

PGI® Workstation 5.2
Installation &
Release Notes
5.2-4 Version

The Portland Group™ Compiler Technology
STMicroelectronics, Inc
9150 SW Pioneer Court, Suite H
Wilsonville, OR 97070
www.pgroup.com

While every precaution has been taken in the preparation of this document,
The Portland Group™ Compiler Technology, STMicroelectronics, Inc.
(PGI®) makes no warranty for the use of its products and assumes no
responsibility for any errors that may appear, or for damages resulting from
the use of the information contained herein. STMicroelectronics, Inc.
retains the right to make changes to this information at any time, without
notice. The software described in this document is distributed under license
from STMicroelectronics, Inc. and may be used or copied only in
accordance with the terms of the license agreement. No part of this
document may be reproduced or transmitted in any form or by any means,
for any purpose other than the purchaser's personal use without the express
written permission of STMicroelectronics, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this manual, STMicroelectronics was aware of a trademark claim. The
designations have been printed in caps or initial caps.

PGF90 is a trademark and PGI, PGHPF, PGF77, PGCC, PGPROF, and
PGDBG are registered trademarks of The Portland Group Compiler
Technology, STMicroelectronics, Inc. *Other brands and names are the
property of their respective owners.

PGI Workstation 5.2 Installation & Release Notes
Copyright © 2004

The Portland Group™ Compiler Technology
STMicroelectronics, Inc. - All rights reserved.

 Printed in the United States of America

First Printing: Release 5.2-4, September 2004

Technical support: trs@pgroup.com
 http://www.pgroup.com

 Table of Contents

1 PGI WORKSTATION 5.2 INTRODUCTION............................... 1
1.1 PRODUCT OVERVIEW .. 1
1.2 TERMS AND DEFINITIONS.. 3

2 PGI WORKSTATION 5.2 INSTALLATION NOTES 7
2.1 INTRODUCTION ... 7
2.2 INSTALLING ON LINUX86 OR LINUX86-64 9
2.3 USING FLEXLM ON LINUX ... 15
2.4 NON-LINUX86 LICENSE SERVERS... 18
2.5 SETTING UP YOUR ENVIRONMENT.. 19
2.6 INSTALLING PGI WORKSTATION ON WIN32 19
2.7 INSTALLATION LIMITATIONS FOR WIN32.................................... 20
2.8 INSTALLING THE EMACS EDITOR FOR WIN32 21
2.9 CUSTOMIZING THE COMMAND WINDOW..................................... 21

3 PGI WORKSTATION 5.2 RELEASE NOTES 23
3.1 PGI WORKSTATION RELEASE 5.2 CONTENTS 23
3.2 SUPPORTED SYSTEMS ... 25

3.2.1 Supported Processors .. 25
3.2.2 Supported Operating Systems .. 26

3.3 NEW COMPILER FEATURES ... 28
3.4 COMPILER OPTIONS .. 31

3.4.1 Getting Started ... 31
3.4.2 New or Modified Compiler Options 31

3.5 64-BIT SUPPORT.. 34
3.5.1 Practical Limitations of –mcmodel=medium..................... 37
3.5.2 Compiler Limitations of –mcmodel=medium..................... 38
3.5.3 Large Array Example in C ... 38
3.5.4 Large Array Example in Fortran 40

3.6 PGI WORKSTATION 5.2 FOR WIN32.. 42
3.7 PGDBG AND PGPROF... 43
3.7.1 PGDBG AND PGPROF NEW FEATURES................................. 44
3.7.2 PGDBG AND PGPROF CORRECTIONS 45

3.8 KNOWN LIMITATIONS ... 46
3.9 CORRECTIONS ... 48

4 CONTACT INFORMATION & DOCUMENTATION 53

PGI Workstation 5.2 1

1 PGI Workstation 5.2
 Introduction

Welcome to PGI Workstation 5.2, a set of Fortran, C and C++ compilers
and development tools for 32-bit x86-compatible and 64-bit AMD64-
compatible processor-based workstations and servers running versions of
the Linux* (32-bit and 64-bit) and Windows* (32-bit only) operating
systems.

All workstation-class compilers and tools products from The Portland
Group Compiler Technology (PGHPF Workstation, for example) are
subsets of the PGI Workstation product. These workstation-class products
provide for a node-locked single-user license, meaning one user at a time
can compile on the system on which the PGI Workstation compilers and
tools are installed. PGI Server products are offered in configurations
identical to the workstation-class products, but provide for network-
floating multi-user licenses. This means that two or more users can use the
PGI compilers and tools concurrently on any compatible system networked
to the system on which the PGI Server compilers are installed. These
release notes apply to all workstation-class and server-class products from
The Portland Group Compiler Technology.

1.1 Product Overview

The PGI Workstation 5.2 product is comprised of the following
components

 Introduction 2

• PGF90 native OpenMP* and auto-parallelizing Fortran 95
compiler, in versions that will run and produce code for
execution in linux86, linux86-64, and win32 development
environments. Release 5.2 introduces full Fortran 95 and large
array (single data objects larger than 2GB) support in PGF90
for linux86-64 environments.

• PGF77 native OpenMP and auto-parallelizing FORTRAN 77
compiler, in versions that will run and produce code for
execution in linux86, linux86-64, and win32 development
environments.

• PGHPF data parallel High Performance Fortran compiler, in
versions that will run and produce code for execution in
linux86, linux86-64, and win32 development environments.

• PGCC native OpenMP and auto-parallelizing ANSI and K&R C
compiler in versions that will run and produce code for
execution in linux86, linux86-64, and win32 development
environments.

• PGC++ native OpenMP and auto-parallelizing ANSI C++
compiler, in versions that will run and produce code for
execution in linux86 and linux86-64 development environments.
NOTE: PGC++ is not supported in win32 environments.

• PGPROF graphical profiler in versions that will run on linux86
and linux86-64, and a command-level version for linux86,
linux86-64, and win32 environments.

• PGDBG multi-thread graphical debugger, in versions that will
run on linux86 and linux86-64 development environments.
NOTE: PGDBG is not supported in win32 environments.

• Complete online documentation in a mixture of PDF and
HTML.

• A UNIX*-like shell environment for win32 environments.

Depending on the product configuration you purchased, you may not have

PGI Workstation 5.2 3

received all of the above components.

1.2 Terms and Definitions

There are a number of terms used in this document that may be unfamiliar
or used in an unfamiliar context. Following are definitions of terms used in
the context of these PGI Workstation 5.2 release notes.

driver – the compiler driver controls the compiler, linker, and assembler
and adds objects and libraries to create an executable. The –dryrun option
illustrates operation of the driver. pgf77, pgf90, pghpf, pgcc, and pgCC
are drivers for the PGI compilers.

x86 – a processor designed to be binary compatible with i386/i486 and
previous generation processors from Intel* Corporation.

x87 – 80-bit IEEE floating-point unit (FPU) and associated instructions on
x86–compatible CPUs.

IA32 – an Intel Architecture 32-bit processor designed to be binary
compatible with x86 processors, but incorporating new features such as
streaming SIMD extensions (SSE) for improved performance. This
includes the Intel Pentium* 4 and Xeon* processors. For simplicity, these
release notes refer to x86 and IA32 processors collectively as 32-bit x86
processors.

AMD64 – a 64-bit processor designed to be binary compatible with 32-bit
x86 processors, and incorporating new features such as additional registers
and 64-bit addressing support for improved performance and greatly
increased memory range. This includes the AMD* Athlon64* and
Opteron* processors. Most comments in these release notes that apply to
AMD64 technology processors also apply to IA32 processors with EM64T
extensions.

SSE1 - 32-bit IEEE 754 FPU and associated streaming SIMD extensions
(SSE) instructions on Pentium III, AthlonXP* and later 32-bit x86 and
AMD64 compatible CPUs, enabling scalar and packed vector arithmetic on

 Introduction 4

32-bit floating-point data

SSE2 – 64-bit IEEE 754 FPU and associated SSE instructions on P4/Xeon
and later 32-bit x86 and AMD64 compatible CPUs, enabling scalar and
packed vector arithmetic on 64-bit floating-point data

SSE3 – additional 32-bit and 64-bit SSE instructions to enable more
efficient support of arithmetic on complex floating-point data on 32-bit x86
and AMD64 compatible CPUs with so-called Prescott New Instructions
(PNI), such as the Intel Xeon EM64T.

linux86 – 32-bit Linux operating system running on an x86 or AMD64
processor-based system, with 32-bit GNU tools, utilities and libraries used
by the PGI Workstation compilers to assemble and link for execution.

Win32 – any of the 32-bit Microsoft* Windows Operating Systems
(98/NT/Me/XP/2000) running on an x86 processor-based system, or
Microsoft Windows XP Professional Service Pack 1 running on an AMD64
processor-based system. On these targets, the PGI compilers and tools
products include additional tools and libraries needed to build executables
for 32-bit Windows systems.

linux86-64 – 64-bit Linux operating system running on an AMD64
processor-based system, with 64-bit or 32-bit GNU tools, utilities and
libraries used by the PGI Workstation compilers to assemble and link for
execution in either linux86 or linux86-64 environments. The 32-bit
development tools and execution environment under linux86-64 are
considered a cross development environment for x86 processor-based
applications.

–mcmodel=small – Compiler/linker switch to produce small memory model
format objects/executables in which both code (.text) and data (.bss)
sections are limited to less than 2GB. This is the default (and only
possible) format for linux86 32-bit executables. This is the default format
for linux86-64 executables. Maximum address offset range is 32-bits, and
total memory used for OS+Code+Data must be less than 2GB

–mcmodel=medium – Compiler/linker switch to produce medium memory
model format objects/executables in which code sections are limited to less

PGI Workstation 5.2 5

than 2GB, but data sections can be greater than 2GB. Not supported in
linux86 32-bit environments. Supported in linux86-64 environments. This
option must be used to compile any program unit that will be linked in to a
64-bit executable that will use aggregate data sets larger than 2GB and
access data requiring address offsets greater than 2GB. This option must
be used to link any 64-bit executable that will use aggregate data sets
greater than 2GB in size. This option must be used in combination with
–Mlarge_arrays to compile a program unit in which any single data object
is greater than 2GB in size. Executables linked using –mcmodel=medium
can incorporate objects compiled using –mcmodel=small as long as the
small objects are from a shared library. There can be a performance
penalty associated with programs compiled and linked using –
mcmodel=medium; this is a limitation related to how 64-bit addressing is
specified by the X86-64 Application Binary Interface, not a PGI compiler
limitation.

Large Arrays – Arrays with aggregate size larger than 2GB, which requires
the compilers to use 64-bit index arithmetic for accesses to elements of the
arrays. Program units that use Large Arrays must be compiled using both
the –mcmodel=medium and –Mlarge_arrays options. If –Mlarge_arrays is
not used, but –mcmodel=medium is used, aggregate data sets can be larger
than 2GB but no single data object can exceed 2GB in size.

Shared library – A library of the form libxxx.so containing objects that are
dynamically linked into a program at the time of execution. Objects in a
shared library are compiled –fpic, for position-independent code. Most
Linux system and PGI runtime libraries are provided as shared libraries.
Object files compiled using the –mcmodel=medium option cannot be
compiled –fpic and included in shared libraries. This is a limitation of the
X86-64 Application Binary Interface, not a PGI compiler limitation.
However, object files from shared libraries can be dynamically linked into
executables linked using the –mcmodel=medium option.

Static linking – Using –Bstatic to ensure all objects are included in the
generated executable at link time. Static linking causes objects from static
library archives of the form libxxx.a to be linked in to your executable,
rather than dynamically linking the corresponding libxxx.so shared library.
Static linking of executables linked using the –mcmodel=medium option is
not supported.

 Introduction 6

Hyperthreading (HT) – Some IA32 CPUs incorporate extra registers that
allow 2 threads to run on a single CPU with improved performance for
some tasks. This is called hyperthreading, and abbreviated HT. Some
linux86 and linux86-64 environments treat IA32 CPUs with HT as though
there were a 2nd pseudo CPU, even though there is only one physical CPU.
Unless the Linux kernel is hyperthread-aware, the second thread of an
OpenMP program will be assigned to the pseudo CPU, rather than a real
second physical processor (if one exists in the system). OpenMP Programs
can run very slowly if the second thread is not properly assigned.

PGI Workstation 5.2 7

2 PGI Workstation 5.2
 Installation Notes
2.1 Introduction

Section 2.2 below describes how to install PGI Workstation in a generic
manner on Linux. Section 2.4 describes how to install PGI Workstation on
Win32 systems. Installations using these instructions do not need to run a
license daemon, except as noted below.

The PGI Workstation compilers and tools are license-managed. As noted
in the sections that follow, generation of permanent license keys is
performed using your personalized account on the http://www.pgroup.com
web page. When you purchase a permanent license, the e-mail order
acknowledgement you receive includes complete instructions for logging
on to the pgroup.com web page and generating permanent license keys.

For PGI Workstation products using PGI-style licensing (the default), a
single user can run as many simultaneous copies of the compiler as desired,
on a single system, and no license daemon or Ethernet card is required.
However, usage of the PGI Workstation compilers and tools is restricted to
a pre-specified username. If you would like the compilers and tools to be
usable under any username, or if you are installing a multi-user PGI Server
product, you must request FLEXlm*-style license keys when generating
your keys and use FLEXlm-style licensing as outlined below.

Installation of FLEXlm-style licensing is more complicated than PGI-style
licensing. If you require FLEXlm-style licensing, you must follow the
installation instructions as specified in section 2.2 and then use section 2.3

 Installation Notes 8

to complete your installation. Section 2.3 describes how to configure
license daemons for Linux, including installation of the license daemon and
proper initialization of the LD_LIBRARY_PATH environment variable.
FLEXlm-style licensing is not currently available with PGI Workstation
products for Win32.

Regardless of the licensing mechanism you choose, when the PGI
Workstation compilers and tools are first installed they are usable for 15
days without a permanent license key.

NOTE
At the conclusion of the trial period, the PGI
compilers and tools and any executable files
generated prior to the installation of permanent
license keys will cease to function. Any executables,
object files, or libraries created using the PGI
compilers in demo mode must be recompiled with
permanent license keys in place.

Executable files generated with permanent license keys in place are
unconstrained, and will run on any compatible system regardless of
whether the PGI Workstation compilers are installed. However, if you
change the configuration of your system by adding or removing hardware,
your license key may become invalid. Please contact The Portland Group
Compiler Technology if you expect to reconfigure your system to ensure
that you do not temporarily lose the use of the PGI compilers and tools.

For the first 60 days after your purchase, you may send technical questions
about these products to the e-mail address trs@pgroup.com. If you have
purchased a subscription, you will have access to e-mail support for an
additional 12 months and will be notified by e-mail when maintenance
releases occur and are available for electronic download and installation.
Phone support is not currently available. Contact us at sales@pgroup.com
if you would like information regarding the subscription service for the
PGI products you have purchased.

PGI Workstation 5.2 9

2.2 Installing on Linux86 or Linux86-64

Those familiar with releases of PGI Workstation for Linux prior to release
5.0 should note that the installation directory structure has changed. The
path to the PGI Workstation 5.2 Release compilers must be modified
accordingly.

For installation on 32-bit x86 processor-based systems, the PGI
Workstation installation script will install only the linux86 versions of the
PGI compilers and tools. For installation on a system running a linux86-64
execution and development environment, the PGI Workstation installation
script will attempt to install both the linux86 and linux86-64 versions of the
compiler products requested. If the user specifies /usr/pgi as the base
directory, for example:

Name of directory Contents

/usr/pgi/linux86/5.2/bin linux86 versions of the compilers and
tools

/usr/pgi/linux86/5.2/lib linux86 versions of the libraries.

/usr/pgi/linux86/5.2/liblf linux86-only large-file-support (-Mlfs)
versions of the libraries.

/usr/pgi/linux86/5.2/include linux86 versions of header files

/usr/pgi/linux86-64/5.2/bin linux86-64 versions of the compilers
and tools

/usr/pgi/linux86-64/5.2/lib
linux86-64 versions of the libraries.
Not to be used for
–mcmodel=medium development.

/usr/pgi/linux86-64/5.2/libso linux86-64 –fpic shared libraries

/usr/pgi/linux86-64/5.2/include linux86-64 versions of header files

 Installation Notes 10

When the install script installs the linux86-64 versions on a supported
linux86-64 environment, the linux86 versions will be installed as well in a
separate area. The compilers and supporting components have the same
names, and the environment you target by default (linux86-64 or linux86)
will depend on the version of the compiler that comes first in your path.

Bring up a shell command window on your system. The instructions below
assume you are using csh, sh, ksh, or some compatible shell. Appropriate
modifications will be necessary when setting environment variables if you
are using a shell that is not compatible with one of these three.

Step 1 − If you received this software on a CD-ROM, please skip to step 2.
If you downloaded the software from http://www.pgroup.com or
another electronic distribution site, then in the instructions that follow,
<tarfile> needs to be replaced with the name of the file that was
downloaded.

The compressed tar file needs to be uncompressed and untar’d before
installation.

 % gunzip <tarfile>.tar.gz
 % tar xpf <tarfile>.tar

Note that the products cannot be installed into the same directory where the
tar file is unpacked, so it is recommended you execute the above
commands in /tmp or another location that is not the installation directory.

All software should fit into less than 100 MB of disk space.
Approximately 250 MB are required during installation. Half of that can
be recovered by deleting the tar file after installation is complete. For X86-
64 technology linux86-64 installations, assuming double the disk space
requirements (200/500) is sufficient.

Step 2 − The install script must be run to properly install the software. If
you are installing from a CD-ROM, issue the following command:

 % /mnt/cdrom/install

NOTE: If you have difficulty running this script, especially on a Slackware

PGI Workstation 5.2 11

Linux system, check the permissions on /dev/null. Permission should be
set to “crw-rw-rw-“. Reset permissions to this value if necessary – super-
user permissions are required.

Also note that some systems use a CD-ROM volume manager that may
insert an additional directory in the above pathname. For example, the
pathname might be

 % /cdrom/pgisoft/install

If you are not sure how to access the CD-ROM drive, check with your
system administrator.

If you downloaded the software from the Internet, change to the directory
where you uncompressed and untar’d the tar file, and run:

 % ./install

The install script will list the products that are available on the CD-ROM or
in the download package. You will be asked which products should be
installed and to select an installation directory. After the software is
installed, the script will do some system-specific customization and then
initialize the licensing, which is covered in step 3 below.

Step 3 − All of the PGI Workstation products are license-managed. PGI
Workstation products that are node-locked and limited to a single user have
no need to run a license daemon. If you want the PGI Workstation
compilers to be usable by any one user rather than locked to a specific
username, or if you are installing a multi-user PGI Server product, you
must use FLEXlm and must specifically request FLEXlm-style keys when
generating license keys over the PGI web page at http://www.pgroup.com.
If you have purchased the compiler or tools that you are installing, you
should have received an order acknowledgement e-mail with instructions
on how to generate your license keys through the pgroup.com web page.
Note: FLEXlm-style licensing of the PGI Workstation products is not
available on Win32 systems.

The install script asks for your real name, your username, and your email
address. It then creates a fifteen-day license and prints a message like this:

 Installation Notes 12

 NOTE: your evaluation license will expire in
 14 days, 23.6 hours. For a permanent license,
 please read the order acknowledgement that you
 received. Connect to https://www.pgroup.com/License
 with the username and password in the order
 acknowledgement.

 Name: <your name>
 User: <your username>
 Email: <your e-mail address>
 Hostid: PGI=9BF378E0131FF0C3CD37F6
 FLEXlm hostid: 00a024a3dfe7
 Hostname: yourhost.yourdomain.com
 Installation: /usr/pgi
 PGI Release: 5.2-4

The message above is also saved to the file /usr/pgi/license.info for
retrieval at a later time.

Once you have obtained your permanent license keys using your
personalized account on the pgroup.com web page, place them in the file
/usr/pgi/license.dat (substitute the appropriate installation directory
path if you have not installed in the default /usr/pgi directory). If you
want the PGI Workstation compilers to be usable by any one user, rather
than locked to a specific username, you must use FLEXlm and must
specifically request FLEXlm-style license keys using your account on the
pgroup.com web page.

Step 4 − You can view the online HTML and PDF documentation using
any web browser. Assuming you use Netscape*, issue the following
command:

 % netscape /usr/pgi/doc/index.htm

You may want to place a bookmark on this location for easy future
reference to the online manuals.

Step 5 − With either the temporary or permanent license file in place,
execute the following commands to make the products you have purchased

PGI Workstation 5.2 13

accessible. Note that the path settings below assume that a Linux product
has been installed.

Assuming csh and installation in the default /usr/pgi directory:

 % set path = (/usr/pgi/linux86/5.2/bin $path)
 % setenv MANPATH "$MANPATH":/usr/pgi/linux86/man

Or, assuming bash, sh or ksh:

 % PATH=/usr/pgi/linux86/5.2/bin:$PATH
 % export PATH
 % MANPATH=$MANPATH:/usr/pgi/linux86/man
 % export MANPATH

If you are also installing the linux86-64 versions of the compilers, and wish
to target the linux86-64 environment as the default, perform the same setup
with an alternate path setting:

 % set path = (/usr/pgi/linux86-64/5.2/bin $path)
 % setenv MANPATH "$MANPATH":/usr/pgi/linux86-64/man

Or, assuming bash, sh or ksh:

 % PATH=/usr/pgi/linux86-64/5.2/bin:$PATH
 % export PATH

 % MANPATH=$MANPATH:/usr/pgi/linux86-64/man

 % export MANPATH

You should add the above commands to your startup files to ensure you
have access to the PGI Workstation products upon future logins.

Step 6 − You can verify the release number of the products you have
installed using the −V option on any of the compiler commands. If you use
–v instead of –V, you will also see the sequence of steps the compiler will
use to compile and link programs for execution on your system.

• For Fortran 77, use "pgf77 -V x.f"

 Installation Notes 14

• For Fortran 90, use "pgf90 -V x.f"

• For HPF, use "pghpf -V x.f"

• For C++, use "pgCC -V x.c"

• For ANSI C, use "pgcc -V x.c"

Note that the files x.f or x.c need not exist in order for you to
successfully execute these commands.

Step 7 − types.h check. On many Linux systems, the PGI Workstation
installation script copies the header files

/usr/include/sys/types.h
/usr/include/bits/types.h

and places modified versions into

$PGI/linux86/5.2/include/sys/types.h
$PGI/linux86-64/5.2/include/sys/types.h
$PGI/linux86/5.2/include/bits/types.h
$PGI/linux86-64/5.2/include/bits/types.h

This is due to certain gcc-specific conditional preprocessing statements that
must be re-written to enable correct compilation by the PGI compilers. The
changes should be limited to comments or lines like the following:

 #ifdef __GNUC__

changed to

 #if defined(__GNUC__) || defined(__PGI)

or

 #ifdef GLIBC_HAS_LONG_LONG

changed to

 #if defined(GLIBC_HAS_LONG_LONG) || defined(__PGI)

around areas in types.h where 64-bit integer types are defined. To verify
that these are the only differences introduced by the PGI Workstation
installer, execute the following commands on your system after installation

PGI Workstation 5.2 15

is complete:

$ cd $PGI/linux86/5.2/include
$ diff ./sys/types.h /usr/include/sys/types.h
$ diff ./bits/types.h /usr/include/bits/types.h

. . .

$ cd $PGI/linux86-64/5.2/include
$ diff ./sys/types.h /usr/include/sys/types.h
$ diff ./bits/types.h /usr/include/bits/types.h

The differences should be no more than comment lines and conditional
lines that involve the symbol __PGI. If the files are different, please send
email to trs@pgroup.com to report the problem. If the required changes are
obvious, you can attempt to create your own version and place it in the
$PGI include area.

Installation is now complete. For the first 60 days after your purchase, you
may send technical questions about these products to the e-mail address
trs@pgroup.com. If you have purchased a subscription, you will have
access to e-mail support and automatic minor upgrade releases for an
additional 12 months and will be notified by e-mail whenever a new release
is available for electronic download and installation. Phone support is not
currently available. Contact us at sales@pgroup.com if you would like
information regarding the subscription service for the products you have
purchased.

2.3 Using FLEXlm on Linux

If you want the PGI Workstation compilers to be usable by any one user,
rather than locked to a specific username, or if you are installing a multi-
user PGI Server product, you must use the FLEXlm software license
management system from Macrovision* Software as outlined below.

Step 1 − Install the software as described in section 2.2 above.

 Installation Notes 16

Step 2 − Once you have obtained permanent FLEXlm-style license keys
(see section 2.2 above, Step 3, for how to obtain these), place them in a file
named license.dat in the /usr/pgi directory. For example, if you
have purchased PGF77 Workstation for Linux, the license.dat file
should look similar to the following:

 SERVER <hostname> <hostid> 7496
 DAEMON pgroupd <install_dir>/linux86/bin/pgroupd

 FEATURE pgf77-linux86 pgroupd 5.200 31-dec-0 1 \
 2B9CF0F163159E4ABE32 VENDOR_STRING=107209:16 \
 HOSTID=<hostid> ck=49

 FEATURE pgprof pgroupd 5.200 31-dec-0 1 \
 6BDCE0B12EC19D0909F0 VENDOR_STRING=107209:16 \
 HOSTID=<hostid> ck=60

<hostname> and <hostid> should match those you submitted to us and
<install_dir> must be changed to match the directory in which the
compilers are installed. In particular, <install_dir> should match the
value of /usr/pgi as defined above.

NOTE: In the feature line component VENDOR_STRING=107209:16,
107209 is the Product ID Number (PIN) for this installation. You will have
a similar unique PIN number for your installation. Please include your PIN
number when sending mail to us regarding technical support for the
products you have purchased.

Step 3 − When the license file is in place, execute the following commands
to make the products you have purchased accessible. If you are not using
other products managed by FLEXlm, and have not previously set the
environment variable LM_LICENSE_FILE, issue the following command to
do so (assuming csh):

 % setenv PGI /usr/pgi
 % setenv LM_LICENSE_FILE $PGI/license.dat

Or, assuming bash, sh or ksh:

 % LM_LICENSE_FILE=/usr/pgi/license.dat
 % export LM_LICENSE_FILE

PGI Workstation 5.2 17

 % export PGI=/usr/pgi

If you are using other products managed by FLEXlm, and have previously
set the environment variable LM_LICENSE_FILE, either incorporate our
license keys into your existing license file or issue the following command
to append our license file to the definition of LM_LICENSE_FILE
(assuming csh):

 % setenv PGI /usr/pgi
 % setenv LM_LICENSE_FILE \
 "$LM_LICENSE_FILE":/usr/pgi/license.dat

Or, assuming sh or ksh:

 % LM_LICENSE_FILE= \
 $LM_LICENSE_FILE:/usr/pgi/license.dat
 % export LM_LICENSE_FILE
 % export PGI=/usr/pgi

You should add the above commands to your startup files to ensure you
have access to our products upon future logins.

If LM_LICENSE_FILE is not set or exported, and the node-locked 15-day
temporary license file /usr/pgi/PGIinstall still exists, then
/usr/pgi/PGIinstall will be used for resolving compiler licenses.

Step 4 − You must now start the license manager daemon. Edit the shell
script template /usr/pgi/linux86/5.2/bin/lmgrd.rc. If you have
installed the compiler(s) in a directory other than /usr/pgi, substitute the
correct installation directory into ‘/usr/pgi’ part on line 3 of the script. Now
exit the editor and issue the following command to start the license server
and pgroupd license daemon running on your system:

 % lmgrd.rc start

If you wish to stop the license server and license daemon at a later time,
you can do so with the command:

 % lmgrd.rc stop

To make sure that the license server and pgroupd daemon are started each

 Installation Notes 18

time your system is booted, log in as root, set the PGI environment variable
as above, and then execute the following two commands:

 % cp /usr/pgi/linux86/5.2/bin/lmgrd.rc \
 /etc/rc.d/init.d/lmgrd
 % ln -s /etc/rc.d/init.d/lmgrd \
 /etc/rc.d/rc3.d/S90lmgrd

Note that your system’s default runlevel may be something other than ‘3’,
and if it is, that number should be used above in setting the correct
subdirectory. Run /sbin/runlevel to check the system’s runlevel. Note
also that if you're using a Linux distribution other than Red Hat, your rc
files may be in a directory other than /etc/rc.d. Some Linux
distributions, such as Red Hat and Mandrake, include the chkconfig(8)
utility that manages the runlevel scripts. If your system has this tool and
you wish to use it, then run the following commands:

 % cp /usr/pgi/linux86/5.2/bin/lmgrd.rc \
 /etc/rc.d/init.d/
 % chkconfig -- add lmgrd.rc

The appropriate links will be created in the /etc/rc.d directory
hierarchy. For more information on chkconfig, please see the manual page.

Installation of your FLEXlm-style licensing of our products for Linux is
now complete. If you have difficulties with the installation, send e-mail to
trs@pgroup.com for assistance.

2.4 Non-Linux86 License Servers

If you are using a non-linux86 or non-linux86-64 system as the license
server for the PGI compilers and tools, The Portland Group Compiler
Technology has in the past provided pgroupd vendor daemons for
alternative hosts at http://www.pgroup.com/downloads/flexlm.htm. Hosts
supported in the past include HP* HP-UX*, SGI* IRIX*, and Sun*
Solaris* systems. For this 5.2 release, some alternative hosts are still
supported for 32-bit-only linux86 PGI compiler products. However, The

PGI Workstation 5.2 19

Portland Group Compiler Technology is phasing out support for alternative
hosts. They are not currently supported for 64-bit linux86-64 PGI compiler
products, and alternative hosts will not be supported at all as of the PGI
Workstation 6.0 release.

2.5 Setting Up Your Environment

Now that you have installed the compilers in, for example, /usr/pgi, it is
important that you set up your compiler environment in order to access the
compilers successfully. Assume the license file is in
/usr/pgi/license.dat, and that the lmgrd license manager is running.
Each user of the PGI compilers and tools must use the following sequence
of commands to initialize the shell environment before using the
compilers.

In csh,

% setenv PGI /usr/pgi
% setenv LM_LICENSE_FILE $PGI/license.dat
% set path = ($PGI/linux86/5.2/bin $path)
% setenv MANPATH "$MANPATH":$PGI/linux86/man

Or, assuming bash, sh or ksh:

% export PGI=/usr/pgi
% export PATH=$PGI/linux86/5.2/bin:$PATH
% export MANPATH=$MANPATH:$PGI/linux86/man
% export LM_LICENSE_FILE=$PGI/license.dat

2.6 Installing PGI Workstation on Win32

If you are installing PGI Workstation from a CD-ROM, insert the CD-
ROM into the CD-ROM drive on the system on which the install is to take
place. An installation script will automatically be invoked and the
installation process will begin. Follow the directions printed to your
screen.

 Installation Notes 20

If you are installing PGI Workstation from the self-extracting file
downloaded electronically via ftp, double-click on the pgiws.exe file with
the left mouse button. The installation process will begin. Follow the
instructions printed to your screen.

As with Linux, the PGI Workstation compilers and tools on Win32 are
license-managed. However, FLEXlm-style licensing is not available on
Win32. All licenses are node-locked. The Win32 serial number is used as
the hostid. This number will be printed to your screen during the
installation process, or can be located by left-clicking on
Start->Settings->Control Panel (on Windows XP, Start->Control Panel,
and set classic settings to get System info) and then double-left-clicking on
the System icon and left-clicking on the “General” tab. The Win32 serial
number will be in the middle of the System Properties window and look
something like the following:

 Registered to:
 <your name>
 <your organization>
 22296-oem-0014072-07487

The last number above is the Win32 serial number. Obtain your permanent
license keys using your personalized account on our web page as outlined
in your order acknowledgement, and place them in the file
C:/PGI/license.dat (or specify the appropriate directory path if you
have installed in a directory other than the default C:/PGI). You should
now be able to use our compilers and tools from any PGI Workstation
command window.

2.7 Installation Limitations for Win32

The PGI Workstation 5.2 release does not co-install properly on Win32
systems with an existing PGI Workstation 5.0 or 5.1 installation. The PGI
Workstation 5.2 compiler components and registration can corrupt or delete
parts of the previous installations, when you install in the same directory.
This will be corrected in a future release. Use the control panel to remove
previous installation(s) before installing PGI Workstation 5.2.

PGI Workstation 5.2 21

2.8 Installing the EMACS Editor for Win32

The emacs editor consumes nearly 20 MB of installation space within the
Win32 version of the PGI Workstation. For this reason, it is de-coupled
from the main distribution file, pgiws.exe. If you are an emacs user and
would like it installed, retrieve the file from the directory:

 http://www.pgroup.com/downloads

It is a self-installing file. As with pgiws.exe, simply double-left-click on
emacs.exe after downloading and follow the instructions for installation.

2.9 Customizing the Command Window

By default, when you double-left-click on the PGI Workstation desktop
icon, a standard black-background command window appears on your
screen pre-initialized with environment and path settings for use of the PGI
Workstation compilers and tools. If you prefer different background or text
colors, font style, window size, or scrolling capability, you can customize
the “shortcut” that creates the PGI Workstation command window. Right-
click on the PGI Workstation desktop icon, and left-click “Properties” from
the pop-up menu. Modify the features mentioned above by selecting the
appropriate tabs in the pop-up window and making modifications as
desired.

PGI Workstation 5.2 23

3 PGI Workstation 5.2
 Release Notes

This document describes changes between PGI Workstation 5.2 and
previous releases, as well as late-breaking information not included in the
current printing of the PGI User’s Guide. There are two versions of PGI
Workstation 5.2:

• A 32-bit version supported on 32-bit operating systems running on
either a 32-bit x86 compatible or a 64-bit AMD64 compatible
processor

• A 64-bit/32-bit version that includes all features and capabilities
of the 32-bit version, and which is also supported on 64-bit
operating systems running on 64-bit AMD64 compatible
processors.

These versions are distinguished in these release notes where necessary.

3.1 PGI Workstation Release 5.2 Contents

The PGI Workstation 5.2 product is comprised of the following
components

• PGF90 native OpenMP and auto-parallelizing Fortran 95

 Release Notes 24

compiler, in versions that will run and produce code for
execution in linux86, linux86-64, and win32 development
environments. Release 5.2 introduces full Fortran 95 and large
array (single data objects larger than 2GB) support in PGF90
for linux86-64 environments.

• PGF77 native OpenMP and auto-parallelizing FORTRAN 77
compiler, in versions that will run and produce code for
execution in linux86, linux86-64, and win32 development
environments.

• PGHPF data parallel High Performance Fortran compiler, in
versions that will run and produce code for execution in
linux86, linux86-64, and win32 development environments.

• PGCC native OpenMP and auto-parallelizing ANSI and K&R C
compiler in versions that will run and produce code for
execution in linux86, linux86-64, and win32 development
environments.

• PGC++ native OpenMP and auto-parallelizing ANSI C++
compiler, in versions that will run and produce code for
execution in linux86 and linux86-64 development environments.
NOTE: PGC++ is not supported in win32 environments.

• PGPROF graphical profiler in versions that will run on linux86
and linux86-64, and a command-level version for linux86,
linux86-64, and win32 environments.

• PGDBG multi-thread graphical debugger, in versions that will
run on linux86 and linux86-64 development environments.
NOTE: PGDBG is not supported in win32 environments.

• Complete online documentation in a mixture of PDF and
HTML.

• A UNIX-like shell environment for win32 environments.

Depending on the product you purchased, you may not have received all of
the above components.

PGI Workstation 5.2 25

3.2 Supported Systems

3.2.1 Supported Processors

PGI Workstation 5.2 is supported on the following processors. The –tp
<target> command-line option is used to generate executables that utilize
features and optimizations specific to a given CPU and operating system
environment. Compilers included in a 64-bit/32-bit PGI Workstation 5.2
installation can produce executables targeted to any 64-bit or 32-bit target,
including cross-targeting for AMD and Intel 64-bit AMD64 compatible
CPUs. Compilers included in a 32-bit PGI Workstation 5.2 installation (a
linux86 or Win32 environment) cannot produce executables for 64-bit
targets. The default, in the absence of an explicit –tp switch, is for the PGI
compilers to produce executables targeted to the CPU and operating system
environment on which compilation is performed.

PGI Workstation 5.2 Supported Processors

Memory Address Floating Point HW
Supplier CPU

<target>

 32-bit
x86

64-bit
 x86-64

80-bit
x87

32-bit
SSE1

64-bit
SSE2

AMD Opteron/Athlon64 k8-64 No Yes Yes Yes Yes
AMD Opteron/Athlon64 k8-32 Yes No Yes Yes Yes
Intel Xeon EM64T p7-64 No Yes Yes Yes Yes
Intel Xeon EM64T p7 Yes No Yes Yes Yes
Intel Xeon/Pentium4 p7 Yes No Yes Yes Yes
AMD Athlon XP/MP athlonxp Yes No Yes Yes No
Intel Pentium III piii Yes No Yes Yes No
AMD Athlon athlon Yes No Yes No No
AMD K6 k6 Yes No Yes No No
Intel Pentium II p6 Yes No Yes No No

Various Other x86 p5 or px Yes No Yes No No

 Release Notes 26

NOTE: The Intel Xeon EM64T supports new floating-point hardware
instructions known as SSE3. The PGI Workstation 5.2 compilers make no
use of these instructions, even in the presence of the –tp p7-64 command-
line option.

3.2.2 Supported Operating Systems

PGI Workstation 5.2 is supported on the operating systems listed in the
table below, and their equivalents. To determine if PGI Workstation 5.2
will install and run under a Linux equivalent version (Mandrake*, Debian*,
Gentoo*, etc), look to see if a supported system with the same glibc and
gcc versions is in the table. Other version differences can cause
difficulties, but often these can be overcome with minor adjustments to the
PGI software installation or operating system environment.

Newer distributions of the Linux operating system include support for 64-
bit AMD64 compatible processors (AMD Athlon64/Opteron, Intel Xeon
EM64T), and are designated 64-bit in the table. These are the only
distributions on which the 64-bit/32-bit version of PGI Workstation 5.2
will fully install. If you attempt to install the 64-bit/32-bit version of PGI
Workstation 5.2 on a system running a 32-bit Linux distribution, only the
32-bit versions of the PGI compilers and tools will be installed.

Some newer Linux distributions support the Native Posix Threads Library
(NPTL), a new threads library that can be utilized in place of the
libpthreads library available in earlier versions of Linux. Distributions that
include NPTL are designated in the table. Parallel executables generated
using the OpenMP and auto-parallelization features of the PGI Workstation
5.2 compilers will automatically make use of NPTL on distributions where
it is available. In addition, the PGDBG debugger is capable of debugging
executables built using either NPTL or libpthreads.

PGI Workstation 5.2 27

Operating Systems Supported by PGI Workstation 5.2

Distribution Type 64-bit HT PGC++ PGDBG NPTL glibc
RHEL 3.0 Linux Yes Yes Yes Yes Yes 2.3.2
Fedora C-2 Linux Yes Yes Yes Yes Yes 2.3.2
SuSE* 9.1 Linux Yes Yes Yes Yes Yes 2.3.3
SuSE 9.0 Linux Yes Yes Yes Yes No 2.3.2
SLES8 SP2 Linux Yes Yes Yes Yes No 2.2.5
SuSE 8.2 Linux Yes Yes Yes Yes No 2.3.2
SuSE 8.1 Linux Yes Yes Yes Yes No 2.2.5
SuSE 8.0 Linux No No Yes Yes No 2.2.5
SuSE 7.3 Linux No No Yes Yes No 2.2.4
SuSE 7.2 Linux No No Yes Yes No 2.2.4
SuSE 7.1 Linux No No Yes Yes No 2.2.4
Red Hat* 9.0 Linux No No Yes Yes Yes 2.3.2
Red Hat 8.0 Linux No No Yes Yes No 2.2.93
Red Hat 7.3 Linux No No Yes Yes No 2.2.5
Red Hat 7.2 Linux No No Yes Yes No 2.2.4
Red Hat 7.1 Linux No No Yes Yes No 2.2.3
Red Hat 7.0 Linux No No Yes Yes No 2.2

XP No Yes No No NA NA
ME No No No No NA NA
2000 No No No No NA NA
NT No No No No NA NA

Microsoft
Windows
Versions

98 No No No No NA NA

Either the 32-bit-only or the 64-bit/32-bit version of PGI Workstation 5.2
can be installed and function correctly on any 64-bit Linux distribution.
However,

1. For the 64-bit versions of the PGI compilers to function correctly,
gcc must be installed and configured to support 64-bit
programming. For example,

 gcc –mcmodel=medium x.c

should compile and execute without incident, where x.c is any
valid C program that addresses large data sets.

 Release Notes 28

2. For the 32-bit versions of the PGI compilers to function correctly,
gcc must be installed and configured to support 32-bit
programming. For example,

 gcc –m32 hello.c

should compile and execute correctly. If gcc is not configured for
32-bit support, the PGI 32-bit linux86 compilers will NOT install
correctly on a 64-bit Linux distribution.

For OpenMP programming, machines with 2 or more physical CPUs with
hyperthreading (HT) capability enabled must run a Linux distribution that
schedules threads in a way that favors the 2nd physical CPU over the
current CPU’s 2nd pseudo CPU. These distributions are designated in the
HT Column. If you intend to run multi-process OpenMP programs on a
system with HT-capable processors without an HT-aware Linux
distribution, you should disable the HT feature of the processors in the
system.

NOTE: While SuSE Linux Enterprise Server 8 and SuSE 8.1 are 64-bit
Linux distributions, there are known limitations to the default versions of
the GNU tools (gcc, assembler, linker) on these distributions that prevent
Large Arrays support. If you are installing the PGI Workstation 5.2
compilers and tools on one of these distributions, you may need to upgrade
to a newer version of the GNU tools.

NOTE: http://www.pgroup.com/support/install.htm lists any new Linux
distributions that may be explicitly supported by the PGI Workstation 5.2
compilers. If your Linux distribution is newer than any of those listed in
the table above, the installation may still be successful. The web page
http://www.pgroup.com/support/install.htm covers many common online
license key generation questions.

3.3 New Compiler Features

Following are the new features of the PGI Workstation 5.2 compilers and
tools as compared to prior releases.

PGI Workstation 5.2 29

• Fortran 95 – the PGF90 compiler now supports full Fortran 95.
The command name pgf90 is retained to enable full backward
compatibility of build environments with previous releases of
the PGI compilers and tools.

• Large Arrays – single data objects larger than 2GB in size are
now supported by PGF90 in linux86-64 environments. Data
objects, both locally and globally declared, including objects in
COMMON blocks and objects allocated on the stack, can now
be larger than 2GB individually and as an aggregate. The
–Mlarge_arrays option must be used with –mcmodel=medium
to compile Fortran programs that use Large Arrays. The
–Mlarge_arrays option will become default in linux86-64
environments for PGF90, PGF77 and PGCC in a future release
of the PGI compilers and tools.

• One-pass IPA – the inter-procedural analysis (IPA) and
optimization phases of the PGI compilers have been re-worked
to enable one-pass IPA, meaning that –Mipa can be used on the
compiler command lines like any other compiler option with no
required changes to make files or build scripts. Previous
releases of the PGI compilers and tools used a two-pass IPA
implementation.

• IPA-driven function inlining – the IPA phase of the PGI
compilers now aggressively inlines functions in the presence of
the –Mipa=inline option. While this inlining is not
recommended in all cases, it can improve performance of
applications that rely on large numbers of calls to relatively
small functions. Inlining can also increase opportunities for
important loop optimizations, such as loop unrolling and
vectorization.

• Performance – Further tuning of both the 32-bit x86 and 64-bit
AMD64 code generators and other optimization phases,
resulting in SPECFP2K Fortran performance improvements
averaging 10% over the previous PGI Workstation 5.1 release.
Several important research community applications like MM5,

 Release Notes 30

MOLPRO, GAMESS, WRF and POP show performance increases of
10% to 20%. C performance is improved modestly, typically by
5% to 10% on several industry-standard benchmarks.

• 64-bit integer optimizations – full optimization of loops that
require 64-bit index variables on AMD64 and compatible
processors running a linux86-64 environment, including for
example loops in programs that are compiled using the –i8
option.

• Prefetch directives – PGF77 and PGF90 now support directives
and PGCC supports pragmas to allow explicit prefetching of
data by the programmer. See the PGI User’s Guide for details
on how to use these directives and pragmas.

• ACML 2.1 – a new edition of the AMD Core Math Library,
ACML 2.1, is bundled with the PGI Workstation 5.2 compilers
and tools. The bundled version of the ACML supports only 32-
bit x86 and 64-bit AMD64 compatible CPUs that support both
SSE1 and SSE2 instructions. The lower-performance but fully
portable libblas.a and liblapack.a libraries are still included, and
can be used on CPUs that do not support SSE instructions.
NOTE: ACML 2.1 is built using the –fastsse compile/link
option, which includes –Mcache_align. When linking in the
ACML 2.1, you must compile/link all program units with
–Mcache_align, or an aggregate option such as –fastsse which
incorporates –Mcache_align.

• EM64T support – Intel IA32 processors with EM64T
extensions, designed to be binary compatible with AMD64
technology processors from AMD, are now supported using the
–tp p7-64 command-line option.

• Expanded operating systems support – several new Linux
distributions are supported, including SuSE 9.1 and Fedora
Core 2. NOTE: Windows 64 support is not available with the
PGI Workstation 5.2 release.

PGI Workstation 5.2 31

3.4 Compiler Options

3.4.1 Getting Started

By default, the PGI Workstation 5.2 compilers generate code optimized for
the type of processor on which compilation is performed (the compilation
host). If you are unfamiliar with the PGI compilers and tools, a good
option to use by default is –fast. This option is host-dependent but usually
includes the options –O2 –Munroll –Mnoframe. Typically, for best
performance on processors that support SSE instructions, you will want to
use the PGF90 compiler (even for FORTRAN 77 code) and the –fastsse
option. This option is similar to –fast, but incorporates additional
optimization options to enable use of streaming SIMD (SSE/SSE2)
instructions where appropriate. The contents of the –fastsse switch are
host-dependent, but typically include the options –O2 –Munroll –
Mnoframe –Mlre –Mvect=sse –Mcache_align. On some systems, –fastsse
also includes –Mscalarsse and –Mflushz.

In addition to –fastsse, the –Mipa=fast option for inter-procedural analysis
and optimization can improve performance. You may be able to obtain
further performance improvements by experimenting with the individual
–Mpgflag options detailed in the PGI User’s Guide (–Mvect, –Munroll,
–Minline, –Mconcur, etc). However, speed-ups using these options are
typically application and system-dependent, so it is important to time your
application carefully when using these options to ensure no performance
degradations occur.

3.4.2 New or Modified Compiler Options

The following compiler options have been added or modified in PGI
Workstation Release 5.2:

• –Bdynamic – explicitly request that the compiler drivers link with
shared object libraries.

• ––instantiate=<mode> – Control instantiation of external (non-

 Release Notes 32

inline, non-static) templates. The instantiation mode determines
the templates for which code should be generated based on the
template definition. Possible values for mode are:

none Instantiate no templates. This is the default.

used Instantiate only templates used in this compilation.

all Instantiate all templates whether or not they are
used.

local Instantiate only the templates that are used in
this compilation, and force them to be local to
this compilation.

• –Mipa=inline[:n] – IPA-driven inlining has been significantly
enhanced, and can provide performance improvements on some
benchmarks and applications. If the optional n is supplied,
perform inlining up to n levels from leaf routines upward. The
default value for n is 3.

• –Mlarge_arrays – now applies to both the PGF90 and PGF77
compilers. This option must be used, in combination with
–mcmodel=medium, when compiling F95 or F77 applications that
use single data objects larger than 2GB in size.

• –M[no]prefetch – (disables) enables generation of prefetch
instructions; only applies when used in combination with –Mvect
or an aggregate option such as –fastsse that incorporates –Mvect.

• –M[no]smart – (disable) enable optional AMD64-specific post-
pass instruction scheduling.

• –Munsafe_par_align – assume aligned moves are safe for array
references in parallelized loops as long as the first element of the
array is aligned. NOTE: this option will cause aligned moves to
be generated even when the compiler can’t prove they are safe.
This can improve performance on some benchmarks, in particular
the OpenMP STREAM benchmark. A future release of the PGI

PGI Workstation 5.2 33

compilers and tools will include parallelization capabilities that
guarantee alignment of subsections of arrays in parallel loops
provided that the first element of the array is properly aligned.

• –Mvect=nosizelimit – generate vector code for all loops where
possible regardless of the number of statements in the loop. This
overrides a heuristic in the vectorizer that ordinarily prevents
vectorization of loops with a number of statements that exceeds a
certain threshold.

• –tp { k7 | k8-32 | k8-64 | piii | p5 | p6 | p7 | p7-64 | px } – Set the
target architecture. By default, the PGI Workstation compilers
produce code specifically targeted to the type of processor on
which the compilation is performed. In particular, the default is to
use all supported instructions wherever possible when compiling
on a given system. As a result, executables created on a given
system may not be useable on previous generation systems (for
example, executables created on a Pentium 4 may fail to execute
on a Pentium III or Pentium II). Processor-specific optimizations
can be specified or limited explicitly by using the −tp option. In
this way, it is possible to create executables that are useable on
previous generation systems. With the exception of k8-64 and p7-
64, any of these sub-options are valid on any x86 or AMD64
compatible system. The k8-64 and p7-64 sub-options are valid
only on AMD Athlon64/Opteron processor-based systems, and
processors such as the Intel Xeon EM64T which are designed to
be AMD64 binary compatible, running a 64-bit operating system.
Following is a list of possible sub-options to –tp, and the
processors they are intended to target:

k7 generate 32-bit code optimized for AMD AthlonXP
and compatible processors.

k8-32 generate 32-bit code optimized for AMD64
technology processors.

k8-64 generate 64-bit code optimized for AMD64
technology processors.

piii generate 32-bit code optimized for Pentium III

 Release Notes 34

processors.

px generate 32-bit code that is useable on any x86
processor.

p5 generate 32-bit code optimized for Pentium
processors.

p6 generate 32-bit code optimized for Pentium Pro/II
and processors.

p7 generate 32-bit code optimized for Pentium 4 and
Xeon processors.

p7-64 generate 64-bit code optimized for Xeon
EM64T processors.

3.5 64-bit Support

The PGF77 and PGF90 compilers included in PGI Workstation 5.2
support both the –mcmodel=small and –mcmodel=medium addressing
models as defined in the X86-64 Application Binary Interface. Here are
some terms useful to understand the capabilities of these programming
models.

Address Type (A) – the size in bits of data used for address calculations,
32-bit or 64-bit.

Index Arithmetic (I) – the size in bits of data used to index into arrays and
other aggregate data structures. If I is 32-bit, the total range or size of any
single data object is limited to 2GB.

Maximum Array Size (AS) – the maximum size in bytes of any single data
object.

Maximum Data Size (DS) – the maximum size in bytes of the aggregate of
all data objects in .bss sections in an executable.

Maximum Total Size (TS) – the maximum size in bytes, in aggregate, of all

PGI Workstation 5.2 35

executable code and data objects in a running program.

The table below describes 32-bit versus 64-bit capabilities of linux86 and
linux86-64 executables when programs are compiled and linked using
various combinations of options to the PGI Workstation 5.2 compilers.
The program area is the total area used by the Linux operating system and
the user program. On most 32-bit Linux systems, only about 1GB is
available for data (in theory 2GB is accessible with a 32-bit signed integer
address).

Programming Models on 64-bit Linux86-64 Systems

Address
Arithmetic

Maximum Data Size
 in Gbytes

Comments

Combined

Options to PGI
Compilers A I AS DS TS

–tp {k8-32 | p7} 32 32 2 2 2
Compatible with 32-bit
linux86 programs

–tp {k8-64 | p7-64} 64 32 2 2 2

64-bit addressing, but
–mcmodel=small
default limits data area

–tp {k8-64 | p7-64}

 –fpic 64 32 2 2 2

–fpic can’t be used with
–mcmodel=medium on
compile line, but –fpic
shared libs can be
linked into either small
or medium memory
executables

 Release Notes 36

–tp {k8-64 | p7-64}
–mcmodel=medium

64 32 2 >2 >2

64-bit data area, but
2GB size limit on each
data object, and a
potential performance
penalty since %rip-
relative addressing can’t
be used

–tp {k8-64 | p7-64}
–mcmodel=medium
–Mlarge_arrays

64 64 >2 >2 >2

Used with PGF77 and
PGF90 to enable full
support for 64-bit data
addressing

The (default) small memory model of the linux86-64 environment limits the
combined area for a user’s object or executable to 1GB, with the Linux
kernel managing usage of the other 1GB of address for system routines,
shared libraries, stacks, etc. Programs are started at a fixed address, and the
program can use a single instruction to make most memory references.

Support for the medium memory model in the linux86-64 environment is
provided using the –mcmodel=medium compile and link option. The
medium memory model allows for larger than 2GB data objects and .bss
sections. Object files linked into an executable requiring the
–mcmodel=medium link-time option must be compiled using either
–mcmodel=medium or –fpic, but cannot be compiled using both of these
options.

IMPORTANT NOTE: while medium memory model executables can
incorporate both –mcmodel=medium objects and –fpic objects, it is
important to reiterate that these two options cannot be used together on a
given file. In particular, this means that it is not possible to create shared
object libraries that include objects compiled –mcmodel=medium. This is a
limitation of the X86-64 Application Binary Interface, not a limitation
specific to the PGI compilers and tools.

The linux86-64 environment provides system libraries in two forms, and
the PGI compilers runtime libraries are provided in these same two forms:

1. Static libxxx.a archives built without –mcmodel=medium and

PGI Workstation 5.2 37

without –fpic (static –mcmodel=small archives)

2. Dynamic libxxx.so shared object libraries that are compiled –fpic
(dynamic –mcmodel=small archives)

The –mcmodel=medium linker switch implies the –fpic switch and will
utilize the shared object libraries by default. NOTE: a side-effect of this
aspect of the linux86-64 environment is that it is not possible to create
statically-linked –mcmodel=medium executables. However, it is possible
to create your own static archives built using –mcmodel=medium, and
statically link objects from such archives into a –mcmodel=medium
executable.

3.5.1 Practical Limitations of –mcmodel=medium

The 64-bit addressing capability of the linux86-64 environment can cause
unexpected issues when data sizes are enlarged significantly. For example:

• Initializing a large array with a data statement may result in very
large assembly and object files, where a line of assembler source
is required for each element in the initalized array. Compilation
and linking will be very time consuming as well. To avoid this
issue, consider initializing large arrays in the program area in a
loop rather than in the declaration.

• Stack space can be a problem for data that is stack-based. Issuing
the command limit stacksize unlimited in your shell
environment can enable as much stack space as possible, but it
will be limited nonetheless and is dependent on the amount of
physical memory. Determine if limit stacksize 512M gives
as large a stack area as unlimited. If so, there is a hard limit to
the stack size imposed by the operating system and the
programmer must work around this if necessary by modifying the
program to reduce the amount of data that is stack-based.

• If your executable is much larger than the physical size of
memory, page swapping can cause it to run dramatically slower

 Release Notes 38

and it may even fail. This is not a compiler problem. Try smaller
data sets to determine if a problem is due to page thrashing, or not.

• Be sure your linux86-64 system is configured with swap space
sufficiently large to support the data sets used in your
application(s). If your memory+swap space is not sufficiently
large, your application will likely encounter a segmentation fault
at runtime.

Overall, it is important to understand the practical limitations of the
linux86-64 environment, and programmers should take reasonable care to
determine if a program failure is due a compiler limitation or an operating
system limitation.

3.5.2 Compiler Limitations of –mcmodel=medium

For the PGHPF and PGC++ compilers included in PGI Workstation 5.2,
single data objects are still limited to less than 2GB in size. This limitation
will be removed in a future release of the PGI compilers and tools.

3.5.3 Large Array Example in C

Consider the following example, where the aggregate size of the arrays
exceeds 2GB.

% cat bigadd.c

#include <stdio.h>

#define SIZE 600000000 /* > 2GB/4 */

static float a[SIZE],b[SIZE];
main() {
long long I,n,m;
float c[SIZE]; /* goes on stack */
n=SIZE;m=0;

 for(i=0;i<n;i+=10000){
 a[i]=i+1;

PGI Workstation 5.2 39

 b[i]=2.0*(i+1);
 c[i]=a[i]+b[i];
 m=I;
 }
 printf(“a[0]=%g b[0]=%g c[0]=%g\n”, a[0], b[0],
 c[0]);
 printf(“n=%d a[%d]=%g b[%d]=%g c[%d]= %g\n”, n, m, m,
 m, a[m], b[m], c[m]);
}

Compiled using gcc, without using –mcmodel=medium:

% gcc –o bigadd bigadd.c
/tmp/ccWt7q8Q.o: In function `main’:
/tmp/ccWt7q8Q.o(.text+0x6e): relocation truncated to
fit: R_X86_64_32S .bss
/tmp/ccWt7q8Q.o(.text+0x8c): relocation truncated to
fit: R_X86_64_32S .bss

This is a link-time error, and is due to the linker attempting to create a
small memory model executable when the static arrays exceed the
aggregate limit inherent in that model. Re-compiling using –
mcmodel=medium:

% gcc –mcmodel=medium –o bigadd bigadd.c
/tmp/ccVQpbPj.s: Assembler messages:
/tmp/ccVQpbPj.s:97: Error: .COMMon length (-2147483648.)
<0! Ignored.

The gcc compiler incorrectly converts a greater than 2G value to a negative
32-bit number in an assembler statement. This error does not occur using
pgcc 5.2:

% pgcc –mcmodel=medium –o bigadd bigadd.c

Why? When SIZE is greater than 2G/4, and the arrays are of type float
with 4 bytes per element, the size of each array is greater than 2GB. With
5.2 pgcc, using the –mcmodel=medium switch, a static data object can now
be > 2GB in size. Note that if you execute with the above settings in your
environment, you may see the following:

 Release Notes 40

% bigadd
Segmentation fault

Execution fails because the stack size is not large enough. Try resetting the
stack size in your environment:

% limit stacksize 3000M

Note that ‘limit stacksize unlimited’ will probably not
provide as large a stack as we are using above.

% bigadd
a[0]=1 b[0]=2 c[0]=3
n=600000000 a[599990000]=5.9999e+08
b[599990000]=1.19998e+09 c[599990000]=1.79997e+09

The size of the bss section of the bigadd executable is now larger than
2GB:

% size –format=sysv bigadd | grep bss
.bss 4800000008 5245696
% size –format=sysv bigadd | grep Total
Total 4800005080

3.5.4 Large Array Example in Fortran

The following example works with both the PGF90 and PGF77 compilers
included in PGI Workstation 5.2. Both compilers use 64-bit addresses
when the –mcmodel=medium option is used and both allow for 64-bit
addressing and 64-bit integer index support if –Mlarge_arrays is also used.

Consider the following example:

% cat matadd.f
 program matadd
 integer I, j, k, size, l, m, n
 parameter (size=16000) ! >2GB
 parameter (m=size,n=size)
 real*8 a(m,n),b(m,n),c(m,n),d

PGI Workstation 5.2 41

 do I = 1, m
 do j = 1, n
 a(I,j)=10000.0D0*dble(i)+dble(j)
 b(I,j)=20000.0D0*dble(i)+dble(j)
 enddo
 enddo
!$omp parallel
!$omp do
 do I = 1, m
 do j = 1, n
 c(I,j) = a(I,j) + b(I,j)
 enddo
 enddo
!$omp do
 do i=1,m
 do j = 1, n
 d = 30000.0D0*dble(i)+dble(j)+dble(j)
 if(d .ne. c(I,j)) then
 print *,”err i=”,I,”j=”,j
 print *,”c(I,j)=”,c(I,j)
 print *,”d=”,d
 stop
 endif
 enddo
 enddo
!$omp end parallel
 print *, “M =”,M,”, N =”,N
 print *, “c(M,N) = “, c(m,n)
 end

When compiled with the PGF90 compiler using –mcmodel=medium and
–Mlarge_arrays:

% pgf90 –mp –o matadd matadd.f –mcmodel=medium –Mlarge_arrays

% setenv OMP_NUM_THREADS 2
% matadd
M = 16000 , N = 16000
c(M,N) = 480032000.0000000

On a 1.8 GHz Dual processor Opteron box with 4GB of memory, the
above example executes about 33% faster with OMP_NUM_THREADS

 Release Notes 42

set to 2, instead of 1.

3.6 PGI Workstation 5.2 for Win32

PGI Workstation 5.2 for Win32 environments has most of the features of
the 32-bit version for linux86 environments, with the following main
differences:

• The PGC++ compiler is not available for Win32 environments

• The PGDBG debugger is not available for Win32 environments

• The PGPROF performance profiler is included, but only with a
command-level text interface (no graphical user interface)

The product best fits Linux or RISC/UNIX users porting or developing
programs for the 32-bit Windows Operating system. However, it does not
completely support such developers. In particular, there are some C library
routines specific to Unix/Linux that are not in the MinGW32 UNIX-like
command environment included with PGI Workstation 5.2 for Win32.

On Win32, a UNIX-like shell environment is bundled with PGI
Workstation 5.2. After installation, a double-left-click on the PGI
Workstation icon on your desktop will launch a bash shell command
window with pre-initialized environment settings. Most familiar UNIX
commands are available (vi, emacs, sed, grep, awk, make, etc). If you
are unfamiliar with the bash shell, reference the user’s guide included with
the online HTML documentation.

Alternatively, you can launch a standard Win32 command window pre-
initialized for usage of the compilers by selecting the appropriate option
from the PGI Workstation program group accessed in the usual way
through the “Start” button.

Except where noted in the PGI User’s Guide, the command-level compilers
and tools on Win32 function identically to their Linux counterparts. You
can customize your command window (white background with black text,
add a scroll bar, etc.) by right-clicking on the top border of the PGI

PGI Workstation 5.2 43

Workstation command window, selecting “Properties”, and making the
appropriate modifications. When the changes are complete, Win32 will
allow you to apply the modifications globally to any command window
launched using the PGI Workstation desktop icon.

3.7 PGDBG and PGPROF

PGI Workstation 5.2 includes several new features in the PGDBG parallel
debugger and PGPROF performance profiling tools. In particular, both of
these tools include completely new graphical user interfaces (GUIs).

PGDBG is supported as a graphical and command line debugger in both
the linux86 and linux86-64 execution and development environments. Like
the compilers, PGDBG for linux86-64 must run in a linux86-64 execution
environment. PGDBG for linux86 environments is a separate version, and
it will also run in the linux86-64 execution environment, but only with
linux86 executables. The linux86-64 version of PGDBG will only debug
executables built to run as linux86-64 executables. PGDBG for linux86-64
has been enhanced to disassemble the new AMD64 technology instructions
and associated registers, and is more compatible with gcc, g77, and g++
debug information.

PGPROF is supported as a graphical and command line profiler in both the
linux86 and linux86-6 environments. The same version works in either the
linux86 or linux86-64 environment to process a trace file of profile data
created by executing the instrumented program. Program instrumentation
is either line-level (–Mprof=lines), function-level (–Mprof=func), or gprof-
style (–pg) sample based and trace profiling.

The new PGDBG and PGPROF graphical user interfaces (GUIs) are
invoked by default. To use the command-line interfaces, invoke either tool
with the –text option. To use the old GUI interfaces (included in PGI
Workstation 5.1 and prior releases), invoke either tool with the –motif
option.

 Release Notes 44

3.7.1 PGDBG and PGPROF New Features

Following are the new features included in the PGI Workstation 5.2
versions of PGDBG and PGPROF:

• Fortran 95 support – PGDBG and PGPROF both support the
language, syntax, and context of Fortran 95.

• New Graphical User Interfaces (GUIs) – all-new graphical user

interfaces provide easier, more intuitive and effective ways to
access the debugger and functionality. The PGDBG graphical
interface supports single-threaded, multi-threaded, and distributed
applications. The PGPROF graphical user interface supports
either PGI-style pgprof.out trace files or gprof-style gmon.out
trace files, including source correlation for gprof-style traces.

• Process attach – PGDBG now supports the attach and detach

commands to attach and detach the debugger to or from running
processes. This functionality works for MPI applications, allowing
attach to all processes in the MPI application with a single attach
command.

• AMD64 call command – PGDBG now supports the call

command for linux86-64 environments, with some minor
limitations (see below) in passing F90 deferred shape array
arguments.

• Large Arrays – PGDBG now supports linux86-64 applications

built with –mcmodel=medium –Mlarge_arrays.

• NPTL threads support – PGDBG now supports debugging of
SMP parallel programs that use the NPTL threads package
included in newer distributions of Linux.

• Dynamic threads support – In previous releases, PGDBG was

unable to debug multi-threaded parallel programs built on some
Linux distributions unless the programs were statically linked.
PGDBG can now debug such programs even if they are
dynamically linked.

PGI Workstation 5.2 45

• gprof-style profiling – Sample-based profiling, and the ability to

read and display gmon.out-style trace files, is now supported in
PGPROF.

• Scalability comparisons – PGPROF includes improved capability

for scalability comparisons of multiple runs of a parallel program
on different numbers of threads or processors.

• Online help – both PGPROF and PGDBG now have extensive

online help facilities as part of the new GUIs. Most information
available on individual debugger or profiler commands from the
PGI Tools Guide is incorporated into these online help facilities.

See the PGI Tools Guide, completely updated for PGI Workstation 5.2, for
a complete description of the usage and capabilities of PGDBG and
PGPROF. For tool limitations and workarounds, see the FAQ
http://www.pgroup.com/support/new_rel_tools.htm.

3.7.2 PGDBG and PGPROF Corrections

Following is a list of the technical problem reports (TPRs) filed in previous
releases for PGDBG and PGPROF, and which have been corrected in PGI
Workstation 5.2:

PGDBG and PGPROF TPRs Corrected in PGI Workstation 5.2-4
TPR Rel Lang/ tool Description Symptom
2093 3.1 PGDBG Fix display of pgf90 pointer variables Display not right

2315 3.1 PGDBG C++ language inconsistency Display not right

2773 5.1 PGDBG 1. Printing allocatable arrays.
2. Source pane not updated after reload

Display not right

2806 5.1 PGDBG print of F90 array pointer that is a field of
a derived type.

prints only the
first element

3224 5.1 PGDBG Documentation corrected to say core files
are NOT supported.

Documentation
said core files
supported

3178 5.1 PGF90 pgf90 producing faulty debug pgdbg failed

 Release Notes 46

information

3.8 Known Limitations

The frequently asked questions (FAQ) section of the pgroup.com web page
at http://www.pgroup.com/support/index.htm provides more up to date
information about the state of the current release.

• While object files created using PGI Workstation 5.2 compilers
are compatible with object files from previous releases, module
files are not. Fortran 90 program units which include or use
modules must be re-compiled in order to be successfully used in
an executable created using PGI Workstation 5.2 compilers.

• Programs that incorporate object files compiled using
–mcmodel=medium cannot be statically linked. This is a
limitation of the linux86-64 environment, not a limitation specific
to the PGI compilers and tools.

• Using –Mipa=vestigial with PGCC, you may encounter
unresolved references at link time. This is due to the erroneous
removal of functions by the vestigial sub-option to –Mipa. You
can work around this problem by listing specific sub-options to
–Mipa, not including vestigial

• Using –Mprof=func, –mcmodel=medium and –mp together on any
of the PGI compilers can result in segmentation faults by the
generated executable. These options should not be used together.

• Programs compiled and linked for gprof-style performance
profiling using –pg can result in segmentation faults on system
running version 2.6.4 Linux kernels. In addition, the time
reported for each program unit by gprof and PGPROF for such
executables run under some Linux distributions can be a factor of
10 higher than the actual time used. This is due to a bug in certain
shared object libraries included with those Linux distributions.

PGI Workstation 5.2 47

• OpenMP programs compiled using –mp and run on multiple
processors of a SuSE 9.0 system can run very slowly. These same
executables deliver the expected performance and speed-up on
similar hardware running SuSE 9.1. This problem is still being
diagnosed, and will be fully documented and corrected if possible
in a future release of the PGI compilers.

• PGDBG cannot print the values of PRIVATE variables while
debugging Fortran threads in an OpenMP parallel region.

• PGDBG now supports the source-level debugging of shared
objects, but a shared object must be loaded before it can be
debugged using PGDBG.

• The PGI Workstation 5.2 release does not co-install properly on
Win32 systems with an existing PGI Workstation 5.0 or 5.1
installation. The PGI Workstation 5.2 compiler components and
registration can corrupt or delete parts of the previous
installations, when you install in the same directory. This will be
corrected in a future release. Use the control panel to remove the
previous installation(s) before installing the PGI Workstation 5.2
release.

• ACML 2.1 is built using the –fastsse compile/link option, which
includes –Mcache_align. When linking in the ACML 2.1 using
the –lacml option, you must compile/link all program units with
–Mcache_align, or an aggregate option such as –fastsse which
incorporates –Mcache_align.

• Attaching to a running process using the menu selection
"File->Attach to Debugee..." from the PGDBG GUI may produce
spurious error messages in the command prompt panel and/or the
program I/O Window. These messages should be ignored.

• PGPROF only supports viewing of gprof-style trace files under
the new GUI. This capability is not supported by the old motif
GUI or the command-line version of PGPROF.

 Release Notes 48

• Times reported for multi-threaded sample-based profiles (gprof-
style profiles) are cumulative. PGI-style instrumentation profiling
with –Mprof={lines | func} must be used to obtain profile data on
individual threads or processes.

Previous releases of the PGI Workstation Linux compiler products have
included a customized version of libpthread.so called libpgthread.so. The
purpose of this library is to give the user more thread stack space to run
OpenMP and –Mconcur compiled programs. With Release 8.0 Red Hat and
equivalent releases, libpthread.so and libpthread.a have ‘re-sizeable’
thread stack areas. In these cases

1. The filename $PGI/linux86/5.1/lib/libpgthread.so is a soft
link to /usr/lib/libpthread.so.

2. Instead of ‘setenv MPSTKZ 256M’, for example to increase
the libpgthread.so thread stack area, the Linux system call
‘limit stacksize 256M’ now applies to thread stacks.

On linux86-64 systems, the 32-bit Linux libpthread libraries appear to no
longer have floating stacks, but actually reset the stack size to 2MB if
linked into an executable. The Portland Group Compiler Technology
considers this a bug. This behavior is not exhibited by 64-bit libpthread
implementations. This behavior has only been observed for 32-bit
libpthread libraries included in linux86-64 environments.

3.9 Corrections

The following problems have been corrected in the PGI Workstation 5.2
release. Most were reported in PGI Workstation 5.1-6 or previous releases.
Problems found in PGI Workstation 5.1-6 may not have occurred in the
previous releases. A table is provided that describes the summary
description of the problem. An Internal Compiler Error (ICE) is usually
the result of checks the compiler components make on internal data
structures, discovering inconsistencies that could lead to faulty code
generation.

PGI Workstation 5.2 49

Compiler Technical Problem Reports (TPRs) Corrected in PGI Workstation 5.2-4
TPR Rel Lang/ tool Description Symptom
2800 3.3 pghpf -g with automatic arrays Signal 11

2811 4.0 pgf90 Program makes compiler fail ICE

2863 4.0 pgf90 Incorrect severe error Severe error

2864 4.0 pgf90 Incorrect severe error Severe error

2876 4.0 pgf77 Program makes compiler fail ICE

2879 4.0 pgf90 Defective program does not cause error No errors

2899 4.0 pgf90 Fails with –i8 ICE

2911 4.0 pgf90 False error Severe error

3005 5.0 pgf90 -mcmodel=medium Bad answers

3017 5.0 pgf90 False error Severe error

3022 5.0 pgf77
pgf90

Large array example Bad answers

3029 5.0 pgf90 False errors errors

3033 5.0 pgCC Bad behavior with optimization Work –O0, not –O1

3034 5.0 pgCC Program fails on linux86-64 Seg fault

3039 5.0 pgf77 Pgf77 fails -fast ICE

3044 5.0 pgf90 Problems with driver X86 vs x86-64

3059 5.0 pgf90 Program breaks compiler ICE

3069 5.0 pgf90 Compiler breaks with program Signal 11

3073 5.0 libpgmp Program fails because of 32-bit libpthread Linux86-64 limit

3075 5.0 pgf90 Program gives bad answers Strings false

3096 5.0 pgCC Compiler breaks with error C++ ICE

3097 5.0 pgf90 Argument mismatch errors errors

3102 5.1 pgf90 Random works inconsistently Different answers

3105 5.1 pgCC -mp works wrong with inlining Different answers

3131 5.1 pgf90 Program causes false severe errors Severe errors

3145 5.1 pgf90 Invalid pointer problem False error

3162 5.1 pgf90 Different answers with -)2 -Munroll Different answers

3163 5.1 pgf90 Assumed shape error Bad answers

3168 5.1 pgf90 Program breaks compiler Signal 11

3170 5.1 pgf90 Equivalence problem Bad answers

3193 5.1 pgf90 -Mbounds false error Bounds errors

3198 5.1 pgf90 Bad answers with –O2 Bad answers

3205 5.1 pgf90 Program generates false pgf90 errors Severe errors

 Release Notes 50

3209 5.1 pgf90 Program breaks compiler ICE

3210 5.1 pgf90 Program breaks compiler ICE

3211 5.1 pgf90 Program breaks compiler ICE

3216 5.1 pgf90 Internal procedure error Bad answers

3217 5.1 pgf90 Bad pointer assignment Bad answers

3218 5.1 pgf90 Internal procedure error Bad answers

3219 5.1 pgf90 Alignment errors Bad answers

3220 5.1 pgf90 Program gives wrong results Bad answers

3221 5.1 pgf90 Regression in behavior over 5.0 Bad answers

3222 5.1 pgf90 Test routine gives bad answers Test Fails

3223 5.1 pgf90 Test routine gives bad answers Test Fails

3224 5.1 pgf90 Test routine fails Test Fails

3225 5.1 pgf90 Different answers from5.0 Bad answers

3226 5.1 pgf90 Test routine gives bad answers Test Fails

3227 5.1 pgf90 Test routine gives bad answers Test Fails

3230 5.1 pgf90 Program causes pgf90 false errors Severe errors

3231 5.1 pgf90 Internal procedure error Bad answers

3232 5.1 pgf90 Internal procedure error Bad answers

3233 5.1 pgf90 Internal procedure error Bad answers

3234 5.1 pgf90 Program produces false answers Bad answers

3238 5.1 pgf90 Program crashes Seg fault

3243 5.1 pgf90 Executable has PGDBG_stub out of range R_X86_64_32

3274 5.1 pgf90 Fatal error in the pgCC prelinker when
building LAM MPI 7.0.6

Fatal errors

3276 5.1 pgf90 False “constant expression of wrong data
type” error

False errors

3277 5.1 pgf90 Pgf90 new_dtype, dt nfd false error False errors

3287 5.1 pgf90 Same as 3277 False errors

3298 5.1 pgf90 DWARF info generation bug PGDBG usage error

3301 5.1 pgf90 DWARF info generation bug PGDBG usage error

3302 5.1 pgf90 -L paths were confused Link errors

3303 5.1 pgf90 False “Argument number 1 : type
mismatch” error

False errors

3309 5.1 pgf90 Recursion stack size limit Not a bug

3311 5.1 pgf90 Signal 11 with –O2 Signal 11

3312 5.1 pgf90 g77 –fno-f2c Not a bug

3323 5.2 Pgf90 bad 'Non comfromable array objects' Compiler errors
3327 5.2 Pgf90 Elemental function Error messages
3351 5.2 Pgf90 pgf90 code ICE -- passes with pgf77 ICE

PGI Workstation 5.2 51

3352 5.2 Pgf90 kind(i)*size(des) gives bad results Bad answers
3356 5.2 Pgf90 Illegal use of symbol value error Error messages
3361 5.2 Pgf90 -fast diff results than -fast -Mvect=sse Different answers
3363 5.2 Pgf90 size fn does not multiply well Same as 3352

PGI Workstation 5.2 53

4 Contact Information
 & Documentation
You can contact The Portland Group Compiler Technology at:

The Portland Group Compiler Technology
STMicroelectronics, Inc.
9150 SW Pioneer Court, Suite H
Wilsonville, OR 97070

Or contact us electronically using any of the following means:

Fax: +1-503-682-2637
Sales: sales@pgroup.com
Support: trs@pgroup.com
WWW: http://www.pgroup.com

All technical support is by e-mail or submissions using an online form at
http://www.pgroup.com/support. Phone support is not currently available.
Many questions and problems can be resolved at our frequently asked
questions (FAQ) site at http://www.pgroup.com/support/faq.htm.

Online documentation is available by pointing your browser at either your
local copy of the documentation:

file:/usr/pgi/doc/index.htm

or online at http://www.pgroup.com/doc.

	Table of Contents
	1 PGI Workstation 5.2� Introduction
	Product Overview
	Terms and Definitions

	2 PGI Workstation 5.2� Installation Notes
	Introduction
	Installing on Linux86 or Linux86-64
	Using FLEXlm on Linux
	Non-Linux86 License Servers
	Setting Up Your Environment
	Installing PGI Workstation on Win32
	Installation Limitations for Win32
	Installing the EMACS Editor for Win32
	Customizing the Command Window

	3 PGI Workstation 5.2� Release Notes
	PGI Workstation Release 5.2 Contents
	Supported Systems
	Supported Processors
	Supported Operating Systems

	New Compiler Features
	Compiler Options
	Getting Started
	New or Modified Compiler Options

	64-bit Support
	Practical Limitations of –mcmodel=medium
	Compiler Limitations of –mcmodel=medium
	Large Array Example in C
	Large Array Example in Fortran

	PGI Workstation 5.2 for Win32
	PGDBG and PGPROF
	PGDBG and PGPROF New Features
	PGDBG and PGPROF Corrections
	Known Limitations
	Corrections

	4 Contact Information� & Documentation

