off a reference to the internal value.

14.2.1. State Change Modes
The original implementation of the state change mechanism behaved such that when a lot of
processing was taking place Tecplot would turn the graphics off and not bother propagating the
state changes until the graphics were turned back on again after processing, at which point Tec-
plot would simply broadcast StateChange_CompleteReset notification.

Particularly, this happened with loading stylesheets and layouts The advantage to this approach
was that add-ons were not bombarded with notifications where a simple reset notification
would suffice.

The limitation to this approach occured with the introduction of state changes in add-ons that
did more than just inform add-ons of changes intended to keep consistancy with modeless dia-
logs. For instance, an add-on may want to know all the details of just what has transpired dur-
ing the execution of a macro so it can later act appropriately.

This being the case, a state change mode is available as an option when registering your call-
back. In the example code on page 107, the following line:

TecUtilArgListAppendInt(SV_STATECHANGEMODE,
StateChangeMode_v100);
8

14.2. Listening for State Changes

sets the state change mode to V100. StateChangeMode_v100 is the default.

Setting the mode to StateChangeMode_v100 has the following effects:

• All state changes occuring while the graphics are suspended are propagated to your call-
back.

• StateChange_DrawGraphicsOff is sent to the add-on when graphics are shut off in
Tecplot and StateChange_DrawGraphicsOn is sent when graphics are turned on.

• StateChange_CompleteReset is not sent to your callback.

Setting the mode to StateChangeMode_v75 has the following effects:

• No state changes are propagated to your callback when the graphics are off.
• You receive a StateChange_CompleteReset when the graphics are turned back on.
• You never receive StateChange_DrawGraphicsOff or

StateChange_DrawGraphicsOn.

14.2.2. Coding Rules for State Change Callbacks
When a call is made to your state change callback function it is almost always the case that
either Tecplot or some other add-on is in the middle of a sequence of tasks. Thus, it is highly
advisable that the code in your callback function itself refrain from actions that themselves
generate state changes. All TecUtil functions that query state information from Tecplot are
acceptable, as those requests do not cause Tecplot's state to change. Executing functions like
TecUtilCreateRectangularZone is not recommended since they modify Tecplot's
state.

If you are unsure if the code in your add-on is generating state change callbacks, you can make
use of the statechg add-on provided by Amtec. Simply uncomment the entry for this add-on in
the main Tecplot.add file. The statechg add-on monitors all state changes and displays
them in a dialog.

If you have a case where you would like to make TecUtil function calls that do change the
state in Tecplot, then the best approach is to set a local flag for your add-on so that the desired
operation can be performed later when other GUI callback events are processed. By registering
an on-idle callback, Tecplot will notify the add-on when Tecplot returns to an idle state. It is
important for an add-on to set a local flag when it registers the callback (and check that the flag
is not set before registering) and clears the flag after the registered callback is called by Tecplot
so that only one on-idle callback is registered to handle the pending operations since Tecplot
109

Chapter 14. Handling Tecplot State Changes from an Add-on

11
may issue many “state changed” calls before returning to an idle state. Please refer to the
TecUtilOnIdleQueueAddCallback definition in the ADK Online Reference for an
example of registering such a callback.

An example of an unacceptable reaction to a pick type state change event would be to delete
the object. It is more acceptable to have an interface button that when pressed would delete all
picked objects (for example, objects of a particular type). You would then use the pick type
state change to update the sensitivity of the button instead of immediately deleting the object.

14.3. Sending State Changes
There are only certain circumstances under which your add-on will need to send state changes
to Tecplot. Most of the TecUtil functions will transmit the necessary state changes automati-
cally. For example, when an add-on calls TecUtilZoneDelete, Tecplot automatically
transmits the StateChange_ZonesDeleted state change.

Currently, your add-on must send state changes to Tecplot under the following circumstances:

Table 14-3. State Changes Add-Ons are Allowed to Send
Circumstance Relevant state change value Supplemental

Infromation
supplied to Tec-
plot

Launch and dismissal of
modal dialogs (Windows
only).

StateChange_ModalDialogLaunch,
StateChange_ModalDialogDismiss

None.

After a variable has been
added and subsequently
modified.

StateChange_VarsAdded None.

After a variable has been
modified.

StateChange_VarsAltered Set of affected
variables.*
Index of value
changed.
Set of affected
zones.

After the node map has
been modified.

StateChange_NodeMapsAltered Set of affected
zones.*

After
TecUtilDataSetAddZ
one has been called and
the field data set has been
subsequently modified.

StateChange_ZonesAdded Set of affected
zones.*
0

14.3. Sending State Changes
*This information must be supplied via the calldata parameter if using TecUtilStateChanged
and must be supplied as an arglist member if using TecUtilStateChangedX.

To send state changes to Tecplot, you may use the older TecUtilStateChanged function
or the newer TecUtilStateChangedX function.

14.3.1. Using TecUtilStateChanged
The prototype for TecUtilStateChanged is:

 void TecUtilStateChanged (StateChange_e StateChange,

 ArbParam_t CallData);

where StateChange is one of the types listed above in table 10-3, and CallData is extra informa-
tion that is sent only when necessary. For state changes which use the CallData parameter, the
extra information is required. For example, when sending a StateChange_VarsAltered,
you must send the set of altered variables as the CallData parameter. See the class of
TecUtilSetXXX functions for creating, manipulating and destroying sets in the ADK Online
Reference.

14.3.2. Using TecUtilStateChangedX
Since the State Change mechanism in Tecplot V10 has been expanded to allow the transfer of
supplemental information, it is necessary that there be a way to supply this information when
broadcasting a state change. The older TecUtilStateChanged function is likely sufficient at
present for most cases, however future versions of tecplot will allow the transfer of more sup-
plemental information. In V10,the state change StateChange_VarsAltered is the one case
where add-ons may supply more than one piece of information.

After adding, removing, or
modifying one or more text
elements.

StateChange_Text None.

After adding, removing or
modifying one or more
geometry elements.

StateChange_Geom None.

Table 14-3. State Changes Add-Ons are Allowed to Send
Circumstance Relevant state change value Supplemental

Infromation
supplied to Tec-
plot
111

Chapter 14. Handling Tecplot State Changes from an Add-on

11
TecUtilStateChangedX has the following prototype:

 void TecUtilStateChangedX(ArgList_pa ArgList);

Where Arglist is constructed like any other "X" function. The ArgList may contain one or
more of the following:

When an addon submits a state change with StateChange_VarsAltered you may supply not
only the set of variables altered (required) but also the set of zones in which those variables
were altered and, if only one value was altered, the index of the point that was altered.

Example:

Your addon alters the 3rd variable in zones 5 and 6 at offset 10. You are through altering data
so you must broadcast a state change:

Note: Error checking omitted for clarity.

 {

ArgList_pa ArgList;
Set_pa ZoneList;
Set_pa VarList;

ArgList = TecUtilArgListAlloc();
ZoneList = TecUtilSetAlloc(FALSE);
VarList = TecUtilSetAlloc(FALSE);

TecUtilSetAddMember(ZoneList,5,FALSE);
TecUtilSetAddMember(ZoneList,6,FALSE);
TecUtilSetAddMember(VarList,3,FALSE);
TecUtilArgListAppendInt(ArgList,SV_STATECHANGE,

 (LgIndex_t)StateChange_VarsAltered);
TecUtilArgListAppendSet(ArgList,SV_ZONELIST,ZoneList);
TecUtilArgListAppendSet(ArgList,SV_VARLIST,VarList);
TecUtilArgListAppendInt(ArgList,SV_INDEX,10);

Table 14-4. ArgList values

Argument Name Type
SV_STATECHANGE StateChange_e

SV_ZONELIST Set_pa

SV_VARLIST Set_pa

SV_INDEX Integer
2

14.3. Sending State Changes
TecUtilStateChangedX(ArgList);
TecUtilSetDealloc(&ZoneList);
TecUtilSetDealloc(&VarList);
TecUtilArgListDealloc(&ArgList);

 }

As discussed in the previous sections, the state change listeners can choose to use any/all of the
supplemental information they desire. Listeners must also know how to handle situations
where the supplemental information is not supplied (assume worst case).

To see examples of the use of TecUtilStateChanged or TecUtilStateChangedX,
please refer to the ADK Online Reference and refer to the relevant TecUtil functions which
are listed above. Note that no other state change notifications may explicitly originate from
your add-on besides the ones listed in Table 10-3.
113

Chapter 14. Handling Tecplot State Changes from an Add-on

11
4

CHAPTER 15 Augmenting Tecplot’s Macro
Language

Tecplot has a macro language you can use to automate tasks that are performed repeatedly.
Macro functions can be assigned to buttons in the Quick Macro Panel, or macros can be
created to load and process data retrieved from a large number of files. Your add-on can also
be designed to augment Tecplot’s macro language so tasks performed by your add-on can be
automated as well.

For details on the TecUtil functions discussed in this chapter, please see the ADK Online Refer-
ence.

15.1. Processing Custom Macro Commands

You can augment Tecplot's macro language with your own set of commands that will be routed
directly to your add-on for processing. The Tecplot macro command $!ADDONCOMMAND is
the bridge that extends Tecplot’s macro language. The $!ADDONCOMMAND macro command
looks like:

 $!ADDONCOMMAND
 ADDONID = string
 COMMAND = string

Here the string assigned to ADDONID identifies which add-on is to receive the command, and
the COMMAND parameter identifies the commands to be processed by the add-on.

To tell Tecplot what function to call when it encounters your macro command, you make a call
to TecUtilMacroAddCommandCallback from the InitTecAddOn function in your
add-on. The call to TecUtilMacroAddCommandCallback is defined as follows:

TecUtilMacroAddCommandCallback(MyAddOnID,MyMacroProcessor);

Where MyAddOnID is a string used in the ADDONID part of the $!ADDONCOMMAND and
MyMacroProcessor is the name of a function you write to handle the macro command.

Example:
115

Chapter 15. Augmenting Tecplot’s Macro Language

11
Suppose you have an add-on that can sum the areas (or volumes) of all cells in a specified list
of zones. You want to create a macro command that can tell your add-on which zones to pro-
cess.

The first task is to create a function in your add-on that can handle these instructions. This
function will look something like:

Boolean_t STDCALL ProcessSumCellsCommand(char *CommandString,
 char **ErrMsg)
{
 Boolean_t IsOk = TRUE;
 /*
 * Process commands in CommandString
 */
 return (IsOk);
}

The next task is to add the following line to the InitTecAddOn function in your add-on:

 ...
 TecUtilMacroAddCommandCallback("SUMCELLS",
 ProcessSumCellsCommand);
 ...

This tells Tecplot to watch out for macro commands that look like

$!ADDONCOMMAND
 ADDONID = "SUMCELLS"
 COMMAND = "1,2,5-9"

When Tecplot processes a command like the one above, it turns around and calls the function
you registered with the second parameter to TecUtilMacroAddCommandCallback,
which in this case is ProcessSumCellsCommand. ProcessSumCellsCommand is
called with the command which is the string taken from the COMMAND parameter in the macro.
In the example above, ProcessSumCellsCommands would be called with the string
"1,2,5-9" as its first parameter.

You may design any syntax you wish for the instructions sent to your add-on. The only restric-
tion is that they must be able to fit into a single string in a Tecplot macro sub-command. In the
previous example, the function ProcessSumCellsCommand will be coded so that it can
scan a comma- and dash-delimited set of numbers, and determines a set of zones for which to
sum the areas or volumes.
6

15.2. Error Processing
15.2. Error Processing

If your macro command callback function detects an error in the command string, or during
processing, it is required to do the following:

1. Allocate enough space for an error message by calling TecUtilStringAlloc. The
ErrMsg parameter to the callback function must be assigned to this space.

2. Generate an appropriate error message and place it into the space created in Step 1.
3. Return with a value of FALSE.

For example, suppose the function ProcessSumCellsCommand in the previous section
detects that a zone specified in the command does not exist (and this is determined to be an
error condition). The coding for ProcessSumCellsCommand may then look like:

Boolean_t STDCALL ProcessSumCellsCommand(char *CommandString,
 char **ErrMsg)
{
 Boolean_t IsOk = TRUE;
 EntIndex_t CurZone;
 char *CPtr = CommandString;
 double SumTotal = 0;

 /*
 * Scan CommandString and pull out zones to
 * sum. The function GetNextZone pulls out the
 * next zone number and advances CPtr. SumNextZone
 * attempts to calculate a sum in the next zone and
 * returns FALSE if the zone requested is invalid.
 */

 while (IsOk && GetNextZone(&CPtr,&CurZone))
 {
 double CurSum;
 if (SumNextZone(CurZone,&CurSum))
 SumTotal += CurSum;
 else
 {
 IsOk = FALSE;
 *ErrMsg = TecUtilStringAlloc(200);
 sprintf(*ErrMsg,"Can’t calc sum for zone %d",CurZone);
 }
 }
 return (IsOk);
}

The functions GetNextZone and SumNextZone are not provided for reasons of space.
117

Chapter 15. Augmenting Tecplot’s Macro Language

11
15.3. Recording Custom Macro Commands

The user may choose to have Tecplot record a particular session. If the user is recording a
macro and uses your add-on, you will want the action to be translated into a macro command
written to the macro record file.

To record a macro command, simply call the function TecUtilMacroRecordAddOnCom-
mand after your add-on has successfully performed an operation requested by the user.

For example, the user, via dialogs in your add-on, requests to sum the areas of cells in zones 1
through 5. After the add-on performs a successful operation it makes the following call:

 if (TecUtilMacroIsRecordingActive())
 TecUtilMacroRecordAddOnCommand("SUMCELLS","1-5");

This will write out the following text to the macro file:

$!ADDONCOMMAND
 ADDONID = "SUMCELLS"
 COMMAND = "1-5"

TecUtilMacroRecordAddOnCommand requires that macro recording is active. This
means that you must call TecUtilMacroIsRecordingActive and check the return
value before calling TecUtilMacroRecordAddOnCommand.
8

16.1. Data Journaling Prerequisites
CHAPTER 16 Implementing Data Journaling

Tecplot version 10 introduced data journaling. The initial loading of a dataset and any changes
made to a dataset after loading are actions that can be journaled. Executing the data journal
recreates the data by loading data files and performing modifications. When a layout is saved,
rather than saving a new data file, the Tecplot can reference the original data file and store only
the modifications to the data within the layout file. This eliminates duplication of data and
saves disk space. Tecplot allows add-ons that modify data to record their actions to the journal.
The actions are recorded as $!ADDONCOMMAND macros. When a layout file is loaded, these
macros are processed the same way other add-on macros are processed--by calling the add-
on’s macro command callback routine. For more details on add-on macros, refer to Chapter 15,
“Augmenting Tecplot’s Macro Language,” on page 115. Data set reader add-ons do not need to
journal their actions--Tecplot journals their actions for them. For details on the TecUtil
functions discussed in this chapter, please see the ADK Online Reference.

16.1. Data Journaling Prerequisites
In order to journal a data modification your add-on performs, the following conditions must be
met:

• There must be a data set attached to the current frame.
• The data set must have a valid journal.
• The data modification must involve only one data set.
• The data modification must not rely on style settings.
The first two prerequisites are easily verified with ADK functions calls, as will be shown
below. The third prerequisite arises from the fact that frames and their data sets can appear in
layout files in any order. You can’t be certain that one data set will be created prior to another
data set, so data journaling cannot rely on the order in which data sets are created. If your add-
on creates or modifies one data set based on values in a different data set, this criterion is
violated, and the operation cannot be journaled.
The final prerequisite arises from the fact that data journals in layout files are executed prior to
any style commands. Style settings include axis, contour and other variable assignments. So if
your add-on performs some operation that uses the identity of the axis variables, then you need
to include the axis variable assignments in your journal command, because your add-on will
not be able to query Tecplot for that information when the journal is executed.
119

Chapter 16. Implementing Data Journaling

12
16.2. Determining Whether a Layout is Being Processed
Depending on how you design your add-on’s macro commands, your add-on may need to
know whether its macro command callback is being called as a result of playing a macro file or
processing the journal in a layout file (style settings are available when macro files are played).
The function TecUtilStateIsProcessingJournal provides this information. A
typical add-on macro command callback might use the following logic to determine what data
set variable to use for the X axis variable:
1. Determine whether a layout journal is being processed by calling TecUtil-

StateIsProcessingJournal.
2. If a data journal is being processed, use the X variable number stored in the macro com-

mand string. Otherwise, get the variable number of the X axis variable by calling
TecUtilVarGetNumByAssignment(‘X’).

16.3. Inhibiting Marking of the Data Set
Unless the add-on inhibits it, any data modification it performs will “mark” the data set.
Marking the data set invalidates the data journal and indicates to Tecplot that the data set must
be saved to a new data file when a layout is saved. To journal its actions, therefore, an add-on
must inhibit data set marking prior to performing its data modifications. Upon completion of
its modifications, the add-on must re-enable marking. The
TecUtilDataSetSuspendMarking ADK function is used for both of these purposes.

16.4. Macro Recording vs. Data Journaling
There are two ways data modifications can be "remembered" in Tecplot. One is using the Data
Journal whereby the instructions to modify data are journaled in Tecplot and then saved to lay-
out files. The other is via macro recording.

Although not a requirement, it is often very useful if an add-on has the ability to supply macro
record instructions to Tecplot whenever the add-on performs an action changing the state of
Tecplot (See the Chapter "Augmenting Tecplot's Macro Language). This way a user can
record a macro and play it back to exactly reproduce a set of actions. Thus to satisfy both data
journaling and macro recording your code should look like:

 TecUtilDataSetSuspendMarking(TRUE);

 // Do actions that change the state in Tecplot
 // Make sure to call TecUtilStateChanged if you changed
data.
0

16.5. Example Data Journaling Code
 TecUtilDataSetSuspendMarking(FALSE);

 // Create a command that your addon can parse later when
 // requested. This command represents the work done while
the
 // data was suspended in the above code.
 // In the following code the variable "MacroCommand" holds
the
 // macro command for this operation.

 if (TecUtilDataSetJournalIsValid())
 TecUtilDataSetAddJournalCommand(ADDON_NAME, MacroCommand,
NULL);
 if(TecUtilMacroIsRecordingActive())
 TecUtilMacroRecordAddOnCommand(ADDON_NAME, MacroCommand);

16.5. Example Data Journaling Code
The below code verifies there is a current data set. If so, it suspends data set marking and per-
forms some action that modifies the data set. It then verifies that the data journal is valid, and
records an $!ADDONCOMMAND macro command to the data journal. Finally, it reactivates data
set marking. Note that it stores the identity of the X axis variable, which the add-on will need
to use when the journal is executed:

if (TecUtilDataSetIsAvailable())
 {
 EntIndex_t XAxisVar
 char Command[256];
 /* Suspend data set marking. */
 TecUtilDataSetSuspendMarking(TRUE);

 /* Modify the data set. */
 ModifyDataSet();

 XAxisVar = TecUtilVarGetNumByAssignment(X);
 sprintf(Command,
 “DoStuff XAxisVar=%d”,
 (int)XAxisVar);

 if (TecUtilDataSetJournalIsValid())
 {
 TecUtilDataSetAddJournalCommand(ADDON_NAME,
 Command,
121

Chapter 16. Implementing Data Journaling

12
 NULL); /* RawData */
 }
 if (TecUtilMacroIsRecordingActive())
 {
 TecUtilMacroRecordAddOnCommand(ADDON_NAME,
 Command);
 }
 }
2

CHAPTER 17 Adding Online Help to Your Add-on

TGB provides an easy way for you to add on-line help to your add-on. Each modal and mode-
less dialog created with TGB has a 'Help' button and associated callback. You are free to do
any processing or use any help system you wish in the callback. The Tecplot ADK API has
also provided a function, TecUtilHelp() which can display any HTML file when the user
presses the help button. This chapter will explain how to use TecUtilHelp() to add on-line
help to your add-on.

17.1. Step 1: Write your Help Pages
Write your help system as one or more HTML files. For simple add-ons, this may be just a sin-
gle HTML file. For add-ons that require more description, you may also use multiple files or
an index page which references multiple files.

17.2. Step 2: Create a Help Directory
When you install your add-on, create a directory under the <TEC100HOME>/help direc-
tory. For example, if the name of your add-on is MyAddOn, create a directory:
<TEC100HOME>/help/MyAddOn/. The name of the directory is not required to be the
same as the name of your add-on.

17.3. Step 3: Processing the Help Button Callback
The TGB will generate a help button callback in guicb.c as follows:

static void Dialog1HelpButton_CB(void)
{
 TecUtilLockStart(AddonID);
 TecUtilDialogMessageBox("No help available");
 TecUtilLockFinish(AddonID);
}

Change this to be:

static void Dialog1HelpButton_CB(void)
{
 TecUtilLockStart(AddonID);
 TecUtilHelp("MyAddOn/file.htm",FALSE,0);
125

Chapter 17. Adding Online Help to Your Add-on

12
 TecUtilLockFinish(AddonID);
}

Where MyAddOn/file.htm is the path of the HTML file to be displayed. Typically this will
be named index.htm, but this is not required. Note that by default, Tecplot will prefix
<TEC100HOME>/help/ to the file name, so you only specify the path below the Tecplot
Help directory. Alternatively, you can always use an absolute path to your HTML file, like
C:\MyDir\index.htm.

We highly recommend, however, that you install your help files in Tecplot's help directory.

17.4. Using the TecUtilHelp Function
When TecUtilHelp is called with an HTML (either a local HTML file or a valid URL), the
HTML file is displayed using the default browser installed on the system.

In Windows, the default browser is located for you automatically using the system registry;
there is no additional setup needed.

On UNIX systems, you must specify the command which runs your browser by placing the
following line in the Tecplot configuration file (tecplot.cfg):

$!Interface UnixBrowserLaunchCmd = <string>

where <string> is the command you would type at the command prompt to launch the
browser. You must use the @ symbol to mark the location where the URL or filename should
be placed, as shown in the following example:

$!Interface UnixBrowserLaunchCmd = “\usr\bin\netscape @”

You may use any valid HTTP syntax for the HTML file name, as long as it is accepted by the
selected browser at the command line. For example, you may use special characters such as the
octothorp (#) symbol to specify a particular location in the file.

For complete details on using TecUtilHelp, refer to the ADK Online Reference.
6

17.4. Using the TecUtilHelp Function
127

Chapter 17. Adding Online Help to Your Add-on

12
8

CHAPTER 18 Working With Picked Objects

An object in Tecplot is any item which appears in the workspace, can be selected, and on
which actions can be performed. Examples of objects are geometries, axes, frames, legends,
streamtraces, zones, and XY mappings.

Using the Tecplot interface, there are a number of ways to select, or pick, objects. You can use
the Selector or Adjuster tool to either click on objects or draw a box around objects. You can
also use the Edit/Select All menu to select all objects of a specific type (e.g., all geometries or
all zones). When an object is picked, Tecplot draws selection handles (graphics that indicate
that the object is selected and allow you to manipulate it) or boxes around the object.

With the ADK, picked objects are handled through the pick list. The pick list is an indexed list
of objects which are currently selected (usually, objects in the list are in the same order in
which they were picked).

For details on any TecUtil function mentioned in this chapter, please see the ADK Online Ref-
erence.

18.1. Object Types

Object types are used in many of the ADK functions related to picked objects. An object type
is specified with the PickObjects_e enumerated type. You may can pick the following
types of objects:
129

Chapter 18. Working With Picked Objects

13
 PickObject_Frame
 PickObject_Axis
 PickObject_3DOrientationAxis
 PickObject_Geom
 PickObject_Text
 PickObject_ContourLegend
 PickObject_ContourLabel
 PickObject_ScatterLegend
 PickObject_XYLegend
 PickObject_ReferenceVector
 PickObject_ReferenceScatterSymbol
 PickObject_StreamtracePosition
 PickObject_StreamtraceTermLine
PickObject_Paper

 PickObject_Zone
 PickObject_LineMapping
PickObject_StreamTraceCOB
PickObject_SliceCOB
PickObject_IsoSurfaceCOB

18.2. Picking Objects

To pick objects with the ADK, you can use the TecUtilPickSetMouseMode function to
set the mouse mode tool to be either the Selector or Adjuster. This will also clear out the pick
list (i.e., unpick all picked objects).

The following functions are used to pick objects (i.e., to add objects to the pick list):

TecUtilPickAtPosition Pick an object at a specified (X,Y) location.
TecUtilPickAddAll Add all objects of a specified type to the pick list.
TecUtilPickAddAllInRect Add all objects of a specified type and within a specified

region to the pick list.

The TecUtilPickAtPosition function can either add to or replace what is already in the
pick list. The TecUtilPickAddAll and TecUtilPickAddAllInRect functions
always add to what is already in the pick list. This makes it easy, for example, to pick all text
and all geometries with the following two commands:

TecUtilPickAddAll(PickObject_Geom);
TecUtilPickAddAll(PickObject_Text);
0

18.3. Operating on Picked Objects
The functions TecUtilPickGeom and TecUtilPickText are also available to add a
specific text or geometry to the pick list. The function which is used to unpick all objects or to
clear out the pick list is TecUtilPickDeselectAll.

18.2.1. Picking Multiple Objects

In general, objects can only be selected within the current frame. For example, the following
call will pick all zones within the current frame:

TecUtilPickAddAll(PickObject_Zone)

This is true even with TecUtilPickAddAllInRect when the specified region encloses
objects in other frames.

An object type of PickObject_Frame allows multiple frames to be selected.

Picking objects with TecUtilPickAtPosition can change the current frame, but only if
objects are not being collected.

18.3. Operating on Picked Objects

Once you are satisfied with the currently picked objects, you can use the following functions to
operate on the pick list:

TecUtilPickEdit Perform a specified action on all currently picked objects.
TecUtilPickCut Copy all currently picked objects to the paste buffer and then

clear them from the plot.
TecUtilPickCopy Copy all currently picked objects to the paste buffer.
TecUtilPickPaste Paste all objects which are currently in the paste buffer to
 the plot.
TecUtilPickClear Clear all currently picked objects from the plot.
TecUtilPickShift Move all currently picked objects in the plot.
TecUtilPickMagnify Grow or shrink the size of all currently picked objects.
TecUtilPickPush Push all currently picked objects to the back of the plot (so

that they are drawn earlier).
TecUtilPickPop Pop all currently picked objects to the front of the plot (so

that they are drawn later).

Some of the above functions can only be used on specific types of objects. (For example,
TecUtilPickMagnify can only be used on frames, text, and geometries.)
131

Chapter 18. Working With Picked Objects

13
18.3.1. Example: Edit All Objects In the Pick List
The following code will add all geometries to the pick list and change their color, line pattern,
position, and size:

TecUtilPickSetMouseMode(Mouse_Select);
TecUtilPickAddAll(PickObject_Geom);
TecUtilPickEdit(“Color = Blue”);
TecUtilPickEdit(“LinePattern = Dashed”);
TecUtilPickShift(1.2, 1.2, PointerStyle_AllDirections);
TecUtilPickMagnify(1.5);

18.4. The Pick List

The pick list is accessed through index values starting at 1. The procedure for enumerating the
pick list begins with a call to TecUtilPickListGetCount to determine the number of
objects that are currently in the pick list. This number can be used as a boundary condition as
you loop through the pick list. For each object in the pick list, call TecUtilPickList-
GetType. This will return the type of object in the pick list at the specified index. Once you
have the object type, you can call appropriate functions to get more information:

Function Name Used Only For Object Type
TecUtilPickListGetFrameName PickObject_Frame

TecUtilPickListGetAxisKind PickObject_Axis

TecUtilPickListGetAxisNumber PickObject_Axis

TecUtilPickListGetZoneNumber PickObject_Zone

TecUtilPickListGetZoneIndices PickObject_Zone

TecUtilPickListGetLineMapNumber PickObject_LineMapping

TecUtilPickListGetLineMapIndex PickObject_LineMapping

TecUtilPickListGetText PickObject_Text

TecUtilPickListGetGeom PickObject_Geom

TecUtilPickListGetGeomInfo PickObject_Geom
2

18.4. The Pick List
18.4.1. Example: Change Color of Text and Geometries In Pick List

The following piece of code will change the color of all text and geometries in the pick list to
purple:

 int Index;
 int Count = TecUtilPickListGetCount();
 for (Index = 1; Index <= Count; Index++)
 {
 PickObjects_e ObjectType = TecUtilPickListGetType(Index);
 /* We are only interested in text and
 /* geometries in the pick list.*/
 switch (ObjectType)
 {
 case PickObject_Text :
 {
 Text_ID TextObject = TecUtilPickListGetText(Index);
 TecUtilTextSetColor(TextObject, Purple_C);
 } break;
 case PickObject_Geom :
 {
 Geom_ID GeomObject = TecUtilPickListGetGeom(Index);
 TecUtilGeomSetColor(GeomObject, Purple_C);
 } break;
 }
 }
133

Chapter 18. Working With Picked Objects

13
18.4.2. Example: Change Color Of Vectors In Pick List

The following piece of code will change the color of all vectors in the pick list to purple:

 /* We will collect all the picked zones in a set. */
 Set_pa Zones = TecUtilSetAlloc(TRUE);
 int Index;
 int Count = TecUtilPickListGetCount();
 for (Index = 1; Index <= Count; Index++)
 {
 PickObjects_e ObjectType = TecUtilPickListGetType(Index);
 /* We are only interested in the zones in the pick list. */
 if (ObjectType == PickObject_Zone)
 {
 EntIndex_t ZoneNum = TecUtilPickListGetZoneNumber(Index);
 TecUtilSetAddMember(Zones, ZoneNum, TRUE);
 }
 }
 TecUtilZoneSetVector("COLOR", Zones, 0.0,
 (ArbParam_t)Purple_C);
 TecUtilSetDealloc(&Zones);

If instead we wanted to change the color of all objects in the pick list to purple, we could have
used the following code:

 TecUtilPickEdit("COLOR = PURPLE");
4

CHAPTER 19 Using Argument Lists

Several TecUtil functions require a flexible, or extended, argument list due to ADK revisions
or the need for a varied number of arguments. Utilizing extended argument lists also minimizes
TecUtil's name space growth which would otherwise be increased by natural revisions and
extensions to the ADK. The ADK provides the ArgList_pa type and related functions to
deal with extended functions.

When an extended function is created or as new capabilities are added to an existing extended
function, reasonable default values are assigned whenever appropriate. The defaults also
provide backward compatibility for add-ons written and compiled with prior versions of the
ADK.

All functions that utilize the extended argument lists end with the capital letter X, distinguish-
ing them from standard argument list functions. Where appropriate a standard argument list
function is provided along with the extended version so that more common uses of the function
are not burdened with the additional instructions needed to take advantage of the extended ver-
sion's flexibility. Of course ADK developers are free to create additional standard argument
functions by forwarding calls to the appropriate extended TecUtil functions.

For details on the TecUtil functions discussed in this chapter, please see the ADK Online Ref-
erence.

19.1. TecUtilArgListFunctions
Argument lists must be allocated and deallocated.

TecUtilArgListAlloc - Create an empty argument list.

TecUtilArgListDealloc - Dealloc an argument list.

You can manipulate the argument list using the following functions:

 TecUtilArgListClear - Remove all members from the argument list.

 TecUtilArgListAppendInt - Add a named integer argument to the list.
135

Chapter 19. Using Argument Lists

13
 TecUtilArgListAppendDouble - Add a named double argument to the list.

 TecUtilArgListAppendString - Add a named string argument to the list.

 TecUtilArgListAppendArray - Add a named array argument to the list.

 TecUtilArgListAppendFunction - Add a named function argument to the list.

 TecUtilArgListAppendSet - Add a named set to the list.

 TecUtilArgListAppendStringList - Add a named string list to the list

19.2. TecUtil Functions which use Argument Lists
Currently, argument lists are used in the following TecUtil functions:

• Boolean_t TecUtilSaveLayoutX(ArgList_pa ArgList);

• Boolean_t TecUtilReset3DOriginX(ArgList_pa ArgList);

• Boolean_t TecUtilAnimateZonesX(ArgList_pa ArgList);

• Boolean_t TecUtilAnimateContourLevelsX(ArgList_pa ArgList);

• Boolean_t TecUtilAnimateIJKPlanesX(ArgList_pa ArgList);

• Boolean_t TecUtilAnimateIJKBlankingX(ArgList_pa ArgList);

• Boolean_t TecUtilAnimateStreamX(ArgList_pa ArgList);

• Boolean_t TecUtilAnimateSlicesX(ArgList_pa ArgList);

• Boolean_t TecUtilImageBitmapCreateX(ArgList_pa ArgList);

• Boolean_t TecUtilDataSetAddZoneX(ArgList_pa ArgList);

• Boolean_t TecUtilAnimateLineMapsX(ArgList_pa ArgList);

• Boolean_t TecUtilStateChangedX(ArgList_pa ArgList);

• Boolean_t TecUtilTransformCoordinatesX(ArgList_pa ArgList);

• Boolean_t TecUtilZoneCopyX(ArgList_pa ArgList);

• Boolean_t TecUtilCreateSliceZoneFromPlneX(ArgList_pa
ArgList);

19.3. Example of Using Argument Lists
Following is an example of how to set up and use the argument lists:
6

19.3. Example of Using Argument Lists
ArgList_pa ArgList = NULL;
Boolean_t LayoutSaved = FALSE;
Boolean_t IncludeData = FALSE;
Boolean_t IncludePreview = FALSE;
Boolean_t UseRelativePaths = FALSE;
char LayoutFName[MAX_FNAME_LEN+1];
 /* Get the layout save options from the user. */
 .
 .
 .
 /* Create the argument list and initialize it with the save options. */
 ArgList = TecUtilArgListAlloc();
 if (ArgList != NULL)
 {
 TecUtilArgListAppendString(ArgList, SV_FNAME, LayoutFName);
 TecUtilArgListAppendInt(ArgList, SV_INCLUDEDDATA, IncludeData);
 if (IncludeData)
 TecUtilArgListAppendInt(ArgList, SV_INCLUDEPREVIEW,
IncludePreview);
 else
 TecUtilArgListAppendInt(ArgList, SV_USERELATIVEPATHS,
UseRelativePaths);

 /* Save the layout and cleanup the argument list. */
 LayoutSaved = TecUtilSaveLayoutX(ArgList);
 TecUtilArgListDealloc(&ArgList);
 }
 .
 .
 .
137

Chapter 19. Using Argument Lists

13
8

CHAPTER 20 Using String Lists

A string list in Tecplot's ADK is simply a list or a collection of strings. The string list object
exists as a convenient way of dealing with groups of strings. The ADK provides the
StringList_pa type and functions to deal with this type. Several TecUtil functions use
string lists as parameters or return values. An example of when a string list is used is loading
data - the list of data files to load is contained in a string list. The first data file name is the first
string in the string list, the second data file name is the second string in the string list, and so
on.

Tecplot keeps its own copy of any strings used when dealing with string lists. All strings
which are passed to string list functions are copied by Tecplot before being added to the string
list. All strings which are accessed from string lists are copied by Tecplot before being
returned to the user. This means that you must deallocate your copy of any strings used when
dealing with string lists. If the string came from Tecplot, you must use the
TecUtilStringDealloc function to deallocate the string.

For details on the TecUtil functions discussed in this chapter, please see the ADK Online Refer-
ence.

20.1. TecUtilStringList Functions
String lists, like strings, need to be allocated and deallocated.

 TecUtilStringListAlloc Create an empty string list.
 TecUtilStringListDealloc Deallocate a string list.

You can get information about what's in a string list and manipulate the string list using the fol-
lowing functions:

 TecUtilStringListGetCount Get the number of strings in the string list.
 TecUtilStringListGetString Get the string at the specified index in the

string list.
 TecUtilStringListAppendString Add a string to the string list.
 TecUtilStringListInsertString Insert a string at the specified index in the

string list.
139

Chapter 20. Using String Lists

14
 TecUtilStringListSetString Set the string at the specified index in the string
list.

 TecUtilStringListClear Remove all members from the string list.
 TecUtilStringListRemoveString Remove the string at the specified index from

the string list.
 TecUtilStringListRemoveStrings Remove a specified number of strings from the

string list at the specified index.
 TecUtilStringListCopy Create a copy of a string list.
 TecUtilStringListAppend Append the contents of one string list to

another string list.

String lists can be converted to and from newline-delimited strings. A newline-delimited rep-
resentation of a string list contains a newline character ('\n') between each string in the string
list.

 TecUtilStringListToNLString Create a newline-delimited string
representation of a string list.

 TecUtilStringListFromNLString Create a string list from a newline-delimited
string.

20.2. TecUtil Functions which use String Lists

Currently, string lists are used in the following TecUtil functions:

 TecUtilReadDataSet
 TecUtilOpenLayout
 TecUtilDialogGetFileNames
 TecUtilDataSetCreate
 TecUtilImportSetLoaderInstr
 TecUtilImportWriteLoaderInstr
 TecUtilImportGetLoaderInstr
 TecUtilReadBinaryData

20.3. Example of Using String Lists

Following is an example of how to set up and use string lists:

 int i = 0;
 int count = 0;
 char *file_name = NULL;
 Boolean_t selected = FALSE;
0

20.3. Example of Using String Lists
 StringList_pa selected_file_names = NULL;
 StringList_pa default_file_names = NULL;
 .
 .
 .
 /* Set up the default file name list. */
 default_file_names = TecUtilStringListAlloc();
 TecUtilStringListAppendString(default_file_names, "a.dat");
 TecUtilStringListAppendString(default_file_names, "b.dat");

 /* Ask user to select a bunch of add-on data files. */
 selected = TecUtilDialogGetFileNames(
 SelectFileOption_ReadMultiFile,
 &selected_file_names, "Add-on Data",
default_file_names, "*.dat");
 /* We do not need the default list of file names any more. */
 TecUtilStringListDealloc(&default_file_names);

 /* Process the results (for simplicity just print to
 standard output). */
 if (selected)
 {
 /* Ask the string list how many string items it
 maintains. */
 count = TecUtilStringListGetCount(selected_file_names);

 /* Print the header information. *
 printf("You selected the following files:\n");
 printf("---------------------------------\n");

 /* Print each one to standard output. */
 for (i = 1; i <= count; count++)
 {
 file_name =
 TecUtilStringListGetString(selected_file_names,i);
 printf(" %s\n", file_name);

 /* Deallocate return value as it is no longer
 needed. */
 TecUtilStringDealloc(&file_name);
 }

 /* We do not need the list of selected file names
 any more. */
 TecUtilStringListDealloc(&selected_file_names);
141

Chapter 20. Using String Lists

14
 }
 .
 .
 .
2

CHAPTER 21 Using Sets

A set in Tecplot's ADK is a group or a collection of zones, variables, or line-mappings. The set
exists as a convenient way of dealing with groups of numbers. Each number that exists in a set
is referred to as a member of the set. The ADK provides the Set_pa type and functions to
deal with this type.

Several TecUtil functions use sets as parameters. These include the
TecUtilZoneSetxxx and TecUtilLineMapSetxxx functions, which allow you to set
the attributes of zones and Line-mappings. In this case, you use sets to describe which zones or
Line-mappings you want to affect. Also included are several TecUtil functions which alter
data. In this case, you use sets to describe which zones and/or variables you want to alter.
Another example of when a set is used is with the TecUtilZoneDelete function. Instead
of calling TecUtilZoneDelete once for each zone you want to delete, you create the set of
zones which you want to delete and call TecUtilZoneDelete only once. The first zone
number to be deleted is the first member of the set, the second zone number to be deleted is the
second member of the set, and so on.

In many cases where a set is used, you may pass NULL to indicate all values. For example,
TecUtilReadDataSet takes a parameter which is the set of zones you want to read. If you
pass NULL for this parameter, all zones are loaded. To see whether you can use NULL in this
manner, check the documentation for the function in question.

An important fact to remember is that a set will not accept the addition of a value that already
exists in it. In other words, if the set already contains a value of 2, adding another 2 does not
change the list of values OR the count of total values. This ensures a compact set without
duplicates. If a list is needed that does happen to have repeating values it, is recommended that
a string list is used in the place of a set.

For details on the TecUtil functions discussed in this chapter, please see the ADK Online
Reference.

21.1. TecUtilSet Functions

Sets are allocated and deallocated with the following functions:
143

Chapter 21. Using Sets

14
 TecUtilSetAlloc Create an empty set.
 TecUtilSetDealloc Deallocate a set.

You can manipulate sets with the following functions:

 TecUtilSetAddMember Add the specified member to the set.
 TecUtilSetRemoveMember Remove the specified member from the set.
 TecUtilSetCopy Copy the contents of one set to another.
 TecUtilSetClear Remove all members from the set.

You can get information about what's in a set with the following functions:

 TecUtilSetIsMember Determine if the specified member is in the set.
 TecUtilSetIsEmpty Determine if the set is NULL or contains no members.
 TecUtilSetIsEqual Determine if one set has the same members as another.
 TecUtilSetGetMemberCount Get the number of members in the set.
 TecUtilSetGetMember Get the member of the set at the specified position.
 TecUtilSetGetPosition Get the position in the set at which the specified
 member is located.
 TecUtilSetGetNextMember Get the member in the set which is after the specified
 member.

The TecUtilSetForEachMember convenience macro (which loops through each member
of a set) is available only for C programmers. However, the functionality can easily be dupli-
cated with the TecUtilSetGetNextMember function and a for or while loop.

Example of looping through all members of a set:

 Set_pa ActiveZones = NULL;
 SetIndex_t Zone;
 TecUtilZoneGetActive(&ActiveZones);
 /* Loop using TecUtilSetForEachMember. */
 TecUtilSetForEachMember(Zone, ActiveZones)
 {
 if (TecUtilZoneIsFiniteElement(Zone))
 .
 .
 .
 }

 /* Or, loop using TecUtilSetGetNextMember. */
4

21.2. TecUtil Functions which use Sets
 Zone = TecUtilSetGetNextMember(ActiveZones,
 TECUTILSETNOTMEMBER);

 while (Zone != TECUTILSETNOTMEMBER)
 {
 if (TecUtilZoneIsFiniteElement(Zone))
 .
 .
 .
 Zone = TecUtilSetGetNextMember(ActiveZones, Zone);
 }

21.2. TecUtil Functions which use Sets
Currently, sets are used in the following TecUtil functions:

 TecUtilReadDataSet
 TecUtilWriteDataSet
 TecUtilDataAlter
 TecUtilCreateMirrorZones
 TecUtilPolarToRectangular
 TecUtilRotate2D
 TecUtilDataRotate2D
 TecUtilAverageCellCenterData
 TecUtilInverseDistInterpolation
 TecUtilKrig
 TecUtilLinearInterpolate
 TecUtilLineMapGetActive
 TecUtilLineMapSetActive
 TecUtilLineMapSetName
 TecUtilLineMapSetAssignment
 TecUtilLineMapSetLine
 TecUtilLineMapSetCurve
 TecUtilLineMapSetSymbol
 TecUtilLineMapSetSymbolShape
 TecUtilLineMapSetBarChart
 TecUtilLineMapSetErrorBar
 TecUtilLineMapSetIndices
 TecUtilLineMapDelete
 TecUtilLineMapShiftToTop
 TecUtilLineMapShiftToBottom
 TecUtilTriangulate
 TecUtilProbeAtPosition
 TecUtilVarGetEnabled
 TecUtilPickAddZones
 TecUtilPickAddMaps
145

Chapter 21. Using Sets

14
 TecUtilZoneDelete
 TecUtilZoneGetActive
 TecUtilZoneGetEnabled
 TecUtilZoneSetActive
 TecUtilZoneSetMesh
 TecUtilZoneSetContour
 TecUtilZoneSetVector
 TecUtilZoneSetVectorIJKSkip
 TecUtilZoneSetScatter
 TecUtilZoneSetScatterIJKSkip
 TecUtilZoneSetScatterSymbolShape
 TecUtilZoneSetShade
 TecUtilZoneSetBoundary
 TecUtilZoneSetVolumeMode

21.3. Example of Using Sets
The following example shows uses of all of the TecUtilSetxxx functions:

/*
 * Create two sets, A and B. A will have 1,2,3 for its
 * members, and B will have 4 and 9.
 */
 Set_pa A;
 Set_pa B;
 A = TecUtilSetAlloc(TRUE);
 B = TecUtilSetAlloc(TRUE);
 if (A && B)
 {
 SetIndex_t Position, Member;
 /*
 * Add the members to the sets.
 */
 TecUtilSetAddMember(A,1,TRUE);
 TecUtilSetAddMember(A,2,TRUE);
 TecUtilSetAddMember(A,3,TRUE);
 TecUtilSetAddMember(B,4,TRUE);
 TecUtilSetAddMember(B,9,TRUE);
6

21.3. Example of Using Sets
 /*
 * Check to see if the sets are equal.
 */
 if (TecUtilSetIsEqual(A,B))
 TecUtilDialogErrMsg("Something is wrong here");

 /*
 * Clear out set A.
 */
 TecUtilSetClear(A);
 /*
 * Make A a copy of B.
 */
 TecUtilSetCopy(A,B,TRUE);

 /*
 * Get the position of the member '9' of set B
 * (the result is '2').
 */
 Position = TecUtilSetGetPosition(B,9);

 /*
 * Get the member located at position '2' of set A
 * (the result is '4').
 */
 Member = TecUtilSetGetMember(A,Position);

 /*
 * Get the member located after the member '4' of
 * set A (the result is '9').
 */
 Member = TecUtilSetGetNextMember(A,Member);
147

Chapter 21. Using Sets

14
 /*
 * Remove the first valid member from B.
 */
 if (TecUtilSetGetMemberCount(B) > 0)
 {
 int I = 1;
 while (!TecUtilSetIsMember(B,I))
 I++;
 TecUtilSetRemoveMember(B,I);
 }

 /*
 * Show a warning dialog if B is now empty.
 */
 if (TecUtilSetIsEmpty(B))
 TecUtilDialogMessageBox("B is empty",

MessageBox_Warning);

 /*
 * Finally, deallocate the sets.
 */
 TecUtilSetDealloc(&A);
 TecUtilSetDealloc(&B);
 }
8

CHAPTER 22 Using Standardized Auxiliary Data

Auxiliary data has many uses. In some cases add-ons will want to use auxiliary data to store
information exclusively for the use of that add-on alone. In other cases it may be useful to store
information in auxiliary data that could be used by other add-ons or even Tecplot itself for fur-
ther processing.

Add-ons that make exclusive use of auxiliary data must use names that will not collide with
names used by other add-ons. For example if an add-on named ABCCalculator wishes to asso-
ciate some auxiliary data representing the acidic level for each zone then using auxiliary names
such as "ABCCalculator_AcidLevel" will reduce the likelihood of overwriting other add-ons’
auxiliary data.

Add-ons that wish to communicate information to each other or to Tecplot via auxiliary data
must agree on the names under which the data will be stored. To that end, Amtec is compiling
a list of standard auxiliary data names. Figure 22-1 contains the preliminary list. Most of these
names pertain to fluid dynamics or related physical processes. Data loaders will generally
make assignments to these names for subsequent use by some type of post processing add-on
such as Amtec’s CFD Analyzer. Each new version of Tecplot will likely contain additions to
this list. Note that all auxiliary data is stored in Tecplot as character strings. The Type column
below indicates the type of data these character strings represent.

Name Type Auxiliary data is
Assigned to

Common.Incompressible Boolean Dataset

Common.Density double Dataset

Common.SpecificHeat double Dataset

Common.SpecificHeatVar int Dataset
Figure 22-1.
149

Chapter 22. Using Standardized Auxiliary Data

15
Common.GasConstant double Dataset

Common.GasConstantVar int Dataset

Common.Gamma double Dataset

Common.GammaVar int Dataset

Common.Viscosity double Dataset

Common.ViscosityVar int Dataset

Common.Conductivity double Dataset

Common.ConductivityVar int Dataset

Common.AngleOfAttack double Dataset

Common.SpeedOfSound double Dataset

Common.ReferenceU double Dataset

Common.ReferenceV double Dataset

Common.UVar int Dataset

Common.VVar int Dataset

Common.WVar int Dataset

Common.VectorVarsAreVelocity Boolean Dataset

Common.PressureVar int Dataset

Common.TemperatureVar int Dataset

Common.DensityVar int Dataset

Common.StagnationEnergyVar int Dataset

Common.MachNumberVar int Dataset

Common.Axisymmetric Boolean Dataset

Common.AxisOfSymmetryVarAssignment(1) int Dataset

Common.AxisValue double Dataset

COMMON.SteadyState Boolean Dataset

COMMON.TurbulentKineticEnergyVar int Dataset

COMMON.TurbulentDissipationRateVar int Dataset

COMMON.TurbulentViscosityVar int Dataset

COMMON.TurbulentFrequencyVar int Dataset

COMMON.Gravity double Dataset

COMMON.IsBoundaryZone Boolean Zone
Figure 22-1.
0

Table Footnote:

(1) Boolean can be assigned to any of "ON," "OFF," "TRUE," "FALSE," "YES," "NO."

(2) Boundary conditions include "Inflow," "Outflow,", "Wall," "Slip Wall," "Symmetry," and
 "Extrapolated."

Please note that the use of auxiliary data is optional. Add-on developers should always allow
for the situation where a particular piece of auxiliary data does not exist.

COMMON.BoundaryCondition(2) BCondition Zone

COMMON.Time double Zone
Figure 22-1.
151

Chapter 22. Using Standardized Auxiliary Data

15
2

CHAPTER 23 Building Add-ons with FORTRAN

To use FORTRAN in Windows, you must use Digital (Compaq) Visual Fortran. For the most
part, only the standard FORTRAN compilers supplied with UNIX platforms are supported.
Other FORTRAN compilers will probably work, but you may have to customize the settings/
build scripts.

For details on the TecUtil functions available for FORTRAN, see the Chapter “FORTRAN
Glue Functions” in the ADK Online Reference.

23.1. FORTRAN Include Files
You must at a minimum include the file FGLUE.INC in the header of each function or subrou-
tine that calls TecUtil functions. FGLUE.INC sets the return type for TecUtil functions and
also defines a number of PARAMETER values that are handy to use when calling TecUtil func-
tions. If you are using the Tecplot GUI Builder then you should also include ADDGLBL.INC,
GUIDEFS.INC, and GUI.INC. FGLUE.INC and GUI.INC can be found in the include
sub-directory below the Tecplot Home Directory. ADDGLBL.INC and GUIDEFS.INC are
created uniquely for each add-on by the CreateNewAddOn shell script and the Tecplot GUI
Builder respectively (UNIX) or the Tecplot GUI Builder Add-on Wizard (Windows). Thus,
typical subroutines for FORTRAN add-ons to Tecplot should look like:

 SUBROUTINE MYSUB()
 INCLUDE 'ADDGLBL.INC

 INCLUDE 'FGLUE.INC'
 INCLUDE 'GUIDEFS.INC'
 INCLUDE 'GUI.INC'
C.... Code for this add-on
 RETURN
 END

23.2. Fortran Glue Functions
The FORTRAN glue functions currently supplied with Tecplot have been revised from those
first published with Version 9.0. Even with the increased support for FORTRAN in this ver-
sion there is still not a complete 1-1 correspondence of functions in the FORTRAN API with
those in the C API. For the most part however, those functions missing in the FORTRAN glue
153

Chapter 23. Building Add-ons with FORTRAN

15
layer can be simulated by using the function TecUtilMacroExecuteCommand (see sec-
tion 23.3, “Using the TecUtilMacroExecuteCommand Function,”) although this at times is not
a complete solution.

The main goal in for enhancing the FORTRAN API for add-on development in this release of
Tecplot was to allow FORTRAN programmers the ability to do the following:

• Write data loaders.
• Write data converters.
• Monitor state changes.
• Extend Tecplot's macro language.
• Access the pick list and thus all objects that can be picked.
• Access the “Dialog” functions.

Even though there has been a change to some of the functions, unless otherwise explicitly
stated, existing add-on binaries will continue to work because they were linked with the former
FORTRAN Glue Library and, being a static library, is incorporated with each add-on.

If your add-on is to be recompiled and you use any of the replaced or modified functions
below, you will have to make some code changes.

23.2.1. Replaced FORTRAN Glue Functions

The following FORTRAN Glue Functions have been replaced or removed:

23.2.2. Modified FORTRAN Glue Functions
The following functions have been modified. In all cases the new function now mirrors exactly
the corresponding C function. See the notes section for these functions in the FORTRAN glue
function reference.

 Version 7.5 Function Replacement
TecUtilStateChangeDataSetReset TecUtilStateChanged

TecUtilProbeGetIsNearest TecUtilProbeXXX functions.
TecUtilSetFlagsOnVarValueChange TecUtilStateChanged

fextregistertimeout TecUtilTimerAddCallback

fextremovetimeout Obsolete.
4

23.3. Language Calling Conventions
TecUtilDataSetCreate
TecUtilDataSetGetInfo
TecUtilStateChanged
TecUtilTecIni
TecUtilZoneGetInfo

23.3. Language Calling Conventions

The FORTRAN function signatures of many TecUtil functions vary little from their C coun-
terparts. However, due to language differences some argument changes require additional
explanation. Those differences are illustrated in this section and are referred to by several func-
tions in the FORTRAN Glue reference section.

23.3.1. Sending String Parameters to Tecplot
Character strings used as parameters to TecUtil functions must be terminated with a charac-
ter of value zero (not a “0”). This is necessary because the TecUtil functions really call C
glue functions, and strings must be terminated with a 0 character value in C.

For example, calling the function TecUtilDialogMessageBox with the string “Hi Mom”
will look like:

 I = TecUtilDialogMessageBox('Hi Mom'//char(0),
 & MESSAGEBOX_INFORMATION)

23.3.2. Receiving String Parameters from Tecplot

In order to take advantage of FORTRAN's native strings the TecUtilStringAlloc and
TecUtilStringDealloc functions are not provided. As a result, all TecUtil functions in
the C layer that either returned an allocated string as a function return value or did so by modi-
fication of an output parameter have been changed to use FORTRAN native strings. In addi-
tion, an accompanying length argument is also included so you can determine the actual
length of the string.

Example:

Use the function TecUtilDialogGetSimpleText to prompt the user for their name.

 INTEGER*4 IErr
 INTEGER*4 NameLen
 CHARACTER*80 UserName
 IErr = TecUtilDialogGetSimpleText('Enter your name'//char(0),
155

Chapter 23. Building Add-ons with FORTRAN

15
& 'Joe Blow'//char(0),
& UserName,
& NameLen)
 Write(*,*) 'Name = ',UserName(1:NameLen),'<-'

In the above example, the variable UserName is filled in with the text of the users name.
NameLen then is used to tell you just how much of the 80 characters available in UserName
were used. The resulting write statement will have the '<-' placed just after the users name.

23.3.3. Handle Parameters

Many function in the TecUtil C layer allocate objects that are passed back and forth to the
TecUtil layer, but are never manipulated directly by the add-on. String lists and sets are two
examples of these objects, and they may only be manipulated via a collection of TecUtil
functions. Objects of this nature are referenced in FORTRAN by the POINTER notation.

For example, suppose an add-on defined a subroutine to save variables 1 and 3 of zone 5 of the
current data set. Two of several arguments required by the TecUtilWriteDataSet func-
tion are a zone and variable set. The TecUtil layer provides several functions for manipulat-
ing Tecplot sets. The code to perform this operation might appear as follows (error handling
removed for simplicity):

 SUBROUTINE WriteMyData(FileName),
 CHARACTER*(*) FileName

 INCLUDE 'FGLUE.INC'
 POINTER (ZoneSetPtr, ZoneSet)
 POINTER (VarSetPtr, VarSet)
 CHARACTER*256 FileNameZ

c
c...allocate and populate the zone set: [5]
c
 TecUtilSetAlloc(ZoneSetPtr, TRUE)
 TecUtilSetAddMember(ZoneSetPtr, 5, TRUE)

c
c...allocate and populate the variable set: [1,3]
c
 TecUtilSetAlloc(TRUE, VarSetPtr)
 TecUtilSetAddMember(VarSetPtr, 1, TRUE)
 TecUtilSetAddMember(VarSetPtr, 3, TRUE)
6

23.4. Special PARAMETER Values
c
c...be sure to pass a zero terminated string to TecUtil layer
c
 FileNameZ = TRIM(FileName)//char(0)

c
c...write the dataset to the specified file name
c
 IsOk = TecUtilWriteDataSet(FileNameZ, TRUE, TRUE, TRUE, TRUE,

 & ZoneSetPtr, VarSetPtr, TRUE, TRUE, TRUE)

c
c...cleanup allocations
c
 TecUtilSetDealloc(ZoneSetPtr)
 TecUtilSetDealloc(VarSetPtr)
 END

The POINTER variables, ZoneSetPtr and VarSetPtr, are the handles used to access the
respective sets and are passed to the TecUtilWriteDataSet function while the POINTER
variables, ZoneSet and VarSet, are dummy variables and should not be used.

Generally, unless directed by documentation for a specific TecUtil, function POINTER
variables are meaningless to an add-on and should not be used.

Two exceptions to this rule are TecUtilDataNodeGetRawPtr and TecUtilDataVal-
ueGetRawPtr, where the POINTEE variables are arrays to Tecplot's internal data arrays
and may be manipulated directly.

23.4. Special PARAMETER Values
The include file FGLUE.INC mentioned in Section 23.1, “FORTRAN Include Files,” not
only declares the return types for all TecUtil functions, it also defines a large number of
PARAMETER values useful for inclusion in parameters to TecUtil functions. In the example
of the previous section, the second parameter in the call to TecUtilDialogMessageBox
is MESSAGEBOX_INFORMATION. If you look in the FGLUE.INC file (located in the
include directory below the Tecplot Home Directory) you will find:

 PARAMETER(MESSAGEBOX_ERROR = 0,
& MESSAGEBOX_WARNING = 1,
& MESSAGEBOX_INFORMATION = 2,
& MESSAGEBOX_QUESTION = 3,
157

Chapter 23. Building Add-ons with FORTRAN

15
& MESSAGEBOX_YESNO = 4,
& MESSAGEBOX_INVALID = 255)

 It is best to always use the PARAMETER name instead of the number. It makes your code more
readable, prevents errors, and makes it easier to upgrade later if the underlying value changes.
In the ADK Online Reference, you can see what the possible values for a parameter are by
looking at the C equivalent of the TecUtil function. In C, these PARAMETER values are
defined as “enumerated types” and are listed with the description of the parameter. In C you
must use the correct case when typing in the parameter name, but this is not necessary in FOR-
TRAN.

23.5. UNIX Migration Issues
The following sections discuss issues encountered while developing FORTRAN add-ons under
UNIX. Under Windows, the use of Visual Studio eliminates these issues.

23.5.1. Compiling Issues
The Makefile for add-ons created for Tecplot Version 10 using the CreateNewAddOn
shell script must be modified as follows:

 1. Change ADDONDEVDIR to be TECADDONDEVDIR.

 2. Change $(TEC100HOME)/lib/ext to be $(EXTBASEDIR).

23.5.2. Checking Fortran Source Using the fcheck Utility
Provided in the distribution is a UNIX shell script called fcheck. Use fcheck to examine
Version 10 FORTRAN source files. Fcheck will report any misuse of functions (such as call-
ing a sub-routine as if it were a function) and will warn you about all functions that have
changed and or been removed.

To use fcheck type:

fcheck filelist

where filelist is one or more FORTRAN source files (*.F).

23.6. Windows Issues
The following issues are specific to FORTRAN add-on development under Windows.
8

23.6. Windows Issues
23.6.1. Calling Conventions
Digital (Compaq) Visual FORTRAN’s default calling convention is __stdcall, with routine
names all upper-case. All parameters are passed by reference, and the length of string parame-
ters is passed immediately after the strings themselves. This is in contrast to UNIX, where
string length parameters are appended to the list of parameters. It is important to use these
default settings when you build your add-on, since libraries fglue.lib and WinGUI.lib
assume that you are using them.

23.6.2. Writing to the Console
Under Windows, Tecplot add-ons do not have access to a console. Therefore, statements
intended to write to the console (e.g. write(*,*)) will not have their intended effect. In
fact, Visual FORTRAN Version 5 actually causes Tecplot to quit when such a statement is
encountered. For this reason, you must avoid writing to the console. You may wish to write to
a file instead, or call TecUtilDialogMessageBox to report information to the user.
159

Chapter 23. Building Add-ons with FORTRAN

16
0

Index
Symbols
$!ADDONCOMMAND command 115, 119
$!LoadAddOn command 34

A
Adding a dialog 12
Adding controls 55
Adding dialogs or controls 43
Add-on

handling state changes 101
recording a macro 118

Add-On Development Root Directory 5
Add-on initialization and mopup 37
Add-On Wizard 39
-addonfile command 33
Add-ons

$!LoadAddOn command 34
accessing field data 93
assigning to Quick Macro buttons 115
creating 6
isolating during development 35
mopup 38
running 33
specifying on command line 34
specifying which to load 33
testing 35

Add-ons loaded by all users 33
AFX_MANAGE_STATE 11
Arrays of strings 139

B
Binary compatibility 23
Building Add-Ons with FORTRAN 149, 153
Building and maintaining the GUI 43
Building data set reader add-ons 23, 61

Building the source code 53

C
Coding the data set loader engine 66
Command string 117
Compiling

-debug 7
-release 7
using Runmake 7

Compiling the add-on 7
Compiling your add-on

UNIX or Windows 58
Control options in TGB 47
Controls

adding or removing 55
types and keywords 46

Created files
generated by TGB 53

Creating add-ons
Add-On Development Root Directory 5
creating add-ons under UNIX 5
creating new add-ons 6
setting up to build add-ons under UNIX 5
under Windows 9

Creating an add-on using Visual Studio 10, 16
Creating an Add-On with Visual C++ 9, 15
Crossing platforms

converting add-ons 21
Curve fits

calculating 75
curve setting text field 81
external 73
information 79
registering 73
settings 80
161

Index

16
CustomMake
editing the CustomMake file 8

D
Data

accessing non-Tecplot format data 71
Data journaling 119
Data set loader

coding engine 66
example 71
overriding instructions 68

Data set loader user interface 65
Data set marking

inhibiting for data journaling 120
Data set reader add-ons 119

building 23, 61
Data set readers

data set converters 61
data set loaders 63

-debug flag 7
Default files

created by TGB 53
Developing add-ons

isolating and testing 35
Developing Add-Ons in UNIX 35
Developing Add-Ons in Windows 35
Dialog

adding 12
Dialog building process 42
Dialogs

adding or creating 43
Dialogs in Windows

modal and modeless 87
Dynamically linked libraries

loading add-ons 34
Dynamic-link libraries 3

E
Environment variables

TECADDONDEVDIR 5
TECADDONDEVPLATFORM 5

Error messages in command callbacks 117
Errors

callback function processing 117
Example add-on

MFC DLL 12
non-MCF DLL 14, 17

Examples

data set loader 71
string lists 140
using sets 146

F
Field data 93

raw data pointers 97
TecUtilDataValueGetByRef 96
TecUtilDataValueGetByZoneVar 96
TecUtilDataValueSetByRef 96
TecUtilDataValueSetByZoneVar 96

Files created by TGB 53
Formats

accessing non-Tecplot data 71
FORTRAN

building add-ons 149, 153
Functions

string list functions 139

G
Generated files

created by TGB 53
Graphical User Interface 7
GUI

building source code 53
control types and keywords 46
modifying source code 54

GUI builder 7
GUI building process 42
GUI’s

adding or creating 43

I
Include files

FORTRAN 153
Initialization

of add-ons 37

J
Journaling, data 119

K
Keywords

for GUI controls 46

L
Libraries

libtec 6
2

linked libraries 3
shared libraries 3

libtec 6
Licensing of Microsoft-Supplied Dynamic-Link

Libraries 9
Listening for state changes 105
Loading add-ons

$!LoadAddOn command 34
add-ons loaded by all users 33
specifying a secondary add-on load file 33
specifying add-ons on the command line 34
specifying which add-ons to load 33
tecplot.add 33

Locking functions 83
using 84

M
Macro language

accessing field data 93
augmenting with add-ons 115

Menus
coding for 55

MFC DLL example 12
Modal dialogs

in Windows 87
Modeless dialogs

in Windows 88
PreTranslateMessage function 89

Modifying your source code 54
Mopup

of add-ons 38

N
Non-Tecplot format data

accessing via the Command Line 71

O
Objects

eligible for picking 129
picked objects 129
shared objects 3

Operations
for picked objects 131

Option menus
special coding 55

Options for TGB controls 47
Overriding data set loader instructions 68

P
PARAMETER Values

for FORTRAN glue functions 157, 158
Pick list 132
Picked objects 129

operations 131
Porting

add-ons between Windows and UNIX 21
Porting add-ons between UNIX and Windows 21
PreTranslateMessage function

for modeless dialogs 89
Probe

value improvement 77

Q
Quick Macro Panel

assigning macros or add-ons to buttons 115

R
Raw data pointers 97
Recording a macro

when using an add-on 118
-release flag 7
Removing controls 55
Runmake 7
Running Tecplot from a DLL project 10, 15
Running your add-on 58

S
Sending state changes 110
Set functions 143
Sets

example 146
Sets<PrimaryEntry> 143
Shared libraries 3
Shared library

loading add-ons 34
Shared objects 3
Source code

building using TGB 53
modifying 54

Source code compatibility 24
Specifying a secondary add-on load file 33
State changes

handling from an add-on 101
listening using callbacks 105
sending from add-on to Tecplot 110

Steps in building a GUI 42
String lists 139
163

Index

16
example 140
in TecUtil functions 140

T
TECADDONDEVDIR 5
TECADDONDEVPLATFORM 5
TECADDONFILE 33
tecdev.add 35
Tecplot

-develop 35
running with add-ons 33

Tecplot GUI Builder (TGB) 7
tecplot.add 33
Tecplot.add file 41
tecplot.cfg 33
tecplot.fnt 33
TecUtilDataSetSuspendMarking 120
TecUtilSet functions 143
TecUtilStateIsProcessingLayout 120
TecUtilStringList functions 139
TGB

building source code building 53
modifying source code 54

TGB basic steps 42
TGB control options 47
TGB created files 53
Troubleshooting add-ons 11, 17
Types of controls and keywords 46

U
UNIX

porting add-ons to Windows 21
Unlocking functions 83
Using sets 143
Using the locking functions 84
Using the Tecplot Visual C++ Add-On Wizard 9,

15

W
Windows

how to build add-ons 9
porting add-ons to UNIX 21
4

	CHAPTER 1 About Add-ons
	CHAPTER 2 Creating Add-ons under UNIX
	2.1. Setting Up to Build Add-ons
	2.2. Creating a New Add-on
	2.3. Creating the Graphical User Interface for Your Add-on
	2.4. Compiling the Add-on

	CHAPTER 3 Creating Add-ons under Windows
	3.1. Licensing of Microsoft-Supplied Dynamic-Link Libraries
	3.2. Setting Up to Build Add-ons
	3.3. Creating an Add-on with Visual C++
	3.4. Creating an Add-on with Digital (Compaq) Visual Fortran

	CHAPTER 4 Porting Add-ons between Windows and UNIX
	4.1. Porting Add-ons from Windows to UNIX
	4.2. Porting Add-ons from UNIX to Windows

	CHAPTER 5 Migrating Add-ons
	5.1. Migrating Add-ons from Version 9 to Version 10
	5.2. Migrating Add-ons From Tecplot 10 Release 1 to Release 3

	CHAPTER 6 Running Tecplot with Add-ons (UNIX and Windows)
	6.1. Specifying Which Add-ons to Load
	6.2. Using the $!LoadAddOn Command
	6.3. Specifying Add-ons under Development

	CHAPTER 7 Add-on Initialization and Cleanup
	7.1. Add-on Initialization
	7.2. Add-on Cleanup

	CHAPTER 8 Tecplot GUI Builder
	8.1. New in Tecplot GUI Builder 4.0
	8.2. Migrating Add-ons From Tecplot 10 Release 1 to Release 3
	8.3. Using Tecplot GUI Builder
	8.4. Step 1: Building and Maintaining the GUI
	8.5. Step 2: Building the Source Code
	8.6. Step 3: Modifying Your Source Code
	8.7. Step 4: Compiling Your Add-On
	8.8. Step 5: Informing Tecplot of Your New Add-On
	8.9. Step 6: Running Your New Add-On

	CHAPTER 9 Building Data Set Reader Add-ons
	9.1. Data Set Converters
	9.2. Data Set Loaders
	9.3. Accessing Non-Tecplot Format Data Sets via the Command Line

	CHAPTER 10 Building Extended Curve Fit Add-ons
	10.1. Registering the External Curve Fit
	10.2. Calculating the Curve Fit
	10.3. Improving the Probe Value
	10.4. Providing Curve Fit Information
	10.5. Curve Fit Settings
	10.6. Creating the Curve Settings Text Field

	CHAPTER 11 Locking and Unlocking Tecplot
	11.1. Locking Functions
	11.2. Using the Locking Functions

	CHAPTER 12 Modal and Modeless Dialogs in Windows
	12.1. Modal Dialogs
	12.2. Modeless Dialogs
	12.3. PreTranslateMessage Function for Modeless Dialogs

	CHAPTER 13 Accessing Field Data
	13.1. Indexing into the Data
	13.2. Accessing Data Using TecUtilDataValueSetByZoneVar and TecUtilDataValueGetByZoneVar
	13.3. Accessing Data Using TecUtilDataValueSetByRef and TecUtilDataValueGetByRef
	13.4. Accessing Data using Raw Data Pointers
	13.5. Working with Shared Data

	CHAPTER 14 Handling Tecplot State Changes from an Add-on
	14.1. State Change Values
	14.2. Listening for State Changes
	14.3. Sending State Changes

	CHAPTER 15 Augmenting Tecplot’s Macro Language
	15.1. Processing Custom Macro Commands
	15.2. Error Processing
	15.3. Recording Custom Macro Commands

	CHAPTER 16 Implementing Data Journaling
	16.1. Data Journaling Prerequisites
	16.2. Determining Whether a Layout is Being Processed
	16.3. Inhibiting Marking of the Data Set
	16.4. Macro Recording vs. Data Journaling
	16.5. Example Data Journaling Code

	CHAPTER 17 Adding Online Help to Your Add-on
	17.1. Step 1: Write your Help Pages
	17.2. Step 2: Create a Help Directory
	17.3. Step 3: Processing the Help Button Callback
	17.4. Using the TecUtilHelp Function

	CHAPTER 18 Working With Picked Objects
	18.1. Object Types
	18.2. Picking Objects
	18.3. Operating on Picked Objects
	18.4. The Pick List

	CHAPTER 19 Using Argument Lists
	19.1. TecUtilArgListFunctions
	19.2. TecUtil Functions which use Argument Lists
	19.3. Example of Using Argument Lists

	CHAPTER 20 Using String Lists
	20.1. TecUtilStringList Functions
	20.2. TecUtil Functions which use String Lists
	20.3. Example of Using String Lists

	CHAPTER 21 Using Sets
	21.1. TecUtilSet Functions
	21.2. TecUtil Functions which use Sets
	21.3. Example of Using Sets

	CHAPTER 22 Using Standardized Auxiliary Data
	CHAPTER 23 Building Add-ons with FORTRAN
	23.1. FORTRAN Include Files
	23.2. Fortran Glue Functions
	23.3. Language Calling Conventions
	23.4. Special PARAMETER Values
	23.5. UNIX Migration Issues
	23.6. Windows Issues

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

