

3 Postprocessors generator

3-2

CONTENTS

CONTENTS...2
INTRODUCTION ...5
THE PURPOSE OF THE POSTPROCESSORS GENERATOR5
THE FILES SET OF THE POSTPROCESSORS GENERATOR........................5
1 THE COMMON ORGANIZATION OF THE WORK7
1.1 THE PRINCIPLE OF POSTPROCESSOR OPERATION7
1.2 THE MAIN WINDOW...9
1.2.1 The main menu...10
1.2.2 The main toolbar...12
1.2.3 The process indicator ...13
1.2.4 System settings ..13
1.2.5 Editor settings...15
1.2.6 Defining the data about the NC-machine and CNC-system15
1.2.7 Postprocessor parameters inquiry while the first using......................17
1.2.8 The block structure and format definition (Register list forming).........20
1.2.9 The masks for the machining commands translation..........................22
1.2.10 The programs for the CLData commands processing23
1.2.11 Subprograms..24
1.2.12 The command processing programs compilation24
1.2.13 The work with the files of technological commands............................25
1.2.14 The test NC-code generation ...26
1.2.15 Programs debugging ..26
1.2.16 Reinterpretations programs definition...27
2 MASKS..29
2.1 BASIC DEFINITIONS ..29
2.2 MASK STRUCTURE ...29
2.2.1 Mask element ...29
2.2.2 Registers in the masks ...30
2.2.3 Modifiers...31
2.2.4 Expressions..31
2.2.5 Nested mask...32
2.2.6 The separators of the mask elements ..33
2.2.7 Variables assignment from the mask..33
2.2.8 Deferred masks ..33
2.3 MASK MANAGEMENT ...36
2.3.1 Mask Switches..36
2.3.2 The transformation of a Mask to the Subprogram36
2.3.3 The interactive to create the masks..36
3 LANGUAGE DESCRIPTION38
3.1 BASIC DEFINITIONS ..38
3.1.1 Conditional indications..38
3.1.2 The processing programs of the technological commands, the
comments in the programs ...38
3.1.3 Subprograms..39
3.1.4 The language statement conception...39
3.1.5 The set of symbols ...39

Contents 3

3-3

3.1.6 The variables ..40
3.1.7 Arrays ...40
3.1.8 Mathematical expressions and functions ..41
3.1.9 Predefined variables ...42
3.1.10 Predefined functions ...43
3.2 OPERATORS ..45
3.2.1 The processing program start operator: PROGRAM45
3.2.2 The statement of assignment = ..45
3.2.3 The output statement PRINT ..46
3.2.4 The input statement INPUT ..46
3.2.5 Conditional statement IF...47
3.2.6 Statement of the multiconditional execution CASE.............................49
3.2.7 JUMP statement ...49
3.2.8 The cycle statement FOR...50
3.2.9 The cycle statement REPEAT ...50
3.2.10 The cycle statement WHILE ...51
3.2.11 Composite statement BEGIN … END...51
3.2.12 Statement to call a subprogram CALL..52
3.2.13 The statement of the subprogram start SUB52
3.2.14 The statement of the subprogram end SUBEND................................52
3.2.15 The statement of the procedure start PROC53
3.2.16 The RETURN from a procedure statement...53
3.2.17 The block output statement OUTBLOCK..54
3.2.18 The block forming statement FORMBLOCK.......................................54
3.2.19 Statement of direct output into the block OUTPUT.............................55
3.2.20 The replace statement of the substring in a string REPLACE55
3.2.21 The statement to form the block by mask MASK................................56
4 APPENDICES ...57
4.1 THE CLDATA DICTIONARY (THE DICTIONARY OF THE
TECHNOLOGICAL COMMANDS) ...57
4.2 FORMAT OF THE TECHNOLOGICAL COMMANDS60
4.2.1 Part number..60
4.2.2 Ending record ...60
4.2.3 Postprocessor function ...60
4.2.4 Commentaries ..63
4.2.5 Linear transition ..63
4.2.6 Displacement along the circle...64
4.2.7 Working plane...64
4.2.8 Original point ..65
4.2.9 Return to original position ...65
4.2.10 The point of tool change ...65
4.2.11 Table rotation..66
4.2.12 Tool compensation ...67
4.2.13 Tool loading ..68
4.2.14 Tool selection ...68
4.2.15 Spindle..69
4.2.16 Stop ..69
4.2.17 Auxiliary stop ..69
4.2.18 Cooling ...69
4.2.19 Feedrate ...70
4.2.20 Rapid feedrate ..70
4.2.21 Pause ...70

3 Postprocessors generator

3-4

4.2.22 Absolute or relative coordinate system assuming...............................71
4.2.23 Original coordinates..71
4.2.24 Canceling and recovering a cycle...71
4.2.25 Drilling cycle a type G81...72
4.2.26 Drilling cycle a type G82...72
4.2.27 Drilling cycle a type G84...73
4.2.28 Drilling cycle a type G85...73
4.2.29 Drilling cycle a type G86...74
4.2.30 Drilling cycle a type G87...74
4.2.31 Drilling cycle a type G88...75
4.2.32 Drilling cycle a type G89...76
4.2.33 Deep drilling with the full retraction of tool for removing a shaving76
4.2.34 Deep drilling with drill retraction for removing the shaving..................77
4.2.35 Threading ...78
4.2.36 Palette changing...78
4.2.37 Head...78
4.2.38 Factors of a spline ..79
4.2.39 The beginning of a spline phase of trajectory79
4.2.40 Insertion..79
4.2.41 Optional skipping ..79
4.2.42 Postprocessor printing..80

Introduction 3

3-5

INTRODUCTION

THE PURPOSE OF THE POSTPROCESSORS
GENERATOR

Postprocessors generator is an application for operating systems of
the Windows family.

The purpose of the postprocessors generator is the generation of the
postprocessor adjustment files to various NC-systems. These files are
used by the run-time postprocessor system for the concrete NC-
program generation.

It is necessary to perform the following steps to develop the
postprocessor adjustment file:

• Define the data about the NC-machine and CNC-system;
• Describe the structure and the format of the block (form the

list of registers);

• Design masks or programs to process technological
commands;

• Save the postprocessor’s tuning file;

The generation of new tuning files and the editing of existing files is
allowed.

In addition to the work with data about NC-machine and CNC-system,
there is the possibility of the examination the technological commands
files and the trial generation of NC-programs in the environment of the
postprocessors generator.

THE FILES SET OF THE POSTPROCESSORS
GENERATOR

Inp.exe – executable module of postprocessors generator;

InpD.dll – executable system of the postprocessor;

*.spp – the file with a data about concrete NC-system and with the
sources of programs to process technological commands;

*.stc – SprutCAM project files;

*.mcd – the files of technological commands, linked with SprutCAM
project files;

*.inp, *.ppp – the postprocessor adjustment files for the previous
version of the postprocessor generator;

3 Postprocessors generator

3-6

The common organization of the work 3

3-7

1 THE COMMON ORGANIZATION OF
THE WORK

1.1 THE PRINCIPLE OF POSTPROCESSOR
OPERATION

Postprocessors generator allows to develop the postprocessor
adjustment files for the different NC-systems (*.SPP files). An import
of the files from the previous version of postprocessor (*.INP, *.PPP
files) is available also. The postprocessor adjustment file contains the
descriptions of all features to generate NC-program for the defined
NC-system. The executable system of postprocessor uses this
description to generate the NC-programs from the files of
technological commands (*.MCD files), which can be produced, in
turn, by SprutCAM system, for example.

To develop the postprocessor’s tuning file, it’s necessary to define the
data about the NC-machine and NC-system, to describe the structure
and the format of the block and to fill the masks or to design the
programs to process the technological commands.

The data about the NC-machine and NC-system means the name of
the NC-machine and of the NC-system, the limits for displacement
along the axes and some additional data.

The structure and the format of the block are defined by the ordered
sequence of the registers and by its parameters. The identifiers and
the values of the registers will be output to the NC block in the same
sequence as they are placed in the list.

The mask contains the list of registers in the required order. These
registers will be out to the NC-program block for the corresponding
technological command.

The special problem-oriented language is used to write the programs
to process the technological commands. This language allows the
mathematical expressions and functions, the statements for
input/output, conditional statements, cycles, jump statement, calls of

SprutCAM

CLDATA

Executable
system

NC-program

Postprocessors
generator

*.SPP

Postprocessors
library

3 Postprocessors generator

3-8

subroutines, the statements to form the NC-program blocks and the
statements to work with the technological commands file.

The data definition about the NC-machine and the CNC-system, the
block structure and format description, the programs design to
process technological commands are performed in the postprocessors
generator environment. The examination of the technological
commands files and the trial generation of the NC-program are
allowed in this environment too.

The programs sources to process technological commands, the data
about the NC-machine and the CNC-system, the masks, the list and
the format of registers are saved in the file with the name of concrete
postprocessor and the extension *.spp. The data from this file is used
by the executable system of postprocessor to generate the NC-
program for the corresponding NC-system.

The run-time postprocessor system reads the data about the
machining process from the file of technological commands, analyses
the code of the command and activates the program, which process
this command (the name of mask and processing program is
coincident with the name of the corresponding command). Then if it
was used mask, that forms line of the NC-program for corresponding
of mask. The parameters of the technological command are passed
via the predestined array CLD. Called program can change the
registers values and internal variables values and it can form the block
of the NC-program.

The corresponding statements in the command processing programs
generate the block of the NC-program, moreover only the identifiers
and values of the registers, which are changed since previous block,
will be written in the current block.

The common organization of the work 3

3-9

1.2 THE MAIN WINDOW
The main window:

Main menu The toolbar
The name of
SprutCAM project

The window of
NC-program

The name of
NC-program

The list of command-
processing programs

The window of text of
technological commands

The list of files of
technological commands

The window of
program

The list of registers

The main menu and the main toolbar are placed in the top part of the window. The list of
command-processing programs and the list of registers are placed in the left part. There are the

switching pages with editor of masks and editor of the command-processing program in the
center. Except editor on bookmark, "Mask" is located lists of registers of local and global
parameters. In the bottom - there are switching windows of the system messages, debug

information, the list of the files, which contain the trajectory of the tool motion and the textual
representation window of these files, the list of controllable variables and the list of break points.

3 Postprocessors generator

3-10

The window of
mask editing

The list of
registers

The lists of registers
of local parameters

The lists of registers of
global parameters

Progress
indicator

1.2.1 The main menu
The main menu contains six general items. Some items of the main
menu are duplicated in the main toolbar and in the context popup
menus of the corresponding windows.

• <File>

• <New> - the creation of a new tuning file for the
postprocessor. Before the creation, the state of the system
resets automatically: the open postprocessor files will be
closed, the windows of the NC program and machine
information will be cleared. This function can be activated
from the main toolbar also.

• <Open> - the opening of the earlier saved tuning file. The
state of the system resets before the opening and the
windows of the NC program will be cleared. This item is
duplicated in the main toolbar.

• <Reopen> - the opening of the earlier opened and closed
files.

• <Save> - saving the postprocessor adjustment file with the
current name. If the file is new, the name will be asked before
saving. This item is duplicated in the main toolbar.

• <Save As> - saving the postprocessor is tuning file with new
name.

• <Open CAM project> - opening the files of technological
commands from SprutCAM project.

• <Exit> - exit from the post processors generator. If the current
file isn't saved the saving will be prompted.

• <Edit> - All functions is duplicated in the main toolbar.

The common organization of the work 3

3-11

• <Undo> - undoes the last modification.
• <Redo> - returns the last modification.
• <Cut> - cuts the selected text or register into the clipboard.
• <Copy> - copies the selected text or register into the

clipboard.

• <Paste> - inserts the text or register from the clipboard.
• <Delete> - deleting selected text.
• <Find> - searching word in the text of programs of processing

of technological commands.

• <Find next> - searching of the following word in the text of
programs of processing of technological commands.

• <Replace> - finding and replacing word in the text of
programs of processing of technological commands.

• <View>

• <Messages> - shows the window of the system messages.
• <Trace info> - shows the window of the debug information.
• <CLData> - shows the list of the technological commands

and their textual representation.

• <Watches> - shows the list of controllable variables with
values (values of variables are displayed only if the post
processors generator is in a debugging mode).

• <Break points> - shows the list of break points.
• <Machine information> - opens the window for input the

data about NC-machine and CNC-system. This item is
duplicated in the main toolbar.

• <Register property> - opens the window for edit the register
properties. This item is duplicated in the main toolbar.

• <Reinterpretation definitions> - Opens a window of the
data editing the back interpretation of NC program. This item
is duplicated in the main toolbar.

• <Run> All functions is duplicated in the main toolbar.

• <Translate> - compiles the commands-processing programs.
• <Run> - runs the control program generation from the file of

the tool motion trajectory. If the commands-processing
programs are not compiled, then the compilation will be
activated first.

• <Run to cursor> - executes the program of the CLData
processing to the cursor.

• <Step in> - execute the next statement of the program with
the entering into the subprograms.

• <Step out> - execute the next statement of the program
without the entering into the subprograms.

• <Program pause> - stops the NC-code generation process
• <Program reset> - breaks then NC-code generation process.
• <Evaluate expression> - evaluates the value of the variable

of the expression. It is possible in the debug mode only.

• <Add watches> - Adds a new variable to the list of watches.
• <Add breakpoint> - adds the breakpoint in the program of

the machining commands processing or in the machining
commands list.

• <Options> All functions is duplicated in the main toolbar.

3 Postprocessors generator

3-12

• <Folders> - the path defining to the often-used folders.
• <Editor settings> - setting of the fonts and the syntax

highlighting in the programs editor, CLData viewer, and NC-
code editor.

• <Help>

• <Contents> - shows the contents of the help system.
• <Sprut Technology Home page> - loads WEB-page of JSC

"Sprut-Technology". Server address: http://www.sprut.ru

• <Contact with Sprut Technology Inc.> - prepares electronic
mail for Sprut-Technology technical support department E-
Mail: support@sprut.ru

• <About…> - information about INP.

1.2.2 The main toolbar
The main toolbar is placed in the upper part of the main window. The
following buttons are on it:

Edit managing panel The project
control button

Setup panel Run and debug programm
panel

1. The project control button

Creates the new postprocessor’s tuning file. The system
resets its state before creation.

Opens the postprocessor’s tuning file, which is saved earlier.
The system resets its state before loading.

Saves the postprocessor’s tuning file with the current name.

2. Edit managing panel

Cancel the last fluctuation made in the program of a handler
technological command or a mask.

Return the last fluctuation made in the program of a handler
of a technological command or a mask.

Cuts the selected text or register in the clipboard.

Copies the selected text or register in the clipboard.

Inserts the selected text or register from the clipboard.

Erase the selected text.

Searching of the gated in combination of characters in the
text of the NC-program.

Find next.

Searching and replace of the gated in combination of
characters in the text of the NC-program.

The common organization of the work 3

3-13

3. Setup panel

Opens the window for editing the data about the NC-machine
and the CNC-system.

Register parameters window.

Reinterpretations definitions window.

System setup window.

4. Run and debug program panel

Runs the compilation of the command processing programs.

Runs the generation of the NC-program from the files of the
tool motion trajectory. If the command processing programs
aren’t compiled, the compilation will be activated first.

Break NC-program generation.

Pause NC-program generation.

Generate NC-program up to current position in a CLData.

Generate NC-program with stopping in subprograms.

Generate NC-program with without stopping in subprograms.

Compute variable or expressions. The evaluation is possible
only in a debug mode.

Add breakpoint in a handler of technological commands or
CLData files

5.

Opens the technological commands file, generated by SprutCAM.

1.2.3 The process indicator
The process indicator activates automatically when the system
performs the operation, which takes a long time. The source
programs, the control programs generation and the technological
commands conversion in to the textual representation are such
operations. These operations can be cancelled by pressing the left
mouse button on the process indicator.

1.2.4 System settings
The window of system settings can be activated by pressing the
button on the main toolbar or by choosing the items <Options>

3 Postprocessors generator

3-14

<Folders> in the main menu. The default paths for the system files
and languages are defined here.

The postprocessor adjustment files for various NC-system (*.inp and
*.ppp - files) are loaded from the <Postprocessor files> directory.
New postprocessor tuning files will be saved in this directory.

The SprutCAM projects are loaded as default from the <SprutCAM
project> directory. The technological commands files (*.mcd), which
are linked with opened project will be loaded from the corresponding
paths, described in the project file.

The separate technological commands files (*.mcd) are loaded, as
default, from the <MCD-files> directory.

Generated NC-programs are saved, as default, in the <NC-
programs> directory.

To change program language it is necessary use <Languages>
panel.

These paths may be edited manually or using dialogs, which can be

activated by pressing button.

In a system, there is a preconceived variable, which one may be used
for definition of the conforming folders:

$ (INPDIR) - the folder, from which one was, triggered the generator
of postprocessors.

At determining actual names of folders during operation the indicated
variable will be substituted by the conforming full path now of
activation of a system or now of the last editing the system settings.

For load last open *.SPP the file at activation of the generator of
postprocessors there is a check box <Load last opened file at
startup>.

The common organization of the work 3

3-15

1.2.5 Editor settings
Programs of technological commands consist of identifiers, the
numbers, identifying reserved variables and functions, commenting
etc. For each of these element blocks it is possible to adjust the color
and type style, a background color.

An editor settings window is called by selection of points <Options>
<Editor Settings> in a main menu. In a window, the font and
illumination of syntax for the editor of programs of technological
commands, windows of a text mapping of CLData files and windows
of map of a NC-program adjusted.

For definition of customizations in a falling out list Editor, it is
necessary to select one of editors: Program, CLData or the NC
program. For the selected editor on the panel Font sets a name and
a font size.

On the panel, Color for each element block it is possible to assign
color of the text, a background color of the text, type style.

For fast discoloration of a background of all element blocks, there is a
check box One background. At selecting check box, the background
color of all groups is substituted on a background color of a flowing
member.

The <OK> button closes the window and saves all modifications. The
<Cancel> button closes the window and discards all modifications.

1.2.6 Defining the data about the NC-machine and
CNC-system

The editing window of the data about the NC-machine and the CNC-
system can be opened by pressing the button on the main toolbar or
by choosing the items <View> -> <Machine information> in the main
menu.

The <OK> button closes the window and saves all modifications. The
<Cancel> button closes the window and discards all modifications.

3 Postprocessors generator

3-16

Basic info

The name of NC-machine, the name of CNC-system and the
extension of NC-program files are displayed in the upper part of the
window. The name of NC-machine and the name of CNC-system are
informative parameters only. All NC-programs, which will be
generated using edited tuning-file, will be saved with the specified
extension.

Machine and NC system information

In a field Arc center coordinates, the mode of the definition of circle
center is determined. If the relative mode of the definition of center of
a circle in the variables XC, YC, ZC are set concerning for current
selected point. If the absolute mode of the definition of center are set
in absolute values is selected.

In a field Circle division is offered to select a mode of introducing of
arcs in a NC program (a quarter, half or a three sixty). The
postprocessor during operation arrests intersection arcs of quadrants
and, if necessary, dissects arcs into halves or quarters.

In a field Support helical moves are set with the information on
support by a CNC system of helical moves. If helical moves are not
supported, the postprocessor automatically approximates helical arcs
on cuts and shapes commands of linear movements.

In a field Maximal radius is entered a value of maximum radius of the
arc bolstered by a CNC system, at overflow which one the
postprocessor substitutes arcs linear migrations. The value 0 in it a
field disconnects monitoring, and the system will not approximate an
arc at any value of radius.

For an event when the CNC system at all does not support arc
interpolation and helical moves, check box Linear movements only
is stipulated. In this case, all arcs without dependence from fields
Support helical moves and Maximal radius are dissected into linear
movements.

The common organization of the work 3

3-17

The capability stipulated to shape Comments in upper case and to
place Spaces between commands of NC program.

For forming a block number there is a group of fields NC block
numbers. The group consists of fields Symbol, Start value, Step
value, Frequency. In a field Symbol is entered the identifier of the
register or a symbol injected in block before a value of a block
number. Block is numbered since Start value. After each output of
block to a block number Step value is added. Block number outputs
with the given frequency. If frequency is, peer 1 the block number
outputs in each command of forming of block if 2 - through one
command, 3 - through two commands etc. If frequency is peer to null
the block number not output.

Maximal transitions along the axes allow inspecting a correctness
of a NC program. At overflow of as much as possible admissible
transition on one of coordinates, the conforming warning will be show.

1.2.7 Postprocessor parameters inquiry while the first
using

Sometimes a dealer does not know some specific information about
the user machine. It is possible to make the data inquiry. In this case
the user will be asked about the NC-system information and inputted
data will be saved in the postprocessor file.

It is necessary to edit the postprocessor file by simple text editor
(wordpad.exe for example) to organize the data inquiry. The section
[Common definitions] is shown below.

 [Common definitions]
Spaces N ! Y / N

CtrInc Y ! Y / N

ArcDivision N ! N / 90 / 180

Helical Y ! Y / N

MaxRad 1000 !>= 0

LinearMovement N ! Y / N

UpperCaseComment N ! Y / N

Sequence N 1 1 1 ! Symbol Frequence StepValue StartValue

Xmax 0 !>= 0

Ymax 0 !>= 0

Zmax 0 !>= 0

If some parameter is changed to the “?” then it will be asked from the
user before the Postprocessor run until the user save the
postprocessor. For example if the section has the text below:

[Common definitions]
Spaces N ! Y / N

CtrInc ? ! Y / N

ArcDivision ? ! N / 90 / 180

Helical Y ! Y / N

MaxRad ? !>= 0

LinearMovement ? ! Y / N

UpperCaseComment N ! Y / N

Sequence N 1 1 ? ! Symbol Frequence StepValue StartValue

Xmax 0 !>= 0

Ymax ? !>= 0

Zmax 0 !>= 0

Then the next dialog will appear before the NC program creation.

3 Postprocessors generator

3-18

If click “save” then the data will be saved in the postprocessor file and
the dialog will not arrear in the next time. If click “OK” then the NC
program will be generated with the inputted data and the dialog, will
arrear in the next time again. If click cancel then the program will not
be generated

Additional information input

It is possible to ask the user about the values of the global variables in
the first time post running. To make the inquiry it is necessary to edit
the [Initial questions block] section of the postprocessor file by the
text editor. The section format is shown below:

[Initial questions block]

Variable_name Variable_value Variable_description_or_query

 Value_1 Value_description_1

` Value_2 Value_description_2

 ...

 Value_N Value_description_N

Variable_name Variable_value Variable_description_or_query

Variable_name Variable_value Variable_description_or_query

 Value_1

[Initial questions block end]

Where:

Variable_name – the name of variable that is available in the
postprocessor. The variable can be one of three types: String, Real,
Integer;

Variable_value – the start value that will be assigned to variable. If
white “?” instead value then this variable will appear in the start input
dialog;

Variable_description_or_query –This message appears in the start
input dialog near the input field. The message must be in double
quotes;

Value_N – the value that has the same type like the global variable;

Value_description_N – the value description. The value must be in
double quotes.

Every variable in the [Initial questions block] adds the corresponding
field to the start input dialog.

The first variable adds the field with the drop down list. The
Variable_description_or_query will be written forepart. The drop
down list will have the next items: Value_description_1,

The common organization of the work 3

3-19

Value_description_2,… Value_description_N. If some item is
selected then the corresponding value will be assigned to the variable.

The second variable adds the simple field to data input. The
Variable_description_or_query will be written forepart. The data
field will be empty.

The third variable adds the simple field to data input. The
Variable_description_or_query will be written forepart. The Value_1
will be inside the input field.

The values of the string type variables must be in double quotes.

For the [Initial questions block] section that is shown below:
[Initial questions block]

Intrp ? "Select the circlecenter mode"

 1 "IJ"

 2 "R"

Init$? " Input the word for the machine Initializing"

L ? "Input the distance"

 1000

P$? "Select the parameter"

 "A" "first parameter"

 "B" "second parameter"

[Initial questions block end]

The start input dialog will be the next:

After the save button is pressed the section will be the next:

[Initial questions block]

Intrp 1 "Select the circlecenter mode"

 1 "IJ"

 2 "R"

Init$ "G9G1G20G40G90F4000Z0M5" " Input the word for the
machine Initializing"

L 995 "Input the distance"

 1000

P$ “B” "Select the parameter"

 "A" "first parameter"

 "B" "second parameter"

[Initial questions block end]

After that the start input dialog will not appear and the variables Intrp,
Init$, L and P$ will be assigned to 1,
"G9G1G20G40G90F4000Z0M5", 995 and “В” correspondingly.

3 Postprocessors generator

3-20

1.2.8 The block structure and format definition
(Register list forming)

To define the structure and the format of a block, it’s necessary to
form the list of the registers and to define their parameters.

Block of NC program consist from words. Each word contains
address and value. Address – letter (sometimes several letters),
value – is number present in definite format.

The determined Register is connected to each address in the
postprocessor.

The concept of the Register of the postprocessor integrates following
properties:

• The identifier of the register (the address in a NC program);
• The format of an output of a value of this address in block;
• Current value conforming to the address;
• The previous value conforming to the address;

A name of the register (a variable of the postprocessor, the bound
with the address, through which one is manufactured access both to
flowing and to the previous value of the register).

The NC-program blocks are formed automatically when the
OUTBLOCK and FORMBLOCK statements are performed. The NC-
program block is formed by the system according the following
algorithm. The system examines the registers sequentially; if the
current register value differs from its previous value, then the register
will be written in the block and its current value will be assigned to its
previous value, else the register will not be written in the block.

When the system writes the register in the NC-program block, it writes
the register identifier first, and then it writes the register value,
multiplied by the register’s scale. The value will be written in the block
according the format, described for this register (the length and the
precision of the register value, the presence of decimal point, of sign
and of leading and insignificant zeroes).

Thereby, to define the structure and the format of the block, it is
necessary to fill the registers list and define the registers properties.
The registers must be placed in the list in this order, in which they and
their values must appear in the blocks of NC-program. This rule is
correct for the processing programs. If the block is formed with, the
mask using then the sequence corresponds to the mask.

Note: Different registers must not have same names, but they may have the
same identifiers (the symbols, which will be written in the block before
the value of register). This allows creating the separate register for
each group of the functions with some type. For example, we create
the register with the name "ABSOLUTE" and with the G identifier for
the preparative function of the switching between the
absolute/incremental coordinate systems. Suppose also, we create
the register with the name INTERP and the same identifier G for
preparative function of positioning, linear interpolation, circular
interpolation with direction. This allows us: At the first to write both
these commands in the same block of NC-program, if it is necessary,
(for example, N190 G91 G1 X50 Y30). At three second to trace the
current transitions mode (positioning, linear or circular interpolation
with direction), to determine the current coordinate system (absolute
or incremental) by examining the current values of registers
ABSOLUTE and INTERP.

The common organization of the work 3

3-21

The list of registers is shown in the left part of main window.

The register properties description

The register properties edit window is opened when the register is
added, when the item <Properties> in the context popup menu is
selected or by double-clicking by left mouse button on the register in
the list.

Register list place in the left part of window. Edit list buttons place
higher:

 Inserts the new register after selected one. The window to
edit the properties of a new register will be opened
automatically.

 Deletes selected register.

 Copies the selected register into the clipboard. This function
is duplicated in the main toolbar.

 inserts the register from the clipboard after the selected one.
The window to edit the properties of inserted register will be
opened automatically. This function is duplicated in the main
toolbar.

 Move the current register up on a list.

 Move the current register down on a list

3 Postprocessors generator

3-22

To change the position of the register in the list, it’s necessary to
press the left mouse button on the register and drag it in the desired
position, holding the left mouse button down.

Following fields can be defined in this window:

Register identifier – the symbols, which will be written in the NC-
program block before the register value;

Decimal point – this field can have following values:

• Is absent,
• Is present,
• Is present anyway;

If the item <Is present> is chosen, then the decimal point will be
present, if the register value has fractional part;

Numerals before decimal point – Maximum quantity of signs in the
whole part of number;

Numerals after decimal point – Maximum quantity of signs in a
fractional part of number;

Leading zeroes and Non-significant zeroes – defines the zeroes
output mode before and after the register value;

Sign – defines the output mode for the sign of the register value.
Following options are available:

• No,
• “-” only,
• “+” and “-” always;

Register name – the name of the register, which is used by the
command processing programs;

Comment – comments to register.

The <Import> button is intended for import of a list of registers from
postprocessors of SPP formats, PPP (the format of the aged version),
and as from SurfCam postprocessors.

For forming a list of registers based on a NC program, the
<Analyzers> button is intended. Thus the text of the indicated NC
program and all retrieved addresses is analyzed are added in a list of
registers.

The <OK> button closes the window and saves all modifications. The
<Cancel> button closes the window and discards all modifications.
The <Apply> button save all changes, window of registers is not
closed.

1.2.9 The masks for the machining commands
translation

The usage of the masks quickly and simply allows defining the
transformation method from the CLData machining commands to the
NC code line. Any CLData command has the corresponding mask, in
which the words and the values for the words are defined.

The mask editor is located on the Masks page.

The common organization of the work 3

3-23

For the simplifying the process of the mask definition there are the
registers list, current command parameters list and the global
variables list in the bottom part of window. The double click on any
element of these lists inserts the element to the mask text. Under the
mask, text the mask switches is located.

The mask activating is performed by the tick setting on the CLData
commands list.

The masks definition rules is described in details in the chapter 2.

1.2.10 The programs for the CLData commands
processing

Like the masks the programs is meant for the defining the
transformation process from the CLData command to the NC code
line. The programs can expand the mask or can be used instead the
masks. Both the mask and the programs have merits and demerits.
The program is the flexible and powerful tool for the realization of the
very complicated transformation. However, the learning of this tool
requires the programming experience.

Any CLData command has the corresponding processing program.

3 Postprocessors generator

3-24

These programs are designed using the special problem-oriented
language and can contain the mathematical expressions and the
functions, statements for input/output, conditional statements, cycles,
jump statement, subroutines calls, the statements to form the NC-
program blocks and the statements to work with the technological
commands file. This language is described in detail in the chapter 3.

Each program begins from the header, which consists of the
<PROGRAM> keyword and the program name, and terminates by the
<END> keyword. The program name is coincident with the command
name, processed by it. When the program is called, the parameters
are passed to it via the predefined CLD array

The program activating is performed by the tick setting on the CLData
commands list in the code column. If the program is not active then it
will not be translated and executed even if the text exists. The
program COMMON is exclusion. It is translated and executed always
and at the first. This program is intended to define the global variables
i.e. variables that are accessible from any subprogram.

The COMMON program is executed always. Inactivated program is
not translated and is not executed even if the program has the code.

The empty program is generated by double click in the list of
technological commands.

When the right mouse button is pressed in the programs list, the
context popup window will appear. This popup contains following
items:

• <Insert> - adds a new technological command processing
program. The window to input the program name will be
opened.

• <Delete> - deletes selected program;
• <Rename> - renames current program. The window to input

the program name will be opened.

The editor of the selected program is placed in the center of main
window. When other program is selected in the list, its text will be
displayed immediately in the edit window

1.2.11 Subprograms
Subprograms can be written in the same language like the processing
programs. Write the “CALL” operator to call the sub program

Every subprogram is started from the header that is contains the key
word “SUB” and the subprogram name. The key word “SUBEND”
must be written in the end. The Subprogram name cannot coincide
with the existed subprograms.

1.2.12 The command processing programs
compilation

The compilation can be running by pressing the button on the main
toolbar or by choosing the <Run> -> <Compile> items or by pressing
the <Ctrl-F9> combination.

Note: An activated program is compilated only.

The system messages about the compilation process are outputted in
the messages page in the bottom part of the main window.

The common organization of the work 3

3-25

If there are errors during the compilation, then the left mouse button
double-clicking on the error message performs the corresponding
program source loading and the cursor will be set in the incorrect
string.

1.2.13 The work with the files of technological
commands

The files of technological commands can be loaded from the
SprutCAM project (*.stc) or from the separate files (*.mcd). The
pressing the button or the choosing the corresponding item in the
main or context menu loads the file

When the files of the technological commands are loaded from the
SprutCAM project, the project name, which contains these files, will
be displayed

In the bottom part of main window on the CLData page the list of
machining commands files is located. Any line of the list corresponds
to a SprutCAM operation. Only ticked operations will form the NC
code.

The operations list can be edited by popup menu. Click right mouse
button in the list field to open popup menu. Menu contains the next
items:

• <Insert> - adds the file of the technological commands;
• <Delete> - deletes selected file;
• <Delete all> - deletes all files.

Selected technological file is loaded in the textual representation
window in the terms of the common unique intermediate language
CLDATA.

Any technological command in the CLData text is the line contained
the name and parameters. The parameters are accessible via the
CLD array in the programs and via the current command parameters
list in the masks.

command
name

command parameters (accessible via
CLD array)

When the left mouse button is double-clicked on the command name,
the mask corresponding to the command will be loaded to the masks
editor and the program corresponding to the command will be loaded
to the programs editor.

3 Postprocessors generator

3-26

1.2.14 The test NC-code generation
The trial NC-program generation can be performed by pressing the
button on the main toolbar, by choosing the <Run> -> <Run> items of
the main menu or by pressing the <F9> key. If the technological
commands processing programs are not compiled at this moment, the
compilation will be activated automatically. If there are errors during
the compilation, the trial running will not be performed.

The loaded files of technological commands are the input data for the
NC-program generation. The NC-program is formed using the
technological files, which are ticked in the list.

The algorithm of generation is described below:

1. The system reads the next command form the file of the
technological commands.

2. The system analyses the command code and according to
the command parameters define the predefined CLD array
and predefined variables.

3. If the corresponding program for the command is activated
then the program is executed.

4. If the corresponding mask for the command is activated then
the NC code line is generated by mask.

Note : So for any command both program and mask can be activated In this
case the program will be executed first and mask later. If both mask
and program are not activated then the command will be ignored.

5. If in result of the previous actions the NC-code line is
generated then the subprogram Filter is executed. Usually
this subprogram is used for the replacement of some
elements in the NC block before the final output to the NC
program.

The corresponding operators form the NC block from the mask or from
the processing program. If the processing program is used then only
the ids and values the same registers are output that was changed
after the previous block output.

The NC-program will be saved in the file with the name, defined in the
field of the NC-program name. This field is placed in the upper right
corner of main window If this field is empty then the NC program is
output to the window only and is not saved to the file.

The debug information, which is formed in the processing programs, is
written in the debug window.

If there are errors during the generation process, they will be written in
the system messages window.

After the faultless NC code, generation there is the link between the
NC code and the CLData commands. By double click on the
command name in the window of CLData commands the
corresponding line in the NC code will be selected. Conversely, by
double click on the code line in the NC program window the
corresponding CLData command will be selected.

1.2.15 Programs debugging
The destination of the built-in debugger

Integrated debugger allows controlling the program execution. The
program can be executed step by step with the checking the program
code and the execution result. While debugging it is possible to enter
into the subprograms or execute the subprogram in one-step, to

The common organization of the work 3

3-27

control the variable values and to view the debug messages. The
debugger cardinally reduces the postprocessors designing time and
lightens the bugs search and elimination.

Debugger functions

• Program run F9

• Run program to cursor F4

• Step over (execute the current statement without the entering into
the subprogram) F8

• Breakpoint setting/resetting Сtrl + F8

• Step into (execute the current statement with the entering into the
subprogram) F7

• Break the debugging Ctrl + F2

• Add a new variable to the watch list Ctrl + F7

• Evaluate expression Ctrl + F4

• Before the program is started the all modified subprograms is
compilated. If there is no errors found while compilation then the
program is started.

• To start the program execution it is possible by any of commands:
<F4>, <F7>, <F8> or <F9>.

• <F4> runs the program to the statement on the cursor position. If
current string has not the statement then the program is executed to
the end. The string where the execution was break is the debugger
cursor that is selected by color.

• If debugging is started then <F7> and <F8> executes the statement
of a program where the debugger cursor is located else the
debugger cursor is set on the first statement of the first program.
Command <F7> as distinct from <F8> allows entering into the
subprogram if the current statement is a CALL.

• <Ctrl + F8> allows set/reset a breakpoint. Then the program
execution arrives at the breakpoint then the execution will be
paused with the debugger environment activation.

• In any point of debugging process, it is possible to break the
execution by <Ctrl + F2> or to continue the execution without
debugging by <F9>.

• The changing of the lines number in the debugged program brings
the incorrect indication of the current debugger cursor.

• <Ctrl + F7> allows adding the variable or the expression to the
watches list. If <Ctrl + F7> is pressed in the editing mode then
variable name is taken from the current position of cursor. In the
debugging mode then the mouse pointer is located under the
variable then the variable value is highlighted in the hint.

1.2.16 Reinterpretations programs definition
It is not necessary define reinterpretation parameters for
postprocessor work.

Reinterpretation parameters it is necessary define on the machining
simulation from ready NC program.

This function is executed with program NCTuner.

3 Postprocessors generator

3-28

Reinterpretation definitions window is called from the <View>
<Reinterpretation definitions>. As this window can be called from a
toolbar the press Reinterpretation definition button.

The list of assignments is down on groups and shown by the tree. Fill
up of the greater number of assignments reconciles in more precise
simulation process.

<Analyzer> automatically shapes assignments on the filled masks of
technological commands.

There is a capability automatically to fill in a list of assignments
pursuant to standard ISO (for example, a CNC system Fanuc 6M). It is
made with the <ISO> button.

The <OK> button closes the window and saves all modifications. The
<Cancel> button closes the window and discards all modifications.

Masks 3

3-29

2 MASKS

2.1 BASIC DEFINITIONS
Masks describe the forming rules for the NC-program block that is
corresponded with any CLData command.

Any mask is linked with the CLData command with the same name.
The mask is the text that approximately looks like the block (line) of
the NC-program.

2.2 MASK STRUCTURE
Mask can contain some lines. In general, the mask line looks like:

element1 element2 ... elementN

2.2.1 Mask element
Any mask element is out to the NC-program line in the form as it looks
in the mask.

Sample:

Mask: “G0 rapid movement”
NC code: “G0 rapid movement”

If the mask element is in a brackets “[“ and “]” then it is replaced by
value or variable that located in the brackets.

Sample:

Mask: “[XT] [200]”
NC code: “100.12456 200”

In the sample, the value of the XT variable is equal to 100.12456

In the brackets, it is possible to use:

1. All variables of the COMMON subprogram;
2. predefined (reserved) variables: XT, YT, ZT, XC, YC, ZC,

INTERP, TOOLRAD, CLDATA$, ARCPLANE, XP, YP, ZP, FEED,
TLCOMP, TRCOMP, FROMX, FROMY, FROMZ, CURCODE,
NCNAME$, NCPATH$, BLOCKSTEP;

3. predefined (reserved) functions: FLAGIN, CROSS,
NEXTTOOLNUM, CURDATE, CURTIME (see section “Predefined
variables” for details),

4. all parameters of the current technological command passed by
the CLD array.

5. The numbers has the different representation in the NC-program.

The number out method is defined by the next parameters:

1. <Decimal point> – this field can have following values: <Is
absent>, <Is present if the number has the fractional part>, <Is
present anyway>,

2. <Integer width> - the maximal digits number to represent the
integer part of the number;

3. <fractional width> - the digits number to represent the fractional
part of the number;

3 Postprocessors generator

3-30

4. <Leading zeroes> and <Non-significant zeroes> – defines the
zeroes output mode before and after the number;

5. <Sign> – defines the output mode for the sign of the number.
Following options are available: <No>, <“-” only>, <“+” only>, <“+”
and “-” always>;

Then the value is out to the NC-program block the default number
format is used:

1. <Leading zeroes> and <Non-significant zeroes> - Is
absent;

2. <Decimal point> Is present if the number has the
fractional part;

3. <Sign> is present if the number is negative;
4. <Integer width> and <fractional width> allows to out

number without rounding
5. Element identifier is output as text.

2.2.2 Registers in the masks
Registers is used to define the format of the number output according
to the requirements of the NC systems.

The register in the postprocessor unites the next properties:

• Identifier of the Register;
• Current value of the register;
• Previous value;
• Value output format;
• The name of the register;

(See section “The block structure and format definition” for details).

If write the register name or register identifier before the open square
bracket then the number output format of this register will be used for
the value output.

Sample:

Mask: “G_INTERP[1] X[XT] Y[YT] Z[ZT] F[200]”
NC code: “G1 X100.100 Y-245.100 Z-010.560 F200”

While the mask analysis it is presumed that the word before the open
square bracket defines the register. Executable system looks for the
register by name, if the register is not found then the system looks by
identifier. The registers are looked in order how it has defined in the
registers list. So if the list has some registers with the same identifier
name then the first will be used.

If register is not found then value is output by default number format
and the word that is in mask before the open square bracket is output
before the number.

Sample:

Mask: “G_INTERP[1] X[XT] YYY[YT] Z[ZT] F[200]”
NC code: “G1 X100.100 YYY-245.100034 Z-010.560 F200”

In the sample the word ‘’YYY” is absent in the registers list.

If the register is found then the current register value is assigned to
the old register value and the new value is assigned to the current
register value. After that, the executable system compares the old and
the current values and if its are not equal then the register identifier
and value is output to the NC-program line accordingly to the defined
number format.

Masks 3

3-31

Sample:

Lets the current register F value is equal to 200.

Mask: “G_INTERP[1] X[XT] Y[YT] Z[ZT] F[200]”
NC code: “G1 X100.100 Y-245.100 Z-010.560”

The old and new value of the register is equal, so the register F value
is not output to the NC code.

2.2.3 Modifiers
Some times, it is required to output the new register value
independently if it is changed or not, and conversely to change the
register value and do not output it to the current line. The modifiers On
and Off is intend to do it.

The modifier is written in the square brackets after the value and
comma.

Modifier On. If modifier On is written then the register value is output
to the NC code in any case.

Sample:

Lets the current register G_PLANE value is equal to 17.

Mask: “G_PLANE[17, On] X[XT] Y[YT]”
NC code: “G17 X100.123 Y200.456”

It is possible to out current value of register without the new value
assign. To do it it is necessary to write On without value.

Sample:

Mask: “G_PLANE[On] X[CLD.X] Y[CLD.Y]”
NC code: “G17 X100.123 Y200.456”

Modifier Off.

If modifier Off is written then the new value is assigned to the register
but the register is not output to the NC code.

Sample:

Mask: “G49G80M5M9 G_PLANE[17,Off]”
NC code: “G49G80M5M9”

It is possible to use modifier Off without value. It is needed to exclude
the out of the current register value to the NC code without the
assigning of a new value.

2.2.4 Expressions
It is possible to write the expressions to the masks. The expression is
the mathematical formula. The result of expression is a number.

Syntactically, the math expression is the combination of the numbers,
numerical variables and numerical functions, separated by the signs
of the math operations and the parentheses. The simplest examples
of math expressions are the number and the numerical variable

Following math operations are allowed in the language:

• + the addition
• - the subtraction
• * the multiplication
• / the division

3 Postprocessors generator

3-32

• ^ the involution

It is necessary to remember, that two operational sign can’t follow
one-after-another.

Following math functions are allowed:

• SIN(x) -sinus of angle x (in degrees);)
• COS(x) - cosine of angle x (in degrees);
• TAN(x) - tangent of angle x (in degrees);
• ATN(x) - arctangent of angle x (in degrees);
• ASIN(x) -arcsine of angle x (in degrees);
• ACOS(x) - arccosine of angle x (in degrees);
• SQR(x) - square root of x;
• ABS(x) - absolute value of x;
• SGN(x) - sign for x;
• ROUND(x, y) – rounding of x to y decimals after point;
• LOG(x) – decimal logarithm of x;
• LN(x) – natural logarithm of x;

Predefined variables and functions, all parameters of current CLDATA
command transmitted via the CLD array are available in the
expression.

Sample:

Mask: “X[2+5/2+2*(sin(45))] Y[CLD.Y*2] F[FEED]”
NC code: “X005914 Y001234 F200”

In this sample the expression of the first element: 2+5/2+2*(sin(45)) is
equal to 5.91421356237697. When out to the NC code, the X register
was found in the registers list and the number output format was taken
from the register. The expression of the second element has the
parameter transmitted via the CLD array - CLD.Y (equal 0.617)
multiplied on 2. The third element uses the predefined variable FEED.
This variable contains the current feedrate value.

2.2.5 Nested mask
Sometimes it is required to out the register value if the value of other
register is changed. Then the nested mask is used.

Sample:

Mask: “Z[CLD.Z, G[43]]”
NC code: “G43 Z0.123”

The value of the register Z is changed and value 43 is assigned to the
register G.

It is possible to use the modifiers, expressions, and other nested
masks in the nested masks. The registers of the nested mask will be
included in to the NC-program line in the order according to the
registers list.

Sample:

Mask: “X[CLD.X] Y[CLD.Y] Z[CLD.Z, G[43]]”
NC code: “G43 X6.141 Y-4.234 Z0.123”

The changed register G is located in the start of line according to the
registers list.

Masks 3

3-33

2.2.6 The separators of the mask elements
In general, the mask line consists of some elements. It is possible to
inserts the spacebars between the elements. The spacebars has not
influence on the NC-program line.

To control the spacebars between the words in the line it is possible to
use the parameter “Spaces between commands”. The parameter is
available on the main menu->view->machine information. If the
parameter is checked then the spaces is added even if the separator
is absent between the elements.

Sample:

Mask: “ G[2] X[100.101]Y[234.89] Z[45.67]”
NC code: “ G2 X100.101 Y243.890 Z045.670”

In the line, the space is added between the first and the second
elements. The spaces quantity before the first between two and three,
three and four is not changed.

If parameter “Spaces between commands” is off then all spaces
between elements will be removed independently of its quantity.

Sample:

Parameter “Spaces between commands” is off.
Mask: “G_INTERP[INTERP] X[CLD.X] Y[CLD.Y] Z[CLD.Z]”
NC code: “G1X-49.47Y-6.513Z.033”

All spacebar is removed from the NC-program line.

2.2.7 Variables assignment from the mask
It is possible if necessary to assign any predefined variables or
COMMON variables from the mask. Values can be assigned fro the
number and string variables. The constants only can be assigned to
the string variable. Any expression including functions and other
variables can be assigned to the number variable.

The variable values can be assigned in any line of the mask. NC
program line is not generated for this mask line. The “;” sign is the
delimiter between the variables.

Sample:

Mask: deferred
“INTERP=0;XP=XT;YP=YT-Y1+2;CLDATA$=”test””

“G_INTERP[INTERP] X[XT] Y[YT] Z[ZT] ([CLDATA$])”

NC Code: “G0 X100.122 Y231.567 Z010.546 (test)”

2.2.8 Deferred masks
Sometimes it is necessary to use the current parameters of the
current command when other command is processed. There are two
ways to solve this task. The first way is to save the parameters to the
temporary variables and use it later in the required command. The
second best way is the using of the deferred masks. The current
parameters of these masks are saved and the mask execution is
deferred to the required program execution. When the deferred mask
is executed, the current parameters are replaced by the saved
parameters.

3 Postprocessors generator

3-34

The deferred mask must be in the braces “{“ and “}”. Inside the braces
necessarily to define one of the CLDATA commands. The mask is
executed then this command appears. The lines before this command
executed before command execution and the lines placed after the
defined command are executed after the command execution

Sample:

Mask of command SafPos:

{

G_INTERP[0] X[XT] Y[YT] Z[CLD.Z]

G_FUNC[28] X[CLD.X] Y[CLD.Y]

LoadTL

G_INTERP[1] G_FUNC[29] G_LENGTHCOMPENS[43] X[XT] Y[YT]

G_LENGTHCOMPENS[49] Z[ZT]

}

Mask of command LoadTL:

H[CLD.N] T[CLD.N]

Mask of command AbsMov:

X[CLD.X] Y[CLD.Y] Z[CLD.Z]

CLData commands:

GOTO.abs X 20.0000, Y 20.0000, Z 20.0000

SAFPOS X 10.0000, Y 11.0000, Z 12.0000, N 0

LOADTL N 1, X 0.0000, Y 0.0000, Z 0.0000, D 1.0000, M 0,
K 0, L 0.0000, P 0.0000, A 0.0000, R 0.0000, PLANE XY(33),
Dur 0.0000

NC Code:

X20.0000 Y20.0000 Z20.0000

G0 Z0.0000

G28 X0.0000 Y0.0000

H1 T1

G1 G29 G43 X20.0000 Y20.0000

G49 Z20.0000

In this case, when the SafPos command is executed then the
deferred mask is created. The values of CLD.X, CLD.Y, CLD.Z of
SafPos command are saved and the mask execution is deferred to
the LoadTL processing. Values of XT, YT, ZT is not saved because it
is not the CLData command parameters. Before the LoadTL
processing the mask below is executed

G_INTERP[0] X[XT] Y[YT] Z[CLD.Z]

G_FUNC[28] X[CLD.X] Y[CLD.Y]

After that, execute
LoadTL: H[CLD.N] T[CLD.N]

Finally execute:
G_INTERP[1] G_FUNC[29] G_LENGTHCOMPENS[43] X[XT] Y[YT]

G_LENGTHCOMPENS[49] Z[ZT]

If write the “Keep” identifier before the right brace then deferred mask
will be always performed then the required program is executed (It is
LoadTL in the previous sample)

Sample:

Mask of command SafPos:

{

G_INTERP[0] X[XT] Y[YT] Z[CLD.Z]

G_FUNC[28] X[CLD.X] Y[CLD.Y]

LoadTL

G_INTERP[1] G_FUNC[29] G_LENGTHCOMPENS[43] X[XT] Y[YT]

G_LENGTHCOMPENS[49] Z[ZT]

Keep

Masks 3

3-35

}

In this sample, the execution of the deferred mask will be performed
every time when the LoadTL is processed.

3 Postprocessors generator

3-36

2.3 MASK MANAGEMENT

2.3.1 Mask Switches
Any mask is linked with the three switches:

6. Out previous. If the switch is tick off then the NC-line is formed
before the mask analyzing. All registers in which the old an
current values are not equal will be out to the line.

7. Poll all registers. If the switch is checked then all registers in
which the old an current values are not equal will be included in to
the line in addition to the registers of the mask. If such registers is
present (it is possible if the Off modifier was used in the previous
mask) then this register will be located in the line according to the
order in list of registers.

Sample:

Registers list: G_INTERP, G_PLANE, X, Y, Z

Plane mask: “G_PLANE[ARCPLANE,Off]”

AbsMov mask: “G_INTERP[1] X[CLD.X] Y[CLD.Y] Z[CLD.Z]”

CLData commands :PLANE XY(33)

 GOTO.abs X100 Y100 Z100

NC code: “G1 G17 X100.000 Y100.000 Z100.000”

8. Out block. If the switch is not checked then all registers written in
the mask will be modified but the NC-program line is not out.

2.3.2 The transformation of a Mask to the Subprogram
The situation is possible then the mask possibility is not enough. To
use more powerful and flexible subprograms without manual mask
programming, there is the function “Transform the mask to the
subprogram”. Use the button to transform the mask. The
button is located near the mask switches.

To undo the transformation it is necessary to move by clipboard the
mask line from the subprogram editor to the mask editor and to set the
switches.

2.3.3 The interactive to create the masks
There are the three lists for the comfortable masks editing. These lists
are placed under the mask editor. The left list is the list of the
registers. The second list is the list of the current CLData command
parameters. The right list is the list of the global variables and
predefined functions.

The double click on the registers list inserts the selected register
name to the cursor position. The chars “[]” added after the register
name and the cursor moves to the position between.

Masks 3

3-37

The double click on the current parameters list inserts the CLData
parameter name to the cursor position. Prefix CLD is added to the
parameter.

3 Postprocessors generator

3-38

3 LANGUAGE DESCRIPTION

3.1 BASIC DEFINITIONS

3.1.1 Conditional indications
The following rules and conditional indications are used in this
document to describe the statements formats:

• Capital characters are used to indicate the reserved words;
• Line characters are used to indicate the names, the variables,

numerical or arithmetical expressions;

• Linguistic expressions are indicated by <..> symbols;
• Unnecessary parts of the operators are indicated by {..}

symbols;

• Alternative parts of the operators are divided by | symbol.

3.1.2 The processing programs of the technological
commands, the comments in the programs

Each processing program of the technological commands begins by
the header, which consists the <PROGRAM> keyword and the
program name, and terminates by the keyword <END>. The program
name is coincident with the command name to be processed. When
the program is called, the parameters are passed on it via predefined
CLD array. Parameters values for the different CLData commands are
described in the Chapter 4.

These programs are designed using the special problem-oriented
language and can contain the mathematical expressions and
functions, the statements for input/output, conditional statements,
cycles, jump statement, calls of subroutines, the statements to form
the NC-program blocks and the statements to work with the file of the
technological commands.

The text of the program can contain statements and comments. Any
statement in the same string is allowed. In this case they must be
divided by the < ;> symbol. The carrying of a statement part to another
string is allowed if the statement is not logically finished. The
comments are used to insert the explanative records in the text of
program. The comment – is a text, which begins by <!>-symbol and
terminates by end of string. It is not allowed to carry the comments to
the next string.

The first executable program is the COMMON program, next-
PARTNO, the last - program, which process the FINI command.

The peculiarity of the COMMON program is the global variables
definition in it; the values of these variables are accessible in all
programs. Each program can define the variables for its needs, but
these variables are local and, consecutively, are accessible in this
program only

Language description 3

3-39

3.1.3 Subprograms
Subprograms can be written in the same language like the processing
programs. Write the “CALL” operator to call the sub program

Every subprogram is started from the header that is contains the key
word “SUB” and the subprogram name. The key word “SUBEND”
must be written in the end. The Subprogram name cannot coincide
with the existed subprograms.

3.1.4 The language statement conception
The statement is a functional unit of the language. The statement
formats are defined uniquely by the set of the available linguistic
constructions and definition methods. The examples of the statement
on the postprocessor language are:

PRINT “symbol” – prints the literal string “symbol”;

JUMP 1 – jumps to the label 1.

The operators of the language can contain the identifiers, numbers,
literal strings and auxiliary symbols.

3.1.5 The set of symbols
The following symbols are used for language statements designing:

a..z, A..Z - Capital and line letters of Latin alphabet;

0..9 - numerals from 0 to 9;

_ - the underlining;

 - the space;

, - the comma;

= - the equal;

; - the semicolon;

: - the colon;

[- left bracket;

] - right bracket;

“ - double quotation marks;

(- left parenthesis;

) - ruling parenthesis;

+ - the plus;

- - the minus;

* - the asterisk;

/ - the slash;

\ - the backslash;

^ - the pointer;

$ - the dollar;

< - left angular bracket;

> - ruling angular bracket;

- not equal;

. - the point;

3 Postprocessors generator

3-40

@ - commercial A.

The comments and literal strings allow any symbol.

The identifier – is a unceasing letters sequence, numerals and
symbols <_>, <@> and <$>, and must begin from the letter. Capital
and line letters are indistinguishable in the identifiers.

The number – is an unceasing sequence of numerals, containing only
one decimal point. The signs <+> or <-> are allowed before the
number. As default, the number is interpreted as positive.

The literal strings – are the arbitrary symbols sequences, marked by
the double quotation marks.

3.1.6 The variables
The variables, used by the language, are divided into three types:

• Integer. Used for the representation of the integer values.
Range: -2147483648 ÷ 2147483647.

• Real. Used for the representation of the number with the
fractional part. Range: ± 2.9 · 10-39 ÷ ± 1.7 · 1038 with 11-12
digits in mantissa.

• String. The char sequence with the maximal length ~231.

3.1.7 Arrays
An array is a data structure that allows storing under alone names the
list of numerical variables. The array has the name, type of variables,
size (number of elements) and elements numeration. The array is
one-dimensional.

The usage of array is available anywhere, where the usage of
numerical variables is allowed. To access any element of the array, it
is necessary to specify the name of the array and the element index.
Any number or numerical variable can be used as a index.

Declaration of the array variable has the sign:
<array name>: array <size> of <element type>

Sample:

V: array 10 of Real

V[5] = 10.67

i = 7

V[i] = 0.987

Maximal array size is unlimited, but it is not recommended to use the
baseless huge size because the memory is used.

The minimal index value is 1. The maximal index value is limited by
the array size.

The array with the beforehand known size is static array. It is possible
do not specify the array size then array is dynamic. The size of
dynamic array is defined by the maximal index of the filled element.
The indexes of the dynamic array start from one too. Maximal value of
the dynamical array index is not limited but it is not recommended to
use the baseless huge indexes because the memory is required.

Sample:

R: array of Integer

R[17] = 10

Language description 3

3-41

3.1.8 Mathematical expressions and functions
Mathematical expression – is the exact operations description, which
operations produce numerical value. They are the analogs of
mathematical formulas

Syntactically, the math expression is the combination of the numbers,
numerical variables and numerical functions, separated by the signs of
the math operations and the parentheses. The simplest examples of
math expressions are the number and the numerical variable following
math operations are allowed in the language:

• + the addition
• - the subtraction
• * the multiplication
• / the division
• ^ the involution

It is necessary to remember, that two operational sign cannot follow
one-after-another.

Following math functions are allowed:

• SIN(x) sinus of angle x (in degrees);)
• COS(x) cosine of angle x (in degrees);
• TAN(x) tangent of angle x (in degrees);
• ATN(x) arctangent of angle x (in degrees);
• ASIN(x) arcsine of angle x (in degrees);
• ACOS(x) arccosine of angle x (in degrees);
• SQR(x) square root of x;
• ABS(x) absolute value of x;
• SGN(x) sign for x;
• ROUND(x, y) rounding of x to y decimals after point;
• LOG(x) decimal logarithm of x;
• LN(x) natural logarithm of x
• CHR (x) return a char, corresponding to number x (ASCII-code);
• ORD (Str) return a number (ASCII-code) of the first symbol of the

string S;

• LEN (Str) the length of the string Str; defines the chars quantity in
the string.;

• POS (Pat, Str) position of the start of the string Pat in the string
Str. The result of the function is the position of the first substring Pat
in the string Str. If there is no Pat in the Str then the function returns
zero.

• NUM (Str) Use Num to convert a string, Str, to a floating-point
value. If Str contains inadmissible chars for the number then the
error is raised and the function return zero.

• STR (n) Converts a number n to the string;
• COPY (Str, n, m) Returns a substring of a string. Substring is

started from the m and has the n chars.;

• UPCASE (Str) converts all characters of the Str to uppercase.;

where

x, y - arguments that can be number, variable of expression;

Str, Pat - literal strings, variables or string expressions. The string
expression is a combination of the literal strings, literal variables and
literal functions united by sign “+” and parenthesizes;

n, m - integer numbers or variables.

3 Postprocessors generator

3-42

3.1.9 Predefined variables
Following predefined variables are used in the language:

• Registers. The current register values are stored in these
variables. The type of these variables is real..

• Previous values of the registers. It is possible to obtain the
previous values of the registers before writing the current
block. In this case the identifier consists of register identifier
and of <@> symbol at the end.

• There is a predefined array of the real numbers, named
CLD[n], where n – identifier of the array element – positive
integer number. Identifier of the array element n can be the
variable or the expression. The command parameters are
passed in the program via CLD array.

• The RecNum variable contains the parameters number of the
current technological command. I.e., the maximal index of the
CLD array is stored in this variable. The usage of this variable
is necessary, first of all, in the PPFUN command, because
this command has unfixed parameters number.

• The CLDCounter variable contains the number of the current
command in the technological file. It is used by SEEK
statement for positioning in the technological file.

• The CLDATA$ variable. If the parameter of the command is
not the array of real numbers, but the literal string, then this
string is passed in the processing program via this variable.
This string stores the value before moment, when it will be
redefined by the next command. The type of this variable is
string.

• The OutStr$ variable. The current NC-program block text is
stored in this variable after the FORMBLOCK and
OUTBLOCKS statements. The type of this variable is the
string.

• Xt, Yt, Zt variables – current position of the tool. The type of
these variables is real. Variables are filled automatically
before the call of the next subprograms: CIRCLE, FROM,
ABSMOV, INCMOV, ABSMLT, INCMLT, GOHOME.

• Xp, Yp, Zp variables - previous position of the tool. The type
of these variables is real. Variables are filled automatically
before the call of the next subprograms: CIRCLE, FROM,
ABSMOV, INCMOV, ABSMLT, INCMLT, GOHOME.

• Xc, Yc, Zc variables – coordinates of the circle center. The
variables are filled automatically before the call of the
CIRCLE subprogram.

• Interp variable - current interpolation. The possible values are
the next: “0” – rapid movement, “1” – linear interpolation, “2” –
CW circular interpolation, “3” – CCW circular interpolation.
The value is filled automatically before the call of the next
subprograms: CIRCLE, FEDRAT, ABSMOV, INCMOV,
ABSMLT, INCMLT, RAPID, GOHOME.

• ToolRad variable – Tool radius. Variable is filled
automatically before the call of LOADTL.

• Error variable - integer variable. If some errors raised while
program execution then if contains the error number.

Language description 3

3-43

• ArcPlane variable – current plane of the circle interpolation.
The next values are possible: “33” – XY, “37” – YZ, “41” – XZ.
The variable is filled automatically before the call of PLANE.

• Feed variable – current feedrate value. The variable is filled
automatically before the call of FEDRAT.

• TlComp, TrComp variables – length offset number and
radius offset number correspondently. Variables are filled
automatically before the call of CUTCOM and LOADTL).

• FromX, FromY, FromZ variables – coordinates of the
“HOME” point. (Filled automatically before call of FROM).

• CurCode variable – the code of the current CLDATA
command (see the command codes in chapter 4, table 1).

• NCName$ - string variable contains the NC output file name
without path and extension.

• NCPath$ - string variable contains the NC output file name
with full path and extension.

• SPPName$ - string variable contains the postprocessor file
name without path and extension.

• SPPPath$ - string variable contains the postprocessor file
name with full path and extension.

• BlockStep variable contains the increment value that is used
for the line number updating.

3.1.10 Predefined functions
Following predefined functions are used in the language:

NextCode - returns the code of the next technological command;

FlagIn - return “1”, if there is the inner corner between the current and
next command. Return 0, if there is the outer corner between the
current and next command. Return –1 if the direction of the current
and the next command is collinear.

Cross - return “0”, if current element is conjugated with the next ones
and returns 1 if the elements cross. This function is used for the
compensation;

NextToolNum - returns the number of the next tool;

ToolChange - return the flag of tool changing (Is where the LOADTL
command in the next CLData commands):

• 1 –Tool change command (LoadTL) didn’t executed still. But
will be or in executing.;

• 0 – LoadTL command called yet and will be called again;
• -1 – this is the last LoadTL command in the CLDATA list

The functions result for the sample CLData commands list is shown
below:

CLData commands sequence ToolChange result

PARTNO 1

… 1

… 1

3 Postprocessors generator

3-44

… 1

LOADTL 1

… 0

… 0

… 0

LOADTL 0

… 0

… 0

… 0

LOADTL -1

… -1

… -1

… -1

FINI -1

CurDate - return the string with the current date;

CurTime - return the string with the current time.

GetCLDStr - return the CLData string of the current command with
parameters.

Language description 3

3-45

3.2 OPERATORS

3.2.1 The processing program start operator:
PROGRAM

Each processing program of the technological commands begins by
the header, which consists the PROGRAM keyword and the program
name, and terminates by the keyword END.

Format:

PROGRAM ProgramName

 <statement 1>

 …

 <statement N>

END

Description:

The text of a program is written on the special problem-oriented
language and can contain the mathematical expressions, functions,
input/output operators, conditional operators, cycles, jump statement,
calls of subroutines, the statements to form the NC-program blocks
and the statements to work with the file of the technological
commands.

Sample:

PROGRAM AbsMov

 FormBlock

 X = cld[1]

 Y = cld[2]

 if X <> LastX or y <> LastY then begin

 xs$ = Str(40*x)

 ys$ = str(40*y)

 if IsRapid> 0 then fs$ = "PU"

 else fs$ = "PD"

 output fs$ + xs$+","+ys$+";"

 LastX = X

 LAstY = Y

 end;

END

3.2.2 The statement of assignment =
This statement is used to assign the value of an expression to the
variable. The variables may change their values because of
performing of this statement.

Format:

<numerical variable> = <mathematical expression>

or

<string variable> = <string expression>

Description:

The keyword of this operator is the variable name. The symbol <=>
follows after the name, and then follows the expression, the value of
this expression will be assigned to variable. This operator defines that

3 Postprocessors generator

3-46

the expression interpretation result must be stored in the memory cell,
identified by specified variable. The variable type must be coincident
with the type, returned by the expression, i.e. the value of the math
expression must be assigned to the numerical variable, and the value
of the string expression – to the string variable.

Note: When the statement is performed, the value of right expression is
evaluated first, and then, retrieved value will be assigned to the
variable in the left part of statement. This rule allows using the same
variable in the left and right parts of statement. In this case, the old
value of variable participates in the evaluation of the right expression
and, after this; the value of right expression will be assigned to the
same variable.

Samples:

! Usage of the assignment statement

Zet = 41
Ddel = Mn / cos(Betta) * Zet
Number = Number + 5
! The generation of string about the NC-machine

System$ = “2C42”
! The assignment of CNC-name to the System$

NAME$ = “TEST PROGRAM ” + System$.

3.2.3 The output statement PRINT
This statement is designed to write the results in the debug window
during the trial NC-program generation. If the run-time postprocessor
(InpD.dll or SprutPP.exe) generates the NC-program, it ignores this
operator.

Format:

PRINT <math expression>|<string expression> {, <math
expression> | <string expression> {, …}}

Description:

The keyword of this statement is the PRINT word. The list, which
contains one or more math or string expressions, follows the keyword.
The number of expressions is not limited in this statement, if there are
more than one expressions in the statement, the must be separated
by commas. The value of expressions will be consecutively evaluated
and printed in the debug window.

Samples:

PRINT “Runs the subprogram ABSMOVE ”
PRINT CLD[1]-XT, ” increase by X “
PRINT AA, ” “, CLD[1]

3.2.4 The input statement INPUT
This operator is designed to input data from the keyboard when the
program is running.

Format:

INPUT <numerical variable> | <string variable> | <literal
string> {, <numerical variable> | <string variable> | <literal
string> {, …}}

Language description 3

3-47

Description:

The 'INPUT' is the keyword for this statement. The list, which contains
one or more math or string expressions, follows after the keyword.
The number of expressions is not limited in this statement, if there are
more than one expressions in the statement, the must be separated
by commas.

The input window, which contains literal strings and input fields, will be
constructed as a statement result. The checking of correspondence of
inputted values to types of its variables is performed during the
parameters input. Only numbers can be inputted in the numerical
variable, any symbol can be inputted in the string variable. It is
necessary to close the window after the input by pressing the <OK>
button. After that, the inputted values will be assigned to the
corresponding variables.

This statement is analogue to the assignment, but the values of
variables will be asked each running of program. This allows obtaining
the new results of the same program by inputting various data.

Samples:

INPUT “The initial value of coordinate Z: ”, Zt
INPUT “Input the NC-machine name: ”, NCNam$
INPUT "Workpiece dimensions ", "Along X axis ", nx2, "Along Y
axis ", ny2, "Height by Z", nz2

3.2.5 Conditional statement IF
This statement is designed to perform one of statements, included by
it, in depending of some condition.

Format:

IF <conditional expression> THEN <Statement1>

 {ELSE <Statement2>}

Description:

This operator allows changing the next steps of program dependently
of some conditions

The keyword of this statement is the 'IF' word. Then follows the
conditional expression, when it is true, the statement, following the
THEN keyword, is performed. If the conditional expression is false,
then the statement, following the keyword ELSE, is performed. ELSE
– is unnecessary part of this statement. If it is absent and the value of
conditional expression is false, then the performing of IF- statement
terminates and next statement of a program will be performed.
<Conditional expression> may be a single <Simple conditional
expression> or a sequence of the <Simple conditional
expressions>, linked by logical <OR> and <AND> operations, i.e.:

Format:

<simple conditional expression> {{AND <simple conditional
expression>} | {OR <simple conditional expression>}}

<Conditional expression> is true, if all <Simple conditional
expressions>, linked by AND operation are true or if at least one of
<Simple conditional expressions>, linked by OR operation is true.

The <Simple conditional expressions> - is a two math or string
expressions, linked by comparison operations, i.e.:

3 Postprocessors generator

3-48

Format:

<Math expression> <Comparison operator> <Math expression>

or

<string expression> <Comparison operator> <string expression>

The expressions around the <Comparison operation> must be same
type; otherwise, you will obtain the error message <Incompatible
types> during the compilation.

The <Comparison operation> is one of following operations:

= - the values of left and right operations are equal

> the value of left expression is greater than value of
right expression

< the value of left expression is less than value of right
expression

or <> the values expressions are different

>= or => the value of left expression is equal or greater than
value of right expression

<= or =< the value of left expression is equal or less than value
of right expression

It is necessary to pay attention to the comparison of string
expressions. The comparison of two strings is performed character-
by-character from left to right respecting their ASCII-codes. If the
lengths of the strings are different, but the longest string includes the
shortest entirely, then the longest string is greater. The strings are
equal, if they contain the same symbols and have the same length.

When the conditional statement is performed, the values of math and
string expressions in the <Simple conditional expressions> are
evaluated first, then the operations of comparison are performed, and
then the AND and OR operations are performed without priority. After
that, the THEN or ELSE statement will be performed, depending the
result of entire <Conditional expression>.

Note: The logical operations performing sequence can>t be changed by
using the parentheses. It’s necessary to use the sequence of multiple
conditional statements in this case. It is possible always to replace the
sequence of logical operations by the sequence of conditional
statements. When one conditional statement appears into another,
ELSE-statement corresponds to nearest (along the program) IF-
statement. The part of conditional operator can be carried in the next
string, but the carrying from the ELSE-keyword isn’t allowed, because
in this case the first part of statement (IF-THEN) will be logically finite,
and ELSE will be interpreted as a beginning of next statement.

Samples:

! Example 1.

! The example, which uses the conditional statement.

IF kadr <224 THEN PRINT “This is a short program ”
ELSE PRINT “You are the monster in programming”

! Example 2

! This example shows how to use embedded

! conditional statements

IF POS(“ ”, Str$) = 2
 THEN b$ = “ the first char in string is a letter ”
ELSE

 IF POS(“ ”, Str$) <= 4

Language description 3

3-49

 THEN b$ = “ first in string ” +
 “ is a word, its length is 4 symbols”

 ELSE b$ = “ first in string is a word greater” +
 “than 5 symbols length ”

3.2.6 Statement of the multiconditional execution
CASE

The Case statement allows checking the value of the expression and
depends of the result to execute different code.

Format:

CASE <expression> OF

 <values list 1>: <statement 1>

 …

 <values list N>: <statement N>

ELSE <statement M>

END

Description:

The expression must be numerical in this construction. Inadmissible to
use string expressions.

The values lists can contain one or more constants, divided by
commas. The “:” symbol follows the values list. After that the
statement is written that is executed if the expression is equal to one
of the list. After the execution of this statement the execution of the
CASE structure is finished and next statement is executed.

If the expression result is not defined in all lists then the statement
after ELSE keyword is executed. The ELSE part is an optional. If
ELSE absent and there is no corresponding value in the lists then
nothing is executed.

Sample:
CASE i OF

 1,2,3,4,5: Str = “less or equal 5”

 6,7,8,9: Str = “greater 5”

 else Str = “Error value”

END

3.2.7 JUMP statement
The operator is used to break the order of statements performing.

Format:

JUMP <Label number>

Description:

After the 'JUMP' keyword one of labels, which is defined in the current
program, must be specified. The symbol <:> mustn’t appear after the
label number, unlike the label definition.

The operator, labeled by corresponding label, will be performed after
the JUMP statement. It is necessary to define corresponding label,
otherwise the error message will appear during compilation.

It is not recommended to usually use the JUMP statement in the
program.

3 Postprocessors generator

3-50

Sample:
AFF = 20 ! this statement is performed fist

JUMP 2 ! jump to label 2

АВС = 1 ! This statement never be performed

2: АTR = 4 ! this statement is performed second

3.2.8 The cycle statement FOR
This statement repeats the performing of specified statement specified
number of times.

Format:

FOR <numerical cycle control variable> = <math expression> TO
<math expression> {STEP <number> | <number variable>} DO
<operator>

Description:

This statement provides repetitive performing of some statement and
simultaneous incrementing the cycle variable, until the value is greater
than specified limit.

The keyword of this operator is the <FOR> word. Then follows the
construction, which is similar to assignment: <Numerical cycle
control variable> = <Math expression>. In reality, the are much
similar, because this construction assigns the initial value, defined by
<Math expression>, to <Numerical cycle control variable>.

After the 'to' reserved word follows the math expression, which defines
the upper limit. When the <Numerical cycle control variable>
achieves this limit, the cycle statement terminates, and next program
statement will be performed. Any math expression can be specified as
an upper limit for cycle.

Unnecessary part of this statement, containing reserved word
<STEP> and following number or numerical variable, defines the
incrementing step for the cycle variable. As default, the step is 1. The
expression cannot be the step

The statement, which must be performed cyclically, is specified after
the DO – keyword. All other cycle parameters serve for organization of
cyclical performing of this statement.

Samples:

! Example 1.

! Simple example of usage the cycle statement.

FOR as = 3 TO 10 DO PRINT as:0,” “,as^2:0

! Example 2.

! Using embedded cycle statements

FOR i = 0 TO 0.9 STEP 0.5 DO
 FOR j = -1 TO 0 STEP 0.2 DO
 PRINT ” i = “,i:1,” j = “,j:1

3.2.9 The cycle statement REPEAT
The structure repeat...until is used for the repeating execution of the
some operators named as cycle body, until some condition will be
true.

Syntax of the structure repeat...until:

Language description 3

3-51

REPEAT

 <operators of the cycle body>

UNTIL <conditional expression>

The structure works the following way. The operators of the cycle
body is executed, after that is calculated the conditional expression. If
the conditional expression returns false then the execution of the cycle
body is repeated and after that, the conditional expression is
calculated again. So the repeating is continues until the conditional
expression returns true. After that, the cycle execution is finished and
the next statement after structure repeat...until is executed.

Because the condition checking is performed after the execution of
the cycle body then it is executed one time even if the condition is true
in advance. On the other hand, the condition must return true one time
else, the loop will be performed infinitely.

3.2.10 The cycle statement WHILE
The structure while...do is used for the repeating execution of the
some operators named as cycle body while some condition is true.
The structure while...do have the following syntax:

Format:

WHILE <conditional expression> DO <statement>

The structure works the following way. At the first, the conditional
expression is calculated. If the result is true then the cycle body is
performed and after that, the conditional expression is calculated
again. So the repeating is continues until the expression returns false.
After that the cycle execution is finished and the next statement after
structure while...do is executed.

Because the condition checking is performed before the execution of
the cycle body then if the conditional expression is false in advance
then the cycle body is never be performed. It is the main difference
between the structures while...do and repeat...until. On the other
hand the condition must return true one time else the loop will be
performed infinitely.

3.2.11 Composite statement BEGIN … END
if is used of the uniting of the group of statements to a one statement.
It is the analogue of the parenthesizes

Format:

BEGIN

 <statement 1>

 …

 <statement N>

END

Description:

The composite statement provides the execution of the included
statements step by step. The auxiliary words BEGIN and END are
analogue of the parenthesizes. The multiplicity level of the composite
statements is unlimited. The composite statement can be used
everywhere where a simple statement can be used.

Sample:

! Simple example of the composite statement

3 Postprocessors generator

3-52

IF var <3 THEN BEGIN
 ac =12; bb =16

END ELSE BEGIN

 ac=15; bb=60

END ! word END close the statement

3.2.12 Statement to call a subprogram CALL
The operator is intended to call the subprogram from the CLData
command-processing program or other subprogram.

Format:

CALL <program name>

Description:

The keyword of this operator is the <CALL> word. After this word it is
necessary to define the <program name> - string expression or the
literal string without the double quotation marks. The expression value
is the name of the subprogram.

The CALL jumps the execution to the defined subprogram and after
the execution makes the return to the program, the call was raised
from.

Sample:

CALL SUBTASK

3.2.13 The statement of the subprogram start SUB
It is used for the declaration of the subprogram and the parameters list
that is passed to the program then call.

Format:

SUB <subprogram name> {(<the list of the parameters>)}

Description:

The keyword of this operator is the <SUB>. Then follows the
subprogram name – literal string without the double quotation marks
and after that the optional parameters list in the parenthesizes.

The list of the parameters is the sequence of the numerical and
string variables or arrays. If the parameters number is more the one
then it is divided by commas.

The variables defined if the list will contain the values defined in the
call statement when call. Therefore, these variables if declared in
subprogram and can be used everywhere.

3.2.14 The statement of the subprogram end SUBEND
The statement is used for the declaration of the end of the
subprogram.

Format:

SUBEND

Description:

Language description 3

3-53

The statement is declaring the end of subprogram. At the SUBEND
execution the subprogram execution is closed, the values of all
variables defined in the parameters list is assigned to the variables
defined in the CALL statement and the execution of the parent
subprogram is continued.

Sample:

SUB EndCycle ! Subprogram start
 if Cld[1] = 163 then L = 81 else ! Drill

 if Cld[1] = 168 then L = 84 else ! Tap

 if Cld[1] = 209 then L = 85 else ! Bore5

 if Cld[1] = 210 then begin ! Bore6

 L = 86

 R4 = Spin

 end

 if Cld[1] = 213 then

 begin ! Bore9

 if Cld[7] = 279.0 then R3 = Cld[8]

 L = 89

 end

SUBEND ! Subprogram end

3.2.15 The statement of the procedure start PROC
The operator is intended to declare the start and the parameters list of
the subprogram in the CLDATA command processing procedure.

Format:

PROC <procedure name> {(<list of formal parameters>)}

Description:

After the PROC keyword, the procedure name is declared. The
<procedure name> - identifier it is not coincide with the
postprocessor generator keywords and variable names. This name is
for the procedure indentification for calling, so the names of all
procedures must be unique. After the <procedure name> follows the
optional <list of formal parameters>. It is the sequence of the
numerical and string variables and arrays. If the number of parameters
is more then one then comma must divide it.

As distinct from SUB statement the variables defined in the <list of
formal parameters> is not initialized i.e. it is necessary to assign
some values to the variables before the including to the list.

The variables declared in the <list of formal parameters> will contain
the values that are defined in the CALL statement. So these variables
is defined in a program and can be used everywhere.

The PROC statement is looks like SUB statement. The main
difference is that the procedure has the access to all variables and
arrays of program of subprogram in the body of which it is located.

It is possible to place the declared procedure in any place of a
program. See the example of the procedure in the topic 3.2.16.

3.2.16 The RETURN from a procedure statement
It is used to declare the end of procedure.

Format:

3 Postprocessors generator

3-54

RETURN

Description:

This statement is the last statement of a procedure. While the
execution of the RETURN statement the back assignment of the
formal parameters to the variables defined in the CALL statement is
executed and start the execution of the next after the CALL
statement.

Sample:

program TestProc

 NErr: Integer

 S: String

 proc PrintDebugInfo(NErr, S)
 case NErr of
 1: Print “Interpolation error: “, S

 2: Print “Approximation error: ”, S

 else Print “Unknown error: ”, S

 end

 return

 PrintDebugInfo(CLD[1], “parameter 1”)

 PrintDebugInfo(CLD[2], “parameter 2”)

 PrintDebugInfo(CLD[3], “parameter 3”)

end

3.2.17 The block output statement OUTBLOCK
This statement forms the content of a block, corresponding to
specified variable format, order, register format, and outputs the block
into NC-program.

Format:

OUTBLOCK

Description:

The block of NC-program is formed according following algorithm: The
registers are checked from the first. If the previous and current values
of register are different, then the register will be written in the block,
and its current value will be assigned to its previous value; otherwise
the register won’t be written in the block.

When the register is written in the block, its identifier will be written
first, then its value, multiplied by the scale. The number will be written
in the block corresponding to specified format. After that, the
processing program will be called, if it is defined. The block is formed
in the variable OutStr$, and will be written in the program as separate
string after the formation is done.

3.2.18 The block forming statement FORMBLOCK
This statement forms the block of NC-program according specified
format, order and registers format. The block is formed in OutStr$
variable without the output in the file of NC-program.

Format:

FORMBLOCK

Language description 3

3-55

Description:

The formation process is similar to the OUTBLOCK statement, but the
OutStr$ variable won`t be written in the block of NC-program.

It’s possible, then, to work with this variable as a string variable and
put it into NC-file by OUTPUT statement.

3.2.19 Statement of direct output into the block
OUTPUT

This operator outputs the content of a string variable by separate
block of NC-program.

Format:

OUTPUT S$

Description:

S$ - the identifier of a string variable. The literal constant or string
expression may be the parameter of this operator.

Samples:

! The output of the first symbol into NC-code

OUTPUT “%”

Name$ = “ John ”

F$ = “Lord”

! The output of sting into NC-program

OUTPUT “ Programmer ”+Name$+” “+F$
! The string <Programmer John Lord> will be written into NC-
program

! Sample of usage the

! FormBlock and Output instead OutBlock

FORMBLOCK

OUTPUT OutStr$
! Two these statements work as OutBlock

3.2.20 The replace statement of the substring in a
string REPLACE

The statement is looking for the substring in a string and replace to the
required.

Format:

REPLACE (<string variable>, <looked string>, <string for
replace>)

Description:

This operator is looking for the <looked string> from the start of
<string variable>. If <looked string> is found then it is replaced on
the <string for replace> and the search is break. if the <looked
string> is not found then replacement don’t take the place.

Sample:

! Filling the source variable

S$ = “GXX”

! Search and replace “XX” on“21”

3 Postprocessors generator

3-56

REPLACE(S$, “XX”, “21”)
! The variable S$ has the “G21” value

3.2.21 The statement to form the block by mask
MASK

The Mask statement forms the block of NC-code by mask string.
According to the rules and output the string to the NC-program.

Format:

MASK (<mask string>) {, OutBlock {, Poll}}

Description:

The statement masks form the NC code line according to the rules
that is described in the mask string. OutBlock option is analog of the
Out block switch. Poll option corresponds to the Poll all registers
switch. See chapter 2 “Masks” for details.

Sample:

! Form the NC code lines by mask

MASK(M[30]), OutBlock
MASK(% N[Off]), OutBlock
MASK(G_INTERP[INTERP]X[CLD.X]Y[CLD.Y]Z[CLD.Z]),
 OutBlock, Poll

 Appendices 4

4-57

4 APPENDICES

4.1 THE CLDATA DICTIONARY (THE
DICTIONARY OF THE TECHNOLOGICAL
COMMANDS)

Table 1. General keywords

N

Keyword Code Value

 CIRCLE 15000 The motion along an arc

 COEFF 2330 Factor of a spine

 COMMENT 1065 Commentaries

 COOLNT 1030 The coolant

 CUTCOM 1007 Tool correction

 CYCLE 1054 The cycle

 DELAY 1010 Pause

 FEDRAT 1009 The feedrate

 FINI 14000 Ending record

 FROM 5003 Original position

 GOHOME 17 Return to original position

 GOTO 5004-5005 Tool motion

 HEAD 1002 The number of spindle
heads

 HEADER 3001

 INCR 66 Absolute or relative
coordinate system
assuming

 INSERT 1046 Direct output into the
block

 LOADTL 1055 Tool loading

 MOVNRB 3041 The beginning of a spline
phase of trajectory

 MULTGOTO 9004-9005

 OPSKIP 1012 The optional skipping

 OPSTOP 2003 The auxiliary stop

 ORIGIN 1027 The original coordinates

 PALETA 1001 Palette changing

 PARTNO 1045 Part number

 PLANE 99 Work plane

 PPFUN 1079 The function of

4 Postprocessors generator

4-58

N

Keyword Code Value

postprocessor

 PPRINT 1044 The printing of
postprocessor

 RAPID 2005 Rapid feedrate

 ROTABL 1026 Table rotation

 SAFPOS 1094 Safe position

 SELCTL 1056 Tool selection

 SPINDL 1031 Spindle

 STOP 2002 Stop

 THREAD 1036 Threading

 TRAILR 3004

Table 2. Auxiliary keywords

N

Keyword Code Value

 BOTH 83 Both

 BRKCHP 288 Breaking the shavings

 CCLW 59 Counterclockwise

 CLW 60 Clockwise

 CUTS 511 The stepover

 DEEP 153 Deep drilling

 DEEPTH 510 The depth

 DRILL 163 The drilling

 DWELL 279 Pause (delay)

 FACE 81 Drilling G82

 FINCUT 512 Final cutting

 INCR 66 Increment

 LENGTH 9 The length

 MMPM 315 Millimeters per second

 MMPR 316 Millimeters per rotation

 MULTRD 119 Multi-Threading

 OFF 72 Switch off

 ON 71 Switch on

 ORIENT 246 The orientation

 TAP 168 Taping

 XYPLAN 33 Coordinate XY

 YZPLAN 37 Coordinate YZ

 ZXPLAN 41 Coordinate ZX

 R 23 Radius

 Appendices 4

4-59

N

Keyword Code Value

 RGT 24 Right position of the tool

 LEFT 8 Left position of the tool

4 Postprocessors generator

4-60

4.2 FORMAT OF THE TECHNOLOGICAL
COMMANDS

4.2.1 Part number
Global variables are defined and the first block of NC-program is
formed in the program, which processes the PARTNO command. This
program is called in the beginning of NC-program certainly; even there
is no of PARTNO-command in the technological file.

Command:

PARTNO “........”

The “CLDATA$” variable:

“........”

4.2.2 Ending record

Command:

FINI

4.2.3 Postprocessor function
Command:

PPFUN PPFUN(500) | STARTSUB(50) | ENDSUB(51) | CALLSUB(52) |
REPSTART(53) | REPEND(54) | JUMP(55) | TECHINFO(58) {, a} {,
b} {, c} {, d} …

Parameters:

Parameter CLD array Description

PPFUN, or
STARTSUB, or
ENDSUB, or
CALLSUB, or
REPSTART, or
REPEND, or
JUMP or
TECHINFO

CLD[1] CLD.SubCode The identifier of
called
postprocessor
function

a, b, c, d … CLD[2] –
CLD[257]

 The unnecessary
parameter list.
When calling
CALLSUB
parameter a is
obligatory and
means the
number of called
subprogram

 Appendices 4

4-61

In case CLD [1] = 500 (PPFUN) CLD [2] possess the value stability of
the tool in minutes. Such command is shaped when it is necessary to
execute change of tools in connection with a wear.

In case CLD [1] = 58 (TECHINFO) optional parameters are listed in
the table:

CLD
array Parameter Value description Group

1 SubCode 58 (TechInfo)

2 2 CLData version

3 3 Minimal coordinate by X

4 4 Minimal coordinate by Y

5 5 Minimal coordinate by Z

6 6 Maximal coordinate by X

7 7 Maximal coordinate by Y

8 8 Maximal coordinate by Z

Trajecto
ry shell

9 9 Safe plane

10 10 Top machining level

11 11 Bottom machining level

Levels

12 12 Stock

13 13 Minimal coordinate by X

14 14 Minimal coordinate by Y

15 15 Minimal coordinate by Z

16 16 Maximal coordinate by X

17 17 Maximal coordinate by Y

18 18 Maximal coordinate by Z

Workpie
ce (All
operatio
n shell)

19 19 CLData tolerance (digits number
after point)

20 20 Measurement units (0 – mm; 1 –
 inch)

21 21 Minimal arc length

22 22 Deviation out of the model

23 23 Deviation in the model

24 24 Operation stock

Toleran
ce

4 Postprocessors generator

4-62

CLD
array Parameter Value description Group

25 25 Tool type:

0 – Cylindrical

1 – spherical

2 – Torus

3 – Double radial

4 – Limited double radial

5 – Conical mill

6 – Limited conical mill

7 – Engraver

8 – Drill

26 26 Tool number

27 27 Diameter

28 28 Work part length

29 29 Work part angle

{ conical angle in rad}

30 30 Round radius

31 31 Compensation by length number

Value equality 0 if corrector is off

32 32 Compensation by radius number

Value equality 0 if corrector is off

33 33 Compensation by length value

34 34 Compensation by radius value

35 35 Programmed point (end/centre)

0 – Centre point

2 – End point

Tool

36 36 Spindle rotation velocity (in
RPM)

37 37 Rapid feedrate value (mm/min or
inch/min)

38 38 Work feedrate

39 39 Cut-in feedrate

40 40 Approach feedrate

41 41 Retraction feedrate

43 42 Next feedrate

43 43 Return feedrate

Speed

44 44 Trajectory length

45 45 Machining time (8 byte in Delphi
format)

46 46 All machining time

Trajecto
ry
statistics

 Appendices 4

4-63

CLD
array Parameter Value description Group

47 47 First rotary axis:

0 – none

1 – X, 2 – Y, 3 – Z,

4 – Custom

48 48 First rotary axis position (angle)

49 49 Second rotary axis:

0 – none

1 – X, 2 – Y, 3 – Z,

4 – Custom

50 50 Second rotary axis position
(angle)

51 51 Tool axis:

1 – X, 2 – Y, 3 – Z

Rotary
axis

52 52 Coordinate X

53 53 Coordinate Y

54 54 Coordinate Z

Tool
changin
g point

55 55 Coordinate X

56 56 Coordinate Y

57 57 Coordinate Z

Interme
diate
point

4.2.4 Commentaries
Output comments in NC program..

Command:

COMMENT “........”

The «CLDATA$» variable:

“........”

4.2.5 Linear transition
Depending on an aspect of migration the postprocessor transmits data
on migration either in ABSMOV, or in INCMOV, either ABSMLT, or
INCMLT.

Command:

GOTO.Abs X x, Y y, Z z

GOTO.Inc X x, Y y, Z z

MULTGOTO.Abs X x, Y y, Z z, V v, U u, W w

MULTGOTO.Inc X x, Y y, Z z, V v, U u, W w

Parameters:

Parameter CLD array Description

x, CLD[1] CLD.X New coordinates of instrument

4 Postprocessors generator

4-64

Parameter CLD array Description

y,

z,

u,

v,

w

CLD[2]

CLD[3]

CLD[4]

CLD[5]

CLD[6]

CLD.Y

CLD.Z

CLD.U

CLD.V

CLD.W

(absolute or relative)

4.2.6 Displacement along the circle
It is necessary to pay attention, in what planes goes a processing,
since when partitioning a circle on quarters or on halves, the
postprocessor takes necessary data from predefined variables Xt, Yt,
Zt, and places resulting coordinates of new endpoint in that coordinate
axes, in planes which goes a processing. That is to say, if processing
is performed in XZ-plane, the it is necessary to trace variables Xt, Zt,
and take coordinates of center in CLD(1) for X and CLD(3) for Z, in
CLD(5) and CLD(7) - the coordinates of endpoint. Besides, in the
postprocessor a radius of circle, sent in CLD(4),is negative in that
case, if this circular interpolation clockwise.

Command:

CIRCLE XC xc, YC yc, ZTOOL z, R r, XK xk, YK yk, ZTOOL zk

Parameters:

Parameter CLD array Description

xc,

yc

CLD[1]

CLD[2]

CLD.Xc

CLD.Yc

The coordinates X and Y of
circle center

z CLD[3] CLD.Zc The coordinate Z of a tool

r CLD[4] CLD.R The radius of circle

xk,

yk

CLD[5]

CLD[6]

CLD.Xe

CLD.Ye

The coordinates X and Y of
arc endpoint

zk CLD[7] CLD.Ze The coordinate Z of a tool

4.2.7 Working plane
Depending on working plane, the postprocessor outputs the
displacements in corresponding coordinates. In the postprocessor it's
needed to have information on that, in what planes goes a machining.
These data are necessary in the circle-processing module.

Command:

PLANE XY(33)|YZ(37)|XZ(41)

Parameters:

Parameter CLD array Description

XY, or YZ
or XZ

CLD[1] CLD.Plane The code of plane: 33 (XY), or
37 (YZ) or 41 (XZ)

 Appendices 4

4-65

For creation of postprocessors similar ISO in masks it is possible to
use preconceived values ISO.G, which one vary pursuant to
parameters of a command.

CLD parameters value ISO value

CLD[1] = 33 ISO.G = 17

CLD[1] = 37 ISO.G = 19

CLD[1] = 41 ISO.G = 18

4.2.8 Original point
The original point coordinates are defined. This command meets
once, as a rule, and is placed in the beginning of the part machining
description. If it is absent, then the coordinates of the tool center
original position are X=0, Y=0, Z=0.

If the command FROM is present, then the tool will be returned in the
specified original point by the "GOHOME" command.

Command:

FROM X x, Y y, Z z

Parameters:

Parameter CLD array Description

x,

y,

z

CLD[1]

CLD[2]

CLD[3]

CLD.X

CLD.Y

CLD.Z

The coordinates of original
point

4.2.9 Return to original position
The tool will be returned by this command in the position, defined by
FROM command or in the point X=0, Y=0, Z=0, but only on the
screen. In the postprocessor is transmitting the command code only.

Command:

GOHOME

4.2.10 The point of tool change
The coordinates of the point, where the tool center will be positioned
for the change of tool (LOADTL command), are defined. Tool change
make in the current point as default.

Command:

SAFPOS X x, Y y, Z z, N n

Parameters:

Parameter CLD array Description

x,

y,

z

CLD[1]

CLD[2]

CLD[3]

CLD.X

CLD.Y

CLD.Z

Coordinates of point of tool
change

4 Postprocessors generator

4-66

Parameter CLD array Description

N CLD[4] CLD.N The number of point of tool
change in the NC-machine

4.2.11 Table rotation
Command:

ROTABL ABS(0), A ab, CCLW(59)|CLW(60), PLANE
XY(33)|YZ(37)|XZ(41)

ROTABL INCR(66), B ab, CCLW(59)|CLW(60), PLANE
XY(33)|YZ(37)|XZ(41)

Parameters:

Parameter CLD array Description

ABS or
INCR

CLD[1] CLD.Incr Rotation type: 0 (ABS)
absolute, 66 (INCR) relative

ab CLD[2] CLD.AB The angle of table rotation or
incrementing of this angle

cclw or clw

CLD[3] CLD.CCLW The direction of rotating
counterclockwise or clockwise

XY, or YZ
or XZ

CLD[4] CLD.Plane The code of plane

For creation of postprocessors similar ISO in masks it is possible to
use preconceived values ISO.A, ISO.B, ISO.С which one vary
pursuant to parameters of a command.

CLD parameters value ISO value

CLD[4] = 33

CLD[1] = 0

CLD[3] = 59

ISO C = CLD[2]

CLD[4] = 33

CLD[1] = 0

CLD[3] = 60

ISO C = − CLD[2]

CLD[4] = 33

CLD[1] = 66

ISO C = CLD[2]

CLD[4] = 41

CLD[1] = 0

CLD[3] = 59

ISO B = CLD[2]

CLD[4] = 41

CLD[1] = 0

CLD[3] = 60

ISO B = − CLD[2]

CLD[4] = 41

CLD[1] = 66

ISO B = CLD[2]

CLD[4] = 37

CLD[1] = 0

CLD[3] = 59

ISO A = CLD[2]

 Appendices 4

4-67

CLD parameters value ISO value

CLD[4] = 37

CLD[1] = 0

CLD[3] = 60

ISO A = − CLD[2]

CLD[4] = 37

CLD[1] = 66

ISO A = CLD[2]

4.2.12 Tool compensation

Command:

CUTCOM ON(71)|OFF(72), LENGTH(9)|R(23) lr, X x,Y y, Z z, XY n,
YZ m, XZ k ,RIGHT(24)|LEFT(8)

Parameters:

Parameter CLD array Description

ON or
OFF

CLD[1] CLD.OnOff 71 – switching on 72 –
switching off a compensation

LENGTH
or R

CLD[2] CLD.Length 9 – correction on length or 23
– radius of instrument

LR CLD[3] LCD.LR Corrector number for length or
radius of instrument

x,

y,

z

CLD[4]

CLD[5]

CLD[6]

CLD.X

CLD.Y

CLD.Z

Axial corrector number

n, m, k CLD[7]

CLD[8]

CLD[9]

CLD.N

CLD.M

CLD.K

Corrector number for planes

RIGHT or
LEFT

CLD[10] CLD.RGT 24 – right or 9 – left correction

For creation of postprocessors similar ISO in masks it is possible to
use preconceived values ISO.G, which one vary pursuant to
parameters of a command.

CLD parameters value ISO value

CLD[1] = 72

CLD[2] = 9

ISO.G = 49

CLD[1] = 71

CLD[2] = 9

ISO.G = 43

CLD[1] = 72

CLD[2] = 23

ISO.G = 40

CLD[1] = 71

CLD[2] = 23

CLD[10] = 24

ISO.G = 42

4 Postprocessors generator

4-68

CLD parameters value ISO value

CLD[1] = 71

CLD[2] = 23

CLD[10] = 8

ISO.G = 41

4.2.13 Tool loading
On the machining contour by equidistant is used information about
tool diameter. Displacement tool for changing in the point referred
above by SAFPOS command. If SAFPOS command was not called
then tool change make in the current coordinates.

Command:

LOADTL N n, X x, Y y, Z z, D d, M m, K k, L l, P p, A a, R r,
PLANE XY(33)|YZ(37)|XZ(41), FEEDCOLOR c1, RAPIDCOLOR c2,
DURABILITY d2

Parameters:

Parameter CLD array Description

n CLD[1] CLD.N Tool number

x,

y,

z

CLD[2]

CLD[3]

CLD[4]

CLD.X

CLD.Y

CLD.Z

Tool displacement along the axes
LX, LY, LZ

d CLD[5] CLD.D Tool diameter

m,

k

CLD[6]

CLD[7]

CLD.M

CLD.K

The numbers of correctors

l CLD[8] CLD.L Tool length (overhang)

p CLD[9] CLD.P Tool width

a CLD[10] CLD.A Angle of tool approach (under
external sample 180<a<0, under
internal sample 0<a<90)

r CLD[11] CLD.R The radius of tool rounding

XY, or YZ
or XZ

CLD[14] XY, YZ or XZ - the plane, which
is perpendicular to the tool axis

c1, c2 CLD[15]

CLD[16]

 Tool color for drawing (work
feedrate and rapid feedrate
correspondingly)

d2 CLD[17] CLD.Dur Tool durability (min.), 0 - to leave
out of account

4.2.14 Tool selection
Command:

SELCTL n

Parameters:

Parameter CLD array Description

 Appendices 4

4-69

Parameter CLD array Description

n CLD[1] CLD.N Tool number

4.2.15 Spindle
Rotation velocity is using for examination switch on spindle in
commands: FEDRAT, standard cycles and in DELAY command, for
calculate delay value in RPM.

Command:

SPINDL ON(71)|OFF(72)|ORIENT(246)|SMM(205), NO n, K k

Parameters:

Parameter CLD array Description

ON, or
OFF, or
ORIENT
or SMM

CLD[1] CLD.OnOff 71 (ON) switch on, 72 (OFF)
switch on, 246 (ORIENT)
oriented stop or 205 (SMM)
definition of rotation velocity
(in RPM)

n CLD[2] CLD.NO Rotating frequency or angle of
spindle tumbling

k CLD[3] CLD.K Range of rotation frequencies

For creation of postprocessors similar ISO in masks it is possible to
use preconceived values ISO.G, which one vary pursuant to
parameters of a command.

CLD parameters value ISO value

CLD[1] = 71 ISO.M = 3

CLD[1] = 72 ISO.M = 5

4.2.16 Stop

Command:

STOP

4.2.17 Auxiliary stop
Command:

OPSTOP

4.2.18 Cooling
Command:

COOLNT ON(71)|OFF(72), N n

Parameters:

Parameter CLD array Description

4 Postprocessors generator

4-70

Parameter CLD array Description

ON or
OFF

CLD[1] CLD.OnOff Switch on /off the cooling

n CLD[2] CLD.N Pipe line number

For creation of postprocessors similar ISO in masks it is possible to
use preconceived values ISO.M, which one vary pursuant to
parameters of a command.

CLD parameters value ISO value

CLD[1] = 71 ISO.M = 8

CLD[1] = 72 ISO.M = 9

4.2.19 Feedrate
Command is define feedrate value down to the next call FEDRAT
command or tool movement with defined feedrate command.

Command:

FEDRAT N nm, K k, MMPM(315), COLOR c

FEDRAT M nm, K k, MMPR(316), COLOR c

FEDRAT NM nm, K k, p, COLOR c

Parameters:

Parameter CLD array Description

nm CLD[1] CLD.NM Feedrate in mm/mines, or in
mm/on or other units

k CLD[2] CLD.K Range of feedrates

MMPM,
MMPR,

or p

CLD[3] CLD.MMPM MMPM(315), MMPR(316) -
units of feedrate
measurement (mm/mines or
mm/on). P- Parameter, which
specifies the units of feedrate
definition

c CLD[4] Color for drawing

4.2.20 Rapid feedrate
Command:

RAPID N n, COLOR c

Parameters:

Parameter CLD array Description

n CLD[1] CLD.N The value of rapid feedrate

c CLD[2] Color for drawing

4.2.21 Pause

Command:

 Appendices 4

4-71

DELAY A a

Parameters:

Parameter CLD array Description

a CLD[1] CLD.A The pause time at seconds

4.2.22 Absolute or relative coordinate system
assuming.

After this command, all transitions are interpreted as absolute or
relative.

Command:

INCR ON(71)|OFF(72)

Parameters:

Parameter CLD array Description

ON or
OFF

CLD[1] CLD.OnOff Absolute or relative coordinate
system

For creation of postprocessors similar ISO in masks it is possible to
use preconceived values ISO.G, which one vary pursuant to
parameters of a command.

CLD parameters value ISO value

CLD[1] = 71 ISO.G = 91

CLD[1] = 72 ISO.G = 90

4.2.23 Original coordinates
The postprocessor begins to recalculate all transitions using the value
of displacement after definition of displacement of original point.

Command:

ORIGIN X x, Y y, Z z, PPFUN f, N n

Parameters:

Parameter CLD array Description

x,

y,

z

CLD[1]

CLD[2]

CLD[3]

CLD.X

CLD.Y

CLD.Z

The displacement coordinates
of the original point

f CLD[4] CLD.PPFun Number of postprocessor
function

n CLD[5] CLD.N Number of original point

4.2.24 Canceling and recovering a cycle
All standard cycles G81-G92 fall into record CYCLE, so it is necessary
in the module to produce an analysis of a cycle type and their
processing description.

4 Postprocessors generator

4-72

Command:

CYCLE ON (71) | OFF (72)

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type 71 (ON) or 72 (OFF) –
recovering or canceling cycle

4.2.25 Drilling cycle a type G81
Command:

CYCLE DRILL(163), A a, MMPM(315), N nm, F f, P p, T t

CYCLE DRILL(163), A a, MMPR(316), M nm, F f, P p, T t

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 163 (DRILL)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

 CLD[6]

CLD[7]

 Reserved

p CLD[8] CLD.P The fly back level in the mm.

 CLD[9]

CLD[10]

 reserved

t CLD[11] CLD.Top Top hole level

4.2.26 Drilling cycle a type G82
Command:

CYCLE FACE(81), A a, MMPM(315), N nm, F f, P p, DWELL(279) h,
T t

CYCLE FACE(81), A a, MMPR(316), M nm, F f, P p, DWELL(279) h,
T t

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 81 (FACE)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or

 Appendices 4

4-73

Parameter CLD array Description
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

 CLD[6]

CLD[7]

 Reserved

p CLD[8] CLD.P The fly back level in the mm.

DWELL CLD[9] CLD.Dwell A keyword for a time of
pause

h CLD[10] CLD.H The pause of a tool in the
sec

t CLD[11] CLD.Top Top hole level

4.2.27 Drilling cycle a type G84
Command:

CYCLE TAP(168), A a, MMPM(315), N nm, F f, P p, T t

CYCLE TAP(168), A a, MMPR(316), M nm, F f, P p, T t

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 168 (TAP)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

 CLD[6]

CLD[7]

 Reserved

p CLD[8] CLD.P The fly back level in the mm.

 CLD[9]

CLD[10]

 Reserved

t CLD[11] CLD.Top Top hole level

4.2.28 Drilling cycle a type G85
Command:

CYCLE BORE5(209), A a, MMPM(315), N nm, F f, P p, T t

CYCLE BORE5(209), A a, MMPR(316), M nm, F f, P p, T t

Parameters:

Parameter CLD array Description

4 Postprocessors generator

4-74

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 209 (BORE5)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

 CLD[6]

CLD[7]

 Reserved

p CLD[8] CLD.P The fly back level in the mm.

 CLD[9]

CLD[10]

 Reserved

t CLD[11] CLD.Top Top hole level

4.2.29 Drilling cycle a type G86

Command:

CYCLE BORE6(210), A a, MMPM(315), N nm, F f, P p, T t

CYCLE BORE6(210), A a, MMPR(316), M nm, F f, P p, T t

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 210 (BORE6)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

 CLD[6]

CLD[7]

 Reserved

p CLD[8] CLD.P The fly back level in the mm.

 CLD[9]

CLD[10]

 Reserved

t CLD[11] CLD.Top Top hole level

4.2.30 Drilling cycle a type G87
Command:

CYCLE BORE7(211), A a, MMPM(315), N nm, F f, P p, T t

CYCLE BORE7(211), A a, MMPR(316), M nm, F f, P p, T t

 Appendices 4

4-75

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 211 (BORE7)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

 CLD[6]

CLD[7]

 Reserved

p CLD[8] CLD.P The fly back level in the mm.

 CLD[9]

CLD[10]

 Reserved

t CLD[11] CLD.Top Top hole level

4.2.31 Drilling cycle a type G88

Command:

CYCLE BORE8(212), A a, MMPM(315), N nm, F f, P p, DWELL(279)
h, T t

CYCLE BORE8(212), A a, MMPR(316), M nm, F f, P p, DWELL(279)
h, T t

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 212 (BORE8)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

 CLD[6]

CLD[7]

 Reserved

p CLD[8] CLD.P The fly back level in the mm.

DWELL CLD[9] CLD.Dwell A keyword for a time of
pause

h CLD[10] CLD.H The pause of a tool in the
sec

t CLD[11] CLD.Top Top hole level

4 Postprocessors generator

4-76

4.2.32 Drilling cycle a type G89
Command:

CYCLE BORE9(213), A a, MMPM(315), N nm, F f, P p, DWELL(279)
h, T t

CYCLE BORE9(213), A a, MMPR(316), M nm, F f, P p, DWELL(279)
h, T t

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 213 (BORE9)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

 CLD[6]

CLD[7]

 Reserved

p CLD[8] CLD.P The fly back level in the mm.

DWELL CLD[9] CLD.Dwell A keyword for a time of
pause

h CLD[10] CLD.H The pause of a tool in the
sec

t CLD[11] CLD.Top Top hole level

4.2.33 Deep drilling with the full retraction of tool for
removing a shaving

Command:

CYCLE DEEP(153), A a, MMPM(315), N nm, F f, L l, I i, P p, T t

CYCLE DEEP(153), A a, MMPR(316), M nm, F f, L l, I i, P p, T t

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 153 (DEEP)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

l CLD[6] CLD.L The depth of first drop in (in
the mm)

 Appendices 4

4-77

Parameter CLD array Description

i CLD[7] CLD.I The connecting value

p CLD[8] CLD.P The fly back level in the mm.

 CLD[9]

CLD[10]

 Reserved

t CLD[11] CLD.Top Top hole level

4.2.34 Deep drilling with drill retraction for removing
the shaving

Command:

CYCLE BRKCHP(288), A a, MMPM(315), N nm, F f, L l, I i, P p,
DWELL(279) h, T t

CYCLE BRKCHP(288), A a, MMPR(316), M nm, F f, L l, I i, P p,
DWELL(279) h, T t

Parameters:

Parameter CLD array Description

Type CLD[1] CLD.Type Cycle type 288 (BRKCHP)

а CLD[2] CLD.A The depth of hole in the mm

MMPM,
MMPR

CLD[3] CLD. MMPM Units of feedrate
measurement (mm/min or
mm/rot)

nm CLD[4] CLD.NM The feedrate in the
mm/mines or in the mm/rot

f CLD[5] CLD.F The safe level in the mm

l CLD[6] CLD.L The depth of first drop in (in
the mm)

i CLD[7] CLD.I The connecting value

p CLD[8] CLD.P The fly back level in the mm.

DWELL CLD[9] CLD.Dwell A keyword for a time of
pause

h CLD[10] CLD.H Tool pause in the sec

t CLD[11] CLD.Top Top hole level

For creation of postprocessors similar ISO in masks it is possible to
use preconceived values ISO.G, which one vary pursuant to
parameters of a command.

CLD parameters value ISO value

CLD[1] = 163 ISO.G = 81

CLD[1] = 81 ISO.G = 82

CLD[1] =168 ISO.G = 84

CLD[1] =209 ISO.G = 85

CLD[1] =210 ISO.G = 86

CLD[1] =211 ISO.G = 87

CLD[1] =212 ISO.G = 88

4 Postprocessors generator

4-78

CLD parameters value ISO value

CLD[1] =213 ISO.G = 89

CLD[1] =153 ISO.G = 83

CLD[1] =288 ISO.G = 73

CLD[1] =72 ISO.G = 80

4.2.35 Threading

Command:

THREAD MMPR m, TPI t, MulTrd mt, Depth d, Cuts c, FinCut f,
Ang a, Oset1 o1, Oset2 o2

Parameters:

Parameter CLD array Description

m CLD[1] CLD. MMPR WMmpr(316)/WPitch(1050)

t CLD[2] CLD.TPI Pitch of thread /number
thread of a screw per inch

mt CLD[3] CLD. MulTrd Thread number

d CLD[4] CLD. Depth Depth

c CLD[5] CLD. Cuts Cuts number (all)

f CLD[6] CLD. FinCut Finish cuts number

a CLD[7] CLD. Ang Cutting angle

o1, o2 CLD[8]

CLD[9]

CLD. Oset1

CLD. Oset2

№№ compensation, switch
up alternately in each pass

4.2.36 Palette changing
Command:

PALETA N n

Parameters:

Parameter CLD array Description

n CLD[1] CLD.N Palette number

4.2.37 Head
Command:

HEAD BOTH(83)|N n

Parameters:

Parameter CLD array Description

n or BOTH CLD[1] CLD.N n - the required head number
or 83 (BOTH) – work at the

 Appendices 4

4-79

Parameter CLD array Description
same time two head

4.2.38 Factors of a spline
Intermediate breakpoints of a NURBS-curve. These commands go
after initializing a NURBS-curve (command MovNRB), the last point of
a curve sets command GOTO.

Command:

COEFF X x, Y y, Z z, Knout k, Fedrat f, Spindl s, Denom d

Parameters:

Parameter CLD array Description

x,

y,

z

CLD[1]

CLD[2]

CLD[3]

CLD.X

CLD.Y

CLD.Z

Control point coordinates

k CLD[4] CLD.K Knot NURBS curve

f CLD[5] CLD.F Feed factor

s CLD[6] CLD.S Spindle rotation velocity factor

d CLD[7] CLD.D Denominator NURBS curve
Factor

4.2.39 The beginning of a spline phase of trajectory
The beginning of a spline phase of trajectory.

Command:

MOVNRB Order

Parameters:

Parameter CLD array Description

Order CLD[1] CLD.Order Order NURBS (level + 1)

4.2.40 Insertion
This command assigns specified string to CLDATA$ variable.

Command:

INSERT “........”

The «CLDATA$» variable:

“........”

4.2.41 Optional skipping
Command:

4 Postprocessors generator

4-80

OPSKIP ON(71)|OFF(72)

Parameters:

Parameter CLD array Description

ON or
OFF

CLD[1] CLD.OnOff 71 (ON) switch on or 72 (OFF)
switch off optional skipping

4.2.42 Postprocessor printing
The text is placed in CLDATA$ variable whereupon it can be output in
the display as a description postprocessor behavior comments.

Command:

PPRINT “........”

The «CLDATA$» variable:

“........”

