
99SP4070E-2

FUJITSU SSL II
EXTENDED CAPABILITIES

USER’S GUIDE
(SCIENTIFIC SUBROUTINE LIBRARY)

 This document contains technology relating to strategic products controlled by export control laws of
the producing and/or exporting countries. This document or a portion thereof should not be exported
(or reexported) without authorization from the appropriate governmental authorities in accordance with
such laws. FUJITSU LIMITED

Second Edition September 1991

The contents of this manual may be revisedwithout prior notice.

All Rights Reserved, Copyright FUJITSU LIMITED 1990, 1991

99SP4070E-2 i

PREFACE

This manual describes the extended capabilities of the Scientific Subroutine Library II (SSL II).

SSL II consists of standard and extended capabilities. Standard capabilities, explained in
FUJITSU SSL II User's Guide, are provided for a wide range of scientific calculations performed
on general-purpose computers. Extended capabilities are provided for high-speed scientific
calculations on FUJITSU VP Series vector processors.

This manual is organized as follows:

PART I GENERAL DESCRIPTION

Functions are outlined for individual fields and subroutine selection is explained.

PART II USAGE OF SUBROUTINES

The usage of subroutines is discussed. Subroutines are listed in alphabetical order.

For SSL II conventions and standard subroutines, refer to the following manual:

FUJITSU SSL II User's Guide

The asterisk in the table of contents of this manual indicate items added or changed from the
previous edition (manual code 99SP4070E-1).

99SP4070E-2 iii

CONTENTS

PART I GENERAL DESCRIPTION

CHAPTER 1 OUTLINE..PT I-1

1.1 Extended Capabilities PT I-1
1.2 Structure of Extended Capabilities PT I-1
1.3 Selection between Extended and Standard

Capabilities PT I-2

CHAPTER 2 LINEAR ALGEBRA..PT I-3

2.1 Outline PT I-3
2.2 Notes PT I-3
2.3 Subroutine Selection PT I-4

CHAPTER 3 EIGENVALUES AND EIGENVECTORS..PT I-7

3.1 Outline PT I-7
3.2 Notes PT I-7

CHAPTER 4 FOURIER TRANSFORMS..PT I-9

4.1 Outline PT I-9
4.2 Notes PT I-9

PART II USAGE OF SUBROUTINES

VALU ..PT II-1

A22-71-0202 VALU, DVALU PT II-1 *

VCFT1 ..PT II-7

F16-15-0201 VCFT1, DVCFT1 PT II-7

VCFT2 ..PT II-17

F16-15-0301 VCFT2, DVCFT2 PT II-17

VCOS1..PT II-23

F16-11-0201 VCOS1, DVCOS1 PT II-23

VGSG2 ...PT II-29

62-21-0201 VGSG2, DVGSG2 PT II-29

CONTENTS

iv 99SP4070E-2

VLAX ..PT II-35

A22-71-0101 VLAX, DVLAX PT II-35 *

VLDLX ..PT II-39

A22-61-0302 VLDLX, DVLDLX PT II-39

VLSX ..PT II-43

A22-61-0101 VLSX, DVLSX PT II-43

VLTX...PT II-49

A62-11-0101 VLTX, DVLTX PT II-49

VLTX1...PT II-57

A62-21-0101 VLTX1, DVLTX1 PT II-57

VLTX2...PT II-65

A62-31-0101 VLTX2, DVLTX2 PT II-65

VLTX3...PT II-73

A62-41-0101 VLTX3, DVLTX3 PT II-73

VLUIV ...PT II-79

A22-71-0602 VLUIV, DVLUIV PT II-79 *

VMGGM..PT II-85

A61-11-0301 VMGGM , DVMGGM PT II-85

VRFT1 ..PT II-89

F15-31-0201 VRFT1, DVRFT1 PT II-89

VRFT2 ..PT II-97

F15-31-0301 VRFT2, DVRFT2 PT II-97

VSEG2..PT II-103

B61-21-0201 VSEG2, DVSEG2 PT II-103

99SP4070E-2 v

VSIN1 ...PT II-111

F16-21-0201 VSIN1, DVSIN1 PT II-111

VSLDL..PT II-117

A22-61-0202 VSLDL, DVSLDL PT II-117

APPENDIXES

APPENDIX A ALPHABETIC GUIDE FOR EXTENDED SUBROUTINES...........................A-1

A.1 General Subroutines A-1
A.2 Slave Subroutines A-2

APPENDIX B CLASSIFICATION CODES AND SUBROUTINESB-1

APPENDIX C REFERENCES ..C-1

INDEX...IN-1

CONTENTS

vi 99SP4070E-2

ILLUSTRATIONS

FIGURES

Figure 1.1 Structure of extended capabilites PT I-2
Figure VALU-1 Storage of the elements of L and U in array A PT II-2
Figure VALU-2 Location each element in block array A PT II-6
Figure VCFT1-1 Isogeometric FFT flowchart (N=16) PT II-14
Figure VCFT2-1 Isogeometric FFT flowchart (N=16) PT II-15
Figure VCOS1-1 Data storage method PT II-24
Figure VLDX-1 Storage method of matrices L and D-1 PT II-40
Figure VLSX-1 Storage method of symmetric matrix PT II-44
Figure VLTX-1 Storage method of matrix A, and vectors b and x PT II-51
Figure VLTX1-1 Storage method of vectors b and x PT II-58
Figure VLTX2-1 Storage method of vectors b and x PT II-67
Figure VLTX3-1 Storage method of vectors b and x PT II-74
Figure VLUIV-1 Storage of the elements of L and U in array FA PT II-80
Figure VRFT1-1 Data storage method PT II-90
Figure VRFT2-1 Data storage method PT II-98
Figure VSEG2-1 Real symmetric tridiagonal matrix T PT II-107
Figure VSIN1-1 Data storage mode PT II-112
Figure VSLDL-1 Storage method of a symetrix matrix PT II-118
Figure VSLDL-2 Contents of array A PT II-121

TABLES

Table 2.1 Subroutines in linear algebra PT I-3
Table 3.1 Subroutines for eigenvalue problems PT I-7
Table 4.1 Discrete Fourier transform subroutines PT I-9
Table VALU-1 Condition codes PT II-3
Table VCFT1-1 Condition codes PT II-8
Table VCFT2-1 Condition codes PT II-18
Table VCOS1-1 Condition codes PT II-25
Table VGSG2-1 Condition codes PT II-31
Table VLAX-1 Condition codes PT II-36
Table VLDX-1 Condition codes PT II-40
Table VLSX-1 Condition codes PT II-44
Table VLTX-1 Condition codes PT II-51
Table VLTX1-1 Condition codes PT II-58
Table VLTX2-1 Condition codes PT II-67
Table VLTX3-1 Condition codes PT II-74
Table VLUIV-1 Condition codes PT II-80
Table VMGGM-1 Condition codes PT II-85
Table VRFT1-1 Condition codes PT II-91
Table VRFT2-1 Condition codes PT II-99
Table VSEG2-1 Condition codes PT II-104
Table VSIN1-1 Condition codes PT II-113
Table VS1D1-1 Condition codes PT II-119

99SP4070E-2 vii

SUBROUTINE LIST OF SSL II EXTENDED CAPABILITIES

Linear Equations

Subroutine
name Item

VMGGM Multiplication of two matrices (real general by real general)

VLSX A system of linear equations with a positive definite symmetric matrix (modified
Cholesky's method)

VSLDL LDLT decomposition of a positive definite symmmetric matric (modified Cholesky's
method)

VLDLX A system of linear equations with a positive definite symetric matrix decomposed into
L, D, and LT

VLTX A system of linear equations with a real tridiagonal matrix (cyclic reduction method)

VLTX1 A system of linear equations with a real constant-tridiagonal matrix (Dirichlet type,
cyclic reduction method)

VLTX2 A system of linear equations with a real constant-tridiagonal matrix (Neumann type,
cyclic reduction method)

VLTX3 A system of linear equations with a real constant-tridiagonal matric (periodic type,
cyclic reduction method)

VLAX A system of linear equations with a real general matrix (blocking LU-decomposition
method)

VALU LU-decomposition of a real general matrix (blocking LU-decomposition method)

VLUIV The inverse of a real general matrix decomposed into the factors L and U

SUBROUTINE LIST OF SSL II EXTENDED CAPABILITIES

viii 99SP4070E-2

Eigenvalues and Eigenvectors

Subroutine
name

Item

VSEG2 Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix (Parallel
bisection and inverse iteration methods)

VGSG2 Selected eigenvalues and corresponding eigenvectors of a real symmetric generalized
matrix system Ax=λBx (Parallel bisection and inverse iteration methods)

Fourier Transforms

Subroutine
name

Item

VCOS1 Discrete cosine transform (radix 2 FFT)

VSIN1 Discrete sine transform (radix 2 FFT)

VRFT1 Discrete real Fourier transform (high performance type, radix 2 FFT)

VRFT2 Discrete real Fourier transform (memory efficient type, radix 2 FFT)

VCFT1 Discrete complex Fourier transform (high performance type radix 2 FFT)

VCFT2 Discrete complex Fourier transfrom (memory efficient type radix 2 FFT)

99SP4070E-2

PART I GENERAL DESCRIPTION

99SP4070E-2 PT I-1

CHAPTER 1 OUTLINE

1.1 Extended Capabilities

Scientific computations often require the solution of a variety of mathematical models in areas
such as fluid dynamics, structural analysis, molecular science, and nuclear fusion. As these
problems become more difficult and complicated, they require faster calculations. The vector
processor helps to meet this need by incorporating a different architecture than that of a general-
purpose computer, enabling it to perform high-speed calculations for mathematical models, such
as special algorithms for numerical analysis.

SSL II extended capabilities perform high-speed calculations on a vector processor. Algorithms
have been selected to maximize hardware efficiency. Capabilities in the FUJITSU SSL II User's
Guide (99SP4020E-1) are called SSL II standard capabilities in this manual. Standard
capabilities perform a wide range of calculations on general-purpose computers.

In this manual, the term SSL II is used to refer to both the standard and extended capabilities.

1.2 Structure of Extended Capabilities

Extended capabilities are divided into two groups (Fig. 1.1). Group 1, which are modifications of
SSL II standard subroutines, use vector algorithms, and are provided for high-speed processing on
a vector processor. Extended capabilities use different algorithms than those in the standard
subroutines. Data is stored differently in array areas, and more work array space is allocated for
high-speed processing. Thus, user interfaces differ from those of the corresponding standard
capabilities. Also, most standard capabilities provided for a vector processor have been tuned up
for vector processor to some extent without changing any user interface. In other words, group 1
can be defined as a set of subroutines that perform high-speed calculations on a vector processor,
using different user interfaces than the standard capabilities.

Group 2 provides capabilities for large scale computational problems which are not included in
the SSL II standard capabilities. In this group, vector algorithms are also used.

OUTLINE

PT I-2 99SP4070E-2

SSL II standard
capabilities

SSL II extended
capabilities

Capabilities
Group 2

Group 1

High performance

Figure 1.1 Structure of extended capabilites

1.3 Selection between Extended and Standard Capabilities

SSL II is provided for both general-purpose computers and vector processors. Therefore, user
programs calling SSL II can be executed on both type of computers without any modification to
the call statements.

Group 1 contains subroutines with functions similar to those of standard subroutines. For the
purpose of computational efficiency, the user is recommended to select appropriate subroutines
between standard and extended capabilities in the following way, when using both general-
purpose computers and vector processors.

(1) When a program that calls subroutines of standard capabilities is executed on a vector
processor and if the corresponding subroutines are provided in group 1, it is preferable to
modify the program to employ the latter ones.

(2) When a program that calls subroutines in group 1 is executed on a general-purpose computer,
the program had better be modified to call the corresponding subroutines in standard
capabilities. When a general-purpose computer is used only for debugging, no program
changes are needed.

The correspondence between group 1 and standard capabilities is explained in the introductory
chapter for each field.

Changing the SSL II subroutine call statements in a user program takes time, but it is necessary in
order to improve processing efficiency.

These changes should not affect the accuracy calculations. The vector algorithms used in SSL II
enable highly accurate calculations.

99SP4070E-2 PT I-3

CHAPTER 2 LINEAR ALGEBRA

2.1 Outline

This chapter describes subroutines in linear algebra.

Subroutines of the extended capabilities in this area are listed in Table 2.1 along with the
corresponding subroutines from the standard capabilities.

Table 2.1 Subroutines in linear algebra

Functions Extended
capabilities

Standard
capabilities

Multiplication of two matrices VMGGM MGGM

A system of linear equations with a positive definite symmetric
matrix

VLSX
(VSLDL)
(VLDLX)

LSX
(SLDL)
(LDLX)

A system of linear equations with a tridiagonal matrix VLTX
VLTX1
VLTX2
VLTX3

LTX
LSTX

A system of linear equations with a real general matrix and the
inverse of a real general matrix

VLAX
(VALU)
(VLUIV)

LAX
(ALU)
(LUIV)

The subroutines in parentheses in Table 2.1 are component subroutines. For example, VSLDL is
used to perform LDLT decomposition of a positive definitive symmetric matrix, and VLDLX is
used to obtain a solution based on the decomposed matrices. Both VSLDL and VLDLX are
component subroutines of VLSX.

All subroutines use vector algorithms so that they can be executed efficiently on a vector
processor. The use of these subroutines and the selection of appropriate subroutines are
explained in the following sections.

2.2 Notes

Subroutines of the extended capabilities employ different user interfaces from those of the
corresponding subroutines of the standard capabilities. Two major differences are as follows:

LINEAR ALGEBRA

PT I-4 99SP4070E-2

(1) Storage modes of a positive definite symmetric matrix and a tridiagonal matrix are different
from those in the standard capabilities.

(2) Subroutines of the extended capabilities use a larger work area than those of the standard
capabilities.

These differences enable memory to be accessed more efficiently when a vector algorithm is
constructed. Care should be taken when a subroutine call is changed between the extended and
standard capabilities.

2.3 Subroutine Selection

As listed in Table 2.1, there are four subroutines for linear equations with tridiagonal matrices,
each of which handles a different matrix form.

The tridiagonal matrix treated by any of four subroutines is required to be irreducibly diagonally
dominant for the algorithm used to be numerically stable. The term irreducibly diagonally
dominant means that the tridiagonal matrix satisfies condition (2.2) when it is of the form (2.1).

d1

f2

f1

f3d3

d2

e3

e2

⋅⋅⋅⋅

0

0

⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅
⋅⋅⋅⋅

⋅⋅⋅⋅
⋅⋅⋅⋅

fn-1

dnen

|di| ≥ |ei| + |fi|, i = 1, 2, ... , n, and a strict inequality is (2.2)
satisfied for at least one i, where e1 = fn = 0.

The tridiagonal matrices arising from actual applications usually satisfy the condition (2.2)

A subroutine from the standard capability should be used when the matrix does not satisfy the
processing condition.

The first subroutine VLTX is the most commonly used subroutine with matrix form (2.1).
However, VLTX1 is a limited version of VLTX, and handles only matrix form (2.3) below.

0

0

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

d
e

e

ee
d

d
e

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅⋅⋅⋅
e

e
d

(2.1)

(2.3)

99SP4070E-2 PT I-5

As shown in (2.3), a matrix whose element values do not depend on the row or column is called a
constant-tridiagonal matrix. More specifically, this matrix is called a constant-tridiagonal matrix
of Dirichlet type, because it is related to a specific type of Dirichlet boundary value problem.

The matrix used in subroutines VLTX2 and VLTX3 is a modified version of the matrix in (2.3).
The matrix used in VLTX2 contains the element 2e in the first row and the second column, or in
the n-th row and (n-1) th column, and is called a constant-tridiagonal matrix of Neumann type.
Subroutine VLTX3 uses a matrix in which the first row and the n-th column element, and the n-th
row and the first column element take e. This matrix is called a constant-tridiagonal matrix of
periodic type. These matrices are all derived from boundary value problems of differential
equations.

The algorithm used in the above subroutine is the cyclic reduction method, which is suited for
vector processors. This method requires larger amount of arithmetic operations than the Gaussian
elimination method. However, the cyclic reduction method presents much greater parallelism
which is important factor for efficiency in vector processing. Also, for irreducibly diagonally
dominant matrices, the cyclic reduction method has the same degree of accuracy as the Gaussian
elimination method.

Subroutines VLTX1 and VLTX2 can perform calculations at a higher speed than VLTX , because
the matrix forms in these subroutine are less complicated.

99SP4070E-2 PT I-7

CHAPTER 3 EIGENVALUES AND EIGENVECTORS

3.1 Outline

This chapter addresses the subject of matrix eigenvalue problems. Table 3.1 shows subroutines
provided as extended capabilities, along with their corresponding standard capability subroutine
names.

Table 3.1 Subroutines for eigenvalue problems

Problem type

Matrix type

Extended
capability
subroutine
name

Standard
capability
subroutine
name

Ax = λx A: Real symmetric matrix VSEG2 SEIG2

Ax = λBx A: Real symmetric matrix
B: Positive definite symmetric matrix

VGSG2 GSEG2

3.2 Notes

Extended capability subroutines use computational methods, in which specified m partial
eigenvalues are simultaneously calculated using the parallel bisection method. Therefore, there
are differences such as the work area allocation between the extended and standard capabilities.
Accordingly, parameter modification is required to change from standard capability subroutine
calling to extended capability subroutine calling.

99SP4070E-2 PT I-9

CHAPTER 4 FOURIER TRANSFORMS

4.1 Outline

This chapter describes subroutines in discrete Fourier transforms. Subroutines of the extended
capabilities in this area are listed in Table 4.1 along with the corresponding subroutines from the
standard capabilities.

Table 4.1 Discrete Fourier transform subroutines

Transform Size of data Extended
capabilities

Characteristics Standard
capabilities

Real Power of 2 VRFT1 High performance RFT
transform VRFT2 Memory efficient
Complex Power of 2 VRFT1 High performance CFT
transform VCFT2 Memory efficient
Cosine
transform

Power of 2 VCOS1 − FCOST

Sine
transform

Power of 2 VSIN1 − FSINT

4.2 Notes

(1) Selection between extended and standard capabilities

The user should use subroutines of the standard capabilities corresponding to routines of the
extended capabilities in Table 3.1 to calculate discrete Fourier transforms on a general-
purpose computer.

Although subroutines of the extended capabilities can also be used on a general-purpose
computer, subroutines of the standard capabilities are more efficient.

(2) High -performance and memory-efficient subroutines

High-performance subroutines are used to calculate multiple sets of transforms. These
subroutines are designed for high-speed calculation by saving in work arrays, the rotation
factor (trigonometric function table) and the list vector, both of which can be utilized for the
series of transforms. Therefore, high-performance subroutines require more space for work
arrays VW and IVW.

When only a single transform is calculated, memory-efficient subroutines should be used.

FOURIER TRANSFORMS

PT I-10 99SP4070E-2

(3) Effective use of single precision arithmetic routine

The algorithm for single precision arithmetic routine takes account of memory interleave
number in order to fully extract the potential power of the vector processor. User can inform
the memory interleave number to SSL II through following function.

Function Initial set of memory interleave number

Calling CALL SETBNK (INTER)

INTER is input parameter to be specified the interleave number.

User's program can obtain the best performance by calling the above routine in advance of
calling Fourier transform routine of single precision arithmetic routine.

If user's program does not call the above routine, SSL II assumes that the interleave number is
64.

99SP4070E-2

PART II USAGE OF SUBROUTINES

99SP4070E-2 PT II-1

VALU

A22-71-0202 VALU, DVALU

LU-decomposition of a real general matrix
(blocking LU-decomposition method)

CALL VALU (A, K, N, EPSZ, IP, IS, VW, ICON)

(1) Function

An n × n nonsingular real matrix A is LU-decomposed using the using the blocking LU-
decomposition method (Gaussian elimination method).

PA=LU (1.1)

P is the permutation matrix which performs the row exchanges required in partial pivoting, L is a
lower triangular matrix, and U is a unit upper triangular matrix.n ≥ 1.

(2) Parameters

A Input. Matrix A
Output. Matrices L and U
Refer to Figure VALU-1
A is a two-dimensional array, A (K,N).

VALU

PT II-2 99SP4070E-2

1 u13

Diagonal and lower
triangular portions only

u12

Array A

un-1n

u2n

u1n

Upper triangular portion only

Lower triangular
matrix L

Unit upper triangular
matrix U

K
N

:
…

lnn-1ln2 lnnln1

u23

…

1
1

1

ln-1n-1::

0

l32l31

l22l21

l11

ln1

:

l21

l11

ln2

:

l22

l12

u23 …

u13 …

:

u2n

u1n

lnn-1 lnn

ln-1n-1 ln-1n

Figure VALU-1 Storage of the elements of L and U in array A

K Input. Adjustable dimension of array A (≥ N)
N Input. Order n of matrix A
EPSZ.... Input. Tolerance for relative zero test of pivots in decomposition process of A (≥ 0.0)

When EPSZ is 0.0, a standard value is used. (Refer to Notes.)
IP.......... Output. the transposition vector which indicates the history of row exchanging that

occurred in partial pivoting. IP is a one-dimensional array of size n. (Refer to Noter)
IS.......... Output. Information for obtaining the determinant of matrix A if the n elements of the

calculated diagonal of array A are multiplied by IS, the determinant is obtained.
VW....... Work area. VW is one-dimensional array of size n.
ICON ... Output. Condition code. Refer to Table VALU-1.

VALU

99SP4070E-2 PT II-3

Table VALU-1 Condition codes

Code Meaning Processing

0 No error −

20000 Either all of the elements of some
row were zero or the pivot became
relatively zero. It is highly probable
that the matrix is singular.

Discontinued

30000 K < N, N < 1, or EPSZ < 0.0 Bypassed

(3) Notes

a. Subprograms used

SSL II...... AMACH,MGSSL
FORTRAN intrinsic functions ABS

b. Note

(1) If a value is set in the tolerance EPSZ for pivot zero test, this value means the following:

If the selected pivot element is smaller than the product of the largest absolute value of real
matrix A = (aij) elements, max | aij | and EPSZ can be shown as:

EPSZmax ij
k
kk aa ≤

The relative pivot value is assumed to be zero and processing terminates as ICON=20000.

Let u be the unit round-off, and the standard value of EPSZ is 16 u. If the processing is to
proceed at a low pivot value, EPSZ will be given the minimum value, but the result is not
always guaranteed.

(2) The transposition vector corresponds to the permutation matrix P of LU decomposition in
partial pivoting. In this subroutine, the elements of the array A are actually exchanged in
partial pivoting. In the J-th stage (J = 1, ... , n)of decomposition, if the I the row (I ≥ J)has
been selected as the pivotal row the elements of the I-th row and the elements of the Jth row
are exchanged. Then, in order to record the history of this exchange ,I is stored in IP (J).

(3) A system of linear equations can be solved by calling subroutine LUX following this
subroutine. However ,instead of these subroutines, subroutine VLAX can be normally called
to solve such equations in one step.

VALU

PT II-4 99SP4070E-2

e. Example

An n × n matrix is input and LU-decomposition is computed. n ≤ 100.

C **EXAMPLE**
 DIMENSION A(100,100),VW(100),IP(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((A(I,J),I=1,N),J=1,N)
 WRITE(6,600) N,((I,J,A(I,J),J=1,N),I=1,N)
 CALL VALU(A,100,N,0.0,IP,IS,VW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000)GO TO 10
 DET=IS
 DO 20 I=1,N
 DET=DET*A(I,I)
 20 CONTINUE
 WRITE(6,620) (I,IP(I),I=1,N)
 WRITE(6,630) ((I,J,A(I,J),J=1,N),I=1,N)
 WRITE(6,640) DET
 GOTO 10
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT(///10X,'** INPUT MATRIX **'
 */12X,'ORDER=',I5//(10X,4('(',I3,',',I3,')'
 *,E16.8)))
 610 FORMAT('0',10X,'CONDITION CODE =',I5)
 620 FORMAT('0',10X,'TRANSPOSITION VECTOR'
 */(10X,10('(',I3,')',I5)))
 630 FORMAT('0',10X,'OUTPUT MATRICES'
 */(10X,4('(',I3,',',I3,')',E16.8)))
 640 FORMAT('0',10X,
 *'DETERMINANT OF THE MATRIX =',E16.8)
 END

(4) Method

The blocking LU-decomposition method is applied by blocking the outer-product Gaussian
elimination method.

a. Outer-product Gaussian elimination method

Generally, in exchanging rows using partial pivoting, an n×n regular real matrix A can be
decomposed into the product of a lower triangular matrix L and a unit upper triangular matrix U.

PA = LU (4.1)

P is the permutation matrix which performs the row exchanging required in partial pivoting

VALU

99SP4070E-2 PT II-5

LU-decomposition is computed by changing A = (aij) as follows:

A1 = A →, ... , → Ak →, ... , → An

nkjaau k
kk

k
kjkj ...,,,/ == (4.2)

nkial k
ikik ...,,, == (4.3)

nkjnkiulaa kjij
k
ij

k
ij ,...,1,,...,1,1 +=+=−=+ (4.4)

The rows are actually exchanged by partial pivoting.

The product of column vectors (4.3) and row vectors (4.2) occur in equation (4.4), and then the
rest of the elements will be updated.

b. Blocking method

The outer-product Gaussian elimination method above is determined by the blocked expressions
below.

The row and column elements are decomposed with the constant block width bl. The column
matrix is taken as kL2 ,row matrix as kU2 and the updating part as Ak. They are used for the outer-
product Gaussian elimination that is blocked k-th times. (For the location of each matrix, refer to
Figure VALU-1.)

The updating corresponding to (4.4) is done in (4.5).

kkkk ULAA 22−= (4.5)

Before this updating, kL2 and kU2 are updated with the expressions below.

First, kA~ is decomposed into kL1 , kL2 and kU1 , then kU2 is updated.

() ktktktk ULLA 121 ,~ = (4.6)

() kkk ULU 2
1

12
−

= (4.7)

These expressions are the same as those in the outer-product Gaussian elimination method except
that the order is changed.

VALU

PT II-6 99SP4070E-2

kA

kA~

kL2

kU2kL1

kU1

A

Figure VALU-2 Location of each element in blocked array A

c. Partial pivoting

When matrix A is given as









=

0.00.1
0.10.0

A

Through the matrix is numerically stable, it can not be LU decomposed. In this state, even if a
matrix is numerically stable large errors would occur if LU decomposition were directly
computed. So in this subroutine, to avoid such errors partial pivoting with row equilibration is
adopted for decomposition.

For more information, see References [9], [10], [11], [12], and [13].

99SP4070E-2 PT II-7

VCFT1

F16-15-0201 VCFT1, DVCFT1

Discrete complex Fourier transform
(high performance,radix 2 FFT)

CALL VCFT1 (A, B, N, ISN, ISW, VW, IVW, ICON)

(1) Function

Given one-dimensional (n-term)complex time-series data {xj}, the discrete complex Fourier
transform or its inverse transform is calculated by the Fast Fourier Transform (FFT) method
suited to a vector processor, where n = 2l (l is a non-negative integer).

a. Fourier transform

When {xj} is input, the transform defined by (1.1) below is calculated to obtain {nαk}.

∑
−

=

− −=⋅=
1

0
, 1,...,1,0

n

j

jk
jk nkxn ωα (1.1)

, ω = exp(2πi/n)

b. Fourier inverse transform

When {αk} is input, the transform defined by (1,2) below is calculated to obtain {xj}.

∑
−

=
−=⋅=

1

0
1,...,1,0,

n

k

jk
kj njax ω (1.2)

, ω = exp(2πi /n)

(2) Parameters

A Input. Real part of {xj} or {αk}
Output. Real part of {nαk} or {xj}
One-dimensional array of size n

B........... Input. Imaginary part of {xj} or {αk}
Output. Imaginary part of {nαk} or {xj}
One-dimensional array of size n.

VCFT1

PT II-8 99SP4070E-2

N Input. Number of terms, n, of the transform
ISN....... Input.Either the transform or the inverse transform is indicated

(≠ 0).
ISN = +1 for the transform.
ISN = −1 for the inverse transform.
(See Note (3).)

ISW...... Input. Information for controlling the initial state of the transform
ISW = 0 for the first call.
ISW = 1 for the second and subsequent calls.
(See Note (2).)

VW....... Work area. One-dimensional array of size max (nl, 1).
IVW Work area. One-dimensional array of size n･max (l − 3, 2).
ICON ... Output. Condition code

See Table VCFT1-1.

Table VCFT1-1 Condition codes

Code Meaning Processing

0 No error −

3000 ISN = 0, ISW ≠ 0 or 1,or N ≠ 2l(l ≥ 0 is an integer) Bypassed

(3) Notes

a. Subprograms used

(1) SSL II: UVTB1,UVF91,UVFA1,UVFB1,UVFX1,UBANK,MGSSL

(2) FORTRAN intrinsic functions: ALOG2,SIN,COS,ATAN,IABS,FLOAT,
IAND,MOD

b. Notes

(1) Subroutine use

This subroutine performs high-speed calculation of a complex Fourier transform on a vector
processor. On a general-purpose computer, however CFT or CFTM may be more suitable.

This subroutine is used for calculating multiple independent transforms, and because it is a
high-performance subroutine, it requires more work array area than VCFT2. If it is difficult to
allocate a large work array area, the memory-efficient subroutine VCFT2 should be used, even
though it is slower.

VCFT1

99SP4070E-2 PT II-9

(2) Control by ISW

When multiple transforms are calculated, specify ISW = 1 for the second and subsequent
subroutine calls. This enables the subroutine to bypass the steps for generating a
trigonometric table and a list vector, both of which are needed for the transform, thus
improving processing efficiency. The contents of arrays VW and IVW must not be modified
when the subroutine is called.

Even if the number of terms, n, of each of the multiple transforms varies, specifying ISW = 1
improves processing efficiency. However, it is desirable to be called so that the maximum
number of transforms with the same number of terms are executed consecutively.

When calling this subroutine together with the real Fourier transform subroutine VRFT1,
specifying ISW = 1 improves processing efficiency.

(3) ISN specification

Although the ISN parameter is used to specify whether to calculate a transform or an inverse
transform, it can also be used as shown below. If the real or imaginary part of {xj} or {αk} is
stored at intervals of length I, specify ISN as follows:

For an inverse transform, ISN= + I

For an inverse transform, ISN = − I

The results will also be stored at intervals of length I. Note, however, that when I > 1, specify
the size of work array VW to be n (l +2).

When using a vector processor, the interval length I should take the following values in order
to access memory more efficiently. (See Example (2)).

For single precision arithmetic (VCFT1), I = 4P + 2, P = 0, 1, 2 , ...

For double precision arithmetic (DVCFT1), I = 2P + 1, P = 1, 2, 3, ...

(4) Work array size conversion table

The table for 16 ≤ n ≤ 4096 is shown as follows:

l n VW IVW
4
5
6
7
8
9

10
11
12

16
32
64

128
256
512

1024
2048
4096

64 (96)
160 (224)
384 (512)
896 (1152)

2048 (2560)
4608 (5632)

10240 (12288)
22528 (26624)
49152 (57344)

32
64

192
512

1280
3072
7168

16384
366864

Figures in () are the sizes when ABS(ISN) > 1.

VCFT1

PT II-10 99SP4070E-2

(5) General definition of Fourier transform

The discrete complex Fourier transform and its inverse transform can be defined as in (3.1)
and (3.2).

1,...,1,0,1 1

0
−=⋅⋅= ∑

−

=

− nkx
n

n

j

ik
jk ωα (3.1)

1,...,1,0,
1

0
−=⋅= ∑

−

=
njx

n

k

ik
kj ωα (3.2)

where, ω = exp (2πi /n)

This subroutine calculates {nαk} or {xj}corresponding to the left hand side of (3.1) or (3.2),
respectively. Normalize the results as required.

c. Example

(1) Multiple Fourier transforms

In this example k sets of independent Fourier transforms (with n terms) are calculated.

For k ≤ 64 and n ≤ 512:

C **EXAMPLE**
 DIMENSION A(512,64),B(512,64),
 * VW(4680),IVW(3072)
 READ(5,500) N,K
 READ(5,510) ((A(I,J),B(I,J),I=1,N),J=1,K)
C
 ISN=1
 ISW=0
 CALL VCFT1(A,B,N,ISN,ISW,VW,IVW,ICON)
 IF(ICON.NE.0) STOP
 ISW=1
 DO 10 J=2,K
 CALL VCFT1(A(1,J),B(1,J),N,ISN,ISW,
 * VW,IVW,ICON)
 10 CONTINUE
C
 WRITE(6,600) K,N
 DO 20 J=1,K
 20 WRITE(6,610) J,(I,A(I,J),B(I,J),I=1,N)
C
 500 FORMAT(2I5)
 510 FORMAT(2E15.7)
 600 FORMAT(5X,'***',I3,' SET TRANSFORMS'
 * ' OF',' TERM',I4)
 610 FORMAT(8X,I3,'-TH TRANSFORM'/
 * (8X,I3,2E16.7))
 STOP
 END

VCFT1

99SP4070E-2 PT II-11

(2) Multi-dimensional Fourier transform

In this example a 2-dimensional Fourier transform (with n1 × n2 terms) is calculated.

For n1 ≤ 512, n2 ≤ 64;

In the example program, the data interval length (the first array declarator of the array) used
for the row-wise transform is set at ISN = 514 (= 4p + 2, where p=128).

C **EXAMPLE**
 DIMENSION A(514,64),B(514,64),
 * VW(4608),IVW(3072)
 READ(5,500) N1,N2
 READ(5,510) ((A(I,J),B(I,J),I=1,N1)
 * ,J=1,N2)
C ---N2 SET TRANSFORMS OF TERM N1---
 ISN=1
 ISW=0
 CALL VCFT1(A,B,N1,ISN,ISW,VW,IVW,ICON)
 IF(ICON.NE.0) STOP
 ISW=1
 DO 10 J=2,N2
 CALL VCFT1(A(1,J),B(1,J),N1,ISN,ISW,
 * VW,IVW,ICON)
 10 CONTINUE
C ---N1 SET TRANSFORMS OF TERM N2---
 ISN=514
 CALL VCFT1(A,B,N2,ISN,ISW,VW,IVW,ICON)
 IF(ICON.NE.0) STOP
 DO 20 I=2,N1
 CALL VCFT1(A(I,1),B(I,1),N2,ISN,ISW,
 * VW,IVW,ICON)
 20 CONTINUE
C
 WRITE(6,600) N1,N2
 DO 30 J=1,N2
 30 WRITE(6,610) J,(I,A(I,J),B(I,J),I=1,N1)
C
 500 FORMAT(2I5)
 510 FORMAT(2E15.7)
 600 FORMAT(5X,'*** 2 DIMENSIONAL TRANSFORM'
 * ' OF TERM',I4,' BY ',I4)
 610 FORMAT(8X,I3,'-TH COLUMN'//
 * (8X,I3,2E16.7))
 STOP
 END

VCFT1

PT II-12 99SP4070E-2

(4) Method

The discrete complex Fourier transform is calculated using the Fast Fourier Transform method
(isogeometric and self-sorting FFTs)suited to a vector processor.

Because of the characteristics of vector processors, this subroutine uses an isogeometric FFT in
the single precision arithmetic routine and a self-sorting FFT in the double precision arithmetic
routine.

In general, there are two types of FFT algorithms, according to the area used during the
computation. One is an in-place type, which uses the input data area only, and the other is a no-
in-place type, which uses both the input data area and a work area. The FFT for a general-
purpose computer is usually an in-place type, but in this subroutine it is a not-in-place type.
Because the not-in-place type FFT can fully utilize parallel processing, it is more suited to a
vector processor.

The butterfly operation is the core of the FFT algorithm. The butterfly operation is defined by
(4.1) with two arbitrary inputs, a and b, and two outputs, c and d.

c = a + b, (4.1)

d = (a - b) × ωξ

where a, b, c, d and ωξ are complex numbers, and ωξ is a Fourier transform intrinsic coefficient
(called rotation factor).

We now introduce the following notation:

 (4.2)

In (4.2),a dot (.) represents a data item. The two dots on the left hand side are input (upper dot: a,
and lower dot: b),and the right hand side two dots are output (upper dot: c, and lower dot: d)

The circle(○○○○) represents the butterfly operation, and the number in the circle, if any represents ξ

Using this notation, the butterfly operations in both isogeometric and self-sorting FFTs are shown
in Figures VCFT1-1 and VCFT1-2 (for n=16). In general, assuming n =2l, an FFT can be
composed of l stages of butterfly operations. In the diagram, for example, the FFT is composed
of four stages, since n = 16 = 24. Both types of FFT require the same amount of calculation, but
the data transfer pattern at each butterfly stage differs. The characteristics of both FFTs and their
adaptability to a vector processor are explained next.

Isogeometric FFT

In this method, the input (and output) transfer patterns are identical during all stages. The
algorithm in this method enables a high degree of parallel calculation, and can be accurately
described by a program. However, data is in reverse binary order at the end of the butterfly
operation, so the data must be

VCFT1

99SP4070E-2 PT II-13

permutted. Furthermore ,in a double precision operation, memory conflicts occur because of the
characteristics of vector processors.

Self-sorting FFT

In this method, the input transfer patterns are identical during all stages, bat the output transfer
patterns vary regularly in each stage. This algorithm enables parallel calculation, just as the
isogeometric FFT. A program can made this algorithm by using a list vector. However, in a
single precision operation, memory conflicts occur because of the characteristics of vector
processors.

This subroutine takes into account the characteristics of both the above methods and their
adaptability to a vector processor, to provide higher speed calculations.

Calculation procedure in this subroutine

[Single precision arithmetic routine]

(1) Generation of a trigonometric function table (rotation factor)

All the function values required at every stage are calculated and stored in work array VW.

(2) Generation of list vectors

List vectors, required at the permutation process after the butterfly operation, is calculated and
stored in work array IVW.

(3) Butterfly operation

(4) Permutation of data

Steps (1) and (2) above are executed only when this routine is called the first time, i.e., when ISW
= 0.

[Double precision arithmetic routine]

(1) Generation of a trigonometric function table (rotation factor)

All the function values required at every stage are calculated and stored in work array VW.

(2) Generation of a list vector

All the list vectors, required at every stage, are calculated and stored in work array IVW.

(3) Butterfly operation

Steps (1) and (2) above are executed only when this routine is called the first time, i.e., when ISW
= 0.

For the various FFTs on a vector processor, see reference [5], for the isogeometric FFT,see
reference [4], and for the self-sorting FFT, references [2] and [6].

VCFT1

PT II-14 99SP4070E-2

6

7 6

6

04

4

4

4

4

4

2

2

1 0

0

0

0

0

0

0

0

0

0

0000

5

4

3

2

Figure VCFT1-1 Isogeometric FFT flowchart (N=16)

VCFT1

99SP4070E-2 PT II-15

0

0

0

0

0

0

0001

0000

4

4

4

4

0

0

6

6

4

4

2

2

7

6

5

4

3

2

Figure VCFT1-2 Self-sorting FFT flowchart (N = 16)

99SP4070E-2 PT II-17

VCFT2

F16-15-0301 VCFT2, DVCFT2

Discrete complex Fourier transform
(memory efficient,radix 2 FFT)

CALL VCFT2(A, B, N, ISN, ISW, VW, IVW, ICON)

(1) Function

Given one-dimensional (n-term) complex time-series data{xj}, the discrete complex Fourier
transform or its inverse transform is calculated by the Fast Fourier Transform (FFT) method,
suited to a vector processor, where n =2l(l is a non-negative integer).

a. Fourier transform

When{xj} is input, the transform defined by (1.1) below is calculated to obtain {nαk}.

1,...,1,0,
1

0
−=⋅= ∑

−

=

− nkxn
n

j

jk
jk ωα

,ω = exp (2πi /n)

b. Fourier inverse transform

When {αk} is input, the transform defined by (1.2) below is calculated to obtain {xj}.

1,...,1,0,
1

0
−=⋅= ∑

−

=
njx

n

k

jk
kj ωα

,ω = exp (2πi /n)

(2) Parameters

A Input. Real part of {xj} or {αk}
Output. Real part of {nαk} or {xj}
One-dimensional array of size n

B........... Input. Imaginary part of {xj} or {αk}
Output. Imaginary part of {nαk} or {xj}
One-dimensional array of size n.

VCFT2

PT II-18 99SP4070E-2

N Input. Number of terms, n, of the transform

ISN....... Input. Either the transform or the inverse transform is indicated
(≠ 0).
ISN = +1 for the transform.
ISN = −1 for the inverse transform.
(See Note (3).)

ISW...... Input. Information for controlling the initial state of the transform
ISW = 0 for the first call.
ISW = 1 for the second and subsequent calls.
(See Note (2).)

VW....... Work area. One-dimensional array of size 5n

IVW Work area. One-dimensional array of size 3n

ICON ... Output. Condition code
See Table VCFT2-1.

(3) Notes

a. Subprogram used

(1) SSL II: UVTB2, UVF92, UVFA2, UVFB2, UVFX2, UBANK, MGSSL

(2) FORTRAN intrinsic functions: ALOG2, SIN, COS, IABS, FLOAT, IAND, MOD

Table VCFT2-1 Condition codes

Code Meaning Processing

0 No error −

3000 ISN = 0, ISW ≠ 0 or 1,or N ≠ 2l (l ≥ 0 is an integer) Bypassed

b. Notes

(1) Subroutine use

This subroutine performs high-speed calculation of a complex Fourier transforms on a vector
processor. On a general purpose computer, however, subroutine CFT or CFTM may be more
suitable.

This subroutine is suitable for calculating only a single transforms. The work array area is
limited to the required minimum; this subroutine is memory efficient. When performing
multiple transforms with sufficient work array area available, this high-performance
subroutine VCFT1 is more suitable.

(2) Control by ISW

When performing multiple transforms, specify ISW=1 for the second and subsequent
subroutine calls. This enables generation of a trigonometric function table to be bypassed,
thus improving more processing efficiency.

VCFT2

99SP4070E-2 PT II-19

The contents of array VW and IVW must not be altered when the subroutine is called.

Even if the number of terms, n, in the multiple transforms varies, specifying ISW=1 improves
processing efficiency. However, it is desirable to be called so that the maximum number of
transforms with the same number of terms are executed consecutively.

When calling this subroutine together with the real Fourier transform subroutine VRFT2,
specifying ISW = 1 improves processing efficiency.

(3) ISN specification

Although the ISN parameter is used to indicate whether a transform or an inverse transform is
to be calculated, it can also be used as shown below. If the real or imaginary part of {xj} or
{αk} is stored at intervals of length I, specify ISN as follows:

For a transform, ISN = + I

For an inverse transform, ISN = − I

The results will also be stored at intervals of length I. Note, however, that when I > 1,specify
the size of work array VW to be 7n.

With a vector processor, the interval length I should take the following values in order to
access memory more efficiently. (See Example (2) below.)

For single precision arithmetic (VCFT2), I = 4P + 2, P = 0,1,2, ...

For double precision arithmetic (DVCFT2), I = 2P + 1, P = 1,2,3, ...

(4) Work array size conversion table

The table for 16≤ n≤ 4096 is shown as follows:

l n VW IVW
4
5
6
7
8
9

10
11
12

16
32
64

128
256
512

1024
2048
4096

80 (112)
160 (224)
320 (448)
640 (896)

1280 (1792)
2560 (3584)
5120 (7168)

10240 (14336)
20480 (28672)

48
96

192
384
768

1536
3072
6144

12288

Figures in () are the sizes when ABS(ISN) > 1.

VCFT2

PT II-20 99SP4070E-2

(5) General definition of Fourier transform

The discrete complex Fourier transform and its inverse transform can be defined as in (3.1)
and (3.2).

∑
−

=

− −=⋅⋅=
1

0
1,...,1,0,1 n

j

jk
jk nkx

n
ωα (3.1)

∑
−

=
−=⋅=

1

0
1,...,1,0,

n

k
njx jk

kj ωα (3.2)

where, ω = exp (2πi /n)

This subroutine calculates {nαk} or {xj} corresponding to the left hand side of (3.1) or (3.2),
respectively. Normalize the results as requires.

c. Example

In this example a one-dimensional Fourier transform (with n terms) and its inverse transform are
calculated, for n ≤ 1024.

C **EXAMPLE**
 DIMENSION A(1024),B(1024),VW(5120),IVW(3072)
 READ(5,500) N
 READ(5,510) (A(I),B(I),I=1,N)
C ---FORWARD TRANSFORM---
 ISN=1
 ISW=0
 CALL VCFT2(A,B,N,ISN,ISW,VW,IVW,ICON)
 IF(ICON.NE.0) STOP
C ---NORMALIZATION---
 ANOR=1.0/FLOAT(N)
 DO 10 I=1,N
 A(I)=ANOR*A(I)
 10 B(I)=ANOR*B(I)
 WRITE(6,600) N,(I,A(I),B(I),I=1,N)
C ---BACKWARD TRANSFORM---
 ISN=-1
 ISW=1
 CALL VCFT2(A,B,N,ISN,ISW,VW,IVW,ICON)
 IF(ICON.NE.0)STOP
C
 WRITE(6,610) N,(I,A(I),B(I),I=1,N)
C
 500 FORMAT(I5)
 510 FORMAT(2E15.7)
 600 FORMAT(5X,
 * '*** FORWARD TRANSFORM OF TERM',
 * I5//(8X,I3,2E16.7))
 610 FORMAT(5X,
 * '*** BACKWARD TRANSFORM OF TERM',
 * I5//(8X,I3,2E16.7))
 STOP
 END

VCFT2

99SP4070E-2 PT II-21

(4) Method

The discrete complex Fourier transform is performed using the Fast Fourier Transform
(isogeometric and self-sorting FFTs) method, suited to a vector processor.

Because of the characteristics of vector processors, this subroutine uses an isogeometric FFT in
the single precision arithmetic routine, and a self-sorting FFT in the double precision arithmetic
routine.

For algorithms. see Method for subroutine VCFT1.

Computation procedure in this subroutine

[Single precision arithmetic routine]

(1) Generation of a trigonometric function table (rotation factor)

The function values required for the first stage are calculated and stored in work array VW.

(2) Butterfly operation

(3) Data permutation

(1) above is executed only when this routine is called for the first time, i.e, when ISW = 0.

[Double precision arithmetic routine]

(1) Generation of a trigonometric function table (rotation factor)

The function values required for the first stage are calculated and stored in work array VW.

(2) Butterfly operation

(1) above is executed only when this routine is called for the first time ,i.e, when ISW = 0.

99SP4070E-2 PT II-23

VCOS1

F16-11-0201 VCOS1, DVCOS1

Discrete cosine transform (radix 2 FFT)

CALL VCOS1 (A, N, TAB, VW, IVW, ICON)

(1) Function

Given one-dimensional n+1 sample data {xj} obtained by dividing a 2π period even-function x(t)
into n equal parts as defined by the following:

xj = x(θj) j = 0, 1, ... , n

,
n
πθ = (1.1)

The discrete cosine transform or its inverse transform is calculated by the Fast Fourier Transform
(FFT) method suited to a vector processor, where n = 2l (l:a non-negative integer).

a. Cosine transform

When {xj} is input, the transform defined by (1.2) below is calculated to obtain its Fourier
coefficient { 2n･ak }

nkkj"xan
n

j
jk ,...,1,0,cos42

0

=⋅=⋅ ∑
=

θ

,
n
πθ = (1.2)

Here, ∑" means taking a summation by halving the first and last term.

b. Cosine inverse transform

When {ak} is input, the transform defined by (1.3) is calculated to obtain the Fourier series value
{4･xj}.

njkj"ax
n

k
kj ,...,1,0,cos44

0

=⋅=⋅ ∑
=

θ

,
n
πθ = (1.3)

VCOS1

PT II-24 99SP4070E-2

(2) Parameters

A Input. {xj} or {ak}
Output. {2n･ak} or {4･xj}
One-dimensional array of size n+2
See Figure VCOS1-1.

N Input. Number of samples minus 1.

TAB Output. Trigonometric function table used in transformation is
stored.
One-dimensional array of size 2n+4n

VW....... Work area.
One-dimensional array of size max (n (l + 1) / 2,1)

IVW Work area.
One-dimensional array of size n･max (l − 4, 2) / 2

ICON ... Output. Condition code
See Table VCOS1-1.

A(N+2)

A(N+1)

A(N)

A(4)

A(3)

A(2)

A(1)

Array A

* *

x0

x1

x2

x3

xn-1

xn an

an-1

a3

a2

a1

a0

{ak}{xj}

Notes:

Same for {2nak} and {4xj}
*may be omitted during input.
0.0 is set during output.

Figure VCOS1-1 Data storage method

VCOS1

99SP4070E-2 PT II-25

Table VCOS1-1 Condition codes

Code Meaning Processing

0 No error −

30000 N ≠ 2l (l: a non-negative integer) Bypassed

(3) Notes

a. Subprograms used

(1) SSL II: VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1, UVFB1,
 UVFX1, UBANK, UVTAB, MGSSL

(2) FORTRAN intrinsic functions:ALOG2, SIN, COS, ATAN, IABS, IAND,
MOD, FLOAT

b. Notes

(1) Subroutine use

This subroutine performs high-speed calculation of discrete cosine transforms on a vector
processor. On a general-purpose computer, however, subroutine FCOST may be more
suitable.

(2) Multiple transforms

Performance of multiple transforms is more efficient, as generation of the trigonometric table
and list vector required for transformation is bypassed in the second and subsequent calls of
the subroutine. TAB, VW, and IVW arrays must be called without changing their contents.

The contents of TAB, VW, and IVW arrays previously generated are valid even when the
number of terms n are different for the multiple transforms. However, it is preferable to call
the subroutines in such a way that transforms of equal term numbers are stringed to the
maximum extent possible.

(3) Trigonometric table and work array size conversion table

The following table is for16 ≤ n ≤ 4096:

l n TAB VW IVW
4
5
6
7
8
9

10
11
12

16
32
64

128
256
512

1024
2048
4096

36
68

132
260
516

1028
2052
4100
8196

40
96

224
512

1152
2560
5632

11288
26624

16
32
64

192
512

1280
3072
7168

16384

VCOS1

PT II-26 99SP4070E-2

(4) General definition of discrete cosine transform

The discrete cosine transform and its inverse transform can be defined as in (3.1) and (3.2)

nkkjx"
n

a j

n

j
k ,...,1,0,cos2

0
=⋅∑=

=
θ (3.1)

njkja"x k

n

k
j ,...,1,0,cos

0
=⋅∑=

=
θ (3.2)

This subroutine calculates {2n･ak} or {4･xj} corresponding to the left-hand side of (3.1) or
(3.2), respectively. Therefore, normalize the results as required.

c. Example

In this example, n+1 samples {xj} are input and transformed by this subroutine. Then, the results
are normalized and discrete Fourier coefficients {ak} are calculated. Calculation is continued to
inverse transformation and {xj} is obtained. The following is an example where n ≤512.

C **EXAMPLE**
 DIMENSION X(514),TAB(1028),VW(2560)
 * ,IVW(1280)
 1 READ(5,500) N
 IF(N.EQ.0) STOP
 NP1=N+1
 READ(5,501) (X(I),I=1,NP1)
C COSINE TRANSFORM
 WRITE(6,600) N
 WRITE(6,601) (X(I),I=1,NP1)
 CALL VCOS1(X,N,TAB,VW,IVW,ICON)
 IF(ICON.NE.0) GO TO 30
C NORMALIZE
 CN=1.0/(2.0 *FLOAT(N))
 DO 10 K=1,NP1
 X(K)=X(K)*CN
 10 CONTINUE
 WRITE(6,602)
 WRITE(6,601) (X(I),I=1,NP1)
C COSINE INVERSE TRANSRORM
 CALL VCOS1(X,N,TAB,VW,IVW,ICON)
 IF(ICON.NE.0) GO TO 30
C NORMALIZE
 CN=0.25
 DO 20 K=1,NP1
 X(K)=X(K)*CN
 20 CONTINUE
 WRITE(6,602)
 WRITE(6,601) (X(I),I=1,NP1)
 GO TO 1
 30 WRITE(6,603) ICON
 GO TO 1
 500 FORMAT(I5)
 501 FORMAT(6F12.0)
 600 FORMAT('0',5X,'INPUT DATA N=',I5)
 601 FORMAT(5F15.7)
 602 FORMAT('0',5X,'OUTPUT DATA')
 603 FORMAT('0',5X,'CONDITION CODE',I8)
 END

VCOS1

99SP4070E-2 PT II-27

(4) Method

Consider performing the discrete cosine transform of term number n+1 (= 2l + 1, l = 0,1, ...)
using the Fast Fourier Transform (FFT) method, suited for a vector processor.

The dixcrete cosine transform may be expressed by (4.1) when samples {xj}, j=0,1, ... ,n are given.

() () n
j

n

k
kj x

n
kjx

n
x

n
a 11cos21 1

1
0 −+⋅+= ∑

−

=
θ

, j = 0,1, ... ,n

, θ = π
n

 (4.1)

Now the samples are an even-function, and the relation expressed by (4.2) can be seen by
extending to one period.

x2n-j = xj , j = 0, 1, ... , n (4.2)

Therefore, a0 to an can be calculated by extending x0 to xn to x0 to x2n-1 and performing the 2n term
discrete real Fourier transform. It is well known that use of (4.2) enables efficient performance of
the transform.

Perform the following preprocessing on the {xj} samples:

() () ()jnjjnjj xxjxxd −− −⋅−+⋅= θsin
2
1 (4.3)

, j = 0, 1, ... , n−1

Substitution of the discrete cosine inverse transform (4.4) in (4.3) will result in
(4.5).

() ,1
2
1cos

2
1 1

1
0 n

j
n

k
kj akjaax −+⋅+= ∑

−

=
θ

, j = 0, 1, ... , n−1 (4.4)

VCOS1

PT II-28 99SP4070E-2

() () ()[] +⋅⋅−+⋅⋅+= ∑
−

=
−+

1
2

1
121220 2cos2cos

2
1

n

k
kkkj kjaakjaad θθ

() 1...,,1,0,1
2
1 −=−⋅ nja j

n (4.5)

Expression (4.5) is equivalent to the n term discrete real Fourier transform with samples of {dj}
and Fourier coefficients of {a2k} and {a2k+1−a2k-1}. Thus, {ak} can be obtained by using the
identical equations:

kk aa 2
~ =

1212
~

−− −= kkk aab

after calculating the Fourier coefficients {ak} and {bk} corresponding to the samples {dj}. In
other words, {ak} is calculated by (4.6)

() ,
~

,~,1cos21
12122

1

1
01 kkkkkn

n

j
j baaaax

n
jx

n
x

n
a +==⋅−⋅⋅= −+

−

=
∑ θ

1
2

...,,1 −= nk (4.6)

Now, the last expression in (4.6) is a recurrence formula and is unsuitable for a vector processor.
Therefore, this subroutine uses a vector-processor-suited algorithm by eliminating recurrence
calculations by tracing the preceding expressions backward, taking advantage of the fact that the
discrete cosine transform and its inverse transform are identical except for their normalization
constants.

Refer to reference [8] for the details on this algorithm.

99SP4070E-2 PT II-29

VGSG2

B62-21-0201 VGSG2, DVGSG2

Eigenvalue and eigenvector for real symmetric matrix
(parallel bisection method and inverse iteration method)

CALL VGSG2(A, B, N, M, EPSZ, EPST,E,EV,K, VW,
IVW, ICON)

(1) Function

M eigenvalues for general eigenvalue problem expressed by (1.1)for n order real symmetric
matrix A and n order positive definite symmetric matrix B are calculated in descending (or
ascending) order using the parallel bisection method.

Ax = λBx (1.1)

Also, corresponding m eigenvectors x1, x2, ... , xm are calculated by the inverse iteration method.
Eigenvectors must satisfy the relation expressed in (1.2).

X TBX = I (1.2)

Here, X=[x1, x2, ... , xm], with 1 ≤ m ≤ n.

(2) Parameters

A Input. Real symmetric matrix A.
Symmetric matrix compression mode.
One-dimensional array of size n (n+1)/2.
Contents are not saved after operation.

B........... Input. Positive definite symmetric matrix B.
Symmetric matrix compression mode.
One-dimensional array of size n (n+1)/2.
Contents are not saved after operation.

N Input. n order of real symmetric matrix A and of positive definite
symmetric matrix B.

M.......... Input. m number of eigenvalues to be calculated.
Calculate in descending order when M = +m.
Calculate in ascending order when M = −m.

EPSZ.... Input. Relative zero test value of the pivot in the LLT decomposition
of B. Default value is used when zero or a negative value is specified.
(See note (2).)

VGSG2

PT II-30 99SP4070E-2

EPST.... Input. Upperbound of absolute errors used in convergence test of
eigenvalues. Default value is used when a negative value is
specified.
(See note (3).)

E........... Output. Eigenvalues.
One-dimensional array of size m.
Output are stored in descending order when M is positive and
ascending order when M is negative.

EV........ Output. Eigenvectors.
EV (K,M) two-dimensional array.
Eigenvector corresponding to eigenvalue E (J) is stored at EV (I, J),
I = 1, ... ,N.

K Input. Conformation size (≥ n) for array EV.

VW....... Work area. One-dimensional array of size 15n.

IVW Work area. One-dimensional array of size 7n.

ICON ... Output. Condition code.
See Table VGSG2-1.

(3) Notes

a. Subprograms used

(1) SSL II: GSCHL, TRID1, TRBK, GSBK, UVTG2, UCHLS, UVBCT, AMACH,
 MGSSL

(2) FORTRAN intrinsic functions: IABS, SQRT, SIGN, ABS, AMAX1

b. Notes

(1) This subroutine is functionally equivalent to the subroutine GSEG2, but it performs at high-
speed on a vector processor since the parallel bisection method is used. Note that the methods
for work area allocation are different in these subroutines.

(2) Default value for the parameter EPSZ is 16･u, when the unit round-off is u.

If EPSZ for this subroutine is set at 10-s, condition code (ICON = 29000) is set assuming the
pivot is zero and processing is terminated when the pivot value is truncated for more than the s
decimal digits during LLT decomposition of the positive definite symmetric matrix B.

Even when the pivot becomes small, calculation can be continued by specifying a small value
for EPSZ, but the calculation accuracy cannot be guaranteed.

On the other hand, when the pivot value becomes negative during decomposition, the matrix B
is assumed to be negative and calculation is terminated, setting the condition code (ICON =
28000).

VGSG2

99SP4070E-2 PT II-31

(3) The standard value of the parameter EPST in as in (3.1) when u is chosen as the round-off unit.

EPST = u･max (|λmax|, |λmin|) (3.1)

Here, max and min are the upperbound and lowerbound of the existence range (given by the
Gerschgorin′s theorem) of the eigenvalues for Ax = λBx.

When extremely large and small absolute value eigenvalues coexist and a convergence test is
performed using (3.1),it is difficult to obtain the smaller eigenvalues of adequate precision. In
such cases, setting EPST at a small value(absolute error) enables calculation of smaller
eigenvalues with high precision. However, processing speed slows down as the number of
iterations increases.

Table VGSG2-1 Condition codes

Code Meaning Processing

0 No error −

10000 N = 1 Make E (1) = A(1)/B (1),and EV (1,1)=
1.0/SQRT (B (1)).

15000 Some eigenvectors were not
calculated.

Make uncalculated eigenvectors zero
vectors.

20000 No eigenvectors were calculated. Make all eigenvectors zero vectors.

28000 Pivot became negative during LLT
decomposition of B. B is negative

Discontinued

29000 Pivot became relatively zero
during LLTdecomposition of B. B
may be singular

Discontinued

30000 M = 0,N < | M | ,or K < N. Bypassed

c. Example

In this example, m eigenvalues and corresponding eigenvectors are calculated in descending (or
ascending) order for the general eigenvalue problem Ax = λBx for n order real symmetric matrix
A and n order positive definite symmetric matrix B. This example is for is for cases where n ≤
100 and m ≤ 20.

VGSG2

PT II-32 99SP4070E-2

C **EXAMPLE**
 DIMENSION A(5050),B(5050),E(20),
 * EV(102,20),VW(1500),IVW(700)
 10 READ(5,500,END=900) N,M,EPSZ,EPST
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 READ(5,510) (B(I),I=1,NT)
 WRITE(6,600) N,M,EPSZ,EPST
 WRITE(6,610)
 IJ=0
 DO 20 I=1,N
 IJ=IJ+I
 20 WRITE(6,620) I,(A(J),J=IJ-I+1,IJ)
 WRITE(6,630)
 IJ=0
 DO 30 I=1,N
 IJ=IJ+I
 30 WRITE(6,620) I,(B(J),J=IJ-I+1,IJ)
 CALL VGSG2(A,B,N,M,EPSZ,EPST,
 * E,EV,102,VW,IVW,ICON)
 WRITE(6,640) ICON
 IF(ICON.GE.20000) GO TO 10
 MM=IABS(M)
 CALL SEPRT(E,EV,102,N,MM)
 GO TO 10
 900 STOP
 500 FORMAT(2I5,2E10.2)
 510 FORMAT(5E15.7)
 600 FORMAT('1'//' *** N=',I5
 * /' *** M=',I5
 * /' *** EPSZ=',E15.7
 * /' *** EPST=',E15.7)
 610 FORMAT('0'//' *** INPUT MATRIX A'/)
 620 FORMAT('0',2X,I3,5E15.7/(6X,5E15.7))
 630 FORMAT('0'//' *** INPUT MATRIX B'/)
 640 FORMAT('0'//' *** ICON=',I5)
 END

This subroutine SEPRT in this example is used for printing eigenvaluer and eigenvectors of real
symmetric matrices. For details, see the example of VSEG2 subroutine use.

(4) Methods

Calculate the eigenvalues and eigenvectors using the following procedures for the general
eigenvalue problem expressed by (4.1) for n order real symmetric matrix A and n order positive
definite symmetric matrix B.

Ax = λBx (4.1)

a. Transformation of general eigenvalue problem to standard format

B in (4.1 can be decomposed into a form expressed by (4.2) since it is a positive definite
symmetric matrix.

VGSG2

99SP4070E-2 PT II-33

B = LLT (4.2)

Here, L is an order lower triangular matrix. Substituting the values LLT of (4.2) for B of (4.1) and
rearranging it results in expression (4.3).

L -1 AL-T (LTx) = λ(LTx) (4.3)

Here, let

S = L-1 AL-T (4.4)

y = LTx (4.5)

Then, S becomes a real symmetric matrix and (4.3) becomes the standard format, expressed as
follows:

Sy = λy (4.6)

b. Real symmetric matrix eigenvalues and eigenvectors

Transform real symmetric matrix S by orthogonal similarity transformation into real symmetric
tridiagonal matrix, then calculate the eigen value of T and corresponding eigenvector y′ using the
bisection method and inverse iteration method, respectively. y′ is inverse transformed further as
eigenvector y of S.

c. Eigenvectors for general eigenvalue problems

The eigenvector x in (4.1) is calculated by (4.7),using vector y calculated in b.

x = LTy (4.7)

Subroutine GSCHL calculates a., slave subroutines of VSEG2 calculate b., and GSBK calculates c.

99SP4070E-2 PT II-35

VLAX

A22-71-0101 VLAX, VDLAX

A system of linear equations with a real general matrix
(blocking LU-decomposition method)

CALL VLAX (A, K, N, B, EPSZ, ISW, IS, VW, IP,
ICON)

(1) Function

This subroutine solves a real coefficient linear equations (1.1) using the blocking LU-
decomposition (Gaussian elimination method).

Ax=b (1.1)

Where A is an n × n regular real matrix, b is an n- dimensional real constant vector, and x is the n-
dimensional solution vector. n ≥1.

(2) Parameters

A Input. Coefficient matrix A.
The contents of A are altered on output. A is a two-dimensional array, A (K, N).

K Input. Adjustable dimension of array A (≥ N).
N Input. Order n of the coefficient matrix A.
B........... Input. Constant vector b

Output. Solution vector x
B is a one-dimensional array of size n

EPSZ.... Input. Tolerance for relative zero test of pivots in decomposition process of A (≥ 0.0).
If EPSZ is 0.0, a standard value is used.

ISW...... Input. Control information.
When l (≥1) systems of linear equations with the identical coefficient matrix are to be
solved, ISW can be specified as follows:
ISW=1, the first system is solved.
ISW=2, the 2nd to l-th systems are solved.
However, only parameter B is specified for each constant vector b of the systems of
equations, with the rest unchanged. (See Notes.)

IS.......... Output. Information for obtaining the determinant of matrix A.
If the n elements of the calculated diagonal of array A are multiplied by IS, the
determinant is obtained.

VW....... Work area. VW is a one-dimensional array of size n
IP.......... Work area. IP is a one-dimensional array of size n
ICON.... Output. Condition code. Refer to Table VLAX-1.

VLAX

PT II-36 99SP4070E-2

Table VLAX-1 Condition codes

Code Meaning Processing

0 No error −

20000 Either all of the elements of some row were zero or the pivot
became relatively zero. It is highly probable that the coefficient
matrix is singular.

Discontinued

30000 K<N, N<1, EPSZ< 0.0 or ISW ≠ 1, 2 Bypassed

(3) Notes

a. Subprogram used

SSL II VALU, LUX, AMACH, MGSSL
FORTRAN intrinsic functions........ ABS

b. Notes

(1) The solution x obtained by the subroutine may be refined in accuracy by calling subroutine
LAXR successively.

(2) If a value is set in the tolerance EPSZ for pivot relative zero test, this value means the
following:

If the selected pivot element is smaller than the product of the largest absolute value of real
matrix A=(aij) elements, max |aij| and EPSZ can be shown as follows;

EPSZ||max|| ij
k
kk aa ≤

The relative pivot value is assumed to be zero and processing terminates as ICON=20000.
The standard value of EPSZ is 16 u, u being the unit round off. If the processing is to proceed
at a lower pivot value, EPSZ will be given the minimum value but the result is not always
guaranteed.

(3) When solving successive systems of linear equations with the identical coefficient matrix,
computation can be performed by setting ISW=2 after the first system of equations are
processed. By setting ISW=2, LU-decomposition of coefficient matrix A is bypassed so the
computation time is reduced. In this case, the value of IS is the same as when ISW=1.

VLAX

99SP4070E-2 PT II-37

c. Example

In this example, l systems of linear equations in n unknown with the identical coefficient
matrix are solved. n ≤100.

C **EXAMPLE**
 DIMENSION A(100,100),B(100),VW(100),IP(100)
 READ(5,500) N
 READ(5,510) ((A(I,J),I=1,N),J=1,N)
 WRITE(6,600) N,((I,J,A(I,J),J=1,N),I=1,N)
 READ(5,500) L
 M=1
 ISW=1
 EPSZ=1.0E-6
 10 READ(5,510) (B(I),I=1,N)
 WRITE(6,610) (I,B(I),I=1,N)
 CALL VLAX(A,100,N,B,EPSZ,ISW,IS,VW,IP,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,630) (I,B(I),I=1,N)
 IF(L.EQ.M) GOTO 20
 M=M+1
 ISW=2
 GO TO 10
 20 DET=IS
 DO 30 I=1,N
 DET=DET*A(I,I)
 30 CONTINUE
 WRITE(6,640) DET
 STOP
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1',10X,'** COEFFICIENT MATRIX'
 */12X,'ORDER=',I5/(10X,4('(',I3,',',I3,
 *')',E15.8)))
 610 FORMAT(///10X,'CONSTANT VECTOR'
 */(10X,5('(',I3,')',E16.8)))
 620 FORMAT('0',10X,'CONDITION CODE=',I5)
 630 FORMAT('0',10X,'SOLUTION VECTOR'
 */(10X,5('(',I3,')',E16.8)))
 640 FORMAT(///10X,
 *'DETERMINANT OF COEFFICIENT MATRIX=',
 *E16.8)
 END

(4) Method

A system of linear equations

Ax = b (4.1)

is solved using the following procedure:

VLAX

PT II-38 99SP4070E-2

a. LU-decomposition of coefficient matrix A ,(blocking LU-decomposition)

The coefficient matrix A is decomposed into the product of a lower triangular matrix L and a
unit upper triangular matrix U. To reduce rounding off errors, the partial pivoting is
performed in the decomposition process.

PA = LU (4.2)

P is the permutation matrix which performs the row exchanges required in partial pivoting.
Subroutine VALU is used for this operation.

b. Solving LU = Pb (forward and backward substitutions)

Solving equation (4.1) is equivalent to solving the linear equations (4.3).

LUx = Pb (4.3)

Equation (4.3) is decomposed into two equations

Ly = Pb (4.4)

Ux = y (4.5)

Then the solution is obtained using forward substitution and backward substitution.
Subroutine LUX is used for these operations.

99SP4070E-2 PT II-39

VLDLX

A22-61-0302 VLDLX, DVLDLX

A systme of linear equations with a positive definite symmetric
matrix decomposed into the factors L, D ans LT

CALL VLDLX (B, FA, N, ICON)

(1) Function

This subroutine solves a system of linear equations with an LDLT decomposed positive definite
symmetric coefficient matrix

LDLTx = b, (1.1)

where L and D are an n × n unit lower triangular matrix and a diagonal matrix, respectively, b is
an n-dimensional real constant vector, x is an n-dimensional solution vector, and n ≥ 1.

This subroutine received an LDLT decomposed matrix from subroutine VSLDL and calculates the
solution.

(2) Parameters

B........... Input. Constant vector b.
Output. Solution vector x,
One-dimensional array of size n.

FA Input. Matrices L and D -1
One-dimensional array of size n (n + 1)/2.

As shown in Figure VLDLX-1, L is input column by column, from the
first column to the n-th one.

N Input. Order n of matrices L and D
ICON.... Output. Condition code

See Table VLDLX-1.

VLDLX

PT II-40 99SP4070E-2

d
d

d
d

1

2

3

4

0

0

First
column

Second
column

Third
column

Fourth
column

NT

−1
d4

−1
d3

l43

−1
d2

l42

l32

l31

l41

l21

−1
d1

Array FA

NT=n (n+1)/2
Correspondence relationship
lij→ FA(IJ) IJ=(2n−j+2)(j−1)/2+(i−j+1)

l41

l31

l21

1

l42

l32

1

1l43

0

1

Figure VLDLX-1 Storage method of matrices L and D -1

Table VLDLX-1 Condition codes

Code Meaning Processing

0 No error −

10000 Coefficient matrix was not positive definite. Continued

30000 N < 1 Bypassed

(3) Notes

a. Subprograms used

(1) SSL II: MGSSL

(2) FORTRAN intrinsic functions: none

VLDLX

99SP4070E-2 PT II-41

b. Notes

(1) A system of linear equations can be solved by calling this subroutine after the VSLDL
subroutine. However, subroutine VLSX can usually be called to solve such equations in one
step.

c. Example

In this example an LDLT decomposition is performed for a positive definite symmetric matrix
using subroutine VSLDL, then this subroutine is used to solve a system of linear equations. n≤
100 is assumed.

C **EXAMPLE**
 DIMENSION A(5050),B(100),VW(200),IVW(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 WRITE(6,640)
 IS=1
 IE=N
 DO 20 J=1,N
 WRITE(6,600) J,(A(I),I=IS,IE)
 IS=IE+1
 20 IE=IE+(N-J)
 CALL VSLDL(A,N,1.0E-6,VW,IVW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 READ(5,510) (B(I),I=1,N)
 CALL VLDLX(B,A,N,ICON)
 WRITE(6,610) ICON
 DET=1.0
 II=1
 NCOL=N
 DO 30 I=1,N
 DET=DET*A(II)
 II=II+NCOL
 30 NCOL=NCOL-1
 DET=1.0/DET
 WRITE(6,620) (B(I),I=1,N)
 WRITE(6,630) DET
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(5E15.7)
 600 FORMAT(' ',I5/(10X,4E16.8))
 610 FORMAT(/10X,'ICON=',I5)
 620 FORMAT(/10X,'SOLUTION VECTOR'
 * //(10X,5E16.8))
 630 FORMAT(/10X,
 *'DETERMINANT OF COEFFICIENT MATRIX='
 *,E16.8)
 640 FORMAT(/10X,'INPUT MATRIX')
 END

VLDLX

PT II-42 99SP4070E-2

(4) Method

Suppose that an LDLT decomposition of a positive definite symmetric matrix A is given as
follows:

A = LDLT (4.1)

The system of equations,

LDLTx = b (4.2)

is solved in the following sequence:

(1) Solve Ly = b (by following substitution)
First, b becomes the initial value of y.

y ← b

Next, (4.4) is iterated for j = 1, 2, ... , n−1.

....,,2,1, njjilyyy ijjii ++=−← (4.4)

(2) Solve LTx = D -1y (by backward substitution)
First, D -1y becomes the initial value of x.

x ← D -1y (4.5)

Next, (4.6) is iterated for i = n − 1, n − 2, ... , 1.

∑
+=

−←
n

ij
jjiii xlxx

1

 (4.6)

For actual calculations, y and x are both obtained on array B, so the substitutions shown above are
equivalent to the update procedures for array B.

All the above calculations are vectorized on a vector processor.

99SP4070E-2 PT II-43

VLSX

A22-61-0101 VLSX, DVLSX

A system of linear equations with a positive definite
symmetric matrix (modified Cholesky's method)

CALL VLSX(A, N, B, EPSZ, ISW, VW, IVW, ICON)

(1) Function

This subroutine solves a system of linear equations with a real coefficient matrix by using the
modified Cholesky's method.

Ax = b (1.1)

A is an n × n positive definite symmetric matrix, b is an n-dimensional real constant vector, and x
is an n-dimensional solution vector, and n≥1.

The function of this subroutine is the same as that of subroutine LSX, but this subroutine stores
the coefficient matrix differently, which makes it more suitable for a vector processor.

(2) Parameters

A Input. Coefficient matrix A.
The contents are altered during calculation.
One-dimensional array of size n (n+1)/2.
The lower triangular portion of the symmetric matrix is stored column by column, from
the first column to the n-th column, as shown in Figure VLSX-1.

N Input. Order n of the coefficient matrix A
B........... Input. Constant vector b

Output. Solution vector x
One-dimensional array of size n

EPSZ.... Input. Tolerance for relative zero test (≥ 0.0)
When 0.0, a standard value is assigned.
(See Note (2).)

ISW...... Input. Control information
When solving several sets of equations that have an identical coefficient matrix, specify
ISW=1 for the first set of equations, and ISW=2 for the second and subsequent sets.
Only parameter B is assigned a new constant vector b.

VLSX

PT II-44 99SP4070E-2

All the other parameters should be unchanged. (See Note (3).)

VW....... Work area. One -dimensional array of size 2n
IVW Work area. One-dimensional array of size n
ICON ... Output. Condition code

See Table VLSX-1.

Second
column

First
column

Third
column

Fourth
column

IJ = (2n−j+2)(j−1)/2
 +(i−j+1)

aij → A(IJ)

Correspondence relation

NT = n (n+1)/2 NT

a44a43a42a41

a33a32a31

a22a21

a11

a44

a43

a33

a42

a32

a22

a41

a31

a21

a11

Array A

Figure VLSX-1 Storage method of symmetric matrix

Table VLSX-1 Condition codes

Code Meaning Processing

0 No error −

10000 Pivot became negative.
Coefficient matrix is not positive definite.

Continued

20000 Pivot became smaller than relative zero value. Coefficient
matrix might be singular.

Bypassed

30000 N < 1, EPSZ < 0.0, or ISW ≠1 or 2 Bypassed

VLTX

99SP4070E-2 PT II-45

(3) Notes

a. Subprograms used

(1) SSL II: VSLDL, VLDLX, AMACH, MGSSL

(2) FORTRAN intrinsic functions: ABS

b. Notes

(1) This subroutine is provided for high-speed processing on a vector processor by modifying the
matrix storage method used in subroutine LSX. Note the differences in the storage methods
and calling sequences used by the two subroutines.

(2) If the value 10-s is given as the tolerance for the relative zero test, EPSZ, then the value has
the following meaning: if the pivot value loses more than s significant digits during LDLT
decomposition in the modified Cholesky method, the value is assumed to be zero and
decomposition is discontinued with ICON=20000. The standard value of EPSZ is normally
16･u, where u is the unit round off.

Decomposition can be continued by assigning the smallest value (e.g., 10-70) to EPSZ even
when the pivot value becomes smaller than the standard value, although the calculation result
may not be as accurate as desired.

(3) When solving several sets of linear equations that have an identical coefficient matrix, specify
ISW=2 for subroutine from the second time on. This should reduce the processing time
because LDLT decomposition for the coefficient matrix is bypassed.

(4) If the pivot value becomes negative during decomposition, it means that the coefficient matrix
is no longer positive definite. ICON = 10000 is set, but processing continues. Note, however,
that the resulting calculation error may be significant, because no pivoting is performed.

(5) To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of
the array A (i.e., diagonal elements of D-1) after calculation is completed, and take the
reciprocal of the result.

c. Example

In this example, l sets of n-th order linear equations that have an identical coefficient matrix are
solved, where n ≤ 100.

C **EXAMPLE**
 DIMENSION A(5050),B(100),VW(200),IVW(100)
 READ(5,500) N
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 WRITE(6,600) N
 READ(5,500) L
 ISW=1
 M=1

VLSX

PT II-46 99SP4070E-2

 EPSZ=1.0E-6
 10 READ(5,510) (B(I),I=1,N)
 CALL VLSX(A,N,B,EPSZ,ISW,VW,IVW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,620) (B(I),I=1,N)
 IF(L.EQ.M) GO TO 20
 M=M+1
 ISW=2
 GO TO 10
 20 DET=1.0
 II=1
 NCOL=N
 DO 30 I=1,N
 DET=DET*A(II)
 II=II+NCOL
 30 NCOL=NCOL-1
 DET=1.0/DET
 WRITE(6,630) DET
 STOP
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT('1'/10X,'ORDER=',I5)
 610 FORMAT('0',10X,'ICON=',I5)
 620 FORMAT(11X,'SOLUTION VECTOR'
 */(15X,5E16.8))
 630 FORMAT('0',10X,
 *'DETERMINANT OF COEFFICIENT MATRIX='
 *,E16.8)
 END

(4) Method

A system of linear equations with a positive definite symmetric coefficient matrix A,

Ax = b (4.1)

is solved in the following sequence:

a. LDLT decomposition of coefficient matrix A (modified Cholesky's method)

Using the modified Cholesky method, the coefficient matrix A is decomposed into LDLT,

A = LDLT (4.2)

where L is a unit lower triangular matrix and D is a diagonal matrix. This calculation is
performed by subroutine VSLDL.

VLTX

99SP4070E-2 PT II-47

b. Solution (forward and backward substitutions)

A system of linear equations,

LDLTx = b (4.3)

is solved. This calculation is performed by subroutine VLDLX.

This subroutine is a vector version of subroutine LSX, and is provided for high-speed processing
on a vector processor. For further details, see the explanation of subroutine VSLDL and the
Method section of VLDLX.

99SP4070E-2 PT II-49

VLTX

A62-11-0101, VLTX, DVLTX

A systme of linear equations with a real tridiagonal
matrix (cyclic reduction method)

CALL VLTX(SBD, D, SPD, N, B, ISW, IND, IVW, ICON)

(1) Function

This subroutine solves a tridiagonal matrix equation

Ax = b (1.1)

using the cyclic reduction method, where A is an n × n irreducibly diagonally dominant real
tridiagonal matrix, b is an n-dimensional real constant vector, and x is the n-dimensional solution
vector, and n≥1.

Matrix A is said irreducibly diagonally dominant if, for the matrix below,



























⋅⋅
⋅⋅⋅

⋅⋅
=

−

nn

n

de
f0

e
0fde

fd

A

1

3

222

11

 (1.2)

the condition:

| di | > | ei | + | fi |, i=1, 2, ... , n (1.3)

(where e1 = fn = 0)

is satisfied, and for at least one i, a strict inequality holds.

(2) Parameters

SBD...... Input. Sub-diagonal portion of coefficient matrix A.
Store as SBD(i)=ei i=2, 3, ... , n.
See Figure VLTX-1.
The contents are altered during the calculation.
One-dimensional array of size 2n
(See Note (4).)

VLTX

PT II-50 99SP4070E-2

D Input. Diagonal portion of the coefficient matrix A.
Store as D(i) = di, i = 1, 2, ... , n.
See Figure VLTX-1.
The contents are altered during the calculation.
One-dimensional array of size 2n
(See Note (4).)

SPD...... Input. Super-diagonal portion of coefficient matrix A
Store as SPD(i) = fi, i = 1, 2, ... , n−1.
See Figure VLTX-1.
The contents are altered during the calculation.
One-dimensional array of size 2n.
(See Note (4).)

N Input. Order n of coefficient matrix A.
Store as B(i) = bi, i = 1, 2, ... , n.
Output. Solution vector x.
Store as B(i) = xi, i = 1, 2, ... , n.
See Figure VLTX-1.
One-dimensional array of size 2n

ISW...... Input. Control information.
When solving several sets of equations that have an identical
coefficient matrix, specify ISW = 1 for the first set of the equations,
and ISW = 2 for the second and subsequent sets. Only parameter B is
assigned a new constant vector b. All other parameters should be
unchanged.
(See Note (2).)

IND Input. Control information.
IND = 0 specifies to check whether the coefficient matrix is
irreducibly diagonally dominant. IND = 1 specifies not to check
whether the matrix is irreducibly diagonally dominant. Normally, 0
is specified.
(See Note (3).)

IVW Work area. One-dimensional array of size [log2n] + 10, where [] is
Gaussian notation.

ICON ... Output. Condition code.
See Table VLTX-1.

VLTX

99SP4070E-2 PT II-51

Array BArray D Array SPDArray SBD

n

n

x1

x2

x3

xn−1

xnbn

bn−1

b3

b2

b1

*

fn−1

f3

f2

f1

dn

dn−1

d3

d2

d1

e2

e3

en−1

en

* * * **

*

Note:

The portion indicated by an asterisk (*) is used as a work area in this subroutine.

Figure VLTX-1 Storage method of matrix A, and vectors b and x

Table VLTX-1 Condition codes

Code Meaning Processing

0 No error −

20000 Coefficient matrix is not irreducibly diagonally
dominant or the matrix is singular.

Bypassed

30000 N < 1, ISW ≠ 1 or 2 or IND ≠ 0, 1 Bypassed

(3) Notes

a. Subprograms used

(1) SSL II: AMACH, MGSSL

(2) FORTRAN intrinsic functions: ALOG2, AMAX1, AMIN1, ABS, FLOAT, MIN0.

VLTX

PT II-52 99SP4070E-2

b. Notes

(1) This subroutine uses the cyclic reduction method, an algorithm suited to a vector processor.
Processing on a vector processor has the following features:

− It is much faster than the Gaussian elimination method used in
subroutine LTX.

− Processing time increases almost linearly with N.

− The more diagonally dominant the matrix is, the faster it is processed.

This subroutine is about as accurate as subroutine LTX when processing irreducibly
diagonally dominant matrices.

(2) When solving several sets of tridiagonal matrix equations that have an identical coefficient
matrix, specify ISW = 2 from the second subroutine call on. This bypasses coefficient matrix
elimination, thus speeding up calculation.

(3) If the coefficient matrix is known in advance to be irreducibly diagonally dominant, specify
IND = 1 to bypass testing of its irreducible diagonal dominance, thus speeding up calculation.
If IND = 1 is specified for a coefficient matrix that is not irreducibly diagonally dominant, the
solution may not be as accurate as desired.

(4) If this subroutine is executed with ISW = 1 specified, arrays D(i), SBD(i), and SPD(i), i = 1,
2, ... , n take on the values 1/di, ei /di, and fi / di respectively.

c. Example

In this example, l sets of n-dimensional tridiagonal matrix equations that have an identical
coefficient matrix are solved. n ≤ 1000 is assumed.

C **EXAMPLE**
 DIMENSION SBD(2000),D(2000),SPD(2000),
 * B(2000),IVW(20)
 READ(5,500) N,L
 IF(N.LE.0) GO TO 30
 NM1=N-1
 READ(5,510) (SBD(I),I=2,N)
 READ(5,510) (D(I),I=1,N)
 READ(5,510) (SPD(I),I=1,NM1)
 WRITE(6,600) N,D(1),SPD(1)
 WRITE(6,610) (I,SBD(I),D(I),SPD(I),I=2,NM1)
 WRITE(6,610) N,SBD(N),D(N)
 ISW=1
 IND=0
 DO 10 II=1,L
 READ(5,510) (B(I),I=1,N)
 WRITE(6,620) (B(I),I=1,N)
 CALL VLTX(SBD,D,SPD,N,B,ISW,IND,IVW,ICON)
 WRITE(6,630) ICON
 IF(ICON.NE.0) STOP
 WRITE(6,640) (B(I),I=1,N)

VLTX

99SP4070E-2 PT II-53

 ISW=2
 10 CONTINUE
 30 WRITE(6,650)
 STOP
 500 FORMAT(2I5)
 510 FORMAT(5E14.7)
 600 FORMAT('1',20X,
 * 'LINEAR EQUATIONS (TRIDIAGONAL)',
 * /' ',20X,'ORDER= ',I5,/,
 * /' ',25X,'COEFFICIENT MATRIX',/,
 * /' ','(',4X,'1)',21X,2(2X,E14.7))
 610 FORMAT((' ','(',I5,')',5X,3(2X,E14.7)))
 620 FORMAT(/' ',78('*'),//,' ',25X,
 *'CONSTANT VECTOR',//,(' ',5(1X,E15.7)))
 630 FORMAT(/' ','CONDITION CODE OF VLTX= ',I5)
 640 FORMAT(/' ',25X,'SOLUTION VECTOR',//,
 *(' ',5(1X,E14.7)))
 650 FORMAT(//' ',30X,'** NORMAL END **')
 END

(4) Method

Consider the use of cyclic reduction method to solve a tridiagonal matrix equation (4.1) which is
normalized so that the diagonal elements of its coefficient matrix are all 1.

Ax = b (4.1)

where:



























⋅⋅
⋅⋅⋅

⋅⋅
=

−

1

1
1

1

3

22

1

n

n

e
f0

e
0fe

f

A

The general form of the cyclic reduction method for (4.1) is explained first, followed by an
explanation of the possible improvement in the case where the matrix is diagonally dominant to
sufficient extent.

a. General form of cyclic reduction method

This method is used basically to produce a system of tridiagonal matrix equations with respect to
even-numbered unknowns, by applying a proper elimination process to the tridiagonal matrix
equations being solved.

Suppose n is an odd number for convenience, and select three rows next to each other in (4.1) as
follows:

VLTX

PT II-54 99SP4070E-2

ei-1 xi-2 + xi-1 + fi-1 = bi-1
ei xi-1 + xi + fi xi+1 = bi (4.2)

ei+1xi +xi+1 + fi+1 xi+2 = bi+1

From the three equations above, xi-1 and xi+1 can be eliminated in the following way. First,
multiply the first equation by (−ei) and the third equation by (−fi),

ei
(1) xi-2 + xi +fi

(1) xi+2 = bi
(1) (4.3)

where ei
(1) = ei-1 ei ti

fi
(1) = fifi+1 ti

bi
(1) = (ei bi-1+fi bi+1 − bi) ti

1
1

11 −+
=

+− iiii
i fefe

t

Considering only the even-numbered i s in (4.3) i.e., i=2, 4, ... , n−1 (,where x0 = xn+1 = 0), the
following tridiagonal matrix equation of order [n/2] is obtained.

































⋅
⋅
⋅=

































⋅
⋅
⋅

































⋅⋅
⋅⋅⋅

⋅⋅⋅
⋅⋅⋅

⋅⋅

−

−

−

−

−

−
)1(
1

)1(
3

)1(
6

)1(
4

)1(
2

1

3

6

4

2

)1(
1

)1(
3

)1(
6

)1(
4

)1(
4

)1(
2

1
0

01
1

n

n

n

n

n

n

b
b

b
b
b

x
x

x
x
x

e
f

e
fe

f

 (4.4)

This operation for reducing the order of equations by half is called reduction. Once x2, x4, ... , xn-1
are obtained from (4.4), the odd-numbered unknowns can be obtained by substituting them into
(4.1), resulting in

xi-1 = bi-1 − ei-1 xi-2 − fi-1 xi, i = 2, 4, ... ,.n+1 (4.5)

This is called back ward substitution.

The calculation of ei
(1) through ti in (4.3), and the calculation of (4.5) can be performed in parallel,

and there is no recurrence relation, unlike the Gaussian elimination method. Therefore, the above
calculations can be efficiently performed by a vector processor. Thus cyclic reduction is faster
than Gaussian elimination on a vector processor.

Next, suppose n is an even number. Then n−1 is an odd number, so the upper limit of i applied in
(4.3) is n−2. In return, by using

en-1 xn-2 + xn-1 + fn-1 xn = bn-1 (4.6)
en xn-1 + xn = bn

VLTX

99SP4070E-2 PT II-55

the following equation from which x has been eliminated is added.

en
(1) xn-2 + xn = bn

(1) (4.7)

where en
(1) = en-1 en tn

bn
(1) = (en bn-1−bn) tn

1
1

1 −
=

−nn
n fe

t

Even when n is an even number, the original tridiagonal matrix equations can be reduced to
tridiagonal matrix equations of order [n/2], as in (4.4)

The above reduction operation can be applied again to the tridiagonal matrix equations of order
[n/2] to reduce the order by half again. By repeating this operation as many times as required, an
equation of order 1 will be obtained, and in can be solved for the one corresponding unknown.
Then, backward substitution can be repeated to obtain a solution to (4.1). The number of
repeated operations required to reduce the equation to order 1 is [log2 n].

b. Incomplete termination of reduction

By continuing the above reduction operation, the matrix will approach diagonal dominance under
certain conditions (i.e., off-diagonal elements will become as small compared to the diagonal
elements). Then, some of the components of the modified right-hand-side vector will converge to
some of the components of the solution vector. Therefore, if reduction operation is stopped at the
proper time and backward substitution is performed, processing efficiency will be improved. The
termination of reduction operation before reaching equations of order 1 is called incomplete
termination of reduction.

One of the conditions sufficient to enable incomplete termination is that the relation,

| ei |, | fi | < 1/2 (4.8)

is satisfied in the normalized equations given in (4.1). This subroutine, when the above relation is
satisfied, determines the number of reductions before incomplete termination takes place, as
follows

Under condition (4.8), the lower limit of the rate at which the off-diagonal elements are
approaching 0 can be examined. For that purpose, we introduce the value

() 2/1||,||max <= ii
i

fee (4.9)

and consider a matrix of (4.1) whose ei and fi elements are all replaced by e. The ratio of the
diagonal elements to e, | 1/e |, is greater that 2, so we represent it as

| 1/e | = 2+ε(0) (ε(0) > 0) (4.10)

VLTX

PT II-56 99SP4070E-2

By the first reduction operation, off-diagonal elements become

12 2

2

−
=′

e
ee (4.11)

Its ratio to diagonal elements is then

| 1/e′ | = 2 + ε (1), where ε (1) = 4ε (0) + (ε (0))2. (4.12)

The k-th ratio is

| 1/e(k) | =2 + ε(k). (4.13)

Therefore

ε (k+1) = 4ε (k) + (ε (k))2, k = 1, 2, ... (4.14)

Thus, when ε (0) <1, the matrix approaches diagonal dominance linearly but once ε (k) >1,
quadratically.

This subroutine estimates in advance the smallest integer k for which

ε (k) ≥ 1/u (u: unit round off), (4.15)

and then repeats reduction operations k times before performing the substitution. If k> [log2n],
however, incomplete termination of reduction will not occur.

The greater the value n is and the smaller the value max (| ei |, | fi |)is, the greater efficiency can be
gained by incomplete termination.

For further details, see References [1], [3] and [7].

i

99SP4070E-2 PT II-57

VLTX1

A62-21-0101 VLTX1, DVLTX1

A system of linear equations with a real constant-tridiagonal
matrix (Dirichlet type and cyclic reduction method)

CALL VLTX1 (D, SD, N, B, ISW, VW, IVW, ICON)

(1) Function

This subroutine solves a real tridiagonal matrix equation

Ax = b (1.1)

using cyclic reduction, where A is an n× n irreducibly diagonally dominant real tridiagonal matrix
of the form:



























⋅⋅
⋅⋅⋅

⋅
=

de
e0

de
0ede

ed

A (1.2)

 d ≠ 0, | d | ≥ 2 | e |

Where b is a n-dimensional real constant vector, and x is the n-dimensional solution vector, for n
≥ 1.

This subroutine restricts the coefficient matrix to the form (1.2) in order to achieve high
performance, while subroutine VLTX processes a general tridiagonal matrix.

(2) Parameters

D Input. Diagonal element d

SD Input. Off-diagonal element e

N Input. Order of the coefficient matrix A

B........... Input. Constant vector b
Store as B(i) = bi , i = 1, 2, ..., n.
Output. Solution vector x
Store as B(i) = xi , i = 1, 2, ..., n.

VLTX1

PT II-58 99SP4070E-2

See Figure VLTX1-1.
One-dimensional array of size 2n

ISW...... Input. Control information
When solving several sets of equations that have an identical coefficient matrix, specify
ISW=1 for the first set of equations, and ISW=2 for the second and subsequent sets.
Only parameter B is assigned a new constant vector b. All other parameters should be
unchanged.
(See Note (3).)

VW....... Work area. One-dimensional array of size 2 ([log2n]) + 1), where [] is Gaussian
notation.

IVW Work area. One-dimensional array of size 2 ([log2n] + 1) + 10

ICON ... Output. Condition code
See Table VLTX1-1.

Array B

(Input)

(Output)

*

*xn

bnb3b2b1

x3x2x1

nn

Note:

The portion indicated by an asterisk (*) is used as a work area in this subroutine.

Figure VLTX1-1 Storage method of vectors b and x

Table VLTX1-1 Condition codes

Code Meaning Processing

0 No error −

20000 Coefficient matrix is not irreducibly diagonally dominant. Bypassed

30000 N<1, or ISW ≠1, 2 Bypassed

VLTX1

99SP4070E-2 PT II-59

(3) Notes

a Subprograms used

(1) SSL II: AMACH, MGSSL

(2) FORTRAN intrinsic functions: ALOG2, FLOAT, ABS, MIN0

b. Notes

(1) This subroutine uses the cyclic reduction method, an algorithm suited to a vector processor.
Processing on a vector processor has the following features:

− It is much faster than the Gaussian elimination method used in subroutine LTX.

− Processing time increases almost linearly with N.

− The more diagonally dominant the matrix is, the faster it is processed.

This subroutine is about as accurate as subroutine LTX or LSTX when processing
irreducibly diagonally dominant matrices.

(2) The coefficient matrix (1.2) arises from the discretization of simple Dirichlet boundary value
problems.

(3) When solving several sets of tridiagonal matrix equations that have an identical coefficient
matrix specify ISW=2 from the second subroutine call on. This bypasses coefficient matrix
elimination, thus speeding up calculation.

c. Example

In this example, l sets on n-dimensional linear equations that have an identical coefficient matrix
are solved, for n ≤ 1000.

C **EXAMPLE**
 DIMENSION B(2000),VW(20),IVW(30)
 READ(5,500) N
 READ(5,510) D,SD
 WRITE(6,600) N,D,SD
 READ(5,500) L
 ISW=1
 DO 10 II=1,L
 READ(5,510) (B(I),I=1,N)
 WRITE(6,610) (B(I),I=1,N)
 CALL VLTX1(D,SD,N,B,ISW,VW,IVW,ICON)
 WRITE(6,620) ICON
 IF(ICON.NE.0) STOP
 WRITE(6,630) (B(I),I=1,N)
 ISW=2
 10 CONTINUE

VLTX1

PT II-60 99SP4070E-2

 WRITE(6,640)
 STOP
 500 FORMAT(I5)
 510 FORMAT(5E14.7)
 600 FORMAT('1',
 * 20X,'LINEAR EQUATIONS (TRIDIAGONAL)'
 * /' ',20X,'ORDER= ',I5/
 * /' ',25X,'COEFFICIENT MATRIX'/
 * /' ',30X,'D =',E14.7/
 * /' ',30X,'SD=',E14.7)
 610 FORMAT(/' ',78('*')//' ',
 * 25X,'CONSTANT VECTOR'//
 * (' ',5(1X,E14.7)))
 620 FORMAT(/' ','CONDITION CODE OF VLTX1= ',
 * I5)
 630 FORMAT(/' ',25X,'SOLUTION VECTOR'//
 * (' ',5(1X,E14.7)))
 640 FORMAT(//' ',30X,'** NORMAL END **')
 END

(4) Method

Cyclic reduction can be used to solve tridiagonal matrix equation (4.1), which is normalized so
that the off diagonal elements of its coefficient matrix are all 1.

Ax = b (4.1)

where



























⋅⋅
⋅⋅⋅

⋅
=

d
0

d
0d

d

A

1
1

1
11

1

 (4.2)

|d| ≥ 2

The cyclic reduction method for a general tridiagonal matrix is explained in Method for
subroutine VLTX, but for the restricted form as (4.2), the amount of calculation can be greatly
reduced. The reduction of the coefficient matrix at each step requires only a few scalar
calculations, and most of the calculation involves reduction of the right hand side vector.

Here, the cyclic reduction method for coefficient matrix (4.2) is explained. When the matrix is
diagonally dominant to sufficient extent, reduction operation will be incompletely terminated.
For further details of it, see the explanation of subroutine VLTX.

Suppose n is an odd number, and select three rows next to each other in (4.1) as follows:

VLTX1

99SP4070E-2 PT II-61

xi-2 + dxi-1 + xi = bi-1
xi-1 + dxi + xi+1 = bi (4.3)

xi + dx i+1 + xi+2 = bi+1

x i-1 and xi+1 can be eliminated from the three above equations in the following way. First,
multiply the second equation by (−d), and add to its result the first and the third equations to
obtain (4.4).

xi-2 + d (1)xi + xi+2=bi
(1) (4.4)

where d (1) = 2-d2

bi
(1) = bi-1bi+1 - dbi

Considering only the even-numbered i's in (4.4), i.e., i = 2, 4, ..., n−1 (, where x0 = xn+1 = 0),
the following tridiagonal matrix equation of order [n/2]is obtained.



























⋅
=



























⋅



























⋅⋅
⋅⋅⋅

⋅

−

−

−

−
)1(
1

)1(
3

)1(
6

)1(
4

)1(
2

1

3

6

4

2

)1(

)1(

)1(

)1(

1
1

1
11

1

n

n

n

n

b
b

b
b
b

x
x

x
x
x

d
0

d
0d

d

 (4.5)

Once x2, x4, ..., xn-1 are obtained from (4.5), the odd-numbered unknowns can be obtained by
substituting them into (4.1), resulting in

xi-1 = (bi-1 − xi-2 −xi)/d (4.6)
i = 2, 4, ... , n+1

The calculations for bi
(1) and (4.6) can be performed very efficiently on a vector processor.

Next, suppose n is an even number. Then n−1 is an odd number, so the upper limit of i
applied in (4.4) is n−2. In return, using

xn-2 + dxn-1 + xn = bn-1 (4.7)
xn-1 + dxn = bn,

The following equation from which xn-1 has been eliminated is added:

xn-2 + c(1)xn = bn
(1), (4.8)

where c(1) = 1 − d2
bn

(1) = bn-1 − dbn.

VLTX1

PT II-62 99SP4070E-2

Then, (4.5) becomes



























⋅
=



























⋅



























⋅⋅
⋅⋅⋅

⋅

−−
)1(

)1(
2

)1(
6

)1(
4

)1(
2

2

6

4

2

)1(

)1(

)1(

)1(

1
1

1
11

1

n

n

n

n

b
b

b
b
b

x
x

x
x
x

c
0

d
0d

d

 (4.9)

Thus, the problem can still be reduced to a tridiagonal matrix equation of order [n/2].
The first reduction operation has been explained. By repeating this operation as many as
required, an equation of order 1 can be obtained. The coefficient matrix at each reduction
step contains all 1 in its off-diagonal elements, and its diagonal elements all have the same
value except for the last element. The last diagonal element is handled differently because the
order of the coefficient matrix alternates between odd and even at reduction step.

In conclusion, general step of the reduction operation can be described as follows: We
represent the equation which is going to be reduced by (4.10), and suppose that it is of order n.



























⋅
=



























⋅



























⋅⋅
⋅⋅⋅

⋅

−−

n

n

n

n

b
b

b
b
b

x
x

x
x
x

c
0

d
0d

d

1

3

2

1

1

3

2

1

1
1

1
11

1

 (4.10)

The reduction operation produces, from (4.10), an equation with even-numbered unknowns.
To do that the processing explained above is performed according to whether n is odd or even.
The resulting reduced equation can be written as shown in (4.11).



























⋅
=



























⋅



























⋅⋅
⋅⋅⋅

⋅

−−
)1(

)1(
2

)1(
6

)1(
4

)1(
2

2

6

4

2

)1(

)1(

)1(

)1(

1
1

1
11

1

l

l

l

l

b
b

b
b
b

x
x

x
x
x

c
0

d
0d

d

 (4.11)

where d(1) = 2−d 2
b2r

(1) = b2r-1+b2r+1 − db2r,
r = 1, 2, ... , [n/2] −1

VLTX1

99SP4070E-2 PT II-63

when n is odd
l = n−1, c(1) = 1− d 2 + d/c

bl (1) = bn-2 -dbn-1 + (d/c) bn

when n is even
l = n, c(1) = 1 − dc, (4.12)

bl
(1) = bn-1 − dbn

Repeating the reduction of (4.10) into (4.11) as may times as required, an equation of order 1
can be obtained. By solving the equation, and using backward substitution, the final solution
can be obtained.

As explained above, this subroutine requires few calculations to reduce a coefficient matrix.
Most of the calculations involve reduction of the right hand side vector and backward
substitution, both of which can be vectorized on a vector processor.

99SP4070E-2 PTII-65

VLTX2

A62-31-0101 VLTX2, DVLTX2

A system of linear equations with a real constant tridiagonal
matrix (Neumann type and cyclic reduction method)

CALL VLTX2 (D, SD, N, B, ISW, VW, IVW, ICON)

(1) Function

This subroutine solves a real tridiagonal matrix equation

Ax = b (1.1)

using cyclic reduction, where A is an n × n irreducibly diagonally dominant real tridiagonal
matrix of either form below:

ed
d

de
e0

de
0ede

ed

2,
0

2

≥
≠



























⋅⋅
⋅⋅⋅

⋅
 (1.2)

ed
d

de
e0

de
0ede

ed

2,
0

2
≥

≠



























⋅⋅
⋅⋅⋅

⋅
 (1.3)

ed
d

de
e0

de
0ede

ed

2,
0

2

2

≥
≠



























⋅⋅
⋅⋅⋅

⋅
 (1.4)

VLTX2

PT II-66 99SP4070E-2

In equation (1.1), b is an n-dimensional real constant vector, and x is the n-dimensional solution
vector, and n ≥ 1.

This subroutine restricts the coefficient matrix to the above forms to achieve high performance,
while subroutine VLTX processes general tridiagonal matrices.

(2) Parameters

D Input. Diagonal element d

SD Input. Off-diagonal element e

N Input. Order n of the coefficient matrix A

B Input. Constant vector b
Store as B (i) = bi, i = 1, 2, ... , n.
Output. Solution vector x
Store as B (i) = xi, i = 1, 2, ... , n.
See Figure VLTX2-1.
One dimensional array of size 2n + [log2n]

ISW...... Input. Control information
When solving several sets of equations that have an identical coefficient matrix, specify
ISW=1 for the first set of equations, and ISW=2 for the second and subsequent sets.
Only parameter B is assigned a new constant vector b. All other parameters should be
unchanged. (See Note (3).)

IND Input. Control information to specify the form of the coefficient matrix.
IND=1 for (1.2)
IND=2 for (1.3)
IND=3 for (1.4)

VW....... Work area. One-dimensional array of size 2([log2n] + 1) where [] is Gaussian notation

IVW Work area. One-dimensional array of size 2([log2n] + 1) + 10

ICON ... Output. Condition code
See Table VLTX2-1

VLTX2

99SP4070E-2 PT II-67

(Output)

Array B

(Input) *

*x1 x2 x3 xn

bnb3b2b1

n n+[log2n]

Note:

The portion indicated by an asterisk (*) is used as a work area in this subroutine.

Figure VLTX2-1 Storage method of vectors b and x

Table VLTX2-1 Condition codes

Code Meaning Processing

0 No error −

20000 Coefficient matrix is not irreducibly diagonally
dominant.

Bypassed

30000 N < 1, IND ≠ 1, 2, or 3, ISW ≠ 1 or 2 Bypassed

(3) Notes

a. Subprograms used

(1) SSL II: AMACH, MGSSL

(2) FORTRAN intrinsic functions: ALOG2, FLOAT, ABS, MIN0

b. Notes

(1) This subroutine uses the cyclic reduction-method, an algorithm suited to a vector processor.
Processing on a vector processor has the following features:

− It is much faster than Gaussian elimination method used in subroutine LTX.

− Processing time increases almost linearly with N.

− The more diagonally dominant the matrix is, the faster it is processed.

This subroutine is about as accurate as subroutine LTX when processing irreducibly
diagonally dominant matrices.

VLTX2

PT II-68 99SP4070E-2

(2) The coefficient matrices in (1.2) to (1.4) arises from the discretization of simple Neumann
boundary value problems.

(3) When solving several sets of tridiagonal matrix equations that have an identical coefficient
matrix, specify ISW=2 from the second routine call on. This bypasses coefficient matrix
elimination, thus speeding up calculation.

c. Example

In this examples, l sets of n-dimensional linear equations that have an identical coefficient matrix
are solved. Here the coefficient matrix is assumed to be of the form (1.2) and n ≤ 1000.

C **EXAMPLE**
 DIMENSION B(2010),VW(20),IVW(30)
 READ(5,500) N
 READ(5,510) D,SD
 WRITE(6,600) N,D,SD
 READ(5,500) L
 ISW=1
 IND=1
 DO 10 II=1,L
 READ(5,510) (B(I),I=1,N)
 WRITE(6,610) (B(I),I=1,N)
 CALL VLTX2(D,SD,N,B,ISW,IND,VW,IVW,
 *ICON)
 WRITE(6,620) ICON
 IF(ICON.NE.0) STOP
 WRITE(6,630) (B(I),I=1,N)
 ISW=2
 10 CONTINUE
 WRITE(6,640)
 STOP
 500 FORMAT(I5)
 510 FORMAT(5E14.7)
 600 FORMAT('1',
 * 20X,'LINEAR EQUATIONS (TRIDIAGONAL)'
 * /' ',20X,'ORDER= ',I5/
 * /' ',25X,'COEFFICIENT MATRIX'/
 * /' ',30X,'D= ',E14.7/
 * /' ',30X,'SD=',E14.7)
 610 FORMAT(/' ',78('*')//' ',
 * 25X,'CONSTANT VECTOR'//
 * (' ',5(1X,E14.7)))
 620 FORMAT(/' ','CONDITION CODE OF VLTX2= ',
 * I5)
 630 FORMAT(/' ',25X,'SOLUTION VECTOR'//
 * (' ',5(1X,E14.7)))
 640 FORMAT(//' ',30X,'** NORMAL END **')
 END

VLTX2

99SP4070E-2 PT II-69

(4) Method

Cyclic reduction can be used to solve tridiagonal matrix equation (4.1), which is normalized so
that the off diagonal elements of its coefficient matrix are all 1.

Ax = b, (4.1)

where A takes one of the following forms:

2,
1

1

1
11

2

≥


























⋅⋅
⋅⋅⋅

⋅

d
d

0

d
0d

d

 (4.2)

2,
2

1

1
11

1

≥


























⋅⋅
⋅⋅⋅

⋅

d
d

0

d
0d

d

 (4.3)

2,
2

1

1
11

2

≥


























⋅⋅
⋅⋅⋅

⋅

d
d

0

d
0d

d

 (4.4)

Dividing the n-th row of the matrix (4.3) by 2, all the off-diagonal elements become 1, and the
last diagonal element becomes d/2. This type of matrix can be solved as explained in Method for
subroutine VLTX1, so only solution of forms (4.2) and (4.4) need to be explained.

Dividing the n-th row of (4.4) by 2, the matrix becomes of the same form as (4.2) except for the
last diagonal element. Therefore, we now consider (4.2) and (4.4) to be of the same form as
matrix (4.5), and explain cyclic reduction for this matrix.



























⋅⋅
⋅⋅⋅

⋅

c
0

d
0d

d

1
1

1
11

2

 (4.5)

VLTX2

PT II-70 99SP4070E-2

Here c=d for matrix (4.2) and c=d/2 for matrix (4.4). We assign b to be a constant vector of the
matrix equation with coefficient matrix (4.5).

The cyclic reduction method here generates a matrix equation (of order [(n−1)/2]+1)with respect
to the odd-numbered unknowns, x1 , x3 , x5 , This differs from subroutine VLTX1. First, by
eliminating x2 from the following two equations:

dx1 + 2x2 = b1 (4.6)
x1 + dx2 + x3 = b2

we obtain

(2−d2)x1 +2x3 = 2b2 − db1. (4.7)

Next, eliminating unknowns x2j and x2j+2 from the three equations constructed using the 2j-th row,
(2j + 1) st row and (2j + 2) nd row of (4.5), we obtain

x2j-1 + (2−d2)x2j+1 +x2j+3= b2j +b2j+2 − db2j+1. (4.8)

This calculation is repeated for each value of j =1, 2, ... , m (where m is the largest integer
satisfying 2j+1 ≤ ... n−2). One more equation is added to these two equations depending on
whether n is even or odd. If n is even, eliminating xn-2 and xn from the three equations,

xn-3 + dxn-2 + xn-1 = bn-2
xn-2 + dxn-1 + xn = bn-1 (4.9)

xn-1 + cxn = bn,

we obtain

xn-3 + (1 − d2 + d/c)xn-1 = bn-2 + (d/c)bn − dbn-1 (4.10)

When n is odd, eliminating xn-1 from the second and third equations of (4.9) we obtain

xn-2 + (1−dc)xn = bn-1 − dbn. (4.11)

Thus the equations of order [(n−1)/2] consisting of (4.7), (4,8), and either (4.10) or (4.11), are
obtained with respect to the odd-numbered unknowns only. These equations can be rewritten as
(4.12).



























⋅
=



























⋅



























⋅⋅
⋅⋅⋅

⋅

−−
)1(

)1(
2

)1(
5

)1(
3

)1(
1

2

5

3

1

)1(

)1(

)1(

)1(

1
1

1
11

2

l

l

l

l

b
b

b
b
b

x
x

x
x
x

c
0

d
0d

d

 (4.12)

VLTX2

99SP4070E-2 PT II-71

where d(1) = 2−d2
b1

(1) = 2b2 − db1
b2j+1

(1) = b2j + b2j+2 − db2j+1
j = 1, 2, ... ,m

when n is even,

l = n − 1
c(1) = 1 - d2 + d/c

() 12
(1) / −− −+= nnnl dbbcdbb

when n is odd,

l = n
c(1) = 1− dc

nn dbbbl −= −1
(1)

Looking at equation (4.12), we see that the coefficient matrix obtained by performing this single
reduction is of the same form as (4.5), which is one of the characteristics of this method. Once
the solution to (4.12) is obtained, the even-numbered unknowns can also be obtained by
substituting them into the original matrix equation.

Applying the same reduction operation to (4.12), an equation of half the order can be obtained.
By repeating the operation as many times as required, a matrix equation with coefficient matrix
(4.13) can be obtained.












)(

)(

1
2
k

k

c
d (4.13)

By solving this matrix, followed by substitution, the original equation can be solved.

If | d | is greater than 2, the reduction terminates incompletely for efficiency in the same way as
explained for subroutine VLTX.

99SP4070E-2 PT II-73

VLTX3

A62-41-0101 VLTX3, DVLTX3

A system of linear equations with a real constant tridiagonal
matrix (periodic type and cyclic reduction method)

CALL VLTX3 (D, SD, N, B, ISW, VW, IVW, ICON)

(1) Function

This subroutine solves a real tridiagonal matrix equation

Ax = b (1.1)

using cyclic reduction, where A is an n × n irreducibly diagonally dominant real and almost
tridiagonal matrix of the form:

ed
d

dee
e0

de
0ede

eed

2,
0
>

≠



























⋅⋅
⋅⋅⋅

⋅
 (1.2)

Here b is an n-dimensional real constant vector and x is the n-dimensional solution vector, and
n ≥ 1.

(2) Parameters

D Input. Diagonal element d

SD Input. Off-diagonal element e

N Input. Order n of the coefficient matrix A

B........... Input. Constant vector b
Store as B(i) = bi, i = 1, 2, ... , n
Output. Solution vector x
Store as B(i) = xi, i =1, 2, ... , n
See Figure VLTX3-1.
One dimensional array of size 2n + [log2n]

ISW...... Input. Control information
When solving several sets of equations that have an identical
coefficient matrix, specify ISW=1 for the first set of equations, and

VLTX3

PT II-74 99SP4070E-2

ISW=2 for the second and subsequent sets. Only parameter B is assigned a new
constant vector b. All other parameters should be unchanged. (See Note (3)).

VW....... Work area. One-dimensional array of size 3 ([log2n]+1), where [] is Gaussian notation.

IVW Work area. One-dimensional array of size 4 ([log2n]+1)+10.

ICON ... Output. Condition code
See Table VLTX3-1.

･ ･ ･

･ ･ ･

*

*bnb3b2b1

n+[log2n]

(Output)

(Input)

Array B
n

xnx3x2x1

Note:

The portion indicated by an asterisk (*) is used as a work area in this subroutine.

Figure VLTX3-1 Storage method of vectors b and x

Table VLTX3-1 Condition codes

Code Meaning Processing

0 No error −

20000 Coefficient matrix is not irreducibly diagonally dominant. Bypassed

30000 N<1, or ISW ≠ 1, 2 Bypassed

(3) Notes

a. Subprograms used

(1) SSL II: AMACH, MGSSL

(2) FORTRAN intrinsic functions: ALOG2, FLOAT, ABS, MIN0

VLTX3

99SP4070E-2 PT II-75

b) Notes

(1) This subroutine uses cyclic reduction, an algorithm suited to a vector processor. Processing
on a vector processor has the following features:

− It is much faster than the Gaussian elimination method

− Processing time increases almost linearly with N.

− The more diagonally dominant the matrix is, the faster it is processed.

This subroutine is about as accurate as the Gaussian elimination method.

(2) The coefficient matrix (1.2) arises from the discretization of simple periodic boundary value
problems.

(3) When solving several sets of tridiagonal matrix equations that have an identical coefficient
matrix, specify ISW=2 for the second and subsequent subroutine call. This bypasses
coefficient matrix elimination, thus speeding up calculation.

c. Example

In this example, l sets of n-dimensional linear equations that have an identical coefficient matrix
are solved, for n ≤ 1000.

C **EXAMPLE**
 DIMENSION B(2010),VW(30),IVW(50)
 READ(5,500) N
 READ(5,510) D,SD
 WRITE(6,600) N,D,SD
 READ(5,500) L
 ISW=1
 DO 10 II=1,L
 READ(5,510) (B(I),I=1,N)
 WRITE(6,610) (B(I),I=1,N)
 CALL VLTX3(D,SD,N,B,ISW,VW,IVW,ICON)
 WRITE(6,620) ICON
 IF(ICON.NE.0) STOP
 WRITE(6,630) (B(I),I=1,N)
 ISW=2
 10 CONTINUE
 WRITE(6,640)
 STOP
 500 FORMAT(I5)
 510 FORMAT(5E14.7)
 600 FORMAT('1',
 * 20X,'LINEAR EQUATIONS (TRIDIAGONAL)'
 * /' ',20X,'ORDER= ',I5/
 * /' ',25X,'COEFFICIENT MATRIX'/
 * /' ',30X,'D= ',E14.7/
 * /' ',30X,'SD=',E14.7)

VLTX3

PT II-76 99SP4070E-2

 610 FORMAT(/' ',78('*')//' ',
 * 25X,'CONSTANT VECTOR'//
 * (' ',5(1X,E14.7)))
 620 FORMAT(/' ','CONDITION CODE OF VLTX3= ',
 * I5)
 630 FORMAT(/' ',25X,'SOLUTION VECTOR'//
 * (' ',5(1X,E14.7)))
 640 FORMAT(//' ',30X,'** NORMAL END **')
 END

(4) Method
Cyclic reduction can be used to solve tridiagonal matrix equation (4.1), which is normalized so
that the off diagonal elements of its coefficient matrix are all 1.
Ax = b (4.1)

where

2,
11

1

1
11

11

>


























⋅⋅
⋅⋅⋅

⋅
=

d
d

0

d
0d

d

A (4.2)

Because the above equation has nonzero elements at (n, 1) and (1, n), in its matrix, cyclic
reduction cannot be applied directly. However, by transforming variables, the equation can be
separated into two independent tridiagonal matrix equations each of which can then be solved
using the cyclic reduction method described in Method for subroutine VLTX1 or VLTX2. The
separation method is explained here for both even and odd n, because processing differs for the
two cases.
(1) When n is even

Assuming n=2l we introduce two new variables y and z as follows:
1...,,2,1, −=−= +− ljxxy jljlj (4.3)

ljxxz jljlj ,...,1,0,1 =+= +−+
where x0 = xn With these variables, the equations pertaining to y and z are given by (4.4) and
(4.5), respectively.



























−
−
⋅
−
−
−

=



























⋅



























⋅⋅
⋅⋅⋅

⋅

−

−

+−

+−

+−

−

−

11

22

33

22

11

1

2

3

2

1

1
1

1
11

1

n

n

ll

ll

ll

l

l

bb
bb

bb
bb
bb

y
y

y
y
y

d
0

d
0d

d

 (4.4)

VLTX3

99SP4070E-2 PT II-77

2,

2

1
1

1
11

2

11

22

11

1

3

2

1

dc
b

bb

bb
bb

b

z
z

z
z
z

c
0

d
0d

d

n

n

ll

ll

l

l

l =


























+
⋅
+
+

=



























⋅



























⋅⋅
⋅⋅⋅

⋅

−

+−

+−

+

 (4.5)

Equations (4.4) and (4.5) can be solved using the methods of subroutinesVLTX1 and VLTX2,
respectively. Given y and z, x can be obtained as follows:

2/,2/ 11 +== lnl zxzx
() () 2/,2/ 11 ijjljijl yzxzyx −=+= +++− (4.6)

1,...,2,1 −= lj

(2) When n is odd
Assuming n = 2l − 1 we introduce two new variables y and z as follows:

1,...,2,1, −=−= +− ljxxy jljlj (4.7)

1,...,1,0,1 −=+= +−+ ljxxz jljlj

With these variables, the equations pertaining to y and z are given by (4.8) and (4.9),
respectively.

1,
1

1

1
11

1

1

1

12

33

22

11

1

2

3

2

1

1

−=


























−
−
⋅
−
−
−

=



























⋅



























⋅⋅
⋅⋅⋅

⋅

−

+−

+−

+−

−

− dc
bb

bb

bb
bb
bb

y
y

y
y
y

c
0

d
0d

d

n

n

ll

ll

ll

l

l

 (4.8)

1,

2

1
1

1
11

2

2

1

12

22

11

1

3

2

1

2

+=


























+
+
⋅
+
+

=



























⋅



























⋅⋅
⋅⋅⋅

⋅

−

+−

+−

− dc
bb

bb

bb
bb

b

z
z

z
z
z

c
0

d
0d

d

n

n

ll

ll

l

l

l

 (4.9)

Similarly, the two equations above can be solved using the methods of subroutines VLTX1
and VLTX2, respectively.
Given y and z, x can be obtained as follows:

2/1zxl =
() () 2/,2/ 11 jjjljijl yzxzyx −=+= +++−

1,...,2,1 −= lj (4.10)

99SP4070E-2 PT II-79

VLUIV

A22-71-0602 VLUIV, VDLUIV

The inverse of a real general matrix decomposed
into the factors L and D

CALL VLUIV (FA, K, N, IP, AI, ICON)

(1) Function

This subroutine computes the inverse A−1 of an n × n real general matrix A given in decomposed
form PA = LU

A −1 = U −1 L −1 P

L and U are respectively the n × n lower triangular and unit upper triangular matrices, and P is
the permutation matrix which performs the row exchanges in partial pivoting for LU
decomposition. n ≥ 1.

(2) Parameters

FA Input. Matrix L and matrix U.
FA is a two-dimensional array, FA (K, N).
Refer to Fig. VLUIV-1.

K Input. Adjustable dimensional of array FA and AI (≥N).
N Input. Order n of the matrices L and U.
IP.......... Input. Transposition vector which indicates the history of row exchanges in partial

pivoting. One-dimensional array of size n.
AI Output. Inverse A −1. AI is a two-dimensional array, AI (K, N).
ICON.... Output. Condition code. See Table VLUIV-1.

VLUIV

PT II-80 99SP4070E-2

l31 l32

l22l21

l11

un−1n

u23 u2n

u1nu13u12

0

0

1

1

1
1

ln1 ln2

l22l21

l11

ln1

K
N

un−1nln−1n−1

lnn−1 lnnln2

u23 u2n

u1nu13u12

Diagonal and lower
triangular portions only

ln−1n−1

lnn−1 lnn

Array FA

Upper triangular portion only

Unit upper triangular
matrix U

Lower triangular
matrix L

Figure VLUIV-1 Storage of the elements of L and U in array FA

Table VLUIV-1 Condition codes

Code Meaning Processing
0 No error −

20000 A real matrix was singular. Discontinued
30000 K>N of N<1 or there was an

error in IP.
Bypassed

(3) Notes

a. Subprograms used

SSL IIMGSSL

FORTRAN intrinsic functionsNone

b. Notes

Prior to calling this subroutine, LU-decomposed matrix must be obtained by subroutine VALU
and must be input as the parameters FA and IP to be used for this subroutine. The subroutine
VLAX should be used for solving linear equations. Obtaining the solution by first computing the
inverse matrix requires more steps of calculation, so subroutine VLUIV should be used only

VLUIV

99SP4070E-2 PT II-81

when the inverse matrix is inevitable. The transposition vector corresponds to the permutation
matrix P of

PA = LU

When performing LU decomposition with partial pivoting. Refer to Notes of the subroutine
VALU.

c. Example

The inverse of an n × n real general matrix is obtained. n ≤ 100.

C **EXAMPLE**
 DIMENSION A(100,100),VW(100),IP(100),AI(100,100)
 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,510) ((A(I,J),I=1,N),J=1,N)
 WRITE(6,600) N,((I,J,A(I,J),J=1,N),I=1,N)
 CALL VALU(A,100,N,0.0,IP,IS,VW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) STOP
 CALL VLUIV(A,100,N,IP,AI,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) STOP
 WRITE(6,630) ((I,J,AI(I,J),I=1,N),J=1,N)
 STOP
 500 FORMAT(I5)
 510 FORMAT(4E15.7)
 600 FORMAT(//11X,'**INPUT MATRIX**'/12X,
 *'ORDER=',I5/(2X,4('(',I3,',',I3,')',E16.8)))
 610 FORMAT('0',10X,'CONDITION CODE(VALU)=',I5)
 620 FORMAT('0',10X,'CONDITION CODE(VLUIV)=',I5)
 630 FORMAT('0',10X,'**INVERSE MATRIX**',
 */(2X,4('(',I3,',',I3,')',E16.8)))
 END

(4) Method

This subroutine computes the inverse of an n × n real general matrix, giving the LU-decomposed
matrices L, U and the permutation matrix P which indicates row exchanges in partial pivoting.

PA = LU (4.1)

then, the inverse of A can be represented using (4.1) as follows:
The inverse of L and U are computed Eq. UB = L −1 is solved to determine B = U −1 L −1 , and then
the inverse of A is obtained as (4.2).

() PLULUPA 11111 −−−−− == (4.2)

L and U are as shown in Eq. (4.3) for the following explanation.

() ()ijij uUlL == , (4.3)

VLUIV

PT II-82 99SP4070E-2

a. Calculating L−1

Since the inverse L −1 of a lower triangular matrix L is also a lower triangular matrix, if we
represent L −1 by

()ijlL ~1 =− (4.4)

then Eq. (4.5) is obtained based on the relation

LL −1 = I.

ij

n

k
kjik ll δ=∑

=1

~
,









≠
=

ji
ji

ij ,0
,1

δ (4.5)

(4.5) is rewritten as

ij

i

jk
ijiikjik llll δ=+∑

−

=

1 ~~

and the elements ~lij of the j -th column (j = 1,...,n) of the matrix L −1 are obtained as follows:

njillll ii

i

jk
kjikij ,...,1,/

~~ 1

+=











−= ∑

−

=

jjjj ll /1
~

= (4.6)

where, ()njilii ,...,0 =≠

b. Solving UB = L −1

1. −= LUBEq is solved by (4.7).

jj lUb
~

= (4.7)

However,

()njjj bbb ,...,1= : the column vector in B

()njjj lll
~

,...,
~~
1= : the column vector in L −1

From (4.8), B is determined successively with i = n,...,1

VLUIV

99SP4070E-2 PT II-83

∑
+=

−=
n

ik
kjikijij bulb

1

~~
 (4.8)

99SP4070E-2 PT II-85

VMGGM

A61-11-0301 VMGGM, DVMGGM

Multiplication of two matrices
(real general by real general)

CALL VMGGM (A, KA, B, KB, C, KC, M, N, L, ICON)

(1) Function

This subroutine performs multiplication of an m × n real general matrix A by an n × l real general
matrix B.

C = AB

Where C is an m × l real matrix. m, n, l ≥ 1.

(2) Parameters

A Input. Matrix A, two-dimensional array, A (KA, L).
KA........ Input. The adjustable dimension of array A, (≥M).
B........... Input. Matrix B, two-dimensional array, B (KB, L).
KB........ Input. The adjustable dimension of array B, (≥N).
C........... Output. Matrix C, two-dimensional array, C(KC, L). (See “Notes.”)
KC........ Input. The adjustable dimension of array C, (≥M).
M.......... Input. The number of rows m in matrix A and C.
N Input. The number of columns nin matrix A and the number of rows n in matrix B.
L........... Input. The number of columns l in matrices B and C.
ICON.... Output. Condition codes. SEE Table VMGGM-1.

Table VMGGM-1 Condition code

Code Meaning Processing

0 No error −

30000 M<1, N<1, L<1, KA<M, KB<N, or KC<M Bypassed

VMGGM

PT II-86 99SP4070E-2

(3) Notes

a. Subprograms used

(1) SSL: MGSSL

(2) FORTRAN intrinsic function: FLOAT, MOD

b. Notes

The VMGGM subroutine differs from the standard function subroutine MGGM in one important
respect.

The VMGGM subroutine performs high-speed calculation on a vector processor.

The performance of MGGM is changed by the adjustable dimensions of arrays A, B, and C, but
the performance of the subroutine is not changed in essence.

Saving the storage area

To store matrix C in array A, the user must use MGGM.

c. Example

The following shows an example of obtaining the multiplication of matrices A and B. Here,
m ≤ 200, n ≤ 400, and l ≤ 300.

C **EXAMPLE**
 DIMENSION A(202,400),B(402,300),C(202,300)
 CHARACTER*4 IA,IB,IC
 DATA IA/'A '/,IB/'B '/,IC/'C '/
 DATA KA/202/,KB/402/,KC/202/
 10 READ(5,100) M,N,L
 IF(M.EQ.0) STOP
 WRITE(6,150)
 READ(5,200) ((A(I,J),I=1,M),J=1,N)
 READ(5,200) ((B(I,J),I=1,N),J=1,L)
 CALL VMGGM(A,KA,B,KB,C,KC,M,N,L,
 *ICON)
 IF(ICON.NE.0)GOTO 10
 CALL PGM(IA,1,A,KA,M,N)
 CALL PGM(IB,1,B,KB,N,L)
 CALL PGM(IC,1,C,KC,M,L)
 GOTO 10
 100 FORMAT(3I5)
 200 FORMAT(4E15.7)
 150 FORMAT('1'///10X,
 *'** MATRIX MULTIPLICATION **')
 END

C ** MATRIX PRINT(REAL NON-SYMMETRIC) **
 SUBROUTINE PGM(ICOM,L,A,K,M,N)
 DIMENSION A(K,N)
 CHARACTER*4 ICOM(L)
 WRITE(6,600) (ICOM(I),I=1,L)

VMGGM

99SP4070E-2 PT II-87

 DO 10 I=1,M
 WRITE(6,610) I,(J,A(I,J),J=1,N)
 10 CONTINUE
 RETURN
 600 FORMAT(/10X,35A2)
 610 FORMAT(/5X,I3,3(4X,I3,E17.7),
 *(/8X,3(4X,I3,E17.7)))
 END

Subroutine PGM in the example is for printing a real matrix.

99SP4070E-2 PT II-89

VRFT1

F15-31-0201 VRFT1, DVRFT1

Discrete real Fourier transform
(high performance, radix 2 FFT)

CALL VRFT1 (A, N, ISN, ISW, VW, IVW, ICON)

(1) Function

Given one-dimensional (n-term) real time-services data {xj}, the discrete real Fourier
transform or its inverse transform is calculated by the Fast Fourier Transform (FFT) method,
suited to a vector processor, where n=2l (l is a non-negative integer).

a. Fourier transform

When {xj} is input, the transform defined by (1.1) is calculated to obtain Fourier coefficients
{nak} and {nbk}.

n

nkkjxnb

nkkjxna

n

j
jk

n

j
jk

/2,

12/,...,2,1,sin2

,2/,...,1,0,cos2

1

0

1

0

πθ

θ

θ

=

−=⋅⋅=

=⋅⋅=

∑

∑
−

=

−

=

 (1.1)

b. Fourier inverse transform

When {ak} and {bk} are input, the transform defined by (1.2) is calculated to obtain sum of
Fourier series {2xj}.

()

nnj

kjbkja

jaax
n

k
kk

nj

/2,1,...,1,0

,sincos2

cos2
12/

1

2/0

πθ

θθ

π

=−=

⋅+⋅⋅+

⋅+=

∑
−

=

 (1.2)

VRFT1

PT II-90 99SP4070E-2

(2) Parameters

A Input. {xj} or {ak}, {bk}
Output. {nak}, {nbk}, or {2xj}
One-dimensional array of size n+2
See Figure VRFT1-1.

N Input. Number of terms, n, of the transform
ISN....... Input. Either the transform or the inverse transform is indicated (≠0).

ISN=+1 for the transform.
ISN=−1 for the inverse transform.
(See Note(4).)

ISW...... Input. Information for controlling the initial state of the transform
ISW=0 for the first call.
ISW=1 for the second and subsequent calls.
(See Note(2).)

VW....... Work area
One-dimensional array of size max (n(l+1)/2, 1).

IVW Work area. One-dimensional array of size n max (l − 4, 2)/2.
ICON ... Output. Condition code

See Table VRFT1-1.

xn−1

xn−2

x3

x2

x1

{ak}
{bk}{xj}

x0

A(N+2)

A(N+1)

A(N)

A(N−1)

A(4)

A(3)

A(2)

A(1)

Array

bn/2−1

an/2

an/2−1

b1

a1

*

a0

Note:

The portion indicated by *has an arbitrary value at input, and is set to 0.0 at output.

Figure VRFT1-1 Data storage method

VRFT1

99SP4070E-2 PT II-91

Table VRFT1-1 Condition codes

Code Meaning Processing

0 No error −

30000 ISN=0, ISW≠0, 1 or N≠2l (l: 0 or positive integer) Bypassed

(3) Notes

a. Subprograms used

(1) SSL II: VCFT1, UVRFT, UVTB1, UVF91, UVFA1, UVFB1, UVFX1, UBANK, MGSSL

(2) FORTRAN intrinsic functios: ALOG2, SIN, COS, ATAN, IABS, IAND, MOD, FLOAT

b. Notes

(1) Subroutine use

This subroutine performs high-speed calculation of a real Fourier transform on a vector
processor. On a general-purpose computer, however, the subroutine RFT may be more
suitable.

The function of this subroutine is the same as that of subroutine VRFT2, which is also suited
to a vector processor. This subroutine can perform multiple independent transforms, but it
requires more work array area than VRFT2; it is a high-performance subroutine. If it is
difficult to allocate a large work array area, memory-efficient subroutine VCFT2 may be more
suitable, even though it is slower.

(2) Control by ISW

When calculating multiple sets of transforms, specify ISW=1 for the second and subsequent
subroutine calls. This bypasses trigonometric table and list vector generation, both of which
are needed for the transform, thus increasing processing efficiency. The contents of the arrays
VW and IVW must not be altered, however, when calling the subroutine.

Even the number of transforms, n, of each of the multiple transforms varies, specifying ISW=1
improves processing efficiency. However, it is desirable to be called so that the maximum
number of transforms with the same number of terms are executed consecutively.

When calling this subroutine in together with the complex Fourier transform subroutine
VCFT1, specifying ISW=1 improves processing efficiency.

VRFT1

PT II-92 99SP4070E-2

(3) Work array size conversion table

The table for 16 ≤ n ≤ 4096 is shown as follows:

l n VW IVW
4
5
6
7
8
9

10
11
12

16
32
64

128
256
512

1024
2048
4096

40
96

224
512

1152
2560
5632

12288
26624

16
32
64

192
512

1280
3072
7168

16384

(4) ISN specification

Although the ISN parameter is used to specify whether a transform or an inverse transform is
to be calculated, it can also be used as shown below. If {xj} or {ak}, {bk} is stored at intervals
of length I, specify the ISN as follows:

ISN=+I for the transform.

ISN=−I for the inverse transform.

The results are also stored at intervals of length I.

With a vector processor, interval length I should take one the following values in order to
access memory more efficiently. (see Example (2).)

I=4p+2, p=0, 1, 2, ... , for single precision arithmetic. (VRFT1)

I=2p+1, p=1, 2, 3, ... , for double precision arithmetic. (DVRFT1)

(5) General definition of Fourier transform

In general, the discrete real Fourier transform and its inverse transform can be defined as in
(3.1) and (3.2).

n

nkkjx
n

b

nkkjx
n

a

n

j
jk

n

j
jk

/2,

12/,...,2,1,sin2

,2/,...,1,0,cos2

1

0

1

0

πθ

θ

θ

=

−=⋅=

=⋅=

∑

∑
−

=

−

=

 (3.1)

VRFT1

99SP4070E-2 PT II-93

()

nnj

kjbkja

jaax

n

k
kk

nj

/2,1,...,1,0

,sincos

cos
2
1

2
1

12/

0

2/0

πθ

θθ

π

=−=

⋅+⋅+

⋅+=

∑
−

=
 (3.2)

This subroutine obtains {nak}, {nbk} or {2xj} corresponding to the left hand side of (3.1) or (3.2),
respectively. The result must be normalized as required.

c. Example

(1) Multiple Fourier transforms

In this example, k sets of independent Fourier transforms (with n terms) are calculated, for
k≤64 and n≤512.

C **EXAMPLE**
 DIMENSION A(514,64),VW(2560),IVW(1280)
 READ(5,500) N,K
 READ(5,510) ((A(I,J),I=1,N),J=1,K)
C
 ISN=1
 ISW=0
 CALL VRFT1(A,N,ISN,ISW,VW,IVW,ICON)
 IF(ICON.NE.0) STOP
 ISW=1
 DO 10 J=2,K
 CALL VRFT1(A(1,J),N,ISN,ISW,VW,IVW
 * ,ICON)
 10 CONTINUE
C
 WRITE(6,600) K,N
 DO 20 J=1,K
 20 WRITE(6,610) J,(I,A(I,J),I=1,N+2)
C
 500 FORMAT(2I5)
 510 FORMAT(E15.7)
 600 FORMAT(5X,'***',I3,' SET TRANSFORMS'
 * ' OF',' TERM',I4//)
 610 FORMAT(8X,I3,'-TH TRANSFORM'/
 * (8X,I3,E16.7))
 STOP
 END

(2) Multi-dimensional Fourier transform

In this example, a 2-dimensional Fourier transform (with n1×n2 terms) is calculated, for n1≤512
and n2≤64.

In the example program, the row-wise transform is calculated by subroutine VCFT1, using a
complex Fourier transform.

VRFT1

PT II-94 99SP4070E-2

Here, the data interval length (the first array declarator of the array), ISN=514, is suited to a
vector processor (514=4p+2, p=128). For a double precision alogrithm, ISN=517 is better.

C **EXAMPLE**
 DIMENSION A(514,64),VW(2560),IVW(1280)
 READ(5,500) N1,N2
 READ(5,510) ((A(I,J),I=1,N1),J=1,N2)
C ----N2 SET REAL TRANSFORMS OF TERM
C N1----
 ISN=1
 ISW=0
 CALL VRFT1(A,N1,ISN,ISW,VW,IVW,ICON)
 IF(ICON.NE.0)STOP
 ISW=1
 DO 10 J=2,N2
 CALL VRFT1(A(I,J),N1,ISN,ISW,VW,IVW,
 * ICON)
 10 CONTINUE
C ----HALF SET COMPLEX TRANS. OF TERM
C N2----
 ISN=514
 CALL VCFT1(A,A(2,1),N2,
 * ISN,ISW,VW,IVW,ICON)
 IF (ICON.NE.0) STOP
 DO 20 I=3,N1+2,2
 CALL VCFT1(A(I,1),A(I+1,1),N2,
 * ISN,ISW,VW,IVW,ICON)
 20 CONTINUE
C
 WRITE(6,600) N1,N2
 DO 30 J=1,N2
 30 WRITE(6,610) J,(I,A(I,J),
 * A(I+1,J),I=1,N1+2,2)
C
 500 FORMAT(2I5)
 510 FORMAT(E15.7)
 600 FORMAT(5X,'***2-DIMENSIONAL TRANSFORM',
 * ' OF TERM',I4,' BY ',I4)
 610 FORMAT(8X,I3,'-TH COLUMN'//
 * (8X,I3,2E16.7))
 STOP
 END

(4) Method

A discrete real Fourier transform with n terms (where n=2l) is calculated using the fast Fourier
transform (isogeometric type and self-sorting type FFTs) method, suited to a vector processor.

A real Fourier transform can be calculated by assuming the real data {xj} to be complex with its
imaginary part equal to 0.0, and by applying a discrete complex Fourier transform to the data.

VRFT1

99SP4070E-2 PT II-95

However in such case, the complex Fourier transform can be done efficiently by taking
account of the characteristics of complex transform.

We now define a complex transform by (4.1).

()ni

nkx
n

j

jk
jk

/2exp,

1,...,1,0,
1

0

πω

ωα

=

−=⋅= ∑
−

= (4.1)

If {xj} is real data, relation (4.2) can be satisfied.

1,...,2,1,* −==− nkkkn αα (4.2)

* represents the complex conjugate.

The result of the real Fourier transform, {ak} and {bk} and the result of the complex Fourier
transform, {ak}, are related as follows:

()
() 12/...,,2,1,

12/...,,2,1,
2,2 2/2/00

−=−=
−=+=

⋅=⋅=

−

−

nkib
nka

aa

knkk

knkk

nn

αα
αα

αα
 (4.3)

Therefore, when calculating a real Fourier transform, it can be seen that the complex Fourier
transform,

()ni

nkx
n

j

jk
jk

/2exp,

2/,...,1,0,
1

0

πω

ωα

=

== ∑
−

=

(4.4)

should be calculated first, followed by application of (4.2) and (4.3).

This subroutine calculates the complex Fourier transform of (4.4) using the fast Fourier transform
method, suited to a vector processor.

For further details on calculating real Fourier transforms by using complex Fourier transforms,
see Method for subroutine RFT, and for details on the fast Fourier transform method for a vector
processor, see Method for subroutine VCFT1.

99SP4070E-2 PT II-97

VRFT2

F15-31-0301 VRFT2, DVRFT2

Discrete real Fourier transform
(Memory efficient, radix 2 FFT)

CALL VRFT2 (A, N, ISN, ISW, VW, IVW, ICON)

(1) Function

Given one-dimensional (n-term) real time-service data {xj}, the discrete real Fourier transform or
its inverse transform is calculated by the Fast Fourier Transform (FFT) method, suited to a vector
processor, where n = 2l(l is a non- negative integer).

a. Fourier transform

When {xj} is input, the transform defined by (1.1) is calculated to obtain Fourier coefficients
{nak} and {nbk}.

2/,...,1,0,cos2
1

0

nkkjxna
n

j
jk =⋅⋅= ∑

−

=

θ

12/,...,2,1,sin2
1

0

−=⋅⋅= ∑
−

=

nkkjxnb
n

j
jk θ (1.1)

n/2, πθ =

b. Fourier inverse transform

When {ak} and {bk} are input, the transform defined by (1.2) is calculated to
obtain sum of Fourier series {2xj}

jaax nj πcos2 2/0 +=

(),sincos2
12/

0
∑

−

=
+⋅+

n

k
kk kjbkja θθ (1.2)

nnj /2and1,...,1,0 πθ =−=

VRFT2

PT II-98 99SP4070E-2

(2) Parameters

A Input. {xj} or {ak}, {bk}
Output. {nak} , {nbk} or {2xj}
One-dimensional array or size n+2
see Figure VRFT2-1

N Input. Number of terms, n, of the transform

ISN....... Input. Either the transform or the inverse transform is indicated (≠0)
ISN=+1 for the transform.
ISN=−1 for the inverse transform.
(See Note(4).)

ISW...... Input. Information for controlling the intial state of the transform
ISW = 0 for the first call.
ISW = 1 for the second and subsequent calls.
(See Note (2).)

VW....... Work area.
One-dimensional array of size 7n/2.

IVW Work area. One-dimensional array of size 3n/2

ICON ... Output. Condition code
See Table VRFT2-1

xn−1

xn−2

x3

x2

x1

{ak}
{bk}{xj}

x0

A(N+2)

A(N+1)

A(N)

A(N−1)

A(4)

A(3)

A(2)

A(1)

Array A

bn/2−1

an/2

an/2−1

b1

a1

*

* *

*

a0

Note:

The portion indicated by * has an arbitrary value at input, and is set to 0.0 at output

Figure VRFT2-1 Data storage method

VRFT2

99SP4070E-2 PT II-99

Table VRFT2-1 Condition Codes

Code Meaning Processing

0 No error −

30000 ISN = 0, ISW ≠ 0, 1 or N ≠ 2l (l ≥ 0 is integer) Bypassed

(3) Notes

a. Subprograms used

(1) SSL II: VCFT2, UVRFT, UVTB2, UVF92, UVFA2, UVFB2, UVFX2,
 UBANK, MGSSL

(2) FORTRAN intrinsic function: ALOG2, SIN, COS, ATAN, IABS

b. Notes

(1) Subroutine use

This subroutine performs high-speed calculation of real Fourier transform on a vector
processor. On a general-purpose computer, however, subroutine RFT may be more suitable.

The function of this subroutine is the same as that of subroutine VRFT1, which is also suited
to a vector processor. This subroutine is suitable for calculating only a single transform. The
work array area is limited to the required minimum; it is a memory-efficient subroutine. For
multiple transform, if there is sufficient work array area available, the high- performance
subroutine VRFT1 is more suitable.

(2) Control by ISW

When performing multiple transform, specify ISW=1 for the second and subsequent
subroutine calls. This bypasses trigonometric function table and list vector generation, both of
which are needed for the transform, thus Increasing processing efficiency. The contents of the
arrays VW and IVW must not be altered, however, when calling the subroutine.

Even when the number of transform, n, of each of the multiple transforms varies, specifying
ISW=1 improves efficiency. However, it is desirable to be called so that the maximum
number of transforms with the same number of terms are executed consecutively.

When calling this subroutine in together with the complex Fourier transform subroutine
VCFT2, specifying ISW=1 improves processing efficiency.

VRFT2

PT II-100 99SP4070E-2

(3) Work array size conversion table

The table for 16 ≤ n ≤ 4096 is shown below.

l n VW IVW
4
5
6
7
8
9

10
11
12

16
32
64

128
256
512

1024
2048
4096

56
112
224
448
896

1792
3584
7168

14336

24
48
96

192
384
768

1536
3072
6144

(4) ISN specification

Although the ISN parameter is used to specify whether a transform or an inverse transform is
to be calculated, it can also be used as shown below. If {xj} or {ak}, {bk} is stored at intervals
of length I, specify ISN as follow:

ISN=+I for the transform.

ISN=−I for the inverse transform.

The results are also stored at intervals of length I.

With a vector computer, the interval length I should take the following values in order to
access memory more efficiently. (see Example(2).)

I=4p+2, p=0, 1, 2, ... , for single precision arithmetic. (VRFT2)

I=2p+1, p=1, 2, 3, ... , for double precision arithmetic. (DVRFT2)

(5) General definition of Fourier transform

In general, the discrete Fourier transform and its inverse transform can be defined as in (3.1)
and (3.2).

n

nkkjx
n

b

nkkjx
n

a

n

j
jk

n

j
jk

/2,

12/,...,2,1,sin2

2/,...,1,0,cos2

1

0

1

0

πθ

θ

θ

=

−=⋅=

=⋅=

∑

∑
−

=

−

=

(3.1)

VRFT2

99SP4070E-2 PT II-101

jaax nj πcos
2
1

2
1

2/0 +=

(),sincos
12/

0
∑

−

=
⋅+⋅+

n

k
kk kjbkja θθ

nnj /2,1...,,1,0 πθ =−= (3.2)

This subroutine obtains {nak}, {nbk} or {2xj} corresponding to the left hand side of (3.1) or (3.2),
respectively.

Normalized the results as required.

c. Example

In this example, a one-dimensional Fourier transform (with n terms) and its inverse transform are
calculated, for n≤1024.

C **EXAMPLE**
 DIMENSION A(1026),VW(3584),IVW(1536)
 READ(5,500) N
 READ(5,510) (A(I),I=1,N)
C ----FOURIER ANALYSIS----
 ISN=1
 ISW=0
 CALL VRFT2(A,N,ISN,ISW,VW,IVW,ICON)
 IF(ICON.NE.0)STOP
C ----NORMALIZATION----
 ANOR=2.0/FLOAT(N)
 DO 10 I=1,N+2
 10 A(I)=ANOR*A(I)
 WRITE(6,600) N,(I,A(I),A(I+1),I=1,N+2,2)
C ----FOURIER SYNTHESIS----
 ISN=-1
 ISW=1
 CALL VRFT2(A,N,ISN,ISW,VW,IVW,ICON)
 IF(ICON.NE.0) STOP
C ----NORMALIZATION----
 ANOR=0.5
 DO 20 I=1,N
 20 A(I)=ANOR*A(I)
 WRITE(6,610) N,(I,A(I),I=1,N)
C
 500 FORMAT(I5)
 510 FORMAT(E15.7)
 600 FORMAT(5X,
 * '***FOURIER ANALYSIS OF TERM',I5//
 * (8X,I3,2E16.7))
 610 FORMAT(5X,
 * '***FOURIER SYNTHESIS OF TERM',I5//
 * (8X,I3,E16.7))
 STOP
 END

VRFT2

PT II-102 99SP4070E-2

(4) Method

A discrete real Fourier transform with n terms (where n=2l) is calculated using the fast Fourier
transform (isogeometric type and self-sorting type FFTs) method, suited to a vector processor.

The real Fourier transform can be calculated by assuming the real data {xj} to be complex data
with its imaginary part equal to 0.0, and by applying a discrete complex Fourier transform to the
data.

However in such case, the complex Fourier transform can be done efficiently by taking account of
the characteristics of complex transform.

We now define a complex transform by (4.1).

()ni

nkx
n

j

jk
jk

/2exp,

1,...,1,0,
1

0

πω

ωα

=

−=⋅=∑
−

= (4.1)

If {xj} is real data, relation (4.2) can be satisfied.

1,...,2,1, −==− nk*
kkn αα (4.2)

* represents the complex conjugate.

The result of the real Fourier transform, {ak} and {bk}, and the result of the complex transform,
{αk}, are related as follows:

()
() 12/,...,2,1,

12/,...,2,1,
22 2/2/00

−=−=
−=+=

⋅=⋅⋅=

−

−

nkib
nka

aa

knkk

knkk

nn

αα
αα

αα
 (4.3)

To calculate a real Fourier transform, the complex Fourier transform.

()ni

nkx
n

j

jk
jk

/2exp,

2/...,,1,0,
1

0

πω

ωα

=

=⋅= ∑
−

= (4.4)

should be calculated, followed by application of (4.2) and (4.3).

This subroutine calculates the complex Fourier transform of (4.4) using the fast Fourier transform
method, suited to a vector processor.

For further details on calculating real Fourier transforms by using complex Fourier transforms,
see Method for subroutine RFT, and for details on the fast Fourier transform method for a vector
processor, see Method for subroutine VCFT1.

99SP4070E-2 PT II-103

VSEG2

B61-21-0201 VSEG2, DVSEG2

Eigenvalue and engenvector of real symmetric matrix
(parallel bisection method, reverse iteration method)

CALL VSEG2 (A, N, M, EPST, E, EV, K, VE, IVW, ICON)

(1) Function

This subroutine calculates m number of eigenvalues of an n order real symmetric matrix A in
descending (or ascending) order, using the parallel bisection method. It also calculates
corresponding m number of eigenvectors, using the inverse iteration method. Eigenvectors are
normalized such that ||x||2=1. The result must be such that 1≤m≤n.

(2) Parameters

A.............. Input. Real symmetric matrix A.
Symmetric matrix compression mode.
One-dimensional array of size n(n+1)/2.
The content is altered at output.

N.............. Input. Order n of real symmetric matrix A.
M Input. Number m of eigenvalues to be calculated.

Calculate in descending order when M = +m.
Calculate in ascending order when M = −m.

EPST Input. Upper bound of the absolute errors used in
eigenvalue convergence test. The default value is used when a negative
value is specified. (See note (2).)

E Output. Eigenvalues.
One-dimensional array of size m.
Store in descending order when M is positive and in ascending order when M is
negative.

EV............ Output. Eigenvectors.
Two-dimensional array of EV (K, M).
Eigenvector corresponding to eigenvalue E(J) is stored at EV(I, J),
I=1, ... ,N.

K.............. Input. Conformation size (≥n)for array EV.
VW Work area. One-dimensional array of size 15n.
IVW......... Word area. One-dimensional array of size 7n.
ICON Output. Condition codes

See Table VSEG2-1.

VSEG2

PT II-104 99SP4070E-2

(3) Notes

a. Subprograms used

(1) SSL II: TRID1, UVTG2, TRBK, AMACH, MGSSEL, UVBCT

(2) FORTRAN intrinsic functions: IABS, SQRT, SIGN, ABS, AMAX1

b. Notes

(1) This subroutine is functionally equivalent to subroutine SEIG2, but is designed for high-
speed execution on a vector processor using the parallel bisection method. Note that the
methods of allocating work areas are different in these subroutines.

(2) Default value of the parameter EPST is as expressed by (3.1) when unit round off is u.

λ ()minmax ,maxEPST λλ⋅= u (3.1)

Here, λmax and λmin are the upper and lower bounds of the existence range (given by
Gerschgorin’s theorem) of eigenvalues of Ax = λx.

When very large and small absolute value eigenvalues coexist and a convergence test is
performed using (3.1), it is generally difficult to calculate smaller eigenvalues with
adequate precision. In such cases, smaller eigenvalues may be calculated with higher
precision by setting EPST at a small value (absolute error). However, processing speed
slows down, as the number of iterations increases.

See the section on the method of obtaining the convergence criterion.

Table VSEG2-1 Condition codes

Code Meaning Processing

0 No error −

10000 N=1 Set EV (1, 1)=1.0 and E(1)=A(1).

15000 Some eigenvectors were not
calculated.

Make the uncalculated eigenvectors
zero vectors.

20000 No eigenvectors were calculated. Make all eigenvectors zero vectors.

30000 M=0, N<|M|, or K<N. Bypassed

VSEG2

99SP4070E-2 PT II-105

c. Example

In this example, m number of eigenvalues and their corresponding eigenvectors are calculated for
an n order real symmetric matrix A in descending (or ascending) order.

The following example is for n≤100 and m≤20.

C **EXAMPLE**
 DIMENSION A(5050),E(20),EV(102,20),
 * VW(1500),IVW(700)
 10 READ(5,500,END=900) N,M,EPST
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 WRITE(6,600) N,M
 IJ=0
 DO 20 I=1,N
 IJ=IJ+I
 20 WRITE(6,610) I,(A(J),J=IJ-I+1,IJ)
 CALL VSEG2(A,N,M,EPST,E,EV,102,
 * VW,IVW,ICON)
 WRITE(6,620) ICON
 IF(ICON.GE.20000) GO TO 10
 MM=IABS(M)
 CALL SEPRT(E,EV,102,N,MM)
 GO TO 10
 900 STOP
 500 FORMAT(2I5,E10.2)
 510 FORMAT(5E15.7)
 600 FORMAT('1',//'*** ORIGINAL MATRIX N=',I4,
 * 2X,'M=',I4//)
 610 FORMAT('0',2X,I3,5E15.7/(6X,5E15.7))
 620 FORMAT('0'//'*** ICON= ',I5)
 END

The subroutine SEPRT in this example is used for printing eigenvalues and eigenvectors of real
symmetric matrices. The following illustrates the contents of this subroutine.

 SUBROUTINE SEPRT(E,EV,K,N,M)
 DIMENSION E(M),EV(K,M)
 WRITE(6,600)
 KAI=(M-1)/5+1
 LST=0
 DO 10 KK=1,KAI
 INT=LST+1
 LST=LST+5
 IF(LST.GT.M) LST=M
 WRITE(6,610) (J,J=INT,LST)
 WRITE(6,620) (E(J),J=INT,LST)
 DO 10 I=1,N
 WRITE(6,630) I,(EV(I,J),J=INT,LST)
 10 CONTINUE
 RETURN
 600 FORMAT('1',20X,
 * 'EIGENVALUE AND EIGENVECTOR')

VSEG2

PT II-106 99SP4070E-2

 610 FORMAT('0',5I20)
 620 FORMAT('0',5X,'ER',3X,5E20.8/)
 630 FORMAT(5X,I3,3X,5E20.8)
 END

(4) Method

This subroutine calculates m number of eigenvalues of an n order real symmetric matrix A in
descending (or ascending) order using the parallel bisection method, and their corresponding
eigenvectors using the inverse iteration method.

First, it transforms real symmetric matrix A, using the Householder method, into real symmetric
tridiagonal matrix T shown in Fig. VSEG2-1. This operation is shown by expression (4.1).

H
T
H AQQT = (4.1)

Here, QH is an orthogonal matrix. This operation is performed using the subroutine TRID1.

Next, m number of eigenvalues are calculated by applying the parallel bisection method on
transformed matrix T. Then, the eigenvector for matrix T corresponding to the m eigenvalues are
calculated using the inverse iteration method. This method calculates eigenvectors by repeatedly
solving expression (4.2).

(T − λI)yr = yr-1, r = 1,2,... (4.2)

Note that in (4.2), λ is the eigenvalue calculated by the parallel bisection method and yr is the
iteration vector. The parallel bisection method is explained in later paragraphs. See the section
on subroutine TEIG2 for the inverse iteration method.

Next, calculate the eigenvectors of A. Eigenvector x of A can be calculated by using QH of
equation (4.1) in (4.3), by letting y be the eigenvector of T.

yQx H= (4.3)

This operation is performed using subroutine TRBK.

VSEG2

99SP4070E-2 PT II-107

c2

c1

b3

b2

b2

c3 b4b3

･ ･･

･ ･･

･
cn

bn

bn

･

Figure VSEG2-1 Real symmetric tridiagonal matrix T

Parallel bisection method

The following paragraphs present the calculation of m number of eigenvalues in descending order
to simplify its explanation.

Here, letting λ be a variable and pi(λ) be the value of the leading principle minor of matrix
(T − λI) from the upper left results in the following recurrence relation:

() () ,,1 110 λλλ −== cpp

() () () (),2
2

1 λλλλ −− ×−×−= iiiii pbpcp (4.4)

i=2, 3,..., n

The polynomial sequence p0(λ), p1(λ),..., pn(λ) in (4.4) constitutes a Sturm sequence. Therefore,
if the number of times the codes of consecutive terms p0(λ) through pn(λ) invert is defined as α

(λ), then α (λ) is equal to the number of eigenvalues smaller than λ. The bisection method is a
method of calclating eigenvalues one by one by repeatedly bisecting the eigenvalue existence
interval, applying such theorem. In general, an underflow or overflow can easily occur in the
calculation of (4.4) so that the ploynomial sequence qi(λ) expressed as (4.5) is used for evaluation
to avoid underflows and overflows.

() () ()λλλ 1/ −= iii ppq (4.5)

In this case, the number of times qi(λ) becomes negative is equal to the number of eigenvalues
smaller than λ. In the following paragraph, the number of times qi(λ) becomes negative is defined
as α (λ).

The parallel bisection method applies the bisection method simultaneously on m number of
eigenvalues λj, j = 1, 2, ..., m, by setting an existence interval for each eigenvalue. Now, express

the existence interval for the j-th eigenvalue λj as [])()(, k
j

k
j ba . k is the number of iterations. The

initial existence interval is [])0()0(, jj ba and it is set to satisfy the relation ship of (4.6).

VSEG2

PT II-108 99SP4070E-2

() ,1)0(−= ja jα

() jb j =)0(α (4.6)

The parallel bisection method iterates the following steps (1) through (3) for k=0, 1, 2,... to

sufficiently reduce () ()[]k
j

k
j ba , and approximates the value of λj at its midpoint.

(1) Approximate λj at the midpoint of the interval.

() () ()() mjbah k
j

k
j

k
j ,...,2,1,2/ =+= (4.7)

()() mjh k
j ,...,2,1,0 ==α (4.8)

(2) Evaluate the Sturm sequence qi, i=1, 2, ...n, and obtain the number of times the code becomes negative.

()(),k
ji hq

()() 0<k
ji hq ()() ()() ,1+= k

j
k

j hh αα (4.9)

mj ,...,2,1=

(3) Revise the existence interval.

()() ,1−= jh k
jα

() () () (),, 11 k
j

k
j

k
j

k
j bbha == ++

()() ,jh k
j =α (4.10)

() () () (),, 11 k
j

k
j

k
j

k
j hbaa == ++

mj ,...,2,1=

Eigenvalue convergence criterion and EPST specifying method Convergence test in this
subroutine is performed by (4.11)

() () () ()() EPST2 ++≤− k
j

k
j

k
j

k
j abuab (4.11)

Here, u is the unit round off and EPST is the value specified as the upper bound of absolute errors
for the eigenvalues to be calculated. When the relation expressed by (4.11) is satisfied,

() ()() 2/k
j

k
j ab − is made the j-th eigenvalue λj. EPST has he function to control process

termination at the required precision level. If EPST = 0.0, (4.11) becomes (4.12).

() () () ()()k
j

k
j

k
j

k
j abuab +≤− 2 (4.12)

VSEG2

99SP4070E-2 PT II-109

At this time, bisection is performed repeatedly until the least significant digits of ()k
jb and ()k

ja
are nearly equal. On the other hand, if EPST > 0.0 iteration stops when the specified precision
level is reached. Specification of EPST > 0.0 is specifically require when eigenvalues include a
zero.

When EPST < 0.0 is specified, this subroutine uses the following as the default value.

{ }{ }()minmax ,maxEPST λλ⋅= u

Here, λmax and λmin are the lower bound and upper bound values of the interval that includes all
eigenvalues obtained using the Gerschgorin's theorem.

99SP4070E-2 PT II-111

VSIN1

F16-21-0201 VSIN1, DVSIN1

Discrete sine transform (radix 2 FFT)

CALL VSIN 1 (A, N, TAB, VW, IVW, ICON)

(1) Function

This subroutine calculates discrete sine transform and its inverse transform using the Fast Fourier
Transform (FFT) suited to a vector processor, when n number of samples {xj} obtained by
dividing half a period of an odd-function x (t) of period 2π into n, equal sections as expressed by
(1.1), with n = 2l where l is a positive integer.

() 1,...,1,0, −== njjxx j θ (1.1)

n/, πθ =

a. Sine transform

When {xj} is input, Fourier coefficients {2n･bk} are calculated using the transform defined by
(1.2).

1,...,1,0,sin42
1

0
−=⋅⋅=⋅ ∑

−

=
nkkjxbn

n

j
jk θ (1.2)

n/, πθ =

Note that 00 =x .

b. Sine inverse transform

When {bk} is input, Fourier series values {4･xj} are calculated using the transform defined by
(1.3).

1,...,1,0,sin44
1

0
−=⋅⋅=⋅ ∑

−

=
njkjbx

n

k
kj θ (1.3)

n/, πθ =

Note that b0 = 0

VSIN1

PT II-112 99SP4070E-2

(2) Parameters

A Input. {xj} or {bk}
Output. {2n･bk} or {4･xj}
One-dimensional array of size n+2
See Fig. VSIN 1-1.

N Input. Number of samples n
TAB....... Output. Trigonometric table used by transform is stored.

One-dimensional array of size 2n+4
VW Word area.

One-dimensional array of size max(n(l+1) /2,1)
IVW....... Work area.

One-dimensional array of size n･max(l−4,2) / 2
ICON Output. Condition codes

See Table VSIN1-1.

*

*

xn−1

x3

x2

x1

{xj} {bk}

A (N+2)

A (N+1)

A (N)

A (4)

A (3)

A (2)

A (1)

Array A

*

* *

*

bn−1

b3

b2

b1

Notes:

Same for {2nbk} and {xj}.
* is and arbitrary value during input.
0.0 is set at the time of output.

Figure VSIN1-1 Data storage mode

VSIN1

99SP4070E-2 PT II-113

Table VSIN1-1 Condition codes

Code Meaning Processing

0 No error −

30000 N ≠ 2l (l is a positive integer) Bypassed

(3) Notes

a. Subprograms used

(1) SSLII: VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1, UVFB1, UVFX1,
UBANK, UVTAB, MGSSL

(2) FORTRAN intrinsic functions: ALOG2, SIN, COS, ATAN, IABS, IAND, MOD,
FLOAT

b. Notes

(1) subroutine use

this subroutine performs high-speed calculation of discrete sine transform on a vector
processor. The subroutine FSINT may be more suited on a general-purpose computer.

(2) Multiple transforms

When performing multiple transforms, generation of trigonometric table and list vectors is
omitted in the second and subsequent subroutine calls, resulting in processing efficiency. The
contents of arrays TAB, VW, and IVW must be called without altering them.

Even when the number of terms n for the multiple transforms differs, the previously generated
contents of arrays TAB, VW, and IVW are valid. However, it is preferable to call them in
such a way that transforms with identical number of terms are stringed together to the
maximum extent possible.

VSIN1

PT II-114 99SP4070E-2

(3) Trigonometric table and work array size table

The following shows the sizes for 16 ≤ n ≤ 4096.

l n TAB VW IVW

4
5
6
7
8
9

10
11
12

16
32
64

128
256
512

1024
2048
4096

36
68

132
260
516

1028
2052
4100
8196

40
96

224
512

1152
2560
5632

12288
26624

16
32
64

192
512

1280
3072
7168

16384

(4) General definition of discrete sine transform

Discrete sine transform and its inverse transform are generally defined by (3.1),and (3.2),
respectively.

1,...,2,1,sin2 1

1
−=⋅= ∑

−

=
nkkjx

n
b

n

j
jk θ (3.1)

1,...,2,1,sin
1

1
−=⋅= ∑

−

=
njkjbx

n

k
kj θ (3.2)

This subroutine calculates {2n･bk} or {4･xj }corresponding the left hand sides of (3.1) and
(3.2), respectively. Therefore, normalize the results as required.

c. Example

Input n number of samples {xj} and transform by this subroutine. Then normalize the results and
obtain discrete Fourier coefficients{bk}. Calculate {xj} by proceeding to inverse transformation.
This example is for n ≤ 512.

C **EXAMPLE**
 DIMENSION X(514),TAB(1028),VW(2560),
 * IVW(1280)
 1 READ(5,500) N
 IF(N.EQ.0) STOP
 READ(5,501) (X(I),I=1,N)
C SINE TRANSFORM
 WRITE(6,600) N
 WRITE(6,601) (X(I),I=1,N)
 CALL VSIN1(X,N,TAB,VW,IVW,ICON)
 IF(ICON.NE.0) GO TO 30
C NORMALIZE
 CN=1.0/(2.0*FLOAT(N))

VSIN1

99SP4070E-2 PT II-115

 DO 10 K=1,N
 X(K)=X(K)*CN
 10 CONTINUE
 WRITE(6,602)
 WRITE(6,601) (X(I),I=1,N)
C SINE INVERSE TRANSFORM
 CALL VSIN1(X,N,TAB,VW,IVW,ICON)
 IF(ICON.NE.0) GO TO 30
C NORMALIZE
 CN=0.25
 DO 20 K=1,N
 X(K)=X(K)*CN
 20 CONTINUE
 WRITE(6,602)
 WRITE(6,601) (X(I),I=1,N)
 GO TO 1
 30 WRITE(6,603) ICON
 GO TO 1
 500 FORMAT(I5)
 501 FORMAT(6F12.0)
 600 FORMAT('0',5X,'INPUT DATA N=',I5)
 601 FORMAT(5F15.7)
 602 FORMAT('0',5X,'OUTPUT DATA')
 603 FORMAT('0',5X,'CONDITION CODE',I8)
 END

(4) Method

Consider calculating discrete sine transform of n terms (=2l, l = 1, 2,...) using the Fast Fourier
Transform (FFT) suited for a vector processor.

Discrete sine transform is generally expressed by (4.1), when samples{xj}, j=0,1, ... ,n−1, are
given.

()θkjx
n

b
n

k
jk sin2 1

1
⋅= ∑

−

=

1,...,1,0, −= nj (4.1)

, /θ π= n

Now the samples are an odd-function and the relation expressed by (4.2) exists when extended to
one period.

1,...,1,0,2 −=−=− njxx jjn

0, and 0 == nxx (4.2)

Therefore, nbb ~0 can be calculated by extending 10 ~ −nxx to 10 ~ −2nxx and performing 2n
term (discrete real fourier transform.
It is well known that efficient transformation can be achieved by taking advantage of the
symmetry of (4.2), in this case.

Now, perform following preprocessing on the samples{xj}:

VSIN1

PT II-116 99SP4070E-2

() () () 1,...,1,0,sin
2
1 −=+⋅+−⋅= −− nJxxjxxd jnjjnjj θ (4.3)

At this point, substituting of discrete sine inverse transform (4.4) into (4.3) results in (4.5).

() 1,...,1,0,sin2 1

1
−=⋅= ∑

−

=
njkjx

n
b

n

k
jk θ (4.4)

() () ()[] ()∑
−

=
−−+ ⋅−−⋅⋅+⋅⋅−+=

12/

1
1212121 12sin2cos

n

k
n

j
kkkj bkjbkjbbbd θθ (4.5)

1,...,1,0, −= nj

Expression (4.5) is equivalent to an n term discrete real Fourier transform with Fourier
coefficients of {b2k+1 − b2k-1} and {b2k}. Thus, calculation of Fourier coefficients { ka~ } and { kb

~
}

for the samples {dj} will enable obtaining of {bk} using the identities:

1212
~

−+ −= kkk bba

kk bb 2
~

=

In other words, {bk} is calculated using (4.6) which follows.

,~2/1,~2/1 2/101 nn abab ⋅−=⋅= −

,
~

2 kk bb =

12/,...,1,~
1212 −=+= −+ nkabb kkk

 (4.6)

The last expression in (4.6) is a recurrence formula and is unsuitable for a vector processor.
Therefore, this subroutine is designed as a vector processor suited algorithm by back tracing these
calculations, which avoids performing reference calculation, taking advantage of the fact that
discrete sine transform and its inverse transform are identical expressions, except for the
normalization constants.

Refer to reference [8] for details on this algorithm.

99SP4070E-2 PT II-117

VSLDL

A22-61-0202 VSLDL, DVSLDL

LDLT decomposition of a positive definite
symmetric matrix

CALL VSLDL(A, N, EPSZ, VW, IVW, ICON)

(1) Function

This subroutine decomposes an n × n positive definite symmetric matrix A into LDLT using the
modified Cholesky’s method:

A = LDLT (1.1)

Where L is a unit lower triangular matrix, D is a diagonal matrix, and n ≥ 1.

The function of this subroutine is similar to that of subroutine SLDL, but the coefficient matrix is
stored differently, and this subroutine is more suited to a vector processor.

(2) Parameters

A Input. Coefficient matrix A
Output. Matrices L and D -1
The lower triangular portion of the symmetric matrix is stored column by column,from
the first to the n-th column, in a one-dimensional array of size
n(n+1)/2, as shown in Figure VSLDL-1.

N Input. Order n of matrix A
EPSZ.... Input. Tolerance for relative zero test of pivots (≥0.0)

When EPSZ=0.0, a standard value is used.
(See Note (2).)

VW....... Work area. One- dimensional array of size 2n
IVW Work area. One-dimensional array of size n
ICON.... Output. Condition code

See Table VSLDL-1.

VSLDL

PT II-118 99SP4070E-2

a41

a31

a21

a22

a41

a31

a21

a11
a11

a42

a32

a22

Fourth
column

Third
column

Second
column

First
column

NT

Input

Output

Array A

Array A

NT=n(n+1)/2

⇐ ⇐ ⇐

⇐ ⇐ ⇐

⇒ ⇒ ⇒

a44a43

a33

a44

a43

a33

a42

a32

d2
-1

l41

l31

l21

d1
-1

d4
-1

a43

d3
-1

l42

l32

l41

l31

l21

1

l42

l32

0
1

1l43

1

0

d1
0

d2

d4

d3

Fourth
column

Third
column

Second
column

First
column

Figure VSLDL-1 Storage method of a symmetric matrix

VSLDL

99SP4070E-2 PT II-119

Table VSLDL-1 Condition codes

code Meaning Processing

0 No error −
10000 Pivot became negative.

Coefficient matrix is not positive definite.
Continued

20000 Pivot became smaller than relative zero value.
Coefficient matrix might be singular.

Bypassed

30000 N<1 or EPSZ < 0.0 Bypassed

(3) Notes

a. Subprograms used

(1) SSL II: AMACH, MGSSL

(2) FORTRAN intrinsic functions:ABS

b. notes

(1) This subroutine is designed to speed up processing on a vector processor by using a different
matrix storage method than the one used in subroutine SLDL. Note how the storage methods
and calling sequences of the two subroutines differ.

(2) Suppose that 10-s was given as the tolerance value for relative zero test EPSZ. This value has
the following meaning: if the pivot value loses more than S sihnificant digits during LDLT
decomposition in the modified Cholesky’s method, the value is assumed to be zero and
decomposition processing is discontinued with ICON = 20000. The standard value of EPSZ
is normally 16u, where u is the unit round off.

Processing can be continued by assigning the smallest value to EPSZ, even when the pivot
value becomes smaller than the standard value. However, the calculation result may not be as
accurate as desired.

(3) If the pivot value becomes negative during decomposition, it means that the coefficient matrix
is nor longer positive definite. ICON = 10000 is set, and processing continues. Note,
however, that the resulting calculation error may be significant, because no pivoting operation
is performed.

(4) To obtain the determinant of the coefficient matrix, multiply all the n diagonal elements of
array A (i.e., diagonal elements of D-1) afer calculations are completed, and take the reciprocal
of the result.

VSLDL

PT II-120 99SP4070E-2

b. Example

An n × n matrix is input, an LDLTdecomposition is performed for n ≤ 100.

C **EXAMPLE**
 DIMENSION A(5050),VW(200),IVW(100)
 10 READ(5,500) N
 IF(N.EQ.0) STOP
 NT=N*(N+1)/2
 READ(5,510) (A(I),I=1,NT)
 WRITE(6,630)
 IS=1
 IE=N
 DO 20 J=1,N
 WRITE(6,600) J,(A(I),I=IS,IE)
 IS=IE+1
 20 IE=IE+(N-J)
 CALL VSLDL(A,N,1.0E-6,VW,IVW,ICON)
 WRITE(6,610) ICON
 IF(ICON.GE.20000) GO TO 10
 WRITE(6,640)
 IS=1
 IE=N
 DET=1.0
 DO 30 J=1,N
 WRITE(6,600) J,(A(I),I=IS,IE)
 DET=DET*A(IS)
 IS=IE+1
 30 IE=IE+(N-J)
 DET=1.0/DET
 WRITE(6,620) DET
 GO TO 10
 500 FORMAT(I5)
 510 FORMAT(5E15.7)
 600 FORMAT(' ',I5/(10X,5E16.8))
 610 FORMAT(/10X,'ICON=',I5)
 620 FORMAT(//10X,
 *'DETERMINANT OF MATRIX=',E16.8)
 630 FORMAT(/10X,'INPUT MATRIX')
 640 FORMAT(/10X,'DECOMPOSED MATRIX')
 END

(4) Method

LDLT decomposition using the modified cholesky’s method is explained in Method for subroutine
SLDL. This subroutine, however, is well suited to a vector processor, because decomposition is
basically treated as calculation of a matrix-vector product.

In addition, the coefficient matrix storage method is very important. In order to perform efficient
vector processing, the lower triangular portion of the coefficient matrix is stored column by
column.

VSLDL

99SP4070E-2 PT II-121

In LDLT decomposition of a positive define symmetric matrix,

TLDLA = (4.1)

We define ~L such that LDL =~ . For)(ijlL = and)(diag idD = , ~L is of the following form:

･

･

dnln2d2ln1d1

l31d1

l21d1

d1

･

･

･

･

･

L=

0

･

･ ･

･

･

d3l32d2

d2

～

 (4.2)

During decomposition processing, this subroutine stores the subsets of elements of the coefficient
matrices A, ~L , L and D -1 in one-dimensional array A, but at the end of decomposition, it stores
only the elements of L and D -1.

Figure VSLDL-2 shows the contents of array A at the r-th stage of the decomposition (where
r =2,3,..., n) In the diagram, array A is depicted in the form of the lower triangular portion of a
matrix. Elements marked by X are the L elements obtained so far, *’s are D -1 elements, ○○○○’s are
~L elements,and ’s are the elements of coefficient matrix A. (Mr and ar are defined in the

following paragraph (2).)

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

X
X
X
X
X
X

*
*

*
*

*
*

*

X
X
X
X
X

X
X
X
X

X
X
X

ar

Mr

Array A r-th row

r-th column

XX
X

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

Figure VSLDL-2 Contens of array A

VSLDL

PT II-122 99SP4070E-2

At the stage, the following calculations are performed:

(1) The r-th row of L is determined from the r-th row of array A as follows. Because the r-th row
of array A is (lr1d1, lr2d2 ,..., lr,r-1dr-1, arr),

lrj is readily obtained.

lrj=(jrj dl) =− jd j ,1 1,2,3,...,r−1 (4.3)

These elements are temporarily stored in work array VW.

(2) The r-th column of ~L determined by updating the r-th column of array A. This calculation,
which is the main part of this method, is basically calculation of a matrix-vector product.

We now introduce several symbols. First, let rl
~

 be the r-th column vector of ~L that is to be
determined, i.e.,

T
,2,1),...,,,(

~
rnrrrrrrrrr dldldldl ++= (4.4)

Next, let vector lr, matrix Mr, and vector ar be defined as follows:

T
1,21),...,,(−= rrrrr llll (4.5)

















⋅⋅⋅

⋅⋅⋅
=

−−

−−

11,11

11,11

::

rrnn

rrrr

r

dldl

dldl
M (4.6)

T
,1),...,,(nrrrrrr aaaa += (4.7)

lr , obtained in (1) above, is the r-th row vector of L, Mr is a submatrix of ~L , and ar is the r-th
column of coefficient matrix A. (See Figure VSLDL-2.)

The vectors and matrices defined above are related as follows:

[]















⋅⋅⋅=

1

~
:

r
rrr

l
lMa

Therefore,

rrrr lMal −=
~

 (4.8)

can be obtained, which means that rl
~

 is basically calculated from a matrix-vector product.
This calculation is well suited to a vector processor.

(3) Last, we update the r-th row of array A using the r-th row of L, and store 1−
rd as diagonal

elements. For the above update, { rjl ; j = 1,2,..., r −1} that have been saved in array VW are

copied into the r-th row of array A. To store 1−
rd , take the reciprocal of dr and store it, since

it is the first element of rl
~

 obtained in

VSLDL

99SP4070E-2 PT II-123

(2) above. dr is checked here to see if the coefficient matrix is nonsingular and positive definite.

The above explanation concerns the r-th stage. By repeating (1), (2), and (3) above for r=2,3,...,n,
array A will contain the lower triangular portion of matrix L (except for diagonal element 1’s) and
the inverse of diagonal matrix D.

99SP4070E-2

APPENDIXES

99SP4070E-2 A-1

APPENDIX A ALPHABETIC GUIDE FOR EXTENDED SUBROUTINES

A.1 General Subroutines

Subroutine Classification code Subprograms used

VALU A22-71-0202 AMACH
VCFT1
VCFT2
VLDLX
VCOS1

VGSG2

F16-15-0201
F16-15-0301
A22-61-0302
F16-11-0201

B62-21-0201

UVTB1, UVF91, UVFA1, UVFB1, UVFX1, UBANK
UVTB2, UVF92, UVFA2, UVFB2, UVFX2, UBANK

VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1,
UVFB1, UVFX1, UBANK, UVTAB
GSCHL, TRID1, TRBK, GSBK, UVTG2, UCHLS,
AMACH, UVBCT

VLAX A22-61-0101 VALU,LUX,AMACH
VLSX
VLTX
VLTX1
VLTX2
VLTX3

A22-61-0101
A62-11-0101
A62-21-0101
A62-31-0101
A62-41-0101

AMACH,VSLDL,VLDLX
AMACH
AMACH
AMACH

VLUIV A22-71-0602
VMGGM
VRFT1

VRFT2

VSEG2
VSIN1

VSLDL

A61-11-0301
F15-31-0201

F15-31-0301

B61-21-0201
F16-21-0201

A22-61-0202

VCFT1, UVRFT, UVTB1, UVF91, UVFA1, UVFB1,
UVFX1, UBANK
VCFT2, UVRFT, UVTB2, UVF92, UVFA2, UVFB2,
UVFX2, UBANK
TRID1, UVTG2, TRBK, AMACH, UVBCT
VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1,
UVFB1, UVFX1, UBANK, UVTAB
AMACH

APPENDIX

A-2 99SP4070E-2

A.2 Slave Subroutines

Slave routine Calling subroutine

UBANK
UVBCT
UVFA1
UVFA2
UVFB1
UVFB2
UVFX1
UVFX2
UVF91
UVF92
UVTAB
UVRFT
UVTB1
UVTB2
UVTG2

VCFT1, VRFT1, VCFT2, VRFT2, VCOS1, VSIN1
VGSG2, VSEG2
VCFT1, VRFT1, VCOS1, VSIN1
VCFT2, VRFT2
VCFT1, VRFT1, VCOS1, VSIN1
VCFT2, VRFT2
VCFT1, VRFT1, VCOS1, VSIN1
VCFT2, VRFT2
VCFT1, VRFT1, VCOS1, VSIN1
VCFT2, VRFT2
VCOS1, VSIN1
VRFT1, VRFT2, VCOS1, VSIN1
VCFT1, VRFT1, VCOS1, VSIN1
VCFT2, VRFT2
VGSG2, VSEG2

99SP4070E-2 B-1

APPENDIX B CLASSIFICATION CODES AND SUBROUTINES

Linear Algebra

Classification code Subroutine

A22-61-0101
A22-61-0202
A22-61-0302

VLSX
VSLDL
VLDLX

A22-71-0202
A22-71-0101
A22-71-0602

VALU
VLAX
VLUIV

A61-11-0301
A62-11-0101
A62-21-0101
A62-31-0101
A62-41-0101

VMGGM
VLTX

VLTX1
VLTX2
VLTX3

Eigenvalues and Eigenvectors

Classification code Subroutine

B61-21-0201
B62-21-0201

VSEG2
VGSG2

Transform

Classification code Subroutine

F15-31-0201
F15-31-0301
F16-11-0201
F16-21-0201
F16-15-0201
F16-15-0301

VRFT1
VRFT2
VCOS1
VSIN1
VCFT1
VCFT2

99SP4070E-2 C-1

APPENDIX C REFERENCES

[1] Stone, H. S.
Parallel Tridiagonal Equation Solvers,
ACM Trans. on Math. Soft., Vol. 1, No. 4, 1975,
pp. 289-307

[2] Temperton, C.
Fast Fourier Transforms and Poisson
solvers on CRAY-1
INFOTECH, 1979

[3] Hiraiwa,K.
The modified cyclic reduction algorithm for solving a system of
linear equations with a tridiagonal matrix on the parallel computer.
Transactions of Information Processing Society of Japan,
Vol.20, No.2, 1979, pp.190-193 (Japanese only)

[4] Hiraiwa,K.
The new parallel calculation method for FFT on the pipeline computer
which has the bit vector and the indirect vector.
Transactions of Information Processing Society of Japan,
Vol.21, No.2, 1980 (Japanese only)

[5] Mikami,J., Ina,H., Akita,T. and Yamashita,S.
The FFT algorithm on the vector computer.
The 28th IPSJ National Conference, 1984 (Japanese only)

[6] Matsuura,T. and Miura,K.
The data editing function of the super computer and the improvement
of the FFT performance.
The 28th IPSJ National Conference, 1984 (Japanese only)

[7] Akita,T., Mikami,J., Ina,H. and Yamashita,S.
The solver of a system of linear equations with a tridiagonal matrix
on the vector computer.
The 28th IPSJ National Conference, 1984 (Japanese only)

[8] Swarztrauber, P.N.
Vectorizing the FFTs,
Parallel Computations,
Academic Press, 1982, pp. 51-83

[9] Forsythe. G.E. and Moler, C.B.
Computer Solution of Linear Algebraic Systems,
Prentice-Hall, Inc., 1967

[10] Bowdler, H.J., Martin, R.S. and Wilkinson, J.H.
Solution of Real and Complex Systems of Linear Equations, Linear Algebra,
Handbook for Automatic Computation, Vol. 2, pp. 93-110,
Springer-Verlag, Berlin-Heidelberg-New York, 1971

APPENDIX

C-2 99SP4070E-2

[11] Parlett, B.N. and Wang, Y.
The Influence of The Compiler on The Cost of Mathematical Software-in Particular on
The Cost of Triangular Factorization,
ACM Transactions on Mathematical Software, Vol. 1, No. 1, pp. 35-46, March, 1975

[12] P. AMESTOY, M. DAYDE and I. DUFF
Use of computational kernels in the solution of full and sparse linear equations M.
COSNARD, Y. ROBERT, Q. QUINTON and M. RAYNAL, PARALLEL &
DISTRIBUTED ALGORITHMS,
North-Holland, 1989, pp. 13-19

[13] Shimasaki,M.
Supercomputer and Programming.
Kyoritsu Shuppan Co., 1989 (Japanese only)

99SP4070E-2 IN-1

INDEX

B

backward substitution PTII-42, PTII-47,

PTII-54
bisection method PTII-107
blocking LU-decomposition method PTII-1,

PTII-35
butterfly operation PTII-12
butterfly stage PTII-12

C

component subroutine PTI-3
constant-tridiagonal matrix PTI-5
constant-tridiagonal matrix of Dirichlet type

PTI-5
constant-tridiagonal matrix of Neumann type

PTI-5
constant-tridiagonal matrix of periodic type

PTI-5
cosine transform PTII-23
cyclic reduction PTII-69, PTII-76
cyclic reduction method PTI-5, PTII-53,

PTII-60, PTII-70, PTII-76

D

discrete complex Fourier transform PTII-7,

PTII-17
discrete fourier transform PTII-115
discrete real Fourier transform PTII-28,

PTII-89, PTII-97

E

eigenvalue PTII-29, PTII-103
eigenvalue problem PTI-7
eigenvector PTII-29, PTII-103
even-function PTII-23

F

FFT PTII-7, PTII-12, PTII-17, PTII-23,

PTII-89, PTII-97
forward and backward substitution

PTII-47
fourier transform PTI-9

G

general eigenvalue problem PTII-29
Gerschgorin′s theorem PTII-31, PTII-104

H

high performance PTII-7, PTII-89
high-performance subroutine PTI-9

I

in-place type PTII-12
inverse iteration method PTII-29, PTII-106
inverse real general matrix PTI-3
irreducibly diagnonally dominant PTI-4
isogeometric PTII-12
isogeometric method PTII-21

L

LDL decomposition PTII-121
LDLT decomposition PTII-41, PTII-42
linear algebra PTI-3
list vector PTI-9, PTII-13

M

memory efficient PTII-17, PTII-97
memory interleave number PTI-10
memory-efficient subroutine PTI-9
modified cholesky′s method PTII-46,

PTII-120
multi-dimensional Fourier transform

PTII-11, PTII-93
multiplication of two matrices vii

INDEX

IN-2 99SP4070E-2

N

not-in-place type PTII-12

O

odd-function PTII-111
orthogonal similarity transformation

PTII-33

P

parallel bisection method PTII-29, PTII-
103,

PTII-107
positive definite symmetric coefficient
matrix

PTII-39
positive definite symmetric matrix PTII-
29,

PTII-43, PTII-117, PTII-121
principle minor of matrix PTII-107

R

real symmetric matrix PTII-29, PTII-103

real symmetric tridiagonal matrix
PTII-33, PTII-106

reverse iteration method PTII-103
rotation factor PTI-9, PTII-12, PTII-13

S

self-sorting PTII-12
self-sorting method PTII-21
sine transform PTII-111
SSL II extended capability PTI-1
Sturm sequence PTII-107

T

tridiagonal matrix PTI-4, PTII-49
tridiagonal matrix equation PTII-49,

PTII-57, PTII-65, PTII-73

V

vector algorithm PTI-1
vector processor PTI-1

	FUJITSU SSL II EXTENDED CAPABILITIES USER'S GUIDE
	PREFACE
	CONTENTS
	ILLUSTRATIONS
	SUBROUTINE LIST OF SSL II EXTENDED CAPABILITIES
	Linear Equations
	Eigenvalues and Eigenvectors
	Fourier Transforms

	PART I GENERAL DESCRIPTION
	CHAPTER 1 OUTLINE
	1.1 Extended Capabilities
	1.2 Structure of Extended Capabilities
	1.3 Selection between Extended and Standard Capabilities

	CHAPTER 2 LINEAR ALGEBRA
	2.1 Outline
	2.2 Notes
	2.3 Subroutine Selection

	CHAPTER 3 EIGENVALUES AND EIGENVECTORS
	3.1 Outline
	3.2 Notes

	CHAPTER 4 FOURIER TRANSFORMS
	4.1 Outline
	4.2 Notes

	PART II USAGE OF SUBROUTINES
	VALU, DVALU
	VCFT1, DVCFT1
	VCFT2, DVCFT2
	VCOS1, DVCOS1
	VGSG2, DVGSG2
	VLAX, VDLAX
	VLDLX, DVLDLX
	VLSX, DVLSX
	VLTX, DVLTX
	VLTX1, DVLTX1
	VLTX2, DVLTX2
	VLTX3, DVLTX3
	VLUIV, VDLUIV
	VMGGM, DVMGGM
	VRFT1, DVRFT1
	VRFT2, DVRFT2
	VSEG2, DVSEG2
	VSIN1, DVSIN1
	VSLDL, DVSLDL

	APPENDIXES
	APPENDIX A ALPHABETIC GUIDE FOR EXTENDED SUBROUTINES
	APPENDIX B CLASSIFICATION CODES AND SUBROUTINES
	APPENDIX C REFERENCES

	INDEX

