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Preface

This manual describes how to use Scientific Subroutine Library 11 (SSL 11) Extended
Capabilities|I.

Thismanual is a second volume for SSL 11 Extended Capabilities. This manual provides
additional algorithms and functions that are effective for high-speed processing of large-scale
scientific computations on a supercomputer.

This manual is organized as follows:
Part | Overview

Part | describes briefly the functions provided in SSL 11 Extended Capabilities |1 and indicates
precautions to take when using them.

Part Il Using Subroutines

Part |1 describes how to use individual subroutines. Subroutines are listed and described in
alphabetical order.

In order to support the latest techniques, SSL 11 Extended Capabilities | contains
improvements and additions. Existing subroutine functions are preserved within the improved
and added functions. Please note that if the new subroutines perform better than the existing
ones, the existing subroutines may be eliminated some time in the future.

For a complete description of rules, standard functions, and extended capabilities, refer to the
following manuals:

Fujitsu S 11 User’s Guide (Scientific Subroutine Library),
Fujitsu SS_ 11 Extended Capabilities User’s Guide (Scientific Subroutine Library)

SSL 11 Extended Capabilities |1 was devel oped through the collaboration of the Australian
National University (ANU) and Fujitsu. Development at the ANU was led by professors
Mike Osborne and Richard Brent and coordinated by Dr. Bob Gingold, Head, ANU
Supercomputer Facility. The following ANU staff members were involved in the design and
implementation of SSL 11 Extended Capabilities|l. Fujitsu acknowledges their cooperation.

Professor Richard Peirce Brent
Dr Andrew James Cleary
Dr Murray Leslie Dow

Dr Christopher Robert Dun
Dr Lutz Grosz

Dr David Laurence Harrar I
Dr Markus Hegland

Ms Judith Helen Jenkinson
Dr Margaret Helen Kahn
Mr Jeoffrey Keating

Dr Zbigniew Leyk
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Mr Gavin John Mercer

Mr David John Miron

Mr Ole Mgller Nielsen

Professor Michael Robert Osborne
Dr Peter Frederick Price

Dr Stephen Gwyn Roberts

Dr David Barry Singleton

Dr David Edward Stewart

Note

In the text, a number in brackets (e.g., [18]) refersto areference listed at the end of the
manual.
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SSL Il Extended Capabilities Il Overview

Linear calculations

Subroutinename | Description Page

VLSBX System of linear equations with a symmetric positive definite 11-81
banded matrix (modified Cholesky decomposition)

VBLDL LDL" decomposition of a symmetric positive definite banded 11-22
matrix (modified Cholesky decomposition)

VBLDX System of linear equations with an LDL " decomposed 11-26
symmetric positive definite banded matrix

VLBX System of linear equations with a banded real matrix (Gaussian | I1-73
elimination)

VBLU LU decomposition of a banded real matrix (Gaussian 11-29
elimination)

VBLUX System of linear equations with an LU decomposed banded 11-34
real matrix

VLDIV Theinverse of a positive-definite symmetric matrix 11-79
decomposed into the factors L,D and L"

VLTQR System of linear equations with real tridiagonal matrix (QR 11-85
factorization)

VBCSD System of linear equations with an unsymmetric or indefinite 11-14
sparse real matrix (BICGSTAB(I) method, diagonal storage
format)

VBCSE System of linear equations with an unsymmetric or indefinite 11-18
sparse real matrix (BICGSTAB(I) method, ELLPACK storage
format)

VCGD System of linear equations with a symmetric positive definite 11-38
sparse matrix (preconditioned CG method, diagonal storage
format)

VCGE System of linear equations with a symmetric positive definite 11-44
sparse matrix (preconditioned CG method, ELLPACK storage
format)

VCRD System of linear equations with an unsymmetric or indefinite 11-56
sparse real matrix (MGCR method, diagonal storage format)

VCRE System of linear equations with an unsymmetric or indefinite 11-60
sparse real matrix (MGCR method, ELLPACK storage format)

VOQMRD System of linear equations with an unsymmetric or indefinite 11-117
sparse real matrix (QMR method, diagonal storage format)

VOQMRE System of linear equations with an unsymmetric or indefinite 11-121
sparse real matrix (QMR method, ELLPACK storage format)

VTFQD System of linear equations with an unsymmetric or indefinite 11-146
sparse real matrix (TFQMR method, diagonal storage format)

Fujitsu SSL Il Extented Capabilities User’s Guide Il




Preface

Subroutinename | Description Page

VTFQE System of linear equations with an unsymmetric or indefinite 11-150
sparse real matrix (TFQMR method, ELLPACK storage
format)

VMBV Multiplication of areal band matrix and areal vector 11-88

VMV SD Multiplication of areal sparse matrix and areal vector 11-111
(diagonal storage format)

VMV SE Multiplication of areal sparse matrix and areal vector 11-114
(ELLPACK storage format)

Eigenvalues and eigenvectors

Subroutine name | Description Page

VHEVP Eigenvalues and eigenvectors of a Hermitian matrix 11-63
(tridiagonalization, multisection method, and inverse iteration)

VLAND Eigenvalues and eigenvectors of areal symmetric sparse 11-68
matrix (Lanczos method, diagonal storage format)

VSEVP Eigenvalues and eigenvectors of areal symmetric matrix 11-131
(tridiagonalization, multisection method, and inverse iteration)

VTDEV Eigenvalues and eigenvectors of real tridiagonal matrix 11-140

Transforms

Subroutinename | Description Page

VCPF3 Three-dimensional prime factor discrete complex Fourier 11-50
transform

VMCF2 Singlevariate, multiple and multivariate discrete complex 11-90
Fourier transform (complex array, mixed radix)

VMCFT Singlevariate, multiple and multivariate discrete complex 11-94
Fourier transform (real and imaginary array seperated, mixed
radix)

VMRF2 Singlevariate, multiple and multivariate discrete real Fourier 11-99
transform (Mixed radix)

VMRFT Multiple and multivariate discrete real Fourier transform 11-105
(Mixed radices of 2, 3, and 5)

VRPF3 Three-dimensional prime factor discrete real Fourier transform | 11-125

VSRFT One-dimensional and multiple discrete real Fourier transform 11-136
(Mixed radices of 2, 3, and 5)

VWFLT Wavelet filter generation 11-153

V1DWT One-dimensional wavelet transform 11-156

V2DWT Two-dimensional wavelet transform 11-160

Vi
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Random numbers

Subroutinename | Description Page
DVRAN3 Generation of normal random numbers (double precision) -1
DVRAN4 Generation of normal random numbers (double precision, I1-5
Wallace' s method)
DVRAU4 Generation of uniform random numbers [0, 1) (double 11-9
precision)
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Chapter 1
Description of SSL Il Extended Capabilities |l

This chapter briefly describes the algorithms that are provided for use in large-scale, scientific
computations as SSL 11 Extended Capabilities|].

oy

2

3)
(4)

()

(6)

Double-precision random numbers (uniform/normal)

These algorithms provide random numbers with good statistical characteristics and long
periods of at least 10° for large-scale simulation. For normal random numbers Polar
method and faster Wallace's method are provided.

Sparse matrix linear equations (Ssymmetric positive definite matrix/unsymmetric or
indefinite real matrix)

These subroutines solve sparse matrix linear equations using the iterative method. These
subroutines make it possible to solve large-scale problems at high speeds with reduced
memory usage. For data storage methods, see Chapter 3, “ Data Storage Methods.”

For symmetric positive definite matrices, the conjugate gradient (CG) method is provided.
Two types of preconditioners may be specified in CG method: first order approximation
of the Neumann series and modified incomplete Cholesky decomposition. The
preconditioner through the modified incomplete Cholesky decomposition is useful for
linear equations obtained through discretization of elliptic partia differential equations.

For unsymmetric or indefinite real matrices, the robust and high-speed modified
generalized conjugate residuals (MGCR) method is provided.

For unsymmetric or indefinite real matrices, the higher-speed quasi minimal residual
method (QMR method) , transpose-free quasi-minimal residual method (TFQMR
method) and Bi-Conjugate Gradient Stabilised () (BICGSTAB(I)) method are provided.
About the guideline of the usage of these methods, refer to Chapter 4, “Iterative Linear
Equation Solvers and Convergence”.

Sparse real matrix and vector multiplication
System of linear equations with real tridiagonal matrix

This system supplies a method of solving alarge-scale system of linear equations with
real tridiagonal matrix at high speed by QR factorization.

Banded matrix linear equations (symmetric positive definite/real matrix)

These subroutines use data storage methods and al gorithms that optimize performance on
vector computers. Although the direct method is robust, it uses memory in proportion to
the size of the bandwidth. Therefore, the direct method is unsuitable for large banded
matrices with a sparse structure. For large banded matrices with sparse structure, please
use the previously mentioned iterative method, which uses storage methods suited to
sparse structures.

Eigenvalue problem

This system supplies the Lanczos method to obtain a few of the largest and/or smallest
eigenvalues and corresponding eivenvectorsin alarge-scale real symmetric sparse matrix.

It also supplies a method of obtaining eigenvalues and eigenvectorsin real tridiagonal,
real symmetric or Hermitian matrices at high speed.
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Description of SSL Il Extended Capabilities |1

(7) Fourier transforms

These subroutines provide high-performance algorithms (mixed radix and complex/real),
multiple Fourier transforms and multivariate Fourier transforms on vector or scalar
computers. The functions are also high-speed for one-dimensional Fourier transforms.
Three-dimensional, prime factor Fourier transforms (complex/real) are also provided.

(8) Wavelet transform
This system supplies high-performance one- and two-dimensional wavelet transform.
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Chapter 2
General Rules for SSL |l Extended Capabilities |l

This chapter provides genera rules that are common to all of the functions.

2.1 Subroutine Precision

Single- and double-precision routines are provided. However, random number routines are
double precision only.

2.2 Subroutine Names

The names of single-precision routines start with aV. The names of double-precision routines
start withaDV.

The names of slave routines start with a U (single precision) or DU (double precision).

2.3 Parameters

(1) Order of parameters

The order of parametersisthe same asthe order used in SSL |l standard functions. Asa
rule, the order conforms to the following format:

(Input-output-parameter-list, Input-parameter-list, Output-parameter-list, ICON)
(2) Parameter types

Integer-type parameters start withan I, J, K, L, M or N. Complex-type parameters start
withaZ.

Unless otherwise specified, parameters that start with any other letter are single-precision
real type in single-precision routines, and double-precision real type in double-precision
routines.

2.4 Condition Codes

The ICON parameter indicates the resultant status after execution of the subroutine.

The condition code is from 0 to 39,999. As shown in the following table, the range into which
the code falls indicates how reliable the processing results are.
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Table2.1 Results of condition codes

Code Explanation Reliability of result Result

0 Processing terminated normally. Result is guaranteed. | Normal

1109999 | Processing terminated normally, but

additional information is included.

10000 to Dueto an internal restriction imposed Theresultis Warning

19999 during processing, processing terminated. guaranteed subject to
restrictions.

20000 to Due to an error that occurred during Theresult is not Error

29999 processing, processing stopped. guaranteed.

30000 to Dueto an error in the input parameter(s),

39999 processing stopped.
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Chapter 3
Data Storage Methods

SSL 11 Extended Capabilities provides the following storage methods for solving linear
equations of banded and sparse matrices.

3.1 Banded Matrices

Storage methods suitable for vector computers are used instead of the standard SSL |1 storage
methods for banded matrices. See the descriptions of the routines used with banded matrices.

3.2 Sparse Matrices

This section describes the storage methods for sparse matrices.

3.2.1 Storage methods for sparse matrices

Each function that applies to sparse matricesis provided respectively for the ELLPACK
storage format and the diagonal storage format respectively.

The ELLPACK storage format is a method of compressing and storing the non-zero elements
of each row vector in a coefficient matrix.

The diagonal storage format is a method of storing diagonals containing non-zero el ements.

3.2.1.1 Storage method for general sparse matrices
a. ELLPACK storage format for general sparse matrices

In the ELLPACK storage format for general sparse matrices, non-zero elements of row
vectors in coefficient matrix A are compressed and stored in corresponding row vectors of
array COEF. (For the ELLPACK format, see[23] and [33]). In addition, the column
number of non-zero elements that were stored in COEF are stored in corresponding
ICOL array elements. It isnot necessary to left-adjust the non-zero elements of the row
vectors of coefficient matrix A when storing them in COEF.

For storage, the COEF (1: N, *) and ICOL (1: N, *) parts of the two arrays, COEF (K,
IWIDT) and ICOL (K, IWIDT), are used.

If the maximum number of non-zero elements appearing in the row vectors of matrix A is
set to nz and the order of the coefficient matrix is set to n, then IWIDT = nzand K = n.

When the number of non-zero elementsin row vectors of coefficient matrix A islessthan
IWIDT, set the remaining elements in the row vectors of the array COEF to zero. Set the
corresponding array elements of | COL to the val ues showing the row number of the row
vectors in which they are contained. (Assume COEF (i, j) =0and ICOL (i, }) =i.)
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b.

Example:
Storing coefficient matrix A using COEF and | COL

12
ccer = | 3 4
5 0
6 0
100 2
_ 0 3 4 0 o
0 0 5 0
6 0 0 0 —
L | 1 4
lcoL =| 2 3
3 3
1 4

D00-0010

Diagonal storage format for general sparse matrices

In the diagonal storage format for sparse matrices, diagonals containing non-zero
elements are stored as column vectors of the array DIAG. (For the diagonal format, see
[26] and [30].

In this manual, for the integer k, the following diagonal-direction vector is called a
diagonal. The vector consisting of diagonal elementsis called the main diagonal .

(A1, 14k B2, 24k1 +++ Bn, 1K)
ifit+k<lorit+k>nai.x=0.

Thereisno specia restriction on the order in which a diagonal is stored in the array
DIAG.

The offset between the diagonal vector stored in DIAG (*, i) and the main diagonal vector
isstored in NOF ST (i). kin the previously mentioned diagonal indicates the offset. The
offset of the diagonal consisting of the main diagonal elementsis zero. The offset of
diagonal in the upper triangular matrix is a positive integer. The offset of diagonal in the
lower triangular matrix is a negative integer.

If NOFST (m) = k, then storage is performed according to DIAG (i, m) =& i+ (i = 1, ...,
n).

Two arrays, DIAG (K, NDIAG) and NOFST (NDIAG), are used. The coefficient matrix
isstored in DIAG (1: N, NDIAG). When the number of diagonalsto be stored is set to
nd and the order of the coefficient matrix is set to n, then NDIAG = nd and K = n.
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Example:
Storing coefficient matrix A using DIAG and NOF ST

"""" 0 NN 1 2 3 O
\of 1230 DAG=|5 0 6 4
A= 4506 . 8 9 0 7
0.7.8.9 .0 110 0 10
0 0.10.11.. 0. 0 L |

NOFST = (0 1 2 -1)

D00-0020

3.2.1.2 Storage methods for symmetric positive definite sparse
matrices

In both the ELLPACK storage format and the diagonal storage format, the upper and lower
triangular matrix parts of normalized symmetric positive definite matrices are stored in the
order from the upper part then lower part.

Using adiagonal matrix that has the reciprocal s of the square root of the diagonal elements of
a symmetric positive definite matrix A, the symmetric positive definite matrix A can be
normalized into symmetric matrix A" with diagonal elements of 1.

A =D AD"?
where D7¥2 =diag (a;¥?, a2, ... a’¥?
= diag (dilIZ, déllz’ dﬁllz)
The linear equation with order n
Ax=Db
can be transformed to alinear equation with the normalized matrix A"
(D-uz AD-JJZ) (DJJZX) =DY?
AX =b
a:]_ - aﬂ_di—llzdj—llz b =bdY?
x =xd¥?i=1.,nj=1 ..,n
a. TheELLPACK storage format for symmetric positive definite sparse matrices

The upper and lower triangular matrix parts without diagonal elementsin a normalized
symmetric positive definite sparse matrix with unit diagonal elements are stored
respectively using the ELLPACK storage format. Then these stored matrix parts are
stored inasingle array COEF. Firgt, the upper triangular matrix part is stored. Then the
lower triangular matrix part is stored.

The maximum number of non-zero elements in each row vector of the upper triangular
matrix part is set to NSU. The maximum number of non-zero elementsin each row vector
of the lower triangular matrix part is set to NSL.
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A*

When NSH = max (NSU, NSL), the non-zero elements of the upper triangular matrix part
are stored in COEF (*, 1: NSH). The non-zero elements of the lower triangular matrix
part are stored in COEF (*, NSH + 1: 2 x NSH).

Set the remaining elementsin the array COEF to zero. Set the corresponding array
elements of I COL to the row numbers of the row vectorsin which they are contained.
(Assume COEF (i, j) =0and ICOL (i, ) =1i.)

Example:

Storing the upper and lower triangular part of a normalized coefficient matrix A* using
the ELLPACK storage format

0 5
4 6
0 CEF = | 7
8 | 8
1 0

D00-0030

The diagonal storage format for symmetric positive definite sparse matrices

The upper and lower triangular matrix parts without diagonal elementsin a normalized
symmetric positive definite matrix with unit diagonal elements are stored respectively
using the diagonal storage format. Then, the stored matrix parts are stored in asingle
array DIAG. When the number of diagonals in the upper (lower) triangular matrix part
containing non-zero elementsis set to NDT, the upper triangular matrix part is stored in
DIAG (1: NDT), whilethe lower triangular matrix part is stored in DIAG (NDT + 1:

NW).
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At that time, the upper triangular matrix part must be stored in ascending order with
respect to distance (NDLT value). The lower triangular matrix part must be stored in
descending order.

This method uses arrays the DIAG (K, NW) and NDLT (NW).
The following equivalence applies:. NW= 2 x NDT.
Example:

Storing the upper and lower triangular part of a normalized coefficient matrix A* using
the diagonal storage format

0 5
4 6
o DIAG= | 7
8 8
1 0

D00-0040

3.2.1.3 Storage method selection criteria

When the sparse matrix is structured so that its non-zero elements are concentrated in the
diagonal-direction vectors of the coefficient matrix, use the diagonal storage format.

3.2.2 Discretization of partial differential operators and
storage examples for them

This section describes the representative sparse coefficient matrices which appear when
solving problems through discretizing elliptic partial differential equations and constructing
linear equations. When solving actual problems, these coefficient matrices must be stored
using the ELLPACK storage format and diagonal storage format.

Coefficient matrices by discretization of the elliptical partial differential operatorsin the three-
dimensional region with Dirichlet boundary conditions is shown in the following sections. As
aresult of discretization, the operators appear in the unsymmetric sparse matrix. Also shown
are subroutines that store the generated coefficient matrices according to the sparse matrix
storage methods.

Linear equations with these coefficient matrices can be solved with subroutine (D) VCRE or
(D) VCRD.

a. Discretization of elliptic partial differential operators and construction of coefficient
matrices
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Operator L

ou ou ou
Lu=-Au+ala+aza—y+a3§+cu

(A represents Laplacian. A = 9° + 9° + 9°

ox? 0dy? 9z°

Region Q = [0,l,] x[0,l,] x [O,I}]

Boundary condition Dirichlet boundary condition u= 0 on the boundary Q
Here, a;, a,, a; aswell as ¢ are constants.

When each dimension of Q isdivided inton, + 1, n,+ 1, and n, + 1in equal subintervals
respectively, the n, x n, x n, grid points exist inside Q. When the value of variablesx, y,
and z at the grid point is expressed as (x;, Yj, ),

the value of function u at the grid point (1 <i <n, 1<j=<n,1<k<n,)
isexpressed asu; j,k = U (X, Yj, Z)-

Using this notation, the partial differential coefficient for variable x is approximated as
follows.

Q
JX

du?
I (%Y 2i) = Uisgj k= 205§+ Ui k) (A 115

(%Y jZk) = (Uisg jk — Ui, j k) (N 7 (21)

The partial differential coefficients for variablesy and z are approximated in a similar
fashion.

Considering function u = 0 on the boundary Q,

the approximation Lu = Av is obtained through discretizing Lu into coefficient matrix A.
Here, visvector v = (vq, Vy,...,V), consisting of values at the grid point of function u,
and thereisa corresponding relationship Vin = Ui j ik, M= (k-1) nyn,+ (- 1) ne+i.
Subroutines that store coefficient matrices using the sparse matrix storage method

Examples of subroutines that store discretized operatorsin the ELLPACK format or the
diagonal format are described in this section.

The subroutine INIT_MAT_ELL stores coefficient matricesin the ELLPACK format.
The subroutine INIT_MAT_DIAG stores them in the diagonal format.

The arguments ny, ny, and n, correspond to NX, NY, and NZ. I, l,, and I, correspond to
XL, YL,and ZL. &, a,, as, and c correspond to VA1, VA2, VA3, and VC.

InINIT_MAT_ELL, the coefficient matrix isstoredin A_L and ICOL_L. In
INIT_MAT_DIAG, itisstoredin D_L and OFFSET.

When a subroutine is called with IWIDTH = 7, a coefficient matrix for three-dimensional
region Q is generated.
A subroutineis called with NDIVP = n, n, n,.

(When using such a subroutine, the value of IWIDTH should not be greater than 7. If the
valueis7 or less (for example, 5 or 3), the number of diagonal columns decreases

I-10
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correspondingly. If IWIDTH =5 or IWIDTH = 3, the problem is reduced to a two- or
one-dimensional problem, respectively. Itisuseful to set NZ =1 when IWIDTH =5, and
NZ =1, NY =1 when IWIDTH = 3. Vauesof IWIDTH other than 7, 5, or 3 have no
special meaning and can be used in testing.)

Example 1:

Subroutine that discretizes the partial differential operators described previously and stores
them according to the ELLPACK storage format

SUBROUTI NE | NI T_MAT_ELL( VAL, VA2, VA3, \VC,
& AL, 1COL_L, NX NY, NZ, XL, YL, ZL, | W DTH, NDI VP, LD)
I MPLICI T NONE
| NTEGER NX, NY, NZ, | W DTH, NDI VP, LD
DOUBLE PRECI SI ON A_L(LD, | W DTH)
DOUBLE PRECI SI ON VAL, VA2, VA3, VC, XL, YL, ZL
| NTEGER | COL_L( LD, | W DTH)

DOUBLE PRECI SI ON HX, HY, HZ
INTEGER I, J, L, JS, | WDTH _LOC
I NTEGER 10, JO, KO

IF (IWDTH . LT. 1) THEN
WRI TE (*,*) ' SUBROUTINE I NI T_MAT_ELL:"
WRITE (*,*) ' IWDTH SHOULD BE GREATER THAN OR

& EQUAL TO 1'
RETURN
ENDI F
| WDTH_LOC = | W DTH
C | W DTH CANNOT BE GREATER THAN 7
IF (IWDTH . GT. 7) IWDTH LOC = 7
C I NI TI AL SETTI NG
HX = XL/ ( NX+1)
HY = YL/ (NY+1)
HZ = ZL/ (NZ+1)
DO 110 J = 1,1 W DTH
DO 100 | = 1, NDI VP
AL(l,J) =0.0
IcoL_L(1,Jd) =1
100 CONTI NUE
110 CONTI NUE
C MAI N LOOP
DO 200 J = 1, NDI VP
JS =J
L=1
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C DECOMPOSE JS-1 = (KO- 1) * NX* NY+( JO- 1) * NX+I 0- 1
KO = (JS-1)/NX/ NY+1
IF (KO .GT. NZ) RETURN
JO = (JS-1- NX*NY* (KO- 1))/ NX+1
10 = JS - NX*NY*(KO-1) - NX*(JO-1)

|F (IWDTH LOC . GE. 7) THEN
|F (KO .GT. 1) THEN
A L(J, L) = -(1.0/HzZ+0.5*VA3)/HzZ
ICOL_L(J,L) = JS NX*NY
L = L+1
ENDI F
ENDI F
IF (IWDTH LOC . GE. 5) THEN
IF (JO .GT. 1) THEN
A L(J, L) = -(1.0/HY+0. 5*VA2)/ HY
1COL_L(J,L) = JS-NX
L = L+1
ENDI F
ENDI F
IF (IWDTH LOC . GE. 3) THEN
IF (10 .GT. 1) THEN
A L(J, L) = -(1.0/HX+0. 5% VA1) / HX
ICOL_L(J,L) = JS1
L = L+1
ENDI F
ENDI F
A L(J, L) = 2.0/ HX**2+VC
IF (IWDTH LOC . GE. 5) THEN
AL(J, L) = AL(J, L) + 2.0/ Hy**2
IF (IWDTH LOC . GE. 7) THEN
AL(J, L) = AL(J, L) + 2.0/ Hz**2

ENDI F

ENDI F

lcoL_L(J,L) =JS

L = L+1

|F (IWDTH LOC . GE. 2) THEN
IF (10 .LT. NX) THEN

A L(J, L) = -(1.0/HX-0.5*VAL)/HX
ICOL_L(J, L) = JS+1
L = L+1
ENDI F
ENDI F
IF (1WDTH_LOC . GE. 4) THEN
IF (JO .LT. NY) THEN
A L(J, L) = -(1.0/HY-0.5*VA2)/HY
I COL_L(J, L) = JS+NX
L = L+1
ENDI F
ENDI F
IF (I1WDTH LOC . GE. 6) THEN
IF (KO .LT. NZ) THEN
A L(J,L) = -(1.0/HZ-0.5*VA3)/HzZ
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| COL_L(J, L) = JS+NX*NY
ENDI F
ENDI F

200 CONTI NUE

RETURN
END

Example 2;

Subroutine that discretizes the partial differential operators described previously and stores
them according to the diagonal storage format

SUBROUTI NE | NI T_MAT_DI AG( VAL, VA2, VA3, VC, D_L, OFFSET,
&  NX NY, Nz, XL, YL, ZL, NDI AG NDI VP, LD)

I MPLI CI T NONE

| NTEGER NX, NY, NZ, NDI AG, NDI VP, LD

DOUBLE PRECI SI ON D_L( LD, NDI AG)

DOUBLE PRECI SI ON VAL, VA2, VA3, VC, XL, YL, ZL

| NTEGER OFFSET( NDI AG)

DOUBLE PRECI SI ON HX, HY, HZ
I NTEGER I, J, L, JS, NXY, NDI AG_LCC
| NTEGER JO, | 0, KO

IF (NDIAG .LT. 1) THEN
WRI TE (*,*) ' SUBROUTI NE | NI T_MAT_DI AG '
WRI TE (*,*) ' NDI AG SHOULD BE GREATER THAN OR
& EQUAL TO 1'
RETURN
ENDI F
NDI AG_LOC = NDI AG
IF (NDIAG . GT. 7) NDIAG LOC = 7

C I NI TI AL SETTI NG
HX = XL/ ( NX+1)

YL/ ( NY+1)

ZL/ (NZ+1)

HY
HZ
DO 110 J = 1, NDI AG
DO 100 | = 1, NDI VP
D L(I,J) =0.0
100 CONTI NUE
110  CONTI NUE
C OFFSET SETTI NG
L=1
NXY = NX*NY
| F (NDIAG LOC . GE. 7) THEN
OFFSET(L) = - NXY
L = L+1
ENDI F
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|F (NDIAG LOC . GE. 5) THEN
OFFSET(L) = - NX
L = L+1

ENDI F

|F (NDIAG LOC . GE. 3) THEN
OFFSET(L) = -1
L = L+1

ENDI F

OFFSET(L) = 0

L = L+1

IF (NDIAG LOC . GE. 2) THEN
OFFSET(L) = 1
L = L+1

ENDI F

|F (NDIAG LOC . GE. 4) THEN
OFFSET(L) = NX
L = L+1

ENDI F

IF (NDIAG LOC . GE. 6) THEN
OFFSET(L) = NXY

ENDI F
C MAI N LOOP
DO 200 J = 1, NDI VP
JS =1
C DECOVMPOSE JS-1 = (KO- 1) * NX* NY+( JO- 1) * NX+I 0- 1

KO = (JS-1)/NXY+1

IF (KO .GT. NZ) RETURN

JO = (JS-1- NXY*(KO-1))/ NX+1

10 = JS - NXY*(KO-1) - NX*(JO-1)

L=1

|F (NDIAG LOC . GE. 7) THEN
IF (KO .GT. 1) D L(J,L) = -(1.0/HzZ+0.5*VA3)/HZ
L = L+1

ENDI F

| F (NDIAG LOC . GE. 5) THEN
IF (JO .GT. 1) D L(J,L) = -(1.0/HY+0.5*VA2)/ HY
L = L+1

ENDI F

| F (NDIAG LOC . GE. 3) THEN
IF (10 .GT. 1) D L(J,L) = -(1.0/HX+0. 5*VAL)/ HX
L = L+1

ENDI F

D L(J,L) = 2.0/ HX**2+VC

I F (NDIAG LOC . GE. 5) THEN

L
|
D L(J,L) = D L(J,L) + 2.0/ HY**2
IF (NDIAG LOC . GE. 7) THEN

D L(J,L) = D L(J,L) + 2.0/ HZ**2

ENDI F
ENDI F
L = L+1

|F (NDIAG LOC . GE. 2) THEN
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IF (10 .LT. NX) D L(J,L) = -(1.0/HX-0.5*VAL)/HX
L = L+1
ENDI F
IF (NDIAG LOC . GE. 4) THEN
IF (JO .LT. NY) DL(J,L) = -(1.0/HY-0.5*VA2)/HY
L = L+1
ENDI F
|F (NDIAG LOC . GE. 6) THEN
IF (KO .LT. NZ) D L(J,L) = -(1.0/Hz-0.5*VA3)/HZ
ENDI F
200 CONTI NUE
RETURN
END
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Chapter 4
Iterative Linear Equation Solvers and
Convergence

4.1 Scaling

It is strictly recommended to scale the equation in order to balance the matrix entries for the
efficient usage of iterative linear equation solver. This normalisation of the matrix strongly
improves the numerical stability and the convergence rate of the iterative solver. The

normalised coefficient matrix A should have non--negative entries in the main diagonal and,
for instance, the sum of absolute values in each row should be approximately equal to one.

Ax=hb (1)
A normalised form of the linear system (1) can be constructed by multiplying the coefficient

matrix A by adiagonal matrix L from the left and with adiagonal matrix R from the right. By
introducing anew variable X = R™*x the linear system(1) iswritten as

LARX=Lb « AX=b )

where, A=LAR, b=Lb.

Instead of A the normalised matrix A is used in the iterative solver. Keep in mind that the
right hand side b has to be transformed by multiplication with L before the solver is called and
the returned sol ution approximation has to be transformed by multiplication with R.

n
If for all i=1,...,n the 5, = Z|a”| value is the absolute sum of entriesin the i-th row one can
=1

set

[sgn(a;;) oy
5 s

Ly =0 if ©)
% 0 i 7]
5
01
o= 1=
avs

R = if 4)

o

i %]

mOoOom.

for al i,j=1,...,n. Itisemphasized that there are other possible ways of introducing a
normalisation with rather different effects on the convergence rate of the iterative solvers, see
[43] for an overview.
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Notice, that with selection (3) and (4) the normalised matrix Alis symmetric and positive
definite if and only if the original matrix is symmetric and positive definite.

4.2 Symmetry of Matrix and Iterative solvers

a.  Symmetric Matrix

If the matrix A is symmetric, ie. a;=a; for all i,j=1,...,n, and positive definite the
classical conjugate gradient method(see [21]) can be used to solve the linear system.

If the matrix is not positive definite a break down will occurred.
b. Non-symmetrical or Indefinite Matrix

In case of anon-symmetrical or indefinite coefficient matrix a set of solvers are
available. The optimal solver for the given linear system depends on the properties of

the coefficient matrix A (or if the normalised system A iscons dered). For the
different classes of matrices the following solvers are available:

4.3 Eigenvalues Distribution of Matrix and

Convergence

a MGCR method

If the eigenvalues of the coefficient matrix are close to the positive real axis (see
Figure 4.3-1) can be used with a small number of search directions (eg. 5-10). If the
imaginary part of any eigenvalue is large more search directions must be considered
in order to get good convergence. This increases the storage requirements as well as
the amount of computation per iteration step which makes MGCR (see [25]) less
efficient.

For a small number of search directions MGCR is avery fast but not very robust
method.

b. TFOMR method

If the eigenvalues are in the positive half plane but there are eigenvalues with large
imaginary part (see Figure 4.3-2) TFQMR(see [12]) is the recommended method.
Also the solvers converge best if the minimal real part of any eigenvalueis aslarge
as possible. So, for example, the convergence will be poor if there is an eigenvalue
which has a very small nonzero real part. The convergence rate of TFQMR can be
worse than the convergence rate of MGCR with alarge number of search directions.
However, every iteration step of TFQMR is much cheaper than MGCR with alarge
number of search directions so that a solution is cal culated within less CPU time. So
TFQMR is more robust but slower than MGCR with a small number of search
directions.

c. BICGSTAB(l) method

Similarly to TFQMR BICGSTAB(l)(see[38]) is suitable for matrices with eigenvalues
that are in the positive half plane. Also the solvers converge best if the minimal real
part of any eigenvalueis as large as possible. So, for example, the convergence will be
poor if there is an eigenvalue which has a very small nonzero real part. In some
applications where the eigenval ues of the coefficient matrix are close to the positive
real axis BICGSTAB(]) has an even faster convergence rate than MGCR with a small

1-18
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number of search directions. However, every iteration step of BICGSTAB(l) isvery
expensive asit requires two matrix vector multiplications. Therefore in some cases
MGCR or TFQMR are faster than BICGSTAB(I) but BICGSTAB(!) is more robust.

If no information about the eigenvalues of the (normalised) coefficient matrix is available it
is suggested to try the methods MGCR, TFQMR and BICGSTAB() one after the other.
MGCR should be used with 5 and 10 search directions. The order in which the methods are
tested isimportant. So the fast but less robust methods should be tested before more robust
methods are used. A suitable criterion for the quality isthe CPU time the solver needs to reach

the accuracy 0.1.
Imaginary part Imaginary part
A A
PN
> <

ueal/part Real part
Figure 4.3-1 Figure 4.3-2
Eigenvalues distribution for convergent Eigenvalues distribution for convergent
MGCR TFQMR and BICGSTAB(l)
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Part 11
Using Subroutines







DVRAN3

J11-20-0401 DVRAN3

Generation of normal random numbers (double precision)

CALL DVRAN3 (DAM, DSD, I1X, DA, N, DWORK, NWORK, ICON)

(1) Function

This subroutine generates pseudo-random numbers from anormal distribution density
function (1.1) with a given mean m and standard deviation o.

- (x-m)?
gy exp( o2 ) (1.1
(2) Parameters

DAM........... Input. Mean mof normal distribution.
Double-precision real type.

f(x) =

DSD............ Input. Standard deviation o of normal distribution.
Double-precision real type.

[ GO Input. Starting value.
Onthefirst call, set IX to apositive value. Subsequently, call the subroutine
with the return value remaining 0. A different sequence of random numbers are
generated with a different starting value on thefirst call.
(Seeitem (3), “Commentson use,” b., 1).)
4-byte integer type (INTEGER*4).

Output. 0.

DA...ccoenn. Output. N pseudo-random numbers.
Double-precision real type one-dimensional array of size N.

N P Input. The number of normally distributed pseudo-random numbersto be
returned in DA.

(Seeitem (3), “Commentson use,” b., 2).)

DWORK...... Work area. One-dimensional array of the double-precision real type and size
NWORK.
Do not modify the contents of this subroutine between repeated calls.
DWORK contains information necessary for repeated calls to this subroutine.
(Seeitem (3), “Commentson use,” b., 3).)

NWORK...... Input. The size of the array DWORK. NWORK = 1,156.

ICON........... Output. Condition code.
See Table DVRANS-1, “Condition codes.”
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Table DVRAN3-1 Condition codes

Code Description Processing

0 No error

30001 NWORK istoo small. Processing is stopped.
30002 IX<0

30003 to 30008 | DWORK was modified. Or IX was set to zero

ontheinitia call.

(3) Commentson use

a. Subprograms used

SSL 1I: DUF2G3, DUITG3, DURN3B, DURUGS, DUR2G3, DUSKG3, DUSQGS3,
DUVRGS3, DVRAU4, MGSSL

b. Comments

1)

2)

3)

Starting point 1X

When a sequence of pseudo-random numbersisto be generated by a
deterministic program, there must be random input. To do this, give a starting
value IX. Onthefirst call to this subroutine, the starting value IX must be a
positive integer. (For exceptions, seeitem 5).) For subsequent calls, set 1X to
zero. Thisindicates that more pseudo-random numbers from the same sequence
areto be generated. To simplify programming, this subroutine returns zero in 1X
after theinitial call.

This subroutine generates normal random numbers with the Polar method, which
uses uniform random numbers with a long period of at least 10%. A different
starting value gives a different random number sequence. That is, arandom
number sequence is generated from different random number subseguences that
are created through the segmentation of along-period random number sequence.
These subsequences are separated by a distance of at least 2 > 10" intervals.
For details, see “DVRAU4,” item (4), “Method.”

Parameter N

This subroutine returns the next N pseudo-random numbers from the infinite
sequence defined by the starting value IX. If N <0, no pseudo-random numbers
are returned.

For efficiency, the user should make N sufficiently large (for instance, N =
100,000). This reduces the overhead of subroutine calls and allows vectorization.
N may be changed on consecutive calls to this subroutine provided that the size

of array DA is aslarge as the maximum value of N.

Work area DWORK

DWORK isawork areato store state information for repeated calls to this
subroutine. The calling program must not change the contents of DWORK
while the subroutineis being called.

1I-2
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4) Parameter NWORK

DWORK (1), ..., DWORK (NWORK) are used by this subroutine. NWORK
should remain unchanged on each call to the subroutine. NWORK should be at
least 1,156. For efficiency on vector processors, NWORK should be large (for
example, NWORK = 100,000).

5) Repeated generation of the same random number

If DWORK (1), ..., DWORK (NWORK) is saved, the same sequence of random
numbers can be generated again (from the point where DWORK was saved) by
reusing DWORK (1), ..., DWORK (NWORK) and calling this subroutine with
argument IX = 0.

c. Exampleof use

In this example, one million normal pseudo-random numbers are generated, and the
first- and second-order moments are calculated. The starting value is 12345. The
first-order moment is 3 XF; when the frequency of the variable X; isF;. The second-
order moment is X;?F; when the frequency of the variable X; is F;.

C ** EXAMPLE* *
PARAMETER ( NRAN = 1000000)
PARAMETER ( NSEED = 12345)
PARAVETER ( NWAX = 100000)
PARAMVETER ( NBUF = 120000)
REAL*8 DA( NBUF)
REAL* 8 DWORK( NVWAX)
REAL*8 DSUM DSUMP
REAL* 8 DIMEAN, D\
| A = NSEED
PRINT *, ' Seed ', IA
N = NBUF
NWORK = NWWVAX
DSUM = 0. 0DO
DSUM2 = 0. 0DO
C NGEN counts down to O
NGEN = NRAN
PRI NT *, ' Generating ', NGEN,
$ ' nunbers'
C Generate NRAN nunbers ,
C maxi mum NBUF at a tine
KRPT = ( NRAN+NBUF- 1) / NBUF
PRINT *, " with ', KRPT,
$' call to dvran3
DO 20 J = 1, KRPT
N = MNO (NBUF, NGEN)
C First two argunents are nean
C add standard devi ati on
CALL DVRAN3 (0.0D0, 1.0D0, IA,
$ DA, N, DWORK, NWORK, | CON)
IF (ICON .NE. 0) THEN

PRINT *, ' Error Return ', |CON
STOP
ENDI F
C Accumul at e sum of nunbers generat ed
DO10 I =1, N

DSUM = DSUM + DA(I)
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C Accumul ate sum of squares
10 DSUMR = DSUMR + DA(I)*DA(1)
20 NGEN = NGEN - N
C Conput e sanpl e nean
DVEAN = DSUM DFLOAT( NRAN)
PRINT *, ' First nmonent ', DVMEAN
C Conput e sanpl e second nonment about O
DV2 = DSUM2/ DFLQOAT( NRAN)
PRINT *, ' Second noment ', DWW
STOP
END

(4) Method

To generate normally distributed pseudo-random numbers, DV RAN3 uses the Polar
method with fast elementary function evaluation. The uniform pseudo-random numbers
required in this method are generated using DVRAUA4.

The Polar method is described in item [24]. For implementation details and a comparison
with other methods, see [4].
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J11-20-0501 DVRAN4

Generation of normal random numbers (double precision, Wallace' s method)

CALL DVRAN4 (DAM, DSD, I1X, DA, N, DWORK, NWORK, ICON)

(1) Function

This subroutine generates pseudo-random numbers from anormal distribution density
function (1.1) with a given mean m and standard deviation o.

1 -(x-m)?
f ()= e XM (L1)
o+ 2 20
(2) Parameters
DAM........... Input. Mean mof normal distribution.
Double-precision real type.
DSD............ Input. Standard deviation o of normal distribution.
Double-precision real type.
[ GO Input. Starting value.

Onthefirst call, set IX to apositive value. Subsequently, call the subroutine
with the return value remaining 0. A different sequence of random numbers are
generated with a different starting value on thefirst call.

(Seeitem (3), “Commentson use,” b., 1).)

4-byte integer type (INTEGER*4).

Output. O.

DA...cccooenn. Output. N pseudo-random numbers.
Double-precision real type one-dimensional array of size N.

N P Input. The number of normally distributed pseudo-random numbersto be
returned in DA.

(Seeitem (3), “Commentson use,” b., 2).)

DWORK...... Work area. One-dimensional array of the double-precision real type and size
NWORK.
Do not modify the contents of this subroutine between repeated calls.
DWORK contains information necessary for repeated calls to this subroutine.
(Seeitem (3), “Commentson use,” b., 3).)

NWORK...... Input. The size of the array DWORK. NWORK = 1,350.

ICON........... Output. Condition code.
See Table DVRANA4-1, “Condition codes.”
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Table DVRAN4-1 Condition codes

Code Description Processing

0 No error

30001 NWORK istoosmall. IX<0,DSD<0 Processing is stopped.
30002 Internal check failed.

30003 to 30008 | DWORK was overwritten or 1 X was set to zero

ontheinitia call.

30009

IX istoo large.

40001 to 40002 | DWORK was over written or 1 X was set to zero

ontheinitia call.

(3) Commentson use
a. Subprograms used

SSL 1I: DUF2GS3, DUITGS3, DURN3B, DURUG3, DUR2G3, DUSKG3, DUSQGS,
DUVRG3, DVRAU4, MGSSL

Comments

1)

2)

3)

4)

Starting point 1X

When a sequence of pseudo-random numbersisto be generated by a
deterministic program, there must be random input. To do this, give a starting
value IX. Onthefirst call to this subroutine, the starting value IX must be a
positive integer. (For exceptions, seeitem 5).) For subsequent calls, set 1X to
zero. Thisindicates that more pseudo-random numbers from the same sequence
areto be generated. To simplify programming, this subroutine returns zero in 1X
after theinitial call.

Parameter N

This subroutine returns the next N pseudo-random numbers from the infinite
sequence defined by the starting value IX. If N <0, no pseudo-random numbers
are returned.

For efficiency, the user should make N sufficiently large (for instance, N =
100,000). This reduces the overhead of subroutine calls and allows vectorization.
N may be changed on consecutive calls to this subroutine provided that the size

of array DA is aslarge as the maximum value of N.

Work area DWORK

DWORK isawork areato store state information for repeated calls to this
subroutine. The calling program must not change the contents of DWORK
while the subroutine is being called.

Parameter NWORK

DWORK (1), ..., DWORK (NWORK) are used by this subroutine. NWORK
should remain unchanged on each call to the subroutine. NWORK should be at
least 1,350. For efficiency on vector processors, NWORK should be large (for
example, NWORK = 500,000).

11-6
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5) Repeated generation of the same random number

If DWORK (1), ..., DWORK (NWORK) is saved, the same sequence of random
numbers can be generated again (from the point where DWORK was saved) by
reusing DWORK (1), ..., DWORK (NWORK) and calling this subroutine with
argument X = 0.

6) Theimplementation of Wallace's method in DVRANA4 is about three times faster
than the implementation of the Polar method in DVRANS.

c. Example of use

In this example, one million normal pseudo-random numbers are generated, and the
first- and second-order moments are calculated. The starting value is 12345. The
first-order moment is 3 XF; when the frequency of the variable X; is F;. The second-
order moment is ) X?F; when the frequency of the variable X; is F;.

C ** EXANMPLE **
PARAMETER (NRAN = 1000000)
PARAVMETER (NSEED = 12345)
PARAMETER ( NVWAX = 100000)
PARAMETER (NBUF = 120000)
REAL* 8 DA( NBUF)
REAL* 8 DWORK( NWWVAX)
REAL* 8 DSUM DSUMP
REAL* 8 DVEAN, DMV
| A = NSEED
PRINT *, ' Seed ', IA
N = NBUF
NWORK = NWWAX
DSUM = 0. 0D0
DSUM2 = 0. 0DO
C NGEN counts down to O
NGEN = NRAN
PRINT *, ' Generating ', NGEN,
$ ' nunbers'

C Generate NRAN nunbers ,

C maxi mum NBUF at a tine
KRPT = ( NRAN+NBUF- 1) / NBUF
PRINT *, ' with ', KRPT,
$ " call to dvran4d'
DO 20 J = 1, KRPT
N = M NO (NBUF, NGEN)

C First two argunents are nean

C add standard devi ati on
CALL DVRANA (0.0DO, 1.0D0, IA,
$ DA, N, DWORK, NWORK, | CON)
IF (1CON .NE. 0) THEN

PRINT *, ' Error Return ', |CON
STOP
ENDI F
C Accumul at e sum of nunbers generat ed
DO10 I =1, N

DSUM = DSUM + DA(1)
C Accumul ate sum of squares
10 DSUM2 = DSUM2 + DA(1)*DA(I)
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20 NGEN = NGEN - N
C Conput e sanpl e nean
DVEAN = DSUM DFLOAT( NRAN)
PRINT *, ' First nonent ', DMEAN
C Conput e sanpl e second nonment about O
DV2 = DSUM2/ DFLQOAT( NRAN)
PRINT *, ' Second nonent ', DWW
STOP
END

(4) Method

DVRANA4 uses avariant of Wallace's method to generate normally distributed pseudo-
random numbers. This requires uniform pseudo-random numbers, which are generated
using DVRAUA4.

Wallace's method is described in reference [42]. Implementation details and comparisons
with other methods are given in references [4] and [5]
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J11-11-0301 DVRAU4

Generation of uniform [0, 1) pseudo-random numbers (double precision)

CALL DVRAUA4 (I1X, DA, N, DWORK, NWORK, ICON)

(1) Function

This subroutine generates a sequence of pseudo-random numbers from a uniform
distributionon [0, 1).

(2) Parameters

Input. Starting value.

Onthefirst call, set IX to apositive value. Subsequently, call the subroutine
with the return value remaining O.

(Seeitem (3), “Commentson use,” b., 1).)

A different sequence of random numbers are generated with a different IX value
on thefirst call.

(Seeitem (4), “Method.”)

4-byte integer type (INTEGER*4).

Output. 0.

Output. N pseudo-random numbers independent and uniformin [0, 1).
Double-precision real type one-dimensional array of size N.

Input. The number of uniformly distributed pseudo-random numbersto be
returned in DA.
(Seeitem (3), “Commentson use,” b., 2).)

Work area. One-dimensional array of double-precision real type with size of at
least NWORK.

Do not modify the contents between repeated calls to this subroutine.

DWORK contains all of the current state information necessary to call this
subroutine again from its current point.

(Seeitem (3), “Commentson use,” b., 3).)

Input. The size of the array DWORK. NWORK = 388.

Output. Condition code.
See Table DVRAU4-1, “Condition codes.”

Table DVRAU4-1 Condition codes

Code Description Processing

0 No error

30001 NWORK istoo small. Processing is stopped.
30002 IX<0

30003 to 30008 | DWORK was modified. Or IX was set to zero

ontheinitia call.
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(3) Commentson use

a. Subprograms used

SSL I1: DUITG3, DURUG3, DUR2G3, DUF2G3, DUSKG3, DUSQG3, DUVRGS3,
MGSSL

b. Comments

1)

2)

3)

4)

5)

Starting value IX

When a sequence of pseudo-random numbersisto be generated by a
deterministic program, there must be random input. To do this, give a starting
value IX. This starting value is often called the “seed.” On the first call to this
subroutine, the starting value IX must be a positive integer. (For exceptions, see
item 5).) On subsequent calls, set IX to zero. Thisindicates that subsequent
pseudo-random numbers from the same sequence are to be generated. To
simplify programming, this subroutine returns zero in 1X after theinitial call.

Parameter N

This subroutine returns the next N pseudo-random numbers from the infinite

sequence defined by the starting value IX. If N < 0, no pseudo-random numbers
are returned.

For efficiency, make N sufficiently large (for example, N = 100,000). This
reduces the overhead of subroutine calls and allows vectorization. N may be
different on successive callsto this subroutine, provided that the size of array
DA isaslarge as the maximum value of N.

Work area DWORK

DWORK isawork area used to store state information for repeated calls to this
subroutine. The calling program must not change the contents of DWORK
while the subroutine is being called.

Parameter NWORK

DWORK (1), ..., DWORK (NWORK) are used by this subroutine. NWORK
should remain unchanged on each call to the subroutine. NWORK should be at
least 388. For efficiency on vector processors, NWORK should be large (for
example, NWORK = 45,000).

Repeated generation of the same random number

If DWORK (1), ..., DWORK (NWORK) is saved, the same sequence of random
numbers can be generated again (from the point where DWORK was saved).
Reusing DWORK (1), ..., DWORK (NWORK) and call this subroutine with
argument IX = 0.

c. Exampleof use

In this example, one million uniform pseudo-random numbers are generated and their
mean valueis calculated. The starting valueis 123.

** EXAMPLE* *
PARAVETER (NRAN = 1000000)
PARAVETER ( NSEED = 123)

PARAVETER ( NWWAX = 45000)

PARAMETER (NBUF = 160000)
REAL*8 DA( NBUF)

REAL*8 DWORK( NWWVAX)
REAL*8 DSUM DMVEAN, DSIG

11-10
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| X = NSEED
PRINT *, ' SEED ', IX
N = NBUF
NWORK = NWWAX
DSUM = 0. 0DO
C NGEN counts down to O
NGEN = NRAN
PRINT *, ' Generating ', NGEN,
$ ' Nunbers'
C Generate NRAN nunbers,
C Maxi mum NBUF at a tine
KRPT = ( NRAN+NBUF- 1) / NBUF
PRINT *, ' with ', KRPT,
$ ' calls to dvrau4
DO 20 J = 1, KRPT
N = M NO (NBUF, NGEN)
CALL DVRAWA (I X, DA, N,
$ DWORK, NWORK, | CON)
IF (ICON .NE. 0) THEN

PRINT *, ' Error return ', |CON
STOP
ENDI F
C Accumul ate sun of nunbers generated
DO10 I =1, N

10 DSUM = DSUM + DA(1)
20 NGEN = NGEN - N
C Comput e nean
DVEAN = DSUM DFLOAT( NRAN)
PRINT *, ' Mean ', DMEAN
C Conpute deviation fromO0.5 nornalized
C by expected value 1/sqrt(12*NRAN).
C This should be (approxinmately) normally
C distributed with nean 0, variance 1.
DSI G = DVEAN - 0.5D0
DSI G = DSI G DSQRT( 12. 0DO* NRAN)
PRINT *, ' Norm deviation ', DSIG
STOP
END
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(4) Method

This subroutine uses the generalized Fibonacci method. If the sequence of pseudo-
random numbersis X (1), X (2), ..., then

X@)=a*X(U-r)+ X (J-s) (modulo 1)
whereJ>r > s,

Here, r and s are fixed positive integers (often called “lags’), and a and 3 are small odd
integers.

Onthefirst call (or any call with IX > 0), this subroutine selects a pair (r, s) defining a
primitive trinomia (mod 2) and a corresponding linear recurrence. There are 14 possible
pairs (r, s), and the one with the largest r is chosen, subject to the constraint that N and
NWORK are large enough.

Thus, the user can choose:

- A good generator with a moderately long period, low initialization overhead, and
small storage requirements by setting NWORK = 1,000, for example

- A very good generator with an extremely long period, high initialization overhead,
and high storage requirements by setting NWORK = 133,000, for example

- Anintermediate compromise, without having to know the precise details of how to
choose (r, s).

The pairs (r, s) used by this subroutine are given in Table DVRAUA4-2. For tables of
primitive trinomials, see [20].

Table DVRAU4-2 Pairs(r, s)

r S r S

127 97 4423 2325
258 175 9689 5502
521 353 19937 10095
607 334 23209 13470
1279 861 44497 23463
2281 1252 110503 56784
3217 2641 132049 79500

This subroutine chooses the parameters (a, B) = (7, 9) if r < 1,000, and (a, B) = (1, 15) if r
> 1,000. The rationaleisthat performance on statistical testsis likely to be improved if o
> 1. However, thisimprovement is only significant for smaller choices of r. For larger
choices of r, the performance on statistical testsis very good, even if a = 1. This choice
increases the speed of random number generation.

The period of the sequenceisW(2" - 1), wherer isin the range 127 (for the smallest
NWORK) to 132,049 (for N = 264,098 and NWORK = 132,056). The factor W depends
on the wordlength. (On the Fujitsu VPP series, W= 2%, and the minimum period is at
least 10°2)

Theinitialization ensures that sequences of pseudo-random numbers returned for different
starting value | X are separated by a distance of at least 2°° > 10" in the full periodic
sequence. Thus, for al practical purposes, different starting values I X ensure different
sequences of pseudo-random numbers.

11-12
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The method and implementation details are described in more detail in [2] and [3]. For a
further explanation and comparison with other methods, see [1], [11], [22], and [27].

(5) Testing of uniform random numbers

Table DVRAUA4-3 shows the result of testing statistical hypotheses for the pseudo-
random numbers generated by DVRAU4 with NWORK = 44,504 (sor = 44,497 and s =

23,463).
Table DVRAU4-3 Results of x2 testing (uniform deviation at n-dimensions unit
hyper cube)
; D i a(*2) *3) *4 i1y(*5)
Dimension Size res res, Density IZXZ \/T'l
1 10° 5 x 10’ 50000000 20.00 1.21
1 0.8 x 10° 1.25x 107 | 12500000 64.00 -0.67
2 10° 7071 49999041 10.00 -0.10
2 2x10° 3535 12496225 80.02 -0.37
3 2x10° 368 49836032 13.38 1.40
3 2 x 10° 232 12487168 53.39 -0.96
4 2 x 10° 84 49787136 10.04 0.76
4 2 x10° 59 12117361 41.26 -0.38
*1 Dimension: Dimension of the unit hypercube.
*2 Size: Number of pseudo-random numbers generated.
*3  res;: Number of equal subintervals partitioning [0, 1) in each dimension.
*4  resy: Number of equal hypercubes partitioning the unit hyper cube.
*5  Density: Average number of random points per small hypercube.

In the table, the number of degrees of freedom 'f' of chi-squared testing is very large

2x2 -/2f -1 should be approximated
extremely well as anormal deviate with unit variance.

(1,000,000 level). Inthis case, the expression
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A72-27-0101 VBCSD, DVBCSD

System of linear equations with unsymmetric or indefinite sparse matrix
(BICGSTAB(l) method, diagonal storage format)

CALL VBCSD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, L, X, ITER,

VW, ICON)

(1) Function

This routine solves linear equations with an n x n unsymmetric or indefinite sparse matrix
using the Bi-Conjugate Gradient Stabilized(l) method (BICGSTAB(I)).

Ax=Db

Then x n coefficient is stored with the diagonal storage format. Vectorsb and x are n-
dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part |.

(2) Parameters

................ Input. Stores non-zero elements in a coefficient matrix.

Two-dimensional array A (K, NDIAG). Stores coefficient matrix Ain

A (1:N, NDIAG) with the diagonal storage format. For the diagonal storage
format, see Part |, “Overview,” Section 3.2.1.1, “ Storage Methods for General
Sparse Matrices,” b., “Diagonal Storage Format for General Sparse Matrices.”

................ Input. Size of adjustable dimension of array A

NDIAG....... Input. The number of diagonal vectorsin coefficient matrix A that contain non-

zero elements.
Size of second-dimension of array A.

................ Input. Order n of matrix A.

NOFST....  Input. Storesthe distance from the main diagonal vector corresponding to

diagonal vectors stored in array A. Superdiagonal vectors have positive values,
Subdiagonal vectors have negative values.
One-dimensional array NOFST (NDIAG).

................. Input. One-dimensional array of size n. Stores the constant vector of the right-

hand side term of alinear equation system.

ITMAX....... Input. The upper limit of iterationsin BICGSTAB(l) method (> 0).

EPS............. Input. A convergence criterion value in judgment of convergency.

If EPSis0.0 or less, it is set to 10°° in double-precision routines and 10 in
single-precision routines.
(Seeitem (3), “Commentson use,” b., 1).)

IGUSS........ Input. Sets control information about whether to start the iterative computation

from the approximate value of the solution vector specified in array X.
IGUSS=0: Approximate value of the solution vector is not specified.
IGUSSZ0: The iterative computation starts from the approximate value of the
solution vector specified in array X.

11-14
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Input. The order of stabiliser in the BICGSTAB(I) algorithm. (1< L <8).

The value of L should usually be set to 1 or 2. (See item(3), “Comments on

use” b., 2).)

the solution vector.

Output. The solution vector is stored.
Output. Number of iteration performed using the BICGSTAB(l) method.
Work area. One-dimensional array K x (4+2xL) + N + NBANDL + NBANDR.

Input. One-dimensional array of size n. Can specify the approximate value of

NBANDL indicates alower bandwidth; NBANDR indicates an upper
bandwidth. If the order or the bandwidth of the matrix are not constant
parameters, it isenough to set the size of VW array to be K x (4+2xL) +3xK.

Output. Condition code

See Table VBCSD-1, “Condition codes.”

TableVBCSD-1 Condition codes

Code | Meaning Processing
0 No error -
20000 | Break-down occurred Processing is stopped.
20001 | The upper limit of iteration steps was Processing is stopped.
reached. The approximate value obtained up to
this point in array X is output, but their
precision cannot be guaranteed.
30000 [ K<1, N<1, K<N, NDIAG<], L<1,L>8, | Processingis stopped.
K<NDIAG, or ITMAX<O0
32001 | |[NOFST (1) |> N-1 Processing is stopped.

(3) Commentson use

a

Subprograms used

SSL 1I: AMACH, UBCRL, UBCSD, UBGRS, UQITB, URELT, URIPA,
URITI, URITT, URMVD, URSTE, USVCN, USVCP, USVNZ2,

MGSSL, UMGSL
Comments

1) Convergent criterion

In the BICGSTAB(I) method, if the residual Euclidean norm is equal to or less
than the product of the initial residual Euclidean norm and EPS, it isjudged as
having converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of Matrix

Aand EPS.

The residual which used for convergence judgement is computed recursively and

it may differ from the true residual.

2) Parameter L

The maximum value of L issetto 8. For L=1, this agorithm coincides with
BiCGSTAB. Using smaller L usually resultsin faster speed, but in some
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situations larger L brings a good convergence, although the steps of aniteration
are more expensive for larger L.

3) Noteson using the diagonal format
A diagonal vector element outside coefficient matrix A must be set to zero.
Thereisno restriction in the order in which diagonal vectors are stored in array
A.
The advantage of this method lies in the fact that the matrix vector multiplication
can be calculated without the use of indirect indices. The disadvantage is that
matrices without the diagonal structure cannot be stored efficiently with this
method.

4) Diagonal scaling
Scaling the equations so that the main diagonal to be 1 may results in better
convergence.

Example of use

In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0,1] x [0,1] x [0,1], with the
Dirichlet boundary condition (function value zero at the boundary).

Thistype of partial differential operator isdescribed in Part |, “Overview,” Section
3.2.2 “Discretization of partial differential operators and storage examples for them.’

For INIT_MAT_DIAG, see Part |, “Overview,” Section 3.2.2, “ Discretization of
partial differential operators and storage examples for them.”
GET_BANDWIDTH_DIAG isaroutine that estimates band width. INIT_SOL isa
routine that generates solution vectors to be sought with random numbers.

* % EXAMPLE* *
PROGRAM TEST_| TER_SOLVERS

I MPLICI T REAL*8 (A-H, O 2)

| NTEGER MACH

PARAVETER ( MACH = 0)

PARAVETER (K = 10000)

PARAVETER (NX = 20, NY = 20, NZ = 20, N = NX*NY*N2)
PARAVETER (NDI AG = 7, LEN = N+400+400)
PARAVETER (L = 4)

PARAVETER (NVW = (4+2*L) *K+LEN)

DOUBLE PRECI SI ON A(K, NDI AG), X(N), B(N), SOLEX(N)
| NTEGER NOFST(NDI AG)

DOUBLE PRECI SI ON VW N\VW

CALL I NI T_SOL( SOLEX, N, 1D0, MACH)
PRI NT*, ' EXPECTED SOLUSI ONS'

PRINT*, " X(1) = ', SOLEX(1),' X(N) = ', SOLEX(N)
PRI NT *

PRINT *, Bi CGst ab(|) METHOD

PRINT *, DI AGONAL FORVAT'

VAL = 3D0

VA2 = 1D0/ 3D0

VA3 = 5D0

VC = 1.0

XL = 1.0

YL = 1.0
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ZL = 1.0
C

CALL | NI T_MAT_DI AG( VAL, VA2, VA3, VC, A, NOFST

& , NX, NY, NZ, XL, YL, ZL, NDI AG, N, K)

CALL GET_BANDW DTH_DI AG( NOFST, NDI AG, NBANDL, NBANDR)

DO 110 | = 1,N
VW | +NBANDL) = SOLEX(1)

110 CONTI NUE

CALL DVMVSD( A, K, NDI AG, N, NOFST, NBANDL, VW B, | CON)

PRI NT*, ' DVMWSD | CON= ', | CON
C

EPS = 1D 10

| GUSS = 0

| TMAX = 2000

CALL DVBCSD( A, K, NDI AG, N, NOFST, B, | TMAX

& ,EPS, | GUSS, L, X, | TER, VW | CON)
C

PRINT* ,'ITER = ', I TER

PRI NT* , ' DVBCSD | CON = ', | CON

PRI NT*, ' COVMPUTED VALUES'

PRINT*, 'X(1) =',X(1)," X(N) ="', X(N)

STOP

END

(4) Method

The BICG agorithmisdescribed in [37] in Appendix B, “References.” The
BICGSTAB(I) algorithm is a modification of the BICGSTAB method, see [41] and [16]
in Appendix B, “References.”
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A72-28-0101 VBCSE, DVBCSE

System of linear equations with unsymmetric or indefinite sparse matrix
(BICGSTAB(l) method, ELLPACK storage format)

CALL VBCSE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, L, X, ITER,
VW, ICON)

(1) Function

This routine solves linear equations with an n x n unsymmetric or indefinite sparse matrix

using the Bi-Conjugate Gradient Stabilized(l) method (BICGSTAB(I)) method.
Ax=hb

Coefficient matrices (n x n) are stored with the ELLPACK format. Vectorsb and x are n-

dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part |.

(2) Parameters

A, Input. Stores non-zero elements of the coefficient matrix.

Two-dimensional array A (K, IWIDT).
For the ELLPACK storage format, see Part |, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices.”

| (T Input. Size of adjustable dimension (= n) of A and ICOL.

IWIDT...... Input. The maximum number of non-zero-elements in row vector direction on

the coefficient matrix A.
Two dimensional size of A and ICOL.

[\ P Input. Order n of matrix A.

ICOL.......... Input. Store the column indices of the element stored in the array A using the
ELLPACK format, indicating which column vectors the corresponding
elementsin the array A belong to.

Two-dimensional array ICOL (K, IWIDT)

| S Input. One-dimensional array of size n. Stores a constant vector of the right-
hand-side term of alinear equation system.

ITMAX....... Input. The upper limit of iterationsin BICGSTAB(I) method (> 0).

EPS............. Input. A convergence criterion value in judgment of convergency.

If EPSis0.0 or less, it is set to 10° in double-precision routines and 10 in
single-precision routines.
(Seeitem (3), “Commentson use,” b., 1).)

IGUSS........ Input. Control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=0: Approximate value of the solution vector is not set.

IGUSSZ0: The iterative computation starts from the approximate value of the

solution vector specified in array X.

I Input. The order of stablilser in the BICGSTAB(I) algorithm. (1< L < 8).
The value of L should usually be set to 1 or 2. (See item(3), “Comments on
use” b, 2).)
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) QTR Input. One-dimensional array of size n. An approximate value of a solution
vector can be specified.
Output. Storesa solution vector.
ITER.......... Output. The real number of iteration stepsin BICGSTAB(I) method.
VW..ooooeene Work area. One-dimensional array K x (4+2 x L).
ICON.......... Output. Condition code
See Table VBCSE-1, “Condition codes.”
TableVBCSE-1 Condition codes
Code | Meaning Processing
0 No error -
20000 | Break-down occurred Processing is stopped.
20001 | The upper limit of iteration steps was Processing is stopped.
reached. The approximate values obtained up to
this point in array X are output, but their
precision cannot be guaranteed.
30000 | K<1,N<1, K<N, IWIDT<1, L<1,L>8, | Processing is stopped.
K<IWIDT, or ITMAX< 0

(3) Commentson use

a

b.

Subprograms used

SSL I1: AMACH, UBCRL, UBCSE, UBGRS, UQITB, URELT, URIPA,
URITI, URITT, URMVE, URSTE, USVCN, USVCP, USVN2,

MGSSL, UMGSL
Comments

1) Convergent criterion

In the BICGSTAB(I) method, if the residual Euclidean norm is equal to or less
than the product of the initial residual Euclidean norm and EPS, it isjudged as
having converged. The difference between the precise solution and obtained
approximate solution is equal to the product of the condition number of matrix A

and EPS.

The residual which used for convergence judgement is computed recursively and

it may differ from the true residual.

2) Parameter L

The maximum value of L isset to 8. For L=1, this agorithm coincides with
BiCGSTAB. Using smaller L usually resultsin faster speed, but in some
situations larger L brings a convergence, although the steps of aiteration are

more expensive for larger L.

3) Diagonal scaling

Scaling the equations so that the main diagonal to be 1 may results in better

convergence.

Example of use

In this example, linear equations of coefficient matrices obtained by descretizing
partial differential operators are solved in the region [0,1] x [0,1] x [0,1] with the
Dirichlet boundary condition (function value zero at the boundary). Thistype of
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partial differential operator is described in Part I, “Overview,” Section 3.2.2,
“Descretization of partial differential operator and storage examples for them.”

For INIT_MAT _ELL, seePart |, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.”

INIT_SOL isthe routine that generates the solution vectors to be sought in random
numbers.

* % EXAMPLE* *
PROGRAM TEST_| TER_SOLVERS

| MPLICI T REAL*8 (A-H, O 2)

| NTEGER MACH

PARAVETER ( MACH = 0)

PARAVETER (K = 10000)

PARAVETER (NX = 20, NY = 20, NZ = 20, N = NX*NY*N2)
PARAVETER (IWDT = 7, L = 4)

PARAVETER (NVW = (4+2*L) *K)

DOUBLE PRECI SI ON A(K, | WDT), X(N), B(N), VW NVW , SOLEX( N)
| NTEGER | COL(K, | W DT)

CALL | NI T_SOL( SOLEX, N, 1D0, MACH)
PRI NT*, ' EXPECTED SOLUTI ON

PRINT*, " X(1) = ', SOLEX(1),' X(N) = ', SOLEX(N)
PRI NT *

PRI NT *, Bi CGst ab(|) METHOD

PRI NT *, ELLPACK FORVAT'

AVI = 3D0

AV2 = 1D0/ 3D0

AV3 = 5D0

VC = 1.0

XL = 1.0

YL = 1.0

ZL = 1.0

CALL | NI T_MAT_ELL( VA1, VA2, VA3, \/C, A, | COL,
& NX, NY, Nz, XL, YL, ZL, | W DT, N, K)
CALL DVMVSE(A, K, | W DT, N, | COL, SOLEX, B, | CON)
PRI NT*, ' DVMVSE | CON = ', | CON

EPS = 1D- 10

| GUSS = 0

| TMAX = 2000

CALL DVBCSE(A, K, | WDT, N, | COL, B, | TMAX,

& EPS, | GUSS, L, X, | TER, VW | CON)
PRI NT*, ' DVBCSE | CON = ', | CON

PRI NT*, ' COVPUTED VALUE'

PRINT*,"X(1) ="', X(1)," X(N ="',X(N
STOP

END
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(4) Method

The BICG agorithmisdescribed in [37] in Appendix B, “References.” The
BICGSTAB(I) algorithm is a modification of the BICGSTAB method, see [41] and [16]
in Appendix B, “References.”
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A53-31-0102 VBLDL, DVBLDL

LDL" decomposition of symmetric positive definite banded matrix (modified
Cholesky decomposition)

CALL VBLDL (A, N, NH, EPSZ, ICON)

1)

Function
Using modified Cholesky decomposition, this routine computes the LDL" decomposition
A=LDLT

of an n x n symmetric positive definite banded matrix A with an upper and lower
bandwidth h, where L isaunit lower banded matrix with the lower bandwidth h, and D is
adiagonal matrix.

The condition n > h = 0 must be met.

In order to exploit vector computer performance, this routine adopts the method of
storage in the order of column vectors.

(2) Parameters
A Input. One-dimensional array of size (h + 1) x n.
Stores diagonal elements of the coefficient matrix A and the lower banded
matrix.
For the storage method for matrix A, see Figure VBLDL-1.
Output. Stores LDLT decomposed D and L.
For the storage method for matrices L and D, see Figure VBLDL-2.
N P Input. Order n of matrix A.
NH...ccoeneee Input. Lower bandwidth h.
EPSZ........... Input. Vaue of pivot judgment of relative zero (= 0.0).
When it is 0.0, standard values are applied.
(Seeitem (3), “Commentson use,” b., 1).)
ICON.......... Output. Condition code.

See Table VBLDL-1, “Condition codes.”
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an 4 an-hn-h an-1n-1 ann
*
8 &3 an-h+1N-h nn-1
*
831 )
an+11 an+22 ann-h * *

D00-0050
* (asterisk): Undefined value
Figure VBLDL-1 Storage method for matrix Ainarray A
i column vectors of the lower banded matrix A are stored according to

A(h+)x(i-D+j-i+1) =g

wherej =i, ..,i+h, i=1..,n
dll d22 dn-h n-h dn-l n-1 dn n
[ 21 [32 | n-h+1 N-h Inn1 *
l31 | 42 *
Ih+11 Ih+22 I'nneh * *

D00-0060

* (asterisk): Undefined value
Figure VBLDL-2 Storage method for matricesL and D inarray A

diisstoredin A ((h+1) x (i -1) +1).
ljisstoredinA ((h+ 1) x(i-1)+j-i+1).

j=i+1,..,i+h i=1..,n
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TableVBLDL-1 Condition codes

Code | Description Processing

0 No error

10000 | A negative pivot. Matrix A is not positive definite. Processing continues.

20000 | Pivotisrelative zero. Strong possibility that matrix A is Processing is stopped.
singular.

30000 [ NH<0,NH =N or EPSZ < 0.0 Processing is stopped.

(3) Commentson use

a. Subprograms used
SSL 1I: AMACH, MGSSL

Comments

OO0

OO0

1)

2)

3)

In this subroutine, the case of the pivot value being less than EPSZ is considered
relative zero, and processing is stopped with ICON = 20,000.

The standard value of EPSZ is 16 x u, where u is the round off unit.

If the pivot value becomes negative during decomposition, the coefficient matrix
is not positive definite. In such a case, this subroutine continues processing, but
with ICON = 10,000.

The elements of matrix L that result from the decomposition are stored in array
A, asdemonstrated in Figure VBLDL-2. Thus, the determinant is obtained from
the multiplication of n diagonal elements: A ((h+ 1) x(i-1)+ 1), i=1,..,n

Example of use

10

** EXAMPLE* *
I MPLICI T REAL*8 (A-H, O 2)
PARAVETER( NH=128)

PARAVETER( N=128* 128)

DI MENSI ON' A( ( NH+1) *N) , C( NH+1, N)
EQUI VALENCE( A, C)

Zero cl ear

DO 10 | =1, N*( NH+1)

A(1)=0.0

CONTI NUE

Coefficient Matrix is built

b = Aty , where y=(1,1,....,1)
DO 20 1=1,N

C(1,1)=1.0

| F(1 +NH. LE. N) THEN
C(NH+1,1)=-0.25

ENDI F
| F(1+1. LE. N. AND. MOD( | , NH) . NE. 0) THEN
o(2,1)=-0.25

ENDI F

11-24

Fujitsu SSL Il Extended Capabilities User's Guide Il




VBLDL, DVBLDL

20 CONTI NUE

LDLAT deconposition

OO0

EPSZ=0. 0D0

CALL DVBLDL(A, N, NH, EPSZ, | CON)
PRI NT*, ' | CON=' , | CON

| F(1 CON. NE. 0) STOP

DET=1. 0D0

DO 30 1=1,N

DET=DET*C( 1, | )
30 CONTI NUE

PRI NT*, ' DETERM NANT=', DET
STOP
END

(4) Method

LDL" decomposition is performed with the modified Cholesky decomposition of the outer
product type. (See[31].)
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A53-31-0202 VBLDX, DVBLDX

System of linear equations with an LDL" decomposed symmetric positive definite
banded matrix

CALL VBLDX (B, FA, N, NH, ICON)

1)

Function

This routine solves the following linear equations of LDL" decomposed symmetric
positive definite banded matrix contained in the coefficient matrix:

LDL™x=b (1.2)

L and D are each an n x n unit lower banded matrix with the lower bandwidth h. Disa
diagonal matrix, b isan n-dimensional real constant vector, and x is an n-dimensional
solution vector.

The condition n > h = 0 must be met.

Ih+11

(2) Parameters
B Input. Constant vector b.
Output. Solution vector X.
One-dimensional array of sizen.
FA. .o Input. One-dimensional array of size (h+ 1) x n.
See Figure VBLDX-1, “Storage method for matricesL and D in array FA,” for
the storage method of LDL " decomposed matrices L and D.
N S Input. Order n of matrix A.
NH....ccoeeee. Input. Lower bandwidth h.
ICON.......... Output. Condition code.
See Table VBLDX-1, “Condition codes.”
da2 dn-h n-h dn-l n-1 dn n
132 | n-h+1N-h Inn-1 *
[ 42 *
[he22 I'nn-h * *

D00-0070

* (asterisk): Undefined value

Figure VBLDX-1 Storage method for matricesL and D in array FA

diisstoredinFA ((h+ 1) x (i -1) + 1).
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I isstored in FA ((h+1) x (i - 1) +] - i + ).

j=i+1,..,i+h i=1 ..,n

TableVBLDX-1 Condition codes

Code | Description Processing

0 No error

10000 | Coefficient matrix A is not positive definite. Processing continues.
30000 | NH<0,NH=N Processing is stopped.

(3) Commentson use

a. Subprograms used
SSL II: UBLTS, UBUTS, MGSSL

Comments

OO0

OO0

1)

Linear equations can be solved by calling this routine consecutively after the
subroutine VBLDL. However, one call to the subroutine VLSBX usually brings
the same solution.

Example of use

In this example, a symmetric positive definite banded matrix, where bandwidth h =
256 and n = 256 x 256, is LDL " decomposed and Ax = b is solved.

10

15

* % EXAMPLE* *
I MPLICI T REAL*8 (A-H, O 2)

PARAVETER( NH=128)

PARAVETER( N=128* 128)

DI MENSI ON A( (NH+1) *N) , B(N), C(NH+1, N)
EQUI VALENCE( A, C)

Zero cl ear

DO 10 | =1, N*( NH+1)
A(1)=0.0
CONTI NUE

DO 15 1=1, N
B(1)=0. 0
CONTI NUE

Coefficient Matrix is built
b = A*y , where y=(1,1,....,1)

DO 20 I=1, N
C(1,1)=4.0
B(1)=B(1)+4.0

| F(1 +NH. LE. N) THEN
C(NH+1,1)=-1.0

B(1 +NH) =B( | +NH) - 1. 0
B(1)=B(1)-1.0
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ENDI F

C
I F(1+1. LE. N. AND. MOD( |, NH) . NE. 0) THEN
c(2,1)=-1.0
B(I+1)=B(1+1)-1.0
B(1)=B(1)-1.0
ENDI F

20 CONTI NUE

C

C Solve Symmetric Positive Definite |inear equation

C
EPSZ=0. 0DO
CALL DVBLDL(A, N, NH, EPSZ, | CON)
PRI NT*, ' VBLDL | CON=', | CON
| F(1 CON. NE. 0) STOP
CALL DVBLDX( B, A, N, NH, | CON)
PRI NT*, ' VBLDX | CON=', | CON
| F(1 CON. NE. 0) STOP

C
PRI NT*, ' B(1)= "', B(1)
PRI NT*, " B(N)= ', B(N)
STOP
END

(4) Method

The solution is obtained through forward-substitution and back-substitution.
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A53-11-0102 VBLU, DVBLU

LU decomposition of banded real matrix (Gaussian elimination)

CALL VBLU (A, N, NH1, NH2, EPSZ, IS, IP, VW, ICON)

(1) Function

Thisroutine LU decomposes an n x n banded matrix with alower bandwidth h; and an
upper bandwidth h, using Gaussian €limination:

PA=LU

where P is a permutation matrix on which the exchange of rows is performed through
partia pivoting. L isaunit lower banded matrix, and U is an upper banded matrix.

The condition n>h; = 0, n > h, = 0 must be met.

In order to exploit vector computer performance, this routine adopts an appropriate
banded matrix storage method.

(2) Parameters

A, Input. One-dimensional array of size (2 x hy + h, + 1) x n that stores the banded
coefficient matrix A.
For the storage method for matrix A, see Figure VBLU-1, “ Storage method for
banded matrix in array A.”
Output. Storesthe LU decomposed L and U.
For the storage method for matrices L and U, see Figure VBLU-2, “ Storage
method for matricesL and U inarray A.”

N P Input. Order of matrix A.

NH1............ Input. Lower bandwidth h; of matrix A.

NH2............ Input. Upper bandwidth h, of matrix A.

EPSZ........... Input. Value of pivot judgment of relative zero (= 0.0). If itis0.0, the standard
valueis set.

IS Output. Information used when seeking the determinant of matrix A.
(Seeitem (3), “Commentson use,” b., 2).)

P, Output. Transposition vector that shows the history of the exchange of rows
performed through partia pivoting. One-dimensional array of sizen.

VW, Work area. One-dimensional array of sizen.

ICON.......... Output. Condition code.

See Table VBLU-1, “Condition codes.”
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G hy *) 1 G h ~><— h1 *)
* ap o a H2+1 0
> * a1 az a r;2+2 0
> * az; az2: as3 as rj12+3 0
> api+11 ... ah1+1h1+1 .- ah£+1h1+h2+1 0
> an-h2n-h2-ht . an.h£ n-h2 - ar;-hz n *
> ann-hl - ann * *

* (asterisk): Undefined value

Figure VBLU-1 Storage method for banded matrix in array A

D00-0080

Thei-th row vector of the coefficient matrix A is stored consecutively in A ((2x h; + h, + 1)
x(i-1)+1: (2xhy+hy+ 1) xi). Diagona elementsa; are storedin A ((2 x hy + hy + 1) x (i
- 1) + hy + 1). The elements outside coefficient matrix of the banded part are set to zero when

being stored.
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< M —> 1 < h —> < h —>

* u,, 5 U1 h1+h2+1

> * lyy Uy : U2 hi+h2+2

> * ! 3 U3 hi+h2+3
- I3 1ap ; Uss |

Ny, . : .
> lh+11 - - Uhl+1h1+1 - ; Uhi+1 2n1+h2+1
‘ ; |
> Inh2nh2ht-  Upponn . Un-h2n *
> Innh1 Unn * *
D00-0090

* (asterisk): Undefined value

Figure VBLU-2 Storage method for matricesL and U in array A

Thei-th row vector without diagonal elements of matrix L isstoredin A ((2x hy + h, + 1) x
(i-1)+21: 2xhy+hy+1)x(i-1)+hy). Thei-th row vector of matrix U isstored in A ( (2
xh;+hy+1)x(i-1)+h+ 1 (2xhy+hy+ 1) xi), consecutively from the diagonal
elements.
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TableVBLU-1 Condition codes

Code | Description Processing

0 No error

20000 | All the elements of arow of matrix A were zero, or the Processing is stopped.
pivot is relative zero. Thereisastrong possibility that
matrix A issingular.

30000 | N <NH1,N<NH2, NH1<0, NH2<0or EPSZ<0.0 Processing is stopped.

(3) Commentson use

a. Subprograms used
SSL 1I: AMACH, MGSSL

OO0

Comments

1)

2)

3)

4)

In this subroutine, the case of the pivot value being less than EPSZ is considered
relative zero. Processing is stopped with ICON = 20,000.

The standard value of EPSZ is 16 x u, where u is the round off unit.

Elements of matrix U are stored in array A, as demonstrated in Figure VBLU-2.
Therefore, the determinant is obtained by multiplying the IS value by n diagonal
elements, that is, the multiplication A ((2xh; +hy+1) x (i-1) +h; + 1), i =
1,..,n

In partial pivoting, this subroutine performs an actual exchange of the rows of
array A. If at the J-th step of decomposition (J=1, 2, ..., n-1) the I-throw (I = J)
is selected as the pivot row, the contents of the I-th and J-th row of array A are
interchanged. In order to show the history, | isthen stored in IP (J).

In order to save space in the data storage area, this subroutine stores banded
matrices by taking advantage of their characteristics. However, depending on
bandwidth size, a data storage area that is larger than VALU may be required. In
such cases, space in the data storage area can be saved by using VALU.

Characteristics of this subroutine can be exploited whenn>2 x hy + h, + 1.

Example of use

In this example, the determinant of an unsymmetric banded matrix with h; = h, = 160,
n =160 x 160, is computed.

** EXAMPLE* *
I MPLICI T REAL*8 (A-H, O 2)

PARAVETER( NH=80)

PARAVETER( NHL=NH)

PARAVETER( NH2=NH)

PARAVETER( N=NH* NH)

PARAVETER( ALPHA=0. 5/ ( NHL+1) / 4, BETA=- ALPHA)
DI MENSI ON' A( ( 2* NHL+NH2+1) * 2* N)

DI MENSI ON C( 2* NHL+NH2+1, N) , | P(N) , VW( N)

EQUI VALENCE( A, C)

Zero cl ear

DO 10 | =1, N*( 3* NH+1)
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A(1)=0.0
10 CONTI NUE

Coefficient Matrix is built

OO0

DO 20 1=1,N
C(NHL+1,1)=1.0
| F(1. GT. NH) THEN
C(1,1)=-0. 25+ALPHA
ENDI F
| F(1 +NH. LE. N) THEN
C( 1+NHL+NH2, 1) =- 0. 25+BETA
ENDI F
I F(1. GT. 1. AND. MOD( | - 1, NH) . NE. 0) THEN
C(NHL, 1) =- 0. 25+ALPHA
ENDI F
| F(1+1. LE. N. AND. MOD( | , NH) . NE. 0) THEN
C(NHL+2, 1) =- 0. 25+BETA
ENDI F
20 CONTI NUE

LU deconposi tion

OO0

EPSZ=0. 0D0

| CON=O

CALL DVBLU(A, N, NH1, NH2, EPSZ, 1S, | P, VW | CON)
PRI NT*,' | CON= ', | CON

| F(1 CON. NE. 0) STOP

DET=I S

DO 30 1=1,N

DET=DET* C( NHL+1, |)
30 CONTI NUE

PRI NT*, ' DETERM NANT=', DET
STOP
END

(4) Method

LU decomposition is performed through LU decomposition of the outer product type.
(See[14)).
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A53-11-0202 VBLUX, DVBLUX

System of linear equations with an LU decomposed banded real matrix
CALL VBLUX (B, FA, N, NH1, NH2, IP, ICON)

(1) Function
This routine solves linear equations
Ax=Db
through forward-substitution and back-substitution, based on the result
PA=LU

obtained by LU decomposing an n x n banded matrix with alower bandwidth h,; and an
upper bandwidth h, using Gaussian €limination.

P is a permutation matrix on which the exchange of rows is performed through partial
pivoting. L isaunit lower banded matrix, and U is an upper banded matrix.

The condition n> h; = 0, n > h, = 0 must be met.
(2) Parameters

S T Input. Constant vector b.
Output. Solution vector X.
One-dimensional array of sizen.

FA..ooennn. Input. Stores LU decomposed L and U.
One-dimensional array of size (2 x hy + h, + 1) x n.
For the storage method of matrices L and U, see Figure VBLUX-1, “ Storage
method for L and U inarray A.”

N P Input. Order of matrix A.

NH1............ Input. Lower bandwidth h; of matrix A.

NH2............ Input. Upper bandwidth h, of matrix A.

P Input. Transposition vector that shows the history of the exchange of rows
performed through partia pivoting. One-dimensional array of sizen.

ICON.......... Output. Condition code.

See Table VBLUX-1, “Condition codes.”
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* (asterisk): Undefined value
Figure VBLUX-1 Storage method for L and U in array FA

< h —> 1 ‘< h2 —> < h —> !
Il : u
* U 1hi+h2+1
> * u u
I21 L 22 2 h1+h2+2
> : u
* oy g i Ug, 3h1+h2+3
> i1t Unl+1h1+1 - Uhi+1 2h1+h2+1
|
> Inh2nh2-ht. u n—h2‘ nh2 Unn2n *
> lnnh Unn * *
D00-0100

Thei-th row vector without diagonal elements of matrix L isstored in FA ( (2 x hy + h, + 1) x
(i-1)+21: 2xhy+hy+1)x(i-1)+hy). Thei-th row vector of matrix U is stored
consecutively from the diagonal elementsin FA ((2xhy+h,+1) x(i-1)+h;+1: (2xhy +

hy + 1) x i).
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TableVBLUX-1 Condition codes

Code | Description Processing

0 No error

20000 | Coefficient matrix issingular. Processing is stopped.
30000 | N <NH1,N<NH2 NH1<0,NH2<0,orerror occurred | Processing is stopped.

inlP.

(3) Commentson use

a. Subprogram used
SSL 11: MGSSL

Comments

OO0

OO0

1)

A linear equation can be solved by calling this subroutine after calling the
subroutine VBLU. At that time, set the input parameters of this subroutine (with
the exception of constant vectors) to the output parameters of VBLU.

Example of use

In this example, alinear equation Ax = b, which takes the unsymmetric matrix A with
h; =h, =160, n= 160 x 160 as a coefficient matrix, is solved.

10

15

** EXAMPLE* *
I MPLICI T REAL*8 (A-H, O 2)

PARAVETER( NH=80)

PARAVETER( NHL=NH)

PARAVETER( NH2=NH)

PARAVETER( N=NH* NH)

PARAVETER( ALPHA=0. 5/ ( NHL+1) , BETA=- ALPHA)
DI MENSI ON' A( ( 2* NHL+NH2+1) * 2*N) , B(N)

DI MENSI ON C( 2* NHL+NH2+1, N) , | P(N) , VW( N)
EQUI VALENCE( A, C)

Zero cl ear

DO 10 | =1, N*( 3* NH+1)
A(1)=0.0
CONTI NUE

DO 15 I =1, N
B(1)=0.0
1 P(1)=0
CONTI NUE

Coefficient Matrix is built

DO 20 1=1,N
C(NHL+1,1)=4.0
B(1)=B(1)+4.0

| F(1. GT. NH) THEN
C(1,1)=-1. 0+ALPHA
B(1)=B(1)-1. 0+ALPHA
ENDI F
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| F(1 +NH. LE. N) THEN

C( 1+NHL+NH2, | ) =- 1. 0+BETA
B(1)=B(1)-1.0+BETA

ENDI F

I F(1. GT. 1. AND. MOD( | - 1, NH) . NE. 0) THEN
C(NHL, 1) =- 1. 0+ALPHA

B(1)=B(1)-1. 0+ALPHA

ENDI F

| F(1+1. LE. N. AND. MOD( | , NH) . NE. 0) THEN
C(NHL+2, 1) =- 1. 0+BETA
B(1)=B(1)-1.0+BETA

ENDI F
20 CONTI NUE
C
C Sol ve Banded |inear equation
C
EPSZ=0. 0DO
| CON=0
CALL DVBLU(A, N, NHL, NH2, EPSZ, | S, | P, VW | CON)
PRI NT*, ' VBLU | CON= ', | CON
| F(1 CON. NE. 0) STOP
CALL DVBLUX(B, A, N, NH1, NH2, | P, | CON)
PRI NT*, ' VBLUX | CON= ', | CON
| F(1 CON. NE. 0) STOP
PRI NT*, ' B(1)= ', B(1)
PRI NT*,'B(N) = "', B(N)
STOP
END
(4) Method
The following expression is solved through forward-substitution and back-substitution:
LUx=Pb
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A72-11-0101 VCGD, DVCGD

System of linear equations with a symmetric positive definite sparse matrix
(preconditioned CG method, diagonal storage format)

CALL VCGD (A, K, NW, N, NDLT, B, IPC, ITMAX, ISW, OMEGA, EPS,

IGUSS, X, ITER, RZ, VW, IVW, ICON)

1)

Function
This routine solves linear equations
Ax=hb

using the preconditioned conjugate gradient (CG) method, where an n x n normalized
symmetric positive definite sparse matrix A must be used as a coefficient matrix.

The n x n coefficient matrix is normalized in such away that the diagonal elementsare 1.
The non-zero elements other than the diagonal elements are stored using the diagonal
storage format.

For normalization of linear equations that use symmetric positive definite sparse matrices
as coefficient matrices, and for the diagonal storage format, see Part I, “Overview,”
Section 3.2.1.2, “ Storage methods for symmetric positive definite sparse matrices.” The
diagonal storage format assumes that the non-zero elements of the coefficient matrix A lie
on alimited number of diagonal vectors, paralléel to the main diagonal vector.

This structure applies to linear equations arising from discretizing partial differential
equations, particularly at lattices parallel to the defined boundaries of the region. This
storage format is particularly efficient because the column vector number for each entry
element in the coefficient array does not need to be stored. Only the distance from the
main diagonal vector needs to be stored.

(2) Parameters

A, Input. Two-dimensional array A (K, NW). Usesdiagonal format to store non-
zero elements of the coefficient matrix, which isanormalized symmetric
positive definite sparse matrix.
For information about the diagonal storage format for normalized symmetric
positive definite sparse matrices, see Part |, “Overview,” Section 3.2.1.2,
“ Storage methods for symmetric positive definite sparse matrices,” b., “The
diagonal storage format for symmetric positive definite sparse matrices.”

Ko Input. Size of adjustable dimension (= N) of array A.

NW...coooeeee Input. The size of the second dimension of array A. The number of diagonals
that store coefficient matrix A using the diagonal storage format. Even number.

N P Input. Order n of matrix A.

NDLT......... Input. One-dimensional array NDLT (NW) indicating the offset from the main
diagonal.

B Input. One-dimensional array of sizen. Stores the constant vector specified in
the right-hand-side term of the linear equations.

IPC....ccccun.e. Input. Preconditioner control information.

IPC =1 No preconditioner.
IPC =2 Neumann preconditioner.
IPC = 3 Preconditioner with incomplete Cholesky decomposition.
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In this case, the user must specify OMEGA.
(Seeitem (3), “Commentson use,” b., 3).)

ITMAX....... Input. The upper limit of iterations (> 0).

ISW............ Input. Control information.
ISW =1 Initial call.
ISW =2 Subsequent calls. Must not be changed because the values of A,
NDLT, VW, and IVW are used, which were set during the initial call.
(Seeitem (3), “Commentson use,” b., 1).)

OMEGA...... Input. Modification factor for incomplete Cholesky decomposition.
0<OMEGA<1
Used for IPC = 3.
(Seeitem (3), “Commentson use,” b., 3).)

EPS............ Input. Criterion value in judgment of convergency.
Judged as convergent when RZ < EPS.
If EPS< 0, EPSissettoe x |b|. €=10°isused in double-precision routines,
and £ = 10 is used in single-precision routines.
(Seeitem (3), “Commentson use,” b., 2).)

IGUSS......... Input. Information about whether to start iterations from the approximate value
of the solution vector specified in the array X.
IGUSS =0 Approximation of the solution vector is not set.
IGUSS# 0 Iteration computation starts from the approximate value of the
solution vector specified inthe array X.

) CTR Input. One-dimensional array of size n. Can specify the approximate value of
the solution vector of linear equations.
Output. One-dimensional array of sizen. Stores solution vector of linear

equations.

ITER........... Output. Number of actually performed iterations.

RZ..ooiie Output. Value of the square root of residuals rz after judgment of convergency.
(Seeitem (3), “Commentson use,” b., 2).)

VW, Work area.
1) WhenIPC=3

One-dimensional array of size K x (NW + 6) + 2 x NBAND. NBAND isthe
size of the lower bandwidth or the upper bandwidth.

2) WhenIPC # 3
One-dimensional array of sizeK x 5+ 2 x NBAND. NBAND isthe size of
the lower bandwidth or the upper bandwidth.

IVW............ Work area. One-dimensional array of size (K + 1) x 4.

ICON.......... Output. Condition code.
See Table VCGD-1, “Condition codes.”
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TableVCGD-1 Condition codes

Code Description Processing
0 No error
20001 Reached the maximum number of | Processing is stopped. The
iterations. approximate values obtained up to
this point in array X are output, but
their precision cannot be
guaranteed.
20003 Bresk down occurred.
30003 ITMAX <0 Processing is stopped.
30005 K<N
30006 Could not perform incomplete LL"
decomposition.
30007 Pivot is negative.
30089 NW is not an even number.
30091 NBAND =0
30092 NW<0,n<0
30093 K<0
30096 OMEGA <0, OMEGA > 1
30097 IPC<1,IPC>3
30102 Upper triangular part is not
correctly stored.
30103 Lower triangular part is not
correctly stored.
30104 The number of super-diagonalsin
the upper triangular part is not
equal to the number of sub-
diagonalsin the lower triangular
part.
30105 ISW#£1, 2
30200 INDLT (i) |>n- lor
NDLT (i)=0

(3) Commentson use

a. Subprograms used

SSL 1I: AMACH, UGCRI, UGULD, UGECD, UGFCD, UGINP, UGIPD, UGITB,
UGITI, UGITN, UGITT, UGMVD, UGCGP, USSCP, USSPS, UGSD2, UGSD3,
UGSTE, UGSWD, USVAD, USVCN, USVCP, USVSC, USVSU, USVUP, USVN1,
USVN2, USVNM, UGWVD, URELT, MGSSL

11-40

Fujitsu SSL Il Extended Capabilities User's Guide Il




VCGD, DVCGD

b. Comments

1) When multiple sets of linear equations with the same coefficient matrix but
different constant vectors are solved for IPC = 3, the solution on thefirst call is
with ISW = 1, and solutions on subsequent calls are with ISW = 2. In
subsequent calls, the result of the incomplete Cholesky decomposition obtained
ontheinitia call is reused.

2) Judgment of convergency

The convergence of the solution obtained in the n-th iteration is assumed when
RZ = /(rz) <EPS

where .r isthe residual vector defined by
r=b- Ax,
M is the preconditioner matrix, and
rz=r'M*r
3) Preconditioners
Two types of preconditioners and a no-preconditioner function are provided.

When elliptic partia differential equations are solved by discretization, it is
effective to use a preconditioner based on an incomplete Cholesky
decomposition.

If A=1 - N, the preconditioner M of the linear equation (I - N) x =bisas
follows:

IPC =1 No preconditioner M =1

IPC=2 Neumann M = (I +N)

IPC = 3 Incomplete Cholesky decomposition M = LL"

When IPC = 3, the user must specify avalue for OMEGA (0 < OMEGA < 1).

When OMEGA = 0, thisisincomplete Cholesky decomposition. When OMEGA =1,
thisis modified incomplete Cholesky decompaosition.

For linear equations derived from discretizing partia differential equations, an
optimal OMEGA value was found empirically to be in the range of 0.92 to 1.00.

c. Exampleof use

In this example, alinear equation is solved for a symmetric positive definite sparse
matrix with n = 51,200 and the distance of the diagonal vector +5, - 5.

C * % EXAVPLE* *
| MPLI CI T REAL*8 (A-H, O 2)
PARAMETER ( N=51200, K=N+1)
PARAMETER ( NWE2, | WKS=4, N2=K+1)
PARAMVETER ( NVWEK* ( NWH6) +10)
REAL*8 B(N), EPS, OVEGA, RZ, VW N\WWY , X(N)
| NTEGER NDLT( NW
REAL*8 A(K, NW
| NTEGER | VW N2, | VIKS)

C

C INITIALI SE A

C
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CALL SET(A, NDLT, K, NW N)
| SHI FT=0
DO 10 J=1, NW
| SH FT=MAX( | SHI FT, ABS( NDLT(J)))
10 CONTI NUE
C COMPUTE RHS SO AX=B SO WE KNOW SOLUTI ON X (X(1)=I)
DO 30 I=1, N
30 VW(I +I SHI FT) =I
C
C B=(A- E) * X+X
C
CALL DVMVSD( A K, NW N, NDLT, | SH FT, VW B, | CON)
DO 70 I=1, N
B(1)=B(1) +VW( I + SHI FT)
70 CONTI NUE

| TMAX=8* SQRT( N+0. 1)
EPS=1D- 10
OVEGA=0D0
| SWe1
| GUSS=0
DO 100 | PC=1, 3
| F(1 PC. EQ 3) OMEGA=0. 98
CALL DVCGD( A, K, NW N, NDLT, B, | PC, | TMAX, | SW OVEGA,
& EPS, | GUSS, X, | TER, RZ, VW | VW | CON)
| F(1 CON. NE. 0) WRI TE(6, *)' | CON=', | CON
| F(RZ. LE. EPS) WRI TE(6, 41)' CONVERGED. ACCURACY=', RZ
| F(RZ. GT. EPS) WRI TE(6, 41)' FAI LED. ACCURACY=', RZ
WRI TE(6, *)' X
DO 60 1=1, M N(N, 16) , 4
60 WRI TE(6, 42) |, (X(M, Ml , | +3)
100 CONTI NUE
42 FORMAT(1X, |3, 4(1X, F20. 10))
41 FORMAT(A, 2X, E10. 3)
STOP
END

SUBROUTI NE SET( A, NDLT, K, NW N)
REAL*8 A(K, NW

| NTEGER NDLT( NW

DO 10 J=1, NW

DO 10 1=1,K
10 A(1,J)=0D0

N3=5

NDLT( 1) =N3

NDLT( 2) =- N3

DO 20 1=1,N

L=l

| F(L. LE. N-N3) THEN
A(l, 1) =-0.25D0
ENDI F
20 CONTI NUE
DO 30 I=1, N
L=l
| F(L. GE. N3+1. AND. L. LE. N) THEN
A(l,2)=-0.25D0
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ENDI F

30 CONTI NUE
RETURN
END

(4) Method
The standard conjugate gradient algorithm isused. (See[14].)

For the preconditioner method based on the incomplete Cholesky decomposition, see [29].
For the vectorization based on wavefront ordering, see [23].

(5) Acknowledgment

The author wishes to express thanks to the authors of ITPACK and NSPCG for
permission to use the modified incomplete Cholesky decomposition and the wavefront
ordering routine.
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A72-12-0101 VCGE, DVCGE

System of linear equations with a symmetric positive definite sparse matrix
(preconditioned CG method, ELLPACK storage format)

CALL VCGE (A, K, NW, N, ICOL, B, IPC, ITMAX, ISW, OMEGA, EPS, IGUSS,

X, ITER, RZ, VW, IVW, ICON)

(1) Function

This routine solves linear equations

Ax=Db

using the preconditioned conjugate gradient (CG) method, where an n x n normalized
symmetric positive definite sparse matrix A must be used as a coefficient matrix.

The n x n coefficient matrix is normalized in such away that the diagonal elementsare 1.
The ELLPACK storage format is used to store the non-zero elements other than the
diagonal elements.

For information about normalization of linear equations that use symmetric positive
definite sparse matrices as coefficient matrices, see Part I, “Overview,” Section 3.2.1.2,
“ Storage methods for symmetric positive definite sparse matrices.”

(2) Parameters

Input. Two-dimensional array A (K, NW). Stores non-zero elements of the
coefficient matrix in the A (1:N, NW) part.

The reordering of the elementsin the array A is performed for IPC = 3, when
the upper triangular matrix part is not stored in A (*, 1:NW/2) and the lower
triangular matrix part is not stored in A (*, NW/2 + 1:NW).

For information about the ELLPACK storage format for normalized symmetric
positive definite sparse matrices, see Part |, “Overview,” Section 3.2.1.2,

“ Storage methods for symmetric positive definite sparse matrices,” a.,
“ELLPACK storage format for symmetric positive definite sparse matrices.”
(Seeitem (3), “Commentson use,” b., 1).)

Input. Size of adjustable dimension (= N) of arrays A and ICOL.

Input. The size of the second dimension of array A.

When the maximum number of non-zero elements on the row vectors of the
upper triangular matrix is NSU and the maximum number of non-zero elements
on the row vectors of the lower triangular matrix isNSL,

then NW = 2 x max (NSU, NSL).

For details, see Part I, “Overview,” Section 3.2.1.2, “ Storage methods for
symmetric positive definite sparse matrices,” a., “ELLPACK storage format for
symmetric positive definite sparse matrices.”

Input. Order n of matrix A.

Input. A two-dimensional array ICOL (K, NW). Theinformation about the
column vectors to which the non-zero elements belong is stored in ICOL (1: N,
NW).

Input. One-dimensional array of size n. Stores the constant vector specified in
the right-hand-side term of the linear equation.

Input. Preconditioner control information.
IPC =1 No preconditioner.
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IPC = 2 Neumann preconditioner.

IPC = 3 Preconditioner with incomplete Cholesky decomposition.
In this case, the user must specify OMEGA.

(Seeitem (3), “Commentson use,” b., 4).)

ITMAX....... Input. The upper limit of iterations (> 0).

ISW............ Input. Control information.
ISW =1 Initial cal.
ISW =2 Subsequent calls. Must not be changed because the values of A,
ICOL, VW and IVW, which were set during theinitial call, are used.
(Seeitem (3), “Commentson use,” b., 2).)

OMEGA...... Input. Modification factor for incomplete Cholesky decomposition.
0<OMEGA<1

EPS............. Input. Criterion value in judgment of convergency.
Judged as convergent when RZ < EPS.
If EPS< 0, £x |b|isset to EPS. £= 10 °isused in double-precision routines,
and
£=10 *isused in single-precision routines.
(Seeitem (3), “Commentson use,” b., 3).)

IGUSS......... Input. Sets control information about whether to start the iteration computation
from the approximate value of the solution vector specified in array X.
IGUSS =0 Approximation of the solution vector is not set.
IGUSS# 0 lteration starts from the approximate value of the solution vector
specified in array X.

), Input. One-dimensional array of size n. Can specify the approximation vector
of the solution for the linear equation.
Output. Stores the solution vector for the linear equation.

ITER........... Output. Number of iterations actually performed.
RZ...covvvenne Output. Value of the square root of residuals rz after judgment of convergency.
(Seeitem (3), “Commentson use,” b., 2).)
VW............. Work area.
1) IfIPC=3
One-dimensional array of size K x NW + 4 x N,
2) IfIPC#3
One-dimensional array of sizeN x 3.
IVW........... Work area.
1) IfIPC=3
One-dimensional array of size K x NW + N x 4,
2) IfIPC#3
One-dimensional array of sizeN x 4.
ICON.......... Output. Condition code.

See Table VCGE-1, “Condition codes.”
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TableVCGE-1 Condition codes

Code Description Processing

0 No error.

10000 A, ICOL elements are permuted to U/L | Processing continues.

format.

20001 Reached the upper limit of iterations. Processing is stopped. The
approximate values obtained up to this
point in array X are output, but their
precision cannot be guaranteed.

20003 Break down occurred.

30003 ITMAX <0 Processing is stopped.

30005 K<N

30006 Could not perform incomplete LL"

decomposition.

30007 Pivot is negative.

30092 NW <0

30093 K<0,N<0

30096 OMEGA <0, OMEGA > 1

30097 IPC<1,IPC>3

30098 ISW=#1,2

30100 NW # 2 x max (NSU, NSL)

30104 Either the upper triangular part or the

lower triangular part is not stored
correctly.

negative | (- ICON)-th row has a non-zero

number diagonal element.

(3) Commentson use

a

Subprograms used

SSL I1: AMACH, UGECP, UGEUL, UGEFA, UGEMV, UGEPD, UGECG,
UGEPM, UGEPV, UGESV, UGEWV, URELT, MGSSL

Comments

1) Sparse matrix is stored using the ELLPACK format storage method. (See[23]
and [33]).
The upper triangular part is stored in A (*, 1:NW/2). The lower triangular part is
stored in A (*, NW/2 + 1:NW), where NW = 2 x max (NSU, NSL).

If IPC # 3 (when a preconditioner other than an incomplete Cholesky
decomposition preconditioner is specified), a storage method is acceptable with
conditions | ess stringent than those described in Part |, “Overview, “ Section
3.2.1.2, “Storage methods for symmetric positive definite sparse matrices,” a.,
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“ELLPACK storage format for symmetric positive definite sparse matrices.” A
normalized symmetric positive definite sparse matrix without diagonal elements
that is stored with the general sparse matrix ELLPACK storage method is also
acceptable asinput. Inthiscase, itisnot required that NW = 2 x max (NSU,
NSL).

2) When multiple sets of linear equations with the same coefficient matrix but
different constant vectors are solved for IPC = 3, the solution on thefirst call is
with ISW = 1. Solutions on subsequent calls are with ISW = 2. In subsequent
calls, the result of the incomplete Cholesky decomposition obtained on the initial
call isreused.

3) Judgment of convergency

The convergence of the solution obtained in the n-th iteration is assumed when
RZ =,/(rz) < EPS

wherer isthe residual vector defined by
r=b- Ax,
M is the preconditioner matrix, and
rz=r'M*'r
4) Preconditioners
Two types of preconditioner and the no-preconditioner functions are provided.

If A=1- N, the preconditioner M of the linear equation (I - N) x =bisas
follows:

IPC =1 No preconditioner; M =1.
IPC =2 Neumann; M~ *= (I + N).
IPC = 3 Incomplete Cholesky decomposition; M = LL".

The user must specify avalue for OMEGA (0 < OMEGA < 1). When OMEGA
=0, thisisincomplete Cholesky decomposition. When OMEGA = 1, thisis
modified incomplete Cholesky decomposition.

For linear equations derived from discretizing partial differential equations, an
optimal OMEGA value was found empirically to be in the range of 0.92 to 1.00.

For IPC = 3, in order to optimize the preconditioners, the equations are permuted
in the wavefront order.

c. Exampleof use

In this example, alinear equation is solved for a symmetric positive definite
sparse matrix containing non-zero elements, where n = 51,200 and the distance
from the diagonal elementsis+ int (sgrt (n + 0.001)).

C * % EXAMPLE* *
I MPLICI T REAL*8 (A-H, O 2)
PARAVETER ( NW£2, N=51200, K=N+1)
REAL*8 B(N), X(N), EPS, OVEGA, RZ,
& ACK, NW , VW K* NWH4* N)
| NTEGER | COL(K, NW , | VW K* NW-4* N)
WRI TE(6, *) ' EXAMPLE DVCGE '
C INITIALI SE A, | COL
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CALL SET(A, I COL, K, N\W N)
C GENERATE RHS B

DO 10 1=1,N
10 W\(1) =l
C COVPUTE RHS SO AX=B SO WE KNOW SOLUTI ON X (X(1)=I)

C
CB = (ABE*X + E*X
CALL DVMVSE(A, K, N\W N, | COL, VW B, | CON)
PRI NT*, ' ERROR CODE =', | CON
DO 20 1=1,N
B(1)=B(1)+VWI)
20 CONTI NUE

| TMAX=4000

EPS=1D- 10

| SW1

| QUSS=0

DO 30 | PC=1, 3

I F(1 PC. EQ 3) OVEGA=0. 98

CALL DVCGE(A, K, NWN, | COL, B, | PC, | TMAX, | SW OVEGA
& , EPS, 1 GUSS, X, | TER, RZ, VW | VW | CON)

PRI NT*, ' ERROR CODE= ', | CON
| F(RZ. LE. EPS) WRI TE(6, 41)' CONVERGED. ACCURACY=', RZ
| F(RZ. GT. EPS) WRI TE(6, 41)' FAI LED. ACCURACY=', RZ
WRI TE(6, *) ' X
DO 60 1=1, M N(N, 16), 4

60 WRI TE(6, 42) |, (X(M, Mel, | +3)

30 CONTI NUE

42 FORMAT(I13, 4(F12. 4))

41 FORMAT(A, 2X, E10. 3)

STOP
END

SUBROUTI NE SET( A, | COL, K, NW N)
| NTEGER | COL( K, NW
REAL*8 A( K, NW
N3=SQRT( N+0. 001)
DO 10 1=1, N\W
DO 10 J=1, N
A(J, 1)=0.0D0
COL(J,1)=d

10 CONTI NUE
DO 20 1=1, NN3
A(l, 1)=-0.49D0
| COL(I,1)=I+N3

20 CONTI NUE
DO 30 1=N3+1, N
A(l, 2)=-0.49D0
| COL(I, 2)=I-N3

30 CONTI NUE
RETURN
END
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(4) Method

The standard conjugate gradient algorithm isused. (See[14]). For information about the
preconditioner based on the incomplete Cholesky decomposition, see[29]. For
information about vectorization based on wavefront ordering, see [23].

(5) Acknowledgment

The author wishes to express thanks to the authors of ITPACK and NSPCG for
permission to use the modified incomplete Cholesky decomposition preconditioner and
wavefront ordering routine.
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F16-15-0401 VCPF3, DVCPF3

Three-dimensional prime factor discrete complex Fourier transform

CALL VCPF3 (A, B, L, M, N, ISN, VW1, VW2, ICON)

(1) Function

This subroutine performs a discrete complex Fourier transform or its inverse transform
using the prime factor fast Fourier transform (prime factor FFT). This subroutineis for
when three-dimensional (where the size of each dimensionis N1, N2, N3) complex time

series data { 31 32,33} isgiven. The size of each dimension must satisfy the following
condition.

The size must be expressed by a product of a mutual prime factor p, selected from the
following numbers:

factorp(p0{2,3,4,5,7,8,9, 16})

Calling this subroutine with 1 entered for parameter N specifies a two-dimensional
complex prime factor fast Fourier transform. Calling this subroutine with 1 entered for
parameter N and 1 entered for parameter M specifies a one-dimensional complex prime
factor fast Fourier transform.

1) Three-dimensional complex Fourier transform

By inputting { X31 32,53} and performing the transform defined in (1.1), athree-
dimensional Fourier transform seeks { N1 x N2 x N3 X a, k2, k3} -

N1 x N2 x N3 X Qg1 k2, k3

N1-1 N2-1N3-1

— -J1K1, -J2K2,6 -J3K3

=3 Y Y X13203W W, W3 (11)
J150 3220 %0 )

,K1=01,..,N1-1
,K2=01,..,N2-1
,K3=01,..,N3-1
, @) =exp(27i/Nj),j=1,2,3
2) Three-dimensional complex Fourier inverse transform

By inputting { a1 k2ks} and performing the transform defined in (1.2), athree-
dimensional Fourier inverse transform seeks {Xj; 5,53} -

X31,92,33
_ NITIN2-1N3-1 JLK1, J2.K2, J3K3

= Y 2 OkykokaWi 0703 (1.2
KiZoK220K 320

,J1=0,1,..,N1-1
,J2=0,1,...,N2-1
,J3=0,1,..,N3-1
,w=exp (2r/Nj), j=1,23
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(2) Parameters

Input. Real part of {xy 553} Or Fourier transformed { k1 k2 3} -

Output. Real part of Fourier transformed { k1 k2ks} Or inverse transformed
{Xs,30,03} -

A (L, M, N) isathree-dimensional array.

L, M, and N are the number of dataitems of the first, second, and third
dimensions, respectively.

Input. Imaginary part of {Xy; 32,13} or Fourier transformed { k1 k2xa} -
Output. Imaginary part of Fourier transformed { ik, k2xa} OF inverse
transformed { Xle\]Z'Jg} .

B (L, M, N) isathree-dimensional array.

L, M, and N are the number of dataitems of the first, second, and third
dimensions, respectively.

Input. Number of dataitemsin the first dimension.
L <5,040.

Input. Number of dataitemsin the second dimension.
M < 5,040.

Input. Number of dataitemsin the third dimension.
N < 5,040.

Input. Specify either transform or inverse transform.
If ISN = 0 (non-negative integer), then transform.
If ISN < 0 (negative integer), then inverse transform.

Work area. Three-dimensional array with the same sizeas A or B.
Work area. Three-dimensional array with the same sizeas A or B.

Output. Condition code.
See Table VCPF3-1, “Condition codes.”

TableVCPF3-1 Condition codes

Code | Description Processing

0 No error

20000 | L, M, or N exceeded 5,040. Or the product of the mutual | Processing is stopped.
primefactorin{2, 3,4, 5, 7, 8,9, 16} could not be
factored.

30000 | L, M, or N iszeroor anegative value.

(3) Commentson use

a. Subprograms used
SSL II: UTRSP, UPFT1, UPFT2, MGSSL
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b. Comments

1)

2)

3)

General definition of three-dimensional Fourier transform

The three-dimensional Fourier transform and its inverse transform are generally
defined in (3.1) and (3.2).

aK1,k2,K3

1 N1-1 N2-1N3-1 LKL 12Ks  J3K3
" NLxN2xN3 X31,92,35% | ' 3.1
N1x N2xN3 J1z:o Jzz:o Jsz:O 9929301 0 s (3.1

N1=1 N2=1 N3=1 JLKL

X31,3203= 2 2 ) XkikzK3Wi
KIZ0K 220K 30

-J2,K2

005722 g7 (32)

The subroutine looks for { N1 x N2 x N3 x ay; koka} OF {Xy130,33} corresponding
to the left-hand-side terms of (3.1) and (3.2), respectively. The user must
normalize the results, if necessary. If the transform and inverse transform are
executed by calling the subroutine consecutively without being normalized, each
element of the input datais multiplied by N1 x N2 x N3, and then output.

Number of dataitemsin each dimension

The number of dataitemsis expressed as a product of a mutual prime factor p,
selected from the numbers that follow.

The maximum number is5 x 7 x 9 x 16 = 5,040.
factorp(p0{2,3,4,5,7,8,9, 16})
Data storage method

Thereal parts of complex data{Xy, 1,3} and {N1 x N2 x N3 x ay; ok} are
stored in array A. The imaginary parts are stored in array B.

Example of use

In this example, complex time series data { Xj; 52,53} Of N1, N2, and N3 terms are input,
and a Fourier transform is performed. The results are used to perform a Fourier
inverse transform to ook for { Xy 1,33} -

Here N1 =12, N2 =12, and N3 = 12.

C

** EXAMPLE* *

DI MENSI ON A( 12, 12, 12), B(12, 12, 12), NI (3)

DI MENSI ON VWL( 12, 12, 12), VWR( 12, 12, 12)

DATA NI/ 12,12, 12/ ,L, M N/ 12, 12, 12/

READ( 5, 500) (((A(l,J,K),B(1,J,K,1=1,N (1)),
J=1, NI (2)), K=1, NI (3))

WRI TE(6, 600) (NI(1),1=1,3),
(((1,3,K A(1,J,K,B(1,3,K,1=1,N (1)),
J=1, NI (2)), K=1, NI (3))

NORMAL TRANSFORM

CALL VCPF3(A B, L, M N, 1, W\, W2, | CON)

WRI TE( 6, 610) | CON

| F(1 CON. NE. 0) STOP

| NVERSE TRANSFORM

CALL VCPF3(A B, L, M N, -1, VW, W2, | CON)

NT=NI (1) *NI (2) * NI (3)

DO 10 K=1, NI (3)

DO 10 J=1, NI (2)
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DO 10 1=1, NI (1)
A(l,J, K =A(1, J, K)/ FLOAT(NT)
B(1,J, K)=B(I,J, K)/ FLOAT( NT)
10 CONTI NUE
WRI TE(6, 620) (((1,J, K A(l,J,K),B(1,J,K,1=1,N (1)),
* J=1,NI(2)), K=1, NI (3))
STOP
500 FORMAT( 2E20. 7)
600 FORMAT(' 0', 10X, ' | NPUT DATA', 5X,

13,18, 13,0)
X (15X, (L1300, 13,0, 13,1,
* 2E20.7))

610 FORVAT(' 0', 10X, ' RESULT | CON=', I 5)
620 FORNMAT(' 0', 10X, " QUTPUT DATA'/

*(15X1'('1|31'1'1|31'1'1|31')'1
* 2E20.7))
END

(4) Method

The three-dimensional real Fourier transform is performed by using the prime factor fast
Fourier transform with the factorized mutually prime factor as the radix (prime factor
FFT).

1) Three-dimensional transform
The three-dimensional transform defined in (1.1) can be performed in the order

shown in (4.1) by simplifying common terms. The order for obtaining the sum of J1,
J2, and J3 can aso be replaced.

N1 x N2 x N3 % 01 k23

N1-1 N2-1 N3-1
= 3 oM S 0 S Xy 5007 (4.1)

Ji=o J2=0 J3=0
In (4.1), ) ;3 takes N1 x N2 sets of one-dimensional transforms of N3 data. ) ;, takes
N1 x N3 sets of one-dimensional transforms of N2 dataitems. ) j; takes N2 x N3 sets
of one-dimensional transforms of N1 dataitems.

This routine applies the fast Fourier transform with the factorized mutually prime
factor as the radix to perform a one-dimensional transform for each dimension.

2) Prime factor fast Fourier transform

The three-dimensional real Fourier transform can be calculated by performing a
multi-set of one-dimensional Fourier transforms three times. The one-dimensional
Fourier transforms are performed using the prime factor fast Fourier transform
(prime factor FFT).

The following explains the one-dimensional prime factor fast Fourier transform.

N-1
Ck =Y X008 wy = exp(-27i/N)
J=0
K=0,..,N-1 (4.2)

When N is factored into two mutually prime factors, N; and N,, the one-dimensional
fast Fourier transform can be regarded as atwo-dimensional fast Fourier transform.
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<>, expresses the remainder of N. (,) expresses the greatest common divisor.
The appropriate K; is present, and mappings (4.3) and (4.4) are determined.
N:Nl N2

j=<Kiji+ Kzj2>n (4.3)
k:<K3k1+ K4k2>N (44)
i, k=0, .., N-1

jl, k1= O, ey Nl' 1
j2, k2= O, ey Nz' 1

The presence of this mapping is known from the Chinese remainder theorem as
follows.

Assuming Ny, Ny, ..., N are mutual primes, and ny, n,, ..., n, are random integers, and
the solution of the simultaneous modulus expression

x=n,  (mod N;) i=1 ..,k (4.5)
N = N;x N, X ... %N,
N is present as a unique modulus as follows:

K
X = ;ni M;q; (mod N) (4.6)

M; = N/Ni, Miqi =1 (mOd N|) i=1, ..,k (47)

By using this mapping, the one-dimensional prime factor fast Fourier transformin
(4.2) is expanded.

Xitj2 = Xaj1 + k2j2

Civie = Ckant + kake

N1-1 N2-1 . . . .
_ KIK3j1kl, K1K4]1k2 , K2K3j2k1 , K2K 4j2k2
Crwz = ,120 ,220 Xj1j20N N Qv of (4.8)
jico j2=

By selecting K; as follows, (4.2) becomes a two-dimensional fast Fourier transform.
<Ki Kz>n = N, <Kz K>y = Ng
<Ki K= 0,<K;Kz>n=0
NI-1 N2-1 . .
Cae=3 Y Xj],jz(*)ijlflw#uzzkz (4.9)
j1=0 j2=0

In addition, by factorizing the mutual prime factors, a multi-dimensional Fourier
transform that has dimensions up to the number of factors can be obtained. The
Fourier transform performs an in-place operation for the factorized factor to obtain an
in-place algorithm.

The following is an example of atwo-dimensional transform to illustrate permutation.
This can easily be expanded into a multi-dimensional transform.

(1, J2) and (ky, ko) are viewed as two-dimensional indices, but the mappings (4.3) and
(4.4) transform them into one-dimensional indices.

J-> (12 (ke ko) >k (4.10)
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The generalized Chinese remainder theorem, below, isobtained. N isfactorized to a
mutual prime factor, and the following expression is obtained.

N=N;xN,x..xNqy

n = <an>y and (&, Ni) = 1 (4.11)
Ki =<N/N; <(N/N;) >3t g > (4.12)
Here, n can be expressed as unique, shown as follows.

0sns<N-1
O0<n <N-1 i=1,..,m

By performing the mappings defined in (4.3) and (4.4), the actual one-dimensional
positions of the two-dimensional indices (ki, k,) are determined from the relationship
that follows:

j = <Kiki+ Ky k>
k=<K3k1+ K4k2>N

By applying the generalized Chinese remainder theorem, it becomes clear that the
two-dimensional (ky, k;) has the relationship in (4.14) because of mappings (4.3) and
(4.4). The computed results after the two-dimensional transform can be permuted.

J= <Ki<ak> g + Kp<agk>no>p
Ki = aN, K, = BN; adding the condition

j = <<Kjak>n + <Kzak>n>y

= <(Kag + Kaag)k>y (4.14)
For details on permutation and fast Fourier transform using each factor as aradix, see
[6] and [45].
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A72-21-0101 VCRD, DVCRD

System of linear equations with an unsymmetric or indefinite sparse matrix (MGCR
method, diagonal storage format)

CALL VCRD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, NDIRV, X,
ITER, VW, ICON)

(1) Function
This routine solves linear equations
Ax=hb

using the modified generalized conjugate residuals (MGCR) method, whereann x n
unsymmetric or indefinite sparse matrix is treated as a coefficient matrix.

Then x n coefficient matrix is stored with the diagonal storage format, using two arrays.
b and x are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part |.

(2) Parameters

A, Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, NDIAG). Stores coefficient matrix Ais stored in
A (1: N, NDIAG).
For the diagonal storage format, see Part |, “Overview,” Section 3.2.1.1,
“ Storage methods for general sparse matrices,” b., “Diagonal storage format for
general sparse matrices.”

Koioereereneens Input. Size of adjustable dimension of array A.

NDIAG....... Input. The number of diagonalsin the coefficient matrix A that contain non-
zero elements.
Size of second dimension of array A.

N P Input. Order n of matrix A.

NOFST....... Input. One-dimensional array NOFST (NDIAG). Stores the offset from the

main diagonal corresponding to diagonals stored in array A. Superdiagonals
have positive values. Subdiagonals have negative values.

S T Input. One-dimensional array of sizen. Stores the constant vector specified in
the right-hand-side term of the linear equation.

ITMAX....... Input. The upper limit of iterationsin the MGCR method (> 0).

EPS............ Input. Criterion valuein judgment of convergency.

If EPS=0 or less, EPSis set to 10° in double-precision routines. EPSis set to
10** in single-precision routines.
(Seeitem (3), “Commentson use,” b., 1).)

IGUSS......... Input. Sets control information about whether to start the iteration computation

from the approximate value of the solution vector specified in the array X.
IGUSS =0 Approximate value of the solution vector is not set.

11-56 Fujitsu SSL Il Extended Capabilities User's Guide Il



VCRD, DVCRD

IGUSS# 0 lIterative computation starts from the approximate value of the
solution vector specified inthe array X.

Input. The number of search direction vectors used in the MGCR method
(=1).
Generally, asmall number between 10 and 100.

Input. One-dimensional array of size n. Can specify the approximate value of
the solution vector.
Output. The solution vector is stored.

Output. Number of iterations actually performed using the MGCR method.

Work area. One-dimensional array of thesize N x (NDIRV + 5) + NDIRV x
(NDIRV +1).

Output. Condition code.
See Table VCRD-1, “Condition codes.”

TableVCRD-1 Condition codes

Code | Description Processing

0 No error

20001 | Reached the upper limit of iterations. Processing is stopped. The approximate
values obtained up to this point in array X
are output, but their precision cannot be
guaranteed.

30000 [ N<1,K<1, N>KorNDIAG<], Processing is stopped.

ITMAX <0.
30004 | NDIRV<1
32001 | [NOFST (1) |>N-1

(3) Commentson use

a. Subprograms used

SSL 1I: AMACH, URGWD, URIPA, URITI, URITT, URMDG, URMVD, URMGD,
URRCI, URRAN, USSCP, URSTE, URSTI, USVAD, USVCN, USVCP, USVSC,
USVSU, USVUP, USVN1, USVN2, USVNM, URELT, MGSSL

Comments

1)

2)

In the MGCR method, if the residual Euclidean normis equal to or less than the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix
A and EPS.

Comments on use of the diagonal format
The elements of diagonals out of the coefficient matrix A must be set to zero.

Thereisno specia restriction on the order of storing the diagonal columnsin
array A.

The advantage of this method lies in the fact that the matrix vector multiplication
can be calculated without the use of indirect indices. The disadvantage isthat
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matrices without the diagonal structure cannot be stored efficiently with this
method.

Example of use

In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0, 1] x [0, 1] x [0, 1] with the
Dirichlet boundary condition (function value zero at the boundary). Thistype of
partial differential operator is described in Part I, “ Overview,” Section 3.2.2
“Discretization of partial differential operators and storage examples for them.”

For INIT_MAT_DIAG, see Part |, “Overview,” Section 3.2.2, “ Discretization of
partial differential operators and storage examples for them.”
GET_BANDWIDTH_DIAG isaroutine that estimates bandwidth. INIT_SOL isa
routine that generates solution vectors to be sought with random numbers.

110

** EXAMPLE* *

PROGRAM TEST_| TER_SOLVERS

I MPLICI T REAL*8 (A-H, O 2)

| NTEGER MACH

PARAVETER ( MACH = 0)

PARAVETER (K = 10000, NDI RV = 50)

PARAVETER ( NX=20, NY=20, NZ=20, N=NX* NY* NZ)

PARAVETER (NDI AG = 7, NVWEN* ( NDI RV+5) +NDI RV* ( NDI RV+1) )
REAL*8 A(K, NDI AG), X(N), B(N), VW NVW , SOLEX( N)

| NTEGER NOFST(NDI AG)

CALL | NI T_SOL( SOLEX, N, 1D0, MACH)

PRI NT*, ' EXPECTED SOLUSI ONS'
PRINT*, ' X(1)= ', SOLEX(1),' X(N)=', SOLEX(N)

PRI NT *
PRINT *," MSCR METHOD
PRINT *," DI AGONAL FORVAT'

VA1=3D0

VA2=1D0/ 3D0
VA3=5D0

VC=1.
XL=1.
YL=1.
ZL=1.

[cNeoNeoNe]

CALL I NI T_MAT_DI AG( VAL, VA2, VA3, VC, A, NOFST,

& NX, NY, NZ, XL, YL, ZL, NDI AG, N, K)

CALL GET_BANDW DTH_DI AG( NOFST, NDI AG, NBANDL, NBANDR)
DO 110 | = 1,N

VW | +NBANDL) = SOLEX(!)

CONTI NUE

CALL DVMWSD( A, K, NDI AG, N, NOFST, NBANDL, VW B, | CON)
PRI NT*, ' DVIWSD | CON= ', | CON

| TMAX=2000

| QUSS=0

EPS = 1D-10

CALL DVCRD( A, K, NDI AG, N, NOFST, B, | TMAX, EPS, | GUSS, NDI RV,
& X, I TER, VW | CON)
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c
PRINT* ,'ITER = ', | TER
PRI NT* , ' DVCRD | CON= ', | CON
PRI NT*, ' COMPUTED VALUES
PRINT*, "X(1)=",X(1)," X(N=",X(N
STOP
END

(4) Method

For the MGCR method, see [25]. The algorithm is a modification of the generalized
conjugate residuals method. The algorithm isrobust and is aways faster than the
GMRES method. (See[34].)
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A72-22-0101 VCRE, DVCRE

System of linear equations with an unsymmetric or indefinite sparse matrix (MGCR
method, ELLPACK storage format)

CALL VCRE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, NDIRV, X, ITER,
VW, ICON)

(1) Function
This routine solves linear equations
Ax=hb

using the modified generalized conjugate residuals (MGCR) method, whereann x n
asymmetrical or indefinite sparse matrix is treated as a coefficient matrix.

The n x n coefficient matrix is stored with the ELLPACK storage format using two arrays.
b and x are n-dimensional vectors.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part |.

(2) Parameters

A, Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, IWIDT).
For the ELLPACK storage format, see Part |, “Overview,” Section 3.2.1.1,
“ Storage method for general sparse matrices.”

| T Input. Size of adjustable dimension (= n) of A and ICOL.

IWIDT........ Input. The maximum number of non-zero elements in row vector direction on
the coefficient matrix A. Size of the second dimension of ICOL and A.

N P Input. Order n of matrix A.

ICOL........... Input. Stores the column indices of the elements stored in the array A using the

ELLPACK format, indicating which column vectors the corresponding
elementsin the array A belong to.
Two-dimensional array of size ICOL (K, IWIDT).

B Input. One-dimensional array of size n. Stores the constant vector specified in
the right-hand-side term of the linear equation in B.

ITMAX....... Input. The upper limit of iterations in the MGCR method (> 0).

EPS............. Input. Criterion value in judgment of convergency.

If EPS= 0.0 or less, EPSis set to 10° in double-precision routines. EPSis set
to 10" in single-precision routines.
(Seeitem (3), “Commentson use,” b., “Comments,” 1).)

IGUSS......... Input. Control information about whether to start iteration computation from
the approximate value of the solution vector specified in the array X.
IGUSS =0 Approximate value of the solution vector is not set.
IGUSS# 0 lteration computation starts from the approximate value of the
solution vector specified in the array X.
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...... Input. The number of search direction vectors used in the MGCR method

(=1).
Generally, asmall number between 10 and 100.

) CTR Input. One-dimensional array of size n. Can specify the approximate value of
the solution vector.
Output. The solution vector is stored.
ITER........... Output. Number of iterations actually performed using the MGCR method.
VW..ooooeene Work area. One-dimensional array of thesize N x (NDIRV + 5) + NDIRV x
(NDIRV +1).
ICON.......... Output. Condition code.
See Table VCRE-1, “Condition codes.”
Table VCRE-1 Condition codes
Code Description Processing
0 No error
20001 Reached the maximum number of Processing is stopped. The approximate
iterations. values obtained up to this point in array
X are output, but their precision cannot
be guaranteed.
30000 K<1 IWIDT<0O,N<lorN>K, Processing is stopped.
ITMAX <0
30004 NDIRV<1

(3) Commentson use

a

Subprograms used

SSL 1I: AMACH, URIPA, URITI, URITT, URMEG, URMVE, URMGE, URRCI,
URRAN, USSCP, URSTE, URSTI, USVAD, USVCN, USVCP, USVSC, USVSU,
USVUP, USVN1, USVN2, USVNM, URELT, MGSSL

Comments

1) Inthe MGCR method, if the residual Euclidean norm is equal to or lessthan the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged.

The difference between the precise solution and the obtained approximation is
roughly equal to the product of the condition number of matrix A and EPS.

Example of use

In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0, 1] x [0, 1] x [0, 1] with the
Dirichlet boundary condition (function value zero at the boundary). Thistype of
partial differential operator is described in Part I, “Overview,” Section 3.2.2,
“Discretization of partial differential operators and storage examples for them.” For
INIT_MAT_ELL, seePart |, “Overview,” Section 3.2.2, “Discretization of partial
differential operators and storage examples for them.” INIT_SOL isthe routine that
generates the solution vectors to be sought in random numbers.
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* % EXAVPLE* *
PROGRAM TEST_| TER_SOLVERS

| MPLI CI T REAL*8 (A-H, O 2)

PARAMETER ( MACH = 0)

PARAMETER (K = 10000, NDI RV = 50)

PARAMETER (I W DT = 7, NX=20, NY=20, NZ=20, N=NX* NY* NZ)
PARAMETER ( NVWENF ( NDI RV+5) +NDI RV* ( NDI RV+1) )

REAL*8 A(K, | WDT), X(N), B(N) , VW NVW , SOLEX( N)

| NTEGER | COL(K, | W DT)

XL=1.0
YL=1.0
ZL=1.0

CALL | NI T_SOL( SOLEX, N, 1D0, MACH)

PRI NT*, ' EXPECTED SOLUTI ON

PRINT*, "' X(1)= ', SOLEX(1),' X(N)= ', SOLEX(N)
PRI NT*, ' MGCR METHOD

PRI NT*, ' ELLPACK FORVAT'

VA1=3D0
VA2=1D0/ 3D0
VA3=5D0
VC=5D0

CALL I NI T_MAT_ELL( VAL, VA2, VA3, VC, A, | COL, NX, NY, NZ,
& XL, YL, ZL, | W DT, N, K)

CALL DVWSE(A, K, I WDT, N, | COL, SOLEX, B, | CON)

PRI NT*,' DVWSE I CON = ', | CON

| QUSS =0

EPS = 1D-10

| TMAX=800

CALL DVCRE(A, K, I WDT, N, I CO_, B, | TMAX, EPS, | GUSS, NDI RV
& , X, | TER, VW | CON)

PRI NT*,' DVCRE | CON = ', | CON

PRI NT*, ' COMPUTED VALUE'
PRINT*, ' X(1)= ', X(1)," X(N)= ', X(N)
STOP

END

(4) Method

For the MGCR method, see [25]. The algorithm is a modification of the generalized
conjugate residuals method. The algorithm isrobust and is aways faster than the
GMRES method. (See[34]).
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B71-13-0101 VHEVP,DVHEVP

Eigenvalues and eigenvectors of a Hermitian matrix (tridiagonalization, multisection method,
and inverse iteration)

CALL VHEVP (AR, Al, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE,
M, EVR, EVI, VW, IW, ICON)

(1) Function

This subroutine calculates specified eigenvalues and, optionally, eigenvectors of an n-
dimensional Hermitian matrix.

AX = AX (1.1
(2) Parameters

AR ... Input. The real part of Hermitian matrix A whose eigenvalues and eigenvectors
areto be calculated is stored in AR(1:N,1:N).

Two-dimensional array AR(K,N) .

Al e Input. Theimaginary part of Hermitian matrix A whose eigenval ues and
eigenvectors are to be calculated is stored in Al(1:N,1:N).

Two-dimensional array AlI(K,N) .

K s Input. Size of first-dimension of array AR or of array Al. (K = N)
N e Input. Order n of Hermitian matrix A
NF e Input. Number assigned to the first eigenvalue to be acquired by numbering

eigenvaluesin ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

NL oo Input. Number assigned to the last eigenvalue to be acquired by numbering
eigenvaluesin ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

IVEC ......... Input. Control information.
IVEC=1: Both the eigenvalues and the corresponding eigenvectors are sought.
IVEC#£1: Only the eigenvalues are sought.

ETOL ........ Input. A criterion value required to determine whether an eigenvalue is distinct
or numerically multiple based on expression (3.1). The default value is 3.0D-16
for double precision (2.0D-7 for single precision) when thisvalueis set to less
than.

(Seel) inb, “Notes,” in (3), “Comments on use.”)

CTOL ........ Input. A criterion value required to determine whether adjacent eigenvalues are
approximately multiplei.e. clustered according to expression (3.1). CTOL =
ETOL
When CTOL islessthan ETOL, CTOL = ETOL is set.
(Seel) inb, “Notes,” in (3), “Comments on use.”)

NEV .......... Output. Number of eigenval ues cal cul ated.

Details are given below.
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MAXNE ....

NEV (1) indicates the number of distinct eigenvalues.

NEV (2) indicates the number of distinct clusters.

NEV (3) indicates the total number of eigenvalues including multiplicities.
One-dimensional array NEV (3).

Output. The eigenvalues calculated are stored in E(1:NEV (3)).
One-dimensional array E(MAXNE)

Input. Maximum number of eigenvalues that can be computed.
Size of the array E.

When NEV(3) is greater than MAXNE, eigenvectors cannot be computed.
(See 2) inb, “Notes,” in (3), “Comments on use.”)

Output. Information about the multiplicity of the computed eigenvalues.
M (i, 1) indicates the multiplicity of thei-th eigenvalue A;. M (i, 2) indicates the
size of thei-th cluster of eigenvalues.

(Seel) inb, “Notes,” in (3), “Comments on use.”)
Two-dimensional array M(MAXNE,?2).

Output. When IVEC =1, thereal part of the eigenvectors corresponding to the
eigenvaluesis stored in EVR.

The eigenvectors are stored in EVR(1:N,1:NEV (3)).
Two-dimensional array EVR(K,MAXNE).

Output. When IVEC = 1, the imaginary part of the eigenvectors corresponding
to the eigenvaluesis stored in EVI.

The eigenvectors are stored in EVI(1:N,1:NEV(3)).
Two-dimensional array EVI(K,MAXNE).

Work area. One-dimensional array of size 17 x K.

Work area. One-dimensional array of size 9 x MAXNE+128.
Output. Condition code.

See Table VHEVP-1.
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Table VHEVP-1 Condition codes

Code M eaning Processing
0 No error
20000 During calculation of clustered eigenvalues, the | Processing is discontinued.
total number of eigenvalues exceeded .
MAXNE The eigenvectors cannot be
' calculated, but the different
eigenvalues themselves are
aready calculated.
(See2) inb, “Notes,” in (3),
“Comments on use.”)
30000 NF<1,NL>N,NL<NF K<N,N<1, or Processing is discontinued.
MAXNE < NL - NF + 1.
30100 The input matrix may not be a Hermitian
matrix.

(3) Commentson use

a. Subprograms used

UHEVP, UIBBS, UIBFC, UIBFE, UIBSL, UITBS, UITFC, UITFE, UITSL,
UTDEX, UTDEY, UTMLS, UTRZB, UTRzZV, UZRDM, MGSSL, UMGSL,
UMGSL2

b. Notes

1) Thisroutine pays special attention to a clustered eigenval ue.

With gisequal to ETOL, suppose that the eigenvalues A; j =s,s+1,..., and stk
(k= 0) are such that

A =il

1+ max((A; 4| |A; ) =€ .

While (3.4) isnot satisfied fori =s-1and i = s+ k+ 1, then eigenvalues A, j =
s-1,s, ..., s+ kare considered to be identical, i.e., asingle multiple eigenvalue
of multiplicity k + 1.

The default value of ETOL is 3.0D-16 for double precision (2.0D-7 for single-
precision). Using thisvalue, eigenvalues are refined to machine precision.

When (3.1) isnot satisfied for € = ETOL , A;_; and A; are assumed to be
distinct eigenvalues.

If (3.1) holdswith € = CTOL (but not with e = ETOL) for eigenvalues A,,, m=t,
t+1, ..., t+kbut not for A,_; and A,,.; , these eigenvalues are considered to be

approximately multiple, i.e. clustered, though distinct (not numerically multiple).
In order to obtain an invariant subspace, eigenvectors corresponding to clustered
eigenvalues are computed using orthogonal starting vectors and are
reorthogonalized. Of course CTOL = ETOL; if this condition is not satisfied,
CTOL issetto beequa to ETOL.
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2) Assumer eigenvalues are requested. Notethat if the first or last requested

eigenvalue has a multiplicity greater than 1 then more than r eigenvalues, are
obtained. The corresponding eigenvectors can be computed only when the
corresponding eigenvector storage area is sufficient.

The maximum number of computable eigenval ues can be specified in MAXNE.
If the total number of eigenvalues exceeds MAXNE, ICON = 20000 is returned.
The corresponding eigenvectors cannot be computed. In this case, the
eigenvalues are returned, but they are not stored repeatedly according to
multiplicities.

When all eigenvalues are distinct, it is sufficient to set MAXNE = NL-NF+1.
When the total humber of eigenvalues to be sought exceeds MAXNE, the
necessary value for MAXNE for seeking eigenvalues again is returned in
NEV(3).

3) Thisroutineis faster than HEIG2.

c. Example

This example calculates the specified eigenvalues and eigenvectors of a Hermitian
matrix.

C Set

98
100

*+ EXAMPLE PROGRAM * *
| MPLI CI T REAL*8(A-H, O 2)

PARAVETER ( K=512, N=K, NF=1, NL=28, MAXNE=NL- NF+1)
PARAVETER ( NVWE19* K, NI WE9* MAXNE+128)

PARAVETER ( ETOL=1. 0D- 14, CTOL=5. 0D- 12)

REAL*8  AR(K, N), Al (K, N)

REAL* 8 E(MAXNE), EVR(K, MAXNE), EVI (K, MAXNE)
INTEGER  NEV(3), M MAXNE, 2)

REAL*S8 VW NWW

INTEGER | WNW

| VEC=1

WRITE (*,*)"' Number of data points =',N

WRITE (*,*)' Paranmeter k = ,K

WRI TE (*,*)"' Eigenvalue calculation tolerance ="', ETCL

WRITE (*,*)"' Cduster tolerance =, CITCOL
WRITE (*,*)" First eigenvalue to be found is ', NF
WRITE (*,*)' Last eigenvalue to be found is ', NL

up real and inmaginary parts of matrix in AR and Al
DO 100 J=1,N
DO 98 I=1,N
AR(1,J) = DBLE(I+J)/DBLE(N)
IF (1.EQJ) THEN

Al(1,J) = 0.0D0
AR(1,J) = DBLE(J)
ELSE
Al (1,J) = DBLE(I*J)/DBLE(N*N)
ENDI F
CONTI NUE
CONTI NUE
DO 99 J=1, N
DO 99 |=1, N

IF (1.GT.J) Al(1,J) =-A(1,J)
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99  CONTI NUE
C Call conpl ex eigensol ver

CALL DVHEVP( AR, Al, K, N, NF, NL, | VEC, ETOL, CTOL, NEV,
* E, MAXNE, M EVR, EVI , VW | W | CON)

V\RI TE (*'*)' EIE R R R S I A R R I R R R I I I I I R R I I R O I
WRITE (*,*)" VHEVP OUTPUT'
| F(1 CON. NE. 0) THEN
WRITE (*,*)"' Error paraneter icon = ', CQON,
* " VHEVP fail ed
GOTO 5000
ENDI F

WRITE (*,*)' Number of Hermitian eigenval ues'
WRI TE (*,*) NEV(3)
WRI TE (*,*)' Eigenvaluse of conplex Hermitian matrix’
WRITE (*,*)(E(l),1=1, NEV(3))
5000 STOP
END

(4) Method
Then x n Hermitian matrix A = AR + iAl must satisfy AR = AR" and Al = -Al"

The Householder method is used to reduce the Hermitian matrix to a Hermitian
tridiagonal matrix. Then, the diagonal unitary transformation is applied to further reduce
the matrix to areal tridiagonal matrix. For details of the Householder calculations, see
[44] in Appendix B, “References,” or see“TRIDH" in Fujitsu SSL 11 User’s Guide.

The eigenvalues and eigenvectors of the tridiagonal matrix are calculated using
techniques of multisectioning and inverse iteration (see “VTDEV” and [32] in Appendix
B, “References”’).

In the final step, the elgenvectors of the Hermitian matrix are constructed from the
eigenvectors of the tridiagonal matrix.
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B71-11-0101 VLAND, DVLAND

Eigenvalues and eigenvectors of areal symmetric sparse matrix (Lanczos method,
diagonal storage format)

CALL VLAND (A, K, NDIAG, N, NOFST, IVEC, IX, EPS, NMIN, NMAX,
NLMIN, NLMAX, KR, MAXC, E, INDX, NCMIN, NCMAX, EV,
WV, IW, ICON)

(1) Function

This routine computes afew of the largest and/or smallest eigenvalues and corresponding
eigenvectorsin alarge-scale real symmetric sparse matrix A using the Lanczos method.

(2) Parameters

A Input. Non-zero elements of the real symmetric sparse matrix.

Uses the diagonal storage format for general sparse matrices to store diagonals
of A containing non-zero elements.

Two-dimensional array A (1:N, 1:NDIAG)

For the diagonal storage format, see Part |, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices,” b., “Diagonal Storage Format
for General Sparse Matrices.”

| T Input. Size of thefirst dimension of array A (= N)

NDIAG....... Input. The number of diagonals of coefficient matrix A including non-zero
elements.

N P Input. Order n of matrix A

NOFST....... Input. Stores the offset from the main diagonal of the corresponding non-zero
diagonal stored in array A. Superdiagonals have positive offsets. Subdiagonals
have negative offsets.

IVEC.......... Input. Control information indicating whether an initial vector is specified in
EV (1:N,1).

IVEC=1 The vector stored in EV (1:N,1) isused as the initial vector.
IVEC#£1 Theinitial vector is generated randomly.
(Seeitem (3), “Commentson use,” b., 1).)

[, G Input. Seed value used to generate a random number sequence when an initial
vector is generated randomly for IVEC # 1. Aninteger value from 1 to 100,000.
(Seeitem (3), “Commentson use,” b., 1).)

EPS............. Input. Tolerance used to decide whether the computed eigenpair (4;, V)) isto
be accepted. If EPSislessthan or equal to the default value 0, 10° (10°° for
single precision) then it is set to the default value for double precision.
(Seeitem (3), “Commentson use,” b., 3).)

NMIN.......... Input. The number of smallest eigenvalues and corresponding el genvectorsto
be computed (= 0). Smaller number. May be 0if NMAX = 1.

NMAX........ Input. The number of largest eigenvalues and corresponding eigenvectors to be
computed (= 0). Smaller number. May be O if NMIN = 1.

NLMIN....... Input. The number of eigenvaluesto be used in the search for the NMIN

smallest eigenvalues. (= NMIN)
2 x NMIN in many cases.
(Seeitem (3), “Comments on use, “b., 5).)
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NLMAX...... Input. The number of eigenvaluesto be used in the search for the NMAX
largest eigenval ues.
(= NMAX)
2 x NMAX in many cases.
(Seeitem (3), “Comments on usg, “b., 5).)

KRuoiiieeee Input. The maximum on the dimension of the Krylov subspace generated in the
Lanczos method. (= NLMIN + NLMAX) NLMIN + NLMAX in many cases.
(Seeitem (3), “Comments on use, “b., 4).)

MAXC........ Input. The maximum number of eigenvaluesin acluster. For example, 10.
(Seeitem (3), “Comments on use, “b., 2).)
E e Output. One-dimensional array of E (NEVL).

The largest and smallest eigenvalues are stored in ascending order using the
indirect index list INDX.

NEVL = NLMIN + NLMAX.

The smallest eigenvalues are stored in E (INDX (1:NCMIN)); the largest ones
inE (INDX (NEV - NCMAX:NEV). NEV =NMIN + NMAX.

INDX.......... Output. One-dimensional array INDX (NEV). Storesindirect indices of arrays
Eand EV.
The eigenvector corresponding to eigenvalue E (INDX (1)) isstored in EV (1:N,
INDX(1)).
=1, ... , NEV, with NEV = NMIN + NMAX.

NCMIN....... Output. The number of smallest eigenvalues and corresponding eigenvectors
which have been computed.

NCMAX..... Output. The number of largest eigenvalues and corresponding eigenvectors
which have been computed.

EV.ins Input. When IVEC =1 aninitial vector isstored in EV (1:N, 1) in EV.
Output. Computed eigenvectors are stored. Eigenvectors can be referred using
theindirect index list INDX as eigenvalues.
Two-dimensional array EV (K, NEVL), NEVL = NLMIN + NLMAX.

WV Work area. One-dimensional array of the size (MAXC + MNL) x (KR +2) +
MD x (KR+1) +7xK + 14 x (KR + 1).
Here, MNL = MAX (NLMIN, NLMAX), MD = NLMIN + NLMAX.

Wi Work area. One-dimensional array of thesize 11 x (MAXC + MNL) + MD +
128.
Here, MNL = MAX (NLMIN, NLMAX), MD = NLMIN + NLMAX.
ICON........... Output. Condition code

See Table VLAND-1, “Condition codes.”
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Table VLAND-1 Condition codes

Code Description Processing
0 No error -
20000 The total number of eigenvaluesin a Processing is stopped.
cluster exceeded MAXC.
Eigenvectors cannot be computed.
30000 N<1, N>K, NDIAG<1, Processing is stopped.
IX<1, IX>100000,
NLMIN<NMIN,
NLMAX<NMAX,
NMIN<O, NMAX<0,
NMIN=NMAX=0
30004 KR<NLMIN+NLMAX
32001 [NOFST (1)[>N-1
39001 Theinitial vector is 0 or near 0.
39006 The input matrix is not symmetric.

(3) Commentson use

a. Subprograms used

SSLII: UZBBM, UZGSD, UZGUD, UZGBD, UZISE, UZLCD, UZLPD, UZMLS,
UZSRZ, UZSTE, UZS3D, UZTDC, UZTDE, USMN1, USSPS, UIBBS, UIBFC,

U

IBFE, UIBSL, UITBS, UITFC, UITFE, UITSL, AMACH, URIPA, URMVD,

URPER, URPRE, URPFP, URPIP, UZRDM, USSCP, URSTE, USVAD, USVCN,
USVCP, USVSC, USVSU, USVUP, USVN1, USVN2, USVNM, MGSSL

Comments

1)

2)

3)

The Lanczos method is not a deterministic procedure, and henceis not as robust
as, for example, the method based on the tridiagonalization by Househol der
reduction.

The results obtained using the Lanczos method depends on choice of initial
vector. If theinitial vector contains large components in the directions of the
requested eigenvectors, then good approximations to the requested eigenvalues
and eigenvectors will be computed. If these components are small or absent then
the desired eigenpairs may not be obtained; however, the returned value are good
approximations to some eigenpairs of the matrix A.

In most cases, agood initial vector will not be known a priori and in these
instances the initial vector is generated randomly.

A cluster isa set of very close eigenvalues for which the distance (relative to
eigenval ue magnitude) between adjacent eigenvalues of order machine epsilon.

When the eigen pair (A, , V) satisfies |AV, = AV, | < neA; |, itis accepted asan
eigenvalue and eigenvector of matrix A. Otherwise, this pair is rejected.
Here, ¢ = EPS, n = KR, and KR indicate the dimension of the Krylov subspace.

The dependence on the value of EPS israther mild. However, if EPSistoo large,
the computed eigenvalues and eigenvectors may not have high accuracy.
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4) Making KR larger enables the user to obtain better approximate eigenvalues and
eigenvectors; however, higher memory and computational cost are entailed, KR
should therefore be chosen as small as possible. In some cases, it isimpossible
to choose KR smaller than N (for example, the one-dimensional discrete
Laplacian). KR should exceed N. When KR isequal to N, this routines works
correctly but may be unacceptably slow.

The quality of the computed eigenvalues and eigenvectors depends considerably
on the dimension KR of the Krylov sub space and the initial vector.

5) Inthe Lanczos method, - spurious eigenvalues and eigenvectors - not belonging
to the original matrix A may be obtained. These values are rejected. The
number of eigenvalues and eigenvectors used in the search, must therefore be
increased. These values should be determined carefully.

In most cases, NLMIN = NMIN, NLMAX = NMAX are insufficient NLMIN
and NLMAX values.

NMLIN =2 x NMIN, NLMAX =2 x NMAX are generally suffice.
c. Exampleof use

In this example, we find the three smallest and largest eigenval ues and corresponding
eigenvectors for the matrix A resulting from the finite difference approximation of
the following elliptic operator L.

Lu=-Au+alu+u

With zero boundary conditions on a cube where a = (ay, a,, as) with a;, a, and a;
constants.

(The matrix A is generated with init_mat_diag and stored using the diagonal storage
format.)

C ** EXAMPLE PROGRAM * *
| MPLI CI T REAL*8(A-H, O 2)
| NTEGER REP
PARAVETER (REP = 2)
PARAVETER (NX = 20, NY = 20, NZ = 20)
PARAVETER (K = NX*NY*NZ, N = K)
PARAVETER (NMAX = 3, NM N = 3)
PARAVETER (| VEC=0, | X=123)
PARAVETER (EPSL = 1D-6)
PARAVMETER (NLM N = 2*NM N, NLMAX = 2* NVAX)
PARAVETER (MD = NLM N+NLMAX, NEVL=ND)
PARAVETER (ML = NLM N) I ML = MAX(NLM N, NLMAX)
PARAVETER (NEV = NM N+NMAX)
PARAVETER (KR = ( NX* NY*NZ) / REP)
PARAVETER (NDI AG = 7)
PARAVETER ( MAXC = 10)
PARAVETER (NW/ = ( MAXC+ML) * ( KR+2) +MD* ( KR+1) +
& 7* K+14* (KR+1))
PARAVETER (NI W = 11*( MAXC+M\L) +MD+128)

REAL*8 A(K, NDI AG) , EV(K, NEVL) , E( NEVL) , VW NWW)
| NTEGER NOFST(NDI AG) , | NDX(NEV) , | W NI Wy

C Initialize matrix A
CALL MAT_DI AG(0DO, 0D0, 0DO, 0D0, 2D0, - 1D0, A, NOFST,
& NX, NY, NZ, NDI AG, K)
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EPS = EPS1

CALL DVLAND( A, K, NDI AG, N, NOFST, | VEC, | X, EPS, NM N,

& NVAX, NLM N, NLMAX, KR, MAXC, E, | NDX, NCM N,
& NCMAX, EV, VW | W | CON)
| F (1 CON.LT. 20000) THEN
PRI NT*,' Real eigenvalues (M N MAX)'
VRI TE (*,901) (E(INDX(1)),1=1, NCM N)
VRI TE (*,901) (E(INDX(1)), ! =NEV- NCMAX+1, NEV)
ENDI F
901 FORMAT(D23. 16)
STOP
END
(4) Method

For the Lanczos method, see [14] and the bibliography therein, also [8]. The algorithm
used for this routine generates a tridiagonal matrix T of size less than (or equal) to that of
the matrix A. Next the eigenvalues and eigenvectors of this tridiagonal matrix are
computed using a multisection Sturm count procedure and inverse iteration, respectively.
(See VTDEV.) Finally the eigenvectors of the matrix A are recovered from those of T
using the Krylov subspace basic vectors generated by the Lanczos process.
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A53-11-0301 VLBX, DVLBX

System of linear equations with a banded real matrix (Gaussian elimination)

CALL VLBX (A, N, NH1, NH2, B, EPSZ, ISW, IS, IP, VW, ICON)

(1) Function
Thisroutine solvesreal coefficient linear equations
Ax=Db (1.2)

using the Gaussian elimination method, where A isan n x n banded matrix with the lower
bandwidth h; and upper bandwidth h,.

b isan n-dimensional real constant vector. x isan n-dimensional solution vector.
n>h; =0, n> h, = 0 must be obtained.
(2) Parameters

A, Input. One-dimensional array of size (2 x hy + h, + 1) x n that stores the banded
coefficient matrix A.
For the storage method for matrix A, see Figure VLBX-1, “ Storage method for
banded matrix in array A.”
Output. Storesthe LU decomposed L and U. The storage method is the same
as the input storage method.
For the storage method for matrices L and U, see Figure VLBX-2, “ Storage
method for matricesL and U inarray A.”

N P Input. Order of matrix A.
NH1............ Input. Lower bandwidth h; of matrix A.
NH2............ Input. Upper bandwidth h, of matrix A.
B Input. Constant vector b.

Output. Solution vector x.
One-dimensional array of sizen.

EPSZ........... Input. Value of pivot judgment of relative zero (= 0.0). When EPSZ = 0.0, a
standard value is selected.
(Seeitem (3), “Commentson use,” b., 1).)

ISW............ Input. Control information.
When solving k (k = 1) equation sets with the same coefficient matrix, set ISW
asfollows.
If ISW =1, first-set equations are solved.
If ISW = 2, second-set and subsequent equations are solved.
All parameters other than B whose value is changed to the value of a new
constant vector b, should be used unchanged.
(Seeitem (3), “Commentson use,” b., 2).)

IS Output. Information used to look for the determinant of matrix A.
(Seeitem (3), “Commentson use,” b., 3).)
P Output. Transposition vector that shows the history of the exchange of rows

performed through partia pivoting. One-dimensional array of sizen.

VW, Work area. One-dimensional array of sizen.
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ICON.......... Output. Condition code.
See Table VLBX-1, “Condition codes.”

* all a1 ho+1 0
> x 8 @y, A aghz+3 0
> an+11 ... An1+1 h1+l oo ahi+1h1+h2+1 O
> an-h2n-h2-ht .. D @ph2nh2 anh2n *
> annhi - ann | * *

D00-0110

* (asterisk): Undefined value

Figure VLBX-1 Storage method for banded matrix in array A

Thei-th row vector of the coefficient matrix A is stored consecutively in A ((2x h; + h, + 1)
x(i-1)+ 1 (2xhy+hy,+1)xi). Diagonal elementsa; arestoredin A ((2x hy + hy + 1) x
(i-1) +hy +1). Outer coefficient matrix elements of the banded part are set to zero.
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< h —> 1 < h2 —> i< h —>
* Cup e U1 hi+h2+1
> * 21 uz2 e : U2 hi+h2+2
> * la1 ls2 fusz e | U3 hi+h2+3
N, . : .
77 Ihear . Un1+1h1+1 oo | U141 ohi+ho+ 1
: ‘ |
> Inh2n-h2-hi. CUnrenhz e Un-h2n %
> Innm Unn * *
D00-0120

* (asterisk): Undefined value

Figure VLBX-2 Storage method for matricesL and U inarray A

Thei-th row vector without diagonal elements of matrix L isstoredin A ((2x h, +
hy+1)x(i-1)+ 1 (2xhy+hy+ 1) % (i -1)+h,;). Thei-th row vector of matrix
U is stored consecutively from the diagonal elementsin A ((2x hy +hy + 1) x (i -

D+h+1 (2xhg+hy+ 1) xi).
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TableVLBX-1 Condition codes

Code | Description Processing

0 No error

20000 | All the elements of arow of matrix A are zero, or pivotis | Processing is stopped.
relative zero. Strong possibility that matrix A issingular.

30000 | N<NH1,N<NH2, NH1<0,NH2<0or EPSZ <0.0. Processing is stopped.

(3) Commentson use

a. Subprograms used
SSL 1I: AMACH, VBLU, VBLUX, MGSSL

Comments

OO0

1)

2)

3)

4)

In this subroutine, the case of the pivot value being less than EPSZ is considered
relative zero, and processing is stopped with ICON = 20,000.

The standard value of EPSZ is 16 x u where u is the round off unit.

When severa linear equations with the same coefficient matrix are solved
consecutively, solve those equations with ISW = 2 on subsequent calls after the
initial call. Then, the computation time diminishes as the LU decomposition
process of the coefficient matrix A isomitted. In this case, the contents in matrix
A are guaranteed as the result of initial call with ISW=L1.

Elements of matrix U are stored in array A, as shown in Figure VBLU-2.
Therefore, the determinant is obtained by multiplying the IS value by n diagonal
elements, that is, the multiplicationof A ((2xh; +h,+ 1) x (i-1) +hy + 1), i =
1,..,n

In order to save space in the data storage area, this subroutine stores banded
matrices by taking advantage of their characteristics. However, depending on
bandwidth size, a data storage area that is larger than VALU may be required. In
such cases, space in the data storage area can be saved by using VALU.

Characteristics of this subroutine can be exploited whenn > 2 x h; + h, + 1.

Example of use

In this example, alinear equation is solved, which takes the unsymmetric banded
matrix with bandwidth h; = h, = 160, n = 160 x 160.

** EXAMPLE* *

I MPLICI T REAL*8 (A-H, O 2)

PARAVETER( NH=80)

PARAVETER( NHL=NH)

PARAVETER( NH2=NH)

PARAVETER( N=NH* NH)

PARAVETER( ALPHA=0. 5/ ( NHL+1) , BETA=- ALPHA)
DI MENSI ON' A( ( 2* NHL+NH2+1) * 2* N) , B(N)

DI MENSI ON C( 2% NHL+NH2+1, N) , | P(N) , VW N)
EQUI VALENCE( A, C)

Zero clear

DO 10 | =1, N*( 3* NH+1)
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OO0

OO0

10

15

20

A(1)=0.0
CONTI NUE

DO 15 1=1, N
B(1)=0.0
I P(1)=0
CONTI NUE

Coefficient Matrix is built

DO 20 I=1, N
C(NHL+1,1)=4.0
B(1)=B(1)+4.0

| F(1. GT. NH) THEN
C(1,1)=-1. 0+ALPHA
B(1)=B(1)-1. 0+ALPHA
ENDI F

| F(1 +NH. LE. N) THEN

C( 1+NHL+NH2, | ) =- 1. O+BETA
B(1)=B(1)-1.0+BETA

ENDI F

I F(1. GT. 1. AND. MOD( | - 1, NH) . NE. 0) THEN
C(NHL, 1) =- 1. 0+ALPHA

B(1)=B(1)-1. 0+ALPHA

ENDI F

| F(1+1. LE. N. AND. MOD( | , NH) . NE. 0) THEN
C(NHL+2, 1) =- 1. 0+BETA
B(1)=B(1)-1.0+BETA

ENDI F

CONTI NUE
Sol ve Banded |inear equation
EPSZ=0. 0DO

| CON=0
| SW1

CALL DVLBX(A, N, NHL, NH2, B, EPSZ, | SW I S, | P, VW | CON)

PRI NT*, ' 1 CON= ", | CON

PRINT*, " B(1)= ', B(1)
PRINT*, " B(N)= ', B(N)
STOP
END
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(4) Method
After LU decomposition of the outer product type (see [14]) is performed, the equation
Ax=b
is solved through forward-substitution and back-substitution.
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A22-61-0402 VLDIV, DVLDIV

Theinverse of a positive-definite symmetric matrix decomposed into the factors L,D
and L’

CALL VLDIV (FA, N, VW, ICON)

(1) Function

Theinverse matrix A™ of an n x n positive-definite symmetric matrix A given in
decomposed form A = LDL" is computed.

At=(L")'DL? (1.2)

L and D are, respectively, an n x n unit lower triangular and a diagonal matrices.

(2) Parameters

FA oo, Input. MatricesL and D™
For the storage method for matrices L and D, see Fig. VSLDL-1 in “Fujitsu
SSL 11 Extended Capabilities User’s Guide”.
Output. Inverse A, Lower triangular part of A stored by columns,
For the storage method for a symmetric matrix, see Fig. VSLDL-1 in “Fujitsu
SSL 11 Extended Capabilities User’s Guide”.
One-dimensional array of size n(n+1)/2.

N P Input. Order n of the matrices L and D.
VW, Work Area. One-dimensional array of sizen.
ICON........... Output. Condition code.

See Table VLDIV-1, “Condition codes.”
Table LDIV-1 Condition codes

Code | Meaning Processing
0 No error -

10000 | Matrix was not a positive-definite. Continued
30000 | N<1 Bypassed

(1) Commentson use
a. Subprograms used
SSL ... MGSSL
b. Comments

1) Prior to caling this subroutine, LDL"-decomposed matrix must be obtained by
subroutine VSLDL and must be input as the parameter FA to be used. (Refer to
the example). In thisroutine, the diagonal elements of the array D must be given
asD™. D™ isoutput by the subroutine VSLDL.

2) The subroutine VLSX should be used for solving a system of linear equations.
Solving a system of linear equations by first obtaining the inverse matrix should
be avoided since more steps of calculation are required. This subroutine should
be used only when the inverse matrix isinevitable.
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c. Exampleof use

Theinverse of a positive symmetric matrix is obtained. n = 10.

C  **EXAMPLE**
I MPLICI T REAL*8 (A-H, O 2)
DI MENSI ON A( 55) , VW( 10)
DI MENSI ON VWW2( 20)
| NTEGER | VW( 10)
N=10
EPS=0. 0D0
L=1
DO J=1, N
A1) =N*(N#1) / 2- J*(J- 1)/ 2+10. 0DO
L=L+1
DO | =J+1, N
A(l) =N+1-1
L=L+1
ENDDO
ENDDO
WRI TE(*, *) ' | NPUT MATRI X'
DO I =1, N
WRI TE(*, 1000) (A(((2*N+1-J)*J)/2-N+l),Jd=1,1)
ENDDO
CALL DVSLDL(A, N, EPS, W2, | VW | CON)
| F(1 CON. GE. 20000) STOP
CALL DVLDI V(A N, VW | CON)

WRI TE(*,*) 'DVLDIV 1 CON = ', | CON
WRI TE(*, *) ' OUTPUT MATRI X'
DO 1=1, N
VR TE(*, 1000) (A(((2*N+1-J)*J)/2-N+l), I=1,1)
ENDDO
1000 FORMAT( X, 10E11. 3)
END
(4) Method

For further information on the algorithm used consult the entry for LDIV in the Fujitsu
S |1 User's Guide, and [28]. Note that the storage format used in LDIV isdifferent from
that used in this routine, but the underlying algorithm is the same.
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A53-31-0301 VLSBX, DVLSBX

System of linear equations with a symmetric positive definite banded matrix
(modified Cholesky decomposition)

CALL VLSBX (A, N, NH, B, EPSZ, ISW, ICON)

(1) Function
Thisroutine solvesreal coefficient linear equations
Ax=b (1.1

using the modified Cholesky method, where A isan n x n symmetric positive definite
banded matrix with upper and lower bandwidths h. b isan n-dimensional real constant
vector. X isan n-dimensional solution vector.

n > h = 0 must be obtained.

In order to exploit performance on vector computers, this subroutine uses the storage
method in the order of column vectors.

(2) Parameters

A Input. One-dimensional array of size (h + 1) x n.
Stores the diagonal elements of the coefficient matrix A and the lower
triangular part of the banded matrix.
For storage method for matrix A, see Figure VLSBX-1, “ Storage method for
matrix Ainarray A.”
Output. Stores LDLT decomposed D and L.
For the storage method for matrices L and D, see Figure VLSBX-2, “ Storage
method for matricesL and D in array A.”

[N P Input. Order n of matrix A.
NH....ccoeneee Input. Lower bandwidth h.
S T Input. Constant vector b.

Output. Solution vector X.
One-dimensional array of sizen.

EPSZ........... Input. Value of pivot judgment of relative zero (= 0.0). If EPSZ =0.0, a
standard value is selected.
(Seeitem (3), “Commentson use,” b., 1).)

ISW............ Input. Control information.
When solving k (= 1) equation sets with the same coefficient matrix, set ISW as
follows.
If ISW =1, first-set equations are solved.
If ISW = 2, second-set and subsequent equations are solved.
All parameters other than B whose value is changed to the value of new
constant vector b, should be used unchanged.
(Seeitem (3), “Commentson use,” b., 2).)

ICON.......... Output. Condition code.
See Table VLSBX-1, “Condition codes.”
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a azo an-hn-h an-1n-1 ann
a1 az an-h+1N-h ann-1 *
ag1 as2 *
an+11 Ap+22 ann-h * *
D00-0130
* (asterisk): Undefined value
Figure VLSBX-1 Storage method for matrix Ainarray A
Thei-th row vector of the lower banded matrix A is stored according to
A(h+D)x(@-)+j-i+1)=a;
wherej=i,.., i+h, i=1,..,n
dll d22 dn-h n-h dn-l n-1 dn n
I21 I32 [ n-h+1N-h Inn-1 *
l31 | 42 *
Ihe11 Ihe22 I'nn-h * *

* (asterisk): Undefined value

Figure VLSBX-2 Storage method for matricesL and D in array A

diisstoredin A ((h+21) x(i-1)+1).
lijisstored inA ((h+ 1) x(i-1)+j-i+1)

wherej=i+1,..,i+h i=1..,n

D00-0140
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TableVLSBX-1 Condition codes

Code | Description Processing

0 No error

10000 | Pivotisnegative. Matrix A isnot positive definite. Processing continues.

20000 | Pivotisrelative zero. Strong possibility that matrix A is Processing is stopped.
singular.

30000 [ NH<O,NH =N, or EPSZ<0.0. ISW #1, 2. Processing is stopped.

(3) Commentson use

a. Subprograms used
SSL 1I: AMACH, UBLTS, UBUTS, VBLDL, VBLDX, MGSSL

Comments

1)

2)

3)

4)

In this subroutine, the case of the pivot value being less than EPSZ is considered
relative zero and processing is stopped with ICON = 20,000.

The standard value of EPSZ is 16 x u where u is the round off unit.

When severa linear equations with the same coefficient matrix are solved
consecutively, solve those egquations with ISW = 2 on the subsequent calls after
theinitial call. Then, the computation time diminishes asthe LDL"
decomposition process of the coefficient matrix A is omitted.

If the pivot becomes negative during the decomposition process, the coefficient
matrix is not positive definite. In this subroutine, processing continues, but
ICON is set as 10,000.

Elements of matrix L are stored in array A, as shown in Figure VLSBX-2.
Therefore, the determinant is obtained by multiplying the n diagonal elements,
that is, the multiplicationof A ((h+1) x (i-1) +1),i=1,...,n.

c. Example of use

OO0

In this example, alinear equation of symmetric positive definite matrix with
bandwidth 256 is solved.

10

15

* % EXAVPLE* *
| MPLI CI T REAL*8 (A-H, O 2)

PARAVETER( NH=128)

PARAMVETER( N=128* 128)

DI MENSI ON A( (NH+1) *N) , B(N), C( NH+1, N)
EQUI VALENCE( A, C)

Zero cl ear

DO 10 | =1, N*( NH+1)
A(1)=0.0
CONTI NUE

DO 15 | =1, N
B(1)=0.0
CONTI NUE
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C Coefficient Matrix is built
C b = Aty , where y=(1,1,....,1)
C
DO 20 I=1,N
C(1,1)=4.0
B(1)=B(1)+4.0
| F(1+NH. LE. N) THEN
C(NH+1,1)=-1.0
B(I +NH) =B(l +NH) - 1. 0
B(1)=B(1)-1.0
ENDI F
I F(1+1. LE. N. AND. MOD( |, NH) . NE. 0) THEN
c(2,1)=-1.0
B(I+1)=B(1+1)-1.0
B(1)=B(1)-1.0
ENDI F
20 CONTI NUE
C
C Solve Symmetric Positive Definite |inear equation
C
EPSZ=0. 0DO
| SW1
CALL DVLSBX( A, N, NH, B, EPSZ, | SW | CON)
PRI NT*, ' | CON=", | CON
| F(1 CON. NE. 0) STOP
C
PRI NT*, ' B(1)= "', B(1)
PRI NT*, " B(N)= ', B(N)
STOP
END
(4) Method

After LDL" decomposition of the outer product type (see[31]) is performed, the equation
is solved through forward-substitution and back-substitution.
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A53-41-0101 VLTQR, DVLTQR

System of linear equations with areal tridiagonal matrix (QR factorization)

CALL VLTQR (SU, D, SL, N, B, VW, ICON)

(1) Function

This routine solves a system of linear equations with areal tridiagonal matrix using QR
factorization.

Tx=b

(1.2)

Tisan x nnon-singular real tridiagonal matrix. bisan-dimensional real constant vector.
Xisan-dimensional solution vector. n must be greater than or equal to 1. Suppose
elements of matrix T are t;;, diagonal elementsare d; = t; ;; lower sub-diagonal elements|;
=1, i.1; upper sub-diagonal elementsu; =t; .. However, I; = 0 and U, = 0 must hold.

(2) Parameters

inSL (2:N). SL (1) =0.

Output. Solution vector x.

....... Output. Condition code.
See Table VLTQR-1, “Condition codes.”

TableVLTQR-1 Condition codes

Input. Order n of tridiagonal matrix T.

Input. Constant vector b.

Work area. One-dimensional array of size 7 x N.

Input. Stores an upper sub-diagonal matrix u; in a one-dimensional array of SU
(N)in SU (1:N-1). SU (N) = 0.

Input. Stores diagonal element d; in a one-dimensional array of SU (N).

Input. Stores lower sub-diagonal matrix |; in aone-dimensional array of SL (N)

Code | Meaning Processing

0 No error -

10000 | The matrix isnear “singular.”

20000 | Thematrix isnear “singular.” Processing is stopped.
30000 | N<1

(3) Commentson use

a

Subprograms used

SSL 11: UQBBS, UQBFC, UQBFE, UQBSL, UQTBS, UQTFC, UQTFE, UQTSL,

AMACH, MGSSL
Comments

None.
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c. Exampleof use
Solve alinear equation system with the following tridiagonal matrix:

0 1
-1 0 1
-1 0 1
T =
-1 0
-1 0

D01-0010

NOTE: nmust be even, otherwise T issingular.

Thismatrix is not diagonally dominant. The example below determines a constant
vector in the right-hand side so that the following value is obtained as the solution. It
then tests the accuracy of the solution.

x=@{(-1/ni=1..,n

This routine returns ICON = 20000 when the matrix is singular; therefore, the
solution is not obtained. When the matrix is near “singular,” this routine returns
ICON = 10000, and the correct solution is obtained.

C ** EXAMPLE PROGRAM **
| MPLI CI T REAL*8 (A-H, O 2)
PARAMVETER( MAXN=300000)
REAL*8 SU( MAXN) , D( MAXN) , SL( MAXN) , B( MAXN) , X( MAXN)
REAL*8 \W\( 7* MAXN)
REAL*8 ERR
| NTEGER |, | CON

CData initialization
N = 256*1024
DO 9000 I=1, N
SU(l)=1
D(1)=0
SL(1)=-1
X(1) = (1-1.0)/N
9000 CONTI NUE
SU(N) =0
SL(1)=0

C Calcul ate the right hand side.
B(1) =X(1)*D(1) +X(2)*SU(1)
DO 9002 1=2,N-1
B(1)=SL(I)*X(1-2)+D(1)*X(1)+SU(I)*X(1+1)
9002 CONTI NUE
B(N) =SL(N) *X(N-1) +D(N) * X(N)

C Call subroutine
CALL DVLTQR(SU, D, SL, N, B, VW I CON)
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C Calculate the relative error

ERR=0. 0DO

DO 9004 1=1,N
CONTI NUE

I F(X(1).NE. 0. AND. B(1) . NE. 0) THEN
ERR=MAX( ABS( (X(1)-B(1))/X(1)), ERR)

ELSE
ERR=MAX( ABS( X(1)-B(1)), ERR

ENDI F

9004 CONTI NUE
WRI TE(*, *)' ERROR. ', ERR

END

(4) Method

The multifrontal method is used first to reduce coefficient matrices in a system to a block
bidiagonal form. This reduced system isthen solved using a recursive wrap-around
partitioning algorithm. The partitioning of the unknowns is such that there is no
restriction on the size of the matrix in either the reduction to block-bidiagonal form, or the
recursive elimination.

This method does not suffer from memory bank conflicts.
The underlying method is Householder’s QR factorization.
For details, see[14] and [18].
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A53-11-0101 VMBV, DVMBV

Multiplication of areal band matrix and areal vector.

CALL VMBYV (A, N, NH1, NH2, X, Y, ICON)

(1) Function

This subroutine performs multiplication of an n x n band real matrix A with lower band
width h; and upper band width h, by a vector x.

y = AX

where, x and y are both an n-dimensional vectors.

Also,n>h;=0andn>h,>0.

(2) Parameters

A Input. Matrix A.
One-dimensional array of size (2xh;+hy+1) x n.
The storage method for matrix A is shown in the Figure VLBX-1 for subroutine
VLBX.
N P Input. Order n of the matrix A.
(Seeitem (3), “Commentson use,” b.)
NH1............. Input. Lower band width h;.
NH2............. Input. Upper band width h,.
) TR Input. Vector x.
One dimensional array of sizen.
Y e Output. Vectory.
One-dimensional array of size n.
ICON........... Output. Condition code.
See Table VMBV-1, “Condition codes.”
TableVMBV-1 Condition codes
Code | Meaning Processing
0 No error -
30000 | N=0, |N|<NH1, [N|< NH2, Bypassed
NH1<0orNH2<0

(3) Commentson use

a. Subprograms used
SSLII ... MGSSL

b. Commentson use

This subroutine mainly consists of the computation

y = Ax (3.1)

11-88

Fujitsu SSL Il Extended Capabilities User's Guide Il




VMBV, DVMBV

but it can be changed to another type of computation
y=y - AX
by specifying N=-N and giving an arbitrary vector y' to the parameter Y.

In practice, this method can be used to compute a residual vector of linear equations.

c. Exampleof use
This program multiplies a banded matrix A by a vector x.

C  **EXAVPLE**
IMPLICIT REAL*8 (A-H, O 2)
PARAMETER ( K=1000, KH1=100, KH2=100)
DI MENSI ON A( ( 2* KHL+KH2+1) *K) , X(K) , Y(K)

DO 10 | =1, (2* KHL+KH2+1) *K
A(1)=0.0
10  CONTI NUE
WRI TE(*, *) ' I NPUT N, NHL, NH2'
READ( *, *) N, NHL, NH2
WRI TE(*, *)' | NPUT A
DO 20 I=1, N
DO 30 J=1, NHL+NH2+1
| F((J- NHL+(1-1). GE. 1). AND.

& (J-NHL+(1-1).LE N)) THEN
WRITE(*, *) A", 1, ', J-NHL+H(T1-1), ') =
READ(*, *)  A(J+(2* NHL+NH2+1) * (1 - 1))
ENDI F
30 CONTI NUE

20  CONTI NUE
WRI TE(*, *)' I NPUT X
READ(™, *) (X(1),1=1,N)

CALL DVMBV(A, N, NHL, NH2, X, Y, | CON)
PRI NT*, ' | CON= ', | CON
PRINT*, " Y(1)= ', Y(1)
PRINT*, " Y(2)= ", Y(2)
PRINT*, " .. ."

PRINT*, " Y(N)= ', Y(N)

END

(4) Method

This routine performs the multiplicationy = (y; ) of ann x nreal band matrix A =(g;)
(A with lower bandwidth h; and upper bandwidth h, ) by avector x = ( %) given by:

n
Yi =) X, i=1.,n
i Jz:l i

However, as A is aband matrix, the actual calculation is given by:
min(i+h,,n)
y, = X, 1=1..,n
j=max(Li-ty)
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F17-12-0101 VMCF2, DVMCF2

Singlevariate, multiple and multivariate discrete complex Fourier transform (complex
array, mixed radix)

CALL VMCF2 (Z,N, M, ISN, ICON)

(1) Function

This subroutine performs singlevariate, multiple and multivariate discrete complex
Fourier transforms using complex array.

For each dimension, it is possible to specify whether the Fourier transform isto be
performed, and whether it is normal or inverse.

The size of each dimension can be an arbitrary number, but the transform is fast when the
size hasfactors 2, 3 or 5.

a  Multivariate Fourier transform

By inputting m-dimensional data {1 > jn} and performing the transform defined in
(1.2), { O ke..xm 1S Obtained.

nl-1 n2-1 nm-1

Oykokm = 2 2 2 Xjtj2.jm-
j1=0 j2=0 jm=0

m-jlklrlwhj22k2r2 wn]r;rkrrrm (1.1)
,k1=0,1,..,n1-1
,k2=0,1,..,n2-1

,km=0,1,...,nm-1
, Wy = exp(2rTi/nl)
, Whp = exp(21Ti/n2)

, Whm = exp(2rTi/nm),
where, n1, n2, ..., nmisthe size of each dimension.
Whenri = 1, the transformisnormal. Whenri = -1, the transform isinverse.
If r=(1, 1, 1) for example, the following three-dimensional transform is obtained:

nl-1 n2-1 n3-1

]lk 12k2 —13k3
Oyakoks = ; Z Z Xj1j2j3-Wnt Wy
0]

b. Multiple transform

1

For ri = 0, the summation 2?{;0 isomitted, and index ji of x in (1.1) is changed to ki.

For example, a singlevariate multiple transform has only one summation. When
performing the following transform with respect to only the second dimension of a
three-dimensional data, specify r = (0, 1, 0).

n2-1

_ —j2k2
Ayakoks = Z Xk1j2k3-Wn2
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(2) Parameters

YA Input. Complex variable {X1j2._jm}-
Output. Complex variable { a1 0. .k} -
M-dimensional complex array Z(nl, n2,..., nm).
P Input. One-dimensional array of size M. N (i) isthe size of i-th dimension,
wherei =1, ..., M.
1Y/ Input. Dimension order M of the multivariate Fourier transform.
ISN...ccoeee Input. One-dimensional array of size M.
ISN (i) shows the direction ri of the Fourier transform of each dimension.
For ISN = 1, normal transform.
For ISN = 0, no transform.
For ISN = - 1, inverse transform.
ICON.......... Output. Condition code.
See Table VMCF2-1, “Condition codes.”
Table VM CF2-1 Condition codes
Code | Description Processing
0 No error
30000 | M<0, Processing is stopped.
30002 | ISN(i)>1orISN (i) <-1
30003 | N (i) < 1 was specified.
30004 | ISN (i) were all zero.

(3) Commentson use

a

b.

Subprograms used

SSL I1: UZACM, UZCOM, UZFB2, UZFB3, UZFB4, UZFB5, UZFBS,
UZFB6, UZFBL, UZFBR, UZFBS, UZFCT, UZFF2, UZFF3, UZFF4,
UZFF5, UZUUS, UZFF6, UZFMR, UZFOC, UZUPB, UZFPF, UZFRC,
UZFRP, UZFS, UZFT, UZFT2, UZFT3, UZFT5, UZFTB, UZFTF,
UZFUB, UZFUF, UZFUS, UZFUW, UZSCL, UZTR2, UZTRN, UZUNI,
UNXRD, UFCT, MGSSL

Comments
1) Genera definition of Fourier transform

The multivariate discrete complex Fourier transform and inverse transform are
generally defined in (3.1) and (3.2).

1 nl-1 n2-1 nm-1

_ SJKL -j2k2 - jmkm

Actkzk.dom = o nmx; ;-"ijljz...jm-wnl Wy ™ Wy (3.1
. J: j = i

jm=0
,k1=0,1,...,n1-1
,k2=0,1,...,n2-1

,km=0,1, ..., nm1
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2)

ni-1n2-1 nm-1 jIk1 j2k2  —jmkm
Xjtj2.jm = 2 2 2 Opago km-Wpp W - Wy (32
ki=0 k220 km=0
,j1=0,1, .., nl-1

,j2=0,1, .., n2-1

,jm=0,1, ..., nm1
where,

why = exp(2ri/nl)

, Whp = exp(21i/n2)

, Whm = exXp(21i/nm)

The subroutine calculates {n1 n2 .. nm ay o km } OF {X1j2jm} COrresponding to

the left-hand-side terms of (3.1) and (3.2). The user must normalize the results,
if necessary.

Stack size

This subroutine exploits work areainternally as an auto allocatable array on
stack area. Therefore an abnormal termination could be occured when the stack
arearunsout. The necessary size for the auto allocatable array is shown below.

If ni can be expressed as products of powers of 2, 3, and 5, then the work area
sizeis8 x max{ni |i=1, .., Mand ISN (i) # 0.} bytefor single precision, and
twice for double precision.

If there are numbers among ni that cannot be expressed as products of powers of
2, 3, and 5, then the work areasizeis 40 x max{ni |i =1, ..., M and ISN (i) # 0.}
byte at most case for single precision, and twice for double precision.

It is recommended to specify the sufficiently large stacksize with "limit" or
"ulimit" command under consideration that the stack area could be used for
another work area of fixed size and for user's program al so.

Example of use

In this example, a singlevariate fast Fourier transform is computed.

** EXAMPLE* *
| NTEGER NMAX
PARAVETER ( NMAX=100000, NDI M=1)
COVPLEX* 16 Z( NVAX)
REAL*8 ERR Pl , THETA
I NTEGER N(NDI M, | SN(NDI M, N1, L, M NVAL(6), I N
DATA NVAL/ 16199, 16200, 16201, 16383, 16384, 16385/
Pl =4D0* ATAN( 1D0)
DO 40 I N=1, 6

NL=NVAL( | N)

N( 1) =N1

L=79

DO 10 1=1, N1

Z(1)=(0D0, 0D0)
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10  CONTI NUE
Z(L+1) =(1D0, 0D0)
I SN(1) =1
M1
CALL DVMCF2 (Z, N, M I SN, | CON)
IF (1 CON.NE.0) WRITE (6,*) 'ICON='", | CON
ERR=0D0
DO 20 K=0, Ni-1
THETA=2* Pl * L* K/ DBLE( N1)
ERR=MAX( ERR, ABS( Z( K+1) -
& DCVPLX( COS( THETA) , - SI N( THETA) ) ) )
20  CONTI NUE
WRI TE (6, 30) N1, ERR
30 FORMAT (' N=',16,' ERROR = ',D10. 3)
40 CONTI NUE
STOP
END

(4) Method

This subroutine performs either multiple transforms of complex Fourier transforms,
or multivariate complex Fourier transforms efficiently on a scalar CPU.

Multivariate transforms are computed by transforming the multiple one-dimensional
transform on each dimension in turn. The singlevariate transform is performed with
an appropriate method according to the value of ni. If the value of ni islargein
respect to the size of the cache, avariant of two-sided splitting algorithm is used for
blocking. (Refer to [17] in Appendix A, "References.”)
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F17-11-0101 VMCFT, DVMCFT

Singlevariate, multiple and multivariate discrete complex Fourier transform (real and
imaginary array seperated, mixed radix)

CALL VMCFT (XR, XI, N, M, ISN, W, IW, ICON)

(1) Function

This subroutine performs singlevariate, multiple and multivariate discrete complex
Fourier transforms.

For each dimension, it is possible to specify whether the Fourier transform isto be
performed, and whether it will be normal or inverse.

The size of any dimension can be an arbitrary number, but the transform is fast with
factors 2, 3 or 5.

a  Multivariate Fourier transform

By inputting { X1 j2.jm @nd performing the transform defined in (1.1), { Qi k2. km} 1S
obtained.
nl-1 n2-1 nm-1 . . .
_ -j1k L2k R
Opikm = 2 2 2 lejz...jm'mnlll Tl PR gk (1.1)
j1=0 j2=0 jm=0
, k1= 01,.. n; -1

,k2=0, 1,..,mn-1

kn=0,1, ..., Np-1
, G = exp(2rTi/ng)
, G2 = exp(2rTi/ny)

, Whm = exp(2rTi/ng)
Whenr; = 1, thetransformisnormal. Whenr; = -1, the transform isinverse.
For r; = 0, the summation z'j*i‘;(l) isomitted, and j; is changed to k;. wherej; isan
index of x in equation (1.1).
Ifr=(0, 1, 1),

the following equation is obtained:

n2-1 n3-1 . .
_ -j2k2, .—j3k3
Ogkaks = 2 2 Xiaj2j3-Wn Wy3
j2=0j3=0

b. Multiple transform

A multiple transform has only one summation. When performing the second-
dimension transform, the following is obtained:

n2-1 —j2k2
O kakok3 = lzzoxkljzk&wnz
] —
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(2) Parameters

Input. Real part of {Xy . jn} -
Output. Real part of { 0 ko..km} -
One-dimensional array of sizen; X n, ... X Ny,

Input. Imaginary part of {X1 2. jm}-
Output. Imaginary part of { 0 k2. km} -
One-dimensional array of sizeny X ny X ... X Ny,

Input. One-dimensional array of size M. N (I) isthe size of I-th dimension,
wherel =1, ..., M.

Input. Dimension order M of the multivariate Fourier transform.

Input. One-dimensional array of size M.

ISN (1) shows the direction r; of the Fourier transform of each dimension.
For ISN = 1, normal transform.

For ISN = 0, no transform.

For ISN = - 1, inverse transform.

Work area.
One-dimensional array of size IW.

Input. Size of the work area.

If n; can be expressed as products of powers of 2, 3, and 5, then the work area
sizeis2x MAX {n;]i=1,..,Mand ISN (i) # 0.}

If there are numbers among n; that cannot be expressed as products of powers of
2, 3, and 5, then the work areasize exceeds2 X n; X ... X Ny,

In such a case, the size of the work area can be determined by calling the
subroutine with IW = 0.

For the procedure to determine the size of the work area, seeitem “(3),
“Commentson use,” b., 2).”

Output. If the size of the work areais smaller than required, returns the
required size of the work area.

Output. Condition code.
See Table VMCFT-1, “Condition codes.”

TableVMCFT-1 Condition codes

Code | Description Processing
0 No error
30000 | M<0, Processing is stopped.

30001 | Insufficient work area

30002 | ISN(1)>1or ISN (1) <-1

30003 | N (I) < 1 was specified.

30004 | ISN (I) wereall zero.

(3) Commentson use

a. Subprograms used
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SSL I1: UACOM, UCOMR, UFT, UFTBS, UCFS, UCF16, UCFT2, UCFT3,
UCFT4, UCFT5, UCFT8, UCFMR, UCRU, UCTRF, URUNI, USCAL, UTRAN,
UTRTW, UTWID, UGCD, UNXRD, UFCT, MGSSL

Comments

1) Genera definition of Fourier transform

The multivariate discrete complex Fourier transform and inverse transform are
generally defined in (3.1) and (3.2).

2)

1 nl-1 n2-1 nm-1

— -jilkl, . —j2k2 — jmki
Opgkokokm = ==X 3 3o Y Xjgjojm@pd 0y e Gy (3.1)
NN,..Ny,  j1=0 j2=0 jm=0
kl =0,1, .., n-1
, k2 =0,1, .., n>-1
v kn=0,1, ..., ny-1

nl-1 n2-1 nm-1

_ jk1, j2k2 . —jmkm
Xitj2.jm = 2 Yo 2 Ojako Wiy Who' - Wiy (3.2
k1=0 k2=0 km=0

j]_: 0, 1, ceny nl'l
,j2= 01,.. n>-1
ym=0,1, ..., Nyl

. = exp(2ri/ny)
(e = €Xp(211/ny)

, Ghm = €XP(211/Ny)

The subroutine calculates {ny N, .. Ny Ao m + OF {Xj1j2 jm} COrresponding to

the left-hand-side terms of (3.1) and (3.2). The user must normalize the results,
if necessary.

Size of work area
Symbols used are defined as follows.

RADIX = {n: positive integer that can be expressed as the product of powers of
2, 3, and 5}

NORAD = natural number - RADIX
minrad (n) is the minimum natural number m, where n<mand m 0 RADIX.

relfac (n) is the minimum natural number g, wheren=p x g and p O RADIX, q
[ NORAD.

NP=n;xn,x..xny,

In this case, the size of the work area is determined using the following
procedure.

{111, .., M} and {ISN (1) # O}
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MD?X(SI ZE;) isthe size of the work area.
|

SZE; is determined as follows:
a) Whenn; 0 RADIX, SIZE =2 xn,
b) When refac (n)) equalsn;
SIZE; =2 x NP x minrad (n;)/n; + 4 x minrad (n;)
c) Otherwise,

SIZE; = 2 x NP x minrad (relfac (n))/relfac (n;) + max (4 x minrad (relfac
(M), 2% )

c. Exampleof use

In this example, asinglevariate fast Fourier transform is computed.

C ** EXAMPLE* *
| NTEGER NVAX, NW
PARAVETER ( NMAX=100000, NW&200000)
REAL*8 XR(NMAX) , XI ( NVAX) , W NW , PI
REAL*4 ERR
I NTEGER N(3), 1 SN(3), | WNL, L, M NVAL(6), I N
DATA NVAL/ 16199, 16200, 16201, 16383, 16384, 16385/
Pl =4D0* ATAN( 1D0)

DO 40 IN=1,6
NL=NVAL( I N)
N( 1) =NL
L=79
DO 10 I=1, N1

XR(1) =0D0
10 XI (1)=0D0
XR(L+1) =1D0
I SN( 1) =1
Me1
| VENW

CALL DVNMCFT (XR X/, N, M I SN, W | W CON)
I F (I CON.NE.0) WRITE (6,*) 'ICON=', | CON
ERR=0D0
DO 20 K=0, Ni-1

ERR=MAX( ERR, XR( K+1) - COS( 2* Pl * L* K/ DBLE(N1) ) )

20 ERR=MAX( ERR, XI (K+1) +SI N( 2* Pl * L* K/ DBLE( N1) ) )
WRI TE (6,30) N1, ERR
30 FORMAT (' N=',16,' ERROR = ', E10.3)
40 CONTI NUE
STOP
END
(4) Method

This subroutine performs either multiple transforms of singlevariate complex Fourier
transforms, or multivariate complex Fourier transforms.

A singlevariate transform is performed as follows:

A. Splitting the order of the transform into factors n = p g, where the factor of p can
be expressed as the product of powers of 2, 3, and 5, and the factor of g isanumber
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mutually primeto 2, 3, and 5. (Inthe following, the set 2, 3, and 5 isreferred to as
the radix set).

B. After implementing the basic factorization of the order into n = p q, the following
four-step algorithm is performed.

p-1 )
20 = zow'golw e j1=0,...0-1, k=0, ..., p-1 (4.1)
Jo=
_ kol _ _—
zflkoq = a)nOJIZﬁ)Jrkoq ko=0, .., p-1,j:1=0, .., 01 (4.2)
3 — 5(2 — F—
z|(<0)+jlp = ng)rkoq ko=0, .., p1j1=0,.. 01 (4.3)
& i@
Vigrp = Y Wh" Z2, . ko=0, .. p-L ki =0, .., -1 (4.4)

1=0

Step 1 and step 4 are multiple Fourier transforms of order p and q respectively. The
factor p isaproduct of powers of the radices, and step 1 is computed using a mixed
radix fast Fourier transform.

For details about this algorithm, see[17] and [19]. The mixed radix algorithm
consists of atransform of low orders, a unitary scaling operation, and a transposition.

Steps 2 and 3 are fairly simple and are performed in a straight forward way.

The factor g is mutually prime to the radix set, so step 4 is performed using a variant
of Bluestein’s agorithm. (See[40].)

Multivariate transforms are computed by transforming the previous multiple one-
dimensional transform on each dimension in turn. During the process, the datais
permuted to maintain long vector lengths and continuous data access, though the
returned result isin the correct order.
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F17-12-0201 VMRF2, DVMRF2

Singlevariate, multiple and multivariate discrete real Fourier transform (mixed radix)

CALL VMRF2 (X, N, M, ISIN, ISN, ICON)

(1) Function

This subroutine performs singlevariate, multiple and multivariate discrete real Fourier
transforms.

Whether the Fourier transform isto be performed, and its direction, can be specified for
each dimension.

For the 1-st dimension, "no transform” cannot be specified, and the size of the 1-st
dimension must be an even number. The sizes of all other dimension can be arbitrary
numbers, but the transform is fast with the sizes which can be expressed as products of
the powers of 2, 3, and 5.

Theresult of amultiple and multivariate discrete real Fourier transform has a complex
conjugate relation. For the 1-st dimension, the first n, / 2 + 1 complex elements are stored.

a Multivariate Fourier transform

1) Transform

Inputting m-dimensional data {Xj...jmp @nd performing the transform defined in (1.1)
obtains{ oo kmt-

nl-1 n2-1 nm-1 ’ ) ’
— -jiklrl , -j2k2r2 -jmkmrm
Oz km = 2 2o 2 Xjgjo.jm-Wpp Wpg ..o Gy (1.1
j1=0 j2=0 jm=0
,k1=0,1,..,n1-1
1k2:0, 1, ey n2'1

,km=0,1,...,nm-1
, Wy = exp(2rmi/nl)

, Wy = exp(2rti/n2)

y Whm = eXp(2rti /nm) ,
where, n1,n2,..., nmisthe size of each dimension.

ri =1 orri = -1 can be specified for the transform direction.

If r =(1, 1, 1) for example, the following three-dimensional Fourier transformis
obtained:

nl-1 n2-1 n3-1

_ jIKL, -j2k2, - |33
Oyakoks = ; Z ijlijS'wnl Who W3
1120 j2=0 j3=0
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2) Inversetransform
Inputting { a\4x2_«m} @nd performing the transform defined in (1.2), obtains
{Xj2..jm} -
nl-1 n2-1 nm-1
Xigj2.jm = 2 2 2 Agako km
k1=0 k2=0 km=0
,j1=0,1,...,n1-1

,j2=0,1,..,n2-1

-jikrl -j2k2r2 - jmkmrm
Wpp Wy e Wy (1.2)

,jm=0,1,...,nm-1
, Wy = exp(2rmi/nl)

, Wy = exp(2rti/n2)

y Whm = eXp(2ri /nm) ,
where, n1,n2,..., nmisthe size of each dimension.

In an inverse transform, a direction that is inverse to that specified in the transform
must be specified.

ri=-lorri=1

b. Multiple transform
ni-1
When ri = 0 is specified, the summation Iz is omitted.
ji=0
In the case of real-to-complex transform, index ji of x in (1.1) is changed to ki.
In the case of complex-to-real transform, index ki of a in (1.2) ischanged toji.

For example, singlevariate multiple transform has only one summation. When
performing the following transform with respect to only the first-dimension of a
three-dimensional data, speciry r=(1,0,0).

nl-1
_ - jik1
Oyakoks = ? Xj1k2k3-Wn1
] =

(2) Parameters
) CTR m-dimensional array X (n1+2, n2, ..., nm).
[ For ISN = 1 (transform from real to complex): ]
Input. Thereal data{xj,. jm} isstoredin X (1:nl, 1:n2, ..., 1:nm).

Output. Thereal and imaginary part of { > \m} arestoredin X (1:n1+2,
1:n2, ..., 1:nm) by turns.

k1=0,1,..,nl/2,
k2=0,1,...,n2-1,
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km=0,1,..,nm-1
[ For ISN = -1 (transform from complex to real): |

Input. Thereal and imaginary part of { o> m} arestoredin X (1:n1+2,
1:n2, ..., 1:nm) by turns.

k1=0,1,...,n1/2,
k=0,1,...,n2-1,

km=0,1,...,nm,-1
Output. Thered data{X.. jm} iSstored in X (1:nl, 1:n2, ..., 1:nm).

Input. One-dimensional array of sizeM. niisstoredinN (i) (i =1, ..., M),
where ni isthe size of the |-th dimension. The size of the 1-st dimension must
be an even number.

Input. The size of dimension m of the multivariate Fourier transform.
Input. One-dimensional array of size M.

ISIN (i) shows the direction r; of the Fourier transform of each dimension.
ISIN (1) cannot be 0.

ForISIN=1, ri=1.

For ISIN = 0, there is no transform.

ForISIN=-1,ri=-1.

Inpuit.

For ISN = 1, normal transform (real to complex).

For ISN = - 1, inverse transform (complex to real).

Output. Condition code.

See Table VMRF2-1, “ Condition codes.”

Table VM RF2-1 Condition codes

Code | Description Processing

0 No error -

30001 | N(i)sO0orM<0 Processing is stopped.

30016 | ISIN (i) <-1,1SIN (i)>1, or ISIN (1) =0

30032 [ ISN#1landISN#-1

30512 | Thesizeof first dimension is odd number.
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(3) Commentson use

a. Subprograms used

SSLII: UMRFF, UMRFB, VMCF2, UZACM, UZCOM, UZFB2, UZFB3,
UZFB4, UZFB5, UZFB8, UZFB6, UZFBL, UZFBR, UZFBS, UZFCT,
UZFF2, UZFF3, UZFF4, UZFF5, UZUUS8, UZFF6, UZFMR, UZFOC,
UZUPB, UZFPF, UZFRC, UZFRP, UZFS, UZFT, UZFT2, UZFT3,
UZFT5, UZFTB, UZFTF, UZFUB, UZFUF, UZFUS, UZFUW, UZSCL,
UZTR2, UZTRN, UZUNI, UNXRD, UFCT, MGSSL

b. Comments

1)

2)

General definition of Fourier transform
The multivariate discrete Fourier transform and inverse transform are generally
defined asin (3.1) and (3.2).
nl-1 n2-1 nm-1 . . .
a =~ x S g Wy I2K2 | dmkm (3 g
kik2...km nl n2..nm le:O J_ZZ:O J_mZ:() jlj2..jm-*n1 n2 Whm ( )
,k1=0,1,..,nl-1
,k2=0,1,..,n2-1
,km=0,1, ..., nm1
nl-1 n2-1 nm-1 . . .
_ 1K1, j2k2 . jmk
Xigj2jm = 2 Y o Y Ok k-0 Wh G (3.2
k1=0 k2=0 km=0
,j1=0,1,...,nl1-1
,j2=0,1,...,n2-1
,jm=0,1, ..., nm-1
where

Wy = exp(2ri / nl)

, Wyy = exp(27i /n2)

, Wy = eXp(271 / nm)

The subroutine calculates {n1 n2..nm oy, im} OF {Xj3j2.jmp COrresponding to the

left-hand terms of (1.1) and (1.2). For i, where ISIN (i) = 0, ni isreplaced with 1.
If necessary, the user must normalize the results.

Theresult of the multivariate discrete real Fourier transform has the following
complex conjugate relation:

Ok k2 ... km = Oni-ki n2-k2 ... nmrkm
k1=0,..,nl/2
,k2=0,..,n2-1
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,km=1, .., nm-1
In the case of ki=0, ni-ki is regarded as 0.
For h, where ISIN (h) = 0, the h-th index in the right-hand termsiis till kh.
Therest of terms can be calculated using this relation.
2) Stack size

This subroutine exploits work areainternally as an auto allocatable array on
stack area. Therefore an abnormal termination could be occured when the stack
arearunsout. The necessary size for the auto allocatable array is shown below.

If ni can be expressed as products of powers of 2, 3, and 5, then the work area
sizeis12 x max{ni |i =1, ..., M and ISN (i) # 0.} bytefor single precision, and
twice for double precision.

If there are numbers among ni that cannot be expressed as products of powers of
2, 3, and 5, then the work areasizeis 40 x max{ni |i =1, ..., M and ISN (i) # 0.}
byte at most case for single precision, and twice for double precision.

It is recommended to specify the sufficiently large stacksize with "limit" or
"ulimit" command under consideration that the stack area could be used for
another work area of fixed size and for user's program al so.

c. Exampleof use

In this example, atwo-dimensional real Fourier transform is calculated.

C ** EXAVPLE* *
| MPLI CI T REAL*8(A-H, O 2)
PARAMETER( N1=1024, N2=1024, M=2)
DI MENSI ON' X(NL1+2, N2) , N(M), | SI N(M

C
DO 100 |=1, N2
DO 100 J=1, NL
X(J, 1) =FLOAT(J) +FLOAT( N1) * (I - 1)
100 CONTI NUE
C
N( 1) =N1
N( 2) =N2
I SIN(1) =1
I SIN(2) =1
I SN= 1
C
C REAL TO COVPLEX TRANSFORM
C
CALL DVMRF2(X, N, M I SIN, I SN, | CON)
PRI NT*, ' | CON=' , | CON
C
N( 1) =N1
N( 2) =N2
I'SIN(1)=-1
I SIN(2)=-1
| SN=- 1
C
C COWPLEX TO REAL TRANSFORM
C

CALL DVMRF2( X, N, M I SI N, I SN, I CON)
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PRI NT*, ' | CON=', | CON

ERROR=0. 0D0
DO 200 | =1, N2
DO 200 J=1, N1
ERROR=MAX( ABS( X(J, 1)/ (NL*N2) -

&  (FLOAT(J)+FLOAT(N1)*(1-1))), ERROR)

200 CONTI NUE
C

PRI NT*, ' ERROR=' , ERROR
STOP
END

(4) Method

This subroutine performs either real-to-complex or complex-to-real multiple
multivariate discrete Fourier transforms efficiently on a scalar CPU.

A real Fourier transform of the first dimension can be done without redundant
calculations by exploiting inherent properties of a complex transform. For further
information on the algorithm, refer to the description of RFT routine in the Fujitsu
SSL 1l User's Guide. For the transforms of the other dimensions, the multivariate
discrete complex Fourier transform routine VMCF2 is used for complex data
straightforward.
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F17-11-0201 VMRFT, DVMRFT

Multiple and multivariate discrete real Fourier transform (mixed radices of 2, 3, and
5)

CALL VMRFT (X, N, M, ISIN, ISN, W, ICON)

(1) Function
This subroutine performs multiple and multivariate discrete real Fourier transforms.

Whether the Fourier transform isto be performed, and its direction, can be specified for
each dimension. All dimensions on which atransform is to be performed must have sizes
which can be expressed as products of the powers of 2, 3, and 5.

At least one of the first m-1 dimensions must be an even number. For the m-th dimension,
“no transform” cannot be specified.

The result of a multiple and multivariate discrete real Fourier transform has a complex
conjugate relation. For the mth dimension, thefirst n,,/ 2 + 1 elements are stored.

a Multivariate Fourier transform
1) Transform
Inputting { Xjyj2...jm} @nd performing the transform defined in (1.1) obtains {n; n,...ny,
Oz, km} -
NL N2 .. Ny Ok m =
nl-1 n2-1 nm-1

> Xjij2.jm

.whjllklrlwhjzszrZ < jmkmrm (1'1)
j1=0 j2=0 jm=0

m

,k]_:O, 1,...,n1'1
,k2:0, 1,...,n2'1

kn=0,1, ..., Np-1
, Wy =exp(2r/ny)
, Wy =eXp(271/ny)
, Wom = eXp(2ri /ny,)

ri =1 or r; = -1 can be specified for the transform direction.
ni-1

For r; = 0, the summation  isomitted, and j; is changed to k;, where j; is an index
ji=o

of xin equation (1.1).
n; in the left-hand term of equation (1.1) isreplaced with 1.
For r = (0, 1, 1), the following equation is obtai ned:

n2-1 n3-1 ! :
_ -j2k2, -j3Kk3
MMk = 2 3 Xk1j2j3-Wpy  Wpg
j2=0j3=0
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2) Inversetransform

Inputting { a\4x2_«m} @nd performing the transform defined in (1.2), obtains
{Xiyz..jm -

Xigj2.jm = 2 2 > Agako km

nl-1 n2-1 nm-1 . . .
-jikrl -j2k2r2 - jmkmrm
Wpp Wy e Wy (1.2)

k1=0 k2=0 km=0

,j]_:O, 1,...,n1'1
,j2:0, 1,...,n2'1

yim=0,1,...,ny-1
, Wy =exp(2r/ny)

, Wy =eXp(271/ny)

, W =eXp(2r3 /ny,)

In aninverse transform, a direction that is inverse to that specified in the transform
must be specified.

r=-lorr=1

ni-1
For r; = 0, the summation Iz isomitted and k; is changed to j;, where k; is an index

ji=0

of a in equation (1.2).

b. Multiple transform

A multiple transform has only one summation. With athree-dimensional transform,
the following is obtained:

N30 yok3 = ,gokazja-wng
] — |

n3-1 -j3k3r3

(2) Parameters

For ISN = 1 (transform from real to complex):
Input. Thereal data{xj,. jm} iSstoredin X (1:ny, 1iny, ..., Ling).

Output. Thereal part of {Nny Np...Nm Ayqio kit iSStored in X (1ing, Liny, ..., Ling
[2+1). Theimaginary part of {n; Ny...Nm Ao m} isstoredin X (Ling, 1iny, ...,
Ny / 2+ 2:2 % (N, / 2+1)).

ki=0,1,..,n-1,

k,=0,1, ..., -1,

kn=0,1, .., ny/2,
For ISIN (i) = 0, nj in {Nny Np...Nm Ayqio m } IS replaced with 1.

For ISN = -1 (transform from complex to real):
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Input. Thereal part of { dyqo m} isstoredin X (1:ng, 1iny, ..., Ling / 2+1).
Theimaginary part of { o5 m} isstoredin X (1:ng, 1iny, ..., N/ 2+2:2 %
(Nm/ 2+1)).

k1=0, 1,...,n-1,
k2=0, 1,...,n-1,

kn=0,1,...,ny,/2,
Output. Thered data{Xjz. jm} iSstored in X (1:ny, Liny, ..., 1iny).

One-dimensional array of sizen, x n, x ... x (2 x (N, / 2+1)), or mdimensional
array X (ng, Ny, ..., (2 % (ny,/ 2+1))).

[\ P Input. One-dimensional array of sizeM. njisstoredinN (1) (I =1, ..., M),
where n; isthe size of the I-th dimension. If ISIN(l) is nonzero, N(I) must be
able to be expressed as a product of powersof 2, 3, and 5. At least one of the
first M-1 elements of N must be an even number.

|/ P Input. The size of dimension m of the multivariate Fourier transform.
ISIN........... Input. One-dimensional array of size M.
ISIN (I) showsthe direction r; of the Fourier transform of each dimension.
ISIN (M) cannot be 0.
ForISIN=1, r;=1.
For ISIN = 0, there is no transform.
ForISIN=-1,r,=- 1.
ISN............ Input.
For ISN = 1, normal transform (real to complex).
For ISN = - 1, inverse transform (complex to real).
Wi Work area.

One-dimensional array of size 2 x max (Ng, Ny, ..., Ny) + Ny X Ny X ... X Npyg X (2
x (N, / 2+1)).

ICON........... Output. Condition code.
See Table VMRFT-1, “Condition codes.”
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TableVMRFT-1 Condition codes

Code | Description Processing
0 No error -
30001 [ N()<sO0orM <2 Processing is stopped.

30008 | For ISIN (1) # 0, N (1) isnot an integer
expressed as a product of powers of 2, 3, and 5.

30016 | ISIN (1) <-1,ISIN(I)>1, or ISIN (M) =0

30032 | ISN#1andISN#-1 Processing is stopped.

30512 | Thefirst M-1 elements of N are odd numbers.

(3) Commentson use
a. Subprograms used

SSLII: UASSM, USEPR, UJOIN, USPLT, UCTRV, UCFS, UCF16, UCFT2,
UCFT3, UCFT4, UCFT5, UCFT8, UFMRW, UCRU, UCTRF, MGSSL

b. Comments
1) Genera definition of Fourier transform

The multivariate discrete Fourier transform and inverse transform are generally
defined asin (3.1) and (3.2).

1

a =— -
Klk2...km mN,...N,,

nl-1 n2-1 nm-1

-jlkl,  —j2k2 = jmkm
XY 3w Y Xjgjajm- @t O e G (31)
j1=0 j2=0 jm=0
kl =0,1, .., n;-1
, k2 =0,1, .., n>-1
v kn=0,1, ..., Nyl
nl-1 n2-1 nm-1 . . .
— 1k1, .j2k2  jmk
Xitjzajm = 2 2 o 2 O im- @ Wpz - W' (32)
k1=0 k2=0  km=0
j]_ = 0, 1, vy N1 -1
|j2 = 0, 1, aeny n2 '1
 im=0,1, ..., Ny -1

where
Wy = exp(2ri/ny)

, Wy = eXp(271/ny)
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W = X2/,

The subroutine calculates { Ny N,..Ny, Ao )} OF {X1j2.jm} COrresponding to the

left-hand terms of (1.1) and (1.2). For i, whereISIN (i) =0, n; is replaced with 1.
If necessary, the user must normalize the resullts.

2) Theresult of the multivariate discrete real Fourier transform has the following
complex conjugate relation:

Okik2 ... km = Oni-ki n2-k2 ... nmrkm

k]_:O, vy M1 -1
y k2: 0, vy N2 -1
yknm=1, ..., nyn/2

In the case of k=0, n;-k; is regarded as 0.
For h, where ISIN (h) = 0, the h-th index in the right-hand termsiis till k;..
Therest of terms can be calculated using this relation.

c. Exampleof use

In this example, atwo-dimensional real Fourier transform is calculated.

C * % EXAVPLE* *
| MPLI CI T REAL*8(A-H, O 2)
PARAMETER( N1=1024, N2=1024, M=2)
PARAMVETER( NS=2* ( N2/ 2+1))
DI MENSI ON' X(NL, NS), N(M) , W 2* N1+N1*NS) , | SI N(M

C
DO 100 | =1, N2
DO 100 J=1, N1
X(J, 1) =FLOAT(J) +FLOAT(NL) * (I - 1)
100 CONTI NUE
C
N( 1) =N1
N( 2) =N2
I SIN(1) =1
I SIN(2) =1
I SN= 1
C
C REAL TO COMPLEX TRANSFORM
C
CALL DVMRFT(X, N, M I SI N, I SN, W | CON)
PRI NT*, ' | CON=' , | CON
C
N( 1) =N1
N( 2) =N2
ISIN(1)=-1
ISIN(2)=-1
| SNe- 1
C
C COVPLEX TO REAL TRANSFORM
C

CALL DVMRFT(X, N, M I SI'N, I SN, W I CON)
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PRI NT*, ' | CON=', | CON

ERROR=0. 0D0
DO 200 |=1, N2
DO 200 J=1, NL
ERROR=MAX( ABS( X(J, 1)/ ( NL*N2) -
&  (FLOAT(J)+FLOAT(N1)*(I-1))), ERROR)
200 CONTI NUE
C
PRI NT*, ' ERROR=' , ERROR
STOP
END
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A71-01-0101 VMVSD, DVMVSD

Multiplication of areal sparse matrix and areal vector (diagonal storage format)
CALL VMVSD (A, K, NDIAG, N, NOFST, NLB, X, Y, ICON)

(1) Function
This routine computes the product
y = AX
of an n x n sparse matrix and a vector.
Sparse matrix A is stored using the diagonal storage format.
Vector x and y are n-dimensional vectors.
(2) Parameters

A, Input. Stores non-zero elements of the coefficient matrix.
Real-type, two-dimensional array of size A (K, NDIAG). Non-zero elements of
the sparse matrix are storedin A (1 : N, NDIAG). For the diagonal storage
format, see Part |, “Overview,” Section 3.2.1.1, “ Storage method for general
sparse matrices, b., “Diagonal storage format for general sparse matrices.”

Ko Input. Adjusted dimensions (= n) of array A.

NDIAG....... Input. The number of diagonalsthat contain non-zero elements of the
coefficient matrix stored in matrix A.
The size of the second dimension of A.

N P Input. Order n of matrix A.

NOFST....... Input. One-dimensional array NOFST(NDIAG). Stores the offset from the
main diagonal corresponding to diagonals stored in A. Superdiagonals, are
expressed as positive values. Subdiagonals are expressed as negative values.

NLB............ Input. Lower bandwidth of matrix A.

) CTR Input. Vector x isstoredin X (NLB + 1: NLB + N).
One-dimensional array of sizen + nlb + nub.
nib is the lower bandwidth. nub isthe upper bandwidth.

) ST Output. Storesthe result of the multiplication of the matrix and the vector.
One-dimensional array of size n.
ICON.......... Output. Condition code.

See Table VMV SD-1, “Condition codes.”
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TableVMVSD-1 Condition codes

Code | Description Processing

0 No error

30000 | K<1,N<1,N>K,NDIAG<1, or NLB # MAX Processing is stopped.
(- NOFST (1)), or INOFST (1) |>N -1

(3) Commentson use

a

C

Subprogram used
SSLIl: MGSSL
Comments
1) Comments on using the diagonal format
The diagonal elements outside of the coefficient Matrix A must be set to zero.

Thereisno specia restriction on the order in which a diagonal vector column
should be stored in array A.

The advantage of this method liesin the fact that the matrix vector product can
be calculated without the use of indirect indices. The disadvantage is that
matrices without the diagonal structure cannot be stored efficiently with this
method.

Example of use

In this example using DVCGD, Ax is sought from matrix A, which does not store
diagonal elementsthat arel. b= (A - E) x + x. For SET, see VCGD, DVCGD, item
(3) “Commentson use,” c., “Example of use.”

* % EXAVPLE* *

| MPLI CI T REAL*8 (A-H, O 2)

PARAMETER ( N=51200, K=N+1)

PARAMETER ( NWE2, | WKS=4, N2=K+1)
PARAMETER ( NVWEK* ( NWE6) +10)

REAL*8 B(N), EPS, OVEGA, RZ, VW N\WWY , X(N)
| NTEGER NDLT( NW

REAL*8 A(K, NW

| NTEGER | VW N2, | VIKS)

C INITIALI SE A

CALL SET(A, NDLT, K, NW N)

| SHI FT=0

DO 10 J=1, NW

| SH FT=MAX( | SHI FT, ABS( NDLT(J)))
10 CONTI NUE

C COVPUTE RHS SO AX=B SO WE KNOW SOLUTI ON X (X(1)=I)

C
C

DO 30 I=1, N
30 V(I +I SHIFT) =I

B=( A- E) * X+X
CALL DVMVSD( A K, N\W N, NDLT, | SH FT, VW B, | CON)
DO 70 I=1, N
B(1)=B(1) +VW( I +I SHI FT)
70 CONTI NUE
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| TMAX=8* SQRT( N+0. 1)
EPS=1D- 10
OVEGA=0D0
| SWe1
| GUSS=0
DO 100 | PC=1, 3
| F(1 PC. EQ 3) OMEGA=0. 98
CALL DVCGD( A, K, NW N, NDLT, B, | PC, | TMAX, | SW OVEGA,
& EPS, | GUSS, X, | TER, RZ, VW | VW | CON)
| F(1 CON. NE. 0) WRI TE(6, *)' | CON=', | CON
| F(RZ. LE. EPS) WRI TE(6, 41)' CONVERGED. ACCURACY=', RZ
| F(RZ. GT. EPS) WRI TE(6, 41)' FAI LED. ACCURACY=', RZ
WRI TE(6, *) ' X
DO 60 1=1, M N(N, 16) , 4
60 WRI TE(6, 42) |, (X(M, Ml , | +3)
100 CONTI NUE
42 FORMAT(1X, |3, 4(1X, F20. 10))
41 FORMAT(A, 2X, E10. 3)
STOP
END
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A71-02-0101 VMVSE, DVMVSE

Multiplication of areal sparse matrix and areal vector (ELLPACK storage format)
CALL VMVSE (A, K, NW, N, ICOL, X, Y, ICON)

(1) Function
This routine computes the product
y = AX
of an n x n sparse matrix and a vector.

Then x n coefficient matrix is stored using the ELLPACK storage format using two
arrays.

y and x are n-dimensional vectors.
(2) Parameters

A, Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, NW).
For the ELLPACK storage format, see Part |, “Overview,” Section 3.2.1.1,
“ Storage methods for general sparse matrices.”

Ko Input. Size of adjustable dimensions (= n) of array A and ICOL.

NW...coooveee Input. Maximum number of non-zero elements in each row vector of the matrix
A stored inarray A.
The size of the second dimension of ICOL and A.

N P Input. Order n of matrix A stored in array A.

ICOL........... Input. Store column indices of the elements stored in the array A using the
ELLPACK format, indicating which column vectors the corresponding
elementsin the array A belong to.

Two-dimensional array ICOL (K, NW).

) CTR Input. Storesvector x. One-dimensional array of size n.

) SO Output. Storesthe result of the multiplication of the matrix and the vector.
One-dimensional array of sizen.

ICON.......... Output. Condition code.

See Table VMV SE-1, “Condition code.”

TableVMVSE-1 Condition codes

Code | Description Processing

0 No error

30000 | K<1,N<O,NW<1,or Processing is stopped.
N >K
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(3) Commentson use
a.  Subprogram used
SSL 1I: MGSSL
b. Comments
1) Commentson using the ELLPACK storage format

Before storing datain the ELLPACK format, it is recommended to initialize
each of the arrays A and ICOL with zero and the row number, respectively.

c. Exampleof use

In this example, when using DV CGE, Ax is sought through b = (A - E) x + x by
storing, in array A, elements other than the diagonal elements of matrix A, which are
1. For SET, see subroutine VCGE, DV CGE, (3) “Commentson use,” ¢., “Example
of use.”

C * % EXAVPLE* *
| MPLI CI T REAL*8 (A-H, O 2)
PARAMETER ( NW£2, N=51200, K=N+1)
REAL*8 B(N), X(N), EPS, OVEGA, RZ,
& ACK, NW , VW K* NW-4* N)
| NTEGER | COL(K, NW , | VA K* NWH4* N)
WRI TE(6, *) ' EXAVPLE DVCGE
C INITIALISE A | COL
CALL SET(A, |1 COL, K, NW N)
C GENERATE RHS B
DO 10 I=1, N
10 VW\(1) =I
COVPUTE RHS SO AX=B SO WE KNOW SOLUTI ON X (X(1)=1)

OO0

B = (AE*X + E*X
CALL DVMVSE(A, K, NW N, | COL, VW B, | CON)
PRI NT*, ' ERROR CODE =', | CON
DO 20 I=1, N
B(1)=B(1)+VW(I)
20 CONTI NUE

| TMAX=4000

EPS=1D- 10

| SWeL

| GUSS=0

DO 30 | PC=1, 3

| F(1 PC. EQ 3) OVEGA=0. 98

CALL DVCGE(A, K, NW N, | COL, B, | PC, | TMAX, | SW OVEGA
& L EPS, | GUSS, X, | TER, RZ, VW | VW | CON)

PRI NT*, ' ERROR CODE= ', | CON
| F(RZ. LE. EPS) WRI TE(6, 41)' CONVERGED. ACCURACY=', RZ
| F(RzZ. GT. EPS) WRI TE(6, 41)' FAI LED. ACCURACY=', RZ
WRI TE(6, *) ' X
DO 60 |=1, M N(N, 16), 4

60 WRI TE(6, 42) |, (X(M, Mel, | +3)

30 CONTI NUE

42 FORMAT(1 3, 4(F12. 4))

41 FORMAT(A, 2X, E10. 3)
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STOP
END
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A72-23-0101 VOM

RD, DVQMRD

System of linear equations with unsymmetric or indefinite sparse matrix (QMR
method, diagonal storage format)

CA

LL VQMRD (A, K, NDIAG, N, NOFST, AT, NTOFST, B, ITMAX, EPS,
IGUSS, X, ITER, VW, ICON)

1)

Function

This routine solves linear equations system with an n x n unsymmetric or indefinite
sparse coefficient matrix using the quasi-minimal residual method (QMR).

AX=b

Use two n x n coefficient matrices A and A™. They are stored in the diagonal format
method. Vectorsb and x are n-dimensional vectors.

The iterative cal culation may not be continued (break-down) because of the
characteristics of theinitial vector and coefficient matrices. Thisisbecause zerois
obtained as the intermediate result in the recursive calculation formula. In this case, use
the MGCR method that causes no break-down.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A Input. Stores non-zero elements of the coefficient matrix.

Two-dimensional array A (K, NDIAG). Stores coefficient matrix Ain A (1:N,
NDIAG) with adiagonal format.

For the diagonal storage format, see Part |, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices,” b., “Diagonal Storage Format
for General Sparse Matrices.”

| (T Input. Size of adjustable dimension of array A.

NDIAG....... Input. The number of diagonal vectorsin coefficient matrix A that contain non-
zero elements.

N P Input. Order n of matrix A.

NOFST....... Input. Stores offset from the main diagonal corresponding to diagonals stored
in A. A superdiagonals have positive values; subdiagonals have negative values.
One-dimensional array NOFST (NDIAG).

AT Input. Stores non-zero elements of A'.

Two-dimensional array AT (K, NDIAG). Stores coefficient matrix AT in AT
(1:N, NDIAG).

For the diagonal storage format, see Part |, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices,” b., “Diagonal Storage Format
for General Sparse Matrices.”

NTOFST..... Input. Stores a offset from the main diagonal corresponding to a diagonal
stored in array AT. Superdiagonals have positive values; subdiagonals have
negative values.

One-dimensional array NOFST (NDIAG).
| T Input. One-dimensional array of size n. Stores a constant vector of the right-

hand side term of alinear equation system.
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Input. The upper limit of iteration stepsin QMR method (> 0).

Input. A criterion value used for convergence criterion.

If EPSis0.0 or less, it is set to 10 in double-precision routines and 10 in
single-precision routines.

(Seeitem (3), “Commentson use,” b., 1).)

Input. Set control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=1: An approximate value of the solution vector is not specified.
IGUSS#1: The iterative computation starts from the approximate value of the
solution vector specified in array X.

Input. One-dimensional array of size n. Can specify the approximate value of a
solution vector.
Output. The solution vector is stored.

Output. The real number of iteration stepsin QMR method.

Work area. One-dimensional array of sizeK x 9+ N + NBANDL + NBANDR.
NBANDL indicates alower bandwidth; NBANDR indicates an upper
bandwidth.

Output. Condition code
See Table VQMRD-1, “Condition codes.”

TableVQMRD-1 Condition codes

Code | Meaning Processing contents

0 No error -

20000 | Break-down occurred. Processing is stopped.

20001 | The upper limit of iteration steps Processing is stopped.
was reached.

The approximate value obtained up to this
point in array X isoutput, but their
precision cannot be guaranteed.

INTOFST (1) | > N-1

30000 | N<1,K<1, K<N, NDIAG<1, Processing is stopped.
K<NDIAG,
or
ITMAX <0

32001 | |NOFST (1) | > N-1, Processing is stopped.

(3) Commentson use

a. Subprograms used

SSL 11: AMACH, URGWD, URIPA, URITI, URITT, URMVD, USSCP, URSTE,
USVCN, UXVCP, USVSC, USVSU, USVUP, USVN2, URELT, MGSSL, UQMRR,
UQMRD, UQBBM, UQITB
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b. Comments

1) Inthe QMR method, if the residual Euclidean normis equal to or less than the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of matrix
A and EPS.

2) Noteson using the diagonal format
A diagonal vector element outside coefficient matrix A must be set to zero.

Thereisno restriction in the order in which diagonal vectors are stored in array
A.

The advantage of this method lies in the fact the matrix vector multiplication can
be calculated without the use of an indirect index. The disadvantage is that
matrices without the diagonal structure cannot be stored efficiently with this
method.

c. Exampleof use

In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0, 1] x [0, 1] x [0, 1] with the
Dirichlet boundary condition (function value zero at the boundary). Thistype of
partial differential operator is described in Part I, “ Overview,” Section 3.2.2,
“Discretization of partial differential operators and storage examples for them.”

For INIT_MAT_ELL, seePart 1, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.” INIT_SOL isthe
routine that generates the solution vectors to be sought in random numbers.

C * % EXAVPLE* *
PROGRAM TEST_| TER_SOLVERS
| MPLI CI T REAL*8 (A-H, O 2)
| NTEGER MACH
PARAMETER ( MACH = 0)
PARAMETER (K = 10000)
PARAMETER (NX = 20, NY = 20, NZ = 20, N = NX*NY*NZ)
PARAMETER (NDI AG = 7, NVW = 9* K+N+400+400)
REAL*8 A(K, NDI AG) , AT(K, NDI AG), X(N), B(N), SOLEX(N)
& ,
| NTEGER NOFST(NDI AG) , NTOFST( NDI AG)

CALL | NI T_SOL(SOLEX, N, 1D0, MACH)
PRI NT*, ' EXPECTED SOLUSI ONS'
PRINT*,' X(1) = ', SOLEX(1),' X(N) = ', SOLEX(N)

PRI NT *
PRI NT *,' QW METHOD
PRI NT *,' DI AGONAL FORMAT'

VAL

VA3
VC
XL
YL
ZL
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CALL | NI T_MAT_DI AG VAL, VA2, VA3, VC, A, NOFST

& . NX; NY, NZ, XL, YL, ZL, NDI AG, N, K)
CALL | NI T_MAT_TR DI AG( VAL, VA2, VA3, V/C, AT, NTOFST
& , NX, NY, NZ, XL, YL, ZL, NDI AG N, K)
CALL GET_BANDW DTH_DI AG( NOFST, NDI AG, NBANDL, NBANDR)
DO 110 | = 1,N
VW( I +NBANDL) = SOLEX(1)
110 CONTI NUE
CALL DVMVSD( A, K, NDI AG, N, NOFST, NBANDL, VW B, | CON)
PRI NT*, ' DVMVSD | CON = ', | CON
C
EPS = 1D- 10
| GUSS = 0
| TMAX = 2000
CALL DVQVRD( A, K, NDI AG, N, NOFST, AT, NTOFST, B, | TMAX
& , EPS, | GUSS, X, | TER, VW | CON)
C
PRINT* ,'ITER = ', I TER
PRINT* ,' DVQVRD | CON = ', | CON
PRI NT*, ' COMPUTED VALUES'
PRINT*, "X(1) ="', X(1),"'X(N ="', X(N
STOP
END
(4) Method

For the QMR method, see [13].
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A72-24-0101 VOQMRE, DVQMRE

System of linear equations with unsymmetric or indefinite sparse matrix (QMR
method, ELLPACK storage format)

CALL VQMRE (A, K, IWIDT, N, ICOL, AT, IWIDTT, ICOLT, B, ITMAX, EPS,
IGUSS, X, ITER, VW, ICON)

(1) Function

This routine solves linear equations with an n x n unsymmetric or indefinite sparse
coefficient matrix using the quasi-minimal residual method (QMR).

AxX=b

Use two n x n coefficient matrices A and A™. They are stored in the ELLPACK format
method. Vectorsb and x are n-dimensional vectors.

The iterative cal culation may not be continued (break-down) because of the
characteristics of theinitial vector and coefficient matrices. Thisis because zeroisreally
obtained as the intermediate result although non-zero is desired in the recursive
calculation formula. In this case, use the MGCR method that causes no break-down.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, IWIDT).
For details on the ELLPACK storage format, see Part I, “Overview,” Section
3.2.1.1, “Storage Method for General Sparse Matrices,” b., “Diagonal Storage
Format for General Sparse Matrices.”

Ko Input. Size of adjustable dimension of A and ICOL. (= n)

IWIDT........ Input. The maximum number of non-zero elements in row vector direction of
the coefficient matrix A.
Two-dimensional size of A and ICOL.

N S Input. Order n of matrix A.

ICOL.......... Input. Stores the column indices of the elements stored in the array A using the
ELLPACK format, indicating which column vectors the corresponding
elementsin the array A belong to.

Two-dimensional array ICOL (K, IWIDT)

AT Input. Stores non-zero elements of a transposed coefficient matrix AT in AT
(L:N:IWIDTT).
Two-dimensional array AT (K, IWIDTT).
For details on the ELLPACK storage format, see Part I, “Overview,” Section
3.2.1.1, “Storage Method for General Sparse Matrices,” b., “Ellpack Storage
Format for General Sparse Matrices.”

IWIDTT..... Input. The maximum number of non-zero elements in row vector direction of
the transposed coefficient matrix A'.

ICOLT........ Input. Store the column indices of the element stored in the array AT using the
ELLPACK format, indicating which, column vectors the corresponding
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elementsin the array AT belong to.
Two-dimensional array ICOLT (K, IWIDTT)

B Input. One-dimensional array of size n. Stores a constant vector specified in
the right-hand side term of alinear equation systemin B.
ITMAX....... Input. The upper limit of iterationsin QMR method (> 0).
EPS............. Input. A criterion value used for convergence criterion.
If EPSis0.0 or less, it is set to 10°° for double-precision routines and 10 for
single-precision routines.
(Seeitem (3), “Commentson Use,” b., 1).)
IGUSS........ Input. Control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=0: An approximate value of the solution vector is not specified.
IGUSSZ0: The iterative computation starts from the approximate value of the
solution vector specified in array X.
D, GO Input. One-dimensional array of size n. Can specified the approximate value of
a solution vector.
Output. The solution vector is stored.
ITER........... Output. The real number of iteration stepsin QMR method.
VW, Work area. One-dimensional array of thesize K x 12.
ICON.......... Output. Condition code
See Table VQMRE-1, “Condition codes.”
Table VQMRE-1 Condition codes
Code | Meaning Processing
0 No error -
20000 | Break-down occurred. Processing is stopped.
20001 | The upper limit of iteration steps Processing is stopped.
was reached. The approximate values obtained up to this
point in array X are output, but their
precision cannot be guaranteed.
30000 | K<1,N<1, K<N, IWIDT<], Processing is stopped.
IWIDTT<1, K<IWIDT,
K<IWIDTT,
or
ITMAX <0

(3) Commentson use

a. Subprograms used

SSL 11: AMACH, URIPA, URITI, URITT, URMVE, USSCP, URSTE, USVCN,
USVCP, USVSC, USVSU, USVUP, USVN2, URELT, MGSSL, UQMRR, UQMRE,
UQBBM, UQITB
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b. Comments

1) Inthe QMR method, if the residual Euclidean normis equal to or less than the
product of initial residual Euclidean norm and EPS, it isjudged as having
converged.

The difference between the precise solution and the obtained approximation is
roughly equal to the product of the condition number of matrix A and EPS.

c. Exampleof use

In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0,1] x [0,1] x [0,1] with the
Dirichlet boundary condition (function value zero at the boundary). Thistype of
partial differential operator is described in Part I, “ Overview,” Section 3.2.2,
“Discretization of partial differential operators and storage examples for them.”
For INIT_MAT_ELL, seePart I, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.” INIT_SOL isthe
routine that generates the solution vectors to be sought in random numbers.

C ** EXAMPLE* *
PROGRAM TEST_| TER_SOLVERS
I MPLICI T REAL*8 (A-H, O 2)
PARAVETER ( MACH = 0)
PARAVETER (K = 10000)
PARAVETER (NX = 20, NY = 20, NZ = 20, N = NX*NY*NZ2)
PARAVETER (I WDT = 7, WDTT = | W DT, NVW = K*12)
REAL*8 A(K, | WDT), AT(K, | WDTT), X(N), B(N), SOLEX( N)

& ,
| NTEGER | COL(K, | W DT), | COLT(K, | W DTT)
C
CALL | NI T_SOL(SOLEX, N, 100, MACH)
PRI NT*, ' EAPECTED SOLUTI ON
PRINT*,' X(1) = ',SOLEX(1),' X(N) = ', SOLEX(N)
C
PRI NT *
PRINT *,' QWR METHOD
PRINT *,° ELLPACK FORMAT'
C
VAL = 3D0
VA2 = 1D0/ 3D0
VA3 = 500
VC = 5D0
XL = 1.0
YL =1.0
ZL = 1.0
C
CALL | NI T_MAT ELL( VAL, VA2, VA3, VC, A, | COL
& . NX, NY, NZ, XL, YL, ZL, | W DT, N, K)
CALL | NI T_MAT_TR ELL(VAL, VA2, VA3, VC, AT, | COLT
& NX, NY, Nz, XL, YL, ZL, | W DT, N, K)
CALL DVMVSE(A, K, | W DT, N, | COL, SOLEX, B, | CON)
PRI NT*,' DVMVSE | CON = ', | CON
C
EPS = 1D 10
| GUSS = 0
| TMAX = 800
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CALL DVQVRE(A, K, I WDT, N, | COL, AT, | WDTT, | COLT, B, | TMAX

& , EPS, | GUSS, X, | TER, VW | CON)
C
PRI NT*, ' DVQVRE | CON = ', | CON
PRI NT*, ' COMPUTED VALUE'
PRINT*, " X(1) =", X(1)," X(N =",X(N
STOP
END
(4) Method

For QMR method, see [13].
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F15-31-0401 VRPF3, DVRPF3

Three-dimensional prime factor discrete real Fourier transform

CALL VRPF 3 (A, L, M, N, ISN, VW, ICON)

(1) Function

When three-dimensional (where the size of each dimension is N1, N2, N3) real time series
data { X133} isgiven, this subroutine performs a discrete real Fourier transform or its
inverse transform by using the prime factor Fourier transform (prime factor FFT). The
size of each dimension must satisfy the following conditions:

- Thesize must be expressed as a product of mutual prime factor p, selected from the
following numbers:

factorp(p0{2,3,4,5,7,8,9, 16})

- Thesize of thefirst dimension must be an even number (2 x 1), where | satisfies the
previous condition.

Calling this subroutine with N = 1 sets a two-dimensional real prime factor fast Fourier
transform. Calling this subroutine with N = 1 and M = 1 sets a one-dimensional real
prime factor fast Fourier transform.

1) Three-dimensional real Fourier transform

By inputting { Xy,12,53} and performing the transform defined in (1.1), the three-
dimensional Fourier transform looks for { N1 x N2 x N3 x ay; k2, ka} -

N1-1 N2-1 N3-1
— -J1.K1, -J2K2, 6 -J3K3
NIXN2xN3xdykoKs = Z Z"-ZXJl,JZ,J?:wl Wy "y (11
J1=0 J2=0 J3=0

,K1=0,1,..,N1-1
,K2=0,1,..,N2-1
,K3=0,1,..,N3-1
, = exp(2ri/Nj),j=1,2,3

For athree-dimensional real Fourier transform, approximately half of the
computation is performed because { Xy 1,53} iSarea number. That is, for one-
dimensional transforms, K1 is computed from 0 to N1/2.

2) Three-dimensional real Fourier inverse transform

By inputting { ak1k2k3} and performing the transform defined in (1.2), athree-
dimensional Fourier inverse transform looks for { X3 1,33} -

N1-1 N2-1 N3-1

_ JLKL, J2.K2, J3K3
X31,233 = g KZ"'KZGKLKZ,K3O‘)1 W, "s (1.2
=0 =0 =0

,J1=0,1,...,N1-1
,J2=0,1,..,N2-1
,J3=0,1,..,N3-1
, g =exp(2ri/Nj),j=1,2,3
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For athree-dimensional real Fourier inverse transform, { o, kos} 100ks for only K1
=0,1, ..., NY2. Compute the two-dimensional and three-dimensional  first. Then,
use the conjugate relation for the elements of the first dimension to compute (1.2).

(2) Parameters

A, Input. Real number { Xy 5,33} Or Fourier transformed complex number
{ akikoka}-
Output: Fourier transformed complex number { awi koxa} Or inverse
transformed real number { Xy, 52,3} -
Three-dimensional array A (L, M, N).
For areal number (transform input and inverse transform output), data is stored
inA (L, M, N).

L - 2 isthe number of dataitems of the first dimension, whereL - 2 isan even
number.

M isthe number of data items of the second dimension. N isthe number of data
items of the third dimension.

For a complex number (transform output and inverse transform input), the real
part is stored in the first half and the imaginary part is stored in the second half
of the same array.

PARAMETER (L =,M =, N =, LH = L/2)
DIMENSION A (L, M, N), B (LH, M, N, 2)
EQUIVALENCE (A, B)

Real part B (L/2, M, N, 1) and Imaginary part B (L/2, M, N, 2) are stored
separately in the contiguous area. (See item (3), “Comments on use,” b.,
3))

T Input. Number of dataitems + 2 of the first dimension. The number of data

items of the first dimension must be an even number.
(L - 2)/2< 5,040

1/ D Input. Number of dataitems of the second dimension.
M < 5,040

N P Input. Number of dataitems of the third dimension.
N < 5,040

ISN...ccceee. Input. Specifies either transform or inverse transform.

Transform if ISN > 0 (non-negative integer).
Inverse transform if ISN < O (negative integer).

VW..ooene Work area. Three-dimensional array with the same size as A.

ICON.......... Output. Condition code.
See Table VRPF3-1, “Condition codes.”

11-126 Fujitsu SSL Il Extended Capabilities User's Guide Il



VRPF3, DVRPF3

Table VRPF3-1 Condition codes

Code | Description Processing
0 No error
20000 | (L -2)/2, M or N exceeded 5,040. Or this could not be Processing stopped.

factored into the multiplication of the mutually prime factor
in{2,3,4,5,7,8,9, 16}.

30000 | L -2wasnotanevennumber. Or L, M, or N iszeroor a
negative value.

(3) Commentson use
a. Subprograms used

SSL 1I: UINI1, UINI2, UTER1, UTER2, UTRSP, UPFT1, UPFT2, UTRR1, UTRRZ2,
MGSSL

b. Comments
1) Genera definition of three-dimensional Fourier transform

The three-dimensional Fourier transform and its inverse transform are generally
defined in (3.1) and (3.2).

1 = = & JLKL, -J2.K2, -J3K3
aKl,KZ,K3=mJ; ;0---;0XJ1,J2,J3“’1_ Ty Wy (3.1

N1-1 N2-1 N3-1

_ JLKL, J2.K2, J3K3
X31,233 = g KZ"'KZGKLKZ,K3O‘)1 W, s (3.2)
=0 =0 =0

The subroutine looks for { N1 x N2 x N3 x @y koka} OF {Xy130,33} corresponding
to the left-hand-side terms of (3.1) and (3.2), respectively. The user must
normalize the results, if necessary. If thetransform and inverse transformis
executed by calling this subroutine consecutively without being normalized,
each element of the input datais multiplied by N1, N2, or N3, respectively, and
then outpuit.

2) Number of terms

The number of termsis expressed as a product of a mutually prime factor p,
selected from the numbers listed as follows.

The maximum number is5 x 7 x 9 x 16 = 5,040.
factorp(p0{2,3,4,5,7,8,9, 16})

The number of terms of the first dimension can be a value up to amultiple of the
mutually prime numbers listed previoudly.

3) Datastorage method

Thereal data{xy 1} arestoredinathree-dimensional array A. The number of
terms N1 of thefirst dimensionisequivaentto L - 2. Theterms are stored from
luptoL -2

Thereal and imaginary parts of the complex data { ok ko ks} are stored asan
array divided into two contiguous regions by splitting array A. The number of
indices of K1 of thefirst dimensionis N1/2 + 1 (L/2), from zero up to N1/2.
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Therea partisstoredin B (LH, M, N, 1), and the imaginary part is stored in B
(LH, M, N, 2) where:

LH=L/2
and
PARAMETER (L =,M =,N=,LH =L/2)
DIMENSION A (L, M, N), B (LH, M, N, 2)
EQUIVALENCE (A, B)

c. Exampleof use

In this example, real time series data { Xy, 32,33} Of terms N1, N2 and N3 are input, and
a Fourier transform is performed. The results are used to perform a Fourier inverse
transform to look for {Xj;,52,33} -

HereN1 =12, N2 =12, and N3 = 12.

C * % EXAVPLE* *
DI MENSI ON A(12+2, 12, 12), B(6+1, 12, 12, 2), NI ( 3)
DI MENSI ON VW 12+2, 12, 12)
DATA NI/12,12,12/,L, M N 14, 12, 12/
EQUI VALENCE (A, B)
READ( 5, 500) (((A(1,J,K),1=1,N (1)),
* J=1, NI (2)), K=1, NI (3))
WRI TE(6, 600) (NI(1),1=1,3),
* (((1,3, KA, J, K, 1=1,NI (1)),
* J=1, NI (2)), K=1, NI (3))
C NORMVAL TRANSFORM
CALL VRPF3(A L, M N, 1, VW I CON)
WRI TE(6, 610) | CON
| F(1 CON. NE. 0) STOP
C | NVERSE TRANSFORM
CALL VRPF3(A L, M N, -1, VW I CON)
NT=NI (1) * NI (2) * NI ( 3)
DO 10 K=1, NI (3)
DO 10 J=1, NI (2)
DO 10 I=1, NI (1)
A1, 3, K)=A(1, J, K)/ FLOAT(NT)
10 CONTI NUE
WRI TE(6, 620) (((1,d,K A(l,J, K, 1=1, N (1)),
* J=1,NI(2)), K=1, NI (3))
STOP
500 FORMAT( E20. 7)
600 FORMAT(' 0', 10X, ' | NPUT DATA', 5X,

O3, 13, 18,0)
* (15X, (', 13,",",13,",",13")",
* E20. 7))

610 FORMAT(' 0', 10X, ' RESULT | CON=', | 5)
620 FORMAT(' 0', 10X, ' OUTPUT DATA /
* (15X, (', 13,",",13,",",13,")",
* E20.7))
END
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(4) Method

The three-dimensional real Fourier transform is performed by using the fast Fourier
transform with the factored mutual prime factor as the radix (prime factor FFT).

1) Three-dimensional transform

The three-dimensional transform defined in (1.1) can be performed in the order
shown in (4.1) by simplifying common terms. The order for obtaining the sum of J1,
J2, and J3 can a so be replaced.

N1-1 N2- N3-1

1
N1x N2X N3X 0y 3 = JZ(A{JLMXJZ@JZ'KZJZ Xy1.12.55003 33 41
=0 =0 =0

In (4.1), ) ;3 takes N1 x N2 sets of one-dimensional transforms of dataitem N3. > 5,
takes N1 x N3 sets of one-dimensional transforms of dataitem N2. } ;; takes N2 x N3
sets of one-dimensional transforms of dataitem N1.

In order to perform a one-dimensional transform for each dimension, this subroutine
applies the fast Fourier transform with the mutually prime factor as the radix.

2) Real transform

Because the number of dataitemsis even for the real Fourier transform of the first
dimension, complex Fourier transform is computed from zero up to N1/2 for K1. The
remaining Fourier transform computation need not be performed due to the complex
conjugate relation.

Assume a one-dimensional discrete real Fourier transform of N data items.

N-1
ay = ;xjexp(—Zn'KJ I N) (4.2)
K=0,.. N1
Ok =0y (4.3)

Even if the sequence for obtaining > in (4.1) is computed from the first dimension,
the results are the same. Therefore, the computation in (4.2) of the one-dimensional
transform with fixed terms of second and third dimensions can be performed for K =
0,1,.. N2

For areal transform with an even number of data items, a complex transform can be

used in the computation of the one-dimensional transformin (4.2). For details, refer

to FUJITSU S Il User’s Guide (Scientific Subroutine Library) under the “Method”
sectionin RFT.

In addition, the relationship that follows applies to a three-dimensional real Fourier
transform. This can be used for looking for other coefficients.

*
Ok1k2,K3 = ONI-KLN2-K2,N3-K3 (4.4)
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3) Prime factor fast Fourier transform

The three-dimensional real Fourier transform can be calculated by performing a
multiple set of one-dimensional Fourier transforms three times. The one-dimensional
Fourier transforms are performed by using the prime factor fast Fourier transform
(prime factor FFT). For an explanation of prime factor fast Fourier transform, see
item 2), “Prime factor fast Fourier transform,” under the Method section in VCPF3.
For more information, see [6] and [45].
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B71-14-0101 VSEVP,DVSEVP

Eigenvalues and eigenvectors of areal symmetric matrix (tridiagonalization, multisection
method, and inverse iteration)

CALL VSEVP (A, K, N, NF, NL, IVEC, ETOL, CTOL, NEV, E, MAXNE, M, EV,
VW, IW, ICON)

(1) Function

This subroutine cal culates specified eigenvalues and, optionally, eigenvectors of n-
dimensional real symmetric matrix A.

First, the matrix is reduced to tridiagonal form using the Householder reductions. Then,
the specified eigenvalues are obtained by the multisection method. The eigenvectors are
obtained by the inverse iteration.

AX = AX (.1
where, Alisann x nrea symmetric matrix.
(2) Parameters

A Input. Real symmetric matrix A isstored in A(1:N,1:N).
After calculation, the value of A is not assured.
Two-dimensional array A(K,N).

K e Input. Size of first-dimension of array A. (K = N).
N e Input. Order n of real symmetric matrix A
NF .o Input. Number assigned to the first eigenvalue to be acquired by numbering

eigenvaluesin ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

N Input. Number assigned to the last eigenvalue to be acquired by numbering
eigenvaluesin ascending order. (Multiple eigenvalues are numbered so that one
number is assigned to one eigenvalue.)

IVEC ......... Input. Control information.

IVEC=1: Both the eigenvalues and corresponding eigenvectors are
sought.
IVEC#£1: Only the eigenvalues are sought.

ETOL ........ Input. A criterion value required to determine whether an eigenvalue is distinct
or numerically multiple based on expression (3.4). The default value is 3.0D-16
for double precision (2.0D-7 for single precision) when thisvalueis set to less
than.

CTOL ........ Input. A criterion value required to determine whether adjacent eigenvalues are
approximately multiplei.e. clustered according to expression (3.1). CTOL >
ETOL
When CTOL islessthan ETOL, CTOL = ETOL is set.
(Seel) inb, “Notes,” in (3), “Comments on use.”)

NEV ......... Output. Number of eigenval ues cal cul ated.

The detail information is as follows:
NEV (1) indicates the number of distinct eigenvalues.
NEV (2) indicates the number of distinct clusters.
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NEV (3) indicates the total number of eigenvalues including multiplicities.
One-dimensional array NEV (3).

| S Output. Eigenvaluesare storedin E.
The eigenvalues are stored in E(1:NEV(3)).

One-dimensional array E(MAXNE).

MAXNE .... Input. The maximum number of eigenvalues that can be computed.
Dimension of array E.

When NEV (3) is greater than MAXNE, eigenvectors cannot be computed.
(See 2) inb, “Notes,” in (3), “Comments on use.”)

M i, Output. Information about the multiplicity of the computed eigenvalues.
M (i, 1) indicates the multiplicity of thei-th eigenvalue A;. M (i, 2) indicates the
size of thei-th cluster of eigenvalues.
(Seel) inb, “Notes,” in (3), “Comments on use.”)

Two-dimensional array M(MAXNE,?2).

EV Output. When IVEC = 1, the eigenvectors corresponding to the computed
eigenvalues are returned in EV (L:N, 1:NEV(3)).
Two-dimensional array EV (K, MAXNE).

VW .. Work area. One-dimensional array of size 17 x K
IW .o Work area. One-dimensional array of size 9 x MAXNE+128
ICON ......... Output. Condition code.
See Table VSEVP-1.

TableVSEVP-1 Condition codes
Code M eaning Processing
0 No error
20000 During calculation of clustered eigenvalues, | Processing is discontinued.

the total number of eigenvalues exceeded

the value of MAXNE. The elgenvectors cannot be

calculated, but the different
eigenvalues themselves are
already calculated.

(See2) inb, “Notes,” in (3),
“Comments on use.”)

30000 NF<1,NL>N,NL<NF,N<1,K<N,or | Processing is discontinued.
MAXNE <NL - NF + 1.

30100 The input matrix may not be a symmetric
matrix.

(3) Commentson use
a. Subprograms used

SSLIT ........ UIBBS, UIBFC, UIBFE, UIBSL, UITBS, UITFC, UITFE, UITSL, USEVP,
UTDEX, UTDEY, UTMLS, UTRBK, UTRVM, UZRDM, MGSSL, UMGSL,
UMGSL2
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b. Notes
1) Thisroutine pays special attention to a clustered eigenvalue.
With eisequal to ETOL, suppose that the eigenvalues A; j =s,s+1,..., and stk
(k= 0) are such that

|/\i _Ai—l| <e
T+ max(A, | JA;])

(3.1)

While (3.4) isnot satisfied for i =s-1and i =s+ k + 1, then eigenvalues A, j =

s-1,s, ..., s+ kare considered to be identical, i.e., asingle multiple eigenvalue
of multiplicity k + 1.

The default value of ETOL is 3.0D-16 for double precision (2.0D-7 for single-
precision). Using thisvalue, eigenvalues are refined to machine precision.

When (3.1) isnot satisfied for € = ETOL , A;_; and A; are assumed to be
distinct eigenvalues.

If (3.1) holdswith € = CTOL (but not with € = ETOL) for eigenvalues A,,, m=t,
t+1, ..., t+kbut not for A,_; and A,,.; , these eigenvalues are considered to be

approximately multiple, i.e. clustered, though distinct (not numerically multiple).
In order to obtain an invariant subspace, eigenvectors corresponding to clustered
eigenval ues are computed using orthogonal starting vectors and are
reorthogonalized. Of course CTOL = ETOL; if this condition is not satified,
CTOL isset to be equa to ETOL.

2) Assumer eigenvalues are requested. Notethat if the first or last requested
eigenvalue has a multiplicity greater than 1 then more than r eigenvalues, are
obtained. The corresponding eigenvectors can be computed only when the
corresponding eigenvector storage area is sufficient.

The maximum number of computabl e eigenval ues can be specified in MAXNE.
If the total number of eigenvalues exceeds MAXNE, ICON = 20000 is returned.
The corresponding eigenvectors cannot be computed. In this case, the
eigenvalues are returned, but they are not stored repeatedly according to
multiplicities.

When all eigenvalues are distinct, it is sufficient to set MAXNE = NL-NF+1.
When the total number of eigenvalues to be sought exceeds MAXNE, the
necessary value for MAXNE for seeking eigenvalues again is returned in
NEV (3).

3) Thisroutineisfaster than SEIG1, SEIG2 and VSEG2.
c. Example

This example calculates the specified eigenvalues and eigenvectors of areal
symmetric matrix whose eigenvalues and eigenvectors are already obtained.

C ** EXAMPLE PROGRAM **
| MPLI CI T REAL*8(A-H, O 2)
PARAMETER ( K=500, N=K, NF=1, NL=100, MAXNE=NL- NF+1)
PARAMETER ( NVWE15* K, NI W9* MAXNE+128)
REAL*8  A(K, N), AB(K, N)
REAL*8  E(K), EV( K, MAXNE) , VW NI W
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REAL*8  W(K, N)
I NTEGER | W NVW , M MAXNE, 2) , NEV( 3)

ETOL=3. 0D- 16
CTOL=5.0D- 12
| VEC=1

C CGenerate real symretric matrix wi th known ei genval ues
Clnitialization
Pl = 4. 0D0* DATAN( 1. 0DO)

DO 1 J=1, N
DO 11 I=1, N
W( I, J) =DSQRT( 2. 0D0/ DBLE( N+1) ) * SI N( DBLE( | ) * Pl
& *DBLE(J)/ DBLE(N+1))
A(1, J)=0.0D0
11 CONTI NUE
1 CONTI NUE
DO 22 J=1, N

A(J,J) = DBLE(-N 2+J)
22 CONTI NUE

WRITE (6,*)" Input matrix size is ', N

WRITE (6,*)" Matrix calculations use k =',K

WRI TE (6,*)' Desired eigenvalues are nf to nl ', NF N
WRITE (6,*)"' That is, request ', NL-NF+1,

& ' eigenval ues.'

WRI TE (6,*)"' True eigenvalues are as foll ows'

WRI TE (6, *) (A(J,J), J=NF, NL)

CALL DVMEGM A, K, W, K, AB, K, N, N, N, | CON)
CALL DVMEGM WV, K, AB, K, A, K, N, N, N, | CON)

C Cal cul ate the ei gendeconposition of A
CALL DVSEVP(A, K, N, NF, NL, | VEC, ETOL, CTCL, NEV,
& E, MAXNE, M EV, VW | W | CON)
IF (1 CON GT.0) THEN
WRITE (*,*)" VSEVP failed with parameter ',

& "icon=",1CON
STOP
ENDI F
WRI TE (*,*)" Number of eigenvalues ',
& NEV( 3)
WRITE (*,*)"' Number of distinct eigenvalues ',
NEV( 1)

WRITE (*,*)"' Solution to eigenval ues
WRITE (*,*)" E ', (E(l), =1, NEV(3))
299 CONTI NUE

STOP
END

(4) Method

This routine solves an eigenvalue problem of atridiagonal matrix created from areal
symmetric matrix. The reduction to atridiagonal form is the Householder reduction.
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The eigenvalue problem of atridiagonal matrix is calculated using multisectioning to find
the eigenvalues and inverse iteration for the eigenvectors. For details, see“VTDEV” and
see[32] in Appendix B, “References.”

The eigenvectors of the original matrix are found by multiplying the matrix of
eigenvectors of the tridiagonal matrix by the matrix of transformations carried out in the
reduction to the tridiagonal .
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F17-11-0301 VSRFT, DVSRFT

One-dimensional and multiple discrete real Fourier transform (mixed radices of 2, 3,

and 5)

CALL VSRFT (X, M, N, ISIN, ISN, W, ICON)

(1) Function

This subroutine performs one-dimensional discrete real Fourier transforms (for m
multiplicity).

n must be a number expressed as a product of powers of 2, 3, and 5, where n isthe size of
the data to be transformed.

1) Transform

2)

Inputting { X2} and performing the transform defined in (1.1), obtains {n diio} .

n-1
— -j2k2r
Nayaxo = Z Xk1j2-Wn (1.1)
12=0

w, = exp(2ri/n)

r=1orr =-1can be specified for the transform direction.
ky=0,1, .., ml,
k,=0,1, .., n1

Inverse transform

Inputting { aie} and performing the transform defined in (2.1) obtains { X2} .

n-1 .

Xigj2 = 2 U -0 (1.2
k2=0

w, = exp(2ri/n)

In the inverse transform, the direction inverse to that specified in the transform must
be specified.

r=-lorr=1
ki=0,1, ..., m1,
j2= 01, ..,n1

Theresult of the real Fourier transform has a complex conjugate relation. The first
n/2 + 1 elements of k, in {n oy} are stored. Either m or n must be an even number.

(2) Parameters

....... For ISN = 1 (transform from real to complex):

Input. Real data{xq;2} isstored in X (1:m, 1:n).

Output. Thereal part of {n oy} isstoredin X (1:m, 1:n/2 + 1). The
imaginary part of {n aye} isstoredin X (1:m, /2 + 2:2 x (n/2 + 1)).

k=01, .. ml,
k;=0,1, .., n/2

11-136

Fujitsu SSL Il Extended Capabilities User's Guide Il



VSRFT, DVSRFT

For ISN = -1 (transform from complex to real):

Input. Thereal part of { O} isstored in X (1:m, 1:n/2 + 1). Theimaginary
part of { ae} isstored in X (1:m, n/2 + 2:2 x (n/2 + 1)).

kl =0,1, .., ml,
k2= 01,.. n/2
Output. Thered data{Xq;z} isstoredin X (1:m, 1:n).

Two-dimensional array X (m, (n+4 xint (vn/2Y))).

X(m2x(n2+ 1)+ Ln+4xint(+vn/2))isusedinternally. The operation
result is not guaranteed.

Y/ I Input. mof the multiplicity (number of dataitems) for which one-dimensional
discrete real Fourier transform is performed. Either m or n must be an even
number.

[\ P Input. n of the size of data on which the one-dimensional discrete real Fourier
transform is performed. nisanumber expressed as a product of powers of 2, 3,
and 5. Either mor n must be an even number.

ISIN......c..... Input. Fourier transform direction r.

ForISIN=1,r=1
ForISIN=-1,r =-1.
ISN............. Input.
For ISN = 1, normal transform (real to complex).
For ISN = -1, inverse transform (complex to real).

Wi Work area.

One-dimensional array of size2x n+mx (n+4 x int (\/m ).

ICON.......... Output. Condition code.

See Table VSRFT-1, “Condition codes.”
Table VSRFT-1 Condition codes

Code | Description Processing

0 No error -

30001 [ M<0OorN<O Processing is stopped.

30008 | N isnot aninteger expressed as a product of powers of 2,
3, and 5.

30016 | ISIN#1landISIN#-1

30032 | ISN#landISN#-1

30512 | Both M and N are odd numbers. Processing is stopped.
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(3) Commentson use
a. Subprograms used

SSLII: UASSM, UCTSV, USEPR, UFIX, UJOIN, USPLT, UUFIX, USTUP, UCFS,
UCF16, UCFT2, UCFT3, UCFT4, UCFTS5, UCFT8, UFMRW, UCRU, UCTRF,
MGSSL

b. Comments
1) Genera definition of Fourier transform

The multiple discrete Fourier transform and inverse transform are generally
defined asin (3.1) and (3.2).

1 n-1 .
—-j2k2
Ok =— Z X120 ! (3.1
n 4
i=o
k.=0,1, .. m1l
s kz =0,1,..,n1
n-1 .
Xj1j2 = Zajlkzwﬁz 2 (3.2)
=
j]_: 01, ..ml
,jz =0,1,..,n1

where

w = exp(2ri / n)
The subroutine calculatesn oy, Or X35> corresponding to the left-hand terms of
(1.1) and (1.2). If necessary, the user must normalize the results.

2) Theresult of the multiple discrete real Fourier transform has the following
complex conjugate relation:

Tyakz = Aian-k2
ki=0,.. ml
Jko=1,...,n/2
Therest of terms can be calculated using this relation.

3) Two methods are used, one for when n is an even number and one for when mis
an even number. The method for when n is even has the vector length is about

mw/n . The method for when m is even has vector length m/2, but performs less
data movement.

The routine performs transforms at maximum speed when misalarge even
number.

c. Exampleof use
In this example, a one-dimensional real FFT of multiplicity m = 500 is cal cul ated.

C ** EXAMPLE* *
| MPLICI T REAL*8(A-H, O 2)
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OO0

OO0

100

200

PARAMVETER( ME500, N=2* * 10)
PARAMVETER( N2=N+4* 22)
DI MENSI ON X(M N2) , W 2* N+ M N2)

DO 100 J=1, M

DO 100 1=1,N
X(J,1)=FLOAT( 1) +FLOAT(N) * ( J- 1)
CONTI NUE

I SI N=1
I SN= 1

REAL TO COVPLEX TRANSFORM

CALL DVSRFT(X, M N, I SI'N, I SN, W I CON)
PRI NT*, ' 1 CON='", | CON

I SIN=-1
| SN=-1

COVPLEX TO REAL TRANSFORM

CALL DVSRFT(X, M N, I SI'N, I SN, W CON)
PRI NT*, ' 1 CON=', | CON

ERROR=0. 0D0

DO 200 J=1, M

DO 200 |1=1,N

ERROR=MAX( ABS( X(J, 1)/ N-
& (FLOAT(1) +FLOAT(N) *(J- 1)) ), ERROR)
CONTI NUE

PRI NT*, ' ERROR=" , ERROR
STOP
END
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B71-12-0101 VTDEV, DVTDEV

Eigenvalues and eigenvectors of real tridiagonal matrix

CA

LL VTDEV (D, SL, SU, N, NF, IVEC, ETOL, CTOL, NEV, E, MAXNE, EV,
K, M, VW, IVW, ICON)

1)

2

Function

This routine computes the eigenvalues and, optionally, the corresponding e genvectors of
ared tridiagonal matrix.

TX = AX 1.n

The subdiagonal and superdiagonal elements of the tridiagonal matrix T of dimension n
must satisfy the following conditions:

iu,1>0,i=2,...,n (1.2
Wherel, isequa to u, =0 and
(TV)i = li Vi1t di V; + U Vi+1, i=1,2,..,n (13)

Parameters

.............. Input. One-dimensional array D (N) containing the diagonal elements of T.

.............. Input. One-dimensional array SL (N) containing the subdiagonal elements of T
inSL (2:N). SL (1) =0.

.............. Input. One-dimensional array SU (N) containing superdiagonal elements of T
in SU (1:N-1). SU(N) =0.

.............. Input. Order n of tridiagonal matrix.

.............. Input. The index of the first eigenvalue sought, where eigenvalues are
numbered in ascending order. Eigenvalues with indicesin the range NF to NF
+ NEV (1) - 1 are computed.
Output. Theindex of the first eigenvalue obtained, taking into account the case
in which the first obtained eigenvalue is multiple and/or part of acluster.

IVEC.......... Input. Control information.

1: Both the eigenvalues and eigenvectors are sought.
Other than 1: Only the eigenvalues is sought.

ETOL......... Input. A criterion value required to determine whether an eigenvalue is distinct

or numerically multiple based on expression (3.4). The default value is 3.0D-16
for double precision (2.0D-7 for single precision) when thisvalueis set to less
than.

(Seeitem (3), “Commentson use,” b., 2).)

CTOL......... Input. A criterion value required to determine whether adjacent eigenvalues are

approximately multiplei.e. clustered according to expression (3.4). CTOL >
ETOL

When CTOL islessthan ETOL, CTOL = ETOL is set.

(Seeitem (3), “Commentson use,” b., 2).)

NEV........... Input. NEV (1) indicates the number eigenvalues to be computed.

Output. NEV (1) indicates the number of distinct eigenvalues.
NEV (2) indicates the number of distinct clusters.
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NEV (3) indicates the total number of eigenvalues including multiplicities.
One-dimensional array NEV (3).

Output.
The eigenvalues computed are stored in E(1:NEV (3)).
One-dimensional array E (MAXNE).

Input. The maximum number of eigenvalues that can be computed.
Dimension of array E.

When NEV (3) is greater than MAXNE, eigenvectors cannot be computed.
(Seeitem (3), “Commentson use,” b., 3).)

Output. When IVEC = 1, the eigenvectors corresponding to the computed
eigenvalues are returned in EV (L:N, 1:NEV(3)).
Two-dimensional array EV (K, MAXNE).

Input. Leading dimension of array EV (= N).

Output. Information about the multiplicity of the computed eigenvalues.

M (i, 1) indicates the multiplicity of thei-th eigenvalue Ai. M (i, 2) indicates the
size of thei-th cluster of eigenvalues.

(Seeitem (3), “Commentson use,” b., 3).)

Two-dimensional array M (MAXNE, 2).

Work area. One-dimensional array of size 12 x N.
Work area. One-dimensional array of size 9 x MAXNE + 128.

Output. Condition code.
See Table VTDEV-1, “Condition codes.”

TableVTDEV-1 Condition codes

Code | Meaning Processing

0 No error -

20000 | Thetotal number of eigenvalues Processing is stopped. The eigenvectors
exceeded MAXNE during computation | cannot be computed. Eigenvalues are

of multiple eigenvalues and/or returned but are not stored taking into
clustered. account multiplicities.

(Seeitem (3), “Commentson use,” b.,

3).)

30000 | N<1,K<1, NF<1, NEV(1)<1, Processing is stopped.
NF+NEV (1)>N, N>K

30100 | SL (i) xSU (i-1) <0, Processing is stopped.
The matrix cannot be symmetrized.

(3) Commentson use

a. Subprograms used

SSL II: UTMLS, UZRDM, UTDEY, UTDEX, UIBBS, UIBFC, UIBFE, UIBSL,
UITBS, UITFC, UITFE, UITSL, AMACH, MGSSL

b. Comments

1) Problem solved using thisroutine

Fujitsu SSL Il Extended Capabilities User’s Guide Il 11-141




VTDEV, DVTDEV

2)

3)

This routine requires only that |; u;., > 0. Therefore, this routine can also used to
solve the generalized eigenvalue problem in (3.1) by the following replacement:

T TD?
Tv=ADv (3.1
Where, the diagonal matrix must satisfy D > 0.

The eigenvalue problem for T can be reduced to a symmetric generalized
eigenvalue problem.

(DT -AD)v=0 (3.2
Where, D;=1and D; =ui1 Di1/;1=2,...,n.

If D; can cause a scaling problem, it is preferable to consider the symmetric
problem.

(DY2TDY2 - Al)w=0 (3.3)
Wherew = D2,
This routine pays special attention to a clustered eigenvalue.
With gisequal to ETOL, suppose that the eigenvalues A; j =s,s+1,..., and stk
(k= 0) are such that
A = A
1+ max(A;_q|,|Ai])

<€ (3.4)

While (3.4) isnot satisfied fori =s- 1andi =s+k + 1, theneigenvalues A, , j =

s-1,s, ..., s+ kare considered to be identical, i.e., asingle multiple eigenvalue
of multiplicity k + 1.

The default value of ETOL is 3.0D-16 for double precision (2.0D-7 for single-
precision). Using thisvalue, eigenvalues are refined to machine precision.

When (3.4) is not satisfied for € = ETOL, A;_; and A; are assumed to be
distinct eigenvalues.

If (3.4) holdswith € = CTOL (but not with e = ETOL) for eigenvalues A,,, m=t,
t+1, ..., t+kbut not for A,_; and A,,,; , these eigenvalues are considered to be

approximately multiple, i.e. clustered, though distinct (not numerically multiple).
In order to obtain an invariant subspace, eigenvectors corresponding to clustered
eigenvalues are computed using orthogonal starting vectors and are
reorthogonalized. Of course CTOL = ETOL; if this condition is not satisfied,
CTOL isset to be equa to ETOL.

Assumer eigenvalues are requested. Note that if the first or last requested
eigenvalue has a multiplicity greater than 1 then more than r eigenvalues, are
obtained. The corresponding eigenvectors can be computed only when the
corresponding eigenvector storage area is sufficient.

The maximum number of computabl e eigenval ues can be specified in MAXNE.
If the total number of eigenvalues exceeds MAXNE, ICON = 20000 is returned.
The corresponding eigenvectors cannot be computed. In this case, the
eigenvalues are returned, but they are not stored repeatedly according to
multiplicities.
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O000O0O00 O

When all eigenvalues are distinct, it is sufficient to set MAXNE = NEV (1).

Example of use

Here, we give asimple calculation to find ne eigenvalues and corresponding
eigenvectors for amodel problem based on a modification of one due to Wilkinson
[44] which is known to have numerically multiple eigenval ues.

10

20

** EXAMPLE* *

IMPLICIT REAL*8 (A-H O 2)

I NTEGER K, P1, Q1, N, NO, N1, MAX_CLUS, NE, MAXNE, NVW NI VW
REAL*8 ETCL, CTCL

PARAVETER ( K=1000)

PARAVETER ( P1=350, Ql=2, N=P1* Ql, N0=584, N1=686,
& NE=N1- NO+1)

PARAVETER ( MAX_CLUS=2* QL, MAXNE=NE+MAX_CLUS)

PARAVETER ( ETOL=3. D- 16, CTOL=5. D- 12)

PARAVETER ( NVWE12* N, NI VWEQ* MAXNE+128)

REAL*8 SL(N), D(N), SU(N), E( MAXNE) , EV( K, MAXNE) , VW NVW

| NTEGER M MAXNE, 2) , NEV( 3), | VW NI VW, NF, | CON, NEVAL, |
& ,J, KK, I VEC

LOG CAL EVAL_OUTPUT, DBG_OUTPUT

| VEC=1

Bl ocked W"+ n (W /I kinson): Pathologically close
ei genval ues in each pl x pl (pl odd, snall) block,
with gl blocks so that multiplicity of |argest

ei genvalues is 2*ql. |If maxnev <2*ql then error
condition 20000 i s obtained.

1+1) [/ 2
= 0.D0
I first block

'_\v
o
I
=
[
1
nnne

92)
<
25888

1
—~
[
1
~

el
8$,_\. =
p—

SL(1)
SU( P1)

DO 20 KK=2, QL I subsequent bl ocks
Il = (KK-1) * P1
DO 20 I=1,P1
SL(IT+I)
SUCLT+)
D(II+l) =
CONTI NUE

SL(1)

0. DO
SUN) = 0.D0
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NF = NO
NEV(1) = NE
ICON = 0
C
CALL DVTDEV(D, SL, SU, N, NF, | VEC, ETOL, CTOL, NEV, E, MAXNE
& L EV, K, M VW | VW | CON)
C
DBG_OUTPUT = . FALSE.
IF( 1 CON . EQ 20000 ) DBG OUTPUT = . TRUE.
EVAL_OUTPUT = . TRUE.
IF (1CON .EQ 30000 .OR |CON .EQ 30100 )
& EVAL_OUTPUT = .FALSE.
|F ( EVAL_OUTPUT ) THEN
NEVAL = NF
WRI TE(*, *)' 1CON = ', | CON
=1
DO 30 J=1, NEV(1)
WRI TE(*, 900) NEVAL, E(11), M J, 1)
| F ( DBG_OUTPUT ) THEN
=11 +1
ELSE
=11 + MJ, 1)
ENDI F
NEVAL = NEVAL + MJ, 1)
30  CONTI NUE
ENDI F
C
900 FORMAT(' EI GENVALUE(',15,')=", E25. 18, 2X,
& ' WTH MULTIPLICI TY=", | 5)
C
STOP
END
(4) Method

In the version of the Sturm count-based al gorithm used here at |east three subintervals are
required in the refinement of each interval over which a sign change is detected [36].
Therefore at least 4 x MAXNE points are required. Since this number determines the
vector length used in the computation and the minimum vector register length on the VPP
series is 64, this routine sets the number of points to be some multiple of 64 whichis
larger than 4 x MAXNE.

A composite data structure isused: An array structure which facilitates vectorization is
combined with an LIFO (last in, first out) list structure to keep track of both eigenvalue
ordering and multisectioning; thisis discussed in [32]. The computation is carried out
until the limit of refinement as determined by ETOL isreached. (See[44].) When the
default value is selected, the accuracy of the eigenvalue estimate relative to the scale of
the matrix should approach machine precision.

The prescription for evaluating the Sturm count, follows [10]; it has the property that the
sign count is a monotonic function of the eigenvalue parameter in |EEE floating-point
arithmetic.

Eigenvectors are computed by inverse iteration. The initial vector is chosen using the
sign structure of the Sturm sequence except when numerically multiple (or approximately
multiple) eigenval ues have been detected. In this case additional initial vectors are
generated randomly and orthogonalized with respect to the other vectors of the cluster.
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Usually one step of inverse iteration suffices. Eigenvectors corresponding to clustered
eigenvalues are also reorthogonalized after inverse iteration.
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A72-25-0101 VTFQD, DVTFQD

System of linear equations with unsymmetric or indefinite sparse matrix (TFQMR
method, diagonal storage format)

CALL VTFQD (A, K, NDIAG, N, NOFST, B, ITMAX, EPS, IGUSS, X, ITER,
VW, ICON)

(1) Function

This routine solves linear equations with an n x n unsymmetric or indefinite sparse matrix
using the transpose-free quasi-minimal residual method (TFQMR).

Ax=Db

Then x n coefficient is stored with the diagonal format method. Vectorsb and x are n-
dimensional vectors.

The iterative calculation may not be continued (break-down) because of the
characteristics of theinitial vector and coefficient matrices. Thisisbecause zerois
obtained as the intermediate result in the recursive calculation formula. In this case, use
the MGCR method that causes no break-down.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A Input. Stores non-zero elements in a coefficient matrix.
Two-dimensional array A (K, NDIAG). Stores coefficient matrix A in A (1:N,
NDIAG) with the diagonal storage format. For the diagonal storage format, see
Part I, “Overview,” Section 3.2.1.1, “ Storage Methods for General Sparse
Matrices,” b., “Diagonal Storage Format for General Sparse Matrices.”

| (T Input. Size of adjustable dimension of array A

NDIAG....... Input. The number of diagonal vectorsin coefficient matrix A that contain non-
zero elements.
Size of second-dimension of array A.

[\ P Input. Order n of matrix A.

NOFST....  Input. Storesthe distance from the main diagonal vector corresponding to
diagonal vectors stored in array A. Superdiagonal vectors have positive values,
asubdiagonal vector have negative values.

One-dimensional array NOFST (NDIAG).

S T Input. One-dimensional array of size n. Stores the constant vector of the right-
hand side term of alinear equation system.

ITMAX....... Input. The upper limit of iterationsin TFQMR method (> 0).

EPS............. Input. A convergence criterion value in judgment of convergency.

If EPSis0.0 or less, it is set to 10° in double-precision routines and 10 in
single-precision routines.
(Seeitem (3), “Commentson use,” b., 1).)
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IGUSS........ Input. Sets control information about whether to start the iterative computation
from the approximate value of the solution vector specified in array X.
IGUSS=0: Approximate value of the solution vector is not specified.
IGUSSZ0: The iterative computation starts from the approximate value of the
solution vector specified in array X.

) CTR Input. One-dimensional array of size n. Can specify the approximate value of
the solution vector.
Output. The solution vector is stored.

ITER........... Output. Number of iteration performed using the QMR method.

VW..ooooeene Work area. One-dimensional array K x 10 + N + NBANDL + NBANDR.
NBANDL indicates alower bandwidth; NBANDR indicates an upper
bandwidth.

ICON.......... Output. Condition code

See Table VTFQD-1, “Condition codes.”

TableVTFQD-1 Condition codes

Code | Meaning Processing
0 No error -
20000 | Break-down occurred Processing is stopped.
0001 The upper limit of iteration steps was Processing is stopped.
reached. The approximate value obtained up to
this point in array X is output, but their
precision cannot be guaranteed.
30000 | K<1,N<1, K<N, NDIAG<1, Processing is stopped.
K<NDIAG, or ITMAX <0
32001 | |[NOFST (1) |> N-1 Processing is stopped.

(1) Commentson use
a. Subprograms used

SSL I1: AMACH, URGWD, URIPA, URITI, URITT, URMVD, USSCP, URSTE,
USVCN, USVCP, USVSU, USVUP, USVN2, URELT, MGSSL, UTFQD, UTFQR,
UQBBM

b. Comments

1) Inthe QMR method, if the residual Euclidean normis equal to or less than the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged. The difference between the precise solution and the obtained
approximation is roughly equal to the product of the condition number of Matrix
A and EPS.

2) Noteson using the diagonal format

A diagonal vector element outside coefficient matrix A must be set to zero.
Thereisno restriction in the order in which diagonal vectors are stored in array
A.

The advantage of this method lies in the fact that the matrix vector multiplication
can be calculated without the use of indirect indices. The disadvantage isthat
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matrices without the diagonal structure cannot be stored efficiently with this
method.

Example of use

In this example, linear equations of coefficient matrices obtained by discretizing
partial differential operators are solved in the region [0,1] x [0,1] x [0,1], with the
Dirichlet boundary condition (function value zero at the boundary).

Thistype of partial differential operator isdescribed in Part |, “Overview,” Section
3.2.2 “Discretization of partial differential operators and storage examples for them.

For INIT_MAT_DIAG, see Part |, “Overview,” Section 3.2.2, “ Discretization of
partial differential operators and storage examples for them.”
GET_BANDWIDTH_DIAG isaroutine that estimates band width. INIT_SOL isa
routine that generates solution vectors to be sought with random numbers.

** EXAMPLE* *
PROGRAM TEST_| TER_SOLVERS

I MPLICI T REAL*8 (A-H, O 2)

| NTEGER MACH

PARAVETER ( MACH = 0)

PARAVETER (K = 10000)

PARAVETER (NX = 20, NY = 20, NZ = 20, N = NX*NY*NZ2)
PARAVETER (NDI AG = 7, NVW = 10* K+N+400+400)
REAL*8 A(K, NDI AG), X(N), B(N), SOLEX(N) , VW NVW

| NTEGER NOFST(NDI AG)

CALL | NI T_SOL( SOLEX, N, 1D0, MACH)
PRI NT*, ' EXPECTED SCLUSI ONS'

PRINT*, " X(1) = ', SOLEX(1),' X(N) = ', SOLEX(N)

PRI NT *

PRI NT *, TFQVR METHOD

PRINT *, DI AGONAL FORVAT'

VAL = 3D0

VA2 = 1D0/ 3D0

VA3 = 5D0

VC = 1.0

XL = 1.0

YL = 1.0

ZL = 1.0

CALL | NI T_MAT_DI AG( VAL, VA2, VA3, VC, A, NOFST

& , NX, NY, NZ, XL, YL, ZL, NDI AG N, K)

CALL GET_BANDW DTH_DI AG( NOFST, NDI AG, NBANDL, NBANDR)
DO 110 | = 1,N

VW( | +NBANDL) = SOLEX(I)

110 CONTI NUE

CALL DVMWSD( A, K, NDI AG, N, NOFST, NBANDL, VW B, | CON)
PRI NT*, ' DVMVSD | CON=", | CON

EPS = 1D-10

IGQUSS = 0

| TMAX = 2000

CALL DVTFQDX( A, K, NDI AG N, NOFST, B, | TMAX
& , EPS, 1 GUSS, X, | TER, VW | CON)
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c
PRINT* ,'ITER = ', I TER
PRI NT* , ' DVTFQD | CON = ', | CON
PRI NT*, ' COMPUTED VALUES
PRINT*, "X(1) =",X(1)," X(N) =", X(N
STOP
END

(4) Method

For the TFQMR method, see [12].
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System of linear equations with unsymmetric or indefinite sparse matrix (TFQMR
method, ELLPACK storage format)

CALL VTFQE (A, K, IWIDT, N, ICOL, B, ITMAX, EPS, IGUSS, X, ITER, VW,
ICON)

(1) Function

This routine solves linear equations with an n x n unsymmetric or indefinite sparse matrix
using the transpose-free quasi-minimal residual method.

AxX=b

Coefficient matrices (n x n) are stored with the ELLPACK format method. Vectorsb
and x are n-dimensional vectors.

The iterative cal culation may not be continued (break-down) because of the
characteristics of theinitial vector and coefficient matrices. Thisisbecause zerois
obtained as the intermediate result in the recursive calculation formula. In this case, use
the MGCR method that causes no break-down.

Regarding the convergence and the guideline on the usage of iterative methods, see
Chapter 4 “Iterative linear equation solvers and Convergence,” in Part I.

(2) Parameters

A Input. Stores non-zero elements of the coefficient matrix.
Two-dimensional array A (K, IWIDT).
For the ELLPACK storage format, see Part |, “Overview,” Section 3.2.1.1,
“Storage Method for General Sparse Matrices.”

Ko Input. Size of adjustable dimension (= n) of A and ICOL.

IWIDT...... Input. The maximum number of non-zero-elements in row vector direction on
the coefficient matrix A.
Two dimensional size of A and ICOL.

)\ S Input. Order n of matrix A.

ICOL.......... Input. Store the column indices of the element stored in the array A using the
ELLPACK format, indicating which column vectors the corresponding
elementsin the array A belong to.

Two-dimensional array ICOL (K, IWIDT)

S T Input. One-dimensional array of size n. Stores a constant vector of the right-
hand-side term of alinear equation system.

ITMAX....... Input. The upper limit of iterationsin TFQMR method (> 0).

EPS............ Input. A convergence criterion value in judgment of convergency.

If EPSis0.0 or less, it is set to 10° in double-precision routines and 10 in
single-precision routines.
(Seeitem (3), “Commentson use,” b., 1).)

IGUSS........ Input. Control information about whether to start the iterative computation

from the approximate value of the solution vector specified in array X.
IGUSS=0: Approximate value of the solution vector is not set.
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IGUSSZ0: The iterative computation starts from the approximate value of the

solution vector specified in array X.

) TR Input. One-dimensional array of size n. An approximate value of a solution
vector can be specified.
Output. Storesa solution vector.
ITER.......... Output. The real number of iteration stepsin TFQMR method.
VW..ooooeene Work area. One-dimensional array K x 13.
ICON.......... Output. Condition code
See Table VTFQE-1, “Condition codes.”
TableVTFQE-1 Condition codes
Code | Meaning Processing
0 No error -
20000 | Break-down occurred Processing is stopped.
20001 | The upper limit of iteration steps was Processing is stopped.
reached. The approximate values obtained up to
this point in array X are output, but their
precision cannot be guaranteed.
30000 | K<1,N<1, K<N, IWIDT<1, K<IWIDT, | Processing is stopped.
or
ITMAX <0

(3) Commentson use

a

b.

Subprograms used

SSL I1: AMACH, URIPA, URITI, URITT, URMVE, USSCP, URSTE, USVCN,
USVCP, USVSU, USVUP, USVYN2, URELT, MGSSL, UTFQE, UTFQR,

UQBBM

Comments

1) Inthe TFQMR method, if the residual Euclidean normis equal to or less than the
product of the initial residual Euclidean norm and EPS, it is judged as having
converged. The difference between the precise solution and obtained
approximate solution is equal to the product of the condition number of matrix A

and EPS.

Example of use

In this example, linear equations of coefficient matrices obtained by descretizing
partial differential operators are solved in the region [0,1] x [0,1] x [0,1] with the
Dirichlet boundary condition (function value zero at the boundary). Thistype of
partial differential operator is described in Part I, “Overview,” Section 3.2.2,
“Descretization of partial differential operator and storage examples for them.”

For INIT_MAT_ELL, seePart 1, “Overview,” Section 3.2.2, “Discretization of
partial differential operators and storage examples for them.”

INIT_SOL isthe routine that generates the solution vectors to be sought in random

numbers.
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C * % EXAVPLE* *
PROGRAM TEST_| TER_SOLVERS
| MPLI CI T REAL*8 (A-H, O 2)
PARAMETER ( MACH = 0)
PARAMETER (K = 10000)
PARAMETER (NX = 20, NY = 20, NZ = 20, N = NX*NY*NZ)
PARAMETER (I WDT = 7, NVW = K*13)
REAL*8 A(K, | WDT), X(N), B(N), SOLEX(N) , VW NVW
| NTEGER | COL(K, | W DT)

C
CALL | NI T_SOL(SOLEX, N, 1D0, MACH)
PRI NT*, ' EXPECTED SOLUTI ON
PRINT*,' X(1) = ', SOLEX(1),' X(N) = ', SOLEX(N)
PRI NT*
PRI NT*, ' TFQVR MVETHOD
PRI NT*, ' ELLPACK FORMAT'
C
VAL = 3D0
VA2 = 1D0/ 300
VA3 = 5D0
VC = 5D0
XL = 1.0
YL =1.0
ZL = 1.0
C
CALL | NI T_MAT ELL( VAL, VA2, VA3, VC, A, | COL
& ,NX, NY, NZ, XL, YL, ZL, | W DT, N, K)
CALL DVMVSE(A, K, | W DT, N, | COL, SOLEX, B, | CON)
PRI NT*, ' DVMVSE | CON = ', | CON
C
EPS = 1D 10
| GUSS = 0
| TMAX = 800
CALL DVTFQE(A, K, | W DT, N, | COL, B, | TMAX
& , EPS, | GUSS, X, | TER, VW | CON)
C
PRI NT*, ' DVTFQE | CON = ', | CON
PRI NT*, ' COMPUTED VALUE'
PRINT*, ' X(1) ="', X(1)," X(N) ="', X(N
STOP
END
(4) Method

For the TFQMR method, see [12].
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F18-11-0101 VWFLT, DVWFLT

Wavelet filter generation
CALL VWFLT (F, N, ICON)

(1) Function

This routine generates afilter corresponding to the Daubechies wavelet (order n) having a
compact support. Thefilters of order 2, 4, 6, 12, and 20 can be generated.

(2) Parameters

Foeiieie Output. One-dimensional array of size2 x N. Stores awavelet filter used for
transform.
(Seeitem (3), “Commentson use,” b., “1).")
N P Input. The number of wavelet filter coefficients. (2, 4, 6, 12, or 20)
ICON.......... Output. Condition code.

See Table VWFLT-1, “Condition codes.”

Table VWFLT-1 Condition codes

Code | Meaning Processing
0 No error -
30000 | Nisnot2, 4,6, 12, or 20. Processing is stopped.

(3) Commentson use
a. Subprograms used
None.
b. Comments
1) Filter conditions

The orthogonal filter used for this function is described by a vector of size 2 x N.
F() ,..., F(N) defines alow-pass filter; F(N+1), ..., F(2xN) defines a high-pass
filter. These coefficients satisfy the following relationships:

EF(i)zzl FN+1-i)=(-1)" F(@),i =1,..,N
i=1

For details, see[7] and [9].
c. Exampleof use

This example shows a one-dimensional wavelet transform and inverse transform for
data of size n = 1024.
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C ** EXAMPLE* *
| MPLICI T REAL*8(A-H, O 2)

c  -------- Constants ------------
| NTEGER MaxK, MaxSize
PARAMETER (MaxK = 20, MaxSi ze = 1024)

C - Variables and formats ------------
I NTEGER N, K, i, 1SN, |1 CON, LS
REAL*8 X(1: MaxSi ze), T(1: MaxSi ze), Y(1: MaxSi ze),

& F(1: 2* MaxK) ,
& i real , Emax, di ff,tenp, Xmax, Er el
C - Generate input ------------
N = 1024
K =6
LS = 3
DO 100 i= 1,N
ireal =i
tenp = 0.5 - abs(ireal/N - 0.5)
X(i) = tenp I I nput vector
T(i) = tenp I Reference vector
100 CONTI NUE
C e Initialize filter ------

CALL DWAFLT(F, K, I CON)
C  mmmm e TransformData ----------------
| SN=1

CALL DVIDWI(X, N, Y, I SN, F, K, LS, | CON)
IF (ICON .NE. 0) THEN

PRI NT*, ' ERROR | N 1D Wavel et Transform I CON = ', | CON
STOP
ENDI F
C  mmee e Transform back ---------------
| SN=-1

CALL DVIDWI(X, N, Y, 1SN, F, K, LS, | CON)
IF (1CON .NE. 0) THEN
PRI NT*,' ERROR | N I nverse of 1D Wavel et Transform'

& ,"1CON ="', 1CON
STOP

ENDI F

c  ------ Verify result ------

Enmax = 0.0

Xmax = 0.0

DO 200 i=1,N
diff = abs(X(i)-T(i))

IF (diff .GI. Emax) Emax = diff
I F (abs(X(i)) .GI. Xmax) Xmax = abs(X(i))
200 CONTI NUE
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Erel = Emax/ Xmax

IF (Erel .GTI. 1.0e-4) THEN
PRI NT*, ' Rel ati ve Max error (FWI):', Erel
STOP

END | F

PRI NT*, ' 1D Wavel et Transform OK'

STOP
END
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F18-12-0101 V1DWT, DV1DWT

One-dimensional wavelet transform

CALL VIDWT (X, N, Y, ISN, F, K, LS, ICON)

(1) Function

This routine performs a one-dimensional wavelet transform or itsinverse. The transform
is defined by its high- and low- pass filter coefficients.

(2) Parameters

) CER Input or output. One-dimensional array X(N). Stores vector datato be
transformed as input in the case of wavelet transform (ISN = 1);
the transformed vector datais stored as output in the case of the inverse
transform (ISN = -1).

[\ P Input. Length of the transformed data. Must be a power of two.
(Seeitem (3), “Commentson use,” b., 1).)

| Output or input. One-dimensional array Y (N). The transformed vector datais
stored as output in the case of the wavelet transform (ISN = 1); store vector data
to be transformed as input in the case of the inverse transform (ISN = -1).
(Seeitem (3), “Commentson use,” b., 2).)

ISN...ccoeeee. Input. Specify transform or inverse transform.
Transform: ISN =1
Inversetransform: 1SN =-1

Foiiis Input. One-dimensional array of size 2 x K. Stores the wavelet filter used for
transform. The user can supply either the filter coefficients F, or call VWFLT
before this routine to specify afilter coefficient used for the one-dimensional
wavelet transform.
(Seeitem (3), “Commentson use,” b., 3).)

Ko Input. A positive even number to indicate the number of the wavelet filter
coefficients.

LS e Input. A positive integer that indicates the depth of transform for vector data.
N = 25, When N = 25, afull wavelet transform is performed.

ICON.......... Output. Condition code.
See Table V1DWT-1, “Condition codes.”

Table VIDWT-1 Condition codes

Code | Meaning Processing

0 No error -

30000 [ISN#1andISN -1 Processing is stopped.

30002 | N<2

30004 | N isnot apower of 2.

30008 | K isnotanevennumber, or LS<0,LS | Processing is stopped.

> log,N
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(3) Commentson use
a. Subprograms used
SSL I1: UWFT1, UWFI1, UWPT1, UWVI1, UWPI1, UWVT1, MGSSL
b. Comments

1) When the size of the data to be transformed is not a power of two, the wavel et
transform can be done storing the data with the remaining data padded with
zerosin alarger array with size N of a power of two.

2) Storing the transform result

For vector v; in one-dimensional input data, the result of the high-pass filter in
each partial wavelet transform is stored in v; (Nx2'+1:Nx2"%), i=1, ..., LS. The
output result of the high-pass filter for partial wavelet transform in the first stage
isstoredin Y(N/2 + 1:N, M/2 + 1: M).

3) Filter conditions

The orthogonal filter used for this function generally has a vector of size 2 x K.
F(2), ..., F(K) defines the low-pass filter coefficients; F(K+1), ..., F(2xK) defines
the high-pass filter coefficients. These coefficients have the following
relationships:

K
Z Fi)?=1 FK +1-i)=(-1)' F(i),i=1..,K

For details, see[7] and [9].
c. Exampleof use

For data of size n = 1024, perform the one-dimensional wavelet transform and
inverse transform.

C ** EXAMPLE* *
| MPLICI T REAL*8(A-H, O 2)

C  -------- Constants ------------
| NTEGER MaxK, MaxSi ze
PARAMETER ( MaxK = 20,

& MaxSi ze = 1024)

C - Variables and formats ------------
I NTEGER N, K, i, 1SN, 1 CON, LS
REAL*8 X(1: MaxSi ze), T(1: MaxSi ze), Y(1: MaxSi ze),

& F(1: 2* MaxK),

& i real , Emax, di ff,tenp, Xmax, Er el
C - CGenerate input ------------

N = 1024

K =6

LS = 3

DO 100 i= 1,N

ireal =i
.5 - abs(ireal/N - 0.5)

,_.
[¢)
3
11

o

tenp I I nput vector
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T(i) = tenp I Reference vector
100 CONTI NUE

C  meeee e Initialize filter ------
CALL DWAFLT(F, K, I CON)

C - TransformDbData ----------------
| SN=1

CALL DVIDWI(X, N, Y, 1SN, F, K, LS, | CON)
IF (1CON . NE. 0) THEN

PRI NT*,' ERROR I N 1D Wavel et Transform I CON = ', | CON
STOP
ENDI F
C - Transform back ---------------
| SN=-1

CALL DVIDWI( X, N, Y, ISN, F, K, LS, | CON)
IF (ICON .NE. 0) THEN
PRI NT*, ' ERROR I N I nverse of 1D Wavelet Transform'

& ,"1CON = ", 1 CON
STOP

ENDI F

c  ------ Verify result ------

Emax = 0.0

Xmax = 0.0

DO 200 i=1,N
diff = abs(X(i)-T(i))

IF (diff .GI. Emax) Emax = diff
I F (abs(X(i)) .GI. Xmax) Xmax = abs(X(i))
200 CONTI NUE

Erel = Emax/ Xmax

IF (Erel .GT. 1.0e-4) THEN
PRI NT*, ' Rel ati ve Max error (FWI):', Erel
STOP

END | F

PRI NT*, ' 1D Wavel et Transform OK

STOP
END

(4) Method

A partial wavelet transform of a vector s (usually asignal) of length N is obtained by
applying alow-pass and a high-pass filters. The subvector w, ..., Wy, is obtained by
applying the low-passfilter to s. The subvector Wiy 1, ..., W, is obtained by applying the
high-pressfilter to s.

A wavelet transform is the recursive application of a partial wavelet transform to the
subvector containing the low-pass filtered components, up to log, (n) times. Each
application involves only half the data of the previous application.
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Asthefirst step dominates the amount of computational work, the complexity transform
isO (K x N), where K isthe order of the wavelet in question and N is the length of the
vector being transformed.

The implemented transform treats only periodic data. If applied to non-periodic data
artificial discontinuities appear at the endpoints and have an effect on the transform. To
minimize this similar techniques as used for fourier transforms (interpolation, padding
with mirrored data) may also be applied.

Introductory material on wavelet transforms can be found in [15][39], and further
applications are described in [35]. Anin-depth treatment of the subject isgivenin [7][9].
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F18-13-0101 V2DWT, DV2DWT

Two-dimensional wavelet transform

CALL V2DWT (X, M, N, Y, ISN, F, K, LSX, LSY, ICON)

(1) Function

This routine performs atwo-dimensional wavel et transform or itsinverse. The transform
is defined by its high- and low-pass filter coefficients.

(2) Parameters

) G Input or output. Two-dimensional array of X(M, N). Storesthe two-
dimensional datato be transformed as input in the case of transform (ISN = 1);
the two-dimensional data transformed is stored as output in the case of inverse
transform (ISN = -1).

1/ D Input. The number of rows containing the datato be transformed. A positive
integer indicated by a power of two.
(Seeitem (3), “Commentson use,” b., 1).)

)\ S Input. The number of columns containing the data to be transformed. A
positive integer indicated by a power of two.
(Seeitem (3), “Commentson use,” b., 1).)

Y e Output or input. Two-dimensional array Y (N, M). The transformed data as
output in the case of transform (1SN = 1) store the data to be transformed as
input in the case of inverse transform (ISN = -1).
(Seeitem (3), “Commentson use,” b., 2).)

ISN............ Input. Specify transform or inverse transform.
Transform: ISN =1
Inversetransform: ISN =-1

Foeereieiens Input. One-dimensional array of size 2 x K. Stores the wavelet filter
coefficients used for transform. The user can supply either the filter
coefficients themselves or call VWFLT before this routine to specify filter
coefficients used for two-dimensional wavelet transform.

(Seeitem (3), “Commentson use,” b., 3).)

Koiorreeeeieens Input. The number of wavelet filter coefficients.

LSX.ooeenne Input. A positive integer that indicates the depth of transform for each column.
M = 2-X. When M = 2% afull wavelet transform is performed.

LSY.......... Input. A positive integer that indicates the depth of transform for each row. N
> 25, When N = 2", afull wavelet transform is performed.

ICON.......... Output. Condition code.

See Table V2DWT-1, “Condition codes.”
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TableV2DWT-1 Condition codes

Code | Meaning Processing
0 No error -
30000 | ISN#1andISN#-1 Processing is stopped.
30002 | M<2or N<2
30004 | Either M or N is not a power of two.
30008 | K isnot an even number,

or LSX <0, LSX >log,M,

LSY <0, LSY >log,N

(3) Commentson use

a. Subprograms used
SSL 11: UWFT2, UWFI2, UWPT2, UWVI2, UWPI2, UWTRP, UWVT2, MGSSL

Comments

C.

1)

2)

3)

When the size of the datato be transformed is not a power of two, the wavel et
transform can be done storing the data with the remaining data padded with
zerosin alarger array with size (M, N) of a power of two.

Storing the transform result

For column vector ¢; and row vector rj in two-dimensional input data, the result
of the high-pass filter in each wavel et transform row are respectively stored in ¢
(Mx2'+1:Mx2"1),i=1, ..., LSX and r; (Nx2'+1:Nx2"), i=1, ..., LSY. The
result of the two-dimensional wavelet transform is transposed and stored in array
Y.

The output result of the high-pass filter for partial wavelet transform in the first
stageisstored in Y(N/2 + 1:N, M/2 + 1:M).

Filter conditions

The orthogonal filter used for this function generally has a vector of size 2 x K.
F(2), ..., F(K) defines the low-pass filter coefficients; F(K+1), ..., F(2xK) defines
the high-pass filter coefficients. These coefficients have the following
relationships:

K
Z Fi)?=1 FK +1-i)=(-1)' F(i),i=1..,K

For details, see[7] and [9].

Example of use

For two-dimensional data (1024 x 512), perform the two-dimensional wavel et

transform and inverse transform.
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C ** EXAMPLE* *
| MPLICI T REAL*8(A-H, O 2)

c  -------- Constants ------------
| NTEGER MaxK, MaxSi ze
PARAMETER (MaxK = 20, MaxSi ze = 512*1024)

C - Variables and formats ------------
| NTEGER M N, K, i, row, i ndex2D, | SN, | CON, LSX, LSY
REAL*8 X(1: MaxSi ze), T(1: MaxSi ze), Y(1: MaxSi ze),

& F(1: 2* MaxK) ,
& i real , Emax, di ff,tenp, Xmax, Er el
C - Generate input ------------
M = 1024
N = 512
K =6
LSX = 3
LSY = 4
DO 99 row =1, M
DO 100 i= 1,
ireal =i
temp = 0.5 - abs(ireal/N - 0.5)
ireal = row

tenp = tenp + 0.5 - abs(ireal/M- 0.5)
i ndex2D = row + (i-1)*M

X(index2D) = tenp I I nput vector
T(i ndex2D) = tenp I Reference vector
100 CONTI NUE
99  CONTI NUE
C  mmeeeeeeeee - Initialize filter ------

CALL DWAFLT(F, K, I CON)
C - TransformbData ----------------
| SN=1

CALL DV2DWI(X, M N, Y, | SN, F, K, LSX, LSY, | CON)
IF (1CON . NE. 0) THEN

PRI NT*, ' ERROR I N 2D Wavel et Transform | CON = ', | CON
STOP
ENDI F
C - Transform back ---------------
| SN=-1

CALL DV2DWI( X, M N, Y, | SN, F, K, LSX, LSY, | CON)
IF (1CON .NE. 0) THEN
PRI NT*, ' ERROR I N | nverse of 2D Wavel et Transform'
& ,"1CON = ', | CON
STOP
ENDI F
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V2DWT, DV2DWT

0.0
0.0
DO 199 row =1, M
DO 200 i=1,N
i ndex2D = row + (i-1)*M
di ff = abs(X(i ndex2D)-T(i ndex2D))
IF (diff .GI. Emax) Emax = diff
| F (abs(X(index2D)) .GT. Xnmax)
& Xmax = abs(X(index2D))
200 CONTI NUE
199 CONTI NUE

Erel = Emax/ Xmax

IF (Erel .GT. 1.0e-4) THEN
PRI NT*, ' Rel ati ve Max error (FWI):', Erel
STOP

END | F

PRI NT*, ' 2D Wavel et Transform OK

STOP
END

(4) Method

A partial wavelet transform of a vector s (usually asignal) of length n is obtained by
applying alow-pass and a high-pass filters. The subvector wy, ..., Wy, is obtained by
applying the low-passfilter to s. The subvector Wyy.4, -.., W, iS obtained by applying the
high-pressfilter to s.

A wavelet transform is the recursive application of a partial wavelet transform to the
subvector containing the low-pass filtered components, up to log, (n) times. Each
application involves only half the data of the previous application.

Asthefirst step dominates the amount of computational work, the complexity of each 1D
transform is O(K x N), where K isthe order of the wavelet in question and N is the length
of the vector being transformed.

In the two-dimensional case, awavelet transform is applied to each column of the matrix
with depth LSX and then to each row of the resultant matrix with depth LSY .

The implemented transform treats only periodic data. If applied to non-periodic data
artificial discontinuities appear at the endpoints and have an effect on the transform. To
minimize this similar techniques as used for fourier transforms (interpolation, padding
with mirrored data) may also be applied.

Introductory material on wavelet transforms can be found in [15][39], and two-
dimensional transforms are described in [35]. Anin-depth treatment of the subject is

givenin [7][9].
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Appendix B

Contributors and Their Work

Contributor

Subroutine name

Function

Richard Peirce Brent

DVRAN3

Generation of normal random numbers
(double precision)

DVRAN4

Generation of normal random numbers
(double precision, Wallace's method)

Richard Peirce Brent
Peter Frederick Price

DVRAU4

Generation of uniform random numbers
[0, 1) (double precision)

Andrew James Cleary

VBLDL

LDL" decomposition for a symmetric
positive definite banded matrix (modified
Cholesky decomposition)

VBLDX

System of linear equationswith a LDL"
decomposed symmetric positive definite
banded matrix

VBLU

System of linear equations for a banded
real matrix (Gaussian elimination)

VLSBX

System of linear equations with a
symmetric positive definite banded matrix
(modified Cholesky decomposition)

Murray Leslie Dow

VBCSD

System of linear equations with
unsymmetric or indefinite sparse matrix
(BICGSTAB(Il) method, diagonal storage
format)

VBCSE

System of linear equations with
unsymmetric or indefinite sparse matrix
(BICGSTAB(l) method, ELLPACK
storage format)

VCGD

System of linear equations with a
symmetric positive definite sparse matrix
(preconditioned CG method, diagonal
storage format)

VCGE

System of linear equations with a
symmetric positive definite sparse matrix
(preconditioned CG method, ELLPACK
storage format)

Markus Hegland
Judith Helen Jenkinson
Murray Leslie Dow

VMCFT

Singlevariate, multiple and multivariate
discrete complex Fourier transform (mixed
radix)

Markus Hegland
Christopher Robert Dun

VLTQR

System of linear equations with real
tridiagonal matrix (QR factorization)
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Contributors and Their Work

Contributor

Subroutine name

Function

Margaret Helen Kahn

VHEVP

Eigenvalues and eigenvectors of Hermitian
matrices (tridiagonalization, multisection
method, and inverse iteration)

VSEVP

Eigenvalues and eigenvectors of rea
symmetric matrices (tridiagonalization,
multisection method, and inverse iteration)

Jeoffrey Keating

VMRFT

Multiple and multivariate discrete real
Fourier transform (mixed radices of 2, 3,
and 5)

VSRFT

One-dimensional and multiple discrete real
Fourier transform (mixed radices of 2, 3,
and 5)

Zbigniew Leyk

VCRD

System of linear equations with an
unsymmetric or indefinite sparse real
matrix (MGCR method, diagonal storage
format)

VCRE

System of linear equations with an
unsymmetric or indefinite sparse real
matrix (MGCR method, ELLPACK
storage format)

VMVSD

Multiplication of areal sparse matrix and a
real vector (diagonal storage format)

VMVSE

Multiplication of areal sparse matrix and a
real vector (ELLPACK storage format)

Zbigniew Leyk
Murray Leslie Dow

VQMRD

System of linear equations with an
unsymmetric or indefinite sparse real
matrix (QMR method, diagonal storage
format)

VQMRE

System of linear equations with an
unsymmetric or indefinite sparse real
matrix (QMR method, ELLPACK storage
format)

VTFQD

System of linear equations with an
unsymmetric or indefinite sparse real
matrix (TFQMR method, diagonal storage
format)

VTFQE

System of linear equations with an
unsymmetric or indefinite sparse real
matrix (TFQMR method, ELLPACK
storage format)

Zbigniew Leyk
David Lawrence Harrar 11

VLAND

Eigenvalues and eigenvectors of areal
symmetric sparse matrix
(Lanczos method, diagonal storage format)

Ole Mgller Nielsen

VWFLT

Wavelet filter generation
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Contributors and Their Work

Contributor

Subroutine name

Function

Ole Mdiller Nielsen
Markus Hegland
Gavin John Mercer

VIDWT

One-dimensional wavelet transform

David Lawrence Harrar 11

Ole Mgller Nielsen V2DWT Two-dimensiona wavelet transform
Markus Hegland
Michael Robert Osborne | VTDEV Eigenvalues and eigenvectors of real

tridiagonal matrix
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