W interacter Starter Kit

Revision G

P. O. Box 6091
Incline Village, NV 89450

eeeeeeeeeeeee

Copyright

Copyright © 1997-2002 by Lahey Computer Systems, Inc. and Interactive Software Services, Ltd. All
rights reserved worldwide. This manual is protected by federal copyright law. No part of this manual may
be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any
human or computer language, in any form or by any means, electronic, mechanical, magnetic, manual,
or otherwise, or disclosed to third parties.

Trademarks

Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Disclaimer

Lahey Computer Systems, Inc. reserves the right to revise its software and publications with no obliga-
tion of Lahey Computer Systems, Inc. to notify any person or any organization of such revision. In no
event shall Lahey Computer Systems, Inc. be liable for any loss of profit or any other commercial dam-
age, including but not limited to special, consequential, or other damages. While every effort is made to
ensure the accuracy of the information in this User Guide, Interactive Software Services Ltd. and Lahey
Computer Systems Inc. cannot be held responsible for any errors therein. The right is reserved to revise this
document and the associated software without notice.

Conditions of Use

Use of the ihteracterStarter Kit package shall be in accordance with tha&kacterStarter Kit licence
agreement.

License Agreement

Lahey Computer Systems Inc. and Interactive Software Services Ltd. (“The Licencors") hereby grant the
user of this software ("The Licencee") a non-exclusive and non-transferable licence to useeracisfr

Starter Kit ("The Software") including its associated utilities and documentation according to the follow-
ing terms and conditions :

1) The Software may only be copied for back-up purposes, to support its use for software development
purposes on one processor at any one time.

2) The object and executable code files supplied with The Software may not be modified in any manner
whatsoever. The supplied source code example files may be modified for the purposes of training and
product familiarisation.

3) The object files and library files supplied with The Software may not be distributed to any third parties.

4) Application software in the form of bound executable programs which incorporate any part of The Softwa
may be distributed to any third party. The Licencors do not claim any run-time licence or royalty fees on suc
software. The character set files supplied with the Software may also be distributed with such application p
grams to any third party, so long as they are required by those application programs and provided that such
grams make substantial use of The Software.

5) Application programs developed using The Software should include a clear and prominent comment in tl
source code acknowledging use of The Software. Technical and User documentation for such software sh
also clearly and prominently acknowledge use of The Software.

6) The supplied copy of The Software may not be used on more than one processor at any one time. The £
ware may be transferred from one processor ("The Original") to another so long as all files supplied with Tt
Software are removed from The Original processor.

7) LICENSORS DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING (WITHOUT
LIMITATION) ALL IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICU-
LAR PURPOSE, WITH RESPECT TO THE SOFTWARE AND USER PROGRAMS, IN NO EVENT
SHALL LICENSORS BE LIABLE FOR ANY LOST OR ANTICIPATED PROFITS, OR ANY INDIRECT,
INCIDENTAL, EXEMPLARY, SPECIAL, OR CONSEQUENTIAL DAMAGES, WHETHER OR NOT
LICENSORS WERE ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Lahey Computer Systems, Inc.
865 Tahoe Boulevard
P.O. Box 6091
Incline Village, NV 89450-6091
(775) 831-2500
Fax: (775) 831-8123

Technical Support
(775) 831-2500

support@lahey.com
www.lahey.com

Table of Contents

Introduction...........ccoeeeeiiiiii i, iX Group WM: Window Management 55
Window Handling...........cccccoooicucircinnnininnns ix ~ WindowClear Subrouting...........ccoocoovvvvennane. 56
Input HANAING ... x WindowClose Subroutinecccccoooeeee.s 56
Dialog Managementccccocceerererienn. x WindowCloseChild Subrouting S7
High Resolution Graphicsccccccceveene. xi ~ WindowOpen Subroutine............ccooooevvvnernn. 58
General FUNCHONSc..ovvriiieieieeeienns xi WindowOpenChild Subroutine.................... 61

]] WindowOQutStatusBar Subroutine.................. 64
Supplied Files ..., 1 WindowSelect Subroutine............c.ccccceveenenee. 64
Building a WiSK Program.................... 3 W@ndowSizePos Subroutine...... S 65

. WindowStatusBarParts Subroutine................ 67
Comman_d LINE et 3 WindowTitle Subroutine ... 68
ED for Windows............oeveieiiiiiniiiiiiieiieeeeen 5 WindowUnitsEromPixels Subroutine 68

Writing Winteracter Programs............... 7 WindowUnitsToPixels Subroutine................. 69
BasiCS.......ccoeun... SRR LRI 7|nput Hand"ng _______________________________________ 71
ils\r/nelrgts ofa erl1teracter Program............... 10 Group MH: Message Handling 71

or e.d Exqmp € 15 WNMessage Subroutingcccocvveeeeviiieeennnnns 71
Application Wizard...........cccccooviiiiieiininnnns 21 WMessageEnable SUbrouting 78

Resource Editor..........ccccccvveeeecvienennen, 23 WMessagePeek Subroutine........................... 79
File MeNnU.....coocuiiiiiiie e 23 Group MN: Mem_J Handling............ooooovee. 80
EQit MENU cvveoeeeeeeeeeeeeeeoeeeeeeeeeeeeee e 24 WMeNU SUDroUting ..., 80
RESOUICE MENU ..ot 24 \WMenuFloating Subrouting..............c.coooco... 81
SEttiNgS MENUv.vveeeeeeeeeeeeeeeee e 24 WMenuGetState FUNCUoN............coooovveens 82
VIEW MENU ...oooiiiiiiiiiiicc e 24 WMenuSetStqte Subroutme """""""""""""" 83

WMenuSetString Subroutine............ccccveeee. 84

MENUS ...oovviiiiiiiiiii, Dialog M 87
OVEIVIBW ...t 25 1alog Manager................. S
Creating and Modifying Menus..................... 27 Gro_up DM_(l): General Dlak_)g Management.87

WhDialogFieldState Subroutine 87

Dlalogs ... 31 WnDialogHide Subroutine.............cccccveeeeinen. 88
OVEIVIEW ... 31 WhDialogLoad Subroutineccccoeeenienne 89
Creating and Modifying Dialogs 39 WnDialogRangeProgressBar Subroutine......... 90

. WnDialogSetField Subroutinecc..c..... 91

Icons, Bitmaps and Cursors................ 45 WhDialogSelect Subroutine...............ccvvvveeeeen. 92
Image [0 [(o] TR 46 WDlalOgShOW SUDBIOULING ..ol 93
Adding Images to Your Resource 48 WDialogUnload Subroutine.............c............ 95
USing B|tmapS and Icons in DialOgS 48 Group DM(Z) Assign/Retrieve Field Contents.

Subroutine Summaryccceveeeeenn. 51 96 _

WhDialogGetCheckBox Subroutine................ 96

Window Handlingcccc. 55 WnDialogGetMenu Subroutine 97

Winteracter Starter Kit Y

Contents

WhDialogGetRadioButton Subroutine............ 98 General Functions...........cccceeeeeeeenennn, 145
WDialogGetString Subroutine 99 Group IF: Information..............ccccceuveuveueenen. 145
WhialogPutCheckBox Subroutine.............. 100 INFOEITOr FUNCHON ..o, 145
WDialogPutimage Subroutine 100 InfoGraphics FUNCHONc.ccocveuveeenene. 147
WDialogPutMenu Subroutine 101 InfoGrPalette FUNCLON.........ccvveeeeeeeeeeeen, 148
WhDialogPutOption Subroutine 103 InfoGrScreen FUNCHON..........coveevveeeeeeieen 149
WDialogPutProgressBar Subroutine............ 103 winfoDialog FUNCHONcveveceeeeerereen 150
WhialogPutRadioButton Subroutine........... 104 WinfoDrawable FUNCONccccvvveeevevennnn. 152
WhialogPutString Subroutine..................... 105 WInfoScreen FUNCHONceevveeeeeeeeeeeeeeeae, 153
Group CD: Common Dialogs.............c..oe... 106 Wwinfowindow FUNCHONcooovvrrenne. 154
WMeSSﬁgeBOX SUbI’OUtIne 106 Group OS- Operatlng System Interface _______ 155
WSeIeCtFlIe SUbrOUtlne 109 IOSEXItProgram Subroutlne _________________________ 155
High Resolution Graphics................. 113 I605Var,|\:;|1|blﬁ/|.8ub:|out|ne 11;);3
) . roup MI: Miscellaneouscccccceeuvne...
ggﬁ:g&g SSS;ZI Graphicsooovvvvvee 1111:' WCursorShape Subroutine.............cccccvvveeeen. 158
ol WFlushBuffer Subroutine..........cccc.ccvvvvvnne.. 159
IGrAreaClear Subroutingccceeeeeeeveeene. 115 .
IGrGetPixel Function 116 WglSelect Subroutinecccccevvveeeiviiinnns 160
) e WglSwapBuffers Subroutine........................ 162
IGrInit SUbroutingcovevviveeieeee e, 116 ; .
) WindowBell Subroutine.........cccocoevvvevnrennn. 162
IGrSelect Subroutingccceeeeieiiieevenennen. 117 o .
. . Winitialise Subroutineccccoevvevevvevnnenn. 163
IGrunits Subroutingccceeeeeeeeivevvieeeeeenns 119 .
. . WRGB FUNCHONiveiiiieiee e 164
Group GS: Graphics Style Selection........... 119 . .
IGrColourModel Subroutine 120 WRGBSsplit Subroutine........ccccccceevevvvvinnnn. 165
IGrColourN Subroutine ... 121 Group CH: Character Manipulation............. 165
.0 ou T IFillString Subroutingcccccvvvevveeeeeenn. 165
IGrFillPattern Subroutine.........cocovevveevens 126 ustifyString Subroutine 166
IGrLineType Subroutineccccoccvveeeennnee. 128 \LocateChar Function ... " 167
IGrPalettelnit Subroutineccocovvvveeeennnn. 129 ILocateStrin Subrouti.r.m.é """""""""""""""" 167
IGrPalette Subroutine........cc.cooevvvvveeeieeneennen. 129 ILowerCasegSubroutine """"""""""""""" 168
IGrPIotMo<_je Subr.outme e 131 IntegerToString Subroutineccceeee 168
Group GD: Graphics Drawing/Movement.. 131 IStringTolnteger Subroutine 169
IGrCircle Subroutinecovvvvveeeeieeeieenne, 132 L
IGrLineTo Subroutine 132 IUpperCase Subrouting...........ccoeevcvvvvvennnnn. 170
IGrMoveTo Subroutiné """""""""""""""""" 133 Group OB: Obsolete Routines...................... 171
IGrPoin(:S broutine ... " 134 [ActualLength Function..............ccccvvveeeenn... 171
0 ubrou pnner IGrCharJustify Subroutine............cccccceeee.... 171
IGrPolygonComplex Subroutine................. 134 IGrCharLength Function 172
Group GT- Graph|cs.Text """"""""""""""" 135 IGrCharOut Subroutine............ccccceoviieeeeenne 172
WGrOFont* Subroutines.........cooovvvvevveeennnnns 136 IGrCharSet Subroutine 173
WGrTextFont Subroutine.........ccoevvvevnenene. 136 IGrCharSize Subroutiné """"""""""""""""" 173
WGrTextLe_ngth I_:unct|on """ i 139 IGrCharSpacing Subroutine.............c.cc........ 174
WGrTextOrientation Subroutine................. 140 IGIGetPixelRGB Subroutine 174
WGrTextString Subroutinec.ccee. 141 IGrPaletteRGB Subroutine ... 175
WGrVFont* SUbroutings.........ccoeevvvveeveeennnn. 143 IGrPause Subroutine ... 175
WindowClearArea Subroutine..................... 176
WindowOutString Subroutine 176

Vi

Winteracter Starter Kit

Contents

WindowsStringLength Function.................... 177
WindowFont Subroutine.............ccoceeeeeeeenen. 177
WinfoFont FUNCLiONcceviiiiiiiiiieeeiees 178
WMenuRoot Subroutine...........cccccvvvvivvnnnne. 179

Winteracter Starter Kit Vii

Contents

Viii Winteracter Starter Kit

Introduction

Winteracteris a portable Fortran 9x dedicated user-interface and graphics development tool-
set. It combinetNTERACTERcompatible graphics with GUI components based on the
Win32 or Motif API's. In addition to a Fortran 9x subroutine libraryintiracteralso pro-

vides visual user interface design tools.

The Winteracter Starter Kit (WSK) is derived from the full version of Mteracter It
includes WSK-specific versions of the ‘resource editor’ (the menu/dialog/image designer)
plus a library of subroutines organised in five categories :

Window Management
Input Handling

Dialog Management

High Resolution Graphics
General Functions

Each category is sub-divided into groups, which are identified by two-character codes, e.g.,
GT for graphics text manipulation, MH for message handling and so on. The following sec-
tions provide a general summary of the facilities provided by each of these subroutine groups.
Before starting to use MK it is recommended that you browse through the following sec-
tions to familiarise yourself with the range of features on offer and more importantly, where
to find them. The subroutine group summaries presented here follow the same order as the
subroutine reference sections later in this manual.

Window Handling

Winteractersupports a single root window and multiple child windows.

Winteracter Starter Kit 4

Introduction

WM: Window Management

These routines open and close root and child windows. Windows can be hidden or combined
with dialogs, if required. The current output window is also selectable. Status bar control is
provided. Window size/position/state control is provided. All or part of the current window
can be cleared.

Input Handling

This group provides the fundamental message delivery mechanism plus menu handling
facilities.

MH: Message Handling

All input is reported to the program via the message delivery routines in this group. In par-
ticular, a typical ihteracterprogram will revolve around an event loop which repeatedly
calls thewMessageroutine.

MN: Menu Handling

Menu layouts are defined separately in a resource file, usingititerdtterresource editor.

Menu selections are reported via the message handling routines in the MH group. This group
therefore deals with menu activation and updating the state of individual menu items (e.g. set-
ting the ‘checked/unchecked’ state).

Dialog Management

Dialog layouts are defined externally in a resource script, using ithercterresource edi-
tor. The routines in the Dialog Manager are therefore mostly concerned with activating,
controlling and interrogating these dialogs.

DM(1): General Form Creation & Editing

Dialog activation and selection is controlled through this group.The state of individual fields
can also be controlled.

DM(2): Assign/Retrieve Field Contents

The individual contents of each dialog field are accessed via these routines.

X Winteracter Starter Kit

CD : Common Dialogs

CD : Common Dialogs
Pre-defined dialogs are accessible for file selection and message boxes.

High Resolution Graphics

These routines provide high resolution graphics output facilities.

GG: General Graphics

A number of general graphics facilities are grouped together under this heading, such as tar-
get drawable selection, pixel colour interrogation and area/co-ordinate system selection.

GS: Graphics Style Selection

Control is provided over color, line-type, fill style and plot mode.

GD: Graphics Drawing/Movement

These are the basic drawing primitives. In addition to simple move and draw functions, pol-
ygon and circle fill routines are provided.

GT: Graphics Text

Graphics text output supports both driver-specific and software fonts. Under Windows, any
TrueType font is selectable. Various vector and outline software fonts sets are provided. Full
control is provided over font style, size and orientation.

General Functions

The remaining routines provide a variety of functions which are likely to be required in inter-
active applications.

IF: Information

A set of functions are provided which enable a program to interrogate the current state of the
routines in the Witeracterlibrary and the hardware on which the program is currently
running.

Winteracter Starter Kit Xi

Introduction

OS: Operating System

Environment variable access and termination with exit code routines are provided.

MI: Miscellaneous
The most important routine in this groupA8nitialise , the Winteracterinitialisation
routine. OpenGL support is also enabled via this group. The mouse cursor is selectable

CH: Character Manipulation
These routines provide string manipulation facilities which are useful in interactive
applications.

OB: Obsolete Routines

A number of obsolete routines are retained for compatibility with earlier releases.

Xii Winteracter Starter Kit

0 Supplied Files

This chapter summarises the files which you receive with yooréfacterStarter Kit. These
are installed as part of the compiler installation procedure. RefButlling a WiSK
Program” on page 3 for information on how to use and set utétacteronce it has been
installed.

The Winteracter Starter Kit file set includes the following:

- The WinteracterResource Editobin directory)

- The WISK Application Wzard (bin directory)

- On-line help covering various topics including théSK FAQ telp directory)

- WinteracterStarter Kit library (jb directory)

- WINTERACTERnodule (ib directory)

- Lahey Video Graphics Library emulation source cae (directory)

- Various WSK demo programskamples directory)

- Various OpenGL demogXamples directory)

Several demonstration programs are provided iWI&X sub-directory of the LF95
examples directory. They illustrate various aspects ahWracteruser interface and
graphics programming. Each sub-directory contains a single demo consisting of a source file
(with a.f90 extension), a resource scriptgource.rc) and a program icon

(winter.ico). Some directories will contain additional files dependent on the purpose of
the demo. The WEK OpenGL demos are organised in a similar manner. Alternatively, the

WIiSK Application Wzard (wiskwiz) can be used to create a tailored templaitet&kacter
program.

Winteracter Starter Kit 1

Chapter 1 Supplied Files

2 Winteracter Starter Kit

Buildin g a WISK
Program

A Winteracterprogram will consist of Fortran source code and a resource script. The latter
describes menus, dialogs, etc. required by that program. Buildirigtarééterprogram
therefore consists of three distinct tasks:

(1) Compiling the calling Fortran application source code to create object files.
(2) Compiling the resource scripte() to produce object files.

(3) Linking the resulting object files from steps (1) and (2) with thet&¥acterlibrary.

Command Line

The LF95 driver will handle these tasks automatically if you specifiyitse (Win32) or
--wisk (Linux) switch on the command line, along with the Fortran source file name(s) and
the resource script name. (Note : In the following command line exargjdes, refers to

your compiler installation directory.

Under Windows, try the following in tHeid>\examples\WiSK\example directory:
If95 example.f90 resource.rc -wisk
which is equivalent to the following commands:

If95 example.f90 -win -c -mod .;\<id>\lib

rc /i \<id>\src resource.rc

res2o0bj resource.res resource.obj

If95 example.obj resource.obj -win -lib \<id>\lib\winter.lib

Under Linux, try the following in thé<id>/examples/WiSK/example directory:
If95 example.f90 resource.rc --wisk

which is equivalent to:

Winteracter Starter Kit 3

Chapter 2 Building a WiSK Program

If95 example.f90 -c -I /<id>/lib
rc resource.rc

If95 -0 example example.o resource.o -L/<id>/lib -L/usr/X11R6/lib
-lwint -IXm -IXt -IX11

These commands would compile and link the suppmiexnple demonstration program,
along with the accompanyirrgsource.rc resource file. Both are simply examples.
There is no special significance to the choice of these file namesxaimple program is
discussed in some detail in the next chapter.

The Winteracterlibrary is calledwinter.lib (Win32) orlibwint.a (Linux) and is
installed in thdib sub-directory. This directory will also contain MENTERACTER
module, which defines data types, interface definitions and symbolic namesngdrsiéter
based programdSEthis module.

Note : The Winteracterlibrary and the associat®INTERACTERnodule should be

considered a pair. Trying to mix a library and module from different releases should therefore
be considered an error. Hence, objects compiled with an earlier releaseerBidfermust

be recompiled when upgrading to a new release, since those objects will otherwise use
definitions based on an out of date module. This is noireeWcterissue as such, but is
inherent in the implementation of Fortran modules.

Each Winteracterapplication will have an accompanying resource script. This defines
menus, dialogs, etc. used by the program. It will contain an include statement of the form:

#include "winparam.h"

Under Windows, the filavinparam.h contains various standard parameter declarations
and is installed in the installatiorssc directory. If you are not using theisk switch, then

a command line argument should be used to identify this directory to the RC resource com-
pilerc. Alternatively, RC will search the include path specified biNfid UDEenvironment
variable.(Note: winparam.h is not required or supplied under Linux. However, the
#include statement should still be present in your resource file for portability reasons).

Winteracterprograms need to reference identifiers in the resource script. These identifiers
are normally declared #ARAMETERalues in a Fortran 90 module or include file. The
Winteracterresource editor can generate both file types. Where this file is saved as a module
it should be compiled before the program wHt®Es it.

Win32 executables built with V8K will run on Intel systems under Windows 9x/Me or NT/
2000/XP. Linux WSK executables will run on whichever Intel Linux distributions are
supported by the current LF95 release.

Linux users should be aware that X&K relies on functions provided by the X Windows
(Xlib and Xt) and Motif (Xm) libraries. All Linux distributions include Xlib and Xt, but
Motif may not be included. Refer to the XiBK Getting Started Guidedgetstart.htm)
which is supplied in HTML format in LF95%elp directory.

4 Winteracter Starter Kit

ED for Windows

ED for Windows

ED4W can be used to build Win32iBK programs too. The main issue here is that ED4W
normally assumes that your program has only a single source file. Howéweragter
programs consist of two source files, a Fortran program and a resource script, which must
both be compiled and linked together. If you use a hardwired name for your resource script
(specificallyresource.rc as used in thExamples\wisk demo directories) here's one
solution. Install the following batch file somewhere on your system :

LF95 9%1.f90 resource.rc -wisk

Then, in ED us&ool|Programs|Add to add a new program. The command line should
specify the full path of the above batch file, followed by <name>. This tells ED4W to
substitute the name of the current program as argument number 1 of the batch file.

Winteracter Starter Kit 5

Chapter 2 Building a WiSK Program

6 Winteracter Starter Kit

Writin g Winteracter
Programs

Basics

This chapter aims to introduce you to writing software usimng&vacter. It assumes that you
are already familiar with how to compile and linkndéracterprograms, as described in the
previous chapter.

The first section summarizes some basic rules. Later in this chapter you will find a worked
example which provides a gentle introduction to writing iatéfacterapplication.

Certain basic principles apply regardless of whidntéfacterfeatures you use.

Initialization

All Winteracterprograms must calInitialise before opening a window.
WindowOpen must be called before any window or dialog processing.

Fortran 1/0

All screen 1/O should be performed viaéracter While you may find that console 1/0
works (e.gWRITE(*,..) ,READ(*..) ,WRITE(6,..) etc.), this will cause an extra
output window to be opened under Windows. The program will have no direct control over
this window. This will look untidy, at the very least. Fortran I/O is freely available on all
other channels.

Winteracter Starter Kit 7

Chapter 3 Writing Winteracter Programs

The WINTERACTERodule
A Fortran 90 module called/INTERACTERS supplied which provides three facilities:

» Type definitions for Vihteracterspecific data structures.
* Interface definitions for \Witeracterroutines.
 PARAMETEREefinitions for numerous symbolic names.

Use of theNVINTERACTERhodule is required in any program unit which callst&tracter
routines. i.e. add the following statement at the beginning of every program unit which uses
Winteractet

USE WINTERACTER

When upgrading from an earlier version ofSK, you must recompile all program units
which USEtheWINTERACTERnodule, before relinking your application. Interface or type
definitions may change between releases. While such changes will be transparent to the
calling program once recompiled, old objects which use an out-of-date module may not be
relinkable. This recompilation requirement is fundamental to the way that Fortran 90
modules work.

Type Definitions

Various Winteracterspecific data types are defined in WENTERACTERnodule, most
notably, theWIN_MESSAGEtructure used bwMessage

Interface Definitions

As an aid to checking the number and type of arguments suppliethtersi¢ter routines,

the WINTERACTERNnodule contains an extensive set of interface block definitions. These
define the type and intent of alliéeractersubroutine arguments and functions. They will
cause the compiler to check the number and type of arguments in egehadtercall,
potentially saving many hours of debugging.

Symbolic Names

TheWINTERACTERnodule also contains a numbeRARAMETEReclarations which
define symbolic names for Mteractersubroutine arguments and function results. These
symbolic names can be used in place of numeric subroutine arguments/results and are
designed to be meaningful, aiding program readability. A handful of Microsoft-
recommended push-button identifiers (e.g. IDOK) are also defined here. All of the
PARAMETERtatements contain type declarations, so no further definition is required
outside of the module.

While use of the symbolic names defined in\WMtNTERACTERnodule files is not
obligatory, their use is recommended. They are documented in the subroutine reference
section of this manual and form part of the formal definition @ftéracter

8 Winteracter Starter Kit

Subroutine Arguments

Subroutine Arguments

All subroutine arguments of tyigHARACTERay be of any length, except where explicitly
documented otherwise. All subroutine arguments of iMj&GERare 4-byte integers. Sim-
ilarly, all REALarguments are single precision 4-byte variables

Subroutine and Common Block Names

All externally callable routines in \iteracterstart with the letter W or |. Witeracterspe-
cific routines begin with the letter W. Routines which are common to batteYscterand
INTERACTERbegin with an .

Various internal subroutines ac@®MMODblocks are used. All internal subroutines have
names starting with the letters XX or YY (eX3¢GDRY InternalCOMMOINocks are named
WINTnnwhere nn is a 2 digit number (eWINTO01). Avoid using subroutines @OMMON
blocks with similar names.

Error Reporting

All error reporting in Whteracteris performed via a single function calledoError

which is in the IF subroutine group. Whenevent§racterencounters an error, it sets a glo-

bal error flag which can be interrogated usinfpError . This global error flag may be
over-written by subsequent errors, but is never clearedinfatitrror is called. It is the
callers responsibility to decide when to interrogate and/or clear the error flag and issue any
appropriate error messages. Wheimtétacterencounters an error it will simply update the
error flag and attempt to take suitable default actioimt&¥acterwill not report errors to the
screen, since this may not be appropriate in many applications.

If a routine sets the teractererror flag, the values which it may set it to are documented
with the description of the routine. A summary of thimé&tactererror codes is provided
later in this manual. Symbolic names for all the possible error codes are defined in the
WINTERACTERNnodule.

On-line Help

On-line help is provided either as a Windows help file callesdk.hlp (under Win32) or

in HTML format aswisk.htm (under Linux). This contains a variety of usefunéracter

related information, including brief subroutine argument summaries, an FAQ, details of
supplied demos, error codes, a glossary and a description of the resource file format. It also
describes supported graphics interfaces such as OpenGL and the supplied emulation of the
Lahey Video Graphics Library. The Windows help file can be accessed via the LF95 Start
menu options. The Linux HTML file should be viewed using Netscape 4.x. More usefully,
Linux users may wish to start browsing at ilgex.htm page which provides access to

all of X/WiSK'’s on-line help, which also includes a "Getting Started" guide.

Winteracter Starter Kit 9

Chapter 3 Writing Winteracter Programs

Elements of a Winteracter Program

10

A Winteracterprogram consists of two main elements:
« Aresource file describing menu structures, dialogs, icons, etc.
» Fortran 90 source code which calls routines in thiet¥vacterlibrary.

The resource file is created and managed by our resource estnli{). The Fortran 90
source code can be created from scratch or adapted from one of the many demonstration
programs in thelemos sub-directory. Alternatively, for a quick start, use the WiSkat
(wiskwiz) to create a substantialileracterstarter application tailored to your
requirements.

Resource Files

Each Winteracterprogram requires a resource script to describe its menus and dialogs, along
with miscellaneous information such as the program icon. This script must be created and
maintained via the supplied resource editor (ResEdit). This tool allows menus, dialogs, icons,
cursors and bitmap buttons to be created interactively. The resulting user interface
descriptions are saved as resourte () files which must be compiled using the resource
compiler as described in the previous chapter. The resuitipg (Win32) or.o (Linux)

file can then be linked with a program which callszWracterroutines to produce a GUI
application program. Thavisk (Win32) or--wisk (Linux) compiler command line
argument will handle resource compilation automatically.

Normally, there is no need to know about the format of a resource file, since this is handled
automatically by the supplied resource editors. However, their format is documented in the
on-line help for the sake of completeness.

A Winteracterprogram may only contain one compiled resource file. While it is feasible for
multiple resource scripts to Bnclude 'd into a 'parent’ resource script, this will prevent

the resource editor from properly maintaining the identifiers associated with that resource. It
is therefore strongly recommended that the resource script be maintained as a single file.

Identifiers

Every user interface element in a resource file has a numeric identifier associated with it.
Many Winteracterroutines require such an identifier to be specified as an argument. It is
therefore important to maintain a separate Fortran module or include file which reproduces
these identifier definitions (dBITEGER PARAMETERalues) to allow the \iteracter

program to refer to resources via symbolic names. This file is generated and updated auto-
matically by the resource editor. It mustB8Ed orINCLUDEd by the calling program to
enable access to menus/dialogs/etc held in the program resource. This file will be referred to

Winteracter Starter Kit

Message Loop

as the Symbol Header file. Several commonly used push-button identified®@kgand
IDCANCELfor OK/Cancel buttons) are defined in WENTERACTERnodule (see
WMessage).

As a general rule, identifier values should be non-zero unsigned 16-bit integers, i.e. they
should be in the range 1-65535. However, some exceptions apply, mainly under Windows
9x/Me where identifiers for dialogs, bitmap/icon fields and menus should be in the range 1-
32767. Note: Identifiers should still be stored as standard four byte integers, despite the
Windows-imposed limit of 16-bit ranges.)

Remember that identifiers must be valid Fortran parameter names. Hence, they should not
include characters such as !, + - * () > < etc. The resource editor will reject attempts to use
such characters in identifier names.

If a resource file is amended manually (not normally recommended), the associated module/
include file can be regenerated by loading the resource file into the resource editor and
resaving it.

Message Loop

Most program input is reported via a message queue (also known as an event queue in some
other windowing systems; events and messages are the same thing). While the underlying
windowing system reports many messagesit&#acteronly passes a much reduced subset

of these messages up to the calling program, greatly simplifying the volume and type of mes-
sages which must be processed.

Messages are reported via W&lessageroutine. Typical messages are 'a dialog button was
pressed’, 'a menu item was selected’, 'a window changed size' and so on. The calling program
will usually revolve around BO loop which callsVMessagethen checks the resulting mes-

sage in SELECT CASEstatement. The following is a simplified example of such a loop:

USE WINTERACTER
TYPE (WIN_MESSAGE) :: MESSAGE
|
DO !'loop until termination
CALL WMessage(ITYPE,MESSAGE)
SELECT CASE (ITYPE)
IWIN = MESSAGE%WIN ! Originating window
CASE (MenuSelect) ! A menu item was selected
ITEM = MESSAGE%VALUE1
CASE (Resize,Expose) ! The window was resized or exposed
CALL DrawMyGraph(IWIN)
CASE (CloseRequest) ! The user closed a window
IF (IWIN==0) EXIT
END SELECT
END DO

Winteracter Starter Kit 11

Chapter 3 Writing Winteracter Programs

12

The location of the message loop is a matter of program choice. In a small program, it will
make sense to place the message loop in the main program. However, this can rapidly lead
to a 'top heavy' program in larger applications. It is therefore perfectly allowable to have
multiple message loops in a program, provided they are capable of processing all the possible
messages which can be reported at a given point in the program’s execution.

See the MH group in the subroutine reference section for more information.

Windows

A Winteracterapplication consists of a root window and up to 20 child windows. The latter
exclude any dialog windows (see the sectialogs” on page 13). In this context a
'‘window' is a standard output window which can have any text or graphics written into it.
Effectively they are free format output windows.

A root window is always opened first usiiigndowOpen. Child windows can then be
opened usindVindowOpenChild . The graphics routines in the GG/GS/GD/GT groups
can be used to draw in these windows. Every window has a handle which is allocated
automatically by Vihteracterwhen the window is opened. Use this to select the window to
receive output in a call fd/indowSelect

In certain cases (e.g. when opening a child window inside a parent window) an arbitrary co-
ordinate system is used which treats a window as being 10000x10000 "window units" square,
measured from the top left corner of the window. Graphics output uses a separate REAL user-
defined cartesian co-ordinate system (see the sé@i@phics” on page 14).

When graphics are drawn to a window, the caller is responsible for maintaining the contents
of that window. So if another window or dialog overlaps a window, the obscured area of the
window will need to be repainted when the overlapping window/dialog is moved or closed.
An Expose message is reported WeéMessagein this case.

Windows can either be fixed in size or resizeable. In the latter case, the window co-ordinates
are rescaled automatically if the user changes the size of the windRegiZe message is
reported vidWMessagein this case. The calling program will normally need to repaint the
entire window when this message is received.

Menus

The contents and structure of program menus are defined in resource scripts using the
resource editor. Us&/indowOpen, WindowOpenChild , WMenuand/or

WMenuFloating to activate these menus. Main menus remain visible at all times. Floating
menus disappear when a selection is made or they are cancelled by the user. In either case,
menus are managed automatically once displayed. Menu selections are reported via
WMessage

Winteracter Starter Kit

Dialogs

The contents and state of individual menu items can be modified at run-time. For example,
menu items can be greyed to prevent them from being selected, by calling
WMenuSetState .

Dialogs

Dialogs are collections of fields (or ‘controls’) which are displayed in a dedicated child
window. (In other development systems dialogs are also known as 'panels’ or 'forms'.) The
layout and initial contents of a dialog must be defined in a resource file scripts created using
the supplied resource editor.

Two basic types of dialogs are allowed : modal and modeless. Their resource file definitions
are identical, but their behaviour when activated is different. A modal dialog will block all
other program input until the user terminates the dialog. This makes for simpler program
development, at the expense of a slightly less friendly user interface. Modeless dialogs do not
block program execution and allow interaction with other windows/dialogs belonging to the
same program. A third dialog type is supported byptéfacter known is 'semi-modeless'.

These are a useful hybrid dialog type which appears modeless to the calling program but
modal to the user. Such dialogs eliminate the need to use callback routines.

Under Windows, all dialogs are either '‘pop-up' dialogs or 'child’ dialogs (Motif dialogs are
always 'pop-up'’). A pop-up dialog can be moved to any position on the screen either inside
or outside of the application window. Child dialogs are restricted to the root window. Child
dialogs must be modeless. Alternatively a dialog can be combined with a window. Such
dialogs are always modeless.

To activate a dialog caWDialogLoad andWDialogShow . Multiple simultaneous
dialogs are allowed. See the introduction to the DM(1) group for more details.

Dialogs consist of various field types including strings, four styles of menu, push-buttons,
radio buttons, progress bars and check boxes. These field types are described in more detail
in the Dialogs chapter. The contents of most field types can be assigned and retrieved using
the various 'put/get’ routines in the DM(2) group.

Winteracterdialogs use standard Windows or Motif controls so all the normal behaviour is
available. Notably clipboard cut/paste is supported via the mouse or the usual keyboard
shortcuts (Ctrl/C, Ctrl/V, etc.) Under Windows, the usual shortcuts menu is available via the
right mouse button. \kteracterdialogs also implement Ctrl/A as a shortcut for Select All in
string fields.

In addition to application-specific dialogs, some pre-packaged modal dialogs are also avail-

able. The most useful of these (file selection and message box) are supported via the routines
in the CD group.

Winteracter Starter Kit 13

Chapter 3 Writing Winteracter Programs

14

Graphics

Winteractets graphics routines are mostly compatible with the eaNIBERACTERibrary.
The introduction to the GG group describes the basic principlesraék&ctergraphics
programming.

Graphics can appear in any window openedViadowOpen or WindowOpenChild
The target window is selectable WindowSelect orlGrSelect . The latter routine
also allows graphics to be drawn to a dialog field instead of to a window.

The graphics co-ordinate system is fully user definable and is controlled I&yrthits
routine. It remains the same regardless of the type of target drawable.

Graphics drawn to a window must normally be maintained by the calling program. In other

words, it is possible for screen graphics to be erased if an overlapping window or dialog is

moved/closed. The calling program must process Expose and Resize messages to identify
this situation.

Legacy graphics code written for the Lahey Video Graphics Library (PLOT, PLOTS, etc.)
can be relinked with \Wteractervia the LVGL emulation interface ingl.f90 . See the
"Graphics Interfaces" section in the on-line help file for further details.

OpenGL graphics are also supported. These can be displayed in@teyaaterwindow.
SeeWglSelect and the OpenGL section under "Graphics Interfaces" in the on-line help
file.

Color
Several Wihteracterroutines accept color arguments. All routines which accept RGB (Red,
Green, Blue) color arguments encode such color values in a single integer using the formula :

Red + Green*256 + Blue*256*256

where each of the Red, Green and Blue components are 8-bit values in the range 0-255.
Hence these RGB values are also commonly referred to as "24-bit" color values.

TheWRGRunction can be used to construct a 24-bit color valuaMR&Bsplit performs
the opposite conversion. Eight symbolic names are also pre-defineddiNFERACTER
module for the 8 primary colors: RGB_BLACK, RGB_BLUE, RGB_RED,
RGB_MAGENTA, RGB_GREEN, RGB_CYAN, RGB_YELLOW and RGB_WHITE.

Winteracter Starter Kit

A Worked Example

A Worked Example

This section explains how to write a simplénféracterprogram which uses a small but typ-

ical selection of the facilities available, including message handling, common dialogs and
graphics. The short program is built up step by step, with newly introduced statements high-
lighted at each stage by a "' in the right hand margin. A copy of the complete program along
with its associated resource script can be found in ti8&KWwemosxample directory.

The first thing to do in any Witeracterprogram is to initialize the library by calling
Winitialise . This must be followed by a call WindowOpen to open a root window
and initialize the graphics routines. To terminate screen proceggimgpwClose must be
called. A minimal Whteracterprogram therefore looks like this:

PROGRAM WISK_EXAMPLE *

USE WINTERACTER *

IMPLICIT NONE *

CALL Winitialise() I Initialize Winteracter *

CALL WindowOpen(MENUID=IDR_MENUL1, & ! Open root window *
TITLE="Example Program’) *

CALL WindowClose() I Remove program window *

STOP I Required by EIf90 only *

END PROGRAM WISK_EXAMPLE *

The program initializes the library then fills a data structure with a description of the root
window which is to be openeWindowOpen is then called to open that window. Note that

the progranUSEs theWINTERACTERnodule. In this particular example it will define the
WIN_STYLEdata type, the symbolic names assigned té&- LG Selement of the window

type argument and the interface blocks for each of the called routines. As noted earlier in this
chapter, use of this modulerisquired

So far, all this program will do is open a root window with no menu then immediately close

it again. Let's assume we want the program to read some time series data from a file and plot
it as a simple line graph. The first task is to introduce some message handling so we can add
'Open' and 'Exit' options to the program. This will allow the user to select the data file to plot
and to exit via a program menu option (though the System menu can be used for the same
purpose, where enabled).

The following expanded example assumes that a resource file is supplied which defines a
menu consisting of 'Open' and 'Exit' options.

Winteracter Starter Kit 15

Chapter 3 Writing Winteracter Programs

16

PROGRAM WISK_EXAMPLE
USE WINTERACTER

IMPLICIT NONE

INTEGER, PARAMETER :: IDR_MENU1 = 30001 *
INTEGER, PARAMETER :: ID_OPEN =40001 *
INTEGER, PARAMETER :: ID_EXIT =40002 *
TYPE(WIN_MESSAGE) :: MESSAGE *
INTEGER L ITYPE *

CALL Winitialise() I Initialize Winteracter

CALL WindowOpen(MENUID=IDR_MENU1, & ! Open root window
TITLE="Example Program’)

DO ! Loop until user terminates *
CALL WMessage(ITYPE, MESSAGE) *
SELECT CASE (ITYPE) *
CASE (MenuSelect) ! Menu item selected *
SELECT CASE (MESSAGE%VALUEL) *
CASE (ID_OPEN) ! Select file to plot *
CONTINUE ! We will load file here *
CASE (ID_EXIT) I Exit program (menu option) *
EXIT *
END SELECT *
CASE (CloseRequest) | Exit program (e.g. Alt/F4) *
EXIT *
END SELECT *
END DO *
CALL WindowClose() I Remove program window
STOP ! Required by EIf90 only

END PROGRAM WISK_EXAMPLE

Three parameters are now defined which identify the root menu and the two options which it
will contain. Normally sucfPARAMETERtatements would be stored in a module generated
automatically by the resource editor, but they are shown as part of this program for the sake
of clarity. The identifier of the root menu is now specified as part of the root window descrip-
tion, ensuring that Windows will automatically attach that menu to the window.

The main addition to the example program is the introduction dd@déoop which proc-
esses Windows messages. It loops continuously until the user selects Exit from the program
menu or closes the window via the title bar controls.

The message loop also allows for the user having selected the '‘Open’ option from the root
menu. We will now expand the program to allow a data file to be selected via a common dia-
log. Data will then be read from the file ready for plotting.

Winteracter Starter Kit

A Worked Example

PROGRAM WISK_EXAMPLE

USE WINTERACTER

IMPLICIT NONE

INTEGER, PARAMETER :: IDR_MENU1 = 30001
INTEGER, PARAMETER ::ID_OPEN =40001
INTEGER, PARAMETER :: ID_EXIT =40002
TYPE(WIN_MESSAGE) :: MESSAGE

INTEGER : ITYPE, NVALUE, | *
CHARACTER(LEN=255) :: FNAME *
REAL, DIMENSION(50) :: VALUES *
CALL Winitialise() I Initialize Winteracter

CALL WindowOpen(MENUID=IDR_MENU1, & ! Open root window
TITLE="Example Program’)

FNAME = 'example.dat'
NVALUE =0
DO ! Loop until user terminates

CALL WMessage(ITYPE, MESSAGE)

SELECT CASE (ITYPE)

CASE (MenuSelect) ! Menu item selected
SELECT CASE (MESSAGE%VALUEL)
CASE (ID_OPEN) ! Select file to plot
CALL WSelectFile('Data File|*.dat|', & *
PromptOn,FNAME,'Load Data’) *

IF (WInfoDialog(ExitButtonCommon)==CommonOpen) THEN *
OPEN(20,FILE=FNAME,STATUS='0OLD") *
READ(20,*) NVALUE *
READ(20,*) (VALUES(l),I=1,NVALUE) *
CLOSE(20) *

ENDIF

CASE (ID_EXIT) I Exit program (menu option)

EXIT

END SELECT
CASE (CloseRequest) | Exit program (e.g. Alt/F4)
EXIT
END SELECT
END DO
CALL WindowClose() I Remove program window
STOP ! Required by EIf90 only
END PROGRAM WISK_EXAMPLE

Our program now defines a values array and a filename variable. A common dialog is used
to select the input file (a suitaté&le.dat file is supplied in the WBK demos
example directory).

If the user confirms their file selection (i.e. they don't click on Cancel or press Escape) the
name of the selected file is returned infNAMEBvariable. Data is then read from the chosen
file. Note that the file handling contains no error processing, to keep the example simple.

We are now ready to plot the data. A separate routine will be introduced which uses
Winteractefs graphics routines.

Winteracter Starter Kit 17

Chapter 3 Writing Winteracter Programs

18

PROGRAM WISK_EXAMPLE
USE WINTERACTER
IMPLICIT NONE
INTERFACE
SUBROUTINE DrawGraph(VALUES,NVALUE)
IMPLICIT NONE
REAL , INTENT (IN), DIMENSIONC(:) :: VALUES
INTEGER, INTENT (IN) : NVALUE
END SUBROUTINE DrawGraph
END INTERFACE
INTEGER, PARAMETER :: IDR_MENU1 = 30001
INTEGER, PARAMETER :: ID_OPEN =40001
INTEGER, PARAMETER :: ID_EXIT =40002
INTEGER, PARAMETER :: ID_STRING1 = 50001
TYPE(WIN_MESSAGE) :: MESSAGE
INTEGER ©ITYPE, NVALUE, |
CHARACTER(LEN=255) :: FNAME
REAL, DIMENSION(50) :: VALUES
CALL Winitialise() I'Initialize Winteracter
CALL WindowOpen(MENUID=IDR_MENU1, & ! Open root window
TITLE="Example Program’)
FNAME ='example.dat'
NVALUE =0
DO ! Loop until user terminates
CALL WMessage(ITYPE, MESSAGE)
SELECT CASE (ITYPE)

CASE (MenuSelect) ! Menu item selected
SELECT CASE (MESSAGE%VALUEL)
CASE (ID_OPEN) ! Select file to plot

CALL WSelectFile('Data File|*.dat|', &
PromptOn,FNAME,'Load Data’)
IF (WInfoDialog(ExitButtonCommon)==CommonOpen) THEN
OPEN(20,FILE=FNAME,STATUS='0OLD")
READ(20,*) NVALUE
READ(20,*) (VALUES(),I=1,NVALUE)

CLOSE(20)
CALL DrawGraph(VALUES,NVALUE)
ENDIF
CASE (ID_EXIT) ! Exit program (menu option)
EXIT
END SELECT
CASE (Expose,Resize) ! Need to redraw picture
CALL DrawGraph(VALUES,NVALUE)
CASE (CloseRequest) | Exit program (e.g. Alt/F4)
EXIT
END SELECT
END DO
CALL WindowClose() I Remove program window
STOP ! Required by EIf90 only

END PROGRAM WISK_EXAMPLE

Winteracter Starter Kit

A Worked Example

SUBROUTINE DrawGraph(YVALUE,NVALUE) ! Draw graph *
USE WINTERACTER *
IMPLICIT NONE *
REAL, INTENT(IN), DIMENSIONC(:) :: YVALUE *
INTEGER, INTENT(IN) : NVALUE *
1 *
REAL 2 XMIN,XMAX,YMIN,YMAX,XLEN,YLEN,XPOS *
INTEGER 2 X *
I Calculate X and Y ranges *
XMIN = 1.0 *
XMAX = REAL(NVALUE) *
YMIN = MINVAL(YVALUE) *
YMAX = MAXVAL(YVALUE) *
XLEN = XMAX - XMIN *
YLEN = YMAX - YMIN *
CALL IGrUnits(XMIN-0.1*XLEN,YMIN-0.1*YLEN, & *
XMAX+0.1*XLEN,YMAX+0.1*YLEN) *
! Draw simple axes *
CALL IGrMoveTo(XMIN,YMAX) *
CALL IGrLineTo(XMIN,YMIN) *
CALL IGrLineTo(XMAX,YMIN) *
! Draw line graph *
CALL IGrMoveTo(XMIN,YMAX) *
DO IX = 2,NVALUE *
XPOS = XMIN + XLEN*REAL(IX-1)/REAL(NVALUE-1) *
CALL IGrLineTo(XPOS,YVALUE(IX)) *
END DO *
RETURN *
END SUBROUTINE DrawGraph *

Minimum X and Y values are assigné@rUnits is then used to define a co-ordinate
system which leaves a border around the area in which the graph will be plotted. A simple L-
shaped axis is plotted, followed by the data it3€lfLineTo s effectively a Pen-Down

and draw operation, so tiloop creates a connected line graph. The graph will also be
redrawn if the window size changes or the window becomes partly or wholly exposed.

And finally, to add some annotation to the x axis:

Winteracter Starter Kit 19

Chapter 3 Writing Winteracter Programs

SUBROUTINE DrawGraph(YVALUE,NVALUE) ! Draw graph
USE WINTERACTER
IMPLICIT NONE
REAL, INTENT(IN), DIMENSION(:) :: YVALUE
INTEGER, INTENT(IN) - NVALUE
!
CHARACTER (LEN=3) :: STR *
REAL i XMIN,XMAX,YMIN,YMAX,XLEN,YLEN,XPOS
INTEGER L IXISTART *
I Calculate X and Y ranges
XMIN =1.0
XMAX = REAL(NVALUE)
YMIN = MINVAL(YVALUE)
YMAX = MAXVAL(YVALUE)
XLEN = XMAX - XMIN
YLEN = YMAX - YMIN
CALL IGrUnits(XMIN-0.1*XLEN,YMIN-0.1*YLEN, &
XMAX+0.1*XLEN,YMAX+0.1*YLEN)
! Draw simple axes
CALL IGrMoveTo(XMIN,YMAX)
CALL IGrLineTo(XMIN,YMIN)
CALL IGrLineTo(XMAX,YMIN)
! Draw line graph
CALL IGrMoveTo(XMIN,YMAX)
DO IX = 2,NVALUE
XPOS = XMIN + XLEN*REAL(IX-1)/REAL(NVALUE-1)
CALL IGrLineTo(XPOS,YVALUE(IX))

END DO

! Add annotation to X axis *

CALL WGrTextOrientation(AlignCentre) *

DO IX = 5,NVALUE,5 *
CALL IGrMoveTo(REAL(IX),YMIN) *
CALL IGrLineTo(REAL(IX),YMIN-YLEN*0.025) *
CALL IntegerToString(IX,STR,'(13)") *

ISTART = ILocateChar(STR) *

CALL WGrTextString(REAL(IX),YMIN-YLEN*0.06,STR(ISTART?)) *
END DO *
RETURN

END SUBROUTINE DrawGraph

Labels and tick marks are added to the x axis using center justified text. For more examples
of how to use Whteractersee the various otheri®8K demonstration programs.

20 Winteracter Starter Kit

Application Wizard

Application W izard

To create a new Witeracterprogram, you may wish to consider using th&WApplication
Wizard (wiskwiz). This creates a substantiaindéracterstarter application tailored to
your requirements.

The Wzardleads you through a series of 5 dialogs which ask simple questions about the type
of application you wish to create. Enter the name of the project and the directory which will
hold the application files. Use the Back/Next buttons to move to/fro betweerizhed\iia-

logs, describing the required appearance of your application and the basic options it is to
offer. A preview field will show a mimic of the type of application thezsyd will create

based on your selections. Press Finish when you are ready to generate the files for your appli-
cation. In fact, you can press Finish at any time, even if you have not worked through all five
dialogs (the Wizard will just fill in a set of default selections). A confirmation window will
appear summarising your choices, after which the project files will be created, consisting:

Fortran 90 source code for the new application.

A resource script describing the new application’s menus, dialogs, etc.
A module or include file (selectable) defining resource file identifiers.
A program icon file.

The generated program will be ready for immediate compilation.

Winteracter Starter Kit 21

Chapter 3 Writing Winteracter Programs

22 Winteracter Starter Kit

Resource Editor

The main Whteracteruser interface design tool is the resource editor. This allows you to
create, edit and maintain resource scripts which define dialogs, menus, icons, bitmaps and
cursors. The resource editor incorporates dialog, menu and image editors in a single
integrated program.

When a resource is loaded, it can be navigated via the Resources window which displays a
list of all of the dialogs, menus, etc. in that resource. Click on an item and press Edit to display
the required resource component. Double clicking has the same effect. The Delete button in
the same window can be used to remove components from a resource script.

This chapter briefly summarises the menus which are common to all parts of the resource
editor. The subsequent chapters entilflhus Dialogsandlicons/Bitmaps/Cursorgrovide

more information on how to build various types of user interface components using the
resource editor. You will also find considerable additional information about the resource
editor in its on-line help, via HelpContents.

File Menu

A new resource script can be created by selecting-Miew. Alternatively, an existing
resource script can be selected via Ei@pen or the file name can be specified on the
resource editor's command line. The latter option ensures that the Windows version of the
editor supports invocation via drag-and-drop or via a file-type association (see
'View - Options- File Types' in Explorer).

The File- Save and File. Save As options save the current resource to disk. When editing a
resource script, these options save both the updated script and the associated symbol headel
file (i.e. the Fortran module or include file which defines parameters for all of the identifiers
used in the resource script). The resulting resource script will require external recompilation
using the resource compiler as described in the e8didding a WiSK Progranchapter.

Winteracter Starter Kit 23

Chapter 4 Resource Editor

Once a resource has been loaded, additional resource import/export options also become
available on the File menu.

Edit Menu

A standard set of Cut/Copy/Paste/Delete options are available on the Edit menu. The exact
meaning of these options depends on which sub-editor is currently active, but typically they
operate on resource sub-components such as dialog fields or menu items.

Resource Menu

The Resource menu operates on complete resource components such as a menu or a dialog,
offering Add, Copy and Properties options. Use this menu to introduce new components to
your resource file or to view/amend the properties of the current component.

Settings Menu

Selected features of the editor's behaviour can be customised, via SeRiefsrences. The
Resource List options are saved in the resource editor’s initialisatioreBked(t.ini)

and reactivated each time the editor is invoked. The remaining preferences are written in the
resource file, allowing the symbol header file name, base identifiers, etc. to be selected on a
per resource basis.

View Menu

24

When a resource script is loaded, this menu provides options to view the identifiers which is
uses.

The Identifier Names and Values option shows all of the identifiers used by the entire
resource and allows them to be edited

The Used Identifiers option shows only the identifiers used by the current resource
component (e.g. the current dialog) and allows a particular sub-component to be selected as
the 'current' item, via the Select button.

Winteracter Starter Kit

Menus

Overview

Menus are the main method by which most programs will determine the next action to take.
They consist of various options which can be chosen by the user using the keyboard or
mouse. When an option is chosen the program will take some action related to the chosen
option, such as displaying a dialog or plotting a graph. Menu layout is defined in your
program's resource script, which is created using the supplied resource editor. Details of how
to use this program are given later in this chapter and in online help.

Every menu and menu option used in a given program must have a unique identifier, as set
in the resource file. A Fortran module or include file should normally be used to specify
PARAMETER values for these dialog/field identifiers. The resource editor creates such a
module or include file automatically. This file contains identifier definitions for all resource
types. The values in this file will be updated whenever your resource script is saved by the
resource editor.

Up to 50 menu definitions definitions can be built into a program executable, as part of the
program resource. The main menu for a window is normally specified when opening a win-
dow usingWindowOpen or WindowOpenChild . This can be changed or removed later
usingWMenu Floating menus are displayed by call\WgenuFloating , usually in

reponse to a right mouse click. Normally only the root window will have a main menu.

When the user selects a menu optidviemuSelect message will be reported via

WMessage No message will be reported for items which lead to sub-menus or if the user
closes the menu without selecting an option. MieauSelect message does not report

which type of menu the message came from or what method the user used to select it.
Programs should not be concerned with how an option was selected, only that it was selected.

Menu Types
Two types of menu are supported bySK:

Winteracter Starter Kit 25

Chapter 5 Menus

Main Menus
A main menu is attached to the top of a window. Most, if not all, of the menu options
in your program should be available via the main menu. The top level of this type of
menu is always displayed. The options at this level normally lead to sub-menus. It is
possible to have items at the top level which do not lead to sub-menus, however this
is unusual in a Windows or Motif application. This type of menu can not be used with
a child window which lies within its parent window.

Floating Menus
This type of menu can be displayed at any point on the screen. It is normaly displayed
at the position of the mouse cursor in response to a right mouse click. Normally this
type of menu will only have a small number of options and sub-menus. Often it will
consist of a sub-set of the options available via the main menu. Where a floating
menu item performs the same function as a main menu item it should be given the
same identifier. In addition to simplifying your menu code this will also cause the
states of items in the floating menu to match those of items in the main menu.

Menu Item Types
Three types of item exist in menus:

Selectable Options
These are the options which are used to select the functions available in your pro-
gram. They consist of a text string describing the function which the item performs.
When one of these options is chosen by the ubtgraiSelect message will be
reported viaWMessage

Popup Options
These options lead to sub-menus. Selection of this type of option is not reported via
WMessage Normally most of the items at the top level of a main menu will be of
this type.

Separators
Separators are used to split the options in a menu or sub-menu into logical groups.
They have no functional effect on your program, but do improve the appearance and
legibility of a menu. Separators do not have an identifier.

Menu Item States

Menu items can be greyed out to prevent them from being selected. They can also be checked
to indicate that they have been selected. This is typically used with menu items which toggle
the state of an option. Checked items in main and floating menus display a tick next to the
item text. The initial state for an item is set in the resource script using the resource editor's

26 Winteracter Starter Kit

Menu Help

Menu Item Properties dialog (double click on the relevant menu item in the resource editor's
menu mimic to view this dialog). The state can be updated in your program using the
WMenuSetState routine. Iltems at the top level of a main menu can not be checked.

Menu Help

Brief help on the purpose of a menu item can be provided by means of associated text dis-
played in the status bar of the window for both main and floating menus. This help text is
defined using the resource editor and is displayed automatically when the user highlights an
option. No code is necessary to display this help text. However you must specify the presence
of a status bar when opening the window. Any previous status bar contents will be restored
automatically when the menu is not active.

Keyboard Access to Menus

In addition to selecting menu items using a mouse they can also be accessed via the keyboard.
At the most basic level all main menu items can be accessed by using the Alt key to activate
the menu then using the cursor keys to navigate the menu. The initial letters of menu items
can be used to provide quicker access to the items in a sub-menu. Where multiple items in a
sub-menu start with the same letter, the letter to use for an option can be changed by entering
an & character into the caption string in the resource editor. It is advisable to specify the letter
to be used in this way even when using the initial letter since the & character also causes the
letter to be underlined. This is the expected behaviour for a Windows or Motif program.

In addition keyboard shortcuts, known as accelerators, can also be defined to provide direct
access to specific main menu options. Such accelerator keys are defined using the resource
editor. Defining a keyboard shortcut as an accelerator requires no additional programming
effort since those key sequences are then reportdémsSelect (rather thariKeyDown)
messages bwMessage When defining accelerators it is useful to use commonly adopted
conventions where possible. For example if your program has a 'New' option it should use
Ctrl+N for its accelerator. It is also advisable to avoid using commonly used accelerator com-
binations for options other than their normal purpose. If the keyboard accelerators for a menu
are to be processed while a dialog is active you should avoid accelerators which conflict with
standard dialog keystrokes. See the Dialogs chapter for more details.

Creating and Modifying Menus

Menus are created and maintained using the resource editor. See the earlier Resource Editor
chapter. You should also refer to the resource editor's on-line help, available via
Help- Contents.

Winteracter Starter Kit 27

Chapter 5 Menus

28

A new menu can be created either by starting a new resource script or by adding a menu to
an existing resource script. To start a new resource script seleciNelg, then select

Resource File. Next, select Resouso®dd and choose 'Menu' to add a new menu structure.
Alternatively, open an existing resource script using-F@pen. If the resource contains any
existing menus, they will be listed in the Resources window. Double click on a menu in the
Resources window to display it. If the resource script contains no menus (for example it
contains only dialog definitions) or to start a new menu, select ResoAdeas described
above,

Adding a new menu will display the Menu Properties dialog. This allows the identifier of the
menu to be specified. Selecting OK will create a new menu consisting of a single option with
an 'Empty' caption. The individual menu options can now be created, see below. To change
the menu identifier after creation select ResourBeoperties.

When a resource script contains several menu defintions you can choose which menu to edit
via the Resources window. Alternatively, whenever a menu is selected as the current resource
type, you can cycle though the available menus using the Page Up and Page Down keys.
Alt+1 to Alt+0 can also be used to select among the first 10 menus in this case.

If a menu is no longer required it can be removed using the Delete button in the Resources
window.

Adding and Modifying Menu Items

To add a menu item use either the Insert After or Insert Before options on the Edit menu.
These options are also available on the right-click menu or via keyboard shortcuts. Menu
items are created with a default caption of 'Empty' and automatically given a default
identifier.

When a menu item is first created it becomes the current item. Different items can be selected
via the mouse or cursor keys. To select an item in a sub-menu which is not displayed you
must first select the item which leads to that sub-menu. The sub-menu will then be displayed.
To select an item using its identifier name select \idused Identifiers. This will display a

list of the items in the current menu. The Select button will select the first item with the
highlighted identifier.

The properties of the selected item can be changed via the Menu Item Properties dialog. This
can be accessed by double clicking on an item (or select Properties on the Edit or right-click
menus). Alt+Enter also brings up the same dialog. This dialog is used to enter the selected
item's identifier, caption, status bar prompt (optional), type and initial state. Refer to the
online help for full details of this dialog.

To assign a keyboard accelerator to the selected item select Accelerator from the Edit or
right-click menus or press Tab. Full details of this dialog are included in online help. A
description of the chosen accelerator will be added to the caption for the item, if not already
present.

Winteracter Starter Kit

Tutorial - Creating a Menu

The selected item can be copied or deleted using the options available on the Edit menu. The
usual keyboard shortcuts, Ctrl+C, Ctrl+X, etc. are also available for these options.

Tutorial - Creating a Menu

This brief tutorial will guide you through the basic steps of creating a menu, based on the
methods described in the preceding sections:

1. Load the resource editor and select FiMdew, then select Resourséddd and
choose 'Menu'. You will be prompted for the identifier of the new menu. For now just
accept the default value. When you click OK a menu mimic, i.e. an emulation of an
application program's menu which allows you to visualise how the menu will appear
in your Winteracterprogram, will be displayed. Initially it has one item (labelled
Empty) which is highlighted. Double click on this item to display its properties.

2. The properties dialog is used to alter the settings for each individual item. First, set
the text that actually appears on the menu bar. This is done via the Caption field.
Delete the current contents of the field and then type &File into the field. The amper-
sand (&) character is used to set which character within the string is underlined. This
key can then be combined with the Alt key to select the menu item via the keyboard.

3. Click on the Popup check box (so that a tick appears). This will attach a pull down
menu (or child menu) to the current item. Press OK. You should notice two things.
First the highlighted item will now say File. Secondly, underneath it is a child menu
with a single option (labelled Empty).

4. Double click on the new child item to display the properties dialog. Type &Option 1
into the caption box. As this item will be used to input a user action we must give it
an identifier. This identifier will be reported WeMessagein the message loop at
run-time, when the item is selected. By default an identifier of ID_ITEMZ2 is given
to this object but let’s change this to something more meaningful. Type
ID_OPTIONL1 into the item ID field. Press OK.

5. The display will now be updated. To add another item to the child menu select Edit
- Insert After or press Ctrl+A. Remember that the Edit menu can also be accessed
by pressing the right mouse button. You should now have a new item at the bottom
of the child menu (labelled Empty) which will be highlighted.

6. Double click on the new item. Type E&xit into the caption box. Type ID_EXIT into
the item ID box. Click the OK button. Your first menu is now finished.

7. To save your resource, select Eil8ave. This will display the standard file selector.
Enter a file name (e.gesource.rc) and click OK.

Winteracter Starter Kit 29

Chapter 5 Menus

You now have a resource script which can be compiled and linked with viaterdéter

program code. See the earlgrilding a WiSK Progranchapter for details on how to link

this resource script with your program. Refer to the subroutine reference section for details
on the routines for manipulating menus and processing selections. Other resources (e.g. dia-
logs) can be added to the same resource script.

30 Winteracter Starter Kit

Dialogs

Overview

A dialog is a set of associated data entry fields. Normally a dialog will be specific to a
particular application and you will define its layout in your program's resource script using
the resource editor. Details of how to use this program are given later in this chapter and in
online help. Alternatively certain dialogs are commonly required by many different
programs. ihteracterprovides access to these common dialogs via the routines in the
Common Dialogs section in the subroutine reference section. The remainder of this chapter
is concerned with program defined dialogs.

Every dialog and field used in a given program must have a unique identifier, as set in the
resource file. A Fortran module or include file should normally be used to specify
PARAMETER values for these dialog/field identifiers. The resource editor will create such
a module or include file automatically. This file contains identifier definitions for all resource
types. The values in this file will be updated whenever your resource script is saved by the
resource editor.

Up to 400 dialog descriptions can be built into a program executable, as part of the program
resource. The Dialog Manager operates by selectively loading one or more of these dialogs
from the program resource (séialogLoad), possibly modifying the dialog, then

displaying it (se&VDialogShow). When no longer required, a dialog can be unloaded (see
WhDialogUnload). The same dialog can be loaded and unloaded as many times as required.
Alternatively, it can be loaded just once then repeatedly displayed and hidden (see
WnDialogHide).

When more than one dialog is loaded, the Dialog Manager uses the concept of the 'current’
dialog. This is simply the dialog which most of the other dialog management routines will
operate on. This can be set explicitly WialogSelect , but is also set implicitly by
WhDialogLoad . Opening a combined window and dialog usiiitndowOpen or
WindowOpenChild also selects the combined dialog as the current dialog.

Winteracter Starter Kit 31

Chapter 6 Dialogs

32

The initial contents of each field can be defined in the resource file, using the resource editor.
These will be the initial values each tiviDialogLoad is called. While loaded, the

contents of the dialog can be updated via the vakdDslogPutXXX routines in the

DM(2) group. See the subroutine reference section for details. The values of dialog fields can
be interrogated, (both before and after user data entry) via the corresponding
WnDialogGetXXX routines in the same group. For example, the contents of a string field can
be assigned vi#/DialogPutString and retrieved vidVDialogGetString

When a user has finished entering data in a dialog they will normally press a termination but-
ton (e.g. OK, Cancel, etc.). This will cause a modal dialog to be terminated immediately, with
termination information reported vi&InfoDialog . However, a modeless or semi-mode-
less dialog will remain on-screen, with the button press reportddush8utton message
viaWMessage The dialog remains on screen until explicitly removed\iyialogHide

or WDialogUnload

The dialog can also be closedrushButton messages reported for other user actions. The
following actions will cause this:

Pressing return in a non-push button field will act as if the default push button was
pressed. If there is no default push button in the current dialnotgk&cterwill act

as if a default push button with an identifier of IDOK was present. A push button can
be made the default button using its Style Properties dialog in the resource editor.

Pressing Esc, Alt+F4 or closing the dialog via its title bar controls will act as if a but-
ton with an identifier of IDCANCEL was pressed. For this reason you should
normally use this identifier for the Cancel button of a dialog. This will simplify your
code by ensuring you only have to check for one cancel value.

Pressing F1 in a modeless or semi-modeless dialog will repogteButton mes-
sage with an identifier of IDHELP. Using this value for any actual Help button is
recommended since it will simplify your code.

The IDOK, IDCANCEL and IDHELP identifier values are pre-defined in the
WINTERACTERnodule.

Dialog Types

When a dialog is shown MW/DialogShow its type must be specified. This controls how the
dialog interacts with the user and your program. Three types of dialog are supported :

Modal

A modal dialog blocks data entry or option selection via other dialogs or menus
belonging to the current program. The button used to close the dialog is available via
WinfoDialog . Such dialogs are easier to manage from a programming viewpoint

Winteracter Starter Kit

Dialog Types

because display, user-entry and termination all occur as a single operation (in a call
to WDialogShow). They also eliminate any need to process Resize or Expose
messages while the dialog is displayed.

Modal dialogs are best used where access to the rest of the program is not required
and the only buttons are OK and Cancel buttons to confirm or abandon data entry.

Modeless

A modeless dialog remains on screen while a program continues to run. Button
presses are reported WéMessage asPushButton messages. The dialog

remains visible until explicitly removed by the calling program. Several modeless
dialogs can be active simultaneously. Because the program continues to run
modeless dialogs permit more sophisticated processing of the displayed dialog than
is possible when using a modal dialog. For example a combination of
FieldChanged messages and tii¢DialogFieldState routine can be used to
selectively grey out or enable fields depending on the options chosen in a dialog.

Modeless dialogs should be used when simultaneous access to other dialogs or
windows is required.

Semi-Modeless

A semi-modeless dialog is a useful hybrid of the previous two types. Such a dialog
appears modeless to the program, but modal to the user. In other words, control
returns to the program as soon as the dialog is display@éiglogShow

(allowing message processing VilMessage, for example), but input to other

dialogs or program menus is blocked. Like a modeless dialog, a semi-modeless
dialog remains on-screen until explicitly removed by the calling program. Multiple
semi-modeless dialogs can be stacked, allowing the use of 'Options' or 'Advanced'
buttons to activate sub-dialogs.

Semi-modeless dialogs should be used when the additional facilities offered by a
modeless dialog are required but access to other windows and dialogs needs to be
prevented.

Under Windows, all dialogs are either 'pop-up' or ‘child’ dialogs (determined in the resource
file, via Dialog Properties in the resource editor). A pop-up dialog can be moved to any
position on the screen either inside or outside of the application window. Child dialogs are
restricted to the root window. Child dialogs must be modeless. 'Sub Component' dialogs are
a special type of Child dialog. While these can be loaded and displayed by the routines in the
Dialog Manager chapter of the subroutine reference section they are primarily intended to be
combined with a window bWindowOpen/WindowOpenChild . Under X Windows, all
dialogs which are not combined with a window are 'pop-up' dialogs.

Winteracter Starter Kit 33

Chapter 6 Dialogs

Field Types

Whichever dialog type is used, it can consist of the following field/control types :

Strings
String fields allow the user to enter character data into a dialog. Either single-line
strings or multi-line fields are available. In read-only mode, string fields are also
useful for the output of character data which the user can then copy to other
applications via the clipboard.

Menus
Menu fields allow the user to choose from a list of options. Available types are:

Simple Combo Box: In addition to a list of options this type also provides a string
field into which the user may type any value.

Drop Down Combo Box: This also consists of a string field and list of options.
However the list is hidden until the user displays it using the button at the right of the
string field. This type of menu can be used as an enhanced string field which allows
the user to choose from a list of standard values.

Drop Down List Combo Box: This is similar to the Drop Down Combo Box except
that only the listed options may be chosen. This type of menu is useful where space
is limited.

List Box : This is a simple, permanently visible list. This menu type can optionally
be used for the selection of multiple options. List boxes are also useful for displaying
scrolling output, e.g. a list of messages where the user may wish to scroll back
through earlier messages.

Check Boxes
A check box provides a convenient way for the user to indicate Yes/No choices. They
consist of a label and an on/off indicator.

Radio Buttons
Radio buttons are similar in appearance to checkboxes. However they are used in
groups to select between a small number of mutually exclusive options. When a radio
button is selected all others in the same group are cleared. The grouping of radio
buttons is determined by the 'Group' flags in the 'General Properties' dialogs in the
resource editor.

Push Buttons
These are buttons, such as 'OK' and 'Cancel’, which the user can use to close the
dialog. In modeless and semi-modeless dialogs push buttons can also be used to
access other dialogs, e.g. an 'Advanced’ or 'Options' button.

34 Winteracter Starter Kit

Field Types

Progress Bars
Progress Bars are output only fields which show an integer value as a bar. They are
typically used to visually indicate the progress of a time consuming task.

In addition to these 'functional’ fields a dialog can also include various 'decorations'. These
are defined within the resource script, but are display-only fields:

Labels
Label fields are used to label most other types of fields. They should not be confused
with string fields since they are different in appearance and do not provide any input
or cut/paste facilities.

Group Boxes
Group boxes consist of a box and associated label and are used to visually group
other fields. Group boxes have no functional effect on other fields. In particular, they
do not affect the behaviour of radio button groups.

Pictures / Frames
These allow bitmaps and icons to be displayed in dialogs. They can also be used to
draw unlabelled frames or filled rectangles.The rectangle variation is particularly
suited to displaying program generated graphics in a dialogG88elect

Winteracter Starter Kit 35

Chapter 6 Dialogs

36

Keyboard Processing in Dialogs

When a dialog is displayed and has the input focus it will normally process all keystrokes
automatically. For this reaséteyDown message are not reported while a dialog has the
focus. A dialog will process a keystroke in one of several ways:

It will treat the keystoke as data to be entered into the current editable field. This will
not report a message to the program.

The Tab and Shift-Tab keys will move to the next or previous fields. This can be
reported via &ieldChanged message for a modeless or semi-modeless dialog.

The keystoke will correspond to a dialog button and either close a modal dialog or
report aPushButton message in a modeless or semi-modeless dialog, as docu-
mented in the introduction to this chapter. Note: There need not be an actual push
button field corresponding to these actions. For example, the Escape key always gen-
erates #ushButton message with an IDCANCEL identifier.

It will perform a field type dependent action, such as the space bar toggling the state
of the current checkbox. Some of these actions can be reportédedd-a

Changed message for a modeless or semi-modeless dialog. Other actions, such as
displaying the drop-down list in a combo box, will not report a message.

The keystroke is a program defined shortcut to a particular field. The exact action
taken in this case depends on the field type. See later for details of how to create these
shortcuts and their effects.

The keystroke will be ignored because it has no meaning for the current field.

Keyboard shortcuts can be created for a particular field, such as an Apply button. This is most
commonly done for push button, check box and radio-button fields. To implement such a
shortcut prefix a letter in the field's caption with an ampersand (&). Normally the first letter
of the field's caption will be chosen, except where this would cause a conflict with another
field. When creating a dialog which will later be combined with a window (see

WindowOpen andWindowOpenChild) you should also avoid choosing letters which will
cause conflicts with the top level of the window's main menu. The prefixed letter will be
underlined. Alt and the shortcut letter can then be used to access the field directly. Such
shortcuts are not normally defined for the OK and Cancel buttons since keyboard equivalents
of these actions already exist.

Keyboard shortcuts can also be used to move directly to an editable field, such as a string
field. In this case the ampersand prefix and shortcut letter should be placed in the label or
group box which labels this field. The fields should be re-ordered so that the field with the
shortcut letter immediately precedes the editable field. No coding is needed to implement
these shortcuts. They are handled automatically once defined using the resource editor.

Keyboard accelerators for menu items can optionally be enabled when a modeless dialog is
displayed. Such accelerators are also always enabled when a dialog is combined with a
window. If enabled, keystrokes which correspond to these accelerators are reported as

Winteracter Starter Kit

Keyboard Processing in Dialogs

MenuSelect

messages in the usual way. This facility will not normally be required with

non-combined dialogs. It is most useful with permanently displayed child dialogs. Using this
facility with a popup or temporarily displayed dialog would be highly unusual behaviour.

When creating menu accelerators which will be enabled when a dialog has the focus you
should avoid using keystrokes which normally have a meaning in a dialog. Creating such an
accelerator would disable the keystoke's usual function in a dialog. The following keystrokes

should be avoided:

Table 1: Dialog Keystrokes

Keystroke

Usual Dlalog Function

Unmodified Characters

Data entry

Tab/Shift Tab

Move between fields.

Cursor Keys

Move cursor within current enterable field

Change option in current menu

Move between fields in same group (if no other action
defined)

Page Up/Page Down

Move cursor within current enterable field
Change option in current menu

Home/End

Move cursor within current enterable field
Change option in current menu

Shift+Cursor Keys
Shift+Page Up/Down

Select characters in editable field
Select range of options in current extended selection lis

tbox

nay

Y

=

Shift+tHome/End
Ctrl+A Select all characters in editable field
Toggle state of current checkbox
Activate current push button
Space Bar S .
Toggle state of current option in current mutiple or
extended selection listbox
Activate current or default push button
Enter Insert new line into multi-line string (if enabled)
Close open drop-down combo box
Esc Cancel dialog (simulate Cancel button)
Cancel dialog.Under X Windows other key sequences n
Alt+F4 perform this function, depending on the window manage
being used
F4 Open/Close current drop down combo box

Winteracter Starter Kit

37

Chapter 6 Dialogs

38

Table 1: Dialog Keystrokes

Keystroke Usual Dlalog Function

Alt + Letter Program defined field shortcut, see above
Ctrl+X, Shift+Delete Cut selection to clipboard

Ctrl+C, Ctrl+Insert Copy selection to clipboard

Ctrl+V, Shift+Insert Paste clipboard contents

Delete Delete selection

Dialog Validation and FieldChanged Messages

The data entered into a dialog can be validated in several ways:

Validation can be performed at the calling level by checking the values returned by
the 'get' routines in group DM(2). See the subroutine reference section for detalils. If
a modeless or semi-modeless dialog is used this can be done on the fly by checking
for FieldChanged messages.

If it is known in advance that selecting certain radio buttons or checkboxes would be
invalid these fields can be disabled, usiiBialogFieldState , to prevent such
selections.

These methods can also be combined. For example if selection of a particular checkbox
precludes the use of certain other fields in the same dialog thErelti€hanged

message would be used to detect selection of the checkb®¥RiadbgFieldState

used to disable the other fields.

FieldChanged messages fall into two distinct categories:

Messages which report that the user has moved from one field to another. For these
messages the¥alueland %value2elements of the message structure will be
different.

Messages which report a change in state of a field with a well defined number of
possible states, i.e. a check box, radio button or menu field. For these messages the
%valueland %alue2 elements will both refer to the changed field.

It is important that code to handieldChanged messages should process the correct
messages for the task to be performed. In particular, be aware that some user actions actually
result in two messages in quick succession. For example consider the case of the user using
the mouse to toggle a checkbox which is not the current field. The first message reports the
change of focus. This occurs when the user presses the mouse button. The second message
reports the change of state of the checkbox. This is reported when the user releases the mouse
button. To take action based on the new state of the checkbox when it changes you must
ensure that you process the second of these messages. Specifically your code must include a
test that %alueland %value2both report the same identifier. Processing the wrong message

Winteracter Starter Kit

Cut and Paste in Dialogs

can cause various problems. For example in this particular case calling
WnDialogGetCheckBox after the first message will report the previous checkbox state,
since it has not yet changed.

FieldChanged messages must be specifically enabled, usiMgessageEnable . They
are not reported by default.

Cut and Paste in Dialogs

String fields support cut and paste of their contents. These facilities are available via the usual
Windows shortcuts, Ctrl+X, Ctrl+C, etc. or via the right-click shortcut menu.

Creating and Modifying Dialogs

Dialogs are created and maintained using the resource editor. See the earlier Resource Editor
chapter. You should also refer to the resource editor's on-line help, available via
Help- Contents.

A new dialog can be created either by starting a new resource script or by adding a dialog to
an existing resource script. To start a new resource script seleciNelg, then select

Resource File. Next, select Resouse®dd and select 'Dialog' to add a new dialog.
Alternatively, open an existing resource script using-F@pen. If the resource contains any
existing dialogs, they will be listed in the Resources window under the Dialogs branch. The
dialog to edit can be selected by double clicking on the appropriate identifier in the Resources
window. If the resource script contains no dialogs (for example it contains only menu
definitions) or to start a new dialog, select Resourdéed as described above,

Adding a new dialog will display the Dialog Properties dialog. This is used to determine basic
features of the dialog such as its identifier, size and title. This dialog also determines whether
the dialog appears outside or inside the root window or is to be used as a sub-component of
another dialog or window. Refer to the online help for details on the individual options
available in this dialog. The position of the dialog and whether it is modal, modeless or semi-
modeless is chosen at run-time byWiBialogShow routine. Selecting OK will create and
display an empty dialog with the chosen properties.

Once created the dialog is ready to have fields added. To modify its properties after creation,
select Resource Properties. Under Windows this dialog can also be displayed by right
clicking on the dialog's title bar.

When a resource script contains several dialog definitions you can choose which dialog to
edit via the Resources window. Alternatively, whenever a dialog is selected as the current
resource type, you can cycle though the available dialogs using the Page Up and Page Down
keys. Alt+1 to Alt+0 can also be used to select among the first 10 dialogs in this case.

Winteracter Starter Kit 39

Chapter 6 Dialogs

40

If a dialog is no longer required it can be removed using the Delete button in the Resources
window.

Creating and Modifying Fields

To create a field you must first select the type of field to be created. To do this either use the
toolbar across the top of the main window or Fielddd. Tooltips are available for each of

the buttons on the toolbar which indicate the type of field created. Once the type of field to
create has been selected the field is created by left-clicking in the window representing the
dialog. The field is created with its top-left corner at the clicked position. Subsequent fields
of the same type can be created simply by further clicks. Alternatively a different field type
can be chosen using the toolbar or menu. To prevent accidental creation of fields select the
pointer button on the toolbar. This enters a select only mode.

When a field is first created it becomes the current field. This is indicated by a thickened
border around the field. Any previously selected field is deselected. Different fields can be
selected by clicking on them using the mouse. To select a group box field or the rectangle
variant of the picture/frame field you should click on or near the border. Clicks in the center
of these fields do not select the field to allow other fields to be created inside them.
Alternatively pressing Tab/Shift-Tab will select the next/previous field. To select a field
using its identifier name select ViewJsed Identifiers. This will display a list of the fields

used in the current dialog. The Select button will select the field with the highlighted
identfier. To select multiple fields hold down the shift key while clicking a field.

Alternatively a group of fields can be chosen by dragging a rectangle around them using the
mouse when the Select Only option is chosen via the toolbar or menu. When multiple fields
are selected the last field selected has a different colored border. This is important with some
of the field alignment options. To clear any current selection click in an empty area of the
dialog when in Select Only mode.

Selected field(s) can be moved to a different position by dragging using the mouse. The
mouse cursor will change to a four-headed arrow when positioned to move a field. This will
snap to the grid unless it has been disabled using Viévid. Alternatively the selected

field(s) can be moved by a single dialog unit using the cursor keys or by 8 dialog units using
shift and the cursor keys. When only a single field is selected it can be resized by dragging
its border. The mouse cursor will change to a two-headed arrow when positioned to resize a
field. Again this snaps to the grid if enabled.

There are also various options to align selected fields or make them the same size available
via the toolbar at the left of the main window and on the Alignment sub-menu of the Field
menu. The centring options center each of the selected fields individually. The options to
align field edges align the appropriate edge of the selected fields with the last field selected.
The sizing options make the appropriate dimension(s) the same as for the last field selected.
Refer to the online help for full details of these options.

The selected fields can be copied or deleted using the options available on the Edit menu. The
usual keyboard shortcuts (Ctrl+C, Ctrl+X, etc.) are also available.

Winteracter Starter Kit

Radio Buttons and Field Grouping

When a single field is selected there are various dialogs available to modify its properties.
These are accessed via the shortcut menu displayed by the right mouse button or-via Field
Properties. The General Properties dialog can also be displayed using Alt+Enter. Under
Windows it can also be accessed by double-clicking a field. Refer to the on-line help for
details of the specific dialogs used for each field type. However the following general notes
apply for each option:

General

This dialog is used to control commonly available features of a field such as its
identifier, position, size, initial contents and whether it is enabled or disabled.

Style

This dialog is used to control options affecting the appearance of a field or to enable
optional features.

Border

This dialog controls the style of border, if any, drawn around the field.

Colour

This dialog allows the colors used by the field to be changed. However in general
you should use the default field colors. This will give your application an appearance
which is consistent with other programs. Overuse of color can make your program
look very out of place in a graphical environment.

By default the order of fields is determined by the order in which they are created. This order
determines the order in which the Tab key moves between fields and is also important in the
grouping of radio buttons. Grouping of radio buttons will be dealt with in detail later. To
change the ordering of fields select DialoBe-Order Fields. Once chosen simply click the
fields in the desired order. To finish re-ordering fields take any other action, for example
select Dialog- Test to check the new field order. Fields should be ordered so that pressing
the Tab key moves through the fields in a logical order, starting at the top-left of the dialog.
OK, Cancel and other buttons should normally be at the end of the tab order.

Radio Buttons and Field Grouping

Radio buttons are a useful method of choosing between a small number of mutually exclusive
options. While they are created and modified in the same way as for any other field type, they
are unigue in that several need to be grouped together to be useful. To do this two things must
be done:

Winteracter Starter Kit 41

Chapter 6 Dialogs

The fields should be consecutive in the field order. If the fields which form the group
are created at the same time then this will happen automatically. However when
extending a radio button group later it will be necessary to re-order the fields using
Dialog— Re-Order Fields. Specifically you should click each field in the group in
order. This also sets the order within the group for keyboard navigation.

The Group flags in the General Properties dialog must be set correctly. This flag is
used to indicate that a field is the start of a new group. Hence this flag should be set
for the first radio button in the group, cleared for all other radio buttons in the same
group and set for the first field, of whatever type, after the group. Again the logic in
the resource editor is such that these flags will normally be set correctly when a new
group of radio buttons is created. It will normally only be necessary to change these
flags when extending an existing group.

In addition to arranging radio buttons into functional groups, grouping fields also affects
keyboard navigation of the dialog. Where the cursor keys have no other meaning for a field,
e.g. for check boxes, they will move between fields in the same group.

Tutorial - Creating a Dialog

This brief tutorial will guide you through the basic steps of creating a dialog, based on the
methods described in the preceding sections:

1. Load the resource editor and select Filew, then select Resourséddd and
choose 'Dialog'. You will be prompted for the properties of the new dialog. For now
just accept the defaults. They can be changed later if necessary. When you click OK
an empty window will appear. This represents your new dialog. The Field Insertion
toolbar will appear at the top of the main window. This is used to add new fields to
your dialog.

2. Now that we have a dialog we can create some fields inside it. First we will create
the simplest type of field, a label. Click on the 'Label' button then click inside the
window representing your dialog. Don't worry too much about exact positioning at
this stage. The field is created with the default contents 'label'. Let's change this to
something more meaningful. Right click on the field to bring up a small floating
menu. Select General from this menu. This will display a dialog showing the general
properties of the field. For now just move to the caption field and enter something
more meaningful, then click OK.

3. Having changed the caption of the label field it is likely that it is no longer big enough
to display the text. To fix this, change the field's size by dragging the border of the
field just as if it was a program window. Dragging within the field will move the field
to a new position. Notice that the field's size and position snaps to the grid.

42 Winteracter Starter Kit

Tutorial - Creating a Dialog

4. |If the next field we wanted to create was also a label then we could simply click in
an empty region of the dialog again. However we will now create an entry field.
Select the 'String' button from the toolbar and click somewhere to the right of your
label. Notice that the thick border is removed from the label and placed around the
string field, indicating that this is currently selected.

5. Atthis point we can test the dialog by selecting Diald@st. This will allow you to
type into your newly created string field. Press Esc or Enter when done.

6. While this dialog worked, having to use the keyboard to close it is not normal for a
graphical environment. Let's create OK and Cancel buttons. Do this by selecting the
'Push Button' toolbar button and clicking twice in the dialog window where you wish
the buttons to appear. Notice that the captions on the buttons are automatically set to
'OK' and 'Cancel'. They are also assigned the standard identifiers IDOK and IDCAN-
CEL. This is done for the first two buttons in every dialog. Also note that the first
button (OK) was automatically made the default push button (as indicated by its dif-
ferent frame style). This will cause the Enter key to act as if this button was pressed.
You may now wish to test your dialog again to see the improved effect

7. To save your resource, select Eil8ave. This will display the standard file selector.
Enter a file name (e.g. resource.rc) and click OK.

You now have a resource script which can be compiled and linked with yiaterééter

program code. See the earlguilding a WiSK Progranchapter for details on how to link

this resource script with your program. Refer to the subroutine reference section for details
on the routines for manipulating dialogs in your program. Other resources (e.g. menus) can
be added to the same resource script.

Winteracter Starter Kit 43

Chapter 6 Dialogs

44 Winteracter Starter Kit

lcons, Bitmaps and
cursors

Winteracterprograms can use icons, bitmaps and cursors defined via the resource script, in
several ways:

Icons

Each program has an associated icon. For an existing icon file this can be selected in
the resource editor using Fildmport Image. Enable 'Set as program icon' in the
subsequent dialog. A 'Set as program icon' checkbox is also available in the Image
Propeties dialog when adding a new icon to a resource script via theRedmburce

option.

Icons can also be displayed in dialogs in various field typetJ&ag Bitmaps and
Icons in Dialogdater in this chapter). Their main advantage over bitmaps is that they
allow for transparent pixels. Icons can also be selectively displayed in a dialog at run
time, viaWDialogPutimage

Bitmaps

Bitmaps can also be displayed in dialogs using similar mechanisms to icons (e.g. via
WhDialogPutimage). Unlike icons, bitmaps do not support transparent pixels and
cannot be used as a program icon. The image editor can be used to create small
bitmaps.

Cursors

In addition to various pre-defined cursafdCursorShape allows selection of user
defined cursors. (Note : User-defined cursors are only used by the Windows version
of Winteracter, but can be created by all versions of the image editor)

Images specified in the resource script will be incorporated into your executable. There is
therefore no need to distribute theo , .bmp or.cur files with your application.

Winteracter Starter Kit 45

Chapter 7

Icons, Bitmaps and Cursors

Image Editor

An image editor is provided as part of théntgracterresource editor which allows you to
interactively create and edit icons, small bitmaps and cursors. All of these image types can
be incorporated into your application via the resource file.

The image editor within the resource editor can be used in one of two ways:

Image files can be edited directly, without associating that file with a particular
resource script. An existing image file can be loaded via-Fpen or by specifying

its name on the resource editor's command line. The latter option ensures that the
resource editor supports invocation via drag-and-drop or via a file-type association
(View - Options- File Types in Windows Explorer). Alternatively, a new
standalone image can be created via-FMhew.

Image files which are associated with a resource file can be edited by loading that
resource file, then selecting the icon, bitmap or cursor to edit from the Resources
window. Alternatively, a new icon, bitmap or cursor can be added to a resource from
scratch using ResourceAdd. Using the built-in image editor in this way still creates

a separate image file, but it also ensures that the file is associated with a resource
script.

In addition to this chapter you should also refer to the resource editor's on-line help, available
via Help- Contents. This contains more detailed information on each of the available
options.

Supported Formats

The image editor can create icons, bitmaps and cursors at any size between 8x8 and 48x48
pixels, in either 16 or 256 colors. The image format is specified when the image is first
created, or by using the Resourd@roperties option. Bitmaps larger than 48x48 pixels will
need to be created using an external program which can save files in Wihdgwformat.

Once created these images can be added to your resource script using-the pole

Image.

Editing 256 color images requires a display which supports more than 256 colors.

When designing an icon for use as the program icon you should select a 32x32 pixel, 16 color
icon. While any of the supported sizes can be used 32x32 pixels gives the best results since
this is the icon size displayed by Explorer under Windows. Other icon sizes will need to be
scaled. Using a 16 color icon gives better results than 256 colors on displays with a limited
number of colors.

46 Winteracter Starter Kit

Drawing Tools

Drawing Tools

The image editor displays a grid which represents an enlarged version of your image, plus an
actual size image and a color selector. The image can be edited using various tools which are
available from the toolbar at the left of the window or from the Tools menu:

Pen: Click to set single pixels or hold mouse button for freehand drawing.
Line : Click and drag to set opposite ends of the line.

Outline Rectangle: Click and drag to set opposite corners of the rectangle.
Filled Rectangle: Click and drag to set opposite corners of the rectangle.
Fill : Click to flood fill an area in the current color.

Hotspot : Click to set the selection point within a cursor.

Mirror image : Reverses the image horizontally.

Flip image : Reverses the image vertically.

Color Selection

The current drawing color can be selected in two ways. Normally colors will be selected
using the Colour Selector window. To select a color use the left mouse button. Alternatively

a color which has already been used in your image can be reselected using the Colour Picker
tool and clicking within the main edit window. This is useful to ensure the exact shade is
selected when editing a 256 color image.

In addition to the opaque colors, a transparent color can be selected when editing an icon or
cursor. Transparent pixels allow the dialog or window background to show through. The Pen
tool can be used to draw transparent pixels, regardless of the currently selected color, by
using the right mouse button.

The palette used for an image can be changed in two ways: by right clicking a color in the
Colour Selector window or by using the Edit Pixel Colour tool and clicking in the main edit
window. Either of these will display a dialog to choose a new color for the corresponding
palette entry. All pixels in the changed color will be updated to use the new color.

Cut and Paste

Rectangular areas of the image can be cut, copied and pasted using the Select Region tool
and the options on the Edit menu. To cut or copy an area it must first be selected. To do this
press and hold the left mouse button in one corner of the area to be selected. Next drag the
mouse to the opposite corner and release the mouse button. To paste an area select Paste frol
the Edit menu. Now select the point at which to paste. To do this press and hold the left mouse
button. An outline of the area to be pasted will appear. Drag this to the desired location and
release the mouse button.

Winteracter Starter Kit 47

Chapter 7

Icons, Bitmaps and Cursors

Cursor Hotspot

When designing a cursor it it important to set the cursor hotspot, i.e. the point in the image
which represents the cursor location. This can be set using the Hotspot tool or via
Resource, Properties.

Adding Images to Your Resource

Images which are used in your program are normally defined via your resource script. It is
therefore usual to add image files to your resource either via Resoldceor File— Import

Image. The former option is used to create a resource file image from scratch, whereas the
latter is used to import existing image files.

Selecting Files Import Image will prompt for a suitable identifier. This identifier will be

used to refer to the image in your program or to link the image to a dialog field. Alternatively,
if the image to be imported is an icon, this dialog allows you to select it as the program icon.
An identifier is not required in this case.

Using Bitmaps and Icons in Dialogs

Both bitmaps and icons can be used in dialogs. They should be added to your resource script
as described in the preceding section.

When adding or importing an image for use in a dialog, it is important to select an appropriate
identifier. This is used to link the picture to a field. In general you should give the picture the
same identifier as the field that will display it. However if you intend to assign the picture to
the field at run time (using/DialogPutlmage) then any identifier may be used.

Once a picture has been added to your resource script it can be displayed by Picture/Frame,
Group Box, Push Button, Checkbox and Radio Button fields. The type of picture, if any, to
display is set using the field’s Style Properties dialog. The same image can be used by
multiple fields provided they have the same identifieiialogPutimage is used to

assign the image at run-time. This results in a smaller executable than importing the same
image multiple times with different identifiers.

Note: When editing a dialog, the resource editor displays a dummy bitmap/icon rather than
the actual picture which will be used at run time.

To display program generated graphics in a dialogl@sgelect and a modeless or semi-
modeless dialog. The most appropriate type of field to use for this purpose is the rectangle
variation of the Picture/Frame field.

48 Winteracter Starter Kit

Using Cursors

Using Cursors
Cursors are selected at runtime viaWi€ursorShape routine. This routine supports var-

ious pre-defined cursor shapes, using hardcoded identifiers. User defined cursors added via
the resource script should therefore use identifier values greater than 100. The program cur-

sor shape can be changed at any time.

Winteracter Starter Kit 49

Chapter 7 Icons, Bitmaps and Cursors

50 Winteracter Starter Kit

6 Subroutine Summary

Group WM: Window Management

WindowClear Clear all or part of a window

WindowClose Close root window

WindowCloseChild Close a child window

WindowOpen Create root window with various style options
WindowOpenChild Open a child window with various style options
WindowOutStatusBar ~ Output string to the status bar

WindowSelect Specify number of parts in status bar
WindowSizePos Change window size, position, state

WindowStatusBarParts

Select window which all output is sent to
WindowTitle Set window title/icon
WindowUnitsFromPixels

Convert from pixels to \Mteracterco-ordinates
WindowUnitsToPixels

Convert to pixels from \idteracterco-ordinates

Group MH: Message Handling

WMessage Wait until valid message arrives
WMessageEnable Enable/disable reporting of individual messages
WMessagePeek Get next message or return immediately

Group MN: Menu Handling

WMenu Activate/remove a menu

WMenuFloating Display a floating menu at (x,y)
WMenuGetState Get a menu item state (checked/greyed)
WNMenuSetState Set a menu item state (checked/greyed)
WMenuSetString Change text for a given menu item

Winteracter Starter Kit

51

Chapter 8 Subroutine Summary

52

Group DM(1): General Dialog Management

WDialogFieldState Enable/disable/show/hide a field
WnDialogHide Remove a dialog from the screen
WnDialogLoad Load a dialog from resource

WnDialogRangeProgressBar
Set range for a progress bar

WnDialogSelect Select current dialog
WDialogSetField Make field current

WnDialogShow Display a dialog

WnDialogUnload Free dialog resource from memory

Group DM(2): Dialog Field Assignment/Retrieval
WDialogGetCheckBox Get check box value
WDialogGetMenu Get menu field value
WhDialogGetRadioButton

Get radio-button group value

WDialogGetString Get string value

WDialogPutCheckBox Enable/disable a check-box
WDialogPutimage Change bitmap/icon displayed in a field
WDialogPutMenu Change menu field contents
WDialogPutOption Change menu field option number
WhDialogPutProgressBar

Change progress bar value
WnDialogPutRadioButton

Change radio-button group value
WDialogPutString Change a string field value

Group CD: Common Dialog Management
WMessageBox Display standard message box with various options
WSelectFile Get a load or save filename from a common dialog

Group GG: General Graphics

IGrArea Define size of graphics area

IGrAreaClear Clear the current graphics screen area
IGrGetPixel Get a screen pixel value

IGrinit Re-initialize graphics output

IGrSelect Select target drawable (window or dialog field)
IGrUnits Define plotting units to be used

Winteracter Starter Kit

Group GS: Graphics Style Selection

Group GS: Graphics Style Selection

IGrColourModel Select 8-bit or 24-bit color model

IGrColourN Select graphics color using a color number
IGrFillPattern Define fill pattern (solid/stippled/hatched)
IGrLineType Select line type (solid, dashes, etc.)
IGrPalettelnit Reinitialize graphics palette

IGrPalette Redefine 8-bit color palette

IGrPlotMode Select plot mode (overwrite or exclusive-or)

Group GD: Graphics Drawing Primitives

IGrCircle Draw/fill circle at an absolute position

IGrLineTo Draw line to a new absolute position

IGrMoveTo Move current plotting position to a new absolute position
IGrPoint Draw a single point at new absolute position

IGrPolygonComplex Draw/fill a complex (possibly intersecting) polygon

Group GT: Graphics Text

WGrTextFont Select font
WGrTextLength Return relative length of string
WGrTextOrientation
Select graphics text alignment, angle and direction
WGrTextString Output a string
WGrOFontFixed Load outline font (Fixed)
WGrOFontSwiss Load outline font (Swiss)
WGrVFontDuplexRoman

Load vector FONT (Duplex Roman)
WGrVFontStandard Load vector font (Standard)
WGrVFontTriplexRoman

Load vector font (Triplex Roman)

Group IF: Information

InfoError Return error information

InfoGraphics Return real graphics information

InfoGrPalette Return graphics palette information
InfoGrScreen Return graphics facilities information (screen)
WinfoDialog Return dialog information

WinfoFont Return information about current font
WinfoScreen Return screen size & available colors
WiInfoWindow Return information about the current window

Winteracter Starter Kit 53

Chapter 8 Subroutine Summary

Group OS: Operating System Interface

IOsExitProgram
IOsVariable

Abort program with an error message & error code
Return the value of an environment variable

Group MI: Miscellaneous

WCursorShape
WFlushBuffer
WaglSelect
WglSwapBuffers
WindowBell
Winitialise
WRGB
WRGBsplit

Select mouse cursor shape

Flush X Windows i/o buffer

Select target OpenGL drawable (window or dialog field)
Swap front/back OpenGL buffers

Sound the bell

Initialize Winteracter

Convert(,g,b) triplet to 24-bit color value

Convert 24-bit color value to,§,b) triplet

Group CH: Character Manipulation Routines

IFillString
IJustifyString
ILocateChar
ILocateString
ILowerCase
IntegerToString
IStringTolnteger
IUpperCase

Fill a character string with a given character
Justify a string within a character variable
Locate position of first non blank character
Locate position of first non blank sub-string
Convert a string to lower case

Convert an integer value to a string
Convert a string to an integer value
Convert a string to upper case

Group OB: Obsolete Routines

IActualLength
IGrCharJustify
IGrCharLength
IGrCharOut
IGrCharSet
IGrCharSize
IGrCharSpacing
IGrGetPixelRGB
IGrPaletteRGB
IGrPause
WindowClearArea
WindowFont
WindowOutString
WindowsStringLength
WMenuRoot

Winteracter Starter Kit

Return actual length of string excluding trailing blanks/nulls
Select graphics text justification

Return relative length of string allowing for prop spacing
Output character string at an absolptg) position
Select graphics character set to use for text output
Select graphics text/symbol size

Select fixed or proportional spacing

Get a screen pixel value as(@ng, b) triplet

Redefine 8-bit color palette using(ang, b) triplet

Start a new picture

Clear part of a window

Set all text attributes

Output string at XY co-ordinate

Return the unit length of a string

Activate/remove root menu

9 Window Handlin ¢

Group WM: Window Management

This group provides routines to open and manipulate windows.

Two types of windows are controlled by the routines in the group. The root (or main) window
should be opened first, usigindowOpen. Multiple child windows can then be opened/
closed usin@VindowOpenChild andWindowCloseChild . When window processing

is complete, the root window and all its child windows can be removed using
WindowClose . After the initial call toWInitialise , multiple calls toNindowOpen/
WindowClose are allowed, provided these calls are paired.

Windows opened by the routines in this group can be written to using the graphics routines
described in théligh Resolution Graphicshapter. BottWindowSelect and

IGrSelect take a window handle as an argument (zero for the root window or as returned
by WindowOpenChild for a child window). The same handle is used by
WindowCloseChild , allowing child windows to be opened and closed in any sequence.
OpenGL graphics can be displayed in a window by specifying the window handle to
WglSelect (in the MI group).

Each window can have its own status bar, at the bottom of the window. This is selected at
window creation. It can subsequently be sub-dividedNiladowStatusBarParts and
written to usingVindowOutStatusBar

The title string or icon of the current window can be updated at any tirdéingdowTitle
All or part of a window can be cleared WjindowClear . The position and/or size of the
current window can be changedWndowSizePos .

Two utility routines are provided to convert betweemi&tacterwindow co-ordinates (0-

9999) and pixel equivalents, nam&lindowUnitsToPixels and
WindowUnitsFromPixels

Winteracter Starter Kit 55

Chapter 9 Window Handling

WindowClear Subroutine

Description
Clear all or part of a window

Syntax
WindowClearixtopl,iytopl,ixbotr,iybotrrgb)

Arguments

INTEGER, OPTIONALIxtopl = Top left corner x co-ordinate
INTEGER, OPTIONALiytopl = Top left corner y co-ordinate
INTEGER, OPTIONALixbotr = Bottom right corner x co-ordinate
INTEGER, OPTIONALiybotr = Bottom right corner y co-ordinate
INTEGER, OPTIONALrgb = Background color (24-bit RGB value)
Effect

Clears the specified area of the current window.

The co-ordinate arguments are expressed in pixels. If any are omitted, the corresponding
window edge is assumed. If all four are omitted the entire window is cleared.

The new background color is determineddy, which is a 24-bit RGB value. If it is omitted,
the default window background color is used (usually white).

Example
CALL WindowClear() ! clear window using defaults
CALL WindowClear(RGB=RGB_BLUE) ! clear window to blue

WindowClose Subroutine

56

Description
Close root window.

Syntax
WindowClose()

Effect

Closes all opened windows, including the root window, freeing all resources and memory
allocations. Vihteracterinternals remain initialized however, allowi¢jndowOpen to be
called again without reinitialization viInitialise

Winteracter Starter Kit

WindowCloseChild Subroutine

Example
CALL Winitialise() ! Initialize Winteracter
CALL WindowOpen() ! Open root window
CALL WindowClose() ! Close root window
CALL WindowOpen() ! Re-open root window
CALL WindowClose() ! Close root window

WindowCloseChild Subroutine

Description
Close a child window

Syntax
WindowCloseChildihandle

Arguments
INTEGERihandle = Winteracterchild window handle (1-20)

Effect

Closes the specified child window. The window handle must have been obtained by a call to
WindowOpenChild . If the specified window handle is invalid, no action is taken. If the
closed child window is also the current window (as saMrydowSelect or
WindowOpenChild) the Winteracteroutput focus returns to the root window.

If a child window is closed by the user, via the system meGilgseRequest message is
sent to the program vi&¥MessageWMessagePeek. This message returns the handle in
thewin member of th&/IN_MESSAGEtructure. The calling program is then responsible for
closing the window by calling this routine.

Example
CALL WindowOpenChild(ICHILD1) ! Open child window 1
CALL WindowOpenChild(ICHILD2) ! Open child window 2
CALL WindowOpenChild(ICHILD3) ! Open child window 3
I
CALL WindowCloseChild(ICHILD2) ! Close child window 2
CALL WindowCloseChild(ICHILD1) ! Close child window 1
CALL WindowCloseChild(ICHILD3) ! Close child window 3

Errors
ErrWinHandle (2003) Invalid window handle

Winteracter Starter Kit 57

Chapter 9 Window Handling

WindowOpen Subroutine

Description
Open root window

Syntax
WindowOpenflags,x,y,width,height,menuid,toolid,dialogid,title,ncol256

Arguments

INTEGER, OPTIONALflags= Title bar buttons, etc. Sum of:
SysMenuOn (1) = System menu on title bar
MinButton (2) = Minimize button
MaxButton (4) = Maximize button
MaxWindow (8) = Maximize window
StatusBar (32) = Status bar
FixedSizeWin (64)
HideWindow (128) = Hidden window

Fixed size window

AlwaysOnTop (512) = Keep window on top

INTEGER, OPTIONALX = Horizontal top corner of window in pixels

INTEGER, OPTIONALy = Vertical top corner of window in pixels

INTEGER, OPTIONALwidth = Width of window in pixels

INTEGER, OPTIONALheight= Height of window in pixels

INTEGER, OPTIONALmMenuid= Main horizontal menu identifier

INTEGER, OPTIONALtoolid(4) = Reserved

INTEGER, OPTIONALmMenuid= Identifier of dialog to combine with window

CHARACTER, OPTIONALtitle = Window title

INTEGER, OPTIONALNcol256= Number of colors in a 256-color video mode
(16/32/64/128)

Effect
Opens the root window. Each callWindowOpen must be paired with a call to
WindowClose and cannot be nestadindowOpen will :

Create a new root window of the specified style, size, etc.
Terminate with a message box if a fatal error occurs.

58 Winteracter Starter Kit

WindowOpen Subroutine

Initialize any accelerators in the resource file.
Display a menu given a valid menu id.

Combine the window with a dialog given a dialog id.
Initialise graphics output.

Theflagsargument determines various window attributes :

Presence of a system menu.

Maximise/minimise buttons on the title bar.
Maximised or normal window size.

Presence of a status bar.

Should the window be fixed in size.

Window visibility.

Window stack ordering relative to other windows.

To assign values tilags sum the appropriate SysMenu, MinButton, MaxButton etc.
parameters.

TheHideWindow option causes the window to be created but not displayed, allowing
applications to open 'floating’ child windows or pop-up dialogs without a visible root
window. Child dialogs and ‘inside-parent' child windows are not available in this case.
Hidden windows still exist, so they must be closed ugitigdowClose as normal.

SpecifyingAlwaysOnTop forces a window to remain visible above all windows which do
not have this window style. This also ensures that any dialogs opened by the program remain
visible in the same way, evenHideWindow has been specified.

If MinButton or MaxButton are specifiedSysMenuOn must also be specified.
If flagsis omitted, a system menu and maximise/minimise buttons are selected.

x andy specify the position of the window relative to the full screen. To centre the window
in either direction, omit the corresponding argument.

width andheightspecify the size of the client area of the window (i.e. the usable area of the
window inside the frame). If either is omitted, the appropriate dimension is set to 80% of the
screen size.

Alternatively,WInfoScreen can be used to interrogate the total screen size to allow
screen-specific position and size values to be calculated.

menuidspecifies a text menu in the program resource, which should appear as the root
window menu. Omit this argument if no root menu is required (e.g. for a program which
relies solely on floating menus and/or dialogs).

toolid is included for compatibility with the full version of WWeracterbut is not used in
WiSK. It can be omitted.

dialogid specifies a dialog to be combined with the window. This dialog should not have
already been loaded. The window will be opened at the exact size required to hold the
specified dialog, allowing for the presence of a menu and status bar. Any specified window

Winteracter Starter Kit 59

Chapter 9 Window Handling

60

size is ignored when combining the window with a dialog. Similarly certain elements of the
flagsargument are overriden to ensure an appropriate window style. Specifically the
FixedSizeWin flag is always applied and tiaxButton , MaxWindow and

HideWindow flags are ignored. Before a dialog can be combined with a window in this way
its type must first be set to 'Sub Component' in the resource editor. An error code will be set
if any other type of dialog is specified. If menu accelerators are defined for the main menu of
this window then these will be processed before keystrokes are passed to the combined
dialog, regardless of the setting of the 'Allow Accelerators' flag in the resource editor. Since
the dialog occupies the entire area of the window text and graphics output to this window is
unavailable.However graphics can be redirected to a field in the dialoglGsBeject

Omit this argument to open a standard window for use with text and graphics output.

title specifies the window title, if supplied. This can be changed lat&ViidowTitle

ncol256determines the number of graphics colors used in a 256 color video mode. This
should be one of 16, 32, 64 or 128 colors. This determines the number of simultaneously
selectable colors vigsrColourN on a 256 color display. It is not used at other color
depths. A default of 16 is assumea@I256is omitted or invalid.

Winteractergraphics routines are also initialised by calli@ginit(' *) . See the
documentation folGrinit for details of the initial state of the graphics system. Screen
graphics become available to any output window, including child windows opened
subsequently byWindowOpenChild

The actual size of the root window and the assocfigdvalue can be obtained at any time
after it has been opened WanfoWindow . Note : This requires that the root window
should have the current output focus ($éadowSelect).

Note : In earlier versions of MK, an alternative calling interface based onthN_STYLE
structure was used. This has been replaced by the current calling interface which provides
greater flexibility. The oldVIN_STYLEinterface is now obsolete, but is still supported. Use

of the newer interface is recommended however.

Portability notes

X Windows: TheMaxWindow, SysMenuOn, MinButton , MaxButton and
AlwaysOnTop flags have no effect, since these features are controlled by the window
manager.

Winteracter Starter Kit

WindowOpenChild Subroutine

Example

INTEGER, PARAMETER :: ID_MENU = 30001

I Initialise Winteracter once, the open window

CALL WiInitialise()

CALL WindowOpen(Y=100,HEIGHT=250,MENUID=ID_MENU, &
TITLE="Hello World")

WindowOpenChild Subroutine

Description

Open child window

Syntax

WindowOpenChild(ihandléags,x,y,width,height,menuid,toolid,dialogid, title iparent

Arguments

INTEGER ihandle= Returned window handle (1-20)

INTEGER, OPTIONALflags= Title bar buttons, etc. Sum of:

SysMenuOn (1) = System menu on title bar
MinButton (2) = Minimize button

MaxButton (4) = Maximize button
MaxWindow (8) = Maximize window
InsideParent (16) = Window inside parent
StatusBar (32) = Status bar

FixedSizeWin (64) = Fixed size window
HideWindow (128) = Hidden window
OwnedByParent(256) = Keep window above parent

AlwaysOnTop (512) = Keep window on top

INTEGER, OPTIONALX = Horizontal top corner of window

INTEGER, OPTIONALYy = Vertical top corner of window
INTEGER, OPTIONALwidth = Width of window
INTEGER, OPTIONALheight= Height of window

INTEGER, OPTIONALmMenuid= Main horizontal menu identifier

Winteracter Starter Kit

61

Chapter 9 Window Handling

62

INTEGER, OPTIONALtoolid(4) = Reserved

INTEGER, OPTIONALdialogid = Identifier of dialog to combine with window
CHARACTER, OPTIONALtitle = Window title

INTEGER, OPTIONALiparent= Handle of parent window

Effect

Opens a child window using a similar set of argumenitalowOpen. A maximum of 20
child windows can be open at one time.

A window handle is returned ihandlewhich should be used in subsequent calls to
WindowCloseChild , WindowSelect , WMenulGrSelect orWglSelect .lIfa

window could not be created thérandlewill be returned as -1. The first child window to

be opened receives handle 1. All subsequently opened windows have incremental values.
Closing windows out of sequence will causeétracterto reuse the freed handles for
subsequently opened windows. (Notieandleis a Winteracterhandle, not a Windows API

or Motif handle.)

Child windows can have a parent window specified viagheentargument. If no parent
window is specified then the root window will be used as the parent window. The parent win-
dow is used only with thimsideParent ~ andOwnedByParent flags. Other types of

child window do not have a parent window.

Theflags x, y, width, height menuid toolid, dialogid andtitle arguments have the same
meaning as fowindowOpen, except that :

a) InsideParent is available as one of tlilags styles. WhernnsideParent is
not specified, a child window can move anywhere on the screen. Its size and position
should then be specified in screen (pixel) units, as for the root windbweide-
Parent is specified, the child window will be restricted to the window specified by
iparent The window size and position should then be specifiediimiéfacterwin-
dow units (0-9999). This style of window is not available when the parent window
is combined with a dialog. (Note : The more genbrsideParent name
replaces the earliénsideRoot . Both names have the same value. The latter name
is still supported for backwards compatibility.)

b) menuidis used only wheimsideParent is not specified.

c) If InsideParent is specified and any of y, width or heightare omitted, the
default values are calculated in the same manner SéifillowOpen but relative to
the parent window rather than the full screen.

d) OwnedByParent is also available as one of tifegsstyles. This can be used when
InsideParent has not been specified, to force the window to be owned by the
parent window. This ensures that the child window remains above the parent window

Winteracter Starter Kit

WindowOpenChild Subroutine

at all times and causes the child window to minimise automatically when the parent
window is minimised. If this flag is not set, the child window effectively becomes a
completely independent window.

e) HideWindow is only normally useful for special types of window which can be cre-
ated with the full version of Witeracter If it is used with WWSK, the window can be
revealed later using/indowSizePos .

f) AlwaysOnTop affects child windows whelmsideParent has not been
specified, but has no effect otherwise. When used on dnsateParent child
window, AlwaysOnTop keeps the child window visible above any other
applications windows. Its visibility relative to the root window then depends on
whether that too has t#dwaysOnTop style and whetheédwnedByRoot was
specified.

When a child window is opened it receives the current output focus and all subsequent output
will go to this window untiWindowSelect , WindowOpenChild or
WindowCloseChild are called. See al$GrSelect

As for the root window, the actual size of a child window and the sped#digsivalue can
be obtained at any time after it has been openediidoWindow , provided it has the
current output focus.

If the parent window is hidden (i.elideWindow was specified when the parent window

was opened), child windows must not spetifg§ideParent as one of the styles flags

No window will be opened ifnsideParent is specified when the parent window is

hidden and an error code will be generated. The window handle will also be returned as -1.

MinimisedInsideParent child windows appear in their iconised form just above the sta-
tus bar (if present) in the parent window. Maximised child windows will not obscure the
status bar.

Portability notes

X Windows: Windows opened with thiesideRoot flag are not restricted to the parent
window. See also th&/indowOpen Portability notes.

Example
CALL WindowOpenChild(IHAND1,FLAGS=SysMenuOn+FixedSizeWin, &
WIDTH=400,HEIGHT=300, TITLE="Child Window")
CALL WindowOpenChild(IHAND2,FLAGS=SysMenuOn+InsideParent, &
WIDTH=2000,HEIGHT=1500,TITLE="Child Window',IPARENT=IHAND1)

Errors
ErrRootHidden (1016) InsideRoot specified when root window is hidden

Winteracter Starter Kit 63

Chapter 9 Window Handling

WindowOutStatusBar Subroutine

Description
Write text on the status bar

Syntax
WindowOQutStatusBaigart,string)

Arguments
INTEGERIipart = Status bar sub-division number (1-255)

CHARACTERSstring = String to write

Effect

Outputsstring to the specified sub-division of the status bar in the current window. If the
window has no status bar or the window has lessifla@nsections, this routine has no effect.

The contents of the status bar are maintained automatically, so there is no need to perform
Expose/Resize processing on text written here.

By default text is output left justified within the sub-division. Leading spaces are not
removed. The text can also be centred or right justified. To centre the text prefix the string
with a single tab charactekCHAR(9). To right justify the text use two tab characters.

Portability notes

Windows : The status bar font is determined by the "Tooltips' font setting in
Display:Appearances in Control Panel.

X Windows: The status bar font is determined by Wimt*fontList setting in
Xdefaults in the current user's home directory.

Example
CALL WindowOutStatusBar(1, This is on the status bar’)

WindowSelect Subroutine

64

Description
Select window to receive the output focus

Syntax
WindowSelectihandle

Winteracter Starter Kit

WindowSizePos Subroutine

Arguments
INTEGERihandle = Winteracterwindow handle (1-20 or O for root window)

Effect

Selects the window for Wteractefs various window manipulation routines such as
WindowClear ,WindowTitle ,WindowSizePos , etc. It also selects the target window

for graphics output when the current target drawable is set to a window (rather than a dialog),
as determined biGrSelect . Where menus have been added to child windows, this
routine also determines which menu is affected by many of the menu handling routines in the
MN group.

Handle 0 specifies the root window, otherwisandlemust have been returned by an earlier
WindowOpenChild call. Ifihandlespecifies a non-existent window, no action is taken.

Do not confuse the Witeracteroutput focus with the Windows input focus (i.e. the front
window). Winteracterallows manipulation of any of its windows while receiving input from
whichever window has the input focus. The two mechanisms are entirely separate.

Example

CALL WindowOpen(TITLE='"Root window') ! Create root window
CALL WindowOpenChild(IH1,Y=300,TITLE="Child 1")

! Open child window 1
CALL WindowOpenChild(IH2,Y=600, TITLE="Child 2"

! Open child window 2
CALL WindowSelect(0) I Select root window
CALL WGrTextString(0.5,0.5,'Root Window')
CALL WindowSelect(IH2) ! Select child #2
CALL WGrTextString(0.5,0.5,'Child Window 2')
CALL WindowSelect(IH1) ! Select child #1
CALL WGrTextString(0.5,0.5,'Child Window 1')

Errors
ErrWinHandle (2003) Invalid window handle

WindowSizePos Subroutine

Description
Set the size, position or state of the current window

Syntax
WindowSizePosfidth,height,x,y,istaje

Winteracter Starter Kit 65

Chapter 9 Window Handling

66

Arguments
INTEGER, OPTIONALwidth = New window width

INTEGER, OPTIONALheight = New window height
INTEGER, OPTIONALx = New window X position
INTEGER, OPTIONALY = New window Y position

INTEGER, OPTIONAListate = New window state:
WinMinimised (0) : minimized
WinNormal (1) : normal size
WinMaximised (2) : maximized
WinHidden (3) : hidden

Effect

Changes the size, position and/or state of the current window. Units for window size and
position are in the same units as the caiMiodowOpen or WindowOpenChild used to

open the window, i.e. pixels for the root window and hwideParent child windows

and Winteracterwindow units forinsideParent child windows. Similarlywidth and
heightspecify the usable area within the window afydspecify the top-left corner of the
window, in the same way as fdfindowOpen andWindowOpenChild . If an argument is
omitted then the corresponding size or position is left unchanged. Calling this routine will
cause a Resize or Expose message to be report¥tflegsage or WMessagePeek if the
window size is changed or moving or displaying the window causes it to require redrawing.

This routine can be used with non-resizeable windows, i.e. thos&mwtiSizeWin
specified in the call t®WindowOpen or WindowOpenChild used to open them. In this
case the window becomes fixed at the newly specified size. i.e. spe€ifyaufizeWin
prevents the user from changing the window size, but still allows program control.

When the window state is maximized, minimized or hidden the window size and position are
not updated immediately. Inste#indowSizePos specifies the size and position which

the window will have when the user restores the window to its normal size or the window is
redisplayed without specifying a position or size.

If the current window has been combined with a dialog then only the position and visibility
can be changed, any specified size is ignored.

This routine should be used with care. Moving or resizing windows under program control
can confuse users if they have not explicitly asked for it to be done, e.g. by choosing a Tile
or Cascade option from a Window menu. Resizing a window can also be acceptable if the
user has chosen an option which changes the data displayed in a window and a different
window size is required to view the new data. In this case the window should only be moved
if required for the new window size to fit on screen.

Winteracter Starter Kit

WindowStatusBarParts Subroutine

Portability notes

X Windows: Theistateargument only controls visibilityfVinMinimised and
WinMaximised are treated ad/inNormal , since minimised and maximised states are
controlled entirely by the window manager.

Example
ISet usable area of floating window to 800 by 600 pixels
CALL WindowSizePos(800,600)

WindowStatusBarParts Subroutine

Description

Sub-divides the status bar for the current window

Syntax
WindowStatusBarPartsparts,iwidths,istylgs

Arguments
INTEGERNnparts = Number of parts to divide status bar into (1-255)
INTEGERIwidth(*) = Array of status bar section widths

INTEGER, OPTIONAListyles(*) = Array of sub-division border widths (0-2)

Effect

Sub-divides the status bar for the current window into the specified number of parts. The text
in these sub-divisions can then be updated via separate calladowOutStatusBar

npartsspecifies how many parts the bar should be divided intoiwidéhs array defines

how wide each part should be, inféractertext window units. The special value of -1 can

be used to indicate that the specified part extends to the end of the window. All subsequent
widths will then be ignored.

The optional border style for each sub-division can be specifiediggiteg where O=none,
1=sunken (default) and 2=raised.

If the current window, as set WindowSelect , WindowOpen or WindowOpenChild
does not have a status bar, this routine has no effect.

Winteracter Starter Kit 67

Chapter 9 Window Handling

Example
CHARACTER(LEN=12) :: FILENAME = 'default.dat'
CALL Winitialise()
CALL WindowOpen(FLAGS=SysMenuOn+StatusBar, &
TITLE="Window with status bar")
CALL WindowStatusBarParts(2,(/2000,-1/))
CALL WindowOutStatusBar(1,'File:")
CALL WindowOutStatusBar(2,FILENAME)

WindowTitle Subroutine

Description
Set title/icon of current window

Syntax
WindowTitle(title,idicon)

Arguments
CHARACTERUtitle = Window title string

INTEGERIidicon = Icon identifier (O=revert to program icon)

Effect

Updates the title string and/or icon of the currently selected output windiitve. i omitted
then the current title string is used and only the icon is changed. Similiditsoifiis omitted
the current icon is retained and only the title string is changed. The change takes effect
immediately.

Example

CALL WindowOpen(TITLE=" Original Root Window Title ')
I

CALL WindowSelect(0)
CALL WindowTitle('New Root Window Title")

WindowUnitsFromPixels Subroutine

Description
Convert pixel co-ordinate to Weracterunits

68 Winteracter Starter Kit

WindowUnitsToPixels Subroutine

Syntax
WindowUnitsFromPixelskpix,iypix,ixwin,iywir

Arguments

INTEGERIxpix = X co-ordinate in pixels

INTEGERIiypix =Y co-ordinate in pixels

INTEGERIxwin = Returned X co-ordinate in eracterunits (0-9999)
INTEGERIywin = Returned Y co-ordinate in Mteracterunits (0-9999)

Effect

Converts the supplied pixel co-ordinate in the currently selected window to the equivalent
Winteracterwindow units, as used By¥indowOpenChild and
WindowStatusbarParts

WindowUnitsToPixels Subroutine

Description
Convert Winteracterwindow co-ordinates to pixels

Syntax
WindowUnitsToPixelggwin,iywin,ixpix,iypix)

Arguments

INTEGERIixwin = X co-ordinate in Witeracterunits (0-9999)
INTEGERIiywin =Y co-ordinate in Whteracterunits (0-9999)
INTEGERIxpix = Returned X co-ordinate in pixels
INTEGERIypix = Returned Y co-ordinate in pixels

Effect

Converts the supplied Weracterwindow units in the currently selected window to the
equivalent pixel values.

Winteracter Starter Kit 69

Chapter 9 Window Handling

70 Winteracter Starter Kit

Input Handlin g

Group MH: Message Handling

TheWMessageroutine will be at the core of mostikeracterprograms, reporting all forms

of user input. It reports the main events which a GUI based program needs to know about
including menu selections, key presses, mouse clicks, and so on. These events are reported
as 'messages', with associated information being returned at each event (e.g. the location of
the mouse cursor when the user clicked a button). A typicakYdcterprogram will operate

around &DO loop containing &VMessagecall and &SELECT CASEstatement which

processes each type of message.

WNMessageis complemented by the alternative routii®essagePeek. This performs
exactly the same task, but does not block program execution if no messages are waiting to be
processed.

Since some message types may only be needed in certain applications or in particular parts
of an application, reporting of specific message types can be individually enabled or disabled
via WMessageEnable .

WMessage Subroutine

Description

Get next message.

Syntax
WNMessagd(ype,valug

Winteracter Starter Kit 71

Chapter 10 Input Handling

Arguments
INTEGER itype= The type of message that is returned:

Table 2: Message types

Name no. | Message type

KeyDown 1 Key press

MenuSelect 2 Menu item selected

PushButton 3 Push Button pressed

MouseButDown 4 Mouse button down

MouseButUp 5 Mouse button up

MouseMove 6 Mouse moved

Expose 7 Window expose

Resize 8 Window resize

CloseRequest 9 Window close requested

FieldChanged 10 Changed to a new dialog field

BorderSelect 12 Window selected via border/
title-bar

MouseDoubleClick 16 Mouse button double clicked

WIN_MESSAGEvalue= Structure containing additional message information

TYPE WIN_MESSAGE

INTEGER win Window or Dialog the message came from
INTEGER valuel Message-type dependent parameter #1
INTEGER value2 Message-type dependent parameter #2
INTEGER value3 Message-type dependent parameter #3
INTEGER value4d Message-type dependent parameter #4

INTEGER X X co-ordinate in Vihteracterwindow units (0-9999)
INTEGER vy Y co-ordinate in ihteracterwindow units (0-9999)
REAL gvaluel valuekxpressed in graphics units

REAL gvalue? value2xpressed in graphics units

REAL ox X co-ordinate in graphics units (sk&rUnits)
REAL ay Y co-ordinate in graphics units (sk&rUnits)
INTEGER time Message time in milliseconds

END TYPE WIN_MESSAGE

72 Winteracter Starter Kit

WMessage Subroutine

Effect

Returns the next message from the event queue and returns any parameters associated with
that message. If no message is availaMelessagewaits for the next event to occur. Use
the altenativéVMessagePeek to continue processing if no messages are waiting.

Only those messages enabledWklessageEnable are reported. The initial reporting
state for each message type is shown at the start of each message type description as '(Defaul
: Enabled/Disabled)'.

For all message types (except 3 and t8lye%win identifies the window which generated
the message. F&lushButton andFieldChanged messagesalugowin specifies the
unigue identifier of the dialog which generated the message.

value%timereports the system time when the event occurred in milliseconds See the
Portability notes for further details.

All other information returned imalueis message-type dependent:
itype = KeyDown (Default : Enabled)

If the user presses a key which is not processed as a keystroke in a dialog or a menu selection,
the key code will be returned waluéovaluel KeyDown messages wilhot be reported

when a dialog or menu has the focus. The (x,y) co-ordinate of the mouse cursor when the key
was pressed will also be returned. The possible key codes which can be returned are summa-
rized in the following table:

Table 3: Key codes

Name Code Key Name Code | Key
i 1-31 Ctrl/keys i 32- Printable
(Ctrl/A=1) 255 characters
KeyBackSpace 8 Backspace Keylnsert 272 Insert
ey o | |00 g | Dol e
Return 13 Return KeyShiftTah 274 Shift/Tab
KeyEscape 27 Escape KeypadO 280 Keypad Q
KeyDelete 127 Delete left Keypadl 281 Keypad 1
KeyCursorUp 258 Cursor Up Keypad2 282 Keypad 2
KeyCursorDown 259 gg\r;r?r Keypad3 283 Keypad 3
KeyCursorRight 260 Cursor Right Keypad4 284 Keypad 4

Winteracter Starter Kit 73

Chapter 10

Input Handling

74

Table 3: Key codes

Name Code Key Name Code | Key
KeyCursorLeft 261 Cursor Left Keypad5 285 Keypad 5
KeyPageUp 262 Page Up Keypad6 286 Keypad 6
KeyPageDown 263 Page Down Keypad7 287 Keypad 7
KeyPageRight 264 ﬁgrl:‘:/cursor Keypad8 288 Keypad 8
KeyPageLeft 265 ir;[lft/cursor Keypad9 289 Keypad 9
KeyUpExtreme 266 Ctrijcursor | KeypadMi- | ,q, Keypad -
up nus
KeyDownEx- Ctrlcursor .
treme 267 down KeypadPoint| 291 Keypad .
KeyRightExtreme| 268 :;,;rrllltcursor KeypadPlus | 292 Keypad +
Ctrl/cursor KeypadDi-
KeyLeftExtreme 269 left vide 293 Keypad /
KeyHome 270 Home :i<§|§//padMul- 294 | Keypad *
KeyEnd 271 End
301-
KeyF1-KeyF20 320 F1-F20
KeyShiftF1- 321- Shift/F1 -
KeyShiftF20 340 Shift/F20
KeyCtrlF1- 341- Ctrl/F1-Ctrl/
KeyCtrlF20 360 F20

Note that F10 is not available, since this is used to activate the system or application menu,
in the same manner as pressing/releasing the Alt key. Other function key codes may not be

available across all platforms. See the Portability notes for details.

Winteracter Starter Kit

WMessage Subroutine

itype = MenuSelect (Default : Enabled)

When a menu item is selected, its unique identifier is returnealuovaluel This will
correspond to the identifier defined in the program's resource file.This message will also be
generated when the user presses an accelerator key.

itype = PushButton (Default : Enabled)

When a push button is pressed in a modeless or semi-modeless dialog, the unique identifier
of that button is returned waluévaluel This will correspond to the identifier defined in

the program's resource filaluévalue2will be set to the identifier of the currently selected

field in the corresponding dialog when the button was predsste.(The button pressed to

terminate a modal dialog is available separatelyyWiafoDialog(ExitButton))
Certain standard push-button identifiers are pre-defined WthE ERACTERnodule :

INTEGER, PARAMETER :: IDOK =1

INTEGER, PARAMETER :: IDCANCEL =2

INTEGER, PARAMETER :: IDABORT =3

INTEGER, PARAMETER :: IDRETRY =4

INTEGER, PARAMETER :: IDIGNORE =5

INTEGER, PARAMETER :: IDYES =6

INTEGER, PARAMETER :: IDNO =7

INTEGER, PARAMETER :: IDCLOSE =8

INTEGER, PARAMETER :: IDHELP =9

Attempting to close a dialog (via the x button, via Close on the system menu or by pressing

Alt/F4) will also generate RushButton
IDCANCEL(2). Pressing F1 in a dialog will generateuwshButton

message, with a button identifier value of
message, with a

button identifier value ofDHELP (9).

itype = MouseButDown
itype = MouseButUp

(Default : Enabled)
(Default : Disabled)

When a mouse button-down or button-up occuatyevaluelwill contain the button

number:
LeftButton (1) Left button pressed
MiddleButton (2) Middle button pressed (where available)
RightButton 3) Right button pressed

The (x,y) co-ordinate of the mouse cursor when the event occurred is returned.

value%yvalue2eports the state of the Ctrl/Shift keyboard modifiers and all three mouse
buttons at the time the event occurred, summed as follows:

ModCitrl D) Ctrl key down

ModShift (2) Shift key down

ModLeftButton 4) Left button down

ModMiddleButton (8) Middle button down (where available)
ModRightButton (16) Right button down

75

Winteracter Starter Kit

Chapter 10

Input Handling

If any picture/frame fields in a currently visible dialog have been selected as target drawables
(viaIGrSelect), these may report mouse button messags#ae%valuedvill be set to
FromWindow (0) orFromDialog (1) to indicate the source of the message. In the latter
caseyalue%value4eports the identifier of the field in which the button down/up occurred
andvalue%winreports the dialog id.

(In the original WSK releaseyalue%value2eturned a centisecond time stamp which is no
longer supported. It was superseded bywtiae%timemillisecond time stamp.)

itype = MouseMove (Default : Disabled)
When a mouse moves, the new mouse (x,y) co-ordinate is returned.

This messages is only reported if specifically enabletMNéessageEnable . Programs
which enable this message must be prepared to process large numbers of movement
messages.

value%value2/3/4eport the same values MeuseButDown /Up messages.
itype = Expose (Default : Enabled)

If all or part of a window becomes exposed, that window area will need to be repainted. The
returned (x,y) co-ordinate identifies the top left corner of the exposedaledvalueland
valuévalue2define the width and height of the exposed area.

If any fields in a currently visible dialog have been selected as target drawables (via
IGrSelect), these must be maintained by the calling program. If such a field needs
redrawing, afexpose message will be reportaedhlue%valuedvill be set td-romWindow

(0) orFromDialog (1) to indicate the source of the message. In the latter case,
value%value4eports the identifier of the field which needs to be redrawrnvaha%win
reports the dialog id. The exact area exposed is not reported in this case. The entire field
should be redrawn.

itype = Resize (Default : Enabled)

When the user resizes a root or child windestueovaluelandvalugovalue2return the
new window width/height in pixels.

itype = CloseRequest (Default : Enabled)

If a user selects Close on the system menu (or clicks on the Close button under Windows) a
CloseRequest message is returned. The handle of the window which originated the
request is returned walugowin. This will be zero for the root window. It is then the
responsibility of the calling program to close that window WiadowCloseChild or
WindowClose), if the close request is to be allowed. TypicallglaseRequest

message from the root window should result in program termination. However, the calling
program may wish to ask for the user's confirmation (e.gMiEessageBox) and close any

data files, before terminating.

76 Winteracter Starter Kit

WMessage Subroutine

itype = FieldChanged (Default : Disabled)

When a user changes a field value or moves between fields in a modeless/semi-modeless dia-
log, valugevaluelwill be set to the identifier of the previous field aradue€ovalue2will be

set to the 'moved to' or current field. If the current field number has not changed (e.g. the user
has just changed their selection in a menu figllyeovaluelwill be the same as

valuévvalue? field This allows the calling program to perform field-by-field validation

without having to wait for a dialog to terminate viRashButton event.

It should be understood thaFgéeldChanged message is only generated under the
following general conditions :

1) When a field which has multiple known states (a menu, radio button or check box)
changes value.

2) When the user moves between fields (e.g. using the tab/back-tab keys or by clicking
on another field with the mouse).

By implication,FieldChanged messages do not occur in response to every keystroke in
an enterable field. This allows users to edit such a field (e.g. using cursor keys, backspace,
etc.) without the application attempting to perform intrusive validation on an incomplete field
value.

itype = BorderSelect (Default : Disabled)

When the user selects a window by clicking on the title bar or border controls, a
BorderSelect message reports the selected window inveiee%winparameter. The
mouse button number is returnedvalue%valuels for aMlouseButDown message.

In practice, this message very rarely needs to be used, since other messages already report the
originating window. Note in particular that a focus change via a mouse click in a window's
client area will be reported separately doaseButDown message. THaorderSelect

message is not reported by default since most programs need not be concerned about which
window currently has the input focus. It is also non-portable. UBeferSelect is
discouraged.

itype = MouseDoubleClick (Default : Disabled)

When the user double-clicks a mouse button this message will be reported in response to the
second click. AMouseButDown message will already have been reported for the first click.

If this message type is disabletbuseButDown messages are reported for both clicks.

Since a double-click also generatéd@useButDown message you should design your user
interface so that the action for a single-click is a subset of the actions for a double-click.
Details reported byalueare the same as fbfouseButDown messages.

Winteracter Starter Kit 77

Chapter 10 Input Handling

Portability notes
Windows:

ITYPE=KeyDown : Function keys 13-20 are not normally available but are defined within
Windows itself so we allow for them here.

value%timds the elapsed time in milliseconds since the system start time. It is available for
all Windows message types.

X Windows:

ITYPE=KeyDown : Keyboard handling is necessarily generalised under X Windows. How-
ever, all the listed keys have the potential to be generated under X.

ITYPE=BorderSelect : This message is not available under X. All border selection
actions are intercepted by the window manager.

value%timds only available for keyboard and mouse messages. The returned value is meas-
ured relative to the X server start time.

Example
TYPE (WIN_MESSAGE) :: MESG
DO
CALL WMessage(ITYPE,MESG)
SELECT CASE (ITYPE)
CASE (MenuSelect) ! Check for 'Exit' menu option
SELECT CASE (MESG%VALUEL1)
CASE (IDM_OPEN) ! Open option on the menu
CALL OpenMyFile
CASE (ID_EXIT) ! Was Exit selected from menu
EXIT
END SELECT
CASE (MouseButDown) ! Display floating menu at mouse pos
CALL WMenuFloating(ID_MENU_TWO, MESG%X, MESG%Y)
CASE (Resize, Expose) ! Redraw graph
CALL Draw_My_Graph()
CASE (CloseRequest) ! Close button or System menu option
IF (MESG%WIN==0) EXIT
END SELECT
END DO
CALL WindowClose() I Close root window and all children

WMessageEnable Subroutine

Description
Enable/disable message reporting.

78 Winteracter Starter Kit

WMessagePeek Subroutine

Syntax
WMessageEnabliype,ionoff

Arguments
INTEGERIitype = Message type, as fa¥Message

INTEGERIonoff= Turn message on/off (Disabled (0) = off, Enabled (1) = on)

Effect

Enables or disables reporting of the specified message typéMessage and

WMessagePeek. See the '(Default: Enabled/Disabled)’ note\iMessagefor details of

the individual default reporting states. Note that disabling a particular message type does not
prevent that event from occurring. It simply determines whether the event is reported to the
calling program.

Example
CALL WMessageEnable(KeyDown,Disabled) ! keystroke messages off

CALL WMessageEnable(MouseMove,Enabled) ! mouse move messages on

WMessagePeek Subroutine

Description

Get next message. Return if none waiting.

Syntax
WNMessagePeeitype,ivalug

Arguments
SeeWMessage

Effect

This routine is identical t&/Messageexcept that it will not 'block’ if no message is waiting.
If the input queue contains no messadggpe will be returned aBloMessage (-1). Use
WMessagePeek where a program wishes to poll for messages but needs to continue
processing if no events have occurred.

Winteracter Starter Kit 79

Chapter 10

Input Handling

Example
TYPE (WIN_MESSAGE) :: MESG
DO lteration = 1, 100000
CALL WMessagePeek(ITYPE, MESG)
IF (ITYPE/=NoMessage) THEN
! Process message(s) here
END IF
I Next iteration of number cruncher
CALL Number_Cruncher(lteration)
END DO

Group MN: Menu Handling

Menu selections are reported WidMessagein the MH group. The routines in this group
provide the remaining menu handling capabilities, namely :

Activation and removal of main menus WaMenu

Activation of floating menus visWMenuFloating

Setting and retrieving the state (i.e. checked and/or greyed) of individual menu items
via WMenuSetState /WMenuGetState .

Updating the strings associated with a given menu itemikenuSetString

(initial strings can be assigned in the resource file).

All the routines in this group use unique menu or menu-item identifiers as defined in the
program resource file.

Routines which change or interrogate the state of menu items operate on the current window,
as determined bwindowSelect , if the current window has a main menu. Where the cur-
rent window does not have a main menu these routines operate on the root window menu.

WMenu Subroutine

Description
Activate or remove a menu structure.

Syntax
WNMenu(menuid,iwindowy

Arguments
INTEGER menuid= Identifier of root menu to activate (0 to remove current root menu)

INTEGER, OPTIONALiwindow= Window handle

80 Winteracter Starter Kit

WMenuFloating Subroutine

Effect

Activates the specified main menu structure, which will be attached to the top of the specified
window. If no window is specified the menu is attached to the top of the root window.
Multiple menus are allowed in a single program as a result, though only one can be active on
each window at one time. To remove the current menu, specify a zero menu identifier. The
specified window must be the root window or a popup child window. Menus are not available
in child windows inside their parent window.

Unlike WMenuFloating , this routine does not block. It simply updates the currently dis-
played main menu. Item selections are reportetMNgessagein aMenuSelect message.

WMenualso loads and activates an accelerator table from the program resource, if such a
table exists with the same identifier. An accelerator table identifies keystrokes which can be
used to directly select a menu item from the keyboard, without having to navigate the menu.
When a key is pressed the accelerator table for the menu on the active window is checked. If
the current window does not have a menu then the accelerator table for the root window's
menu is checked.

Depending on the number and length of the menu items and the current window size calling
this routine may cause a change in the size of the useable window area. This will be reported
via WMessageas a Resize message.

The state of individual menu items (greyed/checked) can be satWenuSetState .
Menu item strings can be updated WalenuSetString

Example
CALL WMenu(0) I Remove menu from root window
CALL WMenu(ID_MENU1,IHAND) ! Add a menu to a child window

Errors
ErrLoadMenu (1002) Unable to load menu from resource

WMenuFloating Subroutine

Description
Activate a floating (vertical) menu.

Syntax
WMenuFloatingnenuid,ixpos,iyp9s

Arguments
INTEGER menuid= Identifier of floating menu to activate

Winteracter Starter Kit 81

Chapter 10 Input Handling

INTEGERIxpos= X position of top left of menu
INTEGERIypos=Y position of top left of menu

Effect

Activates the specified floating menu at the specified (x,y) position. The program will block
until a selection is made or the menu is cancelled. If a selection is made, it will be reported
via WMessage

The (x,y) co-ordinate is measured innféracterwindow units relative to the current win-
dow as selected ByindowSelect

If any of the menu items on the floating menu have the same identifiers as items in the current
root menu, their state (greyed/checked) and text can be $#tMemuSetState and
WMenuSetString

Example
CALL WMessage(ITYPE,MESSAGE)
SELECT CASE (ITYPE)

I Use the right mouse button to display a floating menu.
CASE (MouseButDown)
IF (MESSAGE%VALUE1==RightButton) &
CALL WMenuFloating(IDM_SHORTCUT,MESSAGE%X,MESSAGE%Y)
CASE (MouseMove)

END SELECT

Errors
ErrLoadMenu (1002) Unable to load menu from resource

WMenuGetState Function

Description
Get grayed/checked state of a menu item.

Syntax
INTEGER WMenuGetStata{enuitem,iprop

Arguments
INTEGER menuitem= Menu item identifier as specified in resource file
INTEGERIiprop = Property to retrieve:

IltemEnabled (1): Is item enabled ?

82 Winteracter Starter Kit

WMenuSetState Subroutine

Returns Disabled (0) Item is greyed out
Enabled (1) Item is selectable
IltemChecked (2): Is item checked ?
Returns Unchecked (0) No check mark
Checked (1) Check mark is present
Effect
Retrieves the state of the specified menu item property. Only one property can be

interrogated at one time. ANTEGERDbinary flag is returned to indicate the state of the
specified property. See al¥éMenuSetState .

Example
seeWMenuSetState

Errors
ErrMenultem (1001) Invalid menu item

WMenuSetState Subroutine

Description
Set grayed/checked state of a menu item.

Syntax
WNMenuSetStateienuitem,iprop,ivalde

Arguments
INTEGER menuiten= Menu item identifier as specified in resource file.
INTEGERIprop = Property to set: ltemEnabled (1) Enable item
ltemChecked (2) Check item
INTEGERIivalue = New state for menu item property (WintOff (0): Off, WintOn (1): On)
Effect
Sets the state of the specified menu item property. The specified menu item must exist on the

current root menu. Floating menu items will also be affected if they share an identifier with
an item on the current root menu.

iprop = ItemEnabled

Winteracter Starter Kit 83

Chapter 10

Input Handling

When an item is enabled, it is selectable in the normal manner. When it is disabled, it will be
greyed out.

iprop = ItemChecked

A checked item has a tick mark against it. This is used to indicate that a particular program
option is currently enabled. It is not possible to add checks to top level root menu items.

Example
IPROP = WMenuGetState(ID_OPTION,MenuChecked) ! Toggle check mark
! next to an option
IPROP =1 - IPROP
CALL WMenuSetState(ID_OPTION,MenuChecked,IPROP)

Errors
ErrMenultem (1001) Invalid menu item

WMenuSetString Subroutine

Description
Change the text of a menu item

Syntax
WNMenuSetStringfienuitem,string

Arguments
INTEGER menuitem= Menu item identifier as specified in resource file.

CHARACTERSstring = New text for the specified menu item.

Effect

Changes the text of the specified root menu item. Floating menu item strings will also be
modified automatically, if they share an identifier with an item on the current root menu.
Otherwise, floating menu item strings cannot be modified.

Example
IF (FIRSTTIME) THEN
CALL WMenuSetString(ID_OPTION,'New data')
ELSE
CALL WMenuSetString(ID_OPTION,'Old data')
END IF

84 Winteracter Starter Kit

WMenuSetString Subroutine

Errors
ErrMenultem (1001) Invalid menu item

Winteracter Starter Kit 85

Chapter 10 Input Handling

86 Winteracter Starter Kit

Dialog Manager

An overview of the facilities provided by dialogs and instructions on creating them using the
Winteracterresource editor, can be found in the ealli&logs chapter.

Group DM(1): General Dialog Management

The main routines in this group are those which load a dialog from a resource and then dis-
play it on the screeM(DialogLoad andWDialogShow). Modeless and semi-modeless
dialogs can be hidden while not required to be visiblaVByjalogHide . When a dialog

is no longer needed in memory it can be unloaded completalyiglogUnload . Up to

100 dialogs can be loaded simultaneously.

The majority of the routines in this group and in the DM(2) group operate on the 'current’
dialog. This can be set byDialogSelect . Itis also set byWDialogLoad or (in the case
of combined windows/dialogs) BindowOpen/WindowOpenChild .

Progress bar range control is providedWiBialogRangeProgressBar
\WhDialogFieldState determines whether a given field is actéDialogSetField
forces the specified field to become the current field in a modeless dialog.

WDialogFieldState Subroutine

Description
Set the state of field.

Syntax
WhDialogFieldStatdfield,istate

Winteracter Starter Kit 87

Chapter 11

Dialog Manager

Arguments
INTEGERIfield = Field identifier

INTEGERIstate= Field state
Disabled (0) : display only (protected)
Enabled (1) : enterable (unprotected)
DialogReadOnly (2) : read only (protected)
DialogHidden (3) : hidden (protected)

Effect

Sets the state of the specified field. A field can be enabled (i.e. data can be entered in it or
selections made), disabled/read-only (i.e. an output only field) or hidden (not shown on
screen). This allows the calling program to selectively enable/disable data entry in particular
fields at run time.

Read-only fields are the same as disabled fields except that the cursor/focus can be moved to
the field and the contents can be copied to the clipboard. This option applies to fields for
which a read-only state can be defined in the resource editor. For other field types, the field
is disabled instead.

Hidden fields are most useful when a nearly identical dialog is required for multiple
purposes. If the state of a field can change while the dialog is displayed it is usually preferable
to disable it rather than hide it.

Example
I Disable all bar one field in the current dialog.
DO IFIELD = 1,NFIELD
CALL WDialogFieldState(IFIELD,0)
END DO
CALL WDialogFieldState(IDF_FIELD3,1)

Errors
ErrCurDialog (1005) No current dialog
ErrFieldNum (12006) Invalid field identifier

WDialogHide Subroutine

Description
Remove current dialog from screen.

Syntax
WhDialogHide()

88 Winteracter Starter Kit

WhDialogLoad Subroutine

Effect

Remove the current dialog from the screen, but keep it in memory so that its contents can still
be accessed. It is only necessary to call this routine for modeless or semi-modeless dialogs.
Modal dialogs are automatically removed from the screen WiRialogShow terminates.

If the current dialog is semi-modeless and there are no other semi-modeless dialogs active,
then all program windows and modeless dialogs are re-enabled.

A dialog can be removed from memory subsequently by caibgalogUnload

Example
CALL WMessage(ITYPE,MESSAGE)
SELECT CASE (ITYPE)
CASE (MenuSelect)

CASE (PushButton)
CALL WDialogHide() ! Remove dialog from display
I'when a push-button is pressed
CASE (MouseButDown)

END SELECT

Errors
ErrCurDialog (1005) No current dialog

WDialogLoad Subroutine

Description
Load a dialog definition from program resource.

Syntax
WhDialogLoad{dialog)

Arguments
INTEGERIdialog = Identifier of dialog to load, as defined in the resource script.

Effect

Loads the specified dialog from the program resource. The dialog contents are initialized to
the settings specified in the resource script. To make the dialog appear on screen, call
WhDialogShow . Optionally, the contents of the dialog can be modified using the various
WnDialogPutXXX routines in the DM(2) group, before tiéDialogShow call.

Winteracter Starter Kit 89

Chapter 11

Dialog Manager

WhDialogLoad implicitly selectsdialog as the current dialog for use by otheintracter
routines. A dialog can be reselected after loading other dialogs by calling
WhDialogSelect

If the dialog specified bigialog is already loaded, it will simply be re-selected as the current
dialog. To completely reinitialize a dialog, unload it (WdialogUnload) and reload it.

Example
CALL WDialogLoad(IDD_ABOUT)
CALL WDialogShow(ITYPE=Modal)

CALL WDialogUnload()
Errors
ErrLoadDialog (1007) Unable to load dialog from resource

WDialogRangeProgressBar Subroutine

Description
Set the range of a progress bar field

Syntax
WnDialogRangeProgressBiiéld,ipbmin,ipbmak

Arguments
INTEGERIdialog = Progress bar field identifier

INTEGERIipbmin= Value which represents an empty progress bar (0-65535)

INTEGERIipbmax= Value which represents a full progress bar (0-65535)

Effect

Defines the range for a progress bar. The default range is 0-100. If the progress bar is in a
modeless or semi-modeless dialog which is currently visible, the display is updated
immediately. Max/min values must be in the range 0-65535. Values outside this range are
ignored and generate error code 1013.

Example
See WDialogPutProgressBar

90 Winteracter Starter Kit

WnDialogSetField Subroutine

Errors
ErrCurDialog (1005) No current dialog
ErrFieldNum (1006) Invalid field identifier

ErrProgressRange (1013) Invalid range

WDialogSetField Subroutine

Description

Move input cursor to a specific field

Syntax
WhDialogSetFieldifield,ipos)

Arguments
INTEGERIfield = Field identifier

INTEGER, OPTIONALipos = Initial cursor position (string or combobox)

Effect

Forcesfield to become the current input field in the current dialog. The dialog must have
been selected (ByDialogLoad orWDialogSelect) and it must be currently visible
(i.e. it must be a modeless or semi-modeless dialog).

If ifield is a string or numeric field or a combo box menu with an enterable string then the
initial cursor position can also be specifiedpbsis present then the cursor is placed before
the specified character. If an initial cursor position is not specified then the cursor is placed
at the end of the string, for single line strings and numeric fields. For multiline strings the
cursor is placed at the start of the string by default.

Overuse of this routine is discouraged. However, it is an important control where on-the-fly
field validation is performed.

The initially selected input field for a dialog which is not combined with a window, can be
set in the call t&WDialogShow which displays the dialog.

Winteracter Starter Kit 91

Chapter 11 Dialog Manager

Example
I Force an important value to be entered in a modeless dialog.
CALL WMessage(ITYPE,MESSAGE)
SELECT CASE (ITYPE)
CASE (FieldChanged)
IF (MESSAGE%VALUE1==IDF_IMPORTANT) THEN
CALL WDialogGetStringLength(IDF_IMPORTANT,LENGTH)
IF (LENGTH==0) THEN
CALL WDialogSetField(IDF_IMPORTANT)

END IF
END IF
END SELECT
Errors
ErrCurDialog (1005) No current dialog
ErrFieldNum (1006) Invalid field identifier

WDialogSelect Subroutine

Description
Select the current dialog.

Syntax
WhDialogSelectdialog)

Arguments
INTEGERIdialog = Identifier of dialog to select

Effect

Selects the current dialog. This is the dialog which atitévacterfield manipulation

routines subsequently operate on. Calling this routine does not cause the dialog to appear (see
WhDialogShow). The specified dialog must already be loaded {(8&éalogLoad).

Example
CALL WDialogLoad(IDD_DIALOG1) ! Load several dialogs
CALL WDialogLoad(IDD_DIALOG2)
CALL WDialogLoad(IDD_DIALOG3)
CALL WDialogSelect(IDD_DIALOGZ2)
CALL WDialogShow(ITYPE=Modal) ! Will show 2nd dialog

Errors
ErrSelDialog (1008) Unable to select specified dialog

92 Winteracter Starter Kit

WDialogShow Subroutine

WDialogShow Subroutine

Description
Display the currently selected dialog.

Syntax
WhDialogShowixposiyposifield,itype)

Arguments
INTEGERIxpos = X Co-ordinate of top left corner of dialog (-1 or omit to center)
(Child dialogs: Whteracterunits, Popup dialogs : Pixels)

INTEGERIypos =Y Co-ordinate of top left corner of dialog (-1 or omit to center)
(Child dialogs: Vihteracterunits, Popup dialogs : Pixels)

INTEGER, OPTIONALIfield = Identifier of initial field to edit
(O for default: 1st field wittWS_TABSTOBLtyle)

INTEGER, OPTIONALItype = Dialog type for popup dialogs

Modal (1) : Modal dialog
Modeless (2) : Modeless dialog (default)
Semi-modeless (3) : Semi-modeless dialog

Effect

Displays the currently selected dialog, allowing the user to edit its contents. The dialog must
have been loaded previously usiWiialogLoad . If the current dialog selection has

changed since the dialog was loaded, the dialog to be displayed must be reselected by calling
WhDialogSelect . If the specified dialog is already active, the position and type parameters
will be ignored. Instead the dialog will simply be brought to the front and made active.

Both child and popup dialogs are supported (this is determined by a setting in the resource
file). Child dialogs are restricted to the program’s root window. Popup dialogs can be moved
anywhere on screen. The initial position of a child dialog is determinedhitrei&cterunits

(i.e. 0-9999), relative to the top corner of the root window. Popup dialog positions are
specified in pixels relative to the top corner of slseeen Only popup dialogs can be

displayed if the root window is hidden (i.eHfdeParent was specified in the call to
WindowOpen). Attempting to show a child dialog will fail and generate an error code. To
centre a dialog, either horizontally or vertically, omit the corresponding argument or set it to
-1.

ifield specifies the initially highlighted data entry field. This argument ha® FRHONAL
attribute. If it is zero or omitted, the initial field will be the first editable field in the dialog.

Winteracter Starter Kit 93

Chapter 11

Dialog Manager

itype specifies the dialog type:

Modal : A modal dialog is one which blocks all other input to the program until the
user terminates the dialog (e.g. by clicking on OKPialogShow will not return
until the user has terminated the dialog at which point the dialog window is
automatically removed from the screen. The exit field and terminating button
identifiers are available vi/infoDialog

Modeless : A modeless dialog does not block inpiDialogShow returns as soon
as the dialog has been displayed. The dialog remains on scre&iDiatibgHide
orWDialogUnload is called. Any push-button clicks in the dialog will be reported
via WMessageas aPushButton message. The current field number when the
button was pressed will be returned via the associatie€ argument. It is not
possible to display a modeless dialog while a semi-modeless dialog is already active.
If any semi-modeless dialogs are active and modeless is requested then the dialog
will be displayed as semi-modeless and an error code set.

SemiModeless : A semi-modeless dialog is a hybrid of the other two dialog types. It
appears modeless to the program but modal to the user. It blocks user input to all
other dialogs and windows, bitDialogShow returns as soon as the dialog has
been displayed. The dialog remains on screenWilalogHide or
WhDialogShow is called. Any push-button clicks in the dialog will be reported via
WNMessageas aPushButton message. The current field number when the button
was pressed will be returned via the associasdake argument.

Theitypeargument iOPTIONALand need only be specified for popup dialogs. If not
specified, the default type is Modeless.

Further dialogs may be activated while a semi-modeless dialog is in use. However, these
dialogs must be modal or semi-modeless. If a modeless dialog is requested, then a semi-
modeless dialog will be displayed instead. Error code 1014 will be set in this case.

Portability notes

Windows : Child dialogs are always modeless, since Windows does not allow modal or
semi-modeless child dialogs.

X Windows: All dialogs are 'popup' dialogs, regardless of the resource file setting. Dialogs
which are specified as 'child’ dialogs are still positioned according to the documented child
dialog logic and are treated as modeless regardléypefThis ensures consistency with the
Windows implementation.

Example
CALL WDialogLoad(IDD_DIALOG1) ! Display dialogl as
CALL WDialogShow() I 'a centered modeless dialog

CALL WDialogLoad(IDD_DIALOG?2) ! Display dialog2 as a
CALL WDialogShow(ITYPE=Modal) ! centered modal dialog

94 Winteracter Starter Kit

WhDialogUnload Subroutine

Errors

ErrCurDialog (1005) No current dialog

ErrFieldNum (1006) Invalid field identifier

ErrDialogType (1014) Invalid dialog type

ErrRootHidden (1016) Child dialogs cannot be shown when root window hidden

ErrModalPixmapLow (1041) X server pixmap resources are low

ErrModalPixmapExh (1042) X server pixmap resources are exhausted

WDialogUnload Subroutine

Description
Remove dialog from screen and memory.

Syntax
WhDialogUnloadiaction)

Arguments
INTEGER, OPTIONALiaction = Not used in Starter Kit

Effect

Removes the currently selected dialog from the screen, if it is currently visible. It then
removes the dialog and its associated data from memory, releasing all associated resources.
The same dialog can be reloaded later ugitigjalogLoad , though this will reset all the

dialog parameters to their initial values as set in the program resource.

Example
CALL WDialogLoad(IDD_ABOUT)
CALL WDialogShow(ITYPE=Modal)

CALL WnDialogUnload()
Errors
ErrCurDialog (1005) No current dialog
ErrFieldNum (1006) Invalid field identifier

Winteracter Starter Kit 95

Chapter 11 Dialog Manager

Group DM(2): Assign/Retrieve Field Contents

The routines in this group assign and retrieve the contents of individual dialog fields via a
set ofWDialogPutXXX andWDialogGetXXX routines. The 'Put' routines would

normally be calletbeforeWDialogShow . The resulting field contents can then be retrieved
from a dialog using the 'Get' equivaleafter WDialogShow .

Where a field is part of an already visible modeless dialog, the various 'Put’ routines update
the on-screen contents of the dialog immediately.

All routines in this group affect the currently selected dialog, as sétliglogLoad or
WhDialogSelect . The error flag is therefore setEorCurDialog if an attempt is made

to assign or retrieve the contents of a field when no dialog is currently selected. Bear in mind
thatWDialogUnload causes the current dialog to become undefiiédialogSelect

must be called in this case to reselect the current dialog.

WDialogGetCheckBox Subroutine

96

Description
Get state of a dialog check box.

Syntax
WhDialogGetCheckBoxfield,istate)

Arguments
INTEGERIfield = Field identifier as set in resource file

INTEGERIistate= Returned check box state (Unchecked (0): Clear, Checked (1): Set)

Effect
Gets the state of a check box field in the current dialog.

Example
LOGICAL :: UseColor
CALL WDialogGetCheckBox(IDF_COLOR,ICHECKED)
UseColor = ICHECKED==1

Errors
ErrCurDialog (1005) No current dialog
ErrFieldNum (1006) Invalid field identifier

Winteracter Starter Kit

WnDialogGetMenu Subroutine

WDialogGetMenu Subroutine

Description

Get a value from a dialog menu field.

Syntax
WnDialogGetMenuiifield,ioption,cvalug

Arguments

INTEGER fifield = Field identifier as set in resource file

INTEGER ioption= Number of selected option or 0 if user entered a string in a combo box
or

INTEGER ioption(:) = Array of binary flags indicating state of each option

CHARACTER, OPTIONALcvalue = Entered string

Effect

Gets a value (or values) from a menu field in the current dialog.

For combo boxes and single-selection list boiggsjon returns the currently selected item
number from the pre-defined list held in this field. If this returns 0, the user entered a non-

matching string in the enterable field of a combo box menu field.

For mutiple and extended selection list boigdion returns the state of each option. 1 is
returned for selected options, 0O is returned for unselected options.

If ioptionis not an array for a multiple or extended selection list box then an error code is set.
The same error code will be set if an array is specified for a single selection menu.

If cvalueis supplied, the string corresponding to the currently selected option is returned.
This is mainly useful wheioption returns zero, i.e. when the user has entered a string in a
combo boxcvaluereturns the user supplied string in this casalueshould not be specified
for multiple or extended selection list boxes.

If the menu field contents are undefined and there is no user entered stringopdiomejs

returned as -999 and an error code is set. Multiple and extended selection list boxes simply
return O for each element imiption.

Winteracter Starter Kit 97

Chapter 11

Dialog Manager

Example
CHARACTER (LEN=80) :: USERSTRING
CALL WDialogGetMenu(IDF_COMBO1,IOPTION,USERSTRING)
IF (IOPTION==0) THEN
I Process user option.
ELSE IF (IOPTION>0) THEN
I Process standard options

ELSE
I Combo box contents are undefined
END IF
Errors
ErrCurDialog (1005) No current dialog
ErrFieldNum (1006) Invalid field identifier

ErrFieldUndefined (1010) Field value is undefined

WDialogGetRadioButton Subroutine

Description
Gets a radio-button group value

Syntax
WnDialogGetRadioButtorifjeld,ise)

Arguments
INTEGERIfield = Field identifier of a radio button as set in resource file

INTEGERIiset = Position of currently set radio button within the group which contains
buttonifield. (-999 if none set)

Gets the position of the currently selected item in the group of radio buttons in the current
dialog which contains buttdfield. In other words, rather than returning the state of the
specified individual radio button, this routine identifies which radio button is on in the group
whichifield belongs to. Note thagetis a positional value. So, for example, if there are 5
radio buttons in a grousetwill normally be in the range 1 to 5.

If all the radio buttons are clear (because the initial button state was not defined in the
resource file)setis returned as -999 and an error code is set.

98 Winteracter Starter Kit

WnDialogGetString Subroutine

Example
CALL WDialogGetRadioButton(IDF_RADIO1,IPOSITION)
SELECT CASE (IPOSITION)
|

END SELECT

Errors
ErrCurDialog (1005) No current dialog
ErrFieldNum (1006) Invalid field identifier

ErrFieldUndefined (1010) Field value is undefined

WDialogGetString Subroutine

Description
Get a string from a dialog string field.

Syntax
WhDialogGetStringifield,cvalug

Arguments
INTEGER ifield = Field identifier as set in resource file

CHARACTER-cvalue= Returned character value (blank if undefined)

Effect

Gets a string from a field of almost any type. While this routine will normally just be used to
retrieve the contents of ordinary string fields, it also provides access to the contents of just
about any field which has an associated string value. This includes push buttons, check-boxes
and radio-buttons.

Portability notes
Windows : If ifield specifies a multi-line edit control, the returned string will contain
embedded carriage return/line-feed pa@BlAR(13)//CHAR(10)) indicating line ends.

X Windows: If ifield specifies a multi-line edit control, the returned string will contain
embedded line-feed characteBHAR(10)) indicating line ends.

Example
CHARACTER (LEN=20) :: TEXT,BUT
CALL WDialogGetString(IDF_STRING,TEXT) ! Contents of string field
CALL WDialogGetString(IDF_BUTTON,BUT) ! Caption of a push-button

Winteracter Starter Kit 99

Chapter 11 Dialog Manager

Errors
ErrCurDialog (1005) No current dialog
ErrFieldNum (1006) Invalid field identifier

WDialogPutCheckBox Subroutine

Description
Set the state of a dialog check box.

Syntax
WhDialogPutCheckBoxfield,istate

Arguments
INTEGERIfield = Field identifier as set in resource file
INTEGERIistate= Check box field state (Unchecked (0): Clear, Checked (1): Set)

Effect

Sets the state of a check box in the current dialog. To set the associated check box string, call
WnDialogPutString

Example
CALL WDialogPutCheckBox(IDF_CHECK,Checked)

Errors
ErrCurDialog (1005) No current dialog
ErrFieldNum (1006) Invalid field identifier

WDialogPutimage Subroutine

Description
Change the bitmap/icon displayed in a field.

Syntax
WhDialogPutimagséfield,imageid,itypg

Arguments
INTEGERIfield = Field identifier as set in resource file

100 Winteracter Starter Kit

WhDialogPutMenu Subroutine

INTEGERImageid = Bitmap or icon identifier as set in resource file
INTEGER, OPTIONALIitype = Image type

1 : Bitmap (default)

2 :lcon

Changes the bitmap or icon which is displayed in the specified field in the current dialog. The
bitmap or icon must exist in the program resource and the field specifiédldynust be
one of the following types :

Picture/frame

Push-button

Group-box

Check-box

Radio button

If itypeis omitted, a bitmap resource is assumed. The significant difference between a bitmap
and an icon is that the latter allows for transparent pixels.

Example
CALL WDialogPutimage(IDF_PICTURE,ID_BITMAP)

Errors

ErrCurDialog (1005) No dialogs currently loaded
ErrFieldNum (1006) Invalid field identifier
ErrimageNum (1015) Invalid bitmap/icon identifier

WDialogPutMenu Subroutine

Description
Set the contents of a dialog menu field.

Syntax
WhDialogPutMenuifield,optionmaxopt ioption,cvalug

Arguments
INTEGERIfield = Field identifier as set in resource file
CHARACTERoption(:) = Array of menu options

INTEGERmaxopt = Number of menu options

Winteracter Starter Kit 101

Chapter 11

Dialog Manager

INTEGERIoption = Number of initially highlighted option
or
INTEGERIoption(:) = Array of binary flags indicating options to highlight

CHARACTER, OPTIONALcvalue = User modifiable string

Effect

Sets the contents of the specified menu field in the current dialog. An amexoptoption

strings should be supplied. The maximum number of options which can be added to a menu
field is 32767. In practice the lengths of the option strings are limited only by the width of
the field.

For combo boxes and single selection list bagpton specifies the item number which
should be highlighted initially. This will normally be in the range intxopt

For multiple and extended selection list boxggion specifies the state of each option. Spec-
ify 1 to highlight an option and 0 to not highlight an option.

If ioptionis not specified as an array for a multiple or extended selection list box then an error
code is set. The same error code will be set if an array is specified for a single selection menu.

If ifield specifies a combo box with a user enterable f@ldluecan contain the initial user
modifiable value. In this casi®alue should be specified as zero. Otherwisaluecan be
omitted since it has th@PTIONALattribute.cvalueshould not be specified for multiple or
extended selection list boxes.

If ifield specifies a list box, option strings can contain tab characters (ASCII 9) to vertically
align sub-strings within menu items.

Example
INTEGER, PARAMETER :: NFRUIT =4
CHARACTER (LEN=7), DIMENSION (NFRUIT) :: FRUIT = &
("'Apples','Oranges','Pears','Bananas'/)
IFRUIT =1
CALL WDialogPutMenu(IDF_FRUIT,FRUIT,NFRUIT,IFRUIT)

Errors

ErrCurDialog (1005) No dialogs currently loaded
ErrFieldNum (1006) Invalid field identifier
ErrOptionNum (1011) Option number out of range

102 Winteracter Starter Kit

WhDialogPutOption Subroutine

WDialogPutOption Subroutine

Description
Set the selected option in a dialog menu field.

Syntax
WhDialogPutOptionifield,ioption)

Arguments
INTEGERIfield = Field identifier as set in resource file

INTEGERIoption = Menu option humber to highlight (O=none, combo boxes only)
or

INTEGERIoption(:) = Array of binary flags indicating options to select

Effect

Sets the currently selected option or options in a menu field in the current dialog. This is the
same as thieptionargument t&WDialogPutMenu . The option number can be zerdiild
specifies a combo box, in which case none of the predefined menu items will be highlighted.
When used with a multiple or extended selection listibption should contain the same
number of entries as there are options in the menu.

Example
CALL WDialogPutOption(IDF_FRUIT,IAPPLE)

Errors

ErrCurDialog (1005) No dialogs currently loaded
ErrFieldNum (1006) Invalid field identifier
ErrOptionNum (1011) Option number out of range

WDialogPutProgressBar Subroutine

Description
Set the value of a progress bar

Syntax
WhDialogPutProgressBifigld,ivalue,methojl

Winteracter Starter Kit 103

Chapter 11

Dialog Manager

Arguments
INTEGERIifield = Field identifier

INTEGERIivalue = Absolute or relative progress bar value

INTEGER, OPTIONALmethod= Interpretation oivalue
Absolute (0) : Set progress bar to specified value
Relative (1) : Change progress bar by specified value

Effect

Sets the value of a progress bar field. By defardtueis treated as an absolute value. By
specifying an optionahethodargument of 1, the progress bar value can be amended by an
incremental value (either positive or negative).

Out of range values are truncated to the appropriate min/max value.

Example
CALL WDialogLoad(ID_DIALOG1)
CALL WDialogShow(ITYPE=SemiModeless)
I
CALL WDialogRangeProgressBar(IDF_PROG1,1,MAXITER)
DO ITER = 1,MAXITER
I Calculation in here
CALL WDialogPutProgressBar(IDF_PROG1,ITER,Absolute)
END DO
CALL WnDialogHide()
CALL WDialogUnload()

Errors
ErrCurDialog (1005) No dialogs currently loaded
ErrFieldNum (12006) Invalid field identifier

WDialogPutRadioButton Subroutine

Description
Set the state of a radio button group.

Syntax
WhDialogPutRadioButtorifield)

Arguments
INTEGERIfield = Field identifier as set in resource file

104 Winteracter Starter Kit

WnDialogPutString Subroutine

Enables the specified radio button. All other radio buttons in the group to which it belongs
are automatically unselected.

Example
I Set Radio button number 2, clear all others in the same group
CALL WDialogPutRadioButton(IDF_RADIO2)

Errors
ErrCurDialog (1005) No dialogs currently loaded
ErrFieldNum (1006) Invalid field identifier

WDialogPutString Subroutine

Description
Set the value of a dialog string.

Syntax
WhDialogPutStringield,cvalug

Arguments
INTEGER ifield = Field identifier as set in resource file

CHARACTERCcvalue= Character string to be placed in field

Effect

Sets the string of a field of almost any type. This routine can be used to set the contents of
ordinary string fields or any field which has an associated string value. This includes push
buttons, check boxes, radio-buttons and multi-line edit controls.

If ifield specifies a multi-line edit control, the supplied string should contain embedded car-
riage return/line-feed pairs (i.€HAR(13)//CHAR(10)) to indicate line ends.

On labels, group-boxes, push-buttons, check-boxes and radio-buttons an & prefix character
will normally be available. The character after the & then acts as a short-cut when used with
the Alt key. For labels and group boxes this shortcut either moves to the next entry field or
acts as if the next push-button was pressed. For push-buttons, check-boxes and radio-buttons
the shortcut acts as if the field was clicked. Specify two ampersands (i.e. &&) to actually
display a single ampersand. On label fields, use of the & prefix can be disabled in the resource
editor via the field Style dialog (enable the 'No prefix' check box). In this case ampersands
are displayed without interpretation.

Winteracter Starter Kit 105

Chapter 11

Dialog Manager

Portability notes

Windows : Multi-line edit controls can hold a maximum of 64k of text (maximum 1k per
line). Ordinary string fields (i.e. not multi-line) are limited to a maximum of 32k of text.
These limits are subject to Windows sucessfully allocating sufficient storage for the text.
Windows 9x/Me will sometimes fail to allocate sufficient storage for large amounts of text,
even when several megabytes of memory are available. Tab char@et&iR(0)) can be
embedded to vertically align text at tab stops in multi-line edit controls.

X Windows: There are no specific limits on string length.

Example
CALL WDialogPutString(IDF_STRING,'Some Text')
I now a push button field
CALL WDialogPutString(IDF_BUTTON,'Press Me")

Errors
ErrCurDialog (1005) No dialogs currently loaded
ErrFieldNum (1006) Invalid field identifier

Group CD: Common Dialogs

The file-selector and message-box 'common dialogs' are supported via the routines in this
group. The dialogs displayed by these routines are modal.

WMessageBox Subroutine

Description
Display a standard Windows message box.

Syntax
WNMessageBoxbuttonicon,idefoutmessaggitle)

106 Winteracter Starter Kit

WNMessageBox Subroutine

Arguments

INTEGER ibutton= The type of buttons to be displayed

Table 4. Common Dialog Buttons

Name No. Button(s)

OKOnly 0 OK button

OKCancel 1 OK and Cancel buttons
RetryCancel 2 Retry and Cancel buttons
YesNo 3 Yes and No buttons
YesNoCancel 4 Yes, No and Cancel buttons
RetryAbortlgnore 5 Retry/Abort/lgnore buttons

INTEGER icon = The type of icon to be displayed

Table 5: Common Dialog Icons

Name No. Icon

Nolcon 0 No icon

Stoplcon 1 Stop icon
Questionlcon 2 Question mark icon
Exclamationicon 3 Exclamation mark icon
Informationicon 4 Information icon

INTEGER idefbut= Default highlighted button:

Table 6: Common Dialog Button Numbers

Name No. Highlighted Button
CommonCancel 0 Cancel
Commonlgnore 0 Ignore
CommonOK 1 OK
CommonOpen 1 Open

Winteracter Starter Kit 107

Chapter 11 Dialog Manager

Table 6: Common Dialog Button Numbers

Name No. Highlighted Button
CommonYes 1 Yes
CommonRetry 1 Retry
CommonAbort 2 Abort
CommonNo 2 No

CHARACTERmMessage Message box text
CHARACTERtitle = Message box title

Effect

Displays a standard message box consisting of a message and up to three push buttons. Since
many programs require only simple confirmations from the user this routine can help reduce
the number of required dialog resources.

ibutton selects the number and type of buttons the message box will contain.
icon selects the pre-defined icon that appears in the message box beside the text.

idefbutspecifies which button will be highlighted when the message box is first opened. This
value follows the same numbering scheme as the exit button code returned by
WinfoDialog

messagahould contain the text to be displayed in the message box. The supplied text is not
automatically word wrapped. The message string must contain carriage returns (i.e.
CHAR(13)) to break the lines at the appropriate places. The message can be blank if
required.

titte should contain the message box title. Again, this can be blank.

The button pressed to exit from this routine is availabl&WiafoDialog(4) . This uses
the same numbering schemadefbut

Example
CALL WMessageBox(YesNo, Questionicon, 1, &
'Another message box ?', 'Question’)
IF (WinfoDialog(4)==1) THEN
CALL WMessageBox(OKOnly, Informationicon, 1, &

"This is how to split your text'//CHAR(13)// &
'over several lines.','Information’)

END IF

108 Winteracter Starter Kit

WSelectFile Subroutine

Errors
ErrCommonDlg (1004) Common dialog function returned an error. Actual system
error code available vimfoError(3)

ErrModalPixmapLow (1041) X server pixmap resources are low

ErrModalPixmapExh (1042) X server pixmap resources are exhausted

WSelectFile Subroutine

Description
Choose a file using the standard file selector dialog

Syntax
WSelectFilefilterstr,iflagsfiledir title,iftype

Arguments
CHARACTER(filterstr = Filter strings

INTEGER iflags = Dialog settings. Sum of:

LoadDialog (0)) Load or

or SaveDialog (1)) Save dialog
PromptOn (2) Enable prompting
NonExPath (4) Allow non existent paths
DirChange (8) Allow directory change
MultiFile (16) Allow multiple file selection
AppendExt (32) Append extension

CHARACTERfiledir = Entry : Initial directory path + filename
Exit : Final directory path + filename

CHARACTER, OPTIONALtitle = Dialog title

INTEGER, OPTIONALIftype = File type on entry and exit

Effect

Prompts for a filename using the standard file selector. The dialog allows the user to enter a
new file name or path. It is the responsibility of the caller to create these if necessary.

The dialog is displayed slightly below the top left corner of the window or dialog which
currently has the input focus. If the file selector is displayed relative to the root window and
the root window is hidden, you can still specify the window positioNitcdowOpen to
determine where the file selector dialog will appear.

Winteracter Starter Kit 109

Chapter 11

Dialog Manager

filterstr defines a list of filter pairs. This will normally consist of program type descriptions
and corresponding file name match strings. They are used by the file selector to restrict the
file types which are offered in the dialog. Each description is separated from its correspond-
ing match string by a vertical bar (|). For example :

'Windows Bitmap|*.bmp|Paintbrush Image|*.pcx|'

This would add the filters *.bmp and *.pcx to the file type combo box. The first filter in the
list is used initially. Note that the final "|" in the filter string is required. Multiple filters can
be attached to one filter string by separating them with semi-colons, e.g.

'Fortran files|*.f90;*.for;* f|'
Pasdilterstr as a blank to match all files.

[Note : Alternatively, the filter strings argument can be specified as an integer resource file
id, documented in early versionsifiléerid. This should be the identifier of a string table

entry in the resource script. Use of this calling interface is supported for backwards
compatibility, but its use in new software is strongly discouraged. In particular, this obsolete
interface will not work with the X Windows implementation.]

iflags provides control over the exact behaviour of the file selector, by summing together the
following settings :

LoadDialog selects a standard open-file (i.e. Load) diaayeDialog selects a Save
file dialog.

Add PromptOn toiflagsto enable prompting. When prompts are enabled, the setting of bit

0 determines the actual type of warning prompts displayed. For Load dialogs the user will be
prompted if they specify a file or directory that does not exist. For Save dialogs the user will
be prompted if they try to save to a file that already exists.

Add NonExPath toiflags, if non-existent paths (i.e. non-existent directories) are to be
allowed. Otherwise, only file names with valid directory names can be returned from the
dialog.

Add DirChange toiflagsto allow the current directory to be updated. Enabling this option
causes the current directory to be updated dependent on which directories the user browses
in the file selector. If this option is not selectédSelectFile saves and restores the cur-

rent directory across the call to the file selector dialog.

Add MultiFile toiflagsto allow multiple file selection. The Shift or Ctrl keys can be used
in combination with mouse clicks to select groups of files or multiple single files respec-
tively. Multiple file selection is only available whéwoadDialog is specified.

Add AppendExt toiflags to automatically add an extension to the selected filename. The
extension added depends on the filter string chosen by the user. If the selected filter string
contains more than one extension then the first extension is used. The rules used to determine

110 Winteracter Starter Kit

WSelectFile Subroutine

whether the user has actually specified an extension, or has simply entered a filename which
includes a full-stop/period, are slightly complex. Supposing a filename such as
myfile.xyz is entered, a file extension will still be added to this if :

a) myfile.xyz does not exist in the selected directory
and
b) xyz is not one of the file extensions in the filter string table

Add MustExist toiflagsto allow only the names of existing files to be selected in an open
file dialog. This flag has no effect wh&aveDialog is specified. If this flag is specified
thenPromptOn andNonExPath will have no effect, the user will alway be prompted if
they enter a non-existent path or filename.

On entryfiledir will contain the directory path and/or filename to use as the initial default.
Specify a trailing directory separator (\ under Windows or / under Lindid@diir identifies

a directory only. Ifiledir is blank the current directory path is used with no default file name.
On exit the final path and file name will be returnediledir, if a single file was selected.

This will be left unchanged if the user pressed the Cancel button or closed the dialog window.

If multiple file selection is enabled and multiple files are chofkedljr will contain the

directory name (without a trailing directory separator character) and a list of file names. The
directory and file names will be separated by nulls Gl¢AR(0)). The calling program is
responsible for extracting the individual file names.

title specifies the dialog window title, e.g. 'Load a Data File'. If this is blank or omitted, a
default title of 'Select File' is used.

The optionalftype argument allows you to determine which of the supplied filter strings
appears in the 'Files of type' field initially. This is an index value, so a value of 2 would select
the second file type in the filter string list (e.g. "Paintbrush Image" in our earlier example). If
theiftype argument is specified, it will also then return the index of the file type which the
user selected on exit.iffypeis omitted, the first file type in the filter string list is used and

no result is returned.

The exit button/result from this routine will be available WénfoDialog(4)

Portability notes

Microsoft Windows: Under NT 4.0, multiple file selection requires one of Microsoft's

service packs to be installed. A base NT 4.0 system with no service packs installed appears
to be limited to a maximum return string length of 241 characters. Service Pack 3 definitely
fixes this problem. SP1 or 2 may also be suitable but this is untested.

X Windows: The supplied filter string is only used it it specifies a single file type, otherwise
all files are shown. ThilultiFile andAppendExt flags are not currently supported.

Winteracter Starter Kit 111

Chapter 11 Dialog Manager

Example
CHARACTER (LEN=255) FILENAME

FILENAME = 'C:\PICTURES' I Default file path
IFLAGS = LoadDialog + PromptOn ! Select load dialog
CALL WSelectFile(&
'Fortran 90|*.f90|Fortran 77|*.for|', &
IFLAGS, FILENAME, 'Select source file’)
IF (WInfoDialog(4)==CommonOK) CALL process_file(FILENAME)

Errors
ErrCommonDlg (1004) Common dialog function returned an error. Actual system
error code available vimfoError(3)

ErrModalPixmapLow (1041) X server pixmap resources are low

ErrModalPixmapExh (1042) X server pixmap resources are exhausted

112 Winteracter Starter Kit

High Resolution
Graphics

The routines described in this chapter are divided into 4 groups:

GG General Graphics (Drawable selection, pixel interrogation, units)
GS Graphics Style selection (color, line type, fill style)

GD Graphics Drawing and Movement (Line/fill primitives)

GT Graphics Text (Text primitives)

In addition, graphics related information functions are provided in the IF group.

Starting and Finishing

Winteractets graphics are automatically initialized WjndowOpen. Graphics are always
directed to the currently selected root or child window as seéfingowOpen,
WindowOpenChild orWindowSelect . Graphics remain available until
WindowClose is called.

Target Drawable

WIiSK can generate graphics output to either a window or a dialog field, referred to as the
current 'drawable’. The initial target drawable is the current window, as set by
WindowOpen, WindowOpenChild orWindowSelect . This can be changed by calling
IGrSelect

Co-ordinate System

The Winteractergraphics co-ordinate system is user-definable and is not related to the
physical resolution of the output device, making graphics based programs device
independent. The area of the output drawable to be used for the graphics display can also be
defined. ThdGrArea andiGrUnits routines control the main graphics area and co-

ordinate system respectively. Calls to routines in other groups, suGh.m&To

WGrTextString , etc. all uséx,y) co-ordinates defined in terms of the range set by the call

to IGrUnits . So ifIGrUnits ~ sets the min and makvalues a®-1000 and the min and

maxy values a8-500 , all co-ordinate values should be in these ranges too. Attempts to draw

Winteracter Starter Kit 113

Chapter 12 High Resolution Graphics

outside this area will be clipped at the edge of the graphics area. By @@&fgultis the
bottom left corner of the graphics area. Initially, the main graphics area is set to the full
drawable.

Lahey Graphics Emulation

Legacy code which was written for the Lahey Video Graphics Library can be rebuilt with
Winteracterusing the emulation code imgl.f90 . Refer to the on-line help file
(WiSK.HLP orwisk.htm) for details.

OpenGL Graphics

The OpenGL graphics interface is accessible int#¥acterbased programs, enabled via
WglSelect in the MI group. A selection of demonstration programs are supplied in
WiSK'’s OpenGL sub-directory. See the OpenGL pages under "Graphics Interfaces"” in the
on-line help file WiSK.HLP orwisk.htm) for further information.

Group GG: General Graphics

This group provides various graphics routines which don't naturally belong in the graphics
other subroutine groups. These include certain house keeping routines which are
fundamental to using Witeractergraphics routines, namelrArea andIGrUnits

which define the size of the graphics area and the co-ordinates within that area.

The target drawable is determinediBySelect . This can be either a window or a dialog
field.

Winteractets graphics can be re-initialised Varlnit
The graphics area can be cleared®sAreaClear

Pixel colors in the current drawable can be interrogated USir@getPixel

IGrArea Subroutine

Description
Define size of graphics area.

Syntax
IGrArealeftylowerxright,yuppe)

Arguments
REAL xleft = Left limit of main graphics area0.0 <= xleft<0)

REAL ylower= Lower limit of main graphics areaf <= ylower<1.0)

114 Winteracter Starter Kit

IGrAreaClear Subroutine

REAL xright = Right limit of main graphics are@.0 < xright<=1.0)
REAL yupper Upper limit of main graphics areéaf < yupper<=1.0)

Effect

Defines the area of the current drawable to be used by all following graphics commands. The
full window is defined as being 1 unit high and 1 unit wide, so you should describe your area
in values in the rangg20-1.0 as shown above. When you adtunits , that then

defines the co-ordinate system to be used within the area defineddoya . The default

values for both th&GrArea andiGrUnits ranges, ar8.0 t01.0 occupying the whole of

the graphics screen. The current graphics area dimensions can be interrogatddfuia the
Graphics function.

IGrArea is particularly useful when you wish to rescale a graphics image without changing
your co-ordinate system or any other parameters. In the example below, a full screen display
is reduced to a quarter size, at the top right of the screen, by a singld@eiréa .

It is important to appreciate that if you set a graphics area in which the sides are no longer
equal (e.g.0.5 high andL.0 wide) then regular shapes will be distorted accordingly. For
example, circles become elliptical, squares become rectangular and so on.

Example
CALL IGrArea(0.0,0.0,1.0,1.0)
CALL MYGRAF()
CALL IGrArea(0.5,0.5,1.0,1.0)
CALL MYGRAF()

Errors
ErrBadArea (44) Invalid X and/orY range. Range reset el .

IGrAreaClear Subroutine

Description
Clear the current graphics screen area.

Syntax
IGrAreaClear()

Effect

Clears the current main graphics area as define@myea , to the current background

color. Part of the graphics window can therefore be cleared without affecting the rest of the
window.

Winteracter Starter Kit 115

Chapter 12 High Resolution Graphics

When the graphics area is defined t®dle1.0 in bothx andy directions, the whole win-
dow is cleared.

Example
CALL IGrArea(0.05,0.05,0.4,0.4)
CALL IGrAreaClear()
CALL MYGRAF()

IGrGetPixel Function

Description
Read a screen pixel color value

Syntax
INTEGER IGrGetPixeKposypos

Arguments

REAL xpos= X co-ordinate

REAL ypos=Y co-ordinate

Effect

Returns the color of the specified co-ordinate in the current drawable, as a 24-bit color value.
Individual color components can be extracted usitigGBsplit . The (x,y) co-ordinate

should be expressed in user units as sdGsdnits . If the specified co-ordinate lies
outside the graphics area, -1 is returned.

IGrinit Subroutine

Description
Re-initialize graphics output.

Syntax
IGrlnit(typenxny,nc)

Arguments
CHARACTERtype= Type of output. Leave blank in Starter Kit implementation.
INTEGER, OPTIONALNx = INTERACTERompatibility argument

INTEGER, OPTIONALny = INTERACTERompatibility argument

116 Winteracter Starter Kit

IGrSelect Subroutine

INTEGER, OPTIONALNc = INTERACTERompatibility argument

Effect

Re-initializes graphics output. This routine is called\bydowOpen, so it should not nor-

mally be necessary to call it again unless the whole of the graphics system needs to be reset
to its default state.

Winteractefs internal graphics are reinitialized to the following defaults:

e CallsiGrArea with parameters (0.0,0.0,1.0,1.0)

e CallslGrUnits with parameters (0.0,0.0,1.0,1.0)

« Sets current plotting position to (0.0,0.0)

» Sets fill pattern to none

» Selects the 8-bit color model

» Sets plotting color to 223 (black)

» Sets secondary color for mixed-color fills to 0 (white)

« Sets line type to solid

» Selects driver-specific Courier font, with all style attributes disabled
» Sets character size to width=.01333333 and height=.04.
» Resets the target drawable to the current window

Thenx, ny andnc arguments are provided for compatibility WitNTERACTERThey are
not used in Whteracterand have th©PTIONALatrribute. They can be safely omitted in
Winteracterspecific code.The type argument should be specified as a blankiersi¢ter
Starter Kit programs (this argument has meaning in the full versionraékécte.

IGrSelect Subroutine

Description
Select the target drawable for graphics output.

Syntax
IGrSelect{target,iden}

Arguments
INTEGERIitarget = Target drawing surface:

INTEGER, OPTIONALident= Handle or identifier of target drawable:

Effect

Selects the target drawing surface ("drawable") for graphics output. The type and size of the
currently selected drawable can be interrogatedMdoDrawable . Output can be routed

to a window or a dialog field:

Winteracter Starter Kit 117

Chapter 12 High Resolution Graphics

itarget=DrawWin : By default, graphics output is routed to the current window. This option
routes graphics output to the specified windm@ntmust specify a valid window handle, as
returned bywindowOpenChild , or zero for the root window. If the window handle is
omitted or an invalid window is specified the currently selected window becomes the target
drawable. The root window is the target drawable at initialisation. Cd@irgelect with

itarget set to 1 calld/indowSelect internally. While output to a window is selected,
WindowSelect can be called directly to update the target window for graphics output
(WindowSelect has no effect on the target graphics drawable while output to a dialog is
selected).

itarget=DrawField : To draw into a dialog field, specify the field identifieident This

must identify a field in the current dialog. In theory, this can be any type of field, but typically
this feature is best used with label or picture/frame fielddelitis zero or omitted, the

whole of the current dialog becomes available for drawing (but see the Portability notes).
Specifying an invalid field identifier is treated as an error and the output target returns to the
current window. It should be noted that dialog fields drawn in this way must be maintained
by the calling program. Normal dialog fields are repainted automatically, but it is the caller's
responsibility to repaint 'user drawn' fields. TEygose message reported MyMessage

allows for this possibility.

Portability notes

Windows: Drawing to the whole dialogtérget=3 andidentomitted or zero) will cause

graphics to overwrite any fields in the dialog window, by default. If the 'Clip Fields' option

is selected (see the Dialog Properties dialog in the resource editor), graphics will not overwite
field contents, effectively drawing to the 'background' of the dialog. While the latter
behaviour is preferable, enabling 'Clip Fields' causes the background of any group boxes to
become transparent. This in turn causes rear windows to become visible through the dialog.
We therefore don't recommend whole-dialog drawing (and hence the use of Clip Fields) with
dialogs which contain group boxes.

X Windows: When drawing to the whole dialoggrget=3 andidentomitted or zero),
graphics are always clipped by the current dialog fields, regardless of field type. The 'Clip
Fields' option in the resource editor has no effect.

Example
CALL IGrSelect(DrawWin) ! Draw graph in root window
CALL MYGRAF()
CALL IGrSelect(DrawField,IDF_PIC) ! Draw same graph in a dialog
CALL MYGRAF()

Errors
ErrBadTarget (1019) Invalid window handle or field identifier

118 Winteracter Starter Kit

IGrUnits Subroutine

IGrUnits Subroutine

Description
Define plotting units to be used.

Syntax
IGrUnits(xleftylowerxright,yuppe)

Arguments
REAL xleft = LowerX co-ordinate limit

REAL ylower= LowerY co-ordinate limit
REAL xright = UpperX co-ordinate limit
REAL yupper UpperY co-ordinate limit

IGrUnits defines the plotting units (the 'user co-ordinate system') to be used when drawing
in the main graphics area definedildyArea . The initial ranges ar@0 to 1.0 on both

axes. The example below shows how to plot values in the B0OgE00 on thex axis and
values 0f300-600 on they axis. The current plotting units can be interrogated via the
InfoGraphics ~ function.

Selecting an invalid or Y range, sets the limits for that axisota .

Example
CALL IGrUnits(500.0,300.0,1000.0,600.0)
CALL IGrCircle(750.,450.,50.)

Errors
ErrBadUnits (16) Lower X orY value is greater than or equal to upgeryY

Group GS: Graphics Style Selection

This group controls the appearance of output from other graphics routines.

Probably the most commonly used routines in this group will be those which control color.
The current graphics color is selected ustBgColourN . The number of available colors

is display dependent, soiliferacteruses a common 8-bit color numbering scheme on all
devices, by default. This provides 256 nominal colors (a near equivalent is selected where
fewer than 256 colors are available). Alternatively, some video modes support 24-bit color
mode where colors are specified directly as an RGB vEBr€olourN can use either an
8-bit or a 24-bit color model, selectable W@ ColourModel

Winteracter Starter Kit 119

Chapter 12 High Resolution Graphics

In the 8-bit color model, color 0 is treated as the background color and all others as fore-
ground. However, color 0 can still be selected as the current color for graphics operations,
though it will only be visible if the operation takes place on top of some non-background
color.

The 8-bit color palette (the relationship between the 256 color numbers in the 8-bit model and
the actual colors displayed) can be redefined usinBalette . By default the
background color is white. The palette can be reinitialised by ca@iri@alettelnit

In addition to color control, line type, plot mode and fill style are selectable via
IGrLineType ,IGrPlotMode andIGrFillPattern

IGrColourModel Subroutine

Description
Select 8-bit or 24-bit color model

Syntax
IGrColourModelbits)

Arguments
INTEGERnNDbits = Color model : 8 or 24 bits.

Effect

Selects the current color model used®yColourN . nbitsshould either be 8, for an 8-bit/
256-color palette based color model, or 24 for a 24-bit RGB based model.

By default, an 8-bit model is used, where colors are specified as values in the range 0-255.
These represent index values in a nominal 256 color palette. On devices which support fewer
than 256 simultaneous colorsjMéracterautomatically uses a subset of this palette. Each

of the 256 colors in the 8-bit palette can be redefined using a 24-bit RGB value via
IGrPalette , but no more than 256 colors are available at one time.

When the 24-bit color model is selected, colors are specifiggr@olourN as an RGB

value of the formmed+256*green-256*256*lue This eliminates the indirection enforced by

the use of a palette and allows for a theoretical maximum of 16 million simultaneous colors.
This color specification model does not necessarily require a device which supports full 24-
bit color (e.g. it can be used successfully on a 16-bit color display). Where a target display
does not support 24-bit/RGB color specificationn®racteridentifies the nearest matching
color in its own nominal 8-bit palette. It then uses the corresponding 8-bit color number as
though that had been specified directlyGoColourN . This allows the 24-bit color model

to be used on all displays with no significant loss of generality.

120 Winteracter Starter Kit

IGrColourN Subroutine

The ability of the current screen driver to take advantage of 24-bit color specification is
reported byinfoGrScreen(42)

While it is generally advisable to select a single color model throughout an application, it is
feasible to switch between color models as needed. Internaliyecterstores the 'current'

color both as an 8-bit color index and as a 24-bit RGB value, so changes in the current color
model should be transparent to the underlying screen driver.

SeelGrColourN for a further explanation of the implications of calling this routine.

Example
I select bright red in two different ways
CALL IGrColourModel(8)
CALL IGrColourN(31)
CALL IGrColourModel(24)
CALL IGrColourN(255)

IGrColourN Subroutine

Description
Select graphics color using a color number.

Syntax
IGrColourN(color)

Arguments
INTEGERnNCcolor = color number:
8-bit color model : 0-255
24-bit color model : Red + Green*256 + Blue*256*256

Effect

Selects the graphics color for lines, points, text and fills, using a single color number. The
meaning and valid range ntolor depends on the color model selected by

IGrColourModel

8-bit Color model

By default, Winteracteruses an 8-bit color numbering scheme based on a device independent
palette of 256 colors. The same color numbers are used regardless of the actual number of
colors available on the output deviceinitéracterperforms an internal mapping between its
device independent color scheme and the actual color numbers used by the current hardware.
The 256 color numbers are organised into 16 groups, each consisting of 16 shades of a given
color. On devices which support less than 256 coloistéféctersub-divides the palette
according to the number of available colors. For example, where only 16 colors are available,

Winteracter Starter Kit 121

Chapter 12 High Resolution Graphics

values of 16-31 all give bright red. Each color in the palette can be redefined via
IGrPalette , giving a maximum of 256 simultaneously different colors selected from a
theoretical palette of 16 million.

24-bit Color model

When the alternative 24-bit color model is selected)or specifies, the exact combination

of red, green and blue to be used, according to the formula shown earlier. Each of the red,
green and blue components should be specified as a value in the range 0-255. This gives a
theoretical maximum of 16 million simultaneously different colors. On devices where 24-bit
color selection is not supported,iméracteridentifies the nearest equivalent color in its 8-

bit palette and treats the resulting color number as though it had been selected using the 8-bit
color model.

8-bit versus 24-bit ?

So which of the above color models should a program use ? The 8-bit color model was
devised for use wittNTERACTERN the late 1980's when 24-bit color hardware was rare
and/or expensive. Applications developed usMGERACTERr earlier releases of
Winteracterwill therefore exclusively use the 8-bit model, so this is the default for
compatibility reasons. However, modern hardware offers cheap access to 24-bit color (or 16-
bit color which Wnteractertreats as logically equivalent). Use of the 24-bit model is
therefore recommended in new development. This is particularly true, givenithiatatter

will automatically determine the equivalent 8-bit palette value to use if 24-bit color is not
available.

More about the 8-bit Color Model

While the 24-bit color model may be preferable in new software, a lot of code will already
exist which uses the default 8-bit model. The following notes therefore apply specifically to
the 8-bit color model:

» Color zero is treated specially byiMteracteras the background color. This can still
be selected as the current graphics color, enabling you to draw or fill in one fore-
ground color and then plot on top of that using the current background color.

* The default palette associated with thaisracter8-bit color model is as follows
(values are (r,g,b) triplets where maximum intensity = 255) :

122 Winteracter Starter Kit

IGrColourN Subroutine

Table 7: 256-Color Numbering Scheme Default Palette

Actual Color Color # 256-Color Palette
White D-15 (55,255,255) -> (195,195,195)
Light red 16-31 (195, 0, 0) -> (255, 0, 0)
Dark red 32-47 (131, 0, 0) -> (191, 0, 0)
Light yellow 48163 (195,195, 0) -> (255,255, 0)
Dark yellow 64-79 (131,131, 0) -> (191,191, 0)
Light green 80-95 (9,195, 0)->(0,255, 0)
Dark green 96-111 (10,131, 0)->(0,191, 0)
Light cyan 112-127 (0,195,195) -> (0,255,255)
Dark cyan 128-143 (|0,131,131) -> (0,191,191)
Light blue 144-159 (0| 0,195)-> (0, 0,255)
Dark blue 160-175 (D, 0,131)->(0, 0,191)
Light magenta 176-191 (195, 0,195) -> (255, 0,255)
Dark magenta 192-207 (431, 0,131) -> (191, 0,191)
Black 208-223 (|60, 60, 60) ->(0, 0, 0)
Dark gray 224-239 (1p4,124,124) -> (64, 64, 64)
Light gray 240-255 (191,191,191) -> (131,131,131)

Winteracter Starter Kit

123

Chapter 12 High Resolution Graphics

In 16 or 8 color output, a subset of the above palette is used:

Table 8: 16 or 8 Color Palette

Actual Color Color # 16-color palette 8-color palette
White 0-15 255,255,255) (25%,255,255)
Light red 16-31 (285, 0, 0) (255, 0,|0)

Dark red 32-47 (191, 0, 0) (255, 0, 0)

Light yellow 48{63 (255,255, 0) (255,255, 0)
Dark yellow 64-79 (191,191, 0) (255,255, 0)
Light green 80-95 (0,255, 0) (0,255, |0)

Dark green 96-111 (10,191, 0) (0,255] 0)

Light cyan 112-127 (0,255,255) (0,255|255)
Dark cyan 128-143 (10,191,191) (0,25pk,255)
Light blue 144-159 (0 0255) (0, 0,255)

Dark blue 160-175 (D, 0191) (0, 0,255)

Light magenta 176-191 (285, 0,255) (255, 0}255)
Dark magenta 192-207 (191, 0,191) (255, D,255)
Black 208-223 (0,0 0 (0,0 0

Dark gray 224-239 (64, 64, 64) (0, 0,0

Light gray 240-255 (191,191,191) (255,255,255)

« On a 256 color screen, a 16-color palette is used as shown in the table. However, a
larger palette of 32, 64 or 128 colors can optionally be used in such a video mode, as
specified via the optionalcol256argument oWindowOpen. When a 32/16/128
color palette is selected, the default 256-color palette is sub-divided accordingly (e.g.
in a 32-color palette, colors 0-7 are the same whereas in a 64 color palette only colors
0-3 are the same).

* Whatever 8-bit color number is usé@yColourN has no effect on the actual color
which is associated with that number. It simply sets the logical color number to be
used by any following graphics operations. To redefine the association of displayed
colors with logical colors you should ugerPalette

* Requesting a color number outside the range 0-255, in the 8-bit model, is ignored and
an error code is set.

124 Winteracter Starter Kit

IGrColourN Subroutine

e The number of colors available in the 8-bit color model can be checked using
InfoGrScreen(30) . The actual number of screen colors may be different and
can be obtained vi/InfoScreen(3)

When the 24-bit color model is selected, but the current display does not allow 24-bit color
selection (e.g. a 256 color screenjnWracterreverts internally to using the 8-bit color

model and all of the above rules apply even though the 8-bit model was not explicitly
requestedinfoGrScreen(42) reports the ability of the current screen driver to take
advantage of 24-bit color specification.

Two consecutive calls t&rColourN will select the colors to be used by mixed-color area
fills (seelGrFillPattern) or opaque text (se&GrTextFont). The two most recently
requested colors are available o GrScreen(34/35) . The default graphics color at
initialisation is black.

See theol256 andcol24bit demo programs.

The number of colors supported byntéracters 8-bit color model is related to the number
of colors provided by the Windows video driver or X server, as follows:

Table 9: Windows colors

Video Driver or Size of 8-bit palette
X server Colors used by Winteracter

2 2
16 8

256 16/32/64/128
32k/65k/16m 256

When the 24-bit color model is requestedni&racterwill use the supplied RGB values
directly on 15/16/24/32 bit color displays and will revert to its 8-bit model internally on 2/16/
256 color displays.

Example
DO ICOL = 31,255,32
CALL IGrColourN(ICOL)
CALL IGrMoveTo(0.0,0.0)
CALL IGrLineTo(0.5,REAL(ICOL))
END DO

Errors
ErrBadcolor (42) Unknown color number. Current color unchanged

Winteracter Starter Kit 125

Chapter 12 High Resolution Graphics

IGrFillPattern Subroutine

126

Description
Define fill pattern (solid/mixed-colors/hatched).

Syntax
IGrFillPattern{styleidensegiangle)

Arguments
INTEGERIistyle = Fill style:

Table 10: Fill styles

Name No. Information

CrossHatchNoOut -2 Cross-hatched fill with no outline
HatchedNoOut -1 Hatched fill with no outline
Outline 0 No fill, ouline only (default)
Hatched 1 Hatched fills

CrossHatch 2 Cross-hatched fills

MixedColour 3 Mixed-colors (stippled)

Solid 4 Solid fills

INTEGER, OPTIONALidense = Hatched fill density:

Table 11: Hatched Fill Density

Name No. Information
Sparse 1 Sparse

Medium 2 Medium (default)
Densel 3 Dense

Dense2 4 Very dense
Dense3 5 Very very dense

Winteracter Starter Kit

IGrFillPattern Subroutine

INTEGER, OPTIONALiangle = Hatched line angle:

Table 12: Hatched Line Angle

Name No. Information
FillHoriz B Horizontal lines (default)
FillVertic 4 Vertical lines
IGrFillPattern defines the fill pattern (if any) to be usediByCircle andIGrPoly-

gonComplex . The basic choice is between no fills and hatched, solid or mixed-color fills.

The default fill style is zero which gives outlines only. In this case, the density and angle
parameters are ignored.

idenseandiangle have theOPTIONALattribute. They can be omitted when not required. If
they are omitted when a value is expected, (e.g. for hatched fills) the indicated defaults are
assumed.

Hatched fills draw lines at intervals across the area to be filled. If a hatched fill is selected,
the density and angle parameters define the precise style of the fill. A dense fill uses roughly
twice as many lines to fill the area as a sparse fill. The angle parameter controls the direction
of the fill lines. Typet hatched fills draw lines in one direction only, according to the selected
ianglevalue. Type2 (cross-hatched) fills draw lines in both directions. Hatched fills are nor-
mally drawn with an outline. Specify a negatistyle value to suppress this outline.

Type4 (solid) fills use a pure color, as most recently defined by a cirGolourN

Type3 (mixed) fills are similar to solid ones, except that the two colors as defined by the last
two calls tolGrColourN are mixed. Hence if two successive call§3olourN specify

Yellow then Red, a type fill will mix these colors. This will either use a stippled fill (where
alternate pixels are plotted in each color) or a (r,g,b) value will be selected which is exactly
half way between the two specified colors.This can give the appearance of many more shades
than some devices actually support. Selecting the same color twice in succession gives a solid
fill. On monochrome displays, the foreground/background colors are automatically mixed in
stippled fills, regardless of the last two colors specified, unless those colors were identical in
which case a solid fill is selected.

When solid/stippled fills are requested, angle and density are ignored.

If an invalid style, density or angle is specified, then the indicated defaults are used.

Example
CALL IGrColourN(48) I select first mixed-fill color
CALL IGrColourN(144) I select 2nd mixed-fill color

CALL IGrFillPattern(MixedColour) ! density and angle omitted
CALL IGrCircle(150.,500.,30.)

Winteracter Starter Kit 127

Chapter 12 High Resolution Graphics

IGrLineType Subroutine

Description
Select line type (solid, dots, dashes or dot/dash).

Syntax
IGrLineType(type

Arguments
INTEGER, OPTIONALItype = Line type:

Table 13: Line Types

Name No. Information

SolidLine 0 Solid (default)

Dotted 1 Dots

Dashed 2 Dashes

DotDash 3 Dot/dash

DotDotDash 4 Dot/dot/dash

LongShort 5 Long/short dashes *

ShortDash 6 Short dashes *
Effect
Selects the line type for subsequent drawing operations. The currently requested line type is
available vianfoGrScreen(36) . If ltypeis omitted, solid lines are selected.

Windows only supports 5 line styles. The line type which is supposed to be dotted is more
like short dashes on most displays.

Portability notes

Windows: Only 5 line types are available. Line types 2 and 3 duplicate types 6 and 5
respectively.

128 Winteracter Starter Kit

IGrPalettelnit Subroutine

Example

CALL IGrLineType(1)

I draw a grid of dotted lines

DOI1=1,9
CALL IGrMoveTo(0.0, 0.1*REAL(I))
CALL IGrLineToRel(1.0,0.0)
CALL IGrMoveTo(0.1*REAL(I),0.0)
CALL IGrLineToRel(0.0,1.0)

END DO

IGrPalettelnit Subroutine

Description
Reinitialize graphics color palette.

Syntax
IGrPalettelnit()

Effect
Reinitializes the Whteractergraphics palette to the default settings. I&¥€olourN

IGrPalette Subroutine

Description
Redefine 8-bit color palette

Syntax
IGrPaletteficolor,rgb,ipos)

Arguments
INTEGERnNcolor = 8-bit color number (same numbering schemiseSolourN)
INTEGERrgb = 24-bit RGB color value

INTEGER, OPTIONALIipost= Postpone palette realisation on 256 color screen
(O or omitted=no 1=yes)

Winteracter Starter Kit 129

Chapter 12

High Resolution Graphics

Effect

Controls the 8-bit graphics color palette, using the Red/Green/Blue (RGB) color scheme. An
actual 24-bit color value is assigned to a specified 8-bit color number. Redefinition of the
screen palette only affects subsequent plotting. The background color can be changed by
callingIGrPalette with anncolor value of 0.

ncolor specifies the color which would be selected by supplying the same value to
IGrColourN using the 8-bit color model. Heneeolor should lie in the range 0 to 255 and

will be converted to an appropriate actual color number for the current screen mode, using
the same rules d&rColourN . When the 24-bit color model is selected, this routine is
limited to setting the RGB value in the 8-bit palette which will still be used internally on color
limited devices. SeksrColourN for a description of the colors available in the default
palette. The current 8-bit palette values can be interrogatéofet@rPalette

rgb specifies the required physical color, in the usual 24-bit color range. It can be constructed
using theWRGRunction. Where an output device supports fewer colors, the nearest
approximation to the requested color is selected.

When the optionapostargument is specified as a non-zero value it causes 'realisation' of the
screen palette to be postponed. When this argument is omitted or is set to zero, palette
realisation is performed immediately. Enabling this option can have significant benefits on a
256 color display when setting multiple palette values. On a 256 color displatgraéter

uses its own private palette for screen graphics colors. The size of this palette is determined
by WindowOpen. It contains 16 entries by default, but can hold up to 128 different colors.
Updating a single color in this palette can be a relatively "expensive" operation and can result
in palette cycling effects if other applications or the desktop background also uses many
colors. By settingpost=0, Winteracters internal palette is updated but the expensive
"realise" operation is not performed. When updating N palette values, a performance benefit
can thus be obtained by settipgstto be non-zero for the first N-1 calls, and zero (or
omitted) for the final call. Hence only one realise-palette operation will be performed on a
256 color display instead of N such operations. This is both faster and neatew|2Hte

demo illustrates this technique in the grey scale display option.

If ipost=0 on a 256 color display, then the associated color number must not be used for
drawing until a subsequent call specifiesst=0 (or omitsiposf) to force the palette to be
realisediposthas no effect on anything other than 256 color displays.

Color redefinition is normally only effective when the current Windows video driver or X
server operates in a screen mode with 256 colors or more. Colors are not normally redefinable
on a 16-color display, in which case the 'nearest' available color is used when plotting
subsequently in colarcolor. On a display which provides more than 256 colors, use of the
alternative 24-bit color model is recommended, since this allows RGB values to be specified
directly tolGrColourN , rather than indirectly vikGrPalette

Example
CALL IGrPalette(200,WRGB(255,200,200)) ! Pale pink

130 Winteracter Starter Kit

IGrPlotMode Subroutine

IGrPlotMode Subroutine

Description
Set the plotting mode

Syntax
IGrPlotModemodg

Arguments
CHARACTER(LEN=*), OPTIONALmode= Plotting mode (N:normal overwrite, E:EOR
(exclusive-or))

Effect

Selects the plotting mode for lines, points, software text and fills. In normal over-write mode,
the line/point/text/fill simply replaces what was already in the drawable. In EOR mode, the
color is exclusive or'ed with that already on the screen. The main use of this is that lines, text
and fills can be drawn in EOR mode then erased again, still using EOR mode, without dis-
turbing what was previously in the drawable.

Only the first character of the supplied argument is used to determine the required plot mode.
If modeis blank or omitted, normal plotting is selected. The plot mode argument can be in
upper or lower case.

The currently requested plot mode is availablelnviaGrScreen(37)

Portability notes

Windows: Due to a Windows GDI limitation, plot mode selection does not affect TrueType
fonts, which are always drawn in normal (over-write) mode. Software text must be used if
plot mode control is required.

Example
CALL IGrPlotMode('EOR)
CALL IGrPoint(X,Y) ! now you see it

CALL IGrPoint(X,Y) ! now you don't
CALL IGrPlotMode(' ") ! ... and back to normal

Group GD: Graphics Drawing/Movement

The routines in this group provide the maiim#ractergraphics drawing primitives. An
important concept here is the 'current plotting position'. This can be set explicitly using
IGrMoveTo , but is automatically updated by other drawing and graphics text routines in the
GD and GT groups.

Winteracter Starter Kit 131

Chapter 12 High Resolution Graphics

IGrCircle andIGrPolygonComplex draw shapes in various styles which are determined
by thelGrFillPattern routine in the GS group. By default they simply draw an outline of
the appropriate shape, but they can also perform hatched, mixed-color or solid fills.

Simple straight line drawing can be performed usBgineTo . Single points can be plot-
ted usingGrPoint

IGrCircle Subroutine

Description
Drawi/fill circle at an absolute position.

Syntax
IGrCircle(xposyposradius)

Arguments
REAL xpos= X co-ordinate of circle center

REAL ypos=Y co-ordinate of circle center

REAL radius= Radius of circle in current plotting units

Effect

Draws a circle of a given radius centered at the specified absolute plotting position, in the
current graphics color and plotting mode as selecta@i@plourN andIGrPlotMode

The circle will be filled, if required, using the fill pattern selectedd¥illPattern . The
current plotting position becoméspos ypog . Aspect ratio is preserved regardless of win-
dow shape. The radius is expressed in terms of the X co-ordinate system.

Example
CALL IGrUnits(50.,100.,500.,300.)
CALL IGrFillPattern(2,2,3)
CALL IGrCircle(100.,200.,20.)

Errors
ErrBadRadius (20) radius<= zero. Nothing will be drawn.

IGrLineTo Subroutine

Description
Draw line to a new absolute position.

132 Winteracter Starter Kit

IGrMoveTo Subroutine

Syntax
IGrLineTo(xposypo9

Arguments
REAL xpos= X co-ordinate to draw to

REAL ypos=Y co-ordinate to draw to

Effect

Draws a line from the current plotting position (as set by a previous ¢@iiMoveTo or
IGrLineTo itself) to the new absolute plotting position specified kyos ypog . On exit,
(xpos ypog becomes the current plotting position.

Example
CALL IGrUnits(0.0,0.0,1000.0,500.0)
CALL IGrMoveT0(200.0,100.0)
CALL IGrLineTo(800.0,100.0)

IGrMoveTo Subroutine

Description
Move current plotting position to a new absolute position.

Syntax
IGrMoveToposypo9

Arguments
REAL xpos= X co-ordinate

REAL ypos=Y co-ordinate

Effect

Moves the current plotting position to the absolute pos{tiqguos ypog without any visible
effect.

Example
CALL IGrUnits(100.,0.,300.,400.)
CALL IGrMoveTo(150.,200.)
CALL IGrLineTo(200.,300.)

Winteracter Starter Kit 133

Chapter 12 High Resolution Graphics

IGrPoint Subroutine

Description
Draw a single point at new absolute position.

Syntax
IGrPointxposypo9

Arguments

REAL xpos= X co-ordinate
REAL ypos=Y co-ordinate
Effect

Sets the current plotting position to the absolute posftios ypog and plots a point at
that position.

Example

CALL IGrUnits(100.,0.,300.,400.)
CALL IGrPoint(150.,200.)

IGrPolygonComplex Subroutine

Description
Draw/fill a complex (possibly intersecting) polygon.

Syntax

IGrPolygonComplex(y,nver)
Arguments

REAL x(:) = Array of X co-ordinates
REAL y(:) = Array of Y co-ordinates

INTEGERnNvert= Number of vertices in suppliedy arrays (<=5000)

Draws an irregular polygon defined by the specified absolute plotting positions, with
possibly intersecting borders. The polygon is drawn in the current graphics color and plot
mode as selected b@rColourN andIGrPlotMode . The polygon will be filled, if

required, using the pattern setibyFillPattern . The polygon will be closed, i.e., the last
point will be joined to the first.

134 Winteracter Starter Kit

Group GT: Graphics Text

IGrPolygonComplex uses an API primitive for solid and mixed-color fills. A generic scan-
line search method is used for hatch fills. In very rare situations, a polygon may be too
complex foriGrPolygonComplex 's generic algorithm, in which case the routine will exit
with error code 49. This is only likely to occur in very extreme cases.

If no fill is specified,|GrPolygonComplex simply draws a poly-line, i.e. it joins the points
specified ink andy regardless of whether the borders cross. Whether filled or not, the current
plotting position becomesx(1), (1))

Example
REAL, DIMENSION (4095) :: X, Y
READ(20,*) N
N = MIN(N,4095)
DO I=1,N
READ(20,%) X(I),Y(l)
END DO
CALL IGrPolygonComplex(X,Y,N)

Errors
ErrFillComplex (49) Fill too complex. Unable to fill polygon.

Group GT: Graphics Text

Graphics text strings are written usMiGrTextString . Font family, style, size and

spacing are all selectable WGrTextFont . This provides access to both driver-specific
fonts and software based vector/outline fonts. Data for the latter are loaded via the various
WGrVFont* andWGrOFont* routines. In general, we recommend use of driver-specific
fonts. Software fonts are provided for portability reasons and are sometimes used internally
to substitute for unavailable fonts in non-Windows GDI output.

The alignment, rotation angle and direction of graphics text is controlled by
WGrTextOrientation . The relative length of a graphics text string can be measured via
theWGrTextLength function.

Backward Compatibility Note : the routines in the GT group replace the d&iiehar*

routines of the GC group. In particular, the use of external software 'character set' files
became obsolete in the new calling interface, though the previous font selection mechanisms
are still supported for backwards compatibility.

Winteracter Starter Kit 135

Chapter 12 High Resolution Graphics

WGrOFont* Subroutines

Description
Load outline software font data

Syntax
WGrOFontFixed()
WGrOFontSwiss()

Effect

Each of these routines contains all of the font shape data for the corresponding outline
software font. Calling one of these routines loads the data for that font intersi¢tets
software font data area. This font can then be selected by dMErdextFont with a font
family type ofFFSoftware . The current software font can be changed at any time without
needing to calWGrTextFont again, unless style, size or spacing are to be changed (in
which casaNGrTextFont should be called with the appropriate arguments assigned).
Note Unlike the earlietGrCharSet routine which they replace, they do not actually select
the named font for text output. Rather they load the specified font, ready to be selected by
WGrTextFont .

Example
CALL WGrOFontSwiss()
CALL WGrTextFont(FFSoftware,FSBold)
CALL WGrTextString(0.5,0.5,'Bold Swiss outline font')

WGrTextFont Subroutine

Description
Set graphics text alignment, rotation and direction

Syntax
WGrTextFont{family,istyle,width,height,name,ispace)

Arguments
INTEGER, OPTIONALifamily = Font family
FFUser (100) : User defined GDI font
FFCourier (101) : Courier
FFHelvetica (102) : Helvetica/Arial
FFSoftware (1) : Current software font
FFDriver (2) : Current driver-specific font
0 or omitted : Leave current selection unchanged

136 Winteracter Starter Kit

WGrTextFont Subroutine

INTEGER, OPTIONAListyle= Font style. Sum of:
FSBold (1) : Bold
FSiltalic (2) : Italic
FSUnderline (4) : Underline
FSOpaque (8) : Opaque background
REAL, OPTIONAL width = Average character width as a proportion of the graphics area
(default = 0.01333333)

REAL, OPTIONAL height= Character cell height as a proportion of the graphics area
(default = 0.04)

CHARACTER, OPTIONALname= User defined GDI font name,ifamily=FFUser

INTEGER, OPTIONALispace= Spacing
(O=font-specific, 1=fixed, 2=software-proportional)

Effect
Selects the font to be used in graphics text output.

ifamily=101-102 selects a driver-specific font of the specified family. As their name
suggests, driver-specific fonts are those which are available for use by a particular
Winteractergraphics output driver. The most common examples are TrueType (Windows
GDI) or Adobe (PostScript) fonts. If a particular output driver does not support such a font,
an equivalent software outline font will be substituted automatically. These software outline
fonts are built into the library as standard.

ifamily=100 selects a user-specified GDI font, as named inaheeargument. This can be

any Windows font name and will be used in all subsequent Windows GDI output to screen,
memory bitmap, metafile or printer. If this option is specified when generating non-GDI
output, a Courier or Helvetica style font will be selected, depending on the currently selected
spacing. lfifamily specifies a user defined font, but no name is supplied an error code is set
and a Courier or Helvetica font will be selected, as for non-GDI output.

ifamily=1/2 allows switching between the current software and device-specific fonts:

FFSoftware : Selects the current software font as determined by the most recent
call to one of th&/GrOFont* or WGrVFont* routines. The 'Standard' vector font

is loaded by default.

FFDriver : Selects the current driver-specific font as most recently selected by
ifamily=100-104. This allows such a font to be reselected after using a software font,
without the overhead of recreating the driver-specific font

If ifamily is omitted or zero, the current font family selection will remain unchanged (useful
when only the font size needs to be changed). The initial default font family is driver-specific
Courier (101).

Winteracter Starter Kit 137

Chapter 12 High Resolution Graphics

istyle selects the required font style. This can be changed without specifying any other
arguments, if required. Specifying zero will disable all. Omitting this argument leaves the
current style selection unchanged. When opaque text is enabled, the background of any
graphics text is filled using the last but one graphics color select€ai®plourN

Some minor qualifications apply to style selection:

The character generator used to draw software vector fonts uses double-width lines
when bold is enabled.

Underlining and opaque backgrounds work well with all GDI fonts, all software
fonts and non-GDI Courier style fonts. However, the underline and opaque
background extent is only guaranteed to be correct for non-GDI driver-specific
proportional fonts when software-based proportional spacing is selected.

width andheightspecify the required character cell size, expressed as a proportion of the
graphics area size. Hence, the physical font size will change if the graphics area size changes.
The initial default width and height are 0.013333 and 0.04 (chosen for backwards
compatibility reasons). iidth or heightare omitted, the most recently specified size is used.

nameallows any available Windows font to be specified by name, for use in GDI output,
providedifamily=100. It will be ignored, if present aifamily/=100.

ispaceallows specific font spacing to be enforced, dependent on which font family was
requested:

ispace=0 : Selects the 'native' spacing associated with a given font. This is the default
if omitted andfamily is present. This means monospaced text for the Courier font or
the Standard software vector font. Driver-specific proportional spacing is used when
ifamily=100 or 102. Software-based proportional spacing is selected when any soft-
ware font other than Standard is loaded.

ispace=1 : Selects fixed spacingifimily=1, 100 or 101. Native spacing is used
otherwise.

ispaces2 : Selects software based proportional spacirifgrifily=2, 100 or 102.

Native spacing is used otherwise. 'Software' spacing uses a built-in font-independent
character width table which can be updatetMgyrTextWidth . Due to the generic
nature of this width table, the quality of spacing may suffer, but this option has
certain specific benefits:

- WGrTextLength is guaranteed to give accurate results.

- The underlining extent of non-GDI proportional device-specific fonts is correct.

- The current graphics position is updated more accurately, giving better results if
the kpos,yposarguments are omitted when writing strings.

Spacing remains unchangedfémily andispaceare both omitted (e.g. if font size
only is specified).

Most fonts provide 8-bit ISO Latin-1 character sets (i.e. character codes 32-126 and 161-
255).

138 Winteracter Starter Kit

WGrTextLength Function

Portability notes

Windows: The Courier New and Arial TrueType fonts are used for families 101/102. Both
provide 8-bit Latin-1 character sets (except Symbol) and are fully rescalable.

X Windows: The Courier and Helvetica families are both supported under X Windows.
While rescaleable X fonts are used, these do not guarantee to give exactly the font size
requested. When a font of the required size (or a near equivalent) is not available, an outline
software font (and hence software spacing) is substituted. This also occurs under all
conditions for rotated (i.e. non-horizontal) text output. The supported X fonts are 8-bit ISO
Latin-1 fonts. Changing character size under X Windows, may require a new font file to be
loaded. Frequent character size changes should therefore be avoided where possible.

Example
CALL WGrTextFont(FFHelvetica)
CALL WGrTextString(0.5,0.8,'Helvetica/Arial’)
CALL WGrTextFont(FFCourier,FSBold+FSiltalic)
CALL WGrTextString(0.5,0.7,'Courier Bold/Italic’)
CALL WGrTextFont(FFUser,NAME='Comic Sans MS')
CALL WGrTextString(0.5,0.6,'User Defined')
CALL WGrTextFont(FFHelvetica,WIDTH=0.025,HEIGHT=0.08)
CALL WGrTextString(0.5,0.5,'Enlarged Arial’)
CALL WGrVFontTriplexRoman()
CALL WGrTextFont(FFSoftware, WIDTH=0.013,HEIGHT=0.04)
CALL WGrTextString(0.5,0.4,'Triplex Roman (vector)")
CALL WGrTextFont(FFDriver)
CALL WGrTextString(0.5,0.3,'Back to Arial’)

WGrTextLength Function

Description
Measure the length of a graphics text string.

Syntax
REAL WGrTextLength¢tringmethod

Arguments
CHARACTERSstring = String or character to measure

INTEGER, OPTIONALmethod= How to measure the string:
0 or omitted : Use 'best’ available method
1 : Force use of software character widths table

Winteracter Starter Kit 139

Chapter 12

High Resolution Graphics

Effect

When proportional spacing is enabled, this function returns the relative length of the
specified string, assuming the average character width is 1.0. When fixed spacing is enabled,
WGrTextLength(STRING) always returnREAL(LEN(STRING)) . Hence the result

of WGrTextLength multiplied bylnfoGraphics(3) always returns the width of the

string in user-units, regardless of which type of spacing is enabled.

Internally, this function will use one of two methods to measure a string when a
proportionally spaced font is currently selected. When a driver-specific font and 'native'
spacing is selecte?/GrTextLength will attempt to use the underlying API to measure the
string. When a software font or software spacing is in use, a generic internal widths table is
used. Which is most appropriate of these two methods varies depending on several factors,
soWGrTextLength will choose the 'best’ whenethod-0 or is omitted. Specifjnethod1

to force the software widths table to be used.

Example
CALL WGrVFontSwiss()
CALL WGrTextFont(FFSoftware)
I draw a box around a string
WIDTH = WGrTextLength(STRING)*InfoGraphics(3)
HEIGHT = InfoGraphics(4)
CALL WGrTextOrientation(AlignLeft)
CALL WGrTextString(X,Y+HEIGHT/2.0,STRING)
CALL IGrFillPattern(Outline)
CALL IGrMoveTo(X,Y)
CALL IGrLineTo(X+WIDTH,Y)
CALL IGrLineTo(X+WIDTH,Y+HEIGHT)
CALL IGrLineTo(X,Y+HEIGHT)
CALL IGrLineTo(X,Y)

WGrTextOrientation Subroutine

Description
Set graphics text alignment, rotation and direction

Syntax
WGrTextOrientationiglign,angle,idir,nangl¢

Arguments

INTEGER, OPTIONALialign = Alignment of graphics text strings
AlignLeft (0) : Left
AlignCentre (1) : Centre
AlignRight (2) : Right

140 Winteracter Starter Kit

WGrTextString Subroutine

REAL, OPTIONAL angle= Graphics text rotation angle
(degrees counter clockwise from horizontal)

INTEGER, OPTIONALIdir = Graphic text direction
DirHoriz (0) : Horizontal
DirVertic (1) : Vertical

INTEGER, OPTIONALnNalign = Reserved. Not used in WiSK.

Effect
Sets the alignment, angle of rotation and direction of graphics text. If any argument is
omitted, that setting remains unchanged. By default text is centred, unrotated and horizontal.

ialign determines how graphics text strings/numbers are aligned relative to a plotting position
Left aligned text is printed starting from a given position, right aligned text finishes at that
position and centred text appears either side of it. This is true of both horizontal and vertical
text and is independent of the current angle of rotation. In all cases 'left' and 'right' refer to
which end of the string is actually at the specified plotting position.

angledefines the angle at which graphics text strings/numbers are to be written. The angle is
measured in degrees counter clockwise from the horizontal, which is treated as zero. Hence,
an angle of 90 degrees would give sideways text which runs vertically from the bottom of the
graphics area toward the top.

idir specifies graphics text direction relative to the angle of rotation specifiaagbs i.e.
Vertical text is printed one character above the next, perpendicular to the base line defined
by the current rotation angle.

Example
CALL WGrTextOrientation(AlignLeft)
CALL WGrTextString(100.,100. This starts at (100,100)")
CALL WGrTextOrientation(AlignRight,0.0,DirVertic)
CALL WGrTextString(100.,150., This finishes at (100,150)")
CALL WGrTextOrientation(AlignCentre,180.0,DirHoriz)
CALL WGrTextString(200.0,200.0,'Upside down text !')
CALL WGrTextOrientation(ANGLE=90.0)
CALL WGrTextString(200.0,250.0,'Bottom to top')

WGrTextString Subroutine

Description
Output character string at an absolixtg) position.

Syntax
WGrTextStringkposyposstring)

Winteracter Starter Kit 141

Chapter 12

High Resolution Graphics

Arguments
REAL xpos= X co-ordinate

REAL ypos=Y co-ordinate

CHARACTERSstring = String to write

Effect

Outputsstring at kpos,ypop The plotting mode and color are as previously defined by
IGrPlotMode andIGrColourN . Font style, size and spacing are determined by
WGrTextFont . A monospaced Courier style font is used by default.

The position of the text relative tgdos,ypopis determined bWGrTextOrientation ,
as are the direction and angle of rotation of the string. By default, text is centre aligned, unro-
tated and horizontal.

When text is output horizontallyposspecifies a position half-way up a character. When
vertical output has been selectepipsspecifies a position halfway across a character. In left/
right justification mode the other co-ordinate specifies an extreme end of the string. These
rules apply regardless of the angle of rotation.

On exit the current plotting position is updated to a point within the next character cell after
the string which has been written. The exact position within the cell will depend on the
orientation selected BYWGrTextOrientation . (For the purposes of calculating this
plotting position, the final character cell after the output string is assumed to be a fixed width
cell, regardless of whether fixed or proportional spacing is currently selected.)

If either ofxposoryposare omitted, the corresponding current plotting position is used. This
allows text to be placed immediately after a previous string when using left alignment.

Text which would extend beyond the limits of the graphics area (as defitGddrga) is
clipped at the edge of that area. Text which would be completely outside the graphics area is
not printed.

Graphics text is normally transparent, i.e. it does not obliterate any underlying graphics.
SpecifyingFSOpaque in the font style t’WGrTextFont will cause graphics text to be
written with an opaque background in the color specified by the last but one call to
IGrColourN

Normal 'over-write' plot mode is recommended for vector-based software fonts. If text needs
to be plotted in exclusive-or mode (to allow it to be 'unplotted' later), use an outline software
font.

Text written by this routine can contain both 7-bit and 8-bit characters, as defined in the ISO
Latin-1 standard (i.e. character codes in the range 32-126 and 161-255). However, while very
widely supported, Latin-1 8-bit characters are not universally available on all devices or in
all fonts. Se&VGrTextFont .

142 Winteracter Starter Kit

WGrVFont* Subroutines

Example
CALL WGrTextString(100.0,200.0, This is centred at (100,200)")
CALL WGrTextOrientation(AlignLeft)
CALL WGrTextString(300.0,200.0, This starts at (300,200)")

WGrVFont* Subroutines

Description
Load vector software font data

Syntax
WGrVFontDuplexRomarigl)
WGrVFontStandardgl)
WGrVFontTriplexRomarigl)

Arguments
INTEGER, OPTIONALIgl = Reserved. Omit in VBK programs.

Effect

Each of these routines contains all of the font shape data for the corresponding vector
software font. Logically, these are exactly equivalent to the va¥iBgOFont* routines
except that the associated fonts are line based rather than filled outlines. They should be
called in combination witfWWGrTextFont .

Theigl argument is reserved for use with the full version aftéfacterand can be omitted.
Example
CALL WGrVFontStandard()

CALL WGrTextFont(FFSoftware,FSBold)
CALL WGrTextString(0.5,0.5,'Bold Standard vector font')

Winteracter Starter Kit 143

Chapter 12 High Resolution Graphics

144 Winteracter Starter Kit

@ General Functions

Group IF: Information

To help you find out exactly what facilities are available on the current system or to simply
interrogate the state of Weractervariables, a number of functions and subroutines are pro-
vided to return information to the calling program. In all cases one call to an IF group routine
returns one item of information.
The routines in this group fall into two categories:

INTERACTERompatible Info functions

Winteracterspecific Winfo routines

Logically there is no particular difference between these two sets of routines. Their names
simply differ to reflect the above separation.

In all cases, specifying an invalid information item number to an IF group routine returns an
undefined result.

InfoError Function

Description

Return error information.

Syntax
INTEGER InfoErroritem)

Winteracter Starter Kit 145

Chapter 13 General Functions

Arguments
INTEGERIitem = Number of information item required:

Table 14: Error Information jitems

Name No. Information
LastError 1 Last error set by Witeracter
(0 if no errors since last call tofoError(1))
IOErrorCode 5 I/O codt_a for last type 0r_2 error (fll_e open or
read/write error), otherwise undefined
OsErrorCode 3 Operating system error code
Effect

Returns information about the last error to be detected. If no errors have occurred since start-
up or since the last call tofoError , the last error is returned as zero. If several errors have
occurred since the last callltdoError , only the most recent error is returned.

A calltoInfoError also resets the corresponding error flag (depending on the vitkem)of
to zero. This feature can be used to clear the error flags, when your program is uncertain of
what errors may already have occurred.

If a typel or type2 error occurs (error on file/device open, read or write), a call witteam

value of2 returns the associated Fortran OPEN/READ/WRITE stater@&mAT value or
system 1/O routine error code. Th@STAT value will still be available if further 1/O is per-
formed or other non I/O errors occur. i.e., The error code for an I/O error remains available
until it is cleared by interrogatingfoError(2) or until another I/O error occurs.

item3 returns the error code set by internal operating system interface routines. Typically this
value will only be set wheitem 1 returns a value of 13 (Operating system command error).
This will be an internal operating system error code.As folf@M8T AT value described

above, this return code remains available until it is cleared by interrogatigror(3)

or until another o.s. error occurs.

Example
CHARACTER(LEN=6) :: STR
IERROR = InfoError(1) ! clear error flags first
ISTAT = InfoError(2)
CALL IGrCharSet(’badname.chr’) ! obsolete, used for illustration
IERROR = InfoError(1)
IF (ERROR==1.0R.IERROR==2) THEN
CALL WMessageBox(OKOnly,Stoplcon,1,'Error on load', &
'File Error")
ISTAT = InfoError(2)
END IF

146 Winteracter Starter Kit

InfoGraphics Function

InfoGraphics Function

Description
Return real graphics mode information.

Syntax
REAL InfoGraphicsitem)

Arguments
INTEGERIitem= Number of information item required:

Table 15: Graphics Mode Information jtems

Name No. Information
. CurrentX plotting position
GraphicsX 1 . . .
raphics (in user units as set iGrUnits)
GraphicsY 9 C_:urrentY pl_ottlng position .
(in user units as set IGrUnits)
. . Current character width
h hWidth - . -
GraphicsChWwidt 3 (in user units as set IGrUnits)
. . Current character height
GraphicsChHeight 4 . . .
raphicst-nrielg (in user units as set iGrUnits)
GraphicsAreaMinX 7 Left limit of main graphics area
GraphicsAreaMinY 8 Lower limit of main graphics area
GraphicsAreaMaxX 9 Right limit of main graphics area
GraphicsAreaMaxY 10 Upper limit of main graphics area
GraphicsUnitMinX 11 Lower X co-ordinate limit
GraphicsUnitMinY 12 LowerY co-ordinate limit
GraphicsUnitMaxX 13 UpperX co-ordinate limit
GraphicsUnitMaxY 14 UpperY co-ordinate limit
Effect

Returns certain REAL graphics mode parameters. These are generally dynamic values which
change depending on calls to other graphics routines. Seefa&ascreen which returns
INTEGER data, mainly describing the capabilities of the current display.

Winteracter Starter Kit 147

Chapter 13 General Functions

The current plotting position, as setli®MoveTo and other routines, is accessible using
itemvaluesl and2.

The current graphics text character sizenfs 3 and4) is derived from the size set using
WGrTextFont and converted to user plotting units. This can be useful in calculating the
extent of a graphics string to be output#grTextString

itenis 7 to 10 return the graphics area dimensions as most recently specif@dtea .
Similarly, items 11 to 14 return the user definable graphics area co-ordinates as most
recently specified t&GrUnits

Example
I write a blue string on a white background
CALL WGrTextFont(FFCourier)
WIDTH = FLOAT(LEN(STRING))*InfoGraphics(3)
HEIGHT = InfoGraphics(4)
CALL IGrMoveTo(X,Y)
CALL IGrColourN(223)
CALL IGrFillPattern(Solid)
CALL RECTANGLE(WIDTH,HEIGHT)
CALL WGrTextOrientation(AlignLeft)
CALL IGrColourN(159)
CALL WGrTextSTring(X,Y+HEIGHT/2.0,STRING)

InfoGrPalette Function

Description
Return 8-bit color palette information.

Syntax
INTEGER InfoGrPalette{em)

Arguments
INTEGERIitem = 8-bit color number

Effect

Returns the RGB value associated with color nuritbarin Winteractets device
independent 8-bit graphics color palette, as usd&hbgolourN when the 8-bit color
model is selected. These are the same color values which can be upd&deblstte

This information is available regardless of which color model (8-bit or 24-bit) is currently
selected.

The returned RGB value is encoded in the usual 24-bit format, which can be separated into
individual color components usiMyRGBsplit .

148 Winteracter Starter Kit

InfoGrScreen Function

InfoGrScreen Function

Description
Return graphics facilities information (screen).

Syntax
INTEGER InfoGrScreeritem)

Arguments
INTEGERitem= Number of information item required:

Table 16: Graphics Screen Information jtems

Name No. Information

ColNumAwvailable 30 Number of colors availablee
AspectRatio 32 Aspect ratio as a percentage
PrevColReq 34 Last but one requested graphics color
ColorReq 35 Most recently requested color
LineTypeReq 36 Most recently requested line type

Most recently requested plot mode
PlotModeReq 37 PlotNormal (0) = Normal/overwrite
PlotEor (3) = Exclusive-or

Col24Bits 42 24-bit color specification supported (0=no 1=yes)

Effect

Returns information about the graphics facilities available on the current display in the cur-
rent mode. The value returned is an INTEGER.

itemnumber 30 return the number of selectable colorsiG&eolourN for details of how
this is determined).

item32 returns the aspect ratio of the current drawable as a percentage. For example, in a win-
dow with an aspect ratio of 1.4, a value of 140 would be returned. This aspect ratio is used
internally by Wnteracterwhen drawing circles, but can also be useful in applications which
require a shape to be rotated without distortion.

itenis 34 and 35 return the last two color numbers which have been requested. The color
returned byitem 34 is only used in mixed-color fills.

Winteracter Starter Kit 149

Chapter 13 General Functions

item's 36 and 37 returns the last line type and plot mode requesti@ariiaeType and
IGrPlotMode

item42 reports support for 24-bit color specification. This will report 1 on a display with
more than 256 colors, or 0 otherwise. In the former case, use of the 24-bit color model is
available and recommended (3€eColourModel). If zero is returned, the 24-bit color
model can still be used, but the 8-bit color palette will be used internally.

WiInfoDialog Function

Description
Return dialog information.

Syntax
INTEGER WInfoDialog{tem)

Arguments
INTEGERIitem= Number of information item required.

Table 17: Dialog Information items

Name No. Information
ExitButton 1 Ipc:ieerétiILeordcgl l()leJ;tlgr; used to terminate program-sup-
ExitField 2 Current field when modal dialog terminated
CurrentDialog 3 Identifier of current dialog, O = none
ExitButtonCommon 4 Button used to terminate common dialog (0-2)
DialogXPos 6 Current dialog X position
DialogYPos 7 Current dialog Y position
DialogWidth 8 Current dialog width
DialogHeight 9 Current dialog height
Current dialog type
1o | DcoEome () Fomun daco
DialogCombined (4) : Combined with a window

150 Winteracter Starter Kit

WinfoDialog Function

Effect

Returns dialog informatioiiteris 1-4 are available after a modal or common dialog function
call has terminatedtenmis 6-9 are available for currently visible modeless or semi-modeless
dialogs.

item1 returns the identifier of the push button used to exit a program supplied modal dialog.
If an error occurred in the dialog, -1 is returned. Commonly used identifier$di@©K.and
IDCANCELwhich are typically attached to the OK and Cancel buttons) are defined in the
WINTERACTERnodule. See thBushButton message und&/Messagefor a list. The

actual button codes will depend on the definition of the particular dialog.

item2 returns the identifier of the last active field before a dialog terminated. This can be use-
ful if a Help button is pressed, to provide context sensitive help. This return value is not
available for common dialogs.

item 3 returns the current dialog identifier, as seWiyialogLoad orWDialogSelect
Note, this is not necessarily the same as the dialog that has the current input focus.

item4 returns a code which indicates which button was used to terminate a common dialog
in the CD group:

Table 18: Common Dialog Termination Codes

Name No Button
CommonCancel 0 Cancel
Commonlgnore 0 Ignore
CommonOK 1 OK
CommonOpen 1 Open
CommonYes 1 Yes
CommonRetry 1 Retry
CommonAbort 2 Abort
CommonNo 2 No

itenis 6 and 7 return the position of the current dialog as selecttDinlogLoad or
WhDialogSelect . The returned values are in pixels relative to the top left corner of the
screen for a popup dialog. For a child dialog, the returned values alatiersi¢terwindow
units, relative to the top left corner of the root window.

itenis 8 and 9 return the width and height of the current dialog, in the same utdte &6
and 7.

Winteracter Starter Kit 151

Chapter 13

General Functions

item 10 determines if the current dialog is a popup or child dialog or is combined with a
window.

Example
CALL WDialogLoad(ID_DIALOG1)
CALL WDialogShow(ITYPE=Modal)
IF (WinfoDialog(ExitButton)==IDOK) THEN
CALL WhDialogGetString (IDC_STRING1,CVALUE)
END IF
CALL WDialogUnload()

WIinfoDrawable Function

Description
Return drawable information.

Syntax
INTEGER WInfoDrawablatem)

Arguments
INTEGERIitem= Number of information item required

Table 19: Drawable Information items

Name No. Information
DrawableType 1 Type (1=window 3=dialog field)
DrawablelD 2 Handle/identifier
DrawableWidth 3 Width in pixels
DrawableHeight 4 Height in pixels

Effect

Returns information about the current target graphics drawable, as selelste8&iect
itens 1 and 2 return the drawable’s type and handle/identifier as ¥8t®glect

itenis 3 and 4 return the drawable’s pixel dimensions.

152 Winteracter Starter Kit

WIinfoScreen Function

WInfoScreen Function

Description

Return screen information.

Syntax
INTEGER WInfoScreeri{em)

Arguments
INTEGERIitem= Number of information item required

Table 20: Screen Information items

Name No. Information

ScreenWidth 1 Screen Width

ScreenHeight 2 Screen Height

ScreenColours 3 Number of screen colors
Effect
Returns information about the current screen. This information is available immediately after
Winitialise has been called, allowing the results of this function to be used to determine

the required root window size.

itens 1 and 2 return the screen resolution, in pixels, for the video mode which was selected
whenWiInitialise was called. If a dynamic video mode changer (e.g. QuickRes) is used
subsequently, the new screen dimensions will not be updated.

item 3 returns the total number of screen colors available in the current screen mode when
Winitialise was called. Note this is different to the number of colors used by
Winteractergraphics. SetsrColourN

Example
CALL Winitialise()
ISCRWID = WInfoScreen(1) ! Get screen width
ISCRHGT = WInfoScreen(2) ! Get screen height
CALL WindowOpen(WIDTH=ISCRWID=2,HEIGHT=ISCRHGT/3) ! Open window

Winteracter Starter Kit 153

Chapter 13 General Functions

WIinfowindow Function

Description
Return window information.

Syntax
INTEGER WInfoWindowi{tem)

Arguments
INTEGERIitem= Number of information item required.

Table 21: Window Information items

Name No. Information
WindowWidth 1 Current window width
WindowHeight 2 Current window height
OpenFlags 3 Window style flags
WindowHandle 4 Current window handle
WindowXPos 5 Current window X position
WindowYPos 6 Current window Y position
ClientXPos 7 Current window client-area X position
ClientYPos 8 Current window client-area y position
Current window state :
wdousiae | o | minmsed (0 mnised
WinMaximised (2) : maximised
Window type:
WindowType 10 | WinStandard (0) : standard window
WinDialog (3) : combined window/dialog
Effect

Returns window related information.

itens 1 and 2 return the dimensions of the current root or child window as selected by
WindowSelect , WindowOpen or WindowOpenChild . The returned values are in

pixels.

154 Winteracter Starter Kit

Group OS: Operating System Interface

item 3 returns thélagsvalue specified in the origin&/indowOpen or
WindowOpenChild call.

item4 returns the \Mteracterhandle of the current window. This will be zero for the root
window or 1-20 for a child window.

itens 5 and 6 return the position of the current root or child window as selected by
WindowSelect , WindowOpen or WindowOpenChild . The returned values are in

pixels relative to the top left corner of the screen for a root or floating child window. For an
'inside parent’ child window, the returned values are intéfacterwindow units, relative

to the top left corner of the parent window.

items 7 and 8 return the position of the top left corner of the ‘client' area of the current win-
dow (i.e. the drawable area within the frame). This is always expressed in pixels relative to
the corner of the screen.

item9 returns the minimised/normal/maximised state of the currently selected window.

item 10 identifies the type of the current window. A basic window which has not been com-
bined with a dialog is reported as a 'standard’ window (0). Such a window will be selectable
as a target graphics drawable.

Portability notes
X Windows: Item 9 is not implemented, since this information is not available.

Example
IWINWID = WInfoWindow(1) ! Get parent window width
IWINHGT = WinfoWindow(2) ! Get parent window height
I Set child to half width/height of parent
CALL WindowOpenChild(IHANDLE,WIDTH=IWINWID/2,HEIGHT=IWINHGT/2)

Group OS: Operating System Interface

The routines in this group provide access to environment variabatiable) and
allow controlled program termination with a messag@egxitProgram).

|OsEXxitProgram Subroutine

Description
Abort program with an error message and error code.

Syntax
IOsExitProgramérrmesiexcod

Winteracter Starter Kit 155

Chapter 13 General Functions

Arguments
CHARACTERerrmes= Error message to display to the user.

(if blank, error message display is suppressed)

INTEGERIiexcod= Exit code to return to operating system

Effect

Aborts the current program, with the message string 'Abnormal exit (code nn)' followed by
the supplied error message. This routine is designed to be used when an unexpected fatal
error is encountered. #rrmesis blank, the program terminates without a message.

In general it is recommended that exit codes greater than 20 are used. Codes from 1 to 20 are
reserved for use by Weracter

If you wish to leave a program immediately without issuing either an error message or a non-
zero exit code, simply supply a blank error message aiekemdvalue of zero.

Portability notes
Windows: The 'Abnormal exit' message is displayed in a standard message box. The
supplied exit code is then returned to Windows via the API ExitProcess function.

Linux: The 'Abnormal exit' message is written to standard output. The supplied exit code is
returned to the shell via the C library exit function. The special shell variables $? (Bourne
shell) or $status (C shell) will contain the program exit code.

Example
LOGICAL :: EXISTS
INQUIRE(FILE="mydata.dat’,EXIST=EXISTS)
IF (NOT.EXISTS) CALL IOsExitProgram('Data file not found’,21)

|OsVariable Subroutine

Description
Return the value of an operating system environment variable.

Syntax
IOsVariableynamevalug

Arguments
CHARACTERvname= Name of variable to interrogate

CHARACTERVvalue = Returned value (blank if not found)

156 Winteracter Starter Kit

Group MI: Miscellaneous

Effect
Returns the value of the specified environment variable. If the specified variable name has
not been initialized or has no valualuewill be returned blank.

Portability notes

Windows: |I0sVariable returns environment variables as assigned using the SET
command (or Control Panel, under Windows NT). The operating system converts all variable
names to upper case, so the supplied variable maamemust also be in upper case. When
defining environment variables using SET, avoid trailing spaces between the variable name
and the '=' since these will be treated as part of the variable i2siariable strips

trailing blanks from the supplied variable name.

An error code will be set if the return buffalueis too smallvalueis returned blank in this
case.

Linux: If the C shell (csh) is in use it is important to distinguish between environment
variables and operating system variabl®sVariable returns environment variables,

which are assigned in the C shell usinggetenv command. If the 'bash’ shell is used,
environment variables can be assigned using commands of the form :

export VARNAME-=string

Errors
ErrBufferSize (1023) valueis too small

Example

CHARACTER (LEN=80) :: FILNAM

CALL |OsVariable(DEFDATA',FILNAM)

IF (IActualLength(FILNAM)>0) THEN
OPEN(20,FILE=FILNAM,STATUS="0OLD')

ELSE
OPEN(20,FILE="default.dat',STATUS="OLD')

END IF

Group MI: Miscellaneous

This group is for routines which have no obvious home elsewhere.

The most important routine in this group/A#nitialise . It must be called in every
Winteracterprogram before opening a window.

OpenGL graphics can be enabledWglSelect . The associated/glSwapBuffers
routine exchanges the front/back buffers when double buffered OpenGL output is enabled.

WCursorShape allows the mouse cursor to be selected from various pre-defined shapes or
a user defined cursor can be specified.

Winteracter Starter Kit 157

Chapter 13 General Functions

Color values can be converted to/from 24-bit RGB integer color values\W$tfAand
WRGBsplit .

WindowBell is provided to ring the bell and to control whether other routines ring the bell.

WCursorShape Subroutine

Description

Select shape of mouse cursor

Syntax

WCursorShapéghapg

Arguments

INTEGERIishape= Mouse cursor shape

Table 22:
Name no. Cursor Type
CurArrow 0 Standard arrow
CurHourGlass 1 Hourglass
CurSmallHour 2 Standard arrow/small hourglass
CurCrossHair 3 Crosshair
CurlBeam 4 Text I-beam
CurCircle 5 Slashed circle
CurFourPoint 6 Four pointed arrow (N/S/E/W)
CurDoubleNS 7 Double pointer (N to S)
CurDoubleEW 8 Double pointer (E to W)
CurDoubleNESW 9 Double pointer (NE to SW)
CurDoubleNWSE 10 Double pointer (NW to SE)
Cur\Vertical 11 Vertical arrow

101+ | User defined cursor

158 Winteracter Starter Kit

WFlushBuffer Subroutine

Effect

Selects the mouse cursor shape. The mouse cursor is updated immediately provided it is
within one of the application’s windows or in a user-drawn picture/frame dialog field (i.e. a
field which has been selected for graphics outputGi&elect).

ishapecan either specify a pre-defined cursor or the identifier of a user defined cursor. The
latter should be defined in the program's resource script. User-defined cursors can be created
using the resource editor.

Identifiers of user defined cursors must be greater than 11. We recommend values greater
than 100, to allow for the possible introduction of additional pre-defined cursor types in
future.

If a specified user defined cursor does not exist, the standard arrow cursor

Portability notes

X Windows: User defined cursor (101+) are not currently supported under X.

Example
CALL WCursorShape(CurHourGlass)
I... Do some data processing

CALL WCursorShape(CurArrow) ! Restore cursor shape

WFlushBuffer Subroutine

Description

Flush X Windows screen output buffer.

Syntax
WFlushBuffer()

Effect

Flushes the screen output buffer to synchronise the application and the display under X
Windows. It has no effect under Windows. It will rarely be necessary to call this routine, but
it may be required before performing a time consuming operation.

Winteracter Starter Kit 159

Chapter 13

General Functions

Example
CALL WGrTextString(.5,.5,'Hang on while | crunch some numbers!’)
CALL WFlushBuffer()
CALL CRUNCH()

WoglSelect Subroutine

Description
Enable/disable OpenGL graphics

Syntax

WglSelectitarget,ident,iflag$

Arguments

INTEGERitarget = Target drawing surface for OpenGL graphics
Disabled (0) : None
DrawWin (1) : Window
DrawField (3) : Dialog field

INTEGER, OPTIONALident= Window handle or field identifier

INTEGER, OPTIONALIflags = Flags controlling type of OpenGL support. Sum of:
wglColourindex (1) : Colour index model (default=RGBA)
wglDoubleBuffer (2) : Double buffering (default=single buffering)

Effect

Selects the target drawing surface for OpenGL graphics. Specifying a zero target drawable
disables OpenGL graphics. Only one target drawable may be selected for OpenGL graphics
output at any one time. If OpenGL graphics are already enabled on another drawable,
OpenGL output to that drawable is automatically disabled.

WglSelect is logically similar todGrSelect . It allows OpenGL output to be routed to
the following types of target drawable:

itarget=1 : Enables OpenGL graphics output to the specified winidient must specify a
valid window handle, as returned WindowOpenChild , or zero for the root window. If

the window handle is omitted, the currently selected window becomes the target OpenGL
drawable.

itarget= 3 : To draw OpenGL graphics into a dialog field, of any type, specify the field iden-
tifier in ident This must identify a field in the current dialog. If no identifier is specified or
identis zero, the whole of the current dialog becomes available for OpenGL graphics. It
should be noted that dialog fields drawn in this way must be maintained by the calling pro-
gram. Normal dialog fields will be repainted automatically, but it is the callers responsibility

160 Winteracter Starter Kit

WglSelect Subroutine

to repaint 'user drawn' fields. TExpose message reported byMessageallows for this
possibility. Dialog fields selected for OpenGL output need to be visible at the point when out-
put occurs.

Drawing to the whole dialog (i.&dentomitted or zero) introduces one complication under
Windows. By default this will cause OpenGL graphics to overwrite any fields in the dialog
window. If the 'Clip Fields' option is selected (see the Dialog Properties dialog in the resource
editor), graphics will not overwite field contents, effectively drawing to the 'background' of
the dialog. However, when 'Clip Fields' is enabled, the background of any group boxes
become transparent causing rear windows to become visible through the dialog. We therefore
do not recommend whole-dialog drawing (and hence the use of Clip Fields) with dialogs
which contain group boxes. Under X Windows programs always behave as though the 'Clip
Fields' option were enabled.

itarget= 0 : This option disables OpenGL output. The other arguments can be omitted in this
case. Be sure to call this option when OpenGL output is complete.

Specifying an invalid identifier/handle ident whenitarget=1 or 3, will cause error code
1019 to be set and OpenGL graphics will be disabled.

If the initialisation of OpenGL graphics fails for some reason other than iddmatdalue,
error code 1035 is set and a platform-specific error code will be available via
InfoError(3)

The initialisation of OpenGL graphics can be modified viaftags argument. This is the
sum of the following settings:

wglColourindex : By default the RGBA color model is used. Setting this flag enables
the alternative Color Index model.

WglDoubleBuffer : By default single buffered output is used, which is appropriate for
static graphics displays. If animation is required, selecting this option will enable double
buffering.

A selection of OpenGL demos are provided irSK's OpenGLdirectory. For more
information about OpenGL graphics refer to "Graphics Interfaces : OpenGL" section in the
WiSK on-line help file.

Example
USE WINTERACTER

USE OPENGL
I

CALL WglSelect(DrawWindow) ! Select current window for OpenGL
CALL draw_my_OpenGL_image() ! Draw OpenGL image
CALL WglSelect(Disabled) ! End OpenGL output

Errors
ErrBadTarget (1019) Unknown target window handle

Winteracter Starter Kit 161

Chapter 13 General Functions

ErrOpenGLlInit (1035) OpenGL initialization failed

WglSwapBuffers Subroutine

Description
Swap front/back OpenGL buffers

Syntax
WglSwapBuffers()

Effect

Swaps the front/back buffers in double buffered OpenGL graphics output. This routine will
normally only be used in animated OpenGL graphics to update the next frame of the
animation.

Example
USE WINTERACTER

USE OPENGL
!

CALL WglSelect(DrawWindow,0,wglDoubleBuffer)
1

CALL glPopMatrix()
IF (doubleBuffer) THEN
CALL WglSwapBuffers()
ELSE
CALL glFlush()
END IF

WindowBell Subroutine

Description
Ring/enable/disable the bell.

Syntax
WindowBell(onoff

Arguments
CHARACTERonoff = 'ON'or 'OFF’ to enable/disable the bell

Any other value to ring bell if currently enabled

162 Winteracter Starter Kit

Winitialise Subroutine

Effect

By default the bell is enabled so a cal\WindowBell with a blank argument would ring

the bell. However, in some environments the bell can become irritating if used frequently. To
stopWindowBell producing any sound, the on/off option is provided. This simply controls
the action taken bwindowBell when an argument other than 'ON' or 'OFF' is supplied.

Example
LOGICAL :: ENABLE_BELL
IF (ENABLE_BELL) THEN
CALL WindowBell('ON')
ELSE
CALL WindowBell('OFF")
END IF
I now check state of bell
CALL WindowBell(")

Winitialise Subroutine

Description
Initialize Winteracter.

Syntax
Winitialise(initfile)

Arguments
CHARACTER, OPTIONALiInitfile = Initialization file name (not used in Starter Kit)

Effect
Winitialise must be called to initialize the library before calling any othett&vacter
screen i/o routines.

initfile can be omitted when linking with the Starter Kit version afitéfacter

Winitialise identifies the current screen dimensions and number of available screen
colors. This information then becomes availabléMafoScreen . This information may
prove useful when selecting the initial window size/position in the subsequent call to
WindowOpen. Bear in mind thatVinitialise performs no screen output and does not
open a window. That is the task\WindowOpen and the other \Wteracterroutines.

This routine should only called once per program run. Subsequent dAllgit@lise
will therefore be ignored and no values will be altered.

Winteracter Starter Kit 163

Chapter 13 General Functions

Example
PROGRAM
! Variables, modules, etc. here
CALL Winitialise() ! Initialize

I Winteracter program code

STOP
END PROGRAM

WRGB Function

Description
Convert (r,g,b) triplet into a 24-bit integer color value.

Syntax
INTEGER WRGB;r,ig,ib)

Arguments
INTEGERIr = Red component (0-255)

INTEGERIig = Green component (0-255)
INTEGERIb = Blue component (0-255)

Effect

Packs the supplied red, green and blue values into a 24-bit RGB color value, as used by most
Winteractercolor handling routines.

TheWINTERACTERodule pre-defines names for eight primary color values which can be
used in place dWRGPnamelyRGB_BLACKRGB_REDRGB_GREENRGB_YELLOW
RGB_BLUERGB_MAGENTRGB_CYAMNIRGB_WHITE

Example
IRGB = WRGB(200,255,200) ! pale green
CALL IGrColourModel(24)
CALL IGrColourN(IRGB)
I
IRGB = WRGB(255,0,0) !these statements have
IRGB = RGB_RED I'an identical effect

164 Winteracter Starter Kit

WRGBSsplit Subroutine

WRGBsplit Subroutine

Description
Split a 24-bit integer color value into an (r,g,b) triplet

Syntax
WRGBsplittghb,ir,ig,ib)

Arguments

INTEGERrgb = 24-bit color value

INTEGER, OPTIONALIir = Returned red component (0-255)

INTEGER, OPTIONALIg = Returned green component (0-255)

INTEGER, OPTIONALIib = Returned blue component (0-255)

Effect

Splits the supplied 24-bit RGB color value into its component red, green and blue values.

Each of the individual color component arguments is optional, so it is only necessary to
retrieve those which are required.

Example
I get green component from a screen pixel
IRGB = IGrGetPixel(X,Y)
IF (IRGB /= -1) CALL WRGBSsplit(IRGB,IG=IGREEN)

Group CH: Character Manipulation

The routines in this group are not strictly user interface functions. However, since any Ul
code involves considerable manipulation of textual information, they provide useful basic
facilities such as string to numeric conversion, sub-string location, case conversion and so on.

IFillIString Subroutine

Description
Fill a character string with a given character.

Syntax
IFillString(string,chr)

Winteracter Starter Kit 165

Chapter 13 General Functions

Arguments
CHARACTERSstring = String to be filled

CHARACTERCchr = Character to fill string with (note: only first charactecbf is used)

Effect
Fills the whole ofstring with the first character afhr.

Example
CHARACTER (LEN=80) :: STARS
CALL IFillString(STARS,"*)

|JustifyString Subroutine

Description
Justify a string within a character variable.

Syntax
IJustifyStringétring,lcr)

Arguments
CHARACTERSstring = Variable containing string to justify (also receives returned string)

CHARACTERIcr = Justification required:
='L': Left justify (upper or lower case)
='C': center justify (default)) (upper or lower case)
= 'R : Right justify (upper or lower case)

Effect
Justifies a string within the character variable which holds it.

Note that in the sense used here, a "string" is defined as all characters from the first non-blank
character to the last non-blank character within the character vestdahte Since

[JustifyString justifies the string within the supplied variable itsstfing must be
passed as a variable rather than as a literal strieggiry is blank,lJustifyString takes
no action.

166 Winteracter Starter Kit

ILocateChar Function

Example
CHARACTER (LEN=14) :: TITLE
TITLE ="' Test Results '
CALL lJustifyString(TITLE,'L")
I variable TITLE will now contain: 'Test Results '
CALL JustifyString(TITLE,'C’)
I variable TITLE will now contain: ' Test Results '
CALL JustifyString(TITLE,'R’)
I variable TITLE will now contain: ' Test Results'

ILocateChar Function

Description
Locate position of first non blank character.

Syntax
INTEGER ILocateChasfring)

Arguments
CHARACTERSstring = String to search

Effect
Locates and returns the position (an INTEGER) of the first non-blank/non-null character
within string. If the string contains only blanks and nulls, zero is returned.

Example
CHARACTER (LEN=20) :: FILNAM

CALL WDialogGetString(ID_FILE,FILNAM)
IPOS1 = |ILocateChar(FILNAM)

ILocateString Subroutine

Description
Locate position of first non blank sub-string.

Syntax
ILocateStringstring,istart,iend)

Arguments
CHARACTERSstring = String to search

Winteracter Starter Kit 167

Chapter 13 General Functions

INTEGERIistart = Start position of first non-blank string
INTEGERIiend= End position of first non-blank string

Locates the first sub-string withstring, returning the start and end positionsstart and

iend If stringis blankistart andiendare returned as zero. This routine is similar to the
functionlLocateChar except here the start and end positions are returned, rather than just
the start position.

Example
CHARACTER (LEN=80) :: STRING
READ(LFN,'(A80)) STRING
CALL ILocateString(STRING,ISTART,IEND)
IF (ISTART>0) &
CALL WindowOutString(100,300, &
'First substring is //STRING(ISTART:IEND))

ILowerCase Subroutine

Description
Convert a string to lower case.

Syntax
ILowerCasegtring)

Arguments
CHARACTERSstring = String to be converted to lower case

Effect
Converts any upper case characterstiiimg to lower case.

Example
CHARACTER (LEN=10) :: STRING
STRING ="'ABCDE12345'
CALL ILowerCase(STRING)
I string should now be abcde12345

IntegerToString Subroutine

Description
Convert an integer value to a string.

168 Winteracter Starter Kit

IStringTolnteger Subroutine

Syntax
IntegerToString{aluestring,frmat)

Arguments
INTEGERIivalue = Value to convert to a string
CHARACTERSstring = Character variable to receive numeric

CHARACTERfrmat = Character string defining format to use
(a bracketed expression as in a Fortran FORMAT)

Effect
Converts an INTEGER value into a string using the specified Fortran format. If an error
occurs, (e.g.valueis too largektring is filled with asterisksintegerToString is the

reverse ofStringTolnteger

Example
CHARACTER (LEN=5) :: CHR
| =100
CALL IntegerToString(l,CHR,'(I5)")
CALL WindowOutString(IX,1Y,CHR)

Errors
ErrNumToStr (18) Numeric-to-string conversion error.

IStringTolnteger Subroutine

Description
Convert a string to an integer value.

Syntax
IStringTolntegergtring,ivalue)

Arguments
CHARACTERSstring = String containing number to be converted.

INTEGERIivalue = Value to be returned

Effect

Converts the first substring sfring into an integer value. The numericsitning must be a
valid INTEGER, optionally including a leading- sign. If an error occurs during conver-
sionivalueis returned as zero and the error flag isiSeingTolnteger is the reverse of
IntegerToString

Winteracter Starter Kit 169

Chapter 13 General Functions

Example

CHARACTER (LEN=80) :: LINE

CHARACTER (LEN=10) :: VALSTR

CALL WDialogGetString(IFIELD,LINE)

CALL IStringTolnteger(LINE,IVALUE)

IF (InfoError(1)>0) THEN
CALL WindowOutString(1X,1Y,'Wrong !I")

ELSE
CALL IntegerToString(IVALUE,VALSTR,'(110)")
CALL WindowOutString(IX,Y,'Value = '//VALSTR)

END IF
Errors
ErrLargeNum (4) Number too large (exceeds 4-byte INTEGER limits)
ErrNoSubstring (10) No substring foundstring is blank)
ErrBadChar (12) Invalid character detected (i.e. 23456789 or

leading+/-)

IUpperCase Subroutine

Description
Convert a string to upper case.

Syntax
IUpperCasegtring)

Arguments
CHARACTERSstring = String to be converted to upper case

Effect
Converts any lower case characterstiing to upper case.

Example
CHARACTER (LEN=10) :: STRING
STRING ="abcde12345'
CALL IUpperCase(STRING)
I string should now be ABCDE12345

170 Winteracter Starter Kit

Group OB: Obsolete Routines

Group OB: Obsolete Routines

This group collects together a handful of routines which are now obsolete, but retained for
backwards compatibility. In the main these are routines which were provided for
INTERACTERompatibility or routines for which a better calling interface now exists. We
recommend that these routines should not be used in new code and that existing usage be
eliminated when convenient.

|ActualLength Function

Description
Return actual length of string excluding trailing blanks or nulls.

Syntax
INTEGER IActualLengthgtring)

Arguments
CHARACTERSstring = String to search

Effect

Returns the actual length of the character string hedttiimg, excluding any trailing spaces
or nulls. If the string is completely blank, (i.e. only contains spaces and/or nulls) zero is
returnedlActualLength offers an alternative to the Fortranl9BN_TRIM intrinsic
which treats nulls as significant characters. It is mainly included for the sake of
INTERACTERompatibility. Use oLEN_TRIMis normally recommended.

IGrCharJustify Subroutine

Description
Select graphics text justification.

Syntax
IGrCharJustifyjustif)

Arguments

CHARACTERjustif = Justification mode for graphics text output:
= C: centered (default)
=L: Left justified
=R Right justified

Winteracter Starter Kit 171

Chapter 13 General Functions

Effect

Sets the justification to be used when outputting graphics ted&ndaarOut . This routine
has been superseded\WMGrTextOrientation

IGrCharLength Function

Description
Measure the length of a graphics text string.

Syntax
REAL IGrCharLengthgtring)

Arguments
CHARACTERSstring = String or character to measure

Effect

When proportional spacing is enabled, this function returns the relative length of the
specified string. This routine has been supersed&®yTextLength .

|IGrCharOut Subroutine

Description
Output character string at an absolixtg) position.

Syntax
IGrCharOutkposyposstring)

Arguments

REAL xpos= X co-ordinate

REAL ypos=Y co-ordinate
CHARACTERSstring = String to write

Effect

Outputsstring at the graphics co-ordinat&pos ypo9 . This routine has been superseded by
WGrTextString

172 Winteracter Starter Kit

IGrCharSet Subroutine

IGrCharSet Subroutine

Description
Select graphics character set to use for text output.

Syntax
IGrCharSetijinam)

Arguments

CHARACTERfilnam = Filename or string describing character set to use
='H or h': select hardware-dependent text (TrueType fonts)
="'" :load/select default software character set
="' filename : load software character set frditehame

Effect

Selects the character set to be used by future cats@barOut to output graphics text.
This routine has been superseded\i@rTextFont and the variou§VGrOFont/
WGrVFont routines.

IGrCharSize Subroutine

Description
Select graphics text size.

Syntax
IGrCharSizexsizeysizg

Arguments
REAL xsize= Character width 1(0 = base character width, equivalent to 75 per line)

REAL ysize= Character height 10 = base character height, equivalent to 25 per column)

Effect

Sets the size of characters printed@CharOut . Width/height values df.0 give standard

size text, corresponding to 75 columns by 25 rows. This character size is independent of
window size, ensuring a consistent character size, regardless of the resolution of the display.
This routine has been superseded by the width and height argum@f@sTextFont .

Winteracter Starter Kit 173

Chapter 13 General Functions

IGrCharSpacing Subroutine

Description
Select fixed or proportional spacing for graphics text.

Syntax
IGrCharSpacingdixprop)

Arguments
CHARACTERfixprop = Required character spacing:
= F: Fixed (default) (can be upper or lower case)
= P: Proportional (can be upper or lower case)
Effect

Selects fixed or proportional character spacing. This routine has been superseded by
WGrTextFont .

IGrGetPixelRGB Subroutine

Description
Read a screen pixel color value as an (r,g,b) triplet

Syntax
IGrGetPixelRGBxposyposired,igreeniblue)

Arguments

REAL xpos= X co-ordinate

REAL ypos=Y co-ordinate

INTEGERIred = Red component of specified point355)

INTEGERIigreen= Green component of specified poiot265)

INTEGERIiblue = Blue component of specified poird-255)

Effect

Returns the color of the specified co-ordinate in the current drawable ragl@rirfplet. The

(x,y) co-ordinate should be expressed in the normal user units as Katrigs .If the
specified co-ordinate lies outside the graphics area the RGB value is returned as (4,4,1).

This routine has been superseded by @r&etPixel function.

174 Winteracter Starter Kit

IGrPaletteRGB Subroutine

IGrPaletteRGB Subroutine

Description
Redefine 8-bit color palette using an (r,g,b) triplet

Syntax
IGrPaletteRGB{color,ired,igreeniblue,ipos}

Arguments

INTEGERNcolor = Logical color number to which an actual color is to be assigned (same
numbering scheme &SrColourN)

INTEGERIired = Amount of red to assign to displayed colm25)
INTEGERIigreen= Amount of green to assign to displayed cobegs)
INTEGERIblue = Amount of blue to assign to displayed co@eg5)
INTEGERIpost = Postpone palette realisation on 256 color screen (0=no 1=yes)

Effect

Controls the 8-bit graphics color palette, using an (r,g,b) color triplet value. This routine has
been superseded b@rPalette which uses a 24-bit color value instead.

IGrPause Subroutine

Description
End of picture.

Syntax
IGrPausedction

Arguments
CHARACTERaction= String describing required action (default is clear window)
= P": Preserve contents of graphics window

Effect

Sounds the bell and optionally clears the graphics window. This routine is included for
INTERACTERcompatibility. There is little benefit in using it iniiferacterapplications.

Winteracter Starter Kit 175

Chapter 13 General Functions

WindowClearArea Subroutine

Description
Clear part of a window

Syntax
WindowClearAreaiktopl,iytopl,ixbotr,iybot)

Arguments

INTEGERIxtopl = Top left corner x co-ordinate
INTEGERIytopl = Top left corner y co-ordinate
INTEGERixbotr = Bottom right corner x co-ordinate
INTEGERIiybotr = Bottom right corner y co-ordinate

Effect

Clears the specified area of the current window to the currently selected background color.
WindowClear now incorporates the functionality of this routine.

WindowOutString Subroutine

Description
Write text to a window

Syntax
WindowOutStringix,iy,string

Arguments

INTEGERIx = Horizontal start position (0-9999)
INTEGERIy = Vertical start position (0-9999)
CHARACTERSstring = String to write

Effect

Outputsstringto the currently selected window, starting at the specified window co-ordinate,
in the font selected byindowFont . Text which extends beyond the right edge of the win-
dow will be truncated.

176 Winteracter Starter Kit

WindowStringLength Function

WindowsStringLength Function

Description
Measure a string in window units

Syntax
INTEGER WindowStringLengtlstring)

Arguments
CHARACTERSstring = String to measure

Effect

Returns the length of the supplied string using the current font characteristics selected by
WindowFont , in terms of Wihteracterunits for the current window.

WindowFont Subroutine

Description
Select font and font attributes

Syntax
WindowFontfont)

Arguments
WIN_FONT font = Structure describing font characteristics

Winteracter Starter Kit 177

Chapter 13 General Functions

TYPE WIN_FONT
INTEGERifontnum = Font number (0-6)
INTEGERIiwidth = Average font width
INTEGERiheight = Font height

INTEGERIbold = Bold (0=no 1=yes)
INTEGERItalic = Italics (0=no 1=yes)
INTEGERiunder = Underlined (0=no 1=yes)
INTEGERIfcol = Foregound color (-1 or 0-16)
INTEGERIibcol = Background color (-1 or 0-16)

END TYPE WIN_FONT

Table 23: Font Numbers

Symbolic Name Number | Windows Font X Windows Font

SystemProp 0 System Proportional Lucida *

SystemFixed 1 System Fixed 6x13

TimesNewRoman 2 Times New Roman Times Roman
Effect

Sets the characteristics of the font to be used in future caN$ntdowOutString

This routine has been superseded\i@rTextFont .

WIinfoFont Function

Description
Return font information.

Syntax
INTEGER WInfoFontitem)

178 Winteracter Starter Kit

WMenuRoot Subroutine

Arguments
INTEGERIitem= Number of information item required.

Table 24: Font Information items

Name No. Information
FontXPos 1 Output cursor X position
FontYPos 2 Output cursor Y position
FontBold 3 Bold (0=off 1=0n)
Fontltalic 4 Italic (O=off 1=0n)
FontUnderline 5 Underline (0O=off 1=0n)
FontForeCol 6 Foreground color index
FontBackCol 7 Background color index
FontStyleNum 8 Currently selected font number
FontWidth 9 Current font width
FontHeight 10 Current font height
Effect

Returns information about the obsolg#ndowFont andWindowOutString routines.

WMenuRoot Subroutine

Description
Activate or remove a root menu structure.

Syntax
WMenuRoot(nenuid

Arguments
INTEGER menuid= Identifier of root menu to activate (0 to remove current root menu)

Effect

Activates the specified root menu structure, which will be attached to the top of the root win-
dow. The functionality of this routine has been supseded by the more gAihéeal

Winteracter Starter Kit 179

Chapter 13 General Functions

180 Winteracter Starter Kit

Index

A IGrCharSpacing Subroutine 174 O

Assign/Retrieve Field Contents 96 CGrCircle Subroutine 132 OpenGL demo programs 1
IGrColorN Subroutine 120 Operating System Interface 155

C IGrColourN Subroutine 121
Character Manipulation 165, 171 :giggfpe;gslrnlfgbroutme 126 R
Common Dialogs 106 IGrGetPixelRGB 174 RC resource compiler 4
IGrGetPixelRGB Subroutine 116, 174 'esource files 10
D IGrinit Subroutine 116, 117 resource scripts 10
Dialog Manager 87 IGrLineTo Subroutine 19, 132 resource.rc 1, 4
DialogEd 10, 25 IGrLineType Subroutine 128
dialogs 13 IGrMoveTo Subroutine 133 S
IGrPalettelnit Subroutine 129 screen I/O 7
E IGrPaletteRGB Subroutine 120, 129, Subroutine 160
ED for Windows 5 131, 175 subroutine arguments 9
error reporting 9 IGrPause Subroutine 175 Symbo' Header file 11
events 11 IGrPoint Subroutine 134
example program 4 IGrPolygonComplex Subroutine 134 W
example.dat 17 IGrUnits Subroutine 14, 119 WDialogGetCheckBox
IJustifyString Subroutine 166 Subroutine 96
G ILocateChar Fungtion 167 WDialogGetMenu Subroutine 97
; ILocateString Subroutine 167 WnDialogGetString Subroutine 98, 99
gsgg:g: E:Ja::gg]ohr/]l:\nffsement 87 ILowerCase S_ubroutine 16_8 WD!angHide Subrouti_ne 87
General Graphics 114 INCLUDE enwr_onment variable 4 WD!alogLoad Subroutine 13, 87, 89
Graphics Character Output 135 :Eiggrrr;ghfgsn g&%rét%nlii}ld's W%alt:)qutChclegléBox
: - ubroutine
ggpﬂ:gz gtralvewgge/kl\ellcc;i\genmﬂl; 131 InfoGrScreen Function 149 WDialogPutMenu Subroutine 101
P y Information 145 WDialogPutOption Subroutine 103,
Input Handling 71 104
H_ _) IntegerToString Subroutine 168 WDialogPutString Subroutine 105
High Resolution Graphics 113 |OsExitProgram Subroutine 155 WhDialogSelect Subroutine 90, 91, 92
IOsVariable Subroutine 156 WhDialogShow Subroutine 13, 93
| IStringTolnteger Sub_routlne 169 WhDialogUnload Subroutine 95
IActualLength Function 171 |UpperCase Subroutine 170 WglSelect Subroutine 160
identifiers 10 WglSwapBuffers Subroutine 159,
IFillString Subroutine 165 M 162
IGrArea Subroutine 114 menu handling 80 WIN_STYLE data type 15
IGrAreaClear Subroutine 115 MenuEd 10, 12, 23 WIN_STYLE structure 8
IGrCharJustify Subroutine 136, menus 12 window management 55
143, 171 message handling 71 WindowBell Subroutine 158, 162,
IGrCharLength Function 136, 139, message queue 11 164, 165
140, 172 messages 11 WindowClear Subroutine 56
IGrCharOut Subroutine 141, 172 WindowClearArea Subroutine 174
IGrCharSet Subroutine 173 N WindowClose Subroutine 15, 56
IGrCharSize Subroutine 173 names 9 WindowCloseChild Subroutine 57

Winteracter Starter Kit 181

Index

WindowFont Subroutine 177

WindowOpen Subroutine 12, 14,
15, 58

WindowOpenChild
Subroutine 12, 14, 61

WindowOutString Subroutine 64,
65, 67, 176

windows 12

WindowSelect Subroutine 12, 64,
69

WindowStatusBarParts
Subroutine 65, 67

WindowsStringLength
Function 177

WindowUnitsFromPixels
Subroutine 68

WinfoDialog Function 150
WinfoFont Function 178
WinfoScreen Function 152, 153
WinfoWindow Function 154
WiInitialise Subroutine 15, 163
winparam.h 1, 4

winter.ico 1

winter.lib 4

wintera0.mod 1
WINTERACTER module 4,8
Wisk demo programs 1
WMenuGetState Function 82

WMenuRoot Subroutine 12, 80,
81, 179

WMenuSetState Subroutine 13,
83

WMenuSetString Subroutine 84
WMessage Subroutine 11,12, 71
WMessageBox Subroutine 106
WMessageEnable Subroutine 78
WMessagePeek Subroutine 79
WSelectFile Subroutine 109

182 Winteracter Starter Kit

	Introduction
	Window Handling
	WM: Window Management

	Input Handling
	MH : Message Handling
	MN : Menu Handling

	Dialog Management
	DM(1): General Form Creation & Editing
	DM(2): Assign/Retrieve Field Contents
	CD : Common Dialogs

	High Resolution Graphics
	GG: General Graphics
	GS: Graphics Style Selection
	GD: Graphics Drawing/Movement
	GT: Graphics Text

	General Functions
	IF: Information
	OS: Operating System
	MI: Miscellaneous
	CH: Character Manipulation
	OB: Obsolete Routines

	Supplied Files
	Building a WiSK Program
	Command Line
	ED for Windows

	Writing Winteracter Programs
	Basics
	Initialization
	Fortran I/O
	The WINTERACTER Module
	Type Definitions
	Interface Definitions
	Symbolic Names

	Subroutine Arguments
	Subroutine and Common Block Names
	Error Reporting
	On-line Help

	Elements of a Winteracter Program
	Resource Files
	Identifiers
	Message Loop
	Windows
	Menus
	Dialogs
	Graphics
	Color

	A Worked Example
	Application Wizard

	Resource Editor
	File Menu
	Edit Menu
	Resource Menu
	Settings Menu
	View Menu

	Menus
	Overview
	Menu Types
	Main Menus
	Floating Menus

	Menu Item Types
	Selectable Options
	Popup Options
	Separators

	Menu Item States
	Menu Help
	Keyboard Access to Menus

	Creating and Modifying Menus
	Adding and Modifying Menu Items
	Tutorial - Creating a Menu

	Dialogs
	Overview
	Dialog Types
	Modal
	Modeless
	Semi-Modeless

	Field Types
	Strings
	Menus
	Check Boxes
	Radio Buttons
	Push Buttons
	Progress Bars
	Labels
	Group Boxes
	Pictures / Frames

	Keyboard Processing in Dialogs
	Table 1: Dialog Keystrokes

	Dialog Validation and FieldChanged Messages
	Cut and Paste in Dialogs

	Creating and Modifying Dialogs
	Creating and Modifying Fields
	General
	Style
	Border
	Colour

	Radio Buttons and Field Grouping
	Tutorial - Creating a Dialog

	Icons, Bitmaps and Cursors
	Icons
	Bitmaps
	Cursors
	Image Editor
	Supported Formats
	Drawing Tools
	Color Selection
	Cut and Paste
	Cursor Hotspot

	Adding Images to Your Resource
	Using Bitmaps and Icons in Dialogs
	Using Cursors

	Subroutine Summary
	Group WM: Window Management
	Group MH: Message Handling
	Group MN: Menu Handling
	Group DM(1): General Dialog Management
	Group DM(2): Dialog Field Assignment/Retrieval
	Group CD: Common Dialog Management
	Group GG: General Graphics
	Group GS: Graphics Style Selection
	Group GD: Graphics Drawing Primitives
	Group GT: Graphics Text
	Group IF: Information
	Group OS: Operating System Interface
	Group MI: Miscellaneous
	Group CH: Character Manipulation Routines
	Group OB: Obsolete Routines

	Window Handling
	Group WM: Window Management
	WindowClear Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WindowClose Subroutine
	Description
	Syntax
	Effect
	Example

	WindowCloseChild Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WindowOpen Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	WindowOpenChild Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	WindowOutStatusBar Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	WindowSelect Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WindowSizePos Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	WindowStatusBarParts Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WindowTitle Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WindowUnitsFromPixels Subroutine
	Description
	Syntax
	Arguments
	Effect

	WindowUnitsToPixels Subroutine
	Description
	Syntax
	Arguments
	Effect

	Input Handling
	Group MH: Message Handling
	WMessage Subroutine
	Description
	Syntax
	Arguments
	Table 2: Message types

	Effect
	Table 3: Key codes

	Portability notes
	Example

	WMessageEnable Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WMessagePeek Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	Group MN: Menu Handling
	WMenu Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WMenuFloating Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WMenuGetState Function
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WMenuSetState Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WMenuSetString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	Dialog Manager
	Group DM(1): General Dialog Management
	WDialogFieldState Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogHide Subroutine
	Description
	Syntax
	Effect
	Example
	Errors

	WDialogLoad Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogRangeProgressBar Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogSetField Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogSelect Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogShow Subroutine
	Description
	Syntax
	WDialogShow(ixpos,iypos,ifield,itype)
	Arguments
	Effect
	Portability notes
	Example
	Errors

	WDialogUnload Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	Group DM(2): Assign/Retrieve Field Contents
	WDialogGetCheckBox Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogGetMenu Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogGetRadioButton Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	WDialogGetString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	WDialogPutCheckBox Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogPutImage Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	WDialogPutMenu Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogPutOption Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogPutProgressBar Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WDialogPutRadioButton Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	WDialogPutString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	Group CD: Common Dialogs
	WMessageBox Subroutine
	Description
	Syntax
	Arguments
	Table 4: Common Dialog Buttons
	Table 5: Common Dialog Icons
	Table 6: Common Dialog Button Numbers

	Effect
	Example
	Errors

	WSelectFile Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	High Resolution Graphics
	Group GG: General Graphics
	IGrArea Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	IGrAreaClear Subroutine
	Description
	Syntax
	Effect
	Example

	IGrGetPixel Function
	Description
	Syntax
	Arguments
	Effect

	IGrInit Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrSelect Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example
	Errors

	IGrUnits Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	Group GS: Graphics Style Selection
	IGrColourModel Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrColourN Subroutine
	Description
	Syntax
	Arguments
	Effect
	Table 7: 256-Color Numbering Scheme Default Palette
	Table 8: 16 or 8 Color Palette
	Table 9: Windows colors

	Example
	Errors

	IGrFillPattern Subroutine
	Description
	Syntax
	Arguments
	Table 10: Fill styles
	Table 11: Hatched Fill Density
	Table 12: Hatched Line Angle

	Example

	IGrLineType Subroutine
	Description
	Syntax
	Arguments
	Table 13: Line Types

	Effect
	Portability notes
	Example

	IGrPaletteInit Subroutine
	Description
	Syntax
	Effect

	IGrPalette Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrPlotMode Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	Group GD: Graphics Drawing/Movement
	IGrCircle Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	IGrLineTo Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrMoveTo Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrPoint Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IGrPolygonComplex Subroutine
	Description
	Syntax
	Arguments
	Example
	Errors

	Group GT: Graphics Text
	WGrOFont* Subroutines
	Description
	Syntax
	Effect
	Example

	WGrTextFont Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	WGrTextLength Function
	Description
	Syntax
	Arguments
	Effect
	Example

	WGrTextOrientation Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WGrTextString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WGrVFont* Subroutines
	Description
	Syntax
	Arguments
	Effect
	Example

	General Functions
	Group IF: Information
	InfoError Function
	Description
	Syntax
	Arguments
	Table 14: Error Information items

	Effect
	Example

	InfoGraphics Function
	Description
	Syntax
	Arguments
	Table 15: Graphics Mode Information items

	Effect
	Example

	InfoGrPalette Function
	Description
	Syntax
	Arguments
	Effect

	InfoGrScreen Function
	Description
	Syntax
	Arguments
	Table 16: Graphics Screen Information items

	Effect

	WInfoDialog Function
	Description
	Syntax
	Arguments
	Table 17: Dialog Information items

	Effect
	Table 18: Common Dialog Termination Codes

	Example

	WInfoDrawable Function
	Description
	Syntax
	Arguments
	Table 19: Drawable Information items

	Effect

	WInfoScreen Function
	Description
	Syntax
	Arguments
	Table 20: Screen Information items

	Effect
	Example

	WInfoWindow Function
	Description
	Syntax
	Arguments
	Table 21: Window Information items

	Effect
	Portability notes
	Example

	Group OS: Operating System Interface
	IOsExitProgram Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Example

	IOsVariable Subroutine
	Description
	Syntax
	Arguments
	Effect
	Portability notes
	Errors
	Example

	Group MI: Miscellaneous
	WCursorShape Subroutine
	Description
	Syntax
	Arguments
	Table 22:

	Effect
	Portability notes
	Example

	WFlushBuffer Subroutine
	Description
	Syntax
	Effect
	Example

	WglSelect Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	WglSwapBuffers Subroutine
	Description
	Syntax
	Effect
	Example

	WindowBell Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WInitialise Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	WRGB Function
	Description
	Syntax
	Arguments
	Effect
	Example

	WRGBsplit Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	Group CH: Character Manipulation
	IFillString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IJustifyString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	ILocateChar Function
	Description
	Syntax
	Arguments
	Effect
	Example

	ILocateString Subroutine
	Description
	Syntax
	Arguments
	Example

	ILowerCase Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	IntegerToString Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	IStringToInteger Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example
	Errors

	IUpperCase Subroutine
	Description
	Syntax
	Arguments
	Effect
	Example

	Group OB: Obsolete Routines
	IActualLength Function
	Description
	Syntax
	Arguments
	Effect

	IGrCharJustify Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrCharLength Function
	Description
	Syntax
	Arguments
	Effect

	IGrCharOut Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrCharSet Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrCharSize Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrCharSpacing Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrGetPixelRGB Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrPaletteRGB Subroutine
	Description
	Syntax
	Arguments
	Effect

	IGrPause Subroutine
	Description
	Syntax
	Arguments
	Effect

	WindowClearArea Subroutine
	Description
	Syntax
	Arguments
	Effect

	WindowOutString Subroutine
	Description
	Syntax
	Arguments
	Effect

	WindowStringLength Function
	Description
	Syntax
	Arguments
	Effect

	WindowFont Subroutine
	Description
	Syntax
	Arguments
	Table 23: Font Numbers

	Effect

	WInfoFont Function
	Description
	Syntax
	Arguments
	Table 24: Font Information items

	Effect

	WMenuRoot Subroutine
	Description
	Syntax
	Arguments
	Effect

