
Structural Dynamics Toolbox
FEMLink

For Use with MATLAB r©

User’s Guide Etienne Balmès
Version 5.2 Jean-Michel Leclère

How to Contact SDTools

33 +1 41 13 13 57 Phone
33 +6 77 17 29 99 Fax
SDTools Mail
44 rue Vergniaud
75013 Paris (France)

http://www.sdtools.com Web
comp.soft-sys.matlab Newsgroup
http://www.openfem.net An Open-Source Finite Element Toolbox

support@sdtools.com Technical support
suggest@sdtools.com Product enhancement suggestions
info@sdtools.com Sales, pricing, and general information

Structural Dynamics Toolbox User’s Guide on May 27, 2005
c© Copyright 1991-2005 by SDTools

The software described in this document is furnished under a license agreement.

The software may be used or copied only under the terms of the license agreement.

No part of this manual in its paper, PDF and HTML versions may be copied, printed, photocopied

or reproduced in any form without prior written consent from SDTools.

Structural Dynamics Toolbox is a registered trademark of SDTools

OpenFEM is a registered trademark of INRIA and SDTools

MATLAB is a registered trademark of The MathWorks, Inc.

Other products or brand names are trademarks or registered trademarks of their respective holders.

Contents

1 Preface 9
1.1 Getting started . 10
1.2 Understanding the Toolbox architecture 12

1.2.1 Layers of code . 12
1.2.2 Global variables . 13

1.3 Typesetting conventions and scientific notations 14
1.4 Release notes for SDT 5.2 and FEMLink 3.1 17

1.4.1 Key features . 17
1.4.2 Detail by function . 18
1.4.3 Notes by MATLAB release 19

1.5 Release notes for SDT 5.1 and FEMLink 3.0 20
1.5.1 Key features . 20
1.5.2 Detail by function . 21
1.5.3 Notes by MATLAB release 22

2 Structural dynamic concepts 25
2.1 I/O shape matrices . 26
2.2 Normal mode models . 28
2.3 Damping . 30

2.3.1 Viscous damping in the normal mode model form 30
2.3.2 Damping in finite element models 31

2.4 State space models . 34
2.5 Complex mode models . 35
2.6 Pole/residue models . 37
2.7 Parametric transfer function . 39
2.8 Non-parametric transfer function . 40

3 Modal test tutorial 41
3.1 Preparing a modal test . 42

1

CONTENTS

3.1.1 Geometry declaration . 42
3.1.2 Sensor/shaker configurations 44

3.2 Data import and visualization . 46
3.2.1 Data acquisition . 46
3.2.2 Importing FRF data . 47
3.2.3 Getting started with the iiplot interface 49
3.2.4 Operational deflection shapes 52

3.3 Identification of modal properties . 54
3.3.1 The id rc procedure step by step 54
3.3.2 Background theory . 61
3.3.3 When id rc fails . 62
3.3.4 Direct system parameter identification algorithm 64
3.3.5 Orthogonal polynomial identification algorithm 65

3.4 MIMO, Reciprocity, State-space, ... 67
3.4.1 Multiplicity (minimal state-space model) 67
3.4.2 Reciprocal models of structures 69
3.4.3 Normal mode form . 71

4 Test/analysis correlation tutorial 75
4.1 Topology correlation and test preparation 77

4.1.1 Combining models . 77
4.1.2 Observation matrix for a sensor configuration 78
4.1.3 Sensor/shaker placement . 80

4.2 Test/analysis correlation . 81
4.2.1 Shape based criteria . 81
4.2.2 Energy based criteria . 82
4.2.3 Correlation of FRFs . 83

4.3 Expansion methods . 84
4.3.1 Underlying theory for expansion methods 84
4.3.2 Basic interpolation methods for unmeasured DOFs 86
4.3.3 Subspace based expansion methods 87
4.3.4 Model based expansion methods 89

4.4 Structural dynamic modification . 89

5 FEM tutorial 93
5.1 model data structure . 94

5.1.1 GUI Access to FEM models 94
5.1.2 Direct declaration of geometry (truss example) 95
5.1.3 Building models with femesh 97
5.1.4 Handling material and element properties 98

2

5.1.5 Coordinate system handling 99
5.2 Defining a case . 100

5.2.1 Cases GUI . 100
5.2.2 Boundary conditions and constraints 101
5.2.3 Loads . 102
5.2.4 Sensors . 103

5.3 Computing the response . 103
5.3.1 Simulate GUI . 103
5.3.2 Static responses . 104
5.3.3 Normal modes (partial eigenvalue solution) 105
5.3.4 State space and other modal models 106
5.3.5 Manipulating large finite element models 108

5.4 Post-processing with feplot . 109
5.4.1 Starting the visualization interface 110
5.4.2 Using iimouse commands . 110
5.4.3 Viewing deformations . 111
5.4.4 Superposing deformations . 112
5.4.5 Element selections . 112
5.4.6 Other information . 113

5.5 Interfacing with other FEM codes 113
5.5.1 Importing models from other codes 114
5.5.2 Importing model matrices from other codes 114

6 Advanced FEM tools 117
6.1 Model reduction theory . 118

6.1.1 General framework . 118
6.1.2 Normal mode models . 119
6.1.3 Static correction to normal mode models 121
6.1.4 Static correction with rigid body modes 122
6.1.5 Other standard reduction bases 123
6.1.6 Substructuring . 124
6.1.7 Reduction for parameterized problems 126

6.2 CMS examples . 127
6.2.1 Component mode synthesis 127
6.2.2 Substructuring using superelements 129

6.3 Model parameterization with upcom 131
6.3.1 Theoretical framework . 131
6.3.2 upcom parameterization for full order models 132
6.3.3 Getting started with upcom 133
6.3.4 Reduction for variable models 134

3

CONTENTS

6.3.5 Predictions of the response using upcom 135
6.4 Finite element model updating . 136

6.4.1 Error localization/parameter selection 137
6.4.2 Update based on frequencies 137
6.4.3 Update based on FRF . 138

7 Developer information 141
7.1 Nodes . 142
7.2 Model description matrices . 143
7.3 Material property matrices . 144
7.4 Element property matrices . 145
7.5 DOF definition vector . 146
7.6 FEM model structure . 147
7.7 FEM case data structure . 149
7.8 FEM result data structure . 150
7.9 Curves and data sets . 151
7.10 DOF selection . 151
7.11 Node selection . 153
7.12 Element selection . 155
7.13 Constraint and fixed boundary condition handling 157
7.14 Creating new elements (advanced tutorial) 160

7.14.1 General information . 160
7.14.2 Writing a new element function 160
7.14.3 Conventions . 168

7.15 Generic compiled elements . 170
7.16 Variable names and progamming rules 171

8 Element reference 173
bar1 176
beam1, beam1t 177
celas 179
dktp 180
flui4,flui6,flui8 182
fsc 183
hexa8, hexa20, penta6, penta15, tetra4, tetra10 185
hexa8b, hexa20b, hexa27b, penta6b, penta15b, tetra4b, tetra10b 190
integrules 194
mass1,mass2 202
quad4, quadb, mitc4 203
q4p, q5p, q8p, t3p, t6p 205

4

q4pb, q8pb, t3pb, t6pb 210
q9a 211
rigid 212
tria3, tria6 214

9 Function reference 215
ans2sdt 222
basis 223
commode 226
comstr 228
db, phaseb 230
fe2ss 231
fecom 234
femesh, feutil 248
feplot 265
fesuper 270
fe c 273
fe case 275
fe ceig 282
fe coor 284
fe curve 285
fe cyclic 291
fe eig 293
fe exp 296
fe load 299
fe mat 303
fe mk, fe mknl 306
fe norm 312
fe reduc 313
fe sens 316
fe simul 320
fe stres 322
fe super 324
fe time,of time 328
fe var 333
idcom 336
idopt 341
id dspi 344
id nor 345
id poly 348

5

CONTENTS

id rc, id rcopt 349
id rm 353
iicom 356
iimouse 362
iiplot 366
ii cost 370
ii mac 371
ii mmif 382
ii plp 385
ii poest 386
ii pof 388
m elastic 390
m piezo 392
nasread 393
naswrite 398
nor2res, nor2ss, nor2xf 403
ofact 409
p beam 412
p shell 414
p solid 418
p spring 421
perm2sdt 422
psi2nor 424
qbode 426
res2nor 428
res2ss, ss2res 429
res2tf, res2xf 431
rms 432
setlines 433
sdplot 434
sdtdef 436
sdth 438
sp util 439
stack get,stack set,stack rm 441
ufread 442
ufwrite 449
upcom 451
up freq, up ifreq 460
up ixf 461

6

v handle 462
xfopt 463

Bibliography 467

Index 472

7

CONTENTS

8

1

Preface

1.1 Getting started . 10

1.2 Understanding the Toolbox architecture 12

1.2.1 Layers of code . 12
1.2.2 Global variables 13

1.3 Typesetting conventions and scientific notations . 14

1.4 Release notes for SDT 5.2 and FEMLink 3.1 . . . 17

1.4.1 Key features . 17
1.4.2 Detail by function 18
1.4.3 Notes by MATLAB release 19

1.5 Release notes for SDT 5.1 and FEMLink 3.0 . . . 20

1.5.1 Key features . 20
1.5.2 Detail by function 21
1.5.3 Notes by MATLAB release 22

1 Preface

1.1 Getting started

This section is intended for people who don’t want to read the manual. It summarizes
what you should know before going through the SDT demos to really get started.

The SDT demonstrations are located in the sdtdemos directory which for a proper
installation should be in your Matlab path. Executing demosdt at the Matlab
prompt will also add the demo directory to your path if needed. Many of these
demonstrations are associated to manual pages. You can easily access the proper
page with your favorite web browser by typing the doc commands listed in the demos
at the Matlab prompt.

The series of gart.. demos cover a great part of the typical uses of the SDT. These
demos are based on the test article used by the GARTEUR Structures & Materi-
als Action Group 19 which organized a Round Robin exercise where 12 European
laboratories tested a single structure between 1995 and 1997.

Figure 1.1: GARTEUR structure.

10

gartfe
builds the finite element model using the femesh pre-
processor

gartte
shows how to prepare the visualization of test results and
perform basic correlation

gartid
does the identification on a real data set

gartco
shows how to use fe sens and fe exp to perform mode-
shape expansion and more advanced correlation

gartsens
discusses sensor/shaker placement

gartup
shows how the upcom interface can be used to further cor-
relate/update the model

The SDT provides tools covering the following areas.

Area 1: Experimental modal analysis

Experimental modal analysis combines techniques related to system identification
(data acquisition and signal processing, done outside the SDT, followed parametric
identification) with information about the spatial position of multiple sensors and
actuators.

To get started with a modal analysis project read chapter 3.

Area 2: Test/analysis correlation

Correlation between test results and finite element predictions is a usual motivation
for modal tests. Chapter 4 addresses topology correlation, test preparation, corre-
lation criteria, modeshape expansion, and structural dynamic modification. Indica-
tions on how to use SDT for model updating are given in section 6.4.

Area 3: Basic finite element analysis

Finite element analysis capabilities of the SDT are now developed as part of the
OpenFEM project. SDT extends this library with

• solvers for structural dynamics problems (eigenvalue, component mode syn-
thesis, state-space model building, ...);

• solvers capable of handling large problems more efficiently than Matlab;

11

http://www.sdtools.com/openfem

1 Preface

• a complete set of tools for graphical pre/post-processing in an object oriented
environment;

• high level handling of FEM solutions using cases;

• interface with other finite element codes through the FEMLink extension to
SDT.

Chapter 5 gives a tutorial on FEM modeling in SDT. Developer information is given
in chapter 7. Available elements are listed in chapter 8.

Area 4: Advanced FE analysis (model reduction, component mode
synthesis, families of models)

Advanced model reduction methods are one of the key applications of SDT. To
learn more about model reduction in structural dynamics read section 6.1. Typical
applications are treated in section 6.2.

Finally, as shown in section 6.3, the SDT supports many tools necessary for finite
element model updating.

1.2 Understanding the Toolbox architecture

1.2.1 Layers of code

The SDT has three layers of code.

• Graphical user interfaces (feplot, iiplot, ii mac) provide a layer of pre-
defined operations for Frequency Response Function (FRF) visualization and
analysis, identification, 3-D deformation animation, and test/analysis correla-
tion. Graphically supported operations (interactions between the user and plots/
menus/mouse movements/key pressed) form a subset of commands provided by
user interface functions.

The policy of the GUI layer is to let the user free to perform his own operations at
any point. Significant efforts are made to ensure that this does not conflict with
the continued use of GUI functions. But it is accepted that it may exceptionally
do so, since command line and script access is a key to the flexibility of SDT. In

12

http://www.sdtools.com/femlink.html

most such cases, clearing the figure (using clf) or in the worst case closing it (use
close or delete) and replotting will solve the problem.

• User interface (UI) functions provide high level solutions to problems in iden-
tification, finite element mesh handling, model reduction, sensor placement, su-
perelement handling or parameterized models for FE model update. The first
argument to these functions is a string command which is parsed to know what
operations to perform. See commode for conventions linked to parsed commands.

• Scientific functions implement standard and state of the art methods in exper-
imental modal analysis, Finite Element analysis, and to some extent in structural
design and FE model update. These functions are open and can be easily extended
to suit particular needs using the scientific environment provided by Matlab.

1.2.2 Global variables

User interfaces require a knowledge of the current state of the interface and appro-
priate data. The policy of the Toolbox is to let the user free to perform his own
operations at any point. Significant efforts are made to ensure that this does not
conflict with the continued use of GUI functions, but it is accepted that it may
exceptionally do so. This flexibility resulted in the use of both global variables
(for information that the user is likely to modify) and graphical objects (for other
information).

The user interface for data visualization and identification (iicom, idcom, iiplot)
uses a number of standard global variables shown below

Frequency response data

XF
standard data base wrapper pointing to the global variables with the
data and storing the characteristics of FRF data sets (see xfopt for
details)

IIw
vector of frequency points (same as XF(1).w)

IIxf
MIMO set of measured FRF data (XF(1).xf)

IIxe
identified data set (XF(2).xf)

IIxh, IIxi
other sets of FRF data (XF(3).xf and XF(4).xf)

IDopt identification options for the current model (see idopt, same as
XF(1).idopt)

XFdof
global variable storing options describing each column of XF(1).xf

13

1 Preface

Identified model data

IIpo
set of poles of the main identified model (see ii pof, same as XF(5).po)

IIpo1
set of poles for the alternate identified model (XF(6).po)

IIres
residues of the main identified model (see idcom, same as XF(5).res)

IIres1
residues of alternate identified model (see idcom, same as XF(5).res)

The femesh user interface for finite element mesh handling uses a number of standard
global variables shown below

FEnode
main set of nodes (also used by feplot)

FEn0
selected set of nodes

FEn1
alternate set of nodes

FEelt
main finite element model description matrix

FEel0
selected finite element model description matrix

FEel1
alternate finite element model description matrix

By default, femesh and iiplot automatically use base workspace definitions of
the standard global variables: base workspace variables with the correct name are
transformed to global variables even if you did not dot it initially. When using the
standard global variables within functions, you should always declare them as global
at the beginning of your function. If you don’t declare them as global modifications
that you perform will not be taken into account, unless you call femesh, iiplot, ...
from your function which will declare the variables as global there too. The only
thing that you should avoid is to use clear and not clear global within a function
and then reinitialize the variable to something non-zero. In such cases the global
variable is used and a warning is passed.

1.3 Typesetting conventions and scientific notations

The following typesetting conventions are used in this manual

14

courier
commands, function names, variables

Italics Matlab Toolbox names, mathematical notations, and new terms
when they are defined

Bold key names, menu names and items
Small print comments

Conventions used to specify string commands used by user interface functions are
detailed under commode.

The following conventions are used to indicate elements of a matrix

(1,2)
the element of indices 1, 2 of a matrix

(1,:)
the first row of a matrix

(1,3:)
elements 3 to whatever is consistent of the first row of a matrix

Usual abbreviations are

CMS Component Mode Synthesis (see section 6.2.1)
COMAC Coordinate Modal Assurance Criterion (see ii mac)
DOF,DOFs degree(s) of freedom (see section 7.5)
FE finite element
MAC Modal Assurance Criterion (see ii mac)
MMIF Multivariate Mode Indicator Function (see ii mmif)
POC Pseudo-orthogonality check (see ii mac)

For mathematical notations, an effort was made to comply with the notations of the
International Modal Analysis Conference (IMAC) which can be found in Ref. [1]. In
particular one has

15

1 Preface

[],{ } matrix, vector
¯ conjugate
[b] input shape matrix for model with N DOFs and NA inputs (see

section 2.1).
{
φT

j b
}
,
{
ψT

j b
}

modal input matrix of the jth normal
/ complex mode

[c] sensor output shape matrix, model with N DOFs and NS out-
puts (see section 2.1). {cφj} , {cψj} modal output matrix of the jth

normal / complex mode
[E]NS×NA correction matrix for high frequency modes (see section 2.6)
[F]NS×NA correction matrix for low frequency modes (see section 2.6)
M,C,K mass, damping and stiffness matrices
N,NM numbers of degrees of freedom, modes
NS,NA numbers of sensors, actuators
{p}NM×1 principal coordinate (degree of freedom of a normal mode model)

(see section 2.2)
{q}N×1 degree of freedom of a finite element model
s Laplace variable (s = iω for the Fourier transform)
[Rj] = {cψj}

{
ψT

j b
}

residue matrix of the jth complex mode (see sec-
tion 2.6)

[Tj] = {cφj}
{
φT

j b
}

residue matrix of the jth normal mode (used for
proportionally damped models) (see section 2.6)

{u(s)}NA×1 inputs (coefficients describing the time/frequency content of applied
forces)

{y(s)}NS×1 outputs (measurements, displacements, strains, stresses, etc.)
[Z(s)] dynamic stiffness matrix (equal to

[
Ms2 + Cs+K

]
)

[α(s)] dynamic compliance matrix (force to displacement transfer func-
tion)

p, α design parameters of a FE model (see section 6.3.1)
∆M,∆C,∆K additive modifications of the mass, damping and stiffness matrices

(see section 6.3.1)
[Γ] non-diagonal modal damping matrix (see section 2.3)
λj complex pole (see section 2.5)
[φ]N×NM real or normal modes of the undamped system(NM ≤ N)[
\Ω2

\
]

modal stiffness (diagonal matrix of modal frequencies squared) ma-
trices (see section 2.2)

[θ]N×NM NM complex modes of a first order symmetric structural model (see
section 2.5)

[ψ]N×NM NM complex modes of damped structural model (see section 2.5)

16

1.4 Release notes for SDT 5.2 and FEMLink 3.1

1.4.1 Key features

Key features of the SDT 5.2 release are

• MATLAB 7 compatibility. Fixes concern the disappearance of the isglobal
function, the changes in the object inheritance properties, help integration.

• New support for the MATLAB 7.0 64 bit versions on Linux. This becomes the
best platform to run large FEM models. The previous software limitation to 1.5
GB address space (4 GB on MACs) is no longer a difficulty.

• OpenFEM development has progressed with much improved handling of cases, a
major revision of element functions to optimize model assembly and non-linear
reassembly, bug fixes for load and stress computations.

• The new sdthdf functions implement a number of out-of-core operations that can
be used when dealing with large FEM models.

Key features of FEMLink 3.1 are

• nasread optimization has continued resulting in major speed improvements for
large FEM models and further robustness. Large op2 file support has improved.
OUTPUT4 matrix reading has been compiled to allow for large matrix handling.

• naswrite has been rewritten in great part resulting in vastly improved speeds
and major extensions in supported cards. The new job commands let the user
drive NASTRAN from MATLAB. The new EditBulk commands can be used to
generate multiple jobs. The new wop4 command can be used to write matrices to
Output4 format.

• ans2sdt a number of bugs linked to the use of models combining symmetric and
non symmetric element matrices have been fixed.

• perm2sdt the PERMAS reading interface has been fully rewritten allowing for
much faster and consistent reading. Subcomponents are now supported.

For Matlab compatibility see section 1.5.3.

17

1 Preface

1.4.2 Detail by function

cbush the number of accepted input formats has been extended.
fe cyclic This new function supports cyclic symmetry : building of cyclic case

entry, eigenvalue computation for n diameter modes.
fe2ss Extensions on the types of sensors and loads supported. Bug fix on

upcom assembly are returned basis.
fe sens Significant extensions of placement methodologies have been added see

[2].
flui4 ... this family of acoustic pressure element is now compiled.
hexa8b ... this new family of elements (hexa20b, hexa27b, hexa8b, penta15b,

penta6b, tetra10b, tetra4b) is the first series of the new generic multi-
physic elements. It supports fully anisotropic elasticity for geometri-
cally non linear problems. fe cyclic supports gyroscopic and stress
stiffening computations for models composed of elements in this family.

ii mac minor robustness enhancements, improved figure and colorbar genera-
tion, MATLAB 7 compatibility

idopt Matlab 7 compatibility and minor fixes.
fe case New Connection commands allow the creation of complex kinematic

connections.
fe eig Support of the EigOpt case information. Fixes on FMAX support in

solution 5. Improved renumering strategies.
fe exp The fixed sensor modes are now returned as a deformation structure.
fe load The load assembly was fully revised to optimize the process for non

linear operations.

18

fe mat The convert command for unit conversion has been significantly en-
hanced. Many internal changes have been introduced for fe mknl as-
sembly.

fe mk The assembly strategy has undergone a major revision with the intro-
duction of fe mknl for assembly in non-linear problems.

fe norm Memory usage has been optimized. Minor bug fixes are introduced.
fe reduc Now supports output of results as struct for use in superelements.
fe time The Newmark scheme as been optimized to support output resampling,

intermediate saves, explicit computations, ...
fesuper Minor corrections to set and MakeComplete commands.
feplot,
fecom

Significant enhancement of the material and property visualization in-
terfaces.

sdthdf this new function allows
upcom assembly is now performed in two steps so as to optimize out of core

operation
ufread,
ufwrite

speed and robustness improvements were introduced

1.4.3 Notes by MATLAB release

• Matlab 6.5 and 7.0.x

SDT 5.2 and FEMLink 3.1 are developed for these versions of Matlab and is
fully compatible with them.

Matlab is no longer compiled as a 64 bit code on SGI. This has negative
effects operation speed for large sparse matrices used in FEM problems. Some
improvements were introduced in SDT 5.0 but best performance is obtained
under Matlab 5.3. This comment holds for Matlab 6.0 too.

• Matlab 6.1

There are no known incompatibilities but tests are no longer systematically
performed on this version of MATLAB.

OpenGL support on LINUX has significant bugs so you may want to set the
default feplot renderer to zbuffer

cingui(’Renderer zbuffer default’)

• Matlab 6.0, 5.x

SDT is no longer tested and thus supported on these releases.

19

1 Preface

1.5 Release notes for SDT 5.1 and FEMLink 3.0

1.5.1 Key features

Key features of the SDT 5.1 release are

• The compilation of many time/memory intensive steps in FEM assembly, con-
straint elimination, static and eigenvalue solutions. As a result, much larger
models and many more constraints can now be considered.

• Support for cyclic symmetry, non linear time integration, non-symmetric type 3
superelements (for fluid structure coupling in particular).

• OpenFEM development has progressed with much improved handling of cases, a
major revision of element functions to optimize model assembly and non-linear
reassembly, bug fixes for load and stress computations.

• A new wire-frame expansion method to interpolate sensor motion in unmeasured
directions when non FEM model is available.

Key features of FEMLink 3.0 are

• nasread, naswrite full rewriting of NASTRAN interfaces with greatly enhanced
reading speed, support for DMIG reading, optimization for large op2 files (up to
2GB), large numbers of material properties, support of more elements, improved
handling of unknown cards, ...

• naswrite now supports SPC, MPC, TABLED1, CORDi information declared in a
model. DMIG, element, material and property writing have been improved.

• ans2sdt support for non-symmetric ANSYS element matrices (found in fluid
structure coupling problems) and corresponding support in type 3 superelements
handled by SDT.

• perm2sdt support for a number of elements has been added to the PERMAS
reading interface.

For Matlab compatibility see section 1.5.3.

20

1.5.2 Detail by function

celas All DOFs used by a celas are now retained by feutil(’getdof’)
commands.

femesh,
feutil

Now supports extrusion to penta6 and a facing element selection. Mi-
nor improvements linked object and test commands. A number of
changes linked to new fe mknl assembly.

fecom,
feplot

A number of minor enhancements and bug fixes : problems with ar-
rows, cylindrical displacement coordinate systems, active axes. You
can now enforce color limits using cf.ua.clim=[min max];feplot.
The iimouse cursor context menu now supports a 3D-Line Pick and
iiplot display of response at current point.

fe ceig Now provide a real mode based estimate of complex modes with calls
of the form def=fe ceig(model,eigopt).

fe case Major enhancements to constraint handling capabilities. New GetData
and GetTDof commands. Support for cyclic symmetry.
Constraint building is now handled by fe mpc (which is called by the
fe case GetT command). Significant optimization efforts were made to
handle models with thousands of rigid or multiple point constraints.

fe cyclic This new function supports cyclic symmetry : building of cyclic case
entry, eigenvalue computation for n diameter modes.

21

1 Preface

fe load The load assembly was fully revised to optimize the process for non
linear operations.

fe eig Speed and memory requirements have been optimized. Input form
{m,k,T,mdof} and model data structures are now consistently accepted.

fe mat The convert command for unit conversion has been significantly en-
hanced. Many internal changes have been introduced for fe mknl as-
sembly.

fe mk The assembly strategy has undergone a major revision with the intro-
duction of fe mknl for assembly in non-linear problems.

fe reduc static and Craig-Bampton solvers were optimized to handle large prob-
lems.

fe sens A new WireExp command can be used to expand motion on all direc-
tions of the test wire frame.

fesuper Underwent significant rewrite and optimization.
fe time Non linear problems are now supported : a Newmark scheme with a

Newton loop is implemented.
fsc Fluid-structure coupling element for a compressible, non-weighing fluid,

with or without a free surface.
idcom ii mac, iicom, matgui, propgui a number of GUI related problems

were resolved in these functions.
nor2ss nor2ss, nor2xf, nor2res a number of minor bug fixes and enhancement

to data structure output are introduced.
ofact Skyline object has been changes in and supports : sparse and skyline

matrices.
qbode Problems with singular solutions at s = 0 are now treated properly.
upcom now supports non-symmetric matrices. Energy densities can now be

computed. A number of minor enhancement to parameter handling,
file name defaults, ... were also introduced.

1.5.3 Notes by MATLAB release

• Matlab 6.1 and 6.5

SDT 5.1 and FEMLink 3.0 are developed for these versions of Matlab and is
fully compatible with them.

Matlab is no longer compiled as a 64 bit code on SGI. This has negative
effects operation speed for large sparse matrices used in FEM problems. Some
improvements were introduced in SDT 5.0 but best performance is obtained
under Matlab 5.3. This comment holds for Matlab 6.0 too.

22

• Matlab 6.0

A bug in figure loading prevents reloading of feplot or iiplot figures.

OpenGL support on LINUX has significant bugs so you may want to set the
default feplot renderer to zbuffer

cingui(’Renderer zbuffer default’)

• Matlab 5.x

SDT is no longer tested and thus supported on these releases.

23

1 Preface

24

2

Structural dynamic
concepts

2.1 I/O shape matrices 26

2.2 Normal mode models 28

2.3 Damping . 30

2.3.1 Viscous damping in the normal mode model form . 30
2.3.2 Damping in finite element models 31

2.4 State space models 34

2.5 Complex mode models 35

2.6 Pole/residue models 37

2.7 Parametric transfer function 39

2.8 Non-parametric transfer function 40

2 Structural dynamic concepts

This theoretical chapter is intended as a reference for the fundamental notions and
associated variables used throughout the SDT. This information is grouped here and
hypertext reference is given in the HTML version of the manual.

Models of dynamic systems are used for identification phases and links with control
applications supported by other Matlab toolboxes and Simulink. Key concepts
and variables are

b,c input/output shape matrices (b,c,pb,cp variables)
nor normal mode models (freq,damp,cp,pb variables)
damp damping for full and reduced models
cpx complex mode models (lambda, psi variables)
res pole/residue model (res,po variables)
ss state space model (a,b,c,d variables)
tf parametric transfer function (num,den variables)
xf non-parametric transfer function (w,xf variables)

2.1 I/O shape matrices

Dynamic loads applied to a discretized mechanical model can be decomposed into a
product {F}q = [b] {u(t)} where

• the input shape matrix [b] is time invariant and characterizes spatial properties
of the applied forces and

• the vector of inputs {u} allows the description of the time/frequency properties.

Similarly it is assumed that the outputs {y} (displacements but also strains, stresses,
etc.) are linearly related to the model coordinates {q} through the sensor output
shape matrix ({y} = [c] {q}).

Input and output shape matrices are typically generated with fe c or fe load.
Understanding what they represent and how they are transformed when model
DOFs/states are changed is essential.

Linear mechanical models take the general forms

[
Ms2 + Cs+K

]
N×N {q(s)} = [b]N×NA {u(s)}NA×1

{y(s)}NS×1 = [c]NS×N {q(s)}N×1

(2.1)

26

in the frequency domain (with Z(s) = Ms2 + Cs+K), and

[M] {q̈}+ [C] {q̇}+ [K] {q} = [b] {u(t)}
{y(t)} = [c] {q(t)} (2.2)

in the time domain.

In the model form (2.1), the first set of equations describes the evolution of {q}. The
components of q are called Degrees Of Freedom (DOFs) by mechanical engineers and
states in control theory. The second observation equation is rarely considered by
mechanical engineers (hopefully the SDT may change this). The purpose of this
distinction is to lead to the block diagram representation of the structural dynamics

{u(s)}
- [b]

{F (s)}
- [

Ms2 + Cs+K
]−1

{q(s)}
- [c]

{y(s)}
-

which is very useful for applications in both control and mechanics.

In the simplest case of a point force input at a DOF ql, the input shape matrix is
equal to zero except for DOF l where it takes the value 1

[bl] =



...
0
1
0
...

 ← l
(2.3)

Since {ql} = [bl]
T {q}, the transpose this Boolean input shape matrix is often called

a localization matrix. Boolean input/output shape matrices are easily generated by
fe c (see the section on DOF selection page 151).

Input/output shape matrices become really useful when not Boolean. For applica-
tions considered in the SDT they are key to

• distributed FEM loads, see fe load.

• test analysis correlation. Since you often have measurements that do not directly
correspond to DOFs (accelerations in non global directions at positions that do
not correspond to finite element nodes, see section 3.1.2).

27

2 Structural dynamic concepts

• model reduction. To allow the changes to the DOFs q while retaining the physical
meaning of the I/O relation between {u} and {y} (see section 6).

2.2 Normal mode models

The spectral decomposition is a key notion for the resolution of linear differential
equations and the characterization of system dynamics. Predictions of the vibrations
of structures are typically done for linear elastic structures or, for non-linear cases,
refer to an underlying tangent elastic model.

Spectral decomposition applied to elastic structures leads to modal analysis. The
main objective is to correctly represent low frequency dynamics by a low order model
whose size is typically orders of magnitude smaller than that of the finite element
model of an industrial structure.

The use of normal modes defined by the spectral decomposition of the elastic model
and corrections (to account for the restricted frequency range of the model) is fun-
damental in modal analysis.

Associated models are used in the normal mode model format

[
[I] s2 + [Γ] s+

[
Ω2
]]
{p(s)} =

[
φT b

]
{u(s)}

{y(s)} = [cφ] {p(s)}
(2.4)

where the modal masses (see details below) are assumed to be unity.

The nor2res, nor2ss, and nor2xf functions are mostly based on this model form
(see nor2ss theory section). They thus support a low level entry format with four
arguments

28

om modal stiffness matrix Ω2. In place of a full modal stiffness matrix om, a
vector of modal frequencies freq is generally used (in rad/s if Hz is not
specified in the type string). It is then assumed that om=diag(freq.^2).
om can be complex for models with structural damping (see the section on
damping page 30).

ga modal damping matrix Γ (viscous). damping ratios damp corresponding to
the modal frequencies freq are often used instead of the modal damping
matrix ga (damp cannot be used with a full om matrix). If damp is a vector of
the same size as freq, it is then assumed that ga=diag(2*freq.*damp). If
damp is a scalar, it is assumed that ga=2*damp*diag(freq). The application
of these models is discussed in the section on damping page 30).

pb modal input matrix {φj}T [b] (input shape matrix associated to the use of
modal coordinates).

cp modal output matrix [c] {φj} (output shape matrix associated to the use of
modal coordinates).

Higher level calls, use a data structure with the following fields

.freq frequencies (units given by .fsc field). This field may be empty if a
non diagonal nor.om is defined.

.om alternate definition for a non diagonal reduced stiffness. Nominally om
contains diag(freq.^2).

.damp modal damping ratio. Can be a scalar or a vector giving the damping
ratio for each frequency in nor.freq.

.ga alternate definition for a non diagonal reduced viscous damping.

.pb input shape matrix associated with the generalized coordinates in which
nor.om and nor.ga are defined.

.cp output shape matrix associated with the generalized coordinates in
which nor.om and nor.ga are defined.

.dof in A six column matrix where each row describes a load by [SensID
NodeID nx ny nz Type] giving a sensor identifier (integer or real), a
node identifier (positive integer), the projection of the measurement
direction on the global axes (if relevant), a Type.

.lab in A cell array of string labels associated with each input

.dof out A six column matrix describing outputs following the .dof in format

.lab out A cell array of string labels associated with each output

General load and sensor definitions are then supported using cases (see section 5.2).

Transformations to other model formats are provided using nor2ss (state-space
model), nor2xf (FRFs associated to the model in the xf format), and nor2res

29

2 Structural dynamic concepts

(complex residue model in the res format). The use of these functions is demon-
strated in demo fe.

Transformations from other model formats are provided by fe2ss, fe eig, fe norm,
. . . (from full order finite element model), id nor and res2nor (from experimentally
identified pole/residue model).

2.3 Damping

Models used to represent dissipation at the local material level and at the global
system level should typically be different. Simple viscous behavior is very often not
appropriate to describe material damping while a viscous model is appropriate in
the normal mode model format (see details in Ref. [3]).

2.3.1 Viscous damping in the normal mode model form

In the normal mode form, viscous damping is represented by the modal damping
matrix Γ which is typically used to represent all the dissipation effects at the system
level.

Models with modal damping assume that a diagonal Γ is sufficient to represent
dissipation at a system level. The non-zero terms of Γ are then usually expressed in
terms of damping ratios Γjj = 2ζjωj . The damping ratio ζj are accepted by most
SDT functions instead of a full Γ. The variable name damp is then used instead of
ga in the documentation.

For a model with modal damping, the matrices in (6.6) are diagonal so that the
contributions of the different normal modes are uncoupled and correspond exactly
to the spectral decomposition of the model (see cpx page 35 for the definition of
complex modes). The rational fraction expression of the dynamic compliance matrix
(transfer from the inputs {u} to displacement outputs {y}) takes the form

[α(s)] =
N∑

j=1

{cφj}
{
bTφj

}T

s2 + 2ζjωjs+ ω2
j

=
N∑

j=1

[Tj]NS×NA

s2 + 2ζjωjs+ ω2
j

(2.5)

where the contribution of each mode is characterized by the pole frequency ωj ,
damping ratio ζj , and the residue matrix Tj (which is equal to the product of the
normal mode output shape matrix {cφj} by the normal mode input shape matrix{
φT

j b
}
).

30

Modal damping is used when lacking better information. One will thus often set
a uniform damping ratio (ζj = 1% or damp = 0.01) or experimentally determined
damping ratios that are different for each pole (po=ii pof(po,3); damp=po(:,2);).

Historically, modal damping was associated to the proportional damping model
introduced by Lord Rayleigh which assumes the usefulness of a global viscously
damped model with a dynamic stiffness of the form

[Z(s)] =
[
Ms2 + (αM + βK)s+K

]
While this model indeed leads to a modally damped normal mode model, the α and
β coefficients can only be adjusted to represent physical damping mechanisms over
very narrow frequency bands.

Using a diagonal [Γ] can introduce significant errors when normal mode coupling
through the spatial distribution of damping mechanisms is possible. The condition

2ζjωj/|ωj − ωk| � 1
proposed by Hasselman [4], gives a good indication of when modal coupling will not
occur. One will note that a structure with a group of modes separated by a few
percent in frequency and levels of damping close to 1% does not verify this condition.
The uncoupling assumption can however still be applied to blocks of modes [5].

A normal mode model with a full Γ matrix is said to be non-proportionally damped
and is clearly more general/accurate than the simple modal damping model. The
SDT leaves the choice between the non-proportional model using a matrix ga and
the proportional model using damping ratio for each of the pole frequencies (in this
case one has ga=2*diag(damp.*freq) or ga=2*damp*diag(freq) if a scalar uniform
damping ratio is defined).

For identification phases, standard approximations linked to the assumption of
modal damping are provided by (id rc, id rm and res2nor), while id nor pro-
vides an original algorithm of the determination of a full Γ matrix. Theoretical
aspects of this algorithm and details on the approximation of modal damping are
discussed in [5]).

2.3.2 Damping in finite element models

Standard damped finite element models allow the incorporation of viscous and struc-
tural damping in the form of real C and complex K matrices respectively.

fe mk could assemble a viscous damping matrix with user defined elements that

31

2 Structural dynamic concepts

would support matrix type 3 (viscous damping) using a call of the form
fe mk(MODEL,’options’,3) (see section 7.14 for new element creation). But viscous
damping models are rarely appropriate at the finite element level [3], so that it is
not supported by any current SDT element.

Structural or hysteretic damping represents dissipation by giving a loss factor at the
element level leading to a dynamic stiffness of the form

Z(s) =
[
Ms2 +K + iB

]
= Ms2 +

NE∑
j=1

[Ke
k] (1 + iηe

k) (2.6)

Such models are best handled using upcom (see section 6.3), rather than complex
valued constitutive parameters which will not work with many element functions.
The following example defines two loss factors for group 6 and other elements of the
Garteur FEM model. Approximate damped poles are then estimated on the basis
of real modes (better approximations are discussed in [6])

upcom(’load GartUp’); upcom(’plotelt’); cf=feplot;
upcom(’ParStackreset’);
upcom(’ParStackadd k’,’Constrained Layer’,’group6’);
upcom(’ParStackadd k’,’Main structure’,’group~=6’);
% type cur min max vtype
par = [1 1.0 0.1 3.0 1

1 1.0 0.1 3.0 1];
upcom(’ParCoef’,par);

% assemble using different loss factors for each parameter
B=upcom(’assemble k coef .05 .01’);
[m,k]=upcom(’assemble coef 1.0 1.0’);
Case=fe_case(Up,’getcase’);

% Estimate damped poles on real mode basis
def=fe_eig({m,k,Case.DOF},[6 20 1e3]);
mr=def.def’*m*def.def; % this is the identity
cr=zeros(size(mr));
kr=def.def’*k*def.def+i*(def.def’*B*def.def);
[psi,lambda]=fe_ceig(mr,cr,kr);
cf.def={def.def*psi,def.DOF,lambda/2/pi}

Note that in this model, the poles λj are not complex conjugate since the hysteretic
damping model is only valid for positive frequencies (for negative frequencies one
should change the sign of the imaginary part of K).

32

Given a set of complex modes you can compute frequency responses with res2xf, or
simply use the modal damping ratio found with fe ceig. Continuing the example,
above one uses

Case=fe_case(Case,’Dofload’,’Point loads’,[4.03;55.03], ...
’SensDof’,’Sensors’,[4 55 30]’+.03);

Sens=fe_case(Case,’sens’); Load=fe_load(Case);
np=size(mr,1);

RES=struct(’res’,[],’po’,ii_pof(lambda(7:np)/2/pi,3), ...
’idopt’,idopt(’new’));

RES.idopt.residual=2;RES.idopt.fitting=’complex’;
for j1=7:np % deal with flexible modes
Rj=(Sens.cta*def.def*psi(:,j1)) * ... % c psi

(psi(:,j1).’*def.def’*Load.def); % psi^T b
RES.res(j1-6,:)=Rj(:).’;
end

% Rigid body mode residual
RES.res(end+1,:)=0;
for j1=1:6
Rj=(Sens.cta*def.def(:,j1))*(def.def(:,j1)’*Load.def);
RES.res(end,:)=RES.res(end,:)+Rj(:).’;
end

iiplot;IIw=linspace(5,60,2048);
r1=res2xf(RES,IIw);IIxf=r1.xf;
IIxe=nor2xf(def,[zeros(6,1);RES.po(:,2)],Case,IIw,’hz’);
damp=[zeros(6,1);RES.po(:,2)];
def.data=sqrt(real(def.data.^2)).*sqrt(1+i*damp*2);
IIxh=nor2xf(def,[],Case,IIw,’hz’);
IIpo=RES.po;iicom(’;iixfon;iixeon;iixhon;submagpha’)

Note that the presence of rigid body modes, which can only be represented as resid-
ual terms in the pole/residue format (see section 2.6), makes the example more
complex. The plot illustrates differences in responses obtained with true complex
modes, viscous modal damping or hysteretic modal damping (case where one uses
the pole of the true complex mode with a normal mode shape) . Viscous and hys-
teretic modal damping are nearly identical. With true complex modes, only channels
2 and 4 show a visible difference, and then only near anti-resonances.

33

2 Structural dynamic concepts

To incorporate static corrections, you may want to compute complex modes on bases
generated by fe2ss, rather than simple modal bases obtained with fe eig.

The use of a constant loss factor can be a crude approximation for materials ex-
hibiting significant damping. Methods used to treat frequency dependent materials
are described in Ref. [7].

2.4 State space models

While normal mode models are appropriate for structures, state-space models
allow the representation of more general linear dynamic systems and are commonly
used in the Control Toolbox or Simulink. The standard form for state space-models
is

{ẋ} = [A] {x(t)}+ [B] {u(t)}
{y} = [C] {x(t)}+ [D] {u(t)} (2.7)

with inputs {u}, states {x} and outputs {y}. State-space models are represented
in the SDT, as generally done in other Toolboxes for use with Matlab, using four
independent matrix variables a, b, c, and d (you should also take a look at the LTI
state-space object of the Control Toolbox).

The natural state-space representation of normal mode models (2.4) is given by{
ṗ
p̈

}
=

[
0 I
−Ω2 −Γ

]{
p
ṗ

}
+

[
0
φT b

]
{u(t)}

{y(t)} = [cφ 0]

{
p
ṗ

} (2.8)

Transformations to this form are provided by nor2ss and fe2ss. Another special
form of state-space models is constructed by res2ss.

A state-space representation of the nominal structural model (2.1) is given by{
q̇
q̈

}
=

[
0 I

−M−1K −M−1C

]{
q
q̇

}
+

[
0

M−1b

]
{u(t)}

{y(t)} = [c 0]

{
q
q̇

} (2.9)

The interest of this representation is mostly academic because it does not preserve
symmetry (an useful feature of models of structures associated to the assumption
of reciprocity) and because M−1K is usually a full matrix (so that the associated

34

memory requirements for a realistic finite element model would be prohibitive). The
SDT thus always starts by transforming a model to the normal mode form and the
associated state-space model (2.8).

The transfer functions from inputs to outputs are described in the frequency domain
by

{y(s)} =
(
[C] [s I −A]−1 [B] + [D]

)
{u(s)} (2.10)

assuming that [A] is diagonalizable in the basis of complex modes, model (2.7) is
equivalent to the diagonal model(

s [I]−
[
\λj\

])
{η(s)} =

[
θT
Lb
]
{u}

{y} = [cθR] {η(s)}
(2.11)

where the left and right modeshapes (columns of [θR] and [θL]) are solution of
{θjL}T [A] = λj {θjL}T and [A] {θjR} = λj {θjR} (2.12)

and verify the orthogonality conditions
[θL]T [θR] = [I] and [θL]T [A] [θR] =

[
\λj\

]
(2.13)

The diagonal state space form corresponds to the partial fraction expansion

{y(s)} =
2N∑
j=1

{cψj}
{
ψT

j b
}

s− λj
=

2N∑
j=1

[Rj]NS×NA

s− λj
(2.14)

where the contribution of each mode is characterized by the pole location λj and
the residue matrix Rj (which is equal to the product of the complex modal output
{cθj} by the modal input

{
θT
j b
}
).

The partial fraction expansion (2.14) is heavily used for the identification routines
implemented in the SDT (see the section on the pole/residue representation ref page
37.

2.5 Complex mode models

The standard spectral decomposition discussed for state-space models in the previous
section can be applied directly to second order models of structural dynamics. The
associated modes are called complex modes by opposition to normal modes
which are associated to elastic models of structures and are always real valued.

Left and right eigenvectors, which are equal for reciprocal structural models, can be

35

2 Structural dynamic concepts

defined by the second order eigenvalue problem,[
Mλ2

j + Cλj +K
]
{ψj} = {0} (2.15)

In practice however, mathematical libraries only provide first order eigenvalue solvers
to that a transformation to the first order form is needed. Rather than the trivial
state-space form (2.9), the following generalized state-space form is preferred[

C M
M 0

]{
q̇
q̈

}
+

[
K 0
0 −M

]{
q
q̇

}
=

[
b
0

]
{u}

{y} =
[
c 0

]{ q
q̇

} (2.16)

The matrices M,C and K being symmetric (assumption of reciprocity), the general-
ized state-space model (2.16) is symmetric. The associate left and right eigenvectors
are thus equal and found by solving([

C M
M 0

]
λj +

[
K 0
0 −M

])
{θj} = {0} (2.17)

Because of the specific block from of the problem, it can be shown that

{θj} =

{
ψj

ψjλj

}
(2.18)

where it should be noted that the name complex modeshape is given to both θj (for
applications in system dynamics) and ψj (for applications in structural dynamics).

The initial model being real, complex eigenvalues λj come in conjugate pairs asso-
ciated to conjugate pairs of modeshapes {ψj}. With the exception of systems with
real poles, there are 2N complex eigenvalues for the considered symmetric systems
(ψ[N+1...2N] = ψ̄[1...N] and λ[N+1...2N] = λ̄[1...N]).

The existence of a set of 2N eigenvectors is equivalent to the verification of two
orthogonality conditions

[θ]T
[
C M
M 0

]
[θ] = ψTCψ + ΛψTMψ + ψTMψΛ =

[
\I\
]
2N

[θ]T
[
K 0
0 −M

]
[θ] = ψTKψ − ΛψTMψΛ = −

[
\Λ\

]
2N

(2.19)

where in (2.19) the arbitrary diagonal matrix was chosen to be the identity because it
leads to a normalization of complex modes that is equivalent to the collocation con-
straint used to scale experimentally determined modeshapes ([5] and section 3.4.2).

Note that with hysteretic damping (complex valued stiffness, see section 2.3.2) the
modes are not complex conjugate but opposite. To use a complex mode basis one

36

thus needs to replace complex modes whose poles have negative imaginary parts
with the conjugate of the corresponding mode whose pole has a positive imaginary
part.

For a particular dynamic system, one will only be interested in predicting or measur-
ing how complex modes are excited (modal input shape matrix

{
θT
j B
}

=
{
ψT

j b
}
)

or observed (modal output shape matrix {Cθj} = {cψj}).

In the structural dynamics community, the modal input shape matrix is often
called modal participation factor (and noted Lj) and the modal output shape
matrix simply modeshape. A different terminology is preferred here to convey the
fact that both notions are dual and that

{
ψT

j bl
}

= {clψj} for a reciprocal structure
and a collocated pair of inputs and outputs (such that uẏ is the power input to the
structure).

For predictions, complex modes can be computed from finite element models using
fe ceig. Computing complex modes of full order models is not necessary. You
should thus reduce the model on a basis of real vectors (as discussed in [6] and illus-
trated in section 2.3.2) before calling fe ceig (if you really want complex modes).

For identification phases, complex modes are used in the form of residue matrices
product [Rj] = {cψj}

{
ψT

j b
}

(see the next section). Modal residues are obtained by
id rc and separation of the modal input and output parts is obtained using id rm.

For lightly damped structures, imposing the modal damping assumption, which
forces the use of real modeshapes, may give correct result and simplify your identi-
fication work very much. Refer to section 3.4.3 for more details.

2.6 Pole/residue models

The spectral decomposition associated to complex modes, leads to a representation
of the transfer function as a sum of modal contributions

[α(s)] =
2N∑
j=1

{cψj}
{
ψT

j b
}

s− λj

 =
2N∑
j=1

(
[Rj]
s− λj

)
(2.20)

For applications in identification from experimental data, one can only determine
modes whose poles are located in the test frequency range. The full series thus need
to be truncated. The contributions of out-of-band modes cannot be neglected for
applications in structural dynamics. One thus introduces a high frequency residual
correction for truncated high frequency terms and, when needed, (quite often for

37

2 Structural dynamic concepts

suspended test articles) a low frequency residual for modes below the measurement
frequency band.

These corrections depend on the type of transfer function so that the SDT uses the
IDopt variable (see the reference section on the idopt function) to define the current
type. IDopt.Residual specifies which corrections are needed (the default is 3 which
includes both a low and high frequency residuals). IDopt.Data specifies if the FRF
is force to displacement, velocity or acceleration. For a force to displacement transfer
function with low and high frequency correction), the pole/residue model (also
called partial fraction expansion) thus takes the form

[α(s)] =
∑

j∈identified

(
[Rj]
s− λj

+
[
R̄j
]

s− λ̄j

)
+ [E] +

[F]
s2

(2.21)

The SDT always stores pole/residue models in the displacement/force format. The
expression of the force to acceleration transfer function is thus

[A(s)] =
∑

j∈identified

(
s2 [Rj]
s− λj

+
s2
[
R̄j
]

s− λ̄j

)
+ s2 [E] + [F] (2.22)

The nominal pole/residue model above is used when IDopt.Fit=’Complex’. This
model assumes that complex poles come in conjugate pairs and that the residue
matrices are also conjugate which is true for real system.

The complex residues with asymmetric pole structure (IDopt.Fit=’Posit’)
only keep the poles with positive imaginary parts

[α(s)] =
∑

j∈identified

(
[Rj]
s− λj

)
+ [E] +

[F]
s2

(2.23)

which allows slightly faster computations when using id rc for the identification but
not so much so that the symmetric pole pattern should not be used in general. This
option is only maintained for backward compatibility reasons.

The normal mode residues with symmetric pole structure (IDopt.Fit=’Nor’)

[α(s)] =
∑

j∈identified

(
[Tj]

s2 + 2ζjωjs+ ω2
j

)
+ [E] +

[F]
s2

(2.24)

can be used to identify normal modes directly under the assumption of modal damp-
ing (see damp page 30).

Further characterization of the properties of a given pole/residue model is given by
a structure detailed under the xfopt Shapes at DOF section.

The residue matrices res are stored using one row for each pole or asymptotic
correction term and, as for FRFs (see the xf format), a column for each SISO transfer

38

function (stackingNS columns for actuator 1, thenNS columns for actuator 2, etc.).

res =



...
Rj(11) Rj(21) . . . Rj(12) Rj(22) . . .

...
. . .

...
. . .

E11 E21 . . . E12 E22 . . .
F11 F21 . . . F12 F22 . . .


(2.25)

The normal mode residues (IDopt.Fit=’Normal’) are stored in a similar fashion
with for only difference that the Tj are real while the Rj are complex.

2.7 Parametric transfer function

Except for the id poly and qbode functions, the SDT does not typically use the
numerous variants of the ARMAX model that are traditional in system identification
applications and lead to the ratio of polynomials called transfer function format
(tf) in other Matlab Toolboxes. In modal analysis, transfer functions refer to the
functions characterizing the relation between inputs and outputs. The tf format
thus corresponds to the parametric representations of sets of transfer functions in
the form of a ratio of polynomials

Hj(s) =
aj,1s

na−1 + aj,2s
na−2 + . . .+ aj,na

bj,1snb−1 + bj,2snb−2 + . . .+ bj,nb
(2.26)

The SDT stacks the different numerator and denominator polynomials as rows of
numerator and denominator matrices

num =

 a11 a12 . . .
a21 a22 . . .
...

. . .

 and den =

 b11 b12 . . .
b21 b22 . . .
...

. . .

 (2.27)

Other Matlab toolboxes typically only accept a single common denominator (den
is a single row). This form is also accepted by qbode which is used to predict FRFs
at a number of frequencies in the non-parametric xf format).

The id poly function identifies polynomial representations of sets of test functions
and res2tf provides a transformation between the pole/residue and polynomial
representations of transfer functions.

39

2 Structural dynamic concepts

2.8 Non-parametric transfer function

For a linear system at a given frequency ω, the response vector {y} at NS sensor
locations to a vector {u} of NA inputs is described by the NS by NA rectangular
matrix of Frequency Responses (FRF)

y1(ω)
...

yNS(ω)

 = [H] {u} =

 H11(ω) H12(ω) . . .
H21(ω) H22(ω)

...
. . .


NS×NA


u1(ω)

...
uNA(ω)

 (2.28)

The SDT stores frequencies at which the FRF are evaluated as a column vector w

w =


ω1
...

ωNW


NW×1

(2.29)

and SISO FRFs Hij are stored as columns of the matrix xf where each row corre-
sponds to a different frequency (indicated in w). By default, it is assumed that the
correspondence between the columns of xf and the sensors and actuator numbers is
as follows. The NS transfer functions from actuator 1 to the NS sensors are stored
as the first NS columns of xf, then the NS transfer functions of actuator 2, etc.

xf =

 H11(ω1) H21(ω1) . . . H12(ω1) H22(ω1) . . .
H11(ω2) H21(ω2) . . . H12(ω2) H22(ω2) . . .

...
. . .

...
. . .


NW×(NS×NA)

(2.30)

Further characterization of the properties of a given set of FRFs is given by a
structure detailed under the xfopt Response data section.

Frequency response functions corresponding to parametric models can be generated
in the xf format using qbode (transformation from ss and tf formats), nor2xf,
or res2xf. These functions use robustness/speed trade-offs that are different from
algorithms implemented in other Matlab toolboxes and are more appropriate for
applications in structural dynamics.

40

3

Modal test tutorial

3.1 Preparing a modal test 42

3.1.1 Geometry declaration 42
3.1.2 Sensor/shaker configurations 44

3.2 Data import and visualization 46

3.2.1 Data acquisition 46
3.2.2 Importing FRF data 47
3.2.3 Getting started with the iiplot interface 49
3.2.4 Operational deflection shapes 52

3.3 Identification of modal properties 54

3.3.1 The id rc procedure step by step 54
3.3.2 Background theory 61
3.3.3 When id rc fails 62
3.3.4 Direct system parameter identification algorithm . 64
3.3.5 Orthogonal polynomial identification algorithm . . 65

3.4 MIMO, Reciprocity, State-space, 67

3.4.1 Multiplicity (minimal state-space model) 67
3.4.2 Reciprocal models of structures 69
3.4.3 Normal mode form 71

3 Modal test tutorial

An experimental modal analysis project can be decomposed in following steps

• before the test, preparation and design (see section 3.1)

• acquisition of test data, import into the SDT, direct exploitation of measurements
(visualization, operational deflexion shapes, ...) (see section 3.2)

• identification of modal properties from test data (see section 3.3)

• handling of MIMO tests and other model transformations (output of identified
models to state-space, normal mode, ... formats, taking reciprocity into account,
...) (see section 3.4)

Further steps (test/analysis correlation, shape expansion, structural dynamics mod-
ification) are discussed in chapter section 4.

3.1 Preparing a modal test

Before actually taking measurements, it is good practice to prepare a wire frame-
display (section 3.1.1) and define the sensor configuration (section 3.1.2). The in-
formation takes the form of a test specific .m file which should look like the gartte
demo without the various plot commands. The d pre demo also talks about test
preparation.

3.1.1 Geometry declaration

A wire-frame model is composed of node and connectivity declarations. The asso-
ciated script ends by plotting commands. Based on the authors’ experience, the
easiest method to create a test geometry is to have a script with the elements shown
below. This however requires familiarity with the process so that alternatives are
gradually introduced and accessible from the feplot File:New model ... menu.

On Windows, the SDT you can currently edit nodes and connectivity using Excel
(select that item in the File:New model ... list). Excel icons displayed in the
feplot figure to let you update the plot based on the current worksheet content
and close the Excel server when done. Note that this editor is initialized with the
model currently showing in the feplot figure.

42

Figure 3.1: Test analysis : wire-frame model.

The node matrix specifies the 3-D location of the needed nodes following the stan-
dard node format (see section 7.1). For example, the node matrix linked to the
2-bay truss demonstration (see section 5.1.2) is

test.Node= ...
[1 0 0 0 0 1 0;

2 0 0 0 0 0 0;
3 0 0 0 1 1 0;
4 0 0 0 1 0 0;
5 0 0 0 2 0 0;
6 0 0 0 2 1 0];

The connectivity is the line used to connect the various test nodes. You could
use any FE model for a connectivity but in general wire-frame representations are
relatively sparse so that the SDT supports a special declaration format (the line
connectivity matrix ldraw which corresponds to the Universal Format 82 (Trace
Line)). Each line is a series of connected node numbers with 0 used to have discon-
tinuous segments. It is good practice to use one line per substructure (so that you
remove certain substructures from the display using the fecom group commands).
For example, the 2-bay truss (see section 5.1.2) can be represented as two cells using

L=[1 3 2 4 3];
ldraw(1,[1 82+[1:length(L)]]) = [length(L) L];
st=’Group1’; ldraw(1,3:length(st)+2)=st;
L=[3 6 0 6 5 0 4 5 0 4 6];
ldraw(2,[1 82+[1:length(L)]]) = [length(L) L];
st=’Group2’; ldraw(2,3:length(st)+2)=st;

43

3 Modal test tutorial

% transforms the trace into beam elements
test.Elt=feutil(’trace2elt’,ldraw);

Declaring the nodes and connectivity matrix is a time consuming part of the
preparation of a modal test.

Once the node, elt or ldraw defined, you can visualize your test mesh using

cf=feplot;cf.model=test;

which shows the structure in its undeformed configuration. Note that

• you can start with an empty ldraw so that feplot draws a cloud of nodes. You
can then use fecom TextNode or the mouse cursor (see iimouse) to see node
numbers a gradually connect them by filling the .m script associated to your test.

The fe fmesh(’3dlineinit’) command will also start an automated line mesh-
ing tool cursor in the current feplot figure. Click on nodes continue the line,
while the context menu allows breaks, last point removal, exit, and display of the
ldraw building commands in the Matlab command window. This procedure is
particularly useful if you already have a FEM model of your test article.

• you can also use the femesh ObjectBeamLine command to define the experimental
mesh.

• If you have a FE mesh, you can easily combine the FE and wire frame models using
the femesh AddTest command (see gartte). The procedure to solve the common
problem of matching coordinate systems when they initially have different scales /
orientations / origins is discussed in section 4.1.1.

The feplot and fecom functions provide a number of tools that are designed to
help in visualizing test results. You should take the time to go through the gartid,
gartte and gartco demos to learn more about them.

3.1.2 Sensor/shaker configurations

The SDT handles translation and rotation sensors at arbitrary locations. The un-
derlying principles detailed in section 4.1.2 are also applicable to strain sensors but
this capability is not fully supported.

44

Figure 3.2: Sensor/shaker locations.

Basic sensor configurations correspond to cases where the measurements are trans-
lations in global directions and, if test analysis correlation is desired, the sensors
are located at finite element nodes. In such cases, everything can be easily handled
using DOF definition vectors.

DOF definition vectors (see mdof page 146 allow the description of translation
DOFs in global directions. The convention that DOFs .07 to .09 correspond to
translations in the −x,−y,−z directions is implemented specifically for the common
case where test sensors are oriented this way. For example, you can display sensors
using (see the gartte demo)

cf=demosdt(’demogartteplot’)
sdof = [1011.03 1001.03 2012.07 1012.03 2005.07 1005.03 1008.03 ...
1111.03 1101.03 2112.07 1112.03 2105.07 1105.03 1108.03 1201.07 ...
2201.08 3201.03 1206.03 1205.08 1302.08 2301.07 1301.03 2303.07 ...
1303.03]’;
cf.sens(1) = sdof; cf.o(3)=’ty7sel1’;
fecom(’;scd.15;textdof’);

fe sens and feplot handle translation sensors in non-global directions by defining a
5 column matrix with rows containing [SensID NodeID nx ny nz] giving a sensor
identifier (integer or real), a node identifier (positive integer), and the projection of
the measurement direction on the global axes. This procedure does not require the
cumbersome definition of multiple local coordinate systems. In the gartte example,
the format would be

cf=demosdt(’demogartteplot’)
% Address Node nx ny nz

45

3 Modal test tutorial

sdof=[1011.03 1011 0.0 0.0 1.0;
1001.03 1001 0.0 0.0 1.0;
2012.07 2012 -1.0 0.0 0.0;
1012.03 1012 0.0 0.0 1.0;
2005.07 2005 -1.0 0.0 0.0;
1005.03 1005 0.0 0.0 1.0;
1008.03 1008 0.0 0.0 1.0;
1111.03 1111 0.0 0.0 1.0];

cf.sens(1) = sdof; cf.o(3)=’ty7sel1’;
fecom(’;scd.15;textdof’);

Sensor and shaker definitions associated with each measured input/output pair are
normally entered in the acquisition phase as detailed in section 3.2.2. Except for
roving hammer tests, the number of input locations is usually small and only used
for MIMO identification (see section 3.4).

Once a sensor configuration defined, you can directly animate measured shapes
(called Operational Deflection Shapes) as detailed in section 3.2.4.

3.2 Data import and visualization

3.2.1 Data acquisition

The Structural Dynamics Toolbox does not intend to support the acquisition of
test data since tight integration of acquisition hardware and software is mandatory.
The following table gives a partial list of systems with which the SDT has been
successfully interfaced.

46

Vendor Procedure used

Bruel & Kjaer
Export data from Pulse to the UFF and read into SDT with
ufread or use the Bridge To Matlab software and pulse2sdt.

Dactron Export data from RT-Pro software to the UFF. Use the Active-
X API to drive the Photon from Matlab.

LMS Export data from LMS CADA-X to UFF.
MathWorks Use Data Acquisition and Signal Processing toolboxes to es-

timate FRFs and create a script to fill in SDT information
(see section 3.2.2).

MTS Export data from IDEAS-Pro software to UFF.
Polytec Export data from PSV software to UFF.
Spectral Dynamics Create a Matlab script to format data from SigLab to SDT

format.

You can find theoretical information on data acquisition for modal analysis in
Refs. [8][9][10][11].

3.2.2 Importing FRF data

There are two main mechanisms to import FRF data into SDT. Universal files are
easiest if generated by the acquisition system. Writting of an import script defining
fields used by SDT is also fairly simple and described below (you can then use
ufwrite to generate universal files for export).

The ufread and ufwrite functions allow conversions between the xf format and
files in the Universal File Format which is supported by most measurement systems.
A typical call would be

UFS=ufread(’FileName.unv’); % read
iiplot % initialize iiplot
XF(1)=UFS(3) % show UFS(3) in iiplot

where you read the database wrapper UFS (see xfopt), initialize the standard database
wrapper XF used by iiplot and idcom, assign dataset 3 of UFS to dataset 1 of XF
(assuming that dataset three represents frequency response functions of interest).

Note that some acquisition systems write many universal files for a set of measure-
ments (one file per channel). This is now supported by ufread with a stared file
name

UFS=ufread(’FileRoot*.unv’);

47

http://www.bksv.com/
http://www.sdtools.com/contrib/pulse2sdt.m
http://www.dactron.com/
http://www.lms.be
http://www.mathworks.com/
http://www.mts.com/nvd/
http://www.polytec.com/polytec-com/index.html
http://www.dspt.com/

3 Modal test tutorial

Measured frequency responses are stored in the .xf field (frequencies in .w) and
should comply with the specifications of the xf format (see details under xf page
40). Other fields needed to specify the physical meaning of each FRF are detailed in
the xfopt reference section. When importing data from your own format or using
a universal file where some fields are not correct, the SDT will generally function
with default values set by the xfopt function, but you should still complete/correct
these variables as much as possible.

For correct display of deformations and title/legend generation, you should set the
XF(1).dof field (see more details in the xfopt response data section). For example
one can consider a MIMO test with 2 inputs and 20 outputs stored as columns of
variable xf with the rows corresponding to frequencies stored in w. You script will
look like
XF(1).w=w;
XF(1).xf=xf; % define the responses at all DOFs
out_dof=[1:20]+.03’; % output dofs for 20 sensors in y direction
in_dof=[1.03 10.03]; % input dofs for two shakers at nodes 1 and 10
out_dof=out_dof(:)*ones(1,length(in_dof));
in_dof=ones(length(out_dof),1)*in_dof(:)’;
XF(1).dof(:,1:2)=[out_dof(:) in_dof(:)];
XF(1).idopt.nsna=size(out_dof);
XF(1).idopt.recip=’mimo’;

You can also edit these values using the iiplot properties:channel tab.

For correct identification using id rc, you should verify the fields of XF(1).idopt.
These correspond to the IDcomGUI:Options tab (see section 3.3). You can also edit
these values in a script. For correct identification, you should set

demosdt(’demogartid’);
XF(1).idopt.Residual=’3’;
XF(1).idopt.DataType=’Acc’;
XF(1).idopt.Absci=’Hz’;XF(1).idopt.PoleU=’Hz’;
iicom(’wmin 6 40’) % sets XF(1).idopt.Selected
XF(1).idopt.Fit=’Complex’;
XF(1).idopt % display current options

For correct transformations using id rm, you should also verify IDopt.NSNA (number
of sensors/actuators), IDopt.Reciprocity and IDopt.Collocated.

For correct labels using iiplot you should set the abscissa, and ordinate numera-
tor/denominator types in the data base wrapper. You can edit these values using
the iiplot properties:channel tab. A typical script would declare frequencies,
acceleration, and force using (see list with xfopt datatype)

48

UFS(2).x=’Freq’;UFS(2).yn=’Acc’;UFS(2).yd=’Load’;UFS(2).info

3.2.3 Getting started with the iiplot interface

Most identification problems should be solved using the standard commands for
identification provided in idcom while running the iiplot interface for data visu-
alization. To perform an identification correctly, you need to have some familiarity
with the interface and in particular with the iicom commands that let you modify
what you display. You should also take a look at iimouse which is used to enable
mouse and key press operations within iiplot, feplot, and ii mac figures.

To familiarize yourself with the iiplot interface, run demosdt(’demogartidpro’).
Which opens the iiplot figure and the associated iiplot(2) properties figure.

Text area �
for IIplot commands

Select�
datasets�
to display

Current Axes button

 PlotType pull-down menu
 Frequency band selection

Scanning�
FRF

Figure 3.3: iiplot interface.

49

3 Modal test tutorial

Select
AxesView

Select Subplot Objects shown
in current axes

Figure 3.4: iiplot properties tab.

iiplot displays data stored in the global variable XF which contains four response
datasets (XF(1) to XF(4)) and two shape datasets (XF(5) and XF(6)) (see xfopt
for general information about database wrappers). The tabs of the property figure
let you edit

• DataBase : general properties of datasets in XF.

50

• Channel : properties of each input/output pair in the current XFi dataset as
well as rapid selection of which channel is displayed.

• Axes : detailed manipulations of axes displayed by iiplot.

The d iiplot demo which will launch your browser at the HTML version of this
page and initialize using load sdt id; iiplot. Once there, try the following steps

• Type iicom submagpha to display a standard magnitude/phase plot. Open the
IIplot:sub commands menu and see that you could have achieved the same thing
using this pull-down menu. Note that you could also type the submagpha com-
mand in the text area near the button.

• Drag your mouse on the plot to select a region of interest and see how you directly
zoom to this region. Double click on the same plot to go back to the initial zoom.
On some platforms the double click is sensitive to speed and you may want to type
the i key with the axis of interest active. An axis becomes active when you click
on it. When, as here, you have more than one axis, the current axis button
and PlotType pull-down menu are updated when a new axis becomes current.

• Open the ContextMenu associated with any axis (click anywhere in the axis using
the right mouse button), select Cursor, and see how you have a vertical cursor
giving information about data in the axis. To stop the cursor use a right click or
press the c key.

• Notice the other things you can do with the ContextMenu : select lin or log scales,
set axes title options, set pole line defaults, ...

• Open the ContextMenu associated with any line object (click on the line using
the right mouse button), see how you can set line type, width, color ...

• Click on pole lines (vertical dotted lines) and FRFs and see how additional in-
formation on what you just clicked on is given. You can hide the info area by
clicking on it.

• Type iicom(’;cax1;showmmi’); to display the MMIF in the lower plot. Go
back to the phase, by making axis 1 active (click on it and the current axis
button should show) and selecting phase(w) in the axis type menu (which
is located just on the right of the current axis button).

• use the to scan trough different transfer functions. Note that you can also use
the + or - keys when a drawing axis is active.

• Go the the Channel tab of the property figure and select more than one channel
in the list. Note that you can also select channels from the command line using
iicom(’ch 1 5’).

51

3 Modal test tutorial

• Make another data set using IIxe=2*IIxf; and overlay IIxf and IIxe using
iicom(’;showabs;ch1;iixf on;IIxeOn’). You could also achieve the same
thing using the IIplot:Variables menu. Take a look at the iiplot reference
section for a list of global variables used by the iiplot interface and remember
that using the clear command on these variables only clears the link between
the local and the global variable.

• Note that when you print the figure, you may want to use the -noui switch so
that the GUI is not printed. Example print -noui -depsc2 FileName.eps.

• continue the d iiplot demo which shows a few other things.

After running through these steps, you should master the basics of the iiplot in-
terface. To learn more, you should take time to see which commands are available
by reading the Reference sections for iicom (general list of commands for plot ma-
nipulations), iimouse (mouse and key press support for SDT and non SDT figures),
iiplot (standard plots derived from FRFs and test results that are supported).

3.2.4 Operational deflection shapes

Operational Deflection Shapes is a generic name used to designate the spatial re-
lation of forced vibration measured at two or more sensors. Time responses of
simultaneously acquired measurements, frequency responses to a possibly unknown
input, transfer functions, transmissibilities, ... are example of ODS.

When displaying responses with iiplot and a test geometry with feplot, iiplot
supports an ODS cursor. Run demosdt(’DemoGartteOds’) then open the context
menu associated with any iiplot axis and select ODS Cursor. The deflection show
in the feplot figure will change as you move the cursor in the iiplot window.

More generally, you can use fecom Initdef commands to display any shape as soon
as you have a defined geometry and a response at DOFs. The Deformations tab of
the feplot properties figure then lets you select deformations within a set.

cf=demosdt(’DemoGartteOds’)
cf.def=XF(1);
% or the low level call
% cf.def={XF(1).xf,XF(1).dof,XF(1).w}
fecom(’curtab Deformation’);

You can also display the actual measurements as arrows using

cf=demosdt(’DemoGartteOds’); cf.def=XF(1);
cf.sens=XF(1).dof;fecom showarrow;

52

For a tutorial on the use of feplot see section 5.4.

53

3 Modal test tutorial

3.3 Identification of modal properties

Identification is the process of estimating a parametric model (poles and mode-
shapes) that accurately represents measured data. The main algorithm proposed in
the SDT is a frequency domain output error method that builds a model in the pole
residue form (see section 2.6) through a tuning strategy. Key theoretical notions
are pole/residue models, residual terms page 121, and the relation between residues
and modeshapes (cpx page 35).

Section 3.3.1 gives a tutorial on the standard procedure. Theoretical details about
the underlying algorithm are given in section 3.3.2. Section 3.3.3 addresses its typ-
ical shortcomings. Other methods implemented in the SDT but not considered as
efficient are addressed in later sections.

For the handling of MIMO tests, reciprocity, ... see section 3.4. The gartid script
gives real data and an identification result for the GARTEUR example. The demo id
script analyses a simple identification example.

3.3.1 The id rc procedure step by step

The id rc identification method is based on an iterative refinement of the poles of
the current model. Illustrated by the diagram below.

The main steps of the methodology are

• finding initial pole estimates (with the narrow band estimator, idcom e com-
mand), adding missed poles, removing computational poles (using the arrows
between the main and alternate pole sets, ea and er commands)

• estimating residues and residual terms for a given set of poles (est com-
mand/button or direct call to id rc)

• optimizing poles (and residues) of the current model using a broad or narrow
band update (eup, eopt, eoptlocal, ... commands/buttons, with frequency
band selection using the wmin, wmo, ... commands/buttons)

54

- ’e’ Advanced pole picking -

Other algorithms

?

Alternate set of poles
IIpo1, IIres1

?
6

-

’er’ remove ’ea’ add

Main set of poles
IIpo, IIres

?

Frequency band selection
’wmin’, ’wmo’, ...

?

LS estimate of residues
’est’ gives IIres,IIxe

?

Visual inspection using
the iiplot interface
(FRF, MMIF, ...)

?

Constraints on IIres
See next section

Missing mode
Computational mode
Needs tuning

-

6

NLLS Model tuning

’eup’, ’eopt’ broadband

’wmo’, ... band selection
’eoptlocal’ narrowband

After verification of the Options tab of the idcom GUI figure, the Identification
tab shown below gives you easy access to these steps (to open this figure, just run
idcom from the Matlab prompt). More details on how to proceed for each step are
given below using data of the demo id script.

55

3 Modal test tutorial

Narrow band estimator

Frequency band selection
Pole optimization algorithms

Main set of poles

Alternate set of poles

Figure 3.5: iicom interface.

The iteratively refined model is fully characterized by its poles (and the measured
data). It is thus convenient to cut/paste the pole estimates into and out of a text
editor (you can use the context menu of the main pole set to display this in the
Matlab command window). Saving the current pole set in a text file as the lines

IIpo = [1.1298e+02 1.0009e-02
1.6974e+02 1.2615e-02
2.3190e+02 8.9411e-03];

gives you all you need to recreate an identified model (even if you delete the current
one) but also lets you refine the model by adding the line corresponding to a pole that
you might have omitted. The context menu associated with the pole set listboxes
lets you easily generate this list.

1 finding initial pole estimates, adding missed poles, removing computa-
tional poles

Getting an initial estimate of the poles of the model is the first difficulty. Dynamic
responses of structures, typically show lightly damped resonances. The easiest way
to build an initial estimate of the poles is thus to use a sequence of narrow band
single pole estimations near peaks of the response or minima of the Multivariate
Mode Indicator function (use iicom showmmi and see ii mmif for a full list of mode
indicator functions).

56

The idcom e command (based on a call to the ii poest function) lets you to indicate
a frequency (with the mouse or by giving a frequency value) and seeks a single pole
narrow band model near this frequency (the pole is stored in XF(6) (which points to
IIpo1 and IIres1). Once the estimate found the iiplot drawing axes are updated
to overlay XF(1) and XF(2).

�

Figure 3.6: Pole estimation.

In the plot shown above the fit is clearly quite good. This can also be judged by the
information displayed by ii poest

LinLS: 1.563e-11, LogLS 8.974e-05, nw 10
mean(relE) 0.00, scatter 0.00
Found pole at 1.1299e+02 9.9994e-03

which indicates the linear and quadratic costs in the narrow frequency band used
to find the pole, the number of points in the band, the mean relative error (norm
of difference between test and model over norm of response which should be below
0.1), and the level of scatter (norm of real part over norm of residues, which should
be small if the structure is close to having modal damping).

If you have a good fit and the pole differs from poles already in you current model,
you can add the estimated pole (add poles in XF(6) to those in XF(5) IIpo) using the
idcom ea command (or the associated button). If the fit is not appropriate you can
change the number of selected points/bandwidth and/or the central frequency. In
rare cases where the local pole estimate does not give appropriate results you can add
a pole by just indicating its frequency (f command) or you can use the polynomial
(id poly), direct system parameter (id dspi), or any other identification algorithm
to find your poles. You can also consider the idcom find command which uses the
MMIF to seek poles that are present in your data but not in IIpo.

In cases where you have added too many poles to your current model, the idcom er
command then lets you remove certain poles.

57

3 Modal test tutorial

This phase of the identification relies heavily on user involvement. You are expected
to visualize the different FRFs (use the +/- buttons/keys), check different frequency
bands (zoom with the mouse and use iicom w commands), use Bode, Nyquist,
MMIF, etc. (see iicom show commands). The iiplot graphical user interface was
designed to help you in this process and you should learn how to use it (you can get
started in section 3.2).

2 estimating residues and residual terms

Once a model is created (you have estimated a set of poles), idcom est determines
residues and displays the synthesized FRFs stored in XF(2) (which points to IIxe).
A careful visualization of the data often leads to the discovery that some poles are
missing from the initial model. The idcom e and ea commands can again be used
to find initial estimates for the missing poles.

The need to add/remove poles is determined by careful examination of the match
between the test data XF(1) and identified model XF(2). You should take the time
to scan through different sensors, look at amplitude, phase, Nyquist, ...

�

�

Figure 3.7: Pole estimation.

Quality and error plots are of particular interest. The quality plot (lower right,
obtained with iicom showqual) gives an indication of the quality of the fit near
each pole. Here pole 2 does not have a very good fit (relative error close to 0.2) but
the response level (dotted line) is very small. The error plot (lower left, obtained with
iicom showerr) shows the same information for the current pole and each transfer

58

function (you change the current pole by clicking on pole lines in the top plot). Here
it confirms that the relative Nyquist error is close to 0.2 for most channels. This
clearly indicates the need to update this pole as detailed in the next section (in this
example, the relative Nyquist error is close to 0.1 after updating).

3 updating poles of the current model using a broad or narrow frequency
band update

The various procedures used to build the initial pole set (see step 1 above) tend to
give good but not perfect approximations of the pole sets. In particular, they tend
to optimize the model for a cost that differs from the broadband quadratic cost that
is really of interest here and thus result in biased pole estimates.

It is therefore highly desirable to perform non-linear update of the poles in XF(5).
This update, which corresponds to a Non-Linear Least-Squares minimization, can
be performed using the commands idcom eup (id rc function) and eopt (id rcopt
function). The optimization problem is very non linear and non convex, good results
are thus only found when improving results that are already acceptable (the result
of phase 2 looks similar to the measured transfer function).

When using the eup command id rc starts by reminding you of the currently se-
lected options (global variable IDopt) for the type of residual corrections, model
selected and, when needed, partial frequency range selected

Low and high frequency mode correction
Complex residue symmetric pole pattern

the algorithm then does a first estimation of residues and step directions and outputs

mode# dstep (%) zeta fstep (%) freq
1 10.000 1.0001e-02 -0.200 7.1043e+02
2 -10.000 1.0001e-02 0.200 1.0569e+03
3 10.000 1.0001e-02 -0.200 1.2176e+03
4 10.000 1.0001e-02 -0.200 1.4587e+03

Quadratic cost
4.6869e-09

Log-mag least-squares cost
6.5772e+01

how many more iterations? ([cr] for 1, 0 to exit) 30

which indicates the current pole positions, frequency and damping steps, as well
as quadratic and logLS costs for the complete set of FRFs. These indications and

59

3 Modal test tutorial

particularly the way they improve after a few iterations should be used to determine
when to stop iterating.

Here is a typical result after about 20 iterations

mode# dstep (%) zeta fstep (%) freq
1 -0.001 1.0005e-02 0.000 7.0993e+02
2 -0.156 1.0481e-02 -0.001 1.0624e+03
3 -0.020 9.9943e-03 0.000 1.2140e+03
4 -0.039 1.0058e-02 -0.001 1.4560e+03

Quadratic cost
4.6869e-09 7.2729e-10 7.2741e-10 7.2686e-10 7.2697e-10
Log-mag least-squares cost
6.5772e+01 3.8229e+01 3.8270e+01 3.8232e+01 3.8196e+01

how many more iterations? ([cr] for 1, 0 to exit) 0

Satisfactory convergence can be judged by the convergence of the quadratic and
logLS cost function values and the diminution of step sizes on the frequencies and
damping ratios. In the example, the damping and frequency step-sizes of all the
poles have been reduced by a factor higher than 50 to levels that are extremely low.
Furthermore, both the quadratic and logLS costs have been significantly reduced
(the leftmost value is the initial cost, the right most the current) and are now
decreasing very slowly. These different factors indicate a good convergence and the
model can be accepted (even though it is not exactly optimal).

The step size is divided by 2 every time the sign of the cost gradient changes (which
generally corresponds passing over the optimal value). Thus, you need to have all
(or at least most) steps divided by 8 for an acceptable convergence. Upon exit from
id rc, the idcom eup command displays an overlay of the measured data XF(1) and
the model with updated poles XF(2). As indicated before, you should use the error
and quality plots to see if mode tuning is needed.

The optimization is performed in the selected frequency range (idopt wmin and wmax
indices). It is often useful to select a narrow frequency band that contains a few
poles and update these poles. When doing so, model poles whose frequency are not
within the selected band should be kept but not updated (use the euplocal and
eoptlocal commands). You can also update selected poles using the ’eup num i’
command (for example if you just added a pole that was previously missing).

id rc (eup command) uses an ad-hoc optimization algorithm, that is not guaranteed
to improve the result but has been found to be efficient during years of practice.
id rcopt (eopt command) uses a conjugate gradient algorithm which is guaranteed

60

to improve the result but tends to get stuck at non optimal locations. You should
use the eopt command when optimizing just one or two poles (for example using
eoptlocal or ’eopt num i’ to optimize different poles sequentially).

In many practical applications the results obtained after this first set of iterations
are incomplete. Quite often local poles will have been omitted and should now be
appended to the current set of poles (going back to step 1). Furthermore some poles
may be diverging (damping and/or frequency step not converging towards zero).
This divergence will occur if you add too many poles (and these poles should be
deleted) and may occur in cases with very closely spaced or local modes where the
initial step or the errors linked to other poles change the local optimum for the pole
significantly (in this case you should reset the pole to its initial value and restart
the optimization).

Once a good complex residue model obtained, one often seeks models that verify
other properties of minimality, reciprocity or represented in the second order mass,
damping, stiffness form. These approximations are provided using the id rm and
id nor algorithms as detailed in section 3.4.

3.3.2 Background theory

The id rc algorithm (see [12][13]) seeks a non linear least squares approximation of
the measured data

pmodel = arg min
NS,NA,NW∑

j,k,l=1

(
αjk(id)(ωl, p)− αjk(test)(ωl)

)2
(3.1)

for models in the nominal pole/residue form (also often called partial fraction ex-
pansion [14])

[α(s)] =
∑

jidentified

(
[Rj]
s− λj

+
[
R̄j
]

s− λ̄j

)
+ [E] +

[F]
s2

= [Φ(λj , s)] [Rj , E, F] (3.2)

or its variants detailed under res page 37.

These models are linear functions of the residues and residual terms [Rj , E, F] and
non linear functions of the poles λj . The algorithm thus works in two stages with
residues found as solution of a linear least-square problem and poles found through
a non linear optimization.

The id rc function (idcom eup command) uses an ad-hoc optimization where all
poles are optimized simultaneously and steps and directions are found using gradient
information. This algorithm is usually the most efficient when optimizing more than
two poles simultaneously, but is not guaranteed to converge or even to improve the

61

3 Modal test tutorial

result.

The id rcopt function (idcom eopt command) uses a gradient or conjugate gradient
optimization. It is guaranteed to improve the result but tends to be very slow
when optimizing poles that are not closely spaced (this is due to the fact that
the optimization problem is non convex and poorly conditioned). The standard
procedure for the use of these algorithms is described in section 3.3.1. Improved
and more robust optimization strategies are still considered and will eventually find
their way into the SDT.

3.3.3 When id rc fails

This section gives a few examples of cases where a direct use of id rc gave poor
results. The proposed solutions may give you hints on what to look for if you
encounter a particular problem.

�

Figure 3.8: FRF estimation

In many cases frequencies of estimated FRFs go down to zero. The first few points
in these estimates generally show very large errors which can be attributed to both
signal processing errors and sensor limitations. The figure above, shows a typical
case where the first few points are in error by orders of magnitude. Of two models
with the same poles, the one that keeps the low frequency erroneous points (- — -)
has a very large error while a model truncating the low frequency range (- - -) gives
an extremely accurate fit of the data (—).

62

�

�

�

Figure 3.9: FRF xxx

The fact that appropriate residual terms are needed to obtain good results can have
significant effects. The figure above shows a typical problem where the identification
is performed in the band indicated by the two vertical solid lines. When using the 7
poles of the band, two modes above the selected band have a strong contribution so
that the fit (- - -) is poor and shows peaks that are more apparent than needed (in
the 900-1100 Hz range the FRF should look flat). When the two modes just above
the band are introduced, the fit becomes almost perfect (- — -) (only visible near
750 Hz).

Keeping out of band modes when doing narrow band pole updates is thus quite
important. You may also consider identifying groups of modes by doing sequential
identifications for segments of your test frequency band [13].

The example below shows a related effect. A very significant improvement is ob-
tained when doing the estimation while removing the first peak from the band. In
this case the problem is actually linked to measurement noise on this first peak (the
Nyquist plot shown in the lower left corner is far from the theoretical circle).

63

3 Modal test tutorial

�

�

�

�

�

Figure 3.10: FRF xxx

Other problems are linked to poor test results. Typical sources of difficulties are

• mass loading (resonance shifts from FRF to FRF due to batch acquisition with
displaced sensors between batches),

• leakage in the estimated FRFs,

• significant non-linearities (inducing non-symmetric resonances or resonance
shifts for various excitation positions),

• medium frequency range behavior (the peaks of more than a few modes overlay
significantly it can be very hard to separate the contributions of each mode
even with MIMO excitation).

3.3.4 Direct system parameter identification algorithm

A class of identification algorithms makes a direct use of the second order parame-
terization. Although the general methodology introduced in previous sections was

64

shown to be more efficient in general, the use of such algorithms may still be inter-
esting for first-cut analyses. A major drawback of second order algorithms is that
they fail to consider residual terms.

The algorithm proposed in id dspi is derived from the direct system parameter
identification algorithm introduced in Ref. [15]. Constraining the model to have the
second-order form

[
−ω2I + iωCT +KT

]
{p(ω)} = [bT] {u(ω)}

{y(ω)} = [cT] {p(ω)} (3.3)

it clearly appears that for known [cT], {yT }, {uT } the system matrices [CT], [KT],
and [bT] can be found as solutions of a linear least-squares problem.

For a given output frequency response {yT } =xout and input frequency content
{uT } =xin, id dspi determines an optimal output shape matrix [cT] and solves the
least squares problem for [CT], [KT], and [bT]. The results are given as a state-space
model of the form{

q̇
q̈

}
=

[
0 I
−KT −CT

]{
q
q̇

}
+

[
0
bT

]
{u(t)}

{y(t)} = [cT 0]

{
q
q̇

} (3.4)

The frequency content of the input {u} has a strong influence on the results obtained
with id dspi. Quite often it is efficient to use it as a weighting, rather than using
a white input (column of ones) in which case the columns of {y} are the transfer
functions.

As no conditions are imposed on the reciprocity (symmetry) of the system matrices
[CT] and [KT] and input/output shape matrices, the results of the algorithm are
not directly related to the normal mode models identified by the general method.
Results obtained by this method are thus not directly applicable to the prediction
problems treated in section 3.4.2.

3.3.5 Orthogonal polynomial identification algorithm

Among other parameterizations used for identification purposes, polynomial repre-
sentations of transfer functions (2.26) have been investigated in more detail. However
for structures with a number of lightly damped poles, numerical conditioning is of-
ten a problem. These problems are less acute when using orthogonal polynomials
as proposed in Ref. [16]. This orthogonal polynomial method is implemented in

65

3 Modal test tutorial

id poly, which is meant as a flexible tool for initial analyses of frequency response
functions. This function is available as idcom poly command.

66

3.4 MIMO, Reciprocity, State-space, ...

The pole/residue representation is often not the desired format. Access to transfor-
mations is provided by the post-processing tab in the idcom properties figure. There
you can select the desired output format and the name of the variable in the base
Matlab workspace you want the results to be stored in.

Figure 3.11: idcom interface

The id rm algorithm is used for the creation of minimal and/or reciprocal pole/residue
models (from the command line use sys=id rm(XF(5))). For the extra step of state-
space model creation use sys=res2ss(XF(5)).
nor=res2nor(XF(5)) or nor=id nor(XF(5)) allow transformations to the normal
mode form. Finally direct conversions to other formats are given by
struct=res2xf(XF(5),IIw) and [num,den]=res2xf(XF(5)).

These calls are illustrated in demo id.

3.4.1 Multiplicity (minimal state-space model)

Theory As mentioned under res page 37 , the residue matrix of a mode can be written as
the product of the input and output shape matrices, so that the modal contribution
takes the form

Rj

s− λj
=
{cψj}

{
ψT

j b
}

s− λj
(3.5)

67

3 Modal test tutorial

For a single mode, the product {cψj}
{
ψT

j b
}

has rank 1. Thus for a truly MIMO test
(with more than one input and output), the residue matrix found by id rc usually
has full rank and cannot be written as shown in (3.5). In some cases, two poles of a
structure are so close that they can be considered as a multiple pole λj = λj+1, so
that

Rj

s− λj
=
{cψj}

{
ψT

j b
}

+ {cψj+1}
{
ψT

j+1b
}

s− λj
(3.6)

In such cases, the residue matrix [Rj] has rank two. Minimality (i.e. rank con-
straint on the residue matrix) is achieved by computing, for each mode, the singular
value decomposition of the residue matrix Rj = UΣV T . By definition of the singular
value decomposition [

R̃j

]
NS×NA

= {U1}NS×1 σ1 {V1}TNA×1 (3.7)

is the best rank 1 approximation (in the matrix norm sense) of Rj . Furthermore,
the ratio σ2/σ1 is a measure of the relative error made by retaining only the first
dyad. This ratio gives, for MIMO tests, an indication of the coherence of estimated
modeshapes and occasionally an indication of the pole multiplicity if two poles are
sufficiently close to be considered as identical (see the example below).

Minimal pole/residue models are directly linked to a state-space model of the form(
s [I]2N×2N −

[
\λj\

])
{η} =

[
ψT b

]
{u}

{y} = [cψ] {η}
(3.8)

which can then be transformed to a real valued state-space model (see res2ss) or
a second order normal mode model (see section 3.4.3).

Practice id rm builds a rank constrained approximation of the residue matrix associated to
each pole. When not enforcing reciprocity, the output of the call

demosdt(’demo demo_id’)
XF(5).idopt.nsna=[5 2]; XF(5).idopt.reci=’no’;
RES = id_rm(XF(5),[1 2 1 1]);
% or low level call
[pb,cp,new_res]=id_rm(IIres,IIpo,XF(5).idopt,[1 2 1 1]);

returns an output that has has the form

The system has 5 sensors and 2 actuators
FRF 7 (actuator 2 sensor 2) is collocated

Po # freq mul Ratio of sing. val. to max
1 7.10e+02 2 : 0.3000 k 0.0029

68

2 9.10e+02 1 : 0.1000 0.0002
3 1.20e+03 1 : 0.0050 0.0001
4 1.50e+03 1 : 0.0300 0.0000

where the first three columns indicate pole number, frequency and retained multi-
plicity and the following give an indication of the difference between the full rank
residue matrix and the rank constrained one (the singular value ratio should be
much smaller than 1).

In the result show above, pole 1 is close to being rank 2 since the difference between
the full order residue matrix and a rank 1 approximation is of the order of 30% while
the difference with a rank 2 approximation is only near 0.2%.

The fact that a rank 1 approximation is not very good can be linked to actual
multiplicity but more often indicates poor identification or incoherent data. For
poor identification the associated pole should be updated as shown in section 3.3.
For incoherent data (for example modes slightly modified due to changing shakers
during sequential SIMO tests), one should perform separate identifications for each
set of coherent measurements. The rank constrained approximation can then be a
way to reconcile the various results obtained for each identification.

If the rank of the residue matrix is truly linked to pole multiplicity, one should try
to update the identification in the vicinity of the pole: select a narrow frequency
range near this pole, then create and optimize a two or more pole model as shown
section 3.3.1. True modal multiplicity being almost impossible to design into a
physical structure, it is generally possible to resolve such problems. Keeping multiple
poles should thus only remain an intermediate step when not having the time to do
better.

3.4.2 Reciprocal models of structures

Theory In many cases, the structures tested are assumed to be reciprocal (the transfers force
at A/response at B and force at B/response at A are equal) and one wants to build a
reciprocal model. For modal contributions of the form (3.5), reciprocity corresponds
to the equality of collocated input and output shape matrices

([ccol] {ψj})T = {ψj}T [bcol] (3.9)

For reciprocal structures, the residue matrix associated to collocated FRFs should
be symmetric. id rm thus starts computing the symmetric part of the collocated
residues R̂jcol =

(
Rjcol +RT

jcol

)
/2. This matrix being symmetric, its singular

69

3 Modal test tutorial

value decomposition is given by R̂jcol = UcolΣcolV
T
col which leads to the reciprocal

input and output shape matrices

{ccolψj} =
{
ψT

j bcol
}T

=
√
σ1col {U1col} (3.10)

Typically, there are many more sensors than inputs. The decomposition (3.10)
is thus only used to determine the collocated input shape matrices and the output
shape matrices at all sensors are found as solution of a least square problem {cψj} =

[Rj]
{
ψT

j bcol
}+

which does require that all inputs have a collocated sensor.

Reciprocity provides scaled input and output shape matrices. This scaling is the
same as that obtained with the analytical scaling condition (2.19). The interest of
using reciprocal models is to predict non measured transfer functions.

Practice When collocated transfer functions are declared and IDopt.Reciprocity=’1 FRF’
or MIMO, id rm seeks a minimal and reciprocal approximation to the model. For the
call

demosdt(’demo demo_id’)
XF(5).idopt.nsna=[5 2]; XF(5).idopt.Col=[1 7];
XF(5).idopt.reci=’mimo’;
RES = id_rm(XF(5),[1 1 1 1]);
XF(3)=res2xf(RES,IIw);iicom(’IIxhOn’)
% or low level call
[pb,cp,new_res]=id_rm(IIres,IIpo,XF(5).idopt,[1 1 1 1]);
IIxh = res2xf(new_res,IIpo,IIw,IDopt); iicom(’IIxhOn’)

id rm shows information of the form

The system has 5 sensors and 2 actuators
FRF 1 (actuator 1 sensor 1) is collocated
FRF 7 (actuator 2 sensor 2) is collocated
Reciprocal MIMO system
Po# freq mul sym. rel.e.

1 1.13e+02 1 : 0.0001 0.0002
2 1.70e+02 1 : 0.0020 0.0040
3 1.93e+02 1 : 0.0003 0.0005
4 2.32e+02 1 : 0.0022 0.0044

where the output indicates the number of sensors and actuators, the collocated
FRFs, the fact the resulting model will enforce MIMO reciprocity, and details the
accuracy achieved for each mode.

70

The algorithm first enforces symmetry on the declared collocated transfer functions
the symmetry error sym. shows how asymmetric the original residue matrices where.
If for a given mode this number is not close to zero, the mode is poorly identified or
the data is far from verifying reciprocity and building a reciprocal model makes no
sense.

The algorithm then seeks a rank constrained approximation, the relative error num-
ber rel. e. shows how good an approximation of the initial residue matrix the
final result is. If this number is larger than .1, you should go back to identifying
a minimal but non reciprocal model, determine the actual multiplicity, and update
the pole, if it is not very well identified, or verify that your data is really reciprocal.

You can check the accuracy of FRF predicted with the associated model using the
synthesized FRFs (IIxh/XF(3) in the example above). An alternate FRF generation
call would be

[a,b,c,d]=res2ss(res,po,idopt);
IIxh=qbode(a,b,c,d,IIw*2*pi);

This more expensive computationally, but state-space models are particularly useful
for coupled system analysis and control synthesis.

You can also use reciprocal models to predict the response of untested transfer
functions. For example the response associated to a shaker placed at the uind
sensor (not a collocated one) can be computed using

demosdt(’demo demo_id’)
[psib,cpsi]=id_rm(IIres,IIpo,IDopt,[1 1 1 1]);
uind=3; res_u = (cpsi*diag(cpsi(uind,:))).’;
IIxe=res2xf(res_u,IIpo,IIw,IDopt); iiplot

You should note that the res u model does not contain any residual terms, since
reciprocity does not give any information on those. Good predictions of unmeasured
transfers are thus limited to cases where residual terms can be neglected (which is
very hard to know a priori).

3.4.3 Normal mode form

Modal damping assumption

While the most accurate viscous damping models are obtained with a full damping
matrix Γ (supported by psi2nor and id nor as detailed in the next section), modal

71

3 Modal test tutorial

damping (where Γ is assumed diagonal which is valid assumption when (3.15) is
verified) is used in most industrial applications and is directly supported by id rc,
id rm and res2nor. The use of this functionality is demonstrated in demo id.

For a modally damped model (diagonal modal damping matrix Γ), the normal mode
model (2.4) can be rewritten in a rational fraction form (with truncation and residual
terms)

[α(s)] =
NM∑
j=1

{cφj}
{
bTφj

}T

s2 + 2ζjωjs+ ω2
j

+ [E] +
[F]
s2

=
NM∑
j=1

[Tj]NS×NA

s2 + 2ζjωjs+ ω2
j

+ E(s) (3.11)

This parameterization, called normal mode residue form, has a symmetric pole pat-
tern and is supported by various functions (id rc, id rm, res2xf , ...) through the
use of the option IDopt.Fit=’Normal’. As for the complex residues (2.25), the
normal mode residue matrix given by id rc and used by other functions is stacked
using one row for each pole or asymptotic correction term and, as the FRFs (see
the xf format), a column for each SISO transfer function (stacking NS columns for
actuator 1, then NS columns for actuator 2, etc.)

Assuming that the constraint of proportional damping is valid, the identified residue
matrix Tj is directly related to the true normal modes

[Tj] = {cφj}
{
φT

j b
}

(3.12)

and the dyadic decomposition of the residue matrix can be used as in the complex
mode case (see section 3.4.1 and the function id rm) to obtain a minimal and/or
reciprocal models (as well as scaled input and output shape matrices).

The scaling implied by equations (3.11) and (3.12) and used in the functions of the
Toolbox is consistent with the assumption of unit mass normalization of the normal
modes (see details under nor page 28). This remains true even for multiple modes.
A result rarely obtained by other methods.

When a complex mode identification has been performed (IDopt.Fit=’Complex’ or
’Posit’), the function res2nor also provides a simple approximation of the complex
residue model by a normal mode residue model.

Non proportional damping assumption

Theory The complex modes of a minimal/reciprocal model are related to the mass / damp-
ing / stiffness matrices by (see Ref. [5])

M =
(
ψ̃Λψ̃T

)−1
, C = −Mψ̃Λ2ψ̃TM, and K =

(
ψ̃Λ−1ψ̃T

)−1
(3.13)

72

if and only if the complex modes are also proper. That is, they verify verify
2N∑
j=1

{
ψ̃j

}{
ψ̃j

}T
=
[
ψ̃
]
N×2N

[
ψ̃
]T
N×2N

= [0]N×N (3.14)

The transformation id nor is thus done in two stages. id rm is used to find a
minimal and reciprocal approximation of the identified residue model of the form
(3.8). psi2nor then determines c and ψ̃ such that the ψ̃ verify the condition (3.14)
and cψ̃ is “optimally” close to the cψ resulting from id rm. Using the complex
modes ψ̃ and the identified poles λ, the matrices are then computed and the model
transformed to the standard normal mode form with no further approximation.

The possibility to perform the transformation is based on the fact that the considered
group of modes is not significantly coupled to other modes by damping [5]. Groups
of modes which can be approximated by a second order non proportionally damped
model can be easily detected using the frequency separation criterion which must
be verified between modes j in the group and modes k outside the group

ζjωjζkωk

ωjωk

2

� 1 (3.15)

If there does not exist a normal mode model that has complex modes close to the
identification result cψ, the algorithm may not work. This will happen in particular
if cψΛψT cT = cM−1cT does not have NQ positive eigenvalues (estimated mass not
positive definite).

Practice The use of this functionality is demonstrated in demo id. For comparisons with
undamped FE models, it is essential to obtain estimates of normal modes. The
most accurate results are obtained using a non-proportionally damped normal mode
model

[om,ga,pb,cp] = id_nor(IIres,IIpo,IDopt);

but approximate transformations based on the assumption of proportional damping
can be obtained with res2nor. This is particularly useful if the identification is
not good enough to build the minimal and reciprocal model used by id nor. In
such cases you can also consider using id rc with the assumption of proportional
damping which directly identifies normal modes (see more details in section 3.4.3).

The FRFs associated to the normal mode model can be computed using

IIxe = nor2xf(om,ga,pb,cp,IIw*2*pi);

Scaling problems are often encountered when using the reciprocity to condition to
scale the complex modes in id rm. The function id nor allows an optimization of

73

3 Modal test tutorial

collocated residues based on a comparison of the identified residues and those linked
to the normal mode model. You should be aware that id nor only works on very
good identification results, so that trying it without spending the time to go through
the pole update phase of id rc makes little sense.

The normal mode input pb and output cp matrices correspond to those of an analyt-
ical model with mass normalized modes. They can be compared (ii mac, ii comac)
or combined (fe exp) with analytical models and the modal frequencies om and
damping matrix ga can be used for predictions (see more details in section 4.4).

The identified models only take some complex modes into account. Other modes
and residual terms are here represented by the E(s) term and must be retained (as
in the example treated in demo id). Second order models are said to be complete
when E(s) can be neglected [17].

The id nor and res2nor algorithms only seek approximations the modes. For FRF
predictions one will often have to add the residual terms. The figure below (taken
from demo id) shows an example where including residual terms tremendously im-
proves the prediction.

�

Figure 3.12: FRF xx

The residual mass and flexibility contributions of a four poles model can be found
using

IIxh = IIxe + res2xf(IIres,IIpo,IIw,IDopt,[5 6]);

or equivalently with

[new_res,IIpo] = id_nor(IIres,IIpo,IDopt)
IIxh = res2xf(new_res,IIpo,IIw,IDopt)

74

4

Test/analysis correlation
tutorial

4.1 Topology correlation and test preparation 77

4.1.1 Combining models 77
4.1.2 Observation matrix for a sensor configuration . . . 78
4.1.3 Sensor/shaker placement 80

4.2 Test/analysis correlation 81

4.2.1 Shape based criteria 81
4.2.2 Energy based criteria 82
4.2.3 Correlation of FRFs 83

4.3 Expansion methods 84

4.3.1 Underlying theory for expansion methods 84
4.3.2 Basic interpolation methods for unmeasured DOFs 86
4.3.3 Subspace based expansion methods 87
4.3.4 Model based expansion methods 89

4.4 Structural dynamic modification 89

4 Test/analysis correlation tutorial

Modal testing differs from system identification in the fact that responses are mea-
sured at a number of sensors which have a spatial distribution which allows the
visualization of the measured motion. Visualization is key for a proper assessment
of the quality of an experimental result. One typically considers three levels of
models.

• Input/output models are defined at sensors. In the figure, one represents these
sensors as arrows corresponding to the line of sight measurements of a laser vi-
brometer. Input/output models are the direct result of the identification proce-
dure described in chapter 3.

• Wire frame models are used to visualize test results. They are an essential verifica-
tion tool for the experimentalist. Designing a test well, includes making sure that
the wire frame representation is sufficiently detailed to give the experimentalist a
good understanding of the measured motion. With non-triaxial measurements, a
significant difficulty is to handle the perception of motion assumed to be zero.

• Finite element models are used for test/analysis correlation. In most industrial
applications, test and FEM nodes are not coincident so that special care must be
taken when predicting FEM motion at test nodes/sensors (shape observation) or
estimating test motion at FEM DOFs (shape expansion).

Figure 4.1: FE and wire-frame models

The tools for the declaration of the wire-frame model and of sensor setups are
detailed in section 3.1. Topology correlation and sensor/shaker placement tools are
details in section 4.1. A summary of general tools used to compare sets of shapes is
made in section 4.2. Shape expansion, which deals with the transformations between
the wire-frame and FE models, is introduced in section 4.3. The results of correlation

76

can be used for hybrid models combining experimental and analytical results (see
section 4.4) or for finite element model updating (see section 6.4).

4.1 Topology correlation and test preparation

Topology correlation is the phase where one correlates test and model geometrical
and sensor/shaker configurations. Most of this effort is handled by fe sens with
some use of femesh.

As described in the following sections the three important phases of topology corre-
lation are

• combining test and FEM model including coordinate system definition for the
test nodes if there is a coordinate system mismatch,

• building of an observation matrix allowing the prediction of measurements
based on FEM deformations,

• sensor and shaker placement.

4.1.1 Combining models

Given a FEM model (see section 5.1) and a test wire-frame model (see section 3.1.1),
the first step is make sure that the wire-frame is indeed declared as a wire frame and
to combine these models. This is easily done with the femesh addtest command as
follows (see also the gartte demo)

FEM =demosdt(’demo gartfe’);
TEST=demosdt(’demo gartte’);
TEST.Elt=feutil(’setgroupall egid-1’,TEST); % declare as wire-frame
sens=feutil(’addtest’,FEM,TEST);
feutil(’infoelt’,sens) % put the combined model in sens
cf=feplot;cf.model=sens;fecom(’showlinks’);

The FEM model must describe nodes, elements and DOFs. The test wire frame TEST
must describe nodes and lines/elements.

In many practical applications, the coordinate systems for test and FEM differ.
fe sens supports the use of a local coordinate system for test nodes with the basis
command. For an example use

77

4 Test/analysis correlation tutorial

sens=demosdt(’demo gartte basis’);
cf=feplot;cf.model=sens;
pause
sens=fe_sens(’basis estimate’,sens);
cf.model=sens
fe_sens(’tdof’,sens)
fecom(’view3’)

Note that sensors defined using a sens.tdof DOF definition vector use the response
coordinate system information given in column 3 of sens.Node while the 5 column
format gives sensor directions in the global FEM coordinate system. In the example
above, position and displacement coordinate systems for test nodes are set to 100.
Thus the sensor 1011.02 (sens.tdof(1)) is a measurement in FEM direction z.

4.1.2 Observation matrix for a sensor configuration

fe sens only assumes that measurements are linearly related to DOFs by an obser-
vation equation

{y(t)}NS×1 = [c]NS×N {q(t)}N×1 (4.1)

This actually allows you to deal with non translation sensors sensors (rotation,
strain, or any measurement linearly related to finite element DOF displacement).
For a theoretical discussion of the methods discussed here see [18].

fe sens actually supports mixed translation/rotation sensors using a DOF definition
vector in the sens.tdof field, or translation sensors in arbitrary directions using
the 5 column format discussed in section 3.1.2. For scanning laser vibrometer tests
consider using the fe sens laser command to define sens.tdof.

For topology correlation, the sensor configuration must be stored in the sens.tdof
field and active FEM DOFs must be declared in sens.DOF. If you do not have
your analysis modeshapes yet, you can use sens.DOF=feutil(’getdof’,sens.DOF).
With these fields and a combined test/FEM model you can estimate test node motion
from FEM results. Available interpolations are

78

near defines the projection based on a nearest node match.
rigid defines the projection based on a nearest node match but assumes a

rigid body link between the DOFs of the FE model and the test DOFs
to obtain the DOF definition vector adof describing DOFs used for
FEM results.

arigid is a variant of the rigid link that estimates rotations based on transla-
tions of other nodes. This interpolation is more accurate than rigid
for solid elements (since they don’t have rotational DOFs) and shells
(since the value of drilling rotations is often poorly related to the phys-
ical rotation of a small segment).

Since the nearest nodes is not necessarily the linked to the elements on which the
sensor is glued, you may want to ensure that the observation matrices created by
these commands only use nodes associated to a subset of elements. You can use
FEMNodeSelectors and TestNodeSelectors arguments to force matching in par-
ticular node subsets. This is illustrated below in forcing the interpolation of test
node 1206 to use FEM nodes in the plane where it is glued.

sens=demosdt(’demo gartte cor’);
sens=fe_sens(’arigid’,sens); % initial estimate
% sens=fe_sens(’arigid’,sens,’TestNodeSelectors’,’FEMNodeSelectors’);
sens=fe_sens(’rigid’,sens,’nodeid 1206’,’z>.15’);
% modify link to 1206
fe_sens(’plotlinks’,sens);fecom(’textnode’,1206)
fe_sens(’info’,sens)

At each point, you can see which interpolations you are using with
fe sens(’info’,sens). Note that when defining test nodes in a local basis, the
node selection commands are applied in the global coordinate system.

The interpolations are stored in the sens.cta field. With that information you can
predict the response of the FEM model at test nodes. For example

[sens,def]=demosdt(’demo gartte cor’);
sens=fe_sens(’rigid’,sens); % initial estimate
cf=feplot; cf.model=sens; fecom(’showtest’)
cf.def={sens.cta*def.def,sens.tdof,def.data}
fecom(’;undefline;scd.5;ch7’)

The most common source of problems with the topology correlation commands is
the use of models with nodes not attached to any element. All test nodes must be
linked to the wire-frame model and all FEM Nodes must be linked to an element. A
standard procedure to force fe sens to consider additional nodes is to declare them
in a group of mass elements as show in the example below

79

4 Test/analysis correlation tutorial

sens=demosdt(’demo gartte cor’);
% Add test nodes to wire-frame
elt=feutil(’objectmass egid-1’,[1012 1112]);
sens.Elt(end+[1:size(elt,1)],1:size(elt,2))=elt;
% Add test nodes to FEM model
elt=feutil(’objectmass egid0’,[62 47]);
sens.Elt(end+[1:size(elt,1)],1:size(elt,2))=elt;
feutil(’infoelt’,sens)

4.1.3 Sensor/shaker placement

In cases where an analytical model of a structure is available before the modal test,
it is good practice to use the model to design the sensor/shaker configuration.

Typical objectives for sensor placement are

• Wire frame representations resulting from the placement should allow a good
visualization of test results without expansion. Achieving this objective, en-
hances the ability of people doing the test to diagnose problems with the test,
which is obviously very desirable.

• Seen at sensors, it is desirable that modes look different. This is measured by
the condition number of [cφ]T [cφ] (modeshape independence, see [19]) or by
the magnitude of off-diagonal terms in the auto-MAC matrix (this measures
orthogonality). Both independence and orthogonality are strongly related.

• sensitivity of measured modeshape to a particular physical parameter (param-
eter visibility)

Sensor placement capabilities are accessed using the fe sens function as illustrated
in the gartsens demo. This function supports the effective independence [19] and
maximum sequence algorithms which seek to provide good placement in terms of
modeshape independence.

It is always good practice to verify the orthogonality of FEM modes at sensors using
the auto-MAC (whose off-diagonal terms should typically be below 0.1)

cphi = fe_c(mdof,sdof)*mode; ii_mac(’cpa’,cphi,’mac auto plot’)

For shaker placement, you typically want to make sure that

80

• you excite a set of target modes,

• or will have a combination of simultaneous loads that excites a particular mode
and not other nearby modes.

The placement based on the first objective is easily achieved looking at the mini-
mum controlability, the second uses the Multivariate Mode Indicator function (see
ii mmif). Appropriate calls are illustrated in the gartsens demo.

4.2 Test/analysis correlation

Correlation criteria seek to analyse the similarity and differences between two sets
of results. Usual applications are the correlation of test and analysis results and the
comparison of various analysis results.

Ideally, correlation criteria should quantify the ability of two models to make the
same predictions. Since, the predictions of interest for a particular model can rarely
be pinpointed precisely, one has to use general qualities and select, from a list of
possible criterion, the ones that can be computed and do a good enough job for the
intended purpose.

4.2.1 Shape based criteria

The ii mac interface implements a number of correlation criteria. You should at
least learn about the Modal Assurance Criterion (MAC) and Pseudo Orthogonality
Checks (POC). These are very popular and should be used first. Other criteria
should be used to get more insight when you don’t have the desired answer or to
make sure that your answer is really foolproof.

Again, there is no best choice for a correlation criterion unless you are very specific
as to what you are trying to do with your model. Since that rarely happens, you
should know the possibilities and stick to what is good enough for the job.

The following table gives a list of criteria implemented in the ii mac interface.

81

4 Test/analysis correlation tutorial

MAC Modal Assurance Criterion (9.7). The most popular criterion for correlating
vectors. Insensitive to vector scaling. Sensitive to sensor selection and level
of response at each sensor. Main limitation : can give very misleading
results without warning. Main advantage : can be used in all cases. A
MAC criterion applied to frequency responses is called FRAC.

POC Pseudo Orthogonality Checks (9.9). Required in some industries for model
validation. This criterion is only defined for modes since other shapes do
verify orthogonality conditions. Its scaled insensitive version (9.8) corre-
sponds to a mass weighted MAC and is implemented as the MAC M com-
mands. Main limitation : requires the definition of a mass associated with
the known modeshape components. Main advantage : gives a much more
reliable indication of correlation than the MAC.

Error Modeshape pairing (based on the MAC or MAC-M) and relative frequency
error and MAC correlation.

Rel Relative error (9.10). Insensitive to scale when using the modal scale factor.
Extremely accurate criterion but does not tell much when correlation poor.

COMAC Coordinate Modal Assurance Criteria (three variants implemented in
ii mac) compare sets of vectors to analyze which sensors lead poor cor-
relation. Main limitation : does not systematically give good indications.
Main advantage : a very fast tool giving more insight into the reasons of
poor correlation.

MACCO What if analysis, where coordinates are sequentially eliminated from the
MAC. Slower but more precise than COMAC.

4.2.2 Energy based criteria

The criteria that make the most mechanical sense are derived from the equilibrium
equations. For example, modes are defined by the eigenvalue problem (6.4). Thus
the dynamic residual

{
R̂j

}
=
[
K − ω2

jidM
]
{φidj} (4.2)

should be close to zero. A similar residual (4.6) can be defined for FRFs.

The Euclidean norm of the dynamic residual has often been considered, but it tends
to be a rather poor choice for models mixing translations and rotations or having
very different levels of response in different parts of the structure.

To go to an energy based norm, the easiest is to build a displacement residual

82

{Rj} =
[
K̂
]−1 [

K − ω2
jidM

]
{φidj} (4.3)

and to use the strain |R̃j |K = R̃T
j KR̃j or kinetic |R̃j |M = R̃T

j MR̃j energy norms for
comparison.

Note that
[
K̂
]

need only be a reference stiffness that appropriately captures the
system behavior. Thus for cases with rigid body modes, a pseudo-inverse of the
stiffness (see section 6.1.4), or a mass shifted stiffness can be used. The displace-
ment residual R̃j is sometimes called error in constitutive law (for reasons that have
nothing to do with structural dynamics).

This approach is illustrated in the gartco demo and used for MDRE in fe exp.
While much more powerful than methods implemented in ii mac, the development
of standard energy based criteria is still a fairly open research topic.

4.2.3 Correlation of FRFs

Comparisons of frequency response functions is performed for both identification
and finite element updating purposes.

The quadratic cost function associated with the Euclidean norm

Jij(Ω) =
∑

ij measured,k∈Ω

|Ĥij(sk)−Hij(sk)|2 (4.4)

is the most common comparison criterion. The main reason to use it is that it leads to
linear least-squares problem for which there are numerically efficient solvers. (id rc
uses this cost function for this reason).

The quadratic cost corresponds to an additive description of the error on the transfer
functions and, in the absence of weighting, it is mostly sensitive to errors in regions
with high levels of response.

The log least-squares cost, defined by

Jij(Ω) =
∑

ij measured,k∈Ω

|log
∣∣∣∣∣Ĥij(sk)
Hij(sk)

∣∣∣∣∣ |2 (4.5)

uses a multiplicative description of the error and is as sensitive to resonances than to
anti-resonances. While the use of a non-linear cost function results in much higher
computational costs, this cost tends to be much better at distinguishing physically
close dynamic systems than the quadratic cost (except when the difference is very
small which is why the quadratic cost can be used in identification phases).

83

4 Test/analysis correlation tutorial

The utility function ii cost computes these two costs for two sets of FRFs xf1
and xf2 (obtained through test and FE prediction using nor2xf for example). The
evaluation of these costs provides a quick and efficient way to compare sets of MIMO
FRF and is used in identification and model update algorithms.

Note that you might also consider the complex log of the transfer functions which
would give a simple mechanism to take phase errors into account (this might be-
come important for extremely accurate identification sometimes needed for control
synthesis).

If the response at a given frequency can be expanded to the full finite element
DOF set, you should consider an energy criterion based on the dynamic residual in
displacement, which in this case takes the form

{Rj} =
[
K̂
]−1

[[Z(ω)] {qex(ω)} − [b] {u(ω)}] (4.6)

and can be used directly of test/analysis correlation and/or finite element updating.

Shape correlation tools provided by ii mac can also be used to compare frequency
responses. Thus the MAC applied to FRFs is sometimes called FRAC.

4.3 Expansion methods

Expansion methods seek to estimate the motion at all DOFs of a finite element
model based on measured information (typically modeshapes or frequency response
functions) and prior, but not necessarily accurate, information about the structure
under test in the form of a reference finite element model. As for all estimation tech-
niques, the quality of expansion results is deteriorated by poor test results and/or
poor modeling, but good results can be obtained when one or both are accurate.

The gartco demonstration illustrates modeshape expansion in the SDT. This sec-
tion summarizes the theory and you are encouraged to download [20][18] from
sdtools.com if you want more details.

4.3.1 Underlying theory for expansion methods

The unified perspective driving the SDT architecture is detailed in [20][18]. The
proposed classification is based on how various methods combine information about

84

test and modeling errors.

Test results yTest and expanded shapes qex are related by the observation equation
(4.1). Test error is thus measured by a norm of the difference between the test
quantity and the observed expanded shape

ε = ‖{yTest} − [c] {qex}‖2Q (4.7)
where the choice of the Q norm is an important issue. While the Euclidian norm
(Q = I) is used in general, a norm that takes into account an estimated variance
of the various components of yTest seems most appropriate. Various energy based
metrics have also been considered in [21] although the motivation for using a energy
norm on test results is unclear.

The expanded vector is also supposed to verify an equilibrium condition that de-
pends on its nature. Since the model and test results don’t match exactly one does
not expect the expanded vector to verify this equation exactly which leads to the
definition of a residual. Standard residuals are Rj = Z(ωj)φj for modeshapes and
Rj = Z(ω)q − F for frequency response to the harmonic load F .

Dynamic residuals correspond to generalized loads, so they should be associated to
displacement residuals and an energy norm. A standard solution [22] is to compute
the static response to the residual and use the associated strain energy, which is a
good indicator of modeling error,

‖Rj(qex)‖2K = {Rj}T
[
K̂
]−1
{Rj} (4.8)

where K̂ is the stiffness of a reference FEM model and can be a mass-shifted stiffness
in the presence of rigid body modes (see section 6.1.4). Variants of this energy norm
of the dynamic residual can be found in [21].

Like all estimation techniques, expansion methods should clearly indicate a trade-off
between test and modeling errors, since both test and model are subject to error. But
modeling errors are not easily taken into account. Common expansion techniques
thus only use the model to build a subspace of likely displacements.

Interpolation methods, the simplest form of subspace method are discussed in sec-
tion 4.3.2. Standard subspace methods and their implementation are discussed in
section section 4.3.3. Methods taking modeling errors into account are discussed in
section 4.3.4.

85

4 Test/analysis correlation tutorial

4.3.2 Basic interpolation methods for unmeasured DOFs

Translations are always measured in a single direction. By summing the measure-
ments of all sensors at a single physical node, it is possible for triaxial measurements
to determine the 3-D motion. Using only triaxial measurements is often econom-
ically/technically impossible and is not particularly desirable. Assuming that all
unmeasured motions are zero is however often not acceptable either (often distorts
the perception of test modeshapes in 3-D wire frame displays).

Historically, the first solutions to this problem used geometrical interpolation meth-
ods estimating the motion in less important directions based on measurements at a
few selected nodes.

Wire-frame displays can be considered as trivial interpolation methods since the
motion between two test nodes is interpolated using linear shape functions.

In the SDT, you can easily implement interpolation methods using matrices which
give the relation between measured DOFs tdof and a larger set of deformation
DOFs ndof. For example, if node 2 is placed at a quarter of the distance between
nodes 1 and 3. A linear interpolation for translations in the x direction would give

tdof = [1.01;3.01]; % List of test DOFs
exp.DOF = [1.01;2.01;3.01]; % List of DOFs to be animated
exp.def = [1 0;3/4 1/4;0 1]; % Deformations associated

% with test DOFs

Once the interpolation matrix (columns of exp.def which give the deformation at
all desired DOFs exp.DOF for unit displacements at the sensors tdof) built you
can animate the interpolated modeshapes using cf.def={def,exp}. Automated
building of interpolations is supported with the fe sens WireExp command which
gives an example application.

For multiple interpolations, you need to include all DOFs to be animated in exp.DOF
and include as many columns as test sensors in exp.def. You can check the validity
of each interpolation by displaying the expansion basis cf.def=exp. Each defor-
mation shown then shows how a given sensor affects animated degree of freedom
exp.DOF.

You could also use a basis of vectors exp.def with non unit displacements at the
measurement DOFs. The deformations at DOFs exp.DOF would then be found using
fe exp(def,fe c(exp.DOF,tdof)*exp.def,exp.def) (which minimizes the norm
of the test error (4.7) for a response within the subspace spanned by exp.def). The
same result can be obtained by building a basis with vectors associated with unit
observations

86

exp_unit=exp;
exp_unit.def=exp.def*pinv(fe_c(exp.DOF,tdof)*exp.def);

Spline interpolations are a way to extend a geometrical construction of the subspace
but they are ill suited for complex geometries. Building subspaces using a finite
element model, as discussed in the next section, is much easier. If you don’t have
a model, consider that segments of the wire-frame display used to visualize the test
are beams with arbitrary properties and use that as a finite element model (it often
gives very good results).

4.3.3 Subspace based expansion methods

If one can justify that true motion can be well represented by a vector within the
subspace characterized by a basis T with no more columns than there are sensors (one
assumes that the true displacement is of the form {qEx} = [T] {qR}), an estimate
of the true response simply obtained by minimizing test error, that is solving the
least-squares problem

{qR} = arg min || {yTest} − [c] [T] {qR} ||22 (4.9)

Modeshape expansion based on the subspace of low frequency modes is known as
modal [23] or SEREP [24] expansion. The subtle difference between the two ap-
proaches is the fact that, in the original paper, modal expansion preserved test results
on test DOFs (DOFs and sensors were assumed to coincide) and interpolated motion
on other DOFs. The SDT supports modal expansion using

yExp = fe_exp(yTest,sens,T)

where yTest are the measured vectors, sens is the sensor configuration (see fe sens)
or an observation matrix c, and T is a set of target modes (computed using fe eig
or imported from an other FE code).

An advantage of the modal methods is the fact that you can select less target modes
that you have sensors which induces a smoothing of the results which can alleviate
some of the problems linked to measurement/identification errors.

The study presented in [20] concludes that modal based methods perform very well
when an appropriate set of target modes is selected. The only but essential limita-
tion seems to be the absence of design/verification methodologies for target mode
selection. Furthermore it is unclear whether a good selection always exists.

Modeshape expansion based on the subspace of static responses to unit displace-
ments at sensors is known as static expansion or Guyan reduction [25].

87

4 Test/analysis correlation tutorial

When expanding modeshapes or FRFs, each deformation is associated to a fre-
quency. It thus seems reasonable to replace the static responses by dynamic re-
sponses to loads/displacements at that frequency. This leads to dynamic expansion
[26]. In general, computing a subspace for each modeshape frequency is too costly.
The alternative of using a single “representative” frequency for all modes was pro-
posed in [27] but suffers from the same limitations as choosing this frequency to be
zero (Guyan reduction).

The SDT supports full order static and dynamic expansion using

yExp=fe_exp(yTest,fTest,sens,m,k,mdof)

where fTest can a single frequency (0 for static) or have a value for each shape.
In the later case, computational times are usually prohibitive so that reduced basis
solutions discussed below should be used.

For tests described by observation matrices, the unit displacement problem defining
static modes can be replaced by a unit load problem [T] = [K]−1 [c]T . For structures
without rigid body modes this generates the same subspace as the unit displacement
problem. In other cases [K] is singular and can be simply mass-shifted (replaced
by K + αM with α usually taken small when compared to the square of the first
flexible frequency, see section 6.1.4).

In practice, static expansion can be restated in the form (4.9) where T corresponds
to constraint or modes associated to the load collocated to the output shape matrix
characterizing sensors (see chapter 6). Restating the problem in terms of minimiza-
tion is helpful if you want to compute your static responses outside the SDT (you
won’t need to import your mass and stiffness matrices but only the considered static
responses).

The weakness of static expansion is the existence of a frequency limit found by com-
puting modes of the structure with all sensors fixed. In many practical applications,
this frequency limit is not that low (typically because of lack of sensors in certain
areas/directions). You can easily compute this frequency limit using fe exp.

Full order dynamic expansion is typically too expensive to be considered for a full or-
der model. The SDT supports reduced basis dynamic expansion where you compute
dynamic expansion on a subspace combining modes and static responses to loads at
sensors. A typical calling sequence combining modeshape computations and static
correction would be

[md0,f0,kd] = fe_eig(m,k,[105 30 1e2]);
T = [kd \ ((sens.ctn*sens.cna)’) md0];
mdex = fe_exp(IIres.’,IIpo(:,1)*2*pi,sens,m,k,mdof,T);

88

You should note however that the minimum dynamic residual expansion (MDRE)
discussed in the next section typically gives better results at a marginal computa-
tional cost increase, so that you should only use dynamic expansion to expands FRFs
(MDRE for FRFs is not currently implemented in fe exp) or operational deflection
shapes (for which modeling error is hard to define).

4.3.4 Model based expansion methods

Given metrics on test (4.7) and modeling (4.8) error, one uses a weighted sum of
the two types of errors to introduce a generalized least-squares problem

minqj,ex ‖R(qj,ex)‖2K + γjεj (4.10)

MDRE (Minimum Dynamic Residual Expansion) assumes test errors to be zero.
MDRE-WE (MDRE With test Error) sets the relative weighting (γj coefficient)
iteratively until the desired bound on test error is reached (this is really a way to
solve the least-squares problem with a quadratic inequality as proposed in [28]).

These methods are currently only implemented for modeshape expansion. When
they can be used, they are really superior to subspace methods. The proper strategy
to choose the error bound in MDRE-WE is still an open issue but it directly relates
to the confidence you have in your model and test results.

4.4 Structural dynamic modification

While test results are typically used for test/analysis correlation and update, exper-
imental data has direct uses. In particular,

• experimental damping ratios are often used for finite element model predic-
tions;

• identified models can be used to predict the response after a modification (if
this modification is mechanical, one talks about structural modification, if it
is a controller one does closed loop response prediction);

• identified models can be used to generate control laws in active control appli-
cations;

89

4 Test/analysis correlation tutorial

• if some input locations of interest for structural modification have only been
tested as output locations, the reciprocity assumption (see section 3.4.2) can
be used to predict unmeasured transfers. But these predictions lack residual
terms (see section 6.1.3) which are often important in coupled predictions.

Structural modification and closed loop predictions are important application ar-
eas of SDT. For closed loop predictions, users typically build state-space models
with res2ss and then use control related tools (Control Toolbox, Simulink). If
mechanical modifications can be modeled with a mass/damping/stiffness model di-
rectly connected to measured inputs/outputs, predicting the effect of a modification
takes the same route as illustrated below. Mass effects correspond to acceleration
feedback, damping to velocity feedback, and stiffness to displacement feedback.

The following illustrates on a real experimental dataset the prediction of a 300 g
mass loading effect at a locations 1012 − z and 1112 − z (when only 1012 − z is
excited in the gartid dataset used below).

demosdt(’demo gartid est’)
XF(5).idopt.reci=’1 FRF’;
XF(5).res=-XF(5).res; % driving 1012-z to 1012z

ind=fe_c(XF(5).dof(:,1),[1012;1112],’ind’);
po_ol=IIpo;

% Using normal modes
NOR = res2nor(XF(5)); NOR.pb=NOR.cp’; S=nor2ss(NOR,’hz’);
a_cl = S.a - S.b(:,ind)*S.c(ind,:)*S.a*S.a*.3;
po_cln=ii_pof(eig(a_cl)/2/pi,3,2)

% Using complex modes
S = res2ss(XF(5),’AllIO’);
a_cl = S.a - S.b(:,ind)*S.c(ind,:)*S.a*S.a*.3;
po_clx=ii_pof(eig(a_cl)/2/pi,3,2)

% Frequencies
figure;subplot(211);
bar([po_clx(:,1) po_cln(:,1)]./po_ol(:,[1 1]))
ylabel(’\Delta F / F’);legend(’Complex modes’,’Normal modes’)
set(gca,’ylim’,[.5 1])

% Damping

90

subplot(212);bar([po_clx(:,2) po_cln(:,2)]./po_ol(:,[2 2]))
ylabel(’\Delta \zeta / \zeta’);legend(’Complex modes’,’Normal modes’)
set(gca,’ylim’,[.5 1.5])

Notice that the change in the sign of XF(5).res needed to have a positive driv-
ing point FRFs (this is assumed by id rm). Reciprocity was either applied using
complex (the ’AllIO’ command in res2ss returns all input/output pairs assuming
reciprocity) or normal modes with NOR.pb=NOR.cp’.

Closed loop frequency predictions agree very well using complex or normal modes
(as well as with FEM predictions) but damping variation estimates are not very
good with the complex mode state-space model.

There is much more to structural dynamic modification than a generalization of this
example to arbitrary point mass, stiffness and damping connections. And you can
read [29] or get in touch with SDTools for our latest advances on the subject.

91

mailto:info@sdtool.com

4 Test/analysis correlation tutorial

92

5

FEM tutorial

5.1 model data structure 94
5.1.1 GUI Access to FEM models 94
5.1.2 Direct declaration of geometry (truss example) . . 95
5.1.3 Building models with femesh 97
5.1.4 Handling material and element properties 98
5.1.5 Coordinate system handling 99

5.2 Defining a case . 100
5.2.1 Cases GUI . 100
5.2.2 Boundary conditions and constraints 101
5.2.3 Loads . 102
5.2.4 Sensors . 103

5.3 Computing the response 103
5.3.1 Simulate GUI . 103
5.3.2 Static responses . 104
5.3.3 Normal modes (partial eigenvalue solution) 105
5.3.4 State space and other modal models 106
5.3.5 Manipulating large finite element models 108

5.4 Post-processing with feplot 109
5.4.1 Starting the visualization interface 110
5.4.2 Using iimouse commands 110
5.4.3 Viewing deformations 111
5.4.4 Superposing deformations 112
5.4.5 Element selections 112
5.4.6 Other information 113

5.5 Interfacing with other FEM codes 113
5.5.1 Importing models from other codes 114
5.5.2 Importing model matrices from other codes 114

5 FEM tutorial

This chapter introduces notions needed to use finite element modeling in the SDT.
It illustrates

• how to use model data structures,

• how to define a case (i.e. DOFs, boundary conditions, loads, ...),

• how to compute the response to a specified case,

• how to post-process results.

5.1 model data structure

Before assembly, finite element models are described by a data structures with at
least five fields (for a full list of possible fields see section 7.6)

.Node nodes

.Elt elements

.pl material properties

.il element properties

.Stack stack of entries containing additional information cases (boundary
conditions, loads, ...), material names, ...

Section 5.1.1 addresses the use of the model properties GUI.

The following sections illustrate : low level input of nodes and elements in sec-
tion 5.1.2; structured meshing and mesh manipulation with the femesh pre-processor
in section 5.1.3; import of FEM models in section 5.5.1. Assembly and response
computations are addressed in section 5.2.

5.1.1 GUI Access to FEM models

Graphical editing of model properties is supported by feplot and associated com-
mands. Once a model is defined (see the following sections), you can display it with
feplot. The model data structure can be manipulated graphically using the model
properties GUI which can be opened using the feplot Edit:Model Properties
menu or from the command line with fecom(’pro modelinit’).

For example

model=femesh(’test ubeam plot’);
fecom(’promodelinit’);

94

Edit nodes in table

Model Tab

Information �
on element groups

Figure 5.1: Model properties interface.

The model properties figure contains the following tabs

model Node editing and element group display
Materials Material editing, see section 5.1.4
Properties Element property (for bar, beam and shells elements) editing, see sec-

tion 5.1.4
Case Loads and boundary conditions editing, see section 5.2
Simulate Static, modal and transient response editing, see section 5.3

While GUI access may be useful in a learning phase, script access (through command
line or .m files) is important. Variable handles let you modify the model properties
contained in the model properties GUI. For the model contained in an feplot figure,
you obtain a SDT Handle to the feplot figure with cf=feplot and a variable handle
to the model data structure with cf.mdl.

5.1.2 Direct declaration of geometry (truss example)

Hand declaration of a model can only be done for small models and later sections
address more realistic problems. This example mostly illustrates the form of the
model data structure.

The geometry is declared in the model.Node matrix (see section 7.1). In this case,
one defines 6 nodes for the truss and an arbitrary reference node to distinguish
principal bending axes (see beam1)
% NodeID unused x y z

95

5 FEM tutorial

Figure 5.2: FE model.

model.Node=[1 0 0 0 0 1 0; ...
2 0 0 0 0 0 0; ...
3 0 0 0 1 1 0; ...
4 0 0 0 1 0 0; ...
5 0 0 0 2 0 0; ...
6 0 0 0 2 1 0; ...
7 0 0 0 1 1 1]; % reference node

The model description matrix (see section 7.1) describes 4 longerons, 2 diagonals
and 2 battens. These can be declared using three groups of beam1 elements

model.Elt=[...
... % declaration of element group for longerons

Inf abs(’beam1’) ; ...
... %node1 node2 MatID ProID nodeR, zeros to fill the matrix

1 3 1 1 7 0 ; ...
3 6 1 1 7 0 ; ...
2 4 1 1 7 0 ; ...
4 5 1 1 7 0 ; ...

... % declaration of element group for diagonals
Inf abs(’beam1’) ; ...
2 3 1 2 7 0 ; ...
4 6 1 2 7 0 ; ...

... % declaration of element group for battens
Inf abs(’beam1’) ; ...
3 4 1 3 7 0 ; ...
5 6 1 3 7 0];

You may view the declared geometry

cf=feplot; cf.model=model; % create feplot axes
fecom(’;view2;textnode;triax;’); % manipulate axes

96

The demo fe script illustrates uses of this model.

5.1.3 Building models with femesh

Declaration by hand is clearly not the best way to proceed in general. femesh
provides a number of commands for finite element model creation. The first input
argument should be a string containing a single femesh command or a string of
chained commands starting by a ; (parsed by commode which also provides a femesh
command mode).

To understand the examples, you should remember that femesh uses the following
standard global variables

FEnode main set of nodes
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix

In the example of the previous section (see also the d truss demo), you could use
femesh as follows: initialize, declare the 4 nodes of a single bay by hand, declare
the beams of this bay using the objectbeamline command

FEel0=[]; FEelt=[];
FEnode=[1 0 0 0 0 0 0;2 0 0 0 0 1 0; ...

3 0 0 0 1 0 0;4 0 0 0 1 1 0]; ...
femesh(’objectbeamline 1 3 0 2 4 0 3 4 0 1 4’);

The model of the first bay in is now selected (stored in FEel0). You can now put it
in the main model, translate the selection by 1 in the x direction and add the new
selection to the main model

femesh(’;addsel;transsel 1 0 0;addsel;info’);
model=femesh(’model’); % export FEnode and FEelt geometry in model
cf=feplot; cf.model=model;
fecom(’;view2;textnode;triax;’);

You could also build more complex examples. For example, one could remove the
second bay, make the diagonals a second group of bar1 elements, repeat the cell 10
times, rotate the planar truss thus obtained twice to create a 3-D triangular section
truss and show the result (see d truss)

97

5 FEM tutorial

femesh(’test2bay’);
femesh(’removeelt group2’);
femesh(’divide group 1 InNode 1 4’);
femesh(’set group1 name bar1’);
femesh(’;selgroup2 1;repeatsel 10 1 0 0;addsel’);
femesh(’;rotatesel 1 60 1 0 0;addsel;’);
femesh(’;selgroup3:4;rotatesel 2 -60 1 0 0;addsel;’);
femesh(’;selgroup3:8’);
model=femesh(’model0’); % export FEnode and FEel0 geometry in model
cf=feplot; cf.model=model;
fecom(’;triaxon;view3;view y+180;view s-10’);

femesh allows many other manipulations (translation, rotation, symmetry, extru-
sion, generation by revolution, refinement by division of elements, selection of groups,
nodes, elements, edges, etc.) which are detailed in the Reference section.

Other more complex examples are treated in the following demonstration scripts
d plate, beambar, d ubeam, gartfe.

5.1.4 Handling material and element properties

Before assembly, one still needs to define material and element properties associated
to the various elements.

You can edit material properties using the Materials tab of the Model Properties
figure which lists current materials and lets you choose new ones from the database
of each material type. m elastic is the only material function defined for the base
SDT. It supports elastic materials and linear acoustic fluids.

Edit values in table

Use context menu
to remove, duplicate,
export, ...

Select pre-defined
materials in the new table

Figure 5.3: Property tab.

Similarly the Property tab lets you edit element properties. p beam p shell and
p spring are supported element property functions.

98

The properties are stored with one property per row in pl (see section 7.3) and il
(see section 7.4) model fields.

When using scripts, it is often more convenient to use low level definitions of the
material properties. For example (see demo fe) , one can define aluminum and
three sets of beam properties with

model=femesh(’test 2bay plot’);
% MatId MatType E nu rho
model.pl = m_elastic(’dbval 1 steel’)
model.il = [...
... % ProId SecType J I1 I2 A
1 fe_mat(’p_beam’,’SI’,1) 5e-9 5e-9 5e-9 2e-5 0 0 ; ... % longerons
p_beam(’dbval 2’,’circle 4e-3’) ; ... % circular section 4 mm
p_beam(’dbval 3’,’rectangle 4e-3 3e-3’) ...%rectangular section 4 x 3 mm
];

To assign a MatID or a ProID to a group of elements, you can use

• the graphical procedure (in the context menu of the material and property
tabs, use the Select elements and affect ID procedures and follow the
instructions);

• the simple femesh set commands. For example femesh(’set group1 mat101
pro103’) will set values 101 and 103 for element group 1.

• more elaborate commands based on femesh findelt commands. Knowing which
column of the Elt matrix you want to modify, you can use something of the
form (see gartfe)

FEelt(femesh(’find EltSelectors’), IDColumn)=ID;

You can also get values with mpid=feutil(’mpid’,elt), modify mpid, then
set values with elt=feutil(’mpid’,elt,mpid).

5.1.5 Coordinate system handling

Local coordinate systems are stored in a model.bas field described in the basis
reference section. Columns 2 and 3 of model.Node define respectively coordinate
system numbers for position and displacement.

Use of local coordinate systems is illustrated in section 4.1.1 where a local basis is
defined for test results.

99

5 FEM tutorial

feplot, fe mk, rigid, ... now support local coordinates. feutil does when the
model is discribed by a data structure with the .bas field. femesh assumes you are
using global coordinate system obtained with

[FEnode,bas] = basis(model.Node,model.bas)

To write your own scripts using local coordinate systems, it is useful to know the
following calls :

[node,bas,NNode]=feutil(’getnodebas’,model) returns the nodes in global co-
ordinate system, the bases bas with recursive definitions resolved and the reindexing
vector NNode.

The command

cGL=basis(’trans l’,model.bas,model.Node,model.DOF)

returns the local to global transformation matrix.

5.2 Defining a case

Once the topology (.Node,.Elt, and optionally .bas fields) and properties (.pl,.il
fields or associated mat and pro entries in the .Stack field) are defined, you still
need to define boundary conditions, constraints (see section 5.2.2) and applied loads
before actually computing a response. The associated information is stored in a case
data structure. The various cases are then stored in the .Stack field of the model
data structure.

5.2.1 Cases GUI

Graphical editing of case properties is supported by the case tab of the model prop-
erties GUI (see section 5.1.1).

100

Figure 5.4: Cases properties tab.

When selecting New ... in the case property list, as shown in the figure, you get a
list of currently supported case properties. You can add a new property by clicking
on the associated new cell in the table. Once a property is opened you can typically
edit it graphically. The following sections show you how to edit these properties
trough command line or .m files.

5.2.2 Boundary conditions and constraints

Boundary conditions and constraints are described in Case.Stack using KeepDof,
FixDof and Rigid case entries (see section 5.2).

KeepDof and FixDof entries are used to easily impose zero displacement on some
DOFs. To treat the two bay truss example of section 5.1.2, one will for example use

model=femesh(’test 2bay plot’);
model=fe_case(model,’SetCase1’, ... % defines a new case
’KeepDof’,’2-D motion’,[.01 .02 .06]’, ...
’FixDof’,’Clamp edge’,[1 2]’);

fecom(’promodelinit’) % open model GUI

When assembling the model with the specified Case (see section 5.2), these con-
straints will be used automatically.

101

5 FEM tutorial

Note that, you may obtain a similar result by building the DOF definition vector
for your model using a script. Node selection commands allow node selection and
fe c provides additional DOF selection capabilities. In the two bay truss case,

model=femesh(’test 2bay plot’);
mdof = feutil(’getdof group1:2’,model);
adof = fe_c(mdof,[.01 .02 .06]’,’dof’); % 2-D motion
i1 = femesh(’findnode x==0’); % left edge nodes
adof = fe_c(adof,i1 ,’dof’,2); % clamp x==0 plane
model=fe_case(model,’SetCase1’, ... % defines a new case

’KeepDof’,’final DOF list’,adof);
fecom(’promodelinit’) % open model GUI

finds all DOFs in element groups 1 and 2 of FEelt, eliminates DOFs that do not cor-
respond to 2-D motion, finds nodes in the x==0 plane and eliminates the associated
DOFs from the initial mdof.

Details on low level handling of fixed boundary conditions and constraints are given
in section 7.13.

5.2.3 Loads

Loads are described in Case.Stack using DOFLoad, FVol and FSurf case entries (see
fe case and section 7.7).

To treat a 3D beam example with volume forces (x direction), one will for example
use

model = femesh(’test ubeam plot’);
data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);
model = fe_case(model,’AddToCase 1’,’FVol’,’Volume load’,data);
Load = fe_load(model,’case1’);
cf.def= Load;
fecom(’;undef;triax;promodelinit’);

To treat a 3D beam example with surfacic forces, one will for example use

model = femesh(’testubeam plot’);
data=struct(’sel’,’x==-.5’, ...

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
Case1=struct(’Stack’,{{’Fsurf’,’Surface load’,data}});
Load = fe_load(model,Case1); cf.def=Load;

102

To treat a 3D beam example and create two loads, a relative force between DOFs
207x and 241x and two point loads at DOFs 207z and 365z, one will for example
use

model = femesh(’test ubeam plot’);
data = struct(’DOF’,[207.01;241.01;207.03],’def’,[1 0;-1 0;0 1]);
model = fe_case(model,’AddToCase 1’,’DOFLoad’,’Point load 1’,data);
data = struct(’DOF’,365.03,’def’,1);
model = fe_case(model,’AddToCase 1’,’DOFLoad’,’Point load 2’,data);
Load = fe_load(model,’Case1’);
cf.def= Load;
fecom(’textnode365 207 241’); fecom(’promodelinit’);

The result of fe load contains 3 columns corresponding to the relative force and
the two point loads. You might then combine these forces, by summing them

Load.def=sum(Load.def,2);
cf.def= Load;
fecom(’textnode365 207 241’);

5.2.4 Sensors

For simulations, you may only want to measure partial information about the model.
This is supported by the use of SensDOF entries associated to a case. The following
example defines three sensors and builds the associated state-space model

model=demosdt(’demo ubeam mix’);
model=fe_case(model,’addtocase’, ...

’SensDof’,’Outputs’,[343.01 343.02 347.03]’)
[sys,T] = fe2ss(’free 6 10’,model);
figure(1);qbode(sys,linspace(100,1e3,1024)’*2*pi,’plot’);

5.3 Computing the response

5.3.1 Simulate GUI

Access to standard solvers is provided through the Simulate tab of the Model
properties figure. Experienced users will typically use the command line equivalent
to these tabs as detailed in the following sections.

103

5 FEM tutorial

Type of�
simulation

Select export/plotting

Launch�
simulation

Name of�
exported variable

Figure 5.5: Simulation properties tab.

5.3.2 Static responses

The computation of the response to static loads is a typical problem. Once loads
and boundary conditions are defined in a case as shown in previous sections, the
static response may be computed using the fe simul function.

This is an example of the 3D beam subjected to various type of loads (points, surface
and volume loads) and clamped at its base :

model=demosdt(’demo ubeam vol’); % Initialize a test
def=fe_simul(’static’,model,’Case 1’);% Compute static response
cf=feplot; cf.def=def;% post-process
cf.sel={’Groupall’,’ColorDataStressMises’}

Low level calls may also be used. For this purpose it is generally simpler to create
system matrices that incorporate the boundary conditions.

fe c (for point loads) and fe load (for distributed loads) can then be used to define
unit loads (input shape matrix using SDT terminology). For example, a unit vertical
input (DOF .02) on node 6 can be simply created by

104

model=demosdt(’demo2bay’); Case=fe_case(model,’gett’); %init
% Compute point load
b = fe_c(Case.DOF,[6.02],1)’;

In many cases the static response can be computed using Static=kr\b. For very
large models, you will prefer

kd=ofact(k); Static = kd\b; ofact(’clear’,kd);

For repeated solutions with the same factored stiffness, you should build the factored
stiffness kd=ofact(k) and then Static = kd\b as many times are needed. Note
that fe eig can return the stiffness that was used when computing modes (when
using methods without DOF renumbering).

For models with rigid body modes or DOFs with no stiffness contribution (this
happens when setting certain element properties to zero), the user interface function
fe reduc gives you the appropriate result in a more robust and yet computationally
efficient manner

Static = fe reduc(’flex’,m,k,mdof,b);

5.3.3 Normal modes (partial eigenvalue solution)

fe eig computes mass normalized normal modes. The simple call def=fe eig(model)
should only be used for very small models (below 100 DOF). In other cases you will
typically only want a partial solution. A typical call would have the form

model = demosdt(’demo ubeam plot’);
cf.def=fe_eig(model,[6 12 0]); % 12 modes with method 6
fecom(’colordata stress mises’)

You should read the fe eig reference section to understand the qualities and limi-
tations of the various algorithms for partial eigenvalue solutions.

You can also load normal modes computed using a finite element package (see sec-
tion 5.5.1). If the finite element package does not provide mass normalized modes,
but a diagonal matrix of generalized masses mu (also called modal masses). Mass
normalized modeshapes will be obtained using

ModeNorm = ModeIn * diag(diag(mu).^(-1/2));

If a mass matrix is given, an alternative is to use mode = fe norm(mode,m). When
both mass and stiffness are given, a Ritz analysis for the complete problem is ob-
tained using [mode,freq] = fe norm(mode,m,k).

105

5 FEM tutorial

Note that loading modes with in ascii format 8 digits is usually sufficient for good
accuracy whereas the same precision is very often insufficient for model matrices
(particularly the stiffness).

5.3.4 State space and other modal models

A typical application of SDT is the creation of input/output models in the normal
mode nor, state space ss or FRF xf form. (The SDT does not replicate existing
functions for time response generation such as lsim of the Control Toolbox which
creates time responses using a model in the state-space form).

The creation of such models combines two steps creation of a modal or enriched
modal basis; building of input/output model given a set of inputs and outputs.

As detailed in section 5.3.3 a modal basis can be obtained with fe eig or loaded from
an external FEM package. Inputs and outputs are easily handled using case entries
corresponding to loads (DofLoad, DOFSet, FVol, FSurf) and sensors (SensDOF).

Figure 5.6: Truss example.

For the two bay truss example shown above, the following script defines a load as
the relative force between nodes 1 and 3, and translation sensors at nodes 5 and 6

model=demosdt(’demo2bay’);
DEF=fe_eig(model,[2 5]); % compute 5 modes

% Define loads and sensors
Load=struct(’DOF’,[3.01;1.01],’def’,[1;-1]);
Case=fe_case(’DofLoad’,’Relative load’,Load, ...

’SensDof’,’Tip sensors’,[5.01;6.02]);

106

% Compute FRF and display
w=linspace(80,240,200)’;
figure(1);clf;xf=nor2xf(DEF,.01,Case,w,’hz plot’);

You can easily obtain velocity or acceleration responses using

xf=nor2xf(DEF,.01,Case,w,’hz vel plot’);
xf=nor2xf(DEF,.01,Case,w,’hz acc plot’);

�
�

Figure 5.7: FRF synthesis : with and without static correction.

As detailed in section 6.1.3, it is desirable to introduce a static correction for each
input. fe2ss builds on fe reduc to provide optimized solutions where you compute
both modes and static corrections in a single call and return a state-space (or normal
mode model) and associated reduction basis. Thus

model=demosdt(’demo2bay’);
DEF=fe_eig(model,[2 5]); % compute 5 modes
Load=struct(’DOF’,[3.01;1.01],’def’,[1;-1]);
Case=fe_case(model,’AddToCase1’,’DofLoad’,’Relative load’,Load, ...

’SensDof’,’Tip sensors’,[5.01;6.02]);
[SYS,DEF] = fe2ss(’free 2 3’,model);
w=linspace(80,240,200);
figure(1);clf;xf=nor2xf(DEF,.01,Case,w,’hz plot’);

computes 3 modes using a full solution (Eigopt=[2 3 0]), appends the static re-
sponse to the input shape matrix b, and builds the state-space model corresponding
to modal truncation with static correction (see section 6.1.3). Note that the load
and sensor definitions where now added to the case in model since that case also
contains boundary condition definitions which are needed in fe2ss.

The different functions using normal mode models support further model truncation.
For example, to create a model retaining the first four modes, one can use

107

5 FEM tutorial

model=demosdt(’demo2bay’);
DEF=fe_eig(model,[2 12]); % compute 12 modes
Case=fe_case(’DofLoad’,’Horizontal load’,3.01, ...

’SensDof’,’Tip sensors’,[5.01;6.02]);
SYS =nor2ss(DEF,.01,Case,1:4);
ii_pof(eig(SYS.a)/2/pi,3) % Frequency (Hz), damping

A static correction for the displacement contribution of truncated modes is auto-
matically introduced in the form of a non-zero d term. When considering velocity
outputs, the accuracy of this model can be improved using static correction modes
instead of the d term. Static correction modes are added if a roll-off frequency fc is
specified (this frequency should be a decade above the last retained mode and can
be replaced by a set of frequencies)

SYS =nor2ss(DEF,.01,Case,1:4,[2e3 .2]);
ii_pof(eig(SYS.a)/2/pi,3,1) % Frequency (Hz), damping

Note that nor2xf always introduces a static correction for both displacement and
velocity.

For damping, you can use uniform modal damping (a single damping ration damp=.01
for example), non uniform modal damping (a damping ratio vector damp), non-
proportional modal damping (square matrix ga), or hysteretic (complex DEF.data).
This is illustrated in demo fe.

5.3.5 Manipulating large finite element models

The flexibility given by the Matlab language comes at a price for large finite el-
ement computations. The two main bottlenecks are model assembly and static
computations.

During assembly compiled elements provided with OpenFEM allow much faster
element matrix evaluations (since these steps are loop intensive they are hard to op-
timize in Matlab). The sp util.mex function alleviates element matrix assembly
and large matrix manipulation problems (at the cost of doing some very dirty tricks
like modifying input arguments).

For static computations, the ofact object allows method selection. Currently the
most efficient (and default ofact method) is the multi-frontal sparse solver spfmex.
This solver automatically performs equation reordering so this needs not be done
elsewhere. It does not use the Matlab memory stack which is more efficient for
large problems but requires ofact(’clear’) calls to free memory associated with
a given factor.

108

With other static solvers (Matlab lu or chol, or SDT true skyline sp util method)
you need to pay attention to equation renumbering. When assembling large models,
fe mk will automatically renumber DOFs to minimize matrix bandwidth (for partial
backward compatibility automatic renumbering is only done above 1000 DOF).

The real limitation on size is linked to performance drops when swapping. If the
factored matrix size exceeds physical memory available to Matlab in your com-
puter, performance tends to decrease drastically. The model size at which this limit
is found is very much model/computer dependent.

Finally in fe eig, method 6 (IRA/Sorensen) uses low level BLAS code and thus
tends to have the best memory performance for eigenvalue computations.

Note finally, that you may want to run Matlab with the -nojvm option turned on
since it increases the memory addressable by Matlab.

For out-of-core operations (supported by fe mk, upcom, nasread and other func-
tions). SDT creates temporary files whose names are generated tempname.You may
need to redefine your own tempdir.m function and make sure that it is properly
placed in the Matlab path using which(’tempdir’,’-all’). If your own tempdir
is not shown first in the list use addpath ... -begin commands to put its direc-
tory first in your path.

5.4 Post-processing with feplot

feplot supports a number of display types for FE results. For FE analyses (connec-
tivity specified using a model description matrix elt) one will generally use surface
plots (type 1 color-coded surface plots using patch objects) or wire-frame plots (type
2 using line objects). Once the plot created, it can be manipulated using fecom.
Continuous animation of experimental deformations is possible although speed is
strongly dependent on computer configuration and figure renderer selection (use
Feplot:Renderer menu to switch).

Most demonstrations linked to finite element modeling (see section 1.1 for a list)
give examples of how to use feplot and fecom. To get you started, you can try the
following which gives you a rapid overview of the capabilities of the feplot finite
element visualization interface.

109

5 FEM tutorial

Figure 5.8: feplot interface.

5.4.1 Starting the visualization interface

Load the data from the gartfe demo, get cf a SDT handle for a feplot figure,
set the model for this figure and get the standard 3D view of the structure

load sdt_gart FEnode FEelt mdof md0 f0
cf=feplot; cf.model={FEnode,FEelt};
fecom(’view3’);

Note that cf.model=UFS(1) or cf.model=Up would be acceptable for database
wrapper or type 3 superelement input.

5.4.2 Using iimouse commands

At this level note how you can zoom by selecting a region of interest with your
mouse (double click or press the i key to zoom back). You can make the axis active
by clicking on it and then use the any of the u, U, v, V, w, W, 3, 2 keys to rotate the
plot (look at the iimouse help for more possibilities).

open the contextmenu associated with your plot using the right mouse button and
select cursor. See how the cursor allows you to know node numbers and positions.
Use the left mouse button to get more info on the current node (when you have

110

more than one object, the n key is used to go to the next object). Use the right
button to exit the cursor mode.

Notice the other things you can do with the ContextMenu : open the feplot and
model properties figure, display the orientation triax, show or don’t show the un-
deformed structure, display node numbers (note that for large models this is very
long), set standard views and view defaults, ...

5.4.3 Viewing deformations

The following initializes a set of deformations, shows deformation 7 (first flexible
mode), opens the feplot properties figure and shows the Deformations tab.

load sdt_gart; cf=feplot; cf.model={FEnode,FEelt};
cf.def(1)={md0,mdof,f0}; fecom(’ch7’);
fecom(’pro’);fecom(’curtab def’)

Note that cf.def=XF(5) or cf.def=Up.def would be acceptable for database wrap-
per (XF(5) is used by idcom to store identification results) or type 3 superelement
input.

Scan through the various deformations using the +/- buttons/keys or cliking in the
deformations list in the Deformations tab. From the command line you can use
fecom ch commands.

Animate the deformations by clicking on the button. Notice how you can still
change the current deformation, rotate, etc. while running the animation. Anima-
tion properties can be modified with fecom Anim commands or in the General tab
of the feplot properties figure.

Modeshape scaling can be modified with the l/L key, with fecom scale commands
or in the Axes tab of the feplot properties figure.

You may also want to visualize the measurement at various sensors using a stick or
arrow sensor visualization (fecom showsens or showarrow). On such plots, you can
label some or all degrees of freedom using fecom (’doftext’,idof).

load sdt_gart; cf=feplot; cf.model={FEnode,FEelt};
cf.def(1)={IIres,sdof,IIpo};
cf.sens=sdof;
fecom(’;showarrow;textdof;ch1;scd.3’);

Look at the fecom reference section to see what modifications of displayed plots are
available.

111

5 FEM tutorial

5.4.4 Superposing deformations

Modeshape superposition is an important application (see plot of section 3.1.1) which
is supported by initializing deformations with the two deformation sets given sequen-
tially and a fecom ch command declaring more than one deformation. For example
you could compare two sets of deformations using

load sdt_gart; cf=feplot; cf.model={FEnode,FEelt};
cf.def(1)={md0,mdof,f0};
cf.def(2)={md0+rand(size(md0))/5,mdof,f0};
fecom(’show2def’);
fecom(’scalematch’);

where the scalematch command is used to compare deformations with unequal
scaling. You could also show two deformations in the same set

load sdt_gart; cf=feplot; cf.model={FEnode,FEelt};
cf.def(1)={md0,mdof,f0};
fecom(’;showline; ch7 10’)

The -,+ buttons/commands will then increment both deformations numbers (overlay
8 and 11, etc.).

5.4.5 Element selections

Element selections play a central role in feplot. They allow selection of a model
subpart (see section 7.12) and contain color information. The following example
selects some groups and defines color to be the z component of displacement or all
groups with strain energy deformation (see fecom ColorData commands)

cf=demosdt(’demo gartfe plot’);
cf.sel(1)={’group4:9 & group ~=8’,’colordata z’};
pause
cf.def=fe_eig(cf.mdl,[6 20 1e3]);
cf.sel(1)={’group all’,’colordata enerk’};
fecom(’colorbar’);

You can also have different objects point to different selections. This model has
an experimental mesh stored in element group 11 (it has EGID -1). The following
commands define a selection for the FEM model (groups 1 to 10) and one for the
test wire frame (it has EGID<0). The first object cf.o(1) displays selection 1 as a
surface plot (ty1 with a blue edge color. The second object displays selection to
with a thick red line.

112

load sdt_gart; cf=feplot; cf.model={FEnode,FEelt};
cf.sel(1)={’group1:10’}; cf.sel(2)=’egid<0’;
cf.o(1)={’ty1 def1 sel1’,’edgecolor’,’b’}
cf.o(2)={’ty2sel2’,’edgecolor’,’r’,’linewidth’,2}

Note that you can use node selection commands to display some node numbers. For
example try fecom(’textnode egid<0 & y>0’).

Figure 5.9: Strain energy deformation.

5.4.6 Other information

Note that when you print the figure, you may want to use the -noui switch so that
the GUI is not printed. Example print -noui -depsc2 FileName.eps

Use the Feplot:Sub commands:Sub IsoViews (same as iicom(’subiso’)) to get
a plot with four views of the same mode. Use iicom(’sub2 2 step’) to get four
views of different modes.

Use the Feplot:Show menu to generate standard plots. Feplot:Misc for Triax,
Undef, channel selection ...

5.5 Interfacing with other FEM codes

The base SDT supports reading/writting of test related Universal files and basic
NASTRAN bulk files. All other interfaces are packaged in the FEMLink extension.

FEMLink is installed within the base SDT but can only be accessed by licensed
users.

113

http://www.sdtools.com/femlink.html

5 FEM tutorial

5.5.1 Importing models from other codes

Interfaces currently available are

ans2sdt reads ANSYS binary files (this function is part of FEMLink)
nasread reads the MSC/NASTRAN [30] .f06 output file (matrices, tables, real

modes, displacements, applied loads, grid point stresses), input bulk
file (nodes, elements, properties). FEMLink provides extensions of the
basic nasread, output2 to model format conversion including element
matrix reading, output4 file reading, advanced bulk reading capabili-
ties).

naswrite writes formatted input to the bulk data deck of MSC/NASTRAN
(part of SDT), FEMLink adds support for case writing.

readnopo This OpenFEM function reads MODULEF models in binary format.
perm2sdt reads PERMAS ascii files (this function is part of FEMLink)
ufread reads results in the Universal File format (in particular, types: 55 analy-

sis data at nodes, 58 data at DOF, 15 grid point, 82 trace line). Reading
of additional FEM related file types is supported by FEMLink through
the uf link function.

ufwrite writes results in the Universal File format. SDT supports writing of
test related datasets. FEMLink supports FEM model writing.

You will find an up to date list of interfaces with other FEM codes at
www.sdtools.com/tofromfem.html). Import of model matrices in discussed in sec-
tion 5.5.2.

As interfacing with even only the major finite element codes is an enormous and
never ending task, such interfaces are always driven by user demands (please send
your suggestions at suggest@sdtools.com).

5.5.2 Importing model matrices from other codes

FEMLink handles importing element matrices for NASTRAN and ANSYS. For
NASTRAN, run an eigenvalue computation with the PARAM,POST,-4 card and load
the superelement using

upcom(’load UpcomFile’);
Up=nasread(Up,’NastranOutput.op2’);

For ANSYS, run an eigenvalue computation and use

Up=ans2sdt(’buildup test1’)

114

http://www.sdtools.com/femlink.html
http://www.sdtools.com/femlink.html
http://www.sdtools.com/femlink.html
http://www.sdtools.com/femlink.html
http://www.sdtools.com/femlink.html
http://www.sdtools.com/tofromfem.html

which reads the test1.rst and test1.emat binary files for model description and
element matrices and generates the upcom superelement Up saved in file test1.mat.

For full FEM model matrices you can proceed as follows. A full FEM model matrix
is most appropriately integrated as a superelement. The model would typically be
composed of

• a mass m and stiffness matrix k linked to DOFs mdof which you have imported with
your own code (for example, using nasread output2 or output4 and appropriate
manipulations to create mdof). Note that the ofact object provides translation
from skyline to sparse format.

• an equivalent mesh defined using standard SDT elements. This mesh will be used
to plot the imported model and possibly for repeating the model in a periodic
structure

A unique superelement called cell will be simply created using

fesuper(’new cell’,FEnode,FEel0)
global SEcell
SEcell.DOF=mdof;
SEcell.K={m,k}; SE.Opt=[1 0;2 1];

where you should note the declaration of type 1 (stiffness) and type 2 (mass) matrices
for the superelement k2 and k1 matrices. In this example you will get back the
element matrices using

model=struct(’Node’,FEnode,’Elt’,[Inf abs(’cell’)]);
[m,k,mdof]=fe_mk(model);

Note that numerical precision is very important when importing model matrices.
Storing matrices in 8 digit ASCII format is very often not sufficient.

A weighting coefficient can easily be associated to matrices of SDT superelements.
Here this would be done by defining an element property and setting the coefficients
when calling fe mk.

fesuper(’set cell ProID 99’)
model=struct(’Node’,FEnode,’Elt’,[Inf abs(’cell’)],...

’pl’,[99 CoefM CoefK]);
[m,k,mdof]=fe_mk(model);

For structures where the imported component model is repeated, you may want to
make the superelement generic so that you can use it several times. For example, if
cell contains a truss bay. You can create a 10 bay truss and compute its first 10
modes using

115

5 FEM tutorial

FEel0=fesuper(’make cell generic’);
femesh(’repeatsel 10 1 0 0’);
model=struct(’Node’,FEnode,’Elt’,FEel0,’pl’,[99 1 1]);
def=fe_eig(model,[6 10 1e3]);
cf=feplot;cf.model=model;cf.def=def;

Superelement based substructuring is demonstrated in d cms2 which gives you a
working example where model matrices are stored in a generic superelement.

116

6

Advanced FEM tools

6.1 Model reduction theory 118

6.1.1 General framework 118
6.1.2 Normal mode models 119
6.1.3 Static correction to normal mode models 121
6.1.4 Static correction with rigid body modes 122
6.1.5 Other standard reduction bases 123
6.1.6 Substructuring . 124
6.1.7 Reduction for parameterized problems 126

6.2 CMS examples . 127

6.2.1 Component mode synthesis 127
6.2.2 Substructuring using superelements 129

6.3 Model parameterization with upcom 131

6.3.1 Theoretical framework 131
6.3.2 upcom parameterization for full order models . . . 132
6.3.3 Getting started with upcom 133
6.3.4 Reduction for variable models 134
6.3.5 Predictions of the response using upcom 135

6.4 Finite element model updating 136

6.4.1 Error localization/parameter selection 137
6.4.2 Update based on frequencies 137
6.4.3 Update based on FRF 138

6 Advanced FEM tools

6.1 Model reduction theory

Finite element models of structures need to have many degrees of freedom to repre-
sent the geometrical detail of complex structures. For models of structural dynamics,
one is however interested in

• a restricted frequency range (s = iω ∈ [ω1 ω2])

• a small number of inputs and outputs (b, c)

• a limited parameter space α (updated physical parameters, design changes, non-
linearities, etc.)

These restrictions on the expected predictions allow the creation of low order models
that accurately represent the dynamics of the full order model in all the considered
loading/parameter conditions.

Model reduction notions are key to many SDT functions of all areas: to motivate
residual terms in pole residue models (id rc, id nor), to allow fine control of model
order (nor2ss, nor2xf), to create normal models of structural dynamics from large
order models (fe2ss, fe reduc), for test measurement expansion to the full set
of DOFs (fe exp), for substructuring using superelements (fesuper, fe coor), for
parameterized problems including finite element model updating (upcom).

6.1.1 General framework

Model reduction procedures are discrete versions of Ritz/Galerkin analyzes: they
seek solutions in the subspace generated by a reduction matrix T . Assuming {q} =
[T] {qR}, the second order finite element model (2.1) is projected as follows

[
T TMTs2 + T TCTs+ T TKT

]
NR×NR

{qR(s)} =
[
T T b

]
NR×NA

{u(s)}NA×1

{y(s)}NS×1 = [cT]NS×NR {qR(s)}NR×1

(6.1)

Modal analysis, model reduction, component mode synthesis, and related methods
all deal with an appropriate selection of singular projection bases ([T]N×NR with
NR � N). This section summarizes the theory behind these methods with refer-
ences to other works that give more details.

The solutions provided by SDT make two further assumptions which are not hard
limitations but allow more consistent treatments while covering all but the most

118

exotic problems. The projection is chosen to preserve reciprocity (left multiplication
by T T and not another matrix). The projection bases are assumed to be real.

An accurate model is defined by the fact that the input/output relation is preserved
for a given frequency and parameter range

[c] [Z(s, α)]−1 [b] ≈ [cT]
[
T TZ(s, α)T

]−1 [
T T b

]
(6.2)

Traditional modal analysis, combines normal modes and static responses. Compo-
nent mode synthesis methods extend the selection of boundary conditions used to
compute the normal modes. The SDT further extends the use of reduction bases to
parameterized problems.

A key property for model reduction methods is that the input/output behavior of
a model only depends on the vector space generated by the projection matrix T .
Thus range(T) = range(T̃) implies that

[cT]
[
T TZT

]−1 [
T T b

]
=
[
cT̃
] [
T̃ TZT̃

]−1 [
T̃ T b

]
(6.3)

This equivalence property is central to the flexibility provided by the SDT in CMS
applications (it allows the decoupling of the reduction and coupled prediction phases)
and modeshape expansion methods (it allows the definition of a static/dynamic
expansion on sensors that do not correspond to DOFs).

6.1.2 Normal mode models

Normal modes are defined by the eigenvalue problem

− [M] {φj}ω2
j + [K]N×N {φj}N×1 = {0}N×1 (6.4)

based on inertia properties (represented by the positive definite mass matrix M) and
underlying elastic properties (represented by a positive semi-definite stiffness K).
The matrices being positive there are N independent eigenvectors {φj} (forming a
matrix noted [φ]) and eigenvalues ω2

j (forming a diagonal matrix noted
[
\ω2

j \

]
).

As solutions of the eigenvalue problem (6.4), the full set of N normal modes verify
two orthogonality conditions with respect to the mass and the stiffness

[φ]T [M] [φ] =
[
\µj\

]
N×N

and [φ]T [K] [φ] =
[
\µjω

2
j \

]
(6.5)

where µ is a diagonal matrix of modal masses (which are quantities depending

119

6 Advanced FEM tools

uniquely on the way the eigenvectors φ are scaled).

In the SDT, the normal modeshapes are assumed to be mass normalized so that
[µ] = [I] (implying [φ]T [M] [φ] = [I] and [φ]T [K] [φ] =

[
\ω2

j \

]
). The mass nor-

malization of modeshapes is independent from a particular choice of sensors or
actuators.

Another traditional normalization is to set a particular component of φ̃j to 1. Using
an output shape matrix this is equivalent to clφ̃j = 1 (the observed motion at sensor
cl is unity). φ̃j , the modeshape with a component scaled to 1, is related to the mass
normalized modeshape by φ̃j = φj/(clφj).

mj(cl) = (clφj)
−2

is called the modal or generalized mass at sensor cl. A large modal mass denotes
small output. For rigid body translation modes and translation sensors, the modal
mass corresponds to the mass of the structure. If a diagonal matrix of generalized
masses mu is provided and ModeIn is such that the output cl is scaled to 1, the mass
normalized modeshapes will be obtained by

ModeNorm = ModeIn * diag(diag(mu).^(-1/2));

Modal stiffnesses are are equal to
kj(cl) = (clφj)

−2 ω2
j

The use of mass-normalized modes, simplifies the normal mode form (identity mass
matrix) and allows the direct comparison of the contributions of different modes
at similar sensors. From the orthogonality conditions, one can show that, for an
undamped model and mass normalized modes, the dynamic response is described
by a sum of modal contributions

[α(s)] =
N∑

j=1

{cφj}
{
φT

j b
}

s2 + ω2
j

(6.6)

which correspond to pairs of complex conjugate poles λj = ±iωj .

In practice, only the first few low frequency modes are determined, the series in
(6.6) is truncated, and a correction for the truncated terms is introduced (see sec-
tion 6.1.3).

Note that the concept of effective mass [31], used for rigid base excitation tests, is
very similar to the notion of generalized mass.

120

6.1.3 Static correction to normal mode models

Normal modes are computed to obtain the spectral decomposition (6.6). In practice,
one distinguishes modes that have a resonance in the model bandwidth and need to
be kept and higher frequency modes for which one assumes ω � ωj . This assumption
leads to

[c]
[
Ms2 +K

]−1
[b] ≈

NR∑
j=1

[c] {φj} {φj}T [b]
s2 + ω2

j

+
N∑

j=NR+1

[c] {φj} {φj}T [b]
ω2

j

(6.7)

Figure 6.1: Normal mode corrections.

For the example treated in the demo fe script, the figure shows that the exact
response can be decomposed into retained modal contributions and an exact residual.
In the selected frequency range, the exact residual is very well approximated by a
constant often called the static correction.

The use of this constant is essential in identification phases and it corresponds to
the E term in the pole/residue models used by id rc (see under res page 37).

For applications in reduction of finite element models, a little more work is typi-
cally done. From the orthogonality conditions (6.5), one can easily show that for a
structure with no rigid body modes (modes with ωj = 0)

[TA] = [K]−1 [b] =
N∑

j=1

{φj}
{
φT

j b
}

ω2
j

(6.8)

The static responses K−1b are called attachment modes in Component Mode
Synthesis applications [32]. The inputs [b] then correspond to unit loads at all
interface nodes of a coupled problem.

121

6 Advanced FEM tools

One has historically often considered residual attachment modes defined by

[TAR] = [K]−1 [b]−
NR∑
j=1

{φj}
{
φT

j b
}

ω2
j

(6.9)

where NR is the number of normal modes retained in the reduced model.

The vector spaces spanned by [φ1 . . . φNR TA] and [φ1 . . . φNR TAR] are clearly
the same, so that reduced models obtained with either are dynamically equivalent.
For use in the SDT, you are encouraged to find a basis of the vector space that
diagonalizes the mass and stiffness matrices (normal mode form which can be easily
obtained with fe norm).

Reduction on modeshapes is sometimes called the mode displacement method,
while the addition of the static correction leads to the mode acceleration
method.

When reducing on these bases, the selection of retained normal modes guarantees
model validity over the desired frequency band, while adding the static responses
guarantees validity for the spatial content of the considered inputs. The reduc-
tion is only valid for this restricted spatial/spectral content but very accurate for
solicitations that verify these restrictions.

Defining the bandwidth of interest is a standard difficulty with no definite answer.
The standard, but conservative, criterion (attributed to Rubin) is to keep modes
with frequencies below 1.5 times the highest input frequency of interest.

6.1.4 Static correction with rigid body modes

For a system with NB rigid body modes kept in the model, [K] is singular. Two
methods are typically considered to overcome this limitation.

The approach traditionally found in the literature is to compute the static response
of all flexible modes. For NB rigid body modes, this is given by

[K]∗ [b] =
N∑

j=NB+1

{φj}
{
φT

j b
}

ω2
j

(6.10)

This corresponds to the definition of attachment modes for free floating structures
[32]. The flexible response of the structure can actually be computed as a static
problem with an iso-static constraint imposed on the structure (use the fe reduc
flex solution and refer to [33] or [34] for more details).

The approach preferred in the SDT is to use a mass-shifted stiffness leading to the

122

definition of shifted attachment modes as

[TAS] = [K + αM]−1 [b] =
N∑

j=1

{φj}
{
φT

j b
}

(ω2
j + α)

(6.11)

While these responses don’t exactly span the same subspace as static corrections,
they can be computed using the mass-shifted stiffness used for eigenvalue computa-
tions. For small mass-shifts (a fraction of the lowest flexible frequency) and when
modes are kept too, they are a very accurate replacement for attachment modes. It
is the opinion of the author that the additional computational effort linked to the
determination of true attachment modes is not mandated and shifted attachment
modes are used in the SDT.

6.1.5 Other standard reduction bases

For coupled problems linked to model substructuring, it is traditional to state the
problem in terms of imposed displacements rather than loads.

Assuming that the imposed displacements correspond to DOFs, one seeks solutions
of problems of the form[

ZII(s) ZIC(s)
ZCI(s) ZCC(s)

]{
< qI(s) >
qC(s)

}
=

{
RI(s)
< 0 >

}
(6.12)

where < > denotes a given quantity (the displacement qI are given and the reaction
forces RI computed). The exact response to an imposed harmonic displacement
qI(s) is given by

{q(s)} =

[
I

−Z−1
CCZCI

]
{qI} (6.13)

The first level of approximation is to use a quasistatic evaluation of this response
(evaluate at s = 0, that is use Z(0) = K). Model reduction on this basis is known
as static or Guyan condensation [25].

This reduction does not fulfill the requirement of validity over a given frequency
range. Craig and Bampton [35] thus complemented the static reduction basis by
fixed interface modes : normal modes of the structure with the imposed boundary
condition qI = 0. These modes correspond to singularities ZCC so their inclusion
in the reduction basis allows a direct control of the range over which the reduced
model gives a good approximation of the dynamic response.

123

6 Advanced FEM tools

The Craig-Bampton reduction basis takes the special form{
qI(s)
qC(s)

}
=

[
I 0

−K−1
CCKCI φC

]
{qR} (6.14)

where the fact that the additional fixed interface modes have zero components on the
interface DOFs is very useful to allow direct coupling of various component models.
fe reduc provides a solver that directly computes the Craig-Bampton reduction
basis.

A major reason of the popularity of the Craig-Bampton reduction basis is the fact
that the interface DOFs qI appear explicitly in the generalized DOF vector qR. This
is actually a very poor reason that has strangely rarely been challenged. Since the
equivalence property tells that the predictions of a reduced model only depend on the
projection subspace, it is possible to select the reduction basis and the generalized
DOFs independently. The desired generalized DOFs can always be characterized by
an observation matrix cI . As long as [cI] [T] is not rank deficient, it is thus possible
to determine a basis T̃ of the subspace spanned by T such that

[cI]
[
T̃
]

=
[
[I]NI×NI [0]NI×(NR−NI)

]
(6.15)

The fe coor function builds such bases, and thus let you use arbitrary reduction
bases (loaded interface modes rather than fixed interface modes in particular) while
preserving the main interest of the Craig-Bampton reduction basis for coupled sys-
tem predictions (see example in section 6.2.1).

6.1.6 Substructuring

Substructuring is a process where models are divided into components and com-
ponent models are reduced before a coupled system prediction is performed. This
process is known as Component Mode Synthesis in the literature. Ref. [32]
details the historical perspective while this section gives the point of view driving
the SDT architecture (see also [36]).

One starts by considering disjoint components coupled by interface component(s)
that are physical parts of the structure and can be modeled by the finite element
method. Each component corresponds to a dynamic system characterized by its
I/O behavior Hi(s). Inputs and outputs of the component models correspond to
interface DOFs.

124

Figure 6.2: CMS procedure.

Traditionally, interface DOFs for the interface model match those of the compo-
nents (the meshes are compatible). In practice the only requirement for a coupled
prediction is that the interface DOFs linked to components be linearly related to
the component DOFs qjint = [cj] [qj]. The assumption that the components are dis-
joint assures that this is always possible. The observation matrices cj are Boolean
matrices for compatible meshes and involve interpolation otherwise.

Because of the duality between force and displacement (reciprocity assumption),
forces applied by the interface(s) on the components are described by an input
shape matrix which is the transpose of the output shape matrix describing the
motion of interface DOFs linked to components based on component DOFs. Reduced
component models must thus be accurate for all those inputs. CMS methods achieve
this objective by keeping all the associated constraint or attachment modes.

Considering that the motion of the interface DOFs linked to components is imposed
by the components, the coupled system (closed-loop response) is simply obtained
adding the dynamic stiffness of the components and interfaces. For a case with two
components and an interface with no internal DOFs, this results in a model coupled
by the dynamic stiffness of the interface([

Z1 0
0 Z2

]
+

[
cT1 0
0 cT2

]
[Zint]

[
c1 0
0 c2

]){
q1
q2

}
= [b] {u(s)} (6.16)

The traditional CMS perspective is to have the dimension of the interface(s) go to

125

6 Advanced FEM tools

zero. This can be seen as a special case of coupling with an interface stiffness
[
Z1 0
0 Z2

]
+

[
cT1 0
0 cT2

] [I −I
−I I

]
ε

[
c1 0
0 c2

]
{
q1
q2

}
= [b] {u(s)} (6.17)

where ε tends to zero. The limiting case could clearly be rewritten as a problem with
a displacement constraint (generalized kinematic or Dirichlet boundary condition)[

Z1 0
0 Z2

]{
q1
q2

}
= [b] {u(s)} with [c1 − c2]

{
q1
q2

}
= 0 (6.18)

Most CMS methods state the problem this way and spend a lot of energy finding an
explicit method to eliminate the constraint. The SDT encourages you to use fe coor
which eliminates the constraint numerically and thus leaves much more freedom on
how you reduce the component models (see section 6.2.1 and section 6.2.2).

In particular, this allows a reduction of the number of possible interface deformations
[36]. But this reduction should be done with caution to prevent locking (excessive
stiffening of the interface).

6.1.7 Reduction for parameterized problems

Methods described up to now, have not taken into account the fact that in (6.2)
the dynamic stiffness can depend on some variable parameters. To apply model
reduction to a variable model, the simplest approach is to retain the low frequency
normal modes of the nominal model. This approach is however often very poor even
if many modes are retained. Much better results can be obtained by taking some
knowledge about the modifications into account [37].

In many cases, modifications affect a few DOFs: ∆Z = Z(α) − Z(α0) is a matrix
with mostly zeros on the diagonal and/or could be written as an outer product
∆ZN×N = [bI]

[
∆Ẑ

]
NB×NB

[bI]
T with NB much smaller than N . An appropriate

reduction basis then combines nominal normal modes and static responses to the
loads bI

T =
[
φ1...NR

[
K̂
]−1

[bI]
]

(6.19)

In other cases, you know a typical range of allowed parameter variations. You can
combine normal modes are selected representative design points to build a multi-
model reduction that is exact at these points

T = [φ1...NR(α1) φ1...NR(α2) ...] (6.20)

126

If you do not know the parameter ranges but have only a few parameters, you should
consider a model combining modeshapes and modeshape sensitivities [38] (as shown
in the gartup demo)

T =
[
φ1...NR(α0)

∂φ1...NR

∂α
...

]
(6.21)

For a better discussion of the theoretical background of fixed basis reduction for
variable models see Refs. [37] and [38].

6.2 CMS examples

The SDT gives you simple access to all traditional component mode synthesis meth-
ods. The following sections, corresponding to the d cms and d cms2 demos treat
CMS at a low level or using superelements supported by fesuper and fe super.
The later approach is more general in particular because it allows the use of generic
and parameterized superelements.

6.2.1 Component mode synthesis

This section complements the d cms demonstration which discusses classical CMS
for the simple example of two stiffened plates shown below. This is meant to get
into the details of how to do component mode synthesis by hand. Superelements
discussed in section 6.2.2 typically provide cleaner code and easier access to CMS
methods.

Figure 6.3: CMS example : 2 stiffened plates.

The model is divided in two element groups which have nodes in common

IntNode = femesh(’find node group1 & group2’);

For this demo one will use the full set of DOFs

127

6 Advanced FEM tools

mdof = femesh(’finddof group1:2’);

even if each component model has non-zero displacements on its own DOFs only.

femesh(’selgroup1’);
model1=struct(’Node’,FEnode,’Elt’,FEel0,’DOF’,mdof,’pl’,pl,’il’,il);
[m1,k1,mdof]=fe_mk(model1,’options’,[0 1]);
tc1=fe_reduc(’static’,m1,k1,mdof,IntNode);
[md1,f1]=fe_eig(m1,k1,[4 20],mdof,fe_c(mdof,IntNode,’dof’,2));
T1 = [tc1 md1(:,find(f1<1.5*fmax))];

selects the elements of group 1 (selected elements are stored in the global variable
FEel0), assembles the component model (the [0 1] option of fe mk ensures that
DOFs of component 2, that have no stiffness in this case, are retained in the model),
computes the static response to imposed unit displacements at interface nodes, com-
putes the normal modes md1 with interface nodes fixed and keeps those that have
a frequency below 1.5 times the maximum frequency of interest (a rule of thumb
that usually works well). The basis T1 which combines constraint modes and
fixed interface modes corresponds to the Craig-Bampton reduction discussed in
section 6.1.5.

While using the same reduction for the second component is the traditional solution,
the SDT allows the use of arbitrary hybrid bases. One can thus consider

femesh(’selgroup2’);
model2=struct(’Node’,FEnode,’Elt’,FEel0,’DOF’,mdof,’pl’,pl,’il’,il);
[m2,k2,mdof]=fe_mk(model2,’options’,[0 1]);
ta2=fe_reduc(’flex’,m2,k2,mdof,IntNode);
[md2,f2]=fe_eig(m2,k2,[4 20 1e3]);
T2 = [ta2 md2(:,find(f2<1.5*fmax))];

which combines the flexible response to unit loads applied at the interface (attach-
ment modes) with free-interface modes (as used in the MacNeal and Rubin CMS
methods).

For a coupled prediction, one just needs to build a basis combining T1 and T2 but
verifying displacement continuity at the interface nodes. To do so, one builds the
observation matrix associated with the interface DOFs

cint = fe c(mdof,IntNode);

and finds the a basis of the kernel of cint*T1-cint*T2 using fe coor

T = [T1 (T2-cint’*(cint*T2))]*fe coor(cint*[T1 -T2]);

128

In the present case, the same interface DOFs are shared by the two components
(interface nodes were not duplicated). One must thus eliminate the interface contri-
bution of one of the two components which is done using (T2-cint’*(cint*T2)).
You could also use T2b computed with

T2b = T2; T2b(fe c(mdof,IntNode,’ind’),:)=0;

T = [T1 T2b]*fe coor(cint*[T1 -T2]);

The d cms demo repeats the same prediction with duplicated interface nodes, which
is actually cleaner when using the SDT. The preferred method remains however the
use of superelements as discussed in section 6.2.2.

Given T a reduction basis verifying the continuity constraint, the coupled prediction
is simply obtained by projection

[mdr,fr]=fe_eig(T’*(m1+m2)*T,T’*(k1+k2)*T,[2 20 1e3]);mdr = T*mdr;

but you should prefer

[mdr,fr]=fe_norm(T,m1+m2,k1+k2);

which will eliminate nearly collinear vectors cleanly when fe eig may not. Elim-
inating collinear vectors may be mandated in applications involving non standard
bases (T=[TA ModeFix] or [37]) or dealing with problems involving many interface
DOFs (plate and solid interfaces).

You can verify with the demo that the coupled prediction is very good up to the
sixth flexible mode at 330 rd/s (which is much higher than fmax=200).

For component 2, residual attachment modes could easily be obtained using

md2=md2(:,find(f2<1.5*fmax)); tra2 = ta2 - md2*(md2’*m2*ta2);

You can easily verify that they are mass and stiffness orthogonal to the normal modes
md2 (use [norm(md2’*m2*tra2) norm(md2’*k2*tra2)]) and that the basis [tra2
md2(:,find(f2<1.5*fmax))] gives the same coupled prediction than the one with
the attachment modes.

6.2.2 Substructuring using superelements

Superelements can be used to manipulate reduced versions of a full order component
model. This application is demonstrated in d cms2. The usual steps for this use of
superelements would be to

129

6 Advanced FEM tools

• assemble the full order model

[m,k,mdof]=fe_mk(nodeS,eltS,pl,il);

• compute a reduction basis. For example the Craig-Bampton basis (constraint and
fixed interface modes) associated to the interface DOFs idof

[T,sdof] = fe_reduc(’CraigBampton 20’,m,k,mdof,idof);

• transform to a basis with the first vectors being linked to the interface DOFs
and others to superelement DOFs (with the combination constraint mode + fixed
interface modes, this is already true) and form the associated superelement DOF
vector sdof

c = fe_c(mdof,idof);
T = T*fe_coor(c*T,2);
sdof=[idof;-1-[1:size(T,2)-length(idof)]’/1000];

• declare the component model as a superelement called sub1, define reduced ma-
trices, and save superelement to a file

fesuper(’set sub1 dof’,mdof);
fesuper(’set sub1 k 1 1’,k); % matrix 1 is type 1 (stiffness)
fesuper(’set sub1 k 2 2’,m); % matrix 2 is type 2 (mass)
fesuper(’set sub1 tr’,tr,mdof,sdof)
fesuper(’save FileName sub1’);

You are now ready to use sub1 as a standard element. Any model containing an
element group called sub1 will assemble the reduced mass and stiffness models.

• you can associate each of the declared matrices to a non-unit weighting by declar-
ing an element property row il with values il(j,2:end) being the weighting
coefficients. Thus

fesuper(’set sub1 ProID 99’);
[mr,kr,sdof]=fe_mk(FEnode,[Inf abs(’sub1’)],[],[99 1.0 3.0]);

sets the ProID of the sub1 superelement to 99, and the fe mk assembly call returns
the nominal reduced stiffness and the reduced mass multiplied by 3.

The fesuper save and load commands let you perform the reduction once for
many reuses of the superelement. Note that generic superelements also let you
perform a single reduction for a series of components with identical material and
geometric properties. Varying material and geometric properties can also be treated
(see section 6.3 and Ref. [39]).

130

6.3 Model parameterization with upcom

6.3.1 Theoretical framework

Different major applications use families of structural models. Update problems,
where a comparison with experimental results is used to update the mass and stiff-
ness parameters of some elements or element groups that were not correctly modeled
initially. Structural design problems, where component properties or shapes are op-
timized to achieve better performance. Non-linear problems where the properties of
elements change as a function of operating conditions and/or frequency (viscoelastic
behavior, geometrical non-linearity, etc.).

A family of models is defined (see [37] for more details) as a group of models of the
general second order form (2.1) where the matrices composing the dynamic stiffness
depend on a number of design parameters p

[Z(p, s)] =
[
M(p)s2 + C(p)s+K(p)

]
(6.22)

Moduli, beam section properties, plate thickness, frequency dependent damping,
node locations, or component orientation for articulated systems are typical p pa-
rameters. The dependence on p parameters is often very non-linear. It is thus often
desirable to use a model description in terms of other parameters α (which depend
non-linearly on the p) to describe the evolution from the initial model as a linear
combination

[Z(p, s)] =
NB∑
j=1

αj(p) [Zjα(s)] (6.23)

with each [Zjα(s)] having constant mass, damping and stiffness properties.

Plates give a good example of p and α parameters. If p represents the plate thickness,
one defines three α parameters: t for the membrane properties, t3 for the bending
properties, and t2 for coupling effects.

p parameters linked to elastic properties (plate thickness, beam section properties,
frequency dependent damping parameters, etc.) usually lead to low numbers of α
parameters so that the α should be used. In other cases (p parameters representing
node positions, configuration dependent properties, etc.) the approach is impractical
and p should be used directly.

131

6 Advanced FEM tools

As for nominal models, parameterized models can be reduced by projection on a
constant reduction basis T leading to input/output models of the form[

T TZ(p, s)T
]
{qR} =

[
T T b

]
{u(s)}

{y(s)} = [cT] {qR}
(6.24)

or, using the α parameters,∑NB
j=1 αj(p)

[
T T ∆Zjα(s)T

]
{qR} =

[
T T b

]
{u(s)}

{y(s)} = [cT] {qR}
(6.25)

6.3.2 upcom parameterization for full order models

Although superelements can deal with arbitrary models of the form (6.23), the upcom
interface is designed to allow easier parameterization of models. This interface stores
a long list of mass M e and stiffness Ke matrices associated to each element and
provides, through the assemble command, a fast algorithm to assemble the full
order matrices as weighted sums of the form

[M(p)] =
NE∑
j=1

αk(p) [M e
k] [K(p)] =

NE∑
j=1

βk(p) [Ke
k] (6.26)

where the nominal model corresponds to αk(p) = βk(p) = 1.

The basic parameterizations are mass pi and stiffness pj coefficients associated to
element selections ei, ej leading to coefficients

αk, βk = 1 for k /∈ ei
αk = pi for k ∈ ei
βk = pj for k ∈ ej

(6.27)

Only one stiffness and one mass parameter can be associated with each element.
The element selections ei and ej are defined using upcom ParStackAdd commands.
In some upcom commands, one can combine changes in multiple parameters by
defining a matrix dirp giving the pi, pj coefficients in the currently declared list of
parameters.

Typically each element is only associated to a single mass and stiffness matrix. In
particular problems, where the dependence of the element matrices on the design
parameter of interest is non-linear and yet not too complicated, more than one
submatrix can be used for each element.

In practice, the only supported application is related to plate/shell thickness. If p
represents the plate thickness, one defines three α, β parameters: t for the membrane
properties, t3 for the bending properties, and t2 for coupling effects. This decompo-

132

sition into element submatrices is implemented by specific element functions, q4up
and q8up, which build element submatrices by calling quad4 and quadb. Triangles
are supported through the use of degenerate quad4 elements.

Element matrix computations are performed before variable parameters are declared.
In cases where thickness variations are desired, it is thus important to declare which
group of plate/shell elements may have a variable thickness so that submatrices
will be separated during the call to fe mk. This is done using a call of the form
upcom(’set nominal t GroupID’,FEnode,FEel0,pl,il).

6.3.3 Getting started with upcom

Basic operation of the upcom interface is demonstrated in gartup.

The first step is the selection of a file for the superelement storage using upcom(’load
FileName’). If the file already exists, existing fields of Up are loaded. Otherwise,
the file is created.

If the results are not already saved in the file, one then computes mass and stiffness
element matrices (and store them in the file) using

upcom(’setnominal’,FEnode,FEelt,pl,il)

which calls fe mk. You can of course eliminate some DOFs (for fixed boundary
conditions) using a call of the form

upcom(’setnominal’,FEnode,FEelt,pl,il,[],adof)

At any time, upcom info will printout the current state of the model: dimensions
of full/reduced model (or a message if one or the other is not defined)

’Up’ superelement (stored in ’/tmp/tp425896.mat’)

Model Up.Elt with 90 element(s) in 2 group(s)
Group 1 : 73 quad4 MatId 1 ProId 3
Group 6 : 17 q4up MatId 1 ProId 4

Full order (816 DOFs, 90 elts, 124 (sub)-matrices, 144 nodes)
Reduced model undefined
No declared parameters

In most practical applications, the coefficients of various elements are not indepen-
dent. The upcom par commands provide ways to relate element coefficients to a small

133

6 Advanced FEM tools

set of design variables. Once parameters defined, you can easily set parameters with
the parcoef command (which computes the coefficient associated to each element
(sub-)matrix) and compute the response using the upcom compute commands. For
example

upcom(’load GartUp’);
upcom(’parstackreset’)
upcom(’parstackadd k’,’Tail’,’group3’);
upcom(’parstackadd t’,’Constrained Layer’,’group6’);
upcom(’parcoef’,[1.2 1.1]);
upcom(’info’)
cf=upcom(’plotelt’)
cf.def(1)=upcom(’computemode full 6 20 1e3 11’)
fecom(’scd.3’);

6.3.4 Reduction for variable models

The upcom interface allows the simultaneous use of a full and a reduced order model.
For any model in a considered family, the full and reduced models can give estimates
of all the qualities (static responses, modal frequencies, modeshapes, or damped
system responses). The reduced model estimate is however much less numerically
expensive, so that it should be considered in iterative schemes.

The selection of the reduction basis T is essential to the accuracy of a reduced
family of models. The simplest approach, where low frequency normal modes of the
nominal model are retained, very often gives poor predictions. For other bases see
the discussion in section 6.1.7.

A typical application (see the gartup demo), would take a basis combining modes
and modeshape sensitivities, orthogonalize it with respect to the nominal mass and
stiffness (doing it with fe norm ensures that all retained vectors are independent),
and project the model

upcom(’parcoef’,[1 1]);
[fsen,mdsen,mode,freq] = upcom(’sens mode full’,eye(2),7:20);
[m,k]=upcom(’assemble’);T = fe_norm([mdsen mode],m,k);
upcom(’par red’,[T])

In the gartup demo, the time needed to predict the first 20 modes is divided by
10 for the reduced model. For larger models, the ratio is even greater which really
shows how much model reduction can help in reducing computational times.

134

Note that the projected model corresponds to the currently declared variable pa-
rameters (and in general the projection basis is computed based on knowledge of
those parameters). If parameters are redefined using ParStack commands, you must
thus project the model again.

6.3.5 Predictions of the response using upcom

The upcom interface provides optimized code for the computation, at any design
point, of modes (ComputeMode command), modeshape sensitivities (SensMode), fre-
quency response functions using a modal model (ComputeModal) or by directly in-
verting the dynamic stiffness (ComputeFRF). All predictions can be made based on
either the full or reduced order model. The default model can be changed using
upcom(’OptModel[0,1]’) or by appending full or reduced to the main command.
Thus

upcom(’ParCoef’,[1 1]);
[md1,f1] = upcom(’compute mode full 105 20 1e3’);
[md2,f2] = upcom(’compute mode reduced’);

would be typical calls for a full (with a specification of the fe eig options in the
command rather than using the Opt command) and reduced model.

Warning: unlike fe eig, upcom typically returns frequencies in Hz (rather than
rd/s) as the default unit option is 11 (for rd/s use upcom(’optunit22’))

Given modes you could compute FRFs using

IIxh = nor2xf(freq,0.01,mode’*b,c*mode,IIw*2*pi);

but this does not include a static correction for the inputs described by b. You should
thus compute the FRF using (which returns modes as optional output arguments)

[IIxh,mode,freq] = upcom(’compute modal full 105 20’,b,c,IIw);

This approach to compute the FRF is based on modal truncation with static cor-
rection (see section 6.1.3). For a few frequency point or for exact full order results,
you can also compute the response of the full order model using

IIxh = upcom(’compute FRF’,b,c,IIw);

In FE model update applications, you may often want to compute modal frequencies
and shape sensitivities to variations of the parameters. Standard sensitivities are
returned by the upcom sens command (see the Reference section for more details).

135

6 Advanced FEM tools

6.4 Finite element model updating

While the upcom interface now provides a flexible environment that is designed for
finite element updating problems, integrated methodologies for model updating are
not stabilized. As a result, the SDT currently only intends to provide an efficient
platform for developing model updating methodologies. This platform has been
successfully used, by SDTools and others, for updating industrial models, but the
details of parameter selection and optimization strategies are currently only provided
through consulting services.

Cost Function
Modal: geometric,
energy, etc.
I/O: TD, FD,
lin-LS, log-LS

Data
Modal: identified,
reduced, expanded
I/O: filtered, averaged,
bandlimited

Algorithm
Direct
Optimization strategy
Uniqueness

Parametrization
Choice of update
parameters
Reduced evaluation
model

Updated
FE model

Figure 6.4: FE updating process.

The objective of finite element updating is to estimate certain design parameters
(physical properties of the model) based on comparisons of test and analysis results.
All the criteria discussed in section 4.2 can be used for updating.

The correlation tools provided by fe sens and fe exp are among the best existing
on the market and major correlation criteria can easily be implemented. With SDT
you can thus easily implement most of the existing error localization algorithms.
No mechanism is however implemented to automatically translate the results of this
localization into a set of parameters to be updated. Furthermore, the updating
algorithms provided are very basic.

136

6.4.1 Error localization/parameter selection

The choice of design parameters to be updated is central to FE update problems.
Update parameters should be chosen based on the knowledge that they have not
been determined accurately from initial component tests. Whenever possible, the
actual values of parameters should be determined using refined measurements of
the component properties as the identifiability of the parameters is then clear. If
such refined characterizations are not possible, the comparison of measured and
predicted responses of the overall system provide a way to assess the probable value
of a restricted set of parameters.

Discrepancies are always expected between the model and test results. Parameter
updates made based on experimentally measured quantities should thus be limited
to parameters that have an impact on the model that is large enough to be clearly
distinguished from the expected residual error. Such parameters typically are asso-
ciated to connections and localized masses.

In practice with industrial models, the FE model is initially divided into zones
with one mass/stiffness parameter associated with each zone. The femesh findelt
commands can greatly help zone definition.

Visualizing the strain/kinetic energy distribution of modeshapes is a typical way to
analyze zones where modifications will significantly affect the response. The gartup
demo shows how the strain energy of modeshapes and displacement residuals can
be used in different phases of the error localization process.

6.4.2 Update based on frequencies

As illustrated in demo fe, once a set of update parameters chosen, you should verify
that the proper range is set (see min and max values in section 6.3.3), make sure
that Up.copt options are appropriately set to allow the computation of modes and
sensitivities (see upcom copt commands), and define a sensor configuration matrix
sens using fe sens.

With test results typically stored in poles IIpo and residues IIres (see section 3.3),
the update based on frequencies is then simply obtained by a call of the form

i2=1:8; % indices of poles used for the update
[coef,md1,f1] = up_freq(’basic’,IIpo(i2,:),IIres(i2,:).’,sens);

The result is obtained by a sensitivity method with automated matching of test and
analysis modes using the MAC criterion. A non-linear optimization based solution

137

6 Advanced FEM tools

can be found using up ifreq but computational costs tend to prevent actual use
of this approach. Using reduced order models (see section 6.3.4 and start use with
upcom(’opt model 1’)) can alleviate some of the difficulties but the sensitivity
based method (up freq) is clearly better.

6.4.3 Update based on FRF

An update algorithm based on a non-linear optimization of the Log-Least-Squares
cost comparing FRFs is also provided with up ixf. The call to up ixf takes the
form

coef = up_ixf(’basic’,b,c,IIw,IIxf,indw)

Using up min for the optimization you will have messages such as

Step size: 1.953e-03
Cost Parameter jumps ...

3.9341e-01 -9.83e+00 4.05e+00

which indicate reductions in the step size (Up.copt(1,7)) and values of the cost and
update parameters at different stages of the optimization. With Up.copt(1,2) set
to 11 you can follow the evolution of predictions of the first FRF in the considered
set. The final result here is shown in the figure where the improvement linked to
the update is clear.

�

�

�

�

�

Figure 6.5: Updated FRF.

138

This algorithm is not very good and you are encouraged to use it as a basis for
further study.

139

6 Advanced FEM tools

140

7

Developer information

7.1 Nodes . 142

7.2 Model description matrices 143

7.3 Material property matrices 144

7.4 Element property matrices 145

7.5 DOF definition vector 146

7.6 FEM model structure 147

7.7 FEM case data structure 149

7.8 FEM result data structure 150

7.9 Curves and data sets 151

7.10 DOF selection . 151

7.11 Node selection . 153

7.12 Element selection 155

7.13 Constraint and fixed boundary condition handling 157

7.14 Creating new elements (advanced tutorial) 160

7.14.1 General information 160
7.14.2 Writing a new element function 160
7.14.3 Conventions . 168

7.15 Generic compiled elements 170

7.16 Variable names and progamming rules 171

7 Developer information

This chapter gives a detailed description of the formats used for variables and data
structures. This information is grouped here and hypertext reference is given in the
HTML version of the manual.

7.1 Nodes

Nodes are characterized using the convention of Universal files. model.Node and
FEnode are node matrices. A node matrix has seven columns. Each row of gives

NodeID PID DID GID x y z

where NodeID are node numbers (positive integers with no constraint on order or
continuity), PID and DID are coordinate system numbers for position and displace-
ment respectively (zero or any positive integer), GID is a node group number (zero
or any positive integer), and x y z are the coordinates . For cylindrical coordinate
systems, coordinates represent r teta z (radius, angle in degrees, and z axis value).
For spherical coordinates systems, they represent r teta phi (radius, angle from
vertical axis in degrees, azimuth in degrees). For local coordinate system support
see section 5.1.5.

A simple line of 10 nodes along the x axis could be simply generated by the command

node = [[1:10]’ zeros(10,3) linspace(0,1,10)’*[1 0 0]];

For other examples take a look at the finite element related demonstrations (see
section 5.1) and the mesh handling utility femesh.

The only restriction applied to the NodeID is that they should be positive integers,
smaller than round((2^31-1)/100) ≈ 21e6 (this limit is linked to the use of sparse
routines for DOF reindexing operations).

In many cases, you will want to access particular nodes by their number. The
standard approach is to create a reindexing vector called NNode. Thus the commands

NNode=[];NNode(node(:,1))=1:size(node,1);
Indices_of_Nodes = NNode(List_of_NodeID)

give you a simple mechanism to determine the indices in the node matrix of a set of
nodes with identifiers List of NodeID. The femesh FindNode commands provide
tools for more complex selection of nodes in a large list.

142

7.2 Model description matrices

A model description matrix describes the model elements. model.Elt and FEelt are,
for example, model description matrices. The declaration of a finite element model
is done through the use of element groups stacked as rows of a model description
matrix elt and separated by header rows whose first element is Inf in Matlab or
%inf in Scilab and the following are the ascii values for the name of the element.
In the following, Matlab notation is used. Don’t forget to replace Inf by %inf in
Scilab.
For example a model described by

elt = [Inf abs(’beam1’) 0 0
1 2 11 12 5 0 0 0
2 3 11 12 5 0 0 0

Inf abs(’mass1’) 0 102
2 1e2 1e2 1e2 5e-5 5e-5 5e-5 0];

has 2 groups. The first group contains 2 beam1 elements between nodes 1-2 and 2-3
with material property 11, section property 12, and bending plane containing node
5. The second group contains a concentrated mass on node 2.

Note how columns unused for a given type element are filled with zeros. The 102 de-
clared for the mass corresponds to an element group identification number (EGID).

You can find more realistic examples of model description matrices in the demon-
strations (see section 5.1).

The general format for header rows is

[Inf abs(’ElementName’) 0 opt]

The Inf that mark the element row and the 0 that mark the end of the element name
are required (the 0 may only be omitted if the name ends with the last column of
elt).

For multiplatform compatibility, element names should only contain lower case
letters and numbers. In any case never include blanks, slashes, ... in the element
name. Element names reserved for supported elements are listed in the element
reference chapter 8 (or doc(’eltfun’) from the command line) .

Users can define new elements by creating functions (.m or .mex in Matlab, .sci
in Scilab) files with the element name. Specifications on how to create element
functions are given in section 7.14.

143

7 Developer information

Element group options opt can follow the zero that marks the end of the element
name. opt(1), if used, should be the element group identification number EGID. In
the example, the group of mass1 elements is this associated to the EGID 102. The
default element group identification number is its order in the group declaration.
Negative EGID are ignored in FEM analyzes (display only, test information, ...)

Between group headers, each row describes an element of the type corresponding to
the previous header (first header row above the considered row).

The general format for element rows is

[NodeNumbers MatID ProID EltId OtherInfo]

where

• NodeNumbers are positive integers which must match a unique NodeID identifier
in the first column of the node matrix.

• MatID and ProID are material and element property identification numbers. They
should be positive integers matching a unique identifier in the first column of the
material pl and element il property declaration matrices.

• EltId are positive integers uniquely identifying each element. The EltIdFix
command returns a model that verifies the unicity constraint.

• OtherInfo can for example be the node number of a reference node (beam1 el-
ement). These columns can be used to store arbitrary element dependent infor-
mation. Typical applications would be node dependent plate thickness, offsets,
etc.

Note that the position of MatID, ProID and EltId in the element rows are returned
by calls of the form ind=elem0(’prop’) (elem0 is a generic element name, it can
be bar1, hexa8, . . .).

Element property rows are used for assembly by fe mk, display by feplot, model
building by femesh, ...

7.3 Material property matrices

This section describes the low level format for material properties. The actual
formats are described under m functions m elastic, m piezo, ... For Graphical
edition and standard scripts see section 5.1.4.

144

A material is normally defined as a row in the material property matrix pl. Such
rows give a declaration of the general form [MatID Type Prop] with

MatID a positive integer identifying a particular material property.
Type a positive real number built using calls of the form

fe mat(’m elastic’,’SI’,1)
Prop as many properties (real numbers) as needed (see fe mat, m elastic

for details).

Additional information can be stored as an entry of type ’mat’ in the model stack
which has data stored in a structure with at least fields

.name Description of material

.pl a single value giving the MatId of the corresponding row in the pl matrix

.unit a two character string describing the unit system (see the fe mat Unit
and Convert commands).

.type the name of the material function handling this particular type of ma-
terial (for example m elastic).

7.4 Element property matrices

This section describes the low level format for element properties. The actual formats
are described under p functions p shell, p solid, p beam, p spring. For Graphical
edition and standard scripts see section 5.1.4.

An element property is normally defined as a row in the element property matrix
il. Such rows give a declaration of the general form [ProID Type Prop] with

ProID a positive integer identifying a particular element property.
Type a positive real number built using calls of the form

fe mat(’p beam’,’SI’,1)
Prop as many properties (real numbers) as needed (see fe mat, p solid for

details).

Additional information can be stored as an entry of type ’pro’ in the model stack
which has data stored in a structure with fields

145

7 Developer information

.name description of property.

.il a single value giving the ProId of the corresponding row in the il matrix

.unit a two character string describing the unit system (see the fe mat Unit
and Convert commands).

.type the name of the property function handling this particular type of ele-
ment properties (for example p beam).

7.5 DOF definition vector

OpenFEM keeps track of the meaning of each Degree of Freedom (DOF) trough
DOF definition vectors (see details below). As mdof keeps track of the meaning
of different DOFs, fe c can be used manipulate incomplete and unordered DOF
sequences. This is used for boundary condition manipulations, renumbering, ...

OpenFEM distinguishes nodal and element DOFs.

Nodal DOFs are described as a single number of the form NodeID.DofID where
DofID is an integer between 01 and 99. For example DOF 1 of node 23 is described
by 23.01. By convention

• DOFs 01 to 06 are, in the following order u, v, w (displacements along the global
coordinate axes) and θu, θv, θw (rotations along the same directions)

• DOFs 07 to 12 are, in the following order −u, −v, −w (displacements along the
reversed global coordinate axes) and −θu, −θv, −θw (rotations along the same
directions). This convention is used in test applications where measurements are
often made in those directions and not corrected for the sign change. It should
not be used for finite element related functions which may not all support this
convention.

While these are the only mandatory conventions, other typical DOFs are .19 pres-
sure, .20 temperature, .21 voltage, .22 magnetic field.

In a small shell model, all six DOFs (translations and rotations) of each node would
be retained and could be stacked sequentially node by node. The DOF definition
vector mdof and corresponding displacement or load vectors would thus take the
form

146

mdof =



1.01
1.02
1.03
1.04
1.05
1.06

...


, q =



u1 u2

v1 v2
w1 w2

θu1 θu2 . . .
θv1 θv2

θw1 θw2
...

. . .


and F =



Fu1 Fu2

Fv1 Fv2

Fw1 Fw2

Mu1 Mu2 . . .
Mv1 Mv2

Mw1 Mw2
...

. . .


Typical vectors and matrices associated to a DOF definition vector are

• modes resulting from the use of fe eig or read from FE code results (see
nasread, ufread).

• input and output shape matrices which describe how forces are applied and
sensors are placed (see fe c, fe load, bc page 26).

• system matrices : mass, stiffness, etc. assembled by fe mk.

• FRF test data. If the position of sensors is known, it can be used to animate
experimental deformations (see feplot , xfopt, and fe sens).

Note that, in Matab version, the functions fe eig and fe mk, for models with more
than 1000 DOFs, renumber DOF internally so that you may not need to optimize
DOF numbering yourself. In such cases though, mdof will not be ordered sequentially
as shown above.

Element DOFs are described as a single number of the form -EltId.DofID where
DofID is an integer between 001 and 999. For example DOF 1 of the element with
ID 23001 is described by -23001.001. Element DOFs are typically only used by
superelements (see section 6.2.2). Due to the use of integer routines for indexing
operations, you cannot define element DOFs for elements with and EltId larger
than 2 147 484.

7.6 FEM model structure

Finite element simulations are best handled using standard data structures sup-
ported by OpenFEM. The two main data structures are model which contains in-
formation needed to specify a FEM problem, and DEF which stores a solution.

Finite element models are described by their topology (nodes, elements and pos-

147

7 Developer information

sibly coordinate systems), their properties (material and element). Computations
performed with a model are further characterized by a case as illustrated in sec-
tion 5.2 and detailed in section 7.7.

Data structures describing finite element models have the following standardized
fields, where only nodes and elements are always needed.

.bas local coordinate system definitions

.cta sensor observation matrix. Used by fe sens.

.copt solver options. For use by upcom. This field is likely to disappear in
favor of defaults in sdtdef.

.DOF DOF definition vector for the matrices of the model. Boundary con-
ditions can be imposed using cases.

.Elt elements. This field is mandatory.

.file Storage file name. Used by upcom.

.il element property description matrix. Can also be stored as ’pro’ en-
tries in the Stack.

.K{i} cell array of constant matrices for description of model as a linear com-
bination. Indices i match definitions in .Opt(2,:) and .Opt(3,:).
See details in the fe super reference.

.mind element matrix indices. Used by upcom.

.Node nodes. This field is mandatory.

.Opt options characterizing models that are to be used as superelements

.pl material property description matrix. Can also be stored as ’mat’
entries in the Stack.

.Patch Patch face matrix. See fe super.

.Stack A cell array containing optional properties further characterizing a finite
element model. See stack get for how to handle the stack.

.Ref Generic coordinate transformation specification. See fe super.

.tdof test DOF field. See fe sens.

.TR projection matrix. See fe super.

.unit main model unit system (see fe mat convert for a list of supported
unit systems and the associated two letter codes).

.wd working directory

Currently supported entries in the model stack are

148

case defines a case : boundary conditions, loading, ...
curve curve to be used for simulations (see fe curve)
info non standard information used by solvers or meshing procedures (see

below)
mat defines a material entry
sel defines an element selection
seln defines a node selection. Typically a structure with fields .ID giving

the reference number and .data giving either node numbers or a node
selection command.

set defines a set. Typical sets are edge references (structures with fields .ID
giving the reference number and .data with two columns giving EltId
and edge number) or the similar face references. Sets can be used to
define loaded surfaces.

pro defines an element property entry

Currently used info entries are

EigOpt gives real eigenvalue solver options (see fe eig).
OrigNumbering original node numering (associated with feutil renumber com-

mand). This is useful to bypass the limitation on node numbers
which must be less than 2^31/100

NewNodeFrom integer giving the next NodeId to be used when adding nodes to
the model (used by some commands of feutil).

Freq Frequencies given as a structure with field .X with frequency values
and .ID a integer identifier.

Omega rotation vector used for rotating machinery computations (see
fe cyclic).

7.7 FEM case data structure

A case defines, finite element boundary conditions, applied loads, physical parame-
ters, ... The associated information is stored in a case data structure with fields

149

7 Developer information

Case.Stack list of boundary conditions, constraints, parametric design point,
and loading cases that need to be considered.

Case.T basis of subspace verifying fixed boundary conditions and con-
straints.

Case.DOF DOF definition vector describing the columns of T, the rows of
T are described by the .DOF field of the model.

Case.b left hand side vectors needed to describe load (using DOFs corre-
sponding to the columns of T)

The various cases are then stored in the .Stack field of the model data structure
(this is done by a call to fe case). Each row is a cell array (in Matlab) or a list (in
Scilab) giving {Type,Name,data}. Supported stack entries for cases are

• KeepDof, FixDof, rigid, mpc are used to impose fixed boundary conditions
and constraints. SensDof entries are used to define sensors. These entries
are detailed in fe case;

• DofLoad, DOFSet, FVol, FSurf are used by fe load to define loads;

• par are used by upcom to define physical parameters.

7.8 FEM result data structure

Deformations resulting from finite element computations (fe eig, fe load, . . .) are
described by a structure with fields

.def deformations (NDOF by NDef matrix)

.DOF DOF definition vector

.data (optional) matrix of numbers characterizing the content of each defor-
mation (frequency, time step, ...)

.opt options

.fun function description [Model Analysis Field Signification
Format] (see xfopt funtype)

.lab (optional) cell array of strings characterizing the content of each defor-
mation.

.label string describing the content

.scale (optional) string describing the content

150

7.9 Curves and data sets

A curve is a data structure with fields

.ID identification and type of the curve

.X X-axis data

.Y Y-axis data. If a matrix rows correspond to .X values and columns
are called channels

.Z optionnal Z-axis data. Typically one value per channel.

.data a matrix with one row per channel (column of .Y). This is used to
store DOF information for responses, pole information for modes,
...

.xunit a cell array with three columns giving label the meaning of the x
axis, ulabel the unit label for the x axis, lftue the length, force
and temperature unit exponents. Typical fields can be generated
with fe curve(’datatype’,’Time’)

.yunit same as .xunit except that there can be as many rows as channels
in the .Y data.

.zunit same as .xunit.

.name name of the curve

.type
’fe curve’

.unit unit system of the curve (see fe mat convert)

.Interp optional interpolation method

.PlotInfo type of plotting

To add a curve to the model.Stack cell array, the data structure must be introduced
in a cell array with the form {’curve’, Name, data}. Name is a string identifying
the entry.

7.10 DOF selection

fe c is the general purpose function for manipulating DOF definition vectors. It is
called by many other functions to select subsets of DOFs in large DOF definition
vectors. DOF selection is very much related to building an observation matrix c,
hence the name fe c.

For DOF selection, fe c arguments are the reference DOF vector mdof and the DOF
selection vector adof. adof can be a standard DOF definition vector but can also

151

7 Developer information

contain wild cards as follows

NodeID.0 means all the DOFs associated to node NodeID
0.DofID means DofID for all nodes having such a DOF

-EltN.0 means all the DOFs associated to element EltID

Typical examples of DOF selection are

ind = fe c(mdof,111.01,’ind’); returns the position in mdof of the x translation
at node 111. You can thus extract the motion of this DOF from a vector using
mode(ind,:). Note that the same result would be obtained using an output shape
matrix in the command fe c(mdof,111.01)*mode.

model = fe mk(model,’FixDOF’,’2-D motion’,[.03 .04 .05])

assembles the model but only keeps translations in the xy plane and rotations around
the z axis (DOFs [.01 .02 .06]’). This is used to build a 2-D model starting from
3-D elements.

The femesh findnode commands provides elaborate node selection tools. Thus
femesh(’findnode x>0’) returns a vector with the node numbers of all nodes in
the standard global variable FEnode that are such that their x coordinate is posi-
tive. These can then be used to select DOFs, as shown in the section on boundary
conditions section 7.13. Node selection tools are described in the next section.

152

7.11 Node selection

feutil supports a number of node selection criteria that are used by many functions.
A node selection command is specified by giving a string command (for example
’GroupAll’, or the equivalent cell array representation described at the end of this
section) to be applied on a model (nodes, elements, possibly alternate element set).

Accepted selectors are

GIDi selects the nodes in the node group i (specified in column 4 of
the node matrix). Logical operators are accepted.

Group i selects the nodes linked to elements of group(s) i in the main
model. Same as InElt{Group i}

Groupa i selects nodes linked to elements of group(s) i of the alternate
model

InElt{sel} selects nodes linked to elements of the main model that are
selected by the element selection command sel.

NodeId >i selects nodes selects nodes based relation of NodeId to integer
i. The logical operator >, <, >=, <=, ~=, or == can be omitted
(the default is then ==).

NotIn{sel} selects nodes not linked to elements of the main model that are
selected by the element selection command sel.

Plane == i nx ny

nz

selects nodes on the plane containing the node number i and
orthogonal to the vector [nx ny nz]. Logical operators apply
to the oriented half plane. i can be replaced by string o xo yo
zo specifying the origin.

rad <=r x y z selects nodes based on position relative to the sphere specified
by radius r and position x y z node or number x (if y and z

are not given). The logical operator >, <, >=, <= or == can be
omitted (the default is then <=).

x>a selects nodes such that their x coordinate is larger than a. x y
z and the logical operators >, <, >=, <=, == can be used.

x y z selects nodes with the given position. If a component is set to
NaN it is ignored. Thus [0 NaN NaN] is the same as x==0.

Element selectors EGID, EltId, EltName, MatId and ProId are interpreted as InElt
selections.

Different selectors can be chained using the logical operations & (finds nodes that
verify both conditions), | (finds nodes that verify one or both conditions). Condition

153

7 Developer information

combinations are always evaluated from left to right (parentheses are not accepted).

Output arguments are the numbers NodeID of the selected nodes and the selected
nodes node as a second optional output argument. The basic commands are

• [NodeID,node]=feutil([’findnode ...’],model)
this command applies the specified node selection command to a model struc-
ture. For example, [NodeId,node] = feutil(’findnode x==0’,model);
selects the nodes in model.Node which first coordinate is null.

• [NodeID,node]=femesh([’findnode ...’])
this command applies the specified node selection command to the standard
global matrices FEnode, FEelt, FEel0, . . . For example,
[NodeId,node] = femesh(’findnode x==0’); selects the node in FEnode
which first coordinate is null.

While the string format is typically more convenient for the user, the reference
format for a node selection is really a 4 column cell array :

{ Selector Operator Data
Logical Selector Operator Data
}
The first column gives the chaining between different rows, with Logical being
either &, | or a bracket (and).

The Selector is one of the accepted commands for node selection (or element se-
lection if within a bracket).

The operator is a logical operator >, <, >=, <=, ~=, or ==.

The data contains numerical or string values that are used to evaluate the operator.
Note that the meaning of ~= and == operators is slightly different from base Matlab
operators as they are meant to operate on sets.

The feutil findnodestack command returns the associated cell array rather than
the resulting selection.

154

7.12 Element selection

feutil supports a number of element selection criteria that are used by many func-
tions. An element selection command is specified by giving a string command (for
example ’GroupAll’) to be applied on a model (nodes, elements, possibly alternate
element set).

Basic commands are :

• [eltind,elt] = feutil(’findelt selector’,model);
this command applies the specified element selection command to a model
structure. For example,
[eltind,selelt] = feutil(’findelt eltname bar1’,model) selects the el-
ements in model.Elt which type is bar1.

• [eltind,elt] = feutil(’findelt selector’,model);
this command applies the specified element selection command to the standard
global matrices FEnode, FEelt, FEel0, . . . For example, [eltind,selelt] =
femesh(’findelt eltname bar1’) selects the elements in FEelt which type
is bar1.

eltind is the selected elements indices in the element description matrix. selelt
is the selected elements.

Accepted selectors are

155

7 Developer information

EltId i finds elements with identificators i in FEelt. Operators accepted.

EltInd i
finds elements with indices i in FEelt. Operators accepted.

EltName s finds elements with element name s. EltName flui will select all
elements with name starting with flui. EltName = flui will
select all elements with name not starting with flui.

EGID i finds elements with element group identifier i. Operators accepted.
Facing > cos

x y z

finds topologically 2-D elements whos normal projected on the di-
rection from the element CG to x y z has a value superior to cos.
Inequality operations are accepted.

Group i finds elements in group(s) i. Operators accepted.
InNode i finds elements with all nodes in the set i. Nodes numbers in i can

be replaced by a string between braces defining a node selection
command. For example femesh(’find elt withnode {y>-230 &
NodeId>1000}’).

MatId i finds elements with MatID equal to i. Relational operators are also
accepted (MatId =1:3, ...).

ProId i
finds elements with ProID equal to i. Operators accepted.

SelEdge type selects the external edges (lines) of the currently selected elements
(any element selected before the SelEdge selector), any further se-
lector is applied on the model resulting from the SelEdge command
rather than on the original model.

g retains inter-group edges. Type m retains inter-material edges.
Type p retains inter-property edges. The MatId for the resulting
model identifies the original properties of each side of the edge.

SelFace type selects the external faces (surfaces) of the currently selected ele-
ments (see more details under SelEdge).

WithNode i finds elements with at least one node in the set i. i can be a list
of node numbers. Replacements for i are accepted as above.

WithoutNodei finds elements without any of the nodes in the set i. i can be a list
of node numbers. Replacements for i are accepted as above.

Different selectors can be chained using the logical operations & (finds elements
that verify both conditions), | (finds elements that verify one or both conditions).
femesh(’FindEltGroup 1:3 & with node 1 8’) for example. Condition combi-
nations are always evaluated from left to right (parentheses are not accepted).

Numeric values to the command can be given as additional femesh arguments.
Thus the command above could also have been written femesh(’findelt group &
withnode’,1:3,[1 8]).

156

7.13 Constraint and fixed boundary condition handling

rigid links, FixDof and KeepDOF entries, symmetry conditions, continuity con-
straints in CMS applications, ... all lead to problems of the form

[
Ms2 + Cs+K

]
{q(s)} = [b] {u(s)}

{y(s)} = [c] {q(s)}
[cint] {q(s)} = 0

(7.1)

The linear constraints [cint] {q(s)} = 0 can be integrated into the problem using La-
grange multipliers but the preferred approach here is to eliminate these constraints.
This is done by building a basis T for the kernel of the constraint equations

range([T]N×(N−NC)) = ker([c]NS×N) (7.2)
and solving problem[

T TMTs2 + T TCTs+ T TKT
]
{qR(s)} =

[
T T b

]
{u(s)}

{y(s)} = [cT] {qR(s)}
which is strictly equivalent to solving (7.1).

The basis T is generated using [Case,model.DOF]=fe case(model,’gett’) where
Case.T gives the T basis and Case.DOF describes the active or master DOFs (asso-
ciated with the columns of T) while tt model.DOF describes the full list of DOFs.

The assembly of unconstrained M , ... or constrained T TMT matrices can be con-
trolled with appropriate options in fe mk, fe load, ...

When defining local displacement bases (non zero value of DID in node column 3),
master DOFs are defined in the local coordinate system. As a result, M is expected
to be define in the global response system while the projected matrix T TMT is
defined in local coordinates. mpc constraints are defined using the local basis.

For the two bay truss example, can be written as follows :

model2 = femesh(’test 2bay’);
model2=fe_case(model,’SetCase1’, ... % defines a new case

’FixDof’,’2-D motion’,[.03 .04 .05]’, ... % 2-D motion
’FixDof’,’Clamp edge’,[1 2]’); % clamp edge

Case=fe_case(’gett’,model2) % Notice the size of T and
fe_c(Case.DOF) % display the list of active DOFs

157

7 Developer information

model2 = fe_mknl(model2)

% Now reassemble unconstrained matrices and verify the equality
% of projected matrices
[m,k,mdof]=fe_mk(model2,’options’,[0 2 2]);

norm(full(Case.T’*m*Case.T-model2.K{1}))
norm(full(Case.T’*k*Case.T-model2.K{2}))

A number of low level commands (feutil GetDof, FindNode, ...) and functions
fe c can be used to operate similar manipulations to what fe case GetT does, but
things become rapidly complex. For example

model = femesh(’test 2bay’);
[m,k,mdof]=fe_mknl(model)

i1 = femesh(’findnode x==0’);
adof1 = fe_c(mdof,i1,’dof’,1); % clamp edge
adof2 = fe_c(mdof,[.03 .04 .05]’,’dof’,1); % 2-D motion
adof = fe_c(mdof,[adof1;adof2],’dof’,2);

ind = fe_c(model.DOF,adof,’ind’);
mdof=mdof(ind); tmt=m(ind,ind); tkt=k(ind,ind);

Handling multiple point constraints (rigid links, ...) really requires to build a basis
T for the constraint kernel. For rigid links this is supported by the rigid function.
The following illustrates restitution of a constrained solution on all DOFs

% Example of a plate with a rigid edge
femesh(’;testquad4;divide 10 10;addsel’);
% select the rigid edge and set its properties
femesh(’;selelt group1 & seledge & innode {x==0};addsel’);
femesh(’setgroup2 name rigid’);
FEelt(femesh(’findelt group2’),3)=123456;
FEelt(femesh(’findelt group2’),4)=0;
model=femesh;
model.pl=m_elastic(’dbval 100 steel’);
model.il=p_shell(’dbval 110 Mindlin 5e-2’);

158

% Assemble
model.DOF=feutil(’getdof’,model);% full list of DOFs
[tmt,tkt,mdof] = fe_mknl(model); % assemble constrained matrices
Case=fe_case(model,’gett’); % Obtain the transformation matrix

[md1,f1]=fe_eig(tmt,tkt,[5 10 1e3]); % compute modes on master DOF

def=struct(’def’,Case.T*md1,’DOF’,model.DOF) % display on all DOFs
feplot(model,def); fecom(’;view3;ch7’)

159

7 Developer information

7.14 Creating new elements (advanced tutorial)

In this section one describes the developments needed to integrate a new element
function into OpenFEM. First, general information about OpenFEM work is given.
Then the writing of a new element function is described. And at last, conventions
which must be respected are given.

7.14.1 General information

In OpenFEM, elements are defined by element functions. Element functions provide
different pieces of information like geometry, degrees of freedom, model matrices, . . .

OpenFEM functions like the preprocessor femesh, the model assembler fe mk or the
post-processor feplot call element functions for data about elements.

For example, in the assembly step, fe mk analyzes all the groups of elements. For
each group, fe mk gets its element type (bar1, hexa8, . . .) and then calls the asso-
ciated element function.
First of all, fe mk calls the element function to know what is the rigth call form to
compute the elementary matrices (eCall=elem0(’matcall’) or eCall=elem0(’call’),
see section 7.14.2 for details). eCall is a string. Generally, eCall is a call to the
element function. Then for each element, fe mk executes eCall in order to compute
the elementary matrices.

This automated work asks for a likeness of the element functions, in particular for
the calls and the outputs of these functions. Next section gives information about
element function writing.

7.14.2 Writing a new element function

The first step to create a new element is to write a new element function.

In Matlab version, a typical element function is an .m or .mex file that is in your
Matlab path. In Scilab version, a typical element function is an .sci or mex file
that is loaded into Scilab memory (see getf in Scilab on-line help).

The name of the function/file corresponds to the name of the element (thus the
element bar1 is implemented through the bar1.m file)

160

General element information

To build a new element take q4p.m or q4p.sci as an example.

As for all Matlab or Scilab functions, the header is composed of a function syntax
declaration and a help section. The following example is written for Matlab. For
Scilab version, don’t forget to replace % by //. In this example, the name of the
created element is elem0.

For element functions the nominal format is

function [out,out1,out2]=elem0(CAM,varargin);
%elem0 help section

The element function should then contain a section for standard calls which let other
functions know how the element behaves.

if isstr(CAM) %standard calls with a string command

[CAM,Cam]=comstr(CAM,1); % remove blanks
if comstr(Cam,’integinfo’)
% some code needed here
out= constit; % real parameter describing the constitutive law
out1=integ; % integer (int32) parameters for the element
out2=elmap;

elseif comstr(Cam,’matcall’)
out=elem0(’call’);
out1=1; % SymFlag
elseif comstr(Cam,’call’); out = [’AssemblyCall’];
elseif comstr(Cam,’rhscall’); out = [’RightHandSideCall’];
elseif comstr(Cam,’scall’); out = [’StressComputationCall’];
elseif comstr(Cam,’node’); out = [NodeIndices];
elseif comstr(Cam,’prop’); out = [PropertyIndices];
elseif comstr(Cam,’dof’); out = [GenericDOF];
elseif comstr(Cam,’patch’);

out = [GenericPatchMatrixForPlotting];
elseif comstr(Cam,’edge’); out = [GenericEdgeMatrix];
elseif comstr(Cam,’face’); out = [GenericFaceMatrix];
elseif comstr(Cam,’sci_face’); out = [SciFaceMatrix];
elseif comstr(Cam,’parent’); out = [’ParentName’];
elseif comstr(Cam,’test’)

161

7 Developer information

% typically one will place here a series of basic tests
end
return
end % of standard calls with string command

The expected outputs to these calls are detailed below.

call,matcall

Format string for element matrix computation call. Element functions must be able
to give fe mk the proper format to call them (note that superelements take prece-
dence over element functions with the same name, so avoid calling a superelement
beam1, etc.).

matcall is similar to call but used by fe mknl. Some elements directly call the
of mk mex function thus avoiding significant loss of time in the element function. If
your element is not directly supported by fe mknl use matcall=elem0(’call’).

The format of the call is left to the user and determined by fe mk by executing the
command eCall=elem0(’call’). The default for the string eCall should be (see
any of the existing element functions for an example)

[k1,m1]=elem0(nodeE,elt(cEGI(jElt),:),...
pointers(:,jElt),integ,constit,elmap);

To define other proper calling formats, you need to use the names of a number of
variables that are internal to fe mk. fe mk variables used as output arguments of
element functions are

k1 element matrix (must always be returned, for opt(1)==0 it should be
the stiffness, otherwise it is expected to be the type of matrix given by
opt(1))

m1 element mass matrix (optional, returned for opt(1)==0, see below)

[ElemF,opt,ElemP]=feutil(’getelemf’,elt(EGroup(jGroup),:),jGroup)
returns, for a given header row, the element function name ElemF, options opt, and
parent name ElemP.

fe mk and fe mknl variables that can be used as input arguments to element function
are

162

cEGI vector of element property row indices of the current element group
(without the group header)

constit real (double) valued constitutive information. The constit for each
group is stored in Case.GroupInfo{jGroup,4};.

def.def vector of deformation at DOFs. This is used for non-linear, stress or
energy computation calls that need displacement information.

EGID Element Group Identifier of the current element group (different from
jGroup if an EGID is declared).

elt model description matrix. The element property row of the current
element is given by elt(cEGI(jElt),:) which should appear in the
calling format eCall of your element function.

ElemF name of element function or name of superelement
ElemP parent name (used by femesh in particular to allow property inheri-

tance)
estate real (double) valued element state information. Nominally each column

in estate corresponds to the internal state of an element. The estate
for each group is stored in Case.GroupInfo{jGroup,5};.

integ
int32 valued constitutive information. The integ for each group is
stored in Case.GroupInfo{jGroup,3};.

jElt number of the current element in cEGI
jGroup number of the current element group (order in the element matrix).
nodeE nodes of the current element
NNode node identification reindexing vector. NNode(ID) gives the row index

(in the node matrix) of the nodes with identification numbers ID. You
may use this to extract nodes in the node matrix using something like
node(NNode(elt(cEGI(jElt),[1 2])),:) which will extract the two
nodes with numbers given in columns 1 and 2 of the current element
row (an error occurs if one of those nodes is not in node).

pointers one column per element in the current group gives : pointers(1,jElt)
size of desired output or zero. pointers(5,jElt) type of de-
sired output. See the fe mk MatType section for a current list.
pointers(6,jElt) gives the starting index (first element is 0) of in-
teger options for the current element in integ. pointers(7,jElt)
gives the starting index (first element is 0) of real options for the cur-
rent element in constit. The pointers for each group is stored in
Case.GroupInfo{jGroup,2};.

163

7 Developer information

dof

Generic DOF definition vector. This vector follows the usual DOF definition vector
format (NodeID.DofID or -1.DofID) but is generic in the sense that node numbers
indicate positions in the element row (rather than actual node numbers) and -1
replaces the element identifier (if applicable).

For example the bar1 element uses the 3 translations at 2 nodes whose number are
given in position 1 and 2 of the element row. The generic DOF definition vector is
thus [1.01;1.02;1.03;2.01;2.01;2.03].

edge,face,patch,line,sci face

face is a matrix where each row describes the positions in the element row of
nodes of the oriented face of a volume (conventions for the orientation are described
in section 7.14.3). If some faces have fewer nodes, the last node should be repeated
as needed.

edge is a matrix where each row describes the node positions of the oriented edge
of a volume or a surface. If some edges have fewer nodes, the last node should be
repeated as needed.

line (obsolete) is a vector describes the way the element will be displayed in the line
mode (wire frame). The vector is generic in the sense that node numbers represent
positions in the element row rather than actual node numbers. Zeros can be used
to create a discontinuous line. line is now typically generated using information
provided by patch.

patch. In MATLAB version, surface representations of elements are based on the
use of Matlab patch objects. Each row of the generic patch matrix gives the indices
nodes. These are generic in the sense that node numbers represent positions in the
element row rather than actual node numbers.

For example the tetra4 solid element has four nodes in positions 1:4. Its generic
patch matrix is [1 2 3;2 3 4;3 4 1;4 1 2]. Note that you should not skip nodes
but simply repeat some of them if various faces have different node counts.

sci face is the equivalent of patch for use in the SCILAB implementation of Open-
FEM. The difference between patch and sci face is that, in SCILAB, a face must
be described with 3 or 4 nodes. That means that, for a two nodes element, the last
node must be repeated (in generallity, sci_face = [1 2 2];). For a more than 4
nodes per face element, faces must be cut in subfaces. The most important thing is
to not create new nodes by the cutting of a face and to use all nodes. For example,

164

9 nodes quadrilateral can be cut as follows :

75

6 3

481

2

9 75

6 3

481

2

9

Figure 7.1: Lower order patch representation of a 9 node quadrilateral

but a 8 nodes quadrilaterals cannot by cut by this way. It can be cut as follows:

75

6 3

481

2

75

6 3

481

2

Figure 7.2: Lower order patch representation of a 8 node quadrilateral

integinfo

[constit,integ,elmap]=elem0(’integinfo’,pl,il,[MatId ProId]) searches pl
and il for rows corresponding to MatId and ProId and returns a real vector constit
describing the element consitutive law and an integer vector integ. elmap is used
to build the full matrix of an element which initially only gives it lower or upper
triangular part.

165

7 Developer information

node

Vector of indices giving the position of nodes numbers in the element row. In general
this vector should be [1:n] where n is the number of nodes used by the element.

prop

Vector of indices giving the position of MatID, ProID and EltId in the element row.
In general this vector should be n+[1 2 3] where n is the number of nodes used
by the element. If the element does not use any of these identifiers the index value
should be zero (but this is poor practice).

parent

Parent element name. If your element is similar to a standard element (beam1,
tria3, quad4, hexa8, etc.), declaring a parent allows the inheritance of properties.
In particular you will be able to use functions, such as fe load or parts of femesh,
which only recognize standard elements.

rhscall

rhscall is a string that will be evaluated by fe load when computing right hand
side loads (volume and surface loads). Like call or matcall, the format of the call
is determined by fe load by executing the command eCall=elem0(’call’). The
default for the string eCall should be :

be=elem0(nodeE,elt(cEGI(jElt),:),pointers(:,jElt),...
integ,constit,elmap,estate);

The output argument be is the right hand side load. The inputs arguments are the
same as those for matcall and call.

Matrix, load and stress computations

The calls with one input are followed by a section on element matrix assembly. For
these calls the element function is expected to return an element DOF definition
vector idof and an element matrix k. The type of this matrix is given in opt(1).
If opt(1)==0, both a stiffness k and a mass matrix m should be returned. See the
fe mk MatType section for a current list.

Take a look at bar1 which is a very simple example of element function.

A typical element assembly section is as follows :

166

% elem0 matrix assembly section

% figure out what the input arguments are
node=CAM; elt=varargin{1};
point=varargin{2}; integ=varargin{3};
constit=varargin{4}; elmap=varargin{5};
typ=point(5);

% outputs are [k,m] for opt(1)==0
% [mat] for other opt(1)
switch point(5)
case 0
[out,out1] = ... % place stiffness in out and mass in out1

case 1
out= ... % compute stiffness

case 2
out= ... % compute mass

case 100
out= ... % compute right hand side

case 200
out= ... % compute stress ...

otherwise
error(’Not a supported matrix type’);

end

Distributed load computations (surface and volume) are handled by fe load. Stress
computations are handled by fe stres.

There is currently no automated mechanism to allow users to integrate such com-
putations for their own elements without modifying fe load and fe stres, but this
will appear later since it is an obvious maintenance requirement.

The mechanism that will be used will be similar to that used for matrix assembly.
The element function will be required to provide calling formats when called with
elem0(’fsurf’) for surface loads, elem0(’fvol’) for volume loads, and
elem0(’stress’) for stresses. fe load and fe stres will then evaluate thes calls
for each element.

167

7 Developer information

7.14.3 Conventions

Geometric orientation conventions

Having chosen the first vertex, each element is defined by:

1

2

1

2

3

1

2

3
4

1. The segment:
• (1) → (2)

2. The triangle: numbering anti-clockwise in the two-dimensional case (in the
three-dimensional case, there is no orientation).
• edge [1]: (1) → (2) (nodes 4, 5, ... if there are supplementary nodes) • edge
[2]: (2) → (3) (...) • edge [3]: (3) → (1)

3. The quadrilateral: numbering anti-clockwise (same remark as for the triangle)
• edge [1]: (1) → (2) (nodes 5, 6, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3)
→ (4) • edge [4]: (4) → (1)

1

2

3

4

1

2

3

4

5

6

1

2
3

4

5

6

8

7

4. The tetrahedron: trihedral (~12, ~13, ~14) direct (~ij designates the vector from
point i to point j).
• edge [1]: (1) → (2) (nodes 5, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3)
→ (1)
• edge [4]: (1) → (4) • edge [5]: (2) → (4) • edge [6]: (3) → (4) (nodes ..., p)

168

All faces, seen from the exterior, are described anti-clockwise:
• face [1]: (1) (3) (2) (nodes p+1, ...) • face [2]: (1) (4) (3) (...)
• face [3]: (1) (2) (4) • face [4]: (2) (3) (4)

5. The pentahedron: trihedral (~12, ~13, ~14) direct
• edge [1]: (1) → (2) (nodes 7, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3)
→ (1)
• edge [4]: (1) → (4) • edge [5]: (2) → (5) • edge [6]: (3) → (6)
• edge [7]: (4) → (5) • edge [8]: (5) → (6) • edge [9]: (6) → (4) (nodes ..., p)

All faces, seen from the exterior, are described anti-clockwise.
• face [1] : (1) (3) (2) (nodes p+1, ...) • face [2] : (1) (4) (6) (3) • face [3] :
(1) (2) (5) (4)
• face [4] : (4) (5) (6) • face [5] : (2) (3) (5) (6)

6. The hexahedron: trihedral (~12, ~14, ~15) direct
• edge [1]: (1) → (2) (nodes 9, ...) • edge [2]: (2) → (3) (...) • edge [3]: (3)
→ (4)
• edge [4]: (4) → (1) • edge [5]: (1) → (5) • edge [6]: (2) → (6)
• edge [7]: (3) → (7) • edge [8]: (4) → (8) • edge [9]: (5) → (6)
• edge [10]: (6) → (7) • edge [11]: (7) → (8) • edge [12]: (8) → (5) (nodes ...,
p)

All faces, seen from the exterior, are described anti-clockwise.
• face [1] : (1) (4) (3) (2) (nodes p+1, ...) • face [2] : (1) (5) (8) (4)
• face [3] : (1) (2) (6) (5) • face [4] : (5) (6) (7) (8)
• face [5] : (2) (3) (7) (6) • face [6] : (3) (4) (8) (7)

169

7 Developer information

7.15 Generic compiled elements

To improve the ease of development of new elements, OpenFEM now supports a new
category of generic element functions. Matrix assembly, stress and load assembly
calls for these elements are fully standardized to allow optimization. All the element
specific information stored in the EltConst data structure.

Second generation volume elements hexa8b, tetra4b, ... are based on this prin-
ciple and can be used as examples. These elements also serve as the current basis
for non-linear operations.

The adopted logic is to develop families of elements with different toplogies. To
implement a family, one needs

• shape functions and integration rules. These are independent of the problem
posed and grouped systematically in integrules.

• topology, formatting, display, test, ... information for each element. This is
the content of the element function (see hexa8b, tetra4b, ...) .

• a procedure to build the constit vectors from material data. This is nominally
common to all elements of a given family and is used in integinfo element
call. For example p solid(’BuildConstit’).

• a procedure to determine constants based on current element information.
This is nominally common to all elements of a given family and is used in
groupinit phase (see fe mk). For example p solid(’ConstSolid’).

• a procedure to build the element matrices, right hand sides, etc. based on
existing information. This is compiled in of mk MatrixIntegration and
StressObserve commands. For testing/development purposes is expected
that for sdtdef(’diag’,12) an .m file implementation in elem0.m is called
instead of the compiled version.

Each group of element following this format is characterized by

170

integ integer constants associated with the group of elements.
constit real valued constants associated with the group. This is where the

constitutive law is stored.
gstate group state.
ElMap element matrix map used to distinguish between internal and exter-

nal element DOF numbering (for example : hexa8b uses all x DOF,
then all y ... as internal numbering while the external numbering
is done using all DOFs at node 1, then node 2, ...)

InfoAtNode vector fields at node to be used when assembling the element. No
element currently uses this feature.

EltConst element constant information (integration rules, etc.)

7.16 Variable names and progamming rules

The following rules are used in programming OpenFEM as is makes reading the
source code easier.

carg index of current argument. For functions with vari-
able number of inputs, one seeks the next argument with
NewArg=varargincarg;carg=carg+1;

j1,j2,j3 ... loop indices.
i,j unit imaginary

√
−1. i,j should never be used as indices to avoid

any problem overloading their default value.
i1,i2,i3 ... integer values intermediate variables
r1,r2,r3 ... real valued variables or structures
ind,in2,in3 ... vectors of indices, cind is used to store the complement of ind when

applicable.
out,out1,out2
...

output variables

The following names are also used throughout the toolbox functions

node,FEnode nodes
NNode reindexing vector verifies NodeInd=NNode(NodeId). Can be built

using NNode=sparse(node(:,1),1,1:size(node,1)).

171

7 Developer information

172

8

Element reference

bar1 176

beam1, beam1t 177

celas 179

dktp 180

flui4,flui6,flui8 182

fsc 183

hexa8, hexa20, penta6, penta15, tetra4, tetra10 185

hexa8b, hexa20b, hexa27b, penta6b, penta15b,
tetra4b, tetra10b 190

integrules 194

mass1,mass2 202

quad4, quadb, mitc4 203

q4p, q5p, q8p, t3p, t6p 205

q4pb, q8pb, t3pb, t6pb 210

q9a 211

rigid 212

tria3, tria6 214

Element functions supported by OpenFEM version 2.0 are listed below. 3-D ele-
ments can be degenerated to 2-D by DOF elimination. 2-D elements are assumed
in the x-y plane. Plane stress, plane strain or axysimmetry is selected using the
element property row in il.

Utility elements

fe super element function for general superelement support
integrules FEM integration rule support
fsc fluid/structure coupling capabilities

2-D plane stress/strain and axisymmetric elements

q4p 4-node 8-DOF quadrangle
q5p 5-node 10-DOF quadrangle
q8p 8-node 16-DOF quadrangle
t3p 3-node 6-DOF triangle
t6p 6-node 12-DOF triangle

2-D isoparametric elements

q4pb 4-node 8-DOF quadrangle
q5pb 5-node 10-DOF quadrangle
q8pb 8-node 16-DOF quadrangle
t3pb 3-node 6-DOF triangle
t6pb 6-node 12-DOF triangle

3-D plate/shell Elements

dktp 3-node 9-DOF discrete Kirchoff plate
mitc4 4-node 20-DOF shell
quadb quadrilateral 4-node 20/24-DOF plate/shell
quad9 (display only)
quadb quadrilateral 8-node 40/48-DOF plate/shell
tria3 3-node 15/18-DOF thin plate/shell element
tria6 (display only)

3-D isoparametric solid elements

hexa8 8-node 24-DOF brick
hexa20 20-node 60-DOF brick
hexa27 27-node 81-DOF brick
penta6 6-node 18-DOF pentahedron
penta15 15-node 45-DOF pentahedron
tetra4 4-node 12-DOF tetrahedron
tetra10 10-node 30-DOF tetrahedron

3-D isoparametric solid elements with non linear gemetric support

hexa8b 8-node 24-DOF brick
hexa20b 20-node 60-DOF brick
hexa27b 27-node 81-DOF brick
penta6b 6-node 18-DOF pentahedron
penta15b 15-node 45-DOF pentahedron
tetra4b 4-node 12-DOF tetrahedron
tetra10b 10-node 30-DOF tetrahedron

3-D acoustic elements

flui4 4-node 4-DOF tetrahedron
flui6 6-node 6-DOF pentahedron
flui8 8-node 8-DOF hexahedron

Other elements

bar1 standard 2-node 6-DOF bar
beam1 standard 2-node 12-DOF Bernoulli-Euler beam
beam1t pretensionned 2-node 12-DOF Bernoulli-Euler beam
beam3 (display only)
celas scalar springs and penalized rigid links
mass1 concentrated mass/inertia element
mass2 concentrated mass/inertia element with offset
rigid handling of linearized rigid links

175

bar1

Purpose Element function for a 6 DOF traction-compression bar element.

Description The bar1 element corresponds to the standard linear interpolation for axial traction-
compression. The element DOFs are the standard translations at the two end nodes
(DOFs .01 to .03).

In a model description matrix, element property rows for bar1 elements follow the
standard format (see section 7.14).

[n1 n2 MatID ProID EltID]

Isotropic elastic materials are the only supported (see m elastic).

For supported element properties see p beam. Currently, bar1 only uses the element
area A with the format

[ProID Type 0 0 0 A]

See also m elastic, p beam, fe mk, feplot

176

beam1, beam1t

Purpose Element function for a 12 DOF beam element. beam1t is a 2 node beam with
pretension available for non-linear cable statics and dynamics.

Description
beam1

In a model description matrix, element property rows for beam1 elements follow the
format

[n1 n2 MatID ProID nR 0 0 EltID p1 p2 x1 y1 z1 x2 y2 z2]

where

n1,n2 node numbers of the nodes connected
MatID material property identification number
ProID element section property identification number
nr 0 0 number of node not in the beam direction defining bending plane 1

(default node is 1.5 1.5 1.5)
vx vy vz alternate method for defining the bending plane 1 by giving the com-

ponents of a vector in the plane but not collinear to the beam axis. If
vy and vz are zero, vx must not be an integer.

p1,p2 pin flags. These give a list of DOFs to be released (condensed before
assembly). For example, 456 will release all rotation degrees of freedom.
Note that the DOFS are defined in the local element coordinate system.

x1,... optional components in global coordinate system of offset vector at node
1 (default is no offset)

x2,... optional components of offset vector at node 2

Isotropic elastic materials are the only supported (see m elastic). p beam describes
the section property format and associated formulations.

177

beam1, beam1t

beam1t

This element has an internal state where each colum of Case.GroupInfo{5} gives
the local basis, element length and tension [bas(:);L;T].

This is a sample example how to impose a pre-tension :

model=femesh(’testbeam1 divide 10’);
model=fe_case(model,’fixdof’,’clamp’,[1;2;.04;.02;.01;.05]);
model.Elt=feutil(’set group 1 name beam1t’,model);
[Case,model.DOF]=fe_mknl(’init’,model);
m=fe_mknl(’assemble’,model,Case,2);
k=fe_mknl(’assemble’,model,Case,1);
f1=fe_eig(m,k,[5 10]);
Case.GroupInfo{1,5}(11,:)=1.5e6; % tension
k1=fe_mknl(’assemble’,model,Case,1);
f1=[f1 fe_eig(m,k1,[5 10])] % Note the evolution of frequencies

See also p beam, m elastic, fe mk, feplot

178

celas

Purpose element function for scalar springs and penalized rigid links

Description In an model description matrix a group of celas elements starts with a header
row [Inf abs(’celas’) 0 ...] followed by element property rows following the
format [n1 n2 DofID1 DofID2 ProID EltID Kv Mv Cv Bv] with

n1,n2 node numbers of the nodes connected. Grounded springs are obtained
by setting n1 or n2 to 0.

DofID Identification of selected DOFs.
For rigid links, the first node defines the rigid body motion. DofID
(positive) defines which DOFs of the slave node are connected by the
constraint. Thus [1 2 123 0 0 0 1e14] will only impose translations
of node 2 are imposed by motion of node 1, while [1 2 123456 0 0 0
1e14] will also penalize the difference in rotations.
For scalar springs, DofID1 (negative) defines which DOFs of node 1
are connected to which of node 2. DofID2 can be used to specify dif-
ferent DOFs on the 2 nodes. For example [1 2 -123 231 0 0 1e14]
connects DOFs 1.01 to 2.02, etc.

ProID Optional property identification number (see format below)
Kv Optional stiffness value used as a weighting associated with the con-

straint. If Kv is zero (or not given), the default value in the element
property declaration is used. If this is still zero, Kv is set to 1e14.

When used, element property rows for celas elements take the form (detailed under
p spring)

[ProID type KvDefault]

See also p spring, rigid

179

dktp

Purpose 2-D 9-DOF Discrete Kirchhoff triangle

Description

FT ∈ P
2

1

T

T̂

3̂

2̂1̂

3

2

1

In a model description matrix, element property rows for dktp elements follow
the standard format

[n1 n2 n3 MatID ProID EltID Theta]

giving the node identification numbers ni, material MatID, property ProID. Other
optional information is EltID the element identifier, Theta the angle between ma-
terial x axis and element x axis (currently unused)

The elements support isotropic materials declared with a material entry described in
m elastic. Element property declarations follow the format described in p shell.

The dktp element uses the et*dktp routines.

There are three vertices nodes for this triangular Kirchhoff plate element and the
normal deflection W (x, y) is cubic along each edge.

We start with a 6-node triangular element with a total D.O.F = 21 :

• five degrees of freedom at corner nodes :

W (x, y) ,
∂ W

∂x
,
∂ W

∂y
, θx , θy (deflection W and rotations θ)

• two degrees of freedom θx and θy at mid side nodes.

Then, we impose no transverse shear deformation γxz = 0 and γyz = 0 at selected
nodes to reduce the total DOF = 21− 6 ∗ 2 = 9 :

180

• three degrees of freedom at each of the vertices of the triangle.

W (x, y) , θx = (
∂ W

∂x
) , θy = (

∂ W

∂y
)

The coordinates of the reference element’s vertices are Ŝ1(0., 0.), Ŝ2(1., 0.) and
Ŝ3(0., 1.).

Surfaces are integrated using a 3 point rule ωk = 1
3 and bk mid side node.

See also fe mat, m elastic, p shell, fe mk, feplot

181

flui4,flui6,flui8

Purpose Isoparametric 4, 6 and 8 node brick fluid elements.

Description The flui4, flui6 and flui8 elements are isoparametric elements describing linear
acoustics. A derivation of these elements can be found in [40].

In a model description matrix, element property rows these elements follow the
standard format [n1 ... ni MatID ProId EltId] (see elem0).

The supported material property declaration format is described in m elastic (sub
type 2).

[MatId fe_mat(’m_elastic’,1,2) Rho C eta]

See also m elastic, fe mat, fe mk, feplot , fsc

182

fsc

Purpose Non standard element for fluid/structure coupling

Description Elasto-acoustic coupling is used to model structures containing a compressible, non-
weighing fluid, with or without a free surface.

ΩF

ΩS

n

F
ext

The FE formulation for this type of problem can be written as [41]

s2
[
M 0
CT Kp

]{
q
p

}
+

[
K(s) −C

0 F

]{
q
p

}
=

{
F ext

0

}
(8.1)

with q the displacements of the structure, p the pressure variations in the fluid and
F ext the external load applied to the structure, where

∫
ΩS
σij(u)εij(δu)dx⇒ δqTKq∫
ΩS
ρSu.δudx⇒ δqTMq

1
ρF

∫
ΩF
∇p∇δpdx⇒ δpTFp

1
ρF c2

∫
ΩF

pδpdx⇒ δpTKpp∫
Σ pδu.ndx⇒ δqTCp

(8.2)

Terms corresponding to the structure are computed using the classical elements of
the SDT, and terms corresponding to the fluid are computed using the fluid elements
(see flui4).

183

fsc

The coupling term C is computed using fluid/structure coupling elements (fsc ele-
ments).

Only one integration point on each element (the centre of gravity) is used to evaluate
C.

When structural and fluid meshes do not match at boundaries, pairing of elements
needs to be done. The pairing procedure can be described for each element. For
each fluid element Fi, one takes the center of gravity Gf,i (see figure), and searches
the solid element Si which is in front of the center of gravity, in the direction of
the normal to the fluid element Fi. The projection of Gf,i on the solid element, Pi,
belongs to Si, and one computes the reference coordinate r and s of Pi in Si (if Si

is a quad4, −1 < r < 1 and −1 < s < 1). Thus one knows the weights that have to
be associated to each node of Si. The coupling term will associate the DOFs of Fi

to the DOFs of Si, with the corresponding weights.

Gf,1 Gf,2

Fluid

Solid

P1
P2

See also flui4, m elastic

184

hexa8, hexa20, penta6, penta15, tetra4, tetra10

Purpose Isoparametric volume elements.

Description The hexa8 hexa20 penta6 penta15 tetra4 and tetra10 elements are the standard
isoparametric elements containing DOFs .01 to .03 at each node. These elements
support 3-D isotropic and orthotropic materials (see m elastic). The newer family
of *b elements implements the same elements with more options (full anisotropy,
geometric non-linearity, integration rules selection, ...).

In a model description matrix, element property rows for hexa8 and hexa20
elements follow the standard format with no element property used. The generic
format for an element containing i nodes is [n1 ... ni MatID]. For example, the
hexa8 format is [n1 n2 n3 n4 n5 n6 n7 n8 MatID].

Vertex coordinates of the reference element can be found using an integrules com-
mand containing the name of the element such as r1=integrules(’hexa8’);r1.xi.

The elements have standard limitations. In particular they do not (yet)

• have any correction for shear locking found for high aspect ratios

• have any correction for dilatation locking found for nearly incompressible mate-
rials

hexa8, hexa20

The hexa8 and hexa20 elements are the standard 8 node 24 DOF and 20 node 60
DOF brick elements.

The hexa8 element uses the et*3q1d routines.

hexa8 volumes are integrated at 8 Gauss points

ωi = 1
8 for i = 1, 4

bi for i = 1, 4 as below, with z = α1

bi for i = 4, 8 as below, with z = α2

hexa8 surfaces are integrated using a 4 point rule

ωi = 1
4 for i = 1, 4

b1 = (α1, α1) , b2 = (α2, α1) , b3 = (α2, α2) and b4 = (α1, α2)

185

hexa8, hexa20, penta6, penta15, tetra4, tetra10

with α1 = 1
2 −

1
2
√

3
= 0.2113249 and α2 = 1

2 + 1
2
√

3
= 0.7886751.

The hexa20 element uses the et*3q2c routines.

hexa20 volumes are integrated at 27 Gauss points ωl = wiwjwk for i, j, k = 1, 3

with

w1 = w3 = 5
18 and w2 = 8

18 bl = (αi, αj , αk) for i, j, k = 1, 3

with

α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2

α1 =
1−
√

3
5

2 , α2 = 0.5 and

hexa20 surfaces are integrated at 9 Gauss points ωk = wiwj for i, j = 1, 3 with

wi as above and bk = (αi, αj) for i, j = 1, 3

with α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2 .

penta6, penta15

The penta6 and penta15 elements are the standard 6 node 18 DOF and 15 node
45 DOF pentahedral elements. A derivation of these elements can be found in [40].

The penta6 element uses the et*3r1d routines.

penta6 volumes are integrated at 6 Gauss points

Points bk x y z

1 a a c

2 b a c

3 a b c

4 a a d

5 b a d

6 a b d

with a = 1
6 = .16667, b = 4

6 = .66667, c = 1
2 −

1
2
√

3
= .21132, d = 1

2 + 1
2
√

3
= .78868

penta6 surfaces are integrated at 3 Gauss points for a triangular face (see tetra4)
and 4 Gauss points for a quadrangular face (see hexa8).

penta15 volumes are integrated at 21 Gauss points with the 21 points formula

186

a = 9−2
√

15
21 , b = 9+2

√
15

21 ,

c = 6+
√

15
21 , d = 6−

√
15

21 ,

e = 0.5(1−
√

3
5),

f = 0.5 and g = 0.5(1 +
√

3
5)

α = 155−
√

15
2400 , β = 5

18 ,

γ = 155+
√

15
2400 , δ = 9

80 and ε = 8
18 .

Positions and weights of the 21 Gauss point are

Points bk x y z weight ωk

1 d d e α.β

2 b d e α.β

3 d b e α.β

4 c a e γ.β

5 c c e γ.β

6 a c e γ.β

7 1
3

1
3 e δ.β

8 d d f α.ε

9 b d f α.ε

10 d b f α.ε

11 c a f γ.ε

12 c c f γ.ε

13 a c f γ.ε

14 1
3

1
3 f δ.ε

15 d d g α.β

16 b d g α.β

17 d b g α.β

18 c a g γ.β

19 c c g γ.β

20 a c g γ.β

21 1
3

1
3 g δ.β

penta15 surfaces are integrated at 7 Gauss points for a triangular face (see tetra10)
and 9 Gauss points for a quadrangular face (see hexa20).

187

hexa8, hexa20, penta6, penta15, tetra4, tetra10

tetra4, tetra10

The tetra4 element is the standard 4 node 12 DOF trilinear isoparametric solid
element. tetra10 is the corresponding second order element.

You should be aware that this element can perform very badly (for poor aspect ratio,
particular loading conditions, etc.) and that higher order elements should be used
instead.

The tetra4 element uses the et*3p1d routines.

tetra4 volumes are integrated at the 4 vertices ωi = 1
4 for i = 1, 4 and bi = Si the

i-th element vertex.

tetra4 surfaces are integrated at the 3 vertices with ωi = 1
3 for i = 1, 3 and bi = Si

the i-th vertex of the actual face

The tetra10 element is second order and uses the et*3p2c routines.

tetra10 volumes are integrated at 15 Gauss points

Points bk λ1 λ2 λ3 λ4 weight ωk

1 1
4

1
4

1
4

1
4

8
405

2 b a a a α

3 a b a a α

4 a a b a α

5 a a a b α

6 d c c c β

7 c d c c β

8 c c d c β

9 c c c d β

10 e e f f γ

11 f e e f γ

12 f f e e γ

13 e f f e γ

14 e f e f γ

15 f e f e γ

with a = 7−
√

15
34 = 0.0919711 , b = 13+3

√
15

34 = 0.7240868 , c = 7+
√

15
34 = 0.3197936 ,

d = 13−3
√

15
34 = 0.0406191 , e = 10−2

√
15

40 = 0.0563508 , f = 10+2
√

15
40 = 0.4436492

and α = 2665+14
√

15
226800 , β = 2665−14

√
15

226800 et γ = 5
567

188

λj for j = 1, 4 are barycentric coefficients for each vertex Sj :

bk =
∑

j=1,4 λjSj for k = 1, 15

tetra10 surfaces are integrated using a 7 point rule

Points bk λ1 λ2 λ3 weight ωk

1 c d c α

2 d c c α

3 c c d α

4 b b a β

5 a b b β

6 b a b β

7 1
3

1
3

1
3 γ

with γ = 9
80 = 0.11250 , α = 155−

√
15

2400 = 0.06296959, β = 155+
√

15
2400 = 0.066197075

and a = 9−2
√

15
21 = 0.05961587 , b = 6+

√
15

21 = 0.47014206 , c = 6−
√

15
21 = 0.10128651 ,

d = 9+2
√

15
21 = 0.797427

λj for j = 1, 3 are barycentric coefficients for each surface vertex Sj :

bk =
∑

j=1,3 λjSj for k = 1, 7

See also fe mat, m elastic, fe mk, feplot

189

hexa8b, hexa20b, hexa27b, penta6b, penta15b, tetra4b,

tetra10b

Purpose Isoparametric volume elements with non linear geometric support.

Description This family of elements contains hexa8b, hexa20b, hexa27b, penta6b, penta15b,
tetra4b, tetra10b which implement standard isoparametric formulations contain-
ing DOFs .01 to .03 at each node.

In a model description matrix, element property rows follow generic format. For
an element containing i nodes the format is [n1 ... ni MatID ProId EltId].

Material properties should point the m elastic entries for isotropic, orthotropic
or fully anisotropic materials. Hyperelastic material support is not yet properly
documented.

Element properties are used to integration rule selection as detailed in p solid.

Vertex coordinates of the reference element can be found using an integrules com-
mand containing the name of the element such as r1=integrules(’hexa8’);r1.xi.

The elements have standard limitations. In particular they do not (yet)

• have any correction for shear locking found for high aspect ratios

• have any correction for dilatation locking found for nearly incompressible mate-
rials

Theory The principle of virtual work in non-linear total Lagrangian formulation for an hy-
perelastic medium is∫

Ω0

(ρ0u
′′, w) +

∫
Ω0

S : δe =
∫
Ω0

f.dv ∀ δv (8.3)

with p the vector of initial position, x = p + u the current position, and u the
displacement vector. The transformation is characterized by

Fi,j = I + ui,j = δij + {N,j}T {qi} (8.4)
where the N, j is the derivative of the shape functions with respect to cartesian co-
ordinates at the current integration point and qi corresponds to field i (here trans-
lations) and element nodes. The notation is thus realy valid within a single element
and corresponds to the actual implementation of the element family in elem0 and
of mk. Note that in these functions, a reindexing vector is use to go from engineer-
ing ({e11 e22 e33 e23 e31 e12}) to tensor [eij] notations ind ts eg=[1 6 5;6 2 4;5

190

4 3];e tensor=e engineering(ind ts eg);. One can also simplify a number of
computations using the fact that the contraction of a symmetric and non symmetric
tensor is equal to the contraction of the symmetric tensor by the symmetric part of
the non symmetric tensor.

One defines the Green-Lagrange strain tensor e = 1/2(F TF − I) and its variation
deij =

(
F TdF

)
Sym

=
(
Fki {N,j}T {δqk}

)
Sym

(8.5)

Thus the virtual work of internal loads is given by∫
Ω
S : δe =

∫
Ω
{δqk}T {N,j}FkiSij (8.6)

and the tangent stiffness matrix (its derivative with respect to the current position)
can be written as

KG =
∫
Ω
Sijuk,ivk,j +

∫
Ω
de :

∂2W

∂e2
: δe (8.7)

which using the notation ui,j = {N,j}T {qi} leads to

Ke
G =

∫
Ω
{δqm} {N,l}

(
Fmk

∂2W

∂e2 ijkl
Fni + Slj

)
{N,j} {dqn} (8.8)

The term associated with stress at the current point is generally called geometric
stiffness or pre-stress contribution.

Elasticity In isotropic elasticity, the 2nd tensor of Piola-Kirchhoff stress is given by
S = D : e(u) = λTr(e)I + 2µe (8.9)

the building of the constitutive law matrix D is performed in p solid BuildConstit
for isotropic, orthotropic and full anisotropic materials.

For a geometric non-linear static computation one will thus solve

[K(qn)]
{
qn+1 − qn

}
=
∫
Ω
f.dv −

∫
Ω0

S : δe (8.10)

where external forces f are assumed to be non following.

Hyperelasticity For hyperelastic media S = ∂W/∂e with W the hyperelastic energy. elem0 currently
supports Mooney-Rivlin materials for which the energy takes the form

W = C1(J1 − 3) + C2(J2 − 3) +K(J3 − 1)2, (8.11)
were (J1, J2, J3) are the reduced invariants of the Green-Cauchy tensor

C = I + 2e, (8.12)
linked to the invariants (I1, I2, I3) themselves by

J1 = I1I
− 1

3
3 , J2 = I2I

− 2
3

3 , J3 = I
1
2
3 , (8.13)

191

hexa8b, hexa20b, hexa27b, penta6b, penta15b, tetra4b,
tetra10b
where one recals that

I1 = trC, I2 =
1
2
[(trC)2 − trC2], I3 = detC. (8.14)

Note : this definition of energy based on reduced invariants is used to have the
hydrostatic pressure given directly by p = −K(J3−1) (K “bulk modulus”), and the
third term of W is a penalty on incompressibility.

Pour calculer les matrices de rigidit, il suffit donc d’avoir les expressions des drives
premires et secondes des invariants par rapport e (ou C), ce qui donne en repre
ON :

∂I1
∂Cij

= δij ,
∂I2
∂Cij

= I1δij − Cij ,
∂I3
∂Cij

= I3C
−1
ij , (8.15)

o (C−1
ij) dsigne les coefficients de la matrice inverse de (Cij). Pour les drives secondes

on a :
∂2I1

∂Cij∂Ckl
= 0,

∂2I2
∂Cij∂Ckl

= −δikδjl + δijδkl,
∂2I3

∂Cij∂Ckl
= Cmnεikmεjln, (8.16)

o les εijk sont dfinis par
εijk = 0 si 2 indices concident

= 1 si (i, j, k) permutation paire de (1, 2, 3)
= −1 si (i, j, k) permutation impaire de (1, 2, 3)

(8.17)

NB : Si on range les composantes de dformations en colonnes (“engineering strains”)
sous la forme (e11, e22, e33, 2e12, 2e23, 2e31)′, les 2 derniers termes de (8.16) correspon-
dent donc respectivement aux 2 matrices

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 −1/2 0 0
0 0 0 0 −1/2 0
0 0 0 0 0 −1/2


, (8.18)



0 C33 C22 0 −C23 0
C33 0 C11 0 0 −C13

C22 C11 0 −C12 0 0
0 0 −C12 −C33/2 C13/2 C23/2
−C23 0 0 C13/2 −C11/2 C12/2

0 −C13 0 C23/2 C12/2 −C22/2


. (8.19)

On utilise finalement les drivations en chane :
S =

∂W

∂e
=
∑
k

∂W

∂Ik

∂Ik
∂e

, (8.20)

192

∂2W

∂e2
=
∑
k

∂W

∂Ik

∂2Ik
∂e2

+
∑
k

∑
l

∂2W

∂Ik∂Il

∂Ik
∂e

∂Il
∂e
. (8.21)

Attention aux facteurs 2 qui viennent lorsqu’on drive (les invariants) par rapport e
au lieu de C.

See section ??.

193

integrules

Purpose Command function for FEM integration rule support.

Description This function groups integration rule manipulation utilities used by various elements.

.N nw ×Nnode shape functions at integration points

.Nr nw × Nnode derivative of shape function with respect to the first ref-
erence coordinate r

.Ns nw × Nnode derivative of shape function with respect to the second
reference coordinate s

.Nt nw × Nnode derivative of shape function with respect to the second
reference coordinate t

.NDN Nnode × nw(1 + Ndim) memory allocation to store the shape
functions and their derivatives with respect to physical coordinates
[N N,x N, y N, z] (see more details below)

.jdet Nw memory allocation to store the determinant of the jacobian matrix
at integration points.

.Nw number of integration points (equal to size(EltConst.N,1))

.Nnode number of nodes (equal to size(EltConst.N,2)=size(EltConst.NDN,1))

hexa8, hexa20, hexa27

Vertex coordinates of the reference element can be found using the integrules
command r1=integrules(’hexa8’);r1.xi (or command ’hexa20’, ’hexa27’).

1̂

2̂ 3̂

4̂

5̂

6̂

7̂

8̂

1

2 3

4

5

6

7

8

Figure 8.1: hexa8 reference element.

194

1̂

2̂

3̂

4̂

5̂

6̂
7̂

8̂

9̂
1̂0

1̂1
1̂2

1̂3

1̂4

1̂5

1̂61̂7

1̂8

1̂9

2̂0

1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17 18

19
20

Figure 8.2: hexa20 reference element.

penta6, penta15

Vertex coordinates of the reference element can be found using the integrules
command r1=integrules(’penta6’);r1.xi (or command ’penta15’).

1̂

2̂

3̂

4̂ 6̂

5̂

1

2

3

4
6

5

Figure 8.3: penta6 reference element.

195

integrules

1̂

2̂

3̂

4̂ 6̂

5̂

1̂5

1̂0
1̂1

1̂2

8̂7̂

9̂

1̂3 1̂4

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

Figure 8.4: penta15 reference element.

tetra4,tetra10

Vertex coordinates of the reference element can be found using the integrules
command r1=integrules(’tetra4’);r1.xi (command ’tetra10’).

ˆ

ˆ

ˆ
ˆ

FT P
3
1

T

T̂

4

3

2

1

1

4

3
2

FT P
3
1

T

T̂

∈

Figure 8.5: tetra4 reference element.

196

1̂0

9̂

8̂

7̂

6̂5̂

FT
P
3
2

10
9

8

7

6

5

4̂

3̂

2̂

1̂

1

4

3

2

T

T̂

Figure 8.6: tetra10 reference element.

q4p, q5p, q8p

Vertex coordinates of the reference element can be found using the integrules
command r1=integrules(’quad4’);r1.xi.

3̂
4̂

3
4

F T Q 2

1

T

ˆT

2̂1̂

2

1

∈

Figure 8.7: q4p reference element.

197

integrules

1

FT Q 2
1

∈�

ˆ�T

T
ˆ�4

ˆ�1 ˆ�2

ˆ�3

3

2

4

5

ˆ�5

Figure 8.8: q5p reference element.

Vertex coordinates of the reference element can be found using the integrules
command r1=integrules(’quadb’);r1.xi.

7̂4̂

8̂

FT Q2

2

7

8

6

5

6̂

5̂

3̂

T̂

2̂1̂

34

T

2

1

�

Figure 8.9: q8p reference element.

t3p,t6p

Vertex coordinates of the reference element can be found using the integrules
command r1=integrules(’tria3’);r1.xi.

198

F T ∈ P 2

1

T

ˆT

3̂

2̂1̂

3

2

1

Figure 8.10: t3p reference element.

Vertex coordinates of the reference element can be found using the integrules
command r1=integrules(’tria6’);r1.xi.

6

5

4

F T P
2

2

4̂

5̂6̂

T

ˆT

3̂

2̂1̂

3

2

1

∈

Figure 8.11: t6p reference element.

BuildNDN

The commands are extremely low level utilities to fill the .NDN field for a given set
of nodes. The calling format is of mk(’BuildNDN’,type,rule,node) where type is
an int32 specifies the dimension (2 for 2D, 3 for 3D, 23 for surface in a 3D model),
(the rule structure is described earlier in this section and node has three columns
that give the positions in the of nodes of the current element. The rule.NDN and
rule.jdet fields are modified. They must have the correct size before the call is
made or severe crashes can be experienced.

199

integrules

MatOg elements

The MatOg element family supports a fairly general definition of multi-physic ele-
ments whose element integration strategy is fully described by an EltConst data
strucure. hexa8b serves as a prototype

EltConst=hexa8b(’constants’,[],[],[]);
integrules(’texstrain’,EltConst)
EltConst=integrules(’stressrule’,EltConst);
integrules(’texstress’,EltConst)

Elements of this family are standard element functions (see section 7.14) and the
element functions must thus return node, prop, dof, line, patch, edge, face,
and parent values. The specificity is that all information needed to integrate the
element is stored in an EltConst data structure that is initialized during the fe mknl
GroupInit phase.

For DOF definitions, the MatOg family uses an internal DOF sort where each field
is given at all nodes sequentially 1x2x...8x1y...8y... while the more classical sort
by nodes 1x1y...2x... is still used for external caccess (and is thus expected to be
returned by DOF = elem(’dof’).

Each linear element matrix type is represented in the form of a sum over a set of
integration points

k(e) =
∑
ji,jj

∑
jw

[
{Bji}Dji jk(w(jw)) {Bjj}T

]
J(w(jw))W ((jw)) (8.22)

where the jacobian of the transformation from physical xyz to element rst coordi-
nates is stored in EltConst.jdet(jw) and the weighting associated with the inte-
gration rule is stored in EltConst.w(jw,4).

The integration rule for a given element is thus characterized by the strain obser-
vation matrix Bji(r, s, t) which relates a given strain component εji and the nodal
displacements. The MatOg element family assumes that the generalized strain com-
ponents are linear functions of the shape functions and their derivatives in euclidian
coordinates (xyz rather than rst). The first step of the element matrix construction
is the evaluation of the EltConst.NDN matrix whose first Nw columns store shape
functions, Nw next their derivatives with respect to x, then y and z for 3D elements

[NDN]Nnode×Nw(Ndims+1) =
[
[N(r, s, t)]

[
∂N

∂x

] [
∂N

∂y

] [
∂N

∂z

]]
(8.23)

200

To improve speed the EltConst.NDN and associated EltConst.jdet fields are pre-
allocated and reused for the assembly of element groups.

For each strain vector type, one defines an int32 matrix EltConst.StrainDefinition{jType}
with each row describing row, NDNBloc, DOF, NwStart, NwTot giving the strain
component number (these can be repeated since a given strain component can com-
bine more than one field), the block column in NDN (block 1 is N , 4 is ∂N/∂z),
the field number, and the starting integration point associated with this strain com-
ponent and the number of integration points needed to assemble the matrix. The
default for NwStart NwTot is 1, Nw but this formalism allows for differentiation of
the integration strategies for various fields.

To help you check the validity of a given rule, you should fill the EltConst.StrainLabels{jType}
and EltConst.DofLabels fields and use the integrules(’texstrain’,EltConst)
command to generate a LATEX printout of the rule you just generated.

It is assumed that at any integration point, the strain is a function of shape functions
and their derivatives.

See also elem00

201

mass1,mass2

Purpose Concentrated mass elements.

Description

mass1 places a diagonal concentrated mass and inertia at one node.

In a model description matrix, element property rows for mass1 elements follow
the format

[NodeID mxx myy mzz ixx iyy izz EltID]

where the concentrated nodal mass associated to the DOFs .01 to .06 of the indi-
cated node is given by

diag([mxx myy mzz ixx iyy izz])

For mass2 elements, the element property rows follow the format

[n1 M I11 I21 I22 I31 I32 I33 EltID CID X1 X2 X3 MatId ProId]

which, for no offset, corresponds to matrices given by

M symmetric
M

M
I11

−I21 I22

−I31 −I32 I33


=



∫
ρdV symmetric

M
M ∫

ρ(x2 + y2)dV
−I21 I22
−I31 −I32 I33


Note that local coordinates CID are not currently supported by mass2 elements.

See also femesh, feplot

202

quad4, quadb, mitc4

Purpose 4 and 8 node quadrilateral plate/shell elements.

Description

In a model description matrix, element property rows for quad4, quadb and
mitc4 elements follow the standard format

[n1 ... ni MatID ProID EltID Theta Zoff T1 ... Ti]

giving the node identification numbers ni (1 to 4 or 8), material MatID, property
ProID. Other optional information is EltID the element identifier, Theta the angle
between material x axis and element x axis (currently unused), Zoff the off-set
along the element z axis from the surface of the nodes to the reference plane (use
femesh orient command to check z-axis orientation), Ti the thickness at nodes
(used instead of il entry, currently the mean of the Ti is used).

If n3 and n4 are equal, the tria3 element is automatically used in place of the
quad4.

Isotropic materials are currently the only supported (this may change soon). Their
declaration follows the format described in m elastic. Element property declara-
tions follow the format described p shell.

quad4

Supported formulations (il(3) see p shell) are

203

quad4, quadb, mitc4

• 1 4 tria3 thin plate elements with condensation of central node.

• 2 Q4WT for membrane and Q4gamma for bending. This is only applicable if
the four nodes are in a single plane. When not, formulation 1 is called.

quadb

Supported formulations (il(3) see p shell) are

• 1 8 tria3 thin plate elements with condensation of central node

• 2 isoparametric thick plate with reduced integration. For non-flat elements,
formulation 1 is used.

mitc4

The MITC4 element is still in a testing phase. It uses 5 DOFs per node with the
to rotations being around orthogonal in-plane directions. This is not consistent
for mixed element types assembly. Non smooth surfaces are not handled properly
because this is not implemented in the feutil getnormals command which is called
for each group of mitc4 elements.

See also m elastic, p shell, fe mk, feplot

204

q4p, q5p, q8p, t3p, t6p

Purpose 2-D plane stress/strain and axisymmetric elements.

Description Vertex coordinates of the reference element can be found using an integrules com-
mand containing the name of the element such as r1=integrules(’q4p’);r1.xi.

In a model description matrix, element property rows for this elements follow
the standard format

[n1 ... ni MatID ProID EltID Theta]

giving the node identification numbers n1,...ni, material MatID, property ProID.
Other optional information is EltID the element identifier, Theta the angle between
material x axis and element x axis (currently unused)

These elements support isotropic and 2-D anisotropic materials declared with a
material entry described in m elastic. Element property declarations follow the
format

[ProID Typ f N]

Where
Typ identifier obtained with fe mat(’p shell’,’SI’,1)
f Formulation : 0 plane stress, 1 plane strain, 2 axisymmetric.
N Fourier coefficient for axisymmetric formulations

The xy plane is used with displacement DOFs .01 and .02 given at each node.

The following subsections give more details about the actual formulations of each
element. Element matrix calls are handled by the element function itself, while load
computations are handled by fe load.

q4p (plane stress/strain)

If n3 and n4 are equal, the t3p element is automatically used in place of the q4p.

The q4p element uses the et*2q1d routines for plane stress and plane strain.

The displacement (u,v) are bilinear functions over the element.

For surfaces, q4p uses numerical integration at the corner nodes with ωi = 1
4 and

bi = Si for i = 1, 4.

For edges, q4p uses numerical integration at each corner node with ωi = 1
2 and

bi = Si for i = 1, 2.

205

q4p, q5p, q8p, t3p, t6p

q4p (axisymmetric)

The q4p element uses the et*aq1d routines for axisymmetry.

The radial ur and axial uz displacement are bilinear functions over the element.

The coordinates of the reference element vertices are identical to the plane case.

For surfaces, q4p uses a 4 point rule with

• ωi = 1
4 for i = 1, 4

• b1 = (α1, α1) , b2 = (α2, α1) , b3 = (α2, α2) , b4 = (α1, α2)
with α1 = 1

2 −
1

2
√

3
= 0.2113249 and α2 = 1

2 + 1
2
√

3
= 0.7886751

For edges, q4p uses a 2 point rule with

• ωi = 1
2 for i = 1, 2

• b1 = α1 and b2 = α2 the 2 gauss points of the edge.

q5p (plane stress/strain)

There are five nodes for this incompressible quadrilateral element, four nodes at the
vertices and one at the intersection of the two diagonales.

The displacement (u,v) varies linearly within each of the four triangles.

The q4p element uses the et*5noe routines for axisymmetry.

For surfaces, q5p uses a 5 point rule with bi = Si for i = 1, 4 the corner nodes and
b5 the node 5.

For edges, q5p uses a 1 point rule with ω = 1
2 and b the midside node.

q8p (plane stress/strain)

The q8p element uses the et*2q2c routines for plane stress and plane strain and
et*aq2c for axisymmetry.

The displacement (u,v) quadratic functions of (x,y) over the element. Strains and
stresses are linear functions.

For surfaces, q8p uses a 9 point rule with

• ωk = wiwj for i, j = 1, 3 with w1 = w3 = 5
18 et w2 = 8

18

206

• bk = (αi, αj) for i, j = 1, 3 with α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2

For edges, q8p uses a 3 point rule with

• ω1 = ω2 = 1
6 and ω3 = 4

6

• bi = Si for i = 1, 2 corner nodes of the edge et b3 the midside.

q8p (axisymmetric)

The q8p element uses the et*aq2c routines for axisymmetry.

The radial ur and axial uz displacement are quadratic functions.

The coordinates of the reference element vertices are identical to the plane case.

For surfaces, q8p uses a 9 point rule with

• ωk = wiwj for i, j = 1, 3
with w1 = w3 = 5

18 and w2 = 8
18

• bk = (αi, αj) for i, j = 1, 3

with α1 =
1−
√

3
5

2 , α2 = 0.5 and α3 =
1+
√

3
5

2

For edges, q8p uses a 3 point rule with

• ω1 = ω3 = 5
18 , ω2 = 8

18

• b1 =
1−
√

3
5

2 = 0.1127015, b2 = 0.5 and b3 =
1+
√

3
5

2 = 0.8872985

t3p (plane stress/strain)

The t3p element uses the et*2p1d routines for plane stress and plane strain.

The displacement (u,v) are assumed to be linear functions of (x,y) (Linear Triangular
Element), thus the strain are constant (Constant Strain Triangle).

For surfaces, t3p uses a 3 point rule at the vertices with ωi = 1
3 and bi = Si.

For edges, t3p uses a 2 point rule at the vertices with ωi = 1
2 and bi = Si.

207

q4p, q5p, q8p, t3p, t6p

t3p (axisymmetric)

The t3p element uses the et*ap1d routines for axisymmetry.

In the triangular cross-section shape of element shown below, a linear polynomial is
used to define the radial and axial components of the displacement. Each of the three
nodes at the vertices of the triangle has two degrees of freedom (the displacements
in the radial and axial directions).

The coordinates of the reference element vertices are identical to the plane case.

For surfaces, t3p uses a 1 point rule at the barycenter (b1 = G) with ω1 = 1
2 .

For edges, t3p uses a 2 point rule at the vertices with ωi = 1
2 and b1 = 1

2 −
2

2
√

3
and

b2 = 1
2 + 2

2
√

3
.

t6p (plane stress/strain)

The t6p element uses the et*2p2c routines for plane stress and plane strain.

The displacement (u,v) are assumed to be quadratic functions of (x,y) (Quadratic
Triangular Element), thus the strain are linear (Linear Strain Triangle).

For surfaces, t6p uses a 3 point rule with

• ωi = 1
3 for i = 1, 6

• bi = Si+3,i+4 the three midside nodes.

For edges, t6p uses a 3 point rule

• ω1 = ω2 = 1
6 and ω3 = 4

6

• bi = Si, i = 1, 2 the i-th vertex of the actual edge and b3 = Si,i+1 the midside.

t6p (axisymmetric)

The t6p element uses the et*ap2c routines for axisymmetry.

The radial ur and axial uz components of the displacements are assumed to be
quadratic functions of (ur, uz)

The coordinates of the reference element vertices are identical to the plane case.

For surfaces, t6p uses a 7 point rule

208

Points bk λ1 λ2 λ3 weight ωk

1 1
3

1
3

1
3

a
2 α β β b
3 β β α b
4 β α β b
5 γ γ δ c
6 δ γ γ c
7 γ δ γ c

with :

a = 9
80

= 0.11250 , b = 155+
√

15
2400

= 0.066197075 and

c = 155−
√

15
2400

= 0.06296959

α = 9−2
√

15
21 = 0.05961587 , β = 6+

√
15

21
= 0.47014206

γ = 6−
√

15
21

= 0.10128651 , δ = 9+2
√

15
21

= 0.797427

λj for j = 1, 3 are barycentric coefficients for each vertex Sj :

bk =
∑

j=1,3 λjSj for k = 1, 7

For edges, t6p uses a 3 point rule with ω1 = ω3 = 5
18 , ω2 = 8

18

b1 =
1−
√

3
5

2 = 0.1127015, b2 = 0.5 and b3 =
1+
√

3
5

2 = 0.8872985

See also fe mat, fe mk, feplot

209

q4pb, q8pb, t3pb, t6pb

Purpose 2-D plane stress/strain with integration rule selection.

Description This family of elements implement the same formulations at the non *b.m elements
with the same names. The interest is mostly linked to the ability to select integration
rules with p solid element properties.

Vertex coordinates of the reference element can be found using an integrules com-
mand containing the name of the element such as r1=integrules(’q4p’);r1.xi.

In a model description matrix, element property rows for this elements follow
the standard format

[n1 ... ni MatID ProID EltID]

giving the node identification numbers n1,...ni, material MatID, property ProID.
Other optional information is EltID the element identifier.

These elements support isotropic and 2-D anisotropic materials declared with a
material entry described in m elastic. Element properties are used to integration
rule selection as detailed in p solid.

The xy plane is used with displacement DOFs .01 and .02 given at each node.

210

q9a

Purpose Plane axisymmetric elements with Fourier support.

Description In a model description matrix, element property rows for q9a elements follow
the standard format

[n1 ... n9 MatID ProID EltID Theta]

giving the node identification numbers ni, material MatID, property ProID. Other
optional information is EltID the element identifier, Theta the angle between ma-
terial x axis and element x axis (currently unused)

These elements support isotropic materials declared with a material entry described
in m elastic. Element property declarations follow the format

[ProID Typ f N]

Typ identifier obtained with fe mat(’p shell’,’SI’,1)
f Formulation : 2 axisymmetric.
N Fourier coefficient for axisymmetric formulations

The xy plane is used with displacement DOFs .01, .02 and .03 given at each node.

The q9a element uses the e*aq2c to generate matrices.

211

rigid

Purpose Non-standard element function for the handling of linearized rigid link constraints.

Synopsis [T,cdof] = rigid(node,elt,mdof)
[T,cdof] = rigid(Up)

Description Rigid links are often used to model stiff connections in finite element models. One
generates a set of linear constraints that relate the 6 DOFs of master M and slave
S nodes by 

u
v
w
rx
ry
rz


S

=



1 0 0 0 zMS −yMS

0 1 0 −zMS 0 xMS

0 0 1 yMS −xMS 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





u
v
w
rx
ry
rz


M

Although they are linear constraints rather than true elements, such connections
can be declared using an element group of rigid connection with a header row of the
form [Inf abs(’rigid’)] followed by as many element rows as connections of the
form

[n1 n2 DofSel MatId ProId EltId]

where node n2 will be rigidly connected to node n1 which will remain free. DofSel
lets you specify which of the 3 translations and 3 rotations are connected (thus 123
connects only translations while 123456 connects both translations and rotations).

This function is then only used for low level access. High level use of rigid links
through the use of cases is illustrated in section 7.13 which discusses handling of
linear constraints in general.

If coordinate systems are defined in field Up.bas (see basis), PID (position coordi-
nate system) and DID (displacement coordinate system) declarations in columns 2
and 3 of Up.Node are properly handled.

• rigid skips non rigid elements, while fe mk skips rigid elements. A single model
description matrix can thus contain definitions for both. feplot shows rigid
elements as bars.

212

• you can use penalized rigid links (celas element) instead of truly rigid connec-
tions. This requires the selection of a stiffness constant but can be easier to
manipulate. To change a group of rigid elements into celas elements change
the element group name femesh(’SetGroup rigid name celas’) and set the
stiffness constant FEelt(femesh(’FindEltGroupi’),7) = Kv.

See also Section 7.13, celas

213

tria3, tria6

Purpose Element functions for a 3 node/18 DOF and 6 nodes/36 DOF shell elements.

Description

In a model description matrix, element property rows for tria3 elements follow
the standard format

[n1 n2 n3 MatID ProID EltID Theta Zoff T1 T2 T3]

giving the node identification numbers ni, material MatID, property ProID. Other
optional information is EltID the element identifier, Theta the angle between mate-
rial x axis and element x axis (currently unused), Zoff the off-set along the element
z axis from the surface of the nodes to the reference plane, Ti the thickness at nodes
(used instead of il entry, currently the mean of the Ti is used).

The element only supports isotropic materials with the format described in m elastic.

The supported property declaration format is described in p shell. Note that tria3
only supports thin plate formulations.

tria3 uses a T3 triangle for membrane properties and a DKT for flexion (see [42]
for example).

tria6 is currently supported for plotting only.

See also quad4, quadb, fe mat, p shell, m elastic, fe mk, feplot

214

9

Function reference

ans2sdt 222
basis 223
commode 226
comstr 228
db, phaseb 230
fe2ss 231
fecom 234
femesh, feutil 248
feplot 265
fesuper 270
fe c 273
fe case 275
fe ceig 282
fe coor 284
fe curve 285
fe cyclic 291
fe eig 293
fe exp 296
fe load 299
fe mat 303
fe mk, fe mknl 306
fe norm 312
fe reduc 313
fe sens 316
fe simul 320
fe stres 322
fe super 324

215

9 Function reference

fe time,of time 328

fe var 333

idcom 336

idopt 341

id dspi 344

id nor 345

id poly 348

id rc, id rcopt 349

id rm 353

iicom 356

iimouse 362

iiplot 366

ii cost 370

ii mac 371

ii mmif 382

ii plp 385

ii poest 386

ii pof 388

m elastic 390

m piezo 392

nasread 393

naswrite 398

nor2res, nor2ss, nor2xf 403

ofact 409

p beam 412

p shell 414

p solid 418

p spring 421

perm2sdt 422

psi2nor 424

qbode 426

res2nor 428

res2ss, ss2res 429

res2tf, res2xf 431

rms 432

setlines 433

216

sdplot 434

sdtdef 436

sdth 438

sp util 439

stack get,stack set,stack rm 441

ufread 442

ufwrite 449

upcom 451

up freq, up ifreq 460

up ixf 461

v handle 462

xfopt 463

This section contains detailed descriptions of the functions in Structural Dynamics
Toolbox. It begins with a list of functions grouped by subject area and continues with
the reference entries in alphabetical order. From Matlab short text information is
available through the help command while the HTML version of this manual can
be accessed through doc.

For easier use, most functions have several optional arguments. In a reference entry
under syntax, the function is first listed with all the necessary input arguments
and then with all possible input arguments. Most functions can be used with any
number of arguments between these extremes, the rule being that missing, trailing
arguments are given default values, as defined in the manual.

As always in Matlab, all output arguments of functions do not have to be specified,
and are then not returned to the user.

As indicated in their synopsis some functions allow different types of output argu-
ments. The different output formats are then distinguished by the number of output
arguments, so that all outputs must be asked by the user.

Typesetting conventions and mathematical notations used in this manual are de-
scribed in section 1.3.

Element functions are detailed in chapter s*eltfun.

A list of demonstrations is given in section 1.1.

User Interface (UI) and Graphical User Interface (GUI) Tools

fecom UI command function for deformations created with feplot
femesh UI command function for mesh building and modification
feplot GUI for 3-D deformation plots
fesuper UI commands for superelement manipulations
idcom UI commands for standard identification procedures
idopt manipulation of identification options
iicom UI commands for measurement data visualization
ii mac GUI for MAC and other vector correlation criteria
iiplot GUI for the visualization of frequency response data
xfopt UI to manipulate database wrappers

Experimental Model Identification

idcom UI commands linked to identification
idopt manipulation of options for identification related functions
id rc broadband pole/residue model identification
id rcopt alternate optimization algorithm for id rc
id rm minimal and reciprocal MIMO model creation
id nor optimal normal mode model identification
id poly weighted least square orthogonal polynomial identification
id dspi direct system parameter identification algorithm
ii poest narrow-band single pole model identification
ii pof transformations between pole representation formats
psi2nor optimal complex/normal mode model transformation
res2nor simplified complex to normal mode residue transformation

UI and GUI Utilities

comgui general purpose functions for the graphical user interfaces
commode general purpose parser for UI command functions
comstr general purpose string handling routine
iimouse mouse related callbacks (zooming, info, ...)
feutil mesh handling utilities
ii plp overplot vertical lines to indicate pole frequencies
setlines line style and color sequencing utility

219

9 Function reference

Frequency Response Analysis Tools

db amplitude in dB (decibels)
ii cost FRF comparison with quadratic and logLS cost
ii mmif Multivariate Mode Indicator Function
phaseb phase (in degrees) with an effort to unwrap along columns
rms Root Mean Square response

Test/analysis correlation tools

fe exp experimental shape expansion
fe sens sensor configuration declaration and sensor placement tools
ii comac obsolete (supported by ii mac)
ii mac GUI for MAC and other vector correlation criteria

Finite Element Analysis Tools

fe2ss methods to build ss models from full order FEM
fe c DOF selection and I/O matrix creation
fe case Cases (loads, boundary conditions, etc.) handling
fe ceig computation and normalization of complex modes
fe coor transformation matrices for Component Mode Synthesis
fe eig partial and full eigenvalue computations
fe load assembly of distributed load vectors
fe mat material property handling utilities
fe mk assembly of full and reduced FE models
fe norm orthonormalization and collinearity check
fe reduc utilities for finite element model reduction
fe stres element energies and stress computations
fe super generic element function for superelement support
rigid projection matrix for linearized rigid body constraints

Model Format Conversion

nor2res normal mode model to complex mode residue model
nor2ss assemble state-space model linked to normal mode model
nor2xf compute FRF associated to a normal mode model
qbode fast computation of FRF of a state-space model
res2ss pole/residue to state space model
res2tf pole/residue to/from polynomial model
res2xf compute FRF associated to pole/residue model
ss2res state-space to pole/residue model

220

Finite Element Update Tools

upcom user interface for finite element update problems
up freq semi-direct update by comparison modal frequencies
up ifreq iterative update by comparison of modal frequencies
up ixf iterative update based on FRF comparison
up min minimization algorithm for FE update algorithms

Interfaces with Other Software

ans2sdt reading of ANSYS binary files (FEMLink)
nasread read from MSC/NASTRAN .dat, .f06, .o2, .o4 files (some

with FEMLink)
naswrite write data to MSC/NASTRAN bulk data deck (some with

FEMLink)
nas2up extended reading of NASTRAN files
ufread read Universal File Format (some with FEMLink)
ufwrite write Universal File Format (some with FEMLink)

Other Utilities

basis coordinate transformation utilities
ffindstr find string in a file
order sorts eigenvalues and eigenvectors accordingly
remi integer rem function (remi(6,6)=6 and not 0)
setlines line type and color sequencing
sdth SDT handle objects
ofact creation and operators on ofact matrix objects

221

ans2sdt

Purpose Interface between ANSYS and SDT (part of FEMLink)

Syntax ans2sdt(’BuildUp FileName’)
def=ans2sdt(’def FileName.rst’)

Description
BuildUp

ans2sdt(’BuildUp FileName’) reads the binary files FileName.rst for model de-
fition and FileName.emat for element matrices. The result is stored in the global
variable Up (a type 3 superelement handled by upcom). FileName.mat is used to
store the superelement.

For recent versions of ANSYS, you may have to manually add the ematwrite,yes
command to the input file to make sure that all element matrices are written. This
command is not accessible from the ANSYS menu.

Def

def=ans2sdt(’def FileName.rst’) or def=ans2sdt(’def FileName.mode’) reads
deformations in .rst or .mode files

A basic application is the display of an ANSYS solution with

model=ans2sdt(’buildup test’); % read model
def=ans2sdt(’def test.rst’); % read deformations
cf=feplot; cf.model=model; cf.def=def; % display

See also nasread, ufread, section 5.5.1

222

basis

Purpose Coordinate system handling utilities

Syntax p = basis(x,y)
[node,bas]= basis(node,bas)
[bas,x] = basis(node)
[...] = basis(’Command’, ...)

Description
p = basis(x,y)

Basis from nodes (typically used in element functions to determine local coordinate
systems). x and y are two vectors of dimension 3 (for finite element purposes)
which can be given either as rows or columns (they are automatically transformed
to columns). The orthonormal matrix p is computed as follows

p =
[
~x

‖~x‖
,
~y1

‖~y1‖
,
~x× ~y1

‖~x‖‖~y1‖

]
where ~y1 is the component of ~y that is orthogonal to ~x

~y1 = ~y − ~x ~x
T~y

‖~x‖2

If x and y are collinear y is selected along the smallest component of x. A warning
message is passed unless a third argument exists (call of the form basis(x,y,1)).

p = basis([2 0 0],[1 1 1]) gives the orthonormal basis matrix p

p =
1.0000 0 0

0 0.7071 0.7071
0 0.7071 -0.7071

[nodeGlobal,bas]= basis(nodeLocal,bas)

Local to global node transformation with recursive transformation of coordinate sys-
tem definitions stored in bas. Column 2 in nodeLocal is assumed give displacement
coordinate system identifiers PID matching those in the first column of bas.

223

basis

Coordinate systems are stored in a matrix where each row represents a coordinate
system using any of the three formats

CorID Type RefID A1 A2 A3 B1 B2 B3 C1 C2 C3 0 0 0 s
CorID Type 0 NIdA NIdB NIdC 0 0 0 0 0 0 0 0 0 s
CorID Type 0 Ax Ay Az Ux Uy Uz Vx Vy Vz Wx Wy Wz s

Supported coordinate types are 1 rectangular, 2 cylindrical, 3 spherical. For these
types, the nodal coordinates in the initial nodeLocal matrix are x y z, r teta z,
r teta phi respectively.

B

C

A

x

y

z

X

Y

Z

uy

uz

ux

P

B

C

A

x

y

z

R

θ

Z ur

uz

uθ
P

B

C

A

x

y

z

R

φ

Z

ur

uφ

uθ

P
θ

Figure 9.1: Coordinates convention.

The first format defines the coordinate system by giving the coordinates of three
nodes A, B, C as shown in the figure above. These coordinates are given in coordinate
system RefID which can be 0 (global coordinate system) or an another CordId in
the list (recursive definition).

The second format specifies the same nodes using identifiers NIdA, NIdB, NIdC of
nodes defined in node.

The last format gives, in the global reference system, the position Ax Ay Az of the
origin of the coordinate system and the directions of the x, y and z axes.

The s scale factor can be used to define position of nodes using two different unit
systems. This is used for test/analysis correlation. The scale factor has no effect on
the definition of displacement coordinate systems.

cGL= basis(’trans [,t][,l]’,bas,node,DOF)

The transformation basis for displacement coordinate systems is returned with this
call. Column 3 in node is assumed give displacement coordinate system identifiers
DID matching those in the first column of bas.

224

By default, node is assumed to be given in global coordinates. The l modifier is
used to tell basis that the nodes are given in local coordinates.

Without the DOF input argument, the function returns a transformation defined at
the 3 translation and 3 rotations at each node. The t modifier restricts the result
to translations. With the DOF argument, the output is defined at DOFs in DOF.

nodeGlobal = basis(’gnode’,bas,nodeLocal)

Given a single coordinate system definition bas, associated nodes nodeLocal (with
coordinates x y z, r teta z, r teta phi for Cartesian, cylindrical and spherical
coordinate systems respectively) are transformed to the global Cartesian coordinate
system. This is a low level command used for the global transformation [node,bas]
= basis(node,bas).

[p,nodeL] = basis(node)

Element basis computation With two output arguments and an input node matrix,
basis computes an appropriate local basis bas and node positions in local coordi-
nates x. This is used by some element functions (quad4) to determine the element
basis.

See also beam1, section 7.1,section 7.2
Note : the name of this function is in conflict with basis of the Financial Toolbox.

225

commode

Purpose General purpose command parser for user interface command functions.

Syntax commmode(’CommandFcn’,’ChainOfCommands’)

Description Most user interfaces operations in the Structural Dynamics Toolbox are grouped in
UI command functions (iicom, idcom, fecom, femesh, etc.). The desired commands
and possible options are passed to the command functions as text commands.

Conventions used in the helps to specify string commands used by user interface
functions are

italic standard names for numerical or string values

()
same as italic but used for the on-line rather than HTML help

[c1,c2]
alternatives for a command (separated by commas)

Thus ch[,c] [i,+,-,+i,-i] means that ch 14, chc 12:14, chc+, ch-2 are all
valid commands. Commands are text strings so that you can use fecom ch[1 4]
or fecom(’ch 1 4’) but not fecom ch 1 4 where ch, 1 and 4 are interpreted by
Matlab as 3 separate strings.

When building complex commands you may need to compute the value used for
variable. Some commands actually let you specify an additional numeric argument
(feplot(’textnode’,[1 2 3]) and feplot(’textnode 1 2 3’) are the same) but
in other cases you will have to build the string yourself using calls of the form
feplot([’textnode’ sprintf(’ %i’,[1 2 3])])

The UI command functions only accept one command at a time, so that commode
was introduced to allow

• command mode: replace the Matlab prompt >> by a CommandFcn> which directly
sends commands to the command function(s).

• command chaining: several commands separated by semi-columns ;. The parsing
is then done by commode.

• scripting: execute all commands in a file.

Most command functions send a command starting by a ’;’ to commode for parsing.
Thus commode (’iicom’,’cax1;abs’) is the same as iicom (’;cax1;abs’)

226

The following commands are directly interpreted by commode (and not sent to the
command functions)

q,quit
exits the command mode provided by commode but not Matlab

script FName
reads the file FName line by line and executes the lines as command
strings

The following syntax rules are common to commode and Matlab

%comment
all characters after a % and before the next line are ignored

[]
brackets can be used to build matrices

; separate commands (unless within brackets to build a matrix)

See also comstr, iicom, fecom, femesh

227

comstr

Purpose String handling functions for the Structural Dynamics Toolbox.

Syntax See details below

Description The user interfaces of the Structural Dynamics Toolbox have a number of string
handling needs which have been grouped in the comstr function. The appropriate
formats and usual place of use are indicated below.

istrue=comstr(Cam,’string’)

String comparison. 1 is returned if the first characters of Cam contain the complete
’string’. 0 is returned otherwise. This call is used extensively for command
parsing. See also strncmp.

[opt,CAM,Cam]=comstr(CAM,’string’,’format’)

Next string match and parameter extraction. comstr finds the first character where
lower(CAM) differs from string. Reads the remaining string using the sscanf
specified format. Returns opt the result of sscanf and CAM the remaining characters
that could not be read with the given format.

[opt,CAM,Cam]=comstr(CAM,’string’,’%c’) is used to eliminate the matching
part of string.

[CAM,Cam] = comstr(CAM,ind)

Command segmentation with removal of front and tail blanks. The first ind charac-
ters of the string command in capitals CAM are eliminated. The front and tail blanks
are eliminated. Cam is a lowercase version of CAM. This call to comstr is used in all
UI command functions for command segmentation.

opt = comstr(CAM,[-1 default])

Option parameter evaluation. The string CAM is evaluated for numerical values which
are output in the row vector opt. If a set of default values default is given any
unspecified value in opt will be set to the default.

228

date = comstr(CAM,[-3])

Return the standard date string. Used by ufwrite, naswrite, etc. See also date,
datenum.

CAM = comstr(CAM,[-4 nc])

Fills the string CAM with blanks up to nc characters.

comstr(Matrix,[-5 fid],’format’)

Formatted output of Matrix, the format is repeated as many times as Matrix has
columns and a formatted output to fid (default is 1 standard output). For example
you might use comstr(ii mac(md1,md2)*100,[-5 1],’%6.0f’).

st1=comstr(st1,-7,’string’)

Used for dynamic messaging on the command line. On UNIX platforms (the backspace
does not work properly on Windows), the string st1 is erased before ’string’ is
displayed.

comstr(tt,-17,’type’)

This is used to generate tabular output of the cell array tt to various supported types
: excel (Microsoft Excel only available on windows), html, csv (comma separated
values, readable by excel), tex.

See also commode

229

db, phaseb

Purpose Compute the decibel magnitude.
Compute the unwrapped phase in degrees.

Syntax m = db(xf)
p = phaseb(xf)

Description db computes the decibel magnitude of each element of the matrix xf. An equivalent
would be

m = 20*log10(abs(xf))

phaseb is an extension to the case of multiple FRF stacked as columns of a matrix
xf of the phase routine available in the System Identification Toolbox. It computes
the phase in degrees with an effort to keep the phase continuous for each column.

Example Here is an example that generates the two FRF of a SIMO system and plots their
magnitude and phase.

a=[0 1;-1 -.01];b=[0;1];c=[1 0;0 1];d=[0;0];
w=linspace(0,2,100)’; xf=qbode(a,b,c,d,w);
clf;
subplot(211);plot(w,dbsdt(xf)); title(’dB magnitude’)
subplot(212);plot(w,phaseb(xf));title(’Unwrapped phase in degrees’)

See also The xf format, iiplot

230

fe2ss

Purpose Build state-space or normal mode form from FE model.

Syntax [sys,basis] = fe2ss(’command’,MODEL,CASE,C)
[sys,basis] = fe2ss(’command’,m,k,mdof,b,rdof,C,c)
[nor,basis] = fe2ss(... ,’nor’)

Description fe2ss is meant to allow users to build state-space (see section 2.4) and normal mode
models (see section 2.2) from full order model matrices. The procedure is always
decomposed in the following steps

• call fe reduc build a reduction basis T (see section 6.1). This usually includes a
call to fe eig with options EigOpt provided in the fe2ss command

• call fe norm to orthonormalize T with respect to mass and stiffness (obtain a
model in the normal mode form (2.4), see section 2.2) and eliminate collinear
vectors if any

• call nor2ss or project model matrices depending on the number of outputs

The basis output argument is given so that the user can call nor2ss repeatedly
without computing the basis again. This is in particular useful for changes in the
sensor configuration which have no effect on the retained basis.

High level input arguments are a MODEL (see section 5.1) and possibly a CASE if not
defined in the model (see section 5.2). Note that the CASE must contain load and
sensor entries (see fe case). C the damping model can be a system damping matrix,
a scalar uniform damping ratio or a vector of damping ratios.

Low level input arguments are those of fe reduc with the additional damping and
output shape matrix information.

231

fe2ss

m, k symmetric real mass and stiffness matrix
mdof associated DOF definition vector describing DOFs in m and k
b input shape matrix describing unit loads of interest. Must be coherent with

mdof.
bdof alternate load description by a set of DOFs (bdof and mdof must have

different length)
rdof contains definitions for a set of DOFs forming an isostatic constraint (see

details below). When rdof is not given, it is determined through an LU
decomposition done before the usual factorization of the stiffness. This
operation takes time but may be useful with certain elements for which
geometric and numeric rigid body modes don’t coincide.

C damping model. Can specify a full order damping matrix using the same
DOFs as the system mass M and stiffness K or a scalar damping ratio to be
used in a proportional damping model.

c output shape matrix describing unit outputs of interest (see section 2.1).
Must be coherent with mdof.

Standard bases used for this purpose are available through the following commands.

Free [, Float] EigOpt

The standard basis for modal truncation with static correction discussed in sec-
tion 6.1.3. EigOpt are fe eig options used to compute the modeshapes (typically 6
nm Shift for Lanczos with no reordering, nm number of desired modes, Shift mass
shift for structures with rigid body modes).

Computation of the static correction for structures with rigid body modes is a stan-
dard problem discussed in section 6.1.4. fe2ss uses the mass-shift value in EigOpt

to select the method. If the shift is zero, it is assumed that the structure has no
rigid body modes. If the shift is non-zero, the shifted attachment modes (6.11) are
used as a default. You can obtain the standard attachment modes (6.10) by adding
the Float modifier to the command.

CraigBampton nm

It is really a companion function to fe reduc CraigBampton command. The retained
basis combines fixed interface attachment modes and constraint modes associated
to DOFs in bdof.

This basis is less accurate than the standard modal truncation for simple predictions
of response to loads, but is often preferred for coupled (closed loop) predictions.

232

Example

mdl=demosdt(’demo ubeam mix’);

mdl=fe_case(mdl,’addtocase’,’SensDof’,’Out’,[343.01 343.02 347.03]’)
[sys,T] = fe2ss(’free 6 10’,mdl,[.01;.02;.03]);
w=linspace(10,1e3,2500);
nor2xf(T,[.01;.02;.03],mdl,w,’hz plot’);

See also demo fe, fe reduc, fe mk, nor2ss, nor2xf

233

fecom

Purpose UI command function for the visualization of 3-D deformation plots

Syntax fecom
fecom CommandString
fecom(’CommandString’,AdditionalArgument)

Description fecom provides a number of commands that can be used to manipulate 3-D de-
formation plots are handled by the feplot/fecom interface. A tutorial is given
section 5.4. Other examples can be found in gartfe, gartte and other demos.
Details on the interface architecture are given under feplot.

This help lists all commands supported by the interface (calling fecom or feplot is
insensitive to the user).

• cf=feplot returns a SDT handle to the current feplot figure (se details in the
feplot help). The handle is used to provide simplified calling formats for data
initialization and text information on the current configuration. You can create
more than one feplot figure with cf=feplot(FigHandle).

• without input arguments, fecom calls commode which provides a command mode
for entering different possibly chained fecom commands.

• the first input argument should be a string containing a single fecom command,
or a chain of semi-column separated commands starting with a semi-column
(fecom(’;com1;com2’)). Such commands are parsed by commode.

• some commands, such as TextNode, allow the use of additional arguments

Anim[,One][,Time,Freq][,col][nCycle i, Start i, Step]

Deformed structure animation. The animation is not movie based so that you can
actively rotate, change mode, ... without delay. The AnimStep command is only
used when you really want to create movies.

The animation is started/interrupted using the animation button which calls the
anim start command. You can set animation properties in the General tab of the
feplot properties figure.

To control animation speed and replay you can use fecom(’AnimTime nStep tStep

tStart) which specifies the number of times that you want the animation to run (0

234

to run continuously), the minimum time spent at each time step (default zero), and
the wait time between successive runs of the same animation (default 0, only works
with time mode animation). You may need to fix the color limits manually using
cf.ua.clim=[0 1e3].

The default animation (use of AnimFreq to return to the default) adds a certain
phase shift (2*pi/nCycle) to the amplification factor of the deformations currently
displayed and updates the plot. The default nCycle value is obtained using feplot
AnimnCycle25.

The command AnimTime starts the animation in a mode that increments deforma-
tions while preserving the amplification. This is appropriate for animation of time
responses.

By default Anim animates all the axes in the current figure. You can animate, the
current axis only by adding One anywhere in the anim command.

By default Anim does not animate colors. fecom(’AnimCol’) sets color animation
to dual sided (alternates between a max value and its opposite). You can animate
colors without deformations if you define colors for the current selection without
defining a deformation.

Animation speed is very dependent on the figure renderer. See the fecom Renderer
command.

Anim[Movie i,Avi]

Creating a movie. M=feplot(’anim movie 50’) returns a Matlab movie with 50
animation steps.

Starting with Matlab 6.0 you can use fecom(’animavi’) to create a movie. The
movie is created using avifile commands with defaults in set to sdtdef(’avi’).
You may change the defaults (see avifile) using for example

sdtdef(’avi’,{’quality’,100,’fps’,1,’compression’,’Cinepak’})

Compressions of None gives higest quality. Indeo3 and Indeo5 give poor results
with colored patches.

caxi, ca+

Change current axes. cax i makes the axis i (an integer number) current. ca+
makes the next axis current.

For example, fecom(’;sub2 1;cax1;show line;ca+;show sensor’) displays a line

235

matlab:doc avifile

fecom

plot in the first axis and a sensor plot in the second.

See also the Axes tab in the feplot properties figure and the iicom sub command.
In particular SubStep is used to increment the deformation numbers in each subplot.

ch[,c] [i,+,-,+i,-i],

Displayed deformation control. feplot is generally used to initialize a number of
deformations (as many as columns in mode). ch i selects the deformation(s) i to be
displayed (for example ch 1 2 overlays deformations 1 and 2). By default the first
deformation is displayed (for line and sensor plots with less than 5 deformations,
all deformations are overlaid). You can also increment/decrement using the ch+
and ch- commands or the + and - keys when the current axis is a plot axis. ch+i
increments by i from the current deformation.

You can also select deformations shown in the Deformations tab in the feplot
properties figure.

When using more than one axis (different views or deformations), the ch commands
are applied to all feplot axes while the chc commands only apply to the current
axis.

The SubStep command is useful to obtain different deformations in a series of axes.
Thus to display the first 4 modes of a structure you can use : fecom(’;sub 1
1;ch1;sub 2 2 step’) where the sub 1 1 is used to make sure that everything is
reinitialized. You can then see the next four using fecom(’ch+4’).

For line and sensor plots and multiple channels, each deformation corresponds to
an object and is given a color following the ColorOrder of the current axis is used.
feplot line and sensor plots compatible with the use of setlines for line type
sequences.

ColorData [,seli] [Type]

Color definitions Color information is defined for element selections (see the fecom
sel commands) and should be defined with the selection using a call of the form,
cf.sel(i)={’SelectionString’,’ColorData’, ...}. fecom(’colordata seli
...’,...) is the corresponding low level call. Accepted ColorData commands
are listed below

236

Elt The low level call fecom(’ColorDataElt’,Ener,IndInElt) specifies
element colors in Ener and with IndInElt row positions in the global
element description matrix of the given colors. A typical application is
the case of energies with fe stres (see the d ubeam demo). If Ener gives
the color for all elements, you can omit IndInElt. You can also provide
Ener as a struct with fields .data .IndInElt, or .data .EltId.

Ener fecom(’ColorData EnerK’) calls fe stres to compute the strain en-
ergy for the elements in the current selection and deformation set and
displays the result as element colors. EnerM computes the kinetic en-
ergy. The color animation mode is set to ScaleColorOne. This requires
material and element properties to be defined in the InitModel com-
mand.

gmp fecom(’ColorDataG’) defines a color for each element group, m for
each MatID, and p for each ProID. The color animation mode is set to
ScaleColorOne.

Node low level call to set a color defined at nodes
fecom(’ColorData’,cmode) where cmode is a size(node,1)
by size(mode,2) matrix defining nodal colors.
fecom(’ColorDataNode’,mode,mdof) defines nodal colors that
are proportional to the norm of the nodal displacement. You can
obtain nodal colors linked to the displacement in a particular di-
rection using i1=fe c(mdof,.03,’ind’);fecom(’ColorDataNode’,
md0(i1,:), mdof(i1)) even though for displacements in the xyz
directions fecom(’ColorDataZ’) is shorter.

Stress the ColordataStressi command defines the selection color by calling
fe stres with command Stressi. The color animation mode is set to
ScaleColorOne. This requires material and element properties to be
defined in the InitModel command.

Uniform in this mode the deformation/object index is used to define a uniform
color following the axis ColorOrder.

xyz,all
...

fecom(’ColorDataZ’) defines a color that is proportional to mo-
tion in the z direction, ... ColorData19 will select DOF 19
(pressure). The color animation mode is set to ScaleColorDef.
fecom(’ColorDataALL’) defines a color that is proportional to motion
norm.

Note: When displaying results colors are sometimes scaled using the amplification
factor used for deformations. Thus, to obtain color values that match your input
exactly, you must use the fecom ScaleColorOne mode. In some animations you
may need to fix the color limits manually using cf.ua.clim=[0 1e3].

237

fecom

Color [,seli] [Edge ..., Face ..., Bar, Legend]

Default EdgeColor and FaceColor properties of the different patches can be set to
none, interp, flat, white, ... using fecom(’ColorEdgeNone’), ...

fecom(’ColorEdge’,ColorSpec) where ColorSpec is any valid Matlab color spec-
ification, is also acceptable.

EdgeColor and FaceColor apply to the current selection. The optional Seli argu-
ment can be used to change the current selection before applying the command.

You can also modify the properties of a particular object using calls of the form
set(cf.o(i),’edgecolor’,ColorSpec) (see fecom go commands and illustrations
in gartte).

fecom(’colorbar’) calls the Matlab colorbar to display a color scale to the left
of the figure. feplot updates this scale when you change the deformation shown.
You can use colorbar commands to modify its position, and fecom ColorBarOff
commands to reinitialize a subplot without a color bar.

fecom(’ColorLegend’) uses the Matlab legend command to create a legend for
group, material or property colors. Of course, the associated selection must have
such colors defined with a Colordata[M,P,G] command.

ga i

fecom(’ga i’) or cf.ga(i) gets pointers to the associated axes. See details under
the same iicom command. A typical application would be to set multiple axes to
the same view using iimouse(’view3’,cf.ga(:)).

go i

Get handles to fecom objects. This provides and easy mechanism to modify Matlab
properties of selected objects in the plot (see also the set command).

For example, set(fecom(’go2’),’linewidth’,2) will use thick lines for feplot
object 2 (in the current feplot axis).

You will probably find easier to use calls of the form cf=feplot (to get a handle
to the current feplot figure) followed by set(cf.o(2),’linewidth’,2). If the
feplot object is associated to more than one Matlab object (as for text, mixed
plate/beam, ...) you can access separate pointers using cf.o(2,1). The gartte
demo gives examples of how to use these commands.

238

Head [,freq, po, fs]

Set header strings for automated title generation. fecom (’head’,Labels), where
Labels should be a string matrix or a cell array of string, can be used to associate
a title string to each deformation of the current deformation set.

fecom(’head’) defines default strings. fecom(’headfreq’,freq) creates strings of
the form Mode 1 at 100Hz. fecom(’headfs’,freq) gives strings of the form 1 @
100. fecom(’headpo’,po) gives for poles strings of the form 6.5 Hz 1.00 %.

fecom(’titopt111’) turns automatic titles on (see iicom). fecom(’titopt0’)
turns them off.

Note that the iicom head commands can be used to place additional titles in the
figure. cf.head returns a pointer to the header axis. Mode titles are actually placed
in the header axis in order to bypass inappropriate placement by Matlab when you
rotate/animate deformations.

Info

Displays information about the declared structure and the objects of the current
plot in the command window. This info is also returned when displaying the SDT
handle pointing to the feplot figure. Thus cf=feplot returns

cf =
FEPLOT in figure 2
Selections: cf.sel(1)=’groupall’;

cf.sel(2)=’WithNode {x>.5}’;
Deformations: [{816x20}]
Sensor Sets: [0 (current 1)]
Axis 3 objects:
cf.o(1)=’sel 2 def 1 ch 9 ty1’; % mesh
cf.o(2) % title

which tells what data arrays are currently defined and lists feplot objects in the
current axis. fecom(’pro’) opens the feplot properties figure which provides
an interactive GUI for feplot manipulations.

InitDef[, Back]

Initialization of deformations. You can (re)declare deformations at any point using
cf.def(i)={mode,mdof} where cf a SDT handle to the figure of interest and i the
deformation set you which to modify. With database wrappers, cf.def(i)=XF(5)

239

fecom

is also acceptable. cf.def(i)=def where def is a structure with fields .def, .DOF,
.data are also accepted calls.

For animation of test results, mdof can be given using the 5 column format used to
define arbitrary sensor directions in fe sens. Automatic expansion is also supported
using cf.def={def,exp} as illustrated in the fe sens WireExp command.

feplot(’InitDef’,mode,mdof) is an alternate calling format that defines the cur-
rent deformation.

cf.def(i) = {mode,mdof,freq} or feplot(’InitDef’,mode, mdof, freq) will
also display the mode frequency (it calls fecom head automatically). In the first
calling format, the current deformation is first set to i.

InitDef updates all axes. InitDefBack returns without updating plots.

InitModel

Initialization of structure characteristics. The preferred calling format is
cf.model=model where the fields of model are described in section 7.6. This makes
sure that all model information is stored in the feplot figure. cf.mdl then provides
a handle that lets you modify model properties in scripts without calling InitModel
again.

You can then edit the model graphically with the Model properties figure: define
and set materials, element properties, and cases; start solutions with its Simulate
tab, ... In the feplot properties figure you can visualize energies or stresses by
defining selections with this color information.

Lower level formats are cf.model={node,elt,bas}
(or feplot(’InitModel’ ,node,elt,bas) (see basis for bas format information).
InitModelBack does not update the plot (you may want to use this when changing
model before redefining new deformations).

The command is also called when using femesh plotelt, or upcom plotelt (which
is equivalent to cf.model=Up), fe sens(’plotlinks’,sens).

InitSens

Initialization of sensors. You can declare sensors independently of the degrees of
freedom used to define deformations (this is in particular useful to show measurement
sensors while using modeshape expansion for deformations). Sensor and arrow object
show the sensor sets declared using initsens.

240

Translation sensors in global coordinates can be declared using a DOF definition vec-
tor cf.sens(i)={mdof} or feplot(’initsens’,mdof). In the first calling format,
the current sensor set is first set to i.

Sensors in other directions are declared by replacing mdof by a 5 column matrix
following the format

SensorID NodeID nx ny nz

with SensorID an arbitrary identifier (often 101.99 for sensor of unknown type at
node 101), NodeID the node number of the sensor position, [nx ny nz] a unit vector
giving the sensor direction in global coordinates (see section 4.1).

fe sens provides additional tools to manipulate sensors in arbitrary directions. Ex-
amples are given in the gartte demo.

Plot

feplot(’plot’), the same as feplot without argument, refreshes axes of the cur-
rent figure. If refreshing the current axis results in an error (which may occasionally
happen if you modify the plot externally), use clf;iicom(’sub’) which will check
the consistency of objects declared in each axis. Note that this will delete Text
objects as well as objects created using the setobject command.

Prop

feplot(’pro’) initializes or refreshes the feplot property GUI. You can also use
the Edit:Feplot Properties ... menu. A description of this GUI is made in sec-
tion 5.4.

Renderer[Opengl,zBuffer,Painters][,default]

This command can be used to swith the renderer used by feplot. Animation speed
is very dependent on the figure renderer. When creating the figure fecom tries to
guess the proper renderer to use (painters, zbuffer, opengl), but you may want to
change it (using the Feplot:Render menu or set(gcf,’renderer’, ’painters’),
...). painters is still good for wire frame views, zbuffer has very few bugs but is
very slow on some platforms, opengl is generally fastest but still has some significant
rendering bugs on UNIX platforms.

To avoid crashes when opening feplot in OpenGL mode use cingui(’Renderer
zbuffer default’) in your Matlab startup file.

241

fecom

Scale [,Defs, Dofi, equal, match, max, one]

Automatic deformation scaling. Scaling of deformations is the use of an amplification
factor very often needed to actually see anything. A deformation scaling coefficient is
associated with each deformed object object. The Scale commands let you modify
all objects of the current axis as a group.

You can specify either a length associated with the maximum amplitude or the
scaling coefficient.

The base coefficient scc for this amplification is set using fecom(’ScaleCoef scc’),
while fecom(’ScaleDef scd’) sets the target length. fecom(’scd 0.01’) is an
accepted shortcut. If scd is zero an automatic amplitude is used. You can also
modify the scaling deformation using the l or L keys (see iimouse).

fecom supports various scaling modes summarized in the table below. You can set
this modes with fecom(’scalemax’) ... commands.

Scaling
mode

Scaling of 1st deformation Scaling of other deformations

max Amplitude of Max DOF set to scd. Amplitude of Max DOF set to scd.
equal Amplitude of Max DOF set to scd. Amplitude of other deformations

equal to the first one
match Amplitude of Max DOF set to scd. Amplitude of other deformations

set to optimize superposition.
When using two deformation sets,
rather than two modes in the
same set, their DOFs must be
compatible.

coef Deformation amplitude multiplied
by scd.

Same as first deformation.

one Sets scd to 1 and uses coef mode
(so further changes to scd lead to
amplification that is not equal to
1).

Same as first deformation.

Warning : using ScaleMax or AnimFreq can lead to negative or complex amplifi-
cation factors which only makes sense for frequency domain shapes.
fecom(’scalecoef’) will come back to positive amplification of each object in the
current feplot axis.

ScaleDofi is used to force the scaling DOF to be i. As usual, accepted values for i
are of the form NodeID.DofID (1.03 for example). If i is zero or not a valid DOF

242

number an automatic selection is performed. ScaleDof can only be used with a
single deformation set.

You can change the scale mode using the FEplot:Scale menu or in the Axes tab
of the feplot properties figure.

ScaleColor

Color animation (see fecom ColorData for how these are defined) supports two
modes. ScaleColorOne does not scale color deformations. ScaleColorDef uses the
amplification coefficient set for the associated deformation. Once a color is selected,
the axes clim property can be used to adjust the range.

Sel [ElementSelectors, GroupAll, Reset]

Selection of displayed elements. What elements are to be displayed in a given object
is based on the definition of a selection (see section 7.12).

The default command is ’GroupAll’ which selects all elements of all element groups
(see section 7.2 for details on model description matrices). cf.sel(1)=’Group1
3:5’ will select groups 1, 3, 4 and 5. cf.sel(1)=’Group1 & ProId 2 & WithNode
{x>0}’ would be a more complex selection example.

To define other properties associated with the selection (ColorData, ...), use a call
of the form cf.sel(i)={’SelectionString’,’OtherProp’,OtherPropData}.

To return to the default selection use fecom(’SelReset’).

SetObject i [,ty j] [,def k] [,ch k] [,sel s, sen s]

Set properties of object i. Plots generated by feplot are composed of a number
of objects. 1 (surface view), 2 (wire frame view), 3 (stick view of sensors), 4 (un-
deformed structure), 5 (node text labels), 6 (DOF text labels), 7 (arrow view of
sensors). A printout of objects existing in the current plot and their properties
is given when displaying the SDT handle associated to the feplot figure (using
cf=feplot;disp(cf)).

The SetObject command lets you modify these properties and add/remove new
objects. Objects are added if the object number does not exist and removed if the
declared object type is zero (j=0).

The deformation number k is an index in the deformation(s) currently selected for
the plot using the ch command.

243

fecom

The elements actually displayed can be specified by giving an existing selection
number s. For sensor objects, you can specify the sensor set with sen s if you don’t
want to use the current one.

The current axis summary obtained with cf=feplot gives the preferred calling for-
mat cf.o(i)=’SetObjArgs’ where you give a string with the options associated to
the SetObject command. The use of these commands is illustrated in the gartte
demo. Note that you can use the call, to set other Matlab properties of the created
objects. cf.o(1)={’ty2 def1 ch1 sel1’,’linewidth’,2,’color’,’r’} will, for
example, create a wire-frame object using thick red lines.

Show [patch,line,sensor,arrow, ...]

Basic plots are easily created using the show commands which are available in the
FEplot:Show ... menu).

244

patch surface view with hidden face removal and possible color coding (ini-
tialized by fecom(’ShowPatch’)). cf.o(1) object type is 1. For color
coding, see colordata commands.

line wire frame plot of the deformed structure (initialized by
fecom(’ShowLine’)). cf.o(2) object type is 2.

sens Sensor plots with sticks at sensor locations in the direction and with the
amplitude of the response (initialized by fecom(’ShowSen’)). cf.o(2)
object type is 3.

arrow Sensor plots with arrows at sensor locations in the direction and with
the amplitude of the response (initialized by fecom(’ShowArrow’)).
cf.o(2) object type is 7.

DefArrow Deformation plots with lines connecting the deformed and undeformed
node positions. (initialized by fecom(’ShowDef’)). cf.o(2) object
type is 8.

FEM only shows FEM element groups for models mixing test and FEM in-
formation

test only shows test element groups for models mixing test and FEM infor-
mation

links shows a standard plots with the test and FEM meshes as well as links
used for topological correlation (see fe sens).

map fecom(’ShowMap’,MAP) displays the vector map specified in MAP (see
feutil GetNormalMap).

2def is used for cases where you want to compare two deformations sets. The
first two objects only differ but the deformation set they point to (1 and
2 respectively). A typical call would be cf.def(1)={md1,mdof,f1};
cf.def(2)={md2,mdof,f2}; fecom(’show2def’).

Once the basic plot created you can add other objects or modify the current list
using the DofText, TextNode, and SetObject commands.

Sub [i j], SubIso, SubStep

Drawing figure subdivision (see iicom for more details). This lets you draw more
than one view of the same structure in different axes. In particular the SubIso
command gives you four different views of the same structure/deformation.

SubStep or Sub i j Step increments the deformation shown in each subplot. This
command is useful to show various modeshapes in the same figure. Depending on
the initial state of the figure, you may have to first set all axes to the same channel.
Use fecom(’ch1;sub 2 2 step’) for example.

245

fecom

Text [off, Node [,Select], Dof d]

Node/DOF text display. TextOff removes all text objects from the current feplot
axis. TextNode displays the numbers of the nodes in FEnode. You can display
only certain node numbers by a node selection command Select. Or giving node
numbers in fecom(’textnode’,i).

TextDOF displays the sensor node and direction. If DOF definitions i are given in
the command string or using fecom(’textdof’, i), only those DOFs are displayed.
TextDOF only displays the text linked to currently declared sensors so you may want
to change those using the feplot InitSens command.

TitOpt [,c] i

Automated title/label generation options. Titopt i sets title options for all axes to
the value i. i is a three digit number with units corresponding to title, decades to
xlabel and hundreds to ylabel. By adding a c after the command (titoptc 111
for example), the choice is only applied to the current axis.

The actual meaning of options depends on the plot function (see iiplot). For
feplot, titles are shown for a non zero title option and not shown otherwise. Title
strings for feplot axes are defined using the fecom head command.

Triax [, On, Off]

Orientation triax. Orientation of the plotting axis is shown using a small triax.
Triax initializes the triax axis or updates its orientation. TriaxOff deletes the
triax axis (in some plots you do not want it to show). Each triax is associated to a
given axis and follows its orientation. The triax is initially positioned at the lower
left corner of the axis but you drag it with your mouse.

Finally can use fecom(’triaxc’) to generate a triax in a single active subplot.

Undef [, Dot, Line]

Undeformed structure appearance. The undeformed structure is shown as a line
which is made visible/invisible using UnDef. When visible, the line can show the
node locations (use UnDefDot) or link nodes with dotted lines (use UnDefLine).

246

View [...]

Orientation control. See iimouse view.

See also feplot, fe exp, femesh

247

femesh, feutil

Purpose Finite element mesh handling utilities.

Syntax femesh CommandString
femesh(’CommandString’)
[out,out1] = femesh(’CommandString’,in1,in2)

Description femesh and feutil provide a number of tools for mesh creation and manipulation.
feutil requires all arguments to be provided while femesh uses global variables to
define the proper object of which to apply a command. femesh uses the following
standard global variables which are declared as global in your workspace when you
call femesh

FEnode main set of nodes
FEn0 selected set of nodes
FEn1 alternate set of nodes
FEelt main finite element model description matrix
FEel0 selected finite element model description matrix
FEel1 alternate finite element model description matrix

By default, femesh automatically uses base workspace definitions of the standard
global variables (even if they are not declared as global). When using the standard
global variables within functions, you should always declare them as global at the
beginning of your function. If you don’t declare them as global modifications that
you perform will not be taken into account, unless you call femesh from your func-
tion which will declare the variables as global there too. The only thing that you
should avoid is to use clear (instead of clear global) within a function and then
reinitialize the variable to something non-zero. In such cases the global variable is
used and a warning is passed.

Available femesh commands are

;

Command chaining. Commands with no input (other than the command) or output
argument, can be chained using a call of the form femesh(’;Com1;Com2’). commode
is then used for command parsing.

248

Add FEeli FEelj, AddSel

Combine two FE model description matrices. The characters i and j can specify any
of the main t, selected 0 and alternate 1 finite element model description matrices.
The elements in the model matrix FEelj are appended to those of FEeli.

AddSel is equivalent to AddFEeltFEel0 which adds the selection FEel0 to the main
model FEelt.

This is an example of the creation of FEelt using 2 selections (FEel0 and FEel1)

femesh(’testquad4’); % one quad4 created
femesh(’divide’,[0 .1 .2 1],[0 .3 1]); % divisions
FEel0=FEel0(1:end-1,:); % suppress 1 element in FEel0
femesh(’addsel’); % add FEel0 into FEelt
FEel1=[Inf abs(’tria3’);9 10 12 1 1 0];% create FEel1
femesh(’add FEelt FEel1’); % add FEel1 into FEelt
femesh plotelt % plot FEelt

AddNode [,New] [, From i]

Combine, append (without/with new) FEn0 to FEnode. Additional uses of AddNode
are provided using the format

[AllNode,ind]=femesh(’AddNode’,OldNode,NewNode);

which combines NewNode to OldNode. AddNode finds nodes in NewNode that coincide
with nodes in OldNode and appends other nodes to form AllNode. ind gives the
indices of the NewNode nodes in the AllNode matrix.

This function is also accessible using feutil. For example

[AllNode,ind]=feutil(’AddNode’,OldNode,NewNode);

NewNode can be specified as a matrix with three columns giving xyz coordinates.
The minimal distance below which two nodes are considered identical is given by
sdtdef epsl (default 1e-6).

[AllNode,ind]=feutil(’AddNode From 10000’,OldNode,NewNode); gives node num-
bers starting at 10000 for nodes in NewNode that are not in OldNode.

AddTest [,NodeShift,Merge]

Combine test and analysis models. When combining test and analysis models you
typically want to overlay a detailed finite element mesh with a coarse wire-frame

249

femesh, feutil

representation of the test configuration. These models coming from different origins
you will want combine the two models in FEelt.

femesh(’addtest NodeShift’,TNode,TElt) adds test nodes TNode to FEnode while
adding NodeShift to their initial identification number. The same NodeShift is
added to node numbers in TElt which is appended to FEelt. TElt can be a wire
frame matrix read with ufread.

The new elements are given the EGID -1 so that they will be ignored in model
assembly operations with fe mk.

The combined models can then be used to create the test/analysis correlation using
fe sens. An application is given in the gartte demo, where a procedure to match
initially different test and FE coordinate frames is outlined.

femesh(’addtest merge’,NewNode,NewElt) can also be used to merge to FEM
models. Non coincident nodes (as defined by the AddNode command) are added to
FEnode and NewElt is renumbered according to the new FEnode.

model=feutil(’addtest’,model1,model2) is a higher level command that attempts
to merge two models and retain as much information as possible (nodes, elements,
materials, etc.)

Divide div1 div2 div3

Mesh refinement by division of elements. Divide applies to all groups in FEel0.
Currently supported divisions are

• segments : elements with beam1 parents are divided in div1 segments of equal
length

• quadrilaterals: elements with quad4 or quadb parents are divided in a regular
mesh of div1 by div2 quadrilaterals

• hexahedrons: elements with hexa8 or hexa20 parents are divided in a regular grid
of div1 by div2 by div3 hexahedrons

• tria3 can be divided in 4 triangles using the div2 command

If your elements have a different name but the same topological structure declare the
proper parent name or use the SetGroupName command before and after divide.
The division preserves properties other than the node numbers.

You can obtain unequal divisions by declaring additional arguments whose lines give
the relative positions of dividers. For example, an unequal 2 by 3 division of a quad4

250

element would be obtained using femesh(’divide’,[0 .1 1],[0 .5 .75 1]) (see
also the gartfe demo).

% Example 1 : beam1
femesh(’;testbeam1;divide 3;plotel0’); % divide by 3
fecom textnode

% Example 2 : you may create a command string
number=3;
st=sprintf(’;testbeam1;divide %f;plotel0’,number);
fecom textnode

% Example 3 : you may use uneven division
femesh(’testquad4’); % one quad4 created
femesh(’divide’,[0 .1 .2 1],[0 .3 1]);
femesh plotel0

DivideInGroups

Finds groups of FEel0 elements that are not connected (no common node) and places
each of these groups in a single element group.

DivideGroup i ElementSelectors

Divides a single group i of FEelt in two element groups. The first new element
group is defined based on the element selectors (see section 7.12).

This function is also accessible using feutil. For example

elt=feutil(’divide group 1 withnode{x>10}’,model)

EltId

[EltId]=feutil(’eltid’,elt) returns the element identifier for each element in
elt. It currently does not fill EltId for elements which do not support it.
[EltId,elt]=feutil(’eltidfix’,elt) returns an elt where the element identi-
fiers have been made unique.

Extrude nRep tx ty tz

Extrusion. Nodes, lines or surfaces that are currently selected (put in FEel0) are
extruded nRep times with global translations tx ty tz. Elements with a mass1

251

femesh, feutil

parent are extruded into beams, element with a beam1 parent are extruded into
quad4 elements, quad4 are extruded into hexa8, and quadb are extruded into hexa20.

You can create irregular extrusions. For example, femesh(’extrude 0 0 0 1’,[0
logspace(-1,1,5)]) will create an exponentially spaced mesh in the z direction.
The second femesh argument gives the positions of the sections for an axis such that
tx ty tz is the unit vector.

% Example 1 : beam
femesh(’testbeam1’); % one beam1 created
femesh(’;extrude 2 1 0 0;plotel0’); % 2 extrusions in x direction

% Example 2 : you may create the command string
number=2;step=[1 0 0];
st=sprintf(’;testbeam1;extrude %f %f %f %f’,[number step]);
femesh(st); femesh plotel0

% Example 3 : you may uneven extrusions in z direction
femesh(’testquad4’)
femesh(’extrude 0 0 0 1’, [0 .1 .2 .5 1]); %
% 0 0 0 1 : 1 extrusion in z direction
% [0 .1 .2 .5 1] : where extrusions are made
femesh plotel0

FindDof ElementSelectors, GetDof

Find DOFs used by the elements selected with ElementSelectors. These are the
DOFs that would be used in an assembly of the model using fe mk. For example

mdof = femesh(’find Dof Group 1:3’)

returns the DOF definition vector for all elements in groups 1, 2 and 3. If a model
matrix is given as second argument, it is used instead of FEelt (additional numeric
arguments for element selection can still be provided).

The equivalent feutil command is GetDof. mdof=feutil(’get DOF’,elt,adof)
returns DOFs used in the assembly of the model elt. If a selection of active DOFs
adof is given, fe c is used to determine the model DOFs present in adof.

Note that node numbers set to zero are ignored by feutil to allow elements with
variable number of nodes.

Finally, you can obtain the list in a part of elt by specifying the associated
element selection in the command string.

252

Find [Elt,El0] ElementSelectors

Find elements based on a number of selectors described in section 7.12. The calling
format is

[ind,elt] = femesh(’findelt withnode 1:10’)

where ind gives the row numbers of the elements (but not the header rows except
for unique superelements which are only associated to a header row) and elt the
associated element description matrix.

When operators are accepted, equality and inequality operators can be used. Thus
group~=[3 7] or pro < 5 are acceptable commands. This command can be ac-
cessed directly with feutil. The example above is equivalent to

[ind,elt]=feutil(’findelt eltid 1:10 ’,model)

See also SelElt, RemoveElt and DivideGroup, the gartfe demo, fecom selections.

FindNode Selectors

Find node numbers based on a number of selectors listed in section 7.11.

Different selectors can be chained using the logical operations & (finds nodes that
verify both conditions), | (finds nodes that verify one or both conditions). Condition
combinations are always evaluated from left to right (parentheses are not accepted).

Output arguments are the numbers NodeID of the selected nodes and the selected
nodes node as a second optional output argument. This command is equivalent to
the feutil call

[NodeID,node]=feutil([’findnode ...’],FEnode, FEelt,FEel0).

As a example you can show node numbers on the right half of the z==0 plane using
the commands

fecom(’TextNode’,femesh(’findnode z==0 & x>0’))

Note that you can give numeric arguments to the command as additional femesh
arguments. Thus the command above could also have been written

fecom(’TextNode’,femesh(’findnode z== & x>=’,0,0)))

See also the gartfe demo.

253

femesh, feutil

GetEdge[Line,Patch]

These feutil commands are used to create a mode containing the 1D edges or 2D
faces of a model. A typical call is

model=femesh(’testubeam’);
elt=feutil(’getedgeline’,model);
feutil(’infoelt’,elt)

GetEdgeLine supports the following variants MatId retains inter material edges,
ProId retains inter property edges, Group retains inter group edges, all does not
eliminate internal edges, InNode only retains edges whose node numbers are in a list
given as an additional feutil argument.

These commands are used for SelEdge and SelFace element selection commands.

GetElemF

Header row parsing. In an element description matrix, element groups are separated
by header rows (see section 7.2) which for the current group jGroup is given by
elt(EGroup(jGroup),:). The GetElemF command, whose proper calling format is

[ElemF,opt,ElemP] = feutil(’getelemf’,elt(EGroup(jGroup),:),[jGroup])

returns the element/superelement name ElemF, element options opt and the par-
ent element name ElemP. It is expected that opt(1) is the EGID (element group
identifier) when defined.

GetLine

Line=feutil(’get Line’,node,elt) returns a matrix of lines where each row has
the form [length(ind)+1 ind] plus trailing zeros, and ind gives node indices (if
the argument node is not empty) or node numbers (if node is empty). elt can be
an element description matrix or a connectivity line matrix (see feplot). Each row
of the Line matrix corresponds to an element group or a line of a connectivity line
matrix. For element description matrices, redundant lines are eliminated.

GetNode Selectors

node=femesh(’get node Selectors’) returns a matrix containing nodes rather
than node indices obtained with the FindNode command. This command is equiv-
alent to the feutil call

node=feutil([’findnode ...’],FEnode, FEelt,FEel0).

254

GetNormal[Elt,Node][,Map]

[normal,cg]=feutil(’getNormal[elt,node]’,node,elt) returns normals to el-
ements/nodes in model node, elt. MAP=feutil(’getNormal Map’,model) returns
a data structure with the following fields

ID identifier. One integer per vector in the field map. Typically node
numbers.

vertex N × 3 matrix giving vertex positions if the map is not associated
with nodes

normal N × 3 where each row specifies a vector at ID or vertex

GetPatch

Patch=feutil(’get Patch’,node,elt) returns a patch matrix where each row (ex-
cept the first which serves as a header) has the form [n1 n2 n3 n4 EltN GroupN].
The ni give node indices (if the argument node is not empty) or node numbers (if
node is empty). elt must be an element description matrix. Internal patches (it is
assumed that a patch declared more than once is internal) are eliminated.

Info [,FEeli, Nodei]

Information on global variables. Info by itself gives information on all variables.
The additional arguments FEelt ... can be used to specify any of the main t, se-
lected 0 and alternate 1 finite element model description matrices. InfoNodei gives
information about all elements that are connected to node i. To get information in
FEelt and in FEnode, you may write

femesh(’InfoElt’) or femesh(’InfoNode’)

The equivalent feutil calls would be

feutil(’InfoElt’,model) or feutil(’InfoNode’,model)

Join [,el0] [group i, EName]

Join the groups i or all the groups of type EName. By default this operation is
applied to FEelt but you can apply it to FEel0 by adding the el0 modifier to the
command. Note that with the selection by group number, you can only join groups
of the same type (with the same element name).

You may join groups using there ID

femesh(’test2bay;plotelt’);

255

femesh, feutil

femesh(’infoelt’); % 2 groups at this step
femesh joingroup1:2 % 1 group now

or using elements type

femesh(’test2bay;plotelt’);
femesh joinbeam1 % 1 group now

This command can be accessed directly with feutil. For example

elt=feutil(’joingroup1:2’,model.Elt)

model [,0]

model=femesh(’model’) returns the FEM structure (see section 7.6) with fields
model.Node=FEnode and model.Elt=FEelt as well as other fields that may be stored
in the FE variable that is persistent in femesh. model=femesh(’model0’) uses
model.Elt=FEel0.

Matid,ProId,MPID

[MatId]=feutil(’matid’,elt) returns the element material identifier for each el-
ement in elt. The ProId command works similarly. MPId returns a matrix with
three columns MatId, ProId and group numbers.
elt=feutil(’mpid’,elt,mpid) can be used to set properties.

ObjectBeamLine i, ObjectMass i

Create a group of beam1 elements. The node numbers i define a series of nodes
that form a continuous beam (for discontinuities use 0), that is placed in FEel0 as
a single group of beam1 elements.

For example femesh(’ObjectBeamLine 1:3 0 4 5’) creates a group of three beam1
elements between nodes 1 2, 2 3, and 4 5.

An alternate call is femesh(’ObjectBeamLine’,ind) where ind is a vector con-
taining the node numbers. You can also specify a element name other than beam1
and properties to be placed in columns 3 and more using femesh(’ObjectBeamLine
-EltName’,ind,prop).

femesh(’ObjectMass 1:3’) creates a group of concentrated mass1 elements at the
declared nodes.

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 0 0 .15; ...

256

3 0 0 0 .4 1 .176;4 0 0 0 .4 .9 .176];
femesh(’;objectbeamline 1 2 0 2 3 0 3 4’);% or femesh(’objectbeamline’,1:4);
femesh plotel0;fecom textnode

ObjectHoleInPlate

Create a quad4 mesh of a hole in a plate.
The format is ’ObjectHoleInPlate N0 N1

N2 r1 r2 ND1 ND2 NQ’ giving the center
node, two nodes to define the edge direction
and distance, two radiuses in the direction of
the two edge nodes (for elliptical holes), the
number of divisions along a half quadrant of
edge 1 and edge 2, the number of quadrants
to fill (the figure shows 2.5 quadrants filled).

FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];
femesh(’objectholeinplate 1 2 3 .5 .5 3 4 4’);
femesh(’divide 3 4’); % 3 divisions around, 4 divisions along radii
femesh plotel0
% You could also use the call
FEnode = [1 0 0 0 0 0 0; 2 0 0 0 1 0 0; 3 0 0 0 0 2 0];
% n1 n2 n3 r1 r2 nd1 nd2 nq
r1=[1 2 3 .5 .5 3 4 4];
st=sprintf(’;objectholeinplate %f %f %f %f %f %f %f %f’,r1);
femesh(st);femesh(’plotel0’)

Object[Quad,Beam,Hexa] MatId ProId

Create or add a model containing quad4 elements. The user must define a rectan-
gular domain delimited by four nodes and the division in each direction. The result
is a regular mesh.

For example feutil(’ObjectQuad 1 1’,nodes,4,2) returns model with 4 and 2
divisions in each direction.

An alternate call is model=feutil(’ObjectQuad 1 1’,model,nodes,4,2) : the
quadrangular mesh is added to the model.

257

femesh, feutil

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];
model=feutil(’Objectquad 1 1’,node,4,3); % creates model

node = [3 0 0; 5 0 0; 5 2 0; 3 2 0];
model=feutil(’Objectquad 2 3’,model,node,3,2); % matid=3, proid=3
feplot(model);

Divisions may be specified using a vector between [0,1] :

node = [0 0 0; 2 0 0; 2 3 0; 0 3 0];
model=feutil(’Objectquad 1 1’,node,[0 .2 .6 1],linspace(0,1,10));
feplot(model);

Other supported object topologies are beams and hexaedrons. For example

node = [0 0 0; 2 0 0;1 3 0; 1 3 1];
model=feutil(’Objectbeam 3 10’,node(1:2,:),4); % creates model
model=feutil(’Objecthexa 4 11’,model,node,3,2,5); % creates model
feutil(’infoelt’,model)

Object[Circle,Cylinder]

These object constructors follow the format

model=feutil(’ObjectCircle x y z r nx ny nz Nseg’,model)

model=feutil(’ObjectCylinder x1 y1 z1 x2 y2 z2 r divT divZ’,model)

model=feutil(’object circle 1 1 1 2 0 0 1 30’);
model=feutil(’object circle 1 1 3 2 0 0 1 30’,model);
model=feutil(’object cylinder 0 0 0 0 0 4 2 10 20’,model);
feplot(model)

Optim [Model, NodeNum]

OptimModel removes nodes unused in FEelt from FEnode. OptimNodeNum does a
permutation of nodes in FEnode such that the expected matrix bandwidth is smaller.
This is only useful to export models, since here DOF renumbering is performed by
fe mk.

Orient, Orient i [, n nx ny nz]

Orient elements. For volumes and 2-D elements which have a defined orientation.
femesh(’orient’) or the equivalent elt=feutil(’orient’,FEnode,FEelt) call

258

element functions with standard material properties to determine negative volume
orientation and permute nodes if needed. This is in particular needed when gener-
ating models via extrude or divide operations which do not necessarily result in
appropriate orientation (see section 7.14.3).

Orient normal of shell elements. For plate/shell elements (elements with parents
of type quad4, quadb or tria3) in groups i of FEelt, this command computes the
local normal and checks whether it is directed towards the node located at nx ny

nz. If not, the element nodes are permuted to that a proper orientation is achieved.

femesh(’orient i’,node) can also be used to specify a list of orientation nodes.
For each element, the closest node in node is then used for the orientation. node can
be a standard 7 column node matrix or just have 3 columns with global positions.

For example

% Init example
femesh(’;testquad4;divide 2 3;’)
FEelt=FEel0;femesh(’dividegroup1 withnode1’);
model=femesh;
% Orient elements in group 2
model.Elt=feutil(’orient 2 n 0 0 -1’,model);

Plot [Elt, El0]

Plot selected model. PlotElt calls feplot to initialize a plot of the model contained
in FEelt. PlotEl0 does the same for FEel0. This command is really just the
declaration of a new model using feplot(’initmodel’,femesh(’model’)).

Once the plot initialized you can modify it using feplot and fecom.

Quad2Tria, quad42quadb, etc.

Basic element type transformations. Quad2Tria searches FEel0 for quad4 element
groups and replaces them with equivalent tria3 element groups. The result is
stored in FEel0. Quad42Quadb places nodes at the mid-sides of quad4 elements to
form 8 node quadb elements. Penta62Penta15 (resp. Tetra42Tetra10) transforms
penta6(resp.) elements to penta15(resp. tetra10) elements. Hexa82Hexa20 places
nodes at the mid-sides of hexa8 elements to form hexa20 elements. Hexa2Tetra
replaces each hexa8 elements by four tetra4 elements (this is really not a smart
thing to do). Hexa2Penta replaces each hexa8 elements by six tetra4 elements
(warning : this transformation may lead to incompatibilities on the triangular faces).

259

femesh, feutil

% create 4 quad4
femesh(’;testquad4;divide 2 3’);
femesh(’;quad2tria’); % conversion
femesh plotel0

% create a quad, transform to triangles, divide each triangle in 4
femesh(’;testquad4;quad2tria;divide2;plotel0’);

RefineBeam l

Mesh refinement. This function searches FEel0 for beam elements and divides ele-
ments so that no element is longer than l.

Remove[Elt,El0] ElementSelectors

Element removal. This function searches FEelt or FEel0 for elements which verify
certain properties selected by ElementSelectors and removes these elements from
the model description matrix. The functionality is actually handled by feutil. A
sample call would be

% create 4 quad4
femesh(’;testquad4;divide 2 3’);
FEel0 = feutil(’removeelt withnode 1’,FEnode,FEel0);
% same as femesh(’removeel0 withnode 1’)
femesh plotel0

Renumber

model=feutil(’renumber’,model,NewNodeNumbers) can be used to change the
node numbers in the model. Currently nodes, elements, DOFs and deformations
are renumbered. If NewNodeNumbers is not provided values 1:size(model.Node,1)
are used. This command can be used to meet the OpenFEM requirement that node
numbers be less than 2^31/100. Another application is to joint disjoint models with
coincident nodes using

[r1,i2]=feutil(’addnode’,model.Node,model.Node);
model=feutil(’renumber’,model,r1(i2,1));

260

RepeatSel nITE tx ty tz

Element group translation/duplication. RepeatSel repeats the selected elements
(FEel0) nITE times with global axis translations tx ty tz between each repetition
of the group. If needed, new nodes are added to FEnode. An example is treated in
the d truss demo.

femesh(’;testquad4;divide 2 3’);
femesh(’;repeatsel 3 2 0 0’); % 3 repetitions, translation x=2
femesh plotel0
% an alternate call would be
femesh(’;testquad4;divide 2 3’);
% number, direction
femesh(sprintf(’;repeatsel %f %f %f %f’, 3, [2 0 0]))
femesh plotel0

Rev nDiv OrigID Ang nx ny nz

Revolution. The selected elements FEel0 are taken to be the first meridian. Other
meridians are created by rotating the selected group around an axis passing trough
the node of number OrigID (or the origin of the global coordinate system) and
of direction [nx ny nz] (the default is the z axis [0 0 1]). nDiv+1 (for closed
circle cases ang=360, the first and last are the same) meridians are distributed on
a sector of angular width Ang (in degrees). Meridians are linked by elements in a
fashion similar to extrusion. Elements with a mass1 parent are extruded into beams,
element with a beam1 parent are extruded into quad4 elements, quad4 are extruded
into hexa8, and quadb are extruded into hexa20.

The origin can also be specified by the xyz values preceded by an o using a command
like femesh(’rev 10 o 1.0 0.0 0.0 360 1 0 0’).

You can obtain an uneven distribution of angles using a second argument. For
example femesh (’rev 0 101 40 0 0 1’,[0 .25 .5 1]) will rotate around an
axis passing by node 101 in direction z and place meridians at angles 0 10 20 and
40 degrees. Note that SDT 4.0 did not behave correctly for such calls.

FEnode = [1 0 0 0 .2 0 0; 2 0 0 0 .5 1 0; ...
3 0 0 0 .5 1.5 0;4 0 0 0 .3 2 0];

femesh(’objectbeamline’,1:4);
femesh(’divide 3’)
femesh(’;rev 40 o 0 0 0 360 0 1 0’);
femesh plotel0

261

femesh, feutil

fecom(’;triax;view 3;showpatch’)
% An alternate calling format would be
femesh(’;objectbeamline 1:4;divide3’);
% divi origin angle direct
r1 = [40 0 0 0 360 0 1 0];
femesh(sprintf(’;rev %f o %f %f %f %f %f %f %f’,r1))
femesh plotel0
fecom(’;triax;view 3;showpatch’)

RotateSel OrigID Ang nx ny nz

Rotation. The selected elements FEel0 are rotated by the angle Ang (degrees) around
an axis passing trough the node of number OrigID (or the origin of the global
coordinate system) and of direction [nx ny nz] (the default is the z axis [0 0 1]).
The origin can also be specified by the xyz values preceded by an o

femesh(’rotatesel o 2.0 2.0 2.0 90 1 0 0’)

This is an example of the rotation of FEel0

femesh(’;testquad4;divide 2 3’);
% center is node 1, angle 30, aound axis z
% Center angle dir
st=sprintf(’;rotatesel %f %f %f %f %f’,[1 30 0 0 1]);
femesh(st); femesh plotel0
fecom(’;triax;textnode’); axis on

Sel [Elt,El0] ElementSelectors

Element selection. SelElt places in the selected model FEel0 elements of FEelt
that verify certain conditions. You can also select elements within FEel0 with the
SelEl0 command. Available element selection commands are described under the
FindElt command and section 7.11.

SelGroup i, SelNode i

Element group selection. The element group i of FEelt is placed in FEel0 (selected
model). SelGroupi is equivalent to SelEltGroupi.

Node selection. The node(s) i of FEnode are placed in FEn0 (selected nodes).

262

SetGroup [i,name] [Mat j, Pro k, EGID e, Name s]

Set properties of a group. For group(s) of FEelt selector by number i, name name, or
all you can modify the material property identifier j, the element property identifier
k of all elements and/or the element group identifier e or name s. For example

femesh(’set group1:3 pro 4’)
femesh(’set group rigid name celas’)

If you know the column of a set of element rows that you want to modify, calls of
the form FEelt(femesh(’findeltSelectors’),Column)= Value can also be used.

model=femesh(’testubeamplot’);
FEelt(femesh(’findeltwithnode {x==-.5}’),9)=2;
femesh plotelt;
cf.sel={’groupall’,’colordatamat’};

You can also use femesh(’set groupa 1:3 pro 4’) to modify properties in FEel0.

StringDOF

feutil(’stringdof’,sdof) returns a cell array with cells containing string descrip-
tions of the DOFs in sdof.

SymSel OrigID nx ny nz

Plane symmetry. SymSel replaces elements in FEel0 by elements symmetric with
respect to a plane going through the node of number OrigID (node 0 is taken to
be the origin of the global coordinate system) and normal to the vector [nx ny

nz]. If needed, new nodes are added to FEnode. Related commands are TransSel,
RotateSel and RepeatSel.

TransSel tx ty tz

Translation of the selected element groups. TransSel replaces elements of FEel0
by their translation of a vector [tx ty tz] (in global coordinates). If needed,
new nodes are added to FEnode. Related commands are SymSel, RotateSel and
RepeatSel.

femesh(’;testquad4;divide 2 3;addsel’);
femesh(’;transsel 3 1 0;addsel’); % Translation of [3 1 0]
femesh plotelt
fecom(’;triax;textnode’)

263

femesh, feutil

UnJoin Gp1 Gp2

Duplicate nodes that are common to two groups. To allow the creation of interfaces
with partial coupling of nodal degrees of freedom, UnJoin determines which nodes
are common to the element groups Gp1 and Gp2 of FEelt, duplicates them and
changes the node numbers in Gp2 to correspond to the duplicate set of nodes. In
the following call with output arguments, the columns of the matrix InterNode give
the numbers of the interface nodes in each group InterNode = femesh(’UnJoin 1
2’).

femesh(’test2bay’);
femesh(’findnode group1 & group2’) % nodes 3 4 are common
femesh(’unjoin 1 2’);
femesh(’findnode group1 & group2’) % no longer any common node

A more general call allows to separate nodes that are common to two sets of elements
femesh(’unjoin’,’Section1’,’Selection2’). Elements in Selection1 are left
unchanged while nodes in Selection2 that are also in Selection1 are duplicated.

See also fe mk, fecom, feplot, section 5.1, demos gartfe, d ubeam, beambar ...

264

feplot

Purpose Gateway function for 3-D visualization of structures. See also the companion func-
tion fecom.

Description feplot refreshes all feplot axes of the current figure.

cf=feplot returns a SDT handle to the current feplot figure. You can create
more than one feplot figure with cf=feplot(FigHandle).

cf.model={node,elt} initializes the FE model displayed in the current figure
(see fecom InitModel).

cf.def(i)={def,dof} initializes a deformation set. cf.def(i)={def,dof,freq}
where freq is a list of frequencies of poles automatically generates title labels for
each deformation (see fecom InitDef).

cf.sens(i)={sdof} initializes a sensor set (see fecom InitSens).

cf.sel(i)= ’ElementSel’ initializes a selection to use element selected by
ElementSel. Note that you may want to declare color data simultaneously using
cf.sel(i)= {’ElementSel’,’Colordata Command’,Args}.

cf.o(i)= {’ObjectSpec’,’PatchProperty’,PatchValue} modifies the prop-
erties of object i in the current feplot axis.

A complete list of commands is given under the companion function fecom while
the rest of this section gives more details on the feplot architecture. For a tutorial
see section 5.4.

The old format feplot(node,elt,mode,mdof,2) is still supported but you are en-
couraged to switch to the new and more general procedure outlined above.

Views of deformed structures are obtained by combining information from various
data arrays that can be initialized/modified at any time. The object hierarchy is
outlined below with the first row being data arrays that store information and the
second row objects that are really displayed in Matlab axes.

FeplotFig

axes model sel sens def

mesh arrow text

265

feplot

axes describe axes to be displayed within the feplot figure. Division of
the figure into subplots (Matlab axes) is obtained using the iiplot
sub commands. Within each plot, basic displays (wire mesh, surface,
sensor, arrow corresponding to mesh, arrow, or text objects) can be
obtained using the fecom show commands while more elaborate plots
are obtained using fecom setobject commands. Other axes properties
(rotations, animation, deformation selection, scaling, title generation,
etc.) can then be modified using fecom commands.

model Model data structure (see section 7.6) Initialized using the InitModel
command (see fecom). cf.mdl is a handle to the model contained in the
feplot figure. The model must be defined before any plot is possible.

sel element selections describe which elements are displayed. The standard
selection displays all elements of all groups. fecom sel commands or
cf.sel(i) let you define selections that only display some elements.
See also the fecom SetObject commands. Color information is defined
for each selection (see fecom color commands).

sens sensor selections describe sets of sensors. Sensor selections are used
to display the response at measurement locations through stick or ar-
rows. Initialized using the InitSens command or cf.sens(i) calls (see
fecom).

def deformation sets describe deformations at a number of DOFs. Initial-
ized using the InitDef command or cf.def(i) calls (see fecom).

Objects
mesh

mesh objects represent a deformed or undeformed finite element mesh. They are used
both for wire-frame and surface representations. mesh objects are characterized by
indices giving the element selection, deformation set, channel (deformation number),
and color type. They can be modified using calls or the form

cf = feplot; % get sdth object handle
cf.o(2) = ’sel 1 def 1 ch 3’

or equivalently with fecom setobject commands. fecom show commands resets the
object list of the current axis.

Each mesh object is associated to up to three Matlab patch objects associated re-
spectively with real surfaces, segments and isolated nodes. You can access individual
pointers to the patch objects using cf.o(i,j) (see fecom go commands).

266

arrow

Arrow objects are used to represent sensors, actuators, boundary conditions, ...
They are characterized by indices giving their sensor set, deformation set, channel
(deformation number), and arrow type. They can be modified using calls or the
form (see fecom setobject commands)

cf = feplot; % get sdth object handle
cf.o(2) = ’sen 1 def 1 ch 3’

The SDT currently supports stick sensors (object type 3) and arrows at the sensor
tip (type 7). Other arrow types will eventually be supported.

text

fecom text objects are vectorized lists of labels corresponding to nodes, elements,
DOFs, ... They can be initialized using fecom text commands and deleted with
textoff. You can use cf.o(i) (see fecom go commands) to get handles to the
associated Matlab text objects and thus set font name size, ... set(cf.o(1),
’fontsize’, 7) for example.

Data arrays feplot stores information in various data arrays cf.mdl for the model, cf.def(i)
for the definition of deformations, cf.sel(i) for element selections for display and
cf.sens(i) for sensor selections.

def

deformation sets describe sets of deformations at a number of DOFs. Initialized using
the InitDef command or cf.def(i)={def,dof}. A deformation set is characterized
by fields

.def one real or complex deformation per column. The fecom ch command
allows a selection of which modes are shown.

.DOF DOF definition vector giving the meaning of each row in the .def field
(see mdof page 146). feplot currently only retains translation DOFs
(DOFs 01 to 03 corresponding to u, v, w translations along global
coordinate axes and DOFs 07 to 09 corresponding to −u, −v, −w
translations). All undeclared translations are assumed to be zero.

.scale the first row gives the DOF at which the maximum response is seen,
the second row the value of this response. This information is used for
automated scaling (see fecom scale commands)

.lab label associated to each deformation (see fecom head commands).

267

feplot

mdl

The model currently displayed is stored in cf.mdl fecom initmodel.

sel

element selections describe a selection of elements to be displayed. The standard
selection displays all elements of all groups. fecom sel commands let you define
selections that only display some elements.

.selelt string used for element selection

.vert0 position of vertices (nodes) in the undeformed configuration

.node node numbers associated to the various vertices

.cna array (as many as currently declared deformations) of sparse observa-
tion matrices giving the linear relation between deformation DOFs and
translation DOFs at the selection nodes. The observation matrix gives
all x translations followed by all y translations and all z translations.

.fs face definitions for true surfaces (elements that are not represented by
lines or points)

.f2 face definitions for lines (if any)

.f1 face definitions for points (if any)

.fvcs FaceVertexCData for true surfaces (see fecom ColorData commands)

.fvc2 FaceVertexCData for lines

.fvc1 FaceVertexCData for points

sens

sensor selections describe sets of sensors. Sensor selections are used to display the
response at measurement locations through stick or arrows. Initialized using the
InitSens command.

268

.vert0 position of vertices (nodes) in the undeformed configuration

.node node numbers associated to the various vertices

.ntag numerical tag identifying each sensor

.dir direction associated with each sensor

.cta array (as many as currently declared deformations) of sparse observa-
tion matrices giving the linear relation between deformation DOFs and
measurements.

.opt [Created]

.arrow defines how the arrow is related to the measurement

See also fecom, femesh, feutil, tutorial in section 5.4

269

fesuper

Purpose User interface for superelement support.

Syntax fesuper(’CommandString’)
[out,out1] = fesuper(’CommandString’,in1,in2)

Description Superelements are global variables of the general form SEName with different fields
allowing fe super to perform the usual tasks of an element function. By default
these variables are not declared as global in the base workspace. Thus to access
them from there you need to use global SEName.

The fesuper user interface provides standard access the different fields (see fe super
for a list of those fields). The following sections describe currently implemented com-
mands and associated arguments (see the commode help for hints on how to build
commands and understand the variants discussed in this help). An example of
superelement use is given in the d cms2 demonstration.

Warnings. In the commands superelement names must be followed by a space (in
most other cases user interface commands are not sensitive to spaces).

Copy Name NameNew

Makes a copy (duplicate) of superelement Name called NameNew. Same as

global SEName SENameNew; SENameNew=SEName;

Get Name ...

Get properties from a superelement. Properties directly stored as fields of the su-
perelement variable (see fe super for details on those fields). The easiest way to
access superelement fields is to declare the array as global in your current workspace
global SEName and access the fields directly SEName.DOF, . . .

270

.DOF DOF definition vector for the superelement

.Elt initial model description matrix

.line node line for wire frame plots

.K{i} superelement matrices

.Node nominal nodes

.Opt options

.patch patch matrix for patch plots

.ref coordinate transformation specification

.tr reduction basis

Info Name

Outputs a summary of current properties of the superelement Name.

[Load, Save] FileName

Loading and saving superelements. Load FileName loads superelements (variables
with name of the form SEName) present in the file. Save FileName Name1 Name2 ...
saves superelements Name1 Name2 ... in the file. Note that these commands are really
equivalent to global SEName;save FileName SEName and global SEName;load
FileName SEName.

Make Name [generic, complete]

elt=fesuper(’make Name generic’) takes a unique superelement and makes it
generic (see fe super for details on generic superelements). Opt(1,1) is set to 2.
SEName.DOF is transformed to a generic DOF form. The output elt is a model de-
scription matrix for the nominal superelement (header row and one element property
row). This model can by used by femesh to build structures that use the generic
superelement several times (see the d cms2 demo).

make complete adds zero DOFs to nodes which have less than 3 translations (DOFs
.01 to .03) or rotations (DOFs .04 to .06). Having complete superelements is
important to be able to rotate them (used for generic superelements with a Ref
property).

New Name

New unique superelement declaration using the general format
fesuper (’New Name’,FEnode,FEelt). If a superelement called Name exists it is

271

fesuper

erased. The Node and Elt properties are set to those given as arguments. The
Patch property used by feplot for display is initialized.

Set Name ...

Set superelement properties. For Node, DOF, the calling format is fesuper (’Set
Name Var’,Var). Other specific formats are

fesuper(’SetName Ref 1 n1 n2 n3 n4 i1 i2 i3 i4’,node) is used to specify
the coordinate transformation property of a superelement for a type 1 coordinate
transformation (the only currently available). n1... n4 are node numbers (the de-
fault for node is SE.Node) for the reference basis and i1,i2,i3,i4 give the positions
of these node numbers in the element row of a generic superelement. You may omit
i1,i2,i3,i4 specification.

fesuper(’set Name ki type’,Mat) sets the superelement matrix K{i} to Mat and
its type to type. The size of Mat must be coherent with the superelement DOF
vector. type is a positive integer giving the meaning of the considered matrix (1
stiffness, 2 mass, ...).

fesuper(’set Name Line’,elt) where a model description matrix elt rather than
a connectivity matrix is given. Starting with SDT 4 line properties are no
longer used.

fesuper(’set Name mk’,pl,il) assembles the mass and stiffness matrices linked
to the nominal element description matrix and the given material pl and element il
property matrices. This nominal stiffness is stored as K1 and this nominal mass as
K2. For a reduced model assembly or a case with some boundary conditions fixed,
TR can and should be set first.

fesuper(’set Name Patch’,elt) sets the patch property based on a model de-
scription matrix elt rather than a patch matrix.

fesuper (’set Name ProID i’) sets ProID to i. ProID numbers must be positive
integers. For unique superelements this is stored in SEName.Opt(1,2)).

fesuper(’set Name TR’,tr,mdof,adof) sets the TR property and projects any ex-
isting matrix accordingly. An empty mdof can be used to fix all DOFs not in adof
(same meaning as adof in fe mk). If tr is not empty (a projection is defined) mdof
and adof must be consistent.

See also fe super, upcom, section 6.2.2, section 5.5.2

272

fe c

Purpose DOF selection and input/output shape matrix construction.

Syntax c = fe_c(mdof,adof)
c = fe_c(mdof,adof,cr,ty)
b = fe_c(mdof,adof,cr)’
[adof,ind,c] = fe_c(mdof,adof,cr,ty)
ind = fe_c(mdof,adof,’ind’,ty)
adof = fe_c(mdof,adof,’dof’,ty)
labels = fe_c(mdof,adof,’dofs’,ty)

Description This function is quite central to the flexibility of DOF numbering in the Toolbox. FE
model matrices are associated to DOF definition vectors which allow arbitrary DOF
numbering (see section 7.5). fe c provides simplified ways to extract the indices
of particular DOFs (see also section 7.10) and to construct input/output matrices.
The input arguments for fe c are

mdof DOF definition vector for the matrices of interest (be careful not to mix
DOF definition vectors of different models)

adof active DOF definition vector.
cr output matrix associated to the active DOFs. The default for this

argument is the identity matrix. cr can be replaced by a string ’ind’
or ’dof’ specifying the unique output argument desired then.

ty active/fixed option tells fe c whether the DOFs in adof should be kept
(ty=1 which is the default) or on the contrary deleted (ty=2).

The input adof can be a standard DOF definition vector but can also contain wild
cards as follows

NodeID.0 means all the DOFs associated to node NodeID
0.DofID means DofID for all nodes having such a DOF

-EltID.0 means all the DOFs associated to element EltID

The convention that DOFs .07 to .12 are the opposite of DOFs .01 to .06 is sup-
ported by fe c, but this should really only be used for combining experimental and
analytical results where some sensors have been positioned in the negative directions.

The output argument adof is the actual list of DOFs selected with the input ar-
gument. fe c seeks to preserve the order of DOFs specified in the input adof. In

273

fe c

particular for models with nodal DOFs only and

• adof contains no wild cards: no reordering is performed

• adof contains node numbers: the expanded adof shows all DOFs of the different
nodes in the order given by the wild cards

The first use of fe c is the extraction of particular DOFs from a DOF definition
vector (see b,c page 151). One may for example want to restrict a model to 2-D
motion in the xy plane (impose a fixed boundary condition). This is achieved as
follows

[adof,ind] = fe_c(mdof,[0.01;0.02;0.06]);
mr = m(ind,ind); kr = k(ind,ind);

Note adof=mdof(ind). The vector adof is the DOF definition vector linked to the
new matrices kr and mr.

Another usual example is to fix the DOFs associated to particular nodes (to achieve
a clamped boundary condition). One can for example fix nodes 1 and 2 as follows

ind = fe_c(mdof,[1 2],’ind’,2);
mr = m(ind,ind); kr = k(ind,ind);

Displacements that do not correspond to DOFs can be fixed using fe coor.

The second use of fe c is the creation of input/output shape matrices (see b,c
page 26). These matrices contain the position, direction, and scaling information
that describe the linear relation between particular applied forces (displacements)
and model coordinates. fe c allows their construction without knowledge of the
particular order of DOFs used in any model (this information is contained in the
DOF definition vector mdof). For example the output shape matrix linked to the
relative x translation of nodes 2 and 3 is simply constructed using

c=fe_c(mdof,[2.01;3.01],[1 -1])

For reciprocal systems, input shape matrices are just the transpose of the collocated
output shape matrices so that the same function can be used to build point load
patterns.

Example

Others examples may be found in adof section.

See also fe mk, feplot, fe coor, fe load, adof, nor2ss
Section 5.2

274

fe case

Purpose UI function to handle FEM computation cases

Syntax Case = fe_case(Case,’EntryType’,’Entry Name’,Data)
fe_case(model,’command’ ...)

Description FEM computation cases contain information other than nodes and elements used to
describe a FEM computation. Currently supported entries in the case stack are

cyclic (SDT) used to support cyclic symmetry conditions
DofLoad loads defined on DOFs (handled by fe load)
DofSet (SDT) imposed displacements on DOFs
FixDOF used to eliminated DOFs specified by the stack data
FSurf surface load defined on element faces (handled by fe load)
FVol volume loads defined on elements (handled by fe load)
Info used to stored non standard entries
KeepDOF used to eliminated DOFs not specified by the stack data
map field of normals at nodes
mpc multiple point constraints
par are used by upcom to define physical parameters (see upcom par com-

mands
rigid linear constraints associated with rigid links
SensDof (SDT) Translation sensor definitions
SensStrain (SDT) Strain sensor definitions

fe case is called by the user to initialize (when Case is not provided as first argu-
ment) or modify cases (Case is provided).

Accepted commands are

• AddToCase (i) allows specification of the active case (by number in the model
stack) for multiple case models. See the example below.

• Assemble[...] calls used to assemble the matrices of a model. Accepted
formats for matrix assembly are

[m,k,model,Case]=fe_case(model,’assemble mk’);
[k,model,Case] = fe_case(model,’assemble k’);
[...] = fe_case(model,’assemble ...’,Case);

275

fe case

Note that constraints are eliminated from the resulting matrices (see sec-
tion 7.13).

• Auto-SPC analyses the rank of the stiffnes matrix at each node and generates
a fixdof case entry for DOFs found to be singular:

model = fe_case(model,’autospc’)

• [Case,CaseName]=fe case(model,’GetCase’) returns the current case.
GetCasei returns case number i (order in the model stack). GetCaseName
returns a case with name Name and creates it does not exist necessary. Note
that the Case name cannot start with Case.

• data=fe case(model,’GetData EntryName’) returns data associated with
the case entry EntryName.

• model=fe case(model,’SetData EntryName’,data) sets data associated with
the case entry EntryName.

• GetT returns a congruent transformation matrix which verifies constraints.
The nominal calling format is Case = fe case(model,’gett’,Case) which
fills in the Case.T and Case.DOF fields.

• model=fe case(model,’Remove’,EntryName) removes the entry with name
EntryName.

• Reset empties all information in the case stored in a model structure :

model = fe_case(model,’reset’)

Commands for avanced constraint generation
Build Sec epsl d

model = fe cyclic(’build (N) epsl (d)’,model,LeftNodeSelect) is used to
append a cyclic constraint entry in the current case.

ConnectionPivot

This commands generates a set of MPC defining a pivot connection between two sets
of nodes. The command specifies the DOFs contraint at the pivot (in the example
DOF 6 is free), the local z direction and the location of the pivot node. One then
gives the model, the connection name, and node selections for the two sets of nodes.

276

model=demosdt(’demoTwoPlate’);
model=fe_caseg(’Connection Pivot 12345 0 0 1 .5 .5 -3 -id 1111’,model, ...
’pivot’,’group1’,’group2’);

def=fe_eig(model);feplot(model,def)

The string -id value can be added to the command to specify a MPC ID for export
to other software.

ConnectionSurface

fe caseg(’Connection surface DOFs’,model,’name’,NodeSel1,Eltsel2); gen-
erates a set of MPC connecting of DOFs of a set of nodes selected by NodeSel1 (this
is a string that will be passed to feutil as a horzcat(’GetNode’,NodeSel1) com-
mand) to a surface selected by EltSel2 (this is a string that will be passed to feutil
as a horzcat(’SelElt’,EltSel2) command). The following example links x and
z translations of two plates

model=demosdt(’demoTwoPlate’);
model=fe_caseg(’Connection surface 13 -id 1111’,model,’pivot’, ...

’z==0’, ... % Selection of nodes to connect
’withnode {z==.1}’); % Selection of elements for matching

def=fe_eig(model);feplot(model,def)

The string -id value can be added to the command to specify a MPC ID for export
to other software.

Entries The following paragraphs list available entries not handled by fe load or upcom.

cyclic (SDT)

cyclic entries are used to define sector edges for cyclic symmetry computations.
They are generated using the fe cyclic Build command.

FixDof

FixDof entries correspond to rows of the Case.Stack cell array giving {Type, Name,
Data}. Type is either ’KeepDof’ or ’FixDof’. Name is a string identifying the entry.
data is a column DOF definition vector (see section 7.10) or a string defining a node
selection command. You can also use data=struct(’data’,DataStringOrDof,’ID’,ID)
to specify a identifier.

277

fe case

You can now add a DOF specification to the findnode command. For example x==0
-dof 1 2 fixes DOFs x and y on the x==0 plane.

The following syntax is used in the final example of the section:

model = fe_case(model,’AddToCase 1’,’FixDof’,’clamped dofs’,’z==0’);

KeepDof

KeepDof entries correspond to rows of the Case.Stack cell array giving {Type,
Name, Data}. Type is either ’KeepDof’ or ’FixDof’. Name is a string identifying
the entry. data is a column DOF definition vector (see section 7.10) or a string
defining a node selection command.

The following syntax is used in the final example of the section:

model=fe_case(model,’AddToCase1’,’KeepDof’,’3-D motion’,[.01 .02 .03]’);

map

map entries are used to define maps for normals at nodes. These entries are typically
used by shell elements or by meshing tools. Data is a structure with fields

• .normal a N by 3 matrix giving the normal at each node or element

• .ID a N by 1 vector giving identifiers. For normals at integration points,
element coordinates can be given as two or three additional columns.

• .opt an option vector. opt(1) gives the type of map (1 for normals at element
centers, 2 for normals at nodes, 3 normals at integration points specified as
additional columns of Data.ID).

• .vertex an optional N by 3 matrix giving the location of each vector specified
in .normal. This can be used for plotting.

MPC

MPC (multiple point constraint) entries are rows of the Case.Stack cell array giving
{’MPC’, Name, Data}. Name is a string identifying the entry. Data is a structure
with fields Data.ID positive integer for identification. Data.c is a sparse matrix
whos columns correspond to DOFs in Data.DOF. c is the constraint matrix such
that [c] {q} = {0} for q defined on DOF.

278

Data.slave is an optionnal vector of slave DOFs in Data.DOF. This vector is cur-
rently ignored and the slave DOF is taken to be the first occurence of the value 1
on each row of c. If there is no such occurence, an error is generated.

rigid

rigid entries are rows of the Case.Stack cell array giving {’rigid’, Name, Elt}.
Name is a string identifying the entry. Elt is a model description matrix containing
rigid elements. The following example generates the mesh of a square plate with a
rigid edge

femesh(’;testquad4;divide 10 10;addsel’);
model=femesh(’model’);

% Define a rigid edge
femesh(’selelt seledge & innode{x==0}’)
femesh(’setgroupa1 name rigid’)
FEel0(femesh(’findel0 group1’),3)=123456;
FEel0(femesh(’findel0 group1’),4)=0;
model=fe_case(model,’addtocase1’,’rigid’,’Rigid edge’,FEel0);

% Compute and display modes
def=fe_eig(model,[6 20 1e3]);
feplot(model,def);fecom(’;view3;ch8;scd.1’);

SensDOF (SDT)

SensDOF entries are rows of the Case.Stack cell array giving { ’SensDOF’, Name,
data}. Name is a string identifying the entry. data is a structure with fields

.tdof Currently .tdof should be a dof definition vector. Eventually, SDT
will support a seven column matrix where each row describes a sensor
by [SensID NodeID nx ny nz Type] giving a sensor identifier (inte-
ger or real), a node identifier (positive integer), the projection of the
measurement direction on the global axes (if relevant).

.cta is an observation matrix associated with the observation equation {y} =
[c] {q}. This is build using the fe case sens command as illustrated
below.

.DOF DOF definition vector for the .cta field

.lab a cell array of string labels for each sensor defined in .tdof

279

fe case

model=demosdt(’demo ubeam mix’);
model=fe_case(model,’addtocase’, ...

’SensDof’,’Outputs’,[343.01 343.02 347.03]’);
Case=fe_case(model,’GetCase’);
Sens = fe_case(model,’sens’,Case)
Load = fe_load(model,Case)

SensStrain (SDT)

SensStrain entries are rows of the Case.Stack cell array giving { ’SensDOF’,
Name, data}. Name is a string identifying the entry. data is a structure with fields

.Node Positions of the strain sensors. x,y,z coordinates in global coordinate
system or standard node.

.dir first direction for strain measurement. This vector need not be normal-
ized.

.dir2 second direction for strain measurement in order to measure non-
diagonal terms of the strain tensor. If undefined one measures axial
strains in directions given by .dir. This vector need not be normal-
ized.

.eltsel optional field specifying an element selection. The faces of that selection
which are contained in the nodes selected with data.sel will be loaded.

.lab a cell array of string labels for each sensor

Strain

sensors are supported for volume and shell elements. Strains {d1}T [ε]
{
d2
}

are com-
puted at the matching position of the element with the nearest center of gravity.

For shells, one accounts for the offset from the neutral fibre if the sensor position
is not located on the surface defined by element nodes. The approach used is only
valid if rotations at the shell nodes correspond to rotations in the global coordinate
system.

For volumes, reliable results require that the sensor be located within the volume
defined by nodes.

Note that the observation matrix generated for these sensors is a direct estimation
of strain within a single element. Since FEM solutions do not typically lead to
continuous strain fields, the estimate may be quite wrong in areas of rapid strain
variations where the FEM result is not properly converged.

A sample call takes the form

[model,def]=femesh(’teststruct quad4’);
data=struct(’Node’,[.4 .4 .01;.5 .5 .2],’dir’,[1 0 0;1 1 0]);

280

model=fe_case(model,’SensStrain’,’Outputs’,data);
Sens = fe_case(model,’sens’)

un=0

model=fe case(model,’un=0’,’Normal motion’,map); where map gives normals
at nodes generates an mpc case entry that enforces the condition {u}T {n} = 0 at
each node of the map.

Example

Here is an example combining various fe case commands

model = femesh(’test ubeam plot’);
% creating Case1 with 3D-motion (KeepDof)
model=fe_case(model,’AddToCase1’,’KeepDof’,...

’3-D motion’,[.01 .02 .03]’);
% specifying clamped dofs (FixDof)
model = fe_case(model,’AddToCase 1’,’FixDof’,’clamped dofs’,’z==0’);
% creating a volumic load
data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);
model = fe_case(model,’AddToCase 1’,’FVol’,’Volumic load’,data);
% assemble active DOFs and matrices
model=fe_mknl(model);
% assemble RHS (volumic load)
Load = fe_load(model,’Case1’);
% compute static response
kd=ofact(model.K{2});def.def= kd\Load.def; ofact(’clear’,kd)
Case=fe_case(model,’gett’); def.DOF=Case.DOF;
% plot displacements
cf.def=def;
fecom(’;undef;triax;showpatch;promodelinit’);

See also fe mk, fe case

281

fe ceig

Purpose Computation and normalization of complex modes associated to a second order
viscously damped model.

Syntax [psi,lambda] = fe_ceig(...)
lambda = fe_ceig(m,c,k)
def = fe_ceig(...)

... = fe_ceig(m,c,k)

... = fe_ceig({m,c,k,mdof},eigopt)

... = fe_ceig({m,c,k,T,mdof},eigopt)

... = fe_ceig(model,eigopt)

Description Complex modes are solution of the second order eigenvalue problem (see section 2.5
for details)

[M]N×N {ψj}N×1 λ
2
j + [C] {ψj}λj + [K] {ψj} = 0

where modeshapes psi=ψ and poles Λ =
[
\λj\

]
are also solution of the first order

eigenvalue problem (used in fe ceig)[
C M
M 0

]
2N×2N

[
ψ
ψΛ

]
2N×2N

[Λ]2N×2N +

[
K 0
0 −M

] [
ψ
ψΛ

]
= [0]2N×2N

and verify the two orthogonality conditions

ψTCψ + ΛψTMψ + ψTMψΛ = I and ψTKψ − ΛψTMψΛ = −Λ

[psi,lambda] = fe ceig(m,c,k) is the old low level call to compute all complex
modes. For partial solution you should use def = fe ceig(model,ceigopt) where
model can be replaced by a cell array with {m,c,k,mdof} or {m,c,k,T,mdof} (see
the example below). Using the projection matrix T generated with fe case(’gett’)
is the proper method to handle boundary conditions.

Options give [CeigMethod EigOpt] where CeigMethod can be 0 (full matrices),
1 (real modes then complex ones on the same basis) 2 and 3 are refined solvers
available with the VISCO extension. EigOpt are standard fe eig options.

Here is a simple example of fe ceig calls.

model=femesh(’testubeam’);model.DOF=[];

282

model=fe_case(model,’fixdof’,’Base’,’z==0’);
[m,k,model.DOF]=fe_mk(model,’options’,[0 2]);
Case=fe_case(model,’gett’);

kc=k*(1+i*.002); % with hysteretic damping
def1=fe_ceig({m,[],kc,model.DOF},[1 6 10 1e3]); % free modes
def2=fe_ceig({m,[],kc,Case.T,Case.DOF},[1 6 10 1e3]); % fixed modes

See also fe eig, fe mk, nor2ss, nor2xf, section 2.3 section ??

283

fe coor

Purpose Coordinate transformation matrices for Component Mode Synthesis problems.

Syntax [t] = fe_coor(cp)
[t,nc] = fe_coor(cp,opt)

Description The different uses of fe coor are selected by the use of options given in the argument
opt which contains [type method] (with the default values [1 3]).

type=1 (default) the output t is a basis for the kernel of the constraints cp
range([T]N×(N−NC)) = ker([c]NS×N)

NC ≤ NS is the number of independent constraints.

type=2 the output argument t gives a basis of vectors linked to unit outputs followed
by a basis for the kernel
T =

[
[TU]N×NS [TK]N×(N−NS)

]
with [c]NS×N [T] =

[[
\I\
]
[0]NS×(N−NS)

]
If NC < NS such a matrix cannot be constructed and an error occurs.

method the kernel can be computed using : 1 a singular value decomposition svd
(default) or 3 a lu decomposition. The lu has lowest computational cost.
The svd is most robust to numerical conditioning problems.

Usage fe coor is used to solve problems of the general form[
Ms2 + Cs+K

]
{q(s)} = [b] {u(s)}

{y(s)} = [c] {q(s)} with [cint] {q(s)} = 0

which are often found in CMS problems (see section 6.1.6 and [36]).

To eliminate the constraint, one determines a basis T for the kernel of [cint] and
projects the model[

T TMTs2 + T TCTs+ T TKT
]
{qR(s)} =

[
T T b

]
{u(s)}

{y(s)} = [cT] {qR(s)}

See also Section 7.13, fe c, the d cms demo

284

fe curve

Purpose Generic handling of curves and signal processing utilities

Syntax out=fe_curve(’command’,MODEL,’Name’,...);

Commands

fe curve is used to handle curves and do some basic signal processing. The format
for curves is described in section 7.9. Accepted commands are

bandpass Unit f min f max

out=fe curve(’BandPass Unit f min f max’,signals);
realizes a true bandpass filtering (i.e. using fft() and ifft()) of time signals
contained in curves signals. f min and f max are given in units Unit, whether
Hertz(Hz) or Radian(Rd). With no Unit, f min and f max are assumed to be in
Hertz.

out=fe_curve(’TestFrame’);% 3 DOF oscillator response to noisy input
fe_curve(’Plot’,out{2}); % "unfiltered" response
filt_disp=fe_curve(’BandPass Hz 70 90’,out{2}); % filtering
fe_curve(’Plot’,filt_disp); title(’filtered displacement’);

datatype

out=fe curve(’DataType’,DesiredType);
returns a data structure describing the data type, usefull to fill .xunit and .yunit
fields for curves definition. DesiredType could be a string or a number corresponding
to the desired type. With no DesiredType, the current list of available types is
displayed.

getcurve

curve=fe curve(’getcurve’,model,curve name);
extracts curve curve name from the .Stack field of model.

h1h2 input channels

285

fe curve

FRF=fe curve(’H1H2 input channels’,frames,window);
computes H1 and H2 FRF estimators along with the coherence from time signals
contained in cell array frames using window window. input channels are input
channels numbers in frames. If more than one input channel is specified, true
MIMO FRF estimation is done, and Hν is used instead of H2. When multiple
frames are given , a mean estimation of FRF is computed.

N.B.: To ensure the proper assembly of H1 and Hν in MIMO FRF estimation case,
a weighing based on maximum time signals amplitude is used. To use your own, use
FRF=fe curve(’H1H2 input channels’,frames,window,weighing);
where weighing is a vector containing weighing factors for each channel. To avoid
weighing, use
FRF=fe curve(’H1H2 input channels’,frames,window,0);

out=fe_curve(’testframe’); % 3 DOF system response
frames{1}.X=out{1}.X; % build frame as a cell array,
frames{1}.Y=[out{1}.Y out{2}.Y]; % even for single frame
% Time vector in .X field, measurements in .Y field
% Noise signal on first input, response on second input
frf=fe_curve(’h1h2 1’,frames); % compute FRF
figure(1); semilogy(frf.X,abs(frf.H1),’b’); hold on;
semilogy(frf.X(1:5:end),abs(frf.H2(1:5:end)),’.r’);
legend(’H1’,’H2’);
xlabel(’Freq. - Hz’); ylabel(’Frequ. Response Function - m/N’);

noise

noise=fe curve(’Noise’,Nw pt,fs,f max);
computes a Nw pt points long time signal corresponding to a “white noise”, with
sample frequency fs and a unitary power spectrum density untill f max. fs/2 is
taken as f max when not specified. The general shape of noise power spectrum
density, extending from 0 to fs/2, can be specified instead of f max.

% compute a 2 seconds long white noise, 1024 Hz of sampling freq.
% with "rounded" shape PSD
fs=1024; sample_length=2;
Shape=exp(fe_curve(’window 1024 hanning’))-1;
noise_h=fe_curve(’noise’,fs*sample_length,fs,Shape);
figure(1); subplot(211); % plot time and frequency signals
plot(noise_h.X,noise_h.Y);axis([0 2 -3 3]); xlabel(’Time’);
subplot(212);

286

freq=fs*[0:length(noise_h.X)-1]/length(noise_h.X);
plot(freq,20*log10(abs(fft(noise_h.Y))));
axis([0 1024 -20 40]); xlabel(’Frequency’);

plot

fe curve(’plot’,curve);
plots the curve curve named curve name.
fe curve(’plot’,fig handle,curve);
plots curve in the figure with handle fig handle.
fe curve(’plot’,model,curve name);
fe curve(’plot’,fig handle,model,curve name);
plots curve named curve name stacked in .Stack field of model model.

% compute a 2 seconds long white noise, 1024 Hz of sampling freq.
fs=1024; sample_length=2;
noise=fe_curve(’noise’,fs*sample_length,fs);
noise.xunit=fe_curve(’DataType’,’Time’);
noise.yunit=fe_curve(’DataType’,’Excit. force’);
noise.name=’Input force’;

fe_curve(’Plot’,noise);

resspectrum [True, Pseudo] [Abs., Rel.] [Disp., Vel., Acc.]

out=fe curve(’ResSpectrum [T, P] [A, R] [D, V, A]’,signal,freq,damp);
computes [true, pseudo] [absolute, relative] [displacement, velocitiy,

acceleration] response spectrum associated to the time signal given in signal.
signal is a curve type structure where .X, .Y, .ylabel.unit fields must be filled.
freq and damp are frequencies (in Hz) and damping ratios vectors of interess for the
response spectra.

pw0=fileparts(which(’gartfe’));
st=sprintf(’read %s’,fullfile(pw0,’bagnol_ns.cyt’));
bagnol_ns=fe_curve(st); % read the acceleration time signal

bagnol_ns.yunit=fe_curve(’datatype’,’Acceleration’);
st=sprintf(’read %s’,fullfile(pw0,’bagnol_ns_rspec_pa.cyt’));
bagnol_ns_rspec_pa= fe_curve(st); % read reference spectrum

% compute response spectrum with reference spectrum frequencies

287

fe curve

% vector and 5% damping
RespSpec=fe_curve(’ResSpectrum True Rel. Acc.’,...

bagnol_ns,bagnol_ns_rspec_pa.X/2/pi,.05);

fe_curve(’plot’,RespSpec); hold on;
plot(RespSpec.X,bagnol_ns_rspec_pa.Y,’r’);
legend(’fe_curve’,’cyberquake’);
plot(RespSpec.X,bagnol_ns_rspec_pa.Y,’r’);

returny

y = fe curve(’returny’,model,curve name,x);

testframe

out=fe curve(’TestFrame’);
computes the time response of a 3 DOF oscillator to a white noise and fills the cell
array out with noise signal in cell 1 and time response in cell 2. It illustrates the
use of various functionalities of fe curve and provides typical exemple of curves.

fs=512; ech_length=4; % sampling frequency and sample length (s)
noise=fe_curve(’Noise’,fs*ech_length,fs); % computes noise

% build the curve associated to the time signal of noise
out{1}=struct(’X’,noise.X,’Y’,noise.Y,’xunit’,...

fe_curve(’DataType’,’Time’),’yunit’,...
fe_curve(’DataType’,’Excit. force’),’name’,’Input at DOF 2’);

% set up an oscillator with 3 DOF %
Puls = [30 80 150]’*2*pi; % natural frequencies
Damp = [.02 .015 .01]’; % damping
Amp = [1 2 -1;2 -1 1;-1 1 2]; % pseudo "mode shapes"
Amp=Amp./det(Amp);

C=[1 0 0]; B=[0 1 0]’; % Observation matrix and Command matrix
freq=([0:length(noise.X)-1]/length(noise.X))*fs*2*pi; % Freq vector

% Eliminating frequencies corresponding to the aliased part
% of the noise spectrum
freq=freq(1:length(noise.X)/2);

288

FRF=nor2xf(Puls,Damp,Amp*B,C*Amp,freq); % Transfert function

% Compute the time response to input noise
Resp=fe_curve(’TimeFreq’,noise,[FRF ; zeros(length(FRF),1)].’);

% build the curve associated to the time signal of response
out{2}=struct(’X’,Resp.X,’Y’,Resp.Y,’xunit’,...

fe_curve(’DataType’,’Time’),’yunit’,...
fe_curve(’DataType’,’Displacement’),’name’,’Output at DOF 1’);

testFunc

This command creates curves based on trigonometric and exponential functions; the
syntax is

out=fe curve([’Test’ st],TimeVector);

where st=sin, cos, tan, exp. The TimeVector contains the sampling time step,
for example: TimeVector=linspace(0.,1.,100).

test[Ramp,Ricker]

out=fe curve(’TestRamp NStep FinalValue’) generates a ramp composed of NStep
steps from 0 to FinalValue.

out=fe curve(’TestRicker Duration Nstep Amplitude TotalTime’) generates
Ricker functions representing impacts. For example:

C1=fe_curve(’test ramp 20 2’);
C2=fe_curve(’TestRicker .6 120 2 1.2’);
figure(1);plot(C1.X,C1.Y,’-’,C2.X,C2.Y,’--’)

timefreq

out=fe curve(’TimeFreq’,Input,xf);
computes reponse of a system with given tranfert functions FRF to time input Input.
Sampling frequency and length of time signal Input must be coherent with frequency
step and length of given transfert FRF.

fs=1024; sample_length=2; % 2 sec. long white noise
noise=fe_curve(’noise’,fs*sample_length,fs);% 1024 Hz of sampling freq.

289

fe curve

w=2*pi*fs*[0:length(noise.X)-1]/length(noise.X); % frequency range
% FRF with resonnant freq. 50 100 200 Hz, unit amplitude, 2% damping
xf=nor2xf(2*pi*[50 100 200].’,.02,[1 ; 1 ; 1],[1 1 1],w);

Resp=fe_curve(’TimeFreq’,noise,xf); % Response to noisy input
fe_curve(’Plot’,Resp); title(’Time response’);

Window Nb pts [None, Hanning, Hamming, Exponential] Arg

win=fe curve(’Window Nb pts Type Arg’);
computes Nb pts points window. Arg is used when Exponential window type is
asked.

win = fe curve(’Window 1024 Exponential 10 20 10’); returns an exponen-
tial window with 10 zero points, a 20 point flat top, and a decaying exponential
over the 1004 remaining points with a last point at exp(-10).

win = fe curve(’Window 1024 Hanning’); returns a 1024 point long hanning
window.

See also fe load, fe case

290

fe cyclic

Purpose Support for cyclic symmetry computations.

Syntax model=fe_cyclic(’build NSEC’,model,LeftNodeSelect)
fe_cyclic(’display NSEC’,model,def,EltSelect)
def=fe_cyclic(’eig NDIAM’,model,EigOpt)

Description fe cyclic groups all commands needed to compute responses assuming cyclic sym-
metry. For more details on the associated theory you can refer to [43].

Assemble

This command supports the computations linked to the assembly of gyroscopic cou-
pling, gyroscopic stiffness and tangent stiffness in geometrically non-linear elasticity.
The input arguments are the model and the rotation vector (in rad/s).

model=demosdt(’demo sector all’);
[m,k,mdof]=fe_mknl(model);
[c_g,k_g,k_e]=fe_cyclic(’assemble’,model,[0 0 1000]); %
def=fe_eig({m,k,mdof},[6 20 0]); % Non rotating modes
def2=fe_eig({m,k_e,mdof},[6 20 0]); % Rotating mode shapes
[def.data def2.data]

Note that this command does not YET support cyclic symmetry conditions so that
it must run on the full disk.

Build

model=fe cyclic(’build nsec’,model,’LeftNodeSelect’) adds a cyclic sym-
metry entry in the model case. It automatically rotates the nodes selected with
LeftNodeSelect by 2π/nsec and finds the corresponding nodes on the other sector
face. The default for LeftNodeSelect is ’GroupAll’ which selects all nodes.

Display

fe cyclic(’display nsec’,model,def,’EltSelect’) repeats the model elements
selected with EltSelect (default is ’GroupAll’) and displays the resulting model
and deformations def on nsec sectors.

291

fe cyclic

Eig

def=fe cyclic(’eig ndiam’,model,EigOpt) computes ndiam diameter modes us-
ing the cyclic symmetry assumption. For ndiam>0 these modes are complex to
account for the inter-sector phase shifts. EigOpt are standard options passed to
fe eig.

This example computes the two diameter modes of a three bladed disk also used in
the d cms2 demo.

model=demosdt(’demo sector’);
model=fe_cyclic(’build 3’,model,’groupall’);
fe_case(model,’info’)
def=fe_cyclic(’eig 2’,model,[6 20 0 11]);
fe_cyclic(’display 3’,model,def)

TEig [,Nast,ReadNast]

The TEig commands seek to compute modes for multiple diameters in a single job.
With a model saved in structure Up, you can specify target diameters, eigenvalue
options and possibly a file name to save intermediate results

model=demosdt(’demo sector 5’);
fe_case(model,’info’)
def=fe_cyclic(’teig 0 1 3 5’,model,[6 20 0 11],tempname);
fe_cyclic(’display 5’,model,def)

For FEMLinkusers, the TEigNast command lets you use NASTRAN to generate the
same solution.

def=fe_cyclic(’teignast 0 1 2 3’,Up,’NastranBulkName.bdf’);

Finally def=fe cyclic(’teig’,[0 1 3],d0,d1,d3); can be used to merge modes
computed elsewhere in the typical multi-diameter solution.

Reduce

The Reduce command is used to generate a disk model from a set of modes associated
multiple diameters symmetry. The general call is

DISK=fe_cyclic(’reduce’,model,def);

See also Section 7.13

292

fe eig

Purpose Computation of normal modes associated to a second order undamped model.

Syntax DEF = fe_eig(model,opt)
DEF = fe_eig({m,k,mdof},opt)
DEF = fe_eig({m,k,T,mdof},opt)
[phi, wj] = fe_eig(m,k)
[phi, wj, kd] = fe_eig(m,k,opt,imode)

Description The normal modeshapes phi=φ and frequencies wj= sqrt(diag(Ω2)) are solution
of the undamped eigenvalue problem (see section 2.2)

− [M] {φj}ω2
j + [K] {φj} = {0}

and verify the two orthogonality conditions

[φ]T [M]N×N [φ]N×N = [I]N×N and [φ]T [K] [φ] =
[
\Ω2

j \

]
The outputs are the data structure DEF (which is more appropriate for use with
high level functions feplot, nor2ss, ... since it keeps track of the signification of
its content, frequencies in DEF.data are then in Hz) or the modeshapes (columns
of phi) and frequencies wj in rad/s. Note how you provide {m,k,mdof} in a cell
array to obtain a DEF structure without having a model.

The optional output kd corresponds to the factored stiffness matrix. It should be
used with methods that do not renumber DOFs.

fe eig implements various algorithms to solve this problem for modes and frequen-
cies. Many options are available and it is important that you read the notes below
to understand how to properly use them. The format of the option vector opt is

[method nm Shift Print Thres] (default values are [2 0 0 0 1e-5])

method 2 default full matrix solution. Cannot be used for large models.
6 IRA/Sorensen solver (preferred partial solver).
5 Lanczos solver allows specification of frequency band rather than num-
ber of modes. To turn of convergence check add 2000 to the option
(2105, 2005, ...).

293

fe eig

106, 104 same as the corresponding methods but no initial DOF renum-
bering. This is useless with the default ofact(’methodspfmex’) which
renumbers at factorization time.
Obsolete methods
0 SVD based full matrix solution
1 subspace iteration which allows to compute the lowest modes of a
large problem where sparse mass and stiffness matrices are used.
3 Same as 5 but using ofact(’methodlu’). 4 Same as 5 but using
ofact(’methodchol’).

nm number of modes to be returned. A non-integer or negative nm, is used
as the desired fmax in Hz for iterative solvers (method 5 only).

shift value of mass shift (should be non-zero for systems with rigid body
modes, see notes below). The subspace iteration method supports
iterations without mass shift for structures with rigid body modes. This
method is used by setting the shift value to Inf.

print level of printout (0 none, 11 maximum)
thres threshold for convergence of modes (default 1e-5 for the subspace iter-

ation and Lanczos methods)

Finally, a set of vectors imode can be used as an initial guess for the subspace
iteration method (method 1).

Notes • The default full matrix algorithm (method=2) cleans results of the Matlab eig
function. Computed modes are mass normalized and complex parts, which are
known to be spurious for symmetric eigenvalue problems considered here, are
eliminated. The alternate algorithm for full matrices (method=0) uses a singular
value decomposition to make sure that all frequencies are real. The results are
thus wrong, if the matrices are not symmetric and positive definite (semi-positive
definite for the stiffness matrix).

• The preferred partial solver is method 6 which calls eigs (ARPACK) properly
and cleans up results.

• The subspace iteration and Lanczos algorithms are rather free interpretation of
the standard algorithms (see Ref. [33] for example).

• The Lanczos algorithm (methods 3,4,5) is much faster than the subspace itera-
tion algorithm (method 1). A double orthogonalization scheme and double restart
usually detects multiple modes.

• For systems with rigid body modes, you must specify a mass-shift. A good value is
about one tenth of the first flexible frequency squared, but the Lanczos algorithm

294

tends to be sensitive to this value (you may occasionally need to play around a
little). If you do not find the expected number of rigid body modes, this is can
be reason.

Example

Here is an example containing a high level call

model =demosdt(’demo gartfe’);
cf=feplot;cf.model=model;
cf.def=fe_eig(model,[6 20 1e3 11]);
fecom chc10

and the same example with low level commands

model =demosdt(’demo gartfe’);
[m,k,mdof] = fe_mknl(model);
cf=feplot;cf.model=model;
cf.def=fe_eig({m,k,mdof},[5 20 1e3]);fecom chc10

See also fe ceig, fe mk, nor2ss, nor2xf

295

fe exp

Purpose Expansion of experimental modeshapes.

Syntax emode = fe_exp(yTest,c,T)
emode = fe_exp(yTest,sens,T,opt)
yExp = fe_exp(yTest,fTest,sens,m,k,mdof,freq,opt)

Description A unified perspective on interpolation and the more advanced finite element based
expansion methods are discussed in the tutorial 4.3. An example is treated in detail
in the gartco demonstration. This section gives a list of available methods with a
short discussion of associated trade-offs.

Interpolation

Interpolation methods can be implemented easily by constructing a basis t of pos-
sible displacements and minimizing the test error as discussed in section 4.3.2.

For example, if node 2 is placed at a quarter of the distance between nodes 1 and 3
whose motion is observed. A linear interpolation for translations in the x direction
is built using

ndof = [1.01;2.01;3.01]; T= [1 0;3/4 1/4;0 1];
yExp = fe_exp(yTest,fe_c(ndof,[1.01;3.01])*T,T)

For expansion of this form, T must contain at most as many vectors as there are
sensors. In other cases, a solution is still returned but its physical significance is
dubious.

Modal, Serep

Modal or SEREP expansion is a subspace based expansion using the subspace
spanned by low frequency target modes. With a sensor configuration defined (sens
defined using fe sens), a typical call would be

[phi,wj] = fe_eig(m,k,[105 50 1e3]);
TargetModes = phi(:,[IndicesOfTargetModes]);
mdex = fe_exp(IIres.’,sens,TargetModes);

296

This method is very easy to implement. Target modes can be imported from an
external code. A major limitation is the fact that results tend to be sensitive to
target mode selection.

You can impose that an orthogonal linear combination of the modes is used for the
expansion using mdex = fe exp(IIres.’,sens,TargetModes,2);. This is moti-
vated for cases where both test and analysis modeshapes are mass normalized and
will provide mass orthonormal expanded modeshapes [44]. In practice it is rare that
test results are accurately mass normalized and the approach is only implemented
for completeness.

Static

Static expansion can be obtained using two different approaches. If constraint modes
(or attachment modes for structures without rigid body modes) are imported (or
computed using [T] = fe reduc(’static’,m,k,mdof,sdof)), static expansion can
be considered as a subspace method and the solution is found with

mdex = fe_exp(IIres.’,sens,T);

The subspace can also be computed by fe exp, using

mdex = fe_exp(IIres.’,0,sens,m,k,mdof);

which will handle arbitrary sensor configurations defined in sens.

The main limitation with static expansion is the existence of a frequency limit (first
frequency found when all sensors are fixed). [mdex,phi fixed] = fe exp(IIres.’,
0, sens, m,k,mdof); returns an estimate of the first 10 fixed sensor modes. If the
first frequency is close to your test bandwidth, you should consider using dynamic
expansion.

Dynamic, RBDE

Dynamic expansion is supported at a single frequency or at one frequency for each
deformation to be expanded using

mdex = fe_exp(yTest,fExp*2*pi,sens,m,k,mdof);

Reduced basis dynamic expansion (RBDE) is supported using

mdex = fe_exp(yTest,fExp*2*pi,sens,m,k,mdof,T);

where T typically contains normal and attachment modes (see gartco for an exam-
ple). Note that, when using reduced bases, you can provide T’*m*T and T’*k*T
instead of m and k which saves a lot of time if these matrices have already been
computed.

297

fe exp

MDRE, MDRE-WE

Minimum dynamic residual expansion (MDRE) is currently only implemented for
normal modeshape expansion. Furthermore, computational times are generally only
acceptable for the reduced basis form of the algorithm. A typical call would be

mdex = fe_exp(yTest,fExp*2*pi,sens,m,k,mdof,T,’mdre’);

where T contains normal and attachment modes but often needs to be renormalized
using T = fe norm(T,m,k) to prevent numerical conditioning problems (see gartco
for an example). Note that, when using reduced bases, you can provide T’*m*T and
T’*k*T instead of m and k which saves a lot of time if these matrices have already
been computed.

MDRE-WE (Minimum dynamic residual expansion with measurement error) iter-
atively adjusts the relative weighting γj between model and test error in (4.10).
Input arguments specify a starting value for γj and a relative error bound. The
initial value for γj is increased (multiplied by 2) until εj/ ‖{yjTest}‖ is below the
given bound. A typical call would be εj/ ‖{yjTest}‖

opt=struct(’type’,’mdrewe’,’gamma’,1,’MeasErr’,.1);
yTest=IIres.’;wTest=IIpo(:,1)*2*pi;
[mdex,opt,mdexr,err]=fe_exp(yTest,wTest,sens,m,k,mdof,T,opt);

where the opt in the output gives the adjusted values of γj , mdexr is the expanded
vector expressed in the generalized coordinates associated with T, and err gives the
objective function value (first row) and relative error (second row).

See also fe sens, fe reduc, section 4.3, gartco demo.

298

fe load

Purpose Interface for the assembly of distributed and multiple load patterns

Syntax Load = fe_load(model)
Load = fe_load(model,Case)
Load = fe_load(model,’NoT’)
Load = fe_load(model,Case,’NoT’)

Description fe load is used to assemble loads (left hand side vectors to FEM problems). Simple
point loads are easily built using fe c and reciprocity (transpose of output shape
matrix) but fe load is needed for more complex cases.

Loads are associated with cases which are structures with at least Case.DOF and
Case.Stack fields.

Case1.DOF = model.DOF; % default is model.DOF
Case1.Stack = [{’LoadType’,’Name’,TypeSpecificData}];

Taking the example of a point load with type specific data given by

data=struct(’DOF’,365.03,’def’,1);

you can create a case using low level commands

Case1=struct(’DOF’,model.DOF,’Stack’,{{’DofLoad’,’PointLoad’,data}});

or with the easier case creation format (using SDT function fe case)

Case1=fe_case(’DofLoad’,’PointLoad’,data);

or add a new load to a case defined in the model.Stack field

model=fe_case(model,’AddToCase 1’,’DofLoad’,’PointLoad’,data);

To compute the load, the model (a structure with fields .Node, .Elt, .pl, .il) must
generally be provided with the syntax Load=fe load(model,Case). If the case is
not provided, fe load uses the first case in model.Stack.

The optional ’NoT’ argument is used to require loads defined on the full list of DOFs
rather than after constraint eliminations computed using Case.T’*Load.def.

The rest of this manual section describes supported load types and the associated
type specific data.

299

fe load

DofLoad, DOFSet

Loads and prescribed displacements applied to DOFs. Type specific data is a struc-
ture with fields

data.name name of the case
data.DOF column vector containing a DOF selection
data.def matrix of load/set for each DOF (each column is a load/set case and

the rows are indexed by Case.DOF)
data.lab can associated a label to each load (column of data.def

model = femesh(’testubeam plot’);
r1=struct(’DOF’,365.03,’def’,1.1); % 1.1 N at node 365 direction z
Case1=fe_case(’DofLoad’,’PointLoad’,r1, ...

’DofLoad’,’Short Format’,362.01); % Short format for unit loads
Load = fe_load(model,Case1);
cf.def=Load;fecom(’;scaleone;undefline;ch1 2’) % display

FVol

data is a structure with fields

data.sel model description matrix or element selection
data.dir a 3 by 1 cell array specifying the value in each global direction x, y, z.

Alternatives for this specification are detailed below .

Each cell of Case.Dir can give a constant value (for example gravity), a position
dependent value defined by a string FcnName that is evaluated using
fv(:,jDir)=eval(FcnName) or fv(:,jDir)=feval(FcnName,node) if the first fails.
Note that node corresponds to nodes of the model in the global coordinate system.

For example

model = femesh(’testubeam’);
data=struct(’sel’,’groupall’,’dir’,[0 9.81 0]);
data2=struct(’sel’,’groupall’,’dir’,{{0,0,’node(:,7)’}});
model=fe_case(model,’FVol’,’Gravity’,data, ...

’FVol’,’Fv=[0 0 z]’,data2);
Load = fe_load(model);
feplot(model,Load);

Note that feutil(’mode2dof’) provides translation to this format from a function
defined at nodes.

300

FSurf

data is a structure with fields

data.sel a vector of NodeId in which the faces are contained (all the nodes
in a loaded face/edge) must be contained in the list. Alternatively,
data.sel can contain any valid node selection (using string or cell
array format).

data.set Alternative specification of the loaded face by specifying a set name
to be found in model.Stack

data.eltsel optional field specifying an element selection. The faces of that
selection which are contained in the nodes selected with data.sel
will be loaded.

data.def a vector with as many rows as data.DOF specifying a value for each
DOF.

data.DOF DOF definition vector specifying what DOFs are loaded. Note that
pressure is DOF .19. Uniform pressure can be defined using wild
cards as show in the example below.

Surface loads are defined by surface selection and a field defined at nodes. The
surface can be defined by a set of nodes (data.sel and possibly data.eltsel fields.
One then retains faces or edges that are fully contained in the specified set of nodes.
For example

model = femesh(’testubeam plot’);
data=struct(’sel’,’x==-.5’, ...

’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
Case1=struct(’Stack’,{{’Fsurf’,’Surface load’,data}});
Load = fe_load(model,Case1); cf.def=Load;

Or an alternative call with the cell array format for data.sel

data=struct(’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);
NodeList=feutil(’findnode x==-.5’,model);
data.sel={’’,’NodeId’,’==’,NodeList};
Case1=struct(’Stack’,{{’Fsurf’,’Surface load’,data}});
Load = fe_load(model,Case1); cf.def=Load;

Alternatively, one can specify the surface by refering to a set entry in model.Stack,
as shown in the following example

model = femesh(’testubeam plot’);

301

fe load

% Define a face set
[eltid,model.Elt]=feutil(’eltidfix’,model);
i1=feutil(’findelt withnode {x==-.5 & y<0}’,model);i1=eltid(i1);
i1(:,2)=2; % fourth face is loaded
data=struct(’ID’,1,’data’,i1);
model=stack_set(model,’set’,’Face 1’,data);

% define a load on face 1
data=struct(’set’,’Face 1’,’def’,1,’DOF’,.19);
model=fe_case(model,’Fsurf’,’Surface load’,data);
Load = fe_load(model);cf.def=Load;

See also fe c, fe case, fe mk

302

fe mat

Purpose Material / element property handling utilities.

Syntax out = fe_mat(’convert si ba’,pl);
typ=fe_mat(’m_function’,UnitCode,SubType)
[m_function’,UnitCode,SubType]=fe_mat(’type’,typ)
out = fe_mat(’unit’)
out = fe_mat(’unitlabel’,UnitSystemCode)
[o1,o2,o3]=fe_mat(ElemP,ID,pl,il)

Description Material definitions can be handled graphically using the Material tab in the model
editor (see section 5.1.4). For general information about material properties, you
should refer to section 7.3. For information about element properties, you should
refer to section 7.4.

The main user accessible commands in fe mat are listed below

Convert,Unit [,label]

The convert command supports unit conversions to unit1 to unit2 with the general
syntax

pl_converted = fe_mat(’convert unit1 unit2’,pl);

For example convert from SI to BA and back

mat = m_elastic(’default’)
% convert mat.pl from SI unit to BA unit
pl=fe_mat(’convert si ba’,mat.pl);
% check that conversion is OK
pl2=fe_mat(’convert ba si’,pl);
mat.pl-pl2(1:6)

out=fe mat(’unit’) returns a struct containing the information characterizing
standardized unit systems supported in the universal file format.

303

fe mat

Code IdentifierLength and Force
1 SI Meter, Newton
2 BG Foot, Pound f
3 MG Meter, kilogram f
4 BA Foot, poundal
5 MM Millimeter, milli-newton
6 CM Centimeter, centi-newton
7 IN Inch, Pound force
8 GM Millimeter, kilogram force
9 TM Millimeter, Newton
9 US User defined
Unit codes 1-8 are defined in the universal file format specification and thus coded in
the material/element property type (column 2). Other unit systems are considered
user types and are associated with unit code 9. With a unit code 9, fe mat convert
commands must give both the initial and final unit systems.

out=fe mat(’unitlabel’,UnitSystemCode) returns a standardized list of unit la-
bels corresponding in the unit system selected by the UnitSystemCode shown in the
table above.

Get[pl,il]

pl = fe mat(’getpl’,model) is used to robustly return the material property ma-
trix pl (see section 7.3) independently of the material input format.

Similarly il = fe mat(’getil’,model) returns the element property matrix il.

Type

The type of a material or element declaration defines the function used to handle it.

typ=fe mat(’m function’,UnitCode,SubType) returns a real number which codes
the material function, unit and sub-type. Material functions are .m or .mex files
whose name starts with m and provide a number of standardized services as de-
scribed in the m elastic reference.

The UnitCode is a number between 1 and 9 giving the unit selected. The SubType
is a also a number between 1 and 9 allowing selection of material subtypes within
the same material function (for example, m elastic supports subtypes : 1 isotropic
solid, 2 fluid, 3 anisotropic solid).

Note : the code type typ should be stored in column 2 of material property rows
(see section 7.3).

304

[m function,UnitCode,SubType]=fe mat(’typem’,typ)

Similarly, element properties are handled by p functions which also use fe mat to
code the type (see p beam,p shell and p solid).

ElemP

Calls of the form [o1,o2,o3]=fe mat(ElemP,ID,pl,il) are used by element func-
tions to request constitutive matrices. This call is really for developpers only and
you should look at the source code of each element.

See also m elastic, p shell, element functions in chapter 8

305

fe mk, fe mknl

Purpose Assembly of finite element model matrices.

Syntax [m,k,mdof] = fe_mknl(model);
model = fe_mk(model,’Options’,Opt)
[m,k,mdof] = fe_mk(... ,[0 OtherOptions])
[mat,mdof] = fe_mk(... ,[MatType OtherOptions])
[Case,model.DOF]=fe_mknl(’init’,model);
mat=fe_mknl(’assemble’,model,Case,def,MatType);

Description fe mk and fe mknl take models and return assembled matrices and/or right hand
side vectors. fe mknl is the most efficient but has some limitations in the support
of superelements. It should be used by default.

Input arguments arguments are

• model a model data structure describing nodes, elements, material properties,
element properties, and possibly a case.

• Case a data structure describing loads, boundary conditions, etc. This may be
stored in the model and be retrieved automatically using fe case(model,’GetCase’).

• def a data structure describing the current state of the model for model/residual
assembly using fe mknl. def is expected to use model DOFs. If Case DOFs are
used, they are reexpanded to model DOFs using def=struct(’def’,Case.T*def.def,’DOF’,model.DOF).
This is currently used to by the *b.m element family for geometrically non-
linear matrices.

• MatType or Opt describing the desired output, appropriate handling of linear
constraints, ect.

Output formats are

• model with the additional field model.K containing the matrices. The corre-
sponding types are stored in model.Opt(2,:). The model.DOF field is properly
filled.

• [m,k,mdof] returning both mass and stiffness when Opt(1)==0

306

• [Mat,mdof] returning a matrix with type specified in Opt(1), see MatType
below.

mdof is the DOF definition vector describing the DOFs of output matrices.

When fixed boundary conditions or linear constraints are considered, mdof is equal
to the set of master or independent degrees of freedom Case.DOF which can also
be obtained with fe case(model,’gettdof’). Additional unused DOFs can then
be eliminated unless Opt(2) is set to 1 to prevent that elimination. To prevent
constraint elimination in fe mknl use Assemble NoT.

In some cases, you may want to assemble the matrices but not go through the
constraint elimination phase. This is done by setting Opt(2) to 2. mdof is then
equal to model.DOF.

This is illustrated in the example below

model =femesh(’testubeam’);
model.DOF=[];% an non empty model.DOF would eliminate all other DOFs
model =fe_case(model,’fixdof’,’Base’,’z==0’);
model = fe_mk(model,’Options’,[0 2]);
[k,mdof] = fe_mk(model,’options’,[0 0]);
fprintf(’With constraints %i DOFs\n’,size(k,1));
fprintf(’Without %i DOFs’,size(model.K{1},1));
Case=fe_case(model,’gett’);
isequal(Case.DOF,mdof) % mdof is the same as Case.DOF

For other information on constraint handling see section 7.13.

Assembly is decomposed in two phases. The initialization prepares everything that
will stay constant during a non-linear run. The assembly call performs other oper-
ations.

Init

The fe mknl Init phase initializes the Case.T (basis of vectors verifying linear con-
straints see section 7.13), Case.GroupInfo fields (detailed below) and Case.MatGraph
(preallocated sparse matrix associated with the model topology for optimized (re)assembly).
Case.GroupInfo is a cell array with rows giving information about each element
group in the model. The meaning of the columns is as follows

307

fe mk, fe mknl

DofPos int32 matrix whos columns give the DOF positions in the full matrix
of the associated elements. Numbering is C style (starting at 0) and -1
is used to indicate a fixed DOF.

pointers int32 matrix whos columns describe information each element of the
group. Pointers has one column per element giving [OutSize1
OutSize2 u3 NdNRule MatDes IntegOffset ConstitOffset
StateOffset]

Integ int32 matrix storing integer values used to describe the element for-
mulation of the group

Constit double matrix storing integer values used to describe the element for-
mulation of the group

gstate double matrix whos columns describe the internal state of each element
of the group. This is used to store local bases in linear plate/shell ele-
ments, and stress states in non-linear elements with internal variables.

ElMap int32 element map matrix.
InfoAtNode struct used to store internal variables that are defined at nodes rather

than elements (integration points). This is not currently used by any
element.

EltConst struct used to store element formulation information (integration rule,
constitutive matrix topology, etc.) Details on this data structure are
given under integrules.

Case = fe mknl(’initNoCon’, model) can be used to initialize the case structure
without building the matrix connectivity (sparse matrix with preallocation of all
possible non zero values).

The initialization phase is decomposed into the following steps

• Generation of a complete list of DOFs using the feutil(’getdof’,model)
call.

• get the material and element property tables in a robust manner. Generate
node positions in a global reference frame.

• For each element group, build the GroupInfo data (DOF positions).

• For each element group, determine the unique pairs of [MatId ProId] values
in the current group of elements and build a separate integ and constit for
each pair. One then has the constitutive parameters for each type of element
in the current group. pointers rows 6 and 7 give for each element the location
of relevent information in the integ and constit tables.

308

• For each element group, perform other initializations as defined by evaluating
the callback string obtained using elem(’GroupInit’). For example, intialize
integration rule data structures, define local bases or normal maps, allocate
memory for internal state variables ...

• If requested (call without NoCon), preallocate a sparse matrix to store the
assembled model. This topology assumes non zero values at all components of
element matrices so that it is identical for all possible matrices and constant
during non-linear iterations.

Assemble [, NoT]

The second phase, assembly, is optimized for speed and multiple runs (in non-linear
sequences it is repeated as long as the element connectivity information does not
change). In fe mk the second phase is optimized for robustness. The following
example illustrates the interest of multiple phase assembly

model =femesh(’test hexa8 divide 100 10 10’);
% traditional FE_MK assembly
tic;[m1,k1,mdof] = fe_mk(model);toc

% Multi-step approach for NL operation
tic;[Case,model.DOF]=fe_mknl(’init’,model);toc
tic;
m=fe_mknl(’assemble’,model,Case,2);
k=fe_mknl(’assemble’,model,Case,1);
toc

MatType

Matrix types are numeric indications of what needs to be computed during assembly.
Currently defined types for OpenFEM are

• 0 mass and stiffness assembly. 1 stiffness, 2 mass, 3 viscous damping, 4 hys-
teretic damping, 5 tangent stiffness in geometric non-linear mechanics. Gyro-
scopic coupling and stiffness are supported in fe cyclic;

• 100 volume load, 101 pressure load, 102 inertia load, 103 initial stress load.
Note that some load types are only supported with the mat og element family;

• 200 stress at node, 201 stress at element center, 202 stress at gauss point

309

fe mk, fe mknl

• 251 energy associated with matrix type 1 (stiffness), 252 energy associated
with matrix type 2 (mass), ...

• 300 compute initial stress field associated with an initial deformation. This
value is set in Case.GroupInfo{jGroup,5} directly (be careful with the fact
that such direct modification INPUTS is not a MATLAB standard feature).
301 compute the stresses induced by a thermal field.

Opt

fe mk options are given by calls of the form fe mk(model,’Options’,Opt) or the
obsolete fe mk(node,elt,pl,il,[],adof,opt).

opt(1) MatType see above
opt(2) if active DOFs are specified using model.DOF (or the obsolete call with

adof), DOFs in model.DOF but not used by the model (either linked to
no element or with a zero on the matrix or both the mass and stiffness
diagonals) are eliminated unless opt(2) is set to 1 (but case constraints
are then still considered) or 2 (all constraints are ignored).

opt(3) Assembly method (0 default, 1 symmetric mass and stiffness (OBSO-
LETE), 2 disk (to be preferred for large problems)). The disk assembly
method creates temporary files using the Matlab tempname function.
This minimizes memory usage so that it should be preferred for very
large models.

opt(4) 0 (default) nothing done for less than 1000 DOF method 1 otherwise. 1
DOF numbering optimized using current ofact SymRenumber method.
Since new solvers renumber at factorization time this option is no longer
interesting.

Old formats [m,k,mdof]=fe mk(node,elt,pl,il) returns mass and stiffness matrices when given
nodes, elements, material properties, element properties rather than the correspond-
ing model data structure.

[mat,mdof]=fe mk(node,elt,pl,il,[],adof,opt) lets you specify DOFs to be
retained with adof (same as defining a Case entry with {’KeepDof’, ’Retained’,
adof}).

These formats are kept for backward compatibility but they do not allow support

310

of local coordinate systems, handling of boundary conditions through cases, ...

Notes fe mk no longer supports complex matrix assembly in order to allow a number of
speed optimization steps. You are thus expected to assemble the real and imaginary
parts successively.

See also Element functions in chapter 8, fe c, feplot, fe eig, upcom, fe mat, femesh, etc.

311

fe norm

Purpose Mass-normalization and stiffness orthonormalization of a set of vectors.

Syntax To = fe_norm(T,m)
[rmode,wr] = fe_norm(T,m,k,NoCommentFlag)
[rmode,wr] = fe_norm(T,m,k,tol)

Description With just the mass m (k not given or empty), fe norm orthonormalizes the T ma-
trix with respect to the mass m using a preconditioned Cholesky decomposition.
The result To spans the same vector space than T but verifies the orthonormality
condition

[To]T [M]N×N [To]N×NM = [I]NM×NM

If some vectors of the basis T are collinear, these are eliminated. This elimination is
a helpful feature of fe norm.

When both the mass and stiffness matrices are specified a reanalysis of the reduced
problem is performed (eigenvalue structure of model projected on the basis T). The
resulting reduced modes rmode not only verify the mass-orthogonality condition,
but also the stiffness orthogonality condition (where

[
\Ω2

j \

]
=diag(wr.^2))

[φ]T [K] [φ] =
[
\Ω2

j \

]
NM×NM

The verification of the two orthogonality conditions is not a sufficient condition for
the vectors rmode to be the modes of the model. Only ifNM = N is this guaranteed.
In other cases, rmode are just the best approximations of modes in the range of T .

When the fourth argument NoCommentFlag is a string, no warning is given if some
modes are eliminated.

When a tolerance is given, frequencies below the tolerance are truncated. The default
tolerance (value given when tol=0) is product of eps by the number of modes by the
smallest of 1e3 and the mean of the first seven frequencies (in order to incorporate at
least one flexible frequency in cases with rigid body modes). This truncation helps
prevent poor numerical conditioning from reduced models with a dynamic range
superior to numerical precision.

See also fe reduc, fe eig

312

fe reduc

Purpose Utilities for finite element model reduction.

Syntax [T,rdof,rb] = fe_reduc(’command’,m,k,mdof,b,rdof)

Description fe reduc provides standard ways of creating and handling bases (rectangular ma-
trix T) of real vectors used for model reduction (see details in section 6.1). Input
arguments are

m mass matrix (can be empty for commands that do not use mass)
k stiffness matrix and
mdof associated DOF definition vector describing DOFs in m and k. When using

a model with constraints, you can use mdof=fe case(model,’gettdof’).
b input shape matrix describing unit loads of interest. Must be coherent with

mdof.
bdof alternate load description by a set of DOFs (bdof and mdof must have

different length)
rdof contains definitions for a set of DOFs forming an iso-static constraint (see

details below). When rdof is not given, it is determined through an LU
decomposition done before the usual factorization of the stiffness. This
operation takes time but may be useful with certain elements for which
geometric and numeric rigid body modes don’t coincide.

Accepted fe reduc commands (see the commode help for hints on how to build
commands and understand the variants discussed in this help) are

CraigBampton NM Shift Ouput

[T,sdof,f,mr,kr]=fe reduc(’CraigBampton NM Shift Output’,m,k,mdof,idof);
computes the Craig-Bampton reduction basis (6.14) associated with interface DOFs
idof. This basis is a combination of constraint modes and fixed interface modes
(whose frequencies are returned in f). The fixed interface modes are obtained using
fe eig method 6 (IRA/Sorensen).

Note that using NM=0 corresponds to static or Guyan condensation.

dynamic w

[T,rbdof,rb]=fe reduc(’dynamic freq’, ...) computes the dynamic response
at frequency w to loads b. This is really the same as doing (-w^2*m+k)\b but can

313

fe reduc

be significantly faster and is more robust.

flex [,nr]

[T,rbdof,rb]=fe reduc(’flex’, ...) computes the static response of flexible
modes to load b (which can be given as bdof)[

K−1
Flex

]
[b] =

N∑
j=NR+1

{φj} {φj}T

ω2
j

where NR is the number of rigid body modes. These responses are also called static
flexible responses or attachment modes (when forces are applied at interface DOFs
in CMS problems).

The flexible response is computed in three steps:

• Determine the flexible load associated to b that does not excite the rigid body

modes bFlex = ([I]− [MφR]
[
φT

RMφR

]−1
[φR]T) [b]

• Compute the static response of an isostatically constrained model to this load

[qIso] =

[
0 0
0 K−1

Iso

]
[bFlex]

• Orthogonalize the result with respect to rigid body modes

qFlex = ([I]− [φR]
[
φT

RMφR

]−1 [
φT

RM
]
) [qIso]

where it clearly appears that the knowledge of rigid body modes and of an isostatic
constraint is required, while the knowledge of all flexible modes is not (see [33] for
more details).

By definition, the set of degrees of freedom R (with other DOFs noted Iso) forms
an isostatic constraint if the vectors found by

[φR] =

[
φRR

φIsoR

]
=

[
I

−K−1
IsoKIsoR

]
span the full range of rigid body modes (kernel of the stiffness matrix). In other
words, displacements imposed on the DOFs of an isostatic constraint lead to a unique
response with no strain energy (the imposed displacement can be accommodated
with a unique rigid body motion).

If no isostatic constraint DOFs rdof are given as an input argument, a lu decompo-
sition of k is used to find them. rdof and rigid body modes rb are always returned
as additional output arguments.

314

The command flexnr can be used for faster computations in cases with no rigid
body modes. The static flexible response is then equal to the static response and
fe reduc provides an optimized equivalent to the Matlab command k\b.

rb

[rb,rbdof]=fe reduc(’rb’,m,k,mdof,rbdof) determines rigid body modes (rigid
body modes span the null space of the stiffness matrix). The DOFs rbdof should
form an isostatic constraint (see the flex command above). If rbdof is not given
as an input, an LU decomposition of k is used to determine a proper choice.

If a mass is given (otherwise use an empty [] mass argument), computed rigid
body modes are mass orthonormalized (φT

RMφR = I). Rigid body modes with no
mass are then assumed to be computational modes and are removed.

static [,struct]

[T,tdof]=fe reduc(’static’,m,k,mdof,bdof) computes the static responses to
unit imposed displacements on the DOFs given in bdof. The output argument tdof
is a version with no wild cards of the input argument bdof. If the DOFs in bdof are
indexed I and the other C, the static responses to unit displacements are given by

[T] =

[
TI

TC

]
=

[
I

−K−1
CCKCI

]
The projection of a model on the basis of these shapes is known as static or Guyan
condensation. In the Component Mode Synthesis literature, the static responses
to unit deformations of interface DOFs are called constraint modes.

Note that you may get an error if the DOFs in bdof do not constrain rigid body
motion so that KCC is singular.

SE=fe reduc(’static struct’, ...) returns the guyan condensation as a unique
superelement SE with the reduction basis in SE.TR.

See also fe2ss, fe eig, section 6.1

315

fe sens

Purpose Utilities for sensor/shaker placement and sensor/DOF correlation.

Syntax Command dependent syntax. See sections on placement and correlation below.

Placement In cases where an analytical model of the structure is available before a modal test,
you can use it for test preparation, see section 4.1.3 and the associated gartsens
demo. fe sens provides sensor/shaker placement methods.

indep

sdof = fe_sens(’indep’,cphi,cdof)

For a given set of modes mode (associated to the DOF definition vector mdof) and
possible sensor locations (DOFs described by the DOF definition vector cdof), the
modal output matrix cphi is constructed using

cphi = fe_c(mdof,cdof)*mode

sdof=fe sens(’indep’,cphi,cdof) uses the effective independence algorithm [19]
to sort the selected sensors in terms of their ability to distinguish the shapes of
the considered modes. The output sdof is the DOF definition vector cdof sorted
according to this algorithm (the first elements give the best locations). See example
in the gartsens demo.

mseq

sdof = fe sens(’mseq Nsens target’,DEF,sdof0) places Nsens sensors, with an
optional initial set sdof0. The maximum response sequence algorithm used here
can only place meaningfully NM (number of modes in DEF) sensors, for additional
sensors, the algorithm tries to minimize the off-diagonal auto-MAC terms in modes
in DEF.def whose indices are selected by target. See example in the gartsens
demo.

[ma,mmif]

[sdof,load] = fe sens(’ma val’,po,cphi,IndB,IndPo,Ind0)

Shaker placement based on most important components for force appropriation of a
mode. The input arguments are poles po, modal output shape matrix cphi, indices

316

IndB of sensor positions where a collocated force could be applied, IndPo tells which
mode is to be appropriated with the selected force pattern. Ind0 can optionally be
used to specify shakers that must be included.

sdof(:,1) sorts the indices IndB of positions where a force can be applied by order
of importance. sdof(:,2) gives the associated MMIF. load gives the positions and
forces needed to have a MMIF below the value val (default 0.01). The value is used
as a threshold to stop the algorithm early.

ma uses a sequential building algorithm (add one position a time) while mmif uses a
decimation strategy (remove one position at a time).

Correlation fe sens provides a user interface that helps obtaining test/analysis correlation for
industrial models. For a tutorial see section 4.1.

The information is stored in a structure sens with the following fields

sens.Node node matrix for a model containing both test and FEM nodes
sens.Elt element description matrix for the FEM model and test wire-frame

display. fe sens near, rigid, ... commands add test/FEM node
and rotation interpolation links to this model to allow rebuilding of
the observation matrix cta.

sens.tdof test sensor definition which can be a DOF definition vector (see
mdof page 146) or more generally a 5 column matrix with rows
containing [SensID NodeID nx ny nz] giving a sensor identifier
(integer or real), a node identifier (positive integer), the projection
of the measurement direction on the global axes. See section 4.1.1
command for local coordinate system handling.

sens.DOF DOF definition vector for the analysis (finite element model).
sens.cta observation matrix for sensor motion (tdof) based on full order

motion adof
sens.bas Coordinate system definitions for nodes. In particular you may

want to define a coordinate system for test nodes using the basis
command.

Commands supported by fe sens are

basis

sens= fe sens(’BasisEstimate’,sens) estimates a local coordinate system for
test nodes that matches the FEM model reasonably and displays the result in a
fashion that lets you edit the estimated basis

317

fe sens

sens=demosdt(’demo gartte basis’);
sens=fe_sens(’basis estimate’,sens)
sens=fe_sens(’basis’,sens, ...

’x’, [0 1 0], ... % x_test in FEM coordinates
’y’, [0 0 1], ... % y_test in FEM coordinates
’origin’,[-1 0.0 0.0],... % test origin in FEM coordinates
’scale’, [0.01]); % test/FEM length unit change

cta

cta = fe sens(’cta’,sens) uses links defined in sens.Elt to build the observa-
tion matrix of test DOF motion from active FEM DOFs defined by sens.DOF.

info

fe sens(’info’,sens) returns a summary of sensor configuration information cur-
rently stored in sens.

tdof

tdof = fe sens(’tdof’,sens.tdof) returns the 5 column form of tdof if sens.tdof
is defined as a DOF definition vector.

Note that sensors defined using a sens.tdof DOF definition vector use the response
coordinate system information given in column 3 of sens.Node while the 5 column
format gives sensor directions in the global FEM coordinate system. In the example
above, position and displacement coordinate systems for test nodes are set to 100.
Thus the sensor 1011y (sens.tdof(1)) is a measurement in FEM direction z.

plotlinks

fe sens(’plotlinks’,sens) generates a standard plot showing the FEM as a gray
mesh, the test wire-frame as a red mesh, test/FEM node links as green lines with
end circles, and rotation interpolation links as blue lines with cross markers.

laser

sdof = fe sens(’laser px py pz’,sens,SightNodes) defines sensors in a form
acceptable for inclusion in sens.tdof based on line of sight direction from the laser
scanner position px py pz to the measurement nodes SightNodes. Sighted nodes
can be specified as a standard node matrix or using a node selection command such
as ’NodeId>1000 & NodeId<1100’.

318

near,rigid,arigid

Calls of the form

sens=fe_sens(’arigid’,sens,’TestNodeSelectors’,’FEMNodeSelectors’);

are used to create observation matrices for sensors. Please read section 4.1.2 for
more details.

stick

The stick command can be used to find an orthonormal projection of the test nodes
onto the nearest FEM surface. The projected nodes are found in the match.StickNode
field.

[sens,def]=demosdt(’demo gartte cor’);
match=fe_sens(’stick’,sens,’selface’);

wireexp

def = fe sens(’wireexp’,sens) uses the wire-frame topology define in sens to
create an interpolation for un-measured directions. The following example applies
this method for the GARTEUR example. You can note that the in-plane bending
mode (mode 8) is clearly interpolated with this approach.

[sens,test_mode]=demosdt(’demo gartte wire’);
exp=fe_sens(’wireexp show’,sens);
pause
cf=feplot;cf.model=sens;
cf.def(1)=test_mode;
cf.def(2)={test_mode,exp};
fecom(’;show2def;scaleequal;ch8’);
legend(cf.o(1:2),’Nominal’,’Wire-exp’)

By default each segment of the wire-frame is represented as a beam with a diameter
chosen based on the mean inter node distance. You can specify the beam diameter
in the command def = fe sens(’wireexp diam 5e-3’,sens).

femesh, fe exp, fe c,ii mac, ii comac

319

fe simul

Purpose High level access to standard solvers.

Syntax [Result,model] = fe_simul(’Command’,MODEL,CASE,OPT)

Description fe simul is the generic function to compute various types of response. It allows
an easy access to specialized functions to compute static, modal (see fe eig) and
transient (see fe time) response. A tutorial may be found in section 5.3.

Once you have defined a FEM model (section 5.1), material and elements proper-
ties (section 5.1.4), loads and boundary conditions (section 5.2), calling fe simul
assembles the model (if necessary) and computes the response using the dedicated
algorithm.

Note that you may access to the fe simul commands graphically with the simulate
tab of the feplot GUI. See tutorial (section 5.3) on how to compute a response.

Input arguments are :

• MODEL can be specified by four input arguments Node, Elt, pl and il (see
section 5.1)

• CASE are information needed to build the load and boundary conditions is
given in the .Stack (see section 5.2)

• OPT is an option vector used for some solutions.

Accepted commands are

• Static: computes the static response to loads defined in the Case. no options
are available for this command

model = demosdt(’demo ubeam’);cf=feplot;cf.model=model;
data = struct(’sel’,’GroupAll’,’dir’,[1 0 0]);
model = fe_case(model,’AddToCase 1’,’FVol’,’Volumic load’,data);
[cf.def,model]=fe_simul(’static’,model,’Case 1’);

• Mode : computes normal modes, fe eig options can be given in the command
string or as an additional argument. For modal computations, opt=[method
nm Shift Print Thres] (it is the same vector option as for fe eig). This an
example to compute the first 10 modes of a 3D beam :

320

model = demosdt(’demo ubeam’);cf=feplot;cf.model=model;
[cf.def,model]=fe_simul(’mode’,model,’Case 1’,[6 10]);

• Time : computes the time response. You must specify which algorithm is used
(Newmark, Discontinuous Galerkin dg or Newton)). For transient computations,
opt= [beta alpha t0 deltaT Nstep Nf] (it is the same vector option as for
fe time). Calling time response with fe simul does not allow initial condition.
This is an example of a 1D bar submitted to a step input :

model=demosdt(’demo bar’);
[def,model]=fe_simul(’time newmark’,model, ...

’Case 1’,[.25 .5 0 1e-4 50 10]);
def.DOF=def.DOF+.02;
cf=feplot;cf.model=model;cf.def=def;
fecom(’;view1;animtime;ch20’);

See also fe eig, fe time, fe mk

321

fe stres

Purpose Computation of stresses and energies for given deformations.

Syntax Result = fe_stres(’Command’,MODEL,DEF)
... = fe_stres(’Command’,node,elt,pl,il, ...)
... = fe_stres(... ,mode,mdof)

Description You can display stresses and energies directly using fecom ColordataEnergies and
ColordataEner commands and use fe stres to analyze results numerically. MODEL
can be specified by four input arguments node, elt, pl and il (those used by fe mk,
see also section 7.1 and following), a structure array with fields .Node, .Elt, .pl,
.il, or a database wrapper with those fields.

The deformations DEF can be specified using two arguments: mode and associated
DOF definition vector mdof or a structure array with fields .def and .DOF.

ene [m,k]ElementSelection

Element energy computation. For a given shape, the levels of strain and kinetic
energy in different elements give an indication of how much influence the modification
of the element properties may have on the global system response. This knowledge
is a useful analysis tool to determine regions that may need to be updated in a FE
model.

The strain and kinetic energies of an element are defined by

Ee
strain =

1
2
φTKelementφ and Ee

kinetic =
1
2
φTMelementφ

Element energies for elements selected with ElementSelection (see the femesh
FindElt commands) are computed for deformations in DEF and the result is returned
in the structure array RESULT with fields .data and .EltId which specifies which
elements were selected.

feplot allows the visualization of these energies using a color coding. You can use
the high level commands fecom ColorDataK or ColorDataM or compute energies
and initialize color with (see also the d ubeam and gartup demos)

feplot(’ColorDataElt’,RESULT.StainE,RESULT.EltId);
fecom(’;showpatch;ColorBar’)

322

For backward compatibility, fe stres returns [StrainE,KinE] as two arguments
if no element selection is given. To select all elements, use the ’ener groupall’
command.

Note that the element energy and not energy density is computed. This may be
misleading when displaying energy levels for structures with uneven meshes. upcom
provides a compiled version of fe stres for the superelements it handles.

stress

out=fe stres(’stress CritFcn Rest’,MODEL,DEF,EltSel) returns the stresses
evaluated at elements of Model selected by EltSel.

The CritFcn part of the command string is used to select a criterion. Currently
supported criteria are

sI, sII,
sIII

principal stresses from max to min. sI is the default.

mises Returns the von Mises stress (note that the plane strain case is not
currently handled consistently).

The Rest part of the command string is used to select a restitution method. Cur-
rently supported restitutions are

AtNode average stress at each node (default). Note this is not currently weighted
by element volume and thus quite approximate. Result is a structure
with fields .DOF and .data

AtCenter mean stress at element stress restitution points. Result is a structure
with fields .EltId and .data.

The fecom ColordataStress directly calls fe stres and displays the result. For ex-
ample, run the basic element test q4p testsurstress, then display various stresses
using

q4p testsurstress
fecom(’colordatastress atcenter’)
fecom(’colordatastress mises’)
fecom(’colordatastress sII atcenter’)

See also fe mk, feplot, fecom

323

fe super

Purpose Generic element function for superelement support.

Description Superelements are stored in global variables whose name is of the form SEName.
fe super ensures that superelements are correctly interpreted as regular elements
during model assembly, visualization, etc. The superelement Name must differ from
all function names in your Matlab path. d cms2 demonstrates the use of superele-
ments.

Superelement variables are structure arrays with some or all of the fields described
below.

SEName.Opt

Options characterizing the type of superelement as follows.

Opt(1,1) 1 unique superelements are used only once. In model description
matrices they have no associated element property rows.

2 generic superelements are used several times and each occur-
rence is associated to an element property row.

3 FE update unique superelements (see upcom)
Opt(1,2) ProID element property identification number of unique su-

perelements
Opt(1,3) estimated maximum matrix word count (for fe mk)
Opt(1,4) 1 FE update superelement uses non symmetric matrices
Opt(2,:) matrix types for the superelement matrices. Each non zero

value on the second row of Opt specifies a matrix stored in the
field SEName.K{i} (where i is the column number). The value
of Opt(2,i) indicates the matrix type. Types defined in the
SDT are 1 stiffness, 2 mass, 3 viscous damping, 4 hysteretic
damping, 5 geometric stiffness.

Opt(3,:) is used to define the coefficient associated with each of the ma-
trices declared in row 2. An alternative mechanism is to define
an element property in the il matrix. If these coefficients are
not defined they are assumed to be equal to 1.

Element header rows follow the standard format

[Inf abs(’Name’) 0 EGID EltId]

324

The EltId is only used by unique superelements since generic superelements store it
in their element rows. Element rows for generic superelements follow the format

[n1 ... ni MatID ProID EltID]

where n1 to ni are node identification numbers (as many as in the SENameNode
matrix), MatID is unused (generally set to 0) and ProID is the identification num-
ber of the element properties (matching an identification number in the property
declaration matrix il).

Material properties are not used by superelements.

Element property rows (in a standard property declaration matrix il) for su-
perelements take the form

[ProID coef1 ... coefi]

with ProID the property identification number and the coefficients allow the creation
of a weighted sum of the superelement matrices SEName.K{i}. Thus, if K{1} and
K{3} are two stiffness matrices and no other stiffness matrix is given, the superele-
ment stiffness is given by coef1*K{1}+coef3*K{3}.

If ProID is not given, fe super will see if SEName.Opt(3,:) is defined and use
coefficients stored in this row instead. If this is still not given, all coefficients are set
to 1.

SEName.Node

Nominal node matrix. Contains the nodes used by the unique superelement or the
nominal generic superelement (see section 7.1).

SEName.DOF

Degree of freedom definition vector. For unique superelements (see SEName.Opt),
the variable SEName.DOF defines the superelement DOFs. For element DOFs of
unique superelements, the element identifier should be -1 which will be automati-
cally replaced by -EltId for assembly (see section 7.5 for details on element DOFs).

For generic superelements, SEName.DOF defines a generic DOF definition vector.
This vector follows the usual DOF definition format (NodeID.DofID or -1.DofID)
but is generic in the sense that node numbers indicate positions in the element row
(rather than actual node numbers) and the -1 for element numbers is replaced by
the actual number of the element (see mdof page 146).

325

fe super

SEName.K{i}

Superelement matrices. The presence and type of these matrices is declared in
SEName.Opt (see above). They must all be consistent with the SEName.DOF vec-
tor. For generic superelements, they can be expressed in local coordinates if a
SEName.Ref coordinate transformation specification is given.

SEName.Patch

Patch face matrix for drawing with feplot. The patch face matrix is a matrix of
node indices (with respect to the unique or generic node numbers) that describe the
patches used to plot a surface deformation of the structure. See section 7.14 and
the Matlab patch faces property for more details.

SEName.Line, a vector of node indices (with respect to the unique or generic node
numbers) describing the line of nodes that were used to plot wire frame deformations
of the structure in earlier versions of the SDT, is supported by fe super for backward
compatibility with user defined functions.

SEName.Elt, SEName.il, SEName.node, SEName.pl

Initial model retrieval for unique superelements. SEName.Elt contains the initial
model description matrix which allows the construction of a detailed visualization
as well as post-processing operations. SEName.Node contains the nodes used by this
model. The .pl and .il fields store material and element properties for the initial
model.

SEName.TR

SEName.TR contains the definition of a possible projection using mdof, adof and T
stored in a single matrix using TR=[Inf adof(:)’;mdof T].

For a superelement that has not been reduced mdof should be empty or identical to
SEName.DOF. adof and T should then be empty.

For a reduced superelement, adof and SEName.DOF should match. T and mdof can
then be used to retrieve motion at all DOFs of the unreduced model. Note that
this retrieval is not supported for generic superelements. The format for this field is
likely to change.

326

SEName.Ref

Coordinate transformation specification. The matrices of generic superelements
can be specified in local coordinate systems.

Type 1 transforms are characterized as follows. SENameRef contains [1 n1 n2 n3
n4 T0(:)’]. A 3 by 3 local basis matrix T is constructed where the local x axis
(first column of T) is collinear to the vector going from node 1 to node 2, the local
y axis is collinear to the component orthogonal to x of the vector going from node 3
to node 4, the local z axis is given by the vector product x∧ y. The transformation
between T and the initial basis T0 (the default for T0 is the global xyz basis) is given
by T T

0 T .

It is assumed that the DOFs of rotated generic superelements form a sequence of
three component vectors (xyz translations or rotations) defined at nodes. Each
of these vectors then can be rotated using qglobal =

[
T T

0 T
]
qlocal. The fesuper

MakeName Complete ensures that this condition is verified by sorting DOFs and
adding DOFs with zero contributions when needed.

The fesuper SetRef command can be used to specify a coordinate transformation.
A sample application is treated in d cms2.

See also fesuper, upcom, the d cms2 demonstration

327

fe time,of time

Purpose Computation of time response.

Syntax def=fe_time(’Command’,model,Case,q0)
def=fe_time(com,model,Case,q0,opt)

Description fe time computes the time response given initial conditions, boundary conditions,
load case (section 5.2) and time parameters. Linear and non linear problems are
supported. The companion mex of time supports steps that need to be compiled.

Two types of time integration algorithm are possible : the Newmark schemes (newmark
command) and the time Discontinuous Galerkin method [45] [46] (dg command). No
damping and no non linearities are supported for Discontinuous Galerkin method.

Note that you may access to the fe time commands graphically with the simulate
tab of the feplot GUI. See tutorial (section 5.3) on how to compute a response.

Input arguments are string or data structure commands detailed below, the model
and associated Case (containing input force signal).

Initial conditions can also be provided in q0 wit the second column giving velocity
if any. If q0 is empty, zero initial conditions are taken.

Accepted solvers are

newmark

Newmark scheme with damping support. If com is string, you may enter simulation
informations in the command using the format

’Newmark (beta) (gamma) (t0) (deltaT) (Nstep) (Nf)’

With beta, gamma the standard Newmark parameters. t0 the initial time, deltaT
the fixed time step, Nstep the number of steps, Nf the optional number of time step
of the input force.

For example :

def=fe_time(’newmark .25 .5 0 1e-4 50’,model,Case,q0);

328

[beta alpha t0 deltaT Nstep Nf] can also be given as a last input argument
opt.

This is a simple 1D example plotting the propagation of the velocity field using a
Newmark implicit algorithm :

[model,Case]=fe_time(’demo bar’); q0=[];
def=fe_time(’newmark .25 .5 0 1e-4 100’,model,Case,q0);
def_v=def;def_v.def=def_v.v; def_v.DOF=def.DOF+.01;
feplot(model,def_v);
if sp_util(’issdt’) fecom(’;view2;animtime;ch30;scd3’);end

and here is a 2D example :

model=fe_time(’demo 2d’); q0=[];
com.Method=’newmark’;
com.Opt=[.25 .5 3e-4 1e-4 50 10];
com.Residual=’’;
[def,model]=fe_time(com,model,’Case 1’,q0);
if sp_util(’issdt’)
cf=feplot;cf.model=model;cf.def=def;
fecom(’colordataa’);
cf.ua.clim=[0 2e-6];fecom(’;view2;animtime;ch20;scd1e-2;’);
st=fullfile(getpref(’SDT’,’tempdir’),’test.avi’);
fecom([’animavi ’ st])
end

% example to select output DOFs
com.OutInd=fe_c(fe_case(model,’GettDof’), ...

feutil(’findnode y==0’,model)+.02,’ind’);
[def,model]=fe_time(com,model,’Case 1’,q0);

% example to select output time steps
com=rmfield(com,’OutInd’);
com.OutputFcn=[11e-4 12e-4];
[def,model]=fe_time(com,model,’Case 1’,q0);

dg

Discrete Galerkin. Options are [unused unused t0 deltaT Nstep Nf]

This is the same 1D example but using the Discontinuous Galerkin method :

329

fe time,of time

[model,Case]=fe_time(’demo bar’); q0=[];
def=fe_time(’dg .25 .5 0 1e-4 100’,model,Case,q0);
def_v=def;def_v.def=def_v.v; def_v.DOF=def.DOF+.01;
feplot(model,def_v);
if sp_util(’issdt’) fecom(’;view2;animtime;ch30;scd3’);
else; fecom(’;view2;scaledef3’); end

NLNewmark

Newmark scheme with damping support. If com is string, you may enter simulation
informations in the command using the format

’NLnewmark (beta) (gamma) (t0) (deltaT) (Nstep) (Nf)’

With beta, gamma the standard Newmark parameters. t0 the initial time, deltaT
the fixed time step, Nstep the number of steps.

com

The com data structure has fields

.Method ’newton’, ’dg’ or ’newmark’

.Opt [beta alpha t0 deltaT Nstep Nf]

.OutInd DOF output indices (see 2D example). This selection
is based on the state DOFs which can be found using
fe case(model,’GettDof’).

.MaxIter maximum number of iterations

.Jacobian string to be evaluated to generate a factored jacobian matrix
in matrix or ofact object ki. The default string is
’ki=ofact(model.K{3}+2/dt*model.K{2}
+4/(dt*dt)*model.K{1});’

.JacobianUpdate (only for newton) : default is 0, 0 if modified Newton (no update
in Newton iterations), 1 if update in Newton iteration

.Residual The default residual is
’r = model.K{1}*a+model.K{2}*v+model.K{3}*u-fc;’

.InitAcceleration optional field to be evaluated to initialize the acceleration field.

.OutputFcn command to be evaluated for post-processing of a time vector
containing the output time step

.TimeVector optional value of time steps

.RelTol threshold for convergence tests. The default is
getpref(’OpenFEM’,’THRESHOLD’,1e-6);

330

of time

The of time function is a low level function dealing with CPU and/or memory
consuming steps of a time integration.

The commands are

’lininterp’ linear interpolation
’storelaststep’ pre-allocated saving of a time step
’newmarkinterp’ Newmark interpolation (low level call)

The ’lininterp’ command which syntax is

out = of time (’lininterp’,table,val,last) ,

computes val containing the interpolated values given an input table which first
column contains the abscissa and the following the values of each function. Due to
performance requirements, the abscissa must be in ascending order. The variable
last contains [i1 xi si], the starting index (beginning at 0), the first abscisse and
coordinate. The following example shows the example of 2 curves to interpolate:

out=of_time(’lininterp’,[0 0 1;1 1 2;2 2 4],linspace(0,2,10)’,[0 0 0])

The storelaststep command makes a deep copy of the displacement, celerity and
acceleration fields (stored in each column of the variable uva in the preallocated
variables u, v and a following the syntax:

of time(’storelaststep’,uva,u,v,a);

The newmarkinterp command is used by fe time when the user gives a TimeVector
in the command using a Newmark scheme. Given an acceleration vector a1 at
time t1 and the uva matrix containing in each column, displacement, celerity and
acceleration at the preceding time step t0, it interpolates according to Newmark
scheme (see Geradin p.371 eq. 7.3.9) the displacement at time t1.

The low level call of newmarkinterp is

of time (’newmarkinterp’, out, beta,gamma,uva,a1, t0,t1)

The out data structure must be preallocated and is a modified input containing the
following fields :

331

fe time,of time

OutInd Output indice, must be given
cur

[Step dt], must be given
def must be preallocated

See also fe mk, fe load, fe case

332

fe var

Purpose Uncertainty propagation tools

Description xxx

Data structures xxx

desired

The objectives currently supported are modal frequencies and excitabilities. Ex-
citabilities appear naturally in the definition of transfer functions which, for mass
normalized modes, are given by

H(ω, p) =
N∑

j=1

[c] {φj} {φj}T [b]
−ω2 + 2iζjωjω + ω2

j

(9.1)

Excitability is thus defined as the contribution of mode j to the transfer function at
it’s resonance frequency

ej =
[c] {φj} {φj}T [b]

2ζjω2
jω

(9.2)

To compute excitabilities, one thus needs to compute modal output shape matrices
[c] {φj}. One assumes that a collocated sensor is defined for each input so that
the input shape matrix {φj}T [b] can actually be related to an output using the
reciprocity assumption (note that supporting non-reciprocal cases would be a major
development).

targ.ftarg indices of target frequencies
targ.outfreqfrequencies kept for outputs
targ.outcp observation matrix for outputs (modeshape components) to be retained
targ.trans pairtransmissibility pairs a NT ×2 matrix giving the indices of outputs and

inputs (actually output recriprocal to the desired input) in targ.outcp
targ.trlab a cell array of labels for each transmissibility defined in

targ.trans pair

333

fe var

This data structure must be defined prior to most uncertainty analyses and is typi-
cally stored as an info entry in Up.Stack.

Up=stack_set(Up,’info’,’fe_var desired’,desired);

experiment

Experiments give a list of possible parameter values. They are characterized by the
the fields

ex.val matrix where each rows gives values of all parameters at a particular
design point

ex.param indices of the parameters that actually change during the experiment
ex.edge connectivity matrix used to define lines connecting different design

points of the experiment

result

Results summarize the output of a reanalysis simulation.

re.freq output frequencies with one design point per column
re.cp output shape matrices with one design point per column
re.trans objective transmissibilities
re.val matrix where each rows gives values of all parameters at a particular

design point
re.des parameter stack
re.desired data structure defining objectives for the simulation

Commands
BuildT

BuildMC

Error

GetOutputs

Par[Face,Grid,CubeEdge,rand]

Par commands generate standard experiments (series of design points) that can then
be used to evaluate model properties at these points. These are defined based on
the upcom parameter matrix obtained with upcom(’parcoefpar’) where each row
describes the acceptable range of a parameter

[type cur min max vtype]

334

fe var(’parface1 2’,Up,2:3) generates a design points at the orthogonal pro-
jection of the nominal point (given by par(:,2)) on the lower and/or upper faces
defined by the parameter range defined by par(:,3:4). ParFace 1 only generates
points of faces with minimum parameter values. Face 0 is the nominal point. The
optional third argument (2:3 in the example) is used to enforce variations on a
subset of parameters. The output is an experiment data structure described below.

fe var(’pargrid opt’,Up,indp) generates a uniform grid by dividing the range
of each parameter in opt points. When used for selected parameters by giving indp,
the unused parameters are set to their nominal value.

fe var(’pargrid opt edge elevel’,Up,indp) generates a uniform grid by divid-
ing the range of each parameter in opt points. One then only retains points that
are on an edge level elevel defined by the fact that elevel parameters are equal
to their minimal or maximal value.

fe var(’par cubeedge opt’,Up,indp) the one dimensional edges of the hypercube
defined by parameters selected in indp. xxx

fe var(’par opt’,Up,indp) creates a random experiment on indp with opt design
points.

InitModes

fe var(’InitModes ParCommand’,Up) computes full order modes for the experi-
ment defined by ParCommand. The default is ParFace 0 2 which keeps the nominal
point its projections on the positive faces of the hypercube.

The results are saved in a Modes.mat file and are typically used to build reanalysis
bases using xxx commands.

plot[Delaunay,Hist,map&point,Cube]

Tutorial Uncertainty propagation is supported for parameterized superelements supported
by upcom. The main steps of an uncertainty analysis are

• Parameterization. This phase is actually supported by upcom and you can look
at examples under the upcom par commands.

• Reanalysis basis creation.

335

idcom

Purpose UI command functions for standard operations in identification.

Syntax idcom(’CommandString’);

Description idcom provides a simple access to standard operations in identification. The way
they should be sequenced is detailed in section 3.3 which also illustrates the use of
the associated GUI.

idcom must be used with the iiplot interface for response data visualization as this
interface is used to visualize the results of different operations during the identifica-
tion. idcom uses and modifies data found in the standard database wrapper XF (see
iiplot).

The information given below details each command (see the commode help for hints
on how to build commands and understand the variants discussed in this help).
Without arguments idcom enters the command mode provided by commode and gives
direct access to idcom and iicom commands (idcom,iicom> prompt). Information
on how to modify standard plots is given under iicom.

Commands
e [,i w]

Single pole narrow-band model identification. e calls ii poest to determine a single
pole narrow band identification for the data set IIxf.

A bandwidth of two percent of w is used by default (when i is not given). For i<1,
the i specifies the half bandwidth as a fraction of the central frequency w. For i an
integer greater than 5, the bandwidth is specified as a number of retained frequency
points.

The selected frequency band is centered around the frequency w. If w is not given,
ii poest will wait for you to pick the frequency with your mouse.

If the local fit does not seem very good, you should try different bandwidths (values
of i).

The results are an estimated pole IIpo1, residue matrix IIres1, and FRF IIxe
(which is overlaid to IIxf in iiplot drawing axes). If, based on the plot(s), the
estimate seems good it should be added to the current pole set IIpo using the ea
command.

336

ea

Add IIpo1 to IIpo. If appropriate poles are present in IIpo1 (after using the e or f
commands for example) they should be added to the current pole set IIpo using the
ea command. These poles can then be used to identify a multiple pole broadband
model (est and eup commands).

If all poles in IIpo1 are already in IIpo, the two are only combined when using the
eaf command (this special format is used to prevent accidental duplication of the
nodes).

er [num i, f w]

Remove poles from IIpo. The poles to be removed can be indicated by number using
’er num i’ or by frequency using ’er f w’ (the pole with imaginary part closest
to w is removed). The removed pole is placed in IIpo1 so that an ea command will
undo the removal.

est

Broadband multiple pole identification without pole update. est uses id rc to
identify a model based on the complete frequency range. This estimate uses the
current pole set IIpo but does not update it. The results are a residue matrix
IIres, and corresponding FRF IIxe (which is overlaid to IIxf in iiplot drawing
axes). In most cases the estimate can be improved by optimizing the poles using
the eup or eopt commands.

eup dstep fstep [local, num i]

Update of poles. eup uses id rc to update the poles of a multiple pole model
based data within IDopt.SelectedRange. This update is done through a non-
linear optimization of the pole locations detailed in section 3.3.2. The results are
updated poles IIpo (the initial ones are stored in IIpo1), a residue matrix IIres,
and corresponding FRF IIxe (which is overlaid to IIxf in iiplot drawing axes).

In most cases, eup provides significant improvements over the initial pole estimates
provided by the e command. In fact the only cases where you should not use eup is
when you have a clearly incomplete set of poles or have reasons to suspect that the
model form used by id rc will not provide an accurate broadband model of your
response.

Default values for damping and frequency steps are 0.05 and 0.002. You may

337

idcom

specify other values. For example the command ’eup 0.05 0.0’ will only update
damping values.

It is often faster to start by optimizing over small frequency bands while keeping all
the poles. Since some poles are not within the selected frequency range they should
not be optimized. The argument local placed after values of dstep and fstep

(if any) leads to an update of poles whose imaginary part are within the retained
frequency band.

When using local update, you may get warning messages about conditioning. These
just tell you that residues of modes outside the band are poorly estimated, so that the
message can be ignored. While algorithms that by-pass the numerical conditioning
warning exist, they are slower and don’t change results so that the warning was left.

In some cases you may want to update specific poles. The argument num i where
i gives the indices in IIpo of the poles you want to update. For example ’eup 0.0
0.02 num 12’ will update the frequency of pole 12 with a step of 2%.

• The poles in IIpo are all the information needed to obtain the full model estimate.
You should save this information in a text or .mat file regularly to be able to
restart/refine your identification.

• You can get a feel for the need to further update your poles by showing the error
and quality plots (see iiplot and section 3.3.1).

eopt [local, num i]

Update of poles. eopt is similar to eup but uses id rcopt to optimize poles. eopt
is often more efficient when updating one or two poles (in particular with the eopt
local command after selecting a narrow frequency band). eopt is guaranteed to
improve the quadratic cost (4.4) so that using it rarely hurts.

find

Find a pole. This command detects minima of the MMIF that are away from poles
of the current model (IIpo) and calls ii poest to obtain a narrow band single pole
estimate in the surrounding area. This command can be used as an alternative
to indicating pole frequencies with the mouse (idcom e command). More complex
automated model initialization will be introduced in the future.

338

f i

Graphical input of frequencies. f i prompts the user for mouse input of i frequencies
(the abscissa associated with each click is taken to be a frequency). The result is
stored in the pole matrix IIpo1 assuming that the indicated frequencies correspond
to poles with 1% damping. This command can be used to create initial pole estimates
but the command e should be used in general.

dspi nm

Direct system parameter identification. dspi uses id dspi to create a nm pole state
space model of IIxf. nm must be less than the number of sensors. The results are
transformed to the residue form which gives poles IIpo1, a residue matrix IIres1,
and corresponding FRF IIxe (which is overlaid to IIxf in iiplot drawing axes).

mass i

Computes the generalized mass at address i. If the identified model contains com-
plex residues (IDopt.Fit=’Pos’ or ’Complex’), res2nor is used to find a real
residue approximation. For real residues, the mass normalization of the mode is
given by the fact that for collocated residues reciprocity implies

cColφj = φT
j bCol =

√
RjCol = (mjCol)−1/2

The mass at a given sensor i is then related to the modal output clφj of the mass
normalized mode by mlj = (clφj)−2. This command can only be used when col-
located transfer functions are specified and the system is assumed to be reciprocal
(see idopt).

poly nn nd

Orthogonal polynomial identification. poly uses id poly to create a polynomial
model of IIxf with numerators of degree nn and denominators of degree nd. The
corresponding FRFs are stored in IIxe (which is overlaid to IIxf in iiplot drawing
axes).

[Table,Tex] IIpo

Formatted printout of pole variables IIpo or IIpo1. With the Tex command the
printout is suitable for inclusion in LATEX.

339

idcom

This command is also accessible from the idcom figure context menu.

See also idcom, iicom, iiplot, id rc, section 3.3

340

idopt

Purpose handling of options used by the identification related routines.

Syntax idopt
iop2 = idopt
IDopt.OptName = OptValue;

Description idopt with no argument sets default options based XF(1) (see iiplot and xfopt).
These options are stored in the standard global variable IDopt and can be edited
using the Options tab in the idcom GUI figure.

iop2 = idopt returns a SDT handle to a set options that may differ from those of
the global variable IDopt.

IDopt=idopt checks the standard global variable IDopt. idopt(’default’) reini-
tializes IDopt based on the first data set in the standard database wrapper XF.

The display of an identification option variable (type IDopt at the Matlab prompt
for example) gives a detailed list of the options

IDopt (global variable) =
ResidualTerms : [0 | 1 (1) | 2 (s^-2) | {3 (1 s^-2)} | 10 (1 s)]
DataType : [{disp./force} | vel./force | acc./force]
AbscissaUnits : [{Hz} | rd/s | s]
PoleUnits : [{Hz} | rd/s]
SelectedRange : [1-3124 (4.0039-64.9998)]
FittingModel : [Posit. cpx | {Complex modes} | Normal Modes]
NSNA : [0 sensor(s) 0 actuator(s)]
Reciprocity : [{Not used} | 1 FRF | MIMO]
Collocated : [none declared]

with the currently selected value shown between braces { }.

SDT handle overloads the Matlab getfield and setfield commands so that
you can easily access each option. IDopt.OptName displays the associated option
value using the format shown above. IDopt.OptName=OptValue sets the option.
OptName need only specify enough characters to allow a unique option match. Thus
IDopt.res and IDopt.ResidualTerms are equivalent. Typical option sets would be

IDopt.res = 2; IDopt.sel=[1 1024]; IDopt.Po=’Hz’;

341

idopt

The following is a list of possible options with indications as to where they are stored.
Thus IDopt.res=2 is simply a user friendly form for the old call IDopt(6)=2 which
you can still use.

Res Residual terms (stored in IDopt(1))
0 none
1 Static correction (high frequency mode correction)
2 Roll-off (s−2, low frequency mode correction).
3 Static correction and roll-off (default)
10 1 and s, this correction is only supported by id rc and should be used

for identification in narrow bandwidth (see ii poest for example)
-i An alternate format uses negative numbers with decades indicating

powers (starting at s−2). Thus Ass=-1101 means an asymptotic cor-
rection with terms in s−2, 1, s

Data type (stored in IDopt(2))
0 displacement/force (default)
1 velocity/force
2 acceleration/force

Abscissa units for vector w can be Hz, rad/s or seconds
Pole units can be Hz or rad/s

units are actually stored in IDopt(3) with units giving abscissa units
(01 w in Hertz, 02 w in rad/s, 03 w time seconds) and tens pole units (10
po in Hertz, 20 po in rad/s). Thus IDopt (3) = 12 gives w in rad/sec
and po in Hz.

Selected frequency range indices of first and last frequencies to be used for iden-
tification or display (stored in IDopt(4:5))

Fitting model (see res page 37, stored in IDopt(6))
0 positive-imaginary poles only, complex mode residue
1 complex mode residue, pairs of complex-conjugate poles (default)
2 normal mode residue

ns,na number of sensors/actuators (outputs/inputs) stored in IDopt(7:8))

342

Recip method selection for the treatment of reciprocity (stored in IDopt(12))
1 means that only iC1 (IDopt(13)) is declared as being collocated. id rm

assumes that only this transfer is reciprocal even if the system has more
collocated FRFs

na (number of actuators) is used to create fully reciprocal (and minimal
of course) MIMO models using id rm. na must match non-zero values
declared in iCi.

-nc (with nc the number of collocated FRFs) is used to declare collocated
FRFs while not enforcing reciprocity when using id rm.

iC1
...

indices of collocated transfer functions in the data matrix (see the xf
format page 40)

See also xfopt, idcom, iiplot

343

id dspi

Purpose Direct structural system parameter identification.

Syntax [a,b,c,d] = id_dspi(y,u,w,IDopt,np)

Description The direct structural system parameter identification algorithm [47] considered here,
uses the displacement frequency responses y(s) at the different sensors correspond-
ing to the frequency domain input forces u(s) (both given in the xf format). For
example in a SIMO system with a white noise input, the input is a column of ones
u=ones(size(w)) and the output is equal to the transfer functions y=xf. The results
of this identification algorithm are given as a state-space model of the form{

ṗ
p̈

}
=

[
0 I
−KT −CT

]{
p
ṗ

}
+

[
0
bT

]
{u} and {y} =

[
cT 0

]{ p
ṗ

}
where the pseudo-stiffness KT and damping CT matrices are of dimensions np by np
(number of normal modes). The algorithm, only works for cases where np is smaller
than the number of sensors (IDopt.ns).

For SIMO tests, normal mode shapes can then be obtained using [mode,freq] =
eig(-a(np+[1:np],1:np)) where it must be noted that the modes are not mass
normalized as assumed in the rest of the Toolbox and thus cannot be used directly for
predictions (with nor2xf for example). Proper solutions to this and other difficulties
linked to the use of this algorithm (which is provided here mostly for reference) are
not addressed, as the main methodology of this Toolbox (id rc, id rm, and id nor)
was found to be more accurate.

For MIMO tests, id dspi calls id rm to build a MIMO model.

The identification is performed using data within IDopt.SelectedRange. y is sup-
posed to be a displacement. If IDopt.DataType gives y as a velocity or acceleration,
the response is integrated to displacement as a first step.

See also idopt, id rc, id rm, psi2nor, res2nor

344

id nor

Purpose Identification of normal mode model, with optimization of the complex mode output
shape matrix.

Syntax NOR = id_nor(XF(5))
NOR = id_nor(...)
[om,ga,phib,cphi] = id_nor(...)
[new_res,new_po] = id_nor(...)
[...] = id_nor(res,po,IDopt)
[...] = id_nor(res,po,IDopt,ind,opt,res_now)

Description id nor is meant to provide an optimal transformation (see details in [5] or sec-
tion 3.4.3) between the residue (result of id rc) and non-proportionally damped
normal mode forms

{y(s)} =
2N∑
j=1

{cψj}
{
ψT

j b
}

s− λj
{u} and

[
Is2 + Γs+ Ω2

]
{p} =

[
φT b

]
{u}

{y} = [cφ] {p}

The output arguments are either

• the standard normal mode model freq,ga,phib,cphi (see nor page 28) when
returning 4 outputs

• the associated normal model data structure NOR when returning one output

• or the residues of the associated model new res and poles po (see res page 37)
when returning 2 outputs. With this output format, the residual terms of the
initial model are retained.

The algorithm combines id rm (which extracts complex mode output shape matrices
cψ from the residues res and scales them assuming the system reciprocal) and
psi2nor (which provides an optimal second order approximation to the set of poles
po and output shape matrices cψ).

Since the results of psi2nor can quite sensitive to small errors in the scaling of
the complex mode outputs cψ, an optimization of all or part (using the optional
argument ind to indicate the residues of which poles are to be updated) collocated
residues can be performed. The relative norm between the identified residues res
and those of the normal mode model is used as a criterion for this optimization.

345

id nor

Three optimization algorithms can be selected using opt (1: id min of the Structural
Dynamics Toolbox, 2: fmins of Matlab, 3: fminu of the Optimization Toolbox).
You can also restart the optimization using the residues old res while still compar-
ing the result with the nominal res using the call

[new_res,po] = id_nor(res,po,IDopt,ind,opt,old_res)

346

Notes id nor is only defined if IDopt.Reciprocity is 1 FRF or MIMO (12) and for cases
with more sensors than modes (check IDopt.NSNA). id nor may not work for iden-
tifications that are not accurate enough to allow a proper determination of normal
mode properties.

In cases where id nor is not applicable, normal mode residues can be identified
directly using id rc with IDoptFit=’Normal’ or an approximate transformation
based on the assumption of proportional damping can be obtained with res2nor.

id nor does not handle cases with more poles than sensors. In such cases res2nor
can be used for simple approximations, or id nor can be used for groups of modes
that are close in frequency.

�

Residual terms can be essential in rebuilding FRFs (see figure above taken from
demo id) but are not included in the normal mode model (freq, ga, phib, cphi).
To include these terms you can use either the residues new res found by id nor

xf = res2xf(new_res,po,w,IDopt)

or combine calls to nor2xf and res2xf

xf = nor2xf(om,ga,phib,cphi,w) + ...
res2xf(res,po,w,IDopt,size(po,1)+1:size(res,1))

Example gartid
if XFdof(4,2)~=1012.03;% Needed to have positive driving point FRFs
IIxf=-IIxf; XFdof(:,2)=1012.03; idcom(’est’);

end
nor = id_nor(XF(5));
XF(3)=nor2xf(nor,IIw,’hz struct acc’);
iicom(’iixhon’)

See also id rc, res2nor, id rm, psi2nor, demo id

347

id poly

Purpose Parametric identification using xf-orthogonal polynomials.

Syntax [num,den] = id_poly(xf,w,nn,nd)
[num,den] = id_poly(xf,w,nn,nd,IDopt)

Description A fit of the provided frequency response function xf at the frequency points w is
done using a rational fraction of the form H(s) = num(s)/den(s) where num is a
polynomial of order nn and den a polynomial of order nd. The numerically well
conditioned algorithm proposed in Ref. [16] is used for this fit.

If more than one frequency response function is provided in xf, the numerator
and denominator polynomials are stacked as rows of num and den. The frequency
responses corresponding to the identified model can be easily evaluated using the
command qbode(num,den,w).

The identification is performed using data within IDopt.SelectedRange. The idcom
poly command gives easy access to this function.

See also id rc, invfreqs of the Signal Processing Toolbox.

348

id rc, id rcopt

Purpose Broadband pole/residue model identification with the possibility to update an initial
set of poles.

Syntax [res,po,xe] = id_rc (xf,po,w,IDopt)
[res,new_po,xe] = id_rc (xf,po,w,IDopt,dst,fst)
[res,new_po,xe] = id_rcopt(xf,po,w,IDopt,step,indpo)

Description This function is typically accessed using the idcom GUI figure as illustrated in
section 3.3.

For a given set of poles po (see ii pof for the format), id rc(xf,po,w,IDopt)
identifies the residues of a broadband model, with poles po, that matches the FRFs
xf at the frequency points w. (This is implemented as the idcom est command).

As detailed in section 3.3, the poles can (and should) be tuned [13] using either
id rc (ad-hoc dichotomy algorithm, accessible through the idcom eup command)
or id rcopt (gradient or conjugate gradient minimization, accessible through the
idcom eopt command). id rc performs the optimization when initial step sizes are
given (see details below).

After the identification of a model in the residue form with id rc, other model forms
can be obtained using id rm (minimal/reciprocal residue model), res2ss (state-
space), res2xf (FRF) and res2tf (polynomial), id nor (normal mode model).

The different input and output arguments of id rc and id rcopt are

xf

Measured data stored in the xf format where each row corresponds to a frequency
point and each column to a channel (actuator/sensor pair).

Although it may work for other types of data, id rc was developed to identify model
properties based on transfer functions from force actuators to displacement sensors.
IDopt(2) lets you specify that the data corresponds to velocity or acceleration (over
force always). An integration (division by s = jω) is then performed to obtain
displacement data and a derivation is performed to output estimated FRFs coherent
with the input data (the residue model always corresponds to force to displacement
transfer functions).

The phase of your data should loose 180o phase after an isolated lightly damped

349

id rc, id rcopt

but stable pole. If phase is gained after the pole, you probably have the complex
conjugate of the expected data.

If the experimental set-up includes time-delays, these are not considered to be part
of the mechanical system. They should be removed from the data set xf and added
to the final model as sensor dynamics or actuator dynamics . You can also try to
fit a model with a real poles for Pade approximations of the delays but the relation
between residues and mechanical modeshapes will no longer be direct.

w

Measurement frequencies are stored as a column vector which indicates the frequen-
cies of the different rows of xf. IDopt(3) is used to specify the frequency unit.
By default it is set to 11 (FRF and pole frequencies in Hz) which differs from the
SDT default of rad/s used in functions with no frequency unit option. It is assumed
that frequencies are sorted (you can use the Matlab function sort to order your
frequencies).

po, new po

Initial and updated pole sets. id rc estimates residues based on a set of poles po
which can be updated (leading to new po). Different approaches can be used to find
an initial pole set

• create narrow-band single pole models (ii poest available as the idcom e com-
mand)

• pick the pole frequencies on plots of the FRF or MMIF and use arbitrary but
realistic values (e.g. 1%) for damping ratios (ii fin available as the idcom f
command)

• use pole sets generated by any other identification algorithm (id poly and id dspi
for example)

Poles can be stored using different formats (see ii pof) and can include both con-
jugate pairs of complex poles and real poles. (id rc uses the frequency/damping
ratio format).

The id rc algorithms are meant for iterations between narrow-band estimates,
used to find initial estimates of poles, and broadband model tuning using id rc
or id rcopt. These iterations are easier to perform if you save your current pole
locations in a text file. For example you should have something like

350

IIpo = [
1.1298e+02 1.0009e-02
1.6974e+02 1.2615e-02
1.9320e+02 1.0457e-02
2.3190e+02 8.9411e-03];

saved in a text editor so that you can paste this set of poles into your Matlab
session. If these are your best poles, id rc will directly provide the optimal residue
model. If you are still iterating you may replace these poles by the updated ones or
add a pole that you might have omitted initially.

IDopt

Identification options (see idopt for details). Options used by id rc are Residual,
DataType, AbscissaUnits, PoleUnits, SelectedRange and FittingModel.

The definition of channels in terms of actuator/sensor pairs is only considered by
id rm which should be used as a post-treatment of models identified with id rc.

dstep, fstep (for id rc)

Damping and frequency steps. To update pole locations, the user must specify
initial step sizes on the frequency and damping ratio (as fractions of the initial
values). id rc then uses the gradient of the quadratic FRF cost to determine in
which direction to step and divides the step size by two every time the sign changes.
This approach allows the simultaneous update of all poles and has proved over the
years to be extremely efficient.

For lightly damped structures, typical step values (used by the idcom command eup)
are 10% on all damping ratios (dstep = 0.1) and 0.2% on all frequencies (fstep =
0.002). If you only want to update a few poles fstep and dstep can be given as
vectors of length the number of poles in po and different step values for each pole.

idcom(’eup 0.05 0.002 local’) can be used to specify dstep and fstep. The
optional local at the end of the command specifies that zero steps should be used
for poles whose resonance is outside the selected frequency band.

step, indpo (for id rcopt)

Methods and selected poles. step specifies the method used for step length, direction
determination method, line search method, reference cost and pole variations. You
should use the default values (empty step matrix). indpo gives the indices of poles

351

id rc, id rcopt

to be updated (po(indpo,:) for poles in format 2 are the poles to be updated, by
default all poles are updated).

The idcom eopt command can be used to access id rcopt. eoptlocal calls id rcopt
with indpo set to only update poles whose resonance is within the selected frequency
band.

res

Residues are stored in the res format (see section 2.6). If the options IDopt are
properly specified this model corresponds to force to displacement transfer functions
(even if the data is acceleration or velocity over force). Experts may want to mislead
id rc on the type of data used but this may limit the achievable accuracy.

xe

Estimated FRFs correspond to the identified model with appropriate derivation if
data is acceleration or velocity over force.

See also idcom, id rm, res2xf, res2ss
Tutorial section section 3.3
gartid and demo id demonstrations

352

id rm

Purpose Create minimal models of MIMO systems and apply reciprocity constraints to obtain
scaled modal inputs and outputs.

Syntax OUT = id_rm(IN,multi)
[psib,cpsi,new_res,new_po] = id_rm(res ,po,IDopt)
[phib,cphi,new_res,new_po] = id_rm(Rres,po,IDopt)
[psib,cpsi,new_res,new_po] = id_rm(res ,po,IDopt,multi)

Description id rm is more easily called using the idcom GUI figure Postprocessing tab, see
section 3.4.

IN is a data structure (see xfopt shapes at DOFs). Required fields are IN.res
residues, IN.po poles, and IN.idopt identification options. Options used by id rm
are .FittingModel (Posit, Complex or Normal modes), .NSNA (number of sen-
sors/actuators), .Reciprocity (not used, 1 FRF or true MIMO), .Collocated
(indices of colloc. FRF when using reciprocity).

multi is an optional vector giving the multiplicity for each pole in IN.po.

OUT is a structure with fields (this format is likely to change in the future)

.po poles with appropriate multiplicity

.def output shape matrix (CPSI)

.DOF Sensor DOFs at which .DEF is defined

.psib input shape matrix (PSIB)

.CDOF indices of collocated FRFs

.header header (5 text lines with a maximum of 72 characters)

The low level calls giving res, po and IDopt as arguments are obsolete and only
maintained for backward compatibility reasons.

As shown in more detail in section 3.4, the residue matrix Rj of a single mode is the
product of the modal output by the modal input. For a model in the residue form
(residue res, poles po and options IDopt identified using id rc for example), id rm
determines the modal input psib and output cpsi matrices such that

[α(s)] =
2N∑
j=1

{cψj}
{
ψT

j b
}

s− λj
≈

2N∑
j=1

[Rj]
s− λj

(9.3)

353

id rm

The residues can be either complex mode residues or normal mode residues. In that
case the normal mode input phib and output cphi matrices are real.

The new res matrix is the minimal approximation of res corresponding to the
computed input and output matrices. id rm uses the number of sensors IDopt(7)
and actuators IDopt(8).

For MIMO systems (with the both the number of sensors IDopt(7) and actuators
IDopt(8) larger than 1), a single mode has only a single modal output and input
which implies that the residue matrix should be of rank 1 (see section 3.4.1). Residue
matrices identified with id rc do not verify this rank constraint. A minimal real-
ization is found by singular value decomposition of the identified residue matrices.
The deviation from the initial model (introduced by the use of a minimal model
with isolated poles) is measured by the ratio of the singular value of the first deleted
dyad to the singular value of the dyad kept. For example the following output of
id rm

Po # freq mul Ratio of singular values to maximum
1 7.10e+02 2 : 0.3000 k 0.0029

indicates that the ratio of the second singular value to the first is significant (0.3)
and is kept, while the second dyad can be neglected (0.0029).

For a good identification, the ratios should be small (typically below 0.1). Large
ratios usually indicate poor identification and you should update the poles using
id rc in a broad or narrow band update. Occasionally the poles may be sufficiently
close to be considered as multiple and you should keep as many dyads as the modal
multiplicity using the input argument multi which gives the multiplicity for each
pole (thus the output shown above corresponds to a multiplicity of 2).

id rm also enforces reciprocity conditions in two cases

• IDopt(12)=1. One transfer function is declared as being collocated. Reciprocity
is only applied on the input and output coefficients linked to the corresponding
input/output pair.

• IDopt(12)=na. As many collocated transfer functions as actuators are declared.
The model found by id rm is fully reciprocal (and minimal of course).

• in other cases IDopt(12) should be either 0 (no collocated transfer) or equal to
-nc (nc collocated transfers but reciprocal scaling is not desired).

It is reminded that for a reciprocal system, input and output shape matrices linked
to collocated inputs/outputs are the transpose of each other (b = cT). Reciprocal

354

scaling is a requirement for the determination of non-proportionally damped normal
mode models using id nor.

In MIMO cases with reciprocal scaling, the quality indication given by id rm is

Po# freq mul sym. rel.e.
1 7.10e+02 2 : 0.0038 0.0057

which shows that the identified residue was almost symmetric (relative norm of the
anti-symmetric part is 0.0038), and that the final relative error on the residue cor-
responding to the minimal and reciprocal MIMO model is also quite small (0.0057).

Warnings • id rm is used by the functions: id nor, res2nor, res2ss

• Collocated force to displacement transfer functions have phase between 0 and -180
degrees, if this is not true you cannot expect the reciprocal scaling of id rm to be
appropriate and should not use id nor.

• id rm only handles complete MIMO systems with NS sensors and NA actuators.

See also idcom, id rc, id nor, the demo id demonstration

355

iicom

Purpose UI command function for FRF data visualization.

Syntax iicom
iicom CommandString
message = iicom(’CommandString’,’TailChar’)

Description iicom is a standard UI command function which performs operations linked to the
FRF data visualization within the iiplot interface. Commands (see the commode
help for hints on how to build commands and understand the variants discussed in
this help) are text strings telling iicom what to do. When needed, iicom takes data
from the standard database wrapper XF which points to the global variables linked
to FRF data visualization (IIw, IIxf, IIxe, IIxh, IIxi, see xfopt for details).

iicom does not modify data except for the frequency band indices (IDopt.Select
stored in IDopt(4:5)) which are modified by the w commands. A list of commands
available through iicom is given below. These commands provide significant ex-
tensions to capabilities given by the menus and buttons of the iiplot command
figure.

Commands
;

Command chaining. Commands with no input (other than the command) or output
argument, can be chained using a call of the form iicom(’;Com1;Com2’). commode
is then used for command parsing.

Command function input. This group of buttons is used to give direct access to
command functions (without using on-line calls to the UI command functions or
the command mode of commode). The button indicates which command function
is active. If showing id, commands are sent to idcom or iicom (as appropriate).
If showing fe, commands are sent to fecom or iicom. If showing me, commands
are sent to femesh or fecom. Text commands detailed below can be typed in the
text area and are executed at a carriage return (on some platforms when selecting
another figure too).

356

ad i, adc i

Display addresses i. Only a restricted number of channels (columns of IIxf, IIxe,
IIxh, IIxi) are displayed in the drawing axes. Addresses are arbitrary integer
numbers used to identify channels. Addresses are stored in the third column of
the XFdof matrix which has as many rows as there are channels (see xfopt). ad /
adc respectively define the addresses (and find the corresponding channels) to be
displayed in all / the current drawing axes. The vector of addresses is defined by
evaluating the string i. For example ad 101, displays the channel with address 101
in all axes.

cax i, ca+,

Change current axes. cax i makes the axis i (an integer number) current. ca+
makes the next axis current. For example, iicom(’;cax1;show rea;ca+;show
ima’) displays the real part of the current FRFs in the first axis and their imaginary
part in the second. (See also the sub command). The button indicates the number
of the current axis. Pressing the button executes the ca+ command.

ch+, ch-, ch[+,-]i,

Next/Previous. These commands/buttons are used to scan through plots of the
same kind. For iiplot axes, this is applied to the current FRFs (columns of IIxf,
IIxe, IIxh, IIxi) or pole/deformation (rows of IIres/IIpo or IIres1/IIpo1). For
feplot axes, the current deformation is changed. You can also increment/decrement
channels using the + and - keys when the current axis is a plot axis or increment by
more than 1 using iicom(’ch+i’).

ch i, chc i

Display channels/poles/deformations i. Channels refer to columns of IIxf, IIxe,
IIxh, IIxi), poles (rows of IIres, IIres1) or deformations which are displayed
in the drawing axes. ch / chc respectively define the indices of the channels to
be displayed in all / the current drawing axes. The vector of indices is defined by
evaluating the string i. For example iicom ch[1:3], displays channels 1 to 3 in all
axes.

ga i

Get handle to a particular axis. This is used to easily modify handle graphics
properties of iiplot axes accessed by their number. For example, you could use

357

iicom

set(iicom(’ga1:2’),’xgrid’,’on’) to modify the grid property of iiplot axes
1 and 2.

If you use more than one figure feplot or iiplot figure, you will prefer the calling
format cf=iiplot; set(cf.ga(1:2),’xgrid’,’on’).

head [Main,Text,Clear]

Figure header utilities. Header axes are common to all plot functions and span the
full figure area (normalized position [0 0 1 1]). The SDT also tries to keep this
on top to that the information is always visible. iimouse also raises it when you
click outside the area covered by other axes. Any information that you would want
to be present on all your plots should be plotted on this axis.

iicom(’HeadMain’) defines the main header title based on the first database header
XF(1).header (see xfopt). You can also specify a string and additional properties
that are valid for Matlab text objects. For example,

iicom(’head main’,’Main Title’,’fontsize’,20,’fontname’,’Times’)

iimouse supports modifications (font, string, position) of this title by providing a
context menu (click on the text using the right mouse button). For command based
modifications of this object, you can also get its handle using findobj(cf.head,
’tag’, ’iimain’) (where cf is a SDT handle to the iiplot or feplot figure).

You can put additional text strings in the axis using iicom(’HeadText’) with the
same format as HeadMain. These objects are created with the iitext tag.

iicom(’HeadClear’) deletes all objects from the header axis of the current figure.
To find the pointer to the header axis of a given figure use cf.head. This can be
useful if you want to add other objects that just text.

Note: the obsolete HeadAdLabel command is by the use of user defined titles (see
the iicom TitOpt command).

IIpo [,1], cIIpo[,1,tog]

Poles/residues displayed. iiplot displays either the main identified model (global
variables IIpo, IIres) or the alternate model (global variables IIpo1, IIres1).
These commands tell iiplot which set to show. By adding a c in front of the
command (cIIpo for example), the choice is only applied to the current axis. You
can also toggle which of IIpo or IIpo1 is shown using the Variables:IIpo menu
(ciitog command).

358

IIx[f,e,h,i] [On,Off]

Global data set displayed. IIxfOn indicates that IIxf should be visible in all axes.
IIxfOff turns the visibility of IIxf off. IIxf toggles the visibility of IIxf. The
interface handles four sets of data simultaneously IIxf (assumed to be the measure-
ment data), IIxe (identified model FRFs in idcom), IIxh, and IIxi. By adding
a c in front of the command (cIIxf for example), the choice is only applied to
the current axis. You can also toggle which of the data sets are shown using the
Variables:IIxi menu.

info

Information on the current state of the interface. This is equivalent to cf=iiplot;
disp(cf).

PoleLine [,c] [,3]

Pole line display. By itself, PoleLine toggles the state of pole line display (vertical
lines showing the frequencies of poles in IIpo in white and IIpo1 in red). The c
applies the command to the current axis only. PoleLine3 places the lines on the pole
norm rather than imaginary part used by default (this corresponds to the ii plp
formats 2 and 3).

The state of the current axis (if it is an iiplot axis) can also be changed using the
IIplot:PoleLine menu (PoleLineTog command).

Print, Preprint

Print prints the figure of the current iiplot or feplot axis. It changes the current
figure if necessary and adds -noui to the print options before calling the matlab
print command.

Preprint sets the size of the current figure to the physical PaperSize. This is useful
to make sure that what you see on the screen is what you will print. In particular
legends are based on physical sizes so that the output you get is dependent on the
window size.

Show Type,

Specify the current axis type. The iiplot plot functions support a number of plot
types (see below, iiplot, and feplot for details) which can be selected using the
Show or the PlotType button menu of the iiplot command figure.

359

iicom

Show gives an easier access to the different plot types through their name as sum-
marized below.

iiplot supports the following plots

abs amplitude (also mag) phu unwrapped phase
pha wrapped phase mmi MMIF
rea real part fmi forces of MMIF
ima imaginary part lny local Nyquist
r&i real and imaginary ami alternate mode indicator
nyq Nyquist plot sum sum of all FRFs
cmi Complex Mode Indicator sumi imaginary part sum
pol poles rre real residue
fre freq. vs. damping err Nyquist error
cre complex residue qual Quality plot

sub [MagPha, i j k[,nd][,step]]

This command is the entry point to generate multiple drawing axes within the same
figure.

iicom sub by itself checks all current axes and fixes anything that is not correctly
defined.

SubMagPha gives a standard subdivision showing a large amplitude plot and a small
wrapped phase plot below. SubIso gives a standard 2 by 2 subdivision showing four
standard 2-D projections of a 3-D structure.

Sub i j k divides the figure in the same manner as the Matlab subplot command.
If k is set to zero all the i times j axes of the subplot division are created. Thus
the default call to the sub command is ’sub 2 1’ which creates two axes in the
current figure. If k is non zero only one of these axes is created as when calling
subplot(i,j,k).

As the subplot function, the sub command deletes any axis overlapping with the
new axis. You can prevent this by adding nd to the command string.

The optional step modifier increments the deformation shown in each subplot. This
is generally used to show various modeshapes in the same figure.

Standard subdivisions are accessible by the IIplot:sub commands menu.

Note that set(cf.ga(i),’position’,Rect) will modify the position of iiplot axis
i. This axis will remain in the new position for subsequent refreshing with iiplot.

360

TitOpt [,c]i

Automated title/label generation options. Titopti sets title options for all axes to
the value i. i is a three digit number with units corresponding to title, decades
to xlabel and hundreds to ylabel. The actual meaning of options depends on the
plot function (see iiplot for details). By adding a c after the command (titoptc
111 for example), the choice is only applied to the current axis.

The title is built from the strings LabLead and chlab (for each displayed channel)
which are initialized when the axis object is created. You can create your own title la-
bels calls of the form cf(i).LabLead or cf(i).chlab=CellArrayOfChannelLabels
with i the index of an existing axis of the iiplot or feplot figure with SDT handle
cf.

x [lin,log][,all], y [lin,log][,all],

Default values for xscale and yscale. xlin, xlog, ylin, ylog, set values. xy+1,
xy+2 are used to toggle the xscale and yscale respectively (you can also use the
IIplot:xlin and IIplot:ylin menus). Other commands are xy1 for x-lin/y-lin, xy2
for x-log/y-lin, xy3 for x-lin/y-log, xy4 for x-log/y-log.

You can all use the all qualifier to change all axes : iicom(’xlog all’).

wmin, wmax, w0, ...,

Min/max frequency selection. Frequency bands are selected through the indices
IDopt (4:5) for the first and last frequency.

wmin f is used to find in IIw the index of the frequency point closest to f.
IDopt (4) is then set to the value of this index. You can actually give
minimum and maximum values using wmin f1 f2.

wmax f sets IDopt (5) to the index of the frequency closest to f.
wmo allows a mouse selection of the minimum and maximum frequency
w0 resets the values to cover the complete frequency range
wnext shifts a reduced frequency window to the right (this is the action of the

button)

The toolbar shown above gives access to the commands wmin, wnext, wmax.

See also iiplot, section 3.2.3, idcom

361

iimouse

Purpose Mouse related callbacks for GUI figures.

Syntax iimouse
iimouse(’ModeName’)
iimouse(’ModeName’,Handle)

Description iimouse is the general function used by feplot and iiplot to handle graphical
inputs. While it is designed for SDT generated figures, iimouse can be used with
any figure (make the figure active and type iimouse).

The main mouse mode is linked supports zooming and axis/object selection (see
zoom). Context menus are associated to many objects and allow typical modifica-
tions of each object. When an axis is selected (when you pressed a button while
your mouse was over it), iimouse reacts to a number of keys (see key). An active
cursor mode (see cursor) has replaced the information part of previous versions of
iimouse. 3-D orientation is handled by view commands.

On,Off

iimouse with no argument (which is the same as iimouse(’on’)) turn zoom, key
and context menu on.

In detail, the figure is made Interruptible, WindowButtonDownFcn is set to
iimouse(’zoom’) and KeyPressFcn to iimouse(’key’)).

Plot functions (iiplot, feplot) start iimouse automatically.

iimouse off turns all iimouse callbacks off.

zoom

This is basic mode of iimouse, it supports

• click and drag zoom into an area for both 2-D and 3-D plots (even when using
perspective)

• zoom out to initial limits is obtained with a double click or the i key (on some
systems the double click can be hard to control)

362

• active axis selection. iimouse makes the axis on which you clicked or the closest
to where you clicked active (it becomes the current axis for feplot and iiplot
figures).

• colorbar and triax axes automatically enter the move mode when made active

• legend axes are left alone but kept on top of other axes.

cursor

When you start the cursor mode (using the context menu opened with the right
mouse button or by typing the c key), you obtain a red pointer that follows your
mouse while displaying information about the object that you are pointing at. You
can stop the cursor mode by clicking in the figure with your right mouse button or
the c key. The object information area can be hidden by clicking on it with the
right mouse button.

For feplot figures, additional information about the elements linked to the current
point can be obtained in the Matlab command window by clicking in the figure
with the left button. By default, the cursor follows nodes of the first object in the
feplot drawing axis. If you click on another object, the cursor starts pointing at
it. In the wire-frame representation, particularly when using OpenGL rendering, it
may be difficult to change object, the n key thus forces the cursor to point to the
next object.

For iiplot axes, the cursor is a vertical line with circles on each data set and the
information shows the associated data sets and values currently pointed at.

For ii mac axes the current value of the MAC is shown.

key

Keyboard short-cuts. Some commands are directly available by pressing specific
keys when a plot axis is active (to make it active just click on it with your mouse).
The short cuts are activated by setting the KeyPressFcn to iimouse(’key’) (this
is done by iimouse on). Short cuts are:

363

iimouse

a,A all axis shrink/expand u,U 10o horizontal rotation
c start iimouse cursor v,V 10o vertical rotation
i return to initial axis limits w,W 10o line of sight 10o rotation
l,L smaller/larger fecom scaledef x,X x/horizontal translation
n cursor on next fecom object y,Y y/vertical translation

z,Z
z/line of sight translation

-, previous (iicom ch-) +,= next (iicom ch+)
1,2,3,4 see view commands

For feplot axes the translations are based on camera movements and correspond
to the horizontal, vertical and line of sight for the current view. Translating along
the line of sight has no effect without perspective and is similar to zooming with it.
For other axes, the xyz keys translate along the data xyz directions.

move

The object that you decided to move (axes and text objects) follows your mouse
until you click on a final desired position. This mode is used for triax (created by
feplot) and colorbar axes, as well as text objects when you start move using the
context menu (right button click to open this menu).

The moveaxis used for legend as a slightly different behavior. It typically moves
the axis while you keep the button pressed.

You can call move yourself with iimouse(’move’,Handle) where Handle must be
a valid axes or text object handle.

text

This series of commands supports the creation of a context menu for text objects
which allows modification of font properties (it calls uisetfont), editing of the text
string (it calls edtext), mouse change of the position (it calls iimouse), and deletion
of the text object.

You can make your own text objects active by using iimouse(’textmenu’,Handle)
where Handle must contain valid text object handle(s).

view,cv

iimouse supports interactive changes in the 3-D perspective of axes. Object views
are controlled using azimuth and elevation (which control the orientation vector
linking the CameraTarget and the CameraPosition) and self rotation (which control

364

the CameraUpVector). You can directly modify the view of the current axis using the
Matlab view and cameramenu functions but additional capabilities and automated
orientation of triax axes are supported by iimouse.

1 first standard view. Default n+y. Changed using the View
default context menu.

2 standard xy view (n+z). Similar to Matlab view(2) with
resetting of CameraUpVector. Changed using the View
default context menu.

3 standard view. Default to Matlab view(3).
4 standard view. Default n+x.
n[+,-][x,y,z] 2-D views defined by the direction of the camera from tar-

get.
n[+,-][+,-][+,-] 3-D views defined by the signs projection of line of sight

verctor along the xyz axes.
dn ... dn commands allow setting of default 1234 views. Thus

viewdn-x will set the 4 view to a normal along negative x
az el sr specify azimuth, elevation and rotation around line of sight
g rz ry rz specify rotations around global xyz axes
[x,y,z][+,-] ang rotation increments around global xyz axes
[h,v,s][+,-] ang current horizontal, vertical and line of sight axes

All angles should be specified in degrees.

iimouse key supports rotations by +/- 10 degrees around the current horizontal,
vertical and line of sight axes when any of the u, U, v, V, w, W keys are pressed (same
as fecom(’viewh-10’) ...). 1, 2, 3, 4 return to basic 2-D and 3-D views.

iimouse(’cv’) returns current view information you can then set other axes with
iimouse(’view’,AxesHandles,cv).

See also iicom, fecom, iiplot, iiplot

365

iiplot

Purpose Refresh all the drawing axes of the iiplot interface.

Syntax iiplot

Description iiplot is used as a command with no arguments is the user entry point to refresh
all the drawing axes. Section 3.2 gives an introduction to the use of iiplot and the
companion function iicom. cf=iiplot returns a SDT handle to the current iiplot
figure. You can create more than one iiplot figure with cf=iiplot(FigHandle).

iiplot axes take their data in the database wrapper object stored in the standard
global variable XF. In the nominal configuration, the contents of XF are

XF (global variable) = Database Wrapper (SDT Handle object)

{1} [.w (IIw) 1024x1, .xf (IIxf) 1024x33] : response data
2 [.w (IIw) 1024x1, .xf (IIxe) 1024x33] : response data
3 [.w (IIw) 1024x1, .xf (IIxh) 0x0] : response data
4 [.w (IIw) 1024x1, .xf (IIxi) 0x0] : response data
5 [.po (IIpo) 0x0, .res (IIres) 0x0] : shape data
6 [.po (IIpo1) 0x0, .res (IIres1) 0x0] : shape data

where the interface uses standard global variables IIw (frequencies), IIxf (main
data set), IIxe (identified model), IIxh, IIxi (alternate data sets), IIpo, IIpo1
(main/alternate pole sets), IIres, IIres1 (main/alternate residue sets). Note
that two other global variables XFdof (which describes DOFs at which the re-
sponses/shapes are defined, see .dof field for response and shape data in the xfopt
section) and IDopt (which contains options used by identification routines, see
idopt) are also pointed at by XF.

Each iiplot axis can display some or all these data sets. The selection of what is
displayed is obtained using the iicom IIxf, IIxfOn, ... commands or the Variables
menu.

The frequencies associated with XF(1) are always stored in IIw and frequency band
selection with the w commands always refer to IIw. You can use different frequency
values for the other data sets by setting XF(2).w ... to something different than IIw.

Plot types supported by iiplot are described below. The plot type can be selected
using the PlotType menu of the toolbar or through iicom show commands.

366

Selected channels (columns of the data sets) are shown for all plots. The iicom
commands +, -, ch, ad and the associated keys and toolbar buttons can be used to
change selected channels.

Pole lines for the indication of pole frequencies are available for many plots. The
iicom PoleLine commands and the IIplot:PoleLine menu can be used to change
how these lines appear. IIpo pole lines are shown in white/black. IIpo1 pole lines
in red.

Default scale type. 0 x-lin/y-lin, 2 x-log/y-lin, 3 x-lin/y-log, and 4 x-log/y-log.
Default scale types can be selected using the IIplot:xlin and IIplot:ylin menus
of the command figure, or through the iicom xy commands.

Automated title/label generation options are changed using the iicom(’titopt
i’). Where i is a three digit number with units corresponding to title, decades
to xlabel and hundreds to ylabel. Use the iiplot:TitOpt menu to see available
options.

For example the default is iicom(’titopt 111’) which for an amplitude plot shows
ylabel(’Amplitude (m/N)’) (label and units), xlabel(’Frequency (Hz)’) (la-
bel and units), and title(’a 1’) (Address number). Unit labels can be changed
through the database wrapper object XF (see xfopt). Modifying the IDopt unit
value changes the unit assumed for identification but not the dataset units. Address
labels used for titles can be set using the xfopt DofLabel command.

Titles and labels are not regenerated when using ch commands. If something is not
up to date, use iicom sub which rechecks everything.

Abs,Pha,Phu,Rea,Ima,R&I,Nyq

Basic plots are amplitude of response (initialized by iicom(’show abs’)), phase of
response wrapped (show pha) or unwrapped (show phu), real part of the response
(show rea), imaginary part (show ima), real and imaginary parts (show r&i), or
Nyquist plot(real versus imaginary part, show nyq).

Title options, data set, channel and frequency band selection are described above.

Local Nyquist

Local Nyquist plots (initialized by show lny) show a comparison of IIxf (measured
FRFs) and IIxe (identified model) in a reduced frequency band[

ωj(1− ζj) ωj(1 + ζj)
]

367

iiplot

near the currently selected pole (the current pole is selected by clicking on a pole
line in another plot axis). Local Nyquist plots allow a local evaluation of the quality
of the fit. The error and quality plots give a summary of the same information
for all the frequency response functions and all poles.

MMIF, MMIF forces, AMIF, SUM, CMIF, SumI

Multivariate Mode Indicator Function (initialized by show mmi), forces associated to
the MMIF (initialized by show fmi), Alternate Mode Indicator Function (show
ami), and Channel Sum (show sum) are four ways to combine all the FRFs or a set
to get an indication of where its poles are located.

These indicators are discussed in the ii mmif Reference section. They are auto-
matically computed by iiplot based on data in the XF(1) set (which normally
corresponds to data in the IIxf global variable).

Pole, Freq/damp

Pole locations in the complex plane (initialized by show pol).

Poles shown as damping vs. frequency are initialized by show fre.

Residues

Position of residues in the complex plane are initialized by show cre. This plots
can be used to visualize the phase scatter of identified residues.

Value of real residue for each measured channel are initialized by show rre.

Error, Quality

Local Nyquist error (initialized by show err). For the current pole, error plots select
frequency points in the range [ωj(1− ζj) ωj(1 + ζj)]. For each channel (FRF col-
umn), the normalized error (RMS response of IIxe-IIxf divided by RMS response
of IIxf) is shown as a dashed line with + markers and a normalized response level
(RMS response of IIxf) as a dashed line with x markers.

Normalized errors should be below 0.1 unless the response is small.

Mode quality plot (initialized by show qua), gives a mean of the local Nyquist plot.
The dashed lines with + and x markers give a standard and amplitude weighted mean
of the normalized error. The dotted line gives an indication of the mean response

368

level (to see if a mode is well excited in the FRFs). Normalized errors should be
below 0.1 unless the response is small.

See also iicom, iiplot, setlines, xfopt

369

ii cost

Purpose Compute the quadratic and log-least-squares cost functions comparing two sets of
frequency response functions.

Syntax [cst] = ii_cost(xf,xe)

Description For two sets of FRFs H and Ĥ, the quadratic cost function is given by

Jij(Ω) =
∑

ij measured,k∈Ω

|Ĥij(sk)−Hij(sk)|2

and the log-least-square cost function by

Jij(Ω) =
∑

ij measured,k∈Ω

|log
∣∣∣∣∣Ĥij(sk)
Hij(sk)

∣∣∣∣∣ |2
For sets xf and xe stored using the xf format (see page 40), ii cost computes
both those costs which are used in identification and model update algorithms (see
section 4.2.3).

See also id rc, up ixf

370

ii mac

Purpose User interface function for MAC and other vector correlation criteria.

Syntax ii_mac(cpa,cpb)
VC = ii_mac(cpa,cpb,’PropertyName’,PropertyValue, ...)
[VC,ReS] = ii_mac(’PropertyName’,PropertyValue, ... ,’Command’)

ii_mac(Fig,’PropertyName’,PropertyValue, ... ,’Command’)
Result = ii_mac(Fig ,’Command’)
VC.PropertyName = PropertyValue

Description The ii mac function gives access to vector correlation tools provided by the SDT
starting with the Modal Assurance Criterion (MAC) but including many others. A
summary of typical applications is given in section 4.2 and examples in the gartco
demo.

Vector correlations are SDT objects which contain at least two sets of deformations
cpa and cpb (the names stand for [c] {φa} and [c] {φb} since these vectors typically
represent the observation of modeshapes at test sensors, see section 2.1).

The details about possible fields of vector correlation objects are given after the
listing of supported commands below.

GUI If you use ii mac without requesting graphical output, the vector correlation object
is deleted upon exit from ii mac. In other cases, the object is saved in the figure so
that you can reuse it.

The II MAC menu lets you choose from commands that can be computed based on
the data that you have already provided. The context menu associated with plots
generated by ii mac lets you start the cursor, display tabular output, ...

You can add data to other fields or call new commands from the command line by
starting the ii mac call with a pointer to the figure where the vector correlation is
stored (ii mac(fig,’Command’), ...). An alternate calling form is to set a field of
the vector correlation object.

The following commands

load sdt_gart;
model=struct(’Node’,FEnode,’Elt’,FEelt,’DOF’,mdof,’pl’,pl,’il’,il);
sens=fe_sens(’model’,model);sens.tdof=sdof;

371

ii mac

sens=fe_sens(’arigid’,sens);
[m,k,mdof] = fe_mk(model,’options’,[0 1]);

figure(1); subplot(221);
VC=ii_mac(IIres.’,md0,’labela’,’Test’,’labelb’,’FEM’, ...

’sens’,sens,’Mac Pair Plot’);
subplot(212);ii_mac(1,’comac’);
VC.m = m; VC.kd = ofact(k+1e1*m);
subplot(222); VC.MacMPairPlot;

illustrate a fairly complex case where one shows the MAC in subplot(221), all
three COMAC indicators in subplot(212), then provide mass and a mass-shifted
stiffness to allow computation of the mass condensed on sensors and finally show
the reduced mass weighted MAC in subplot(222).

Commands
COMAC [,M][,A,B][,N][,S][,E] [,sort][,table,tex]

The COMAC command supports three correlation criteria (nominal, scaled and en-
hanced) whose objective is to detect sensors that lead to poor correlation. You can
compute all or some of these criteria using the n, s, or e modifiers (with no modifier
the command computes all three).

The output is either graphical or tabulated (table and tex modifiers). Sensors are
given in the nominal order or sorted by decreasing COMAC value (sort modifier).

These criteria assume the availability of paired sets of sensors. The COMAC commands
thus start by using MacPair (MacMPair with the M modifier) to pair vectors in cpb
to vectors in cpa. The B modifier can be used to force pairing against vectors in set
B (rather than A which is the default value).

The nominal Coordinate Modal Assurance Criterion (COMAC) measures the corre-
lation of two sets of similarly scaled modeshapes at the same sensors. The definition
used for the SDT is

COMACl = 1−

{∑NM
j |clφjAclφjB|

}2

∑NM
j |clφjA|2

∑NM
j |clφjB|2

(9.4)

which is 1 minus the definition found in [48] in order to have good correlation
correspond to low COMAC values.

The assumption that modes a similarly scaled is sometimes difficult to ensure, so

372

that the scaled COMAC is computed with shapes in set B scaled using the Modal
Scale Factor (MSF)

{
ĉφjB

}
= {cφjB}MSFj = {cφjB}

{cφjB}T {cφjA}
{cφjB}T {cφjB}

(9.5)

which sets the scaling of vectors in set B to minimize the quadratic norm of the
difference between {cφjA} and

{
ĉφjB

}
.

The enhanced COMAC (eCOMAC), introduced in [49], is given by

eCOMACl =

∑NM
j

∥∥∥{ ˜clφjA

}
−
{
ĉφjB

}∥∥∥
2NM

(9.6)

where the comparison is done using modeshapes that are vector normalized to 1{ ˜clφjA

}
= {cφjA} / ‖cφjA‖

This is an example of how to use of the COMAC command

[model,sens,ID,FEM]=demosdt(’demopairmac’);

figure(1);clf;
ii_mac(ID,FEM,’sens’,sens,’comac plot’)
ii_mac(1,’comac table’);

MAC [,PairA,PairB][Plot,Table,Tex,Thtml]

The Modal Assurance Criterion (MAC) [11] is the most widely used criterion for
vector correlation (mainly because of its simplicity).

The MAC is the correlation coefficient of vector pairs in two vector sets cpa and cpb
defined at the same DOFs. In general cpa corresponds to measured modeshapes at
a number of sensors {cφidj} while cpb corresponds to the observation of analytical
modeshapes [c] {φk}. The MAC is given by

MACjk =
| {cφidj}H {cφk} |2

| {cφidj}H {cφidj} || {cφk}H {cφk} |
(9.7)

For two vectors that are proportional the MAC equals 1 (perfect correlation). Values
above 0.9 are generally considered as very correlated. Values below 0.6 should be

373

ii mac

considered with much caution (they may or may not indicate correlation).

The figure below shows the standard 2-D (obtained using the context menu or
view(2)) and 3-D (obtained using the context menu or view(-130,20)) represen-
tations of the MAC supported by ii mac. The color and dimensions of the patches
associated to each vector pair are proportional to the MAC value.

The basic MAC shows vector pairs for all vectors in the two sets. The MacPair
command seeks for each vector in cpa (cpb with PairB) the vector in cpb (cpa) that
is best correlated. The result only shows vectors that are best correlated.

By default (or with MacPlot), the command plots the result as shown below. You
can obtain tabulated text output using Mac Table which can be pasted into Word
and transformed into a table. Mac Tex gives a format suitable for direct inclusion
in LaTeX. Mac Thtml creates and gives a html file.

If cpa is defined at sensors and cpb at DOFs, ii mac uses the sensor configuration
sens to observe the motion of cpb at sensors. If cpa is defined at DOFs and cpb
at sensors, ii mac calls fe exp to expand cpb on all DOFs. For vectors defined at
all DOFs, the MAC is a poor criterion and you should really use its mass weighted
counter part.

14

This is an example of how to use of the MAC command

[model,sens,ID,FEM]=demosdt(’demopairmac’);

figure(1);clf;
ii_mac(ID,FEM,’sens’,sens,’mac paira plot’)
ii_mac(1,’mac paira table’);

A few things you should know ...

374

The MAC measures the shape correlation without any reference to scaling of each
vector (because of the denominator in (9.7)). This makes the MAC easy to use
but also limits its applicability (since the modeshape scaling governs the influence
of a given mode on the overall system response, a proper scaling is necessary when
comparing the relative influence of different modes). In other terms, the MAC is
not a norm (two vectors can be very correlated and yet different), so care must be
taken in interpreting results.

As the MAC is insensitive to mode scaling, it can be used with identified nor-
mal mode residues. Thus for RealRes found with id rc and cphi resulting from
a FE analysis, ii mac(RealRes(1:np,:)’,cphi) directly gives a measure of the
test/analysis correlation.

The main weakness of the MAC is linked to scaling of individual components in the
correlation. A change in sensor calibration can significantly modify the MAC. If the
nature of various sensors are different (velocity, acceleration, deformation, different
calibration, ...) this can induce significant problems in interpretation.

The reference weighting in mechanics is energy. For incomplete measurements, ki-
netic energy can be approximated using a static condensation of the mass on the
chosen sensors which can be computed using the MacM command.

MAC Auto[A,B][Plot,Table,Tex,Thtml]

Since the objective of the MAC is to estimate the correlation between various vectors,
it is poor practice to have vectors known to be different be strongly correlated.

Strong correlation of physically different vectors is an indication of poor test design
or poor choice of weighting. MacAutoA (B) compute the correlation of cpa (cpb) with
itself. Off diagonal terms should be small (smaller than 0.1 is generally accepted as
good practice).

On certain systems where the density of sensors is low on certain parts, cross-
correlation levels with the mass weighted MAC can be much lower than for the
unweighted MAC. In such cases, you should really prefer the mass weighted MAC
for correlation.

This is an example of how to use of the MACAuto command

[model,sens,ID,FEM]=demosdt(’demopairmac’);

figure(1);clf;
subplot(1,2,1);ii_mac(ID,FEM,’sens’,sens,’mac autoa plot’)
subplot(1,2,2);ii_mac(ID,FEM,’sens’,sens,’mac autob plot’)

375

ii mac

ii_mac(1,’mac autoa table’);ii_mac(1,’mac autob table’);

MACCo [,M] [,ns]

The MACCo criterion is a what if analysis. It takes modes in cpa, cpb and computes
the paired MAC or MAC-M with one sensor removed. The sensor removal leading
to the best mean MAC for the paired modes is a direct indication of where the
poorest correlation is found. The algorithm removes this first sensor then iteratively
proceeds to remove ns other sensors (the default is 3). The MACCo command prints
an output of the form

Sensor Mean 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Initial 86 100 98 60 86 53 99 98 100 48 76 99 97 96 88
1302-y 87 100 99 61 86 54 99 98 100 60 76 100 97 96 89
1112z 87 100 99 61 88 62 99 98 100 59 76 100 98 95 89
1005z 88 100 99 63 88 62 99 98 100 65 79 100 98 95 89

where the initial mean MAC and MAC associated to the paired vectors are shown
in the first line, and the evolution of these quantities when sensors are removed.
While the selection criteria is the mean of the MAC for all the paired modes, the
individual MAC are displayed to give an indication of how individual modes evolve.
Here for example, sensor 1302-y mostly has a negative impact on the correlation of
mode 9.

The sensor labels are replaced by sensor numbers if the sensor configuration sens is
not declared.

This is an example of how to use of the MACCo command

[model,sens,ID,FEM]=demosdt(’demopairmac’);
ii_mac(ID,FEM,’sens’,sens,’macco’)

MAC [,M] Error [,Table,Tex,Thtml]

Computes the MAC (or MAC-M), does pairing and plots a summary combining
the MAC value found for paired modes and the associated error on frequencies
((fb-fa)./fa). A typical call (see gartco for example) would be

ii_mac(’cpa’,IIres.’,’cpb’,md0,’sens’,sens, ...
’fa’,IIpo,’fb’,f0,’labela’,’Test’,’labelb’,’FEM’, ...
’mac error plot’);

376

By default this command displays a plot similar to the one shown below where the
diagonal of the paired MAC and the correspond relative error on frequencies are
shown. With the table modifier, ii mac gives the result as a table in the Matlab
command window.

This is an example of how to use of the MACError command

[model,sens,ID,FEM]=demosdt(’demopairmac’);
ii_mac(ID,FEM,’sens’,sens,’macerror plot’)
ii_mac(ID,FEM,’sens’,sens,’macerror table’)

Mac M ...

When cpa and cpb are defined at finite element DOFs, it is much more appropriate
to use a mass weighted form of the MAC defined as

MAC-Mjk =
| {φjA}T [M] {φkB} |2

| {φjA}T [M] {φjA} || {φkB}T [M] {φkB} |
(9.8)

When cpa and cpb are defined at sensors using a mass weighting is always a good
idea. If vectors are defined as sensors, the problem is to define what the mass should
be. The standard approach is to use the static condensation of the full order model
mass on the sensor set. The way this reduced mass is computed in the SDT is
discussed in the MC section below.

If cpa is defined at sensors and cpb at DOFs, ii mac uses the sensor configuration
sens to observe the motion of cpb at sensors. If cpa is defined at DOFs and cpb at
sensors, ii mac calls fe exp to expand cpb on all DOFs.

The MAC-M can be seen as a scale insensitive version of the Pseudo-Orthogonality
check (also called Cross Generalized Mass criterion) described below.

377

ii mac

The PairA, PairB, AutoA, AutoB, Plot, Table modifiers are available for MacM just
as for the MAC. A short call format is ii mac(cpa,cpb,m,’mac m plot’) where
cpa, cpb and m are given as the first three input arguments.

POC [,Pair[A,B]][Plot,Table,Tex,Thtml]

The orthogonality conditions (6.5) lead to a number of standard vector correlation
criteria. The pseudo-orthogonality check (POC) (also called Cross generalized
mass (CGM)) and the less commonly used cross generalized stiffness (CGK) are
computed using

µjk = {φjA}T [M] {φkB} κjk = {φjA}T [K] {φkB} (9.9)
where for mass normalized test and analysis modes one expects to have µjk ≈ δjk
and κjk ≈ ω2

j δjk.

For matched modes, POC values differing significantly from 1 indicate either poor
scaling or poor correlation. To distinguish between the two effects, you can use a
MAC-M which corresponds to the square of a POC where each vector would be
normalized first (see the MacM command).

Between unmatched modes, POC values should be close to zero. In some industries,
off-diagonal cross POC values below 0.1 are required for the test verification of a
model.

The PairA, PairB, Plot, Table modifiers are available for POC just as for the MAC.

Rel [,scaled][,m]

For scaled matched modeshapes, the relative error

ej =
‖ {cφjA} − {cφjB} ‖
‖ {cφjA} ‖+ ‖ {cφjB} ‖

(9.10)

is one of the most accurate criteria. In particular, it is only zero if the modeshapes
are exactly identical and values below 0.1 denote very good agreement.

The rel command calls MacPair to obtain shape pairs and plots the result of (9.10).

For unscaled matched modeshapes, you may want to seek for each vector in set B
a scaling coefficient that will minimize the relative error norm. This coefficient is
known as the modal scale factor and defined by

378

MSFj =
{cφjA}T {cφjB}
{cφjB}T {cφjB}

(9.11)

The RelScale command calls MacPair to obtain shape pairs, multiplies shapes in
set B by the modal scale factor and plots the result of (9.10).

With the M modifier, the MacPairM is used to obtain shape pairs, kinetic energy
norms are used in equations (9.10)-(9.11).

This is an example of how to use of the Rel command

[model,sens,ID,FEM]=demosdt(’demopairmac’);
ii_mac(ID,FEM,’sens’,sens,’rel’);

Fields The following sections describe standard fields of vector correlation objects and how
they can be set.

VC.va vector set A detailed below
VC.vb vector set B detailed below.
VC.sens sensor description array describing the relation between the DOFs of

cpb and the sensors on which cpa is defined.
VC.m full order mass matrix
VC.mc reduced mass matrix defined at sensors (see definition below)
VC.qi sensor confidence weighting
VC.k full order stiffness matrix
VC.kd factored stiffness or mass shifted stiffness matrix
VC.T Reduced basis used for dynamic expansion

va

Vector set A, associated frequencies or poles and label. For identification results,
you would typically use

ii_mac(FigHandle,’cpa’,IIres.’,’fa’,IIpo,’labela’,’Test’);

You can also use standard data structures used in identification. Pole/residue models
with .res and .po fields (see section 2.6) or frequency responses with .w and .xf
fields (see section 2.8).

If cpa is defined at sensors and cpb at DOFs, ii mac uses the sensor configuration
sens to observe the motion of cpb at sensors. If cpa is defined at DOFs and cpb at
sensors, ii mac calls fe exp to expand cpb on all DOFs.

379

ii mac

vb

Vector set B, associated frequencies or poles and label. If this set represents finite
element vectors, you will typically declare it as

ii_mac(FigHandle,’cpb’,mode,’fa’,freq,’labela’,’FEM’,’sens’,sens);

where the sensor configuration description sens is obtained using fe sens (see the
gartte demo for an example).

m,k,kd

For criteria that use vectors defined at DOFs, you may need to declare the mass
and stiffness matrices. For large models, the factorization of the stiffness matrix is
particularly time consuming. If you have already factored the matrix (when calling
fe eig for example), you should retain the result and declare it in the kd field.

The default value for this field is kd=ofact(k,’de’) which is not appropriate for
structures with rigid body modes. You should then use a mass-shift (kd = ofact(
k + alpha*m,’de’), see section 6.1.4).

mc

The SDT supports an original method for reducing the mass on the sensor set. Since
general test setups can be represented by an observation equation (4.1), the principle
of reciprocity tells that [c]T corresponds to a set of loads at the location and in the
direction of the considered sensors. To obtain a static reduction of the model on the
sensors, one projects the mass (computes T TMT) on the subspace

[T] =
[
T̃
] [
cT̃
]−1

with [K]
[
T̃
]

= [c]T (9.12)

In cases where the model is fixed [K] is non-singular and this definition is strictly
equivalent to static/Guyan condensation of the mass [18]. When the structure is
free, [K] should be replaced by a mass shifted [K] as discussed under the kd field
above.

sens

Sensor configuration description. This data structure is initialized with fe sens and
contains a description of how the FE model and test configuration are related.

FEM results are always assumed to be placed in the .vb field. One thus compares
VC.va.def and VC.sens.cta*VC.vb.def.

380

T

Reduced basis expansion methods were introduced in [18]. Static expansion can be
obtained by using T defined by (9.12).

To work with dynamic or minimum residual expansion methods, T should combine
static shapes, low frequency modes of the model, the associated modeshape sensi-
tivities when performing model updating.

Modeshape expansion is used by ii mac when cpa is full order and cpb is reduced.
This capability is not currently finalized and will require user setting of options.
Look at the HTML or PDF help for the latest information.

See also ii comac, fe exp, the gartco demonstration, section 4.2

381

ii mmif

Purpose Compute various Mode Indicator Functions

Syntax [mmif,ua] = ii_mmif(xf,IDopt)
[mmif,ua] = ii_mmif(xf,IDopt,’waitbar’)
amif = ii_mmif(xf,IDopt,’amif’,’waitbar’)
[cmif,u,v] = ii_mmif(xf,IDopt,’cmif’,’waitbar’)
sum = ii_mmif(xf,IDopt,’sum’)

Description Mode indicator functions seek to combine data from several input/output pairs of a
MIMO transfer function in a single response that gives the user a visual indication
of pole locations. You can then use the idcom e command to get a pole estimate.

This function supports standard mode indicator functions and is easily accessed
through iiplot interface which computes and displays these functions for the nom-
inal data set (XF(1)).

MMIF The Multivariate Mode Indicator Function (MMIF) (use the iicom showmmi com-
mand) was introduced in [50]. It’s introduction is motivated by the fact that, for a
single mode mechanical model, the phase at resonance is close to -90o. For a set of
transfer functions such that {y(s)} = [H(s)] {u(s)}, one thus considers the ratio of
real part of the response to total response

q(s, {u}) =
{u}T

[
ReHT ReH

]
{u}

{u}T [HHH] {u}
=
{u}T [B] {u}
{u}T [A] {u}

(9.13)

For structures that are mostly elastic (with low damping), resonances are sharp and
have properties similar to those of isolated modes. The MMIF (q) thus drops to
zero.

Note that the real part is considered for force to displacement or acceleration, while
for force to velocity the numerator is replaced by the norm of the imaginary part
in order to maintain the property that resonances are associated to minima of the
MMIF. A MMIF showing maxima indicates improper setting of IDopt.DataType.

For system with more than one input (u is a vector rather than a scalar), one uses
the extrema of q for all possible real valued u which are given by the solutions of
the eigenvalue problem [A] {u} q + [B] {u} = 0.

382

The figure below shows a particular set fo MMIF. The system has 3 inputs, so that
there are 3 indicator functions. The resonances are clearly indicated by minima that
are close to zero.

The second indicator function is particularly interesting to verify pole multiplicity.
It presents an minima when the system presents two closely spaced modes that are
excited differently by the two inputs (this is the case near 1850 Hz in the figure). In
this particular case, the two poles are sufficiently close to allow identification with a
single pole with a modeshape multiplicity of 2 (see id rm) or two close modes. More
details about this example are given in [13].

This particular structure is not simply elastic (the FRFs combine elastic properties
and sensor/actuator dynamics linked to piezoelectric patches used for the measure-
ment). This is clearly visible by the fact that the first MIF does not go up to 1
between resonances (which does not happen for elastic structures).

At minima, the forces associated to the MMIF (eigenvector of [A] {u} q+[B] {u} = 0)
tend to excite a single mode and are thus good candidates for force appropriation
of this mode [51]. These forces are the second optional output argument ua.

CMIF The Complex Mode Indicator Function (CMIF) (use the iicom showcmi command,
see [52] for a thorough discussion of CMIF uses), uses the fact that resonances of
lightly damped systems mostly depend on a single pole. By computing, at each
frequency point, the singular value decomposition of the response

[H(s)]NS×NA = [U]NS×NS [Σ]NS×NA

[
V H

]
NA×NA

(9.14)

383

ii mmif

one can pick the resonances of Σ and use U1,V1 as estimates of modal observability /
controllability (modeshape / participation factor). The optional u, v outputs store
the left/right singular vectors associated to each frequency point.

AMIF ii mmif provides an alternate mode indicator function defined by

q(s) = 1− |ImH(s)||H(s)|T

|H(s)||H(s)|T
(9.15)

which has been historically used in force appropriation studies [51]. Its properties
are similar to those of the MMIF except for the fact that it is not formulated for
multiple inputs.

This criterion is supported by iiplot (use iicom(’show ami)).

SUM Thus sum of the amplitude of all channels

S(s) =
∑
j,k

‖Hj,k(s)‖

is another function sometimes used as a mode indicator function and is thus sup-
ported by ii mmif (use iicom(’show sum)).

SUMI Thus sum of the square of the imaginary part of all channels

S(s) =
∑
j,k

Im(Hj,k(s))2

is another function sometimes used as a mode indicator function and is thus sup-
ported by ii mmif (use iicom(’show sumi)).

See also iiplot, iicom, idopt, fe sens

384

ii plp

Purpose Pole frequency indication using vertical lines.

Syntax ii_plp(po)
ii_plp(po,color,Opt)

Description ii plp(po) will overplot dotted vertical lines indicating the pole frequencies of com-
plex poles in po and dashed lines at the frequencies of real poles. The poles po can
be specified in any of the 3 accepted formats (see ii pof).

When you click on these lines, a text object indicating the properties of the current
pole is created. You can delete this object by clicking on it. When the lines are part
of iiplot axes, clicking on a pole line changes the current pole and updates any
axis that is associated to a pole number (local Nyquist, residue and error plots, see
iiplot).

The optional color argument can be used to obtain something else than white/black.
In the iiplot interface for example, frequencies of poles in the alternate pole set
IIpo1 are shown in red.

Other options are given in the cell array Opt={Unit,ForMat,VariableName}.

The integer Units with tens set to 1 (11 or 12) is used for poles in Hz, while
those with tens set to 2 correspond to Rad/s. This value is typically obtained from
IDopt(3).

The integer Format specifies whether the imaginary part Im(λ) (Format=2 which
is the default) or the amplitude |λ| (using Format=3 corresponding to format 3 of
ii pof) should be used as the “frequency” value for complex poles.

VariableName can be used to pass the name of the pole variable (this is to create
the info string obtained when you click on the pole line).

See also ii pof, idopt, iiplot, iicom

385

ii poest

Purpose Identification of a narrow-band single pole model.

Syntax po = ii_poest(xf,w,idopt)
[res,po,xe] = ii_poest(xf,w,idopt,opt)

Description ii poest (idcom e command and associated button in the idcom GUI figure, see
section 3.4) provides local curve fitting capabilities to find initial estimates of poles
by simply giving an indication of their frequency.

The central frequency for the local fit is given as opt(2) or, if opt(2)==0, by clicking
on a plot whose abscissas are frequencies (typically FRF of MMIF plots generated
by iiplot).

The width of the selected frequency band can be given in number of points (opt(1)
larger than 1) or as a fraction of the central frequency (points selected are in
the interval opt(2)*(1+[-opt(1) opt(1)]) for opt(1)<1). The default value is
opt(1)=0.01.

�

A single pole fit of the FRFs in xf is determined using a polynomial fit followed
by an optimization using a special version of the id rc algorithm. The accuracy
of the results can be judged graphically (when using the idcom e command, IIxf
and IIxe are automatically overlaid as shown in the plot above) and based on the
message passed

LinLS: 1.563e-11, LogLS 8.974e-05, nw 10
mean(relE) 0.00, scatter 0.00
Found pole at 1.1299e+02 9.9994e-03

386

which indicates the linear and quadratic costs (see ii cost) in the narrow frequency
band used to find the pole, the number of points in the band, the mean relative error
(norm of difference between test and model over norm of response, see iiplot error)
which should be below 0.1, and the level of scatter (norm of real part over norm
of residues, which should be small if the structure is close to having proportional
damping).

If you have a good fit and the pole differs from poles already in your current model,
you can add the estimated pole (add IIpo1 to IIpo) using the idcom ea command.

The choice of the bandwidth can have a significant influence on the quality of the
identification. As a rule the bandwidth of your narrow-band identification should
be larger than the pole damping ratio (opt(1)=0.01 for a damping of 1% is usually
efficient). If, given the frequency resolution and the damping of the considered pole,
the default does not correspond to a frequency band close to 2ζjωj , you should
change the selected bandwidth (for example impose the use of a larger band with
opt(1)=.02 which you can obtain simply using idcom (’e.02’)).

This routine should be used to obtain an initial estimate of the pole set, but the
quality of its results should not lead you to skip the pole tuning phase (idcom eup
or eopt commands) which is essential particularly if you have closely spaced modes.

See also idcom, id rc, iiplot

387

ii pof

Purpose Transformations between the three accepted pole formats.

Syntax [pob] = ii_pof(poa,DesiredFormatNumber)
[pob] = ii_pof(poa,DesiredFormatNumber,SortFlag)

Description The Structural Dynamics Toolbox deals with real models so that poles are either
real or come in conjugate pairs

{λ, λ̄} = {a± ib} = {−ζω ± ω
√

1− ζ2}

Poles can be stored in three accepted formats which are automatically recognized
by ii pof(see warnings below for exceptions).

Format 1: a column vector of complex poles. ii pof puts
the pairs of complex conjugate poles λ, λ̄ first and real poles
at the end

xxxpo =



λ1

λ̄1
...
λRe
...


for example

po=[-0.0200 + 1.9999i
-0.0200 - 1.9999i
-1.0000]

Because non-real poles come in conjugate pairs with conjugate eigenvectors, it is
generally easier to only view the positive-imaginary and real poles, as done in the
two other formats.

Format 2: real and imaginary part

xxxpo =

[
a b
...

...

]
for example

po=[-0.0200 1.9999
-1.0000 0.0000]

388

Format 3: frequency ω and damping ratio ζ

po =

[
ω1 ζ1
...

...

]
for example

po=[2.0000 0.0100
hbox − 1.0000 1.0000]

To sort the poles while changing format use an arbitrary third argument SortFlag.

Warnings The input format is recognized automatically. An error is however found for poles
in input format 2 (real and imaginary) with all imaginary below 1 and all real parts
positive (unstable poles). In this rare case you should change your frequency unit
so that some of the imaginary parts are above 1.

Real poles are always put at the end. If you create your own residue matrices, make
sure that there is no mismatch between the pole and residue order (the format for
storing residues is described in section 2.6).

See also idcom, id rc, ii plp

389

m elastic

Purpose Material function for elastic solids and fluids.

Syntax mat= m_elastic(’default’)
mat= m_elastic(’database name’)
pl = m_elastic(’dbval MatId name’);
pl = m_elastic(’dbval -unit TM MatId name’);

Description This help starts by describing the main command of m elastic : Database and
Dbval. Then materials supported by m elastic are described.

[Database,Dbval] [-unit TY] [,MatiD]] Name

A material property function is expected to store a number of standard materials.
See section 7.3 for material property interface.

m elastic(’database Steel’) returns a the data structure describing steel.
m elastic(’dbval 100 Steel’) only returns the property row.

% List of materials in data base
m_elastic info
% examples of row building and conversion
pl=m_elastic([100 fe_mat(’m_elastic’,’SI’,1) 210e9 .3 7800], ...

’dbval 101 aluminum’);
pl=fe_mat(’convert SITM’,pl);
pl=m_elastic(pl,’dbval -unit TM 102 steel’)

The default material is steel.

Material description

Then the commands, that a material function is expected to implement, are de-
scribed to let users develop their own material handling functions.

m elastic supports the following material subtypes

1 : standard isotropic

Standard isotropic materials are described by a row of the form

[MatID typ E nu rho G eta alpha T0]

390

with typ an identifier generated with the fe mat(’m elastic’,’SI’,1) command,
E (Young’s modulus), ν (Poisson’s ratio), ρ (density), G (shear modulus, set to
G = E/2(1 + ν) if equal to zero). η loss factor for hysteretic damping modeling. α
thermal expansion coefficient. T0 reference temperature.

2 : acoustic fluid

Acoustic fluid are described by a row of the form

[MatId typ rho C eta]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,2) command,
ρ (density), C (velocity) and η (loss factor). The bulk modulus is then given by
K = ρC2.

3 : 3-D anisotropic solid

3-D Anisotropic solid are described by a row of the form

[MatId typ Gij rho eta]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,3) command,
rho (density), eta (loss factor) and Gij a row containing

[G11 G12 G22 G13 G23 G33 G14 G24 G34 G44 ...
G15 G25 G35 G45 G55 G16 G26 G36 G46 G56 G66]

4 : 2-D anisotropic solid

3-D Anisotropic solid are described by a row of the form

[MatId typ E11 E12 E22 E13 E23 E33 rho eta a1 a2 a3]

with typ an identifier generated with the fe mat(’m elastic’,’SI’,4) command,
rho (density), eta (loss factor) and Eij elastic constants and ai anisotropic thermal
expansion coefficients.

m elastic, and all material handling functions, must support the following com-
mands

See also Section 5.1.4, section 7.3, fe mat, p shell

391

m piezo

Purpose Material function for piezoelectric solids

Syntax mat= m_elastic(’default’)
mat= m_elastic(’database name’)
pl = m_elastic(’dbval MatId name’);
pl = m_elastic(’dbval -unit TM MatId name’);

Description 

εx
εy
εz
γyz

γzx

γxy

Ex

Ey

Ez



=



N,x 0 0 0
0 N, y 0 0
0 0 N, z 0
0 N, z N, y 0

N, z 0 N,x 0
N, y N, x 0 0
0 0 0 N,x
0 0 0 N, y
0 0 0 N, z




u
v
w
φ

 (9.16)

p solid ConstPiezo supports integration constant building for piezo electric vol-
umes.

392

nasread

Purpose Read results from outputs of the MSC/NASTRAN finite element code.

Syntax out = nasread(’FileName’,’Command’)

Description The base nasread reads bulk data deck (NASTRAN input), results in the .f06 text
file (no longer supported).

The nas2up extension (part of the FEMLink extension of SDT) allows direct reading
of model and result information in OUTPUT2 files generated using NASTRAN
PARAM,POST,-i cards. This is the most efficient and accurate method to import
NASTRAN results for post-processing (visualization with feplot, normal model
handling with nor2ss, ...) or parameterized model handling with upcom. Available
commands are

Bulk file

model=nasread(’FileName’,’bulk’) reads NASTRAN bulk files for nodes (grid
points), element description matrix, material and element properties, and coordinate
transformations, MPC, SPC, DMIG, SETS, ...

Use ’BulkNo’ for a file with no BEGIN BULK card. Unsupported cards are displayed
to let you know what was not read. You can omit the ’bulk’ command when the
file name has the .dat or .bdf extension.

Each row of the bas.bas output argument contains the description of a coordinate
system.

The current element equivalence table is

393

nasread

NASTRAN SDT
CELAS1, CELAS2, RBAR

celas
RBE2

rigid
RBE3

rbe3 in Case
CONROD

bar1
CBAR, CBEAM, CROD

beam1
CBUSH

cbush
CSHEAR

quad4
CONM1, CONM2

mass2
CHEXA

hexa8, hexa20
CPENTA

penta6, penta15
CTETRA

tetra4, tetra10
CTRIA3, CTRIAR

tria3
CTRIA6

tria6
CQUAD4, CQUADR

quad4
CQUAD8

quadb

Details on properties are given under naswrite WritePLIL. NASTRAN Scalar points
are treated as standard SDT nodes with the scalar DOF being set to DOF .01 (this
has been tested for nodes, DMIG and MPC).

OUTPUT2 binary (FEMLink)

[model,out]=nasread(’FileName’,’output2’) reads output2 binary output for-
mat for tables, matrices and labels. You can omit the output2 command if the file
names end with 2. The output model is a model data structure described in sec-
tion 7.6. If deformations are present in the binary file, the are save in the model.def
field (see section 7.8).

The optional out argument is a cell array with fields the following fields

394

.name Header data block name (table, matrix) or label (label)

.dname
Data block name (table, matrix) or NASTRAN header (label)

.data
cell array with logical records (tables), matrix (matrix), empty (label)

.trl
Trailer (7 integers) followed by record 3 data if any (for table and ma-
trix), date (for label)

The basic nasread only reads integer valued tables. The nas2up extension to the
SDT provides translation for the following tables

GEOM1
nodes with support for local coordinates and output of nodes in global
coordinates

GEOM2
elements with translation to SDT model description matrix (see bulk
command).

GEOM4
translates constraints (MPC, OMIT, SPC) and rigid links (RBAR, RBE1,
RBE2, RBE3, RROD, ...) to SDT model description matrix

GPDT
with use of GPL and CSTM to obtain nodes in global coordinates

KDICT
reading of element mass (MDICT, MELM) and stiffness (KDICT,
KELM) matrix dictionaries and transformation of a type 3 su-
perelement handled by upcom. This is typically obtained from
NASTRAN with PARAM,POST,-4. To choose the file name use
Up.file=’FileName’;Up=nasread(Up,’Output2.op2’);

MPT
material property tables

OUG
transformation of shapes (modes, time response, static response, ...) to
.def field.

OES
tables of element stresses or strains.

This translation allows direct reading/translation of output generated with NAS-
TRAN PARAM,POST commands simply using out=nasread(’FileName.op2’). For
model and modeshapes, use PARAM,POST,-1. For model and element matrices use
PARAM,POST,-4 or PARAM,POST,-5 (see BuildUp command below).

BuildUp,BuildOrLoad (FEMLink)

A standard use of FEMLink is to import a model including element matrices to be
used later with upcom. You must first run NASTRAN SOL103 with PARAM,POST,-4
to generate the appropriate .op2 file (note that you must include the geometry in
the file that is not use PARAM,OGEOM,NO). Assuming that you have saved the bulk file
and the .op2 result in the same directory with the same name (different extension),

395

nasread

then

Up=nasread(’FileName.blk’,’buildup’)

reads the bulk and .op2 file to generate a superelement saved in FileName.mat.

It is necessary to read the bulk because linear constraints are not saved in op2 file
during the NASTRAN run. If you have no such constraints, you can read the .op2
only with Up=upcom(’load FileName);Up=nasread(Up,’FileName.op2’).

The BuildOrLoad command is used to generate the upcom file on the first run and
simply load it if it already exists.

nasread(’FileName.blk’,’BuildOrLoad’) % result in global variable Up

OUTPUT4 binary

out=nasread(’FileName’,’output4’) reads output4 binary output format for ma-
trices. The result out is a cell array containing matrix names and values stored as
Matlab sparse matrices.

All double precision matrix types are now supported. If you encounter any problem,
ask for a patch which will be provided promptly.

.f06 output (obsolete)

ASCII reading in .f06 files is slow and often generates round-off errors. You should
thus consider reading binary OUTPUT2 files, which is now the only supported
format.

nasread(’FileName’,’matprt’) reads matrix by (DMAP command MATPRT). Matri-
ces printed to an .f06 output file using the MATPRT command are read and saved in
global variables whose name is displayed.

nasread(’F’,’tabpt’) reads tables printed with the DMAP command TABPT). Tables
printed to a .f06 output file using the TABPT command are read and saved in
global variables whose name is displayed. Different records of the table are saved as
matrices named TabNameI (where I is the record number).

[mode,mdof,freq]=nasread(’FileName’,’realmodes’) reads normal mode anal-
ysis results (NASTRAN solution 103) from a .f06 output file. The frequencies (in
rad/s) are stored as a vector freq, the modes and corresponding DOF definition vec-
tor in mode and mdof. The matrices mode, mdof, and freq are returned as output
arguments of nasread as shown above.

396

[vector,mdof]=nasread(’filename’,’vectortype’)

reads vectors defined at nodes from a .f06 output file. Supported vectors are
displacement (displacement), applied load vector (oload) and grid point stress
(gpstress).

See also naswrite, ufread, nas2up, importing models

397

naswrite

Purpose Formatted ASCII output to MSC/NASTRAN bulk data deck. Most commands are
only supported with FEMLink.

Syntax naswrite(’FileName’,node,elt,pl,il)
naswrite(’FileName’,’command’, ...)
naswrite(fid,’command’, ...)

Description naswrite appends its output to the file FileName or creates it, if it does not exist.
You can also provide a handle fid to a file that you opened with fopen. fid=1 can
be used to have a screen output.

EditBulk

Supports bulk file editing. Calls take the form
nas2up(’EditBulk’,InFile,edits,Outfile), where InFile and OutFile are file
names and edits is a cell array with four columns giving command, begin tag, end
tag, and data. Accepted commands are

Before
inserts data before the BeginTag.

Remove
removes a given card. Warning this does not yet handle multiple
line cards.

Set
used to set parameter and assign values. For exampleSyntax
edits={’Set’,’PARAM’,’POST’,’-2’};
rootname=’my_job’;
f0={’OUTPUT4’,sprintf(’%s_mkekvr.op4’,rootname),’NEW’,40,’DELETE’,

’OUTPUT4’,sprintf(’%s_TR.op4’,rootname),’NEW’,41,’DELETE’};
edits(end+1,1:4)={’set’,’ASSIGN’,’’,f0}

model

naswrite(’FileName’,model) the nominal call, it writes everything possible : nodes,
elements, material properties, case information (boundary conditions, loads, etc.).
For example naswrite(1,femesh(’testquad4’)).

The following information present in model stack is supported

398

• curves as TABLED1 cards if some curves are declared in the model.Stack see
fe curve for the format).

• Fixed DOFs as SPC1 cards if the model case contains FixDof and/or KeepDof
entries. FixDof,AutoSPC is ignored if it exists.

• Multiple point constraints as MPC cards if the model case contains MPC entries.

• coordinate systems as CORDi cards if model.bas is defined (see basis for the
format).

The obsolete call naswrite(’FileName’,node,elt,pl,il) is still supported.

node,elt

You can also write nodes and elements using the low level calls but this will not
allow fixes in material/element property numbers or writting of case information.

femesh(’testquad4’)
fid=1 % fid=fopen(’FileName’);
naswrite(fid,’node’,FEnode)
naswrite(fid,’node’,FEnode)
%fclose(fid)

dmig

DMIG writting is supported through calls of the form naswrite(fid,’dmigwrite
NAME’,mat,mdof). For example

naswrite(1,’dmigwrite KAAT’,rand(3),[1:3]’+.01)

A ’nastran’,’dmig’ entry in model.Stack, where the data is a cell array where
each row gives name, DOF and matrix, will also be written. You can then add these
matrices to your model by adding cards of the form K2GG=KAAT to you NASTRAN
case.

job

NASTRAN job handling on a remote server from the Matlab command line is
partially supported. You are expected to have ssh and scp installed on your com-
puter. On windows, it is assumed that you have access to these commands using
CYGWIN. You first need to define your preferences

399

http://www.cygwin.com/

naswrite

setpref(’FEMLink’,’CopyFcn’,’scp’);
setpref(’FEMLink’,’RunNastran’,’NASTRAN’);
setpref(’FEMLink’,’RemoteShell’,’ssh’);
setpref(’FEMLink’,’RemoteDir’,’/tmp2/NASTRAN’);
setpref(’FEMLink’,’RemoteUserHost’,’user@myhost.com’)
setpref(’FEMLink’,’DmapDir’,fullfile(fileparts(which(’nasread’)),’dmap’))

You can then run a job using nas2up(’joball’,’BulkFileName.dat’). Other
commands are jobcpto that copies files to the remote directory and jobcprom which
fetches files.

You can define a job handler customized to your needs and still use the nas2up calls
for portability by defining setpref(’FEMLink’,’NASTRANJobHandler’,’FunctionName’)

Wop4

Matrix writing to OUTPUT4 format. You provide a cell array with one matrix per row,
names in first column and matrix in second column. The optional byte swapping
argument can be used to write matrices for use on a computer with another binary
format.

kv=speye(20);
ByteSwap=0; % No Byte Swapping needed
nas2up(’File.op4’,{’kv’,kv},ByteSwap);

For ByteSwap you can also specify ieee-le for little endian (Intel PC) or ieee-be
depending on the architecture NASTRAN will be running on.

WriteFreqLoad

edits=naswrite(’Target.bdf’,’WriteFreqLoad’,model) (or the equivalent nas2up
call when the file is already open as show below) writes loads defined in model (and
generated with Load=fe load(model)) as a series of cards. FREQ1 for load frequen-
cies, TABLED1 for the associated curve, RLOAD1 to define the loaded DOFs and DAREA
for the spatial information about the load. The return edits argument is the entry
that can be used to insert the associated subcase information in a nominal bulk.

The identifiers for the loads are supposed to be defined as Case.Stack{j1,end}.ID
fields.

% Generate a model with sets of point loads
model=demosdt(’Demo ubeam dofload noplot’)
% Define the desired frequencies for output

400

model=stack_set(model,’info’,’Freq’, ...
struct(’ID’,101,’data’,linspace(0,10,12)));

fid=1 % fid=fopen(’FileName’);
edits=nas2up(’writefreqload’,fid,model);
fprintf(’%s\n’,edits{end}{:}); % Main bulk to be modified with EditBulk
%fclose(fid)

Write[Curve,Set,SetC,Uset]

WriteCurve lets you easily generate NASTRAN curve tables.

WriteSet lets you easily generate NASTRAN node and elements sets associated
with node and element selection commands. WriteSetC formats the sets for use in
the case control section rather than the bulk.

WriteUset generates DOFs sets.

model=demosdt(’demogartfe’);
fid=1; % display on screen (otherwise use FOPEN to open file)
nas2up(’WriteSet’,fid,3000,model,’findnode x>.8’);
selections={’zone_1’,’group 1’;’zone_2’,’group 2:3’};
nas2up(’WriteSet’,fid,2000,model,selections);

curves={’curve’,’Sine’,fe_curve(’testsin -id1’,linspace(0,pi,10)),
’curve’,’Exp.’,fe_curve(’testexp -id100’,linspace(0,1,30))};

nas2up(’WriteCurve’,fid,curves)
DOF=feutil(’getdof’,model);
nas2up(’WriteUset U4’,fid,DOF(1:20))

WritePLIL

The WritePLIL is used to resolve identifier issues in MatId and ProId (elements
in SDT have both a MatId and an ProID while in NASTRAN they only have a
ProId with the element property information pointing to material entries). While
this command is typically used indirectly while writing a full model, you may want
to access it directly. For example

model=demosdt(’demogartfe’);
nas2up(’Writeplil’,1,model);

The implementation of p solid properties is somewhat different in NASTRAN and
SDT, thus for a il row giving

401

naswrite

[ProID type Coordm In Stress Isop Fctn]

In a NASTRAN Bulk file, In is either a string or an integer. If it is an integer, this
property is the same in il. If it is a string equal to resp. TWO or THREE, this property
is equal to resp. 2 or 3 in il.

In a NASTRAN Bulk file, Stress is either a string or an integer. If it is an integer,
this property is the same in il. If it is a string equal GAUSS, this property is equal
to 1 in il.

In a NASTRAN Bulk file, Isop is either a string or an integer. If it is an integer,
this property is the same in il. If it is a string equal FULL, this property is equal to
1 in il.

If Fctn is equal to FLUID in the NASTRAN Bulk file, it is equal to 1 in il and
elements are read as flui* elements.

See also nasread, ufread, ufwrite

402

nor2res, nor2ss, nor2xf

Purpose Transformations from normal mode models to other model formats.

Syntax [res,po,psib,cpsi] = nor2res(...)
RES = nor2res(...)

[a,b,c,d] = nor2ss (...)
SYS = nor2ss (...)

[xf,IDopt] = nor2xf (...)
XF(i) = nor2xf (... ,’struct’)
... = nor2.. (ga,om,pb,cp, ...)
... = nor2.. (DEF,ga,CASE, ...)
... = nor2ss (... , ind,fc,type)
... = nor2xf (... , w,ind,fc,type)

Description Normal mode models are second order models detailed in the theory section below.
nor2res, nor2ss, and nor2xf provide a number of transformations from the normal
mode form to residue, state-space, and transfer function formats.

The normal mode model is specified using either high level structure arguments
DEF,ga,Case or low level numeric arguments om,ga,pb,cp. Additional arguments
w,ind,fc,type can or must be specified depending on the desired output.

DEF,ga,CASE

The normal mode shapes are can be given in a DEF a structure with fields .def,
.DOF, .data (see section 7.8).

These mode shapes are assumed mass normalized and the first column of the .data
field is assumed to give modal frequencies in Hz. They can be computed with
fe eig or imported from an external FEM code (see section 5.5.1).

Damping (argument ga) can be declared in different ways

• modal damping ratio can be given in DEF.data(:,2)

• a vector damp of modal damping ratio can be given as the second argument

• a modal damping matrix ga can be given as the second argument. Note that
this modal damping matrix is assumed to use frequency units consistent with

403

nor2res, nor2ss, nor2xf

the specified frequencies. Thus a physical viscous damping matrix will need
to be divided by 2*pi (see demo fe).

• hysteretic modal damping is not systematically supported since it leads to
complex valued state-space models. You can compute FRFs with an hysteretic
modal damping model using

def.data=sqrt(real(def.data.^2)).*sqrt(1+i*damp*2);
IIxh=nor2xf(def,[],Case,w,’hz’);

as illustrated in section 2.3.2.

Inputs and outputs are described by a CASE (see section 5.2) or a model containing
a Case (see section 5.1). Giving the model is needed when inputs correspond to
distributed loads (FVol or FSurf case entries detailed under fe load). SensDof are
the only output entries currently supported (see fe case).

Note that DofSet entries are handled as acceleration inputs. The basis described
by DEF must allow a correct representation of these inputs. This can be achieved
by using a basis containing static corrections for unit displacements or loads on the
interface (see fe2ss CraigBampton or Free commands). A proper basis can also
be generated using acceleration inputs at single nodes where a large seismic mass is
added to the model. This solution is easier to implement when dealing with external
FEM codes.

Here is a sample call using this format

load sdt_gart;
Case=fe_case(’DofLoad’,’Force’,[4.03;55.03;2.03], ...

’SensDof’,’Sensors’,[4 55 30]’+.03);
DEF=struct(’def’,md0,’DOF’,mdof,’data’,f0);
IIw=linspace(5,70,500)’;
IIxf = nor2xf(DEF,.01,Case,IIw,’hz acc’);
IIpo=f0;iiplot

When using distributed loads (pressure, etc.), the model elements are needed to
define the load so that the model rather than a Case must be given as in the following
example

model = femesh(’testubeam plot’);
def=fe_eig(model,[106 20 10000 11 1e-5]);

%Pressure load

404

data=struct(’sel’,’x==-.5’, ...
’eltsel’,’withnode {z>1.25}’,’def’,1,’DOF’,.19);

model=fe_case(model,’addtocase’,’Fsurf’,’Surface load’,data)
%Sensors
model=fe_case(model,’addtocase’,’sensdof’,’Sensors’,[50:54]’+.03);

fe_case(model,’info’)

IIw=linspace(10,240,460)’;
IIxf=nor2xf(def,0.05,model,IIw,’hz’);
iiplot;

om,ga,pb,cp

Standard low level arguments om (modal stiffness matrix), ga (modal viscous damp-
ing matrix), pb (modal controlability) and cp (modal observability) used to describe
normal mode models are detailed in section section 2.2.

A typical call using this format

load sdt_gart
b = fe_c(mdof,[4.03;55.03])’; c = fe_c(mdof,[1 30 40]’+.03);
IIw=linspace(5,70,500)’;
IIxf = nor2xf(f0*2*pi,0.01,md0’*b,c*md0,IIw*2*pi);
IIpo=f0;iiplot

w,ind,fc,type

Other arguments are

w frequencies (in rad/s unless Hz is specified in type) where the FRF
should be computed (for nor2xf)

ind
(optional) gives the indices of modes to be retained

fc
(optional) roll-off frequency or correction mode poles for static cor-
rection modes (for load input only)

type
(optional) is a string that can contain. ’Hz’ to specify that w and
wj are given in Hz. Non diagonal om or ga are always given in rad/s.
’dis’, ’vel’, or ’acc’ are used to obtain displacement (default),
velocity or acceleration output. ’struct’ is used to obtain a struc-
ture compatible with database wrappers (see xfopt).

405

nor2res, nor2ss, nor2xf

res

nor2res returns a complex mode model in the residue form

[α(s)] =
2N∑
j=1

{cψj}
{
ψT

j b
}

s− λj
=

2N∑
j=1

[Rj]
s− λj

This routine is particularly useful to recreate results in the identified residue form
res for comparison with direct identification results from id rc.

Pole residue models are always assumed to correspond to force to displacement
transfer functions. Acceleration input or velocity, acceleration output specifications
are thus ignored.

ss

nor2ss returns state-space models (see the theory section below).

When no roll-off frequency is specified, nor2ss introduces a correction, for dis-
placement only, in the state-space models through the use of a non-zero d term.
If a roll-off frequency fc is given, the static correction is introduced in the state-space
model through the use of additional high frequency modes. Unlike the non-zero D
term which it replaces, this correction also allows to correct for velocity contributions
of truncated modes.

You can also specify fc as a series of poles (as many as inputs) given in the fre-
quency/damping format (see ii pof).

xf

nor2xf computes FRF (from u to y) associated to the normal mode model. When
used with modal frequencies freq and a subset of the modes (specified by a non
empty ind), nor2xf introduces static corrections for the truncated modes.

Theory

The basic normal mode form associated with load inputs [b] {u} is (see section 2.2)[
[I] s2 + [Γ] s+

[
Ω2
]]

NP×NP {(s)} =
[
φT b

]
NP×NA

{u(s)}NA×1

{y(s)} = [cφ]NS×NP {p(s)}NP×1

where the coordinates p are such that the mass is the identity matrix and the stiffness
is the diagonal matrix of frequencies squared.

406

The associated state-space model has the form{
ṗ (t)
p̈ (t)

}
=

[
[0] [I]

−
[
\Ω2

\
]
− [Γ]

]{
p (t)
ṗ (t)

}
+

[
0
φT b

]
{u(t)}

{y} = [cφ 0]

{
p (t)
ṗ (t)

}
+ [0] {u(t)}

When used with modal frequencies wj and a subset of the modes (specified by
ind), nor2ss introduces static corrections for the truncated modes. When request-
ing velocity or acceleration output, static correction can only be included by using
additional modes.

In cases with displacement output only, the static corrections are ranked by decreas-
ing contribution (using a SVD of the d term). You can thus look at the input shape
matrix b to see whether all corrections are needed.

nor2ss (and nor2xf by calling nor2ss) supports the creation of state-space models
of transmissibilities (transfer functions from acceleration input to displacement, ve-
locity or acceleration. For such models, one builds a transformation such that the
inputs ua associated with imposed accelerations correspond to states{

ua

qc

}
= [TI TC] {p}

and solves the fixed interface eigenvalue problem[
T T

C ΩTC − ω2
jCT

T
C ITC

]
{φjC} = {0}

leading to basis
[
TI T̂C

]
= [TI TC [φjC]] which is used to build the state space

model 
u̇
q̇C
ü
q̈C

 =

 [0] [I][
0

−T̂ T
C Ω

[
TI T̂C

]] [
0

−T̂ T
C Γ

[
TI T̂C

]]



u
qC
u̇
q̇C

+


0 0
0 0
0 I

T̂ T
C b T̂ T

C TI


{
uF

üa

}

{y} =
[
cTI cT̂C 0 0

]
ua

qC
u̇a

q̇C

+ [0]

{
uF

üa

}

407

nor2res, nor2ss, nor2xf

Simple adjustments lead to velocity and acceleration outputs.

When using acceleration input, care must be taken that the initial shapes of the
normal mode model form an appropriate basis. This can be achieved by using a
basis containing static corrections for unit displacements or loads on the interface
(see fe2ss CraigBampton or Free commands) or a seismic mass technique.

See also res2nor, id nor, fe c, psi2nor

demo fe

408

ofact

Purpose Factored matrix object.

Syntax ofact
ofact(’method MethodName’);
kd=ofact(k); q = kd\b; ofact(’clear’,kd);
kd=ofact(k,’MethodName’)

Description The factored matrix object ofact is designed to let users write code that is indepen-
dent of the library used to solve static problems of the form [K] {q} = {F}. For FEM
applications, choosing the appropriate library for that purpose is crucial. Depend-
ing on the case you may want to use full, skyline, or sparse solvers. Then whithin
each library you may want to specify options (direct, iterative, in-core, out-of-core,
parallel, ...).

Using the ofact object in your code, lets you specify method at run time rather
than when writing the code. Typical steps are

ofact(’method spfmex’); % choose method
kd = ofact(k); % create object and factor
static = kd\b % solve
ofact(’clear’,kd) % clear factor when done

For single solves static=ofact(k,b) performs the three steps (factor, solve clear)
in a single pass.

The first step of method selection provides an open architecture that lets users
introduce new solvers with no need to rewrite functions that use ofact objects.
Currently available methods are listed simply by typing

>> ofact

Available factorization methods for OFACT object
-> spfmex : SDT sparse LDLt solver

sp_util : SDT skyline solver
lu : MATLAB sparse LU solver

mtaucs : TAUCS sparse solver
pardiso : PARDISO sparse solver

chol : MATLAB sparse Cholesky solver
*psldlt : SGI sparse solver (NOT AVAILABLE ON THIS MACHINE)

409

ofact

and the method used can be selected with ofact(’method MethodName’).

The factorization kd = ofact(k); and resolution steps static = kd\b can be sep-
arated to allow multiple solves with a single factor. Multiple solves are essential
for eigenvalue and quasi-newton solvers. static = ofact(k)\b is of course also
correct.

The clearing step is needed when the factors are not stored as Matlab variables.
They can be stored in another memory pile, in an out-of-core file, or on another
computer/processor. Since for large problems, factors require a lot of memory.
Clearing them is an important step.

Historically the object was called skyline. For backward compatibility reasons, a
skyline function is provided.

umfpack

To use UMFPACK as an ofact solver you need to install it on your machine. This
code is availlable at www.cise.ufl.edu/research/sparse/umfpack.

spfmex

spfmex is a sparse multi-frontal solver based on spooles a compiled version is pro-
vided with SDT distributions.

sp util

The skyline matrix storage is a traditional form to store the sparse symmetric ma-
trices corresponding to FE models. For a full symmetric matrix kfull

kfull=[1 2
10 5 8 14

6 0 1
9 7

sym. 11 19
20]

The non-zero elements of each column that are above the diagonal are stored se-
quentially in the data field k.data from the diagonal up (this is known as the reverse
Jenning’s representation) and the indices of the elements of k corresponding to di-
agonal elements of the full matrix are stored in an index field k.ind. Here

k.data = [1; 10; 2; 6; 5; 9; 0; 8; 11; 7; 1; 14; 20; 19; 0]
k.ind = [1; 2; 4; 6; 9; 13; 15];

410

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.netlib.org/linalg/spooles/spooles.2.2.html

For easier manipulations and as shown above, it is assumed in the that the index
field k.ind has one more element than the number of columns of kfull whose value
is the index of a zero which is added at the end of the data field k.data.

If you have imported the ind and data fields from an external code, ks = ofact
(data, ind) will create the ofact object. You can then go back to the Matlab
sparse format using sparse(ks) (but this needs to be done before the matrix is
factored when solving a static problem).

Your solver To add your own solver simply add a file called MySolver utils.m in the @ofact
directory. This function must accept the commands detailed below.

Your object can use the fields .ty used to monitor what is stored in the object (0
unfactored ofact, 1 factored ofact, 2 LU, 3 Cholesky, 5 other), .ind, .data used to
store the matrix or factor in true ofact format, .dinv inverse of diagonal (currently
unused), .l L factor in lu decomposition or transpose of Cholesky factor, .u U factor
in lu decomposition or Cholesky factor, .method other free format information used
by the object method.

method

Is used to define defaults for what the solver does.

fact

This is the callback that is evaluated when ofact initializes a new matrix.

solve

This is the callback that is evaluated when ofact overloads the matrix left division
(\)

clear

clear is used to provide a clean up method when factor information is not stored
within the ofact object itself. For example, in persistent memory, in another process
or on an another computer on the network.

See also fe eig, fe reduc

411

p beam

Purpose Element property function for beams

Syntax il = p_beam(’default’)
il = p_beam(’database’,’name’)
il = p_beam(’dbval ProId’,’name’);
il = p_beam(’dbval -unit TM ProId name’);

Description This help starts by describing the main commands : p beam Database and Dbval.
Supported p beam subtypes and their formats are then described.

[Database,Dbval] ...

p beam contains a number of defaults obtained with p beam(’database’) or
p beam(’dbval MatId’). You can select a particular entry of the database with
using a name matching the database entries. You can also automatically compute
the properties of standard beams

circle r beam with full circular section of radius r
rectangle b h beam with full rectangular section of width b and

height h.

For example, you will obtain the section property row with EltId 100 associated
with a circular cross section of 0.05m or a rectangular 0.05 × 0.01m cross section
using

pro = p_beam(’database 100 rectangle .05 .01’)
il = p_beam(pro.il,’dbval 101 circle .05’)
il(end+1,1:6)=[102 fe_mat(’p_beam’,’SI’,1) 0 0 0 1e-5];
il = fe_mat(’convert SITM’,il);
il = p_beam(il,’dbval -unit TM 103 rectangle .05 .01’)

Beam format description and subtypes

Element properties are described by the row of an element property matrix or a data
structure with an .il field containing this row (see section 7.4). Element property
functions such as p beam support graphical editing of properties and a database of
standard properties.

For a tutorial on material/element property handling see section 5.1.4. For a pro-
grammers reference on formats used to describe element properties see section 7.4.

412

1 : standard

p beam currently only supports a single format (fe mat property subtype)

[ProID type J I1 I2 A k1 k2 Lump]

ProID element property identification number
type identifier obtained with fe mat(’p beam’,’SI’,1)
J torsional stiffness parameter (often different from polar moment

of inertia I1+I2)
I1 moment of inertia for bending plane 1 defined by a third node

nr or the vector vx vy vz. For a case with a beam along x and
plane 1 the xy plane I1 is equal to Iz =

∫
S y

2ds.
I2 moment of inertia for bending plane 2 (containing the beam

and orthogonal to plane 1.
A section area
k1 (optional) shear factor for motion in plane 1 (when not 0, a

Timoshenko beam element is used)
k2 (optional) shear factor for direction 2
lump (optional) request for lumped mass model

bar1 elements only use the section area. All other parameters are ignored.

beam1 elements use all parameters. Without correction factors (k1 k2 not given
or set to 0), the beam1 element is the standard Bernoulli-Euler 12 DOF element
based on linear interpolations for traction and torsion and cubic interpolations for
flexion (see Ref. [33] for example). When non zero shear factors are given, the
bending properties are based on a Timoshenko beam element with selective reduced
integration of the shear stiffness [53]. No correction for rotational inertia of sections
is used.

See also Section 5.1.4, section 7.4, fe mat

413

p shell

Purpose Element property function for shells

Syntax il = p_shell(’default’)
il = p_shell(’database ProId name’)
il = p_shell(’dbval ProId name’);
il = p_shell(’dbval -unit TM ProId name’);

Description This help starts by describing the main commands : p shell Database and Dbval.
Supported p shell subtypes and their formats are then described.

[Database,Dbval] ...

p shell contains a number of defaults obtained with the database and dbval com-
mands which respectively return a structure or a element property row. You can
select a particular entry of the database with using a name matching the database
entries.

You can also automatically compute the properties of standard shells with

kirchhoff e Kirchhoff shell of thickness e
mindlin e Mindlin shell of thickness e
laminate MatIdi Ti

Thetai

Specification of a laminate property by giving the dif-
ferent ply MatId, thickness and angle.

For example, you will obtain the element property row with EltId 100 associated
with a .1 thick Kirchhoff shell or the corresponding Mindlin plate use

il = p_shell(’database 100 MindLin .1’)
il = p_shell(’dbval 100 kirchhoff .1’)
il = p_shell(’dbval 100 laminate 110 3e-3 30 110 3e-3 -30’)
il = fe_mat(’convert SITM’,il);
il = p_shell(il,’dbval -unit TM 2 MindLin .1’)

For laminates, you specify for each ply the MatId, thickness and angle.

Shell format description and subtypes

Element properties are described by the row of an element property matrix or a data
structure with an .il field containing this row (see section 7.4). Element property

414

functions such as p shell support graphical editing of properties and a database of
standard properties.

For a tutorial on material/element property handling see section 5.1.4. For a pro-
grammers reference on formats used to describe element properties see section 7.4.

p shell currently only supports two subtypes

1 : standard isotropic

[ProID type f d 0 h k MID2 12I/T3 MID3 NSM Z1 Z2 MID4]

type identifier obtained with fe mat(’p shell’,’SI’,1)
f

0
default, for other formulations the specific help for each element (quad4, ...)

d -1 no drilling stiffness. The element DOFs are the standard translations and
rotations at all nodes (DOFs .01 to .06). The drill DOF (rotation .06 for
a plate in the xy plane) has no stiffness and is thus eliminated by fe mk if
it correspond to a global DOF direction. The default is d=1 (d is set to 1
for a declared value of zero).

d arbitrary drilling stiffness with value proportional to d is added. This stiff-
ness is often needed in shell problems but may lead to numerical conditioning
problems if the stiffness value is very different from other physical stiffness
values. Start with a value of 1.

h plate thickness
k k shear correction factor (default 5/6, default used if k is zero). This correction

is not used for formulations based on triangles since tria3 is a thin plate
element.

12I/T3 Ratio of bending moment of inertia to nominal T3/12 (default 1).
NSM Non structural mass per unit area.
MID2 unused
MID3 unused
z1,z2 (unused) offset for fiber computations
MID4 unused

Shell strain is defined by the membrane, curvature and transverse shear (use p shell(’ConstShell’)

415

p shell

to display. 

εxx

εyy

2εxy

κxx

κyy

2κxy

γxz

γyz


=



N,x 0 0 0 0
0 N, y 0 0 0

N, y N, x 0 0 0
0 0 0 0 −N,x
0 0 0 N, y 0
0 0 0 N,x −N, y
0 0 N,x 0 N
0 0 N, y −N 0





u
v
w
ru
rw


(9.17)

416

2 : composite

[ProID type Z0 NSM SB FT TREF GE LAM MatId1 T1 Theta1 SOUT1 ...]

ProID section property identification number
type identifier obtained with fe mat(’p shell’,’SI’,2)
Z0 distance from reference plate to bottom surface.
NSM non structural mass per unit area
SB allowable shear stress of the bonding material
FT Failure theory
TREF Reference temperature
GE Hysteretic loss factor
LAM Laminate type
MatIdi

MatId for ply i

Ti Thickness of ply i

Thetai Orientation of ply i

SOUTi Stress output request for ply i

Note that this subtype is based on the format used by NASTRAN for PCOMP but not
currently implemented in any element. You can use the DbvalLaminate commands
to generate standard entries.


N
M
Q

 =

 A B 0
B D 0
0 0 F




ε
κ
γ

 (9.18)

See also Section 5.1.4, section 7.4, fe mat

417

p solid

Purpose Element property function for solid elements

Syntax il=p_solid(’default’)
il=p_solid(’database ProId Value’)
il=p_solid(’dbval ProId Value’)
il=p_solid(’dbval -unit TM ProId name’);

Description This help starts by describing the main commands : p solid Database and Dbval.
Supported p solid subtypes and their formats are then described.

[Database,Dbval] ...

Element properties are described by the row of an element property matrix or a data
structure with an .il field containing this row (see section 7.4). Element property
functions such as p solid support graphical editing of properties and a database of
standard properties.

Accepted value in database are Full 2x2x2 and Reduced shear.

For a tutorial on material/element property handling see section 5.1.4. For a pro-
grammers reference on formats used to describe element properties see section 7.4.

Examples of database property construction

il=p_solid([100 fe_mat(’p_solid’,’SI’,1) 0 3 0 2], ...
’dbval 101 Full 2x2x2’);

il=fe_mat(’convert SITM’,il);
il=p_solid(il,’dbval -unit TM 2 Reduced shear’)

Subtype 1 : 3D volume element

[ProID type Coordm In Stress Isop Fctn]

418

ProID Property identification number
type Identifier obtained with fe mat(’p solid,’SI’,1)
Coordm Identification number of the material coordinates system
In Integration rule selection. See the result of integrule(ElemF,In).

Integration rule selection is only supported by the *b.m element
families. 0 selects the default for the element. -2 is integration at
nodes.

Stress Location selection for stress output (NOT USED)
Isop Integration scheme (will be used to select shear protection mechan-

ims)
Fctn Fluid element flag (this is a NASTRAN flag and will never be used

in OpenFEM)

p solid ConstSolid supports integration constant building for general elastic vol-
umes with strain defined by (see hexa8b constants)

εx
εy
εz
γyz

γzx

γxy





N,x 0 0
0 N, y 0
0 0 N, z
0 N, z N, y

N, z 0 N,x
N, y N, x 0




u
v
w

 (9.19)

and stress by
σx
σy
σz
σyz
σzx
σxy

=


d1,1N, x+d1,5N, z+d1,6N, y d1,2N, y+d1,4N, z+d1,6N, x d1,3N, z+d1,4N, y+d1,5N, x
d2,1N, x+d2,5N, z+d2,6N, y d2,2N, y+d2,4N, z+d2,6N, x d2,3N, z+d2,4N, y+d2,5N, x
d3,1N, x+d3,5N, z+d3,6N, y d3,2N, y+d3,4N, z+d3,6N, x d3,3N, z+d3,4N, y+d3,5N, x
d4,1N, x+d4,5N, z+d4,6N, y d4,2N, y+d4,4N, z+d4,6N, x d4,3N, z+d4,4N, y+d4,5N, x
d5,1N, x+d5,5N, z+d5,6N, y d5,2N, y+d5,4N, z+d5,6N, x d5,3N, z+d5,4N, y+d5,5N, x
d6,1N, x+d6,5N, z+d6,6N, y d6,2N, y+d6,4N, z+d6,6N, x d6,3N, z+d6,4N, y+d6,5N, x

{ u
v
w

}
Note that volume elements inherited from MODULEF order shear stresses differ-
ently σxy, σyz, σzx, in fe stres this is accounted for by the definition of the proper
TensorTopology matrix.

p solid ConstFluid supports integration constant building for acoustic volumes
with strain defined by (see flui4 constants)

p, x
p, y
p, z

 =

 N,x
N, y
N, z

{ p
}

(9.20)

Subtype 2 : 2D volume element

[ProId Type Form N In]

419

p solid

ProID Property identification number
type Identifier obtained with fe mat(’p solid,’SI’,2)
Form Formulation (0 plane strain, 1 plane stress, 2 axisymetric)
N Fourier harmonic for axisymetric elements that support it
In Integration rule selection. See the result of integrule(ElemF,In).

Integration rule selection is only supported by the *b.m element
families. 0 selects the default for the element. -2 is integration at
nodes.

See also Section 5.1.4, section 7.4, fe mat

420

p spring

Purpose Element property function for spring and rigid elements

Syntax il=p_spring(’default’)
il=p_spring(’database MatId Value’)
pl=p_spring(’dbval MatId Value’)
il=p_spring(’dbval -unit TM ProId name’);

Description This help starts by describing the main commands : p spring Database and Dbval.
Supported p spring subtypes and their formats are then described.

[Database,Dbval] ...

Element properties are described by the row of an element property matrix or a data
structure with an .il field containing this row (see section 7.4).

Examples of database property construction

il=p_spring(’database 100 1e12 1e4 0’)
il=p_spring(’dbval 100 1e12’)
il=fe_mat(’convert SITM’,il);
il=p_spring(il,’dbval -unit TM 2 xxx’)
p spring currently only supports one subtype

1 : standard

[ProID type k c b m]

ProID property identification number
type identifier obtained with fe mat(’p spring’,’SI’,1)
k stiffness value
m mass value
c viscous damping value
eta loss factor
S stress coefficient

2 : bush

NOT DOCUMENTED YET

See also Section 5.1.4, section 7.4, fe mat

421

perm2sdt

Purpose Read results from outputs of the PERMAS (V7.0) finite element code.

Syntax out = perm2sdt(’Read Model_FileName’)
out = perm2sdt(’Read Result_FileName’)
out = perm2sdt(’merge’,model)
out = perm2sdt(’binary.mtl Matrix_FileName’)
out = perm2sdt(’ascii.mtl Matrix_FileName’)

Description The perm2sdtfunction reads PERMAS model, result and matrices files. Binary and
ASCII files are supported.

Model files

To read a FE model, use the following syntax: model = perm2sdt(’Read FileName’)

To deal with sub-components, you may use the merge command.

The current element equivalence table is

SDT PERMAS
mass2 MASS3, MASS6, X1GEN6
bar1 FLA2
beam1 PLOTL2, BECOC, BECOS, BECOP, BETOP, BETAC, FD-

PIPE2, X2GEN6
celas SPRING3, SPRING6, SPRING1, X2STIFF3
t3p TRIM3
tria3 TRIA3, TRIA3K, TRIA3S, FSINTA3
quad4 QUAD4, FSINTA4, QUAD4S, PLOTA4, SHELL4
flui4 FLTET4
tetra4 TET4
tetra10 TET10
penta6 PENTA6, FLPENT6
hexa8 HEXE8, FLHEX8
pyra5 PYRA5, FLPYR5

Merging model

The merge command integrates subcomponents into the main model.

422

Result files

The syntax is

perm2sdt(’read result file’)

Matrix files

perm2sdtreads binary and ASCII .mtl file format. The syntax is

perm2sdt(’binary.mtl File.mtl’) for binary files and and

perm2sdt(’ascii.mtl File.mtl’) for ASCII files.

See also naswrite, ufread, importing models

423

psi2nor

Purpose Estimation of normal modes from a set of scaled complex modes.

Syntax [wj,ga,cps,pbs] = psi2nor(po,cp)
[wj,ga,cps,pbs] = psi2nor(po,cp,ncol,NoCommentFlag)

Description psi2nor should generally be used through id nor. For cases with as many and more
sensors than modes, psi2nor gives, as proposed in Ref. [5], a proper approximation
of the complex mode outputs cp= [c] [ψ] (obtained using id rm), and uses the then
exact transformation from complex to normal modes to define the normal mode
properties (modal frequencies wj, non-proportional damping matrix ga, input pbs=
[φ]T [b] and output cps= [c] [φ] matrices).

The argument ncol allows the user to specify the numbers of a restricted set of
outputs taken to have a collocated input (pbs=cps(ncol,:)’).

If used with less than four arguments (not using the NoCommentFlag input argu-
ment), psi2nor will display two indications of the amount of approximation intro-
duced by using the proper complex modes. For the complex mode matrix ψT (of
dimensions NT by 2NT because of complex conjugate modes), the properness condi-
tion is given by ψTψ

T
T = 0. In general, identified modes do not verify this condition

and the norm ‖ψTψ
T
T ‖ is displayed

The norm of psi*psi’ is 3.416e-03 instead of 0

and for well identified modes this norm should be small (10−3 for example). The
algorithm in psi2nor computes a modification ∆ψ so that ψ̃T = ψT +∆ψ verifies the
properness condition ψ̃T ψ̃

T
T = 0 . The mean and maximal values of abs(dpsi./psi)

are displayed as an indication of how large a modification was introduced

The changes implied by the use of proper cplx modes are
0.502 maximum and 0.122 on average

The modified modes do not necessarily correspond to a positive-definite mass matrix.
If such is not the case, the modal damping matrix cannot be determined and this
results in an error. Quite often, a non-positive-definite mass matrix corresponds to a
scaling error in the complex modeshapes and one should verify that the identification
process (identification of the complex mode residues with id rc and determination

424

of scaled complex mode outputs with id rm) has been accurately done.

Warnings The complex modal input is assumed to be properly scaled with reciprocity con-
straints (see id rm). After the transformation the normal mode input/output ma-
trices verify the same reciprocity constraints. This guarantees in particular that
they correspond to mass-normalized analytical normal modes.

For lightly damped structures, the average phase of this complex modal output
should be close to the −45o line (a warning is given if this is not true). In particular
a sign change between collocated inputs and outputs leads to complex modal outputs
on the +45o line.

Collocated force to displacement transfer functions have phase between 0 and −180o,
if this is not verified in the data, one cannot expect the scaling of id rm to be
appropriate and should not use psi2nor.

See also id rm, id nor, id rc, res2nor, nor2xf, nor2ss, the demo id demonstration

425

qbode

Purpose Frequency response functions (in the xf format) for linear systems.

Syntax xf = qbode(a,b,c,d,w)
xf = qbode(ss,w)
xf = qbode(num,den,w)
XF = qbode(... ,’struct’)

qbode(... ,’plot’)

Description For state-space models described by matrices a, b, c, d, or the LTI state-space object
sys (see Control System Toolbox), qbode uses an eigenvalue decomposition of a to
compute, in a minimum amount of time, all the FRF xf at the frequency points w

xf = [C] (s
[
\I\
]
− [A])−1 [B] + [D]

The result is stored in the xf format (see details page 40). .

qbode will not work if your model is not diagonalizable. A specific algorithm
was developed to deal with systems with rigid-body modes (double pole at zero as-
sociated to non-diagonalizable matrices). This algorithm will not, however, indicate
the presence of incoherent b and c matrices. In other cases, you should then use
the direct routines res2xf, nor2xf, etc. or the bode function of the Control System
Toolbox.

For the polynomial models num, den (see details page 39), qbode computes the FRF
at the frequency points w

xf =
num(jω)
den(jω)

Warnings • All the SISO FRF of the system are computed simultaneously and the complex
values of the FRF returned. This approach is good for speed but not always
well numerically conditioned when using state space models not generated by the
SDT.

• As for all functions that do not have access to options (IDopt for identifica-
tion and Up.copt for FE model update) frequencies are assumed to be given
in the mathematical default (rad/s). If your frequencies w are given in Hz, use
qbode(sys,w*2*pi).

426

• Numerical conditioning problems may appear for systems with several poles at
zero.

See also demo fe, res2xf, nor2xf, and bode of the Control System Toolbox

427

res2nor

Purpose Approximate transformation from complex residues to normal mode residue or pro-
portionally damped normal mode forms.

Syntax [Rres,po,Ridopt] = res2nor(Cres,po,Cidopt)
[wj,ga,cp,pb] = res2nor(Cres,po,Cidopt)

Description The contributions of a pair of conjugate complex modes (complex conjugate poles
λ and residues R) can be combined as follows

[R]
s− λ

+
[
R̄
]

s− λ̄
= 2

(sRe(R)) + (ζωRe(R)− ω
√

1− ζ2Im(R))
s2 + 2ζωs+ ω2

Under the assumption of proportional damping, the term sRe(R) should be zero.
res2nor, assuming that this is approximately true, sets to zero the contribution
in s and outputs the normal mode residues Rres and the options Ridopt with
Ridopt.Fit = ’Normal’.

When the four arguments of a normal mode model (see nor page 28) are used as
output arguments, the function id rm is used to extract the input pbs and output
cps shape matrices from the normal mode residues while the frequencies wj and
damping matrix ga are deduced from the poles.

Warning This function assumes that a proportionally damped model will allow an accurate
representation of the response. For more accurate results use the function id nor
or identify using real residues (id rc with IDopt.Fit=’Normal’).

See also id rm, id rc, id nor, res2ss, res2xf

428

res2ss, ss2res

Purpose Transformations between the residue res and state-space ss forms.

Syntax SYS = res2ss(RES)
SYS = res2ss(RES,’AllIO’)
[a,b,c,d] = res2ss(res,po,IDopt)
RES = ss2res(SYS)
[res,po,IDopt] = ss2res(a,b,c,d)

Description The functions res2ss and ss2res provide transformations between the complex /
normal mode residue forms res (see section 2.6) and the state space forms (see
section 2.4). You can use either high level calls with data structures or low level
calls providing each argument

demosdt(’demo gartid est’)
SYS = res2ss(XF(5));
RES = ss2res(SYS);
[a,b,c,d] = res2ss(XF(5).res,XF(5).po,XF(5).idopt);

Important properties and limitations of these transformations are

res2ss

• The residue model should be minimal (a problem for MIMO systems). The func-
tion id rm is used within res2ss to obtain a minimal model (see section 3.4.1).
To obtain models with multiple poles use id rm to generate new res and new po
matrices.

• IDopt.Reciprocity=’1 FRF’ or MIMO id rm then also constrains the system to
be reciprocal, this may lead to differences between the residue and state-space
models.

• The constructed state-space model corresponds to a displacement output.

• Low frequency corrections are incorporated in the state-space model by adding a
number (minimum of ns and na) of poles at 0.

Asymptotic corrections (see IDopt.ResidualTerms) other than the constant and
s−2 are not included.

• See below for the expression of the transformation.

• The ’AllIo’ input can be used to return all input/output pairs when assuming
reciprocity.

429

res2ss, ss2res

ss2res

• Contributions of rigid-body modes are put as a correction (so that the pole at
zero does not appear). A real pole at 0 is not added to account for contributions
in 1/s.

• To the exception of contributions of rigid body modes, the state-space model must
be diagonalizable (a property verified by state-space representations of structural
systems).

Theory For control design or simulation based on identification results, the minimal model
resulting from id rm is usually sufficient (there is no need to refer to the normal
modes). The state-space form is then the reference model form.

As shown in section 3.4.1, the residue matrix can be decomposed into a dyad formed
of a column vector (the modal output), and a row vector (the modal input). From
these two matrices, one derives the [B] and [C] matrices of a real parameter state-
space description of the system with a bloc diagonal [A] matrix{

ẋ1

ẋ2

}
=

 [0]
[
\I\
]

−
[
\ω2

j \

]
−
[
\2ζjωj\

] { x1

x2

}
+

{
B1

B2

}
{u(t)}

{y(t)} = [C1 C2]

{
x1

x2

}
where the blocks of matrices B1, B2, C1, C2 are given by{

C1j

C2j

}
= 1

ωj

√
1−ζ2

j

[
ωj

√
1− ζ2

j ζjωj

0 1

] [
Re (cψj)
Im (cψj)

]
{
Bj1

Bj2

}
= 2

[
Re
(
ψT

j b
)

Im
(
ψT

j b
)] [1 0

ζjωj −ωj

√
1− ζ2

j

]

Form the state space model thus obtained, FRFs in the xf format can be readily
obtained using qbode. If the state space model is not needed, it is faster to use
res2xf to generate these FRFs.

See also demo fe, res2xf, res2nor, qbode, id rm, id rc

430

res2tf, res2xf

Purpose Create the polynomial representation associated to a residue model.
Compute the FRF corresponding to a residue model.

Syntax [num,den] = res2tf(res,po,IDopt)
xf = res2xf(res,po,w,IDopt)
xf = res2xf(res,po,w,IDopt,RetInd)

Description For a set of residues res and poles po (see res page 37) , res2tf generates the
corresponding polynomial transfer function representation (see tf page 39)).

For a set of residues res and poles po, res2xf generates the corresponding FRFs
evaluated at the frequency points w. res2xf uses the options IDopt.Residual,
.DataType, AbscissaUnits, PoleUnits, FittingModel. (see idopt for details).

The FRF generated correspond to the FRF used for identification with id rc except
for the complex residue model with positive imaginary poles only IDopt.Fit=’Posit’
where the contributions of the complex conjugate poles are added.

For MIMO systems, res2tf and res2xf do not restrict the pole multiplicity. These
functions and the res2ss, qbode sequence are thus not perfectly equivalent. A
unit multiplicity residue model for which the two approaches are equivalent can be
obtained using the matrices new res and new po generated by id rm

[psib,cpsi,new_res,new_po]=id_rm(IIres,IIpo,IDopt,[1 1 1 1]);
IIxh = res2xf(new_res,new_po,IIw,IDopt);

The use of id rm is demonstrated in demo id.

See also res2ss, res2nor, qbode, id rm, id rc

431

rms

Purpose Computes the RMS response of the given frequency response function xf or auto-
spectra a to a unity white noise input over the frequency range w.

Syntax rm = rms(t,w)
rm = rms(a,w,1)

Description The presence of a third input argument indicates that an auto-spectrum a is used
(instead of frequency response function xf).

A trapezoidal integration is used to estimate the root mean squared response

rms =

√
1
2π

∫ ω2

ω1

|t(ω)|2dω =

√
1
2π

∫ ω2

ω1

a(ω)dω

If xf is a matrix containing several column FRF, the output is a row with the RMS
response for each column.

Warning If only positive frequencies are used in w, the results are multiplied by 2 to account
for negative frequencies.

See also ii cost

432

setlines

Purpose Line color and style sequencing utility.

Syntax setlines
setlines(ColorMap,LineSequence)
setlines(ColorMapName,LineSequence,MarkerSequence)

Description The M-by-3 ColorMap or ColorMapName (standard color maps such as jet, hsv,
etc.) is used as color order in place or the ColorMap given in the ColorOrder axis
property (which is used as a default).

The optional LineSequence is a matrix giving the linestyle ordering whose default
is [’- ’;’--’;’-.’;’: ’].

The optional MarkerSequence is a matrix giving the marker ordering. Its default is
empty (marker property is not set).

For all the axes in the current figure, setlines finds solid lines and modifies the
Color, LineStyle and Marker properties according the arguments given or the
defaults. Special care is taken to remain compatible with plots generated by feplot
and iiplot.

setlines is typically used to modify line styles before printing. Examples would be

setlines k
setlines([],’-’,’ox+*s’)
setlines(get(gca,’colororder’),’:’,’o+^>’)

433

sdplot

Purpose Curve plotting interface.

Syntax sdplot

This interface is the future replacement of iiplot. It does not currently have all
the functionality.

Axes[Scale,Lim]

These commands are used to specify default axes properties for the current sdplot
axis. Thus AxesScale xLin or AxesScale zLog, AxesLim xauto, AxesLim xManual
are acceptable commands.

AxSub

AxSub commands are used to determine axes that are displayed in the sdplot figure.

sdplot(uf,’axsub ’,’XF(1)’);

db[Append,DefaultXf]

db commands give access to the curve database in uf.dbase. uf.dbase.Stack is a
three column cell array where each row gives ’curve’,CurveName,Data.

sdplot(’DbDefaultXF’) appends pointers to the global variable XF used by iiplot.
Thus allowing a backward compatibility mode with iiplot.

GfCurrent

uf=sdplot(’ gfcurrent’) returns the contents of the current sdplot figure. uf is
a data structure with fields

Open

Show ...

Show commands are used to initialize basic plots and possibly toggle what is shown
in the current axis. The typical calls take the form

sdplot(’ShowFrf’,{’DatasetName1’,’DatasetName2’})

434

Basic plots are

frf
Basic frequency response function with response versus frequency,
x and y labels.

The following show commands toggle what is displayed in the current axis

abs
absolute value

imag
imaginary part

phase
wrapped phase

phaseu
unwrapped phase

real
real part (used to display real responses such as time traces)

rvsi
real versus imaginary (used for Nyquist plots in particular)

See also iiplot

435

sdtdef

Purpose Internal function used to handle default definitions.

Syntax sdtdef(’info’)
sdtdef(’ConstantName’,Value)
sdtdef(’ConstantName’)

Description For an exact list of current defaults use sdtdef(’info’). To reset values to factory
defaults use sdtdef(’factory’).

Values that you are likely to need changing are

avi cell array of default AVI properties, see the Matlab avifile com-
mand.

DefaultFeplot cell array of default feplot figure properties. For Matlab versions
earlier than 6.5, the OpenGL driver is buggy so you will typically
want to set the value with
sdtdef(’DefaultFeplot’,{’Renderer’ ’zbuffer’ ...

’doublebuffer’ ’on’})
epsl tolerance on node coincidence used by femesh, feutil. Defaults to

1e-6 which is generally OK except for MEMS applications, ...

The following Matlab preferences can also be used to customize SDT behavior for
your particular needs

436

SDT
DefaultZeta

Default value for the viscous damping ratio. The nominal value is
1e-2.

SDT
KikeMemSize

Memory in megabytes used to switch to an out-of-core saving of
element matrix dictionaries.

SDT
tempdir

can be used to specify a directory different than the tempdir re-
turned by Matlab. This is typically used to specify a faster local
disk.

SDT
OutOfCoreBufferSize

Memory in bytes used to decide switching to an out-of-core pro-
cedure. This is currently used by nasread when reading large
OUTPUT2 files.

FEMLink
TextUnix

set to 1 if text needs to be converted to UNIX (rather than DOS)
mode before any transfer to another machine.

FEMLink
NASTRAN

NASTRAN version. This is used to implement version dependent
writing of NASTRAN files.

437

sdth

Purpose Class constructor for SDT handle objects.

Description The Structural Dynamics Toolbox now supports SDT handles (sdth objects). Cur-
rently implemented types for sdth objects are

SDTRoot global context information used by the toolbox
IDopt identification options (see idopt)
FeplotFig feplot figure handle
IiplotFig iiplot figure handle
VectCor Vector correlation handle (see ii mac)
XF Database wrapper (see xfopt)

SDT handles are wrapper objects used to give easier access to user interface func-
tions. Thus IDopt displays a detailed information of current identification options
rather than the numeric values really used.

Only advanced programmers should really need access to the internal structure of
SDT handles. The fixed fields of the object are opt, type, data, GHandle (if the
sdth object is stored in a graphical object), and vfields.

Most of the information is stored in the variable field storage field vfields.

See also feplot, idopt, iiplot, ii mac, xfopt

438

sp util

Purpose Sparse matrix utilities.

Description This function should be used as a mex file. The .m file version does not support all
functionality, is significantly slower and requires more memory.

The mex code is not Matlab clean, in the sense that it often modifies input
arguments. You are thus not encouraged to call sp util yourself.

The following comments are only provided, so that you can understand the purpose
of various calls to sp util.

sp util with no argument returns its version number.

sp util(’ismex’) true if sp util is a mex file on your platform/path.

ind=sp util(’profile’,k) returns the profile of a sparse matrix (assumed to be
symmetric). This is useful to have a idea of the memory required to store a Cholesky
factor of this matrix.

ks=sp util(’sp2sky’,sparse(k)) returns the structure array used by the ofact
object.

ks = sp util(’sky dec’,ks) computes the LDL’ factor of a ofact object and re-
places the object data by the factor. The sky inv command is used for forward/backward
substitution (take a look at the @ofact\mldivide.m function). sky mul provides
matrix multiplication for unfactored ofact matrices.

k = sp util(’nas2sp’,K,RowStart,InColumn,opt) is used by nasread for fast
transformation between NASTRAN binary format and Matlab sparse matrix stor-
age.

k = sp util(’spind’,k,ind) renumbering and/or block extraction of a matrix.
The input and output arguments k MUST be the same. This is not typically accept-
able behavior for Matlab functions but the speed-up compared with k=k(ind,ind)
can be significant.

k = sp util(’xkx’,x,k) coordinate change for x a 3 by 3 matrix and DOFs of k
stacked by groups of 3 for which the coordinate change must be applied.

ener = sp util(’ener’,ki,ke,length(Up.DOF),mind,T) is used by upcom to com-
pute energy distributions in a list of elements. Note that this function does not
handle numerical round-off problems in the same way as previous calls.

439

sp util

k = sp util(’mind’,ki,ke,N,mind) returns the square sparse matrix k associated
to the vector of full matrix indices ki (column-wise position from 1 to N^2) and
associated values ke. This is used for finite element model assembly by fe mk and
upcom. In the later case, the optional argument mind is used to multiply the blocks
of ke by appropriate coefficients. mindsym has the same objective but assumes that
ki,ke only store the upper half of a symmetric matrix.

sparse = sp util(’sp2st’,k) returns a structure array with fields corresponding
to the Matlab sparse matrix object. This is a debugging tool.

440

stack get,stack set,stack rm

Purpose Stack handling functions.

Syntax [StackRows,index]=stack_get(Up,typ);
[StackRows,index]=stack_get(Up,typ,name);
Up=stack_set(Up,typ,name,val)
Up=stack_rm(Up,typ,name);
Up=stack_rm(Up,typ);
Up=stack_rm(Up,’’,name);

Description The .Stack field is used to store a variety of information, in a N by 3 cell array
with each row of the form {’type’,’name’,val} (see section 7.6 or section 7.7 for
example). The purpose of this cell array is to deal with an unordered set of data
entries which can be classified by type and name.

Since sorting can be done by name only, names should all be distinct although if the
types are different this is not an obligation.

Syntax Case.Stack={’DofSet’,’Point accel’,[4.03;55.03];
’DofLoad’,’Force’,[2.03];
’SensDof’,’Sensors’,[4 55 30]’+.03};

% Replace first entry
Case=stack_set(Case,’DofSet’,’Point accel’,[4.03;55.03;2.03]);
Case.Stack
% Add new entry
Case=stack_set(Case,’DofSet’,’P2’,[4.03]);
Case.Stack
% Remove entry
Case=stack_rm(Case,’’,’Sensors’);Case.Stack
% Get DofSet entries
[Val,ind]=stack_get(Case,’DofSet’)
% Access value
Case.Stack{ind(1),3}
Val{1,3}

441

ufread

Purpose Read from Universal Files.

Syntax ufread
UFS = ufread(’FileName’)
UFS = ufread(’FileList*.uff’)

Description The Universal File Format is a set of ASCII file formats widely used to exchange
analysis and test data. As detailed below ufread supports test related UFF (15 grid
point, 55 analysis data at node, 58 response data at DOF) and with the FEMLink
extension FEM related datasets.

ufread with no arguments opens a GUI to let you select a file and displays the result
using feplot and/or iiplot. UFS = ufread(’FileName’) returns either a FEM
model (if only model information is given) or a database wrapper UFS pointing to
the universal files present in FileName grouped by blocks of files read as a single
dataset in the SDT (all FRFs of a given test, all trace lines of a given structure,
etc.). You can specify a file list using the * character in the file name.

You get a summary of the database contents by displaying UFS

>> UFS

UFS = UFF Database Wrapper for file ’example.uff’

{1} [.Node (local) 107x7, .Elt (local) 7x156] : model
2 [.w (UFF) 512x1, .xf (UFF) 512x3] : response data
3 [.po (local) 11x2, .res (local) 11x318] : shape data

which indicates the content of each dataset in the database wrapper, the current
data set between braces { }, the type and size of the main data fields. For response
data (UFF type 58), the data is only imported when you refer to it (UFS(i) call)
but it is imported every time you do so unless you force loading into memory using
UFS(i)=UFS(i).

The UFS object gives you direct access to the data in each field. In the example
above, you can display the modeshapes using

cf = feplot;
cf.model = UFS(1);
cf.def = UFS(3);

442

When loading response data, you may want to transfer all options from the universal
file to the standard database wrapper XF using calls of the form XF(2)=UFS(3).

15 Grid point

Grid points stored in a node matrix (see node page 142) in a UFS(i).Node field.

The format is a (4I10,1P3E13.5) record for each node with fields
[NodeID PID DID GID x y z]
where NodeID are node numbers (positive integers with no constraint on order or
continuity), PID and DID are coordinate system numbers for position and displace-
ment respectively (this option is not currently used), GID is a node group number
(zero or any positive integer), and x y z are the coordinates.

55 Analysis data at node

Analysis data at nodes are characterized by poles .po and residues .res (corre-
sponding to DOFs .dof) and correspond to shape at DOF datasets in SDT database
wrappers (see more info under the xfopt help).

The information below gives a short description of the universal file format. You
are encouraged to look at comments in the ufread and ufwrite source codes if you
want more details.

443

ufread

Header1 (80A1). The UFF header lines are stored in the .header field
Header2 (80A1)
Header3 (80A1) DD-MMM-YY and HH:MM:SS with format (9A1,1X,8A1)
Header4 (80A1)
Header5 (80A1)
Fun (6I10) This is stored in the database wrapper .fun field

Model (0 Unknown, 1 Structural, 2 Heat Transfer, 3 Fluid Flow)

Analysis (0 Unknown, 1 Static, 2 Normal Mode, 3 Complex eigenvalue
first order, 4 Transient, 5 Frequency Response, 6 Buckling, 7 Complex
eigenvalue second order

Field 0 Unknown, 1 Scalar, 2: Tx Ty Tz, 3: Tx Ty Tz Rx Ry Rz, 4:
Sxx Sxy Syy Sxz Syz Szz, 5: Sxx Syx Szx Sxy Syy Szy Sxz Syz Szz

FieldType see list with xfopt(’ fieldtype’)

Format 2 Real, 5 Complex

NDV Number Of Data Values Per Node

SpeInt (8I10) NumberOfIntegers on this line (3-N are type specific),
NumberOfReals on the next line, SpeInt type specific integers (see table
below for details)

SpeRea Type specific real parameters
NodeID (I10) Node number
Data (6E13.5) Data At This Node : NDV Real Or Complex Values (real

imaginary for data 1, ...)
Records 9 And 10 Are Repeated For Each Node.

Type specific values depend on the Signification value and are stored in the .r55
field of the database wrapper.

444

0 Unknown [1 1 ID Number]
[0.0]

1 Static [1 1 LoadCase]
[0.0]

2 Normal model [2 4 LoadCase ModeNumber]

[FreqHz ModalMass DampRatioViscous DampRatioHysteretic]
3 Complex [2 6 LoadCase ModeNumber]

eigenvalue [ReLambda ImLambda ReModalA ImModalA ReModalB ImModalB]
4 Transient [2 1 LoadCase TimeStep]

[TimeSeconds]
5 Frequency [2 1 LoadCase FreqStepNumber]

response [FrequencyHz]
6 Buckling [1 1 LoadCase]

[Eigenvalue]

58 Function at nodal DOF

Functions at nodal DOF are characterized by frequencies w, a data set xf, as well as
other options. The information below gives a short description of the universal file
format. You are encouraged to look at comments in the ufread and ufwrite source
codes if you want more details. Functions at nodal DOFs are grouped by type and
stored in response data sets of UFS.

Information about how the UFF data is stored in SDT database wrappers can be
found in the xfopt help.

Header1 (80A1) Function description
Header2 (80A1) Run Identification
Header3 (80A1) Time stamp DD-MMM-YY and HH:MM:SS with format

(9A1,1X,8A1)
Header4 (80A1) Load Case Name
Header5 (80A1)
DOFID 2(I5,I10),2(1X,10A1,I10,I4)

with values FunType (list with xfopt(’ funtype’)), FunID, VerID,
LoadCase (0 single point),

ResponseGroup (NONE if unused, ResponseNodeID, ResponseDofID 1:6
correspond to SDT DOFs .01 to .06, -1:-6 to SDT DOFs .07 to .12

ReferenceGroup, ReferenceNodeID, ReferenceDofID 1:6. These are
only relevant if LoadCase is zero

445

ufread

DataForm (3I10,3E13.5)

DFormat (2 : real, single precision, 4 : real, double precision,
5 : complex, single precision, 6 : complex, double precision),
NumberOfDataPoints, XSpacing (0 - uneven, 1 - even (no abscissa val-
ues stored)), XMinimum (0.0 if uneven), XStep (0.0 if spacing uneven),
ZAxisValue (0.0 if unused)

XDataForm (I10,3I5,2(1X,20A1)) DataType (list with xfopt(’ datatype’)), lue
length unit exponents, fue force, tue temperature, AxisLabel,
AxisUnits
Note : exponents are used to define dimensions. Thus Energy (Force
* Length) has [fue lue tue]=[1 1 0]. This information is generally
redundant with DataType.

YNDataFormOrdinate (or ordinate numerator) Data Form (same as XDataForm
YDDataFormOrdinate Denominator Data Characteristics
ZDataForm Z-axis Data Characteristics
DataValue a series of x value (if uneven x spacing, always with format E13.5),

real part, imaginary part (if exists) with precision (E13.5 or E20.12)
depending on DFormat.

82, Trace Line

Trace Line matrix LDraw where each non-empty row corresponds to a line to be
traced. All trace lines, are stored as element groups of UFS(1).Elt.

LDraw can be used to create animated deformation plots using feplot.

Opt (3I10) LineNumber, NumberOfNodes, Color
Label (80A1) Identification for the line
Header3 (8I10) node numbers with 0 for discontinuities

(,1:2) [NumberOfNodes GroupID]
(,3:82) [LineName] (which should correspond to the group name)
(,83:end) [NodeNumbers] (NumberOfNodes of them, with zeros to break the line)

151, Header

Header stored as a string matrix header (with 7 rows).

446

780, 2412, Elements

These universal file formats are supported by the SDT FEMLink extension.

SDT UNV element (UNV Id)
beam1 rod (11), linear beam (21)
tria3 thin shell lin triangle (91), plane stress lin tri (41), plan strain

lin tri (51), flat plate lin triangle (74)
tria6 thin shell para tri (92), plane stress para tri (42), plane strain

para tri (51), flat plate para tri (62), membrane para tri (72)
quad4 thin shell lin quad (94), plane stress lin quad (44), plane strain

lin quad (54), flat plate lin quad (64), membrane lin quad (71)
quadb thin shell para quad (95), plane stress para quad (54), plane

strain para quad(55), flat plate para quad (65), membrane para
quad(75)

tetra4 solid lin tetra (111)
tetra10 solid para tetra (118)
penta6 solid lin wedge (112)
penta15 solid para wedge (113)
hexa8 solid lin brick (115)
hexa20 solid para brick (116)
rigid rigid element (122)
bar1 node-node trans spring (136), node-node rot spring (137)
mass2 lumped mass (161)

773, 1710 Material Database

These universal file formats are supported by the SDT FEMLink extension.

All materials properties are read, but obviously only those currently supported by the
SDT are translated to the corresponding row format (see m elastic and section 7.4).

772, 788, 789, 2437, Element Properties

These universal file formats are supported by the SDT FEMLink extension.

All element (physical) properties are read, but obviously only those currently sup-
ported by the SDT are translated to the corresponding row format (see p beam,
p shell, section 7.3).

447

ufread

2414, Analysis data

These universal file formats are supported by the SDT FEMLink extension.

Note that the list of FEMLink supported dataset is likely to change between manual
editions. Please get in touch with SDTools if a dataset you want to read is not
supported.

See also nasread, ufwrite, xfopt

448

ufwrite

Purpose Write to a Universal File.

Syntax ufwrite(FileName,UFS,i)
ufwrite(FileName,model)

Description You can export to UFF using the feplot and iiplot export menus.
ufwrite(FileName,UFS,i) appends the dataset i from a database wrapper UFS to
the file FileName. Database wrappers are described in the xfopt reference section.
ufwrite(FileName,model) can be used to export FEM models.

For datasets representing

• models, ufwrite writes a UFF of type 15 for the nodes and a trace line (UFF 82)
for test wire frames (all EGID negative) or without FEMLink. With FEMLink,
nodes are written in UFF 2411 format and elements in UFF 2412.

• response data, ufwrite writes a response at DOF (UFF 58) for each column of
the response set.

• shape data, ufwrite writes a data at nodal DOF (UFF 55) for each row in the
shape data set.

Starting from scratch, you define an empty database wrapper DB=xfopt(’empty’).
You can then copy data sets from the standard database wrapper XF (previously
initialized by iiplot or xfopt) using DB(i)=XF(j). You can also build a new data
set by giving its fields (see xfopt for the fields for the three supported dataset types).
The following would be a typical example

UF=xfopt(’empty’)
UF(1)={’node’,FEnode,’elt’,FEelt};
UF(2)={’w’,IIw,’xf’,IIxf};
UF(3)={’po’,IIres,’res’,IIres,’dof’,XFdof};

Once the database wrapper built, ufwrite(’NewFile’,UF,1:3) will write the three
datasets.

With iiplot, you can use the standard database wrapper XF to change properties
as needed then write selected datasets to a file. For example,

load gartid

449

ufwrite

iiplot
XF(1).x=’frequency’; % modify data set properties
XF(1).yn=’accele’;
iicom(’sub’); % reinitialize plot to check
st=fullfile(getpref(’SDT’,’tempdir’),’test.uf’);
ufwrite(st,XF,1);
XF(7)={’node’,FEnode,’elt’,FEelt};
ufwrite(st,XF,7);
UFS=ufread(FileName); % reread the UFF to check result

Note that you can edit these properties graphically in the iiplot properties ...
figure.

See also ufread, iiplot, nasread

450

upcom

Purpose User interface function for parameterized superelements.

Description The upcom interface supports type 3 superelements which handle parameterization
by storing element matrix dictionaries and thus allowing reassembly of mass and
stiffness matrices computed as weighted sums of element matrices (6.26).

By default, upcom uses a special purpose superelement stored in the global variable
Up. You can however use more than one type 3 superelement by providing the
appropriate variables as input/output arguments. upcom(’info’) applies to Up
whereas upcom(model,’info’) applies to model.

The par commands are used to dynamically relate the element matrix weights to
physical parameters thus allowing fairly complex parametric studies on families of
models. The main objective for upcom is to enable finite element model updating,
but it can also be used for optimization and all problems using with families of
models or hysteretic damping modeling as illustrated in section 2.3.2.

The following paragraphs detail calling formats for commands supported by upcom
and are followed by an explanation of the signification of the fields of Up (see the
commode help for hints on how to build commands and understand the variants
discussed in this help).

More details on how these commands are typically sequenced are given in the Tu-
torial section 6.3 and section 6.4.

The implementation of the upcom interface has undergone major revisions for SDT
5.0 so that it is not fully backward compatible. In particular the handling of param-
eters and the assemble calls have changed.

Commands
Clear, Load File , Save File

upcom(’clear’) clears the global variable Up. upcom(’load File’) loads the su-
perelement fields from File.mat and creates the file if it does not currently exist.
upcom(’save File’) makes sure that the current values of the various fields are
saved in File.mat. Certain commands automatically save the superelement but
efficiency mandates not to do it all the time. The working directory field Up.wd
lets you work in a directory that differs from the directory where the file is actually
located.

451

upcom

Assemble [,m,k] [,coef cur],[,delta i][,NoT][,Point]

[m,k] = upcom(’assemble’) returns the mass and stiffness parameters associated
with the parameters by the last parcoef command.

Assemble Coef cur uses the parameter values cur for the assembly. Assemble
CoefNone does not use any parameter definitions (all the element matrices are used
with a unit weighting coefficient). AssembleMind uses columns 5 and 6 of Up.mind
for element matrix coefficients.

Assemble Delta i assembles the derivative of matrices with respect to parameter
i. To assemple a derivative with non zero components on more than one parameter,
use [dm,dk]=upcom(’assemble delta’,dirp) where dirp (with Npar rows) char-
acterizes the amplitude of the derivative on each parameter for the current change.
dirp can for example be used to describe simultaneous changes in mass and stiffness
parameters.

k=upcom(’assemble k coef 2 3’) only assembles the stiffness with parameter co-
efficients set to 2 and 3. Similarly, dm=upcom(’assemble m delta 2’) will assemble
the mass derivative with respect to parameter 2.

The NoT modifier can be used to prevent the default projection of the matrices on
the master DOFs defined by the current case.

The Point modifier can be used return the v handle object pointing to the non as-
sembled matrix. This matrix can then be used in feutilb(’tkt’) and feutilb(’a*b’)
out of core operations.

ComputeMode [,full,reduced] [,eig opt]

[mode,freq] = upcom(’ComputeMode’) assembles the model mass and stiffness
based on current model parameters (see the parcoef command) and computes
modes. The optional full or reduced can be used to change the current default (see
the opt command). The optional eig opt can be used to call fe eig with options
other than the current defaults (see the opt command).

upcom(’load GartUp’);
def = upcom(’computemode full 105 10 1e3’);

For reduced model computations, the outputs are [moder,freq,modefull].

ComputeModal [,full,reduced]

452

[IIxe,mode,freq]=upcom(’ComputeModal’,damp,b,c,IIw) computes the normal
modes and static corrections for inputs b of the full or reduced order models based
on the full or reduced model. nor2xf is then used to compute the frequency re-
sponse associated with the input shape matrix b (using full order model DOFs),
the output shape matrix c and the frequency points given in IIw (units specified in
UP.copt(1,3), set with the OptUnit command).

ComputeFRF

[IIxe]=upcom(’ComputeFrf’,b,c,IIw) computes FRFs associated the input shape
matrix b (using full order model DOFs), the output shape matrix c and the frequency
points given in IIw (units specified in Up.copt(1,3)). It does not compute modes
and is thus faster than ComputeModal for a full order model and a few frequency
points.

Ener [m, k]

ener = upcom(’ener k’,def) computes the strain energy in each element for the
deformations def. ener is a data structure with fields .IndInElt specifying the
element associated with each energy row described in the .data field. You can
display the kinetic energy in an arbitrary element selection of a structure, using a
call of the form

cf.sel={’group6’,’colordata elt’,upcom(’ener m’,’group6’,mode)};

Fix

upcom(’fix0’) eliminates DOFs with no stiffness contribution. upcom(’fix’,adof)
only retains DOFs selected by adof.

This command is rather inefficient and you should eliminate DOFs with FixDOF case
entries (see fe case) or assemble directly with the desired DOFs (specify adof in
the SetNominal command).

Get

Information about the superelement is stored in fields of the global variable Up. The
easiest way to access those fields is to make the variable local to your workspace (use
global Up) and to access the fields directly. The superelement also has pseudo-
fields mi,me,ki,ke which are always stored in Up.file. Commands of the form
load(Up.file,’ke’) are used to get them.

453

upcom

femesh

upcom femesh copies Up.Elt to FEelt and Up.Node to FEnode so that femesh com-
mands can be applied to the model.

IndInElt

upcom(’IndInElt’) returns a vector giving the row position in Up.Elt of each row
in Up.mind. This is in particular used for color coded energy plots which should
now take the form

feplot(’ColorDataElt’,upcom(’eners’,res),upcom(’indinelt’));

Although it is typically easier to use high level calls of the form

upcom(’plotelt’); cf=feplot;model=femesh(’test 2bay’);
cf.sel={’groupall’,’colordata enerk’};

Info [,par,elt]

upcom(’info’) prints information about the current content of Up: size of full and
reduced model, values of parameters currently declared, types, etc.

InfoPar details currently defined parameters. InfoElt details the model.

Opt

upcom(’opt Name Value ’) sets the option Name to a given Value. Thus upcom
(’opt gPrint 11’) sets the general printout level to 11 (maximum). Accepted
names and values are detailed in the Up.copt field description below.

Par Coef

The value of each physical parameter declared using ParStack commands is de-
scribed by a row of coefficients following the format

[type cur min max vtype]

Accepted parameter types are the following

454

1 stiffness proportional to parameter value. This is the case for a variable
Young’s modulus.

2 mass proportional to parameter. This is the case for a variable mass density.
3 variable thickness. Currently only valid for quad4 and quadb elements.

tria3 elements can be handled with degenerate quad4. Element groups with
variable thickness must be declared at assembly (SetNominal command).

The following columns are current, min, max and nominal values. vtype deals with
the type of variation 1 (linear), 2 (log not implemented yet).

upcom(’parcoef’,cur) is used to set current values (cur must be a vector of
length the number of declared parameters), while upcom(’parcoef’,par) also sets
min, max and vtype values. You can also use [cur,par]=upcom(’parcoef’) or
par=upcom(’parcoefpar’) to obtain current values or the parameter value matrix.

A parameter initialization would thus be as follows (but type specification with
ParStackAdd commands is the preferred strategy)

upcom(’load GartUp’);
upcom(’ParStackreset’)
upcom(’ParStackadd k’,’Tail’,’group3’);
upcom(’ParStackadd t’,’Constrained Layer’,’group6’);
par = [1 1.0 0.1 3.0 1

3 1.0 0.1 3.0 1];
upcom(’parcoef’,par);
upcom(’info par’);
[cur,par]=upcom(’parcoef’)

Note that to prevent user errors, upcom does not allow parameter overlap for the
same type of matrix (modification of the modulus and/or the thickness of the same
element by two distinct parameters).

ParRed

upcom(’par red’,T) projects the current full order model with the currently de-
clared parameters on the basis T. Typical reduction bases are discussed in sec-
tion 6.1.7 and an example is shown in the gartup demo. Matrices to be projected
are selected based on the currently declared variable parameters in such a way that
projected reduced model is able to make predictions for new values of the parame-
ters.

455

upcom

ParStack [add type values,reset]

These commands allow the creation of a parameter definition stack. Each parameter
is given a type (k for stiffness, m for mass, t for thickness) optional current, min and
max values, a name, and an element selection command.

upcom(’load GartUp’);
upcom(’ParStackreset’)
upcom(’ParStackadd k 1.0 0.5 2.0’,’Tail’,’group3’);
upcom(’ParStackadd t 1.0 0.9 1.1’,’Constrained Layer’,’group6’);
upcom(’parcoef’,[1.2 1.3]);
upcom(’info par’);

upcom(’ParStackreset’) reinitializes the parameter stack. In the example, the
current parameter values are modified using the ParCoef command.

Parameters are stored in the current case stack which you can select with
[Case,name]=fe_case(Up,’getcase’);
des=stack_get(Case,’par’);

des is a cell array where each row has the form {’par’,’name’,data} with data
containing fields

.sel string or cell array allowing selection of elements affected by the param-
eter

.coef vector of parameter coefficients (see format description under the upcom
ParCoef command).

.pdir Boolean vector giving the positions of affected elements in Up.mind

ParTable

tt=upcom(’partable’) returns a cell array of string describing the parameters cur-
rently declared. This cell array is useful to generate formatted outputs for inclusion
in various reports using comstr(tt,-17,’excel’) for example.

PlotElt

upcom plotelt initializes a feplot figure displaying the model in upcom. If Up has
deformations defined in a .def field, these are shown using cf=feplot;cf.def=Up.

Profile [,fix]

Renumbers DOFs and pseudo-fields mi,me,ki,ke using symrcm to minimize matrix
bandwidth. ProfileFix eliminates DOFs with no stiffness on the diagonal at the

456

same time. upcom(’ProfileFix’,fdof) profiles and eliminates DOFs in fdof and
DOFs with no stiffness on the diagonal.

Support for case entries (see fe case) makes this command obsolete.

SensMode [,reduced]

[fsen,mdsen,mode,freq] = upcom(’SensMode’,dirp,indm,T) returns frequency
and modeshape sensitivities of modes with indices given in indm for modifications
described by dirp.

For a model with NP parameters (declared with the ParStack commands), dirp is
a matrix with Npar rows where each column describe a case of parameter changes of
the form par = dirp(:,j). The default for dirp the identity matrix (unit change
in the direction of each parameter).

The optional argument T can be used to give an estimate of modeshapes at the
current design point. If T is given the modes are not computed which saves time but
decreases accuracy if the modes are not exact.

fsen gives, for modes indm, the sensitivities of modal frequencies squared to all
parameters (one column of fSen per parameter). mdsen stores the modeshape sen-
sitivities sequentially (sensitivities of modes in indm to parameter 1, parameter 2,
...).

When modeshape sensitivities are not desired (output is [fsen] or [fsen, mode,
freq]), they are not computed which takes much less computational time.

By default SensMode uses the full order model. The first order correction to the
modal method discussed in Ref. [38] is used. You can access the reduced order
model sensitivities using SensModeReduced but should be aware that accuracy will
then strongly depend on the basis you used for model reduction (ParRed command).

SetNominal [, t groups]

upcom(’setnominal’,model) assembles the element mass and stiffness in Up.file
for later reassembly using the Assemble command. Case information (boundary
conditons, ... see fe case) in model is saved in Up.Stack and will be used in
assembly unless the NoT modifier is included in the Assemble command.

If the parameter that will be declared using the ParStack commands include thick-
ness variations of some plate/shell elements, the model will use element sub-matrices.
You thus need to declare which element groups need to have a separation in element
submatrices (doing this separation takes time and requires more final storage mem-

457

upcom

ory so that it is not performed automatically). This declaration is done with a
command of the form SetNominal T groups which gives a list of the groups that
need separation.

Obsolete calling formats upcom(’setnominal’,FEnode,FEelt,pl,il) and upcom(’setnominal’,FEnode,FEelt,pl,il,[],adof)
(where the empty argument [] is used for coherence with calls to fe mk) are still
supported but you should switch to using FEM model structures.

Fields of Up Up is a generic superelement (see description under fe super) with additional fields
described below. The Up.Opt(1,4) value specifies whether the element matrices are
symmetric or not.

Up.copt

The computational options field contains the following information

(1,1:7) = [oMethod gPrint Units Wmin Wmax Model Step]

oMethod optimization algorithm used for FE updates
1: fmins of Matlab (default)
2: fminu of the Optimization Toolbox
3: up min

gPrint printout level (0 none to 11 maximum)
Units for the frequency/time data vector w and the poles

01: w in Hertz 02: w in rad/s 03: w time seconds
10: po in Hertz 20: po in rad/s
example: Up.copt(1,3) = 12 gives w in rad/sec and po in Hz

Wmin index of the first frequency to be used for update
Wmax index of the last frequency to be used for update
Model flag for model selection (0 full Up, 1 reduced UpR)
Step step size for optimization algorithms (foptions(18))

(2,1:5) = [eMethod nm Shift ePrint Thres MaxIte]

are options used for full order eigenvalue computations (see fe eig for details).

(3,1) = [exMethod]

exMethod expansion method (0: static, 1: dynamic, 2: reduced basis dynamic, 3:
modal, 4: reduced basis minimum residual)

458

Up.mind, Up.file, Up.wd, mi, me, ki, ke

Up stores element submatrices in pseudo-fields mi,me,ki,ke which are loaded from
Up.file when needed and cleared immediately afterwards to optimize memory us-
age. The working directory Up.wd field is used to keep tract of the file location even
if the user changes the current directory. The upcom save command saves all Up
fields and pseudo-fields in the file which allows restarts using upcom load.

Up.mind is a NElt x6 matrix. The first two columns give element (sub-)matrix start
and end indices for the mass matrix (positions in mi and me). Columns 3:4 give
element (sub-)matrix start and end indices for the stiffness matrix (positions in ki
and ke). Column 5 (6) give the coefficient associated to each element mass (stiffness)
matrix. If columns 5:6 do not exist the coefficients are assumed equal to 1. The
objective of these vectors is to optimize model reassembly with scalar weights on
element matrices.

Up.Node, Up.Elt, Up.pl, Up.il, Up.DOF, Up.Stack

Model nodes (see section 7.1), elements (see section 7.2), material (see section 7.3)
and element (see section 7.4) property matrices, full order model DOFs. These
values are set during the assembly with the setnominal command.

Up.Stack contains additional information. In particular parameter information (see
upcom par commands) are stored in a case (see section 7.7) saved in this field.

Up.sens

Sensor configuration array built using fe sens. This is used for automatic test /
analysis correlation during finite element update phases.

See also fesuper, up freq, up ixf

459

up freq, up ifreq

Purpose Sensitivity and iterative updates based on a comparison of modal frequencies.

Syntax [coef,mode,freq]=up_freq(’Method’,fID,modeID,sens);
[coef,mode,freq]=up_ifreq(’Method’,fID,modeID,sens);

Description up freq and up ifreq seek the values coef of the currently declared Up parameters
(see the upcom ParStack command) such that the difference between the measured
fID and model normal mode frequencies are minimized.

Currently ’basic’ is the only Method implemented. It uses the maximum MAC
(see ii mac) to match test and analysis modes. To allow the MAC comparison
modeshapes. You are expected to provide test modeshapes modeID and a sensor
configuration matrix (initialized with fe sens).

The cost used in both functions is given by

norm(new_freq(fDes(:,1))-fDes(:,2))/ norm(fDes(:,2))

up freq uses frequency sensitivities to determine large steps. As many iterations as
alternate matrices are performed. This acknowledges that the problem is really non-
linear and also allows a treatment of cases with active constraints on the coefficients
(minimum and maximum values for the coefficients are given in the upcom ParStack
command).

up ifreq uses any available optimization algorithm (see upcom opt) to minimize the
cost. The approach is much slower (in particular it should always be used with a
reduced model). Depending on the algorithm, the optimum found may or may not
be within the constraints set in the range given in the upcom ParStack command.

These algorithms are very simple and should be taken as examples rather than truly
working solutions. Better solutions are currently only provided through consulting
services (ask for details at info@sdtools.com).

See also up ixf, up ifreq, fe mk, upcom

460

up ixf

Purpose Iterative FE model update based on the comparison of measured and predicted
FRFs.

Syntax [jump]=up_ixf(’basic’,b,c,IIw,IIxf,indw)

Description up ixf seeks the values coef of the currently declared Up parameters (see the upcom
ParStack command) such that the difference Log least-squares difference (4.5) be-
tween the desired and actual FRF is minimized. Input arguments are

method Currently ’basic’ is the only Method implemented.
range a matrix with three columns where each row gives the minimum, max-

imum and initial values associated the corresponding alternate matrix
coefficient

b,c input and output shape matrices characterizing the FRF given using
the full order model DOFs. See section 2.1.

IIw selected frequency points given using units characterized by
Up.copt(1,3)

IIxf reference transfer function at frequency points IIw
indw indices of frequency points where the comparison is made. If empty all

points are retained.

Currently ’basic’ is the only Method implemented. It uses the maximum MAC
(see ii mac) to match test and analysis modes. To allow the MAC comparison
modeshapes. You are expected to provide test modeshapes modeID and a sensor
configuration matrix (initialized with fe sens).

up ixf uses any available optimization algorithm (see upcom opt) to minimize the
cost. Depending on the algorithm, the optimum found may or may not be within
the constraints set in the range given in the upcom ParStack command.

This algorithm is very simple and should be taken as an example rather than an truly
working solution. Better solutions are currently only provided through consulting
services (ask for details at info@sdtools.com).

See also up freq, upcom, fe mk

461

v handle

Purpose Class constructor for variable handle objects.

Description The Structural Dynamics Toolbox now supports variable handle objects. Which
act as pointers to variables that are actually stored as global variables, user data of
graphical objects, or in files.

v handle objects are used to

• allow context dependent reference to a single Matlab variable

• provide a graphic callback when modifying the object in a function or the
command line.

v handle objects essentially behave like global variables with the notable exception
that a clear command only deletes the handle and not the pointed data.

Only advanced programmers should really need access to the internal structure of
v handle.

See also SDT handle

462

xfopt

Purpose User interface for database wrapper objects.

Syntax xfopt command
XF(i).FieldName=FieldValue
XF(i).command=’value’
XF.check
XF.save=’FileName’

Description Database wrapper are based on SDT handles and used to access multiple sets
of data. Database wrapper both contain information and point to other global
variables. Thus, a database wrapper with

XF (global variable) = Database Wrapper (SDT Handle object)
{1} [.w (IIw) 500x1, .xf (IIxf) 500x10] : response (general)

indicates that XF(1).w is actually the global variable IIw.

iicom, idcom, and iiplot use the standard global variable XF as a common database
wrapper (see iiplot). ufread and ufwrite also use database wrappers.

A database wrapper stores, or points to, response data in the xf format (see sec-
tion 2.8), modes in the pole residue format (see section 2.6), or finite element models
(see section 7.1 and section 7.2). The information stored for each of these data sets
is detailed below.

Check, Info, Save

XF.check verifies the consistency of information contained in all data sets and makes
corrections when needed. This is used to fill in information that may have been left
blank by the user.

disp(XF) gives general information about the datasets. XF(i).info gives detailed
and formatted information about the dataset in XF(i). XF(i) only returns the
actual dataset contents.

XF.save=’FileName’ saves the database wrapper as well as global variables pointed
at.

463

xfopt

XF(i).FieldName=FieldValue

xfopt supports field overload for database wrappers. This means that consistency
checks are performed before actually setting a field. This is illustrated by the fol-
lowing example
iiplot
XF(1)
XF(1).x=’time’; XF(1).x
XF(1).w=[1:10]’;
IIw

XF(1) is a response dataset (with abscissa in field .w, responses in field .xf, ...).

XF(1).x=’time’ sets the XF(1).x field which contains a structure describing its
type. Notice how you only needed to give the ’time’ argument to fill in all the
information. The list of supported axis types is given using xfopt(’ datatype’)

XF(1).w=[1:10]’ sets the XF(1).w field. But since, XF(1).w contains the string
’IIw’, the data is actually stored in the global variable IIw.

FunType, DataType, FieldType

xfopt FunType returns the current list of function types (given in the format spec-
ification for Universal File 58).
label=xfopt(’ FunType’,type) and type=xfopt(’ FunType’,’label’) are two
other accepted calls.

xfopt DataType returns the current list of data types (given in the format speci-
fication for Universal File 58). xfopt(’ DataType’,type) and
xfopt(’ DataType’,’label’) are two other accepted calls.

For example XF.x.label=’Frequency’ or XF.x=18.

Data types are used to characterize axes (abscissa (x), ordinate numerator (yn),
ordinate denominator (yd) and z-axis data (z)). They are characterized by the
fields
.type four integers describing the axis function type fun (see list with

xfopt(’ datatype’)), length, force and temperature unit exponents
.label a string label for the axis
.unit a string for the unit of the axis

xfopt FieldType returns the current list of field types.

464

Response data

Response data sets correspond to sets of universal files of type 58 and are charac-
terized by the fields

.w abscissa values

.xf response data (one column per response)

.dof characteristics of individual responses (one row per column in the re-
sponse data as detailed below)

.fun general data set options, contain [FunType DFormat NPoints
XSpacing Xmin XStep ZValue] as detailed in the ufread section on
file format 58.

.idopt options used for identification related routines (see idopt)

.header header (5 text lines with a maximum of 72 characters)

.x abscissa description (see xfopt(’ datatype’))

.yn numerator description (see xfopt(’ datatype’))

.yd denominator description (see xfopt(’ datatype’))

.z third axis description (see xfopt(’ datatype’))

.group (optional) cell array containing DOF group names

.load (optional) loading patterns used in the data set

While the xf format (w and xf fields, see xf page 40) contain all the information
needed to characterize the system dynamics, other data is needed to know its physical
meaning. The other database wrapper fields describe this information.

DOF/channel dependent options describe characteristics of particular responses of
a MIMO data set. The dof field contains one row per response/DOF with the
following information

[RespNodeID.RespDOFID ExciNodeID.ExciDOFID Address ...
RespGroupID ExciGroupID FunID LoadCase ZaxisValue]

Standard DOF definitions of the form NodeID.DOFID are introduced in section 7.5.
Addresses are integer numbers used to identify columns of xf matrices. Sensor /
actuator groups are correspond to the group names given in the group field (this is
really only supported by ufread). In the standard database wrapper XF, the default
value for the .dof field is ’XFdof’ so that the standard global variable XFdof is
used.

The idopt field is used to point to identification options used on the data set. The
usual value for this field is ’IDopt’ so that the options stored in the standard global
variable IDopt are used.

465

xfopt

The Group field is used to associate a name to the group identification numbers
RespGroupID ExciGroupID defined in the .dof columns 4 and 5. These names are
saved by ufwrite but currently not used in other parts of the SDT.

The load field describes loading cases by giving addresses of applied loads in odd
columns and the corresponding coefficients in even columns. This field is used in
test cases with multiple correlated inputs.

Shapes at DOFs

Shapes at DOFs is used to store modeshapes, time responses defined at all nodes,
... and are written to universal file format 55 (response at nodes) by ufwrite. The
fields used for such datasets are
.po pole values, time steps, frequency values ...

For poles, see ii pof which allows conversions between the different
pole formats.

.res residues / shapes (one row per shape). Residue format is detailed in sec-
tion 2.8.

.dof characteristics of individual responses (one row per column in the shape
data). This field has the same format as response data .dof fields
described above.

.fun function characteristics (see ufread type 58)

.header header (5 text lines with a maximum of 72 characters)

.idopt identification options. This is filled when the data structure is obtained
as the result of an idcom call.

.label string describing the content

.lab in optional cell array of names for the inputs

.lab out optional cell array of names for the outputs

.group optional cell group names

FEM / wire-frame model

FEM / wire-frame models are stored using at least the fields .Node and .Elt. For a
complete list of possible FEM data structure fields see section 7.6. You can visualize
the associated model using calls of the form

cf=feplot;cf.model={XF(1).Node,XF(1).Elt}

See also idopt, id rm, iiplot, ufread

466

Bibliography

[1] N. Lieven and D. Ewins, “A proposal for standard notation and terminology in
modal analysis,” Int. J. Anal. and Exp. Modal Analysis, vol. 7, no. 2, pp. 151–
156, 1992.

[2] E. Balmes, “Orthogonal maximum sequence sensor placements algorithms
for modal tests, expansion and visibility.,” IMAC, January 2005.

[3] E. Balmes, “Model reduction for systems with frequency dependent damping
properties,” International Modal Analysis Conference, pp. 223–229, 1997.

[4] T. Hasselman, “Modal coupling in lightly damped structures,” AIAA Journal,
vol. 14, no. 11, pp. 1627–1628, 1976.

[5] E. Balmes, “New results on the identification of normal modes from experimen-
tal complex modes,” Mechanical Systems and Signal Processing, vol. 10, no. 6,
1996.

[6] A. Plouin and E. Balmes, “A test validated model of plates with constrained
viscoelastic materials,” International Modal Analysis Conference, pp. 194–200,
1999.

[7] E. Balmes and S. Germès, “Tools for viscoelastic damping treatment design.
application to an automotive floor panel.,” ISMA, September 2002.

[8] K. McConnell, Vibration Testing. Theory and Practice. Wiley Interscience,
New-York, 1995.

[9] W. Heylen, S. Lammens, and P. Sas, Modal Analysis Theory and Testing. KUL
Press, Leuven, Belgium, 1997.

[10] “Vibration and shock - experimental determination of mechanical mobility,”
ISO 7626, 1986.

467

http://www.sdtools.com/pdf/imac05_sens.pdf
http://www.sdtools.com/pdf/IMAC97damp.pdf
http://www.sdtools.com/pdf/IMAC99_damping.pdf
http://www.sdtools.com/pdf/isma02_damp.pdf

BIBLIOGRAPHY

[11] D. Ewins, Modal Testing: Theory and Practice. John Wiley and Sons, Inc.,
New York, NY, 1984.

[12] E. Balmes, “Integration of existing methods and user knowledge in a mimo
identification algorithm for structures with high modal densities,” International
Modal Analysis Conference, pp. 613–619, 1993.

[13] E. Balmes, “Frequency domain identification of structural dynamics using
the pole/residue parametrization,” International Modal Analysis Conference,
pp. 540–546, 1996.

[14] P. Guillaume, R. Pintelon, and J. Schoukens, “Parametric identification of mul-
tivariable systems in the frequency domain : a survey,” International Seminar
on Modal Analysis, Leuven, September, pp. 1069–1080, 1996.

[15] R. J. Craig, A. Kurdila, and H. Kim, “State-space formulation of multi-shaker
modal analysis,” Int. J. Anal. and Exp. Modal Analysis, vol. 5, no. 3, 1990.

[16] M. Richardson and D. Formenti, “Global curve fitting of frequency response
measurements using the rational fraction polynomial method,” International
Modal Analysis Conference, pp. 390–397, 1985.

[17] A. Sestieri and S. Ibrahim, “Analysis of errors and approximations in the use
of modal coordinates,” Journal of sound and vibration, vol. 177, no. 2, pp. 145–
157, 1994.

[18] E. Balmes, “Sensors, degrees of freedom, and generalized modeshape expansion
methods,” International Modal Analysis Conference, pp. 628–634, 1999.

[19] D. Kammer, “Effect of model error on sensor placement for on-orbit modal
identification of large space structures,” J. Guidance, Control, and Dynamics,
vol. 15, no. 2, pp. 334–341, 1992.

[20] E. Balmes, “Review and evaluation of shape expansion methods,” International
Modal Analysis Conference, pp. 555–561, 2000.

[21] A. Chouaki, P. Ladevèze, and L. Proslier, “Updating Structural Dynamic
Models with Emphasis on the Damping Properties,” AIAA Journal, vol. 36,
pp. 1094–1099, June 1998.

[22] E. Balmes, “Optimal ritz vectors for component mode synthesis using the sin-
gular value decomposition,” AIAA Journal, vol. 34, no. 6, pp. 1256–1260, 1996.

468

http://www.sdtools.com/pdf/IMAC96id.pdf
http://www.sdtools.com/pdf/IMAC99_expand.pdf
http://www.sdtools.com/pdf/IMAC00exp.pdf
http://www.sdtools.com/pdf/IMAC00exp.pdf

[23] D. Kammer, “Test-analysis model development using an exact modal reduc-
tion,” International Journal of Analytical and Experimental Modal Analysis,
pp. 174–179, 1987.

[24] J. O’Callahan, P. Avitabile, and R. Riemer, “System equivalent reduction ex-
pansion process (serep),” IMAC VII, pp. 29–37, 1989.

[25] R. Guyan, “Reduction of mass and stiffness matrices,” AIAA Journal, vol. 3,
p. 380, 1965.

[26] R. Kidder, “Reduction of structural frequency equations,” AIAA Journal,
vol. 11, no. 6, 1973.

[27] M. Paz, “Dynamic condensation,” AIAA Journal, vol. 22, no. 5, pp. 724–727,
1984.

[28] M. Levine-West, A. Kissil, and M. Milman, “Evaluation of mode shape ex-
pansion techniques on the micro-precision interferometer truss,” International
Modal Analysis Conference, pp. 212–218, 1994.

[29] E. Balmes and L. Billet, “Using expansion and interface reduction to enhance
structural modification methods,” International Modal Analysis Conference,
February 2001.

[30] MSC/NASTRAN, Quick Reference Guide 70.7. MacNeal Shwendler Corp., Los
Angeles, CA, February,, 1998.

[31] A. Girard, “Modal effective mass models in structural dynamics,” International
Modal Analysis Conference, pp. 45–50, 1991.

[32] R. J. Craig, “A review of time-domain and frequency domain component mode
synthesis methods,” Int. J. Anal. and Exp. Modal Analysis, vol. 2, no. 2, pp. 59–
72, 1987.

[33] M. Géradin and D. Rixen, Mechanical Vibrations. Theory and Application to
Structural Dynamics. John Wiley & Wiley and Sons, 1994, also in French,
Masson, Paris, 1993.

[34] C. Farhat and M. Géradin, “On the general solution by a direct method of a
large-scale singular system of linear equations: Application to the analysis of
floating structures,” International Journal for Numerical Methods in Engineer-
ing, vol. 41, pp. 675–696, 1998.

469

http://www.sdtools.com/pdf/Imac03modif.pdf

BIBLIOGRAPHY

[35] R. J. Craig and M. Bampton, “Coupling of substructures for dynamic analyses,”
AIAA Journal, vol. 6, no. 7, pp. 1313–1319, 1968.

[36] E. Balmes, “Use of generalized interface degrees of freedom in component mode
synthesis,” International Modal Analysis Conference, pp. 204–210, 1996.

[37] E. Balmes, “Parametric families of reduced finite element models. theory
and applications,” Mechanical Systems and Signal Processing, vol. 10, no. 4,
pp. 381–394, 1996.

[38] E. Balmes, “Efficient sensitivity analysis based on finite element model reduc-
tion,” International Modal Analysis Conference, pp. 1168–1174, 1998.

[39] E. Balmes, “Super-element representations of a model with frequency depen-
dent properties,” International Seminar on Modal Analysis, Leuven, September,
vol. 3, pp. 1767–1778, 1996.

[40] T. Hughes, The Finite Element Method, Linear Static and Dynamic Finite
Element Analysis. Prentice-Hall International, 1987.

[41] H. J.-P. Morand and R. Ohayon, Fluid Structure Interaction. J. Wiley & Sons
1995, Masson, 1992.

[42] J. Batoz, K. Bathe, and L. Ho, “A study of tree-node triangular plate bending
elements,” Int. J. Num. Meth. in Eng., vol. 15, pp. 1771–1812, 1980.

[43] R. G. and V. C., “Calcul modal par sous-structuration classique et cyclique,”
Code Aster, Version 5.0, R4.06.02-B, pp. 1–34, 1998.

[44] S. Smith and C. Beattie, “Simultaneous expansion and orthogonalization of
measured modes for structure identification,” Dynamics Specialist Conference,
AIAA-90-1218-CP, pp. 261–270, 1990.

[45] C. Johnson, “Discontinuous galerkin finite element methods for second order
hyperbolic problems,” Computer methods in Applied Mechanics and Engineer-
ing, no. 107, pp. 117–129, 1993.

[46] M. Hulbert and T. Hughes, “Space-time finite element methods for second-order
hyperbolic equations,” Computer methods in Applied Mechanics and Engineer-
ing, no. 84, pp. 327–348, 1990.

[47] R. J. Craig and M. Blair, “A generalized multiple-input, multiple-ouptut modal
parameter estimation algorithm,” AIAA Journal, vol. 23, no. 6, pp. 931–937,
1985.

470

http://www.sdtools.com/pdf/imac96int.pdf
http://www.sdtools.com/pdf/IMAC98_sens.pdf
http://www.sdtools.com/pdf/ISMA96.pdf

[48] N. Lieven and D. Ewins, “Spatial correlation of modeshapes, the coordinate
modal assurance criterion (comac),” International Modal Analysis Conference,
1988.

[49] D. Hunt, “Application of an enhanced coordinate modal assurance criterion,”
International Modal Analysis Conference, pp. 66–71, 1992.

[50] R. Williams, J. Crowley, and H. Vold, “The multivariate mode indicator func-
tion in modal analysis,” International Modal Analysis Conference, pp. 66–70,
1985.

[51] E. Balmes, C. Chapelier, P. Lubrina, and P. Fargette, “An evaluation of modal
testing results based on the force appropriation method,” International Modal
Analysis Conference, pp. 47–53, 1995.

[52] A. W. Phillips, R. J. Allemang, and W. A. Fladung, The Complex Mode Indi-
cator Function (CMIF) as a parameter estimation method. International Modal
Analysis Conference, 1998.

[53] J. Imbert, Analyse des Structures par Eléments Finis. E.N.S.A.E. Cépaques
Editions.

471

http://www.sdtools.com/pdf/IMAC95appro.pdf
http://www.sdtools.com/pdf/IMAC95appro.pdf

INDEX

Index

actuator dynamics, 310
addresses, 317, 410
adof, 144
AMIF, 344
animation, 107, 212
assembly, 273
asymptotic correction, 302
attachment mode, 117, 279

b, 24, 249, 267
bar element, 162
beam element, 163
boundary condition, 97, 250

c, 24, 249
cases, 96, 142, 251
cf, 106, 241, 326, 388
CMIF, 343
collocated, 35, 65, 313
color mode, 214
COMAC, 78, 332
command function, 204
complex mode

computation and normalization, 256
definition, 33
identification, 58, 309, 313

Complex Mode Indicator Function, 343
Component Mode Synthesis, 111, 120,

257
connectivity line matrix, 40, 391
coordinate, 136, 201
cost function

logLS, 330
quadratic, 58, 330

cp, 27
Craig Bampton reduction, 119, 124,

278
Cross generalized mass, 338
Cyclic symmetry, 260

damping, 28
non-proportional, 29, 68, 305
proportional or modal, 28, 67, 380
structural, 29, 358
viscoelastic, 29

database wrapper, 45, 316, 388, 394,
408

degree of freedom (DOF), 25
active, 249, 256, 261
definition vector, 140, 144, 249, 410
element, 141
master, 149
nodal, 140
selection, 144, 249

demonstrations, 8
design parameters, 127
DID, 136, 202
drawing axes, 320

effective mass, 116
EGID, 137, 141, 147
eigenvalue, 101, 256, 261
element

bar, 162

472

beam, 163
EGID, 137, 141
EltID, 155
fluid, 167, 168
function, 137, 151, 246, 289
group, 137, 220
identification number (EltID), 141
plate, 165, 177, 179, 183, 185, 189
property row, 138, 173, 270, 290
rigid link, 164, 184
selection, 220, 229
solid, 170, 174, 186
user defined, 151

EltId, 138
expansion, 83, 264

family of models, 127
FE model update, 131–133

based on FRFs, 406
based on modal frequencies, 405
command function, 396

FEelt, 93, 225
FEMLINK, 200
FEMLink, 352
FEnode, 93, 225
feplot, 105, 241
frequency response function (FRF), 38,

309
frequency units, 302, 310, 378, 403
frequency vector w, 38, 310

ga, 27
generalized mass, 101, 116, 299
GID, 136
global variable, 11, 93, 225, 246, 326
GUI functions, 10
Guyan condensation, 119, 280

hexahedron, 158

identification, 51

direct system parameter, 61, 304
minimal model, 63, 65, 313
normal mode model, 305
options, 301
orthogonal polynomials, 62, 308
poles, complex mode residues, 58,

309
poles, normal mode residues, 67,

309
reciprocal model, 313
scaled modeshapes, 68, 313

IDopt, 45, 301, 408, 410
iiplot, 46, 326
IIxf, 11, 49, 54, 316, 326
il, 139
importing data, 44, 109
input shape matrix b, 24, 249
isostatic constraint, 279

load, 24, 267
localization matrix, 25

MAC, 78, 331, 333
MACCO, 78, 336
mass

effective, 116
generalized, 116
normalization, 68, 116, 261, 277

material properties, 138, 270
MatID, 138, 147, 155, 215
matrix

ofact, 364, 367
sparse/full, 364, 367

mdof, 140
MIMO, 63
minimal model, 63, 313
MMIF, 342
modal

damping, 67
input matrix, 28, 33

473

INDEX

mass, 101, 115, 116, 299
output matrix, 28, 33
participation factor, 35
scale factor, 338
stiffness, 116

Modal Scale Factor, 333
mode

acceleration method, 118
attachment, 279
complex, 33, 256
constraint, 280
displacement method, 118
expansion, 83, 264
normal, 115, 261
scaling, 34, 116

model, 143
description matrix, 137
reduction, 209

MSC/NASTRAN, 109, 352, 356
multiplicity, 63, 314
Multivariate Mode Indicator Function,

342

node, 41, 92, 136
group, 136
selection, 136, 146, 230

nor, 26, 358
normal mode

computation and normalization, 261
definition, 115
format, 26
identification, 68, 305
model, 358
residue, 67

notations, 12

object
ofact, 364
sdth, 387
v handle, 407

observation, 24
om, 27
orientation

triax, 223
orthogonality conditions, 115, 256, 261,

277
output shape matrix c, 24, 249

pb, 27
pentahedron, 157
phase, 208
PID, 136, 201
pl, 138
plate element, 165, 177, 179, 183, 185,

189
po, 348
POC, 78, 338
pole, 35, 116

formats, 348
lines, 327, 345
multiplicity, 63, 313

pole residue format, 35
polynomial model format, 37
ProID, 138, 139, 147, 155, 215

quadrilateral, 157

reciprocity, 34, 65, 250, 313
reduction basis, 114, 278
renderer, 213
res, 35, 380, 381
residual

dynamic, 78, 80, 81
high frequency, 36, 117
low frequency, 36

residue matrix, 28, 33, 36, 63, 67
rigid body modes, 117, 278
rigid link, 164, 184

scalar spring, 164
scaling, 219, 313, 335

474

scatter, 328
segment, 157
sensor, 99

dynamics, 310
placement, 76, 281

simulate, 99
solid element, 170, 174, 186
sparse eigensolution, 261
ss, 32, 378
state-space models, 32, 378, 381
static correction, 36, 103, 117, 118, 209
static flexible response, 279
structural modification, 85
subplot, 222, 320
superelement

command function, 246
generic, 111, 126, 289
unique, 111, 289

test/analysis correlation, 281
tetrahedron, 157
tf, 37, 378, 383
time-delays, 310
triangle, 157
two-bay truss, 91

UFS, 388, 394
UI functions, 10
Universal File Format, 388

vector correlation, 331
view, 323, 324

wire-frame plots, 40, 226, 391

XF, 11, 316, 326, 389, 408
xf, 38, 408
XFdof, 11, 410

475

	Preface
	Getting started
	Understanding the Toolbox architecture
	Layers of code
	Global variables

	Typesetting conventions and scientific notations
	Release notes for SDT 5.2 and FEMLink 3.1
	Key features
	Detail by function
	Notes by MATLAB release

	Release notes for SDT 5.1 and FEMLink 3.0
	Key features
	Detail by function
	Notes by MATLAB release

	Structural dynamic concepts
	I/O shape matrices
	Normal mode models
	Damping
	Viscous damping in the normal mode model form
	Damping in finite element models

	State space models
	Complex mode models
	Pole/residue models
	Parametric transfer function
	Non-parametric transfer function

	Modal test tutorial
	Preparing a modal test
	Geometry declaration
	Sensor/shaker configurations

	Data import and visualization
	Data acquisition
	blackImporting FRF data
	Getting started with the blueiiplot interface
	Operational deflection shapes

	Identification of modal properties
	The blueid_rc procedure step by step
	Background theory
	When blueid_rc fails
	Direct system parameter identification algorithm
	Orthogonal polynomial identification algorithm

	MIMO, Reciprocity, State-space, ...
	Multiplicity (minimal state-space model)
	Reciprocal models of structures
	Normal mode form

	Test/analysis correlation tutorial
	Topology correlation and test preparation
	Combining models
	Observation matrix for a sensor configuration
	Sensor/shaker placement

	Test/analysis correlation
	Shape based criteria
	Energy based criteria
	Correlation of FRFs

	Expansion methods
	Underlying theory for expansion methods
	Basic interpolation methods for unmeasured DOFs
	Subspace based expansion methods
	Model based expansion methods

	Structural dynamic modification

	FEM tutorial
	bluemodel data structure
	GUI Access to FEM models
	Direct declaration of geometry (truss example)
	Building models with femesh
	Handling material and element properties
	Coordinate system handling

	Defining a case
	Cases GUI
	Boundary conditions and constraints
	Loads
	Sensors

	Computing the response
	Simulate GUI
	Static responses
	Normal modes (partial eigenvalue solution)
	State space and other modal models
	Manipulating large finite element models

	Post-processing with bluefeplot
	Starting the visualization interface
	Using blueiimouse commands
	Viewing deformations
	Superposing deformations
	Element selections
	Other information

	Interfacing with other FEM codes
	Importing models from other codes
	Importing model matrices from other codes

	Advanced FEM tools
	Model reduction theory
	General framework
	Normal mode models
	Static correction to normal mode models
	Static correction with rigid body modes
	Other standard reduction bases
	Substructuring
	Reduction for parameterized problems

	CMS examples
	Component mode synthesis
	Substructuring using superelements

	Model parameterization with blueupcom
	Theoretical framework
	blueupcom parameterization for full order models
	Getting started with blueupcom
	Reduction for variable models
	Predictions of the response using blueupcom

	Finite element model updating
	Error localization/parameter selection
	Update based on frequencies
	Update based on FRF

	Developer information
	Nodes
	Model description matrices
	Material property matrices
	Element property matrices
	DOF definition vector
	FEM model structure
	FEM case data structure
	FEM result data structure
	Curves and data sets
	DOF selection
	Node selection
	Element selection
	Constraint and fixed boundary condition handling
	Creating new elements (advanced tutorial)
	General information
	Writing a new element function
	Conventions

	Generic compiled elements
	Variable names and progamming rules

	Element reference
	bar1
	beam1, beam1t
	celas
	dktp
	flui4,flui6,flui8
	fsc
	hexa8, hexa20, penta6, penta15, tetra4, tetra10
	hexa8b, hexa20b, hexa27b, penta6b, penta15b, tetra4b, tetra10b
	integrules
	mass1,mass2
	quad4, quadb, mitc4
	q4p, q5p, q8p, t3p, t6p
	q4pb, q8pb, t3pb, t6pb
	q9a
	rigid
	tria3, tria6

	Function reference
	ans2sdt
	basis
	commode
	comstr
	db, phaseb
	fe2ss
	fecom
	femesh, feutil
	feplot
	fesuper
	fe_c
	fe_case
	fe_ceig
	fe_coor
	fe_curve
	fe_cyclic
	fe_eig
	fe_exp
	fe_load
	fe_mat
	fe_mk, fe_mknl
	fe_norm
	fe_reduc
	fe_sens
	fe_simul
	fe_stres
	fe_super
	fe_time,of_time
	fe_var
	idcom
	idopt
	id_dspi
	id_nor
	id_poly
	id_rc, id_rcopt
	id_rm
	iicom
	iimouse
	iiplot
	ii_cost
	ii_mac
	ii_mmif
	ii_plp
	ii_poest
	ii_pof
	m_elastic
	m_piezo
	nasread
	naswrite
	nor2res, nor2ss, nor2xf
	ofact
	p_beam
	p_shell
	p_solid
	p_spring
	perm2sdt
	psi2nor
	qbode
	res2nor
	res2ss, ss2res
	res2tf, res2xf
	rms
	setlines
	sdplot
	sdtdef
	sdth
	sp_util
	stack_get,stack_set,stack_rm
	ufread
	ufwrite
	upcom
	up_freq, up_ifreq
	up_ixf
	v_handle
	xfopt

	Bibliography
	Index

