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PREFACE

This manual describes the extended capabilities of the Scientific Subroutine Library 11 (SSL I1).

SSL 1l consists of standard and extended capabilities. Standard capabilities, explained in
FUJITSU SSL |1 User's Guide, are provided for a wide range of scientific calculations performed
on genera-purpose computers. Extended capabilities are provided for high-speed scientific
calculations on FUJI TSU VP Series vector processors.

This manual is organized as follows:

PART | GENERAL DESCRIPTION

Functions are outlined for individual fields and subroutine selection is explained.
PART Il USAGE OF SUBROUTINES

The usage of subroutinesis discussed. Subroutines are listed in alphabetical order.
For SSL 11 conventions and standard subroutines, refer to the following manual:

FUJITSU SSL 11 User's Guide

The asterisk in the table of contents of this manual indicate items added or changed from the
previous edition (manual code 99SP4070E-1).
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SUBROUTINE LIST OF SSL II EXTENDED CAPABILITIES

Linear Equations

Subroutine Item

name

VMGGM Multiplication of two matrices (real general by real general)

VLSX A system of linear equations with a positive definite symmetric matrix (modified
Cholesky's method)

VSLDL LDL" decomposition of a positive definite symmmetric matric (modified Cholesky's
method)

VLDLX A system of linear equations with a positive definite symetric matrix decomposed into
L,D,and L’

VLTX A system of linear equations with areal tridiagonal matrix (cyclic reduction method)

VLTX1 A system of linear equations with areal constant-tridiagonal matrix (Dirichlet type,
cyclic reduction method)

VLTX2 A system of linear equations with areal constant-tridiagonal matrix (Neumann type,
cyclic reduction method)

VLTX3 A system of linear equations with areal constant-tridiagonal matric (periodic type,
cyclic reduction method)

VLAX A system of linear equations with areal general matrix (blocking L U-decomposition
method)

VALU L U-decomposition of areal general matrix (blocking LU-decomposition method)

VLUIV The inverse of areal general matrix decomposed into the factorsL and U
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SUBROUTINE LIST OF SSL II EXTENDED CAPABILITIES

Eigenvalues and Eigenvectors

Subroutine Item

name

VSEG2 Selected eigenvalues and corresponding eigenvectors of areal symmetric matrix (Parallel
bisection and inverse iteration methods)

VGSG2 Selected eigenvalues and corresponding eigenvectors of areal symmetric generalized
matrix system Ax=ABx (Parallel bisection and inverse iteration methods)

Fourier Transforms

Subroutine Item

name

VCOS1 Discrete cosine transform (radix 2 FFT)

VSIN1 Discrete sine transform (radix 2 FFT)

VRFT1 Discrete real Fourier transform (high performance type, radix 2 FFT)
VRFT2 Discrete real Fourier transform (memory efficient type, radix 2 FFT)
VCFT1 Discrete complex Fourier transform (high performance type radix 2 FFT)
VCFT2 Discrete complex Fourier transfrom (memory efficient type radix 2 FFT)

viii
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CHAPTER 1

OUTLINE

1.1Extended Capabilities

Scientific computations often require the solution of a variety of mathematical models in areas
such as fluid dynamics, structural analysis, molecular science, and nuclear fusion. As these
problems become more difficult and complicated, they require faster calculations. The vector
processor helps to meet this need by incorporating a different architecture than that of a general-
purpose computer, enabling it to perform high-speed calculations for mathematical models, such
as special algorithms for numerical analysis.

SSL Il extended capabilities perform high-speed calculations on a vector processor. Algorithms
have been selected to maximize hardware efficiency. Capabilitiesin the FUJTSU SSL 11 User's
Guide (99SP4020E-1) are called SSL Il standard capabilities in this manual. Standard
capabilities perform awide range of calculations on general-purpose computers.

In this manual, the term SSL 11 is used to refer to both the standard and extended capabilities.

1.2Structure of Extended Capabilities

Extended capabilities are divided into two groups (Fig. 1.1). Group 1, which are modifications of
SSL 11 standard subroutines, use vector algorithms, and are provided for high-speed processing on
a vector processor. Extended capabilities use different algorithms than those in the standard
subroutines. Data is stored differently in array areas, and more work array space is allocated for
high-speed processing. Thus, user interfaces differ from those of the corresponding standard
capabilities. Also, most standard capabilities provided for a vector processor have been tuned up
for vector processor to some extent without changing any user interface. In other words, group 1
can be defined as a set of subroutines that perform high-speed calculations on a vector processor,
using different user interfaces than the standard capabilities.

Group 2 provides capabilities for large scale computational problems which are not included in
the SSL |1 standard capabilities. In this group, vector algorithms are also used.

99SP4070E-2



OUTLINE

» High performance

SSL |1 standard SSL 11 extended
capabilities capabilities
| i e |
Group 1

Y
Capabilities

Figure 1.1  Structure of extended capabilites

1.3Selection between Extended and Standard Capabilities

SSL 11 is provided for both general-purpose computers and vector processors. Therefore, user
programs calling SSL |1 can be executed on both type of computers without any modification to
the call statements.

Group 1 contains subroutines with functions similar to those of standard subroutines. For the
purpose of computational efficiency, the user is recommended to select appropriate subroutines
between standard and extended capabilities in the following way, when using both general-
purpose computers and vector processors.

(1) When a program that calls subroutines of standard capabilities is executed on a vector
processor and if the corresponding subroutines are provided in group 1, it is preferable to
modify the program to employ the latter ones.

(2) When a program that calls subroutines in group 1 is executed on a general-purpose computer,
the program had better be modified to call the corresponding subroutines in standard
capabilities. When a general-purpose computer is used only for debugging, no program
changes are needed.

The correspondence between group 1 and standard capabilities is explained in the introductory
chapter for each field.

Changing the SSL |1 subroutine call statementsin a user program takes time, but it is necessary in
order to improve processing efficiency.

These changes should not affect the accuracy calculations. The vector algorithms used in SSL |1
enable highly accurate calculations.
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CHAPTER 2

2.10utline

LINEAR ALGEBRA

This chapter describes subroutinesin linear algebra.

Subroutines of the extended capabilities in this area are listed in Table 2.1 along with the
corresponding subroutines from the standard capabilities.

Table 2.1 Subroutines in linear algebra

Functions Extended Standard
capabilities capabilities
Multiplication of two matrices VMGGM MGGM
A system of linear equations with a positive definite symmetric VLSX LSX
matrix (VSLDL) (SLDL)
(VLDLX) (LDLX)
A system of linear equations with atridiagonal matrix VLTX LTX
VLTX1 LSTX
VLTX2
VLTX3
A system of linear equations with areal general matrix and the VLAX LAX
inverse of areal general matrix (VALU) (ALV)
(VLUIV) (LUIV)

2.2Notes

The subroutines in parentheses in Table 2.1 are component subroutines. For example, VSLDL is
used to perform LDL" decomposition of a positive definitive symmetric matrix, and VLDLX is
used to obtain a solution based on the decomposed matrices. Both VSLDL and VLDLX are
component subroutines of VLSX.

All subroutines use vector agorithms so that they can be executed efficiently on a vector
processor. The use of these subroutines and the selection of appropriate subroutines are
explained in the following sections.

Subroutines of the extended capabilities employ different user interfaces from those of the
corresponding subroutines of the standard capabilities. Two major differences are as follows:

99SP4070E-2



LINEAR ALGEBRA

(1) Storage modes of a positive definite symmetric matrix and a tridiagonal matrix are different
from those in the standard capabilities.

(2) Subroutines of the extended capabilities use a larger work area than those of the standard
capabilities.

These differences enable memory to be accessed more efficiently when a vector algorithm is
constructed. Care should be taken when a subroutine call is changed between the extended and
standard capabilities.

2.3Subroutine Selection

As listed in Table 2.1, there are four subroutines for linear equations with tridiagonal matrices,
each of which handles a different matrix form.

The tridiagonal matrix treated by any of four subroutines is required to be irreducibly diagonally
dominant for the algorithm used to be numerically stable. The term irreducibly diagonally
dominant means that the tridiagonal matrix satisfies condition (2.2) when it is of the form (2.1).

d fi
& d
& d3 f3 0
00O (2.1)
O o0 O
0 D D fn»l
B e o
[di| = g| + [fil, i = 1, 2, ..., n, and a strict inequality is (2.2)

satisfied for at least onei, wheree; = f,=0.
The tridiagonal matrices arising from actual applications usually satisfy the condition (2.2)

A subroutine from the standard capability should be used when the matrix does not satisfy the
processing condition.

The first subroutine VLTX is the most commonly used subroutine with matrix form (2.1).
However, VLTX1 isalimited version of VLTX, and handles only matrix form (2.3) below.

d e
e d e
e d e 0
O o o (2.3
O o o
0 O 0O e
" e d |
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As shown in (2.3), a matrix whose element values do not depend on the row or column is called a
constant-tridiagonal matrix. More specifically, this matrix is called a constant-tridiagonal matrix
of Dirichlet type, because it is related to a specific type of Dirichlet boundary value problem.

The matrix used in subroutines VLTX2 and VLTX3 is a modified version of the matrix in (2.3).
The matrix used in VLTX2 contains the element 2e in the first row and the second column, or in
the n-th row and (n-1) th column, and is called a constant-tridiagonal matrix of Neumann type.
Subroutine VLTX3 uses amatrix in which the first row and the n-th column element, and the n-th
row and the first column element take e. This matrix is called a constant-tridiagonal matrix of
periodic type. These matrices are al derived from boundary value problems of differential
equations.

The algorithm used in the above subroutine is the cyclic reduction method, which is suited for
vector processors. This method requires larger amount of arithmetic operations than the Gaussian
elimination method. However, the cyclic reduction method presents much greater parallelism
which is important factor for efficiency in vector processing. Also, for irreducibly diagonally
dominant matrices, the cyclic reduction method has the same degree of accuracy as the Gaussian
elimination method.

Subroutines VLTX1 and VLTX2 can perform calculations at a higher speed than VLTX , because
the matrix forms in these subroutine are less complicated.

99SP4070E-2






CHAPTER 3

3.10utline

EIGENVALUES AND EIGENVECTORS

This chapter addresses the subject of matrix eigenvalue problems. Table 3.1 shows subroutines
provided as extended capabilities, along with their corresponding standard capability subroutine

names.
Table 3.1 Subroutines for eigenvalue problems
Extended Standard
Problem type Matrix type capability capability

subroutine subroutine
name name

AX = AX A: Rea symmetric matrix VSEG2 SEIG2

Ax = ABx A: Real symmetric matrix VGSG2 GSEG2

B: Positive definite symmetric matrix
3.2Notes

Extended capability subroutines use computational methods, in which specified m partia

eigenvalues are simultaneoudly calculated using the parallel bisection method. Therefore, there
are differences such as the work area allocation between the extended and standard capabilities.
Accordingly, parameter modification is required to change from standard capability subroutine

calling to extended capability subroutine calling.
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CHAPTER 4

4.10utline

FOURIER TRANSFORMS

This chapter describes subroutines in discrete Fourier transforms. Subroutines of the extended
capabilities in this area are listed in Table 4.1 along with the corresponding subroutines from the

standard capabilities.

Table 4.1 Discrete Fourier transform subroutines
Transform Size of data Extmdgd Characteristics Stan(_jr_:\r_d
capabilities capabilities
Real Power of 2 VRFT1 High performance RFT
transform VRFT2 Memory efficient
Complex Power of 2 VRFT1 High performance CFT
transform VCFT2 Memory efficient
Cosine Power of 2 VCOS1 - FCOST
transform
Sine Power of 2 VSIN1 - FSINT
transform
4.2Notes

(1) Selection between extended and standard capabilities

The user should use subroutines of the standard capabilities corresponding to routines of the
extended capabilities in Table 3.1 to calculate discrete Fourier transforms on a genera-

purpose computer.

Although subroutines of the extended capabilities can also be used on a general-purpose

computer, subroutines of the standard capabilities are more efficient.

(2) High -performance and memory-efficient subroutines

High-performance subroutines are used to calculate multiple sets of transforms. These
subroutines are designed for high-speed calculation by saving in work arrays, the rotation
factor (trigonometric function table) and the list vector, both of which can be utilized for the
series of transforms. Therefore, high-performance subroutines require more space for work
arrays VW and IVW.

When only asingle transform is calculated, memory-efficient subroutines should be used.
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FOURIER TRANSFORMS

(3) Effective use of single precision arithmetic routine

The algorithm for single precision arithmetic routine takes account of memory interleave

number in order to fully extract the potential power of the vector processor.
the memory interleave number to SSL |1 through following function.

Function

Initial set of memory interleave number

Calling

CALL SETBNK (INTER)

INTER isinput parameter to be specified the interleave number.

User can inform

User's program can obtain the best performance by calling the above routine in advance of

calling Fourier transform routine of single precision arithmetic routine.

If user's program does not call the above routine, SSL 11 assumes that the interleave number is

64.

PT 1-10
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VALU

A22-71-0202 VALU, DVALU

L U-decomposition of areal general matrix
(blocking L U-decomposition method)

CALL VALU (A, K, N, EPSZ, IP, IS, VW, ICON)

(1) Function

Ann x nnonsingular real matrix A is LU-decomposed using the using the blocking LU-
decomposition method (Gaussian elimination method).

PA=LU (1.1)

P is the permutation matrix which performs the row exchanges required in partial pivoting, L isa
lower triangular matrix, and U is a unit upper triangular matrix.n > 1.

(2) Parameters

A Input. Matrix A
Output. MatricesL and U
Refer to Figure VALU-1
A isatwo-dimensional array, A (K,N).
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VALU

Unit upper triangular

matrix U
_ =)
1 Up Uz ... Uy
1 Uxs...uy
., . F
1 Un-1n l
1J Upper triangular portion only
- y,
Lower triangular A A
matrix L rrey A
r I\
_l —_ 7~
|11 | 0 lip o Uiz ... U,
a0z lr I Uz ... Uy
|3l |32
| N
o In—ln—l In-ln K
Inl In2 Inn-l Inn | | | |
b — nl n2 nn-1 nn
N -
Y
i )
Diagonal and lower

triangular portions only
| S ——

Figure VALU-1 Storage of the elements of L and U in array A

Koo Input. Adjustable dimension of array A (= N)
N Input. Order n of matrix A

EPSZ....Input. Tolerance for relative zero test of pivots in decomposition process of A (= 0.0)
When EPSZ is 0.0, a standard value isused. (Refer to Notes.)

IP....... Output. the transposition vector which indicates the history of row exchanging that
occurred in partial pivoting. IPisaone-dimensional array of sizen. (Refer to Noter)
IS.......... Output. Information for obtaining the determinant of matrix A if the n elements of the

calculated diagonal of array A are multiplied by 1S, the determinant is obtained.
VW....... Work area. VW is one-dimensional array of sizen.
ICON ... Output. Condition code. Refer to Table VALU-1.

PT I1-2 99SP4070E-2



VALU

Table VALU-1 Condition codes

Code Meaning Processing
0 No error -
20000 Either all of the elements of some Discontinued

row were zero or the pivot became
relatively zero. It ishighly probable
that the matrix is singular.
30000 K<N,N<1, orEPSZ<0.0 Bypassed

(3) Notes

a. Subprograms used

SSL I

AMACH,MGSSL

FORTRAN intrinsic functions.....ABS

b. Note

(1) If avalueis set in the tolerance EPSZ for pivot zero test, this value means the following:

If the selected pivot element is smaller than the product of the largest absolute value of real
matrix A = (a;) elements, max | &; | and EPSZ can be shown as:

|al'§k| < max|aij |EPSZ

Therelative pivot value is assumed to be zero and processing terminates as | CON=20000.

Let u be the unit round-off, and the standard value of EPSZ is 16 u. If the processing is to
proceed at a low pivot value, EPSZ will be given the minimum value, but the result is not
always guaranteed.

(2) The transposition vector corresponds to the permutation matrix P of LU decomposition in

partial pivoting. In this subroutine, the elements of the array A are actually exchanged in
partial pivoting. Inthe J-th stage (J =1, ..., n)of decomposition, if the | therow (1 = J)has
been selected as the pivotal row the elements of the I-th row and the elements of the Jth row
are exchanged. Then, in order to record the history of this exchange | isstored in IP (J).

(3) A system of linear equations can be solved by calling subroutine LUX following this

subroutine. However ,instead of these subroutines, subroutine VLAX can be normally called
to solve such equationsin one step.

99SP4070E-2
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e. Example

Ann x n matrix isinput and LU-decomposition is computed. n < 100.

C * % EXAVPLE* *

DI MENSI ON A( 100, 100) , VW 100) , | P( 100)
10 READ(5, 500) N

| F(N. EQ 0) STOP

READ(5, 510) ((A(l,J),1=1,N)

WRI TE(6, 600) N, ((1,J,A(1,J)

CALL VALU(A 100,N,0.0,1P, 1S

WRI TE( 6, 610) | CON

| F(1 CON. GE. 20000) GO TO 10

DET=I S

DO 20 1=1,N

DET=DET*A(I, 1)
20 CONTI NUE

WRI TE(6, 620) (I,1P(1),1=1,N)

WRI TE(6, 630) ((1,J,A(1,J),J=1,N),1=1,N)

WRI TE( 6, 640) DET

GOTO 10
500 FORMAT(I5)
510 FORMAT(4E15. 7)
600 FORMAT(///10X,'** | NPUT MATRI X **

*/ 12X, ORDER=', 1 5// (10X, 4(' (', 13,",",13,")"

* E16.8)))
610 FORMAT(' 0', 10X, ' CONDI TI ON CODE =', | 5)
620 FORMAT(' 0', 10X, ' TRANSPOSI TI ON VECTOR

*/ (10X, 10(" (*,13,")",15)))
630 FORMAT(' 0', 10X, ' OUTPUT MATRI CES'

*[ (10X, 4(' (*,13,",',13,")" , E16.8)))
640 FORMAT(' 0', 10X,

*' DETERM NANT OF THE MATRI X =', E16. 8)

END

,J=1, N
,J=1, N

N, 1=1,N)
, VW | CON)

(4) Method

The blocking LU-decomposition method is applied by blocking the outer-product Gaussian
elimination method.

a. Outer-product Gaussian elimination method

Generdly, in exchanging rows using partial pivoting, an nxn regular real matrix A can be
decomposed into the product of alower triangular matrix L and a unit upper triangular matrix U.

PA=LU (4.1)

P is the permutation matrix which performs the row exchanging required in partial pivoting

PT 11-4 99SP4070E-2



VALU

LU-decomposition is computed by changing A = ( &; ) asfollows:

Al=A—, .. > A—> A

Uy = ay /8, j =K...n (4.2)

Ly =ak i =k,...n (4.3)
k+l _ Sk P P

a.II —a.II —|”Ukl,l—k+l,n,j —k+1,,n (44)

The rows are actually exchanged by partial pivoting.

The product of column vectors (4.3) and row vectors (4.2) occur in equation (4.4), and then the
rest of the elements will be updated.

b. Blocking method

The outer-product Gaussian elimination method above is determined by the blocked expressions
below.

The row and column elements are decomposed with the constant block width bl. The column
matrix is taken asL ,row matrix asU'Z‘ and the updating part as A“. They are used for the outer-

product Gaussian elimination that is blocked k-th times. (For the location of each matrix, refer to
Figure VALU-1.)

The updating corresponding to (4.4) isdonein (4.5).

A¥ = AK - KUK (4.5)
Before this updating, L"2 and U'z‘ are updated with the expressions below.

First, Ais decomposed into LX , L and U, thenUX is updated.

Ak=(L L8 Juk (4.6)
uk = (4] u 4.7)

These expressions are the same as those in the outer-product Gaussian elimination method except
that the order is changed.

99SP4070E-2 PT 11-5



VALU

A
Uy
LK U3
LK A
Ak
— —

Figure VALU-2 Location of each element in blocked array A

c. Partia pivoting
When matrix A isgiven as

(0.0 1.00
A= 0
.0 0.0

Through the matrix is numerically stable, it can not be LU decomposed. In this state, even if a
matrix is numericaly stable large errors would occur if LU decomposition were directly
computed. So in this subroutine, to avoid such errors partial pivoting with row equilibration is
adopted for decomposition.

For more information, see References[9], [10], [11], [12], and [13].
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VCFT1

F16-15-0201 VCFT1, DVCFT1

Discrete complex Fourier transform
(high performance,radix 2 FFT)

CALL VCFT1 (A, B, N, ISN, ISW, VW, IVW, ICON)

(1) Function

Given one-dimensional (n-term)complex time-series data {x}, the discrete complex Fourier
transform or its inverse transform is calculated by the Fast Fourier Transform (FFT) method
suited to a vector processor, wheren = 2' (I is a non-negative integer).

a Fourier transform

When {x} isinput, the transform defined by (1.1) below is calculated to obtain { na} .
n-1 .

nay =y x; %, k=01.,n-1 (1.2)
=0

, w=exp( 2r/n)

b. Fourier inverse transform

When { o} isinput, the transform defined by (1,2) below is calculated to obtain { x} .
n-1 X

x; =Y a *, j=01.,n-1 (1.2)
=)

, w=exp(2ri/n)

(2) Parameters

A Input. Real part of {x} or { oy}
Output. Real part of {nay} or {x}
One-dimensional array of sizen

B Input. Imaginary part of {x} or { aw}
Output. Imaginary part of {nai} or {x}
One-dimensional array of sizen.
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(3) Notes

N Input. Number of terms, n, of the transform
ISN....... Input.Either the transform or the inverse transform is indicated
(#0).
ISN = +1 for the transform.
ISN = -1 for the inverse transform.
(See Note (3).)
ISW......Input. Information for controlling the initial state of the transform
ISW = O for the first call.
ISW = 1 for the second and subsequent calls.
(See Note (2).)
VW....... Work area. One-dimensional array of size max ( nl, 1).
IVW ..... Work area. One-dimensional array of sizen-max (| -3, 2).
ICON ... Output. Condition code
See Table VCFT1-1.
Table VCFT1-1 Condition codes
Code Meaning Processing
0 No error -
3000 ISN=0,1SW #0or 1,0or N # 2(| = 0isaninteger) Bypassed

a. Subprograms used

b. Notes

(1) SSL 11: UVTB1,UVF91,UVFAL,UVFB1,UVFX1,UBANK,MGSSL

(2) FORTRAN intrinsic functions: ALOG2,SIN,COS,ATAN,IABSFLOAT,
IAND,MOD

(1) Subroutine use

This subroutine performs high-speed calculation of a complex Fourier transform on a vector
processor. On a general-purpose computer, however CFT or CFTM may be more suitable.

This subroutine is used for calculating multiple independent transforms, and because it is a
high-performance subroutine, it requires more work array areathan VCFT2. If it isdifficult to
alocate alarge work array area, the memory-efficient subroutine VCFT2 should be used, even
though it is slower.

PT 11-8
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(2) Control by ISW

When multiple transforms are calculated, specify ISW = 1 for the second and subsequent
subroutine calls. This enables the subroutine to bypass the steps for generating a
trigonometric table and a list vector, both of which are needed for the transform, thus
improving processing efficiency. The contents of arrays VW and VW must not be modified
when the subroutineis called.

Even if the number of terms, n, of each of the multiple transforms varies, specifying ISW =1
improves processing efficiency. However, it is desirable to be called so that the maximum
number of transforms with the same number of terms are executed consecutively.

When calling this subroutine together with the real Fourier transform subroutine VRFT1,
specifying ISW = 1 improves processing efficiency.

(3) ISN specification

Although the ISN parameter is used to specify whether to calculate a transform or an inverse
transform, it can also be used as shown below. If the real or imaginary part of {x} or { o} is
stored at intervals of length I, specify 1SN as follows:

For an inverse transform, ISN= + |
For an inverse transform, ISN = — |

The results will also be stored at intervals of length I. Note, however, that when | > 1, specify
the size of work array VW to ben (| +2).

When using a vector processor, the interval length | should take the following values in order
to access memory more efficiently. (See Example (2)).

For single precision arithmetic (VCFT1),1 =4P+2,P=0,1, 2, ...
For double precision arithmetic (DVCFT1),1=2P+1,P=1,2,3, ...

(4) Work array size conversion table

The tablefor 16 < n < 4096 is shown as follows:

| n VW VW
4 16 64( 96) 32
5 32 160 ( 224) 64
6 64 384 ( 512) 192
7 128 896 ( 1152) 512
8 256 2048 ( 2560) 1280
9 512 4608 ( 5632) 3072
10 1024 10240 (12288) 7168
11 2048 22528 (26624) 16384
12 4096 49152 (57344) 366864

Figuresin () arethe sizeswhen ABS(ISN) > 1.

99SP4070E-2
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c. Example

(5) Genera definition of Fourier transform

The discrete complex Fourier transform and its inverse transform can be defined as in (3.1)
and (3.2).

1 n-1 ik
o :—Dzoxj K k=01..,n-1 (3.1)
n =
J_

n-1 .
x. = Sa, WX, j=01..,n-1 (3.2)
j kZO k
where, w=exp (2ri/n)

This subroutine calculates { nai} or {x} corresponding to the left hand side of (3.1) or (3.2),
respectively. Normalize the results as required.

(1) Multiple Fourier transforms

In this example k sets of independent Fourier transforms (with n terms) are calculated.

For k< 64 and n< 512:
C ** EXAMPLE* *
DI MENSI ON A(512, 64), B(512, 64),
* VW 4680) , | VW 3072)

READ( 5, 500) N, K
READ( 5, 510) ((A(l,J),B(1,J),1=1,N), J=1, K)

| SN=1
| SWEO
CALL VCFT1(A B, N, 1SN, I SWVWW I VW I CON)
| F(1 CON. NE. 0) STOP
| SWe1
DO 10 J=2, K
CALL VCFT1(A(1,J),B(1,J),N 1SN ISW
* VW | VW | CON)
10 CONTI NUE
C
WRI TE( 6, 600) K, N
DO 20 J=1,K
20 WRI TE(6, 610) J, (1,A(l,J),B(1,J),1=1,N)
c
500 FORMAT( 2l 5)
510 FORMAT( 2E15. 7)
600 FORMAT(5X,' ***' [3,' SET TRANSFORVS

* " OF,' TERM,I4)
610 FORMAT(8X, |3, "' - TH TRANSFORM /
* (8X, 13, 2E16. 7))
STOP
END

PT 11-10
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(2) Multi-dimensional Fourier transform

In this example a 2-dimensional Fourier transform (with n1 x n2 terms) is cal culated.
For ny <512, n, < 64;

In the example program, the data interval length (the first array declarator of the array) used
for the row-wise transformis set at ISN = 514 ( = 4p + 2, where p=128).

c ** EXAMPLE* *
DI MENSI ON A(514, 64) , B(514, 64)
* VW 4608) , | VW 3072)

READ( 5, 500) NI, N2
READ( 5, 510) ((A(1,J),B(1,J),1=1, N1)

* ,J=1, \2)
c ---N2 SET TRANSFORMS OF TERM N1- - -
| SN=1
| SW=0

CALL VCFTL1(A B, NL, I SN, | SW VW | VW | CON)
| F(1 CON. NE. 0) STOP

| SWe1
DO 10 J=2, N2
CALL VCFT1(A(1,J),B(1,J),NL ISN,|ISW
* VW | VW | CON)
10 CONTI NUE
C ---NL SET TRANSFORMB OF TERM N2- - -
| SN=514

CALL VCFTL1(A B, N2, 1SN, | SW VW | VW | CON)
| F(1 CON. NE. 0) STOP

DO 20 1=2, NL
CALL VCFT1(A(I,1),B(1,1), N2, 1SN, |SW
* VW | VW | CON)
20 CONTI NUE
c
WRI TE( 6, 600) N1, N2
DO 30 J=1, N2
30 WRI TE(6, 610) J, (1, A(1,J),B(1,J),1=1, N1)
c

500 FORMAT( 2l 5)
510 FORMAT( 2E15. 7)
600 FORMAT(5X,' *** 2 DI MENSI ONAL TRANSFORM

* ' OF TERM,14,' BY ', 14)
610 FORMAT(8X,13,' -TH COLUWN //
* (8X, 13, 2E16. 7))
STOP
END

99SP4070E-2
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(4) Method

The discrete complex Fourier transform is calculated using the Fast Fourier Transform method
(isogeometric and self-sorting FFTs)suited to a vector processor.

Because of the characteristics of vector processors, this subroutine uses an isogeometric FFT in
the single precision arithmetic routine and a self-sorting FFT in the double precision arithmetic
routine.

In general, there are two types of FFT agorithms, according to the area used during the
computation. One is an in-place type, which uses the input data area only, and the other is a no-
in-place type, which uses both the input data area and a work area. The FFT for a general-
purpose computer is usually an in-place type, but in this subroutine it is a not-in-place type.
Because the not-in-place type FFT can fully utilize parallel processing, it is more suited to a
Vector processor.

The butterfly operation is the core of the FFT algorithm. The butterfly operation is defined by
(4.2) with two arbitrary inputs, aand b, and two outputs, ¢ and d.

c=a+h, (4.1
d=(a-b)xof

where a, b, ¢, d and «f are complex numbers, and o is a Fourier transform intrinsic coefficient
(called rotation factor).

We now introduce the following notation:

>O< (4.2)

In (4.2),adot (.) represents adataitem. The two dots on the |eft hand side are input (upper dot: a,
and lower dot: b),and the right hand side two dots are output (upper dot: ¢, and lower dot: d)

The circle(O) represents the butterfly operation, and the number in the circle, if any represents &

Using this notation, the butterfly operations in both isogeometric and self-sorting FFTs are shown
in Figures VCFT1-1 and VCFT1-2 (for n=16). In general, assuming n =2, an FFT can be
composed of | stages of butterfly operations. In the diagram, for example, the FFT is composed
of four stages, since n = 16 = 2*. Both types of FFT require the same amount of calculation, but
the data transfer pattern at each butterfly stage differs. The characteristics of both FFTs and their
adaptability to a vector processor are explained next.

Isogeometric FFT

In this method, the input (and output) transfer patterns are identical during all stages. The
algorithm in this method enables a high degree of parallel calculation, and can be accurately
described by a program. However, data is in reverse binary order at the end of the butterfly
operation, so the data must be

PT I1-12
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permutted. Furthermore ,in a double precision operation, memory conflicts occur because of the
characteristics of vector processors.

Self-sorting FFT

In this method, the input transfer patterns are identical during all stages, bat the output transfer
patterns vary regularly in each stage. This agorithm enables parallel calculation, just as the
isogeometric FFT. A program can made this algorithm by using a list vector. However, in a
single precision operation, memory conflicts occur because of the characteristics of vector
processors.

This subroutine takes into account the characteristics of both the above methods and their
adaptability to a vector processor, to provide higher speed calculations.

Calculation procedure in this subroutine
[Single precision arithmetic routine]
(1) Generation of atrigonometric function table (rotation factor)
All the function values required at every stage are calculated and stored in work array VW.
(2) Generation of list vectors

List vectors, required at the permutation process after the butterfly operation, is calculated and
stored in work array IVW.

(3) Buitterfly operation
(4) Permutation of data

Steps (1) and (2) above are executed only when this routine is called the first time, i.e., when ISW
=0.

[Double precision arithmetic routing]
(1) Generation of atrigonometric function table (rotation factor)

All the function values required at every stage are calculated and stored in work array VW.
(2) Generation of alist vector

All the list vectors, required at every stage, are calculated and stored in work array 1IVW.
(3) Buitterfly operation

Steps (1) and (2) above are executed only when thisroutine is called the first time, i.e., when ISW

For the various FFTs on a vector processor, see reference [5], for the isogeometric FFT,see
reference [4], and for the self-sorting FFT, references[2] and [6].

99SP4070E-2 PT 11-13
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0 0 0 0
1 0 0 0
2 2 0 0
3 2 0 0
4 4 4 0
5 4 4 0
6 6 4 0
7 6 4 0

Figure VCFT1-1 Isogeometric FFT flowchart (N=16)
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0 0 0 0
1 0 0 0
2 2 0 0
3 2 0 0
4 4 4 0
5 4 4 0
6 6 4 0
7 6 4 0

—

—

Figure VCFT1-2 Self-sorting FFT flowchart (N = 16)
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F16-15-0301 VCFT2, DVCFT2

Discrete complex Fourier transform
(memory efficient,radix 2 FFT)

CALL VCFT2(A, B, N, ISN, ISW, VW, IVW, ICON)

(1) Function

Given one-dimensional (n-term) complex time-series data{x}, the discrete complex Fourier
transform or its inverse transform is calculated by the Fast Fourier Transform (FFT) method,
suited to a vector processor, where n =2'( | is a non-negative integer).

a. Fourier transform

When{x} isinput, the transform defined by (1.1) below is calculated to obtain { nay} .
n-1 .

na, =y x; %, k=01.,n-1
=0

,w=exp (27 /n)
b. Fourier inverse transform

When { ai} isinput, the transform defined by (1.2) below is calculated to obtain {x} .

n-1

;=Y a @, j=01.,n-1
k=0
,w=exp (27 /n)
(2) Parameters
A Input. Real part of {x} or { aw}

Output. Real part of {nay} or {x}
One-dimensional array of sizen

B Input. Imaginary part of {x} or { aw}
Output. Imaginary part of { nai} or {x}
One-dimensional array of size n.
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(3) Notes

a. Subprogram used

... Input. Number of terms, n, of the transform

... Input. Either the transform or the inverse transform is indicated

(#0).

ISN = +1 for the transform.

ISN = -1 for the inverse transform.
(See Note (3).)

... Input. Information for controlling theinitial state of the transform

ISW =0 for thefirst call.
ISW = 1 for the second and subsequent calls.
(See Note (2).)

... Work area. One-dimensional array of size 5n
... Work area. One-dimensional array of size 3n

... Output. Condition code

See Table VCFT2-1.

(1) SSL 1I: UVTB2, UVF92, UVFA2, UVFB2, UVFX2, UBANK, MGSSL

(2) FORTRAN intrinsic functions: ALOG2, SIN, COS, IABS, FLOAT, IAND, MOD

Table VCFT2-1 Condition codes

Code Meaning Processing
0 No error -
3000 ISN=0,ISW#0or1,0rN#2 (I=0isaninteger) Bypassed
b. Notes
(1) Subroutine use
This subroutine performs high-speed calculation of a complex Fourier transforms on a vector
processor. On a general purpose computer, however, subroutine CFT or CFTM may be more
suitable.
This subroutine is suitable for calculating only a single transforms. The work array area is
limited to the required minimum; this subroutine is memory efficient. When performing
multiple transforms with sufficient work array area available, this high-performance
subroutine VCFT 1 is more suitable.
(2) Control by ISW
When performing multiple transforms, specify ISW=1 for the second and subsequent
subroutine calls. This enables generation of a trigonometric function table to be bypassed,
thus improving more processing efficiency.
PT 11-18 99SP4070E-2
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The contents of array VW and IVW must not be altered when the subroutine is called.

Even if the number of terms, n, in the multiple transforms varies, specifying ISW=1 improves
processing efficiency. However, it is desirable to be called so that the maximum number of
transforms with the same number of terms are executed consecutively.

When calling this subroutine together with the real Fourier transform subroutine VRFT2,
specifying ISW = 1 improves processing efficiency.

(3) ISN specification

Although the ISN parameter is used to indicate whether a transform or an inverse transform is
to be calculated, it can also be used as shown below. If the real or imaginary part of {x} or
{ay} isstored at intervals of length |, specify ISN as follows:

For atransform, ISN = + |
For an inverse transform, ISN = — |

The results will also be stored at intervals of length I. Note, however, that when | > 1,specify
the size of work array VW to be 7n.

With a vector processor, the interval length | should take the following values in order to
access memory more efficiently. (See Example (2) below.)

For single precision arithmetic (VCFT2), 1 =4P+2,P=0,1,2, ...

For double precision arithmetic (DVCFT2), 1 =2P+1,P=1.273, ...

(4) Work array size conversion table

The table for 16< n< 4096 is shown as follows:

' n VW VW
4 16 80( 112) 48
5 32 160 ( 224) 9
6 64 320( 448) 192
7 128 640 ( 896) 384
8 256 1280 ( 1792) 768
9 512 2560 ( 3584) 1536
10 1024 5120 ( 7168) 3072
11 2048 10240 (14336) 6144
12 4096 20480 (28672) 12288

Figuresin () arethe sizeswhen ABS(ISN) > 1.

99SP4070E-2
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(5) Genera definition of Fourier transform

The discrete complex Fourier transform and its inverse transform can be defined as in (3.1)

and (3.2).
1 n-1 _jk

o ==0y xj v ™ ,k=01...,n-1 (3.1
n JZDJ
n-1 iK

Xj =5 ag ', j=01..,n-1 (3.2)
k=0

where, w=exp(2ri/n)

This subroutine calculates {nai} or {x} corresponding to the left hand side of (3.1) or (3.2),
respectively. Normalize the results as requires.

c. Example

In this example a one-dimensional Fourier transform (with n terms) and its inverse transform are
calculated, for n < 1024.

c * % EXAMPLE* *
DI MENSI ON A(1024), B(1024) , VW 5120) , | VW 3072)
READ( 5, 500) N
READ( 5, 510) (A(1),B(1),1=1,N)

c - - - FORWARD TRANSFORM - -
| SN=1
| SW=0
CALL VCFT2(A B, N, I SN, | SW VW | VW | CON)
| F(1 CON. NE. 0) STOP

c - - - NORMAL| ZATI ON- - -

ANOR=1. 0/ FLOAT(N)
DO 10 1=1,N
A(1) =ANOR* A(1)

10 B(1)=ANOR*B(1)
WRI TE(6, 600) N, (I,A(1),B(1),1=1,N)

c - - - BACKWARD TRANSFORM - -

I SN=- 1
| SWe1
CALL VCFT2(A B, N, I SN, | SW VW | VW | CON)
| F(1 CON. NE. 0) STOP

WRI TE(6, 610) N, (I, A(1),B(1),1=1,N)

500 FORMAT(I5)

510 FORMAT( 2E15. 7)

600 FORMAT( 5X,
* txx* FORWARD TRANSFORM OF TERM ,
* 15//(8X, 13, 2E16.7))

610 FORMAT( 5X,
* txxx BACKWARD TRANSFORM OF TERM ,
* 15//(8X, 13, 2E16.7))
STOP
END
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(4) Method

The discrete complex Fourier transform is performed using the Fast Fourier Transform
(isogeometric and self-sorting FFTS) method, suited to a vector processor.

Because of the characteristics of vector processors, this subroutine uses an isogeometric FFT in
the single precision arithmetic routine, and a self-sorting FFT in the double precision arithmetic
routine.

For algorithms. see Method for subroutine VCFT1.
Computation procedure in this subroutine
[Single precision arithmetic routine]
(1) Generation of atrigonometric function table (rotation factor)
The function values required for the first stage are calculated and stored in work array VW.
(2) Butterfly operation
(3) Data permutation
(2) above is executed only when thisroutine is called for the first time, i.e, when ISW = 0.
[Double precision arithmetic routine]
(1) Generation of atrigonometric function table (rotation factor)
The function values required for the first stage are calculated and stored in work array VW.
(2) Butterfly operation

(2) above is executed only when thisroutine is called for the first time ,i.e, when ISW = 0.
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F16-11-0201 VCOS1, DVCOS1

Discrete cosine transform (radix 2 FFT)

CALL VCOSL (A, N, TAB, VW, IVW, ICON)

(1) Function

Given one-dimensional n+1 sample data { x} obtained by dividing a 27 period even-function x(t)
into n equal parts as defined by the following:

X = X(8) j=0,1,..,n

=" (1.2)
n
The discrete cosine transform or its inverse transform is calculated by the Fast Fourier Transform

(FFT) method suited to a vector processor, where n = 2| ( |:anon-negative integer).

a Cosinetransform
When {x} is input, the transform defined by (1.2) below is calculated to obtain its Fourier
coefficient { 2n-ay }

n
2nla, =4 DZ"X]- coskj® ,k =01,...,n
J:

=" (1.2)
n
Here, >" meanstaking a summation by halving the first and last term.

b. Cosineinverse transform

When {ag} isinput, the transform defined by (1.3) is calculated to obtain the Fourier series value
{4-x}.

n
47X :4IZZ"ak coski@ ,j=01,...,n

=" (13)

99SP4070E-2 PT 11-23



VCOS1

(2) Parameters
A Input. {x} or {ag
Output. {2n-a} or {4-x}
One-dimensional array of size n+2
See Figure VCOSI-1.
N Input. Number of samples minus 1.
TAB ..... Output. Trigonometric function table used in transformation is
stored.
One-dimensional array of size 2n+4n
VW....... Work area.
One-dimensional array of sizemax (n (1 +1) / 2,1)
IVW .....Work area.
One-dimensional array of sizen-max (I - 4,2) /2
ICON ... Output. Condition code
See Table VCOSI-1.
Array A
& {x} {a
A Xo 2h)
A(2) X1 a
A3 X, a
A(%) X5 a
L ] [ ] [}
L J [ ] L ]
L ] L ] [ ]
A(N) Xn-1 an1
A(N+1) X, a,
A(N+2) * *
Notes:
Same for {2na} and {4x}
*may be omitted during input.
0.0 is set during output.
Figure VCOS1-1 Data storage method
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Table VCOS1-1 Condition codes

Code Meaning Processing
0 No error -
30000 N # 2' (I: anon-negative integer) Bypassed

(3) Notes
a. Subprograms used
@

2
b. Notes

)

@)

©)

SSL II: VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1, UVFB1,
UVFX1, UBANK, UVTAB, MGSSL

FORTRAN intrinsic functionssALOG2, SIN, COS, ATAN, IABS, IAND,
MOD, FLOAT

Subroutine use

This subroutine performs high-speed calculation of discrete cosine transforms on a vector
processor. On a genera-purpose computer, however, subroutine FCOST may be more
suitable.

Multiple transforms

Performance of multiple transforms is more efficient, as generation of the trigonometric table
and list vector required for transformation is bypassed in the second and subsequent calls of
the subroutine. TAB, VW, and IVW arrays must be called without changing their contents.

The contents of TAB, VW, and IVW arrays previousy generated are valid even when the
number of terms n are different for the multiple transforms. However, it is preferable to call
the subroutines in such a way that transforms of equal term numbers are stringed to the
maximum extent possible.

Trigonometric table and work array size conversion table

The following tableisforl6 < n < 4096:

| n TAB VW VW
4 16 36 40 16
5 32 68 96 32
6 64 132 224 64
7 128 260 512 192
8 256 516 1152 512
9 512 1028 2560 1280
10 1024 2052 5632 3072
11 2048 4100 11288 7168
12 4096 8196 26624 16384

99SP4070E-2
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(4) General definition of discrete cosine transform

The discrete cosine transform and its inverse transform can be defined asin (3.1) and (3.2)

n
ay =2 "x; [coskj@,k =01,...,n (31)
n =0
n
X; = 3" [£0sk6, j =0L....n (32)
k=0

This subroutine calculates {2n-ag} or {4-x} corresponding to the left-hand side of (3.1) or
(3.2), respectively. Therefore, normalize the results as required.

c. Example

In this example, n+1 samples {x} are input and transformed by this subroutine. Then, the results
are normalized and discrete Fourier coefficients {a} are calculated. Calculation is continued to
inverse transformation and { x;} is obtained. The following is an example where n <512.

c ** EXAMPLE* *
DI MENSI ON X(514) , TAB(1028) , VW( 2560)
* , 1 VW 1280)
1 READ(5, 500) N
| F(N. EQ 0) STOP
NP1=N+1
READ( 5, 501) (X(1),1=1, NP1)
c COSI NE TRANSFORM
WRI TE( 6, 600) N
WRI TE(6, 601) (X(1),1=1, NP1)
CALL VOOS1(X, N, TAB, VW | VW | CON)
| F(1 CON. NE. 0) GO TO 30
c NORMALI ZE
CN=1.0/ (2.0 *FLOAT(N))
DO 10 K=1, NP1
X(K) =X( K) * CN

10 CONTI NUE
VRl TE( 6, 602)
WRI TE(6, 601) (X(1),1=1, NP1)
c COSI NE | NVERSE TRANSRORM

CALL VOOS1(X, N, TAB, VW | VW | CON)
| F(1 CON. NE. 0) GO TO 30
c NORMAL| ZE
CN=0. 25
DO 20 K=1, NP1
X(K) =X( K) * CN
20 CONTI NUE
VRl TE( 6, 602)
WRI TE(6, 601) (X(1),1=1, NP1)
G TO 1
30 WRI TE(6, 603) | CON
G TO 1
500 FORMAT(I5)
501 FORMAT(6F12. 0)
600 FORMAT(' 0',5X, ' | NPUT DATA N=', 15)
601 FORMAT(5F15. 7)
602 FORMAT(' 0', 5X, ' OUTPUT DATA')
603 FORMAT(' 0', 5X, ' CONDI TI ON CCDE', | 8)
END
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(4) Method

Consider performing the discrete cosine transform of term number n+1 (= 2' + 1, 1 = 0,1, ... )

using the Fast Fourier Transform (FFT) method, suited for a vector processor.

The dixcrete cosine transform may be expressed by (4.1) when samples {x}, j=0,1, ... ,n are given.

1 2nt . 1 ;
a; =—Xp +szlxk ROS(I(JG)+F(_1)] Xy

n
,J=01,...,n
== (4.1)
n

Now the samples are an even-function, and the relation expressed by (4.2) can be seen by

extending to one period.

Xoni =%,]=0,1,...,n (4.2)

Therefore, ag to a, can be calculated by extending g to X, t0 Xg t0 Xo.1 @nd performing the 2n term
discrete real Fourier transform. It iswell known that use of (4.2) enables efficient performance of

the transform.
Perform the following preprocessing on the { x} samples:
1 e
d :EE(Xj +xn_j)—sm(16)[(xj —xn_]-) (4.3)
,i=0,1,...,n-1

Substitution of the discrete cosine inverse transform (4.4) in (4.3) will result in
(4.5).

-1 .
X =%a0 +I1Zak [toskj® +%(—1)‘ a,,
=

,j=0,1,..,n-1 (4.4)
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n

Ny
1 2 . .
d; = 2 ag+ kz [a2k [€0s(2 0K 8) + (g1 — 81 ) (OS2 K 9)] +
S|

%and—ﬂt j=01..n-1 (4.5)

Expression (4.5) is equivalent to the n term discrete real Fourier transform with samples of {dj}
and Fourier coefficients of {ay} and {ax.1—ax1}. Thus, {a} can be obtained by using the
identical equations:

A = A

by = a1 ~ x4

after calculating the Fourier coefficients {a} and {b} corresponding to the samples {d}. In
other words, {a} iscalculated by (4.6)

1 20t . 1 ~ ~
a; = — X n > X B:OS(JB)‘F (Xn, Aok = 8y, Agksq = gk +bK,
=
k=1..2-1 (4.6)
2

Now, the last expression in (4.6) is a recurrence formula and is unsuitable for a vector processor.
Therefore, this subroutine uses a vector-processor-suited algorithm by eliminating recurrence
calculations by tracing the preceding expressions backward, taking advantage of the fact that the
discrete cosine transform and its inverse transform are identical except for their normalization
constants.

Refer to reference [8] for the details on this algorithm.
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B62-21-0201 VGSG2, DVGSG2

Eigenvalue and eigenvector for real symmetric matrix
(parallel bisection method and inverse iteration method)

CALL VGSG2(A, B, N, M, EPSZ, EPST,E,EV K, VW,
IVW, ICON)

(1) Function

M eigenvalues for genera eigenvalue problem expressed by (1.1)for n order real symmetric
matrix A and n order positive definite symmetric matrix B are calculated in descending (or
ascending) order using the parallel bisection method.

AX = ABx (1.1)

Also, corresponding m eigenvectors xi, X, ... , X are calculated by the inverse iteration method.
Eigenvectors must satisfy the relation expressed in (1.2).

XBX=1 (1.2)
Here, X=[Xy, X2, -. ; X, With1<m<n.

(2) Parameters

A Input. Real symmetric matrix A.
Symmetric matrix compression mode.
One-dimensional array of size n (n+1)/2.
Contents are not saved after operation.

B Input. Positive definite symmetric matrix B.
Symmetric matrix compression mode.
One-dimensional array of size n (n+1)/2.
Contents are not saved after operation.

N e Input. norder of real symmetric matrix A and of positive definite
symmetric matrix B.

M......... Input. m number of eigenvalues to be calculated.
Calculate in descending order when M = +m.
Calculate in ascending order when M = —-m.

EPSZ....Input. Relative zero test value of the pivot in the LL" decomposition
of B. Default value is used when zero or a negative value is specified.
(Seenote (2).)
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EPST .... Input. Upperbound of absolute errors used in convergence test of
eigenvalues. Default value is used when a negative value is
specified.

(See note (3).)
Eeere Output. Eigenvalues.
One-dimensional array of sizem.
Output are stored in descending order when M is positive and
ascending order when M is negative.

EV..... Output. Eigenvectors.
EV (K,M) two-dimensional array.
Eigenvector corresponding to eigenvalue E (J) isstored at EV (I, J),
=1, .. N

Koo Input. Conformation size (= n) for array EV.
VW....... Work area. One-dimensional array of size 15n.
IVW ..... Work area. One-dimensional array of size 7n.

ICON ... Output. Condition code.
See Table VGSG2-1.

(3) Notes
a. Subprograms used

(1) SSL 1I: GSCHL, TRID1, TRBK, GSBK, UVTG2, UCHLS, UVBCT, AMACH,
MGSSL

(2) FORTRAN intrinsic functions: IABS, SQRT, SIGN, ABS, AMAX1
b. Notes

(1) This subroutine is functionally equivalent to the subroutine GSEG2, but it performs at high-
speed on a vector processor since the parallel bisection method isused. Note that the methods
for work area allocation are different in these subroutines.

(2) Default value for the parameter EPSZ is 16 - u, when the unit round-off is u.

If EPSZ for this subroutine is set at 10°°, condition code (ICON = 29000) is set assuming the
pivot is zero and processing is terminated when the pivot value is truncated for more than the s
decimal digits during LL" decomposition of the positive definite symmetric matrix B.

Even when the pivot becomes small, calculation can be continued by specifying a small value
for EPSZ, but the calculation accuracy cannot be guaranteed.

On the other hand, when the pivot value becomes negative during decomposition, the matrix B
is assumed to be negative and calculation is terminated, setting the condition code (ICON =
28000).
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(3) The standard value of the parameter EPST in asin (3.1) when u is chosen as the round-off unit.

EPST = u-max (Mmaxly Mminl)

(3.1)

Here, max and min are the upperbound and lowerbound of the existence range (given by the
Gerschgorin's theorem) of the eigenvalues for Ax = ABx.

When extremely large and small absolute value eigenvalues coexist and a convergence test is
performed using (3.1),it is difficult to obtain the smaller eigenvalues of adequate precision. In
such cases, setting EPST at a small value(absolute error) enables calculation of smaller
eigenvalues with high precision. However, processing speed slows down as the number of

iterations increases.

Table VGSG2-1

Condition codes

Code Meaning Processing
0 | Noerror -
10000 |N=1 Make E (1) = A(1)/B (1),and EV (1,1)=
1.0/SQRT (B (2)).
15000 Some eigenvectors were not Make uncal culated eigenvectors zero
calculated. Vectors.
20000 No eigenvectors were calcul ated. Make all eigenvectors zero vectors.
28000 Pivot became negative during LL" Discontinued
decomposition of B. B is negative
29000 | Pivot became relatively zero Discontinued
during LL"decomposition of B. B
may be singular
30000 M=0N<|M| ,or K<N. Bypassed
c. Example

In this example, m eigenvalues and corresponding eigenvectors are calculated in descending (or
ascending) order for the general eigenvalue problem Ax = ABx for n order real symmetric matrix
A and n order positive definite symmetric matrix B. This example is for is for cases where n <

100 and m< 20.
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C * % EXAMPLE* *
DI MENSI ON A( 5050) , B(5050) , E( 20),
* EV(102, 20), VW 1500) , | VW 700)
10 READ( 5, 500, END=900) N, M EPSZ, EPST
NT=N¢ ( N+1) / 2
READ( 5, 510) (A(1),1=1, NT)
READ( 5, 510) (B(1),|=1, NT)
WRI TE( 6, 600) N, M EPSZ, EPST

VR TE( 6, 610)

1 J=0

DO 20 1=1,N

1J=1 3+

20 WRI TE(6, 620) |, (A(J),J=1J-1+1,1J)

VR TE( 6, 630)

1 J=0

DO 30 1=1,N

1J=1 3+

30 WRI TE(6, 620) |, (B(J), J=1J-1+1,1J)
CALL VGSG2(A B, N, M EPSZ, EPST,
* E, EV, 102, VW | VW | CON)
WRI TE( 6, 640) | CON
| F(1 CON. GE. 20000) GO TO 10
MVEI ABS( M)
CALL SEPRT(E, EV, 102, N, M)
GO TO 10
900 STOP
500 FORMAT( 2l 5, 2E10. 2)
510 FORMAT(5E15. 7)

600 FORMAT(' 1'//' *** N=', 15
* [roxx ME' 15
* /' *** EPSZ=',El5.7
* /' *** EPST=',El5.7)

610 FORMAT('0'//' *** | NPUT MATRIX A /)
620 FORMAT(' 0', 2X, | 3, 5E15. 7/ ( 6X, 5E15. 7))
630 FORMAT('0'//' *** | NPUT MATRIX B' /)
640 FORMAT('0'//' *** |CONE',|5)

END

This subroutine SEPRT in this example is used for printing eigenvaluer and eigenvectors of real
symmetric matrices. For details, see the example of VSEG2 subroutine use.

(4) Methods

Calculate the eigenvalues and eigenvectors using the following procedures for the general
eigenvalue problem expressed by (4.1) for n order real symmetric matrix A and n order positive
definite symmetric matrix B.

Ax = ABx (4.1)
a. Transformation of general eigenvalue problem to standard format

B in (4.1 can be decomposed into a form expressed by (4.2) since it is a positive definite
symmetric matrix.
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B=LL' (4.2)

Here, L isan order lower triangular matrix. Substituting the values LL" of (4.2) for B of (4.1) and
rearranging it resultsin expression (4.3).

LTALT (L)) = A(L™X) (4.3)
Here, let

S=LtALT (4.4)
y=L"x (4.5)

Then, S becomes area symmetric matrix and (4.3) becomes the standard format, expressed as
follows:

Sy=Ay (4.6)

b. Rea symmetric matrix eigenvalues and eigenvectors

Transform real symmetric matrix S by orthogonal similarity transformation into real symmetric
tridiagonal matrix, then calculate the eigen value of T and corresponding eigenvector y' using the
bisection method and inverse iteration method, respectively. y' isinverse transformed further as
eigenvector y of S,

c. Eigenvectorsfor general eigenvalue problems

The eigenvector x in (4.1) is calculated by (4.7),using vector y calculated in b.

x=L"y 4.7

Subroutine GSCHL calculates a., Save subroutines of VSEG2 calculate b., and GSBK calculates c.
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A22-71-0101 VLAX, VDLAX

A system of linear equations with areal general matrix
(blocking LU-decomposition method)

CALL VLAX (A, K, N, B, EPSZ, ISW, IS, VW, IP,
ICON)

(1) Function

This subroutine solves a real coefficient linear equations (1.1) using the blocking LU-
decomposition (Gaussian elimination method).

Ax=b (1.2)

Where Aisann x nregular real matrix, b isan n- dimensional real constant vector, and x is the n-
dimensional solution vector. n 1.

(2) Parameters
A Input. Coefficient matrix A.
The contents of A are altered on output. A isatwo-dimensional array, A (K, N).
Ko Input. Adjustable dimension of array A (=N).
N Input. Order n of the coefficient matrix A.
B Input. Constant vector b

Output. Solution vector x
B isaone-dimensional array of sizen

EPSZ....Input. Tolerance for relative zero test of pivots in decomposition process of A (= 0.0).
If EPSZ is 0.0, a standard value is used.

ISW......Input. Control information.
When | (=1) systems of linear equations with the identical coefficient matrix are to be
solved, |SW can be specified as follows:
ISW=1, thefirst system is solved.
ISW=2, the 2nd to I-th systems are solved.
However, only parameter B is specified for each constant vector b of the systems of
equations, with the rest unchanged. (See Notes.)

(ST Output. Information for obtaining the determinant of matrix A.
If the n elements of the calculated diagonal of array A are multiplied by 1S, the
determinant is obtained.

VW....... Work area. VW isaone-dimensional array of sizen

IP.......... Work area. IPisaone-dimensional array of sizen

ICON....Output. Condition code. Refer to Table VLAX-1.
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Table VLAX-1 Condition codes

Code Meaning Processing
0 No error -
20000 Either all of the elements of some row were zero or the pivot Discontinued

became relatively zero. It ishighly probable that the coefficient
matrix issingular.

30000 K<N, N<1, EPSZ<0.00r ISW £ 1, 2 Bypassed

(3) Notes

a. Subprogram used

SSL e VALU, LUX, AMACH, MGSSL
FORTRAN intrinsic functions........ ABS

b. Notes

(1) The solution x obtained by the subroutine may be refined in accuracy by calling subroutine
LAXR successively.

(2) If a vaue is set in the tolerance EPSZ for pivot relative zero test, this value means the
following:

If the selected pivot element is smaller than the product of the largest absolute value of real
matrix A=(ajj) elements, max |ajj| and EPSZ can be shown as follows,

|a'k‘k |< max|ay; |[EPSZ

The relative pivot value is assumed to be zero and processing terminates as |CON=20000.
The standard value of EPSZ is 16 u, u being the unit round off. If the processing isto proceed
at a lower pivot value, EPSZ will be given the minimum value but the result is not always
guaranteed.

(3) When solving successive systems of linear equations with the identical coefficient matrix,
computation can be performed by setting 1SW=2 after the first system of equations are
processed. By setting ISW=2, LU-decomposition of coefficient matrix A is bypassed so the
computation time isreduced. In this case, the value of IS is the same as when ISW=1.
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c. Example

(4) Method

In this example, | systems of linear equations in n unknown with the identical coefficient
matrix are solved. n <100.

C

**EXANPLE**
DI MENSI ON A( 100, 100), B( 100) , VW( 100) , | P( 100)
READ( 5, 500) N
READ( 5, 510) ((A(l,J),1=1,N),J=1,N)
WRI TE(6, 600) N, ((1,J,A(1,J),Jd=1,N),1=1, N
READ( 5, 500) L
M=l
| SWeL
EPSZ=1. OE- 6
10 READ(5,510) (B(1),1=1, N)
WRI TE(6, 610) (I,B(1),1=1, N
CALL VLAX(A 100, N, B, EPSZ, | SW 'S, VW | P, | CON)
WRI TE( 6, 620) | CON
| F(1 CON. GE. 20000) STOP
WRI TE(6, 630) (I,B(1),1=1,N)
| F(L.EQ M GOTO 20
MeM#1
| SWe2
GO TO 10
20 DET=IS
DO 30 1=1,N
DET=DET*A(I, 1)
30 CONTI NUE
WRI TE( 6, 640) DET
STOP

500 FORMAT(I5)

510 FORMAT(4E15. 7)

600 FORMAT('1', 10X, ' ** COEFFI Cl ENT MATRI X'
*/ 12X, ' ORDER=', 1 5/ (10X, 4(' (' ,13,"',",13,
*')' E15.8)))

610 FORMAT(/// 10X, ' CONSTANT VECTOR
*/ (10X, 5(' (*,13,"')",E16.8)))

620 FORMAT(' 0', 10X, ' CONDI TI ON CODE=', | 5)

630 FORMAT(' 0', 10X, ' SOLUTI ON VECTOR
*/ (10X, 5(' (*,13,')",E16.8)))

640 FORMAT(/// 10X,

*' DETERM NANT OF COEFFI Cl ENT MATRI X=',
*E16. 8)
END

A system of linear equations

AX=Db

is solved using the following procedure:

4.1)
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a. LU-decomposition of coefficient matrix A ,(blocking LU-decomposition)

The coefficient matrix A is decomposed into the product of a lower triangular matrix L and a
unit upper triangular matrix U. To reduce rounding off errors, the partial pivoting is
performed in the decomposition process.

PA= LU (4.2)

P is the permutation matrix which performs the row exchanges required in partial pivoting.
Subroutine VALU is used for this operation.

b. Solving LU = Pb (forward and backward substitutions)

Solving equation (4.1) is equivalent to solving the linear equations (4.3).
LUx= Pb 4.3
Equation (4.3) is decomposed into two equations

Ly=Pb 4.9
Ux=y (4.5)

Then the solution is obtained using forward substitution and backward substitution.
Subroutine LUX is used for these operations.
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A22-61-0302 VLDLX, DVLDLX

A systme of linear equations with a positive definite symmetric
matrix decomposed into the factors L, D ansL'

CALL VLDLX (B, FA, N, ICON)

(1) Function

(2) Parameters

This subroutine solves a system of linear equations with an LDL" decomposed positive definite
symmetric coefficient matrix

LDL"x= b, (1.1)

where L and D are an n x n unit lower triangular matrix and a diagonal matrix, respectively, b is
an n-dimensional real constant vector, x is an n-dimensional solution vector, and n = 1.

This subroutine received an LDL" decomposed matrix from subroutine VSLDL and calculates the
solution.

B Input. Constant vector b.
Output. Solution vector X,
One-dimensional array of size n.
FA ... Input. MatricesL and D™
One-dimensional array of sizen(n+ 1)/2.
Asshown in Figure VLDLX-1, L isinput column by column, from the
first column to the n-th one.
N Input. Order n of matricesL and D
ICON....Output. Condition code
See Table VLDLX-1.
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Array FA
- - 1 e
1 d,
0 . I
Iz 1 = = = First
column
|31 |32 1 |31
I41 |42 |43 1
) - la
1 INT
Second d
r . column |
d]_ 0 32
== 42
0 d, -1
d. Third ds
L 4 column s
]
Fourth -1
column d,

NT=n (n+1)/2
Correspondence relationship
lj— FA(1J) 13=(2n-j+2)(j—1)/2+(i—j+1)

Figure VLDLX-1 Storage method of matrices L and D ™

Table VLDLX-1 Condition codes

Code Meaning Processing
0 | Noerror -
10000 | Coefficient matrix was not positive definite. Continued
30000 N<1 Bypassed
(3) Notes

a. Subprograms used

(1) SSL II: MGSSL

(2) FORTRAN intrinsic functions: none
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b. Notes
(1) A system of linear equations can be solved by caling this subroutine after the VSLDL
subroutine. However, subroutine VLSX can usually be called to solve such equations in one
step.
c. Example

In this example an LDL" decomposition is performed for a positive definite symmetric matrix
using subroutine VSLDL, then this subroutine is used to solve a system of linear equations. n<
100 is assumed.

C * % EXAMPLE* *
DI MENSI ON A(5050) , B( 100) , VW 200) , | VW( 100)
10 READ(5, 500) N
| F(N. EQ 0) STOP
NT=N* ( N+1) / 2
READ( 5, 510) (A(1),1=1, NT)
VR TE( 6, 640)
| S=1
| E=N
DO 20 J=1,N
WRI TE(6, 600) J, (A(1),1=1S,IE)
| S=1 E+1
20 | E=l E+(N-J)
CALL VSLDL(A N, 1. 0E-6, VW | VW | CON)
WRI TE( 6, 610) | CON
| F(1 CON. GE. 20000) STOP
READ( 5, 510) (B(1),1=1, N)
CALL VLDLX(B, A N, | CON)
WRI TE( 6, 610) | CON
DET=1.0
=1
NCOL=N
DO 30 1=1,N
DET=DET*A(I I )
I'1=11+NCOL
30 NCOL=NCOL- 1
DET=1. 0/ DET
WRI TE(6, 620) (B(1),1=1,N)
WRI TE( 6, 630) DET
GO TO 10
500 FORMAT(I5)
510 FORMAT(5E15. 7)
600 FORMAT(' ', 15/ (10X, 4E16.8))
610 FORMAT(/ 10X, ' | CON=', | 5)
620 FORMAT(/ 10X, ' SOLUTI ON VECTOR
* |/ (10X, 5E16. 8))
630 FORMAT(/ 10X,
*' DETERM NANT OF COEFFI Cl ENT MATRI X='
* E16. 8)
640 FORMAT(/ 10X, ' | NPUT MATRI X' )
END
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(4) Method

Suppose that an LDL" decomposition of a positive definite symmetric matrix A is given as

follows:

A=LDL" (4.1)
The system of equations,

LDL'™x=b (4.2)

is solved in the following sequence:

(1) Solve Ly = b (by following substitution)
First, b becomestheinitial value of y.

y<b
Next, (4.4) isiteratedforj=1, 2, ..., n-1.
Yi <« Yi— leij J= J +1.] +2,...,N. (44)

(2) Solve L™x = D'y (by backward substitution)
First, D 'y becomes the initial value of x.

XDy (4.5)
Next, (4.6) isiteratedfori=n-1,n-2, ..., 1.

n (4.6)
Xi «— Xi - Z|“Xj
j=i+l

For actual calculations, y and x are both obtained on array B, so the substitutions shown above are
equivalent to the update procedures for array B.

All the above calculations are vectorized on a vector processor.
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A22-61-0101 VLSX, DVLSX

A system of linear equations with a positive definite
symmetric matrix (modified Cholesky's method)

CALL VLSX(A, N, B, EPSZ, ISW, VW, IVW, ICON)

(1) Function

This subroutine solves a system of linear equations with a real coefficient matrix by using the
modified Cholesky's method.

Ax=b (1.2)

Ais ann x n positive definite symmetric matrix, b is an n-dimensional real constant vector, and x
isan n-dimensiona solution vector, and n>1.

The function of this subroutine is the same as that of subroutine LSX, but this subroutine stores
the coefficient matrix differently, which makes it more suitable for a vector processor.

(2) Parameters

A Input. Coefficient matrix A.
The contents are altered during cal culation.
One-dimensional array of size n (n+1)/2.
The lower triangular portion of the symmetric matrix is stored column by column, from
the first column to the n-th column, as shown in Figure VLSX-1.
N Input. Order n of the coefficient matrix A
B Input. Constant vector b
Output. Solution vector x
One-dimensional array of sizen
EPSZ....Input. Tolerance for relative zero test (= 0.0)
When 0.0, a standard value is assigned.
(See Note (2).)
ISW......Input. Control information
When solving several sets of equations that have an identical coefficient matrix, specify
ISW=1 for the first set of equations, and | SW=2 for the second and subsequent sets.
Only parameter B is assigned a new constant vector b.
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All the other parameters should be unchanged. (See Note (3).)
VW....... Work area. One -dimensional array of size 2n
IVW .....Work area. One-dimensional array of sizen
ICON ... Output. Condition code

See Table VLSX-1.

Array A
a1l ai1
G182 = = = Fird 921

column
a3 Az Az az1
[an B A | an
I
NT = n (n+1)/2 Second G2 | NT
column
. az2
Correspondence relation
a2
aij - A(1J) ]
) ) Third aa3
1J=(2n-j+2)(j-1)/2 column
+(i-+1) | aus
Fourth
column Ay

Figure VLSX-1 Storage method of symmetric matrix

Table VLSX-1 Condition codes

Code Meaning Processing
0 No error -
10000 Pivot became negative. Continued
Coefficient matrix is not positive definite.
20000 Pivot became smaller than relative zero value. Coefficient Bypassed
matrix might be singular.
30000 N <1, EPSZ<0.0, or ISW #1 or 2 Bypassed
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(3) Notes

a. Subprograms used

b. Notes

c. Example

(1) SSL I1: VSLDL, VLDLX, AMACH, MGSSL
(2) FORTRAN intrinsic functions. ABS

(1) This subroutine is provided for high-speed processing on a vector processor by modifying the
matrix storage method used in subroutine LSX. Note the differences in the storage methods
and calling sequences used by the two subroutines.

(2) If the value 10°is given as the tolerance for the relative zero test, EPSZ, then the value has

the following meaning: if the pivot value loses more than S significant digits during LDL'
decomposition in the modified Cholesky method, the value is assumed to be zero and
decomposition is discontinued with ICON=20000. The standard value of EPSZ is normally
16-u, where u is the unit round off.

Decomposition can be continued by assigning the smallest value (e.g., 10™) to EPSZ even
when the pivot value becomes smaller than the standard value, although the calculation result
may not be as accurate as desired.

(3) When solving several sets of linear equations that have an identical coefficient matrix, specify
ISW=2 for subroutine from the second time on. This should reduce the processing time
because LDL" decomposition for the coefficient matrix is bypassed.

(4) If the pivot value becomes negative during decomposition, it means that the coefficient matrix
isno longer positive definite. ICON = 10000 is set, but processing continues. Note, however,
that the resulting calculation error may be significant, because no pivoting is performed.

(5) To calculate the determinant of the coefficient matrix, multiply al the n diagonal elements of
the array A (i.e., diagonal elements of D) after calculation is completed, and take the
reciprocal of the result.

In this example, | sets of n-th order linear equations that have an identical coefficient matrix are
solved, where n < 100.

C * % EXAVPLE* *
DI MENSI ON A( 5050) , B( 100) , VW 200) , | VW 100)
READ( 5, 500) N
NT=N* (N+1) / 2
READ( 5, 510) (A(1), =1, NT)

WRI TE( 6, 600) N
READ( 5, 500) L
| SWe1

Me1
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(4) Method

EPSZ=1. OE- 6
10 READ(5, 510) (B(1),1=1, N)
CALL VLSX(A, N, B, EPSZ, | SW W | VW | CON)
WRI TE( 6, 610) | CON
| F(1 CON. GE. 20000) STOP
WRI TE(6, 620) (B(1),1=1, N)
IF(L.EQ M GO TO 20
MeM#-1
| SWe2
GO TO 10
20 DET=1.0
=1
NCOL=N
DO 30 1=1,N
DET=DET*A(I 1)
Il =11 +NCOL
30 NCOL=NCOL- 1
DET=1. 0/ DET
WRI TE( 6, 630) DET
STOP
500 FORMAT(I5)
510 FORMAT(4E15. 7)
600 FORMAT(' 1'/10X,' ORDER=', | 5)
610 FORMAT(' 0', 10X,'|CON=', | 5)
620 FORMAT(11X,' SOLUTI ON VECTOR
*/ (15X, 5E16. 8))
630 FORMAT(' 0', 10X,
*' DETERM NANT OF COEFFI Cl ENT MATRI X='
* E16. 8)
END

A system of linear equations with a positive definite symmetric coefficient matrix A,
Ax=b 4.1

is solved in the following sequence:

a LDL" decomposition of coefficient matrix A (modified Cholesky's method)

Using the modified Cholesky method, the coefficient matrix A is decomposed into LDL',
A=LDL" (4.2)

where L is a unit lower triangular matrix and D is a diagonal matrix. This calculation is
performed by subroutine VSLDL.
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b. Solution (forward and backward substitutions)
A system of linear equations,
LDL'™x=b (4.3)
issolved. Thiscalculation is performed by subroutine VLDLX.
This subroutine is a vector version of subroutine LSX, and is provided for high-speed processing

on a vector processor. For further details, see the explanation of subroutine VSLDL and the
Method section of VLDLX.
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A62-11-0101, VLTX, DVLTX

A systme of linear equations with areal tridiagonal
matrix (cyclic reduction method)

CALL VLTX(SBD, D, SPD, N, B, ISW, IND, IVW, ICON)

(1) Function

This subroutine solves a tridiagonal matrix equation
Ax=b (1.1

using the cyclic reduction method, where A is an n x n irreducibly diagonally dominant real
tridiagonal matrix, b is an n-dimensional real constant vector, and x is the n-dimensional solution
vector, and n=1.

Matrix Aissaid irreducibly diagonally dominant if, for the matrix below,

(1.2)

oOoOoOoogood

the condition:
ldi|>[e|+[fil, =12 ..,n (1.3)
(wheree; =f,=0)
is satisfied, and for at least onei, a strict inequality holds.
(2) Parameters

SBD......Input. Sub-diagonal portion of coefficient matrix A.
Store as SBD(i)=¢ i=2, 3, ..., n.
See Figure VLTX-1.
The contents are altered during the calculation.
One-dimensional array of size 2n
(See Note (4).)
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Input. Diagonal portion of the coefficient matrix A.
StoreasD(i) =d;,i=1,2,...,n.

See Figure VLTX-1.

The contents are altered during the cal cul ation.
One-dimensional array of size 2n

(See Note (4).)

Input. Super-diagonal portion of coefficient matrix A
Storeas SPD(i) =f;,i=1,2, ..., n-1.

See Figure VLTX-1.

The contents are altered during the cal cul ation.
One-dimensional array of size 2n.

(See Note (4).)

Input. Order n of coefficient matrix A.
StoreasB(i)=b;,i=1,2, ..., n.
Output. Solution vector x.
StoreasB(i)=x,i=1,2,...,n.

See Figure VLTX-1.

One-dimensional array of size 2n

Input. Control information.

When solving severa sets of equations that have an identical
coefficient matrix, specify ISW = 1 for the first set of the equations,
and ISW = 2 for the second and subsequent sets. Only parameter B is
assigned a new constant vector b. All other parameters should be
unchanged.

(See Note (2).)

Input. Control information.

IND = 0 specifies to check whether the coefficient matrix is
irreducibly diagonally dominant. IND = 1 specifies not to check
whether the matrix isirreducibly diagonally dominant. Normally, O
is specified.

(See Note (3).)

Work area. One-dimensional array of size[log,n] + 10, where[ ] is
Gaussian notation.

... Output. Condition code.

See Table VLTX-1.
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Array SBD  Array D Array SPD
"
* d f1
& d, f
€3 ds f3
n< . : .
€n_1 dn_l 1:n_l
. en dn *
n < * * *
.

Note:

Table VLTX-1 Condition codes

Array B
bl X1
b2 X2
b; X3
bn_l Xn_1
b, Xn

The portion indicated by an asterisk (*) is used asawork areain this subroutine.

Figure VLTX-1 Storage method of matrix A, and vectors b and x

Code Meaning Processing
0 [ Noerror -
20000 | Coefficient matrix is not irreducibly diagonally Bypassed
dominant or the matrix issingular.
30000 N<L1ISW#1lor2orIND#O,1 Bypassed

(3) Notes

a. Subprograms used

(1) SSL 11: AMACH, MGSSL

(2) FORTRAN intrinsic functions: ALOG2, AMAX1, AMIN1, ABS, FLOAT, MINO.
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b. Notes

(1) This subroutine uses the cyclic reduction method, an algorithm suited to a vector processor.

Processing on a vector processor has the following features:

- It ismuch faster than the Gaussian elimination method used in
subroutine LTX.

— Processing time increases aimost linearly with N.

— The more diagonally dominant the matrix is, the faster it is processed.
This subroutine is about as accurate as subroutine LTX when processing irreducibly
diagonally dominant matrices.

(2) When solving several sets of tridiagonal matrix equations that have an identical coefficient
matrix, specify ISW = 2 from the second subroutine call on. This bypasses coefficient matrix
elimination, thus speeding up calculation.

(3) If the coefficient matrix is known in advance to be irreducibly diagonally dominant, specify
IND = 1 to bypass testing of its irreducible diagonal dominance, thus speeding up calculation.
If IND =1 is specified for a coefficient matrix that is not irreducibly diagonally dominant, the
solution may not be as accurate as desired.

(4) If this subroutine is executed with ISW = 1 specified, arrays D(i), SBD(i), and SPD(i), i = 1,
2, ..., ntake on the values 1/d;, € /d;, and f;/ d; respectively.

c. Example

In this example, | sets of n-dimensional tridiagonal matrix equations that have an identical
coefficient matrix are solved. n< 1000 is assumed.

C * % EXAVPLE* *
DI MENSI ON SBD( 2000) , D( 2000) , SPD( 2000) ,
* B(2000) , | VW 20)

READ( 5, 500) N, L
I F(N. LE. 0) GO TO 30

NML=N- 1

READ(5, 510) (SBD(1),1=2, N)

READ(5, 510) (D(1),1=1, N)

READ( 5, 510) (SPD(1), =1, NML)

WRI TE(6, 600) N, D(1), SPD( 1)

WRI TE(6, 610) (I, SBD(1),D(1), SPD(1),1=2, NML)
WRI TE(6, 610) N, SBD(N), D(N)

| SWe1

| ND=0

DO 10 I1=1,L

READ(5, 510) (B(1),1=1, N)

WRI TE(6, 620) (B(1),1=1, N)

CALL VLTX(SBD, D, SPD, N, B, | SW I ND, | VW | CON)
WRI TE( 6, 630) | CON

| F(1 CON. NE. 0) STOP

WRI TE(6, 640) (B(1),1=1, N)
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(4) Method

| SWe2
10 CONTI NUE
30 WRI TE(6, 650)
STOP
500 FORMAT( 2l 5)
510 FORMAT(5E14. 7)
600 FORMAT(' 1', 20X,

* ' LI NEAR EQUATI ONS ( TRI DI AGONAL) ',

* /' ', 20X, ' ORDER= ',I5,/,

* /' ', 25X,' COEFFI Cl ENT MATRI X', /,

* [t (L A%, 1), 21X, 2(2X, E14. 7))
610 FORMAT((' ','(',15,")",5X% 3(2X E14.7)))
620 FORMAT(/' ', 78('*'),//,' ', 25X

*' CONSTANT VECTOR ,//, (' ',5(1X, E15.7)))
630 FORMAT(/' ',' CONDI TI ON CODE OF VLTX= ', 15)

640 FORMAT(/' ', 25X,' SOLUTI ON VECTCR ,//,
*(* ', 5(1X, E14.7)))

650 FORMAT(//' ', 30X,'** NORMAL END **')
END

Consider the use of cyclic reduction method to solve a tridiagonal matrix equation (4.1) which is
normalized so that the diagonal elements of its coefficient matrix are all 1.

(4.1)

0 00 f.4
e 1

0 o

The general form of the cyclic reduction method for (4.1) is explained first, followed by an
explanation of the possible improvement in the case where the matrix is diagonally dominant to
sufficient extent.

a. General form of cyclic reduction method

This method is used basically to produce a system of tridiagonal matrix equations with respect to
even-numbered unknowns, by applying a proper elimination process to the tridiagonal matrix
equations being solved.

Suppose n is an odd number for convenience, and select three rows next to each other in (4.1) as
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€1%2+ X1+ fig =bis
€ X1+ X + fi Xig =Dy (4.2)
€+1% FXiv1 + fii1 Xiu2 =D

From the three equations above, x.; and X.; can be eliminated in the following way. First,
multiply the first equation by (—e) and the third equation by (-f;),

6™ X2 + % +H® x., = b® (4.3)
where  e%=e;qt,
O =t t,
@ = (& by by — b)
ti = ;
gfiatenfi-1

Considering only the even-numbered i sin (4.3) i.e,, i=2, 4, ... , n—1 (,where Xy = X1 = 0), the
following tridiagonal matrix equation of order [n/2] is obtained.

01 0 DDX 0 Eb(1>D

4(11) 1 f4(1) 0 DDX4 D Ep(l)
eél) 0O 0 DDXG %(DD
O oad DD d D oodog
ooao s g 0 O O 0
oo o Og d D Oogod

0 O

oD % orfe-s %(?35

ey 1 H¥n- 8 H)( 15
This operation for reducing the order of equations by half is called reduction. Once X,, Xy, ... , Xp1

are obtained from (4.4), the odd-numbered unknowns can be obtained by substituting them into
(4.2), resulting in

o o o o
o

Xi-1 = bi-l —€.1X.2— fi_lxi, i=24,..,n+l (45)
Thisis called back ward substitution.

The calculation of ¢ through t;in (4.3), and the calculation of (4.5) can be performed in paralld,
and there is no recurrence relation, unlike the Gaussian elimination method. Therefore, the above
calculations can be efficiently performed by a vector processor. Thus cyclic reduction is faster
than Gaussian elimination on a vector processor.

Next, suppose nis an even number. Then n—1 isan odd number, so the upper limit of i applied in
(4.3) isn=2. Inreturn, by using

€1 %n2F Xna+ Fra X = Dpy (4.6)
€1 Xn1t Xn by
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the following equation from which x has been eliminated is added.
en(l) Xn2 + Xy = bn(l) (4.7)
where e =eyent,

bn(l) = (en bn—l_bn) th
t :;
"oef -1
Even when n is an even number, the original tridiagonal matrix equations can be reduced to
tridiagonal matrix equations of order [n/2], asin (4.4)

The above reduction operation can be applied again to the tridiagonal matrix equations of order
[n/2] to reduce the order by half again. By repeating this operation as many times as required, an
equation of order 1 will be obtained, and in can be solved for the one corresponding unknown.
Then, backward substitution can be repeated to obtain a solution to (4.1). The number of
repeated operations required to reduce the equation to order 1 is[log, n].

b. Incomplete termination of reduction

By continuing the above reduction operation, the matrix will approach diagonal dominance under
certain conditions (i.e., off-diagonal elements will become as small compared to the diagonal
elements). Then, some of the components of the modified right-hand-side vector will converge to
some of the components of the solution vector. Therefore, if reduction operation is stopped at the
proper time and backward substitution is performed, processing efficiency will be improved. The
termination of reduction operation before reaching equations of order 1 is caled incomplete
termination of reduction.

One of the conditions sufficient to enable incomplete termination is that the relation,
le | Ifi|<1/2 (4.8)

is satisfied in the normalized equations given in (4.1). This subroutine, when the above relation is
satisfied, determines the number of reductions before incomplete termination takes place, as
follows

Under condition (4.8), the lower limit of the rate at which the off-diagonal elements are
approaching 0 can be examined. For that purpose, we introduce the value

e=max(glf; |)<1/2 (4.9)

and consider a matrix of (4.1) whose ¢ and f; elements are all replaced by e. The ratio of the
diagonal elementsto e, | /e |, is greater that 2, so we represent it as

| Ve |= 2+ (€9 >0) (4.10)
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By the first reduction operation, off-diagonal elements become

2

= 2; - (4.12)
Itsratio to diagonal elementsisthen
|1e |=2+ D wheree® = 4@ + (£©)2, (4.12)
Thek-thratiois
| /€M | =2 + £, (4.13)
Therefore
e =4e®4(e®)2,k=1,2, ... (4.14)

Thus, when & © <1, the matrix approaches diagonal dominance linearly but once ¢ ¥ >1,
quadratically.

This subroutine estimates in advance the smallest integer k for which
£ ® > 1/u (u: unit round off), (4.15)

and then repeats reduction operations k times before performing the substitution. If k> [log.n],
however, incomplete termination of reduction will not occur.

The greater the value n is and the smaller the value max (Ie |, | fi Dis, the greater efficiency can be
gained by incomplete termination.

For further details, see References[1], [3] and [7].
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(1) Function

(2) Parameters

A62-21-0101 VLTX1, DVLTX1

A system of linear equations with areal constant-tridiagonal
matrix (Dirichlet type and cyclic reduction method)

CALL VLTX1 (D, SD, N, B, ISW, VW, IVW, ICON)

This subroutine solves areal tridiagonal matrix equation
Ax=b (1.1)

using cyclic reduction, where A is an nx n irreducibly diagonally dominant real tridiagonal matrix
of the form:

(1.2)

Where b is an-dimensional rea constant vector, and x is the n-dimensional solution vector, for n
>1.

This subroutine restricts the coefficient matrix to the form (1.2) in order to achieve high
performance, while subroutine VLTX processes a general tridiagonal matrix.

D Input. Diagonal element d

SD........ Input. Off-diagonal element e

. Order of the coefficient matrix A

B Input. Constant vector b
StoreasB(i)=b;,i=1,2, ..., n
Output. Solution vector x
StoreasB(i)=x,i=1,2, .., n.
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See Figure VLTX1-1.

One-dimensional array of size 2n

ISW......Input. Control information

When solving several sets of equations that have an identical coefficient matrix, specify
ISW=1 for the first set of equations, and | SW=2 for the second and subsequent sets.
Only parameter B is assigned a new constant vector b. All other parameters should be

unchanged.
(See Note (3).)

VW....... Work area. One-dimensional array of size 2 ([logyn] ) + 1), where[ ] is Gaussian

notation.

IVW .....Work area. One-dimensional array of size 2 ([log,n] + 1) + 10

ICON ... Output. Condition code
See Table VLTX1-1.

n — n —
Array B b by | bs| - b, .

(Input)

(Output) Xp | X | Xa | = = Xn *

Note:

The portion indicated by an asterisk (*) is used asawork areain this subroutine.

Figure VLTX1-1 Storage method of vectors b and x

Table VLTX1-1 Condition codes

Code Meaning Processing
0 No error -

20000 Coefficient matrix is not irreducibly diagonally dominant. Bypassed

30000 N<1, or ISW #1, 2 Bypassed
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(3) Notes

a Subprograms used

b. Notes

c. Example

(1) SSL 11: AMACH, MGSSL

(2) FORTRAN intrinsic functions. ALOG2, FLOAT, ABS, MINO

() This subroutine uses the cyclic reduction method, an algorithm suited to a vector processor.

Processing on a vector processor has the following features:

It is much faster than the Gaussian elimination method used in subroutine LTX.
Processing time increases ailmost linearly with N.

The more diagonally dominant the matrix is, the faster it is processed.

This subroutine is about as accurate as subroutine LTX or LSTX when processing
irreducibly diagonally dominant matrices.

(2) The coefficient matrix (1.2) arises from the discretization of simple Dirichlet boundary value

problems.

(3) When solving several sets of tridiagonal matrix equations that have an identical coefficient
matrix specify 1ISW=2 from the second subroutine call on. This bypasses coefficient matrix
elimination, thus speeding up calculation.

In this example, | sets on n-dimensional linear equations that have an identical coefficient matrix
are solved, for n < 1000.

C

**EXANPLE**

DI MENSI ON B(2000) , VW 20) , | VW 30)
READ( 5, 500) N

READ( 5, 510) D, SD

WRI TE( 6, 600) N, D, SD

READ( 5, 500) L

| SWe1

DO 10 11=1,L

READ( 5, 510) (B(1),1=1, N)

WRI TE(6, 610) (B(1),1=1, N)

CALL VLTXL(D, SD, N, B, | SW VW | VW | CON)
WRI TE( 6, 620) | CON

| F(1 CON. NE. 0) STOP

WRI TE(6, 630) (B(1),1=1,N)

| SWE2

10 CONTI NUE
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VR TE( 6, 640)
STOP
500 FORMAT(I5)
510 FORMAT(5E14. 7)
600 FORMAT(' 1',
* 20X, ' LI NEAR EQUATI ONS ( TRI DI AGONAL) "
* /' ' 20X,' ORDER= ', |5/
* /' ' 25X, ' COEFFI Cl ENT MATRI X'/
* /' ' 30X 'D=",El4.7/
* /' ' 30X, 'SD=',El4.7)
610 FORMAT(/' ', 78(' *')//' ',
*  25X,' CONSTANT VECTCR //
* (' ', 5(1X E14.7)))
620 FORMAT(/' ',' CONDI TION CODE OF VLTX1= ',
* | 5)
630 FORMAT(/' ', 25X,' SOLUTI ON VECTCR //
* (' ', 5(1X E14.7)))
640 FORMAT(//' ', 30X,'** NORMAL END **')
END

(4) Method

Cyclic reduction can be used to solve tridiagonal matrix eguation (4.1), which is normalized so
that the off diagonal elements of its coefficient matrix are all 1.

Ax=Db (4.1)
where
o 1 0
0
2d1 0§
a=g 190 ¢ (42)
o 0oog '
0 0
Do omb
g 1dQ
d|> 2

The cyclic reduction method for a genera tridiagonal matrix is explained in Method for
subroutine VLTX, but for the restricted form as (4.2), the amount of calculation can be greatly
reduced. The reduction of the coefficient matrix at each step requires only a few scalar
calculations, and most of the calculation involves reduction of the right hand side vector.

Here, the cyclic reduction method for coefficient matrix (4.2) is explained. When the matrix is
diagonally dominant to sufficient extent, reduction operation will be incompletely terminated.
For further details of it, see the explanation of subroutine VLTX.

Suppose nis an odd number, and select three rows next to each other in (4.1) asfollows:
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X2+ dXi1+ X =biy
Xatdg+Xa  =h (4.3)
X+ dXis1+ Xiaz = Diag

X1 and X1 can be eliminated from the three above equations in the following way. First,
multiply the second equation by (—d), and add to its result the first and the third equations to
obtain (4.4).

X2+ d O + x.=b (4.4)
where d @ = 2-d?
b® = bi4bi; - dby

Considering only the even-numbered i'sin (4.4), i.e., i = 2, 4, ..., n—=1 (, where Xy = Xn+1 = 0),
the following tridiagonal matrix equation of order [n/2]is obtained.

o 1 DDx2 D Eb‘l’D
0
0l d(l) 1 0 |:||:|X4 0 a)(l)

mOoOoood

® DD D ® 0

1 d7 0 9% B (4.5)
000 DD U u 00 D
O 1) O
0 00 1 g i

1d9Ex8 BY

once X, Xa, ..., X1 are obtained from (4.5), the odd-numbered unknowns can be obtained by
substituting them into (4.1), resulting in

X1 = (b1 — X2 —x)/d (4.6)
i=2,4,..,n+l

The calculations for b and (4.6) can be performed very efficiently on a vector processor.

Next, suppose n is an even number. Then n-1 is an odd number, so the upper limit of i
applied in (4.4) isn-2. Inreturn, using

Xo2 + OXng + Xy = bpg (4.7)
Xn-1 + 0%, = by,

The following equation from which X, has been eliminated is added:

Xz + €%, = b, (4.8
where c® =1 -d?
b, = by, - db,,.
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Then, (4.5) becomes

o 1 Dmx D Eb‘l)D
0
91d% 1 0 g% HD“’

0 1 g9 O O0x, O Cp® O
O 0o - o= O (4.9)
0 000 onpUpg o D 0
ad O 0 md
a 0 00 1 a2 i
E 1cgE% B B H

Thus, the problem can still be reduced to a tridiagonal matrix equation of order [n/2].
The first reduction operation has been explained. By repeating this operation as many as
required, an equation of order 1 can be obtained. The coefficient matrix at each reduction
step contains all 1 in its off-diagonal elements, and its diagonal elements all have the same
value except for the last element. The last diagonal element is handled differently because the
order of the coefficient matrix alternates between odd and even at reduction step.

In conclusion, genera step of the reduction operation can be described as follows. We
represent the equation which is going to be reduced by (4.10), and suppose that it is of order n.

o 1 DDX1DDb1D
00 0 o

Ad1 0 G gbp

01d0 OOx O Ob, O

030=030
000 B3 o0g gog (4.10)

0 Dmm%‘lm %)‘15
lcogx, O Obn O

The reduction operation produces, from (4.10), an equation with even-numbered unknowns.
To do that the processing explained above is performed according to whether n is odd or even.
The resulting reduced equation can be written as shown in (4.11).

g 1 Oox, O Eb‘l)D
0
01 g0 1 o B0 Gl

oOooOod

O 1 d(l) 0 O0x. O (1)|:|

0 DDX6 0= 0 (4.11)
0 000 opUp o DD

O O O od

S 0 ooieg B

B 1c9EE% 8 BPH

where d® =2-d?
bzr(l) = byt byryq — dby,
r=1,2..,[n2] -1

PT 11-62

99SPAQ70E-2



VLTX1

when n isodd
l=n-1,c®=1-d?+dlc
b W= b -dby.; + (d/C) b,
when niseven
l=n,c®=1-dc, (4.12)
by W= by1 — dby,

Repeating the reduction of (4.10) into (4.11) as may times as required, an equation of order 1
can be obtained. By solving the equation, and using backward substitution, the final solution
can be obtained.

As explained above, this subroutine requires few calculations to reduce a coefficient matrix.
Most of the calculations involve reduction of the right hand side vector and backward
substitution, both of which can be vectorized on a vector processor.
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A62-31-0101 VLTX2, DVLTX2

A system of linear equations with areal constant tridiagonal
matrix (Neumann type and cyclic reduction method)

CALL VLTX2 (D, SD, N, B, ISW, VW, IVW, ICON)

(1) Function
This subroutine solves areal tridiagonal matrix equation
Ax=b (1.2)

using cyclic reduction, where A is an n x n irreducibly diagonally dominant real tridiagonal
meatrix of either form below:

=l=
o
@D
o
OOOdo;

000 pd#0 (.2

0
0
é 0 Dbepd|>2d

O (1.3)

=l=
o
@D
o
OOOdo;

000 gd#0 (14)

O
O

O

go DDeS,|d|22|e|
g 2edf
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(2) Parameters

In equation (1.1), b is an n-dimensional real constant vector, and x is the n-dimensional solution
vector, and n= 1.

This subroutine restricts the coefficient matrix to the above forms to achieve high performance,
while subroutine VLTX processes general tridiagonal matrices.

Input. Diagonal element d
Input. Off-diagonal element e
Input. Order n of the coefficient matrix A

Input. Constant vector b

StoreasB (i) =h,i=1,2,..,n.

Output. Solution vector x

StoreasB (i) =x,i=1,2, ..., n.

See Figure VLTX2-1.

One dimensional array of size 2n + [log,n]

Input. Control information

When solving several sets of equations that have an identical coefficient matrix, specify
ISW=1 for the first set of equations, and | SW=2 for the second and subsequent sets.
Only parameter B is assigned a new constant vector b. All other parameters should be
unchanged. (See Note (3).)

Input. Control information to specify the form of the coefficient matrix.
IND=1 for (1.2)
IND=2 for (1.3)
IND=3 for (1.4)

Work area. One-dimensiona array of size 2([log,n] + 1) where[ ] is Gaussian notation

Work area. One-dimensiona array of size 2([log.n] + 1) + 10

... Output. Condition code

See Table VLTX2-1
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n n+[log,n]
Array B
byl b | Db coee b *
(Input) 1 2 3 n
(Output) X | % | % |+ - - X, .
Note:

The portion indicated by an asterisk (*) is used asawork areain this subroutine.

Figure VLTX2-1 Storage method of vectors b and x

Table VLTX2-1 Condition codes

Code Meaning Processing
0 No error -
20000 Coefficient matrix is not irreducibly diagonally Bypassed
dominant.
30000 N<1,IND#1,20r3,ISW#1or2 Bypassed

(3) Notes
a. Subprograms used
(1) SSL 1I: AMACH, MGSSL
(2) FORTRAN intrinsic functions. ALOG2, FLOAT, ABS, MINO

b. Notes

(1) This subroutine uses the cyclic reduction-method, an algorithm suited to a vector processor.
Processing on a vector processor has the following features:

- Itismuch faster than Gaussian elimination method used in subroutine LTX.
—  Processing time increases ailmost linearly with N.
—  Themore diagonally dominant the matrix is, the faster it is processed.

This subroutine is about as accurate as subroutine LTX when processing irreducibly
diagonally dominant matrices.
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c. Example

(2) The coefficient matrices in (1.2) to (1.4) arises from the discretization of simple Neumann
boundary value problems.

(3) When solving several sets of tridiagonal matrix equations that have an identical coefficient
matrix, specify ISW=2 from the second routine call on. This bypasses coefficient matrix
elimination, thus speeding up calculation.

In this examples, | sets of n-dimensional linear equations that have an identical coefficient matrix
are solved. Here the coefficient matrix is assumed to be of the form (1.2) and n < 1000.

C * % EXAMPLE* *

DI MENSI ON B(2010), VW 20) , | VW( 30)
READ( 5, 500) N
READ( 5, 510) D, SD
WRI TE( 6, 600) N, D, SD
READ( 5, 500) L
| SWe1
| ND=1
DO 10 11=1,L
READ( 5, 510) (B(1),1=1, N)
WRI TE(6, 610) (B(1),1=1, N)
CALL VLTX2(D, SD, N, B, | SW | ND, VW | VW
*] CON)
WRI TE( 6, 620) | CON
| F(1 CON. NE. 0) STOP
WRI TE(6, 630) (B(1),1=1,N)
| SWE2

10 CONTI NUE
VR TE( 6, 640)
STOP

500 FORMAT(I5)

510 FORMAT(5E14. 7)

600 FORMAT(' 1',
* 20X, ' LI NEAR EQUATI ONS ( TRI DI AGONAL) "
* /' ' 20X,' ORDER= ', |5/
* /' ' 25X, ' COEFFI Cl ENT MATRI X'/
* /' ' 30X 'D="',El4.7/
* /' ' 30X, 'SD=',El4.7)

610 FORMAT(/' ', 78(' *')//' ',
*  25X,' CONSTANT VECTCR //
* (' ', 5(1X E14.7)))

620 FORMAT(/' ',' CONDI TION CODE OF VLTX2= ',
* |5)

630 FORMAT(/' ', 25X, ' SOLUTI ON VECTOR //
* (' ', 5(1X E14.7)))

640 FORMAT(//' ',30X,'** NORMAL END **')
END
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(4) Method

Cyclic reduction can be used to solve tridiagonal matrix equation (4.1), which is normalized so
that the off diagonal elements of its coefficient matrix are all 1.

Ax=b, 4.2)

where A takes one of the following forms:

[0l 2 O
O
Hd1 o f
Jido O
0 pon 8 (4.2)
00 ooigjd=2
B 1dg
o 1 O
O
dd1 o
J1do O
0 pon & (4.3)
00 ooihjd=2
8 2dQ
[0l 2 O
0
Hd1 o §
Jido O
0 pon @ (4.4)
00 ooigjd=2
g 2dg

Dividing the n-th row of the matrix (4.3) by 2, all the off-diagonal elements become 1, and the
last diagonal element becomes d/2. This type of matrix can be solved as explained in Method for
subroutine VLTX1, so only solution of forms (4.2) and (4.4) need to be explained.

Dividing the n-th row of (4.4) by 2, the matrix becomes of the same form as (4.2) except for the
last diagonal element. Therefore, we now consider (4.2) and (4.4) to be of the same form as
matrix (4.5), and explain cyclic reduction for this matrix.

o 2 0
0
Hd1 0
01d0 O s
45
O 000g
0 0
Jo nmd
g 1cQ
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Here c=d for matrix (4.2) and c=d/2 for matrix (4.4). We assign b to be a constant vector of the
matrix equation with coefficient matrix (4.5).

The cyclic reduction method here generates a matrix equation (of order [(n—1)/2]+1)with respect
to the odd-numbered unknowns, X; , X3 , Xs , ... . This differs from subroutine VLTX1. First, by
eliminating x, from the following two equations:

Xm + 2X2 = b]_ (46)
Xp + dX2+ X3 = b2

we obtain

(2_d2)X1 + 2X3 = 2b2 - dbl (47)

Next, eliminating unknowns X, and x,;+» from the three equations constructed using the 2j-th row,
(2j +1) strow and (2] + 2) nd row of (4.5), we obtain

Xgj-1F (Z_dz)x2j+l +Xg43= Dy + Dy = dbyjus. (4.8)

This calculation is repeated for each value of j =1, 2, ... , m (where m is the largest integer
satisfying 2j+1 < ... n—2). One more equation is added to these two equations depending on
whether niseven or odd. If niseven, eliminating x,., and X, from the three equations,

Xng + Mo + X1

= b
Xn2 + OXpg + Xo = bna (4.9)
Xa1+ CXq = by,
we obtain
Xn-3 + (1 — 02 + d/C) X1 = b + (d/C)by, — dbpy (4.10)

When nisodd, eliminating x,., from the second and third equations of (4.9) we obtain
Xn-2 + (1-dC)X, = bn.1 — dby. (4.11)
Thus the equations of order [(n—-1)/2] consisting of (4.7), (4,8), and either (4.10) or (4.11), are

obtained with respect to the odd-numbered unknowns only. These equations can be rewritten as
(4.12).

G® 2 DDX = Eblﬂ)D

O DD 3 D S

O 1 d® 0o DDX O (0]

0 00 > 0= 0 (4.12)
O 000 ogQOp ooo

0 0 0 Qo O

g O Ho 20 20

B 1c®HEx 8 BYE
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where  d® = 2-d?

b, = 2b, - db,
b21+1(1) = by + bysp — dog
i=1,2,....m

when niseven,

l=n-1
cdP=1-d?+dlc

q(l) = bn—2 + (d /C)On - dbn—l
when nisodd,

I=n
cP=1-dc
bl® =b, _, —db,

Looking at equation (4.12), we see that the coefficient matrix obtained by performing this single
reduction is of the same form as (4.5), which is one of the characteristics of this method. Once
the solution to (4.12) is obtained, the even-numbered unknowns can also be obtained by
substituting them into the original matrix equation.

Applying the same reduction operation to (4.12), an equation of half the order can be obtained.
By repeating the operation as many times as required, a matrix equation with coefficient matrix
(4.13) can be obtained.

gk o0
O O (4.13)
g1 c™g

By solving this matrix, followed by substitution, the original equation can be solved.

If | d|is greater than 2, the reduction terminates incompletely for efficiency in the same way as
explained for subroutine VLTX.
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A62-41-0101 VLTX3, DVLTX3

A system of linear equations with areal constant tridiagonal
matrix (periodic type and cyclic reduction method)

CALL VLTX3(D, SD, N, B, ISW, VW, IVW, ICON)

(1) Function
This subroutine solves areal tridiagonal matrix equation
Ax=b (1.1)

using cyclic reduction, where A is an n x n irreducibly diagonally dominant real and almost
tridiagonal matrix of the form:

e el
O

% de 0

E ed E

O 000 gd#0 (-2
00 O0efd>2d

e edf
Here b is an n-dimensional real constant vector and x is the n-dimensional solution vector, and
n=1

(2) Parameters

D Input. Diagonal element d

SD........ Input. Off-diagonal element e

N e Input. Order n of the coefficient matrix A

B.ooene Input. Constant vector b

StoreasB(i)=b;,i=1,2,..,n

Output. Solution vector x

StoreasB(i) =x,1=1,2,..,n

See Figure VLTX3-1.

One dimensional array of size 2n + [log,n]

ISW......Input. Control information
When solving severa sets of equations that have an identical
coefficient matrix, specify 1SW=1 for the first set of equations, and

99SP4070E-2 PT 11-73



VLTX3

ISW=2 for the second and subsequent sets. Only parameter B is assigned a new
congtant vector b. All other parameters should be unchanged. (See Note (3)).

VW....... Work area. One-dimensional array of size 3 ([log,n]+1), where[ ] is Gaussian notation.
IVW ..... Work area. One-dimensional array of size 4 ([log,n]+1)+10.

ICON ... Output. Condition code
See Table VLTX3-1.

n n+[log,n]
Array B /_ \

(Input) by [ D [bs | - - - | bn
(Output) Xul% x| o | % *
Note:

The portion indicated by an asterisk (*) is used asawork areain this subroutine.

Figure VLTX3-1 Storage method of vectors b and x

Table VLTX3-1 Condition codes

Code Meaning Processing
0 No error -

20000 Coefficient matrix is not irreducibly diagonally dominant. Bypassed

30000 N<1,or ISW#1,2 Bypassed

(3) Notes

a. Subprograms used
(1) SsL 1I: AMACH, MGSSL

(2) FORTRAN intrinsic functions. ALOG2, FLOAT, ABS, MINO
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b) Notes

(1) This subroutine uses cyclic reduction, an algorithm suited to a vector processor. Processing

on a vector processor has the following features:

- It ismuch faster than the Gaussian elimination method

— Processing time increases almost linearly with N.

— Themore diagonally dominant the matrix is, the faster it is processed.
This subroutine is about as accurate as the Gaussian elimination method.

(2) The coefficient matrix (1.2) arises from the discretization of simple periodic boundary value
problems.

(3) When solving several sets of tridiagonal matrix equations that have an identical coefficient
matrix, specify ISW=2 for the second and subsequent subroutine call. This bypasses
coefficient matrix elimination, thus speeding up calculation.

c. Example

In this example, | sets of n-dimensional linear equations that have an identical coefficient matrix
are solved, for n < 1000.

c * % EXAMPLE* *
DI MENSI ON B(2010), VW 30) , | VW 50)
READ( 5, 500) N
READ( 5, 510) D, SD
WRI TE( 6, 600) N, D, SD
READ( 5, 500) L
| SWe1
DO 10 11=1,L
READ( 5, 510) (B(1),1=1, N)
WRI TE(6, 610) (B(1),1=1, N)
CALL VLTX3(D, SD, N, B, | SW VW | VW | CON)
WRI TE( 6, 620) | CON
| F(1 CON. NE. 0) STOP
WRI TE(6, 630) (B(1),1=1,N)
| SWE2
10 CONTI NUE
VR TE( 6, 640)
STOP
500 FORMAT(I5)
510 FORMAT(5E14. 7)
600 FORMAT(' 1',
20X, ' LI NEAR EQUATI ONS ( TRI DI AGONAL)"
/' ', 20X, ' ORDER= ', |5/
/' ', 25X, ' COEFFI Cl ENT MATRI X'/
/' ',30X 'D= ', E14.7/
/' ', 30X ' SD=', El4.7)

*
*
*
*
*
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(4) Method

610 FORMAT(/' ', 78('*')//' ',
*  25X,' CONSTANT VECTCR //
* (' ', 5(1X E14.7)))

620 FORMAT(/' ',' CONDI TI ON CODE OF VLTX3= ',
* |5)

630 FORMAT(/' ', 25X,' SOLUTI ON VECTCR //
* (' ', 5(1X E14.7)))

640 FORMAT(//' ', 30X,'** NORMAL END **')
END

Cyclic reduction can be used to solve tridiagonal matrix equation (4.1), which is normalized so
that the off diagonal elements of its coefficient matrix are all 1.

Ax=Db (4.1)
where
M1 10
0
2d1 o g
A—E 1d 0 B
=0 pop B (4.2)
0o Doifld>2
5! 1dp

Because the above equation has nonzero elements at (n, 1) and (1, n), in its matrix, cyclic
reduction cannot be applied directly. However, by transforming variables, the equation can be
separated into two independent tridiagonal matrix equations each of which can then be solved
using the cyclic reduction method described in Method for subroutine VLTX1 or VLTX2. The
separation method is explained here for both even and odd n, because processing differs for the
two cases.

(1) When niseven
Assuming n=2| we introduce two new variablesy and z as follows:

Yi=X-j =X, 1712.,1-1 4.3
Zig =% t X4, J=01..
where xg = X, With these variables, the equations pertaining to y and z are given by (4.4) and
(4.5), respectively.
™1 DDY1 k%+1

%dl 0 Y2D %_2 b|+2D

01d0O DD O [b_
0 Y3D gls t%+3D (4.4)
o 0o DDDD o 0 o

éo DDlDE{MD Dbz—bnzm

1dE3+0 85 —by
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o 2 DD21D 0O 24 O

0
2d1 0 59z 0 tha+bap
0 1d0O DD23D HQ +b,,0

0 0 45
g 0O00pgOg D O D (49)
S 0 DmDDz. D Dbl+b_1 qe=d/2

] 1C@@|+1@ @ b, [

Equations (4.4) and (4.5) can be solved using the methods of subroutinesVLTX1 and VLTX2,
respectively. Giveny and z, x can be obtained as follows:

X =212, X,=2Z4/2
X =(yi +Zj+1)/21 X+ =(Zj+1 -in2 (4.6)

(2) When nis odd

Assuming n = 2| — 1 weintroduce two new variablesy and z as follows:
yJ =X|_j _X|+]' ,j :1,2,...,| _l (47)
Zj+l:X|—j +X|+]',j :O,l,...,l -

With these variables, the equations pertaining to y and z are given by (4.8) and (4.9),
respectively.

BB)&B Eh-l-bmg
%dl 0 oYz O _b|+2D
O01d0 OOy, O _ 0
Y3 D_H)ls b|3D 49)
ooo DD Ogpg 0O
0 DDlB%/,_ZB Bbz—bn_lacl=d—1
1040 B bl_bn
DD21D O 2bhb O
O
DDZZ 0 ER—1+Q+1D
00z, O y_, +
DD3|:| EDH)IZ bl+2|:| (49)
000 ogntBo o O Qg
0 DDlD%, 1D Db2+bnlEI
lc 007 E Ob+b, §
Similarly, the two equations above can be solved using the methods of subroutines VLTX1
and VLTX2, respectively.

Giveny and z, x can be obtained as follows:

o
O

0 5 B B
P QN
-
o

X =712
X|_j :(yi + Zj+1)/2' X|+j ( J+1 yJ )/
j=12..1-1 (4.10)
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(1) Function

(2) Parameters

A22-71-0602 VLUIV, VDLUIV

Theinverse of areal general matrix decomposed
into the factors L and D

CALL VLUIV (FA, K, N, IP, Al, ICON)

This subroutine computes the inverse A™* of an nxn real general matrix A given in decomposed
form PA=LU

ATt=yuTLtP

L and U are respectively the n x n lower triangular and unit upper triangular matrices, and P is
the permutation matrix which performs the row exchanges in partial pivoting for LU
decomposition. n=> 1.

FA ... Input. Matrix L and matrix U.
FA isatwo-dimensional array, FA (K, N).
Refer to Fig. VLUIV-1.

Koo Input. Adjustable dimensional of array FA and Al (=N).

N Input. Order n of the matrices L and U.

IP.......... Input. Transposition vector which indicates the history of row exchangesin partial
pivoting. One-dimensional array of sizen.

Al ... Output. Inverse A~ Al isatwo-dimensiona array, Al (K, N).

ICON....Output. Condition code. See Table VLUIV-1.
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Unit upper triangular

matrix U
_ -
1 Uz U Un
1 uxs Uxy
e L
R 4 I
0 1 Un-1n
1 Upper triangular portion only
e —
’ l
Lower triangular Array FA A
matrix L e M
r|11 l11 U Uiz weee Utn r
2 122 0 l21 122 WUz o Uzn
o o2 Pl N
In-1n-1 In-h-1 Un-tn K
|nl |n2 |nn—1 |nn |n1 |n2 |nn—1 Inn
“ J ~
R h'd
Diagonal and lower Y
triangular portions only
—

Figure VLUIV-1 Storage of the elements of L and U in array FA

Table VLUIV-1 Condition codes

Code Meaning Processing
0 No error -
20000 |[A real matrix was singular. Discontinued
30000 [K>N of N<1 or there was an Bypassed
error in |P.

(3) Notes
a. Subprograms used

SSLII ...... MGSSL

FORTRAN intrinsic functions........ None
b. Notes

Prior to calling this subroutine, LU-decomposed matrix must be obtained by subroutine VALU
and must be input as the parameters FA and IP to be used for this subroutine. The subroutine
VLAX should be used for solving linear equations. Obtaining the solution by first computing the
inverse matrix requires more steps of calculation, so subroutine VLUIV should be used only
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c. Example

(4) Method

when the inverse matrix isinevitable. The transposition vector corresponds to the permutation
metrix P of

PA=LU

When performing LU decomposition with partial pivoting. Refer to Notes of the subroutine
VALU.

Theinverse of an n x n real general matrix is obtained. n < 100.

c ** EXAMPLE* *
DI MENSI ON A( 100, 100) , VW( 100) , | P(100), Al ( 100, 100)
READ( 5, 500) N
| F(N. EQ 0) STOP

READ( 5, 510) ((A(1,J),1=1,N), J=1, N)
WRI TE(6, 600) N, ((1,J,A(1,J),J=1,N),1=1,N
CALL VALU(A, 100, N, 0.0, 1P, 1S, VW I CON)

WRI TE( 6, 610) | CON
| F(1 CON. GE. 20000) STOP
CALL VLU V(A 100, N, I P, Al , | CON)
WRI TE( 6, 620) | CON
| F(1 CON. GE. 20000) STOP
WRI TE(6, 630) ((1,J, Al (1,J3),1=1,N),J=1, N)
STOP
500 FORMAT(I5)
510 FORMAT(4E15. 7)
600 FORMAT(//11X,'**I NPUT MATRI X**'/ 12X,

*' ORDER=', 15/ (2%, 4(' (' ,13,",',13,")" ,E16.8)))
610 FORMAT(' 0', 10X, ' CONDI TI ON CODE( VALU) =", I 5)
620 FORMAT(' 0', 10X, ' CONDI TI ON CODE(VLUI V) =', | 5)
630 FORMAT(' 0', 10X, ' **| NVERSE MATRI X**'

(2% 4" (",13,",",13,")" ,E16.8)))

END

This subroutine computes the inverse of an n x n real general matrix, giving the LU-decomposed
matrices L, U and the permutation matrix P which indicates row exchanges in partial pivoting.

PA=LU (4.1)

then, the inverse of A can be represented using (4.1) as follows:
Theinverse of L and U are computed Eq. UB = L *is solved to determineB=U L™, and then
theinverse of A is obtained as (4.2).

At=(piu)t=uitp 4.2)
L and U are as shown in Eq. (4.3) for the following explanation.

L=(;) U=lu) (4.3)
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a Calculating L™

Since the inverse L ™ of a lower triangular matrix L is also a lower triangular matrix, if we
represent L ™ by

= ;) (4.4)
then Eq. (4.5) is obtained based on the relation
LL™ =1,

n ~
Zlikllq' =9,
=
0ji [1".= J.B (4-5)
i # 05

(4.5) isrewritten as
i-1 -

Zliklkj +iilj

k=]

= 6”

and the elements E of the j -th column (j = 1,...,n) of the matrix L ™ are obtained as follows:

li :E‘ z Ly @liiu i=j+1..n
O k=] 0

L =115 (4.6)

where, I;; ¢0(i = j,...,n)

b. SolvinguB=L™"
EqUB =L issolved by (4.7).
Ub; =1, (4.7)
However,

b; = (blj -+ By )+ the column vector in B

I = (EJ s Iy ): the column vector in L ™*

From (4.8), B isdetermined successively withi =n,...,1
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by =1; - zuikl;kj (4.8)
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(1) Function

A61-11-0301 VMGGM, DVMGGM

Multiplication of two matrices
(real general by real general)

CALL VMGGM (A, KA, B, KB, C,KC, M, N, L, ICON)

This subroutine performs multiplication of an m x n real general matrix A by an n x | real general
matrix B.

C=AB

Where Cisanm x| real matrix. m, n, | = 1.

(2) Parameters
A Input. Matrix A, two-dimensional array, A (KA, L).
KA....... Input. The adjustable dimension of array A, (=M).
B Input. Matrix B, two-dimensional array, B (KB, L).
KB........ Input. The adjustable dimension of array B, (=N).
Coeene Output. Matrix C, two-dimensional array, C(KC, L). (See “Notes.”)
KC........ Input. The adjustable dimension of array C, (=M).
M.......... Input. The number of rows min matrix A and C.
N Input. The number of columns nin matrix A and the number of rows n in matrix B.
Lo Input. The number of columns| in matrices B and C.
ICON....Output. Condition codes. SEE Table VMGGM-1.
Table VMGGM-1 Condition code
Code Meaning Processing
0 |Noerror -
30000 | M<1, N<1, L<1, KA<M, KB<N, or KC<M Bypassed
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(3) Notes
a. Subprograms used
(1) SSL: MGSsL

(2) FORTRAN intrinsic function: FLOAT, MOD

b. Notes
The VMGGM subroutine differs from the standard function subroutine MGGM in one important
respect.
The VMGGM subroutine performs high-speed cal culation on a vector processor.
The performance of MGGM s changed by the adjustable dimensions of arrays A, B, and C, but
the performance of the subroutine is not changed in essence.
Saving the storage area
To store matrix C in array A, the user must use MGGM.
c. Example

The following shows an example of obtaining the multiplication of matrices A and B. Here,
m< 200, n < 400, and | < 300.

C * % EXAVPLE* *
DI MENSI ON A( 202, 400) , B( 402, 300) , C( 202, 300)
CHARACTER*4 A 1B, IC
DATAIA'A '/,IB'B '/, 1C'C '/
DATA KA 202/ , KB/ 402/ , KC/ 202/

10 READ(5, 100) M N, L
| (M EQ 0) STOP
VRl TE( 6, 150)
READ( 5, 200) ((A(l,J), |
READ( 5, 200) ((B(I,J), |
CALL VMGGM A, KA, B, KB, C,
*] CON)
| F(1 CON. NE. 0) GOTO 10
CALL PGMIA 1,A KA M N)
CALL PGMIB, 1, B, KB, N, L)
CALL PGMIC, 1, C KC ML)
GOTO 10

100 FORMAT( 3l 5)

200 FORMAT(4E15. 7)

150 FORMAT(' 1'/// 10X,
*t %% VATRI X MULTI PLI CATI ON **')
END

LN
1, L)
L

1M,
1N,
KC, M

J=
J=
N

C ** MATRI X PRI NT(REAL NON- SYMVETRI C) **
SUBROUTI NE PGM(1 COM L, A, K, M N)
DI MENSI ON A(K, N)
CHARACTER*4 | COM L)
WRI TE(6, 600) (I COM1),1=1,L)
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DO 10 1=1, M
WRI TE(6, 610) 1, (J, A(l,J),J=1, N
10 CONTI NUE
RETURN
600 FORMAT(/ 10X, 35A2)
610 FORMAT(/5X, | 3, 3(4X, 13, E17.7),
*(/8X, 3(4X, 13, E17.7)))
END

Subroutine PGM in the example is for printing areal matrix.

99SP4070E-2

PT 11-87






VRFT1

F15-31-0201 VRFT1, DVRFT1

Discrete real Fourier transform
(high performance, radix 2 FFT)

CALL VRFT1 (A, N, ISN, ISW, VW, IVW, ICON)

(1) Function

Given one-dimensional (n-term) real time-services data {x}, the discrete real Fourier
transform or its inverse transform is calculated by the Fast Fourier Transform (FFT) method,
suited to a vector processor, where n=2' ( | is a non-negative integer).

a. Fourier transform

When {x} isinput, the transform defined by (1.1) is cal culated to obtain Fourier coefficients
{na} and {nby}.

n-1
nay =2|]ZXJ» [eoski® ,k=04,..,n/2,
]:

n-1

nbk=2Dij snki k=12..n/2-1 (1.1)
]:

,0=2mr/n
b. Fourier inverse transform

When {a} and {b} are input, the transform defined by (1.2) is calculated to obtain sum of
Fourier series {2x} .

2X; =89 + &y, [osTy
n/2-1 (1-2)
+2 DZ(ak [toskj® + b, [Enkj6),
=1

j=01..,n-2,6 =2m1/n
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(2) Parameters

Note:

Input. {x} or {ag}, {bg}

Output. {nag}, {nbg, or { 2x}
One-dimensional array of size n+2

See Figure VRFT1-1.

Input. Number of terms, n, of the transform

Input. Either the transform or the inverse transform is indicated (20).

ISN=+1 for the transform.

ISN=-1 for the inverse transform.

(See Note(4).)

Input. Information for controlling theinitial state of the transform
ISW=0 for thefirst call.

ISW=1 for the second and subsequent calls.

(See Note(2).)

Work area

One-dimensional array of size max (n(I+1)/2, 1).

Work area. One-dimensional array of size n max (I — 4, 2)/2.

... Output. Condition code

See Table VRFT1-1.

Array {ad
{x} { by}
A1) Xo Y
A(2) X1 *
AR) Xa a
A(4) X3 b,
A(N-1) Xn_2 2.1
A(N) Xn 1 P21
A(N+1) * n2
A(N+2) * *

The portion indicated by *has an arbitrary value at input, and is set to 0.0 at output.

Figure VRFT1-1 Data storage method
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Table VRFT1-1 Condition codes

Code Meaning Processing
0 |Noerror -
30000 |1SN=0, ISW#0, 1 or N#2 (I O or positive integer) Bypassed
(3) Notes

a. Subprograms used

b. Notes

(1) SSL 1I: VCFT1, UVRFT, UVTB1, UVF91, UVFAL, UVFB1, UVFX1, UBANK, MGSSL

(2) FORTRAN intrinsic functios: ALOG2, SIN, COS, ATAN, IABS, IAND, MOD, FLOAT

(1) Subroutine use

This subroutine performs high-speed calculation of a real Fourier transform on a vector
processor. On a general-purpose computer, however, the subroutine RFT may be more
suitable.

The function of this subroutine is the same as that of subroutine VRFT2, which is also suited
to avector processor. This subroutine can perform multiple independent transforms, but it
requires more work array areathan VRFT2; it is a high-performance subroutine. If itis
difficult to allocate alarge work array area, memory-efficient subroutine VCFT2 may be more
suitable, even though it is slower.

(2) Control by ISW

When calculating multiple sets of transforms, specify 1ISW=1 for the second and subsequent
subroutine calls. This bypasses trigonometric table and list vector generation, both of which
are needed for the transform, thus increasing processing efficiency. The contents of the arrays
VW and IVW must not be altered, however, when calling the subroutine.

Even the number of transforms, n, of each of the multiple transforms varies, specifying ISW=1
improves processing efficiency. However, it is desirable to be called so that the maximum
number of transforms with the same number of terms are executed consecutively.

When calling this subroutine in together with the complex Fourier transform subroutine
VCFT1, specifying ISW=1 improves processing efficiency.
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(3) Work array size conversion table

The tablefor 16 < n < 4096 is shown as follows:

I n VW Ivw
4 16 40 16
5 32 96 32
6 64 224 64
7 128 512 192
8 256 1152 512
9 512 2560 1280
10 1024 5632 3072
11 2048 12288 7168
12 4096 26624 16384

(4) 1SN specification

Although the ISN parameter is used to specify whether atransform or an inverse transformis
to be calculated, it can also be used as shown below. If {x} or {ag}, {l} isstored at intervals
of length I, specify the ISN as follows:

ISN=+1 for the transform.

ISN=-1 for the inverse transform.

Theresults are also stored at intervals of length 1.

With a vector processor, interval length | should take one the following values in order to
access memory more efficiently. (see Example (2).)

1=4p+2, p=0, 1, 2, ..., for single precision arithmetic. (VRFT1)

1=2p+1, p=1, 2, 3, ..., for double precision arithmetic. (DVRFT1)

(5) Genera definition of Fourier transform

In general, the discrete real Fourier transform and its inverse transform can be defined as in

(3.1) and (3.2).

n-1

ay =2 X; [eoskj8,k =01,...,n/ 2,
n Z
J:

n-1
b :Eij Enkio,k =12,...n/2-1 ¢
n
£

,0=2r/n
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11 .
Xj =58 *San2 [eosTg
n/2-1
+ z(ak [toskj6 + by, [Enk6),

j=0l1..n-1 6=2m/n (3.2)

This subroutine obtains { nay} , { nby} or {2x} corresponding to the left hand side of (3.1) or (3.2),
respectively. The result must be normalized as required.

c. Example

(1) Multiple Fourier transforms

In this example, k sets of independent Fourier transforms (with n terms) are calculated, for
k<64 and n<512.

C * % EXAMPLE* *
DI MENSI ON A(514, 64) , VW 2560) , | VW( 1280)
READ( 5, 500) N, K
READ( 5, 510) ((A(1,J),1=1,N), J=1, K)

| SN=1
| SW=0
CALL VRFTL(A N, 1SN, 1 SWVW I VW I CON)
| F(1 CON. NE. 0) STOP
| SWe1
DO 10 J=2, K
CALL VRFT1(A(1,J),N, 1SN, | SWWW I W
* , | CON)
10 CONTI NUE
c
WRI TE( 6, 600) K, N
DO 20 J=1, K
20 WRI TE(6, 610) J, (1, A(l,J), =1, N+2)
C
500 FORMAT( 2l 5)
510 FORMAT( E15.7)
600 FORMAT(5X,' ***' 13,' SET TRANSFORVE

* " OF,' TERM,14//)
610 FORMAT(8X, | 3, ' - TH TRANSFORM /

* (8X, 13, E16.7))

STOP

END

(2) Multi-dimensional Fourier transform

In this example, a 2-dimensional Fourier transform (with n1xn2 terms) is calculated, for n1<512
and n2<64.

In the example program, the row-wise transform is calculated by subroutine VCFT1, using a
complex Fourier transform.
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(4) Method

c * % EXAMPLE* *

DI MENSI ON A(514, 64) , VW 2560) , | VW 1280)

READ( 5, 500) NI, N2

READ( 5, 510) ((A(1,J),1=1,N1), J=1, N2)

----N2 SET REAL TRANSFORMS OF TERM
NL----

[eNe]

| SN=1
| SW=0
CALL VRFTL1(A NL, SN, | SW VW I VW I CON)
| F(1 CON. NE. 0) STOP
| SWe1
DO 10 J=2, N2
CALL VRFTL(A(I,J), N1, 1SN, | SWW I W
* | CON)
10 CONTI NUE
c ----HALF SET COWPLEX TRANS. OF TERM

C N2- - - -

| SN=514
CALL VCFT1(A A(2,1), N2,
* I SN, 1 SW VW | VW | CON)
IE (1 CON. NE. 0) STOP
DO 20 1=3, N1+2, 2
CALL VCFTL(A(I, 1), A(1+1,1), N2,
* I SN, 1 SW VW | VW | CON)
20 CONTI NUE
C
WRI TE( 6, 600) N1, N2
DO 30 J=1, N2
30 WRI TE(6, 610) J, (1, A(l,J),
* A(l+1,J),1=1, N1+2, 2)

500 FORMAT( 2l 5)
510 FORMAT( E15.7)
600 FORMAT(5X, ' ***2- DI MENSI ONAL TRANSFORM ,

* ' OF TERM,14,' BY ', 14)
610 FORMAT(8X,13,'-TH COLUWN //
* (8X, 13, 2E16. 7))
STOP
END

Here, the datainterval length (the first array declarator of the array), ISN=514, is suited to a
vector processor (514=4p+2, p=128). For adouble precision alogrithm, ISN=517 is better.

A discrete real Fourier transform with n terms (where n=2") is calculated using the fast Fourier
transform (isogeometric type and self-sorting type FFTS) method, suited to a vector processor.

A real Fourier transform can be calculated by assuming the real data {x} to be complex with its
imaginary part equal to 0.0, and by applying a discrete complex Fourier transform to the data.
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However in such case, the complex Fourier transform can be done efficiently by taking
account of the characteristics of complex transform.

We now define acomplex transform by (4.1).

n-1 .
a =3 x; " k=01..,n-1
j=0

4.1
,w=exp (2t /n) *.1)
If {x} isreal data, relation (4.2) can be satisfied.
A, =, k=12,..,n-1 (4.2)

* represents the complex conjugate.

The result of the real Fourier transform, {a} and { b} and the result of the complex Fourier
transform, {ay}, are related as follows:

89 = 2Lg.an,= 200y,
a = (ak+an_k),k =12,..,n/2-1
b =i(a -,y )k=12,..n/2-1

(4.3)

Therefore, when calculating areal Fourier transform, it can be seen that the complex Fourier
transform,

n-1 _ (4.9
a =y xjw’k,k =01,...,n/2

=0
,w=exp(2m'/n)

should be calculated first, followed by application of (4.2) and (4.3).

This subroutine calculates the complex Fourier transform of (4.4) using the fast Fourier transform
method, suited to a vector processor.

For further details on calculating real Fourier transforms by using complex Fourier transforms,
see Method for subroutine RFT, and for details on the fast Fourier transform method for a vector
processor, see Method for subroutine VCFT 1.
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F15-31-0301 VRFT2, DVRFT2

Discrete real Fourier transform
(Memory efficient, radix 2 FFT)

CALL VRFT2 (A, N, ISN, ISW, VW, IVW, ICON)

(1) Function

Given one-dimensional (n-term) real time-service data {x}, the discrete real Fourier transform or

itsinverse transform is calculated by the Fast Fourier Transform (FFT) method, suited to a vector
processor, where n = 2'( | isanon- negative integer).

a. Fourier transform

When {x} is input, the transform defined by (1.1) is calculated to obtain Fourier coefficients
{na} and {nby}.

n-1
na, = ZDZ x; [€oskj, k =01,...,n/2
]:

n-1

nb, ZZDZXJ- sinkig, k=12,...,n/2-1 (1.1)
]:
,0=2m/n
b. Fourier inverse transform

When {ag} and {b} areinput, the transform defined by (1.2) is calculated to
obtain sum of Fourier series {2x}
2Xj = ag + &y, CosT}

n/2-1

+ 2Dg(ak coskjB +b, sinkjg), (1.2)

j=0%..,n-1and 6 =2mT/n
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(2) Parameters

A Input. {x} or {&at, { by
Output. {nay} , {nby} or {2x}
One-dimensional array or size n+2
see Figure VRFT2-1
N Input. Number of terms, n, of the transform
ISN....... Input. Either the transform or the inverse transform isindicated (#0)
ISN=+1 for the transform.
ISN=-1 for the inverse transform.
(See Note(4).)
ISW...... Input. Information for controlling the intial state of the transform
ISW = O for the first call.
ISW = 1 for the second and subsequent calls.
(See Note (2).)
VW....... Work area.
One-dimensional array of size 7n/2.
IVW .....Work area. One-dimensional array of size 3n/2
ICON ... Output. Condition code
See Table VRFT2-1
Array A {a}
{} {bg
A1) Xo Qo
A2 X1 *
AR X2 ]
A4) - X3 by
A(N-1) Xn_2 ' Sni2a
A(N) Xn_1 Pz 1
AN+D) : >
A(N+2) ) * *
Note:

The portion indicated by * has an arbitrary value at input, and is set to 0.0 at output

Figure VRFT2-1 Data storage method
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Table VRFT2-1 Condition Codes

Code Meaning Processing
0 |Noerror -
30000 |ISN=0,ISW#0,10rN#2 (I=0isinteger) Bypassed
(3) Notes

a. Subprograms used

b. Notes

(1) SSL 11: VCFT2, UVRFT, UVTB2, UVF92, UVFA2, UVFB2, UVFX2,

UBANK, MGSSL

(2) FORTRAN intrinsic function: ALOG2, SIN, COS, ATAN, IABS

(1) Subroutine use

This subroutine performs high-speed calculation of real Fourier transform on a vector
processor. On a general -purpose computer, however, subroutine RFT may be more suitable.

The function of this subroutine is the same as that of subroutine VRFT1, which is aso suited
to avector processor. This subroutine is suitable for calculating only asingle transform. The
work array area is limited to the required minimum; it is a memory-efficient subroutine. For
multiple transform, if there is sufficient work array area available, the high- performance
subroutine VRFT1 is more suitable.

(2) Control by ISW

When performing multiple transform, specify 1ISW=1 for the second and subsequent
subroutine calls. This bypasses trigonometric function table and list vector generation, both of
which are needed for the transform, thus Increasing processing efficiency. The contents of the
arrays VW and IVW must not be altered, however, when calling the subroutine.

Even when the number of transform, n, of each of the multiple transforms varies, specifying
ISW=1 improves efficiency. However, it is desirable to be called so that the maximum
number of transforms with the same number of terms are executed consecutively.

When calling this subroutine in together with the complex Fourier transform subroutine
VCFT2, specifying ISW=1 improves processing efficiency.
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(3) Work array size conversion table

The table for 16 < n < 4096 is shown below.

| n VW (AVAVY)
4 16 56 24
5 32 112 48
6 64 224 96
7 128 448 192
8 256 896 384
9 512 1792 768
10 1024 3584 1536
11 2048 7168 3072
12 4096 14336 6144

(4) 1SN specification

Although the ISN parameter is used to specify whether a transform or an inverse transform is
to be calculated, it can also be used as shown below. If {x} or {ag}, { b isstored at intervals
of length I, specify ISN as follow:

ISN=+I for the transform.

ISN=-I for the inverse transform.
Theresults are also stored at intervals of length 1.

With a vector computer, the interval length | should take the following values in order to
access memory more efficiently. (see Example(2).)

1=4p+2, p=0, 1, 2, ..., for single precision arithmetic. (VRFT2)
1=2p+1, p=1, 2, 3, ..., for double precision arithmetic. (DVRFT2)
(5) Genera definition of Fourier transform

In general, the discrete Fourier transform and its inverse transform can be defined asin (3.1)
and (3.2).

n-1
a, = % ij (coskj®,k =01,...,n/2
]:

2n—1
by :-in &inki6,k=12..,n/2-1
n& (3.1)

,0=2m/n
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+ Z(ak [toskj6 + by, [Enk6),
=0

j=01...n-16 =2mt/n (3.2)

This subroutine obtains { na,}, {nby} or {2x} corresponding to the left hand side of (3.1) or (3.2),
respectively.

Normalized the results as required.

c. Example

In this example, a one-dimensional Fourier transform (with n terms) and its inverse transform are
calculated, for n<1024.

C

10

20

500
510
600

*
*

610
*

*

**EXAI\/PLE**

DI MENSI ON A( 1026) , VW( 3584) , | VW( 1536)
READ( 5, 500) N

READ(5, 510) (A(1),1=1, N)

----FOUR ER ANALYSI S- - - -

| SN=1

| SWEO

CALL VRFT2(A N, 1SN, | SWVW I VW | CON)
| F(1 CON. NE. 0) STOP

- - - - NORMALI ZATI ON- - - -

ANOR=2. 0/ FLOAT( N)

DO 10 =1, N+2

A1) =ANOR* A(1)

WRI TE(6, 600) N, (1, A(1), A(l+1),1=1, N+2, 2)
----FOUR ER SYNTHESI S- - - -

| SN=- 1

| SWe1

CALL VRFT2(A N, 1SN, | SWVW I VW | CON)
| F(1 CON. NE. 0) STOP

- - - - NORMALI ZATI ON- - - -

ANOR=0. 5

DO 20 1=1,N

A1) =ANOR* A(1)

WRI TE(6, 610) N, (1, A(l),1=1, N)

FORMAT( | 5)

FORMAT( E15. 7)

FORMAT( 5X,
' *** FOURI ER ANALYSI S OF TERM , | 5//
(8X, 13, 2E16. 7))

FORMAT( 5X,
" *** FOURI ER SYNTHESI S OF TERM , | 5//
(8X, 13, E16.7))

STOP

END
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(4) Method

A discrete real Fourier transform with n terms (where n=2") is calculated using the fast Fourier
transform (isogeometric type and self-sorting type FFTS) method, suited to a vector processor.

The real Fourier transform can be calculated by assuming the real data {x} to be complex data
with its imaginary part equal to 0.0, and by applying a discrete complex Fourier transform to the
data.

However in such case, the complex Fourier transform can be done efficiently by taking account of
the characteristics of complex transform.

We now define acomplex transform by (4.1).

n-1

a, =Y x; w* k=01..,n-1
J; ' (4.1)
,w=exp(2m'/n)

If {x} isred data, relation (4.2) can be satisfied.

a,=a, k=12..n-1 (4.2)

* represents the complex conjugate.

The result of the real Fourier transform, {a} and {b,}, and the result of the complex transform,
{ay}, arerelated as follows:
a9 =20 Loy, =20,
a =, +a,) k=12..n/2-1 (4.3)
b =ilo, —a, ) k=12..n/2-1
To calculate areal Fourier transform, the complex Fourier transform.
n-1 "
a, =) x; " k=01..n/2
X ]Z ‘ (4.4)

W= exp(2m' / n)
should be calculated, followed by application of (4.2) and (4.3).

This subroutine calculates the complex Fourier transform of (4.4) using the fast Fourier transform
method, suited to a vector processor.

For further details on calculating real Fourier transforms by using complex Fourier transforms,
see Method for subroutine RFT, and for details on the fast Fourier transform method for a vector
processor, see Method for subroutine VCFT 1.
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B61-21-0201 VSEG2, DVSEG2

Eigenvalue and engenvector of real symmetric matrix
(parallel bisection method, reverse iteration method)

CALL VSEG2 (A, N, M, EPST, E, EV, K, VE, IVW, ICON)

(1) Function

This subroutine calculates m number of eigenvalues of an n order real symmetric matrix A in
descending (or ascending) order, using the paralel bisection method. It also calculates
corresponding m number of eigenvectors, using the inverse iteration method. Eigenvectors are
normalized such that |[x|,=1. The result must be such that 1<m=n.

(2) Parameters

A, Input. Real symmetric matrix A.
Symmetric matrix compression mode.
One-dimensional array of size n(n+1)/2.
The content is altered at output.
[\ - Input. Order n of real symmetric matrix A.
M. Input. Number m of eigenvalues to be calculated.
Calculate in descending order when M = +m.
Calculate in ascending order when M = -m.
EPST ....... Input. Upper bound of the absolute errors used in
eigenvalue convergence test. The default value is used when a negative
value is specified. (See note (2).)
Eor Output. Eigenvalues.
One-dimensional array of sizem.
Store in descending order when M is positive and in ascending order when M is
negative.
EV..e.. Output. Eigenvectors.
Two-dimensional array of EV (K, M).
Eigenvector corresponding to eigenvalue E(J) is stored at EV (1, J),

=1, ... N.
(G Input. Conformation size (=n)for array EV.
VW......... Work area. One-dimensional array of size 15n.
IVW......... Word area. One-dimensional array of size 7n.

ICON....... Output. Condition codes
See Table VSEG2-1.
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(3) Notes

a. Subprograms used

(1) SSL I1: TRID1, UVTG2, TRBK, AMACH, MGSSEL, UVBCT
2 FORTRAN intrinsic functions: IABS, SQRT, SIGN, ABS, AMAX1

b. Notes

(1)  Thissubroutineis functionally equivalent to subroutine SEIG2, but is designed for high-
speed execution on a vector processor using the parallel bisection method. Note that the
methods of allocating work areas are different in these subroutines.

2 Default value of the parameter EPST is as expressed by (3.1) when unit round off is u.

AEPST = u a2 [ Amin) (3.1)

Here, Ao and Anyin are the upper and lower bounds of the existence range (given by
Gerschgorin's theorem) of eigenvalues of Ax = Ax.

When very large and small absolute value eigenval ues coexist and a convergence test is
performed using (3.1), it is generally difficult to calculate smaller eigenvalues with
adequate precision. In such cases, smaller eigenvalues may be calculated with higher
precision by setting EPST at a small value (absolute error). However, processing speed
slows down, as the number of iterations increases.

See the section on the method of obtaining the convergence criterion.

Table VSEG2-1 Condition codes

Code Meaning Processing
0 | Noerror -
10000 | N=1 Set EV (1, 1)=1.0 and E(1)=A(2).
15000 | Some eigenvectors were not Make the uncalculated eigenvectors
calculated. zero vectors.
20000 | No eigenvectorswere calculated. | Make all eigenvectors zero vectors.
30000 | M=0, N<|M|, or K<N. Bypassed
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c. Example

In this example, m number of eigenvalues and their corresponding eigenvectors are calculated for
an n order real symmetric matrix A in descending (or ascending) order.

The following example is for n<100 and m<20.

c ** EXAMPLE* *
DI MENSI ON A( 5050) , E( 20) , EV( 102, 20)
* VW 1500) , | VW 700)
10 READ( 5, 500, END=900) N, M EPST
NT=N* (N+1) / 2
READ(5, 510) (A(1), =1, NT)
WRI TE( 6, 600) N, M
1J=0
DO 20 1=1,N
1J=1J+l
20 WRI TE(6, 610) 1, (A(J), J=1J-1+1,1J)
CALL VSEG2(A, N, M EPST, E, EV, 102
* VW | VW | CON)
WRI TE( 6, 620) | CON
| F(1 CON. GE. 20000) GO TO 10
MVEI ABS( M
CALL SEPRT(E, EV, 102, N, M)
GO TO 10
900 STOP
500 FORMAT(2I 5, E10. 2)
510 FORMAT(5EL5. 7)
600 FORMAT('1',//'*** ORI GINAL MATRI X N=', 14
* 2X, ' ME', 14/1)
610 FORMAT(' 0', 2X, | 3, 5E15. 7/ ( 6X, 5E15. 7))
620 FORMAT('0'//'*** |CON= ', I5)
END

The subroutine SEPRT in this example is used for printing eigenvalues and eigenvectors of real
symmetric matrices. The following illustrates the contents of this subroutine.

SUBROUTI NE SEPRT(E, EV, K, N, M
DI MENSI ON E(M , EV(K, M

VR TE( 6, 600)

KA =(M 1)/ 5+1

LST=0

DO 10 KK=1, KAl

| NT=LST+1

LST=LST+5

| F(LST. GT. M LST=M

WRI TE(6, 610) (J, J=I NT, LST)
WRI TE( 6, 620) (E(J), J=I NT, LST)

DO 10 1=1,N
WRI TE(6, 630) |, (EV(1,J), J=I NT, LST)
10 CONTI NUE
RETURN
600 FORMAT(' 1', 20X
* " EI GENVALUE AND El GENVECTOR )
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(4) Method

610 FORMAT(' 0', 51 20)
620 FORMAT(' 0', 5X, ' ER , 3X, 5E20. 8/)
630 FORMAT(5X, | 3, 3X, 5E20. 8)

END

This subroutine calculates m number of eigenvalues of an n order real symmetric matrix A in
descending (or ascending) order using the parallel bisection method, and their corresponding
eigenvectors using the inverse iteration method.

First, it transforms real symmetric matrix A, using the Householder method, into real symmetric
tridiagonal matrix T shown in Fig. VSEG2-1. This operation is shown by expression (4.1).

T=Qf AQy (4.1)
Here, Q4 isan orthogonal matrix. This operation is performed using the subroutine TRID1.

Next, m number of eigenvalues are calculated by applying the parallel bisection method on
transformed matrix T. Then, the eigenvector for matrix T corresponding to the m eigenvalues are
calculated using the inverse iteration method. This method cal cul ates eigenvectors by repeatedly
solving expression (4.2).

(T=ADY, =V, r=12,... (4.2

Note that in (4.2), A is the eigenvalue calculated by the parallel bisection method and vy; is the
iteration vector. The parallel bisection method is explained in later paragraphs. See the section
on subroutine TEIG2 for the inverse iteration method.

Next, calculate the eigenvectors of A. Eigenvector x of A can be calculated by using Qy of
equation (4.1) in (4.3), by letting y be the eigenvector of T.

X=Quy (4.3)

This operation is performed using subroutine TRBK.
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¢, b
b, ¢ bs
b3 C3 b4

Figure VSEG2-1 Real symmetric tridiagonal matrix T

Parallel bisection method

The following paragraphs present the calculation of m number of eigenvalues in descending order
to simplify its explanation.

Here, letting A be a variable and pi(A) be the value of the leading principle minor of matrix
(T = Al) from the upper |eft results in the following recurrence relation:

po(}\)=1. pl()‘): ¢ — A,

Pi (A): (Ci _A)x pi—l()‘)_ b? pi—2()‘)' (4.4)
i=2,3,...,n

The polynomial sequence po(A), pi(A),..., pn(A) in (4.4) constitutes a Sturm sequence. Therefore,
if the number of times the codes of consecutive terms po(A) through p,(A) invert is defined as a
(A), then a (A) is equal to the number of eigenvalues smaller than A. The bisection method is a
method of calclating eigenvalues one by one by repeatedly bisecting the eigenvalue existence
interval, applying such theorem. In general, an underflow or overflow can easily occur in the
calculation of (4.4) so that the ploynomial sequence q;(A) expressed as (4.5) is used for evaluation
to avoid underflows and overflows.

a:(A)=pi(A) pio(2) (4.5)

In this case, the number of times g;(A) becomes negative is equal to the number of eigenvalues
smaller than A. In the following paragraph, the number of times g;(A) becomes negative is defined
asa(A).

The parallel bisection method applies the bisection method simultaneously on m number of
eigenvalues Aj, j = 1, 2, ..., m, by setting an existence interval for each eigenvalue. Now, express

the existence interval for the j-th eigenvalue A; as [a(jk) ,bj(k)] . kisthe number of iterations. The

initial existenceinterval is [a§°) ,b}o)] and it is set to satisfy the relation ship of (4.6).
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alp®)= | (4.6)

The parallel bisection method iterates the following steps (1) through (3) for k=0, 1, 2,... to
sufficiently reduce [agk) , b](k)] and approximates the value of ), at its midpoint.

(1) Approximate A; at the midpoint of the interval.

h) = (@) +p0)i2,j =12, m 47
alh®)=0,j=12,..m (4.8)
(2) Evaluate the Sturm sequence g, i=1, 2, ...n, and obtain the number of times the code becomes negative.
a(nf)
ah)<o  ah®)zal®)r (4.9)
j=12,...,m

(3) Revise the existence interval.

ap?)=i-1
ah®)-=], (4.10)

j=12,...m

Eigenvalue convergence criterion and EPST specifying method Convergence test in this
subroutine is performed by (4.11)

bl ~ald < 2u(lb](k) |+|a§k)|)+ EPST (4.11)

Here, u isthe unit round off and EPST is the value specified as the upper bound of absolute errors
for the eigenvalues to be calculated. When the relation expressed by (4.11) is satisfied,

(b](k) —agk))/ 2 is made the j-th eigenvalue A;. EPST has he function to control process
termination at the required precision level. If EPST = 0.0, (4.11) becomes (4.12).

o) -l < 2ulof? ) (412
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At this time, bisection is performed repeatedly until the least significant digits of bj(k) and a?k)
are nearly equal. On the other hand, if EPST > 0.0 iteration stops when the specified precision
level isreached. Specification of EPST > 0.0 is specifically require when eigenvalues include a
zero.

When EPST < 0.0 is specified, this subroutine uses the following as the default value.

EPST = umax({A o A i} )

Here, Ana @nd An, are the lower bound and upper bound values of the interval that includes all
eigenval ues obtained using the Gerschgorin's theorem.
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F16-21-0201 VSIN1, DVSIN1

Discrete sine transform (radix 2 FFT)

CALL VSIN 1 (A, N, TAB, VW, IVW, ICON)

(1) Function

This subroutine cal culates discrete sine transform and its inverse transform using the Fast Fourier
Transform (FFT) suited to a vector processor, when n number of samples {x} obtained by
dividing half a period of an odd-function x (t) of period 27 into n, equal sections as expressed by
(1.2), with n = 2' where | is a positive integer.

x; =x(0)j=01..,n-1 (1.1)
,0=m/n

a  Sinetransform

When {x} is input, Fourier coefficients {2n-b,} are calculated using the transform defined by
1.2).

n-1
2nib, =40 x; BnK6,k=01..,n-1 (-2
1=0

,0=m/n
Note that x, =0.
b. Sineinversetransform

When {by} is input, Fourier series values {4-x} are calculated using the transform defined by

(1.3).
n-1

41X =4DZ b, @Enkj#, j=01..n-1 (1.3
k=0

,0=m/n

Notethat by =0
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(2) Parameters

A Input. {x} or { by}
Output. {2n- b} or {4-x}
One-dimensiona array of size n+2
SeeFig. VSIN 1-1.
N Input. Number of samplesn
TAB....... Output. Trigonometric table used by transform is stored.
One-dimensional array of size 2n+4
VW ........ Word area.
One-dimensional array of size max(n( 1+1) /2,1)
IVW....... Work area.
One-dimensional array of sizen-max(1-4,2) / 2
ICON ..... Output. Condition codes

See Table VSIN1-1.

Array A {x} {bd
A (1) « .
A(2) X, by
A@3) X2 b,
A (4) X3 bs
A (N) Xa-1 Br-1

A (N+1) * *
A (N+2) * *

Notes:

Same for { 2nb} and {x}.

* isand arbitrary value during input.
0.0 is set at the time of outpuit.

Figure VSIN1-1 Data storage mode
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Table VSIN1-1 Condition codes

Code Meaning Processing

0 | Noerror -
30000 | N # 2 (Iisapositiveinteger) Bypassed

(3) Notes

a. Subprograms used

Q) SSLII:  VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFAL, UVFB1, UVFX1,
UBANK, UVTAB, MGSSL

2 FORTRAN intrinsic functions: ALOG2, SIN, COS, ATAN, IABS, IAND, MOD,
FLOAT

b. Notes

(1) subroutine use

this subroutine performs high-speed calculation of discrete sine transform on a vector
processor. The subroutine FSINT may be more suited on a general-purpose computer.

(2) Multiple transforms

When performing multiple transforms, generation of trigonometric table and list vectors is
omitted in the second and subsequent subroutine calls, resulting in processing efficiency. The
contents of arrays TAB, VW, and IVW must be called without altering them.

Even when the number of terms n for the multiple transforms differs, the previously generated
contents of arrays TAB, VW, and IVW arevalid. However, it is preferableto call themin
such away that transforms with identical number of terms are stringed together to the
maximum extent possible.
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(3) Trigonometric table and work array size table

The following shows the sizes for 16 < n<4096.

I n TAB VW VW
4 16 36 40 16
5 32 68 96 32
6 64 132 224 64
7 128 260 512 192
8 256 516 1152 512
9 512 1028 2560 1280
10 1024 2052 5632 3072
11 2048 4100 12288 7168
12 4096 8196 26624 16384

(4) General definition of discrete sine transform

Discrete sine transform and its inverse transform are generally defined by (3.1),and (3.2),

respectively.
2I"I—1

by =—) x; @inkig, k=212,..,n-1 31

k n; j J 1 ( )
n-1

X; =ZbkE1;inkj9, j=12,..,n-1 (3.2)
=1

This subroutine calculates {2n-b} or {4-x }corresponding the left hand sides of (3.1) and
(3.2), respectively. Therefore, normalize the results as required.

c. Example

Input n number of samples {x} and transform by this subroutine. Then normalize the results and
obtain discrete Fourier coefficients{ b}. Calculate {x} by proceeding to inverse transformation.
Thisexampleisfor n < 512.

C * % EXAVPLE* *
DI MENSI ON X(514) , TAB(1028) , VW( 2560) ,
* | VW 1280)
1 READ(5, 500) N
| F(N. EQ 0) STOP
READ(5, 501) (X(1),1=1, N)
c SI NE TRANSFORM
WRI TE( 6, 600) N
WRI TE(6, 601) (X(1),1=1, N)
CALL VSI NI(X, N, TAB, VW | VW | CON)
| F(1 CON. NE. 0) GO TO 30
c NORMAL| ZE
CNE1. 0/ (2. 0*FLOAT(N))
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(4) Method

DO 10 K=1, N
X(K) =X( K) * CN
10 CONTI NUE
VRl TE( 6, 602)
WRI TE(6, 601) (X(1),1=1, N)
c SI NE | NVERSE TRANSFORM
CALL VSI NL(X, N, TAB, VW | VW | CON)
| F(1 CON. NE. 0) GO TO 30
c NORMAL| ZE
CN=0. 25
DO 20 K=1, N
X(K) =X( K) * CN
20 CONTI NUE
VRl TE( 6, 602)
WRI TE(6, 601) (X(1),1=1, N)
G TO 1
30 WRI TE(6, 603) | CON
G TO 1
500 FORMAT(I5)
501 FORMAT(6F12. 0)
600 FORMAT(' 0',5X, ' | NPUT DATA N=', 15)
601 FORMAT(5F15. 7)
602 FORMAT(' 0', 5X, ' OUTPUT DATA')
603 FORMAT(' 0', 5X, ' CONDI TI ON CCDE', | 8)
END

Consider calculating discrete sine transform of nterms (=2', 1 = 1, 2,...) using the Fast Fourier
Transform (FFT) suited for a vector processor.

Discrete sine transform is generally expressed by (4.1), when samples{x}, j=0,1, ... ,n—1, are
given.

2n—1
by =-in zin(kie)
n&g
,j=04..,n-1 (4.1)
,8=rm/n

Now the samples are an odd-function and the relation expressed by (4.2) exists when extended to
one period.

X2n—j =_Xj’ J :O,].,...,n_l

and, xg =%, =0 (4.2)

Therefore, by ~b,, can be calculated by extending X, ~ X1 t0 Xy ~ Xon and performing 2n

term (discrete real fourier transform.
It iswell known that efficient transformation can be achieved by taking advantage of the
symmetry of (4.2), in this case.

Now, perform following preprocessing on the samples{ x} :
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d, =%[ﬁxj ~x,_; )+sin(j6)fx; +x,;) I=04..,n-1 (43)

At this point, substituting of discrete sine inverse transform (4.4) into (4.3) resultsin (4.5).

n-1

by :%ij min(ki6) j=01..n-1 (4.9)
=1

n/2-1

d; =l + ; [(bcs1 — boy) B0S(20Kj 6) + by, EiN(20KO)] - (-1) By, (4.5)
=1

,j=01,..,n-1

Expression (4.5) is equivalent to an n term discrete real Fourier transform with Fourier
coefficients of { byt — bac1} and {bx}. Thus, calculation of Fourier coefficients{ a, } and { b }
for the samples {d} will enable obtaining of { b} using the identities:

8 =boss — by
b = by
In other words, { b} is calculated using (4.6) which follows.

bl :1/2@0,bn_1 = _1/2|3:n/2,

by, = by,
b2k+1=b2k_1+ak,k=l...,n/2—l (46)

The last expression in (4.6) is a recurrence formula and is unsuitable for a vector processor.
Therefore, this subroutine is designed as a vector processor suited algorithm by back tracing these
calculations, which avoids performing reference calculation, taking advantage of the fact that
discrete sine transform and its inverse transform are identical expressions, except for the
normalization constants.

Refer to reference [8] for details on this algorithm.
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(1) Function

(2) Parameters

A22-61-0202 VSLDL, DVSLDL

LDL" decomposition of a positive definite
symmetric matrix

CALL VSLDL(A, N, EPSZ, VW, IVW, ICON)

This subroutine decomposes an n x n positive definite symmetric matrix A into LDL" using the
modified Cholesky’s method:

A=LDL' (1.1)
Where L isaunit lower triangular matrix, D isadiagonal matrix, and n = 1.

The function of this subroutineis similar to that of subroutine SLDL, but the coefficient matrix is
stored differently, and this subroutine is more suited to a vector processor.

A Input. Coefficient matrix A
Output. MatricesL and D™
The lower triangular portion of the symmetric matrix is stored column by column,from
the first to the n-th column, in a one-dimensiona array of size
n(n+1)/2, as shown in Figure VSLDL-1.
N Input. Order n of matrix A
EPSZ....Input. Tolerance for relative zero test of pivots (=0.0)
When EPSZ=0.0, a standard value is used.
(See Note (2).)
VW....... Work area. One- dimensional array of size 2n
IVW .....Work area. One-dimensional array of sizen
ICON....Output. Condition code
See Table VSLDL-1.
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ap
A aAxp
Az Adzp Aass
Ay A ag
SOy
Array A
d,t
|21 )
First
| column
31
la
d,t
| Second
82 1 column
|42
-1
45" | Third
column
a3 |
d,st | Fourth
column

Figure VSLDL-1 Storage method of a symmetric matrix

Auy

NT=n(n+1)/2

Output

gogd

Input

Array A
ap
ax

First
column ag
ay
ax
Second a
column 82
g
Third a3
column
a3
Fou'rth au
column
0
1
| 32 1
| 42 | 43 1
d,
ds
ds
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Table VSLDL-1 Condition codes

code Meaning Processing
0 | Noerror -
10000 | Pivot became negative. Continued
Coefficient matrix is not positive definite.
20000 | Pivot became smaller than relative zero value. Bypassed
Coefficient matrix might be singular.
30000 | N<lor EPSZ<0.0 Bypassed

(3) Notes

a. Subprograms used

(1) SsL 1I: AMACH, MGSSL
(2) FORTRAN intrinsic functions:ABS

b. notes

(1) This subroutine is designed to speed up processing on a vector processor by using a different
matrix storage method than the one used in subroutine SLDL. Note how the storage methods
and calling sequences of the two subroutines differ.

(2) Suppose that 10°° was given as the tolerance value for relative zero test EPSZ. This value has
the following meaning: if the pivot value loses more than Ssihnificant digits during LDL"
decomposition in the modified Cholesky’s method, the value is assumed to be zero and
decomposition processing is discontinued with ICON = 20000. The standard value of EPSZ
isnormally 16u, where u is the unit round off.

Processing can be continued by assigning the smallest value to EPSZ, even when the pivot
value becomes smaller than the standard value. However, the calculation result may not be as
accurate as desired.

(3) If the pivot value becomes negative during decomposition, it means that the coefficient matrix
is nor longer positive definite. ICON = 10000 is set, and processing continues. Note,
however, that the resulting calculation error may be significant, because no pivoting operation
is performed.

(4) To obtain the determinant of the coefficient matrix, multiply all the n diagonal el ements of
array A (i.e., diagonal elements of D) afer calculations are completed, and take the reciprocal
of the result.
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b. Example

Ann x n matrix isinput, an LDL "decomposition is performed for n < 100.

C * % EXAVPLE* *
DI MENSI ON A( 5050) , VW 200) , | VW( 100)
10 READ(5, 500) N
| F(N. EQ 0) STOP
NT=N* (N+1) / 2
READ( 5, 510) (A(1), =1, NT)
VRl TE( 6, 630)
I s=1
| E=N
DO 20 J=1,N
VR TE(6, 600) J, (A(1),1=I1S, I E)
| S=1 E+1
20 | E=l E+(N-J)
CALL VSLDL(A N, 1.0E-6, VW I VW | CON)
WRI TE( 6, 610) | CON
| F(1 CON. GE. 20000) GO TO 10
VRl TE( 6, 640)
I s=1
| E=N
DET=1. 0
DO 30 J=1,N
VR TE(6, 600) J, (A(1),1=I1S, I E)
DET=DET*A(| S)
| S=1 E+1
30 | E=l E+(N-J)
DET=1. 0/ DET
WRI TE( 6, 620) DET
GO TO 10
500 FORMAT(I5)
510 FORMAT(5E15. 7)
600 FORMAT(' ', 15/ (10X, 5E16.8))
610 FORMAT(/10X,'|CON=', | 5)
620 FORMAT(// 10X,
*' DETERM NANT OF MATRI X=', E16. 8)
630 FORMAT(/ 10X, ' | NPUT MATRI X' )
640 FORMAT(/ 10X, ' DECOMPOSED MATRI X' )
END

(4) Method

LDL " decomposition using the modified cholesky’s method is explained in Method for subroutine
SLDL. This subroutine, however, iswell suited to a vector processor, because decomposition is
basically treated as calculation of a matrix-vector product.

In addition, the coefficient matrix storage method is very important. In order to perform efficient
vector processing, the lower triangular portion of the coefficient matrix is stored column by
column.
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In LDL" decomposition of a positive define symmetric matrix,
A=LDL" (4.1)

Wedefine L suchthat L =LD. For L =(l;) and D =diag(d;), L isof thefollowing form:

ds
I 21d1 d2 0
= [ 31dl l 32d2 d3

(4.2)

Inldl In2d2 ’ ’ ’ dn

L

During decomposition processing, this subroutine stores the subsets of elements of the coefficient

matrices A, L , L and D * in one-dimensional array A, but at the end of decomposition, it stores
only the elementsof L and D ™.

Figure VSLDL -2 shows the contents of array A at the r-th stage of the decomposition (where

r =2,3,..., n) Inthediagram, array A is depicted in the form of the lower triangular portion of a
matrix. Elements marked by X are the L elements obtained so far, *'sare D ! elements, O’s are
L elements,and A’s are the elements of coefficient matrix A. (M, and a, are defined in the
following paragraph (2).)

X*
X X *
X X X =
X X X X * r-th column
X X X X X *
X X X X X X
ArayA [0 0 00O O o|a] < throw

00 000O0O0|a
00 000O0O0|a
0000000
00000 O0O0|a
00000 O0O0|Aa

v (00000 o0o0fa

.

Figure VSLDL-2 Contens of array A
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At the stage, the following calculations are performed:

(1) Ther-th row of L is determined from the r-th row of array A as follows. Because the r-th row
of array Ais (lrldlr |r2d2 yeery |r'r_1dr_1, a”),

I,; is readily obtained.

li=(1;d;)d; ™ =1,23,..r-1 (4.3)

j
These elements are temporarily stored in work array VW.

(2) The r-th column of L determined by updating the r-th column of array A. This calculation,
which is the main part of this method, is basically calculation of a matrix-vector product.

We now introduce several symbols. First, let F, be the r-th column vector of L that is to be
determined, i.e.,

(R (A POV A OO R e T (4.4)

Next, let vector |, matrix M,, and vector a, be defined as follows:
— T
Ir _(|r1’|r2""’|r,r—1) (4.5)

grldl |:ﬂ:l]:lr,r—ldr—lg

M, = L0 (4.6)
%nldl |:ﬂ:l]jn,r—ldr—lg

8 = (B BpagpeenBy) | (47)

|, obtained in (1) above, isthe r-th row vector of L, Mr isasubmatrix of L, and &, isther-th
column of coefficient matrix A. (See Figure VSLDL-2.)

The vectors and matrices defined above are rel ated as follows:

o, <[, 7] g
a1

Therefore,
I =a —M, (4.8)

can be obtained, which means that I: isbasically calculated from a matrix-vector product.
This calculation is well suited to a vector processor.

(3) Last, we update the r-th row of array A using the r-th row of L, and store d; ! as diagonal
elements. For the above update, { 1;; j = 1,2,..., r =1} that have been saved in array VW are

copied into the r-th row of array A. To store d, ! take the reciprocal of d, and store it, since
it isthe first element of 1 obtained in
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(2) above. d, ischecked here to seeif the coefficient matrix is nonsingular and positive definite.

The above explanation concerns the r-th stage. By repeating (1), (2), and (3) above for r=2,3,...,n,
array A will contain the lower triangular portion of matrix L (except for diagonal element 1's) and

the inverse of diagonal matrix D.

99SP4070E-2 PT 11-123



APPENDIXES

99SP4070E-2



APPENDIX A ALPHABETIC GUIDE FOR EXTENDED SUBROUTINES

Al General Subroutines
Subroutine Classification code Subprograms used

VALU A22-71-0202 AMACH

VCFT1 F16-15-0201 UVTB1, UVF91, UVFA1, UVFB1, UVFX1, UBANK

VCFT2 F16-15-0301 UVTB2, UVF92, UVFA2, UVFB2, UVFX2, UBANK

VLDLX A22-61-0302

VCOS1 F16-11-0201 VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1,
UVFB1, UVFX1, UBANK, UVTAB

VGSG2 B62-21-0201 GSCHL, TRID1, TRBK, GSBK, UVTG2, UCHLS,
AMACH, UVBCT

VLAX A22-61-0101 VALU,LUX,AMACH

VLSX A22-61-0101 AMACH,VSLDL ,VLDLX

VLTX A62-11-0101 AMACH

VLTX1 A62-21-0101 AMACH

VLTX2 A62-31-0101 AMACH

VLTX3 A62-41-0101

VLUIV A22-71-0602

VMGGM A61-11-0301

VRFT1 F15-31-0201 VCFT1, UVRFT, UVTB1, UVF9]1, UVFAL, UVFB1,
UVFX1, UBANK

VRFT2 F15-31-0301 VCFT2, UVRFT, UVTB2, UVF92, UVFA2, UVFB2,
UVFX2, UBANK

VSEG2 B61-21-0201 TRID1, UVTG2, TRBK, AMACH, UVBCT

VSIN1 F16-21-0201 VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFAL,
UVFB1, UVFX1, UBANK, UVTAB

VSLDL A22-61-0202 AMACH
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A.2

Slave Subroutines

Slave routine Calling subroutine
UBANK VCFT1, VRFT1, VCFT2, VRFT2, VCOS], VSIN1
UVBCT VGSG2, VSEG2
UVFAl VCFT1, VRFT1, VCOS], VSIN1
UVFA2 VCFT2, VRFT2
UVFB1 VCFT1, VRFT1, VCOS], VSIN1
UVFB2 VCFT2, VRFT2
UVEX1 VCFT1, VRFT1, VCOS], VSIN1
UVEX2 VCFT2, VRFT2
UVFI1 VCFT1, VRFT1, VCOS1, VSIN1
UVF92 VCFT2, VRFT2
UVTAB VCOS1, VSIN1
UVRFT VRFT1, VRFT2, VCOSL, VSIN1
uvTB1 VCFT1, VRFT1, VCOS1, VSIN1
uvTB2 VCFT2, VRFT2
UVTG2 VGSG2, VSEG2

A-2
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Linear Algebra

Classification code Subroutine
A22-61-0101 VLSX
A22-61-0202 VSLDL
A22-61-0302 VLDLX
A22-71-0202 VALU
A22-71-0101 VLAX
A22-71-0602 VLUIV
A61-11-0301 VMGGM
A62-11-0101 VLTX
A62-21-0101 VLTX1
A62-31-0101 VLTX2
A62-41-0101 VLTX3

Eigenvalues and Eigenvectors

Classification code Subroutine
B61-21-0201 VSEG2
B62-21-0201 VGSG2

Transform

Classification code Subroutine
F15-31-0201 VRFT1
F15-31-0301 VRFT2
F16-11-0201 VCOS1
F16-21-0201 VSIN1
F16-15-0201 VCFT1
F16-15-0301 VCFT2
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backward substitution PTI1-42, PTI1-47,
PTII-54

bisection method PTI11-107

blocking LU-decomposition method PTII-1,
PTII-35

butterfly operation PTII-12

butterfly stage PTII-12

C

component subroutine PTI-3

constant-tridiagonal matrix PTI-5

constant-tridiagonal matrix of Dirichlet type
PTI-5

constant-tridiagonal matrix of Neumann type
PTI-5

constant-tridiagonal matrix of periodic type
PTI-5

cosine transform PTI1-23

cyclic reduction PTII-69, PTII-76

cyclic reduction method PTI-5, PTI1-53,
PTII1-60, PTII-70, PTI1-76

D

discrete complex Fourier transform  PTII-7,
PTII-17

discrete fourier transform  PTI11-115

discrete real Fourier transform PTI1-28,
PTI1-89, PTII-97

E

eigenvalue PTII-29, PTII-103
eigenvalue problem PTI-7
eigenvector PTII-29, PTI1-103
even-function PTII-23

F

FFT PTII-7, PTII-12, PTII-17, PTII-23,
PTI1-89, PTI1-97

forward and backward substitution
PTI1-47

fourier transform PTI-9

G

genera eigenvalue problem PTII-29
Gerschgorin'stheorem PTI11-31, PTI1-104

H

high performance PTII-7, PTI1-89
high-performance subroutine PTI-9

in-placetype PTII-12

inverse iteration method PTI11-29, PTI1-106
inverse real general matrix PTI-3
irreducibly diagnonally dominant PTI-4
isogeometric  PTII-12

isogeometric method PTII-21

L

LDL decomposition PTII-121

LDL" decomposition PTII-41, PTI1-42
linear algebra PTI-3

list vector PTI-9, PTII-13

M

memory efficient PTII-17, PTI1-97

memory interleave number PTI-10

memory-efficient subroutine PTI-9

modified cholesky's method PTII-46,
PTI1-120

multi-dimensional Fourier transform
PTII-11, PTII-93

multiplication of two matrices Vvii
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N real symmetric tridiagonal matrix
PTI1-33, PTII-106
not-in-placetype PTII-12 reverse iteration method PTI1-103
rotation factor PTI-9, PTII-12, PTI1-13

@)

odd-function PTII-111 S

orthogonal similarity transformation

PTI1-33 self-sorting PTII-12

self-sorting method PTI11-21
sinetransform PTII-111
P SSL 11 extended capability PTI-1
Sturm sequence PTI1-107
parallel bisection method PTII-29, PTII-

103,
PTII-107 T
positive definite symmetric coefficient
matrix tridiagonal matrix PTI-4, PTI1-49
PTI1-39 tridiagonal matrix equation PTI1-49,
positive definite symmetric matrix PTII- PTI1-57, PTII-65, PTI1-73
29,
PTI1-43, PTII-117, PTII-121
principle minor of matrix PTI1-107 V

vector algorithm PTI-1
R vector processor PTI-1

real symmetric matrix PTI1-29, PT11-103

IN-2 99SP4070E-2



	FUJITSU SSL II EXTENDED CAPABILITIES USER'S GUIDE
	PREFACE
	CONTENTS
	ILLUSTRATIONS
	SUBROUTINE LIST OF SSL II EXTENDED CAPABILITIES
	Linear Equations
	Eigenvalues and Eigenvectors
	Fourier Transforms

	PART I GENERAL DESCRIPTION
	CHAPTER 1 OUTLINE
	1.1 Extended Capabilities
	1.2 Structure of Extended Capabilities
	1.3 Selection between Extended and Standard Capabilities

	CHAPTER 2 LINEAR ALGEBRA
	2.1 Outline
	2.2 Notes
	2.3 Subroutine Selection

	CHAPTER 3 EIGENVALUES AND EIGENVECTORS
	3.1 Outline
	3.2 Notes

	CHAPTER 4 FOURIER TRANSFORMS
	4.1 Outline
	4.2 Notes


	PART II USAGE OF SUBROUTINES
	VALU, DVALU
	VCFT1, DVCFT1
	VCFT2, DVCFT2
	VCOS1, DVCOS1
	VGSG2, DVGSG2
	VLAX, VDLAX
	VLDLX, DVLDLX
	VLSX, DVLSX
	VLTX, DVLTX
	VLTX1, DVLTX1
	VLTX2, DVLTX2
	VLTX3, DVLTX3
	VLUIV, VDLUIV
	VMGGM, DVMGGM
	VRFT1, DVRFT1
	VRFT2, DVRFT2
	VSEG2, DVSEG2
	VSIN1, DVSIN1
	VSLDL, DVSLDL

	APPENDIXES
	APPENDIX A ALPHABETIC GUIDE FOR EXTENDED SUBROUTINES
	APPENDIX B CLASSIFICATION CODES AND SUBROUTINES
	APPENDIX C REFERENCES

	INDEX

