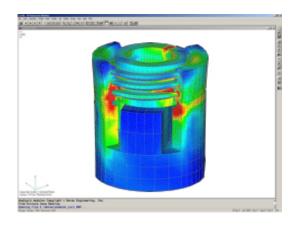
NEiNastran for Windows

NEiFatigue (Fatigue Life Analysis)


Overview

NEiFatigue (WinLife) by Steinbeis TZ enables engineers to calculate the fatigue life of parts and components under dynamic loading. The product has two modules: a basic module and a multiaxial module. In the basic module, the fatigue life can be calculated based on nominal stress (without using finite elements) and/or based on the local strain approach (using notch factors in the usual manner). The multiaxial module is used to calculate the fatigue life of parts load where a dynamic results considerable changes in the principal stress direction. NEiFatigue interfaces well with the NEiNastran Modeler.

Capabilities:

Fatigue Calculation without FEM:

- Classical methods: nominal stress concept and local concept
- Stress S-N curves and mean stress sensitivity are required for the nominal stress concept
- Cyclic stress-strain curves, strain e-N curves and damage parameter curves according to Smith, Watson and Tooper are required for the local concept
- Component loading is provided for both methods
- Loading history (stress, moment, force) obtained from a measurement can also be used
- Rainflow method used for counting of stress histories
- Easy to use Load Spectrum generator
- S-N curve generator for steel, aluminum alloys and cast iron
- Fatigue life database calculated (can be extended by the user); contains S-N curves and data describing the damage for materials commonly used
- Rainflow matrix plots
- Load spectrum plots
- Load hysteresis plots
- Damage XY and Contour plots

Fatigue Calculation Combined with FEM:

- Static FE calculation is used to ascertain the stress within the component
- The direction of the standard load must correspond to the actual force
- Critical nodes can be selected for the fatigue life calculation thus reducing the calculation time
- S-N curves for failure probabilities between 0 and 100% can be created

Multiaxial Calculation:

- Method used when several loadings have an effect on a structure and are not in sync, and not proportional
- Up to 100 loadings working independently can be taken into account
- Should be used if the principal stress directions vary considerably in the component as the calculation is very time consuming
- Applications: bodywork structures, axle components, crankshafts, rotary blades for wind power stations
- Strain measurements data can be used

Unparalleled Support:

- Leader in outstanding customer support
- Onsite and offsite training courses taught by experienced professional engineers
- Phone and email support staffed by a team of FEA specialists

2005 NEi, Noran Engineering, Inc. NE, NE/, and NEi logo are Registered Trademarks of Noran Engineering, Inc. NASTRAN is a registered trademark of the National Aeronautics and Space Administration. Windows is a registered trademark of the Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective owners.

Noran Engineering, Inc is aggressively focused on commitment to the customer. Detailed documentation, customized on-site training, and comprehensive technical support ensures that you will see immediate return on your investment.

For more information about our company or our products, please contact:

Headquarters:

Noran Engineering, Inc 5555 Garden Grove Blvd., Suite 300 Westminster, CA 92683-1886 USA

Phone: 1.714.899.1220 Fax: 1.714.899.1369 Email: info@noraneng.com Website: www.NENastran.com

Europe:

SmartCAE

Piazza della Gualchierina, 9 59100 Prato ITALY

Phone: +39.0.574.404.642 Fax: +39.0.574.401.265 E-mail: info@smartcae.com Website: www.smartcae.com

Asia/Pacific:

Digital Solutions

Kyoei Nakasuji Bldg., 3-7-18 Nakasuji, Asaminami-ku Hiroshima 731-0122 JAPAN

Phone: +81.8.2850.2210
Fax: +81.8.2850.2215
E-mail: post@digital-sol.co.jp
Website: www.digital-sol.co.jp

