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PREFACE 
 

This manual describes the extended capabilities of the Scientific Subroutine Library II (SSL II). 

SSL II consists of standard and extended capabilities.  Standard capabilities, explained in 
FUJITSU SSL II User's Guide, are provided for a wide range of scientific calculations performed 
on general-purpose computers.  Extended capabilities are provided for high-speed scientific 
calculations on FUJITSU VP Series vector processors. 

This manual is organized as follows: 

 

PART I     GENERAL DESCRIPTION 

Functions are outlined for individual fields and subroutine selection is explained. 

PART II     USAGE OF SUBROUTINES 

The usage of subroutines is discussed.  Subroutines are listed in alphabetical order. 

For SSL II conventions and standard subroutines, refer to the following manual: 

FUJITSU SSL II User's  Guide 

The asterisk in the table of contents of this manual indicate items added or changed from the 
previous edition (manual code 99SP4070E-1). 
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SUBROUTINE LIST OF SSL  II EXTENDED CAPABILITIES 

Linear Equations 
 

Subroutine 
name Item 

VMGGM Multiplication of two matrices (real general by real general) 

VLSX A system of linear equations with a positive definite symmetric matrix (modified 
Cholesky's method) 

VSLDL LDLT decomposition of a positive definite symmmetric matric (modified Cholesky's 
method) 

VLDLX A system of linear equations with a positive definite symetric matrix decomposed into 
L, D, and LT 

VLTX A system of linear equations with a real tridiagonal matrix (cyclic reduction method) 

VLTX1 A system of linear equations with a real constant-tridiagonal matrix (Dirichlet type, 
cyclic reduction method) 

VLTX2 A system of linear equations with a real constant-tridiagonal matrix (Neumann type, 
cyclic reduction method) 

VLTX3 A system of linear equations with a real constant-tridiagonal matric (periodic type, 
cyclic reduction method) 

VLAX A system of linear equations with a real general matrix (blocking LU-decomposition 
method) 

VALU LU-decomposition of a real general matrix (blocking LU-decomposition method) 

VLUIV The inverse of a real general matrix decomposed into the factors L and U 
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Eigenvalues and Eigenvectors 
 

Subroutine 
name 

Item 

VSEG2 Selected eigenvalues and corresponding eigenvectors of a real symmetric matrix (Parallel 
bisection and inverse iteration methods) 

VGSG2 Selected eigenvalues and corresponding eigenvectors of a real symmetric generalized 
matrix system Ax=λBx (Parallel bisection and inverse iteration methods) 

 
 
Fourier Transforms 
 

Subroutine 
name 

Item 

VCOS1 Discrete cosine transform (radix 2 FFT) 

VSIN1 Discrete sine transform (radix 2 FFT) 

VRFT1 Discrete real Fourier transform (high performance type, radix 2 FFT) 

VRFT2 Discrete real Fourier transform (memory efficient type, radix 2 FFT) 

VCFT1 Discrete complex Fourier transform (high performance type radix 2 FFT) 

VCFT2 Discrete complex Fourier transfrom (memory efficient type radix 2 FFT) 
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CHAPTER 1     OUTLINE 

1.1 Extended Capabilities 

Scientific computations often require the solution of a variety of mathematical models in areas 
such as fluid dynamics, structural analysis, molecular science, and nuclear fusion.  As these 
problems become more difficult and complicated, they require faster calculations.  The vector 
processor helps to meet this need by incorporating a different architecture than that of a general-
purpose computer, enabling it to perform high-speed calculations for mathematical models, such 
as special algorithms for numerical analysis. 

SSL II extended capabilities perform high-speed calculations on a vector processor.  Algorithms 
have been selected to maximize hardware efficiency.  Capabilities in the FUJITSU SSL II User's 
Guide  (99SP4020E-1) are called SSL II standard capabilities in this manual.  Standard 
capabilities perform a wide range of calculations on general-purpose computers. 

In this manual, the term SSL II is used to refer to both the standard and extended capabilities. 

1.2 Structure of Extended Capabilities 

Extended capabilities are divided into two groups (Fig. 1.1).  Group 1, which are modifications of 
SSL II standard subroutines, use vector algorithms, and are provided for high-speed processing on 
a vector processor.  Extended capabilities use different algorithms than those in the standard 
subroutines.  Data is stored differently in array areas, and more work array space is allocated for 
high-speed processing.  Thus, user interfaces differ from those of the corresponding standard 
capabilities.  Also, most standard capabilities provided for a vector processor have been tuned up 
for vector processor to some extent without changing any user interface.  In other words, group 1 
can be defined as a set of subroutines that perform high-speed calculations on a vector processor, 
using different user interfaces than  the standard capabilities. 

Group 2 provides capabilities for large scale computational problems which are not included in 
the SSL II standard capabilities.  In this group, vector algorithms are also used. 
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SSL II standard
capabilities

SSL II extended
capabilities

Capabilities
Group 2

Group 1

High performance

 
Figure  1.1     Structure of extended capabilites 

1.3 Selection between Extended and Standard Capabilities 

SSL II is provided for both general-purpose computers and vector processors.  Therefore, user 
programs calling SSL II can be executed on both type of computers without any modification to 
the call statements. 

Group 1 contains subroutines with functions similar to those of standard subroutines.  For the 
purpose of computational efficiency, the user is recommended to select appropriate subroutines 
between standard and extended capabilities in the following way, when using both general-
purpose computers and vector processors. 

(1) When a program that calls subroutines of standard capabilities is executed on a vector 
processor and if the corresponding subroutines are provided in group 1, it is preferable to 
modify the program to employ the latter ones. 

(2) When a program that calls subroutines in group 1 is executed on a general-purpose computer, 
the program had better be modified to call the corresponding subroutines in standard 
capabilities.  When a general-purpose computer is used only for debugging, no program 
changes are needed. 

The correspondence between group 1 and standard capabilities is explained in the introductory 
chapter for each field. 

Changing the SSL II subroutine call statements in a user program takes time, but it is necessary in 
order to improve processing efficiency. 

These changes should not affect the accuracy calculations.  The vector algorithms used in SSL II 
enable highly accurate calculations. 
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CHAPTER 2     LINEAR ALGEBRA 

2.1 Outline 

This chapter describes subroutines in linear algebra. 

Subroutines of the extended capabilities in this area are listed in Table 2.1 along with the 
corresponding subroutines from the standard capabilities. 

Table  2.1   Subroutines in linear algebra 

Functions Extended 
capabilities 

Standard 
capabilities 

Multiplication of two matrices VMGGM MGGM 

A system of linear equations with a positive definite symmetric 
matrix 

VLSX 
(VSLDL) 
(VLDLX) 

LSX 
(SLDL) 
(LDLX) 

A system of linear equations with a tridiagonal matrix VLTX 
VLTX1 
VLTX2 
VLTX3 

LTX 
LSTX 

A system of linear equations with a real general matrix and the 
inverse of a real general matrix 

VLAX 
(VALU) 
(VLUIV) 

LAX 
(ALU) 
(LUIV) 

 
The subroutines in parentheses in Table 2.1 are component subroutines.  For example, VSLDL is 
used to perform LDLT decomposition of a positive definitive symmetric matrix, and VLDLX is 
used to obtain a solution based on the decomposed matrices.  Both VSLDL and VLDLX are 
component subroutines of VLSX. 

All subroutines use vector algorithms so that they can be executed efficiently on a vector 
processor.  The use of these subroutines and the selection of appropriate subroutines are 
explained in the following sections. 

2.2 Notes 

Subroutines of the extended capabilities employ different user interfaces from those of the 
corresponding subroutines of the standard capabilities.  Two major differences are as follows: 
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(1) Storage modes of a positive definite symmetric matrix and a tridiagonal matrix are different 
from those in the standard capabilities. 

(2) Subroutines of the extended capabilities use a larger work area than those of the standard 
capabilities. 

These differences enable memory to be accessed more efficiently when a vector algorithm is 
constructed.  Care should be taken when a subroutine call is changed between the extended and 
standard capabilities. 

2.3 Subroutine Selection 

As listed in Table 2.1, there are four subroutines for linear equations with tridiagonal matrices, 
each of which handles a different matrix form. 

The tridiagonal matrix treated by any of four subroutines is required to be irreducibly diagonally 
dominant for the algorithm used to be numerically stable.  The term irreducibly diagonally 
dominant means that the tridiagonal matrix satisfies condition (2.2) when it is of the form (2.1).   
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|di| ≥ |ei| + |fi|, i = 1, 2, ... , n, and a strict inequality is (2.2) 
satisfied for at least one i, where e1 = fn = 0.  
 

The tridiagonal matrices arising from actual applications usually satisfy the condition (2.2) 

A subroutine from the standard capability should be used when the matrix does not satisfy the 
processing condition. 

The first subroutine VLTX is the most commonly used subroutine with matrix form (2.1).  
However, VLTX1 is a limited version of VLTX, and handles only matrix form (2.3) below. 
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As shown in (2.3), a matrix whose element values do not depend on the row or column is called a 
constant-tridiagonal matrix.  More specifically, this matrix is called a constant-tridiagonal matrix 
of Dirichlet type, because it is related to a specific type of Dirichlet boundary value problem. 

The matrix used in subroutines VLTX2 and VLTX3 is a modified version of the matrix in (2.3).  
The matrix used in VLTX2 contains the element 2e in the first row and the second column, or in 
the n-th row and (n-1) th column, and is called a constant-tridiagonal matrix of Neumann type.  
Subroutine VLTX3 uses a matrix in which the first row and the n-th column element, and the n-th 
row and the first column element take e.  This matrix is called a constant-tridiagonal matrix of 
periodic type.  These matrices are all derived from boundary value problems of differential 
equations. 

The algorithm used in the above subroutine is the cyclic reduction method, which is suited for 
vector processors.  This method requires larger amount of arithmetic operations than the Gaussian 
elimination method.  However, the cyclic reduction method presents much greater parallelism 
which is important factor for efficiency in vector processing.  Also, for irreducibly diagonally 
dominant matrices, the cyclic reduction method has the same degree of accuracy as the Gaussian 
elimination method. 

Subroutines VLTX1 and VLTX2 can perform calculations at a higher speed than VLTX , because 
the matrix forms in these subroutine are less complicated. 
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CHAPTER 3     EIGENVALUES AND EIGENVECTORS 

3.1 Outline 

This chapter addresses the subject of matrix eigenvalue problems.  Table 3.1 shows subroutines 
provided as extended capabilities, along with their corresponding standard capability subroutine 
names. 

Table  3.1     Subroutines for eigenvalue problems 

 

Problem type 

 

Matrix type 

Extended 
capability 
subroutine 
name 

Standard 
capability 
subroutine 
name 

Ax = λx A: Real symmetric matrix VSEG2 SEIG2 

Ax = λBx A: Real symmetric matrix 
B: Positive definite symmetric matrix 

VGSG2 GSEG2 

 
 

3.2 Notes 

Extended capability subroutines use computational methods, in which specified m partial 
eigenvalues are simultaneously calculated using the parallel bisection method.  Therefore, there 
are differences such as the work area allocation between the extended and standard capabilities.  
Accordingly, parameter modification is required to change from standard capability subroutine 
calling to extended capability subroutine calling. 
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CHAPTER 4     FOURIER TRANSFORMS 

4.1 Outline 

This chapter describes subroutines in discrete Fourier transforms.  Subroutines of the extended 
capabilities in this area are listed in Table 4.1 along with the corresponding subroutines from the 
standard capabilities. 

Table  4.1     Discrete Fourier transform subroutines 

Transform Size of data Extended 
capabilities 

Characteristics Standard 
capabilities 

Real Power of 2 VRFT1 High performance RFT
transform  VRFT2 Memory efficient  
Complex Power of 2 VRFT1 High performance CFT 
transform  VCFT2 Memory efficient  
Cosine  
transform  

Power of 2 VCOS1 − FCOST 

Sine 
transform  

Power of 2 VSIN1 − FSINT 

 
 
4.2 Notes  

(1) Selection between extended and standard capabilities 

The user should use subroutines of the standard capabilities corresponding to routines of the 
extended capabilities in Table 3.1 to calculate discrete Fourier transforms on a general-
purpose computer. 

Although subroutines of the extended capabilities can also be used on a general-purpose 
computer, subroutines of the standard capabilities are more efficient. 

(2) High -performance and memory-efficient subroutines 

High-performance subroutines are used to calculate multiple sets of transforms.  These 
subroutines are designed for high-speed calculation by saving in work arrays, the rotation 
factor (trigonometric function table) and the list vector, both of which can be utilized for the 
series of transforms.  Therefore, high-performance subroutines require more space for work 
arrays VW and IVW. 

When only a single transform is calculated, memory-efficient subroutines should be used. 
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(3) Effective use of single precision arithmetic routine 

The algorithm for single precision arithmetic routine takes account of memory interleave 
number in order to fully extract the potential power of the vector processor.   User can inform 
the memory interleave number to SSL II through following function. 

Function Initial set of memory interleave number 

Calling CALL SETBNK (INTER) 

 
INTER is input parameter to be specified the interleave number. 

User's program can obtain the best performance by calling the above routine in advance of 
calling Fourier transform routine of single precision arithmetic routine. 

If user's program does not call the above routine, SSL II assumes that the interleave number is 
64. 
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PART II     USAGE OF SUBROUTINES 
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VALU 

 

A22-71-0202 VALU, DVALU 

LU-decomposition of a real general matrix 
(blocking LU-decomposition method) 

CALL VALU (A, K, N, EPSZ, IP, IS, VW, ICON) 

 
(1) Function 

An n × n nonsingular real matrix A is LU-decomposed using the using the blocking LU-
decomposition method (Gaussian elimination method). 

PA=LU (1.1) 

P is the permutation matrix which performs the row exchanges required in partial pivoting, L is a 
lower triangular matrix, and U is a unit upper triangular matrix.n ≥ 1. 

(2) Parameters 

A .......... Input.  Matrix A 
Output.  Matrices L and U 
Refer to Figure VALU-1 
A is a two-dimensional array, A (K,N).   
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1 u13
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Figure VALU-1   Storage of the elements of L and U in array A 

K .......... Input.  Adjustable dimension of array A (≥ N) 
N .......... Input.  Order n of matrix A 
EPSZ.... Input.  Tolerance for relative zero test of pivots in decomposition process of A (≥ 0.0) 

When EPSZ is 0.0, a standard value is used.  (Refer to Notes.) 
IP.......... Output.  the transposition vector which indicates the history of row exchanging that 

occurred in partial pivoting. IP is a one-dimensional array of size n.  (Refer to Noter) 
IS.......... Output.  Information for obtaining the determinant of matrix A if the n elements of the 

calculated diagonal of array A are multiplied by IS, the determinant is obtained.   
VW....... Work area.  VW is one-dimensional array of size n.   
ICON ... Output.  Condition code.  Refer to Table VALU-1.   
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Table VALU-1   Condition codes 

Code Meaning Processing 

0 No error − 

20000 Either all of the elements of some 
row were zero or the pivot became 
relatively zero.  It is highly probable 
that the matrix is singular.   

Discontinued 

30000 K < N, N < 1, or EPSZ < 0.0  Bypassed 

 
(3) Notes 

a. Subprograms used 

SSL II...... AMACH,MGSSL 
FORTRAN intrinsic functions ..... ABS 

b. Note 

(1) If a value is set in the tolerance EPSZ for pivot zero test, this value means the following: 

If the selected pivot element is smaller than the product of the largest absolute value of real 
matrix A = (aij ) elements, max | aij | and EPSZ can be shown as: 

EPSZmax ij
k
kk aa ≤  

The relative pivot value is assumed to be zero and processing terminates as ICON=20000.   

Let u be the unit round-off, and the standard value of EPSZ is 16 u.  If the processing is to 
proceed at a low pivot value, EPSZ will be given the  minimum value, but the result is not 
always guaranteed.   

(2) The transposition vector corresponds to the permutation matrix P of LU decomposition in 
partial pivoting.  In this subroutine, the elements of the array A are actually exchanged in 
partial pivoting.  In the J-th stage ( J = 1, ... , n)of decomposition, if the I the row ( I ≥ J )has 
been selected as the pivotal row the elements of the I-th row and the elements of the Jth row 
are exchanged.  Then, in order to record the history of this exchange ,I is stored in IP (J).   

(3) A system of linear equations can be solved by calling subroutine LUX following this 
subroutine.  However ,instead of these subroutines, subroutine VLAX can be normally called 
to solve such equations in one step.   
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e. Example 

An n × n matrix is input and LU-decomposition is computed.  n ≤ 100. 

C     **EXAMPLE** 
      DIMENSION A(100,100),VW(100),IP(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N),I=1,N) 
      CALL VALU(A,100,N,0.0,IP,IS,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000)GO TO 10 
      DET=IS 
      DO 20 I=1,N 
      DET=DET*A(I,I) 
   20 CONTINUE 
      WRITE(6,620) (I,IP(I),I=1,N) 
      WRITE(6,630) ((I,J,A(I,J),J=1,N),I=1,N) 
      WRITE(6,640) DET 
      GOTO 10 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(///10X,'** INPUT MATRIX **' 
     */12X,'ORDER=',I5//(10X,4('(',I3,',',I3,')' 
     *,E16.8))) 
  610 FORMAT('0',10X,'CONDITION CODE =',I5) 
  620 FORMAT('0',10X,'TRANSPOSITION VECTOR' 
     */(10X,10('(',I3,')',I5))) 
  630 FORMAT('0',10X,'OUTPUT MATRICES' 
     */(10X,4('(',I3,',',I3,')',E16.8))) 
  640 FORMAT('0',10X, 
     *'DETERMINANT OF THE MATRIX =',E16.8) 
      END 
 

(4) Method 

The blocking LU-decomposition method is applied by blocking the outer-product Gaussian 
elimination method. 

a. Outer-product Gaussian elimination method 

Generally, in exchanging rows using partial pivoting, an n×n regular real matrix A can be 
decomposed into the product of a lower triangular matrix L and a unit upper triangular matrix U.   

PA = LU (4.1) 

P is the permutation matrix which performs the row exchanging required in partial pivoting 
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LU-decomposition is computed by changing A = ( aij ) as follows: 

A1 = A →, ... , → Ak →, ... , → An 

nkjaau k
kk

k
kjkj ...,,,/ ==  (4.2) 

nkial k
ikik ...,,, ==  (4.3) 

nkjnkiulaa kjij
k
ij

k
ij ,...,1,,...,1,1 +=+=−=+  (4.4) 

The rows are actually exchanged by partial pivoting.   

The product of column vectors (4.3) and row vectors (4.2) occur in equation (4.4), and then the 
rest of the elements will be updated. 

b. Blocking method 

The outer-product Gaussian elimination method above is determined by the blocked expressions 
below.   

The row and column elements are decomposed with the constant block width bl. The column 
matrix is taken as kL2 ,row matrix as kU2 and the updating part as Ak. They are used for the outer-
product Gaussian elimination that is blocked k-th times.  (For the location of each matrix, refer to 
Figure VALU-1.) 

The updating corresponding to (4.4) is done in (4.5). 

kkkk ULAA 22−=  (4.5) 

Before this updating, kL2 and kU2 are updated with the expressions below.   

First, kA~ is decomposed into kL1 , kL2  and kU1 , then kU2 is updated. 

( ) ktktktk ULLA 121 ,~ =  (4.6) 

( ) kkk ULU 2
1

12
−

=  (4.7) 

These expressions are the same as those in the outer-product Gaussian elimination method except 
that the order is changed. 
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kA

kA~

kL2

kU2kL1

kU1

A

 
 

Figure VALU-2  Location of each element in blocked array A 

c. Partial pivoting 

When matrix A is given as 









=

0.00.1
0.10.0

A  

Through the matrix is numerically stable, it can not be LU decomposed.  In this state, even if a 
matrix is numerically stable large errors would occur if LU decomposition were directly 
computed.  So in this subroutine, to avoid such errors partial pivoting with row equilibration is 
adopted for decomposition.   

For more information, see References [9], [10], [11], [12], and [13].   
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VCFT1 

F16-15-0201 VCFT1, DVCFT1 

Discrete complex Fourier transform 
(high performance,radix 2 FFT) 

CALL VCFT1 (A, B, N, ISN, ISW, VW, IVW, ICON) 

 
(1) Function 

Given one-dimensional (n-term)complex time-series data {xj}, the discrete complex Fourier 
transform or its inverse transform is calculated by the Fast Fourier Transform (FFT) method 
suited to a vector processor, where n = 2l (l is a non-negative integer). 

a. Fourier transform 

When {xj} is input, the transform defined by (1.1) below is calculated to obtain {nαk}. 

∑
−

=

− −=⋅=
1

0
, 1,...,1,0

n

j

jk
jk nkxn ωα  (1.1) 

, ω = exp( 2πi/n ) 

b. Fourier inverse transform 

When {αk} is input, the transform defined by (1,2) below is calculated to obtain {xj}. 

∑
−

=
−=⋅=

1

0
1,...,1,0,

n

k

jk
kj njax ω  (1.2) 

, ω = exp( 2πi /n ) 

(2) Parameters 

A .......... Input.  Real part of {xj} or {αk} 
Output.  Real part of {nαk} or {xj} 
One-dimensional array of size n 

B........... Input.  Imaginary part of {xj} or {αk} 
Output.  Imaginary part of {nαk} or {xj} 
One-dimensional array of size n.   

 



VCFT1 

PT II-8 99SP4070E-2 

N .......... Input.  Number of terms, n, of the transform 
ISN....... Input.Either the transform or the inverse transform is indicated 

( ≠ 0). 
ISN = +1 for the transform. 
ISN = −1 for the inverse transform. 
(See Note (3).) 

ISW...... Input.  Information for controlling the initial state of the transform 
ISW = 0 for the first call. 
ISW = 1 for the second and subsequent calls. 
(See Note (2).) 

VW....... Work area.  One-dimensional array of size max ( nl, 1). 
IVW ..... Work area.  One-dimensional array of size n･max ( l − 3, 2). 
ICON ... Output.  Condition code 

See Table VCFT1-1. 
 

Table VCFT1-1   Condition codes 

Code Meaning Processing 

0 No error − 

3000 ISN = 0, ISW ≠ 0 or 1,or N ≠ 2l( l ≥ 0 is an integer) Bypassed 

 
(3) Notes 

a. Subprograms used 

(1) SSL II: UVTB1,UVF91,UVFA1,UVFB1,UVFX1,UBANK,MGSSL 

(2) FORTRAN intrinsic functions: ALOG2,SIN,COS,ATAN,IABS,FLOAT, 
IAND,MOD 

b. Notes 

(1) Subroutine use 

This subroutine performs high-speed calculation of a complex Fourier transform on a vector 
processor.  On a general-purpose computer, however CFT or CFTM may be more suitable. 

This subroutine is used for calculating multiple independent transforms, and because it is a 
high-performance subroutine, it requires more work array area than VCFT2.  If it is difficult to 
allocate a large work array area, the memory-efficient subroutine VCFT2 should be used, even 
though it is slower. 
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(2) Control by ISW 

When multiple transforms are calculated, specify ISW = 1 for the second and subsequent 
subroutine calls.  This enables the subroutine to bypass the steps for generating a 
trigonometric table and a list vector, both of which are needed for the transform, thus 
improving processing efficiency.  The contents of arrays VW and IVW must not be modified 
when the subroutine is called. 

Even if the number of terms, n, of each of the multiple transforms varies, specifying ISW = 1 
improves processing efficiency.  However, it is desirable to be called so that the maximum 
number of transforms with the same number of terms are executed consecutively. 

When calling this subroutine together with the real Fourier transform subroutine VRFT1, 
specifying ISW = 1 improves processing efficiency. 

(3) ISN specification 

Although the ISN parameter is used to specify whether to calculate a transform or an inverse 
transform, it can also be used as shown below.  If the real or imaginary part of {xj} or {αk} is 
stored at intervals of length I, specify ISN as follows: 

For an inverse transform, ISN= + I 

For an inverse transform, ISN = − I 

The results will also be stored at intervals of length I.  Note, however, that when I > 1, specify 
the size of work array VW to be n ( l +2). 

When using a vector processor, the interval length I should take the following values in order 
to access memory more efficiently.  (See Example (2)). 

For single precision arithmetic (VCFT1), I = 4P + 2, P = 0, 1, 2 , ... 

For double precision arithmetic (DVCFT1), I = 2P + 1, P = 1, 2, 3, ... 

(4) Work array size conversion table 

The table for 16 ≤ n ≤ 4096 is shown as follows: 

l n VW IVW 
4 
5 
6 
7 
8 
9 

10 
11 
12 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 

64 (      96) 
160 (    224) 
384 (    512) 
896 (  1152) 

2048 (  2560) 
4608 (  5632) 

10240 (12288) 
22528 (26624) 
49152 (57344) 

32 
64 

192 
512 

1280 
3072 
7168 

16384 
366864 

 
Figures in ( ) are the sizes when ABS(ISN) > 1. 
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(5) General definition of Fourier transform 

The discrete complex Fourier transform and its inverse transform can be defined as in (3.1) 
and (3.2). 

1,...,1,0,1 1

0
−=⋅⋅= ∑

−

=

− nkx
n

n

j

ik
jk ωα  (3.1) 

1,...,1,0,
1

0
−=⋅= ∑

−

=
njx

n

k

ik
kj ωα  (3.2) 

where, ω = exp ( 2πi /n ) 

This subroutine calculates {nαk} or {xj}corresponding to the left hand side of (3.1) or (3.2), 
respectively.  Normalize the results as required. 

c. Example 

(1) Multiple Fourier transforms 

In this example k sets of independent Fourier transforms (with n terms) are calculated. 

For k ≤ 64 and n ≤ 512: 

C     **EXAMPLE** 
      DIMENSION A(512,64),B(512,64), 
     *          VW(4680),IVW(3072) 
      READ(5,500) N,K 
      READ(5,510) ((A(I,J),B(I,J),I=1,N),J=1,K) 
C 
      ISN=1 
      ISW=0 
      CALL VCFT1(A,B,N,ISN,ISW,VW,IVW,ICON) 
      IF(ICON.NE.0) STOP 
      ISW=1 
      DO 10 J=2,K 
      CALL VCFT1(A(1,J),B(1,J),N,ISN,ISW, 
     *           VW,IVW,ICON) 
   10 CONTINUE 
C 
      WRITE(6,600) K,N 
      DO 20 J=1,K 
   20 WRITE(6,610) J,(I,A(I,J),B(I,J),I=1,N) 
C 
  500 FORMAT(2I5) 
  510 FORMAT(2E15.7) 
  600 FORMAT(5X,'***',I3,' SET TRANSFORMS' 
     *       ' OF',' TERM',I4) 
  610 FORMAT(8X,I3,'-TH TRANSFORM'/ 
     *      (8X,I3,2E16.7)) 
      STOP 
      END 
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(2) Multi-dimensional Fourier transform 

In this example a 2-dimensional Fourier transform (with n1 × n2 terms) is calculated. 

For n1 ≤ 512, n2 ≤ 64; 

In the example program, the data interval length (the first array declarator of the array) used 
for the row-wise transform is set at ISN = 514 ( = 4p + 2, where p=128). 

C     **EXAMPLE** 
      DIMENSION A(514,64),B(514,64), 
     *          VW(4608),IVW(3072) 
      READ(5,500) N1,N2 
      READ(5,510) ((A(I,J),B(I,J),I=1,N1) 
     *                           ,J=1,N2) 
C     ---N2 SET TRANSFORMS OF TERM N1--- 
      ISN=1 
      ISW=0 
      CALL VCFT1(A,B,N1,ISN,ISW,VW,IVW,ICON) 
      IF(ICON.NE.0) STOP 
      ISW=1 
      DO 10 J=2,N2 
      CALL VCFT1(A(1,J),B(1,J),N1,ISN,ISW, 
     *           VW,IVW,ICON) 
   10 CONTINUE 
C     ---N1 SET TRANSFORMS OF TERM N2--- 
      ISN=514 
      CALL VCFT1(A,B,N2,ISN,ISW,VW,IVW,ICON) 
      IF(ICON.NE.0) STOP 
      DO 20 I=2,N1 
      CALL VCFT1(A(I,1),B(I,1),N2,ISN,ISW, 
     *           VW,IVW,ICON) 
   20 CONTINUE 
C 
      WRITE(6,600) N1,N2 
      DO 30 J=1,N2 
   30 WRITE(6,610) J,(I,A(I,J),B(I,J),I=1,N1) 
C 
  500 FORMAT(2I5) 
  510 FORMAT(2E15.7) 
  600 FORMAT(5X,'*** 2 DIMENSIONAL TRANSFORM' 
     *       ' OF TERM',I4,' BY ',I4) 
  610 FORMAT(8X,I3,'-TH COLUMN'// 
     *      (8X,I3,2E16.7)) 
      STOP 
      END 
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(4) Method 

The discrete complex Fourier transform is calculated using the Fast Fourier Transform method 
(isogeometric and self-sorting FFTs)suited to a vector processor. 

Because of the characteristics of vector processors, this subroutine uses an isogeometric FFT in 
the single precision arithmetic routine and a self-sorting FFT in the double precision arithmetic 
routine. 

In general, there are two types of FFT algorithms, according to the area used during the 
computation.  One is an in-place type, which uses the input data area only, and the other is a no-
in-place type, which uses both the input data area and a work area.  The FFT for a general-
purpose computer is usually an in-place type, but in this subroutine it is a not-in-place type.  
Because the not-in-place type FFT can fully utilize parallel processing, it is more suited to a 
vector processor. 

The butterfly operation is the core of the FFT algorithm.  The butterfly operation is defined by 
(4.1) with two arbitrary inputs, a and b, and two outputs, c and d. 

c = a + b, (4.1) 

d = (a - b) × ωξ 

where a, b, c, d and ωξ are complex numbers, and ωξ is a Fourier transform intrinsic coefficient 
(called rotation factor). 

We now introduce the following notation: 

 (4.2)

 

In (4.2),a dot (.) represents a data item.  The two dots on the left hand side are input (upper dot: a, 
and lower dot: b),and the right hand side two dots are output (upper dot: c, and lower dot: d) 

The circle(○○○○) represents the butterfly operation, and the number in the circle, if any represents ξ  

Using this notation, the butterfly operations in both isogeometric and self-sorting FFTs are shown 
in Figures VCFT1-1 and VCFT1-2 (for n=16).  In general, assuming n =2l, an FFT can be 
composed of l stages of butterfly operations.  In the diagram, for example, the FFT is composed 
of four stages, since n = 16 = 24. Both types of FFT require the same amount of calculation, but 
the data transfer pattern at each butterfly stage differs.  The characteristics of both FFTs and their 
adaptability to a vector processor are explained next. 

Isogeometric FFT 

In this method, the input (and output) transfer patterns are identical during all stages.  The 
algorithm in this method enables a high degree of parallel calculation, and can be accurately 
described by a program.  However, data is in reverse binary order at the end of the butterfly 
operation, so the data must be  
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permutted.  Furthermore ,in a double precision operation, memory conflicts occur because of the 
characteristics of vector processors. 

Self-sorting FFT 

In this method, the input transfer patterns are identical during all stages, bat the output transfer 
patterns vary regularly in each stage.  This algorithm enables parallel calculation, just as the 
isogeometric FFT.  A program can made this algorithm by using a list vector.  However, in a 
single precision operation, memory conflicts occur because of the characteristics of vector 
processors. 

This subroutine takes into account the characteristics of both the above methods and their 
adaptability to a vector processor, to provide higher speed calculations. 

Calculation procedure in this subroutine 

[Single precision arithmetic routine] 

(1) Generation of a trigonometric function table (rotation factor) 

All the function values required at every stage are calculated and stored in work array VW. 

(2) Generation of list vectors 

List vectors, required at the permutation process after the butterfly operation, is calculated and 
stored in work array IVW. 

(3) Butterfly operation 

(4) Permutation of data 

Steps (1) and (2) above are executed only when this routine is called the first time, i.e., when ISW 
= 0. 

[Double precision arithmetic routine] 

(1) Generation of a trigonometric function table (rotation factor) 

All the function values required at every stage are calculated and stored in work array VW. 

(2) Generation of a list vector 

All the list vectors, required at every stage, are calculated and stored in work array IVW. 

(3) Butterfly operation 

Steps (1) and (2) above are executed only when this routine is called the first time, i.e., when ISW 
= 0. 

For the various FFTs on a vector processor, see reference [5], for the isogeometric FFT,see 
reference [4], and for the self-sorting FFT, references [2] and [6]. 
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Figure VCFT1-1   Isogeometric FFT flowchart (N=16) 
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Figure VCFT1-2   Self-sorting FFT flowchart (N = 16) 
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VCFT2 

F16-15-0301 VCFT2, DVCFT2 

Discrete complex Fourier transform 
(memory efficient,radix 2 FFT) 

CALL VCFT2(A, B, N, ISN, ISW, VW, IVW, ICON) 

(1) Function 

Given one-dimensional (n-term) complex time-series data{xj}, the discrete complex Fourier 
transform or its inverse transform is calculated by the Fast Fourier Transform (FFT) method, 
suited to a vector processor, where n =2l( l is a non-negative integer). 

a. Fourier transform 

When{xj} is input, the transform defined by (1.1) below is calculated to obtain {nαk}. 

1,...,1,0,
1

0
−=⋅= ∑

−

=

− nkxn
n

j

jk
jk ωα  

,ω = exp (2πi /n) 

b. Fourier inverse transform 

When {αk} is input, the transform defined by (1.2) below is calculated to obtain {xj}. 

1,...,1,0,
1

0
−=⋅= ∑

−

=
njx

n

k

jk
kj ωα  

,ω = exp (2πi /n) 

(2) Parameters 

A .......... Input.  Real part of {xj} or {αk} 
Output.  Real part of {nαk} or {xj} 
One-dimensional array of size n 

B........... Input.  Imaginary part of {xj} or {αk} 
Output.  Imaginary part of {nαk} or {xj} 
One-dimensional array of size n. 
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N .......... Input.  Number of terms, n, of the transform 

ISN....... Input. Either the transform or the inverse transform is indicated 
( ≠ 0). 
ISN = +1 for the transform. 
ISN = −1 for the inverse transform. 
(See Note (3).) 

ISW...... Input.  Information for controlling the initial state of the transform 
ISW = 0 for the first call. 
ISW = 1 for the second and subsequent calls. 
(See Note (2).) 

VW....... Work area.  One-dimensional array of size 5n 

IVW ..... Work area.  One-dimensional array of size 3n 

ICON ... Output.  Condition code 
See Table VCFT2-1. 

(3) Notes 

a. Subprogram used 

(1) SSL II:  UVTB2, UVF92, UVFA2, UVFB2, UVFX2, UBANK, MGSSL 

(2) FORTRAN intrinsic functions: ALOG2, SIN, COS, IABS, FLOAT, IAND, MOD 

Table VCFT2-1   Condition codes 

Code Meaning Processing 

0 No error − 

3000 ISN = 0, ISW ≠ 0 or 1,or N ≠ 2l ( l ≥ 0 is an integer) Bypassed 

 
b. Notes 

(1) Subroutine use 

This subroutine performs high-speed calculation of a complex Fourier transforms on a vector 
processor.  On a general purpose computer, however, subroutine CFT or CFTM may be more 
suitable. 

This subroutine is suitable for calculating only a single  transforms.  The work array area is 
limited to the required minimum; this subroutine is memory efficient. When performing 
multiple transforms with sufficient work array area available, this high-performance 
subroutine VCFT1 is more suitable. 

(2) Control by ISW 

When performing multiple transforms, specify ISW=1 for the second and subsequent 
subroutine calls.  This enables generation of a trigonometric function table to be bypassed, 
thus improving more processing efficiency. 
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The contents of array VW and IVW must not be altered when the subroutine is called. 

Even if the number of terms, n, in the multiple transforms varies, specifying ISW=1 improves 
processing efficiency.  However, it is desirable to be called so that the maximum number of 
transforms with the same number of terms are executed consecutively. 

When calling this subroutine together with the real Fourier transform subroutine VRFT2, 
specifying ISW = 1 improves processing efficiency. 

(3) ISN specification 

Although the ISN parameter is used to indicate whether a transform or an inverse transform is 
to be calculated, it can also be used as shown below.  If the real or imaginary part of {xj} or 
{αk} is stored at intervals of length I, specify ISN as follows: 

For a transform, ISN = + I 

For an inverse transform, ISN = − I 

The results will also be stored at intervals of length I.  Note, however, that when I > 1,specify 
the size of work array VW to be 7n. 

With a vector processor, the interval length I should take the following values in order to 
access memory more efficiently.  (See Example (2) below.) 

For single precision arithmetic (VCFT2), I = 4P + 2, P = 0,1,2, ... 

For double precision arithmetic (DVCFT2), I = 2P + 1, P = 1,2,3, ... 

(4) Work array size conversion table 

The table for 16≤ n≤ 4096 is shown as follows: 

l n VW IVW 
4 
5 
6 
7 
8 
9 

10 
11 
12 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 

80 (    112) 
160 (    224) 
320 (    448) 
640 (    896) 

1280 (  1792) 
2560 (  3584) 
5120 (  7168) 

10240 (14336) 
20480 (28672) 

48 
96 

192 
384 
768 

1536 
3072 
6144 

12288 

Figures in ( ) are the sizes when ABS(ISN) > 1. 
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(5) General definition of Fourier transform 

The discrete complex Fourier transform and its inverse transform can be defined as in (3.1) 
and (3.2). 

∑
−

=

− −=⋅⋅=
1

0
1,...,1,0,1 n

j

jk
jk nkx

n
ωα  (3.1) 

∑
−

=
−=⋅=

1

0
1,...,1,0,

n

k
njx jk

kj ωα  (3.2) 

where, ω = exp ( 2πi /n ) 

This subroutine calculates {nαk} or {xj} corresponding to the left hand side of (3.1) or (3.2), 
respectively.  Normalize the results as requires. 

c. Example 

In this example a one-dimensional Fourier transform (with n terms) and its inverse transform are 
calculated, for n ≤ 1024. 

C     **EXAMPLE** 
      DIMENSION A(1024),B(1024),VW(5120),IVW(3072) 
      READ(5,500) N 
      READ(5,510) (A(I),B(I),I=1,N) 
C     ---FORWARD TRANSFORM--- 
      ISN=1 
      ISW=0 
      CALL VCFT2(A,B,N,ISN,ISW,VW,IVW,ICON) 
      IF(ICON.NE.0) STOP 
C     ---NORMALIZATION--- 
      ANOR=1.0/FLOAT(N) 
      DO 10 I=1,N 
      A(I)=ANOR*A(I) 
   10 B(I)=ANOR*B(I) 
      WRITE(6,600) N,(I,A(I),B(I),I=1,N) 
C     ---BACKWARD TRANSFORM--- 
      ISN=-1 
      ISW=1 
      CALL VCFT2(A,B,N,ISN,ISW,VW,IVW,ICON) 
      IF(ICON.NE.0)STOP 
C 
      WRITE(6,610) N,(I,A(I),B(I),I=1,N) 
C 
  500 FORMAT(I5) 
  510 FORMAT(2E15.7) 
  600 FORMAT(5X, 
     *  '*** FORWARD TRANSFORM OF TERM', 
     *  I5//(8X,I3,2E16.7)) 
  610 FORMAT(5X, 
     *  '*** BACKWARD TRANSFORM OF TERM', 
     *  I5//(8X,I3,2E16.7)) 
      STOP 
      END 
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(4) Method 

The discrete complex Fourier transform is performed using the Fast Fourier Transform 
(isogeometric and self-sorting FFTs) method, suited to a vector processor. 

Because of the characteristics of vector processors, this subroutine uses an isogeometric FFT in 
the single precision arithmetic routine, and a self-sorting FFT in the double precision arithmetic 
routine. 

For algorithms. see Method for subroutine VCFT1. 

Computation procedure in this subroutine 

[Single precision arithmetic routine] 

(1) Generation of a trigonometric function table (rotation factor) 

The function values required for the first stage are calculated and stored in work array VW. 

(2) Butterfly operation 

(3) Data permutation 

(1) above is executed only when this routine is called for the first time, i.e, when ISW = 0. 

[Double precision arithmetic routine] 

(1) Generation of a trigonometric function table (rotation factor) 

The function values required for the first stage are calculated and stored in work array VW. 

(2) Butterfly operation 

(1) above is executed only when this routine is called for the first time ,i.e, when ISW = 0. 
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VCOS1 

F16-11-0201 VCOS1, DVCOS1 

Discrete cosine transform (radix 2 FFT) 

CALL VCOS1 (A, N, TAB, VW, IVW, ICON) 

(1) Function 

Given one-dimensional n+1 sample data {xj} obtained by dividing a 2π period even-function x(t) 
into n equal parts as defined by the following: 

xj = x(θj) j = 0, 1, ... , n 

,
n
πθ =  (1.1) 

The discrete cosine transform or its inverse transform is calculated by the Fast Fourier Transform 
(FFT) method suited to a vector processor, where n = 2l ( l:a non-negative integer). 

a. Cosine transform 

When {xj} is input, the transform defined by (1.2) below is calculated to obtain its Fourier 
coefficient { 2n･ak } 

nkkj"xan
n

j
jk ,...,1,0,cos42

0

=⋅=⋅ ∑
=

θ  

,
n
πθ =  (1.2) 

Here, ∑"  means taking a summation by halving the first and last term. 

b. Cosine inverse transform 

When {ak} is input, the transform defined by (1.3) is calculated to obtain the Fourier series value 
{4･xj}. 

njkj"ax
n

k
kj ,...,1,0,cos44

0

=⋅=⋅ ∑
=

θ  

,
n
πθ =  (1.3) 
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(2) Parameters 

A .......... Input.  {xj} or {ak} 
Output.  {2n･ak} or {4･xj} 
One-dimensional array of size n+2 
See Figure VCOS1-1. 

N .......... Input.  Number of samples minus 1. 

TAB ..... Output.  Trigonometric function table used in transformation is 
stored. 
One-dimensional array of size 2n+4n 

VW....... Work area. 
One-dimensional array of size max (n (l + 1) / 2,1) 

IVW ..... Work area. 
One-dimensional array of size n･max (l − 4, 2) / 2 

ICON ... Output.  Condition code 
See Table VCOS1-1. 

A(N+2)

A(N+1)

A(N)

A(4)

A(3)

A(2)

A(1)

Array A

* *

x0

x1

x2

x3

xn-1

xn an

an-1

a3

a2

a1

a0

{ak}{xj}

 
Notes: 

Same for {2nak} and {4xj} 
*may be omitted during input. 
0.0 is set during output. 

 
Figure VCOS1-1 Data storage method 
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Table VCOS1-1   Condition codes 

Code Meaning Processing 

0 No error − 

30000 N ≠ 2l ( l: a non-negative integer) Bypassed 

 
(3) Notes 

a. Subprograms used 

(1) SSL II:  VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1, UVFB1, 
 UVFX1, UBANK, UVTAB, MGSSL 

(2) FORTRAN intrinsic functions:ALOG2, SIN, COS, ATAN, IABS, IAND, 
MOD, FLOAT 

b. Notes 

(1) Subroutine use 

This subroutine performs high-speed calculation of discrete cosine transforms on a vector 
processor.  On a general-purpose computer, however, subroutine FCOST may be more 
suitable. 

(2) Multiple transforms 

Performance of multiple transforms is more efficient, as generation of the trigonometric table 
and list vector required for transformation is bypassed in the second and subsequent calls of 
the subroutine.  TAB, VW, and IVW arrays must be called without changing their contents. 

The contents of TAB, VW, and IVW arrays previously generated are valid even when the 
number of terms n are different for the multiple transforms. However, it is preferable to call 
the subroutines in such a way that transforms of equal term numbers are stringed to the 
maximum extent possible. 

(3) Trigonometric table and work array size conversion table 

The following table is for16 ≤ n ≤ 4096: 

l n TAB VW IVW 
4 
5 
6 
7 
8 
9 

10 
11 
12 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 

36 
68 

132 
260 
516 

1028 
2052 
4100 
8196 

40 
96 

224 
512 

1152 
2560 
5632 

11288 
26624 

16 
32 
64 

192 
512 

1280 
3072 
7168 

16384 
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(4) General definition of discrete cosine transform 

The discrete cosine transform and its inverse transform can be defined as in (3.1) and (3.2) 

nkkjx"
n

a j

n

j
k ,...,1,0,cos2

0
=⋅∑=

=
θ  (3.1) 

njkja"x k

n

k
j ,...,1,0,cos

0
=⋅∑=

=
θ  (3.2) 

This subroutine calculates {2n･ak} or {4･xj} corresponding to the left-hand side of (3.1) or 
(3.2), respectively.  Therefore, normalize the results as required. 

c. Example 

In this example, n+1 samples {xj} are input and transformed by this subroutine. Then, the results 
are normalized and discrete Fourier coefficients {ak} are calculated.  Calculation is continued to 
inverse transformation and {xj} is obtained.  The following is an example where n ≤512. 

C     **EXAMPLE** 
      DIMENSION X(514),TAB(1028),VW(2560) 
     *         ,IVW(1280) 
    1 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NP1=N+1 
      READ(5,501) (X(I),I=1,NP1) 
C     COSINE TRANSFORM 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,NP1) 
      CALL VCOS1(X,N,TAB,VW,IVW,ICON) 
      IF(ICON.NE.0) GO TO 30 
C     NORMALIZE 
      CN=1.0/(2.0 *FLOAT(N)) 
      DO 10 K=1,NP1 
      X(K)=X(K)*CN 
   10 CONTINUE 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I=1,NP1) 
C     COSINE INVERSE TRANSRORM 
      CALL VCOS1(X,N,TAB,VW,IVW,ICON) 
      IF(ICON.NE.0) GO TO 30 
C     NORMALIZE 
      CN=0.25 
      DO 20 K=1,NP1 
      X(K)=X(K)*CN 
   20 CONTINUE 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I=1,NP1) 
      GO TO 1 
   30 WRITE(6,603) ICON 
      GO TO 1 
  500 FORMAT(I5) 
  501 FORMAT(6F12.0) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA') 
  603 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
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(4) Method 

Consider performing the discrete cosine transform of term number n+1 (= 2l + 1, l = 0,1, ... ) 
using the Fast Fourier Transform (FFT) method, suited for a vector processor. 

The dixcrete cosine transform may be expressed by (4.1) when samples {xj}, j=0,1, ... ,n are given. 

( ) ( ) n
j

n

k
kj x

n
kjx

n
x

n
a 11cos21 1

1
0 −+⋅+= ∑

−

=
θ  

, j = 0,1, ... ,n 

, θ = π
n

 (4.1) 

Now the samples are an even-function, and the relation expressed by (4.2) can be seen by 
extending to one period. 

x2n-j = xj , j = 0, 1, ... , n (4.2) 

Therefore, a0 to an can be calculated by extending x0 to xn to x0 to x2n-1 and performing the 2n term 
discrete real Fourier transform.  It is well known that use of (4.2) enables efficient performance of 
the transform. 

Perform the following preprocessing on the {xj} samples: 

( ) ( ) ( )jnjjnjj xxjxxd −− −⋅−+⋅= θsin
2
1  (4.3) 

, j = 0, 1, ... , n−1 

Substitution of the discrete cosine inverse transform (4.4) in (4.3) will result in 
(4.5). 

( ) ,1
2
1cos

2
1 1

1
0 n

j
n

k
kj akjaax −+⋅+= ∑

−

=
θ  

, j = 0, 1, ... , n−1 (4.4) 
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( ) ( ) ( )[ ] +⋅⋅−+⋅⋅+= ∑
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k
kkkj kjaakjaad θθ  

( ) 1...,,1,0,1
2
1 −=−⋅ nja j
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Expression (4.5) is equivalent to the n term discrete real Fourier transform with samples of {dj} 
and Fourier coefficients of {a2k} and {a2k+1−a2k-1}.  Thus, {ak} can be obtained by using the 
identical equations: 

kk aa 2
~ =  

1212
~

−− −= kkk aab  

after calculating the Fourier coefficients {ak} and {bk} corresponding to the samples {dj}.  In 
other words, {ak}  is calculated by (4.6) 

( ) ,
~

,~,1cos21
12122

1

1
01 kkkkkn

n

j
j baaaax

n
jx

n
x

n
a +==⋅−⋅⋅= −+

−

=
∑ θ  

1
2

...,,1 −= nk  (4.6) 

Now, the last expression in (4.6) is a recurrence formula and is unsuitable for a vector processor.  
Therefore, this subroutine uses a vector-processor-suited algorithm by eliminating recurrence 
calculations by tracing the preceding expressions backward, taking advantage of the fact that the 
discrete cosine transform and its inverse transform are identical except for their normalization 
constants. 

Refer to reference [8] for the details on this algorithm. 
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VGSG2 

B62-21-0201 VGSG2, DVGSG2 

Eigenvalue and eigenvector for real symmetric matrix 
(parallel bisection method and inverse iteration method) 

CALL VGSG2(A, B, N, M, EPSZ, EPST,E,EV,K, VW, 
IVW, ICON) 

 
(1) Function 

M eigenvalues for general eigenvalue problem expressed by (1.1)for n order real symmetric 
matrix A and n order positive definite symmetric matrix B are calculated in descending (or 
ascending) order using the parallel bisection method. 

Ax = λBx (1.1) 

Also, corresponding m eigenvectors x1, x2, ... , xm are calculated by the inverse iteration method.  
Eigenvectors must satisfy the relation expressed in (1.2). 

X TBX = I (1.2) 

Here, X=[x1, x2, ... , xm], with 1 ≤ m ≤ n. 

(2) Parameters 

A .......... Input.  Real symmetric matrix A. 
Symmetric matrix compression mode. 
One-dimensional array of size n (n+1)/2. 
Contents are not saved after operation. 

B........... Input. Positive definite symmetric matrix B. 
Symmetric matrix compression mode. 
One-dimensional array of size n (n+1)/2. 
Contents are not saved after operation. 

N .......... Input.  n order of real symmetric matrix A and of positive definite 
symmetric matrix B. 

M.......... Input.  m number of eigenvalues to be calculated. 
Calculate in descending order when M = +m. 
Calculate in ascending order when M = −m. 

EPSZ.... Input.  Relative zero test value of the pivot in the LLT decomposition 
of B.  Default value is used when zero or a negative value is specified. 
(See note (2).) 
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EPST.... Input.  Upperbound of absolute errors used in convergence test of 
eigenvalues.  Default value is used when a negative value is 
specified. 
(See note (3).) 

E........... Output.  Eigenvalues. 
One-dimensional array of size m. 
Output are stored in descending order when M is positive and 
ascending order when M is negative. 

EV........ Output.  Eigenvectors. 
EV (K,M) two-dimensional array. 
Eigenvector corresponding to eigenvalue E (J) is stored at EV (I, J), 
I = 1, ... ,N. 

K .......... Input.  Conformation size (≥ n) for array EV. 

VW....... Work area.  One-dimensional array of size 15n. 

IVW ..... Work area.  One-dimensional array of size 7n. 

ICON ... Output.  Condition code. 
See Table VGSG2-1. 

(3) Notes 

a. Subprograms used 

(1) SSL II:  GSCHL, TRID1, TRBK, GSBK, UVTG2, UCHLS, UVBCT, AMACH, 
 MGSSL 

(2) FORTRAN intrinsic functions: IABS, SQRT, SIGN, ABS, AMAX1 

b. Notes 

(1) This subroutine is functionally  equivalent to the subroutine GSEG2, but it performs at high-
speed on a vector processor since the parallel bisection method is used.  Note that the methods 
for work area allocation are different in these subroutines. 

(2) Default value for the parameter EPSZ is 16･u, when the unit round-off is u. 

If EPSZ for this subroutine is set at 10-s, condition code (ICON = 29000) is set assuming the 
pivot is zero and processing is terminated when the pivot value is truncated for more than the s 
decimal digits during LLT decomposition of the positive definite symmetric matrix B.  

Even when the pivot becomes small, calculation can be continued by specifying a small value 
for EPSZ, but the calculation accuracy cannot be guaranteed. 

On the other hand, when the pivot value becomes negative during decomposition, the matrix B 
is assumed to be negative and calculation is terminated, setting the condition code (ICON = 
28000). 



VGSG2 

99SP4070E-2 PT II-31 

(3) The standard value of the parameter EPST in as in (3.1) when u is chosen as the round-off unit. 

EPST = u･max (|λmax|, |λmin|) (3.1) 

Here, max and min are the upperbound and lowerbound of the existence range (given by the 
Gerschgorin′s theorem) of the eigenvalues for Ax = λBx.  

When extremely large and small absolute value eigenvalues coexist and a convergence test is 
performed using (3.1),it is difficult to obtain the smaller eigenvalues of adequate precision.  In 
such cases, setting EPST at a small value(absolute error) enables calculation of smaller 
eigenvalues with high precision.  However, processing speed slows down as the number of 
iterations increases. 

Table VGSG2-1   Condition codes 

Code Meaning Processing 

0 No error − 

10000 N = 1 Make E (1) = A(1)/B (1),and EV (1,1)= 
1.0/SQRT (B (1)). 

15000 Some eigenvectors were not 
calculated. 

Make uncalculated eigenvectors zero 
vectors. 

20000 No eigenvectors were calculated. Make all eigenvectors zero vectors. 

28000 Pivot became negative during LLT 
decomposition of B.  B is negative 

Discontinued 

29000 Pivot became relatively zero 
during LLTdecomposition of B. B 
may be singular 

Discontinued 

30000 M = 0,N < | M |  ,or K < N. Bypassed 

 
c. Example 

In this example, m eigenvalues and corresponding eigenvectors are calculated in descending (or 
ascending) order for the general eigenvalue problem Ax = λBx for n order real symmetric matrix 
A and n order positive definite symmetric matrix B.  This example is for is for cases where n ≤ 
100 and m ≤ 20. 
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C     **EXAMPLE** 
      DIMENSION A(5050),B(5050),E(20), 
     *          EV(102,20),VW(1500),IVW(700) 
   10 READ(5,500,END=900) N,M,EPSZ,EPST 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      READ(5,510) (B(I),I=1,NT) 
      WRITE(6,600) N,M,EPSZ,EPST 
      WRITE(6,610) 
      IJ=0 
      DO 20 I=1,N 
      IJ=IJ+I 
   20 WRITE(6,620) I,(A(J),J=IJ-I+1,IJ) 
      WRITE(6,630) 
      IJ=0 
      DO 30 I=1,N 
      IJ=IJ+I 
   30 WRITE(6,620) I,(B(J),J=IJ-I+1,IJ) 
      CALL VGSG2(A,B,N,M,EPSZ,EPST, 
     *           E,EV,102,VW,IVW,ICON) 
      WRITE(6,640) ICON 
      IF(ICON.GE.20000) GO TO 10 
      MM=IABS(M) 
      CALL SEPRT(E,EV,102,N,MM) 
      GO TO 10 
  900 STOP 
  500 FORMAT(2I5,2E10.2) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1'//' ***     N=',I5 
     *           /' ***     M=',I5 
     *           /' ***  EPSZ=',E15.7 
     *           /' ***  EPST=',E15.7) 
  610 FORMAT('0'//' *** INPUT MATRIX A'/) 
  620 FORMAT('0',2X,I3,5E15.7/(6X,5E15.7)) 
  630 FORMAT('0'//' *** INPUT MATRIX B'/) 
  640 FORMAT('0'//' ***  ICON=',I5) 
      END 

 
This subroutine SEPRT in this example is used for printing eigenvaluer and eigenvectors of real 
symmetric matrices.  For details, see the example of VSEG2 subroutine use. 

(4) Methods 

Calculate the eigenvalues and eigenvectors using the following procedures for the general 
eigenvalue problem expressed by (4.1) for n order real symmetric matrix A and n order positive 
definite symmetric matrix B. 

Ax = λBx (4.1) 

a. Transformation of general eigenvalue problem to standard format 

B in (4.1 can be decomposed into a form expressed by (4.2) since it is a positive definite 
symmetric matrix. 
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B = LLT (4.2) 

Here, L is an order lower triangular matrix.  Substituting the values LLT of (4.2) for B of (4.1) and 
rearranging it results in expression (4.3). 

L -1 AL-T (LTx) = λ(LTx) (4.3) 

Here, let 

S = L-1 AL-T (4.4) 

y = LTx (4.5) 

Then, S becomes a real symmetric matrix and (4.3) becomes the standard format, expressed as 
follows: 

Sy = λy (4.6) 

b. Real symmetric matrix eigenvalues and eigenvectors 

Transform real symmetric matrix S by orthogonal similarity transformation into real symmetric 
tridiagonal matrix, then calculate the eigen value of T and corresponding eigenvector y′ using the 
bisection method and inverse iteration method, respectively.   y′ is inverse transformed further as 
eigenvector y of S. 

c. Eigenvectors for general eigenvalue problems 

The eigenvector x in (4.1) is calculated by (4.7),using vector y calculated in b. 

x = LTy (4.7) 

Subroutine GSCHL calculates a., slave subroutines of VSEG2 calculate b., and GSBK calculates c. 
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VLAX 

A22-71-0101 VLAX, VDLAX  

A system of linear equations with a real general matrix 
(blocking LU-decomposition method) 

CALL VLAX (A, K, N, B, EPSZ, ISW, IS, VW, IP, 
ICON) 

 
(1) Function 

This subroutine solves a real coefficient linear equations (1.1) using the blocking LU-
decomposition  (Gaussian elimination method). 

Ax=b (1.1) 

Where A is an n × n regular real matrix, b is an n- dimensional real constant vector, and x is the n- 
dimensional solution vector. n ≥1. 

(2) Parameters 

A .......... Input.  Coefficient matrix A. 
The contents of A are altered on output.  A is a two-dimensional array, A (K, N). 

K .......... Input.  Adjustable dimension of array A ( ≥ N). 
N .......... Input.  Order n of the coefficient matrix A. 
B........... Input.  Constant vector b 

Output.  Solution vector x 
B is a one-dimensional array of size n 

EPSZ.... Input.  Tolerance for relative zero test of pivots in decomposition process of A (≥ 0.0). 
If EPSZ is 0.0, a standard value is used. 

ISW...... Input.  Control information. 
When l (≥1) systems of linear equations with the identical coefficient matrix are to be 
solved, ISW can be specified as follows: 
ISW=1, the first system is solved. 
ISW=2, the 2nd to l-th systems are solved. 
However, only parameter B is specified for each constant vector b of the systems of 
equations, with the rest unchanged.  (See Notes.) 

IS.......... Output.  Information for obtaining the determinant of matrix A. 
If the n elements of the calculated diagonal of array A are multiplied by IS, the 
determinant is obtained. 

VW....... Work area.  VW is a one-dimensional array of size n 
IP.......... Work area.  IP is a one-dimensional array of size n 
ICON.... Output.  Condition code.  Refer to Table VLAX-1. 
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Table  VLAX-1     Condition codes 

Code Meaning Processing 

0 No error − 

20000 Either all of the elements of some row were zero or the pivot 
became relatively zero.  It is highly probable that the coefficient 
matrix is singular. 

Discontinued 

30000 K<N, N<1, EPSZ< 0.0 or ISW ≠ 1, 2 Bypassed 

 
 
(3) Notes 

a. Subprogram used 

SSL II .............. VALU, LUX, AMACH, MGSSL 
FORTRAN intrinsic functions........ ABS 

 
b. Notes 

(1) The solution x obtained by the subroutine may be refined in accuracy by calling subroutine 
LAXR successively. 

(2) If a value is set in the tolerance EPSZ for pivot relative zero test, this value means the 
following: 

If the selected pivot element is smaller than the product of the largest absolute value of real 
matrix A=(aij) elements, max |aij| and EPSZ can be shown as follows; 

EPSZ||max|| ij
k
kk aa ≤  

The relative pivot value is assumed to be zero and processing terminates as ICON=20000.  
The standard value of EPSZ is 16 u, u being the unit round off.  If the processing is to proceed 
at a lower pivot value, EPSZ will be given the minimum value but the result is not always 
guaranteed. 

(3) When solving successive systems of linear equations with the identical coefficient matrix, 
computation can be performed by setting ISW=2 after the first system of equations are 
processed.  By setting ISW=2, LU-decomposition of coefficient matrix A is bypassed so the 
computation time is reduced.  In this case, the value of IS is the same as when ISW=1. 
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c. Example 

In this example, l systems of linear equations in n unknown with the identical coefficient 
matrix are solved.  n ≤100. 

C     **EXAMPLE** 
      DIMENSION A(100,100),B(100),VW(100),IP(100) 
      READ(5,500) N 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N),I=1,N) 
      READ(5,500) L 
      M=1 
      ISW=1 
      EPSZ=1.0E-6 
   10 READ(5,510) (B(I),I=1,N) 
      WRITE(6,610) (I,B(I),I=1,N) 
      CALL VLAX(A,100,N,B,EPSZ,ISW,IS,VW,IP,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,630) (I,B(I),I=1,N) 
      IF(L.EQ.M) GOTO 20 
      M=M+1 
      ISW=2 
      GO TO 10 
   20 DET=IS 
      DO 30 I=1,N 
      DET=DET*A(I,I) 
   30 CONTINUE 
      WRITE(6,640) DET 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1',10X,'** COEFFICIENT MATRIX' 
     */12X,'ORDER=',I5/(10X,4('(',I3,',',I3, 
     *')',E15.8))) 
  610 FORMAT(///10X,'CONSTANT VECTOR' 
     */(10X,5('(',I3,')',E16.8))) 
  620 FORMAT('0',10X,'CONDITION CODE=',I5) 
  630 FORMAT('0',10X,'SOLUTION VECTOR' 
     */(10X,5('(',I3,')',E16.8))) 
  640 FORMAT(///10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=', 
     *E16.8) 
      END 
 

(4) Method 

A system of linear equations 

Ax = b (4.1) 

is solved using the following procedure: 
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a. LU-decomposition of coefficient matrix A ,(blocking LU-decomposition) 

The coefficient matrix A is decomposed into the product of a lower triangular matrix L and a 
unit upper triangular matrix U.  To reduce rounding off errors, the partial pivoting is 
performed in the decomposition process. 

PA = LU (4.2) 

P is the permutation matrix which performs the row exchanges required in partial pivoting.  
Subroutine VALU is used for this operation. 

b. Solving LU = Pb (forward and backward substitutions) 

Solving equation (4.1) is equivalent to solving the linear equations (4.3). 

LUx = Pb (4.3) 

Equation (4.3) is decomposed into two equations 

Ly = Pb (4.4) 

Ux = y (4.5) 

Then the solution is obtained using forward substitution and backward substitution. 
Subroutine LUX is used for these operations. 
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VLDLX 

A22-61-0302 VLDLX, DVLDLX 

A systme of linear equations with a positive definite symmetric 
matrix decomposed into the factors L, D ans LT 

CALL VLDLX (B, FA, N, ICON) 

 
(1) Function 

This subroutine solves a system of linear equations with an LDLT decomposed positive definite 
symmetric coefficient matrix 

LDLTx = b, (1.1) 

where L and D are an n × n unit lower triangular matrix and a diagonal matrix, respectively, b is 
an n-dimensional real constant vector, x is an n-dimensional  solution vector, and n ≥ 1. 

This subroutine received an LDLT decomposed matrix from subroutine VSLDL and calculates the 
solution. 

(2) Parameters 

B........... Input.  Constant vector b. 
Output.  Solution vector x, 
One-dimensional array of size n. 

FA ........ Input.  Matrices L and D -1 
One-dimensional array of size n ( n + 1 )/2. 

As shown in Figure VLDLX-1, L is input column by column, from the 
first column to the n-th one. 

N .......... Input.  Order n of matrices L and D 
ICON.... Output.  Condition code 

See Table VLDLX-1. 
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Figure  VLDLX-1   Storage method of matrices L and D -1 

Table VLDLX-1   Condition codes 

Code Meaning Processing 

0 No error − 

10000 Coefficient matrix was not positive definite. Continued 

30000 N < 1 Bypassed 

 
 
(3) Notes 

a. Subprograms used  

(1) SSL II:  MGSSL 

(2) FORTRAN intrinsic functions: none 
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b. Notes 

(1) A system of linear equations can be solved by calling this subroutine after the VSLDL 
subroutine.  However, subroutine VLSX can usually be called to solve such equations in one 
step. 

c. Example 

In this example an LDLT decomposition is performed for a positive definite symmetric matrix 
using subroutine VSLDL, then this subroutine is used to solve a system of linear equations.  n≤ 
100 is assumed. 

C     **EXAMPLE** 
      DIMENSION A(5050),B(100),VW(200),IVW(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,640) 
      IS=1 
      IE=N 
      DO 20 J=1,N 
      WRITE(6,600) J,(A(I),I=IS,IE) 
      IS=IE+1 
   20 IE=IE+(N-J) 
      CALL VSLDL(A,N,1.0E-6,VW,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      READ(5,510) (B(I),I=1,N) 
      CALL VLDLX(B,A,N,ICON) 
      WRITE(6,610) ICON 
      DET=1.0 
      II=1 
      NCOL=N 
      DO 30 I=1,N 
      DET=DET*A(II) 
      II=II+NCOL 
   30 NCOL=NCOL-1 
      DET=1.0/DET 
      WRITE(6,620) (B(I),I=1,N) 
      WRITE(6,630) DET 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT(' ',I5/(10X,4E16.8)) 
  610 FORMAT(/10X,'ICON=',I5) 
  620 FORMAT(/10X,'SOLUTION VECTOR' 
     * //(10X,5E16.8)) 
  630 FORMAT(/10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=' 
     *,E16.8) 
  640 FORMAT(/10X,'INPUT MATRIX') 
      END 
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(4) Method 

Suppose that an LDLT decomposition of a positive definite symmetric matrix A is given as 
follows: 

A = LDLT (4.1) 

The system of equations, 

LDLTx = b (4.2) 

is solved in the following sequence: 

(1) Solve Ly = b (by following substitution) 
First, b becomes the initial value of y. 

y ← b 

Next, (4.4) is iterated for j = 1, 2, ... , n−1. 

....,,2,1, njjilyyy ijjii ++=−←  (4.4) 

(2) Solve LTx = D -1y (by backward substitution) 
First, D -1y becomes the initial value of x. 

x ← D -1y (4.5) 

Next, (4.6) is iterated for i = n − 1, n − 2, ... , 1. 

∑
+=

−←
n

ij
jjiii xlxx

1

 (4.6) 

For actual calculations, y and x are both obtained on array B, so the substitutions shown above are 
equivalent to the update procedures for array B. 

All the above calculations are vectorized on a vector processor. 
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VLSX 

A22-61-0101 VLSX, DVLSX  

A system of linear equations with a positive definite 
symmetric matrix (modified Cholesky's method) 

CALL VLSX(A, N, B, EPSZ, ISW, VW, IVW, ICON) 

 
(1) Function 

This subroutine solves a system of linear equations with a real coefficient matrix by using the 
modified Cholesky's method. 

Ax = b (1.1) 

A is  an n × n positive definite symmetric matrix, b is an n-dimensional real constant vector, and x 
is an n-dimensional solution vector, and n≥1. 

The function of this subroutine is the same as that of subroutine LSX, but this subroutine stores 
the coefficient matrix differently, which makes it more suitable for a vector processor. 

(2) Parameters 

A .......... Input.  Coefficient matrix A. 
The contents are altered during calculation. 
One-dimensional array of size n (n+1)/2. 
The lower triangular portion of the symmetric matrix is stored column by column, from 
the first column to the n-th column, as shown in Figure VLSX-1. 

N .......... Input.  Order n of the coefficient matrix A 
B........... Input.  Constant vector b 

Output.  Solution vector x 
One-dimensional array of size n 

EPSZ.... Input.  Tolerance for relative zero test ( ≥ 0.0) 
When 0.0, a standard value is assigned. 
(See Note (2).) 

ISW...... Input.  Control information 
When solving several sets of equations that have an identical coefficient matrix, specify 
ISW=1 for the first set of equations, and ISW=2 for the second and subsequent sets.  
Only parameter B is assigned a new constant vector b. 
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All the other parameters should be unchanged. (See Note (3).) 

VW....... Work area.  One -dimensional array of size 2n 
IVW ..... Work area.  One-dimensional array of size n 
ICON ... Output.  Condition code  

See Table VLSX-1. 

Second
column

First
column

Third
column

Fourth
column

IJ = (2n−j+2)(j−1)/2
       +(i−j+1)

aij → A(IJ)

Correspondence relation

NT = n (n+1)/2 NT

a44a43a42a41

a33a32a31

a22a21

a11

a44

a43

a33

a42

a32

a22

a41

a31

a21

a11

Array A

 
Figure VLSX-1   Storage method of symmetric matrix 

Table VLSX-1     Condition codes 

Code Meaning Processing 

0 No error − 

10000 Pivot became negative. 
Coefficient matrix is not positive definite. 

Continued 

20000 Pivot became smaller than relative zero value.  Coefficient 
matrix might be singular. 

Bypassed 

30000 N < 1, EPSZ < 0.0, or ISW ≠1 or 2 Bypassed 
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(3) Notes 

a. Subprograms used 

(1) SSL II:  VSLDL, VLDLX, AMACH, MGSSL 

(2) FORTRAN intrinsic functions:  ABS 

b. Notes 

(1) This subroutine is provided for high-speed processing on a vector processor by modifying the 
matrix storage method used in subroutine LSX.  Note the differences in the storage methods 
and calling sequences used by the two subroutines. 

(2) If the value 10-s is  given as the tolerance for the relative zero test, EPSZ, then the value has 
the following meaning:  if the pivot value loses more than s significant digits during LDLT 
decomposition in the modified Cholesky method, the value is assumed to be zero and 
decomposition is discontinued with ICON=20000.  The standard value of EPSZ is normally 
16･u, where u is the unit round off. 

Decomposition can be continued by assigning the smallest value (e.g., 10-70) to EPSZ even 
when the pivot value becomes smaller than the standard value, although the calculation result 
may not be as accurate as desired. 

(3) When solving several sets of linear equations that have an identical coefficient matrix, specify 
ISW=2 for subroutine from the second time on.  This should reduce the processing time 
because LDLT decomposition for the coefficient matrix is bypassed. 

(4) If the pivot value becomes negative during decomposition, it means that the coefficient matrix 
is no longer positive definite.  ICON = 10000 is set, but processing continues.  Note, however, 
that the resulting calculation error may be significant, because no pivoting is performed. 

(5) To calculate the determinant of the coefficient matrix, multiply all the n diagonal elements of 
the array A (i.e., diagonal elements of D-1) after calculation is completed, and take the 
reciprocal of the result. 

c. Example 

In this example, l sets of n-th order linear equations that have an identical coefficient matrix are 
solved, where n ≤ 100. 

C     **EXAMPLE** 
      DIMENSION A(5050),B(100),VW(200),IVW(100) 
      READ(5,500) N 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,600) N 
      READ(5,500) L 
      ISW=1 
      M=1 
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      EPSZ=1.0E-6 
   10 READ(5,510) (B(I),I=1,N) 
      CALL VLSX(A,N,B,EPSZ,ISW,VW,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,620) (B(I),I=1,N) 
      IF(L.EQ.M) GO TO 20 
      M=M+1 
      ISW=2 
      GO TO 10 
   20 DET=1.0 
      II=1 
      NCOL=N 
      DO 30 I=1,N 
      DET=DET*A(II) 
      II=II+NCOL 
   30 NCOL=NCOL-1 
      DET=1.0/DET 
      WRITE(6,630) DET 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT('1'/10X,'ORDER=',I5) 
  610 FORMAT('0',10X,'ICON=',I5) 
  620 FORMAT(11X,'SOLUTION VECTOR' 
     */(15X,5E16.8)) 
  630 FORMAT('0',10X, 
     *'DETERMINANT OF COEFFICIENT MATRIX=' 
     *,E16.8) 
      END 
 

(4) Method 

A system of linear equations with a positive definite symmetric coefficient matrix A, 

Ax = b (4.1) 

is solved in the following sequence: 

a. LDLT decomposition of coefficient matrix A (modified Cholesky's method) 

Using the modified Cholesky method, the coefficient matrix A is decomposed into LDLT, 

A = LDLT (4.2) 

where L is a unit lower triangular matrix and D is a diagonal matrix.  This calculation is 
performed by subroutine VSLDL. 
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b. Solution (forward and backward substitutions) 

A system of linear equations, 

LDLTx = b (4.3) 

is solved.  This calculation is performed by subroutine VLDLX. 

This subroutine is a vector version of subroutine LSX, and is provided for high-speed processing 
on a vector processor.  For further details, see the explanation of subroutine VSLDL and the 
Method section of VLDLX. 
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VLTX 

A62-11-0101, VLTX, DVLTX 

A systme of linear equations with a real tridiagonal 
matrix (cyclic reduction method) 

CALL VLTX(SBD, D, SPD, N, B, ISW, IND, IVW, ICON) 

(1) Function 

This subroutine solves a tridiagonal matrix equation 

Ax = b (1.1) 

using the cyclic reduction method, where A is an n × n irreducibly diagonally dominant real 
tridiagonal matrix, b is an n-dimensional real constant vector, and x is the n-dimensional solution 
vector, and n≥1. 

Matrix A is said irreducibly diagonally dominant if, for the matrix below, 
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 (1.2)

 

the condition: 

| di | > | ei | + | fi |,  i=1, 2, ... , n (1.3) 

(where e1 = fn = 0) 

is satisfied, and for at least one i, a strict inequality holds. 

(2) Parameters 

SBD...... Input.  Sub-diagonal portion of coefficient matrix A. 
Store as SBD(i)=ei i=2, 3, ... , n. 
See Figure VLTX-1. 
The contents are altered during the calculation. 
One-dimensional array of size 2n 
(See Note (4).) 
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D .......... Input.  Diagonal portion of the coefficient matrix A. 
Store as D(i) = di, i = 1, 2, ... , n. 
See Figure VLTX-1. 
The contents are altered during the calculation. 
One-dimensional array of size 2n 
(See Note (4).) 

SPD...... Input.  Super-diagonal portion of coefficient matrix A 
Store as SPD(i) = fi, i = 1, 2, ... , n−1. 
See Figure VLTX-1. 
The contents are altered during the calculation. 
One-dimensional array of size 2n. 
(See Note (4).) 

N .......... Input.  Order n of coefficient matrix A. 
Store as B(i) = bi, i = 1, 2, ... , n. 
Output.  Solution vector x. 
Store as B(i) = xi, i = 1, 2, ... , n. 
See Figure VLTX-1. 
One-dimensional array of size 2n 

ISW...... Input.  Control information. 
When solving several sets of equations that have an identical 
coefficient matrix, specify ISW = 1 for the first set of the equations, 
and ISW = 2 for the second and subsequent sets.  Only parameter B is 
assigned a new constant vector b. All other parameters should be 
unchanged. 
(See Note (2).) 

IND ...... Input.  Control information. 
IND = 0 specifies to check whether the coefficient matrix is 
irreducibly diagonally dominant.  IND = 1 specifies not to check 
whether the matrix is irreducibly diagonally dominant.  Normally, 0 
is specified. 
(See Note (3).) 

IVW ..... Work area.  One-dimensional array of size [log2n] + 10, where [ ] is 
Gaussian notation. 

ICON ... Output.  Condition code. 
See Table VLTX-1. 
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Array BArray D Array SPDArray SBD
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Note: 

The portion indicated by an asterisk (*) is used as a work area in this subroutine. 

Figure VLTX-1   Storage method of matrix A, and vectors b and x 

Table VLTX-1   Condition codes 

 

Code Meaning Processing 

0 No error − 

20000 Coefficient matrix is not irreducibly diagonally  
dominant or the matrix is singular. 

Bypassed 

30000 N < 1, ISW ≠ 1 or 2 or IND ≠ 0, 1 Bypassed 

 
(3) Notes 

a. Subprograms used  

(1) SSL II:  AMACH, MGSSL 

(2) FORTRAN intrinsic functions: ALOG2, AMAX1, AMIN1, ABS, FLOAT, MIN0. 
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b. Notes 

(1) This subroutine uses the cyclic reduction method, an algorithm suited to a vector processor.  
Processing on a vector processor has the following features: 

− It is much faster than the Gaussian elimination method used in 
subroutine LTX. 

− Processing time increases almost linearly with N. 

− The more diagonally dominant the matrix is, the faster it is processed. 

This subroutine is about as accurate as subroutine LTX when processing irreducibly 
diagonally dominant matrices. 

(2) When solving several sets of tridiagonal matrix equations that have an identical coefficient 
matrix, specify ISW = 2 from the second subroutine call on.  This bypasses coefficient matrix 
elimination, thus speeding up calculation. 

(3) If the coefficient matrix is known in advance to be irreducibly diagonally dominant, specify 
IND = 1 to bypass testing of its irreducible diagonal dominance, thus speeding up calculation.  
If IND = 1 is specified for a coefficient matrix that is not irreducibly diagonally dominant, the 
solution may not be as accurate as desired. 

(4) If this subroutine is executed with ISW = 1 specified, arrays D(i), SBD(i), and SPD(i), i = 1, 
2, ... , n take on the values 1/di, ei /di, and fi / di respectively. 

c. Example 

In this example, l sets of n-dimensional tridiagonal matrix equations that have an identical 
coefficient matrix are solved.  n ≤ 1000 is assumed. 

C     **EXAMPLE** 
      DIMENSION SBD(2000),D(2000),SPD(2000), 
     *          B(2000),IVW(20) 
      READ(5,500) N,L 
      IF(N.LE.0) GO TO 30 
      NM1=N-1 
      READ(5,510) (SBD(I),I=2,N) 
      READ(5,510) (D(I),I=1,N) 
      READ(5,510) (SPD(I),I=1,NM1) 
      WRITE(6,600) N,D(1),SPD(1) 
      WRITE(6,610) (I,SBD(I),D(I),SPD(I),I=2,NM1) 
      WRITE(6,610) N,SBD(N),D(N) 
      ISW=1 
      IND=0 
      DO 10 II=1,L 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,620) (B(I),I=1,N) 
      CALL VLTX(SBD,D,SPD,N,B,ISW,IND,IVW,ICON) 
      WRITE(6,630) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,640) (B(I),I=1,N) 
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      ISW=2 
   10 CONTINUE 
   30 WRITE(6,650) 
      STOP 
  500 FORMAT(2I5) 
  510 FORMAT(5E14.7) 
  600 FORMAT('1',20X, 
     *       'LINEAR EQUATIONS (TRIDIAGONAL)', 
     *       /' ',20X,'ORDER= ',I5,/, 
     *       /' ',25X,'COEFFICIENT MATRIX',/, 
     *       /' ','(',4X,'1)',21X,2(2X,E14.7)) 
  610 FORMAT((' ','(',I5,')',5X,3(2X,E14.7))) 
  620 FORMAT(/' ',78('*'),//,' ',25X, 
     *'CONSTANT VECTOR',//,(' ',5(1X,E15.7))) 
  630 FORMAT(/' ','CONDITION CODE OF VLTX= ',I5) 
  640 FORMAT(/' ',25X,'SOLUTION VECTOR',//, 
     *(' ',5(1X,E14.7))) 
  650 FORMAT(//' ',30X,'** NORMAL END **') 
      END 
 

(4) Method 

Consider the use of cyclic reduction method to solve a tridiagonal matrix equation (4.1) which is 
normalized so that the diagonal elements of its coefficient matrix are all 1. 

Ax = b (4.1) 

where: 
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The general form of the cyclic reduction method for (4.1) is explained first, followed by an 
explanation of the possible improvement in the case where the matrix is diagonally dominant to 
sufficient extent. 

a. General form of cyclic reduction method  

This method is used basically to produce a system of tridiagonal matrix equations with respect to 
even-numbered unknowns, by applying a proper elimination process to the tridiagonal matrix 
equations being solved. 

Suppose n is an odd number for convenience, and select three rows next to each other in (4.1) as 
follows: 
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ei-1 xi-2 + xi-1 + fi-1 = bi-1 
ei xi-1 + xi + fi xi+1 = bi (4.2) 

ei+1xi +xi+1 + fi+1 xi+2 = bi+1 

From the three equations above, xi-1 and xi+1 can be eliminated in the following way.  First, 
multiply the first equation by (−ei) and the third equation by (−fi),  

ei
(1) xi-2 + xi +fi

(1) xi+2 = bi
(1) (4.3) 

where ei
(1) = ei-1 ei ti 

fi
(1) = fifi+1 ti 

bi
(1) = (ei bi-1+fi bi+1 − bi) ti 

1
1

11 −+
=

+− iiii
i fefe

t  

Considering only the even-numbered i s in (4.3) i.e., i=2, 4, ... , n−1 (,where x0 = xn+1 = 0), the 
following tridiagonal matrix equation of order [n/2] is obtained. 
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 (4.4) 

This operation for reducing the order of equations by half is called reduction. Once x2, x4, ... ,  xn-1 
are obtained from (4.4), the odd-numbered unknowns can be obtained by substituting them into 
(4.1), resulting in 

xi-1 = bi-1 − ei-1 xi-2 − fi-1 xi, i = 2, 4, ... ,.n+1 (4.5) 

This is called back ward substitution. 

The calculation of ei
(1) through ti in (4.3), and the calculation of (4.5) can be performed in parallel, 

and there is no recurrence relation, unlike the Gaussian elimination method.  Therefore, the above 
calculations can be efficiently performed by a vector processor.  Thus cyclic reduction is faster 
than Gaussian elimination on a vector processor. 

Next, suppose n is an even number.  Then n−1 is an odd number, so the upper limit of i applied in 
(4.3) is n−2.  In return, by using 

en-1 xn-2 + xn-1 + fn-1 xn = bn-1 (4.6) 
en xn-1 + xn = bn 
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the following equation from which x has been eliminated is added. 

en
(1) xn-2 + xn = bn

(1) (4.7) 

where en
(1) = en-1 en tn 

bn
(1) = (en bn-1−bn) tn 
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Even when n is an even number, the original tridiagonal matrix equations can be reduced to 
tridiagonal matrix equations of order [n/2], as in (4.4) 

The above reduction operation can be applied again to the tridiagonal matrix equations of order 
[n/2] to reduce the order by half again.  By repeating this operation as many times as required, an 
equation of order 1 will be obtained, and in can be solved for the one corresponding unknown.  
Then, backward substitution can be repeated to obtain a solution to (4.1).  The number of 
repeated operations required to reduce the equation to order 1 is [log2 n]. 

b. Incomplete termination of reduction 

By continuing the above reduction operation, the matrix will approach diagonal dominance under 
certain conditions (i.e., off-diagonal elements will become as small compared to the diagonal 
elements).  Then, some of the components of the modified right-hand-side vector will converge to 
some of the components of the solution vector.  Therefore, if reduction operation is stopped at the 
proper time and backward substitution is performed, processing efficiency will be improved. The 
termination of reduction operation before reaching equations of order 1 is called incomplete 
termination of reduction. 

One of the conditions sufficient to enable incomplete termination is that the relation, 

| ei |, | fi | < 1/2 (4.8) 

is satisfied in the normalized equations given in (4.1). This subroutine, when the above relation is 
satisfied, determines the number of reductions before incomplete termination takes place, as 
follows 

Under condition (4.8), the lower limit of the rate at which the off-diagonal elements are 
approaching 0 can be examined.  For that purpose, we introduce the value 

( ) 2/1||,||max <= ii
i

fee  (4.9) 

 
and consider a matrix of (4.1) whose ei and fi elements are all replaced by e.  The ratio of the 
diagonal elements to e, | 1/e |, is greater that 2, so we represent it as 

| 1/e | = 2+ε(0) (ε(0) > 0) (4.10) 
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By the first reduction operation, off-diagonal elements become 

12 2

2

−
=′

e
ee  (4.11) 

Its ratio to diagonal elements is then  

| 1/e′ | = 2 + ε (1), where ε (1) = 4ε (0) + (ε (0))2. (4.12) 

The k-th ratio is  

| 1/e(k) | =2 + ε(k). (4.13) 

Therefore 

ε (k+1) = 4ε (k) + ( ε (k) )2, k = 1, 2, ... (4.14) 

Thus, when ε (0) <1, the matrix approaches diagonal dominance linearly but once ε (k) >1, 
quadratically. 

This subroutine estimates in advance the smallest integer k for which 

ε (k) ≥ 1/u (u: unit round off), (4.15) 

and then repeats reduction operations k times before performing the substitution.  If k> [log2n], 
however, incomplete termination of reduction will not occur. 

The greater the value n is and the smaller the value max (| ei |, | fi |)is, the greater efficiency can be 
gained by incomplete termination. 

For further details, see References [1], [3] and [7]. 
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VLTX1 

A62-21-0101 VLTX1, DVLTX1 

A system of linear equations with a real constant-tridiagonal 
matrix (Dirichlet type and cyclic reduction method) 

CALL VLTX1 (D, SD, N, B, ISW, VW, IVW, ICON) 

 
(1) Function 

This subroutine solves a real tridiagonal matrix equation 

Ax = b (1.1) 

using cyclic reduction, where A is an n× n irreducibly diagonally dominant real tridiagonal matrix 
of the form: 
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  d ≠ 0, | d | ≥ 2 | e | 

Where b is a n-dimensional real constant vector, and x is the n-dimensional solution vector, for n 
≥ 1. 

This subroutine restricts the coefficient matrix to the form (1.2) in order to achieve high 
performance, while subroutine VLTX processes a general tridiagonal matrix. 

(2) Parameters 

D .......... Input.  Diagonal element d 

SD ........ Input.  Off-diagonal element e 

N .......... Input.  Order of the coefficient matrix A 

B........... Input.  Constant vector b 
Store as B(i) = bi , i = 1, 2, ..., n. 
Output.  Solution vector x 
Store as B(i) = xi , i = 1, 2, ..., n. 
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See Figure VLTX1-1. 
One-dimensional array of size 2n 

ISW...... Input.  Control information 
When solving several sets of equations that have an identical coefficient matrix, specify 
ISW=1 for the first set of equations, and ISW=2 for the second and subsequent sets.  
Only parameter B is assigned a new constant vector b.  All other parameters should be 
unchanged. 
(See Note (3).) 

VW....... Work area.  One-dimensional array of size 2 ( [log2n] ) + 1), where [ ] is Gaussian 
notation. 

IVW ..... Work area.  One-dimensional array of size 2 ( [log2n] + 1) + 10 

ICON ... Output.  Condition code 
See Table VLTX1-1. 

Array B

(Input)

(Output)

*

*xn

bnb3b2b1

x3x2x1

nn

 
Note: 

The portion indicated by an asterisk (*) is used as a work area in this subroutine. 

Figure VLTX1-1   Storage method of vectors b and x 

Table  VLTX1-1     Condition codes 

Code Meaning Processing 

0 No error − 

20000 Coefficient matrix is not irreducibly diagonally dominant. Bypassed 

30000 N<1, or ISW ≠1, 2 Bypassed 
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(3) Notes 

a Subprograms used 

(1) SSL II:  AMACH, MGSSL 

(2) FORTRAN intrinsic functions:  ALOG2, FLOAT, ABS, MIN0 

b. Notes 

(1) This subroutine uses the cyclic reduction method, an algorithm suited to a vector processor.  
Processing on a vector processor has the following features: 

− It is much faster than the Gaussian elimination method used in subroutine LTX. 

− Processing time increases almost linearly with N. 

− The more diagonally dominant the matrix is, the faster it is processed. 

This subroutine is about as accurate as subroutine LTX or LSTX when processing 
irreducibly diagonally dominant matrices. 

(2) The coefficient matrix (1.2) arises from the discretization of simple Dirichlet boundary value 
problems. 

(3) When solving several sets of tridiagonal matrix equations that have an identical coefficient 
matrix specify ISW=2 from the second subroutine call on.  This bypasses coefficient matrix 
elimination, thus speeding up calculation. 

c. Example 

In this example, l sets on n-dimensional linear equations that have an identical coefficient matrix 
are solved, for n ≤ 1000. 

C     **EXAMPLE** 
      DIMENSION B(2000),VW(20),IVW(30) 
      READ(5,500) N 
      READ(5,510) D,SD 
      WRITE(6,600) N,D,SD 
      READ(5,500) L 
      ISW=1 
      DO 10 II=1,L 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,610) (B(I),I=1,N) 
      CALL VLTX1(D,SD,N,B,ISW,VW,IVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,630) (B(I),I=1,N) 
      ISW=2 
   10 CONTINUE 
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      WRITE(6,640) 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(5E14.7) 
  600 FORMAT('1', 
     *  20X,'LINEAR EQUATIONS (TRIDIAGONAL)' 
     *  /' ',20X,'ORDER= ',I5/ 
     *  /' ',25X,'COEFFICIENT MATRIX'/ 
     *  /' ',30X,'D =',E14.7/ 
     *  /' ',30X,'SD=',E14.7) 
  610 FORMAT(/' ',78('*')//' ', 
     *  25X,'CONSTANT VECTOR'// 
     *  (' ',5(1X,E14.7))) 
  620 FORMAT(/' ','CONDITION CODE OF VLTX1= ', 
     *       I5) 
  630 FORMAT(/' ',25X,'SOLUTION VECTOR'// 
     *  (' ',5(1X,E14.7))) 
  640 FORMAT(//' ',30X,'** NORMAL END **') 
      END 
 

(4) Method 

Cyclic reduction can be used to solve tridiagonal matrix equation (4.1), which is normalized so 
that the off diagonal elements of its coefficient matrix are all 1. 

Ax = b (4.1) 

where 
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 (4.2) 

|d| ≥ 2 

The cyclic reduction method for a general tridiagonal matrix is explained in Method for 
subroutine VLTX, but for the restricted form as (4.2), the amount of calculation can be greatly 
reduced.  The reduction of the coefficient matrix at each step requires only a few scalar 
calculations, and most of the calculation involves reduction of the right hand side vector. 

Here, the cyclic reduction method for coefficient matrix (4.2) is explained.  When the matrix is 
diagonally dominant to sufficient extent, reduction operation will be incompletely terminated.  
For further details of it, see the explanation of subroutine VLTX. 

Suppose n is an odd number, and select three rows next to each other in (4.1) as follows: 
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xi-2 + dxi-1 + xi = bi-1 
xi-1 + dxi + xi+1 = bi (4.3) 

xi + dx i+1 + xi+2 = bi+1 

x i-1 and xi+1 can be eliminated from the three above equations in the following way.  First, 
multiply the second equation by (−d), and add to its result the first and the third equations to 
obtain (4.4). 

xi-2 + d (1)xi + xi+2=bi
(1) (4.4) 

where d (1) = 2-d2 

bi
(1) = bi-1bi+1 - dbi 

Considering only the even-numbered i's in (4.4), i.e., i = 2, 4, ..., n−1 (, where x0 = xn+1 = 0), 
the following tridiagonal matrix equation of order [n/2]is obtained. 
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 (4.5) 

Once x2, x4, ..., xn-1 are obtained from (4.5), the odd-numbered unknowns can be obtained by 
substituting them into (4.1), resulting in 

xi-1 = (bi-1 − xi-2 −xi)/d (4.6) 
i = 2, 4, ... , n+1 

The calculations for bi
(1) and (4.6) can be performed very efficiently on a vector processor. 

Next, suppose n is an even number.  Then n−1 is an odd number, so the upper limit of i 
applied in (4.4) is n−2.  In return, using 

xn-2 + dxn-1 + xn = bn-1 (4.7) 
xn-1 + dxn = bn, 

The following equation from which xn-1 has been eliminated is added: 

xn-2 + c(1)xn = bn
(1), (4.8) 

where c(1) = 1 − d2 
bn

(1) = bn-1 − dbn. 
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Then, (4.5) becomes 
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 (4.9) 

Thus, the problem can still be reduced to a tridiagonal matrix equation of order [n/2].  
The first reduction operation has been explained.  By repeating this operation as many as 
required, an equation of order 1 can be obtained.  The coefficient matrix at each reduction 
step contains all 1 in its off-diagonal elements, and its diagonal elements all have the same 
value except for the last element.  The last diagonal element is handled differently because the 
order of the coefficient matrix alternates between odd and even at reduction step. 

In conclusion, general step of the reduction operation can be described as follows:  We 
represent the equation which is going to be reduced by (4.10), and suppose that it is of order n. 
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 (4.10) 

The reduction operation produces, from (4.10), an equation with even-numbered unknowns. 
To do that the processing explained above is performed according to whether n is odd or even.  
The resulting reduced equation can be written as shown in (4.11). 
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 (4.11) 

where d(1) = 2−d 2 
b2r

(1) = b2r-1+b2r+1 − db2r, 
r = 1, 2, ... , [n/2] −1  
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when  n  is odd 
l = n−1, c(1) = 1− d 2 + d/c 

bl (1) = bn-2 -dbn-1 + (d/c) bn 

when n is even 
l = n, c(1) = 1 − dc, (4.12) 

bl 
(1) = bn-1 − dbn 

Repeating the reduction of (4.10) into (4.11) as may times as required, an equation of order 1 
can be obtained.  By solving the equation, and using backward substitution, the final solution 
can be obtained. 

As explained above, this subroutine requires few calculations to reduce a coefficient matrix.  
Most of the calculations involve reduction of the right hand side vector and backward 
substitution, both of which can be vectorized on a vector processor. 
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VLTX2 

A62-31-0101 VLTX2, DVLTX2 

A system of linear equations with a real constant tridiagonal 
matrix (Neumann type and cyclic reduction method) 

CALL VLTX2 (D, SD, N, B, ISW, VW, IVW, ICON) 

(1) Function 

This subroutine solves a real tridiagonal matrix equation 

Ax = b (1.1) 

using cyclic reduction, where A is an n × n irreducibly diagonally dominant real tridiagonal 
matrix of either form below: 
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In equation (1.1), b is an n-dimensional real constant vector, and x is the  n-dimensional solution 
vector, and n ≥ 1. 

This subroutine restricts the coefficient matrix to the above forms to achieve high performance, 
while subroutine VLTX processes general tridiagonal matrices.  

(2) Parameters 

D .......... Input.  Diagonal element d 

SD ........ Input.  Off-diagonal element e 

N .......... Input.  Order n of the coefficient matrix A 

B .......... Input.  Constant vector b 
Store as B (i) = bi, i = 1, 2, ... , n. 
Output.  Solution vector x 
Store as B (i) = xi, i = 1, 2, ... , n. 
See Figure VLTX2-1. 
One dimensional array of size 2n + [log2n] 

ISW...... Input.  Control information 
When solving several sets of equations that have an identical coefficient matrix, specify 
ISW=1 for the first set of equations, and ISW=2 for the second and subsequent sets. 
Only parameter B is assigned a new constant vector b.  All other parameters should be 
unchanged. (See Note (3).) 

IND ...... Input.  Control information to specify the form of the coefficient matrix. 
IND=1 for (1.2) 
IND=2 for (1.3) 
IND=3 for (1.4) 

VW....... Work area.  One-dimensional array of size 2([log2n] + 1) where [ ] is Gaussian notation 

IVW ..... Work area.  One-dimensional array of size 2([log2n] + 1) + 10 

ICON ... Output.  Condition code 
See Table VLTX2-1 
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(Output)

Array B

(Input) *

*x1 x2 x3 xn

bnb3b2b1

n n+[log2n]

 

Note: 

The portion indicated by an asterisk (*) is used as a work area in this subroutine. 

Figure VLTX2-1   Storage method of vectors b and x 

Table  VLTX2-1     Condition codes 

Code Meaning Processing 

0 No error − 

20000 Coefficient matrix is not irreducibly diagonally 
dominant. 

Bypassed 

30000 N < 1, IND ≠ 1, 2, or 3, ISW ≠ 1 or 2 Bypassed 

 
(3) Notes 

a. Subprograms used 

(1) SSL II:  AMACH, MGSSL 

(2) FORTRAN intrinsic functions:  ALOG2, FLOAT, ABS, MIN0 

b. Notes 

(1) This subroutine uses the cyclic reduction-method, an algorithm suited to a vector processor.  
Processing on a vector processor has the following features: 

− It is much faster than Gaussian elimination method used in subroutine LTX. 

− Processing time increases almost linearly with N. 

− The more diagonally dominant the matrix is, the faster it is processed. 

This subroutine is about as accurate as subroutine LTX when processing irreducibly 
diagonally dominant matrices. 
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(2) The coefficient matrices in (1.2) to (1.4) arises from the discretization of simple Neumann 
boundary value problems. 

(3) When solving several sets of tridiagonal matrix equations that have an identical coefficient 
matrix, specify ISW=2 from the second routine call on.  This bypasses coefficient matrix 
elimination, thus speeding up calculation. 

c. Example 

In this examples, l sets of n-dimensional linear equations that have an identical coefficient matrix 
are solved.  Here the coefficient matrix is assumed to be of the form (1.2) and n ≤ 1000. 

C     **EXAMPLE** 
      DIMENSION B(2010),VW(20),IVW(30) 
      READ(5,500) N 
      READ(5,510) D,SD 
      WRITE(6,600) N,D,SD 
      READ(5,500) L 
      ISW=1 
      IND=1 
      DO 10 II=1,L 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,610) (B(I),I=1,N) 
      CALL VLTX2(D,SD,N,B,ISW,IND,VW,IVW, 
     *ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,630) (B(I),I=1,N) 
      ISW=2 
   10 CONTINUE 
      WRITE(6,640) 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(5E14.7) 
  600 FORMAT('1', 
     *  20X,'LINEAR EQUATIONS (TRIDIAGONAL)' 
     *  /' ',20X,'ORDER= ',I5/ 
     *  /' ',25X,'COEFFICIENT MATRIX'/ 
     *  /' ',30X,'D= ',E14.7/ 
     *  /' ',30X,'SD=',E14.7) 
  610 FORMAT(/' ',78('*')//' ', 
     *  25X,'CONSTANT VECTOR'// 
     *  (' ',5(1X,E14.7))) 
  620 FORMAT(/' ','CONDITION CODE OF VLTX2= ', 
     *  I5) 
  630 FORMAT(/' ',25X,'SOLUTION VECTOR'// 
     * (' ',5(1X,E14.7))) 
  640 FORMAT(//' ',30X,'** NORMAL END **') 
      END 
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(4) Method 

Cyclic reduction can be used to solve tridiagonal matrix equation (4.1), which is normalized so 
that the off diagonal elements of its coefficient matrix are all 1. 

Ax = b, (4.1) 

where A takes one of the following forms: 
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Dividing the n-th row of the matrix (4.3) by 2, all the off-diagonal elements become 1, and the 
last diagonal element becomes d/2.  This type of matrix can be solved as explained in Method for 
subroutine VLTX1, so only solution of forms (4.2) and (4.4) need to be explained. 

Dividing the n-th row of (4.4) by 2, the matrix becomes of the same form as (4.2) except for the 
last diagonal element.  Therefore, we now consider (4.2) and (4.4) to be of the same form as 
matrix (4.5), and explain cyclic reduction for this matrix. 
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Here c=d for matrix (4.2) and c=d/2 for matrix (4.4).  We assign b to be a constant vector of the 
matrix equation with coefficient matrix (4.5). 

The cyclic reduction method here generates a matrix equation (of order [(n−1)/2]+1)with respect 
to the odd-numbered unknowns, x1 , x3 , x5 , ... .  This differs from subroutine VLTX1.  First, by 
eliminating x2 from the following two equations: 

dx1 + 2x2 = b1 (4.6) 
x1 + dx2 + x3 = b2 

we obtain 

(2−d2)x1 +2x3 = 2b2 − db1. (4.7) 

Next, eliminating unknowns x2j and x2j+2 from the three equations constructed using the 2j-th row, 
(2j + 1) st row and (2j + 2) nd row of (4.5),  we obtain 

x2j-1 + (2−d2)x2j+1 +x2j+3= b2j +b2j+2 − db2j+1. (4.8) 

This calculation is repeated for each value of j =1, 2, ... , m (where m is the largest integer 
satisfying 2j+1 ≤ ... n−2).  One more equation is added to these two equations depending on 
whether n is even or odd.  If n is even, eliminating xn-2 and xn from the three equations, 

xn-3 + dxn-2 + xn-1 = bn-2 
xn-2 + dxn-1 + xn = bn-1 (4.9) 

xn-1 + cxn = bn, 

we obtain 

xn-3 + (1 − d2 + d/c)xn-1 = bn-2 + (d/c)bn − dbn-1 (4.10) 

When n is odd, eliminating xn-1 from the second and third equations of (4.9) we obtain 

xn-2 + (1−dc)xn = bn-1 − dbn. (4.11) 

Thus the equations of order [(n−1)/2] consisting of (4.7), (4,8), and either (4.10) or (4.11), are 
obtained with respect to the odd-numbered unknowns only.  These equations can be rewritten as 
(4.12). 
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where d(1) = 2−d2 
b1

(1) = 2b2 − db1 
b2j+1

(1) = b2j + b2j+2  − db2j+1 
j = 1, 2, ... ,m 

when n is even, 

l = n − 1 
c(1) = 1 - d2 + d/c 

( ) 12
(1) / −− −+= nnnl dbbcdbb  

when n is odd, 

l = n 
c(1) = 1− dc 

nn dbbbl −= −1
(1)

 

Looking at equation (4.12), we see that the coefficient matrix obtained by performing this single 
reduction is of the same form as (4.5), which is one of the characteristics of this method.  Once 
the solution to (4.12) is obtained, the even-numbered unknowns can also be obtained by 
substituting them into the original matrix equation. 

Applying the same reduction operation to (4.12), an equation of half the order can be obtained.  
By repeating the operation as many times as required, a matrix equation with coefficient matrix 
(4.13) can be obtained. 












)(

)(

1
2
k

k

c
d  (4.13) 

By solving this matrix, followed by substitution, the original equation can be solved. 

If | d | is greater than 2, the reduction terminates incompletely for efficiency in the same way as 
explained for subroutine VLTX. 
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VLTX3 

A62-41-0101 VLTX3, DVLTX3 

A system of linear equations with a real constant tridiagonal 
matrix (periodic type and cyclic reduction method) 

CALL VLTX3 (D, SD, N, B, ISW, VW, IVW, ICON) 

 
(1) Function 

This subroutine solves a real tridiagonal matrix equation 

Ax = b (1.1) 

using cyclic reduction, where A is an n × n irreducibly diagonally dominant real and almost 
tridiagonal matrix of the form: 

ed
d

dee
e0

de
0ede

eed

2,
0
>

≠



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






















⋅⋅
⋅⋅⋅

⋅
 (1.2) 

Here b is an n-dimensional real constant vector and x is the n-dimensional solution vector, and  
n ≥ 1. 

(2) Parameters 

D .......... Input.  Diagonal element d 

SD ........ Input.  Off-diagonal element e 

N .......... Input.  Order n of the coefficient matrix A 

B........... Input.  Constant vector b 
Store as B(i) = bi, i = 1, 2, ... , n 
Output.  Solution vector x 
Store as B(i) = xi, i =1, 2, ... , n 
See Figure VLTX3-1. 
One dimensional array of size 2n + [log2n] 

ISW...... Input. Control information 
When solving several sets of equations that have an identical  
coefficient matrix, specify ISW=1 for the first set of equations, and 
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ISW=2 for the second and subsequent sets.  Only parameter B is assigned a new 
constant vector b.  All other parameters should be unchanged.  (See Note (3)). 

VW....... Work area.  One-dimensional array of size 3 ([log2n]+1), where [ ] is Gaussian notation. 

IVW ..... Work area.  One-dimensional array of size 4 ([log2n]+1)+10. 

ICON ... Output.  Condition code 
See Table VLTX3-1. 

･  ･  ･

･  ･  ･

*

*bnb3b2b1

n+[log2n]

(Output)

(Input)

Array B
n

xnx3x2x1

 

Note: 

The portion indicated by an asterisk (*) is used as a work area in this subroutine. 

Figure VLTX3-1   Storage method of vectors b and x 

Table  VLTX3-1     Condition codes 

Code Meaning Processing 

0 No error − 

20000 Coefficient matrix is not irreducibly diagonally dominant. Bypassed 

30000 N<1, or ISW ≠ 1, 2 Bypassed 
 

(3) Notes 

a. Subprograms used 

(1) SSL II:  AMACH, MGSSL 

(2) FORTRAN intrinsic functions:  ALOG2, FLOAT, ABS, MIN0 
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b) Notes 

(1) This subroutine uses cyclic reduction, an algorithm suited to a vector processor.  Processing 
on a vector processor has the following features: 

− It is much faster than the Gaussian elimination method 

− Processing time increases almost linearly with N. 

− The more diagonally dominant the matrix is, the faster it is processed. 

This subroutine is about as accurate as the Gaussian elimination method. 

(2) The coefficient matrix (1.2) arises from the discretization of simple periodic boundary value 
problems. 

(3) When solving several sets of tridiagonal matrix equations that have an identical coefficient 
matrix, specify ISW=2 for the second and subsequent subroutine call.  This bypasses 
coefficient matrix elimination, thus speeding up calculation. 

c. Example 

In this example, l sets of n-dimensional linear equations that have an identical coefficient matrix 
are solved, for n ≤ 1000. 

C     **EXAMPLE** 
      DIMENSION B(2010),VW(30),IVW(50) 
      READ(5,500) N 
      READ(5,510) D,SD 
      WRITE(6,600) N,D,SD 
      READ(5,500) L 
      ISW=1 
      DO 10 II=1,L 
      READ(5,510) (B(I),I=1,N) 
      WRITE(6,610) (B(I),I=1,N) 
      CALL VLTX3(D,SD,N,B,ISW,VW,IVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.NE.0) STOP 
      WRITE(6,630) (B(I),I=1,N) 
      ISW=2 
   10 CONTINUE 
      WRITE(6,640) 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(5E14.7) 
  600 FORMAT('1', 
     *  20X,'LINEAR EQUATIONS (TRIDIAGONAL)' 
     *  /' ',20X,'ORDER= ',I5/ 
     *  /' ',25X,'COEFFICIENT MATRIX'/ 
     *  /' ',30X,'D= ',E14.7/ 
     *  /' ',30X,'SD=',E14.7) 
 



VLTX3 
 

PT II-76 99SP4070E-2 

  610 FORMAT(/' ',78('*')//' ', 
     *  25X,'CONSTANT VECTOR'// 
     *  (' ',5(1X,E14.7))) 
  620 FORMAT(/' ','CONDITION CODE OF VLTX3= ', 
     *  I5) 
  630 FORMAT(/' ',25X,'SOLUTION VECTOR'// 
     *  (' ',5(1X,E14.7))) 
  640 FORMAT(//' ',30X,'** NORMAL END **') 
      END 
 

(4) Method 
Cyclic reduction can be used to solve tridiagonal matrix equation (4.1), which is normalized so 
that the off diagonal elements of its coefficient matrix are all 1. 
Ax = b (4.1) 

where 
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Because the above equation has nonzero elements at (n, 1) and (1, n), in its matrix, cyclic 
reduction cannot be applied directly.  However, by transforming variables, the equation can be 
separated into two independent tridiagonal matrix equations each of which can then be solved 
using the cyclic reduction method described in Method for subroutine VLTX1 or VLTX2.  The 
separation method is explained here for both even and odd n, because processing differs for the 
two cases. 
(1) When n is even 

Assuming n=2l we introduce two new variables y and z as follows: 
1...,,2,1, −=−= +− ljxxy jljlj  (4.3) 

ljxxz jljlj ,...,1,0,1 =+= +−+  
where x0 = xn With these variables, the equations pertaining to y and z are given by (4.4) and 
(4.5), respectively. 
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 (4.5) 

Equations (4.4) and (4.5) can be solved using the methods of subroutinesVLTX1 and VLTX2, 
respectively.  Given y and z, x can be obtained as follows: 

2/,2/ 11 +== lnl zxzx  
( ) ( ) 2/,2/ 11 ijjljijl yzxzyx −=+= +++−  (4.6) 

1,...,2,1 −= lj  

(2) When n is odd 
Assuming n = 2l − 1 we introduce two new variables y and z as follows: 

1,...,2,1, −=−= +− ljxxy jljlj  (4.7) 

1,...,1,0,1 −=+= +−+ ljxxz jljlj  

With these variables, the equations pertaining to y and z are given by (4.8) and (4.9), 
respectively. 
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Similarly, the two equations above can be solved using the methods of subroutines VLTX1 
and VLTX2, respectively. 
Given y and z, x can be obtained as follows: 

2/1zxl =  
( ) ( ) 2/,2/ 11 jjjljijl yzxzyx −=+= +++−  

1,...,2,1 −= lj  (4.10) 
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VLUIV 

 

A22-71-0602 VLUIV, VDLUIV 

The inverse of a real general matrix decomposed 
into the factors L and D 

CALL VLUIV (FA, K, N, IP, AI, ICON) 

 
(1) Function 

This subroutine computes the inverse A−1 of an n × n real general matrix A given in decomposed 
form  PA = LU 

A −1 = U −1 L −1 P  

L and U are respectively the n × n lower triangular and unit upper triangular matrices, and P  is 
the permutation matrix which performs the row exchanges in partial pivoting for LU 
decomposition. n ≥ 1. 

(2) Parameters 

FA ........ Input.  Matrix L and matrix U. 
FA is a two-dimensional array, FA (K, N). 
Refer to Fig. VLUIV-1. 

K .......... Input.  Adjustable dimensional of array FA and AI (≥N). 
N .......... Input.  Order n of the matrices L and U. 
IP.......... Input.  Transposition vector which indicates the history of row exchanges in partial 

pivoting.  One-dimensional array of size n. 
AI ......... Output.  Inverse A −1.  AI is a two-dimensional array, AI (K, N). 
ICON.... Output.  Condition code.  See Table VLUIV-1. 
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l31 l32

l22l21

l11

un−1n

u23 u2n

u1nu13u12

0

0

1

1

1
1

ln1 ln2

l22l21

l11

ln1

K
N

un−1nln−1n−1

lnn−1 lnnln2

u23 u2n

u1nu13u12

Diagonal and lower
triangular portions only

ln−1n−1

lnn−1 lnn

Array FA

Upper triangular portion only

Unit upper triangular
matrix U

Lower triangular
matrix L

  
Figure VLUIV-1  Storage of the elements of L and U in array FA 

Table VLUIV-1  Condition codes 

Code Meaning Processing 
0 No error − 

20000 A real matrix was singular. Discontinued 
30000 K>N of N<1 or there was an  

error in IP. 
Bypassed 

 
(3) Notes 

a. Subprograms used 

SSL II ......MGSSL 

FORTRAN intrinsic functions ........None 

b. Notes 

Prior to calling this subroutine, LU-decomposed matrix must be obtained by subroutine VALU 
and must be input as the parameters FA and IP to be used for this subroutine.  The subroutine 
VLAX should be used for solving linear equations.  Obtaining the solution by first computing the 
inverse matrix requires more steps of calculation, so subroutine VLUIV should be used only 
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when the inverse matrix is inevitable.  The transposition vector corresponds to the permutation 
matrix P  of 

PA = LU 

When performing LU decomposition with partial pivoting.  Refer to Notes of the subroutine 
VALU. 

c. Example 

The inverse of an n × n real general matrix is obtained. n ≤ 100. 

C     **EXAMPLE** 
      DIMENSION A(100,100),VW(100),IP(100),AI(100,100) 
      READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,510) ((A(I,J),I=1,N),J=1,N) 
      WRITE(6,600) N,((I,J,A(I,J),J=1,N),I=1,N) 
      CALL VALU(A,100,N,0.0,IP,IS,VW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) STOP 
      CALL VLUIV(A,100,N,IP,AI,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) STOP 
      WRITE(6,630) ((I,J,AI(I,J),I=1,N),J=1,N) 
      STOP 
  500 FORMAT(I5) 
  510 FORMAT(4E15.7) 
  600 FORMAT(//11X,'**INPUT MATRIX**'/12X, 
     *'ORDER=',I5/(2X,4('(',I3,',',I3,')',E16.8))) 
  610 FORMAT('0',10X,'CONDITION CODE(VALU)=',I5) 
  620 FORMAT('0',10X,'CONDITION CODE(VLUIV)=',I5) 
  630 FORMAT('0',10X,'**INVERSE MATRIX**', 
     */(2X,4('(',I3,',',I3,')',E16.8))) 
      END 
 

(4) Method 

This subroutine computes the inverse of an n × n real general matrix, giving the LU-decomposed 
matrices L, U and the permutation matrix P which indicates row exchanges in partial pivoting. 

PA = LU (4.1) 

then, the inverse of A can be represented using (4.1) as follows: 
The inverse of L and U are computed Eq. UB = L −1 is solved to determine B = U −1 L −1 , and then 
the inverse of A is obtained as (4.2). 

( ) PLULUPA 11111 −−−−− ==  (4.2) 

L and U are as shown in Eq.  (4.3) for the following explanation. 

( ) ( )ijij uUlL == ,  (4.3) 
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a. Calculating L−1  

Since the inverse L −1 of a lower triangular matrix L is also a lower triangular matrix, if we 
represent L −1 by 

( )ijlL ~1 =−  (4.4) 

then Eq.  (4.5) is obtained based on the relation 

LL −1 = I. 
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(4.5) is rewritten as 
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and the elements ~lij of the j -th column ( j = 1,...,n ) of the matrix L −1 are obtained as follows: 
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where, ( )njilii ,...,0 =≠  

 

b. Solving UB = L −1 

1. −= LUBEq  is solved by (4.7). 

jj lUb
~

=  (4.7) 

However, 

( )njjj bbb ,...,1= : the column vector in B 

( )njjj lll
~

,...,
~~
1= : the column vector in L −1 

From (4.8), B  is determined successively with i = n,...,1 
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VMGGM 

A61-11-0301 VMGGM, DVMGGM 

Multiplication of two matrices 
(real general by real general) 

CALL VMGGM (A, KA, B, KB, C, KC, M, N, L, ICON) 

 
(1) Function 

This subroutine performs multiplication of an m × n real general matrix A by an n × l real general 
matrix B. 

C = AB 

Where C is an m × l real matrix. m, n, l ≥ 1. 

(2) Parameters 

A .......... Input.  Matrix A, two-dimensional array, A (KA, L). 
KA........ Input.  The adjustable dimension of array A, (≥M). 
B........... Input.  Matrix B, two-dimensional array, B (KB, L). 
KB........ Input.  The adjustable dimension of array B, (≥N). 
C........... Output.  Matrix C, two-dimensional array, C(KC, L).  (See “Notes.”) 
KC........ Input.  The adjustable dimension of array C, (≥M). 
M.......... Input.  The number of rows m in matrix A and C. 
N .......... Input.  The number of columns nin matrix A and the number of rows n in matrix B. 
L........... Input.  The number of columns l in matrices B and C. 
ICON.... Output.  Condition codes.  SEE Table VMGGM-1. 

 
Table VMGGM-1  Condition code 

Code Meaning Processing 

0 No error − 

30000 M<1, N<1, L<1, KA<M, KB<N, or KC<M Bypassed 
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(3) Notes 

a. Subprograms used 

(1) SSL: MGSSL 

(2) FORTRAN intrinsic function:  FLOAT, MOD 

b. Notes 

The VMGGM subroutine differs from the standard function subroutine MGGM in one important 
respect. 

The VMGGM subroutine performs high-speed calculation on a vector processor. 

The performance of MGGM is changed by the adjustable dimensions of arrays A, B, and C, but 
the performance of the subroutine is not changed in essence. 

Saving the storage area 

To store matrix C in array A, the user must use MGGM. 

c. Example 

The following shows an example of obtaining the multiplication of matrices A and B.  Here,  
m ≤ 200, n ≤ 400, and  l ≤ 300. 

C     **EXAMPLE** 
      DIMENSION A(202,400),B(402,300),C(202,300) 
      CHARACTER*4 IA,IB,IC 
      DATA IA/'A   '/,IB/'B   '/,IC/'C   '/ 
      DATA KA/202/,KB/402/,KC/202/ 
   10 READ(5,100) M,N,L 
      IF(M.EQ.0) STOP 
      WRITE(6,150) 
      READ(5,200) ((A(I,J),I=1,M),J=1,N) 
      READ(5,200) ((B(I,J),I=1,N),J=1,L) 
      CALL VMGGM(A,KA,B,KB,C,KC,M,N,L, 
     *ICON) 
      IF(ICON.NE.0)GOTO 10 
      CALL PGM(IA,1,A,KA,M,N) 
      CALL PGM(IB,1,B,KB,N,L) 
      CALL PGM(IC,1,C,KC,M,L) 
      GOTO 10 
  100 FORMAT(3I5) 
  200 FORMAT(4E15.7) 
  150 FORMAT('1'///10X, 
     *'** MATRIX MULTIPLICATION **') 
      END 
 
C     ** MATRIX PRINT(REAL NON-SYMMETRIC) ** 
      SUBROUTINE PGM(ICOM,L,A,K,M,N) 
      DIMENSION A(K,N) 
      CHARACTER*4 ICOM(L) 
      WRITE(6,600) (ICOM(I),I=1,L) 
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      DO 10 I=1,M 
      WRITE(6,610) I,(J,A(I,J),J=1,N) 
   10 CONTINUE 
      RETURN 
  600 FORMAT(/10X,35A2) 
  610 FORMAT(/5X,I3,3(4X,I3,E17.7), 
     *(/8X,3(4X,I3,E17.7))) 
      END 
 

Subroutine PGM in the example is for printing a real matrix. 
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VRFT1 

F15-31-0201 VRFT1, DVRFT1 

Discrete real Fourier transform 
(high performance, radix 2 FFT) 

CALL VRFT1 (A, N, ISN, ISW, VW, IVW, ICON) 

 
(1) Function 

Given one-dimensional (n-term) real time-services data {xj}, the discrete real Fourier 
transform or its inverse transform is calculated by the Fast Fourier Transform (FFT) method, 
suited to a vector processor, where n=2l ( l is a non-negative integer). 

a. Fourier transform 

When {xj} is input, the transform defined by (1.1) is calculated to obtain Fourier coefficients 
{nak} and {nbk}. 

n

nkkjxnb

nkkjxna

n

j
jk

n

j
jk

/2,

12/,...,2,1,sin2

,2/,...,1,0,cos2

1

0

1

0

πθ

θ

θ

=

−=⋅⋅=

=⋅⋅=

∑

∑
−

=

−

=

 (1.1) 

b. Fourier inverse transform 

When {ak} and {bk} are input, the transform defined by (1.2) is calculated to obtain sum of 
Fourier series {2xj}. 
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(2) Parameters 

A .......... Input.  {xj} or {ak}, {bk} 
Output.  {nak}, {nbk}, or {2xj} 
One-dimensional array of size n+2 
See Figure VRFT1-1. 

N .......... Input.  Number of terms, n, of the transform 
ISN....... Input.  Either the transform or the inverse transform is indicated (≠0). 

ISN=+1 for the transform. 
ISN=−1 for the inverse transform. 
(See Note(4).) 

ISW...... Input.  Information for controlling the initial state of the transform 
ISW=0 for the first call. 
ISW=1 for the second and subsequent calls. 
(See Note(2).) 

VW....... Work area 
One-dimensional array of size max (n(l+1)/2, 1). 

IVW ..... Work area.  One-dimensional array of size n max (l − 4, 2)/2. 
ICON ... Output.  Condition code 

See Table VRFT1-1. 
 

xn−1

xn−2

x3

x2

x1

{ak}
{bk}{xj}

x0

A(N+2)

A(N+1)

A(N)

A(N−1)

A(4)

A(3)

A(2)

A(1)

Array

bn/2−1

an/2

an/2−1

b1

a1

*

a0

 

Note: 

The portion indicated by *has an arbitrary value at input, and is set to 0.0 at output. 

Figure VRFT1-1  Data storage method 
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Table VRFT1-1  Condition codes 

Code Meaning Processing 

0 No error − 

30000 ISN=0, ISW≠0, 1 or N≠2l ( l: 0 or positive integer) Bypassed 

 
(3) Notes 

a. Subprograms used 

(1) SSL II:  VCFT1, UVRFT, UVTB1, UVF91, UVFA1, UVFB1, UVFX1, UBANK, MGSSL 

(2) FORTRAN intrinsic functios:  ALOG2, SIN, COS, ATAN, IABS, IAND, MOD, FLOAT 

b. Notes 

(1) Subroutine use 

This subroutine performs high-speed calculation of a real Fourier transform on a vector 
processor.  On a general-purpose computer, however, the subroutine RFT may be more 
suitable. 

The function of this subroutine is the same as that of subroutine VRFT2, which is also suited 
to a vector processor.  This subroutine can perform multiple independent transforms, but it 
requires more work array area than VRFT2; it is a high-performance subroutine.  If it is 
difficult to allocate a large work array area, memory-efficient subroutine VCFT2 may be more 
suitable, even though it is slower. 

(2) Control by ISW 

When calculating multiple sets of transforms, specify ISW=1 for the second and subsequent 
subroutine calls.  This bypasses trigonometric table and list vector generation, both of which 
are needed for the transform, thus increasing processing efficiency.  The contents of the arrays 
VW and IVW must not be altered, however, when calling the subroutine. 

Even the number of transforms, n, of each of the multiple transforms varies, specifying ISW=1 
improves processing efficiency.  However, it is desirable to be called so that the maximum 
number of transforms with the same number of terms are executed consecutively. 

When calling this subroutine in together with the complex Fourier transform subroutine 
VCFT1, specifying ISW=1 improves processing efficiency. 
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(3) Work array size conversion table 

The table for 16 ≤ n ≤ 4096 is shown as follows: 

l n VW IVW 
4 
5 
6 
7 
8 
9 

10 
11 
12 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 

40 
96 

224 
512 

1152 
2560 
5632 

12288 
26624 

16 
32 
64 

192 
512 

1280 
3072 
7168 

16384 
 

(4) ISN specification 

Although the ISN parameter is used to specify whether a transform or an inverse transform is 
to be calculated, it can also be used as shown below.  If {xj} or {ak}, {bk} is stored at intervals 
of length I, specify the ISN as follows: 

ISN=+I for the transform. 

ISN=−I for the inverse transform. 

The results are also stored at intervals of length I. 

With a vector processor, interval length I should take one the following values in order to 
access memory more efficiently.  (see Example (2).) 

I=4p+2, p=0, 1, 2, ... , for single precision arithmetic. (VRFT1) 

I=2p+1, p=1, 2, 3, ... , for double precision arithmetic. (DVRFT1) 

(5) General definition of Fourier transform 

In general, the discrete real Fourier transform and its inverse transform can be defined as in 
(3.1) and (3.2). 
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This subroutine obtains {nak}, {nbk} or {2xj} corresponding to the left hand side of (3.1) or (3.2), 
respectively.  The result must be normalized as required. 

c. Example 

(1) Multiple Fourier transforms 

In this example, k sets of independent Fourier transforms (with n terms) are calculated, for 
k≤64 and n≤512. 

C     **EXAMPLE** 
      DIMENSION A(514,64),VW(2560),IVW(1280) 
      READ(5,500) N,K 
      READ(5,510) ((A(I,J),I=1,N),J=1,K) 
C 
      ISN=1 
      ISW=0 
      CALL VRFT1(A,N,ISN,ISW,VW,IVW,ICON) 
      IF(ICON.NE.0) STOP 
      ISW=1 
      DO 10 J=2,K 
      CALL VRFT1(A(1,J),N,ISN,ISW,VW,IVW 
     *         ,ICON) 
   10 CONTINUE 
C 
      WRITE(6,600) K,N 
      DO 20 J=1,K 
   20 WRITE(6,610) J,(I,A(I,J),I=1,N+2) 
C 
  500 FORMAT(2I5) 
  510 FORMAT(E15.7) 
  600 FORMAT(5X,'***',I3,' SET TRANSFORMS' 
     *       ' OF',' TERM',I4//) 
  610 FORMAT(8X,I3,'-TH TRANSFORM'/ 
     *      (8X,I3,E16.7)) 
      STOP 
      END 
 

(2) Multi-dimensional Fourier transform 

In this example, a 2-dimensional Fourier transform (with n1×n2 terms) is calculated, for n1≤512 
and n2≤64. 

In the example program, the row-wise transform is calculated by subroutine VCFT1, using a 
complex Fourier transform. 
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Here, the data interval length (the first array declarator of the array), ISN=514, is suited to a 
vector processor (514=4p+2, p=128).  For a double precision alogrithm, ISN=517 is better. 

C     **EXAMPLE** 
      DIMENSION A(514,64),VW(2560),IVW(1280) 
      READ(5,500) N1,N2 
      READ(5,510) ((A(I,J),I=1,N1),J=1,N2) 
C     ----N2 SET REAL TRANSFORMS OF TERM 
C                                     N1---- 
      ISN=1 
      ISW=0 
      CALL VRFT1(A,N1,ISN,ISW,VW,IVW,ICON) 
      IF(ICON.NE.0)STOP 
      ISW=1 
      DO 10 J=2,N2 
      CALL VRFT1(A(I,J),N1,ISN,ISW,VW,IVW, 
     *           ICON) 
   10 CONTINUE 
C     ----HALF SET COMPLEX TRANS. OF TERM 
C                                      N2---- 
      ISN=514 
      CALL VCFT1(A,A(2,1),N2, 
     *           ISN,ISW,VW,IVW,ICON) 
      IF (ICON.NE.0) STOP 
      DO 20 I=3,N1+2,2 
      CALL VCFT1(A(I,1),A(I+1,1),N2, 
     *           ISN,ISW,VW,IVW,ICON) 
   20 CONTINUE 
C 
      WRITE(6,600) N1,N2 
      DO 30 J=1,N2 
   30 WRITE(6,610) J,(I,A(I,J), 
     *                  A(I+1,J),I=1,N1+2,2) 
C 
  500 FORMAT(2I5) 
  510 FORMAT(E15.7) 
  600 FORMAT(5X,'***2-DIMENSIONAL TRANSFORM', 
     *           ' OF TERM',I4,' BY ',I4) 
  610 FORMAT(8X,I3,'-TH COLUMN'// 
     *      (8X,I3,2E16.7)) 
      STOP 
      END 
 

(4) Method 

A discrete real Fourier transform with n terms (where n=2l) is calculated using the fast Fourier 
transform (isogeometric type and self-sorting type FFTs) method, suited to a vector processor. 

A real Fourier transform can be calculated by assuming the real data {xj} to be complex with its 
imaginary part equal to 0.0, and by applying a discrete complex Fourier transform to the data. 
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However in such case, the complex Fourier transform can be done efficiently by taking 
account of the characteristics of complex transform. 

We now define a complex transform by (4.1). 
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If {xj} is real data, relation (4.2) can be satisfied. 

1,...,2,1,* −==− nkkkn αα  (4.2) 

* represents the complex conjugate. 

The result of the real Fourier transform, {ak} and {bk} and the result of the complex Fourier 
transform, {ak}, are related as follows: 
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Therefore, when calculating a real Fourier transform, it can be seen that the complex Fourier 
transform, 
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should be calculated first, followed by application of (4.2) and (4.3). 

This subroutine calculates the complex Fourier transform of (4.4) using the fast Fourier transform 
method, suited to a vector processor. 

For further details on calculating real Fourier transforms by using complex Fourier transforms, 
see Method for subroutine RFT, and for details on the fast Fourier transform method for a vector 
processor, see Method for subroutine VCFT1. 

 





 

99SP4070E-2 PT II-97 

VRFT2 

F15-31-0301 VRFT2, DVRFT2 

Discrete real Fourier transform 
(Memory efficient, radix 2 FFT) 

CALL VRFT2 (A, N, ISN, ISW, VW, IVW, ICON) 

 
(1) Function  

Given one-dimensional (n-term) real time-service data {xj}, the discrete real Fourier transform or 
its inverse transform is calculated by the Fast Fourier  Transform (FFT) method, suited to a vector 
processor, where n = 2l( l is a non- negative integer).   

a. Fourier transform 

When {xj} is input, the transform defined by (1.1) is calculated to obtain Fourier  coefficients 
{nak} and {nbk}. 
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b.  Fourier inverse transform 

When {ak} and {bk} are input, the transform defined by (1.2) is calculated to  
obtain sum of Fourier series {2xj} 
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(2) Parameters 

A .......... Input. {xj} or {ak}, {bk} 
Output. {nak} , {nbk} or {2xj} 
One-dimensional array or size n+2 
see Figure VRFT2-1 

N .......... Input.  Number of terms, n, of the transform 

ISN....... Input.  Either the transform or the inverse transform is indicated (≠0) 
ISN=+1 for the transform.   
ISN=−1 for the inverse transform.   
(See Note(4).) 

ISW...... Input. Information for controlling the intial state of the transform 
ISW = 0 for the first call. 
ISW = 1 for the second and subsequent calls. 
(See Note (2).) 

VW....... Work area. 
One-dimensional array of size 7n/2.   

IVW ..... Work area.  One-dimensional array of size 3n/2 

ICON ... Output.  Condition code 
See Table VRFT2-1 
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Note: 

The portion indicated by * has an arbitrary value at input, and is set to 0.0 at output 

Figure VRFT2-1   Data storage method 
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Table VRFT2-1 Condition Codes 

Code Meaning Processing 

0 No error − 

30000 ISN = 0, ISW ≠ 0, 1 or N ≠ 2l ( l ≥ 0 is integer) Bypassed 

 
(3) Notes  

a.  Subprograms used 

(1) SSL II: VCFT2, UVRFT, UVTB2, UVF92, UVFA2, UVFB2, UVFX2, 
 UBANK, MGSSL 

(2) FORTRAN intrinsic function: ALOG2, SIN, COS, ATAN, IABS 

b.  Notes 

(1) Subroutine use  

This subroutine performs high-speed calculation of real Fourier transform on a vector 
processor.  On a general-purpose computer, however, subroutine RFT may be more suitable. 

The function of this subroutine is the same as that of subroutine VRFT1,  which is also suited 
to a vector processor.  This subroutine is suitable for  calculating only a single transform.  The 
work array area is limited to the required minimum; it is a memory-efficient subroutine. For 
multiple transform, if there is sufficient work array area available, the high- performance 
subroutine VRFT1 is more suitable. 

(2) Control by ISW 

When performing multiple transform, specify ISW=1 for the second and subsequent 
subroutine calls.  This bypasses trigonometric function table and list vector generation, both of 
which are needed for the transform, thus Increasing processing efficiency.  The contents of the 
arrays VW and IVW must not be altered, however, when calling the subroutine. 

Even when the number of transform, n, of each of the multiple transforms varies, specifying 
ISW=1 improves efficiency.  However, it is desirable to be called so that the maximum 
number of transforms with the same number of terms are executed consecutively. 

When calling this subroutine in together with the complex Fourier  transform subroutine 
VCFT2, specifying ISW=1 improves processing efficiency. 
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(3) Work array size conversion table 

The table for 16 ≤ n ≤ 4096 is shown below. 

l n VW IVW 
4 
5 
6 
7 
8 
9 

10 
11 
12 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 

56 
112 
224 
448 
896 

1792 
3584 
7168 

14336 

24 
48 
96 

192 
384 
768 

1536 
3072 
6144 

 
(4) ISN specification 

Although the ISN parameter is used to specify whether a transform or an inverse transform is 
to be calculated, it can also be used as shown below.  If {xj} or {ak}, {bk} is stored at intervals 
of length I, specify ISN as follow: 

ISN=+I for the transform. 

ISN=−I for the inverse transform. 

The results are also stored at intervals of length I. 

With a vector computer, the interval length I should take the following  values in order to 
access memory more efficiently.  (see Example(2).) 

I=4p+2, p=0, 1, 2, ... , for single precision arithmetic.  (VRFT2) 

I=2p+1, p=1, 2, 3, ... , for double precision arithmetic.  (DVRFT2) 

(5) General definition of Fourier transform 

In general, the discrete Fourier transform and its inverse transform can be defined as in (3.1) 
and (3.2). 
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This subroutine obtains {nak}, {nbk} or {2xj} corresponding to the left hand side of (3.1) or (3.2), 
respectively. 

Normalized the results as required. 

c. Example 

In this example, a one-dimensional Fourier transform (with n terms) and its inverse transform are 
calculated, for n≤1024. 

C     **EXAMPLE** 
      DIMENSION A(1026),VW(3584),IVW(1536) 
      READ(5,500) N 
      READ(5,510) (A(I),I=1,N) 
C     ----FOURIER ANALYSIS---- 
      ISN=1 
      ISW=0 
      CALL VRFT2(A,N,ISN,ISW,VW,IVW,ICON) 
      IF(ICON.NE.0)STOP 
C     ----NORMALIZATION---- 
      ANOR=2.0/FLOAT(N) 
      DO 10 I=1,N+2 
   10 A(I)=ANOR*A(I) 
      WRITE(6,600) N,(I,A(I),A(I+1),I=1,N+2,2) 
C     ----FOURIER SYNTHESIS---- 
      ISN=-1 
      ISW=1 
      CALL VRFT2(A,N,ISN,ISW,VW,IVW,ICON) 
      IF(ICON.NE.0) STOP 
C     ----NORMALIZATION---- 
      ANOR=0.5 
      DO 20 I=1,N 
   20 A(I)=ANOR*A(I) 
      WRITE(6,610) N,(I,A(I),I=1,N) 
C 
  500 FORMAT(I5) 
  510 FORMAT(E15.7) 
  600 FORMAT(5X, 
     *  '***FOURIER ANALYSIS OF TERM',I5// 
     *  (8X,I3,2E16.7)) 
  610 FORMAT(5X, 
     *  '***FOURIER SYNTHESIS OF TERM',I5// 
     *  (8X,I3,E16.7)) 
      STOP 
      END 
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(4) Method 

A discrete real Fourier transform with n terms (where n=2l) is calculated using the fast Fourier 
transform (isogeometric type and self-sorting type FFTs) method, suited to a vector processor. 

The real Fourier transform can be calculated by assuming the real data {xj} to be complex data 
with its imaginary part equal to 0.0, and by applying a discrete complex Fourier transform to the 
data. 

However in such case, the complex Fourier transform can be done efficiently by taking account of 
the characteristics of complex transform. 

We now define a complex transform by (4.1). 
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If {xj} is real data, relation (4.2) can be satisfied. 

1,...,2,1, −==− nk*
kkn αα  (4.2) 

* represents the complex conjugate. 

The result of the real Fourier transform, {ak} and {bk}, and the result of the complex transform, 
{αk}, are related as follows: 
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To calculate a real Fourier transform, the complex Fourier transform. 
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should be calculated, followed by application of (4.2) and (4.3). 

This subroutine calculates the complex Fourier transform of (4.4) using the fast Fourier transform 
method, suited to a vector processor. 

For further details on calculating real Fourier transforms by using complex Fourier transforms, 
see Method for subroutine RFT, and for details on the fast Fourier transform method for a vector 
processor, see Method for subroutine VCFT1. 
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VSEG2 

B61-21-0201 VSEG2, DVSEG2 

Eigenvalue and engenvector of real symmetric matrix 
(parallel bisection method, reverse iteration method) 

CALL VSEG2 (A, N, M, EPST, E, EV, K, VE, IVW, ICON) 

 
(1) Function 

This subroutine calculates m number of eigenvalues of an n order real symmetric matrix A in 
descending (or ascending) order, using the parallel bisection method.  It also calculates 
corresponding m number of eigenvectors, using the inverse iteration method.  Eigenvectors are 
normalized such that ||x||2=1.  The result must be such that 1≤m≤n. 

(2) Parameters 

A.............. Input.  Real symmetric matrix A. 
Symmetric matrix compression mode. 
One-dimensional array of size n(n+1)/2. 
The content is altered at output. 

N.............. Input.  Order n of real symmetric matrix A. 
M ............. Input.  Number m of eigenvalues to be calculated. 

Calculate in descending order when M = +m. 
Calculate in ascending order when M = −m. 

EPST ....... Input.  Upper bound of the absolute errors used in  
eigenvalue convergence test.  The default value is used when a negative  
value is specified.  (See note (2).) 

E .............. Output.  Eigenvalues. 
One-dimensional array of size m. 
Store in descending order when M is positive and in ascending order when M is 
negative. 

EV............ Output.  Eigenvectors. 
Two-dimensional array of EV (K, M). 
Eigenvector corresponding to eigenvalue E(J) is stored at EV(I, J), 
I=1, ... ,N. 

K.............. Input.  Conformation size (≥n)for array EV. 
VW .......... Work area.  One-dimensional array of size 15n. 
IVW......... Word area.  One-dimensional array of size 7n. 
ICON ....... Output.  Condition codes 

See Table VSEG2-1. 
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(3) Notes 

a. Subprograms used 

(1) SSL II: TRID1, UVTG2, TRBK, AMACH, MGSSEL, UVBCT 

(2) FORTRAN intrinsic functions: IABS, SQRT, SIGN, ABS, AMAX1 

b. Notes 

(1) This subroutine is functionally equivalent to subroutine SEIG2, but is designed for high-
speed execution on a vector processor using the parallel bisection method.  Note that the 
methods of allocating work areas are different in these subroutines. 

(2) Default value of the parameter EPST is as expressed by (3.1) when unit round off is u. 

λ ( )minmax ,maxEPST λλ⋅= u  (3.1) 

Here, λmax and λmin are the upper and lower bounds of the existence range (given by 
Gerschgorin’s theorem) of eigenvalues of Ax = λx. 

When very large and small absolute value eigenvalues coexist and a convergence test is 
performed using (3.1), it is generally difficult to calculate smaller eigenvalues with 
adequate precision.  In such cases, smaller eigenvalues may be calculated with higher 
precision by setting EPST at a small value (absolute error).  However, processing speed 
slows down, as the number of iterations increases. 

See the section on the method of obtaining the convergence criterion. 

 
Table VSEG2-1  Condition codes 

Code Meaning Processing 

0 No error − 

10000 N=1 Set EV (1, 1)=1.0 and E(1)=A(1). 

15000 Some eigenvectors were not  
calculated. 

Make the uncalculated eigenvectors 
zero vectors. 

20000 No eigenvectors were calculated. Make all eigenvectors zero vectors. 

30000 M=0, N<|M|, or K<N. Bypassed 
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c. Example 

In this example, m number of eigenvalues and their corresponding eigenvectors are calculated for 
an n order real symmetric matrix A in descending (or ascending) order. 

The following example is for n≤100 and m≤20. 

C     **EXAMPLE** 
      DIMENSION A(5050),E(20),EV(102,20), 
     *          VW(1500),IVW(700) 
   10 READ(5,500,END=900) N,M,EPST 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,600) N,M 
      IJ=0 
      DO 20 I=1,N 
      IJ=IJ+I 
   20 WRITE(6,610) I,(A(J),J=IJ-I+1,IJ) 
      CALL VSEG2(A,N,M,EPST,E,EV,102, 
     *           VW,IVW,ICON) 
      WRITE(6,620) ICON 
      IF(ICON.GE.20000) GO TO 10 
      MM=IABS(M) 
      CALL SEPRT(E,EV,102,N,MM) 
      GO TO 10 
  900 STOP 
  500 FORMAT(2I5,E10.2) 
  510 FORMAT(5E15.7) 
  600 FORMAT('1',//'*** ORIGINAL MATRIX N=',I4, 
     *       2X,'M=',I4//) 
  610 FORMAT('0',2X,I3,5E15.7/(6X,5E15.7)) 
  620 FORMAT('0'//'*** ICON= ',I5) 
      END 
 

The subroutine SEPRT in this example is used for printing eigenvalues and eigenvectors of real 
symmetric matrices.  The following illustrates the contents of this subroutine. 

      SUBROUTINE SEPRT(E,EV,K,N,M) 
      DIMENSION E(M),EV(K,M) 
      WRITE(6,600) 
      KAI=(M-1)/5+1 
      LST=0 
      DO 10 KK=1,KAI 
      INT=LST+1 
      LST=LST+5 
      IF(LST.GT.M) LST=M 
      WRITE(6,610) (J,J=INT,LST) 
      WRITE(6,620) (E(J),J=INT,LST) 
      DO 10 I=1,N 
      WRITE(6,630) I,(EV(I,J),J=INT,LST) 
   10 CONTINUE 
      RETURN 
  600 FORMAT('1',20X, 
     *      'EIGENVALUE AND EIGENVECTOR') 
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  610 FORMAT('0',5I20) 
  620 FORMAT('0',5X,'ER',3X,5E20.8/) 
  630 FORMAT(5X,I3,3X,5E20.8) 
      END 
 

(4) Method 

This subroutine calculates m number of eigenvalues of an n order real symmetric matrix A in 
descending (or ascending) order using the parallel bisection method, and their corresponding 
eigenvectors using the inverse iteration method. 

First, it transforms real symmetric matrix A, using the Householder method, into real symmetric 
tridiagonal matrix T shown in Fig. VSEG2-1.  This operation is shown by expression (4.1). 

H
T
H AQQT =  (4.1) 

Here, QH is an orthogonal matrix.  This operation is performed using the subroutine TRID1. 

Next, m number of eigenvalues are calculated by applying the parallel bisection method on 
transformed matrix T.  Then, the eigenvector for matrix T corresponding to the m eigenvalues are 
calculated using the inverse iteration method.  This method calculates eigenvectors by repeatedly 
solving expression (4.2). 

(T − λI)yr = yr-1,  r = 1,2,... (4.2) 

Note that in (4.2), λ is the eigenvalue calculated by the parallel bisection method and yr is the 
iteration vector.  The parallel bisection method is explained in later paragraphs.  See the section 
on subroutine TEIG2 for the inverse iteration method. 

Next, calculate the eigenvectors of A.  Eigenvector x of A can be calculated by using QH of 
equation (4.1) in (4.3), by letting y be the eigenvector of T. 

yQx H=  (4.3) 

This operation is performed using subroutine TRBK. 
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Figure VSEG2-1 Real symmetric tridiagonal matrix T 

Parallel bisection method 

The following paragraphs present the calculation of m number of eigenvalues in descending order 
to simplify its explanation. 

Here, letting λ be a variable and pi(λ) be the value of the leading principle minor of matrix  
(T − λI) from the upper left results in the following recurrence relation: 

( ) ( ) ,,1 110 λλλ −== cpp  

( ) ( ) ( ) ( ),2
2

1 λλλλ −− ×−×−= iiiii pbpcp  (4.4) 

i=2, 3,..., n 

The polynomial sequence p0(λ), p1(λ),..., pn(λ) in (4.4) constitutes a Sturm sequence.  Therefore, 
if the number of times the codes of consecutive terms p0(λ) through pn(λ) invert is defined as α 

(λ), then α (λ) is equal to the number of eigenvalues smaller than λ.  The bisection method is a 
method of calclating eigenvalues one by one by repeatedly bisecting the eigenvalue existence 
interval, applying such theorem.  In general, an underflow or overflow can easily occur in the 
calculation of (4.4) so that the ploynomial sequence qi(λ) expressed as (4.5) is used for evaluation 
to avoid underflows and overflows. 

( ) ( ) ( )λλλ 1/ −= iii ppq  (4.5) 

In this case, the number of times qi(λ) becomes negative is equal to the number of eigenvalues 
smaller than λ.  In the following paragraph, the number of times qi(λ) becomes negative is defined 
as α (λ). 

The parallel bisection method applies the bisection method simultaneously on m number of 
eigenvalues λj, j = 1, 2, ..., m, by setting an existence interval for each eigenvalue.  Now, express 

the existence interval for the j-th eigenvalue λj as [ ])()( , k
j

k
j ba .  k is the number of iterations.  The 

initial existence interval is [ ])0()0( , jj ba  and it is set to satisfy the relation ship of (4.6). 
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( ) ,1)0( −= ja jα  

( ) jb j =)0(α  (4.6) 

The parallel bisection method iterates the following steps (1) through (3) for k=0, 1, 2,... to 

sufficiently reduce ( ) ( )[ ]k
j

k
j ba ,  and approximates the value of λj at its midpoint. 

(1) Approximate λj at the midpoint of the interval. 

( ) ( ) ( )( ) mjbah k
j

k
j

k
j ,...,2,1,2/ =+=  (4.7) 

( )( ) mjh k
j ,...,2,1,0 ==α  (4.8) 

(2) Evaluate the Sturm sequence qi, i=1, 2, ...n, and obtain the number of times the code becomes negative. 

( )( ),k
ji hq  

( )( ) 0<k
ji hq  ( )( ) ( )( ) ,1+= k

j
k

j hh αα  (4.9) 

mj ,...,2,1=  

(3) Revise the existence interval. 

( )( ) ,1−= jh k
jα  

( ) ( ) ( ) ( ),, 11 k
j

k
j

k
j

k
j bbha == ++  

( )( ) ,jh k
j =α  (4.10) 

( ) ( ) ( ) ( ),, 11 k
j

k
j

k
j

k
j hbaa == ++  

mj ,...,2,1=  

Eigenvalue convergence criterion and EPST specifying method Convergence test in this 
subroutine is performed by (4.11) 

( ) ( ) ( ) ( )( ) EPST2 ++≤− k
j

k
j

k
j

k
j abuab  (4.11) 

Here, u is the unit round off and EPST is the value specified as the upper bound of absolute errors 
for the eigenvalues to be calculated.  When the relation expressed by (4.11) is satisfied, 

( ) ( )( ) 2/k
j

k
j ab −  is made the j-th eigenvalue λj.  EPST has he function to control process 

termination at the required precision level.  If EPST = 0.0, (4.11) becomes (4.12). 

( ) ( ) ( ) ( )( )k
j

k
j

k
j

k
j abuab +≤− 2  (4.12) 
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At this time, bisection is performed repeatedly until the least significant digits of ( )k
jb  and ( )k

ja  
are nearly equal.  On the other hand, if EPST > 0.0 iteration stops when the specified precision 
level is reached.  Specification of EPST > 0.0 is specifically require when eigenvalues include a 
zero. 

When EPST < 0.0 is specified, this subroutine uses the following as the default value. 

{ }{ }( )minmax ,maxEPST λλ⋅= u  

Here, λmax and λmin are the lower bound and upper bound values of the interval that includes all 
eigenvalues obtained using the Gerschgorin's theorem. 
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VSIN1 

F16-21-0201 VSIN1, DVSIN1 

Discrete sine transform (radix 2 FFT) 

CALL VSIN 1 (A, N, TAB, VW, IVW, ICON) 

 
(1) Function 

This subroutine calculates discrete sine transform and its inverse transform using the Fast Fourier 
Transform (FFT) suited to a vector processor, when n number of samples {xj} obtained by 
dividing half a period of an odd-function x (t) of period 2π  into n, equal sections as expressed by 
(1.1), with n = 2l where l is a positive integer. 

( ) 1,...,1,0, −== njjxx j θ  (1.1) 

n/, πθ =  

a. Sine transform 

When {xj} is input, Fourier coefficients {2n･bk} are calculated using the  transform defined by 
(1.2). 

1,...,1,0,sin42
1

0
−=⋅⋅=⋅ ∑

−

=
nkkjxbn

n

j
jk θ  (1.2) 

n/, πθ =  

Note that 00 =x . 

b. Sine inverse transform 

When {bk} is input, Fourier series values {4･xj} are calculated using the transform defined by 
(1.3). 

1,...,1,0,sin44
1

0
−=⋅⋅=⋅ ∑

−

=
njkjbx

n

k
kj θ  (1.3) 

n/, πθ =  

Note that b0 = 0 
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(2) Parameters 

A ............ Input. {xj} or {bk} 
Output. {2n･bk} or {4･xj} 
One-dimensional array of size n+2 
See Fig.  VSIN 1-1. 

N ............ Input.  Number of samples n 
TAB....... Output.  Trigonometric table used by transform is stored. 

One-dimensional array of size 2n+4 
VW ........ Word area. 

One-dimensional array of size max(n( l+1) /2,1)  
IVW....... Work area. 

One-dimensional array of size n･max( l−4,2) / 2  
ICON ..... Output.  Condition codes 
 

See Table VSIN1-1. 
 

*

*

xn−1

x3

x2

x1

{xj} {bk}

A (N+2)

A (N+1)

A (N)

A (4)

A (3)

A (2)

A (1)

Array A

*

* *

*

bn−1

b3

b2

b1

 
Notes: 

Same for {2nbk} and {xj}. 
* is and arbitrary value during input. 
0.0 is set at the time of output. 

Figure VSIN1-1 Data storage mode 
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Table VSIN1-1  Condition codes 

Code Meaning Processing 

0 No error − 

30000 N ≠ 2l ( l is a positive integer) Bypassed 
 
(3) Notes 

a. Subprograms used 

(1) SSLII: VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1, UVFB1, UVFX1, 
UBANK, UVTAB, MGSSL 

(2) FORTRAN intrinsic functions: ALOG2, SIN, COS, ATAN, IABS, IAND, MOD, 
FLOAT 

b. Notes 

(1) subroutine use 

this subroutine performs high-speed calculation of discrete sine transform on a vector 
processor.  The subroutine FSINT may be more suited on a general-purpose computer. 

(2) Multiple transforms 

When performing multiple transforms, generation of trigonometric table and list vectors is 
omitted in the second and subsequent subroutine calls, resulting in processing efficiency.  The 
contents of arrays TAB, VW, and IVW must be called without altering them. 

Even when the number of terms n for the multiple transforms differs, the previously generated 
contents of arrays TAB, VW, and IVW are valid.  However, it is preferable to call them in 
such a way that transforms with identical number of terms are stringed together to the 
maximum extent possible. 
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(3) Trigonometric table and work array size table 

The following shows the sizes for 16 ≤ n ≤ 4096. 

l n TAB VW IVW 

4 
5 
6 
7 
8 
9 

10 
11 
12 

16 
32 
64 

128 
256 
512 

1024 
2048 
4096 

36 
68 

132 
260 
516 

1028 
2052 
4100 
8196 

40 
96 

224 
512 

1152 
2560 
5632 

12288 
26624 

16 
32 
64 

192 
512 

1280 
3072 
7168 

16384 

 
(4) General definition of discrete sine transform 

Discrete sine transform and its inverse transform are generally defined by (3.1),and (3.2), 
respectively. 

1,...,2,1,sin2 1

1
−=⋅= ∑

−

=
nkkjx

n
b

n

j
jk θ  (3.1) 

1,...,2,1,sin
1

1
−=⋅= ∑

−

=
njkjbx

n

k
kj θ  (3.2) 

This subroutine calculates {2n･bk} or {4･xj }corresponding the left hand sides of (3.1) and 
(3.2), respectively.  Therefore, normalize the results as required. 

c. Example 

Input n number of samples {xj} and transform by this subroutine. Then normalize the results and 
obtain discrete Fourier coefficients{bk}. Calculate {xj} by proceeding to inverse transformation. 
This example is for n ≤ 512. 

C     **EXAMPLE** 
      DIMENSION X(514),TAB(1028),VW(2560), 
     *          IVW(1280) 
    1 READ(5,500) N 
      IF(N.EQ.0) STOP 
      READ(5,501) (X(I),I=1,N) 
C     SINE TRANSFORM 
      WRITE(6,600) N 
      WRITE(6,601) (X(I),I=1,N) 
      CALL VSIN1(X,N,TAB,VW,IVW,ICON) 
      IF(ICON.NE.0) GO TO 30 
C     NORMALIZE 
      CN=1.0/(2.0*FLOAT(N)) 
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      DO 10 K=1,N 
      X(K)=X(K)*CN 
   10 CONTINUE 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I=1,N) 
C     SINE INVERSE TRANSFORM 
      CALL VSIN1(X,N,TAB,VW,IVW,ICON) 
      IF(ICON.NE.0) GO TO 30 
C     NORMALIZE 
      CN=0.25 
      DO 20 K=1,N 
      X(K)=X(K)*CN 
   20 CONTINUE 
      WRITE(6,602) 
      WRITE(6,601) (X(I),I=1,N) 
      GO TO 1 
   30 WRITE(6,603) ICON 
      GO TO 1 
  500 FORMAT(I5) 
  501 FORMAT(6F12.0) 
  600 FORMAT('0',5X,'INPUT DATA N=',I5) 
  601 FORMAT(5F15.7) 
  602 FORMAT('0',5X,'OUTPUT DATA') 
  603 FORMAT('0',5X,'CONDITION CODE',I8) 
      END 
 

(4) Method 

Consider calculating discrete sine transform of n terms (=2l, l = 1, 2,...) using the Fast Fourier 
Transform (FFT) suited for a vector processor. 

Discrete sine transform is generally expressed by (4.1), when samples{xj}, j=0,1, ... ,n−1, are 
given. 

( )θkjx
n

b
n

k
jk sin2 1

1
⋅= ∑

−

=
 

1,...,1,0, −= nj  (4.1) 

, /θ π= n  

Now the samples are an odd-function and the relation expressed by (4.2) exists when extended to 
one period. 

1,...,1,0,2 −=−=− njxx jjn  

0, and 0 == nxx  (4.2) 

Therefore, nbb ~0  can be calculated by extending 10 ~ −nxx  to 10 ~ −2nxx  and performing 2n 
term (discrete real fourier transform. 
It is well known that efficient transformation can be achieved by taking advantage of the 
symmetry of (4.2), in this case. 

Now, perform following preprocessing on the samples{xj}: 
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( ) ( ) ( ) 1,...,1,0,sin
2
1 −=+⋅+−⋅= −− nJxxjxxd jnjjnjj θ  (4.3) 

At this point, substituting of discrete sine inverse transform (4.4) into (4.3) results in (4.5). 

( ) 1,...,1,0,sin2 1

1
−=⋅= ∑

−

=
njkjx

n
b

n

k
jk θ  (4.4) 

( ) ( ) ( )[ ] ( )∑
−

=
−−+ ⋅−−⋅⋅+⋅⋅−+=

12/

1
1212121 12sin2cos

n

k
n

j
kkkj bkjbkjbbbd θθ  (4.5) 

1,...,1,0, −= nj  

Expression (4.5) is equivalent to an n term discrete real Fourier transform with Fourier 
coefficients of {b2k+1 − b2k-1} and {b2k}.  Thus,  calculation of Fourier coefficients { ka~ } and { kb

~
} 

for the samples {dj} will enable obtaining of {bk} using the identities: 

1212
~

−+ −= kkk bba  

kk bb 2
~

=  

In other words, {bk} is calculated using (4.6) which follows. 

,~2/1,~2/1 2/101 nn abab ⋅−=⋅= −  

,
~

2 kk bb =  

12/,...,1,~
1212 −=+= −+ nkabb kkk

 (4.6) 

The last expression in (4.6) is a recurrence formula and is unsuitable for a vector processor.  
Therefore, this subroutine is designed as a vector processor suited algorithm by back tracing these 
calculations, which avoids performing reference calculation, taking advantage of the fact that 
discrete sine transform and its inverse transform are identical expressions, except for the 
normalization constants. 

Refer to reference [8] for details on this algorithm. 
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VSLDL 

A22-61-0202 VSLDL, DVSLDL 

LDLT decomposition of a positive definite 
symmetric matrix  

CALL VSLDL(A, N, EPSZ, VW, IVW, ICON) 

 
(1) Function 

This subroutine decomposes an n × n positive definite symmetric matrix A into LDLT using the 
modified Cholesky’s method: 

A = LDLT (1.1) 

Where L is a unit lower triangular matrix, D is a diagonal matrix, and n ≥ 1. 

The function of this subroutine is similar to that of subroutine SLDL, but the coefficient matrix is 
stored differently, and this subroutine is more suited to a vector processor. 

(2) Parameters 

A .......... Input. Coefficient matrix A 
Output.  Matrices L and D -1 
The lower triangular portion of the symmetric matrix is stored column by column,from 
the first to the n-th column, in a one-dimensional array of size  
n(n+1)/2, as shown in Figure VSLDL-1. 

N .......... Input.  Order n of matrix A 
EPSZ.... Input.  Tolerance for relative zero test of pivots (≥0.0) 

When EPSZ=0.0, a standard value is used. 
(See Note (2).) 

VW....... Work area.  One- dimensional array of size 2n 
IVW ..... Work area.  One-dimensional array of size n 
ICON.... Output.  Condition code 

See Table VSLDL-1. 
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Figure VSLDL-1 Storage method of a symmetric matrix 
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Table VSLDL-1 Condition codes 

code Meaning Processing 

0 No error − 
10000 Pivot became negative. 

Coefficient matrix is not positive definite. 
Continued 

20000 Pivot became smaller than relative zero value. 
Coefficient matrix might be singular. 

Bypassed 

30000 N<1 or EPSZ < 0.0 Bypassed 
 
(3) Notes 

a. Subprograms used 

(1) SSL II:  AMACH, MGSSL 

(2) FORTRAN intrinsic functions:ABS 

b. notes 

(1) This subroutine is designed to speed up processing on a vector processor by using a different 
matrix storage method than the one used in subroutine SLDL.  Note how the storage methods 
and calling sequences of the two subroutines differ. 

(2) Suppose that 10-s was given as the tolerance value for relative zero test EPSZ.  This value has 
the following meaning: if the pivot value loses more than S sihnificant digits during LDLT 
decomposition in the modified Cholesky’s method, the value is assumed to be zero and 
decomposition processing is discontinued with ICON = 20000.  The standard value of EPSZ 
is normally 16u, where u is the unit round off. 

Processing can be continued by assigning the smallest value to EPSZ, even when the pivot 
value becomes smaller than the standard value.  However, the calculation result may not be as 
accurate as desired. 

(3) If the pivot value becomes negative during decomposition, it means that the coefficient matrix 
is nor longer positive definite.  ICON = 10000 is set, and processing continues.  Note, 
however, that the resulting calculation error may be significant, because no pivoting operation 
is performed. 

(4) To obtain the determinant of the coefficient matrix, multiply all the n diagonal elements of 
array A (i.e., diagonal elements of D-1) afer calculations are completed, and take the reciprocal 
of the result. 
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b. Example 

An n × n matrix is input, an LDLTdecomposition is performed for n ≤ 100. 

C     **EXAMPLE** 
      DIMENSION A(5050),VW(200),IVW(100) 
   10 READ(5,500) N 
      IF(N.EQ.0) STOP 
      NT=N*(N+1)/2 
      READ(5,510) (A(I),I=1,NT) 
      WRITE(6,630) 
      IS=1 
      IE=N 
      DO 20 J=1,N 
      WRITE(6,600) J,(A(I),I=IS,IE) 
      IS=IE+1 
   20 IE=IE+(N-J) 
      CALL VSLDL(A,N,1.0E-6,VW,IVW,ICON) 
      WRITE(6,610) ICON 
      IF(ICON.GE.20000) GO TO 10 
      WRITE(6,640) 
      IS=1 
      IE=N 
      DET=1.0 
      DO 30 J=1,N 
      WRITE(6,600) J,(A(I),I=IS,IE) 
      DET=DET*A(IS) 
      IS=IE+1 
   30 IE=IE+(N-J) 
      DET=1.0/DET 
      WRITE(6,620) DET 
      GO TO 10 
  500 FORMAT(I5) 
  510 FORMAT(5E15.7) 
  600 FORMAT(' ',I5/(10X,5E16.8)) 
  610 FORMAT(/10X,'ICON=',I5) 
  620 FORMAT(//10X, 
     *'DETERMINANT OF MATRIX=',E16.8) 
  630 FORMAT(/10X,'INPUT MATRIX') 
  640 FORMAT(/10X,'DECOMPOSED MATRIX') 
      END 
 

(4) Method 

LDLT decomposition using the modified cholesky’s method is explained in Method for subroutine 
SLDL.  This subroutine, however, is well suited to a vector processor, because decomposition is 
basically treated as calculation of a matrix-vector product. 

In addition, the coefficient matrix storage method is very important.  In order to perform efficient 
vector processing, the lower triangular portion of the coefficient matrix is stored column by 
column. 
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In LDLT decomposition of a positive define symmetric matrix, 

TLDLA =  (4.1) 

We define ~L  such that LDL =~ .  For )( ijlL =  and )(diag idD = , ~L  is of the following form: 

･

･

dnln2d2ln1d1

l31d1

l21d1

d1

･

･

･

･

･

L=

0

･

･ ･

･

･

d3l32d2

d2

～

 (4.2) 

During decomposition processing, this subroutine stores the subsets of elements of the coefficient 
matrices A, ~L , L and D -1 in one-dimensional array A, but at the end of decomposition, it stores 
only the elements of L and D -1. 

Figure VSLDL-2 shows the contents of array A at the r-th stage of the decomposition (where 
r =2,3,..., n )  In the diagram, array A is depicted in the form of the lower triangular portion of a 
matrix.  Elements marked by X are the L elements obtained so far, *’s are D -1 elements, ○○○○’s are 
~L  elements,and    ’s are the elements of coefficient matrix A.  (Mr and ar are defined in the 

following paragraph (2).) 

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

X
X
X
X
X
X

*
*

*
*

*
*

*

X
X
X
X
X

X
X
X
X

X
X
X

ar

Mr

Array A r-th row

r-th column

XX
X

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○

 

Figure VSLDL-2   Contens of array A 
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At the stage, the following calculations are performed: 

(1) The r-th row of L is determined from the r-th row of array A as follows. Because the r-th row 
of array A is (lr1d1, lr2d2 ,..., lr,r-1dr-1, arr), 

lrj is readily obtained. 

lrj=( jrj dl ) =− jd j ,1 1,2,3,...,r−1 (4.3) 

These elements are temporarily stored in work array VW. 

(2) The r-th column of ~L  determined by updating the r-th column of array A.  This calculation, 
which is the main part of this method, is basically calculation of a matrix-vector product. 

We now introduce several symbols.  First, let rl
~

 be the r-th column vector of ~L  that is to be 
determined, i.e., 

T
,2,1 ),...,,,(

~
rnrrrrrrrrr dldldldl ++=  (4.4) 

Next, let vector lr, matrix Mr, and vector ar be defined as follows: 

T
1,21 ),...,,( −= rrrrr llll  (4.5) 

















⋅⋅⋅

⋅⋅⋅
=

−−

−−

11,11

11,11

::

rrnn

rrrr

r

dldl

dldl
M  (4.6) 

T
,1 ),...,,( nrrrrrr aaaa +=  (4.7) 

lr , obtained in (1) above, is the r-th row vector of L, Mr is a submatrix of ~L , and ar is the r-th 
column of coefficient matrix A. (See Figure VSLDL-2.) 

The vectors and matrices defined above are related as follows: 

[ ]















⋅⋅⋅=

1

~
:

r
rrr

l
lMa  

Therefore, 

rrrr lMal −=
~

 (4.8) 

can be obtained, which means that rl
~

 is basically calculated from a matrix-vector product.  
This calculation is well suited to a vector processor. 

(3) Last, we update the r-th row of array A using the r-th row of L, and store 1−
rd  as diagonal 

elements.  For the above update, { rjl ; j = 1,2,..., r −1} that have been saved in array VW are 

copied into the r-th row of array A.  To store 1−
rd , take the reciprocal of dr and store it, since 

it is the first element of rl
~

 obtained in 
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(2) above.  dr is checked here to see if the coefficient matrix is nonsingular and positive definite. 

The above explanation concerns the r-th stage. By repeating (1), (2), and (3) above for r=2,3,...,n, 
array A will contain the lower triangular portion of matrix L (except for diagonal element 1’s) and 
the inverse of diagonal matrix D. 
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APPENDIX  A   ALPHABETIC GUIDE FOR EXTENDED SUBROUTINES 

A.1 General Subroutines 

Subroutine Classification code Subprograms used 

VALU A22-71-0202 AMACH 
VCFT1 
VCFT2 
VLDLX 
VCOS1 
 
VGSG2 

 

F16-15-0201 
F16-15-0301 
A22-61-0302 
F16-11-0201 

 
B62-21-0201 

 

UVTB1, UVF91, UVFA1, UVFB1, UVFX1, UBANK 
UVTB2, UVF92, UVFA2, UVFB2, UVFX2, UBANK 
 
VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1, 
UVFB1, UVFX1, UBANK, UVTAB 
GSCHL, TRID1, TRBK, GSBK, UVTG2, UCHLS, 
AMACH, UVBCT 

VLAX A22-61-0101 VALU,LUX,AMACH 
VLSX 
VLTX 
VLTX1 
VLTX2 
VLTX3 

A22-61-0101 
A62-11-0101 
A62-21-0101 
A62-31-0101 
A62-41-0101 

AMACH,VSLDL,VLDLX 
AMACH 
AMACH 
AMACH 
 

VLUIV A22-71-0602  
VMGGM 
VRFT1 

 
VRFT2 

 
VSEG2 
VSIN1 

 
VSLDL 

A61-11-0301 
F15-31-0201 

 
F15-31-0301 

 
B61-21-0201 
F16-21-0201 

 
A22-61-0202 

 
VCFT1, UVRFT, UVTB1, UVF91, UVFA1, UVFB1, 
UVFX1, UBANK 
VCFT2, UVRFT, UVTB2, UVF92, UVFA2, UVFB2, 
UVFX2, UBANK 
TRID1, UVTG2, TRBK, AMACH, UVBCT 
VRFT1, VCFT1, UVRFT, UVTB1, UVF91, UVFA1, 
UVFB1, UVFX1, UBANK, UVTAB 
AMACH 
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A.2 Slave Subroutines 

Slave routine Calling subroutine 

UBANK 
UVBCT 
UVFA1 
UVFA2 
UVFB1 
UVFB2 
UVFX1 
UVFX2 
UVF91 
UVF92 
UVTAB 
UVRFT 
UVTB1 
UVTB2 
UVTG2 

VCFT1, VRFT1, VCFT2, VRFT2, VCOS1, VSIN1 
VGSG2, VSEG2 
VCFT1, VRFT1, VCOS1, VSIN1 
VCFT2, VRFT2 
VCFT1, VRFT1, VCOS1, VSIN1 
VCFT2, VRFT2 
VCFT1, VRFT1, VCOS1, VSIN1 
VCFT2, VRFT2 
VCFT1, VRFT1, VCOS1, VSIN1 
VCFT2, VRFT2 
VCOS1, VSIN1 
VRFT1, VRFT2, VCOS1, VSIN1 
VCFT1, VRFT1, VCOS1, VSIN1 
VCFT2, VRFT2 
VGSG2, VSEG2 
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APPENDIX  B   CLASSIFICATION CODES AND SUBROUTINES 

Linear Algebra 

Classification code Subroutine 

A22-61-0101 
A22-61-0202 
A22-61-0302 

VLSX 
VSLDL 
VLDLX 

A22-71-0202 
A22-71-0101 
A22-71-0602 

VALU 
VLAX 
VLUIV 

A61-11-0301 
A62-11-0101 
A62-21-0101 
A62-31-0101 
A62-41-0101 

VMGGM 
VLTX 

VLTX1 
VLTX2 
VLTX3 

 
 

Eigenvalues and Eigenvectors 

Classification code Subroutine 

B61-21-0201 
B62-21-0201 

VSEG2 
VGSG2 

 
 

Transform 

Classification code Subroutine 

F15-31-0201 
F15-31-0301 
F16-11-0201 
F16-21-0201 
F16-15-0201 
F16-15-0301 

VRFT1 
VRFT2 
VCOS1 
VSIN1 
VCFT1 
VCFT2 
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