LF Fortran 95 Language
Reference

Revision G.02

Copyright

Copyright © 1994-2004 by Lahey Computer Systems, Inc. All rights reserved worldwide. This manual
is protected by federal copyright law. No part of this manual may be copied or distributed, transmitted,
transcribed, stored in aretrieval system, or translated into any human or computer language, in any form
or by any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties.

Trademarks

Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Disclaimer

Lahey Computer Systems, Inc. and Fujitsu, Ltd. reservetheright to revise their software and publications
with no obligation to notify any person or any organization of such revision. In no event shall Lahey
Computer Systems, Inc. or Fujitsu, Ltd. be liable for any loss of profit or any other commercial damage,
including but not limited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
865 Tahoe Boulevard
P.O. Box 6091
Incline Village, NV 89450-6091
(775) 831-2500
Fax: (775) 831-8123

http://www.lahey.com

Technical Support
support2@lahey.com (all versions)

Table of Contents

INtroduction.....cccoeeeveeiiiiiiiiee e, Vii
Manual Organizationc.cceerereerereeeennes vii
Notational Conventions...........cccceeeeeeeveeneenne viii

Elements of Fortran..........cccceeeeeeeieennnnnn, 1
Character Set.......covviveeeeeiee e 1
NAMES.....ooi e 1
Statement Labels......oooeeeeeieeececceececee e 2
SOUrCE FOIM ... 2
Data....ccoccee e e 4
EXPreSSIONS.oovieereeriereeieeeseeeeeeressesseesenees 19
[NPUL/OULPUL. ... 22
Input/Output EAiting........ccoeeeeverienienernienn. 25
SAEMENES....eee e 33
Executable CONStrUCtS..........ccveveeereereeneecneenne. 42
Proceduresccoveveiveeieceeecreeceee e 43
Program UNitS.........cccoevvvnereveneeneeereseeeens 55
SCOPE .ttt 58

Alphabetical Reference....................... 61
ABSFUNCLION ..., 61
ACHAR FUNCLION......cceeivieeecee e 62
ACOS FUNCLION ... 62
ADJUSTL FuNCtion.........cccceeeeeeeiieecie e 63
ADJUSTR FUNCLIONccvveevieiieeeeceeee e, 63
AIMAG FUNCLIONcoovvereeieciecreeeereeee e 64
AINT FUNCLION ..ot 64
ALL FUNCLION ...t 65
ALLOCATABLE Statement..........ccceveuvennen. 66
ALLOCATE Statementcccooeeeveeveeeeriveennn. 67
ALLOCATED Function.......c..ccceevveveeveeeneenee. 69
ANINT FUNCLON.......coveevieerieieere e, 69
ANY FUNCLION ...ooviieeciecee e 70
Arithmetic IF Statement (obsolescent)......... 71
ASIN FUNCLION......ccoeieecieceece e, 72
Assigned GOTO Statement (obsolescent).... 73
ASSIGN Statement (obsolescent) 73
Assignment Statementccoeevvrereieeieenns 74
ASSOCIATED Function........cccceeeevieenennen. 77
ATAN FUNCION ..ot 78

ATANZ2 FUNCLION ..ot 79
BACKSPACE Statementccccevveeeeveenene. 80
BIT_SIZE FUNCLiON......ccceveeeeeeeeeecece e 81
BLOCK DATA Statementcccocvevvevrennene. 81
BTEST FUNCLIONcovveveecieee e, 82
CALL Statementccoeeeveeevreieeiecreesreninens 83
CARG FUNCLION ...ccvvcveieecre e 86
CASE COoNnStruCt........ccccvveeeeieeeciee e 88
CEILING FUNCHON......ccveericieeie e creecreereens 90
CHAR FUNCLION ..ot 91
CHARACTER Statement........c.cccceeeeveeirennenns 91
CLOSE Statementceeevveeeeveeieeieeireeirensens 94
CMPLX FUNCHON.....ccvvereecrieeeecre e ereecreerens 95
COMMON Statementccvevveveereereeseineens 96
COMPLEX Statement..........cccevveeeireereesvennnens 98
Computed GOTO Statement (obsolescent).100
CONJG FUNCLioN......cceereerecrecreecreeeeere e 101
CONTAINS Statement.........cccceveveevrereennnne. 102
CONTINUE Statementccccoeeveveeveerenne. 103
COS FUNCLION....ccviiteeiereerectecree e 103
COSH FUNCLioN.......cccoeereecieeee e 104
COUNT FUNCLION.....cceereerecreereeereeeeere e 104
CPU_TIME Subrouting........ccccoeeeeveeeecnenne. 105
CSHIFT FUNCLON......cccveevecricveecreeeeere e 106
CYCLE Statement........ccceveveeeercrvecvrcveeenene 107
DATA Statement........ccoeeveveeeeieeereiieeereenens 108
DATE_AND_TIME Subroutine.................. 110
DBLE FUNCtionccceveeiiecee e, 111
DEALLOCATE Statementcccceevevenen. 112
DIGITSFUNCLONveeveieeiecreerecreeere e 113
DIM FUNCLION......coieiieeieectee et 113
DIMENSION Statementcccccoeeveeveennenee. 114
DLL_EXPORT Statementccccueeveueeneae 115
DLL_IMPORT Statement..........cccccevrvereenenn 116
DO CONSLIUCEcceeeeecieeeecieeeciee e 116
DOT_PRODUCT Function.........ccccecvvvevuenenn 119
DOUBLE PRECISION Statement............... 120
DPROD FUNCLion......c.cccvevveeeceeeevee e, 122
DVCHK Subroutine (Windows Only).......... 122
ELEMENTAL Procedure..........cccccoeevvenene.. 123

LF Fortran 95 Language Reference i

Contents

iv

END Statement........ccocevveevieeniecieeneeeeeee e 125
ENDFILE Statementccccovevveeveeeecrecreenn, 126
ENTRY Stafement.......ccccovevvereecerieecerevnennn, 127
EOSHIFT FUNCLioNccoeevvevereceecvecveenee, 129
EPSILON FUNCLIONcccevvevectiereceerecveene, 130
EQUIVALENCE Statement...........ccccucu..... 131
ERROR Subrouting........c.cccceeveeeeeeeceeeveennn, 132
EXIT Statementcoeeeeeveeveeereeeeceeeeeveene, 133
EXIT Subrouting........ccccoveeveeeeee e 133
EXP FUNCHON ..ottt 134
EXPONENT Function........c.ccceevveeeeveeneennn. 134
EXTERNAL Statement.........cccoeevevecerevnnee. 135
FLOOR FUNCLION......cveeeereereecreereeere e 136
FLUSH Subrouting........coeeeeeecveeeecveeveenne, 137
FORALL Construct.........ccoceeeeeeeiiieeeeceeeens 137
FORALL Statementcocceeeeveevevreeveeneene. 138
FORMAT Statementccoveveeveeeecveereennn, 139
FRACTION Function........cccceeceeveeeeeenenne. 146
FUNCTION Statement.........cccceeveeeveereereennn. 146
GETCL SUbrouting..........cccceceveecveereenveenene, 149
GETENV Subroutingccceeeeeevveecveeenennns 149
GO TO Statement..........coceeeveeeveesireeieeineens 150
HUGE FUnction.........cccoeeveveeeeceececeve e, 150
IACHAR FUNCLIONcveeveeeevee e, 151
IAND FUNCLION......cciecviireecie e, 152
IBCLR FUNCLIONoooveiveeeeceectee et 152
IBITSFUNCLION......ccoveeeeiieeeeee e 153
IBSET FUNCLION......c.cccviereeie e 154
ICHAR FUNCLION ..., 155
IEOR FUNCLIONveeeveeeieececeeee e 155
IF CONSLIUCEecieecieece et 156
IF StAtEMENt ...ocvveevecvecriceecce e 157
IMPLICIT Statement.........cccoveveevevieeieennens 158
INCLUDE LiN€....oooviceieieeeie et 160
INDEX FUNCLION ...cccvveeeeeiieciecreecee e, 161
INQUIRE Statement.........ccccceeeeeeereceenenne. 162
INT FUNCLIONc.veetieeeierieeecece e 166
INTEGER Statement.........cccoovevevveeceeiieennns 167
INTENT Statement........ccoceeevveeeverieeieennens 168
INTERFACE BIOCKooveeveiveeieciecieeeenns 169
INTRINSIC Statementcceeevvvvevereeeennnns 175
INVALOP Subroutine (Windows only)...... 176
IOR FUNCLION.....veoveceieerieieceecre e 176
IOSTAT_MSG Subroutine............ccccuueeee 177

LF Fortran 95 Language Reference

ISHFT FUNCLIONccveeeiiceeceeeceeeecreeie s 178
ISHFTC FUNCLiON......coeeveieerecreeiecreeeeere 179
KIND FUNCLION ..ot 179
LBOUND Function..........ccceevveveeeveereeneeerenne 180
LEN FUNCLION........coeiieie e 181
LEN_TRIM Function...........ccccoeeeveeiveveennnnne. 182
LGE FUNCLION.....c.ccoeeieeiie et 182
LGT FUNCLION.....c.eoeeeiieeee et 183
LLE FUNCLION......coooieeeecteeceece et 184
LLT FUNCLION....ccieceeiicee e 185
LOG FUNCLIONoeeeeeitieie et 186
LOGI10 FUNCLION.....oeeeeeeriecieecee et 187
LOGICAL Function..........ccccoveveeeveereeneeerenne, 187
LOGICAL Statement........ccccveveeereereereeerenne, 188
MATMUL FUNCLioN........c.ccoveeeveeiveeeceereens 190
MAX FUNCLION......coeiieie e 191
MAXEXPONENT Function............cccc...... 192
MAXLOC FuNCtion........c.cceeueeeveeiieeeeeeereenns 192
MAXVAL FUNCtioN......c..cccoeveveeirecreeireerene, 193
MERGE FUNCLIONcccoeveereirecrecreceeeve 194
MIN FUNCLION.......cooieeee e 195
MINEXPONENT Functioncceeevenenee. 196
MINLOC FUNCLION.......cceirereireerecreeee v 197
MINVAL FUNCLioNcccvveeeeieeiteeeeeie 198
ML_EXTERNAL Statementccceueueee. 199
MOD FUNCLiON......cccoiieieieerecreeeereeee v 199
MODULE Statementccccoveveeveereerenernnne 200
MODULE PROCEDURE Statement........... 201
MODULO FUNCLioN........ceveeereeiieeecieeveens 202
MVBITS Subrouting..........coeeeveeiveeeeeennnenns 202
NAMELIST Statementcccceeeeeevveeeeenenns 203
NDPERR Function (Windows Only)........... 204
NDPEXC Subroutine (Windows Only)........ 205
NEAREST FUNCLIONcooveveireeiereeeeeree, 206
NINT FUNCLION......coieeeecrieceece e 206
NOT FUNCLIONceeieeeeecteeceece et 207
NULL FUNCLION......ccoiiereieerecreetecreecee v 208
NULLIFY Statementccoeeeeveeveereereeennene, 208
OPEN Statementcccoeveeveeeecreereeereereennn, 209
OPTIONAL Statement........cccceeeeveeveecveeneenen. 212
OVEFL Subroutine (Windows Only) 213
PACK FUNCLION......coeeeeecvieceece et 213
PARAMETER Statementcccevveevennenee. 214
PAUSE Statement (obsolescent).................. 215

Contents

Pointer Assignment Statement.............c...... 215 SYSTEM Subrouting........cccceevvevrevereenene 252
POINTER FUNCLION ..o 216 SYSTEM_CLOCK SUbrouting......oomeneenn. 253
POINTER Statementcccoceeeeeeieeeeeeeennnne 217 .
PRECFILL Subroutin ..o 218 TAN FUNCLION ... 253
PRECISION FUNCLIONveevveeeeieccieeeee e 218 TANH FUNCtionccccoeeeeeviecceecee e, 254
PRESENT FUNCLION.......ceeeeeeeeeeeeeeeieeee e 219 TARGET StateMENt o.eeee oo 255
PRINT Statement..........coovveeveeeicveeeeieee e, 220 .
PRIVATE Statement ... 201 TINY FUNCHION.....uviiiiicciiieee e, 255
PRODUCT FUNCLONccveeeeeceee e 222 TRANSFER Function..........ccoovvvvcininnnnen, 256
PROGRAM Statementccoocouervivnaeee. 223 TRANSPOSE FUNCHON........cooevveerereeerereenn. 257
PUBLIC Statementcceeeeveveevveeecvee e, 224 .
PURE Procedure..._ 295 TRIM FUNCLION.....vviiiciciiiiee e 257
RADIX FUNCHON ..o 226 Type Declaration Statement................cocce. 258
RANDOM_NUMBER Subroutine.............. 227 TYPE Statement.......c.cueeeeeeeeeeeeeeeseeesene 258
RANDOM _SEED Subroutine..................... 227 .
RANGE FUNCHON w..oooeoosoeooeoeson 228 UBOUND FUNCHON .ot 260
READ Statementcoeeveeveeeieeseeeereennens 229 UNDFL Subroutine (Windows Only).......... 261
REAL FUNCLION.......cviee e 231 UNPACK FUNCLION ... 262
REAL &aernmt -- 232 USE Stmmler]t 263
REPEAT FUNCLON.....ovcvvecreeeeeeee e 234 S mmmmmmmm——
RESHAPE FUNCHON oo 234 VAL FUNCLION ..t 264
RETURN Statementcoeeveevvrcveeeeennnen. 235 VALUE Statementccceeeeeeeeeeeee e, 265
REWIND SIEMEN ..o 236 VERIFY FUNCHON e 266
RRSPACING FUNCLION.......cccveeeeeieeee e 237
SAVE Statement......cccceevvveveeeieeeree e 237 VOLATILE StAement..............oooovvvvvvvvveneen 267
SCALE FUNCHIONcveevvevicteececeeee e 238 WHERE CONSIIUCEcceevvveeceeciee e, 268
SCAN FUNCLION ..o 239 WHERE Statement ... 270
SELECTED_INT_KIND Function............. 240
SELECTED_REAL_KIND Function....... oa1 WRITE StatemMentcccevevieeieeeereeseeeeee e 271
SEQUENCE Statementcccceevereeneenennn. 242 NIT
SET _EXPONENT Function.........cccccceevuenee. 242 Fortran 77 Compatibility 275
SHAPE FUNCEIONcveveeeceeeeceee e 243 Different Interpretation Under Fortran 95....275
g:ﬁ’\'l: FUHC[IOH ... gﬁ leferent |nterpretatlon Undaﬂ Fortran 90""275
(U]t (o o
SINH FUNCHON. oo 245 ObS0IESCENt FORUIES. .oceveeeveserererens 276
SIZE Functlon..... .. 245 New in Fortran 95. ... 277
SPACING Function.........cccceeeeveeiveeceieeeens 246
SPREAD Fu.nctlon 247 Intrinsic Procedures___ 283
SQRT FUNCLiON......ooiiiee e 248
Statement FUNCLIONoocueeeeeeeeeeee e, 248 Porting EXteNSIONS oo 305
STOP Statementoceeveveeveeeeeeeeeeeeeeee s 249
SUBROUTINE Statement..........cccovereeeeeenn. 250 GlOSSArY coooeeieiee e 309
SUM FUNCLION ..ot 251
SYSTEM Function (Linux only)................. 252 ASCIl Character Set.......ccccoeeeeeecennnnes 319

LF Fortran 95 Language Reference v

Contents

Vi LF Fortran 95 Language Reference

Introduction

L ahey/Fujitsu Fortran 95 (LF95) is a complete implementation of the Fortran 95 standard.
Numerous popular extensions are supported.

Thismanual isintended asareferenceto the Fortran 95 |anguage for programmerswith expe-
riencein Fortran. For information on creating programs using the LF95 Language System,
see the Lahey/Fujitsu Fortran 95 User’s Guide.

Manual Organization

The manual is organized in eight parts:

Chapter 1, Elements of Fortran, takes an elemental, building-block approach, start-
ing from Fortran’s smallest elements, its character set, and proceeding through
source form, data, expressions, input/output, statements, executable constructs, and
procedures, and ending with program units.

Chapter 2, Alphabetical Reference, gives detailed syntax and constraints for Fortran
statements, constructs, and intrinsic procedures.

Appendix A, Fortran 77 Compatibility, discussesissues of concern to programmers
who are compiling their Fortran 77 code with LF95.

Appendix B, New in Fortran 95, lists Fortran 95 features that were not part of stan-
dard Fortran 77.

Appendix C, Intrinsic Procedures, is atable containing brief descriptions and spe-
cific names of procedures included with LF95.

Appendix D, Porting Extensions, lists the various non-standard features provided to
facilitate porting from other systems.

Appendix E, Glossary, defines various technical terms used in this manual.

Appendix F, ASCII Chart, details the 128 characters of the ASCI| set.

LF Fortran 95 Language Reference

Vii

Introduction

Notational Conventions

The following conventions are used throughout the manual:
bluetext indicates an extension to the Fortran 95 standard.
code isindicated by courier font.

In syntax descriptions, [brackets] enclose optional items. An ellipsis, “...”, following an
item indicates that more items of the same form may appear. Italicsindicate text to be
replaced by you. Non-italic lettersin syntax descriptions are to be entered exactly as they

viii LF Fortran 95 Language Reference

Elements of Fortran

Character Set

The Fortran character set consists of
o |etters:

ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghijkl mnopgrstuvwxyz

« digits:
0123456789
» gpecia characters:
<blank> =+-*/ (), . "' 1" %&; <>?%

» and the underscore character *
Special characters are used as operators, as separators or delimiters, or for grouping.
‘?” and ‘$’ have no special meaning.

Lower case letters are equivalent to corresponding upper-case | etters except in CHARAC-
TER literas.

The underscore character can be used as a hon-leading significant character in a name.

Names

Names are used in Fortran to refer to various entities such as variables and program units. A
name starts with aletter or a‘$’ and consists entirely of letters, digits, underscores, and the
‘$’ character. A standard conforming name must be 31 charactersor lessin length, but LF95
accepts names of up to 240 charactersin length.

LF Fortran 95 Language Reference 1

Chapter 1 Elements of Fortran

Examples of legal Fortran names are:

aAaAa appl es_and_or anges r2d2
rose ROSE Rose

The three representations for the names on the line immediately above are equivalent.
Thefollowing names areillegal:

_start_wi th_underscore

2start_with_a digit

name_t 00&
&000&
&000&
&000&
&000000000_| ong

illegal _@character

Statement Labels

Fortran statements can have labels consisting of one to five digits, at least one of which is
non-zero. Leading zerosare not significant in distinguishing statement labels. Thefollowing
labels are valid:

123
5000
10000
1
0001

Thelast two labels are equivalent. The same statement label must not be given to more than
one statement in a scoping unit.

Source Form

Fortran offers two source forms: fixed and free.

Fixed Source Form

Fixed source form is the traditional Fortran source form and is based on the columns of a
punched card. There are restrictions on where statements and labels can appear on aline.
Except in CHARACTER literals, blanks are ignored.

2 LF Fortran 95 Language Reference

Free Source Form

Except within a comment:
e Columns 1 through 5 are reserved for statement labels. Labels can contain blanks.

e Column 6 isused only to indicate a continuation line. 1f column 6 contains a blank
or zero, column 7 begins anew statement. If column 6 contains any other character,
columns 7 through 72 are a continuation of the previous non-comment line. There
can be up to 19 continuation lines. Continuation lines must not be labeled.

e Columns 7 through 72 are used for Fortran statements.
e Columnsafter 72 areignored.

Fixed source form comments are formed by beginningalinewitha‘C ora‘*’ in column 1.
Additionally, trailing comments can beformed by placinga‘! * in any column except column
6. A" inaCHARACTER litera does not indicate atrailing comment. Comment lines
must not be continued, but acontinuation line can contain atrailing comment. An END state-
ment must not be continued.

The*; ' character can be used to separate statements on aline. If it appearsina CHARAC-
TER literal or in acomment, the‘; ' character is not interpreted as a statement separator.

Free Source Form

In free source form, there are no restrictions on where a statement can appear on aline. A
line can be up to 132 characterslong. Blanksare used to separate names, constants, or |abels
from adjacent names, constants, or labels. Blanksare al so used to separate Fortran keywords,
with the following exceptions, for which the blank separator is optional:

» BLOCK DATA
» DOUBLE PRECISION

» ELSEIF

« END BLOCK DATA
« ENDDO

« ENDFILE

*+ END FUNCTION

« ENDIF

» END INTERFACE

« END MODULE
 END PROGRAM
 END SELECT

» END SUBROUTINE

« ENDTYPE

« END WHERE
+ GOTO

* INOUT

» SELECT CASE

LF Fortran 95 Language Reference 3

Chapter 1 Elements of Fortran

Data

The*! ' character begins acomment except when it appearsin aCHARACTER literal. The
comment extends to the end of the line.

The*; ' character can be used to separate statementson aline. If it appearsina CHARAC-
TER literal or in acomment, the‘; ' character is not interpreted as a statement separator.

The'&' character asthe last non-comment, non-blank character on alineindicatesthelineis
to be continued on the next non-comment line. If aname, constant, keyword, or label is split
across the end of aline, the first non-blank character on the next non-comment line must be
the*& character followed by successive characters of the name, constant, keyword, or label.

If aCHARACTER literal isto be continued, the ‘& character ending the line cannot be fol-
lowed by atrailing comment. A free source form statement can have up to 39 continuation
lines.

Comment lines cannot be continued, but a continuation line can contain atrailing comment.
A line cannot contain only an ‘&' character or contain an ‘& character asthe only character
before a comment.

Fortran offers the programmer avariety of waysto store and refer to data. Y ou can refer to
dataliterally, asinthereal numbers4. 73 and 6. 23E5, theintegers- 3000 and 65536, or the
CHARACTER literal " Cont i nue (y/n)?". Or, you can store and reference variable data,
using namessuch asx ory, DI STANCE_FROM ORI G Nor USER_NAME. Constants such aspi
or the speed of light can be given names and constant values. Y ou can store data in a fixed-
sizeareain memory, or allocate memory asthe program needsit. Finally, Fortran offersvar-
ious means of creating, storing, and referring to structured data, through use of arrays,
pointers, and derived types.

Intrinsic Data Types

Thefiveintrinsic datatypesare INTEGER, REAL, COMPLEX, LOGICAL, and CHARAC-
TER. The DOUBLE PRECISION datatype available in Fortran 77 is still supported, but is
considered a subset, or kind, of the REAL datatype.

Kind

In Fortran, an intrinsic data type has one or more kinds. In LF95 for the CHARACTER,
INTEGER, REAL, and LOGICAL datatypes, the kind type parameter (a number used to
refer to akind) corresponds to the number of bytes used to represent each respective kind.
For the COMPLEX datatype, the kind type parameter is the number of bytes used to repre-
sent thereal or theimaginary part. Twointrinsicinquiry functions, SELECTED _INT_KIND

4 LF Fortran 95 Language Reference

Kind

and SELECTED_REAL_KIND, are provided. Each returnsakind type parameter based on
the required range and precision of adata object in away that is portable to other Fortran 90
or 95 systems. The kinds availablein LF95 are summarized in the following table;

Table 1: Intrinsic Data Types

Kind Type
Type Parameter Notes
INTEGER 1 Range: -128 to 127
INTEGER 2 Range: -32,768 to 32,767
INTEGER 4* Range: -2,147,483,648 to 2,147,483,647
Range: -9,223,372,036,854,775,808 to
INTEGER 8 9,223,372,036,854,775,807
Range: 1.18* 103 to 3.40* 10%
*
REAL 4 Precision: 6-7 decimal digits
Range: 2.23* 1038 to 1.79* 103
REAL 8 Precision: 15-16 decimal digits
Range: 10%! to 10932
REAL 16 Precision: approximately 33 decimal digits
Range: 1.18* 10-* to 3.40* 10%
*
COMPLEX 4 Precision: 7-8 decimal digits
Range: 2.23* 1038 to 1.79* 103
COMPLEX 8 Precision: 15-16 decimal digits
Range: 10%! to 10%9%%2
COMPLEX 16 Precision: approximately 33 decimal digits
LOGICAL 1 Values: .TRUE. and .FALSE.
LOGICAL 4* Values: .TRUE. and .FALSE.
CHARACTER 1* ASCII character set
* default kinds

LF Fortran 95 Language Reference 5

Chapter 1 Elements of Fortran

Length

The number of charactersin a CHARACTER data object isindicated by itslength type
parameter. For example, the CHARACTER litera “ Hal f Mar at hon” hasalength of
thirteen.

Literal Data

A literal datum, also known as alitera, literal constant, or immediate constant, is specified
as follows for each of the Fortran datatypes. The syntax of aliteral constant determinesits
intrinsic type.

INTEGER literals

ANnINTEGER literal consists of one or more digits preceded by an optional sign (+ or -) and
followed by an optional underscore and kind type parameter. |1f the optional underscore and
kind type parameter are not present, the INTEGER literal is of default kind. Examples of
valid INTEGER literas are

34 - 256 345 4 +78_nyki nd

34 and- 256 areof typedefault INTEGER. 345_4 isan INTEGER of kind 4 (default INTE-
GERinLF95). Inthelast example, nyki nd must have been previously declared asascalar
INTEGER named constant with the value of an INTEGER kind type parameter (1,2, or 4 in
LF95).

A binary, octal, or hexadecimal constant can appear in aDATA statement. Such constants
areformed by enclosing aseries of binary, octal, or hexadecimal digitsin apostrophes or quo-
tation marks, and preceding the opening apostrophe or quotation mark with aB, O, or Z for
binary, octal, and hexadecimal representations, respectively. Two valid examples are

B' 10101 Z" 1AC3"

REAL literals

A REAL litera consists of one or more digits containing adecimal point (the decimal point
can appear before, within, or after the digits), optionally preceded by asign (+ or -), and
optionally followed by an exponent letter and exponent, optionally followed by an under-
score and kind type parameter. |f an exponent letter is present the decimal point is optional.
The exponent letter isE for single precision, Dfor double precision, or Qfor quad precision.
If the optional underscore and kind type parameter are not present, the REAL litera is of
default kind. Examples of valid REAL literals are

-3.45 . 0001 34.E-4 1.4.8

Thefirst three examples are of type default REAL. The last exampleisa REAL of kind 8.

6 LF Fortran 95 Language Reference

Literal Data

COMPLEX literals

A COMPLEX literal isformed by enclosing in parentheses acomma-separated pair of REAL
or INTEGER literals. Thefirst of the REAL or INTEGER literals representsthe real part of
the complex number; the second represents the imaginary part. The kind type parameter of
aCOMPLEX constant is 16 if either the real or the imaginary part or both are quadruple pre-
cision REAL, 8if either thereal or theimaginary part or both are double-precision REAL,
otherwise the kind type parameter is4 (default COMPLEX). Examplesof valid COMPLEX
literalsare

(3.4,-5.45) (-1,-3) (3.4,-5) (-3.d13,6._8)

Thefirst three examples are of default kind, where four bytes are used to represent each part,
real or imaginary, of the complex number. Thefourth example useseight bytesfor each part.

LOGICAL literals

A LOGICAL litera iseither . TRUE. or .FALSE., optionally followed by an underscore and
akind type parameter. If the optional underscore and kind type parameter are not present,
the LOGICAL literal is of default kind. Examples of valid LOGICAL literas are;

.fal se. .true. .true. _nykind

In the last example, nyki nd must have been previously declared as a scalar INTEGER
named constant with the value of a LOGICAL kind type parameter (1 or 4 in LF95). The
first two examples are of type default LOGICAL.

CHARACTER literals

A CHARACTER literal consists of astring of characters enclosed in matching apostrophes
or quotation marks, optionally preceded by akind type parameter and an underscore.

If a quotation mark is needed within a CHARACTER string enclosed in quotation marks,
doubl e the quotation mark inside the string. The doubled quotation mark is then counted as
asingle quotation mark. Similarly, if an apostropheis needed withinaCHARACTER string
enclosed in apostrophes, double the apostrophe inside the string. The double apostropheis
then counted as a single apostrophe.

Examples of valid CHARACTER literals are

"Hel | o world"
‘don' 't give up the ship!’
ASCI | _' f oobeedoodah’

ASCI | must have been previously declared as a scalar INTEGER named constant with the
value 1 toindicate the kind. The last two examples, which have no intervening characters
between the quotes or apostrophes, are zero-length CHARACTER literals.

LF Fortran 95 Language Reference 7

Chapter 1 Elements of Fortran

8

Named Data

A named data object, such asavariable, named constant, or function result, is given the prop-
ertiesof anintrinsic or user-defined datatype, either implicitly (based on thefirst letter of the
name) or through a type declaration statement. Additional information about a named data
object, known asthe data object’ sattributes, can also be specified, either in atype declaration
statement or in separate statements specific to the attributes that apply.

Once adataobject hasaname, it can be accessed in its entirety by referring to that name. For
some data objects, such as character strings, arrays, and derived types, portions of the data
object can also be accessed directly. In addition, aliases for a data object or a portion of a
data object, known as pointers, can be established and referred to.

Implicit Typing
In the absence of atype declaration statement, a named data object’ s type is determined by
thefirst letter of itsname. Theletters| through N begin INTEGER data objects and the other
letters begin REAL data objects. These implicit typing rules can be customized or disabled
using the IMPLICIT statement. IMPLICIT NONE can be used to disable all implicit typing
for a scoping unit.

Type Declaration Statements

A type declaration statement specifies the type, type parameters, and attributes of a named
data object or function. A type declaration statement is available for each intrinsic type,
INTEGER, REAL (and DOUBLE PRECISION), COMPLEX, LOGICAL, or CHARAC-
TER, aswell asfor derived types (see “ Derived Types’ on page 16).

Attributes

Besides type and type parameters, a data object or function can have one or more of the fol-
lowing attributes, which can be specified in atype declaration statement or in a separate
statement particular to the attribute:

 DIMENSION — the dataobject isan array (see“ DIMENSION Statement” on page
114).

« PARAMETER — the data object is a named constant (see * PARAMETER Sate-
ment” on page 214).

» POINTER — the data object isto be used as an alias for another data object of the
same type, kind, and rank (see “ POINTER Satement” on page 217).

 TARGET — the data object that is to be aliased by a POINTER data object (see
“ TARGET Statement” on page 255).

 EXTERNAL — the nameisthat of an external procedure (see “ EXTERNAL Sate-
ment” on page 135).

LF Fortran 95 Language Reference

Substrings

 ALLOCATABLE —thedataobjectisan array that isnot of fixed size, but isto have
memory allocated for it as specified during execution of the program (see “ ALLO-
CATABLE Satement” on page 66).

* INTENT(IN) — the dummy argument will not change in the subprogram

e INTENT(OUT) — the dummy argument is undefined on entry to the subprogram

e INTENT(IN OUT) — the dummy argument has an initial value on entry and may be
redefined within the subprogram (see “ INTENT Satement” on page 168).

* PUBLIC — the named data object or procedurein a MODULE program unit is
accessiblein aprogram unit that usesthat module (see“ PUBLIC Statement” on page
224).

* PRIVATE — the named data object or procedure in a MODULE program unit is
accessible only in the current module (see “ PRIVATE Satement” on page 221).

e INTRINSIC —thenameisthat of anintrinsic function (see* INTRINS C Statement”
on page 175).

e OPTIONAL — the dummy argument need not have a corresponding actual argu-
ment in areference to the procedure in which the dummy argument appears (see
“ OPTIONAL Satement” on page 212).

» SAVE — the data object retains its value, association status, and allocation status
after aRETURN or END statement (see “ SAVE Satement” on page 237).

e SEQUENCE — the order of the component definitions in a derived-type definition
is the storage sequence for objects of that type (see “* SEQUENCE Satement” on
page 242).

e VOLATILE — the data object may be referenced, become redefined or undefined
by means not specified in the Fortran standard (see“ VOLATILE Satement” on page
267).

e DLL_EXPORT (Windows only) — the nameis an external procedure, or acommon
block name, that to beaDLL (see“ DLL_EXPORT Satement” on page 115).

* DLL_IMPORT (Windows only) — the nameis an external procedure, or acommon
block name, that usesaDLL (see” DLL_IMPORT Statement” on page 116).

* ML_EXTERNAL (Windows only) — the nameis an external procedure, or a com-
mon block name, that is available for calling from a mixed language procedure (see
“ML_EXTERNAL Satement” on page 199).

Substrings

A character string isasequence of charactersinaCHARACTER dataobject. The characters
in the string are numbered from left to right starting with one. A contiguous part of a char-
acter string, called a substring, can be accessed using the following syntax:

LF Fortran 95 Language Reference 9

Chapter 1 Elements of Fortran

10

string ([lower-bound] : [upper-bound])

Where:
string is a string name or a CHARACTER literal.

lower-bound is the lower bound of a substring of string.
upper-bound is the upper bound of a substring of string.

If absent, lower-bound and upper-bound are given the values one and the length of the string,
respectively. A substring has alength of zero if lower-bound is greater than upper-bound.
lower-bound must not be less than one.

For example, if abc_st ri ng isthe name of the string " abcdef g",

abc_string(2:4) is “bcd”
abc_string(2:) is “bcdefg”
abc_string(:5) is “abcde”
abc_string(:) is “abcdefg”
abc_string(3:3) is “c”

“abcdef” (2:4) is “bcd”

“abcdef " (3: 2) isazero-length string

Arrays

Anarray isaset of data, al of the same type and type parameters, arranged in arectangular
pattern of one or more dimensions. A data object that isnot an array isascalar. Arrayscan
be specified by using the DIMENSION statement or by using the DIMENSION attribute in
atype declaration statement. An array has arank that is equal to the number of dimensions
in the array; a scalar hasrank zero. The array’ s shape isits extent in each dimension. The
array’ s size isthe number of elementsin the array. In the following example

integer, dinmension (3,2) :: i

i hasrank 2, shape (3,2), and size 6.

Array References

A whole array isreferenced by the name of the array. Individual elements or sections of an
array are referenced using array subscripts.

LF Fortran 95 Language Reference

Arrays

Syntax:
array [(subscript-list)]

Where:

array isthe name of the array.

subscript-list is a comma-separated list of

element-subscript

or subscript-triplet

or vector-subscript

element-subscript isa scalar INTEGER expression.

subscript-triplet is[element-subscript] : [element-subscript] [: stride]
strideisa scalar INTEGER expression.

vector-subscript isarank one INTEGER array expression.

The subscriptsin subscript-list each refer to adimension of thearray. Theleft-most subscript
refersto the first dimension of the array.

Array Elements

If each subscript in an array subscript list isan element subscript, then the array referenceis
toasinglearray element. Otherwise, it istoan array section (see“ Array Sections’ on page
12).

Array Element Order

The elements of an array form a sequence known as array element order. The position of an
element of an array in the sequence is:

(1+(s=j)) +((s2—h2) xdy) + ... +((Sy—Jn) Xdp_g X dy_5... X dy)
Where:
s isthe subscript in the ith dimension.

ji isthe lower bound of the ith dimension.
d, isthe size of theith dimension.
n isthe rank of the array.

Another way of describing array element order isthat the subscript of the leftmost dimension
changes most rapidly as one goesfrom first element tolast in array element order. For exam-
ple, in the following code

integer, dimension(2,3) :: a

the order of theelementsisa(1,1),a(2,1),a(1,2),a(2,2),a(1,3),a(2,3). When
performing input/output on arrays, array element order is used.

LF Fortran 95 Language Reference 1

Chapter 1 Elements of Fortran

12

Array Sections

Y ou can refer to a selected portion of an array asan array. Such aportion is called an array
section. An array section has a subscript list that contains at least one subscript that is either
a subscript triplet or a vector subscript (see the examples under “ Subscript Triplets’ and

“Vector Qubscripts’ below). Note that an array section with only one element isnot ascalar.

Subscript Triplets

Thethree components of asubscript triplet arethe lower bound of the array section, the upper
bound, and the stride (the increment between successive subscripts in the sequence), respec-
tively. Any or all three can be omitted. If the lower bound is omitted, the declared lower
bound of the dimension is assumed. If the upper bound is omitted, the upper bound of the
dimensionisassumed. If thestrideis omitted, astride of oneisassumed. Valid examples of
array sections using subscript triplets are;

a(2:8:2) ' a(2), a(4), a(6), a(8)
b(1,3:1:-1) ' b(1,3), b(1,2), b(1,1)
c(:,:,:) I ¢

Vector Subscripts
A vector (one-dimensional array) subscript can be used to refer to a section of awhole array.
Consider the following example:

integer :: vector(3) = (/83,8,12/)

real :: whol e(3,15)

print*, whol e(3, vector)

Herethearray vect or isused asasubscript of whol e inthe PRINT statement, which prints
the values of elements (3,3), (3,8), and (3,12).

Arrays and Substrings

A CHARACTER array section or array €lement can have a substring specifier following the
subscript list. I1f awholearray or an array section has a substring specifier, then the reference
isan array section. For example,

character (l1en=10), dimension (10,10) :: my_string
ny_string(3:8,:) (2:4) = "abc'

assigns' abc' tothe array section made up of characters 2 through 4 of rows 3 through 8 of
the CHARACTER array ny_stri ng.

LF Fortran 95 Language Reference

Dynamic Arrays

Dynamic Arrays

An array can be fixed in size at compile time or can assume asize or shape at runtimein a
number of ways:

» allocatable arrays and array pointers can be allocated as needed with an ALLO-
CATE statement, and deallocated with a DEALLOCATE statement. An array
pointer assumes the shape of its target when used in a pointer assignment statement
(see” Allocatable Arrays’ on page 13 and “ Array Pointers’ on page 13). Allocat-
able arrays and array pointers together are known as deferred-shape arrays.

* A dummy array can assume a size and shape based on the size and shape of the cor-
responding actual argument (see “ Assumed-Shape Arrays’ on page 14).

e A dummy array can be of undeclared size (* Assumed-Sze Arrays’ on page 14).

e Anarray can have variable dimensions based on the values of dummy arguments
(“ Adjustable and Automatic Arrays’ on page 15).

Allocatable Arrays
The ALLOCATABLE attribute can be given to an array in atype declaration statement or in
an ALLOCATABLE statement. An alocatable array must be declared with the deferred-
shape specifier, *:’, for each dimension. For example,

integer, allocatable :: a(:), b(:,:,:)
declares two allocatable arrays, one of rank one and the other of rank three.
The bounds, and thus the shape, of an allocatable array are determined when the array isallo-
cated with an ALLOCATE statement. Continuing the previous example,

al locate (a(3), b(1,3,-3:3))
allocates an array of rank one and size three and an array of rank three and size 21 with the
lower bound -3 in the third dimension.

Memory for allocatable arraysisreturned to the system using the DEAL L OCATE statement.

Array Pointers

The POINTER attribute can be given to an array in atype declaration statement or in a
POINTER statement. An array pointer, like an allocatable array, is declared with the
deferred-shape specifier, *:’, for each dimension. For example

integer, pointer, dinension(:,:) :: c

declares a pointer array of rank two. An array pointer can be allocated in the same way an
allocatable array can. Additionally, the shape of a pointer array can be set when the pointer
becomes associated with atarget in a pointer assignment statement. The shape then becomes
that of the target.

LF Fortran 95 Language Reference 13

Chapter 1 Elements of Fortran

14

integer, target, dinmension(2,4) :: d
integer, pointer, dinension(:,:) :: ¢
c =>d

In the above example, the array ¢ becomes associated with array d and assumes the shape of
d.

Assumed-Shape Arrays

An assumed-shape array isa dummy array that assumes the shape of the corresponding
actual argument. The lower bound of an assumed-shape array can be declared and can be
different from that of the actual argument array. An assumed-shape specification is

[lower-bound] :

for each dimension of the assumed-shape array. For example
integer :: a(3,4)

call zee(a)

subroutine zee(x)
implicit none
integer, dimension(-1:,:) :: X

Here the dummy array x assumesthe shape of the actual argument a with anew lower bound
for dimension one.

Theinterface for an assumed-shape array must be explicit (see Explicit Interfaces’ on page
51).

Assumed-Size Arrays

An assumed-size array is adummy array that’s sizeis not known. All bounds except the
upper bound of the last dimension are specified in the declaration of the dummy array. In
the declaration, the upper bound of thelast dimensionisan asterisk. Thetwo arrayshavethe
sameinitial array element, and are storage associated.

Y ou must not refer to an assumed-size array in a context where the shape of the array must
be known, such asin awhole array reference or for many of the transformational array intrin-
sic functions. A function result can not be an assumed-size array.

LF Fortran 95 Language Reference

Array Constructors

integer a
di nensi on a(4)

call zee(a)

subroutine zee(x)
integer, dinmension(-1:*) :: x

In this example, the size of dummy array x is not known.

Adjustable and Automatic Arrays

Y ou can establish the shape of an array based on the values of dummy arguments. If such an
array isadummy array, it is called an adjustable array. If the array isnot adummy array it
iscalled an automatic array. Consider the following example:

integer function bar(i, k)
integer :: i,j,k
di nension i (k,3), j(k)

Here the shapes of arraysi andj depend on the value of the dummy argument k. i isan
adjustable array and j isan automatic array.

Array Constructors
An array constructor is an unnamed array.

Syntax:
(/ constructor-values/)

Where:

constructor-values is acomma-separated list of
expr

or ac-implied-do

expr is an expression.

ac-implied-do is (constructor -values, ac-implied-do-control)
ac-implied-do-control is do-variable = do-expr, do-expr [, do-expr]
do-variableisascalar INTEGER variable.

do-expr isascalar INTEGER expression.

LF Fortran 95 Language Reference 15

Chapter 1 Elements of Fortran

16

An array constructor isarank-one array. If aconstructor element isitself array-valued, the
values of the elements, in array-element order, specify the corresponding sequence of ele-
ments of the array constructor. If aconstructor valueisanimplied-do, it isexpanded to form
a sequence of values under the control of the do-variable asin the DO construct (see“ DO
Construct” on page 116).

integer, dimension(3) :: a, b=(/1,2,3/), c=(/(i, i=4,6)/)
a=b+c+ (/7,89/) ! ais assigned (/12,15,18/)

An array constructor can be reshaped with the RESHAPE intrinsic function and can then be
used to initialize or represent arrays of rank greater than one. For example

real ,dinmension(2,2) :: a = reshape((/1,2,3,4/),(/2,2/))

assigns(/ 1, 2, 3, 4/) toainarray-element order after reshaping it to conform with the
shape of a.

Derived Types

Derived types are user-defined data types based on the intrinsic types, INTEGER, REAL,
COMPLEX, LOGICAL, and CHARACTER. Wherean array isaset of dataal of the same
type, a derived type can be composed of a combination of intrinsic types or other derived
types. A data object of derived typeiscalled a structure.

Derived-Type Definition

A derived type must be defined before objects of the derived type can be declared. A derived
type definition specifies the name of the new derived type and the names and types of its
components.

Syntax:
derived-type-statement
[private-sequence-statement]
type-definition-statement
[type-definition-statement]

END TY PE [type-name]

Where:
derived-type-statement is a derived type statement.

private-sequence-statement is a PRIVATE statement.
or a SEQUENCE statement.

type-definition-statement isan INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
LOGICAL, CHARACTER or TY PE statement.

LF Fortran 95 Language Reference

Derived Types

A type definition statement in a derived type definition can have only the POINTER and
DIMENSION attributes. It cannot beafunction. It can be given adefault initialization value,
in which case the component acquires the SAVE attribute. A component array must be a
deferred-shape array if the POINTER attribute is present, otherwise it must have an explicit
shape.

type coordi nates
real :: latitude, |ongitude
end type coordinates

type pl ace
character(l en=20) :: nane
type(coordinates) :: location

end type pl ace

type link

integer :: j

type (link), pointer :: next
end type link

In the example, type coor di nat es isaderived type with two REAL components: | ati -
tude andl ongi t ude. Typepl ace hastwo components: aCHARACTER of length twenty,
nane, and astructure of typecoor di nat es named| ocat i on. Typel i nk hastwo compo-
nents: an INTEGER, j , and a structure of typel i nk, named next , that is a pointer to the
same derived type. A component structure can be of the same type as the derived type itself
only if it hasthe POINTER attribute. In thisway, linked lists, trees, and graphs can be
formed.

There are two ways to use aderived type in more than one program unit. The preferred way
isto define the derived typein amodule (see “ Module Program Units’ on page 56) and use
the module wherever the derived type is needed. Another method, avoiding modules, isto
use a SEQUENCE statement in the derived type definition, and to define the derived typein
exactly the same way in each program unit the type is used. This could be done using an
include file. Components of aderived type can be made inaccessible to other program units
by using a PRIVATE statement before any component definition statements.

Declaring Variables of Derived Type

Variablesof derived typeare declared withthe TY PE statement. Thefollowing areexamples
of declarations of variables for each of the derived types defined above:

type(coordi nates) :: my_coordi nates
type(place) :: my_town
type(pl ace), dinmension(10) :: cities

type(link) :: head

LF Fortran 95 Language Reference 17

Chapter 1 Elements of Fortran

Component References

Components of a structure are referenced using the percent sign ‘% operator. For example,
| ati t ude inthestructure my_coor di nat es, above, isreferenced as

my_coordi nat es% ati tude. | atitude intypecoordi nat es in structuremy_t own is
referenced asny_t own%oor di nat es% at i t ude. If thevariableisan array of structures,
asinciti es, above, array sections can be referenced, such as

cities(:,:)%ane
which references the component name for all elementsof ci ti es, and
cities(l,1:2)%oordi nates% atitude

which referenceselement | at i t ude of typecoor di nat es for elements(1, 1) and (1, 2)
only of ci ti es. Notethat inthefirst example, the syntax

citiesY%mane

isequivalent and is an array section.

Structure Constructors
A structure constructor is an unnamed structure.

Syntax:
type-name (expr-list)
Where:
type-name is the name of the derived type.

expr-list isalist of expressions.

Each expression in expr-list must agree in number and order with the corresponding compo-
nents of the derived type. Where necessary, intrinsic type conversions are performed. For
non-pointer components, the shape of the expression must agree with that of the component.

type nytype I derived-type definition
integer :: i,j
character(l en=40) :: string

end type nytype

type (nytype) :: a | derived-type declaration
a = nytype (4, 5.0*2.3, 'abcdefg')

Inthisexample, the second expression in the structure constructor is converted to type defaul t
INTEGER when the assignment is made.

18 LF Fortran 95 Language Reference

Pointers

Pointers

In Fortran, apointer isan alias. Thevariableit aliasesisitstarget. Pointer variables must
have the POINTER attribute; target variables must have either the TARGET attribute or the
POINTER attribute.

Associating a Pointer with a Target

A pointer can only be associated with a variable that has the TARGET attribute or the
POINTER attribute. Such an association can be made in one of two ways:

» explicitly with a pointer assignment statement.
« implicitly with an ALLOCATE statement.

Once an association between pointer and target has been made, any reference to the pointer
appliesto the target.

Declaring Pointers and Targets

A variable can be declared to have the POINTER or TARGET attributein atype declaration
statement or inaPOINTER or TARGET statement. When declaring an array to be a pointer,
you must declare the array with a deferred shape.

Example:
integer, pointer :: a, b(:,:)
integer, target :: ¢
a=>c¢ I pointer assignment statenent
! ais an alias for ¢
al locate (b(3,2)) I allocate statenent

I an unnanmed target for b is
| created with the shape (3, 2)

Inthisexample, an explicit association is created between a and ¢ through the pointer assign-
ment statement. Note that a has been previously declared a pointer, ¢ has been previously
declared atarget, and a and ¢ agree in type, kind, and rank. Inthe ALLOCATE statement,
atarget array isallocated and b is made to point to it. The array b was declared with a
deferred shape, so that the target array could be allocated with any rank two shape.

Expressions

An expression isformed from operands, operators, and parentheses. Eval uation of an expres-
sion produces avalue with atype, type parameters (kind and, if CHARACTER, length), and
ashape. Some examples of valid Fortran expressions are:

LF Fortran 95 Language Reference 19

Chapter 1 Elements of Fortran

20

5

n

(n+l)*y

"to be" // ' or not to be // text(1l:23)

(-b + (b**2-4*a*c)**.5) / (2*a)

b% - a(1:1000: 10)

sin(a) .le. .5

| .my_binary_operator. r + .ny_unary _operator. m

The last example uses defined operations (see “ Defined Operations’” on page 53).

All array-valued operands in an expression must have the same shape. A scalar is conform-
ablewith an array of any shape. Array-valued expressions are eval uated el ement-by-element
for corresponding elements in each array and a scalar in the same expression is treated like
an array where al elements have the value of the scalar. For example, the expression

a(2:4) + b(1:3) +5
would perform

a(2) + b(1) +5

a(3) + b(2) +5

a(4) + b(3) +5
Expressions are evaluated according to the rules of operator precedence, described below. If
there are multiple contiguous operations of the same precedence, subtraction and division are
evaluated from left to right, exponentiation is evaluated from right to left, and other opera-

tions can be evaluated either way, depending on how the compiler optimizesthe expression.
Parentheses can be used to enforce a particular order of evaluation.

A specification expression isascalar INTEGER expression that can be eval uated on entry to
the program unit at the time of execution. An initialization expression isan expression that
can be evaluated at compile time.

LF Fortran 95 Language Reference

Intrinsic Operations

Intrinsic Operations
Theintrinsic operators, in descending order of precedence are;

Table 2: Intrinsic Operators

Operator Represents Operands
*x exponentiation two numeric
*and/ multiplication and division two numeric
+and - unary addition and subtraction one numeric
+and - binary addition and subtraction two numeric
1 concatenation two CHARACTER
EQ. and == equal to two numeric or two
.NE. and /= not equal to CHARACTER
LT. and< less than
.LE. and <= less than or equal to two non-COMPLEX
.GT. and > greater than numeric or two CHAR-
.GE. and >= greater than or equal to ACTER
.NOT. logical negation one LOGICAL
AND. logical conjunction two LOGICAL
.OR. logical inclusive disjunction two LOGICAL
.EQV. and logical eguivalence and non-equiv-
NEQV. alence two LOGICAL

Note: all operators within agiven cell in the table are of equal precedence

If an operation is performed on operands of the same type, the result is of that type and has
the greater of the two kind type parameters.

If an operation is performed on numeric operands of different types, theresult isof the higher
type, where COMPLEX is higher than REAL and REAL is higher than INTEGER.

If an operationis performed on numeric or LOGICAL operands of the sametype but different
kind, the result has the kind of the operand offering the greater precision.

The result of a concatenation operation has alength that is the sum of the lengths of the

operands.

LF Fortran 95 Language Reference 21

Chapter 1 Elements of Fortran

INTEGER Division

The result of adivision operation between two INTEGER operands is the integer closest to
the mathematical quotient and between zero and the mathematical quotient, inclusive. For
example, 7/ 5 evaluatesto 1 and - 7/ 5 evaluatesto - 1.

Input/Output

22

Fortran input and output are performed on logical units. A unitis

e anon-negative INTEGER associated with a physical device such as adisk file, the
console, or aprinter. Theunit must be connected to afile or devicein an OPEN state-
ment, except in the case of pre-connected files.

e anasterisk, ‘*’, indicating the standard input and standard output devices, usually the
keyboard and monitor, that are preconnected.

 aCHARACTER variable corresponding to the name of aninternal file.

Fortran statements are available to connect (OPEN) or disconnect (CLOSE) filesand devices
frominput/output units; transfer data (PRINT, READ, WRITE); establish the position within
afile (REWIND, BACKSPACE, ENDFILE); and inquire about afile or device or its con-
nection (INQUIRE).

Pre-Connected Input/Output Units

Input/output units 5, 6 and * are automatically connected when used. Unit 5 is connected to
the standard input device, usually the keyboard, and unit 6 is connected to the standard output
device, usually the monitor. Unit * is always connected to the standard input and standard
output devices.

Files

Fortran treats all physical devices, such as disk files, the console, printers, and internal files,
asfiles. A fileisa seguence of zero or more records. The dataformat (either formatted or
unformatted), file access type (either direct or sequential) and record length determine the
structure of the file.

File Position

Certain input/output statements affect the position within an external file. Prior to execution
of adatatransfer statement, adirect fileis positioned at the beginning of the record indicated
by the record specifier REC= in the data transfer statement. By default, a sequential fileis
positioned after the last record read or written. However, if non-advancing input/output is

specified using the ADV ANCE= specifier, it is possible to read or write partial records and
to read variable-length records and be notified of their length.

LF Fortran 95 Language Reference

Files

An ENDFILE statement writes an endfilerecord after the last record read or written and posi-
tions the file after the endfile record. A REWIND statement positions the file at itsinitial
point. A BACKSPACE statement moves the file position back one record.

If an error condition occurs, the position of thefile is indeterminate.

If thereis no error, and an endfile record isread or written, thefileis positioned after the end-
filerecord. The file must be repositioned with a REWIND or BACK SPACE statement
beforeit isread from or written to again.

For non-advancing (partial record) input/output, if thereisno error and no end-of-file condi-
tion, but an end-of-record condition occurs, thefileis positioned after the record just read. 1f
there is no end-of-record condition the file position is unchanged.

File Types

The type of fileto be accessed is specified in the OPEN statement using the FORM= and
ACCESS= specifiers (see “ OPEN Satement” on page 209).

Formatted Sequential

» variable-length records terminated by end of line
» stored as CHARACTER data

» can be used with devices or disk files

e records must be processed in order

» filescan be printed or displayed easily

e usually slowest

Formatted Direct

 fixed-length records - no header

o stored as CHARACTER data

o disk filesonly

 records can be accessed in any order

* not easily processed outside of LF95

» same speed as formatted sequential disk files

Unformatted Sequential

» variablelength records separated by record marker
e dtored ashinary data

o diskfilesonly

» records must be processed in order

+ faster than formatted files

* not easily read outside of LF95

LF Fortran 95 Language Reference 23

Chapter 1 Elements of Fortran

24

Unformatted Direct
 fixed-length records - no header
» dtored ashinary data

o diskfilesonly
» records can be accessed in any order
o fastest

e not easily read outside of LF95

Binary (or Transparent)

e stored as binary data without record markers or header

 record length one byte but end-of-record restrictions do not apply
 records can be processed in any order

» can be used with disk files or other physical devices

» good for files that are accessed outside of LF95

» fast and compact

See“ File Formats’ in the User's Guide for more information.

Internal Files

Aninternal fileis aways aformatted sequential file and consists of asingle CHARACTER
variable. If the CHARACTER variableis array-valued, each element of the array is treated
asarecord inthefile. Thisfeature allows conversion from internal representation (binary,
unformatted) to external representation (ASCII, formatted) without transferring datato an
external device.

Carriage Control

Thefirst character of aformatted record sent to aterminal device, such as the console or a
printer, is used for carriage control and is not printed. The remaining characters are printed
on one line beginning at the left margin. The carriage control character isinterpreted as
follows:

Table 3: Carriage Control

Character Vertical Spacing Before Printing
0 Two Lines
1 To First Line of Next Page
+ None
Blank or Any .
Other Character OneLine

LF Fortran 95 Language Reference

Input/Output Editing

Input/Output Editing

Fortran provides extensive capabilitiesfor formatting, or editing, of data. The editing can be
explicit, using a format specification; or implicit, using list-directed input/output, in which
data are edited using a predetermined format (see“ List-Directed Formatting” on page 31).
A format specification is adefault CHARACTER expression and can appear

» directly asthe FMT= specifier value.
* inaFORMAT statement whose label isthe FMT= specifier value.

e inaFORMAT statement whose label was assigned to a scalar default INTEGER
variable that appears as the FMT= specifier value.

The syntax for aformat specification is
([format-items])

where format-items includes editing information in the form of edit descriptors. See“ FOR-
MAT Satement” on page 139 for detailed syntax.

Format Control

A correspondence is established between aformat specification and itemsin a READ,
WRITE or PRINT statement’ sinput/output list in which the edit descriptors and i nput/output
list are both interpreted from left to right. Each effective edit descriptor is applied to the cor-
responding data entity in the input/output list. Each instance of arepeated edit descriptor is
an edit descriptor in effect. Three exceptionsto thisrule are

1. COMPLEX itemsin theinput/output list require the interpretation of two F, E, EN,
ES, D or G edit descriptors.

2. Control and character string edit descriptors do not correspond to itemsin the input/
output list.

3. If theend of acomplete format is encountered and there are remaining itemsin the
input/output list, format control reverts to the beginning of the format item termi-
nated by the last preceding right parenthesis, if it exists, and to the beginning of the
format otherwise. If format control revertsto a parenthesis preceded by a repeat
specification, the repeat specification is reused.

Data Edit Descriptors

Data edit descriptors control conversion of datato or from itsinternal representation.

LF Fortran 95 Language Reference 25

Chapter 1 Elements of Fortran

26

Numeric Editing
Thel,B, 0, Z,Q, F, E, EN, ES, D, and G edit descriptors can be used to specify the input/
output of INTEGER, REAL, and COMPLEX data. The following general rules apply:

e Oninput, leading blanks are not significant.
« Onoutput, the representation is right-justified in the field.

e Onoutput, if the number of characters produced exceeds the field width the entire
field isfilled with asterisks.

INTEGER Editing (I, B, O, and 2)

The Iw, lw.m, Bw, Bw.m, Ow, Ow.m, Zw, and Zw.m edit descriptors indicate the manner of
editing for INTEGER data. The w indicates the width of the field on input, including asign
(if present). The mindicates the minimum number of digits on output; m must not exceed w
unlessw is zero. The output width is padded with blanks if the number is smaller than the
field, unlesswiszero. If wiszerothen asuitablewidth will be used to show all digitswithout
any padding blanks. Note that an input width must always be specified.

REAL Editing (Q, F, D, and E)
The Qw.d, Fw.d, Ew.d, Dw.d, Ew.dEe, EN, and ES edit descriptors indicate the manner of
editing of REAL and COMPLEX data.

Q,F, D, E, EN, and ES editing areidentical oninput. Thew indicates the width of thefield;
the d indicates the number of digitsin the fractional part. The field consists of an optional
sign, followed by one or more digitsthat can contain adecimal point. If the decimal pointis
omitted, the rightmost d digits are interpreted as the fractional part. An exponent can be
included in one of the following forms:

» Anexplicitly signed INTEGER constant.
* Q,E, or D followed by an optionally signed INTEGER constant.

F editing, the output field consists of zero or more blanks followed by a minus sign or an
optional plussign (see S, SP, and SS Editing), followed by one or more digits that contain a
decimal point and represent the magnitude. Thefieldismodified by the established scalefac-
tor (see P Editing) and is rounded to d decimal digits. If wis zero then a suitable width will
be used to show al digits and sign without any padding blanks.

LF Fortran 95 Language Reference

Data Edit Descriptors

For Q, E, and D editing, the output field consists of the following, in order:
. zero or more blanks
. aminusor an optional plussign (see S, SP, and SS Editing)

. azero (depending on scale factor, see P Editing)

. the d most significant digits, rounded
. aQ,E,oraD

1

2

3

4. adecimal point
5

6

7. aplusor aminussign

8. an exponent of edigits, if the extended Ew.dEe form is used, and two digits

otherwise.

For Q, E, and D editing, the scale factor k controls the position of the decimal point. If

—-d <k <0, the output field contains exactly |k| leading zeros and d — |k| significant digits
after thedecimal point. If 0 <k <d+ 2, theoutput field contains exactly k significant digits
totheleft of thedecimal pointandd —k + 1 significant digitsto theright of the decimal point.
Other values of k are not permitted.

EN Editing

The EN edit descriptor produces an output field in engineering notation such that the decimal
exponent isdivisible by three and the absol ute value of the significand isgreater than or equal
to 1 and less than 1000, except when the output valueis zero. The scale factor has no effect
on output.

The forms of the edit descriptor are ENw.d and ENw.dEe indicating that the external field
occupiesw positions, the fractional part of which consists of d digits and the exponent part e
digits.

Oninput, EN editing is the same as F editing.

ES Editing

The ES edit descriptor produces an output field in the form of areal number in scientific nota-
tion such that the absolute value of the significand is greater than or equal to 1 and less than
10, except when the output value is zero. The scale factor has no effect on output.

The forms of the edit descriptor are ESw.d and ESw.dEe indicating that the external field
occupiesw positions, the fractional part of which consists of d digits and the exponent part e
digits.

Oninput, ES editing is the same as F editing.

LF Fortran 95 Language Reference 27

Chapter 1 Elements of Fortran

28

COMPLEX Editing

COMPLEX editing isaccomplished by using two REAL edit descriptors. Thefirst of the edit
descriptors specifies the real part; the second specifies the imaginary part. The two edit
descriptors can be different. Control edit descriptors can be processed between the edit
descriptor for thereal part and the edit descriptor for theimaginary part. Character string edit
descriptors can be processed between the two edit descriptors on output only.

LOGICAL Editing (L)

The Lw edit descriptor indicates that the field occupies w positions. The specified input/out-
put list item must be of type LOGICAL.

Theinput field consists of optional blanks, optionally followed by adecimal point, followed
by aT for trueor Ffor false. TheT or F can befollowed by additional charactersinthefield.
Note that the logical constants . TRUE. and .FALSE. are acceptable input forms. If apro-
cessor is capable of representing lettersin both upper and lower case, alower-case letter is
equivalent to the corresponding upper-case letter in a LOGICAL input field.

Theoutput field consists of w - 1 blanksfollowed by aT or F, depending on whether the value
of the internal data object istrue or fase, respectively.

CHARACTER Editing (A)
The A[w] edit descriptor is used with an input/output list item of type CHARACTER.

If afield width wis specified with the A edit descriptor, the field consists of w characters. If
afield width wisnot specified with the A edit descriptor, the number of charactersinthefield
isthe length of the corresponding list item.

Let len be the length of the list item. Oninput, if wis greater than or equal to len, the right-
most len characterswill be taken from thefield; if wislessthan len, thew characters are | eft-
justified and padded with len-w trailing blanks.

Onoutput, thelist item is padded with leading blanksif wis greater than len. If wislessthan
or equal to len, the output field consists of the leftmost w characters of the list item.

Generalized Editing (G)

The Gw.d and Gw.dEe edit descriptors can be used with an input/output list item of any
intrinsic type.

These edit descriptorsindicate that the external field occupiesw positions, the fractional part
of which consists of a maximum of d digits and the exponent part e digits. d and e have no
effect when used with INTEGER, LOGICAL, or CHARACTER data.

Generalized Integer Editing

With INTEGER data, the Gw.d and Gw.dEe edit descriptors follow the rules for the Iw edit
descriptor.

LF Fortran 95 Language Reference

Control Edit Descriptors

Generalized Real and Complex Editing

The form and interpretation of the input field is the same as for F editing.

The method of representation in the output field depends on the magnitude of the data object
being edited. If thedecimal point fallsjust before, within, or just after thed significant digits
to be printed, then the output is as for the F edit descriptor; otherwise, editingis asfor the E
edit descriptor.

Note that the scale factor k (see P Editing” on page 30) has no effect unless the magnitude
of the data object to be edited is outside the range that permits effective use of F editing.

Generalized Logical Editing

With LOGICAL data, the Gw.d and Gw.dEe edit descriptors follow the Lw edit descriptor
rules.

Generalized Character Editing

With CHARACTER data, the Gw.d and Gw.dEe edit descriptors follow the Aw edit descrip-
tor rules.

Control Edit Descriptors

Control edit descriptors affect format control or the conversions performed by subsequent
data edit descriptors.

Position Editing (T, TL, TR, and X)

TheTn, TLn, TRn, and nX edit descriptors control the character positioninthe current record
to or from which the next character will be transferred. The new position can bein either
direction from the current position. This makes possible the input of the same record twice,
possibly with different editing. It also makes skipping charactersin arecord possible.

The Tn edit descriptor tabsto character position n from the beginning of therecord. TheTLn
and TRn edit descriptorstab n charactersleft or right, respectively, from the current position.
The nX edit descriptor tabs n characters right from the current position.

If the position is changed to beyond the length of the current record, the next data transfer to
or from the record causes the insertion of blanks in the character positions not previously
filled.

Slash Editing

The dlash edit descriptor terminates data transfer to or from the current record. Thefile posi-
tion advancesto the beginning of the next record. On output to afile connected for sequential
access, anew record iswritten and the new record becomesthe last record in thefile.

LF Fortran 95 Language Reference 29

Chapter 1 Elements of Fortran

30

Colon Editing

The colon edit descriptor terminates format control if there are no more itemsin the input/
output list. The colon edit descriptor has no effect if there are moreitemsin the input/output
list.

S, SP, and SS Editing

The S, SP, and SS edit descriptors control whether an optional plusisto be transmitted in
subsequent numeric output fields. SP causes the optional plus to be transmitted. SS causes
it not to be transmitted. Sreturns optional pluses to the processor default (no pluses).

P Editing
The kP edit descriptor sets the value of the scale factor to k. The scale factor affects the Q,
F, E, EN, ES, D, or G editing of subsequent numeric quantities as follows:

* Oninput (provided that no exponent existsin the field) the scale factor causes the
externally represented number to be equal to the internally represented number mul-
tiplied by 10k, The scale factor has no effect if thereis an exponent in thefield.

« Onoutput, with E and D editing, the significand part of the quantity to be produced
is multiplied by 10 and the exponent is reduced by k.

e Onoutput, with G editing, the effect of the scale factor is suspended unless the mag-
nitude of the data object to be edited is outside the range that permits the use of F
editing. If the use of E editing isrequired, the scalefactor hasthe same effect aswith
E output editing.

e Onoutput, with EN and ES editing, the scale factor has no effect.

« Onoutput, with F editing, the scale factor effect is that the externally represented
number equals the internally represented number times 10X,

BN and BZ Editing

The BN and BZ edit descriptors are used to specify the interpretation, by numeric edit
descriptors, of non-leading blanksin subsequent numericinput fields. If aBN edit descriptor
is encountered in aformat, blanks in subsequent numeric input fields are ignored. If aBZ
edit descriptor isencountered, blanksin subsegquent numeric input fields are treated as zeros.

Character String Edit Descriptors

The character string edit descriptors cause literal CHARACTER data to be output. They
must not be used for input.

CHARACTER String Editing
The CHARACTER string edit descriptor causes characters to be output from astring, includ-
ing blanks. Enclosing characters are either apostrophes or quotation marks.

LF Fortran 95 Language Reference

List-Directed Formatting

For aCHARACTER string edit descriptor, the width of the field is the number of characters
contained in, but not including, the delimiting characters. Within the field, two consecutive
delimiting characters (apostrophes, if apostrophes are the delimiters; quotation marks, if quo-
tation marks are the delimiters) are counted as a single character. Thus an apostrophe or
quotation mark character can be output as part of a CHARACTER string edit descriptor
delimited by the same character.

H Editing (obsolescent)

The cH edit descriptor causes character information to be written from the next ¢ characters
(including blanks) following the H of the cH edit descriptor in thelist of format itemsitself.
The c characters are called a Hollerith constant.

List-Directed Formatting

List-directed formatting isindicated when an input/output statement uses an asterisk instead
of an explicit format. For example,

read*, a
print*, x,y,z
read (unit=1, fm=*) i,j,k

all use list-directed formatting.

List-Directed Input

List-directed records consist of a sequence of values and value separators. Values are either
null or any of the following forms:

(o
r*c
r*

Where:
cisalitera constant or anon-delimited CHARACTER string.

r isapositive INTEGER literal constant with no kind type parameter specified.
r*cisequivalent to r successive instances of c.
r* isequivalent to r successive instances of null.

Separators are either commas or slashes with optional preceding or following blanks; or one
or more blanks between two non-blank values. A slash separator causes termination of the
input statement after transfer of the previous value.

LF Fortran 95 Language Reference 31

Chapter 1 Elements of Fortran

Editing occurs based on the type of thelist item as explained below. On input the following
formatting applies:

Table 4: List-Directed Input Editing

Type Editing
INTEGER I
REAL F
COMPLEX Asfor COMPLEX literal constant
LOGICAL L
Asfor CHARACTER string. CHARACTER string
can be continued from one record to the next.
Delimiting apostrophes or quotation marks are not
CHARACTER required if the CHARACTER string does not crossa
record boundary and does not contain value separa-
torsor CHARACTER string delimiters, or begin
with r*.

List-Directed Output
For list-directed output the following formatting applies:

Table 5: List-Directed Output Editing

Type Editing
INTEGER Gw
REAL Gw.d
COMPLEX (Gw.d, Gw.d)
LOGICAL T for value true and F for value false
CHARACTER As CHARAC;I;\IZFE)sEtrLi ln,\g/;lzexsgzgtf?; overridden by

LF Fortran 95 Language Reference

Namelist Formatting

Namelist Formatting
Namelist formatting is indicated by an input/output statement with an NML= specifier.
Namelist input and output consists of

1. optiona blanks

2. theampersand character followed immediately by the namelist group name specified
in the namelist input/output statement

3. oneor more blanks
4. asequence of zero or more name-val ue subsequences, and
5. adashindicating the end of the namelist record.

The characters in namelist records form a sequence of hame-value subsequences. A name-
value subsequence is a data object or subobject previously declared in aNAMELIST state-
ment to be part of the namelist group, followed by an equals, followed by one or more values
and value separators.

Formatting for namelist recordsis the same as for list-directed records.

Example:
integer :: i,j(10)
real :: n(5)
namelist /my_nanelist/ i,j,n

read(*, nm =my_nanel i st)
If the input records are

&y _nanelist i=5, n(3)=4.5,
j(1:4)=4%0/

then5isstoredini, 4. 5inn(3),and 0 in elements 1 through 4 of j .

Statements

A brief description of each statement follows. For complete syntax and rules, see Chapter 2,
“ Alphabetical Reference.”

Fortran statements can be grouped into five categories. They are
» Control Statements

e Specification Statements

e Input/Output Statements

e Assignment and Storage Statements

* Program Structure Statements

LF Fortran 95 Language Reference 33

Chapter 1 Elements of Fortran

34

Control Statements

Arithmetic IF (obsolescent)

Execution of an arithmetic | F statement causes evaluation of an expression followed by a
transfer of control. The branch target statement identified by the first, second, or third label
inthe arithmetic | F statement is executed next if the value of the expression islessthan zero,
equal to zero, or greater than zero, respectively.

Assigned GOTO (obsolescent)

Theassigned GOT O statement causes atransfer of control to the branch target statement indi-
cated by a variable that was assigned a statement label in an ASSIGN statement. If the
parenthesized list of labelsis present, the variable must be one of the labelsin thelist.

CALL
The CALL statement invokes a subroutine and passesto it alist of arguments.

CASE

Execution of a SELECT CASE statement causes a case expression to be evaluated. The
resulting valueis called the case index. If the case index isin the range specified with a
CASE statement’ s case selector, the block following the CASE statement, if any, is executed.

Computed GOTO
The computed GOTO statement causes transfer of control to one of alist of labeled
Statements.

CONTINUE
Execution of a CONTINUE statement has no effect.

CYCLE
The CY CLE statement curtails the execution of asingle iteration of a DO loop.

DO
The DO statement begins a DO construct. A DO construct specifies the repeated execution
(loop) of a sequence of executable statements or constructs.

ELSE IF
The EL SE I F statement controls conditional execution of anested IF block in an |F construct
where all previous IF expressions are fal se.

ELSE
The ELSE statement controls conditional execution of ablock of codein an IF construct
where all previous IF expressions are fal se.

ELSEWHERE
The ELSEWHERE statement controls conditional execution of a block of assignment state-
ments for elements of an array for which the WHERE construct’s mask expression is false.

END DO
The END DO statement ends a DO construct.

END FORALL
The END FORALL statement ends a FORALL construct.

LF Fortran 95 Language Reference

Control Satements

END IF
The END IF statement ends an |F construct.

END SELECT
The END SELECT statement ends a CA SE construct.

END WHERE
The END WHERE statement ends a WHERE construct.

ENTRY
The ENTRY statement permits one program unit to define multiple procedures, each with a
different entry point.

EXIT
The EXIT statement terminates a DO loop.

FORALL

The FORALL statement beginsa FORALL construct. The FORALL construct controls mul-
tiple assignments, masked array (WHERE) assignments, and nested FORAL L constructsand
statements.

GOTO
The GOTO statement transfers control to a statement identified by alabel.

IF
The IF statement controls whether or not a single executable statement is executed.

IF-THEN
The IF-THEN statement begins an |IF construct.

PAUSE (Obsolescent)
The PAUSE statement temporarily suspends execution of the program.

RETURN
The RETURN statement compl etes execution of a subroutine or function and returns control
to the statement following the procedure invocation.

SELECT CASE

The SELECT CASE statement begins a CASE construct. It contains an expression that,
when evaluated, produces a caseindex. The caseindex is used in the CASE construct to
determine which block in a CASE construct, if any, is executed.

STOP
The STOP statement terminates execution of the program.

WHERE

The WHERE statement is used to mask the assignment of valuesin array assignment state-
ments. The WHERE statement can begin a WHERE construct that contains zero or more
assignment statements, or can itself contain an assignment statement.

LF Fortran 95 Language Reference 35

Chapter 1 Elements of Fortran

36

Specification Statements

ALLOCATABLE

The ALLOCATABLE statement declares allocatable arrays. The shape of an alocatable
array is determined when space is allocated for it by an ALLOCATE statement.

CHARACTER
The CHARACTER statement declares entities of type CHARACTER.

COMMON

The COMMON statement providesaglobal datafacility. It specifiesblocks of physical stor-
age, called common blocks, that can be accessed by any scoping unit in an executable
program.

COMPLEX
The COMPLEX statement declares names of type COMPLEX.

DATA
The DATA statement providesinitial valuesfor variables. It is not executable.

Derived-Type Definition Statement
The derived-type definition statement begins a derived-type definition.

DIMENSION
The DIMENSION statement specifies the shape of an array.

DLL_EXPORT (Windows only)
The DLL_EXPORT statement declares names externally availableinaDLL.

DLL_IMPORT (Windows only)
The DLL_IMPORT statement declares names to import fromaDLL.

DOUBLE PRECISION
The DOUBLE PRECISION statement declares names of type double precision REAL.

EQUIVALENCE
The EQUIVALENCE statement specifiesthat two or more objectsin ascoping unit sharethe
same storage.

EXTERNAL
The EXTERNAL statement specifies external procedures. Specifying a procedure name as
EXTERNAL permits the name to be used as an actual argument.

IMPLICIT

The IMPLICIT statement specifies, for a scoping unit, atype and optionally akind or a
CHARACTER length for each name beginning with aletter specifiedin the statement. Alter-
nately, it can specify that no implicit typing isto apply in the scoping unit.

INTEGER
The INTEGER statement declares names of type INTEGER.

INTENT
The INTENT statement specifies the intended use of a dummy argument.

LF Fortran 95 Language Reference

Soecification Satements

INTRINSIC

The INTRINSIC statement specifies alist of names that represent intrinsic procedures.
Doing so permits a name that represents a specific intrinsic function to be used as an actual
argument.

LOGICAL
The LOGICAL statement declares names of type LOGICAL.

NAMELIST
The NAMELIST statement specifiesalist of variables which can be referred to by one name
for the purpose of performing input/output.

ML_EXTERNAL (Windows only)

The ML_EXTERNAL statement specifies the name is an external procedure, or acommon
block name, that is available for calling from a mixed language procedure (see
“ML_EXTERNAL Satement” on page 199).

MODULE PROCEDURE
The MODUL E PROCEDURE statement specifies that the namesin the statement are part of
ageneric interface.

OPTIONAL
The OPTIONAL statement specifiesthat any of the dummy arguments specified need not be
associated with an actual argument when the procedure isinvoked.

PARAMETER
The PARAMETER statement specifies named constants.

POINTER
The POINTER statement specifiesalist of variables that have the POINTER attribute.

PRIVATE
The PRIVATE statement specifies that the names of entities are accessible only within the
current module.

PUBLIC
The PUBLIC statement specifiesthat the names of entities are accessible anywhere the mod-
ulein which the PUBLIC statement appearsis used.

REAL
The REAL statement declares names of type REAL.

SAVE
The SAVE statement specifies that all objectsin the statement retain their association, allo-
cation, definition, and value after execution of a RETURN or subprogram END statement.

SEQUENCE
The SEQUENCE statement can only appear in aderived type definition. It specifiesthat the
order of the component definitions is the storage sequence for objects of that type.

LF Fortran 95 Language Reference 37

Chapter 1 Elements of Fortran

38

TARGET
The TARGET statement specifiesalist of object namesthat have the target attribute and thus
can have pointers associated with them.

TYPE
The TY PE statement specifiesthat all entities whose names are declared in the statement are
of the derived type named in the statement.

USE
The USE statement specifiesthat aspecified moduleisaccessible by the current scoping unit.
It aso provides a means of renaming or limiting the accessibility of entities in the module.

VOLATILE
The VOLATILE statement specifies that a data object may be referenced, become redefined
or undefined by means not specified in the Fortran standard (see* VOLATILE Satement” on

page 267).

Input/Output Statements

BACKSPACE

The BACKSPACE statement positions the file before the current record, if thereisacurrent
record, otherwise before the preceding record.

CLOSE
The CLOSE statement terminates the connection of a specified input/output unit to an exter-
nal file.

ENDFILE
The ENDFILE statement writes an endfile record as the next record of thefile. Thefileis
then positioned after the endfile record, which becomes the last record of thefile.

FORMAT
The FORMAT statement provides explicit information that directs the editing between the
internal representation of data and the characters that are input or output.

INQUIRE
The INQUIRE statement enablesthe program to make inquiries about afile’' s existence, con-
nection, access method or other properties.

OPEN
The OPEN statement connects or reconnects an external file and an input/output unit.

PRINT
The PRINT statement transfers values from an output list to an input/output unit.

READ
The READ statement transfers values from an input/output unit to the entities specified in an
input list or anamelist group.

REWIND
The REWIND statement positions the specified file at itsinitial point.

LF Fortran 95 Language Reference

Assignment and Sorage Satements

WRITE

The WRITE statement transfers values to an input/output unit from the entities specified in
an output list or a namelist group.

Assignment and Storage Statements
ALLOCATE

For an allocatable array the ALLOCATE statement defines the bounds of each dimension
and allocates space for the array.

For a pointer the ALLOCATE statement creates an object that implicitly hasthe TARGET
attribute and associates the pointer with that target.

ASSIGN (obsolescent)
Assigns a statement label to an INTEGER variable.

Assignment

Assignsthe value of the expression on the right side of the equal sign to the variable on the
left side of the equal sign.

DEALLOCATE

The DEALLOCATE statement deall ocates allocatable arrays and pointer targets and disas-
sociates pointers.

NULLIFY
The NULLIFY statement disassociates pointers.

Pointer Assignment
The pointer assignment statement associates a pointer with a target.

Program Structure Statements
BLOCK DATA
The BLOCK DATA statement begins a block data program unit.

CONTAINS

The CONTAINS statement separates the body of a main program, module, or subprogram
from any internal or module subprogramsit contains.

END

The END statement ends a program unit, modul e subprogram, interface, or internal
subprogram.

FUNCTION

The FUNCTION statement begins a function subprogram, and specifies its return type and
name (the function name by default), its dummy argument names, and whether it isrecursive.

LF Fortran 95 Language Reference 39

Chapter 1 Elements of Fortran

40

INTERFACE

The INTERFACE statement begins an interface block. An interface block specifies the
forms of reference through which a procedure can be invoked. An interface block can be
used to specify a procedure interface, a defined operation, or a defined assignment.

MODULE
The MODULE statement begins a module program unit.

PROGRAM
The PROGRAM statement specifies a name for the main program.

Statement Function
A statement function is afunction defined by a single statement.

SUBROUTINE
The SUBROUTINE statement begins a subroutine subprogram and specifiesits dummy
argument names and whether it is recursive.

Statement Order
There are restrictions on where a given statement can appear in a program unit or subpro-
gram. In general,

» USE statements come before specification statements;

» gpecification statements appear before executable statements, but FORMAT,
DATA, and ENTRY statements can appear among the executable statements; and

» module procedures and internal procedures appear following a CONTAINS
Statement.

LF Fortran 95 Language Reference

Satement Order

The following table summarizes statement order rules. Vertical lines separate statements
that can be interspersed. Horizontal lines separate statements that cannot be interspersed.

Table 6: Statement Order

PROGRAM, FUNCTION, SUBROUTINE, MODULE,
or BLOCK DATA statement

USE statements
IMPLICIT NONE
PARAMETER IMPLICIT
statements statements
FORMAT
and Derived-type definitions,
ENTRY PARAMETER interface blocks,
statements and DATA type declaration statements,
statements statement function statements,
and specification statements
DATA statements Executable statements

CONTAINS statement

Internal subprograms or module subprograms

END statement

Statements are restricted in what scoping units (see “ Scope” on page 58) they may appear,
asfollows:

* AnENTRY statement may only appear in an external subprogram or module
subprogram.

e A USE statement may not appear in aBLOCK DATA program unit.

* A FORMAT statement may not appear in amodule scoping unit, BLOCK DATA
program unit, or interface body.

» A DATA statement may not appear in an interface body.
» A derived-type definition may not appear in a BLOCK DATA program unit.
» Aninterface block may not appear in a BLOCK DATA program unit.

» A statement function may not appear in amodule scoping unit, BLOCK DATA pro-
gram unit, or interface body.

» Anexecutable statement may not appear in amodule scoping unit, aBLOCK DATA
program unit, or an interface body.

* A CONTAINS statement may not appear inaBLOCK DATA program unit, an inter-
nal subprogram, or an interface body.

LF Fortran 95 Language Reference 41

Chapter 1 Elements of Fortran

Executable Constructs

Executable constructs control the execution of blocks of statements and nested constructs.

» The CASE and IF constructs control whether a block will be executed (see“ CASE
Construct” on page 88 and “ IF Construct” on page 156).

» TheDO construct controls how many times ablock will be executed (see“ DO Con-
struct” on page 116).

» The FORALL construct controls multiple assignments, masked array (WHERE)
assignments, and nested FORALL constructs and statements (see “ FORALL Con-
struct” on page 137).

» The WHERE construct controls which elements of an array will be affected by a
block of assignment statements (see “ WHERE Construct” on page 268).

Construct Names

Optional construct names can be used with CASE, IF, DO, and FORALL constructs. Use of
construct names can add clarity to aprogram. For the DO construct, construct names enable
aCYCLE or EXIT statement to leave aDO nesting level other than the current one. All con-
struct names must match for a given construct. For example, if a SELECT CASE statement
has a construct name, the corresponding CASE and END SELECT statements must have the
same construct name.

42 LF Fortran 95 Language Reference

Procedures

Procedures

Fortran has two varieties of procedures: functions and subroutines. Procedures are further
categorized in the following table:

Table 7: Procedures

Generic Intrinsic

Intrinsic Func- Functions
tions Specific Intrinsic
Functions

Generic External

Functions External Func- Functions
tions Specific External
Functions

Internal Functions

Statement Functions

Generic Intrinsic
Intrinsic Subroutines
Subroutines Specific Intrinsic
Subroutines
Subroutines Generic External
Externa Sub- Subroutines
routines Specific External
Subroutines

Internal Subroutines

Intrinsic procedures are built-in procedures that are provided by the Fortran processor.

An external procedureisdefined in aseparate program unit and can be separately compiled.
It is not necessarily coded in Fortran. External procedures and intrinsic procedures can be
referenced anywhere in the program.

Aninternal procedure is contained within another program unit. It can only be referenced
from within the containing program unit.

Internal and external procedures can be referenced recursively if the RECURSIVE keyword
isincluded in the procedure definition.

LF Fortran 95 Language Reference 43

Chapter 1 Elements of Fortran

Intrinsic and external procedures can be either specific or generic. A generic procedure has
specific versions, which can be referenced by the generic name. The specific versionusedis
determined by the type, kind, and rank of the arguments.

Additionally, procedures can be elemental or non-elemental. An elemental procedure can
takeasan argument either ascalar or an array. If the proceduretakesan array asan argument,
it operates on each element in the array asif it were ascalar.

Each of the various kinds of Fortran procedures is described in more detail below.

Intrinsic Procedures

Intrinsic procedures are built-in procedures provided by the Fortran processor. Fortran has
over one hundred standard intrinsic procedures. Each is documented in detail in the Alpha-
betical Reference. A tableisprovided in* Intrinsic Procedures’ on page 283.

Subroutines

A subroutine is a self-contained procedure that isinvoked using a CALL statement. For
example,

program nain
implicit none
interface ! an explicit interface is provided
subroutine rmultiply(x, y)
inplicit none
real, intent(in out) :: x
real, intent(in) :: vy
end subroutine rmultiply
end interface

real :: a, b
a=40
b =12.0
call multiply(a, b)
print*, a

end program nain

subroutine rmultiply(x, y)
implicit none
real, intent(in out) :: x
real, intent(in) :: vy
multiply = x*y

end subroutine nmultiply

44 LF Fortran 95 Language Reference

Functions

Thisprogram callsthe subroutinenul t i pl y and passestwo REAL actual arguments, a and
b. Thesubroutinemul ti pl y’s corresponding dummy arguments, x and y, refer to the same
storageasa and b in mai n. When the subroutine returns, a hasthevalue48.0 and b is
unchanged.

The syntax for a subroutine definition is

subroutine-stmt

[use-stmts]

[specification-part]

[execution-part]

[inter nal-subprogram-part]
end-subroutine-stmt

Where:
subroutine-stmt is a SUBROUTINE statement.

use-stmts is zero or more USE statements.
specification-part is zero or more specification statements.
execution part is zero or more executabl e statements.

internal -subprogram-part is
CONTAINS
procedure-definitions

procedure-definitionsis one or more procedure definitions.

end-subroutine-stmt is
END [SUBROUTINE [subroutine-name] |

subroutine-name is the name of the subroutine.

Functions
A functionisaprocedure that produces asingle scalar or array result. Itisusedinan expres-
sioninthe sameway avariableis. For example, in the following program,

LF Fortran 95 Language Reference 45

Chapter 1 Elements of Fortran

program mai n
implicit none
interface ! an explicit interface is provided
function square(x)
inmplicit none
real, intent(in) :: x
real :: square
end function square
end interface

real :: a, b=3.6, c=3.8, square
a=3.7+b + square(c) + sin(4.7)
print*, a

st op

end program main

function square(x)
implicit none

real, intent(in) :: x
real :: square

square = X*X

return

end function square

square(c) andsi n(4.7) arefunction references.
The syntax for afunction referenceis
function-name (actual-arg-list)

Where:
function-name is the name of the function.

actual-arg-list isalist of actual arguments.

A function can be defined as an internal or external function or as a statement function.

46 LF Fortran 95 Language Reference

Functions

External Functions

External functions can be called from anywhere in the program. The syntax for an external
function definition is

function-stmt

[use-stmts]

[specification-part]

[execution-part]
[internal-subprogram-part]
end-function-stmt

Where:
function-stmt isa FUNCTION statement.

use-stmts is zero or more USE statements.
specification-part is zero or more specification statements.
execution part is zero or more executabl e statements.

internal -subprogram-part is
CONTAINS
procedure-definitions

procedure-definitions is one or more procedure definitions.

end-function-stmt is
END [FUNCTION [function-name]]

function-name is the name of the function.

Statement Functions

A statement function (see“ Statement Function” on page 248) is afunction defined on asin-
glelinewith asingle expression. It can only be referenced within the program unit in which
itisdefined. A statement function is best used where speed is more important than reusabil-
ity in other locations, and where the function can be expressed in asingle expression. The
following isan example equivalent to the external function examplein* Functions’ on page
45:

program mai n

real :: a, b=3.6, ¢=3.8, square
square(x) = xX*Xx

a=3.7+b + square(c) + sin(4.7)
print*, a

end

LF Fortran 95 Language Reference 47

Chapter 1 Elements of Fortran

48

Internal Procedures

A procedure can contain other procedures, which can be referenced only from within the host
procedure. Such procedures are known as internal procedures. An internal procedureis
specified within the host procedure following a CONTAINS statement, which must appear
after all the executable code of the containing subprogram. Theform of aninternal procedure
isthe same as that of an externa procedure.

Example:
subroutine external ()

call internal () I reference to internal procedure

cont ai ns
subroutine internal () ! only callable from external ()

end subroutine internal

end subroutine external

Names from the host procedure are accessible to the internal procedure. Thisis called host
association.

Recursion

A Fortran procedure can reference itself, either directly or indirectly, only if the RECUR-
SIVE keyword is specified in the procedure definition. A function that callsitself directly
must use the RESULT option (see “ FUNCTION Satement” on page 146).

Pure Procedures

Fortran procedures can be specified as PURE, meaning that there is no chance that the pro-
cedure would have any side effect on data outside the procedure. Only pure procedures can
be used in specification expressions. The PURE keyword must be used in the procedure
declaration.

Elemental Procedures

Fortran procedures can be elemental, meaning that they work on each element of an array
argument asif the argument were ascalar. The ELEMENTAL keyword must be used in the
procedure declaration. Note that all elemental procedures are also pure procedures.

LF Fortran 95 Language Reference

Procedure Arguments

Procedure Arguments

Arguments provide a means of passing information between a calling procedure and a pro-
cedureit calls. The calling procedure provides alist of actual arguments. The called
procedure accepts a list of dummy arguments.

Argument Intent

Because Fortran passes arguments by reference, unwanted side effects can occur when an
actual argument’s value is changed by the called procedure. To protect the program from
such unwanted side effects, the INTENT attributeisprovided. A dummy argument can have
one of the following attributes:

* INTENT(IN), when it isto be used to input data to the procedure and not to return
results to the calling subprogram;

* INTENT(OUT), when it isto be used to return results but not to input data; and

e INTENT(IN OUT), when it isto be used for inputting data and returning a result.
Thisisthe default argument intent.

The INTENT attribute is specified for dummy arguments using the INTENT statement or in
atype declaration statement.

Keyword Arguments

Using keyword arguments, the programmer can specify explicitly which actual argument
correspondsto which dummy argument, regardless of positionintheactual argumentlist. To
do so, specify the dummy argument name along with the actual argument, using the foll ow-
ing syntax:

keyword = actual-arg

Where:
keyword is the dummy argument name.

actual-arg isthe actual argument.

Example:

call zee(c=1, b=2, a=3)

subroutine zee(a,b,c)

In the example, the actual arguments are provided in reverse order.

A procedure reference can use keyword arguments for zero, some, or all of the actual argu-
ments (see “ Optional Arguments” below). For those arguments not having keywords, the
order in the actual argument list determines the correspondence with the dummy argument
list. Keyword arguments must appear after any non-keyword arguments.

LF Fortran 95 Language Reference 49

Chapter 1 Elements of Fortran

50

Note that for a procedure invocation to use keyword arguments an explicit interface must be
present (see “ Procedure Interfaces’ on page 51).

Optional Arguments

An actual argument need not be provided for a corresponding dummy argument with the
OPTIONAL attribute. To make an argument optional, specify the OPTIONAL attribute for
the dummy argument, either in atype declaration statement or with the OPTIONAL
Statement.

An optional argument at the end of a dummy argument list can simply be omitted from the
corresponding actual argument list. Keyword arguments must be used to omit other optional
arguments, unless all of the remaining arguments in the reference are omitted. For example,

subroutine zee(a, b, c¢)
implicit none
real, intent(in), optional :: a, c
real, intent(in out) :: b

end subroutine zee

In the above subroutine, a and ¢ are optional arguments. In the following calls, various com-
binations of optional arguments are omitted:

call zee(b=3.0) I a and ¢ omtted, keyword necessary
call zee(2.0, 3.0) I ¢c omtted
call zee(b=3.0, ¢c=8.5) ! a onmtted, keywords necessary

Itisusually necessary in aprocedure body to know whether or not an optional argument has
been provided. The PRESENT intrinsic function takes as an argument the name of an
optional argument and returnstrueif the argument is present and false otherwise. A dummy
argument or procedure that is not present must not be referenced except as an argument to
the PRESENT function or as an optional argument in a procedure reference.

Note that for a procedure to have optional arguments an explicit interface must be present
(see* Procedure Interfaces’ on page 51). Many of the Fortran intrinsic procedures have
optional arguments.

Alternate Returns (obsolescent)
A procedure can be made to return to alabeled statement in the calling subprogram using an
alternate return. The syntax for an alternate return dummy argument is

*
The syntax for an alternate return actual argument is
* |abel

Where:
label is alabeled executable statement in the calling subprogram.

LF Fortran 95 Language Reference

Procedure Interfaces

An argument to the RETURN statement is used in the called subprogram to indicate which
alternate return in the dummy argument list to take. For example,

call zee(a,b, *200, c, *250)

subroutine zee(a, b, *, ¢, *)

return 2 ! returns to label 250 in calling procedure
return 1 ! returns to label 200 in calling procedure
return ! normal return

Dummy Procedures

A dummy argument can be the name of a procedure that isto be referenced in the called sub-
program or isto appear in aninterface block or inan EXTERNAL or INTRINSIC statement.
The corresponding actual argument must not be the name of an internal procedure or state-
ment function.

Procedure Interfaces

A procedureinterfaceisall the characteristics of aprocedurethat are of interest to the Fortran
processor when the procedure isinvoked. These characteristics include the name of the pro-
cedure, the number, order, type parameters, shape, and intent of the arguments; whether the
arguments are optional, and whether they are pointers; and, if thereferenceisto afunction,
the type, type parameters, and rank of the result, and whether it isapointer. If the function
result is not a pointer, its shape is an important characteristic. The interface can be explicit,
in which case the Fortran processor has access to all characteristics of the procedure inter-
face, or implicit, in which case the Fortran processor must make assumptions about the
interface.

Explicit Interfaces
Itisdesirable, to avoid errors, to create explicit interfaces whenever possible. In each of the
following cases, an explicit interface is mandatory:

If areferenceto a procedure appears

» with akeyword argument,

» asadefined assignment,

* inan expression as a defined operator, or
» asareferenceby its generic name;

or if the procedure has

» anoptional dummy argument,

e anarray-valued result,

» adummy argument that is an assumed-shape array, a pointer, or atarget,

LF Fortran 95 Language Reference 51

Chapter 1 Elements of Fortran

* aCHARACTER result whose length type parameter value is neither assumed nor
constant, or
» aresult that isapointer.

Aninterfaceis always explicit for intrinsic procedures, internal procedures, and module pro-
cedures. A statement function’sinterface is awaysimplicit. In other cases, explicit
interfaces can be established using an interface block:

Syntax:
interface-stmt
[interface-body] ...
[module procedure statement] ...
end-interface statement

Where:
interface-stmt is an INTERFACE statement.

interface-body is
function-stmt
[specification-part]
end stmt

or
subroutine-stmt
[specification-part]
end-stmt

modul e-procedure-stmt isa MODUL E PROCEDURE statement.
end-interface-stmt is an END INTERFACE statement.
function-stmt isa FUNCTION statement.

subroutine-stmt isa SUBROUTINE statement.
specification-part is the specification part of the procedure.
end-stmt is an END statement.

Example:
interface
subroutine x(a, b, ¢)
inmplicit none
real, intent(in), dinmension (2,8) :: a
real, intent(out), dinension (2,8) :: b, ¢
end subroutine x
function y(a, b)
inmplicit none
logical, intent(in) :: a, b
end function y
end interface

52 LF Fortran 95 Language Reference

Procedure Interfaces

In this example, explicit interfaces are provided for the proceduresx andy. Any errorsin
referencing these procedures in the scoping unit of the interface block will be diagnosed at
compile time.

Generic Interfaces

An INTERFACE statement with a generic-name (see “ INTERFACE Block” on page 169)
specifies a generic interface for each of the proceduresin the interface block. In thisway
external generic procedures can be created, analogous to intrinsic generic procedures.

Example:
interface swap ! generic swap routine
subroutine real _swap(x, V)
implicit none
real, intent(in out) :: x, y
end subroutine real _swap
subroutine int_swap(x, Yy)
implicit none
integer, intent(in out) :: x, y
end subroutine int_swap
end interface

Here the generic procedure swap can be used with both the REAL and INTEGER types.

Defined Operations

Operators can be extended and new operators created for user-defined and intrinsic data
types. Thisisdone using interface blocks with INTERFACE OPERATOR (see“ INTER-
FACE Block” on page 169).

A defined operation has the form
operator operand

for adefined unary operation, and
operand operator operand

for adefined binary operation, where operator is one of the intrinsic operators or a user-
defined operator of the form

.operator-name.
where .operator-name. consists of oneto 31 letters.

For example, either
a .intersection. b

or

LF Fortran 95 Language Reference 53

Chapter 1 Elements of Fortran

54

might be used to indicate the intersection of two sets. The generic interface block might look
like

interface operator (.intersection.)
function set_intersection (a, b)
inmplicit none
type (set), intent(in) :: a, b, set_intersection
end function set_intersection
end interface

for the first example, and

interface operator (*)
function set_intersection (a, b)
inmplicit none
type (set), intent(in) :: a, b, set intersection
end function set_intersection
end interface

for the second example. Thefunctionset _i nt er sect i on would then contain the code to
determine the intersection of a and b.

The precedence of a defined operator isthe same as that of the corresponding intrinsic oper-
ator if an intrinsic operator is being extended. If a user-defined operator is used, a unary
defined operation has higher precedence than any other operation, and a binary defined oper-
ation has alower precedence than any other operation.

Anintrinsic operation (such as addition) cannot be redefined for valid intrinsic operands. For
example, itisillegal to redefine plus to mean minus for numeric types.

The functions specified in the interface block take either one argument, in the case of a
defined unary operator, or two arguments, for a defined binary operator. The operand or
operandsin adefined operation become the argumentsto afunction specified in theinterface
block, depending on their type, kind, and rank. If adefined binary operation is performed,
the left operand corresponds to the first argument and the right operand to the second argu-
ment. Both unary and binary defined operationsfor a particular operator may be specified in
the sameinterface block.

Defined Assignment

The assignment operator may be extended using an interface block with INTERFACE
ASSIGNMENT (see“ INTERFACE Block” on page 169). The mechanismissimilar to that
used to resolve a defined binary operation (see” Defined Operations’ on page 53), with the
variable on the | eft side of the assignment corresponding to the first argument of a subroutine
in the interface block and the data object on the right side corresponding to the second argu-
ment. The first argument must be INTENT(OUT) or INTENT(IN OUT); the second
argument must be INTENT(IN).

LF Fortran 95 Language Reference

Program Units

Example:
interface assignment (=) ! use = for integer to
! logical array
subroutine integer_to_logical _array (b, n)
implicit none
logical, intent(out) :: b(:)
integer, intent(in) :: n
end subroutine integer_to_logical _array
end interface

Here the assignment operator is extended to convert INTEGER datato a LOGICAL array.

Program Units

Program units are the smallest elements of a Fortran program that may be separately com-
piled. There arefivekinds of program units:

e Main Program

e External Function Subprogram

» External Subroutine Subprogram
» Block Data Program Unit

* Module Program Unit

External Functions and Subroutines are described in “ Functions’ on page 45 and “ Intrinsic
Procedures’ on page 44.

Main Program

Execution of a Fortran program begins with the first executable statement in the main pro-
gram and ends with a STOP statement anywhere in the program or with the END statement
of the main program.

The form of amain programis

[program-stnt]

[use-stmts]

[specification-part]

[execution-part]

[inter nal-subprogram-part]
end-stmt

Where:
program-stmt isa PROGRAM statement.

use-stmts is one or more USE statements.

LF Fortran 95 Language Reference 55

Chapter 1 Elements of Fortran

56

specification-part is one or more specification statements or interface blocks.

execution-part is one or more executable statements, other than RETURN or ENTRY
Statements.

internal -subprogramis one or more internal procedures.

end-stmt is an END statement.

Block Data Program Units

A block data program unit providesinitial values for datain one or more named common
blocks. Only specification statements may appear in ablock data program unit. A block data
program unit may be referenced only in EXTERNAL statements in other program units.

The form of ablock data program unit is

bl ock-data-stmt
[specification-part]
end-stmt

Where:
block-data-stmt isaBLOCK DATA statement.

specification-part is one or more specification statements, other than ALLOCATABLE,
INTENT, PUBLIC, PRIVATE, OPTIONAL, and SEQUENCE.

end-stmt is an END statement.

Module Program Units

M odule program units provide a means of packaging anything that is required by more than
one scoping unit (ascoping unit is a program unit, subprogram, derived type definition, or
procedure interface body, excluding any scoping unitsit contains). Modules may contain
type specifications, interface bl ocks, executable codein modul e subprograms, and references
to other modules. The namesin amodule can be specified PUBLIC (accessible wherever the
module is used) or PRIVATE (accessible only in the scope of the moduleitself). Typical
uses of modulesinclude

» declaration and initialization of datato be used in more than one subprogram without
using common blocks.

» gpecification of explicit interfaces for procedures.

» definition of derived types and creation of reusabl e abstract datatypes (derived types
and the procedures that operate on them).

LF Fortran 95 Language Reference

Module Program Units

The form of a module program unit is

modul e-stmt

[use-stmts]

[specification-part]

[module-subprogram-part]
end-stmt

Where:
module-stmt isa MODULE statement.

use-stmts is one or more USE statements.

specification-part is one or more interface blocks or specification statements other than
OPTIONAL or INTENT.

modul e-subprogram part is CONTAINS, followed by one or more module procedures.
end-stmt is an END statement.

Example:
nodul e exanpl e
implicit none

integer, dinmension(2,2) :: barl=1, bar2=2
t ype phone_nunber Iderived type definition
integer :: area_code, humber

end type phone_nunber

interface lexplicit interfaces
function test(sanple, result)
inplicit none
real :: test
integer, intent(in) :: sanple,result
end function test
function count(total)
inmplicit none
i nteger :: count
real,intent(in) :: tota
end function count
end interface

interface swap lgeneric interface
nodul e procedure swap_real s, swap_i nt egers
end interface

contai ns

function swap_reals I modul e procedure

end function swap_reals

LF Fortran 95 Language Reference 57

Chapter 1 Elements of Fortran

Scope

function swap_integers !nodul e procedure

end function swap_i ntegers
end nodul e exanpl e

Module Procedures

M odule procedures have the same rules and organization as external procedures. They are
analogousto internal procedures, however, in that they have access to the data of the host
module. Only program units that use the host module have access to the module’ s module
procedures. Procedures may be made local to the module by specifying the PRIVATE
attribute in a PRIVATE statement or in atype declaration statement within the module.

Using Modules
Information contained in a module may be made available within another program unit via

the USE statement. For example,

use set_nodul e

would give the current scoping unit accessto the namesin module set _nodul e. If aname
inset _nodul e conflictswith anamein the current scoping unit, an error occursonly if that
nameis referenced. To avoid such conflicts, the USE statement has an aliasing facility:

use set_nodule, a => b
Here the module entity b would be known as a in the current scoping unit.

Another way of avoiding name conflicts, if the module entity name is not needed in the cur-
rent scoping unit, iswith the ONLY form of the USE statement:

use set_nodule, only : ¢, d
Here, only the names ¢ and d are accessible to the current scoping unit.

Forward referencesto modulesare not allowedin LF95. If amoduleresidesin aseparatefile
from the code that uses the module, the module must be compiled before the code using the
module. If amodule and the code using the module are in the same sourcefile, the compiler
will compile the module in the proper order, regardless of where the module appearsin the
source file.

Names of program units, common blocks, and external procedures have global scope. That
is, they may be referenced from anywhere in the program. A global name must not identify
more than one global entity in a program.

58 LF Fortran 95 Language Reference

Data Sharing

Names of statement function dummy arguments have statement scope. The same name may
be used for adifferent entity outside the statement, and the name must not identify more than
one entity within the statement.

Names of implied-do variablesin DATA statements and array constructors have a scope of
theimplied-do list. The same name may be used for a different entity outside the implied-
DO list, and the name must not identify more than one entity within the implied-DO list.

Other names have local scope. Thelocal scope, called ascoping unit, isone of thefollowing:
» aderived-type definition, excluding the name of the derived type.
» aninterface body, excluding any derived-type definitions or interface bodies within
it.
e aprogram unit or subprogram, excluding derived-type component definitions, inter-
face bodies, and subprograms contained within it.

Names in a scoping unit may be referenced from a scoping unit contained within it, except
when the same name is declared in the inner, contained scoping unit. Thisisknown as host
association. For example,

subroutine external ()
implicit none
integer :: a, b

cont ai ns

subroutine internal ()
implicit none
integer :: a

a=b ! a is the local a;
! b is available by host association

end subroutine internal

end subroutine external

In the statement a=b, above, a isthea declared in subroutinei nt er nal , not the a declared
in subroutine ext er nal . b isavailable from ext er nal by host association.

Data Sharing

To make an entity available to more than one program unit, passit as an argument, place it
in acommon block (see “ COMMON Satement” on page 96), or declare it in a module and
use the module (see “ Module Program Units’ on page 56).

LF Fortran 95 Language Reference 59

Chapter 1 Elements of Fortran

60 LF Fortran 95 Language Reference

Alphabetical
Reference

This chapter contai ns descriptions and examples of Fortran 95 statements, constructs, intrin-
sic procedures, and extensions.

ABS Function

Description
The ABS function returns the absol ute value of a numeric argument.

Syntax
ABS(a)

Arguments
aisan INTENT(IN) scalar or array of type REAL, INTEGER, or COMPLEX.

Result
If aisINTEGER or REAL, the result is the same type and kind as a and has the value |a|.

If ais COMPLEX with value (x,y), theresult isa REAL value with the same kind as a, and
is arepresentation of A/x2 + y2 .

Example
real :: y=-4.5
conplex :: z=(1.,-1.)
wite(*,*) abs(y) ! wites 4.5000000
wite(*,*) abs(z) ! wites 1.4142135

LF Fortran 95 Language Reference 61

Chapter 2 Alphabetical Reference

ACHAR Function

Description
The ACHAR function returns a character from the ASCII collating sequence. See“ASCII
Character Set” on page 319.

Syntax
ACHAR (i)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER.

Result
Alength one CHARACTER value corresponding to the character in position (i) of the ASCII
collating sequence.

Ifi isanarray, theresult isan array of length one CHARACTER values, with the same shape

asi

Example
integer, dinmension(6) :: i=(/72,111, 119, 100, 121, 33/)
wite(*,*) achar(i) ! wites "Howdy!"

ACOS Function

Description
The ACOS function returns the trigonometric arccosine of areal number, in radians.

Syntax
ACOS ()

Arguments

xisan INTENT(IN) scalar or array of type REAL and must be withintherange —-1<x<1.
If the argument is outside this range, an error message is printed and program execution is
terminated.

Result
A REAL representation, expressed in radians, of the arccosine of x.

Example
real :: x=.5

62 LF Fortran 95 Language Reference

ADJUSTL Function

wite(*,*) acos(x) ! wites 1.0471975

ADJUSTL Function

Description

The ADJUSTL function results in a character string which has been adjusted to the | eft.
L eading blanks are removed from any text and replaced astrailing blanks. The resulting
character string is the same length as the input string.

Syntax
ADJUSTL (string)

Arguments
stringisan INTENT(IN) scalar or array of type CHARACTER.

Result
A CHARACTER value the same length, kind, and shape as string.

The result isthe text from string with any leading blanks removed and the same number of
trailing blanks inserted.

Example
character(len=10) :: str=" string”
wite(*,*) """,adjustl(str)," ™ ! wites ’"string

ADJUSTR Function

Description

The ADJUSTR function resultsin a character string which has been adjusted to the right.
Trailing blanks are removed from any text string, and replaced asleading blanks. The result-
ing character string is the same length as the input string.

Syntax
ADJUSTR (string)

Arguments
stringisan INTENT(IN) scalar or array of type CHARACTER.

Result
A CHARACTER of the same length, kind, and shape as string.

LF Fortran 95 Language Reference 63

Chapter 2 Alphabetical Reference

Theresult isthe text from string with any trailing blanks removed and the same number of
leading blanks inserted.

Example
character(len=10) :: str="string
wite(*,*) """,adjustr(str)," " I wites ’ string’

AIMAG Function

Description
The AIMAG function returns the imaginary part of acomplex number.

Syntax
AIMAG (2)

Arguments
zisan INTENT(IN) scalar or array of type COMPLEX.

Result
A REAL number withthe samekind asz. If zhasthevalue (x,y) then theresult hasthe value
y.

Example

conplex :: z=(-4.2,5.5)
wite(*,*) aimag(z) ! wites 5.500000

AINT Function

Description
The AINT function truncates a real number by removing its fractional part.

Syntax
AINT (a[, kind])

Required Arguments
aisan INTENT(IN) scalar or array of type REAL.

64 LF Fortran 95 Language Reference

ALL Function

Optional Arguments

kind determines the kind of the result. It must be a scalar INTEGER expression that can be
evaluated at compiletime. To maintain portability, this argument should be the result of a
“KIND Function” or “ SELECTED_REAL_KIND Function”.

Result
Theresult is equal to the value of a without its fractional part.

If kind is present, theresult isaREAL vaue of kind kind, otherwise it isthe samekind as a.

Example
real (ki nd=ki nd(1.e0)) :: r1=-7.32, r2=1.999999
real (ki nd=ki nd(1.d0)) :: dr
wite(*,*) aint(rl,kind(r1)) ! wites -7.000000
wite(*,*) aint(r2, kind(dr)) ! wites 1.0000000000000

ALL Function

Description

The ALL function determineswhether al valuesin alogical mask aretrueeither for an entire
mask or along a given dimension of the mask.

Syntax
ALL (mask [, dim])

Required Arguments
mask isan INTENT(IN) array of type LOGICAL. It cannot be scalar.

Optional Arguments

dimisan INTENT(IN) scalar INTEGER with avalue withintherange 1 < x< n, wherenis
the rank of mask. The corresponding actual argument cannot be an optional dummy
argument.

Result

Theresult is of type LOGICAL and the same kind as MASK. Itsvalue and rank are deter-
mined as follows:

1. Thefunction will return ascalar logical valueif mask has rank one, or if dimis
absent. Theresult hasthe valuetrueif all elements of mask are true.

LF Fortran 95 Language Reference 65

Chapter 2

Alphabetical Reference

2. Thefunctionwill returnalogical array of rank n-1if dimis present and mask hasrank
two or greater. Theresulting array isof shape (d;, d,, ..., dgim—1, dgim« 1 -+~ +dy)
where (d;, d,, ..., d,) isthe shape of mask and nisthe rank of mask. Theresult
has the value true for each corresponding vector in mask that eval uatesto true for all
elementsin that vector.

Example 1
real, dinmension(4) :: 0=0.,p=1.,q=(/1.,-2.,3.,4.1/)
if (all(g/=0.)) o=p/q
wite(*,*) o! wites 1.000000 -.5000000 .3333333 .2500000

Example 2

integer, dimension (2,3) :: a, b
a = reshape((/1,2,3,4,5,6/), (/2,3/))
wite(*,'(2i3)') a! wites 1 2

! 34

! 56
b = reshape((/1,2,3,5,6,4/), (/2,3/))
wite(*,'(2i3)') b! wites 1 2

! 34

! 56
wite(*,*) all(a==b) I wites F
wite(*,*) all(a==b, 1)! wites T F F
wite(*,*) all(a==b, 2)! wites F F

ALLOCATABLE Statement

Description

The ALLOCATABLE statement declares arrays as having the all ocatabl e attribute, and may
also define the rank of an alocatable array. The shape of an alocatable array is determined
when spaceis alocated for it by executing an ALLOCATE statement.

Syntax
ALLOCATABLE [::] array-name [(deferred-shape)] [, array-name (deferred-
shape)] ...

Where:
array-name is the name of an array variable.

deferred-shapeis: [, :] ... wherethe number of colonsisequal to the rank of array-name.

66 LF Fortran 95 Language Reference

ALLOCATE Satement

Remarks

The Fortran 95 standard states that the object of the ALLOCATABLE statement must not be
a dummy argument or function result. As an extension, dummy arrays are allowed to have
the allocatabl e attribute.

If the DIMENSION of array-nameis specified el sewhere in the scoping unit, it must be spec-
ified as a deferred-shape.

Example
integer :: a, c(:,:,:)
integer, allocatable :: b(:,:) ! allocatable attribute
al l ocatable a(:), c I al | ocat abl e statenent

allocate (a(2),b(3,-1:1),c(10,10,10))! space allocated
wite(*,*) shape(a), shape(b), shape(c)! wites 2 3 3 10 10 10
deal | ocate (a, b, c) I space deal | ocat ed

ALLOCATE Statement

Description

The ALLOCATE statement dynamically creates storage for array variables having the
ALLOCATABLE or POINTER attribute. If the object of an ALLOCATE statement isa
pointer, execution of the ALLOCATE statement causes the pointer to become associated. 1f
the abject of an ALLOCATE statement is an array, the ALLOCATE statement defines the
shape of the array.

Syntax
ALLOCATE (allocation-list [, STAT=stat-variable])

Where:

allocation-list isacomma-separated list of pointer or allocatable variables. Each allocatable
or pointer array in the allocation-list will have alist of dimension bounds, ([lower-bound :]
upper-bound [, ...])

upper bound and lower-bound are scalar INTEGER expressions.

stat-variableis ascalar INTEGER variable.

Remarks
When the ALLOCATE statement is executed, the number of dimensions being allocated
must agree with the declared rank of the array.

If the optional STAT=is present and the ALLOCATE statement succeeds, stat-variableis
assigned the value zero. If STAT=is present and the ALLOCATE statement fails, stat-vari-
able is assigned the number of the error message generated at runtime.

LF Fortran 95 Language Reference 67

Chapter 2 Alphabetical Reference

68

If an error condition occurs during execution of an ALLOCATE statement that does not con-
tain the STAT= specifier, execution of the program is terminated.

The default lower-bound value is one.

If upper-bound is less than lower-bound, the extent of that dimension is zero and the entire
array has zero size.

The ALLOCATED intrinsic function determines whether an allocatable array is currently
allocated.

The ASSOCIATED intrinsic function determines whether a pointer is currently associated
with atarget.

Attempting to allocate a currently allocated variable causes an error condition to occur.

If apointer that is currently associated with atarget is alocated, a new pointer target is cre-
ated and the pointer isassociated with that target. If thereisno other referenceto theoriginal
target, the storage associated with the original target is lost and cannot be recovered.

If local alocatable or pointer arrays do not have the SAVE attribute, they may be automati-
cally deallocated upon execution of aRETURN statement.

Example 1
integer, pointer,dinmension(:,:) :: i => null()
i nteger, all ocatable,dimension (:) :: j
i nteger, pointer :: k I scal ar pointer

wite(*,*) associated(i), associated(k) ! wites F F
al l ocate (i (10, 20), k)

wite(*,*) associated(i), shape(i) I wites T 10 20

wite(*,*) associated(k) I wites T

deal | ocate (i, k)

wite(*,*) allocated(j) I wites F

al l ocate (j(10))

wite(*,*) allocated(j), shape(j) I wites T 10

deal | ocate (j) I space deal |l ocated
Example 2

integer :: alloc_stat

real,allocatable,dinmension (:) :: r

wite(*,*) allocated(r) I wites F

al locate (r(10),stat=alloc_stat)

wite(*,*) allocated(r), alloc_stat I wites T O

al l ocate (r(20),stat=alloc_stat)

wite(*,*) allocated(r), alloc_stat I wites T 1001
deal | ocate (r) ! space deal |l ocat ed
al l ocate (r(20:-20),stat=alloc_stat) ! zero size array
wite(*,*) size(r),shape(r),alloc_stat ! wites 0 00

LF Fortran 95 Language Reference

ALLOCATED Function

ALLOCATED Function

Description
The ALLOCATED function returns a true or false value indicating the status of an all ocat-
able variable.

Syntax
ALLOCATED (array)

Arguments
array isan INTENT(IN) array with the allocatabl e attribute.

Result
Theresult isascalar of default LOGICAL type. It hasthe valuetrueif array is currently
allocated and falseif array is not currently allocated.

Example
integer, allocatable :: i(:)
wite(*,*) allocated(i) ! wites F

allocate (i(2))
wite(*,*) allocated(i) ! wites T

ANINT Function

Description
The ANINT function rounds a REAL number up or down to the nearest whole number.

Syntax
ANINT (a[, kind])

Required Arguments
aisan INTENT(IN) scalar or array of type REAL.

Optional Arguments

kind is INTENT(IN) and determines the kind of the result. It must be a scalar INTEGER
expression that can be evaluated at compile time. To maintain portability, this argument
should be the result of a“ KIND Function” or “ SELECTED REAL KIND Function” .

Result
Theresultisatype REAL number representing the whole number nearest to the argument.
If a> 0, theresult hasthe value INT(a + 0.5); if a< 0, theresult hasthevalue INT(a - 0.5).

LF Fortran 95 Language Reference 69

Chapter 2

Alphabetical Reference

If kind is present, the result is the same kind as kind.

If kind is absent, the result is the ssme kind as a.

Example
real :: x=7.73,y=1.5,z=-1.5
wite(*,*) anint(x,kind(1.d0)) ! wites 8.000000000000000
wite(*,*) anint(y) I wites 2.0000000
wite(*,*) anint(z) I wites -2.0000000

ANY Function

Description:
The ANY function determines whether any valuesin alogical mask are true either for an
entire mask or along a given dimension of the mask.

Syntax
ANY (mask [, dim])

Required Arguments
mask isan INTENT(IN) array of type LOGICAL. It must not be scalar.

Optional Arguments

dimisan INTENT(IN) scalar INTEGER with avalue withintherange 1 < x< n, wherenis
the rank of mask. The corresponding actual argument cannot be an optional dummy
argument.

Result
Theresult is of type LOGICAL and the same kind as MASK. Itsvalue and rank are deter-
mined asfollows:

1. Thefunction will return ascalar logical value if mask has rank one, or if dimis
absent. Theresult hasthe valuetrueif any elements of mask are true.

2. Thefunctionwill returnalogical array of rank n-1if dimis present and mask hasrank
two or greater. Theresulting array isof shape (d;, d,, ..., dgim—_1, dgim+ 1 --- +dy)
where (d;, d,, ...,d,) isthe shape of mask and nistherank of mask. Theresult
hasthe valuetruefor each corresponding vector in mask that eval uatesto truefor any
elementsin that vector.

Example 1
real ,dinmension(4) :: g=(/1.,-2.,3.,4./)
wite(*,*) any(q < 0.) ! wites T

70 LF Fortran 95 Language Reference

Arithmetic IF Satement (obsolescent)

Example 2

integer, dimension (2,3) :: a, b
a = reshape((/1,2,3,4,5,6/), (/2,3/))
wite(*,'(2i3)') a! wites 1 2

! 34

! 56
b = reshape((/1,2,3,5,6,4/), (/2,3/))
wite(*,"(2i3)') b! wites 1 2

! 34

! 56
wite(*,*) any(a==b) I wites T
wite(*,*) any(a==b, 1) ! wites TTF
wite(*,*) any(a==b, 2) ! wites T T

Arithmetic IF Statement (obsolescent)

Description

Execution of an arithmetic | F statement causes evaluation of an expression followed by a
transfer of control. The branch target statement identified by the first, second, or third label
isexecuted if the value of the expression islessthan zero, equal to zero, or greater than zero,
respectively.

Syntax
IF (expr) label, label, |abel

Where:
expr isascaar numeric expression.

label is astatement |abel.

Remarks
Each label must be the label of a branch target statement that appears in the same scoping
unit as the arithmetic |F statement.

expr must not be of type COMPLEX.
The same label can appear more than once in one arithmetic | F statement.

The arithmetic |F statement is an ancient construct created in the early days of Fortran, and
was suitable for the tiny programs which the machines of that erawere able to execute. As
hardware got better and programs grew larger, the arithmetic IF statement was identified as
one of the main contributors to alogic snarled condition known as "spaghetti code”, which
made aprogram difficult to read and debug. Thearithmetic IF statement was replaced by the
“1F Construct” . Whilethe arithmetic IF statement is obsolescent and should never be used
when writing new code, it is fully supported.

LF Fortran 95 Language Reference 71

Chapter 2 Alphabetical Reference

Example
real :: b=1.dO
10 wite(*,*) " arithnetic if construct”
if (b) 20,10, 30
20 write(*,*) " if b <0, control is transferred here"
30 write(*,*) " if b >0, control is transferred here"
wite(*,*) " equivalent if construct”
if(b <0.) then
wite(*,*) "if b <0, control is transferred here"
elseif (b>0.) then

wite(*,*) " if b >0, control is transferred here"
el se

wite(*,*) " if b=0, control is transferred here"
end if

ASIN Function

Description
The ASIN function returns the trigonometric arcsine of areal number, in radians.

Syntax
ASIN (x)

Arguments

xisan INTENT(IN) scalar or array of type REAL and must be withintherange —-1<x<1.
If the argument is outside this range, an error message is printed and program execution is
terminated.

Result
A REAL representation, expressed in radians, of the arcsine of x.

Example
real :: x=.5
wite(*,*) asin(x) ! wites .523599

72 LF Fortran 95 Language Reference

Assigned GOTO Satement (obsol escent)

Assigned GOTO Statement (obsolescent)

Description

Theassigned GOT O statement causes atransfer of control to the branch target statement indi-
cated by avariable that was assigned a statement label in an ASSIGN statement. If the
parenthesized list of labelsis present, the variable must be one of the labelsin thelist.

Syntax
GOTO assign-variable[[,] (labels)]

Where:
assign-variableisascalar INTEGER variable that was assigned alabel in an ASSIGN
statement.

labels is a comma-separated list of statement labels.

Remarks
At the time of execution of the GOTO statement, assign-variable must be defined with the
value of alabel of abranch target statement in the same scoping unit.

The assigned GOTO statement is a construct created in the early days of Fortran, and was
suitable for the tiny programs which the machines of that erawere able to execute. Ashard-
ware got better and programs grew larger, the assigned GOTO statement was identified asa
major contributor to alogic snarled condition known as " spaghetti code”, which made a pro-
gram difficult to read and debug. The assigned GOTO statement may be replaced by the

“ CASE Construct” or the“ IF Construct” . Although the assigned GOTO statement is obso-
lescent and should never be used when writing new code, it is fully supported.

Example

assign 10 to i
goto i

20 assign 30 to i
goto i

10 wite(*,*) " assigned goto construct”
assign 20 to i
goto i, (10, 20, 30)

30 conti nue

ASSIGN Statement (obsolescent)

Description
The ASSIGN statement assigns a statement branch label to an INTEGER variable.

LF Fortran 95 Language Reference 73

Chapter 2 Alphabetical Reference

Syntax
ASSIGN label TO assign-variable

Where:
label is a statement label.

assign-variableisascalar INTEGER variable.

Remarks

assign-variable must be a named variable of default INTEGER kind. It must not be a struc-
ture component or an array element.

label must be the target of abranch target statement or the label of a FORMAT statement in
the same scoping unit.

When defined with an INTEGER value, assign-variable must not be used as alabel.
When assigned a label, assign-variable must not be used as anything except alabel.

The ASSIGN statement is an ancient construct that induces the coder to write "spaghetti
code", leading to difficult to read and debug programs. The assigned GOTO construct has
been replaced by the structured “ CASE Construct” or “ IF Construct” . The ASSIGN state-
ment is obsolescent and should never be used when writing new code. However, it isfully
supported by the compiler.

Example
assign 100 to i
100 continue
goto i

Assignment Statement

Description

The assignment statement assigns the value of the expression on the right side of an equal
sign to the variable on the left side of the equal sign.

Syntax
variable=expression

Where:
variable isascalar variable, an array, or avariable of derived type.

expression is an expression whose result is conformable with variable.

74 LF Fortran 95 Language Reference

Assignment Satement

Remarks

A numeric variable can only be assigned anumeric value; aCHARACTER variable can only
be assigned a CHARACTER value of the same kind; a LOGICAL variable can only be
assigned aLOGICAL value; aderived type variable can only be assigned avalue of the same
derived type.

Evaluation of expression takes place before the assignment is made.

If the kind of expression isdifferent from that of variable, the result of expression undergoes
an implicit type conversion to the kind and type of variable, possibly causing aloss of
precision.

If expression isan array, then variable must be an array. If expression isscalar and variable
isan array, al elements of variable are assigned the value of expression.

If variable is a pointer, it must be associated with atarget. Thetarget is assigned the value
of expression.

If variable and expression are of CHARACTER type with different lengths, expression is
truncated if longer than variable, and padded on the right with blanksif expression is shorter
than variable.

Example 1
! Basic assignnent exanples
integer :: i1,i2
real :: rl1,r2

real (kind(1.d0)) :: di,d2
conplex :: qi,92

logical :: 11,12
character(len=6) :: cl,c2

! assignnent to a constant

i 1=12345

r1=12345.

d1=12345. dO

gl=cnpl x(1. 2345e0, - 1. 2345e0)
I 1=. true.

c1l="Howdy!"

wite(*,*) il,rl,dl,q91,11,cl
! assignnment to an expression

i2=i1/10
r2=r1*10.
d2=d1**10. dO
g2=ql/r1l
I2=(r1 < dil)

c2=c1(1:1) // "ow' // c2(4:6)
wite(*,*) i2,r2,d2,92,12,c2

LF Fortran 95 Language Reference 75

Chapter 2 Alphabetical Reference

76

Example 2
I Conversi on exanpl es
i nt eger (ki nd=sel ected_i nt _ki nd(4))

i short=12345

i nt eger (ki nd=sel ected_i nt _ki nd(6)) il ong
real (kind(1l.e0)) :: a=1.234567e6, bl, b2
real (kind(1.d0)) :: di1, d2

! safe conversions

il ong=i short

bl=i short

b2=i | ong

d1=i short

wite(*,*) ishort,ilong,bl, b2, dl

I dangerous conversi ons

il ong=a I succeeds this tine
ishort=ilong ! overflows

wite(*,*) a,ishort,ilong

i short=a I overflows

wite(*,*) ishort,a

ilong=a*bl ! overflows

wite(*,*) ilong,a*bl

! loss of precision

dl=exp(1.5d0) ! no loss of precision
bl=d1 ! | oses precision

d2=b1 ! d2 given a single precision val ue

wite(*,' (4(/,921.14))') exp(1l.5d0),d1,d2, bl

b2=huge(ilong) ! | oses precision
wite(*,*) b2, huge(il ong)

Example 3
! array and derived type assignnments

real :: a=0.

real , di nension(3) :: a_al=0

real , dinension(3,3) :: a_a2=0

type real typel !
real :: a=0.
real, dimension(3) :: a_al=0
real, di mension(3,3) :: a_a2=0

end type real typel
type real type2 !

real :: a=0.
real,dinmension(3) :: a_al=0
real, di mension(3,3) :: a_a2=0

end type real type2
type (realtypel) :: rtl !
type (realtype2) :: rt2 !

derived type

derived type

derived type
derived type

I array assignnent to a scal ar constant

a_al=13.
a_az2=16.

LF Fortran 95 Language Reference

definition

definition

decl aration
decl aration

ASSOCIATED Function

rt1%_a2=19.
wite(*,10) a_al, a_ a2, rtl% a2
! Array assignnent to a scalar variable
a_al=a
a_a2=a
rt1% _a2=a
wite(*,10) a_al,a a2, rt1%_ a2
! Array assignnent to an array constant
a_al=(/1.,2.,3.1)
a_a2=reshape((/1.,2.,3.,4.,5.,6.,7.,8.,9./),(/3,3/))
rt1%_a2=reshape((/9.,8.,7.,6.,5.,4.,3.,2.,1./1),(/3,3/))
wite(*,10) a_al,a_a2,rt1%_ a2
! Array assignnent to a derived type constant
rt2=realtype2 (0.,(/1.,2.,3./),&
reshape((/1.,2.,3.,4.,5.,6.,7.,8.,9./),(/3,3/)))
wite(*,20) rt2%, &
rt2%_al, rt2%_a2
I Conformabl e assi gnment s
rt2%=sum(a_al)
rt1% _al=a_al
rt2%_al=rt1%_al
rt2%_a2(3,:)=a_al
rt2%_a2(1:2,1:2)=rt1%_a2(1: 2, 2: 3)
wite(*,20) rt2%, rt2%_al, rt2%_a2
10 format (/,3f7.3,2(/,3(/,3f7.3)),/)
20 format (/,f7.3,//,3f7.3,/,3(/,3t7.3),/)
I nonconfornabl e assi gnnents
I will produce error nessages
! a=a_a2
! rt1=0.
! rtl=a
! rtl=rt2
! rt1% al=a_a2
! rt1l%_a2=a_al

ASSOCIATED Function

Description
The ASSOCIATED function indicates whether a pointer is associated or disassociated. It
may also test a pointer for association with a particular target.

Syntax
ASSOCIATED (pointer[, target])

LF Fortran 95 Language Reference 77

Chapter 2 Alphabetical Reference

Required Arguments
pointer isan INTENT(IN) variable with the pointer attribute whose association statusis
either associated or disassociated. The association status of pointer must not be undefined.

Optional Arguments
target isINTENT(IN) and must have either the pointer or target attribute. If it isa pointer,
its pointer association status must not be undefined.

Result
Theresult is of type default LOGICAL.

When target is absent, the result istrue if pointer is currently associated with atarget. If
pointer is disassociated, the result is false.

When target is present, the result istrue if pointer is currently associated with target. The
result isfalseif pointer is disassociated or associated with a different target.

If target has the pointer attribute, the result is true if both pointer and target are currently
associated with the sametarget. If either pointer or target is disassociated, or if they are asso-
ciated with different targets, the result is false.

Example
real ,pointer :: a(:)
real,allocatable, target :: b(:)
wite (*,*) associated(a) ! pointer disassociated by default
al l ocate(a(4)) ! a is associated
wite (*,*) associated(a)
deal | ocat e(a) ! a is disassociated

wite (*,*) associated(a)
al | ocate(b(5))

a=>>b ! ais associated with b
wite (*,*) associated(a,b)

deal | ocat e(b) ! careful, a is undefined!!!
a =>null() ! a is disassociated

wite(*,*) associated(a)

ATAN Function

Description
The ATAN function returns the arctangent of areal number, in radians.

Syntax
ATAN (x)

78 LF Fortran 95 Language Reference

ATANZ2 Function

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result

TheresultisaREAL representation of the arctangent of x, expressed in radians. The result
alwaysfalswithintherange -TV2< x< 1w/ 2.

Example
real :: a=0.5

wite(*,*) atan(a) ! wites 0.4636476

ATANZ2 Function

Description

The ATAN2 function returns the arctangent of y/x, expressed asradians. The ATAN2 func-
tionis ableto return a greater range of values than the ATAN function, because it considers
thesign of x andy.

Syntax
ATAN2 (y, X)

Arguments
yisan INTENT(IN) scalar or array of type REAL.

XiSINTENT(IN) and of the samekind asy. If yisan array, x must be an array conformable
toy. If yiszero, x cannot be zero.

Result

Theresult isof the samekind asy. ItsvalueisaREAL representation, expressed in radians,
of the principal value of the argument of the complex number x + iy. Theresult fallswithin
therange -TI<x<Tr.

If yispositive, theresult is positive. If yisnegative, theresult isnegative. If yiszero and x

>0, theresultiszero. If yiszeroand x< 0, theresultispi. If xiszero, the result isarepre-
sentation of the value /2 having the sign of y.

LF Fortran 95 Language Reference 79

Chapter 2 Alphabetical Reference

Example

real :: y=1.,x=1.
wite(*,*) atan2(y, x)
wite(*,*) atan2(-vy,X)
wite(*,*) atan2(y,-Xx)
wite(*,*) atan2(-y, -x)
wite(*,*) atan2(0.,Xx)
wite(*,*) atan2(0., -x)
wite(*,*) atan2(y,0.)
wite(*,*) atan2(-y,0.)

wites 0.78539818
wites -0.78539818
wites 2.3561945
wites -2.3561945
writes 0.0000000
wites 3.1415927
wites 1.5707963
wites -1.5707963

BACKSPACE Statement

80

Description

The BACK SPA CE statement moves the position of afile opened for sequential accessto the
beginning of the current record. If thereisno current record, the file positionismoved to the
beginning of the preceding record. If thereis no preceding record, the file positionis
unchanged.

Syntax
BACKSPACE unit-number

or
BACKSPACE (position-spec-list)

Where:
unit-number isascalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-list is[[UNIT =] unit-number][, ERR=label][, IOSTAT=stat] where UNIT=,
ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number must
be first.

label is a statement label that is branched to if an error condition occurs during execution of
the statement.

stat isavariable of type INTEGER that is assigned a positive value if an error condition
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
If there is no current record and no preceding record, the file position is left unchanged.

If the preceding record is an endfile record, the file is positioned before the endfile record.

LF Fortran 95 Language Reference

BIT_SZE Function

If the BACKSPACE statement causes the implicit writing of an endfile record, thefileis
positioned before the record that precedes the endfile record.

Backspacing afile that is connected but does not exist is prohibited.
Backspacing over records using list-directed or namelist formatting is prohibited.

Note that BACKSPACE may only be used on sequential accessfiles.

Example
integer :: ios
backspace 10 I backspace file on unit 10
backspace(10, i ostat=i os) ! backspace with status return

BIT_SIZE Function

Description
The BIT_SIZE function returns the number of bitsin a data object of type INTEGER.

Syntax
BIT_SIZE (i)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER.

Result
Theresult isthesamekind asi. Itsvalueisequal to the number of bitsin aninteger of kind .

Example
i nt eger (ki nd=sel ected_int_kind(4)) :: i
i nteger (ki nd=sel ected_int_kind(12)) :: j
i nteger,dinension(2) :: k
wite(*,*) bit_size(i) ! wites 16
wite(*,*) bit_size(j) ! wites 64
wite(*,*) bit_size(k) ! wites 32

BLOCK DATA Statement

Description
The BLOCK DATA statement begins a block data program unit. The block data program
unit initializes data that appears in named common blocks.

LF Fortran 95 Language Reference 81

Chapter 2 Alphabetical Reference

Syntax
BLOCK DATA [block-data-name]

Where:
block-data-name is an optional name given to the block data program unit.

Remarks
There can only be one unnamed BLOCK DATA program unit in a program.

A block data program unit may only initialize variables that appear in anamed common
block.

The same named common block may not appear in more than one block data subprogram.

A block data subprogram may only contain type declaration statements; the attribute speci-
fiers PARAMETER, DIMENSION, POINTER, SAVE and TARGET; the specification
statements USE, IMPLICIT, COMMON, DATA, EQUIVALENCE and INTRINSIC.

A type declaration statement in a block data subprogram may not specify the attributes
ALLOCATABLE, EXTERNAL, INTENT, OPTIONAL, PRIVATE or PUBLIC.

Example
bl ock data nydata
common /d/ a,b,c
data a,b,c /1.0,2.0,3.0/
end bl ock data nydata

BTEST Function

82

Description
The BTEST function will test the bit in position pos in an INTEGER data object.

Syntax
BTEST (i, pos)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER to be tested.

posisan INTENT(IN) scalar or array of type INTEGER. It must be non-negative and less
than BIT_SIZE (i). Bitsare numbered from least significant to most significant, beginning
with 0.

If both i and pos are arrays, they must be conformable.

LF Fortran 95 Language Reference

CALL Satement

Result
Theresult is of type default LOGICAL.

If bothi and pos are scalar, BTEST returns the value true if bit pos has the value 1 and false
if bit pos has the value zero.

If i isscalar and posisan array, theresultisaLOGICAL array the same shape as pos. Each
element of the array containstheresult of testing i for each bit position contained in each ele-
ment of pos.

If i isan array and posis scalar, theresult isaLOGICAL array the same shape asi. Each
element of the array contains the result of testing bit position pos for each element of array i.

If i and posare conformablearrays, TheresultisaL OGICAL array the sameshapeasi. Each
element of thearray containsthe result of testing each element of i using the bit position from
the corresponding element of pos.

Example

integer :: i=-1,j=4,spos=hit_size(i)-1

integer :: k(4)=(/1,2,4,8/),pos(4)=(/0,1,2,3/)

wite(*,*) btest(i,spos),btest(j,spos) ! test sign bit

wite(*,*) btest(i,pos) ! test first 4 bits of i

wite(*,*) btest(k,2) I test bit #2 for each element of k

wite(*,*) btest(k,pos) ! test each element of k using the
! correspondi ng el enent of pos

CALL Statement

Description
The CALL statement invokes a subroutine and passes it an arguments list.

Syntax
CALL subroutine-name [([actual-arg-list])]

Where:
subroutine-name is the name of a subroutine.

actual-arg-list is[[keyword =] actual-arg] [, ...]

keyword is the name of a dummy argument to subroutine-name.

actual-arg is an expression, a variable, a procedure name, or an alternate-return-spec.
alternate-return-spec is *label

label is astatement label.

LF Fortran 95 Language Reference 83

Chapter 2 Alphabetical Reference

84

Remarks

General:

actual-arg-list definesthe correspondence between the actual -ar gs supplied and the dummy
arguments of the subroutine.

If keyword= is present, the actual argument is passed to the dummy argument whose name
isthe sameaskeyword. If akeyword= isabsent, the actual argument is passed to the dummy
argument in the corresponding position in the dummy argument list.

keyword= must appear with an actual-arg unless no previous keyword= has appeared in the
actual-arg-list.

keyword= can only appear if the interface of the procedure is explicit in the scoping unit.

An actual-arg can be omitted if the corresponding dummy argument has the OPTIONAL
attribute. Each actual-arg must be associated with a corresponding dummy argument.

Data objects as arguments:
An actual argument must be of the same kind as the corresponding dummy argument.

If the dummy argument is an assumed-shape array of type default CHARACTER, itslength
must agree with that of the corresponding actual argument.

Thetotal length of a dummy argument of type default CHARACTER must be less than or
equal to that of the corresponding actual argument.

If the dummy argument is a pointer, the actual argument must also be a pointer of the same
type, attributes, and rank. At the invocation of the subroutine, the dummy argument pointer
receives the pointer association status of the actual argument. At the end of the subroutine,
the actual argument receives the pointer association status of the dummy argument.

If the actual argument hasthe TARGET attribute, any pointers associated with it remain asso-
ciated with the actual argument. If the dummy argument has the TARGET attribute, any
pointers associated with it become undefined when the subroutine compl etes.

The ranks of dummy arguments and corresponding actual arguments must agree unless the
actual argument is an element of an array that is not an assumed-shape or pointer array, or a
substring of such an element.

If an actual argument hasthe INTENT(OUT) attribute, and itsvalue is not set within the sub-
routine, upon return from the subroutine, its value will be undefined.

Procedures as arguments:
If adummy argument isadummy procedure, the associated actual argument must be the spe-
cific name of an external, module, dummy, or intrinsic procedure.

Theintrinsic functions AMAX0, AMAX1, AMINO, AMIN1, CHAR, DMAX1, DMINL,
FLOAT, ICHAR, IDINT, IFIX, INT, LGE, LGT, LLE,LLT, MAX0, MAX1, MINO, MINZ,
REAL, and SNGL may not be associated with adummy procedure. Theresults of these func-
tions may be used as actual arguments.

LF Fortran 95 Language Reference

CALL Satement

If ageneric intrinsic function nameis also a specific name, only the specific procedureis

associated with the dummy argument.

If adummy procedure has an implicit interface either the name of the dummy argument is
explicitly typed or the procedureisreferenced asafunction. The dummy procedure must not
be called as a subroutine and the actual argument must be a function or dummy procedure.

If adummy procedure has an implicit interface and the procedure is called as a subroutine,

the actual argument must be a subroutine or a dummy procedure.

Alternate returns as arguments:

If adummy argument is an asterisk, the corresponding actual argument must be an alternate-
return-spec. Thelabel in the alter nate-retur n-spec must identify an executable construct in

the scoping unit containing the procedure reference.

Example 1
! basic calling syntax
real :: x=1.,y=2.

call al pha(x,y)

end program

subroutine al pha(a, b)
real :: a,b
wite(*,*) a, b

end subroutine al pha

Example 2
I calling with optional argunents
interface
subroutine al pha(a,b) ! define keywords here
real :: a ! use of optional argunents
real,optional :: b ! requires an interface
end subroutine
end interface

real :: x=1., y=2.
cal | al pha(x) I call with no options
cal |l al pha(x,y) ! positional call

call al pha(b=x, a=y) ! keyword cal
end program
subroutine al pha (a,b)
real :: a
real,optional :: b
if(present(b)) then ! b nust not appear unless it
wite(*,*) a, b ! is inside a construct that
el se ! tests for its presence
wite(*,*) a
end if
end subroutine al pha

LF Fortran 95 Language Reference

85

Chapter 2 Alphabetical Reference

Example 3
! calling with a procedure argument
real ,external :: euler

call al pha(eul er)
end program
subroutine al pha(f)
real ,external :: f
wite(*,*) f()
end subroutine al pha
real function euler()
eul er=exp(cnpl x(0., atan2(0.,-1.)))
end function euler

Example 4
I calling with the intent attribute
real :: x=1.,y=2

call al pha(x,y)
wite(*,*) x,y
end program
subroutine al pha(a, b)
real,intent(in) :: a ! a cannot be changed inside al pha
real,intent(out) :: b ! b nmust be initialized before
b=a ! the dummy argument or actual
end subroutine al pha I argunment is referenced

CARG Function

86

Description

The CARG function passesanumeric or logical argument by value, rather than using the For-
tran standard of passing arguments by reference. If the argument is of type CHARACTER,
the CARG function will convert the argument to a C string. CARG can only be used as an

actual argument when invoking a subroutine or function.

Syntax
CARG (item)

Arguments
itemisan INTENT(IN) named data object of any intrinsic type except COMPLEX and four-
byte LOGICAL. It isthe data object for which to return avalue.

Result
If the argument is numeric or logical, the value of itemis placed on the calling stack, rather
than its address.

LF Fortran 95 Language Reference

CARG Function

If the argument is of type CHARACTER, the Fortran length descriptor is removed and the
character string is null terminated.

The C data type of the result is shown in Table 8.

Table 8: CARG result types

Fortran Type Fortran Kind C type
INTEGER 1 signed char
INTEGER 2 signed short int
INTEGER 4 signed long int
REAL 4 float
must not be passed by value; if
passed by reference (without
CARGQG) it isapointer to a structure
COMPLEX 4 of the form:
struct complex {
float real_part;
float imaginary_part;};
LOGICAL 1 unsigned char
LOGICAL 4 must not be passed by value or by
reference
CHARACTER 1 char *
Example
real
character :: c="howdy"
i=ny_c_function(carg(a)) ! a is passed by val ue

call ny_c_subroutine(carg(c)) ! c is passed as a C string

LF Fortran 95 Language Reference

87

Chapter 2 Alphabetical Reference

CASE Construct

88

Description
The CASE construct selects blocks of executable code based on the value of an expression.
A default case may be provided.

The SELECT CASE statement signals the beginning of a CASE construct. It contains an
expression that, when evaluated, produces a caseindex. The case index in the CASE con-
struct determines which block in a CASE construct, if any, is executed.

The CASE statement defines a case selector which, when matched with the value from a
SELECT CASE statement, causes the following block of code to be executed.

The END SELECT statement signals the end of the innermost nested CA SE construct.

Syntax
[construct-name ;] SELECT CASE (case-expr)
CASE (case-selector [, case-selector] ...) [construct-name]
block

[CASE DEFAULT [construct-name]]
block

END SELECT [construct-name]

Where:
congtruct-name is an optional name for the CASE construct

case-expr isascalar expression of type INTEGER, LOGICAL, or CHARACTER

case-selector is case-value
or : case-value

or case-value:

or case-value : case-value

case-value is a constant scalar LOGICAL, INTEGER, or CHARACTER expression.

block is a sequence of zero or more statements or executable constructs.

Remarks
Execution of a SELECT CASE statement causes the case expression to be evaluated. The
resulting value is called the case index.

Execution of a CASE code block occursif the case index derived from the SELECT CASE
statement isin the range specified by the CASE statement's case-selector. Execution of the
code block ends when any subsequent CASE or END CASE statement is encountered, and
the innermost case construct is exited.

LF Fortran 95 Language Reference

CASE Construct

The case-selector is evaluated as follows:

case-value means equal to case-value;

:case-value means less than or equal to case-value;

case-value: means greater than or equal to case-value; and

case-val ue;case-value means greater than or equal to the left case-value,

and less than or equal to the right case-value.
Each case-value must be of the same type and kind as the case construct's case index.
The ranges of case-values in a case construct must not overlap.
If case-valueis of type LOGICAL, it cannot have arange.
The block following a CASE DEFAULT, if any, isexecuted if the case index matches none
of the case-valuesin the case construct. CASE DEFAULT can appear before, among, or
after other CASE statements, or can be omitted.
The case-values in a case construct must not overlap.
Only one CASE DEFAULT isalowed in a given case construct.
If the SELECT CASE statement isidentified by a construct-name, the corresponding END
SELECT statement must be identified by the same construct name. If the SELECT CASE

statement is not identified by a construct-name, the corresponding END SELECT statement
must not have a construct-name.

Example 1
integer :: i=3
sel ect case (i)

case (:-2)

wite(*,*) "i is less than or equal to -2"
case (0)
wite(*,*) "i is equal to O"
case (1:97)
wite(*,*) "i isinthe range 1 to 97, inclusive"

case default
wite(*,*) "i is either -1 or greater than 97"

end sel ect

LF Fortran 95 Language Reference 89

Chapter 2 Alphabetical Reference

Example 2
character(len=5) :: c="Howdy"
sel ect case (c)
case ("H","Hello", "Howdy")
wite(*,*) "Hello, how are you?"
case ("Good Morning")
wite(*,*) "Nice norning, isn't it?"
case ("Good N ght")
wite(*,*) "Goodbye."
case default
wite(*,*) "What tine is it?"
end sel ect

CEILING Function

Description
The CEILING function returns the smallest INTEGER number greater than or equal to a
REAL number.

Syntax
CEILING (a[, kind])

Required Arguments
aisan INTENT(IN) scalar or array of type REAL.

Optional Arguments

kind is INTENT(IN) and determines the kind of the result. It must be ascalar INTEGER
expression that can be evaluated at compile time. To maintain portability, this argument
should be the result of a“ KIND Function” or “ SELECTED INT_KIND Function” .

Result
Theresult isan INTEGER number whose value is the smallest integer greater than or equal
toa.

If kind is present, it specifies the kind of the result.

If kind is absent, the result is type default INTEGER.

Example
real :: r=4.7, x(3)=(/-.5,0.,.5/)
wite(*,*) ceiling(r) I wites 5
wite(*,*) ceiling(-r,selected_int_kind(2)) ! wites -4
wite(*,*) ceiling(x) I wites 00 1

90 LF Fortran 95 Language Reference

CHAR Function

CHAR Function

Description
The CHAR function returns a character from a specified character set.

Syntax
CHAR (i [, kind])

Required Arguments

i isan INTENT(IN) scalar or array of type INTEGER. Eachi value must be positive and not
greater than the number of charactersin the collating sequence of the character set specified
by kind.

Optional Arguments

kind isINTENT(IN) and determines which character set ischosen. It must beascalar INTE-
GER expression that can be evaluated at compiletime. Only the ASCII character set is
supported, with akind number of 1. See “ASCII Character Set” on page 319.

Result

Theresult isa CHARACTER value of length one corresponding to the ith character of the
given character set.

If kind is present, the resulting kind is specified by kind. Only the default kind is supported.

If kind is absent, the kind is of type default CHARACTER.

Example
i nteger,dinension(6) :: i=(/72,111, 119, 100, 121, 33/)
wite(*,*) char(i) ! wites "Howdy!"

CHARACTER Statement

Description
The CHARACTER statement declares entities having the CHARACTER data type.

Syntax
CHARACTER [char-selector] [, attribute-list ::] entity [, entity] ...

LF Fortran 95 Language Reference 91

Chapter 2 Alphabetical Reference

92

Where:

char-selector is:

char-selector is ([LEN=] length [, KIND=kind])
or (KIND=kind [, LEN=Ilength])

or * char-length [,]

kind isascalar INTEGER expression that can be evaluated at compile time.

length isa scalar INTEGER expression that can be evaluated on entry to the program unit.
or*

char-length isascalar INTEGER literal constant

or (*)

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is:

entity-name [(array-spec)] [* char-length] [=initialization-expr]

or function-name [(array-spec)] [* char-length]

array-spec is an array specification

initialization-expr isa CHARACTER-valued expression that can be evaluated at compile
time

entity-name is the name of the entity being declared

function-name is the name of a function being declared

Remarks
If char-length is not specified, the length is one.

An asterisk can be used for char-length only in the following ways:

1. If theentity isadummy argument. The dummy argument assumes the length of the
associated actual argument.

2. Todeclare anamed constant. The length isthat of the constant value.

3. Inanexternal function, asthe length of the function result. In this case, the function
name must be declared in the calling scoping unit with alength other than *, or access
such a definition by host or use association. The length of the result variableis
assumed from this definition.

char-length for CHARACTER-valued statement functions and statement function dummy
arguments must be a constant INTEGER expression.

The optional commafollowing* char-lengthin achar-selector ispermitted only if no double
colon appears in the statement.

LF Fortran 95 Language Reference

CHARACTER Satement

The value of kind must specify a character set that isvalid for this compiler.
char-length must not include a kind parameter.

The* char-length in entity specifies the length of a single entity and overrides the length
specified in char-selector.

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, adouble colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The =initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attributeis specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, alocatable
arrays, functions, or objectsin a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unlessitisa
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be adummy argument or afunction
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

LF Fortran 95 Language Reference 93

Chapter 2 Alphabetical Reference

If an entity hasthe VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC,
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

If char-length is a non-constant expression, the length is declared at the entry of the proce-
dure and is not affected by any redefinition of the variables in the specification expression
during execution of the procedure.

Example
character :: cl ! length one
character(len=4) :: c3="Yow"
character(len=*), paraneter :: c6=" Howdy" ! length six
character(len=3),di nension(2) :: ca2=(/" Fo","lks"/)
character :: ca4*4(2) ! ca4 has |en=4, dinmension=2

CLOSE Statement

94

Description
The CLOSE statement terminates the connection between a specified input/output unit num-
ber and an externa file.

Syntax
CLOSE (close-spec-list)
Where:
close-spec-list is a commarseparated list of close-specs.

close-specs are:

[UNIT =] external-file-unit,
[IOSTAT=iostat],
[ERR=label],
[STATUS=status]

external-file-unit is the input/output unit number of an external file.

iostat isa scalar default INTEGER variable. It signals either success or failure after execu-
tion of the CLOSE statement.

label isthe label of abranch target statement to which the program branches if thereis an
error in executing the CLOSE statement.

statusisa CHARACTER expression that evaluatesto either 'KEEP or 'DELETE..

Remarks
The CLOSE statement must specify an external-fil e-unit.

LF Fortran 95 Language Reference

CMPLX Function

If UNIT=is omitted, external-file-unit must be the first specifier in close-spec-list.

If IOSTAT=iostat is present, iostat has avalue of zero if the unit was successfully closed. If
an error occurs when executing the CL OSE statement, iostat is assigned an error number
which identifies which error occurred.

A specifier must not appear more than once in a CLOSE statement.

STATUS='KEEP must not be specified for afile whose statusis’ SCRATCH’. If 'KEEP
is specified for afile that exists, the file continuesto exist after a CLOSE statement. Thisis
the default behavior.

If STATUS='DELETEis specified, the file associated with the unit number will be deleted
upon execution of the CLOSE statement.

Example 1
integer :: ios
cl ose(8,iostat=ios, status=" DELETE')
if(ios == 0) then
wite(*,*) " No error occurred.”
el se
wite(*,*) " | OSTAT= encourages structured programm ng."
end if

Example 2
cl ose(uni t =8, err=200)
wite(*,*) " No error occurred.”
goto 300
200 wite(*,*) " An error occurred”
300 conti nue

CMPLX Function

Description

The CMPLX functionusesREAL or INTEGER argumentsto compose aresult of type COM-
PLEX. It may also convert between different kinds of COMPLEX numbers, possibly
resulting in aloss of precision.

Syntax
CMPLX (x[,¥] [, kind])

Required Arguments
xisan INTENT(IN) scalar or array of type REAL, INTEGER, or COMPLEX.

LF Fortran 95 Language Reference 95

Chapter 2 Alphabetical Reference

Optional Arguments
yiSINTENT(IN) and of type REAL or INTEGER. If x isof type COMPLEX, y cannot be
present.

kind determines the kind of the result. It must be a scalar INTEGER expression that can be
evaluated at compiletime. To maintain portability, this argument should be the result of a
“KIND Function”, or “ SELECTED_REAL_KIND Function”.

Result
Theresult is of type COMPLEX.

If XiSINTEGER or REAL, the value of the result isthe complex number whose real part has
thevalue of x, and whoseimaginary part hasthe value of y. If y isabsent, the imaginary part
of theresult is zero.

If xisCOMPLEX, itisasif x and y were present with the values REAL (x), AIMAG(X)).
If kind is present, the result is of the kind specified by kind.
If kind is absent, the result is default kind.

Example
real :: x=1.,y=1.
integer :: ix=1,iy=1
conpl ex(kind(1.d0)) :: z=(1.dO, 1.d0O)
wite(*,*) cnpl x(x) I y assuned to be zero

wite(*,*) cnpl x(x,y)

wite(*,*) cnplx(ix,iy,kind(1.d0))
wite(*,*) cnpl x(ix,y)

wite(*,*) z, cnplx(z) ! precision is |ost

COMMON Statement

96

Description

The COMMON statement provides a global datafacility. It specifies contiguous blocks of
physical storage, called common blocks, that are available to any program unit that refer-
ences the common block.

Syntax
COMMON [/ [common-name] /] common-object-list [[,] / [common-name] /
common-object-list] ...

Where:

common-name is the name of the common block being declared.

LF Fortran 95 Language Reference

COMMON Satement

common-object-list is a comma-separated list of data objects that are to be included in the
common block.

Remarks

If common-name is present, all data objects in the corresponding common-object-list are
specified to be in the named common block common-name.

If common-nameisomitted, all dataobjectsin thefollowing common-object-list are specified
to be in blank common.

For each common block, a contiguous storage sequence isformed for all data objects, in the
order they appear in common-object-lists in the program unit.

A given data object can appear only oncein all common-object-listsin a program unit.
A blank common has the same properties as anamed common, except:

1. Execution of aRETURN or END statement may cause data objectsin anamed com-
mon to become undefined unless the common block name has been declared in a
SAVE statement.

2. Named common blocks of the same name must be the sasme sizein all scoping units
of aprogram in which they appear, but blank commons can be of different sizes.

3. A dataobject innamed common can beinitializedinaBLOCK DATA program unit,
but data objects in a blank common must not be initially defined.

A common block name or blank common can appear multiple times in one or more COM-
MON statements in a program unit. In such case, the common-object-list istreated asa
continuation of the common-object-list for that common block.

A data object in a common-object-list must not be adummy argument, an allocatable array,
an automatic object, afunction name, an entry name, or aresult name, and it must have a
name made available by use association.

Each bound in an array-valued data object in a common-object-list must be an initialization
expression.

Any data object must only become associated with an object having the same attributes, type,
kind, length, or rank.

If a data object in acommon-object-list has an explicit shape, it cannot have the pointer
attribute.

If adataobject in acommon-object-list is of aderived type, the derived type must have the
sequence attribute.

Derived type dataobjectsin which all components are of default numeric or LOGICAL types
can become associated with data objects of default numeric or LOGICAL types.

LF Fortran 95 Language Reference 97

Chapter 2 Alphabetical Reference

Derived type data objects in which all components are of default CHARACTER type can
become associated with data objects of type CHARACTER.

An EQUIVALENCE statement must not cause the storage sequences of two different com-
mon blocks to become associated.

An EQUIVALENCE statement must not cause storage units to be added before the first stor-
age unit of the common block.

If any storage sequence is associated by equivalence association with the storage sequence
of the common block, the sequence can be extended only by adding storage units beyond the
last storage unit.

Example

common /first/ a,b,c a, b, and ¢ are in naned
common /first/
d, e, and f are in blank
conmon, g is in naned
common / second/

h is appended to /first/

comon d, e, f, /second/, ¢

common /first/ h

COMPLEX Statement

98

Description
The COMPLEX statement declares entities having the COMPLEX data type.

Syntax
COMPLEX [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND=] scalar-int-initialization-expr)

scalar-int-initialization-expr is ascalar INTEGER expression that can be evaluated at com-
piletime. Tomaintain portability, the value of thisdescriptor should betheresult of a“ KIND
Function” or a“ SELECTED_REAL_KIND Function” .

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]

or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

LF Fortran 95 Language Reference

COMPLEX Satement

entity-name is the name of an entity being declared.

function-name is the name of a function being declared.

Remarks
function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, adouble colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The =initialization-expr must not appear if entity-name is adummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attributeisspecified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, alocatable
arrays, functions, or objectsin a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIV ATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unlessitisa
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be adummy argument or afunction
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

LF Fortran 95 Language Reference 99

Chapter 2

Alphabetical Reference

If an entity hasthe VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC,
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

Example
conplex :: a, b
conpl ex, paraneter :: c¢=(2.0,3.14159)! ¢ nust be initialized
conplex :: d(2)=(/(21.,0.),(0.,0.)/) ! array initialization
conpl ex, pointer :: e(:,:,:) I deferred shape rank 3

Computed GOTO Statement (obsolescent)

Description

The computed GOTO statement causes transfer of control to one of alist of labeled
statements.

Syntax
GO TO (labels) [,] scalar-int-expr

Where:
labels is a comma-separated list of labels.

scalar-int-expr isascalar INTEGER expression.

Remarks

Execution of acomputed GOTO statement causes eval uation of scalar-int-expr. If thisvalue
isi suchthat 1 <i < n,wherenisthe number of labelsin labels, atransfer of control occurs
so that the next statement executed is the one identified by theith label in labels. If iisless
than 1 or greater than n, the execution sequence continues asthough a CONTINUE statement
were executed.

Each label in labels must be the label of abranch target statement in the current scoping unit.

The computed GOTO statement has been identified as amajor contributor to alogic-snarled
condition known as "spaghetti code", which makes a program difficult to read and debug.
The computed GOTO statement is best replaced by the “ CASE Construct” although the” IF
Construct” could be used aswell. Although the computed GOTO statement is obsol escent
and should never be used when writing new code, it is fully supported.

100 LF Fortran 95 Language Reference

CONJG Function

Example
integer :: i=1
40 wite(*,*) " conputed goto construct”
goto (20, 30,40) i
wite(*,*) " transfer here if no match"

goto 10
30 write(*,*) " if i=2 control transfers here"
20 write(*,*) " if i=1 control transfers here"

10 wite(*,*) " equival ent case construct”
sel ect case (i)

case(1)

wite(*,*) " if i=1 control transfers here"
case(2)

wite(*,*) " if i=2 control transfers here"
case(3)

wite(*,*) " if i=3 control transfers here"

case default
wite(*,*) " transfer here if no match"
end sel ect

CONJG Function

Description
The CONJG function returns the conjugate of a complex number.

Syntax
CONJG (2)

Arguments
Zzisan INTENT(IN) scalar or array of type COMPLEX.

Result

Theresult isof type COMPLEX and hasthe samekind asz. Itsvalueiszwith theimaginary
part negated.

Example
conplex :: x=(.1,-.2),y(2)=(/(1.,0.),(0.,1.)/)
wite(*,*) conjg(x) ! wites (.1, .2)
wite(*,*) conjg(y) ! wites (1.,0.) (0.,-1.)

LF Fortran 95 Language Reference 101

Chapter 2 Alphabetical Reference

CONTAINS Statement

Description
The CONTAINS statement separates the body of a main program, module, or subprogram
from any internal or module subprograms it contains.

Syntax
CONTAINS

Remarks

When used inaMODULE, the CONTAINS statement separates a global data areafrom any
module procedures. Any variables, type definitions, interfaces or initialization expressions
that appear above the CONTAINS statement are globally available within the module, and
are also available to any program unit that uses the module, provided that the entity in ques-
tion has the PUBLIC attribute.

When appearing in amain program, subprogram or module procedure, the CONTAINS
statement separates the main body of code from any internal procedures. Any variables, type
definitions, interfaces or initialization expressions that appear above the CONTAINS state-
ment are available to al internal procedures that appear below the CONTAINS statement.

Any variables, type definitions, interfaces, or initialization expressions that appear below a
CONTAINS statement are local in scope.

The CONTAINS statement is not executable.

Internal procedures cannot contain other internal procedures.

Example
nodul e nodl
real :: a=l. ! ais globally available
cont ai ns ! separates global from procedures
subroutine subi()
real :: b=3. ! bis only available inside subl()
wite(*,*) a! global a is available inside subl()
call internal ()
cont ai ns | separates subl body frominternal proc
subroutine internal () ! internal() is local to subl
real :: a=2. ! this ais local to internal()

wite(*,*) b! b is available by host association
wite(*,*) a! global a is not avail abl e because
' it is overridden by local a
end subroutine internal
end subroutine subl
end nodul e nodl

102 LF Fortran 95 Language Reference

CONTINUE Satement

program progl
use nodl
call internal ()
cont ai ns
subroutine internal ()
wite(*,*) a! global a is available by host association
call subl()
end subroutine internal
end program

CONTINUE Statement

Description

The CONTINUE statement istraditionally used in conjunction with astatement label, asthe
target of abranch statement or ado loop terminus. Execution of aCONTINUE statement has
no effect.

Syntax
CONTINUE

Remarks

If alabeled CONTINUE statement marks the terminus of ado loop, it must not be the target
of abranch statement and it cannot be used as the terminus of any other do loop.

Example
integer :: i
20 continue
do 10 i=1, 10
10 conti nue
goto 20

COS Function

Description
The COS function returns the trigonometric cosine of a REAL or COMPLEX argument.

Syntax
COS (x)

LF Fortran 95 Language Reference 103

Chapter 2 Alphabetical Reference

Arguments
xisan INTENT(IN) scalar or array of type REAL or COMPLEX and must be expressed in
radians.

Result
Theresult is of the same type and kind as x. Itsvalueisa REAL or COMPLEX representa-
tion of the cosine of x.

Example
real :: x=.5y(2)=(/1.,1.1)
conplex :: z=(1.,1.)
wite(*,*) cos(x) ! wites .8775826
wite(*,*) cos(y) ! wites .9950042 .9950042
wite(*,*) cos(z) ! wites (.8337300. -.9888977)

COSH Function

Description
The COSH function returns the hyperbolic cosine of a REAL argument.

Syntax
COSH (x)

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result
Theresult is of the same type and kind asx. ItsvalueisaREAL representation of the hyper-
bolic cosine of x.

Example
real :: x=.5y(2)=(/1.,1.1)
wite(*,*) cosh(x) ! wites 1.127626
wite(*,*) cosh(y) ! wites 1.543081 1.543081

COUNT Function

Description
The COUNT function counts the number of true elementsin alogical mask either for an
entire mask or along a given dimension of the mask.

LF Fortran 95 Language Reference

CPU_TIME Subroutine

Syntax
COUNT (mask [, dim])

Required Arguments
mask isan INTENT(IN) array of type LOGICAL. It must not be scalar.

Optional Arguments

dimisan INTENT(IN) scalar of type INTEGER with avaluewithintherange 1 <dim<n,
where n isthe rank of mask. The corresponding actual argument must not be an optional
dummy argument.

Result
Theresult is of type default INTEGER. Its value and rank are computed as follows:

1. Thefunction will return ascalar logical valueif mask has rank one, or if dimis
absent. Theresult isthe number of elements for which mask istrue.

2. Thefunctionwill returnalogical array of rank n-1if dimis present and mask hasrank
two or greater. Theresulting array isof shape (d;, d,, ..., dgim—1, dgim+ 1 -+~ +dy)
where (d, d,, ..., d,) istheshapeof mask and nistherank of mask. Theresultis
the number of true elements for each corresponding vector in mask.

Example

i nteger,dinension(2,3) :: a,b
a=reshape((/1,2,3,4,5,6/), shape(a))
wite(*,'(2i3)') a! wites 1 2

! 3 4

! 5 6
b=reshape((/1,2,3,5,6,4/), (/2,3/))
wite(*,'(2i3)') b! wites 1 2

! 3 4

! 5 6
wite(*,*) count(a==h) I wites 3
wite(*,*) count(a==b,diml) ! wites 2 1 0
wite(*,*) count(a==b,dim2) ! wites 2 1

CPU_TIME Subroutine

Description

The CPU_TIME subroutine returns the amount of processor time used by a program,
expressed as a REAL number.

LF Fortran 95 Language Reference 105

Chapter 2 Alphabetical Reference

Syntax
CPU_TIME (time)

Required Arguments
timeisan INTENT(OUT) scalar REAL variable. It isassigned the processor timein seconds.

Remarks

CPU_TIME only reflects the actual CPU usage when the application is executed in an envi-
ronment that makes this information available. Windows NT, 2000, XP and Linux systems
support thisfacility. If the operating system does not track CPU usage, CPU_TIME returns
the elapsed time between calls.

Example
integer :: i
real :: start_tinme,end_tine, x(1000000)
call cpu_time(start_tine)
do i =1, 1000000
x=cosh(real (i))
end do
call cpu_time(end_tine)
wite(*,*) end_tinme-start_tine ! wites elapsed tine

CSHIFT Function

106

Description

The CSHIFT function performsacircular shift of al rank one sectionsinan array. Elements
shifted out at one end are shifted in at the other. Different sections can be shifted by different
amounts and in different directions by using an array-valued shift.

Syntax
CSHIFT (array, shift [, dim])

Required Arguments
arrayisan INTENT(IN) array of any type. It must not be scalar.

shiftisan INTENT(IN) INTEGER and must be scalar if array isof rank one; otherwiseit can
either be scalar or of rank n-1 and shape (d,, d,, ..., dgim—1,9gim+ 1+ ---»d,) , where
(dy,d,, ..., d,) istheshapeof array.

Optional Arguments
dimisan INTENT(IN) scalar INTEGER with avalueintherange 1 <dim<n, wherenis
therank of array. If dimisomitted, it isasif it were present with the value one.

LF Fortran 95 Language Reference

CYCLE Satement

Result

Theresult is of the same type, kind, and shape as array.

If array is of rank one, the value of the result isthe value of array circularly shifted shift ele-
ments. A shift of n performed on array gives aresult value of array(1 + MODULO(i + n -

1, SIZE(array))) for element i.

If array is of rank two or greater, each complete vector along dimension dimis circularly

shifted shift elements. shift can be an array.

Example
integer :: a(3), b(3,3)
a=(/1,2,3/)

b = reshape ((/1,2,3,4,5,6,7,8,9/),

wite(*,10) a !
wite(*,10) cshift(a, 1)
wite(*,20) b

!
!
!
!
wite(*,20) cshift(b,-1) !
!
|

wite(*,20) cshift(b,(/1,-1,0/))!
!
!
wite(*,20) cshift(b, 1, dinme2) !
!
!

10 format (3i 3)
20 format (3(/, 3i3))

CYCLE Statement

Description

wites 1
wites 2
wites 1

writes

wites

writes

P ~NA~NONOOW-NDN

The CY CLE statement skips to the next iteration of a DO loop.

Syntax
CY CLE [do-construct-name]

Where:

(13,30))

2
3
2
5
8
1
4
7
3
4
8
5
8
2

W OWo OWUlEF, 0UIN OO WEFE W

do-construct-name is the name of aDO construct that contains the CY CLE statement. |f do-
construct-name is omitted, it is as if do-construct-name were the name of the innermost DO

construct in which the CY CLE statement appears.

LF Fortran 95 Language Reference

107

Chapter 2 Alphabetical Reference

Remarks
The CY CLE statement may only appear within a DO construct.

Example
integer :: i, j
outer: do i=1, 10
if(i <3) cycle I cycles outer
i nner: do j=1, 10
if (i <j) cycle I cycles inner

if (i >j) cycle outer ! cycles to outer
end do i nner
end do outer

DATA Statement

Description
The DATA statement providesinitial values for data objects.

Syntax
DATA data-stmt-set [[,] data-stmt-set] ...

Where:
data-stmt-set is object-list / value-list /

object-list is a comma-separated list of variable names or implied-dos.
value-list is a comma-separated list of [repeat *] data-constant
repeat is ascalar INTEGER constant.

data-constant is a scalar constant (either literal or named)
or a structure constructor.

implied-do is (implied-do-object-list , implied-do-var=expr, expr[, expr])

implied-do-object-list is a comma-separated list of array elements, scalar structure compo-
nents, or implied-dos.

implied-do-var is ascalar INTEGER variable.

expr isascalar INTEGER expression.

Remarks
Each object in object-list must have a corresponding value in value-list.

108 LF Fortran 95 Language Reference

DATA Satement

Each value in value-list must be a constant that is either previoudy defined or made accessi-
ble by host or use association. Each constant should be of the same kind asthe corresponding
object being initialized.

A variable, or part of avariable, must not be initialized more than once in an executable
program.

If the type of avariablethat is being initialized is not declared prior to its appearancein a
DATA statement, it is of default type. Any subsequent declaration of the type of the variable
must be of default kind.

A whole array that appears in an object-list is equivalent to a complete sequence of itsarray
elementsin array element order. An array section is equivalent to the sequence of its array
elementsin array element order.

An implied-do is expanded to form a sequence of array elements and structure components,
under the control of the implied-do-var, asin the DO construct.

repeat indicates the number of timesthe following constant isto beincluded in the sequence;
omission of repeat defaultsto a repeat factor of 1.

A variablethat isinitialized in aDATA statement cannot also be any of the following: a
dummy argument; accessible by host or use association; in ablank common block; be afunc-
tion name or function result name; an automatic object; a pointer; or an allocatable array.

Variablesthat are initialized using the DATA statement in ablock data program unit may
appear in anamed common block. Variablesthat areinitialized using the DATA statement
in program units other than block data cannot appear in a named common block.

If an object in an object-list is of type INTEGER, its corresponding value may be a binary,
octal, or hexadecimal constant.

Example
integer, paraneter :: arrsize=100000,init=0
real ,paranmeter :: rinit=0.
real :: rl,r2,r3,arrayl(2,2),array2(arrsize)
real (kind(1.d0)) :: r4,r5
conplex :: ¢
integer :: 1,b,0,z,array3(10)

data r1,r2,r3 /1.,2.,3./, arrayl /1.,2.,3.,4./

data r4 /1.23456789012345d0/ ! correct initialization
data r5 /1.23456789012345/ I 1 oses precision

data array2 /arrsize*rinit/,q /(0.,0.)/

data (array3(l),1=1,10) /10*init/

data b /B 01101000100010111110100001111010'/

data o /O 15042764172'/

data z /Z 688be87a'/

wite(*,*) r4,r5

LF Fortran 95 Language Reference 109

Chapter 2 Alphabetical Reference

DATE_AND_TIME Subroutine

110

Description

TheDATE_AND_TIME subroutineretrievesinformation concerning acomputer’ s calendar
date, time of day and time zone at the time the subroutine is invoked.

Syntax
DATE_AND_TIME ([date[,]] [time[,]] [zon€[,]] [values,]])

Optional Arguments

dateisan INTENT(OUT) scalar of type CHARACTER, with aminimum length of eight. Its
leftmost eight characters are set to avalue of the form yyyymmdd, where yyyy isthe year, mm
the month, and dd the day. If thereisno date available, dateis blank.

timeisan INTENT(OUT) scalar of type CHARACTER, with a minimum length of ten. Its
leftmost ten characters are set to a value of the form hhmmss.sss, where hh is the hour, mm
the minutes, and ss.sss is seconds and milliseconds. If thereis no clock available, timeis
blank.

zoneisan INTENT(OUT) scalar of type CHARACTER, with aminimum length of five. Its
leftmost five characters are set to avalue of the form +-hhmm, where hh and mmare thetime
difference with respect to Coordinated Universal Time (UTC, aso known as Greenwich
Mean Time) in hours and minutes. If thereis no clock or time zone information available,
zoneis blank.

values an INTENT(OUT) rank one array of type default INTEGER with a minimum size of
eight. If any date or time valueisunavailable, its corresponding element in values will be set
to -huge(0). Otherwise, the first eight elements of values are as follows:

values (1) the year (for example, 2002)

values (2) the month of the year

values (3) the day of the month

values (4) the time difference with respect to Coordinated Universal Time (UTC) in minutes
values (5) the hour of the day, in the range of 0 to 23

values (6) the minutes of the hour, in the range of 0 to 59

values (7) the seconds of the minute, in the range 0 to 59

val ues (8) the milliseconds of the second, in the range 0 to 999

Remarks

If keyword arguments are not used, the date value will always be returned in the first argu-
ment of the calling list, time in the second argument, zone in the third argument, and values
in the fourth argument.

LF Fortran 95 Language Reference

DBLE Function

Example
character (I en=10)
i nt eger dt (8)

call date_and_tinme(tine=tine)
call date_and_ti me(date=date)
call date_and_tinme(zone=zone)
wite(*,*) tinme,date, zone

call date_and_tine(date,tine,zone) !

wite(*,*) tinme,date, zone
call date_and_tinme(val ues=dt)
wite(*,*) dt

call date_and_tinme(date) !
call date_and_tinme(tine) !
call date_and_time(zone) !
wite(*,*) tine,date, zone

DBLE Function

Description

if no keywords are used,
returns the date

tine, date, zone

keyword argunents

posi ti onal

argument s

al ways

The DBLE function returns a double-precision REAL value given a numeric argument.

Syntax
DBLE (a)

Arguments

aisan INTENT(IN) scalar or array of type INTEGER, REAL or COMPLEX.

Result

Theresult is of double-precision REAL type. Itsvalueisadouble precision representation
of a. If aisof type COMPLEX, theresult isadouble precision representation of the real part

of a.

Example
integer :: i=1
real :: r=1.
conplex :: g=(1.,1.)
wite(*,*) i,dble(i)

wite(*,*) r,dble(r)
wite(*,*) q,dble(q)

LF Fortran 95 Language Reference 111

Chapter 2 Alphabetical Reference

DEALLOCATE Statement

112

Description

The DEALLOCATE statement deallocates allocatable arrays and pointer targets and disas-
sociates pointers.

Syntax
DEALLOCATE (object-list [, STAT=stat-variable])

Where:
object-list is acomma-separated list of pointers or alocatable arrays.

stat-variableis ascalar INTEGER variable that returns a status value.

Remarks

If the optional STAT= is present and the DEALLOCATE statement succeeds, stat-variable
isassigned thevalue zero. If STAT=ispresent and the DEALLOCATE statement fails, stat-
variableis assigned the number of the error message generated at runtime.

If an error condition occurs during execution of a DEALLOCATE statement that does not
contain the STAT= specifier, the executable program is terminated.

Deallocating an allocatable array that is not currently allocated or a pointer that is disassoci-
ated or whose target was not allocated causes an error condition in the DEALLOCATE
Statement.

If apointer is currently associated with an allocatable array, the pointer must not be
deallocated.

Deallocating an allocatable array or pointer causes the status of any pointer associated with
it to become undefined.

Example
integer, pointer,dimension(:,:) :: ip => null()
integer,allocatable,dinension(:) :: jp
integer :: allostat

al locate (ip(10,20),jp(10))
deal | ocat e(i p)

deal | ocate(j p, stat=al | ostat)
wite(*,*) allostat

LF Fortran 95 Language Reference

DIGITS Function

DIGITS Function

Description

The DIGITS function returns the number of significant binary digitsin areal or integer data
object.

Syntax
DIGITS (X)

Arguments
xan INTENT(IN) scalar or array of type INTEGER or REAL.

Result

Theresult is of type default INTEGER. Its value isthe number of binary digits composing
the significant value of x.

Example
real :: r
real (kind(1.d0)) :: d
integer :: i
wite(*,*) digits(i),digits(r),digits(d)

DIM Function

Description

The DIM function returns the difference between two numbers if the difference is positive;
zero otherwise.

Syntax
DIM (%, y)

Arguments
xisan INTENT(IN) scalar or array of type INTEGER or REAL.

yiSINTENT(IN) and of the same type and kind as x.

Result
Theresultis of the sametypeasx. Itsvalueisx - yif xisgreater than y and zero otherwise.

LF Fortran 95 Language Reference 113

Chapter 2 Alphabetical Reference

Example
integer :: i=1,j=2
real :: x=1.,y=.5

wite(*,*) dimx,y) ! wites 0.5
wite(*,*) dimi,j) ! wites 0.0

DIMENSION Statement

114

Description
The DIMENSION statement specifies the shape or rank of an array.

Syntax

DIMENSION [::] array-name (array-spec) [, array-name (array-spec)] ...
Where:
array-name is the name of an array.

array-spec is explicit-shape-specs
or assumed-shape-specs

or deferred-shape-specs

or assumed-size-spec

explicit-shape-specsisacomma-separated list of [lower-bound ;] upper-bound that specifies
the shape and bounds of an explicit-shape array.

assumed-shape-specs isacomma-separated list of [lower-bound] : that, with the dimensions
of the corresponding actual argument, specifies the shape and bounds of an assumed-shape

array.

deferred-shape-specs is a comma-separated list of colons that specifies the rank of a
deferred-shape array.

assumed-size-spec is [explicit-shape-specs,] [lower-bound :] *

assumed-size-spec specifies the shape of a dummy argument array whose size is assumed
from the corresponding actual argument array.

lower-bound isascalar INTEGER expression that can be evaluated on entry to the program
unit that specifies the lower bound of a given dimension of the array.

upper-bound isascalar INTEGER expression that can be evaluated on entry to the program
unit that specifies the upper bound of a given dimension of the array.

Remarks

If the object being dimensioned also hasthe ALLOCATABLE or POINTER attribute, array-
spec must be specified as a deferred-shape.

LF Fortran 95 Language Reference

DLL_EXPORT Satement

Example 1
program progl
di nension :: a(3,2,1) I di mensi on st at enent
real, dimension(3,2,1) :: b ! dinension attribute
di nension c(-3:3) ! bounds specified
real d
all ocatable d
di nension d(:,:,:) ! deferred shape with rank 3
Example 2
subroutine subl(x,y, z)
di nension :: x(:,:,:) ! assuned shape with rank 3
di nension y(-3:) I | ower bound specified
di nensi on z(*) ! assuned size array

DLL EXPORT Statement

Description
The DLL_EXPORT statement makes a procedure that resides in a dynamic-link library
externally available.

Syntax
DLL_EXPORT [::] dll-export-names

Where:
dil-export-namesis alist of procedures defined in the current scoping unit.

Remarks
The procedures in dil-export-names must not be module procedures.

The procedures nameslisted inaDLL_EXPORT statement are "decorated" to match one of
several calling conventions by using the "-ml xxxx" switch at compile time.

Example
function hal f(x)
integer :: half,x
dl | _export half I dl | _export statenent
hal f=x/2

end function half

function tw ce(x)
integer,dll _export :: twice ! dll_export attribute
integer :: X
twi ce=x*2

end function tw ce

LF Fortran 95 Language Reference 115

Chapter 2 Alphabetical Reference

DLL IMPORT Statement

Description

The DLL_IMPORT statement specifies which procedures are to be imported from a

dynamic-link library.
Syntax
DLL_IMPORT [::] dll-import-names

Where:
dil-import-names is a comma-separated list of procedure names.

The procedures names listed inaDLL_IMPORT statement are "decorated" to match one of

several calling conventions by using the "-ml xxxx" switch at compile time.

Example
program nain
integer :: half,i
di | _import half 1 dll _inport statenent
integer,dll _inmport :: twice ! dll _inmport attribute

i =hal f (i)
end program nain

DO Construct

116

Description
The DO construct specifies the repeated execution (loop) of ablock of code.

A DO statement begins a DO construct.
An END DO statement ends the innermost nested DO construct.

Syntax
[construct-name ;] DO [label] [loop-control]

block
do-termination

Where:

construct-name is an optional name given to the DO construct.

label isthe optional label of a statement that terminates the DO construct.
loop-control is[,] do-variable=expr, expr [, expr]

or [,] WHILE (while-expr)

do-variableis ascalar variable of type INTEGER.

LF Fortran 95 Language Reference

DO Construct

expr isascalar expression of type INTEGER. Thefirst expr istheinitia value of do-vari-
able; the second expr isthe final value of do-variable; the third expr is the increment value
for do-variable.

while-expr isascalar LOGICAL expression.

block is a sequence of zero or more statements or executable constructs.

do-termination is END DO [construct-name]

or label action-stmt

action-stmt is a statement other than GOTO, RETURN, STOP, EXIT, CYCLE, assigned
GOTO, arithmetic IF, or END.

Remarks

If ado-variableis present, the expressionsin are evaluated, and do-variableis assigned an
initial value and an iteration count. Aniteration count of zeroispossible. Notethat because
the iteration count is established before execution of the loop, changing the do-variable
within the range of the loop has no effect on the number of iterations.

If loop-control is WHILE (while-expr), while-expr is evaluated and if false, the loop
terminates.

If thereisno loop-control it isasif the iteration count were effectively infinite.

Use of default or double-precision REAL for the do-variable has been removed from the For-
tran 95 language.

The“ CYCLE Statement” skips to the next iteration of a DO loop.
The" EXIT Satement” exitsa DO loop atogether.

If the DO statement specifies alabel, the corresponding do-termination statement must be
identified with the same label.

If a construct name s specified in the DO statement, the same construct name must be spec-
ified in a corresponding END DO statement.

If the DO statement is not identified by a construct-name, the do-termination statement must
not specify a construct-name.

Ending aDO construct with alabeled action statement is obsol escent, the use of END DO is
preferred.

Example 1
integer :: i
real :: a=20., b=10.
do i=1,10
I code bl ock goes here
end do
do I infinite do | oop
! better have sone way to | eave
exit

LF Fortran 95 Language Reference 117

Chapter 2 Alphabetical Reference

end do

do while (a > b) !

a=a- 1.

does while condition is true

wite(*,*) a>b

end do
do i=10,1,-1

end do

Example 2
integer :: i,

I backward iteration of index i

! code bl ock goes here

outer_loop: do i=1,5

i nner _| oop:

do j=1,5
if(i>) then
wite(*,*) cycling inner
cycl e inner_| oop
else if (i<j) then

wite(*,*) cycling outer'
cycl e outer_| oop

el se
wite(*,*) i,j

end if

end do inner_|l oop

end do outer_| oop

Example 3
i nt eger i
do 10, i=1,10
10 end do I |l abel nunber required
do i=1, 10
end do
I p: do while(i>10)
i=i-1
end do Ip I construct nane required
Example 4
integer :: i
real a=20., b=10
do i=1,5
wite(*,*) '"sinple indexed do
end do
do i=1,5,2
wite(*,*) "indexed do with stride
end do
do i=5,1
wite(*,*) 'zero trip | oop
end do

118 LF Fortran 95 Language Reference

DOT_PRODUCT Function

do while (a > b) ! does while condition is true
a=a- 1.
wite(*,*) a>b

end do

DOT_PRODUCT Function

Description

The DOT_PRODUCT function returns the dot product of two vectors of type INTEGER,
REAL OR COMPLEX.

Syntax
DOT_PRODUCT (vector_a, vector_b)

Arguments

vector_aisan INTENT(IN) rank one array of type INTEGER, REAL, COMPLEX, or
LOGICAL.

vector_aisINTENT(IN) and the same size as vector_b.

If vector_a isanumeric type, vector_b must also be a numeric type.
If vector_ais LOGICAL, vector_b must also be LOGICAL.
Result

If both vector_a and vector_b are REAL or INTEGER, the result is equal to
SUM (vector_a* vector_b) .

If either argument is of type COMPLEX, theresult valueis

SUM (CONJG (vector_a) * vector_b) .

If one of the argumentsis not COMPLEX, it istreated asif it were complex with an imagi-
nary part of zero.

If the arguments are of type LOGICAL, then the result valueis
ANY (vector_a.AND. vector_b).

If the arguments are of different numeric types, the result type is taken from the argument
with the higher type, where COMPLEX is higher than REAL , and REAL is higher than
INTEGER.

The kind of the result is taken from the argument that offers the greatest range.

If the argument arrays sizeis zero, the result is zero for numeric types, and false for logical
types.

LF Fortran 95 Language Reference 119

Chapter 2 Alphabetical Reference

Example
integer :: ivec(3)=(/1,2,3/), &
jvec(3)=(/4,5,6/)
real :: rvec(3)=(/1.,2.,3./)

real (kind(1.d0)) :: svec(3)=(/4.do0,5.do,6.do/)
conplex :: pvec(3)=(/(0.,1.),(0.,2.),(0.,3.)/), &
gvec(3)=(/(0.,4.),(0.,5.),(0.,6.)/)
wite(*,*) dot_product(ivec,jvec) ! integer result
wite(*,*) dot_product(rvec,jvec) ! real result
wite(*,*) dot_product(rvec,svec) ! D.P. result
wite(*,*) dot_product(pvec,jvec) ! Conplex result
wite(*,*) dot_product(pvec,svec) ! D.P. conplex result
wite(*,*) dot_product(pvec,gqvec) ! Conplex result

DOUBLE PRECISION Statement

120

Description
The DOUBLE PRECISION statement declares entities of type double precision REAL.

Syntax
DOUBLE PRECISION [[, attribute-list] ::] entity [, entity] ...

Where:

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of an entity being declared.

function-name is the name of afunction being declared. It must be the name of an external,

intrinsic, or statement function, or a function dummy procedure.

Remarks
function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

LF Fortran 95 Language Reference

DOUBLE PRECIS ON Satement

If =initialization-expr appears, adouble colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The =initialization-expr must not appear if entity-name is adummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attributeisspecified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable
arrays, functions, or objectsin acommon block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unlessitisa
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be adummy argument or afunction
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC,
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.
Example
doubl e precision a, b(10)

doubl e precision,dinmension(2,4) :: d
doubl e precision :: e=2.0d0

LF Fortran 95 Language Reference 121

Chapter 2 Alphabetical Reference

DPROD Function

Description

The DPROD function returns a double precision REAL product, given two single precision
REAL arguments.

Syntax
DPROD (x,)

Arguments
xisan INTENT(IN) scalar or array of type default REAL.

yiSINTENT(IN) and scalar if xisascalar, or an array if xisan array. y isof type default
REAL.

Result

Theresult is of type double-precision REAL. Itsvalueisan approximation of the double-
precision product of x and y.

Example
real :: x=1.25,y=1.25
wite(*,*) x*y,dprod(x,y) ! wites 1.56250000000000

DVCHK Subroutine (Windows Only)

122

Description
The DVCHK subroutine masks and detects divide by zero exceptions.

Syntax
DVCHK (Iflag)

Arguments

Iflag must be ascalar of type LOGICAL.

Iflag must be set to true on the first invocation.

On subseguent invocations Iflag is assigned the value true if a divide-by-zero exception has

occurred, and false otherwise.

Remarks

Theinitial invocation of the DVCHK subroutine masks the divide-by-zero interrupt on the
floating-point unit.

LF Fortran 95 Language Reference

ELEMENTAL Procedure

DVCHK will not check or mask zero divided by zero. Use INVALOP to check for a zero

divided by zero.
Example
logical :: Iflag=.true.
call dvchk(lflag) ! mask the divide-by-zero interrupt
wite(*,*) Iflag I wites F
wite(*, *) 1./0. I wites Inf
call dvchk (Iflag)
wite(*,*) Iflag I wites T

ELEMENTAL Procedure

Description
AnELEMENTAL procedure declaration impliesthat the procedure may be called using sca-
lar or array arguments.

Syntax
ELEMENTAL SUBROUTINE subroutine-name ([dummy-arg-names))

or

ELEMENTAL [type-spec] FUNCTION function-name ([dummy-arg-names])
[RESULT (result-name)]

Where:
subroutine-name is the name of the subroutine.

dummy-arg-names is a commarseparated list of dummy argument names.

type-spec is INTEGER [kind-selector]
or REAL [kind-selector]

or DOUBLE PRECISION

or COMPLEX [kind-selector]

or CHARACTER [char-selector]

or LOGICAL [kind-selector]

or TY PE (type-name)

kind-selector is ([KIND=] kind)

char-selector is ([LEN=] length [, KIND=kind])
or (KIND=kind [, LEN=length])
or * char-length [,]

kind isascalar INTEGER expression that can be evaluated at compile time.

LF Fortran 95 Language Reference 123

Chapter 2 Alphabetical Reference

124

length isa scalar INTEGER expression
or*

char-length isascalar INTEGER literal constant
or (*)
function-name is the name of the function.

result-name is the name of the result variable.

Remarks

Declaring a procedure to be ELEMENTAL aso impliesthat the procedure is PURE. Ele-
mental procedures are subject to all the restrictions of a“ PURE Procedure’ .

All dummy arguments and function results must be scalar, and cannot have the POINTER
attribute, be a dummy procedure, or an alternate return.

Dummy arguments may not appear in aspecification statement, except asan argument to one
of the following functions: BIT_SIZE, KIND, LEN, DIGITS, EPSILON, HUGE, MAXEX-
PONENT, MINEXPONENT, PRECISION, RANGE, RADIX or TINY.

When calling an elemental procedure, al actual arguments must be conformable to each
other.

Dummy arguments of elemental functions must have the INTENT(IN) attribute.

If any actual argument to an elemental subroutineisan array, all INTENT(OUT) and
INTENT(IN OUT) arguments must also be an array and all arrays must be conformable.

Result
If al actual argumentsto an elemental function are scalar, the result is scalar.
If any actual argument isan array, the result isan array and conformable with the array argu-

ment. The resulting array contains the value of the scalar operation performed on each
element of the array.

Example
nmodul e nodl ! gives us an inplicit interface
cont ai ns
el emental function el efunl(a,b)
integer :: elefunl
integer,intent(in) :: a,b

el efunl=a-b
end function el efunl

LF Fortran 95 Language Reference

END Satement

el ement al subroutine el esubl(a, b, c)

integer,intent(out) :: ¢
integer,intent(in) :: a,b
c=a-b

end subroutine el esubl
end nodul e

progr am progl

use nodl
integer :: i=0,j=-1,k,ia(3)=(/1,2,3/),ib(3)=(/4,5,6/),ic(3)
wite(*,*) elefunl(i,j) I wites 1.0

wite(*,*) elefunl(i,ia) ! wites -1.0 -2.0 -3.0
wite(*,*) elefunl(ia,i) ! wites 1.0 2.0 3.0
wite(*,*) elefunl(ia,ib) ! wites -3.0 -3.0 -

call elesubl(i,j,k)

3.0

wite(*,*) k I wites 1

call elesubl(ia,j,ic)

wite(*,*) ic I wites 2 3 4
call elesubl(i,ib,ic)

wite(*,*) ic I wites -4 -5 -6
call elesubl(ia,ib,ic)

wite(*,*) ic I wites -3 -3 -3

end program

END Statement

Description
The END statement signal s the end of a program unit.

Syntax
END [class[name]]

Where:
classis either PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK DATA.

name is the name of the program unit.
Remarks

Executing an END statement within a function or subroutine is equivalent to executing a
RETURN statement.

Executing an END statement within a main program unit terminates execution of the
program.

Each program unit, modul e subprogram, or internal subprogram must have exactly one END
Statement.

LF Fortran 95 Language Reference 125

Chapter 2 Alphabetical Reference

If the program unit is amodule procedure or an internal subprogram, classis required.

name can be used only if a name was given to the program unit in a PROGRAM, FUNC-
TION, SUBROUTINE, MODULE, or BLOCK DATA statement.

If nameis present, it must beidentical to the name specified in the PROGRAM, FUNCTION,
SUBROUTINE, MODULE or BLOCK DATA statement.

The END PROGRAM, END FUNCTION, and END SUBROUTINE statements are execut-
able and can be branch target statements.

The END MODULE, and END BLOCK DATA statements are non-executable.

Example
nodul e nodl
cont ai ns

subrouti ne nodsub()

end subroutine ! programclass is required on nodul e proc
end nodul e I "nodul e" is optiona
program endt est

use nodl

call subi()

cal |l nodsub()

call intsub()

cont ai ns

subroutine intsub()

end subroutine I "subroutine" for internal procedure
end program endtest ! "progrant and "endtest" are optiona
subroutine subl()
end

ENDFILE Statement

126

Description
The ENDFILE statement writes an endfile record to the specified unit asthe next record of a
file. Thefile pointer isthen positioned after the end of thefile.

Syntax
ENDFILE unit-number

or
ENDFILE (position-spec-list)

Where:
unit-number isascalar INTEGER expression corresponding to the input/output unit number
connected to an external file.

LF Fortran 95 Language Reference

ENTRY Satement

position-spec-list is[[UNIT =] unit-number][, ERR=label][, IOSTAT=stat] where UNIT=,
ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number must
be first.

label is a statement label that is branched to if an error condition occurs during execution of
the statement.

stat is of type INTEGER and returns a status i ndicator.

Remarks
After execution of an ENDFILE statement, aBACKSPACE or REWIND statement must be
executed to reposition the file before any further data transfer occurs.

If IOSTAT ispresent, execution continues after an error or end condition is encountered, and
stat is set to anon-zero number. The value of stat is set to zero if the write operation was
successful. statisassigned apositivevalueif an error condition occurs, and anegative value
if an end-of-file, or end-of-record condition occurs.

If unit-number is connected to the console, the ENDFILE statement has no effect.

An ENDFILE statement on afile that is connected but does not yet exist causesthefileto be
created before writing the endfile record.

Note that ENDFILE may only be used on sequential access files.

Example
integer :: ios
endfile 10
endfile(unit=11,i ostat=i0s)
endfile(12, err=20)
20 continue

ENTRY Statement

Description
The ENTRY statement permits aprogram unit to define multiple procedures, each with adif-
ferent entry point.

Syntax

ENTRY entry-name [([dummy-arg-list]) [RESULT (result-name)]]

Where:
entry-name is the name of the entry.

dummy-arg-list is a commarseparated list of dummy arguments or * alternate return
indicators.

LF Fortran 95 Language Reference 127

Chapter 2 Alphabetical Reference

128

result-name is a variable containing afunction result.

Remarks
An ENTRY statement can appear only in a subroutine or function.

If theENTRY statement isin afunction, an additional function isdefined by that subprogram
named entry-name. |If result-name is present, the result variable is named result-name. |If
result-name is absent, the result variable is named entry-name. The characteristics of the
function result are specified by the result variable.

If the ENTRY statement is contained in asubroutine subprogram, an additional subroutineis
defined by that subprogram. The name of the subroutine is entry-name.

The dummy arguments of an ENTRY subprogram are solely defined by the ENTRY state-
ment’s argument list.

A dummy argument may not appear in an executable statement before it isintroduced in an
ENTRY statement.

Any dummy argument not introduced by an ENTRY statement is considered undefined and
may not be referenced within the scope of that ENTRY subprogram.

RESULT can be present only if the ENTRY statement isin afunction subprogram.

If RESULT is specified, entry-name must not appear in any specification statement in the
scoping unit of the function program.

If RESULT is specified, result-name cannot be the same as entry-name.

entry-name may not be a dummy argument, or appear in an EXTERNAL or INTRINSIC
statement.

AnENTRY statement must not appear within an executable construct such asDO, IF CASE,
etc.

A dummy argument can be an alternate return indicator only if the ENTRY statement is con-
tained in a subroutine subprogram.

If the subprogram unit containing the ENTRY statement is declared as RECURSIVE, PURE
or ELEMENTAL, the subprogram defined by the ENTRY statement also has those
attributes.

Example
program nain
call subl()
call sublentry()
end program nain
subroutine subl()
wite(*,*) 'subroutine call executes this part’
entry sublentry()
wite(*,*) "both calls execute this part'

LF Fortran 95 Language Reference

EOSHIFT Function

end subroutine subl

EOSHIFT Function

Description

The EOSHIFT function performs an end-off shift of al rank one sectionsin an array. Ele-
ments are shifted out at one end and copies of a boundary value are shifted in at the other.
Different sections can be shifted by different amounts and in different directions by using an
array-valued shift.

Syntax
EOSHIFT (array, shift [, boundary] [, dim])

Required Arguments
array isINTENT(IN) and can be of any type. It must not be scalar.

shiftisan INTENT(IN) scalar or array of type INTEGER. If array isrank one, shift must be
scalar; otherwise shift may either be scalar or of rank n-1 and shape
(dy, dyy - dgim—1,A4im+ 15 -+ 0p) , Where (dq, d,, ..., d,) istheshapeof array.

Optional Arguments
boundary isINTENT(IN) and of sametype and kind asarray. It must be scalar if array is
of rank one. Otherwise it may be scalar or of rank n-1 and shape

(dy, g, -, dgim_1, dgim+ 10 -+, Gy) -
If array is of type CHARACTER, boundary must have the same length as array.

dimisan INTENT(IN) scalar INTEGER withavalueintherange 1<dim<n, wherenis
therank of array. If dimisomitted, it isasif it were present with a value of one.

Result
The result isthe same type, kind and shape asarray. The boundary value isassigned to any
element of the array which does not have a source value.

If array is of rank one, the result is the value of array shifted by shift elements

If shift isscalar, and array is of rank two or greater, each element along dimension dimis
shifted by shift elements.

If shift isan array, each element along dimension dim is shifted by the amount specified in
the corresponding shift vector.

If boundary is absent, the default pad values are zero for numeric types, blanks for CHAR-
ACTER, and false for LOGICAL.

LF Fortran 95 Language Reference 129

Chapter 2 Alphabetical Reference

Example
integer :: a(3), b(3,3)
a=(/1,2,3/)
b = reshape ((/1,2,3,4,5,6,7,8,9/), (/3,3/))

wite(*,10) a I wites 1 2 3
wite(*,10) eoshift(a, 1) I wites 2 3 0
wite(*,10) eoshift(a,1, -1) I wites 2 3 -1
wite(*,20) b I wites 1 2 3
! 4 5 6
! 7 8 9
wite(*,20) eoshift(b,-1) I wites 0 1 2
! 0 4 5
! 0O 7 8
wite(*,20) eoshift(b,-1,(/1,-1,0/)) ! wites 1 1 2
! -1 4 5
! 0O 7 8
wite(*,20) eoshift(b,(/1,-1,0/)) I wites 2 3 O
! 0 4 5
! 7 8 9
wite(*,20) eoshift(b,1,din=2) I wites 4 5 6
! 7 8 9
! 0O 0 O

10 format (3i3)
20 format (3(/, 3i3))

EPSILON Function

Description
The EPSILON function returns a positive real value that is almost negligible compared to
unity. Itisthe smallest value of x such that 1.+x is not equal to 1.

Syntax
EPSILON (X)

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result
The result is a scalar value of the same kind as x.

Itsvalueis2t», where pisthe number of bitsin thefraction part of the physical representation
of X.

130 LF Fortran 95 Language Reference

EQUIVALENCE Satement

Example

real (kind(1.d0)) :: d
real (kind(1.e0)) :: r

I addi ng epsilon only changes the rightnost bit
wite(*,*) 1.dO+epsilon(d)

! wites 1.000000000000000
wite(*,'(2z18.16)') 1.dO0, 1. dO+epsilon(d)

I show bits

I wites 3FFO000000000000 3FF0000000000001
wite(*,*) 1.eO+epsilon(r)

I wites 1.00000012
wite(*,'(2z10.8)"') 1.e0,1.e0+epsilon(r)

I show bits

I writes 3F800000 3F800001

EQUIVALENCE Statement

Description
The EQUIVALENCE statement specifies two or more aliases that share the same storage.

Syntax
EQUIVALENCE equivalence-sets

Where:
equivalence-sets is a comma-separated list of (equivalence-objects)

equivalence-objects is a commarseparated list of variables, array elements, or substrings.

Remarks

An equival ence-object must not be: made available by use association; a dummy argument;

apointer; atarget; an allocatable array; a subobject of a non-sequence derived type; a subob-
ject of a sequence derived type containing a pointer at any level of component selection; an
automatic object; afunction name; an entry name; a result name; a named constant; a struc-
ture component; or a subobject of any of these objects.

If the equivalenced objects have different types or kinds, the EQUIVALENCE statement
does not perform any type conversion or imply mathematical equivalence.

If ascalar and an array are equivalenced, the scalar does not have array properties and the
array does not have scalar properties.

If an equivalence-object is a derived type that is not a numeric sequence or CHARACTER
sequence type, all of the objects in the equivalence set must be of that type.

LF Fortran 95 Language Reference 131

Chapter 2 Alphabetical Reference

If an equivalence-object is of an intrinsic type other than default INTEGER, default REAL,
double precision REAL, default COMPLEX, default LOGICAL, or default CHARACTER,
all of the objects in equivalence-set must be of the same type with the same kind value.

A data object of type default CHARACTER can be equivalenced only with other objects of
type default CHARACTER. Thelengths of the equivalenced objects are not required to be
the same.

An EQUIVALENCE statement can not specify that the same storage unit is to occur more
than once in a storage sequence.

When one of the equivalence objectsisinitialized, all associated objects are considered to be
initialized. Each equivalence set may have only one initialization value.

If an equivalence-object hasthe VOLATILE attribute, all equivalence-objectsin the equiva-
lence-set are voltile.

Example
real :: a=l.
real (kind(1.d0)) :: d
integer :: i
logical :: |
equi val ence (a,d,i,l)
wite(*,*) a! wites 1.0000000
wite(*,*) d! wites 5.263544247120890E- 315
wite(*,*) i ! wites 1065353216
wite(*,*) | ! wites T

ERROR Subroutine

132

Description
The ERROR subroutine prints an error message with traceback to the console and continues
processing.

Syntax
ERROR (message)

Arguments
messageisan INTENT(IN) argument of type CHARACTER. It contains the message to be
printed.

Remarks
If the program is compiled with the -ntrace (Windows) or --ntrace (Linux) option, atraceback
will not be printed.

LF Fortran 95 Language Reference

EXIT Satement

Example
character(len=8) :: errmsg=" Error:
call error(errnsg) ! wites Error:
! foll owed by a traceback nessage

EXIT Statement

Description
The EXIT statement causes execution of a specified DO loop to be terminated. Execution
continues at the first executabl e statement after the loop terminus.

Syntax
EXIT [do-construct-name]

Where:

do-construct-name is the name of a DO construct that containsthe EXIT statement. If do-
congtruct-name is omitted, the EXIT statement applies to the innermost DO construct in
which the EXIT statement appears.

Example
integer :: i, j
outer: do i=1, 10
i nner: do j=1, 10
if (i <j) then

exit I exits inner
else if (i >j) then

cycle
el se

wite(*,*) i,j
exit outer
end if
end do i nner
end do outer

EXIT Subroutine

Description
The EXIT subroutine causes program execution to terminate with an exit code.

Syntax
EXIT (ilevel)

LF Fortran 95 Language Reference 133

Chapter 2

Alphabetical Reference

Arguments
ilevel must be a scalar of type INTEGER. It sets the value of the program’s exit code.

Example
call exit(3) ! exit -- systemerror level 3

EXP Function

Description

The EXPfunction returnsaREAL or COMPLEX valuethat isan approximation of the expo-
nential function.

Syntax
EXP (X)

Arguments
xisan INTENT(IN) scalar or array of type REAL or COMPLEX.

Result

Theresult is of the same type and kind as x. Itsvalueisa REAL or COMPLEX representa-
tion of e«

If xis COMPLEX, itsimaginary part is treated as avalue in radians.

Example
real :: r=1.
conplex :: c¢=(0.,-3.141592654)
wite(*,*) exp(r) ! wites an approxi nation of e
wite(*,*) exp(c) ! wites a conpl ex approxi mati on of -1.

EXPONENT Function

Description

The EXPONENT function returns the exponential part of the model representation of a
number.

Syntax
EXPONENT (x)

134 LF Fortran 95 Language Reference

EXTERNAL Satement

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result
Theresult isof type default INTEGER. Itsvalue isthe power of two of the exponential part
of X.
Example
real :: x=4.3

wite(*,*) x,exponent(x)
I wites 4.300000 3
wite(*,*) scale(fraction(x), exponent(x))
I wites 4.300000

EXTERNAL Statement

Description
The EXTERNAL statement declares external procedures. Specifying a procedure name as
EXTERNAL permits the procedure name to be used as an actual argument.

Syntax
EXTERNAL [::] external-name-list

Where:
external-name-list is acomma-separated list of external procedures, dummy procedures, or
block data program units.

Remarks
If an intrinsic procedure name appearsin an EXTERNAL statement, the intrinsic procedure
is not available in the scoping unit and the nameisthat of an external procedure.

A name can appear only once in all of the EXTERNAL statements in a scoping unit.

If the external procedure is ablock data subprogram, the inclusion of the block datain the
program is required.

Example
program main
external subl I external statenent
integer,external :: funl ! external attribute

call bill(subl, funl)
end program
subroutine bill (proc, fun)
integer :: fun,i

LF Fortran 95 Language Reference 135

Chapter 2 Alphabetical Reference

i =fun()
call proc(i)
end subroutine
subroutine subl(i)
integer :: i
wite(*,*) i
end subroutine
function funl()
integer :: funl
funl=1
end function

FLOOR Function

136

Description
The FLOOR function returns the greatest INTEGER number |ess than or equal to a REAL
argument.

Syntax
FLOOR (a[, kind])

Required Arguments
aisan INTENT(IN) scalar or array of type REAL.

Optional Arguments

kind is INTENT(IN) and determines the kind of the result. It must be ascalar INTEGER
expression that can be evaluated at compile time. To maintain portability, this argument
should be the result of a“ KIND Function” or “ SELECTED INT_KIND Function” .

Result
Theresult isan INTEGER number whose value is the largest integer less than or equal to a.
If kind is present, it specifies the kind of the result.

If kind is absent, the result is type default INTEGER.

Example
real :: r=4.7,x(3)=(/-.5,0.,.5/)
wite(*,*) floor(r) I wites 4
wite(*,*) floor(-r,selected_int_kind(2)) ! wites -5
wite(*,*) floor(x) I wites -1 00

LF Fortran 95 Language Reference

FLUSH Subroutine

FLUSH Subroutine

Description

The FLUSH subroutine causes data stored in an output buffer to be written to itsi/o unit, and
clears the buffer.

Syntax
FLUSH (iunit)

Arguments

iunitisan INTENT(IN) scalar of type INTEGER. It isthe unit number of the file whose
buffer isto be written.

Remarks
Execution of the FLUSH subroutine does not flush the file buffer.

Example
call flush(11) ! enpty buffer for unit 11

FORALL Construct

Description

The FORALL construct controls execution of ablock of assignment and pointer assignment
statements. Execution in the block is selected by sets of index values and an optional mask
expression.

Syntax
[construct-name:] FORALL (forall-triplets[, mask])
[forall-body]
END FORALL [construct-name]

Where:
construct-name is an optional name for the FORALL construct.

forall-triplets is a comma-separated list of index-name=subscript : subscript [: stride]
index-name is a named scalar variable of type INTEGER.

subscript isascalar INTEGER variable, whichisan array index. subscript may not refer to
an index-name in the same forall-triplets list.

LF Fortran 95 Language Reference 137

Chapter 2 Alphabetical Reference

strideisascalar INTEGER variable, whichisthearray stride. stride may not make reference
to an index-name in the same forall-triplets list.

mask is a scalar expression of type LOGICAL.

forall-body is zero or more assignment or pointer assignment statements, WHERE state-
ments or constructs, or FORALL statements or constructs.

Remarks

Execution of aFORALL construct causes the set of values for index-name to be determined,
and mask to be evaluated. Valuesfor index-name are determined by taking the starting sub-
script, and incrementing it by the stride until avalue falls outside the range subscript :
subscript. maskisevaluated for each combination of index-name values, and assignmentsin
the forall-body are made for those combinations of index-names for which mask evaluatesto
true.

If the FORALL construct has a constr uct-name, the same construct-name must appear at the
beginning and end of the construct.

Any procedure referenced in mask or in forall-body must be a“ PURE Procedure” .
If mask isnot present it isasif it were present with the value true.
The set of values for index-name may be determined in any order.

The value of an index-name cannot be altered within the forall-body.

Example

real :: a(3,3)

integer :: i,j

forall (i=1:3,j=1:3:2) I selection by index val ues
a(i,j)=real (i+)

end forall

wite(*,'(3(1x,f10.6))') a! row?2 is all zeros

forall (i=1:3, j=1:3,a(i,j) == 0.) ! selection by index

! val ues and scal ar mask
a(i,j)=i*j ! this assignnment is only done for
! elements of a that equal zero
end forall
wite(*,'(3(1x,f10.6))') a

FORALL Statement

Description
The FORALL statement controlsexecution of an assignment or pointer assignment statement
with selection by sets of index values and an optional mask expression.

LF Fortran 95 Language Reference

FORMAT Satement

Syntax
FORALL (forall-triplets[, mask]) forall-assignment-stmt

Where:
forall-triplets is a comma-separated list of index-name=subscript : subscript [: stride].

index-name is a named scalar variable of type INTEGER.

subscript isascalar INTEGER variable, whichisan array index. subscript may not refer to
an index-name in the same forall-triplets list.

strideisascalar INTEGER variable, whichisthearray stride. stride may not make reference
to an index-name in the same forall-triplets list.

mask is a scalar expression of type LOGICAL.

forall-assignment-stmt is an assignment statement or a pointer assignment statement.

Remarks

Execution of aFORALL statement causes the set of values for index-name to be determined,
and mask to be evaluated. Values for index-name are determined by taking the starting sub-
script, and incrementing it by the stride until avalue falls outside the range subscript :
subscript. mask isevaluated for each combination of index-name values, and assignmentsin
the forall-assignment-stmt are made for those combinations of index-names for which mask
evaluates to true.

Any procedure referenced in mask or in forall-assignment-stmt must be a“ PURE
Procedure” .

If mask isnot present it isasif it were present with the value true.
The set of values for index-name may be determined in any order.
The value of an index-name cannot be altered within the forall-assignment-stmt.
Example
integer :: a(3,3)=(/1,2,3,4,5,6,7,8,9/),i,]j
forall(i=1:3,j=1:3, j > i) a(i,j)=a(j,i)

I assigns the transpose of the lower triangle of array a
wite(*,'(3(1x,f10.6))') a

FORMAT Statement

Description
The FORMAT statement provides explicit information that directs how data and characters
areread on input and displayed on output.

LF Fortran 95 Language Reference 139

Chapter 2 Alphabetical Reference

140

Syntax
FORMAT ([format-items])

Where:

format-itemsisacommarseparated list of [r] data-edit-descriptor, contr ol -edit-descriptor, or
char-string-edit-descriptor, or [r] (format-items)

data-edit-descriptor is Iw[.m]

or Bw[.m]

or Ow[.m|

or Zw[.m|

or Fw.d

or Dw.d

or Ew.d[E€]

or ENw.d[Ee€]

or ESw.d[E€]

or Gw.d[E€]

or Lw

or A[w]

w, m, d, and eare INTEGER literal constantsthat represent field width, digits, digits after the
decimal point, and exponent digits, respectively.

control-edit-descriptor isTn
or TLn
or TRn
or nX
orS

or SP
or SS
or BN
orBZ
or[r]/
or:

or kP

char-string-edit-descriptor isa CHARACTER literal constant
rep-charsisastring of characters
c isthe number of charactersin rep-chars

r, k, and n are positive INTEGER literal constants used to specify anumber of repetitions of
the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or (format-
items)

LF Fortran 95 Language Reference

FORMAT Satement

Table 9: Format edit descriptors

Edit . o
Descriptor Interpretation Intrinsic type
. ordinal number with flglql width of w, displays INTEGER
mdigits
Bw.n binary number with f|e_lq width of w, displays INTEGER
mdigits
ow.m octal number with f|el_dIW|dth of w, displaysm INTEGER
digits
Zw hexadecimal number with .flf-'l‘ld width of w, dis- INTEGER
playsmdigits
Fw.d decimal numper with field width of w, displays REAL or COMPLEX
d decimal places, no exponent
Ew.d[Ee] : I : .
ot | ReAL o corLEx
Dw.d[Ee] piaces, P 9
decimal number with field width of w, displays
ENw.d[E€] | d decimal places, and an exponent with edigits | REAL or COMPLEX
(engineering notation)
decimal number with field width of w, displays
ESw.d[Ee] | ddecimal places, and an exponent with edigits | REAL or COMPLEX
(scientific notation)
(generalized) field width of w, displays d deci- S
Gw.d[Ee] mal places, and an exponent with e digits Any intrinsic type
Lw T or Fwith afield width of w LOGICAL
Alw] a phanumeric with afield width of w CHARACTER
Tn move n spaces from the start of the record None
TLn move n spaces |eft of current position None
TRn move n spaces right of current position None
nX move n spaces right of current position None
S default generation of plus sign on subsequent Numeric

output

LF Fortran 95 Language Reference

141

Chapter 2 Alphabetical Reference

142

Table 9: Format edit descriptors

Edit i insi
i - Interpretation Intrinsic type
<p force generation of plus sign on subsequent Numeric
output
s no generation of plus sign for subsequent Numeric
output
BN ignore non-leading blanks on input Numeric
of subsequent items
B7 interpret non-leading bl ank_s as zeros on input Numeric
of subsequent items
skip to the next record
[rl/ r isarepeat count None
terminates format control if there are no more
_ _ L None
itemsinthei/olist
kP set ascale factor of k for subsequentitems | REAL or COMPLEX
Remarks

The FORMAT statement must be |abel ed.

Edit descriptors may be nested within parentheses and may be preceded by arepeat factor.
A parenthesized list of edit descriptors may also be preceded by a repeat factor, indicating
that the entire list is to be repeated.

The comma between edit descriptors may be omitted in the following cases:
 between the scale factor (P) and the numeric edit descriptors F, E, EN, ES, D, or G
 before anew record indicated by a slash when there is no repeat factor present

* dfter the slash for anew record

 before or after the colon edit descriptor

WithinaCHARACTER literal constant, if a string delimiter character (either an apostrophe
or quote) isto appear as apart of the string, it must appear as a consecutive pair of the delim-
iter characters without any blanks. Each such pair represents a single occurrence of the
delimiter character.

LF Fortran 95 Language Reference

FORMAT Satement

Example 1
nuneri c output editing

101
102
103
104
105
201
202
203

204

205

i nt eger
real r=1.
wite(*,101)
wite(*,102)
wite(*,103)
wite(*,104)
wite(*,105)
wite(*,201)
wite(*,202)
wite(*,203)
wite(*,204)
wite(*,205)
format (110)

format (110. 4)
f or mat (B34. 32)
format (OL3. 11)
format (Z10. 8)

i=-1

f or mat (3PF10. 2)!

format (- 1P, D10. 2)
f or mat (SP, E10. 2E1) !

f or mat (SSEN10. 2E2) !
|

f or mat (ES10. 2E2)

Example 2
nuneric input editing

character (I en=5)
character (Il en=10)

integer :: i
real ::r
conplex :: (

wites -1

wites -0001

wites 11111111111111111111111111111111
wites 37777777777

wites FFFFFFFF

wites 1000. 00

wites 0.01D+02

wites +0.10E+1

wites 1.00E+00

wites 1.00E+00

field width 10
field width 10

Show up to 10 digits,
Al ways show 4 digits,
Show 32 binary digits, field width 34
Show 11 octal digits, field width 13
Show 8 hex digits, field width 10

2 dec places field width 10 scale 3

! 2 dec places field width 10 scale -1
2 dec places, field width 10,

1 1 digit exponent, produce plus sign
2 decimal places, field width 10,

1 2 digit exponent suppress plus sign

! 2 decimal places, field width 10,

1 2 digit exponent

file
file

i nt ernal
i nt ernal

i n_datal="11000" !
i n_dat a2=" 1 1"!

read(in_datal, 101) i

wite(*,*) i

I wites 1100000000

read(in_datal, 102) i

wite(*,*) i

I wites 11000

read(in_datal, 103) i

wite(*,*) i

I wites 24

read(in_datal, 104) i

wite(*,*) i

I wites 4806

read(in_datal, 105) i

wite(*,*) i

I wites 69632

read(in_datal, 201) r

wite(*,*) r

I wites 110.

read(i n_datal, 202) r

LF Fortran 95 Language Reference 143

Chapter 2 Alphabetical Reference

144

wite(*, *) r I wites 11000000.
read(i n_dat a2, 202) r

wite(*, *) r I wites 11000.

read(i n_data2, 203) r

wite(*, *) r I wites 100001.

read(i n_dat a2, 204) q

wite(*,*) q I wites (1.,1.)

read(i n_dat a2, 205) q

wite(*,*) q I wites (10.,100.)

101 format (BZl 10) Interpret non | eading bl anks as zeros

102 format (BN 10)
103 fornmat (B32)

105 format (Z8)

I gnore non | eadi ng bl anks
Read up to 32 binary digits

Read up to 8 hexadecimal digits

!
!
!
104 format (OL1) | Read up to 11 octal digits
!
!

201 format (F10. 2)
202 format (- 3PF10. 0)
203 f or mat (BZF10. 0)
204 format (2(F6.0))
205 format (BZ, 2(F6.0))

Example 3

! generalized, |ogical

integer :: i

real :: r

real (kind(1.d0))
conplex :: (
logical :: |
character (I en=10)
character (I en=10)
character (I en=20)
read(i n_dat a, 301)
wite(*,301) i
read(i n_dat a, 301)
wite(*,301) r
read(i n_dat a, 301)
wite(*, 301) d
read(i n_dat a, 301)
wite(*,301) q

q

Scal e factor -

non | eadi ng bl anks are zeros

I gnor e bl anks

non | eadi ng bl anks are zeros

3

and character editing

read(in_str(8:8),301) |

wite(*,301) I

read(in_str(15:15),301) |

wite(*,301) |

read(in_str,301) rdstr

wite(*,301) rdstr

read(in_str(8:8),401) |

wite(*,401) |

read(in_str(15:15),401) |

wite(*,401) |

LF Fortran 95 Language Reference

last two digits are right of decinal

Fol ks!

d

rdstr(2)

i n_dat a=" 1 1"

in_str=" Howdy There, Folks!"
I wites 11
I wites 0.11
! wites 0.11
! wites 0.11 0.0
I wites T
I wites F
I wites Howdy There,
I wites T
I wites F

FORMAT Satement

read(in_str,501) rdstr

wite(*,501) rdstr I wites Howdy There, Folks!
wite(*,501) "howdy" I wites howdy
wite(*,501) '"howdy"' I wites "howdy"
wite(*,501) "' howdy'" I wites ' howdy'
wite(*,501) """howdy""" | wites "howdy"
wite(*,501) '"""howdy''" ! wites 'howdy'

301 format (2G10.2) ! general editing, field width 10

401 fornmat (L10) ! Logical Tor F, field width 10
501 format (2A10) ! Al phanuneric string, field width 10
Example 4
I positional editing
real :: r(3)=(/-1., 0., 1./)
wite(*,201) r ! wites -1.00 0. 00 1.00
wite(*,202) r ! wites 1.00 -1.00 0. 00
wite(*,203) r ! wites 1.00 0.00 -1.00
wite(*,204) r ! wites -1.00 0. 00 1.00
wite(*,205) r ! wites -1.00
! 0. 00
! 1.00

201 format (TR10, 3F10. 2)

202 format (T21, F10. 2, T31, F10. 2, T11, F10. 2)
203 format (TR30, F10. 2, 2(TL20, F10. 2))

204 format (10X, 3(F10.2))

205 format (3(T21, F10.2,/))

Example 5
! formats without statenents
integer :: i_a(3,3)=reshape((/1,2,3,4,5,6,7,8,9/), &
shape(i_a))

integer :: i_b(2,3)=reshape((/1,2,3,4,5,6/),shape(i_b))

integer :: i_c(3,2)=reshape((/1,2,3,4,5,6/),shape(i_c))

call wite_array2d(i_a)

call wite_array2d(i_b)

call wite_array2d(i_c)

cont ai ns

subroutine wite_array2d(i) ! conmpose a format and

integer :: i(:,:) I wite rank two array
character(40) :: fnt ' in rows and col ums

wite(fm,*) "(",size(i,1),"(",size(i,2),"110,/))"
wite(*,*) fnt ! wite the format string
wite(*,fm) i ! wite array using the format string
end subroutine
end program

LF Fortran 95 Language Reference 145

Chapter 2 Alphabetical Reference

FRACTION Function

Description
The Fraction function returns the fractional part of the representation of a REAL number.

Syntax
FRACTION (x)

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result
Theresultisof type REAL andthesamekindasx. Itsvalueisthefraction part of the physical
representation of x.

Example
real :: x=4.3
wite(*,*) x,fraction(x)
! writes 4.300000 0.5375000
wite(*,*) scale(fraction(x), exponent(x))
I wites 4.300000

FUNCTION Statement

146

Description

The FUNCTION statement begins a function subprogram. It specifies the functions name
and dummy arguments, and any special characteristics such as PURE, ELEMENTAL, or
RECURSIVE. It may optionally specify the functions' return type, and the name of a result
variable used within the subprogram to assign a value to the function result.

Syntax
[PURE][ELEMENTAL][RECURSIVE] [type-spec] FUNCTION function-name
([dummy-arg-names]) [RESULT (result-name)]

Where:

type-spec isINTEGER [kind-selector]
or REAL [kind-selector]

or DOUBLE PRECISION

or COMPLEX [kind-selector]

or CHARACTER [char-selector]

or LOGICAL [kind-selector]

or TY PE (type-name)

LF Fortran 95 Language Reference

FUNCTION Satement

kind-selector is ([KIND=] kind)

char-selector is ([LEN=] length [, KIND=kind])
or (KIND=kind [, LEN=length])
or * char-length [,]

kind isascalar INTEGER expression that can be evaluated at compile time

length isa scalar INTEGER expression
or*

char-length isascalar INTEGER literal constant
or (*)

function-name is the name of the function
dummy-arg-names is a commarseparated list of dummy argument names

result-name is the name of the result variable

Remarks

A function with the prefix PURE or ELEMENTAL is subject to the additional constraints of
pure procedures, which ensurethat no unseen side effectsoccur on invocation of the function.
See “PURE Procedure” on page 225.

An ELEMENTAL function is subject to the constraints of elemental procedures. See“ELE-
MENTAL Procedure” on page 123.

A function cannot be both ELEMENTAL and RECURSIVE.

The keyword RECURSIVE must be present if any function defined by a FUNCTION or
ENTRY statement within the subprogram directly or indirectly callsitself.

A RECURSIVE function that callsitself directly must use the RESULT option.
If RESULT is omitted, then function-nameisthe result variable.

If the function result is an array or a pointer, this must be specified in the declaration of the
result variable in the function body.

Example 1
! basi c function declaration
function funcl(a,b)
real :: funcl ! result type defined here
real,intent(in) :: a,b
funcl=a-b ! function is assigned a result
end function
! function declaration with result variable
function func2(a,b) result(res)
real :: res I result type defined here
real,intent(in) :: a, b

LF Fortran 95 Language Reference 147

Chapter 2 Alphabetical Reference

res=a-b I function is assigned a result
end function
! function declaration with type
real function func3(a,b) ! result type defined here
real, intent(in) :: a,b
func3=a-b I function is assigned a result
end function
! program i nvoki ng functions
wite(*,*) funcl(-1.,1.) ! wites -2.
wite(*,*) func2(-1.,1.) ! wites -2.
wite(*,*) func3(-1.,1.) ! wites -2.
end

Example 2
! recursive function with result variable
recursive function func4(a,b) result(res)

real :: res I result type defined here
real :: a,b
if (a>=b) then
res=a-b I function returns

else if (a < spacing(b)) then

res=-b I function returns
else if (a <0.) then

b=func5(-a,b) ! indirect recursion
el se

a=func4(a,-b) ! direct recursion
end if

end function
! recursive function w thout result variable
recursive function func5(a, b)
real :: funch I result type defined here
real :: a,b
if (a <b) then
func5=func4(b,a) ! result variable not required

el se I if recursive function does
func5=func4(a,b) ! not invoke itself directly
end if

end function
! program i nvoki ng functions
wite(*,*) func4(-1.,1.),func4(1.,-1.) ! wites -1. 2.
wite(*,*) func5(-1.,1.),func5(1.,-1.) ! wites 2. 2.
end

148 LF Fortran 95 Language Reference

GETCL Subroutine

GETCL Subroutine

Description
The GETCL subroutine gets command line arguments.

Syntax
GETCL (cl_args)

Arguments

cl_argsisan INTENT(OUT) scalar of type CHARACTER. It containsany text whichispro-
vided when the program is invoked beginning with the first non-white-space character after
the program name.

Remarks

If thelength of cl_argsis not sufficient to hold the entire command line argument, the left-
most characters in the argument are retained up to the length of the character variable

If any run-time options are present (-WI,...), they are returned by GETCL.
If no command line argument is present, cl_args contains blank characters.
Example

character(256) :: cl_argl

call getcl(cl_argl)
wite(*,*) len_trin(cl_argl),trimcl_argl)

GETENV Subroutine

Description
The GETENV subroutine gets the value of the specified environment variable.

Syntax
GETENV (env_var, env_value)

Arguments

env_var isan INTENT(IN) scalar of type CHARACTER. It specifiesthe environment vari-
able whose value is requested.

env_valueisan INTENT(OUT) scalar of type CHARACTER. On return, it contains the
value of the environment variable env_var.

LF Fortran 95 Language Reference 149

Chapter 2 Alphabetical Reference

Remarks
If the specified environment variable does not exist, on return, env_value contains null char-
acters (CHAR(0)).

If the length of env_valueis not sufficient to hold the entire environment val ue, the leftmost
characters are retained up to the length of the character variable

Example
character(4096) :: env_val uel
call getenv("PATH', env_val uel)
wite(*,*) len_trin(env_valuel),trimenv_val uel)

GO TO Statement

Description
The GO TO statement transfers control to a statement identified by alabel.

Syntax

GO TO label

Where:
label isthe label of abranch target statement.

Remarks
label must be the label of a branch target statement in the same scoping unit as the GOTO
statement.
Example

a=b

go to 10 ! branches to 10

b=c ! never executed

10 c=d

HUGE Function

Description
The HUGE function returns the largest representable number of the argument’ s data type.

Syntax
HUGE (x)

150 LF Fortran 95 Language Reference

IACHAR Function

Arguments
xisan INTENT(IN) scalar or array of type REAL or INTEGER.

Result
Theresult is of the sametype and kind as x. Itsvalueisthe value of the largest number rep-
resentable by the data type of x.

Example
real (kind(1.e0)) :: r10
real (kind(1.d0)) :: r100
real (kind(1.g0)) :: r1000

integer(selected_int_kind(r=1)) :: il
integer(selected_int_kind(r=4)) :: i4
integer(selected_int_kind(r=7)) :: i7
i nteger(selected_int_kind(r=12)) :: i12

wite(*,*) huge(r10) wites 3.40282347e+38

|
wite(*,*) huge(r100) ! wites 1.797693134862316e+308
wite(*,*) huge(r1000) ! wites 1.18973....28007e+4932
wite(*,*) huge(il) I wites 127
wite(*,*) huge(i4) I wites 32767
wite(*,*) huge(i?7) I wites 2147483647
wite(*,*) huge(il2) I writes 9223372036854775807

IACHAR Function

Description
The IACHAR function returns the position of a character in the ASCII collating segquence.
See “ASCII Character Set” on page 319.

Syntax
IACHAR (c)

Arguments
cisan INTENT(IN) scalar or array of type CHARACTER. ¢ must have alength of one.

Result
Theresult is of type default INTEGER. Itsvalueisthe position of ¢ in the ASCII collating
sequence. Itisintherange O <iachar(c) <127 .

If cisan array, theresult isan array of integer values with the same shape asc.

Example
character(len=1) :: cl="A,c3(3)=(/"a","b","c"/)

LF Fortran 95 Language Reference 151

Chapter 2 Alphabetical Reference

wite(*,*) iachar(cl) ! wites 65
wite(*,*) iachar(c3) ! wites 97 98 99

IAND Function

Description
The IAND function performs a bit-wise logical AND operation on two integer arguments.

Syntax
IAND (i, j)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER.

jisan INTENT(IN) INTEGER of thesamekind asi. If i isan array, j must have the same
shape asi.

Result
Theresult isof type INTEGER. Itsvalueisthe result of performing abit-wiselogical AND
operationoni andj.

Example
i =53 I 1=00110101 binary (lowest order byte)
j =45 I j=00101101 binary (lowest order byte)
k=iand(i,j) ! k=00100101 binary (| owest order byte)
!

k=37 deci mal

IBCLR Function

152

Description
The IBCLR function setsa single bit in an integer argument to zero.

Syntax
IBCLR (i, pos)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER.

posisan INTENT(IN) scalar or array of type INTEGER. The value of pos must be within
therange zero to (BIT_SIZE(i)-1). See“BIT_SIZE Function” on page 81.

LF Fortran 95 Language Reference

IBITS Function

If i and pos are both arrays, they must have the same shape.

Result
Theresultisof typedefault INTEGER. Itsvalueisi with the bit at position posis set to zero.

If i isan array and posisscalar, theresult isan array with the same shape asi. Each element
of the resulting array has the bit at position pos set to zero.

If i isscalar and posisan array, the result is an array with the same shape as pos. Each ele-
ment of the resulting array contains the value of i with the bit indicated by the corresponding
element of pos set to zero.

If i and pos are both arrays, the result is an array with the same shape asi. Each element of
the resulting array contains the value from the corresponding element of i with the bit indi-
cated by the corresponding element of pos set to zero.

Example
integer :: i=-1,p=3,ia(2)=(/-1,7/),pa(2)=(/1,2/)
wite(*,"(b34)") i wites 0
wite(*,"(b34)") ibclr(i,p) wites 1000
wite(*,"(2b34)") ibclr(i,pa) wites 10 100

wite(*,"(2b34)") ibclr(ia,p) wites 111...110111

!
!
!
wite(*,"(2b34)") ia I wites 111...111111
!
wite(*,"(2b34)") ibclr(ia,pa) ! wites 111...111101

IBITS Function

Description
The IBITS function extracts a sequence of bits from an integer argument.

Syntax
IBITS (i, pos, len)

Arguments

i isan INTENT(IN) scalar or array of type INTEGER.

posisan INTENT(IN) scalar or array of type INTEGER. It must be non-negative.

lenisan INTENT(IN) scalar or array of type INTEGER. It must be non-negative and pos+len
must be less than or equal to BIT_SIZE(i). See“BIT_SIZE Function” on page 81.

Result
Theresult is of type INTEGER and of the samekind asi. Itsvalueisthe value of the
sequence of len bits beginning with pos, right adjusted with all other bits set to 0.

LF Fortran 95 Language Reference 153

Chapter 2 Alphabetical Reference

If any argument is an array, the result is an array and has the same shape as the argument
array. The value of each element isthe value of the scalar operation performed on corre-
sponding elements of any array arguments.

Note that the lowest order position starts at zero.

Example
integer :: i; data i/z'0fOf'/
write(*,"(b34)") i | wites 111100001111
wite(*,"(b34)") ibits(i,0,4) ! wites 1111
wite(*,"(b34)") ibits(i,4,5) ! wites 10000

IBSET Function

Description
The IBSET function sets asingle bit to one.

Syntax
IBSET (i, pos)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER.

posisan INTENT(IN) scalar or array of type INTEGER. The value of pos must be within
therange zero to (BIT_SIZE(i)-1). See“BIT_SIZE Function” on page 81.

If i and pos are both arrays, they must have the same shape.

Result
Theresult isof type INTEGER and of thesamekind asi. Itsvalueisi withthebit at position
posis set to one.

If i isan array and posisscalar, theresult isan array with the same shape asi. Each element
of the resulting array has the bit at position pos set to one.

If i isscalar and posisan array, the result is an array with the same shape as pos. Each ele-
ment of the resulting array contains the value of i with the bit indicated by the corresponding
element of pos set to one.

If i and pos are both arrays, the result is an array with the same shape asi. Each element of
the resulting array contains the value from the corresponding element of i with the bit indi-
cated by the corresponding element of pos set to one.

Example
integer :: i=0,p=3,ia(2)=(/0,0/),pa(2)=(/1,2/)

154 LF Fortran 95 Language Reference

ICHAR Function

wite(*,"(b34)") i wites 0
wite(*, "(b34)") ibset(i,p) wites 1000
wite(*,"(2b34)") ibset(i,pa) wites 10 100

wite(*,"(2b34)") ibset(ia,p) wites 1000 1000

|
|
|
wite(*,"(2b34)") ia I wites 0 0
|
wite(*,"(2b34)") ibset(ia,pa) ! wites 10 100

ICHAR Function

Description

The ICHAR function returns the position of a character in the collating sequence associated
with the kind of the character. The only character set supported isthe ASCII character set,
with akind number of 1, containing 127 characters. See“ASCII Character Set” on page 319.

Syntax
ICHAR (c)

Arguments
cisan INTENT(IN) scalar or array of type CHARACTER with alength of one.

Result

Theresultisof typedefault INTEGER. Itsvalueisthe position of cinthe collating sequence
associated with thekind of candisintherange O <ichar(c) < n—1 , wherenisthe number
of charactersin the collating sequence.

Example

character(len=1) :: c(6)=(/"H","o","w',"d", "y","1"/)
wite(*,*) ichar(c) ! wites 72 111 119 100 121 33

IEOR Function

Description
The |EOR function performs a bit-wise logical exclusive OR operation on two integer
arguments.

Syntax
IEOR (i, j)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER.

LF Fortran 95 Language Reference 155

Chapter 2 Alphabetical Reference

jisan INTENT(IN) scalar or array of type INTEGER and is the same kind asi.

Result

Theresultisof type INTEGER. Itsvalueis obtained by performing a bit-wise logical exclu-
sive OR operation oni and j.

Example
i =53 I 1=00110101 binary (lowest order byte)
j =45 I j=00101101 binary (lowest order byte)
k=ieor(i,j) ! k=00011000 binary (Il owest order byte)
|

k=24 deci nal

IF Construct

156

Description

The IF construct controls whether ablock of statements or executable constructs will be exe-
cuted based on the value of alogical expression.

The IF-THEN statement signals the beginning of an IF construct.

The EL SE IF statement controls execution of ablock of code where all previous IF expres-
sionsin the construct were false.

The EL SE statement controls execution of ablock of code where all other IF expressionsin
the construct were false.

The END IF statement signals the end of the innermost nested | F construct.

Syntax
[construct-name:] IF (expr) THEN
block
[ELSE IF (expr) THEN [construct-name]
block]

[EL SE [construct-name]
block]
END IF [construct-name]

Where:
construct-name is an optional name for the construct.

expr isascalar LOGICAL expression.

block is a sequence of zero or more statements or executable constructs.

LF Fortran 95 Language Reference

|F Satement

Remarks

The exprs are evaluated in the order of their appearance in the construct until atrue valueis
found, or an EL SE statement or END |F statement is encountered. If atrue valueisfound,
the block immediately following is executed and this completes the execution of the con-
struct. The exprsin any remaining EL SE |F statements of the |F construct are not eval uated.

If none of the evaluated expressionsistrue, then the block of code following the EL SE state-
ment is executed. If thereisno EL SE statement, the execution of the construct is compl eted
without the execution of any block within the construct.

The EL SE statement and itsblock of code must be the last block to appear in the IF construct.

If the IF statement specifies a construct name, the corresponding END | F statement must
specify the same construct name. If the | F statement does not specify a construct name, the
corresponding END |F statement must not specify a construct name.

Example 1
integer :: i=0
if (i > 10) then
wite(*,*) "i is greater than ten"
else if (i > 0) then
wite(*,*) "i is less than ten but greater than zero"
else if (i < 0) then
wite(*,*) "i is less than zero"
el se
wite(*,*) "i equals zero"
end if
Example 2
| ogical :: expl=.true.,exp2=.false.

outer_if: &
if (expl) then
inner_if: &
i f(exp2) then
end if inner_if
end if outer_if
i f(expl .eqv. exp2) then
end if

IF Statement

Description
The |F statement controls whether or not a statement is executed based on the value of alog-
ical expression.

LF Fortran 95 Language Reference 157

Chapter 2 Alphabetical Reference

Syntax
I F (expr) action-statement

Where:
expr isascalar LOGICAL expression.

action-statement is an executabl e statement other than another |F or the END statement of a
program, function, or subroutine.

Remarks
Execution of an IF statement causes eval uation of the logical expression.
If the expression is true, the action-statement is executed.
If the value is false, the action-statement is not executed.
Example
real :: a=-1

if (a<0) wite(*,*) " a nust be less than zero, &
& because this statenent was executed"

IMPLICIT Statement

158

Description

The IMPLICIT statement specifies atype and optionally akind or a CHARACTER length
for each variable or function name beginning with the letter(s) specified in the IMPLICIT
statement. Alternately, it can specify that no implicit typing is to apply in the scoping unit.

Syntax
IMPLICIT implicit-specs

or
IMPLICIT NONE

Where:
implicit-specs is acomma-separated list of type-spec (letter-specs)

type-spec is INTEGER [kind-selector]
or REAL [kind-selector]

or DOUBLE PRECISION

or COMPLEX [kind-selector]

or CHARACTER [char-selector]

or LOGICAL [kind-selector]

or TY PE (type-name)

kind-selector is ([KIND =] kind)

LF Fortran 95 Language Reference

IMPLICIT Satement

char-selector is ([LEN=] length [, KIND=kind])
or (KIND=kind [, LEN=length])
or * char-length [,]

type-name is the name of a user-defined type.

kind isascalar INTEGER expression that can be evaluated at compiletime. To maintain
portability, this argument should be the result of a“ KIND Function”,
“ SELECTED_INT_KIND Function”, or a“ SELECTED_REAL_KIND Function”, as

appropriate.

length isa scalar INTEGER expression
or*

char-length isascalar INTEGER literal constant
or (*)

letter-specs is a comma-separated list of letter[-letter]
letter is one of the letters A-Z.

Remarks

Any dataentity that is not explicitly declared by atype or function declaration statement, is
not an intrinsic function, and is not made accessible by host or use association, is declared
implicitly to be of thetype (and type parameters, kind and length) mapped from thefirst letter
of its name.

Implicit typing for arange of letters can be specified by separating the beginning letter in the
range and the ending letter in the range by a hyphen character. Thisis equivalent to writing
alist containing all of the lettersin alphabetical order in the al phabetic sequence from the
beginning letter through the ending letter.

The same |etter must not appear as asingle letter or be included in arange of letters more
than oncein all of the IMPLICIT statementsin a scoping unit.

In the absence of an implicit statement, a program unit istreated asif it had a host with the
declaration
implicit integer (i-n), real (a-h, 0-2)

IMPLICIT NONE specifies that no implicit typing will occur, and all data entities that are
local in scope or appear in acommon block within the scoping unit must be declared in atype
declaration statement.

If IMPLICIT NONE is specified in a scoping unit, it must precede any other specification
statements that appear, and the scoping unit cannot contain any other IMPLICIT statements.

Example 1
implicit type(vowel) (a,e,i,o,u) ! if a variable name does
implicit character (c) I not appear in a type

LF Fortran 95 Language Reference 159

Chapter 2 Alphabetical Reference

implicit integer (j,k,mn) I decl aration statenent,
implicit logical () I the type is determ ned
implicit real (b, d, f-h, p-t, v-z) ! by the first letter of
type vowel ! the variable nane, as
character :: v ! indicated by these
end type vowel I inplicit statenments
Example 2

implicit none ! requires explicit type declarations for
I each local variable
integer :: ill
il1=0 ! inplicit none will allow the conpiler to
I catch typos. this statement will generate
I a conpiler error because the nunber one was
I used instead of letter "I"
ill=01! this typo will also be detected. the letter
I "O' was used instead of the number zero

INCLUDE Line

160

Description
The INCLUDE line causestext in a separate file to be processed as if the text replaced the
INCLUDE line. The INCLUDE lineis not a Fortran statement.

Syntax
INCLUDE filespec

Where:
filespecisa CHARACTER literal constant that corresponds to a path and file that contains
source text to replace the INCLUDE line.

Remarks

The INCLUDE line must be the only non-blank text on this source line other than an optional
trailing comment. A statement label or additional statements are not allowed on the line.

Theinclude line is processed by the compiler, not by a preprocessor.
Example

include "types.for" ! include a file naned types.for
I in place of this INCLUDE |ine

LF Fortran 95 Language Reference

INDEX Function

INDEX Function

Description
The INDEX function returns the starting position of a substring within a string.

Syntax
INDEX (string, substring [, back])

Required Arguments
stringisan INTENT(IN) scalar or array of type CHARACTER.
substring isan INTENT(IN) scalar or array of type CHARACTER.

Optional Arguments
backisan INTENT(IN) scalar of type LOGICAL.

Result
Theresult is of type default INTEGER.

If back is absent or false, the result value isthe position in string where the first instance of
substring begins.

If backistrue, theresult value is the position number in string where the last instance of sub-
string begins.

If substring is not found, or if string is shorter than substring, the result is zero.
If substring is of zero length, and back is absent or false, the result valueis one.

If substring is of zero length, and back is true, the result value is LEN(string)+1.

Example
character(len=20) :: cl1 = "Howdy There! ", &
c2(3)=(/"To be or not to be ", &

"Believe it or not ", &
“I"1l be there "1)

character(len=2) :: s2(3)=(/"be", "Be", "ow'/)

wite(*,*) index(cl,"The") I wites 7

wite(*,*) index(cl,s2) I wites 0 0 2

wite(*,*) index(c2,"be") I wites 4 0 6

wite(*,*) index(c2,s2, back=.true.) ! wites 17 1 0

LF Fortran 95 Language Reference 161

Chapter 2 Alphabetical Reference

INQUIRE Statement

Description
The INQUIRE statement enables a program to makeinquiries about aunit or file' sexistence,
connection, access method or other properties.

Syntax
INQUIRE (inquire-specs)

or
INQUIRE (IOLENGTH=iolength) output-items

Where:

inquire-specsis a comma-separated list of
[UNIT =] external-file-unit
or FILE=file-name-expr

or IOSTAT=iostat

or ERR=label

or EXIST=exist

or OPENED=0pened

or NUMBER=number

or NAMED=named

or NAME=name

or ACCESS=access

or SEQUENTIAL=sequential
or DIRECT=direct

or FORM=form

or FORMATTED=formatted
or UNFORMATTED=unformatted
or RECL=recl

or NEXTREC=nextrec

or BLANK=blank

or POSITION=position

or ACTION=action

or READ=read

or WRITE=write

or READWRITE=readwrite
or DELIM=delim

or PAD=pad

or FLEN=flen

or BLOCK SIZE=blocksize
or CONVERT =file-format
or CARRIAGECONTROL =carriagecontrol

162 LF Fortran 95 Language Reference

INQUIRE Satement

external-file-unit is a scalar INTEGER expression that eval uates to the input/output unit
number of an external file.

file-name-expr is a scalar CHARACTER expression that evaluates to the name of afile.

iostat isa scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

label isthe statement |abel of the statement branched to if an error occurs.

exist isascalar default LOGICAL variable that is assigned the value trueif the file specified
inthe FILE= specifier exists or the input/output unit specified in the UNIT= specifier exigts,
and false otherwise.

opened is ascalar default LOGICAL variable that is assigned the value true if the file or
input/output unit specified is connected, and false otherwise.

number isascalar default INTEGER variable that is assigned the value of the input/output
unit of the external file or -1 if the file is not connected or does not exist.

named is ascalar default LOGICAL variable that is assigned the value true if the file has a
name and fal se otherwise.

nameis ascalar default CHARACTER variable that is assigned the name of thefile, if the
file has a name, otherwise it becomes undefined.

accessisascalar default CHARACTER variable that evaluatesto SEQUENTIAL if thefile
isconnected for sequential access, DIRECT if thefileis connected for direct access, TRANS-
PARENT if the fileis connected for transparent access, or UNDEFINED if thefileis not
connected.

sequential isascalar default CHARACTER variable that is assigned the value Y ES if
sequential accessis an allowed access method for the file, NO if sequential accessis not
allowed, and UNKNOWN if the fileis not connected or does not exist.

direct isascalar default CHARACTER variable that is assigned the value YESif direct
access is an allowed access method for the file, NO if direct accessis not alowed, and
UNKNOWN if thefileis not connected or does not exist.

formisascalar default CHARACTER variable that is assigned the value FORMATTED if
thefileisconnected for formatted input/output, UNFORMATTED if thefileis connected for
unformatted input/output, and UNDEFINED if there is no connection.

formatted isascalar default CHARACTER variable that isassigned the value Y ESif format-
ted isan allowed form for the file, NO if formatted is not allowed, and UNKNOWN if the
file is not connected or does not exist.

unformatted is a scalar default CHARACTER variable that is assigned the value YES if
unformatted is an alowed form for the file, NO if unformatted is not allowed, and
UNKNOWN if thefileis not connected or does not exist.

LF Fortran 95 Language Reference 163

Chapter 2 Alphabetical Reference

164

recl isascalar default INTEGER variable that evaluates to the record length in bytes for a
file connected for direct access, or the maximum record length in bytes for a file connected
for sequential access, or zero if the fileis not connected or does not exist.

nextrec isascalar default INTEGER variable that is assigned the value n+1, where nisthe
number of the last record read or written on the file connected for direct access. If thefile
has not been written to or read from since becoming connected, the value 1 is assigned. If
thefileis not connected for direct access, the value becomes zero.

blank isascalar default CHARACTER variable that evaluatesto NULL if null blank control
isin effect, ZERO if zero blank control isin effect, and UNDEFINED if thefile is not con-
nected for formatted input/output or does not exist.

position isascalar default CHARACTER variable that evaluates to REWIND if the newly
opened sequential accessfileis positioned at itsinitial point; APPEND if it is positioned
before the endfile record if one exists and at the file terminal point otherwise; ASISif the
position is after the endfile record; and UNDEFINED if thefile is not connected or does not
exigt.

action isascalar default CHARACTER variable that evaluates to READ if thefileis con-
nected for input only, WRITE if the file is connected for output only, READWRITE if the
fileis connected for input and output, and UNDEFINED if the file is not connected or does
not exist.

read isascalar default CHARACTER variable that isassigned thevalue YES if READ isan
alowed action on thefile, NO if READ isnot an allowed action of thefile, and UNKNOWN
if thefileis not connected or does not exist.

writeisascaar default CHARACTER variable that is assigned the value YES if WRITE is
an allowed action on the file, NO if WRITE is not an allowed action of the file, and
UNKNOWN if thefileis not connected or does not exist.

readwriteisascalar default CHARACTER variable that isassigned the value YES if READ-
WRITE is an allowed action on thefile, NO if READWRITE is not an alowed action of the
file, and UNKNOWN if the file is not connected or does not exist.

delimisascalar default CHARACTER variablethat evaluatesto APOSTROPHE if the apos-
tropheisused to delimit character constantswritten with list-directed or namelist formatting,
QUOTE if the quotation mark is used, NONE if neither quotation marks nor apostrophesis
used, and UNDEFINED if thefileis not connected or does not exist.

pad is ascalar default CHARACTER variable that evaluatesto Y ES if the formatted input
record is padded with blanks or if the file is not connected or does not exist, and NO
otherwise.

flen isascalar default INTEGER variable that is assigned the length of the filein bytes.

LF Fortran 95 Language Reference

INQUIRE Satement

blocksize isascalar default INTEGER variablethat evaluatesto the size, in bytes, of thel/O
buffer. Thisvalue may be internally adjusted to arecord size boundary if the unit has been

connected for direct access and therefore may no agree with the BLOCK S| ZE specifier spec-
ifiedinan OPEN Statement. Thevaueiszeroif the fileisnot connected or does not exist.

file-format isa scalar default CHARACTER variable that evaluatesto BIG_ENDIAN if big
endian conversionisineffect, LITTLE _ENDIAN if littleendian conversionisin effect, IBM
if IBM style conversionisin effect, and NATIVE if no conversion isin effect.

carriagecontrol isascalar default CHARACTER variablethat evaluatesto FORTRAN if the
first character of aformatted sequential record is used for carriage control, and LIST
otherwise.

iolength isascalar default INTEGER variable that is assigned avalue that would result from
the use of output-itemsin an unformatted output statement. The valueisused asa RECL=
specifier inan OPEN statement that connects afile for unformatted direct access when there
are input/output statements with the same list of output-items.

output-itemsisacomma-separated list of items used with iolength as explained immediately
above.

Remarks
When the INQUIRE statement is executed for afile or unit that is not connected, information
about that file or unit is limited to the existence of the file, and the connection status of the
file or unit.

inquire-specs must contain one FIL E= specifier or one UNIT= specifier, but not both, and at
most one of each of the other specifiers.

In theinquire by unit form of the INQUIRE statement, if the optional characters UNIT= are
omitted from the unit specifier, the unit specifier must be the first item in inquire-specs.

When areturned value of a specifier other than the NAME= specifier is of type CHARAC-
TER and the processor is capable of representing letters in both upper and lower case, the
value returned isin upper case.

If an error condition occurs during execution of an INQUIRE statement, al of the inquiry
specifier variables become undefined, except for the variable in the IOSTAT= specifier (if

any).

Example
logical :: |opened,]|exist
integer :: this_unit=10

inquire (this_unit, opened=l opened)
i f(lopened) then

wite(*,*) " Unit ",this_unit," is open!"
el se

wite(*,*) " Unit ",this_unit," is not open!"
end if

LF Fortran 95 Language Reference 165

Chapter 2 Alphabetical Reference
inquire (file="inquire.f90", exi st=lexist)
if(lexist) then
wite(*,*) " The file "inquire.f90" exists!"
el se
wite(*,*) " The file "inquire.f90" does not exist!"
end if
INT Function
Description

The INT function converts a numeric argument to the INTEGER type.

Syntax
INT (a[, kind])

Required Arguments
aisan INTENT(IN) scalar or array of type INTEGER, REAL, or COMPLEX.

Optional Arguments

kind is INTENT(IN) and determines the kind of the result. It must be ascalar INTEGER
expression that can be evaluated at compile time. To maintain portability, this argument
should be the result of a“ KIND Function” or “ SELECTED INT_KIND Function” .

Result
Theresult is of type INTEGER. It isthe value of a without its fractional part.
If kind is present, the kind is that specified by kind.

If aisof type COMPLEX, the result isthe value of the real part of a without its fractional
part.

Example
integer :: i2=selected_int_kind(2)
integer(selected_int_kind(4)) :: i4=3
real :: a=2.5

conplex :: ¢=(1.5,2.5)

wite(*,*) i4,int(i4,i2) ! converts between integer Kinds
wite(*,*) a,int(a) I converts real to integer
wite(*,*) c,int(c) I converts conplex to integer

166 LF Fortran 95 Language Reference

INTEGER Satement

INTEGER Statement

Description
The INTEGER statement declares entities having the INTEGER data type.

Syntax
INTEGER [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND=] scalar-int-initialization-expr)

scalar-int-initialization-expr isascalar INTEGER expression that can be evaluated at com-
piletime.

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.
entity-name is the name of the entity being declared.

function-name is the name of the function being declared.

Remarks

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, adouble colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The =initialization-expr must not appear if entity-name is adummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

LF Fortran 95 Language Reference 167

Chapter 2 Alphabetical Reference

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attributeis specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable
arrays, functions, or objectsin a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unlessitisa
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be adummy argument or afunction
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC,
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

Example
integer :: a,b(2,4) I explicit shape
i nteger, dinension(2,2) :: c=reshape((/1,2,3,4/),shape(c))
I has save attribute

integer,pointer :: d(:) I deferred shape
integer,allocatable :: e(:)
i nteger, paranmeter :: f=3 I must be initialized

INTENT Statement

Description
The INTENT statement specifies the treatment dummy arguments.

168 LF Fortran 95 Language Reference

INTERFACE Block

Syntax
INTENT(intent-spec) [::] dummy-args

Where:
intent-spec isIN
or OUT

or IN OUT

dummy-args is a comma-separated list of dummy arguments.

Remarks

The INTENT(IN OUT) attribute specifies that the dummy argument is intended for use both
toreceive datafrom and to return datato theinvoking procedure. Thisisthe default behavior
if no INTENT attribute is specified.

The INTENT(IN) attribute specifies that the dummy argument is intended to receive data
from the invoking procedure. The dummy argument’ s value may not be altered during the
execution of the subprogram.

The INTENT(OUT) attribute specifiesthat the dummy argument isintended to return datato
the invoking procedure. The subprogram must provide avalue for all INTENT(OUT) argu-
ments. An INTENT(OUT) dummy variable cannot be referenced within the subprogram
until it has been assigned avalue. If avalueis not supplied in the subprogram, the value of
the actual argument will become undefined upon the subprograms return.

TheINTENT statement must not contain adummy argument that is a procedure or a pointer.

Example

subroutine ex (a,b,c,d, e, f)
real :: a,b,c
intent(in) :: a I a cannot be assigned a val ue
intent(out) b ! b nust be given a val ue
intent(in out) c I default behavior
real,intent(in) :: d! intent attributes
real,intent(out) :: e
real,intent(in out) :: f

end subroutine ex

INTERFACE Block

Description

An INTERFACE block specifies the forms of reference by which a procedure can be
invoked. Aninterfaceblock specifiesaprocedureinterface, adefined operation, or adefined
assignment.

LF Fortran 95 Language Reference 169

Chapter 2 Alphabetical Reference

170

An INTERFACE statement begins an interface block.
An END INTERFACE statement ends an interface block.

Syntax
INTERFACE [generic-spec]

interface-spec
END INTERFACE [generic-spec]

Where:

generic-spec is the name of a generic procedure
or OPERATOR (defined-operator)

or ASSIGNMENT (=)

defined-operator is one of theintrinsic operators or .operator-name.
operator-name is a user-defined name for the operation, consisting of oneto 31 letters.

interface-spec specifieswhether the procedure is a subroutine or afunction, and any dummy
arguments that the procedure might have. If the interface is a generic interface, interface
operator or interface assignment, interface-spec may also specify that the procedureisamod-
ule procedure, as long as that procedure appears in a module that is within the scope of the
procedure declaring the interface, or is available by use association.

Remarks
Explicit interface

Anexplicitinterfacefor aprocedure consists of the characteristics of the procedure, the name
of the procedure, and the name and characteristics of any dummy arguments.

A dummy argument name appearing in an interface specifies the keyword for that dummy
argument.

Explicit interfaces cannot be specified for proceduresthat are contained withinaMODULE,
because the interfaces for modul e procedures are provided implicitly.

Genericinterface

An interface statement with a generic-name specifies a generic interface for each of the pro-
cedures in the interface block. Each procedure in the interface block may have an explicit
interface, or may name a module procedure that is contained in the same module.

Each procedure’ sargument list within the generic interface must have acalling sequence that
is unique, otherwise the interface is ambiguous, and an error will be produced at compile
time.

The specific procedure is selected at runtime, based on the argument list used when the
generic procedure is called.

LF Fortran 95 Language Reference

INTERFACE Block

If the interface is ageneric, assignment or operator interface, if ageneric-specispresentin
the END INTERFACE statement, it must beidentical to the generic specinthe INTERFACE
statement.

If the interface is not a generic, assignment or operator interface, generic-spec cannot be
present in the END INTERFA CE statement.

Defined operations

If OPERATOR is specified in an INTERFACE statement, all of the procedures specified in
theinterface block must befunctionsthat can bereferenced asdefined operations. Inthe case
of binary operators, the function requires two arguments. In the case of unary operators, a
function with one argument must be used.

OPERATOR must not be specified for functions with no arguments or for functions with
more than two arguments.

The dummy arguments must be non-optional data objects and must be specified with
INTENT((IN).

The function result must not have assumed CHARACTER length.

If the operator is an intrinsic-operator, the number of function arguments must be consistent
with the intrinsic uses of that operator.

A given defined operator may, as with generic names, apply to more than one function, in
which caseit is generic in exact anal ogy to generic procedure names. For intrinsic operator
symbols, the generic propertiesinclude theintrinsic operationsthey represent. Because both
forms of each relational operator have the same interpretation, extending one form (such as
<=) has the effect of defining both forms (<= and .LE.).

Overriding an intrinsic operator for an intrinsic datatypeisnot allowed. Operators may only
be defined for data types which do not already have a definition for that particular operator.

Defined assignments

If ASSIGNMENT is specified in an INTERFACE statement, all the proceduresin the inter-
face block must be subroutines that can be referenced as defined assignments.

Each subroutine must have exactly two dummy arguments.

Each argument must be non-optional .

The first argument must have the INTENT(OUT) or INTENT(IN OUT) attribute.

The second argument must have the INTENT(IN) attribute.

A defined assignment is treated as a reference to the subroutine, with the first argument as

the assignment target, and the second argument as the expression to be assigned.

LF Fortran 95 Language Reference 171

Chapter 2 Alphabetical Reference

The ASSIGNMENT generic specification specifiesthat the assignment operation isextended
or redefined if both sides of the equals sign are of the same derived type.

Example 1
I explicit interfaces
interface

subroutine ex(a,b, c)
inmplicit none
real :: a,b(10,2)
integer :: c

end subroutine ex

function why(t,f)
inmplicit none
logical,intent(in) :: t,f
logical :: why

end function why

end interface

Example 2
I generic interfaces
nodul e nodl
interface swap
nodul e procedure conplex_swap ! interface for a nodul e
nodul e procedure logical _swap ! procedure is inplicit
end interface
cont ai ns
subroutine conpl ex_swap(cx,cy) ! inplicit interface
conplex :: cx, cy, ct ! is defined here
ct =cx
CX=Cy
cy=ct
end subroutine
subroutine logical _swap(lx,ly) ! inplicit interface
logical :: Ix,ly, It ! is defined here
I't=lx
I x=ly
ly=Ilt
end subroutine
end nodul e
subroutine real _swap(x,y)
real :: x,y,t
t =x
X=y
y=t
end subroutine
subroutine int_swap(ix,iy)
integer :: ix,iy,it

172 LF Fortran 95 Language Reference

INTERFACE Block

it=ix
i x=iy
iy=it

end subroutine
programinterface2

use nodl
interface swap ! extends the interface defined in nodl
subroutine real _swap(x,y) ! explicit interface
inplicit none
real, intent(in out) :: x,y

end subroutine real _swap
subroutine int_swap(ix,iy) ! explicit interface
inmplicit none
integer,intent(in out) :: ix, iy
end subroutine int_swap
end interface
real :: a=1, b=2
integer :: ia=1l,ib=2
conplex :: ca=(1,1),cb=(2,2)
logical :: la=.true.,| b= fal se
call swap(a, b) I calls real _swap
wite(*,*) a, b
call swap(ia,ib) I calls int_swap
wite(*,*) ia,ib
call swap(ca,ch) I calls conpl ex_swap
wite(*,*) ca,cb
call swap(la,lb) I calls |ogical _swap
wite(*,*) la,lb
end program

Example 3
I operator interfaces
nodul e nodl

interface operator (+) I binary operator
nodul e procedure char_plus_int ! inplicit interface
nodul e procedure int_plus_char ! inplicit interface
end interface operator (+)
interface operator (.not.) I unary operator
nodul e procedure int_not I inmplicit interface
function real _not(a) I explicit interface
real :: real _not
real,intent(in) :: a

end function
end interface operator (.not.)

cont ai ns
function char_plus_int(c,i)
character :: char_plus_int

integer,intent(in) :: i

LF Fortran 95 Language Reference

173

Chapter 2 Alphabetical Reference

character,intent(in) :: ¢

char_plus_int=int_plus_char(i,c)
end function char_plus_int
function int_plus_char(i,c)

character :: int_plus_char
integer,intent(in) :: i
character,intent(in) :: ¢
integer :: it

it=ichar(c)+
if(it <0) it=0
if(it > 127) it=0
int_plus_char=char(it)
end function int_plus_char
function int_not(i)
integer :: int_not
integer,intent(in) :: i
int_not=ieor(i,-1)
end function
end nodul e
function real _not(a)

real :: real _not
real,intent(in) :: a
integer :: it

it=transfer(a,it)

it=ieor(it,-1)

real _not=transfer(it,real _not)
end function

programinterface3 I denobnstrate usage
use nodl
character :: c="5"
integer :: i=-1
real :: r

wite(*,*) c+i

wite(*,*) -i+c

wite(*,*) i, (.not. i)

wite(*,*) tiny(-r),(.not. huge(r))
end program

calls char_plus_int
calls int_plus_char
calls int_not
calls real _not

Example 4
I assignnent interface
nodul e nod4
interface assignment (=)

nodul e procedure int_equals_char ! inplicit interface
end interface assignnent (=)
cont ai ns
subroutine int_equals_char(i,c) ! nust have two arguments
integer,intent(out) :: i ! nust be intent(out)

I or intent(in out)

174 LF Fortran 95 Language Reference

INTRINS C Satement

character,intent(in) :: c ! nust be intent(in)
i =i char(c)
end subroutine
end nodul e
programinterface4
use nmod4
integer :: i
character :: c="a"
i=c I calls int_equals_char
wite(*,*) i,ichar(c)
end program

INTRINSIC Statement

Description
The INTRINSIC statement permits areference to a specific intrinsic function as an actual
argument.

Syntax
INTRINSIC [::] intrinsic-procedure-names

Where:
intrinsic-procedure-names is a comma-separated list of intrinsic procedures.

Remarks
The appearance of a generic intrinsic function name in an INTRINSIC statement does not
cause that name to lose its generic property.

If the specific name of anintrinsic function is used as an actual argument, the name must
either appear in an INTRINSIC statement or be given the intrinsic attribute in atype decla-
ration statement in the scoping unit.

Only one appearance of anamein all of the INTRINSIC statements in a scoping unit is

permitted.
A name must not appear in both an EXTERNAL and an INTRINSIC statement in the same
scoping unit.
Example
programintrinsic
real :: a=10.
real,intrinsic :: log,l0gl0 ! rmay be actual argument

wite(*,*) zee(a,log),zee(a,lo0gl0) ! wites 2.302585 1.0
end program
function zee(a, func)

LF Fortran 95 Language Reference 175

Chapter 2 Alphabetical Reference

real :: zee, a,func
zee=func(a)
end function

INVALOP Subroutine (Windows only)

Description
The INVALOP subroutine masks and detects invalid operation exceptions.

Syntax
INVALOP (Iflag)

Arguments

Iflagisan INTENT(IN OUT) scalar of type LOGICAL.

It must be set to true on the first invocation of INVALOP.

On subsequent invocations, it indicates whether an invalid operation has occurred.
Remarks

Theinitial invocation of the INVALOP subroutine masks the invalid operator interrupt on
the floating-point unit.

Subsequent invocations return an Iflag value of true if the exception has occurred or false if
the exception has not occurred.

Example
logical :: Iflag=.true.
call invalop(lflag) ! mask the divide-by-zero interrupt
wite(*,*) Iflag I wites F
wite(*,*) 0./0. I wites -NaN
call invalop(lflag)
wite(*,*) Iflag I wites T
IOR Function
Description
The IOR function performs a bit-wise logical inclusive OR operation on two INTEGER
arguments.

176 LF Fortran 95 Language Reference

IOSTAT _MSG Subroutine

Syntax
IOR (i, j)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER.

jisan INTENT(IN) scalar or array of type INTEGER and is the same kind asi.

Result

Theresultis of type INTEGER. Itsvalueis obtained by performing a bit-wise logical inclu-
sive OR operation oni and j.

Example
i =53
j =45
k=ior(i,j)

i =00110101 binary (Il owest order byte)
j =00101101 binary (Il owest order byte)
k=00111101 bi nary (lowest order byte)
k=61 deci nal

IOSTAT_MSG Subroutine

Description
The IOSTAT_MSG subroutine retrieves text associated with a runtime error.

Syntax
IOSTAT_MSG (iostat, message)

Arguments

iostatisan INTENT(IN) scalar of type INTEGER. It containsthe error status code obtained
by execution of any intrinsic statement which returns a status variable.

messageisan INTENT(OUT) scalar be of type CHARACTER. Itisassigned thetext of the
runtime error message corresponding to the error code in iostat.

Remarks

A CHARACTER length of 256 is sufficiently large to contain all runtime error messages at
thistime.

If astatus variable from a successful operation is passed to IOSTAT_MSG, ablank string is
returned.

Example
real ,allocatable :: a(:)
integer :: istat

LF Fortran 95 Language Reference 177

Chapter 2 Alphabetical Reference

character(l en=256) :: nsg

open(10,file="foo.bar", status="0OLD", i ostat =i stat)
call iostat_nsg(istat, nmsg)

wite(*,*) trin(mnmsg)

deal | ocate(a, stat=i stat)

call iostat_nsg(istat, nmsg)

wite(*,*) trin(nsg)

wite(*,*) " Bye"

ISHFT Function

178

Description
The ISHFT function performs an end-off bit shift on an integer argument.

Syntax
ISHFT (i, shift)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER.

shiftisan INTENT(IN) scalar or array of type INTEGER. Its absolute value must be less
than or equal to the number of bitsini.

Result
Theresult is of type INTEGER and of the same kind asi.

Itsvalueisthe value of i shifted by shift positions; if shift is positive, the shift isto the | eft,
if shift is negative, the shift isto theright.

Bits shifted off are |ost.

Example
integer :: i=16,ia(2)=(/4,8/)
wite(*,*) i, ia | wites 16 4 8

wite(*,*) ishft(i,-2) ! wites 4

wite(*,*) ishft(i,ia) ! wites 256 4096
wite(*,*) ishft(ia,2) ! wites 16 32
wite(*,*) ishft(ia,i) ! wites 262144 524288

LF Fortran 95 Language Reference

ISHFTC Function

ISHFTC Function

Description
The ISHFTC function performs a circular shift of the rightmost bits of an integer argument.

Syntax
ISHFTC (i, shift [, size])

Required Arguments

i isan INTENT(IN) scalar or array of type INTEGER, containing values to be shifted.
shiftisan INTENT(IN) scalar or array of type INTEGER. The absolute value of shift must
be less than or equal to size.

Optional Arguments
sizeisan INTENT(IN) scalar or array of type INTEGER. Only the rightmost size bits will
be shifted.

The value of size must be positive and must not be greater than BIT_SIZE (i).
If absent, it isasif size were present with the value BIT_SIZE (i).

Result

Theresult is of type INTEGER and of the same kind asi.

Itsvalueis equal to the value of i with its rightmost size bits circularly shifted by shift
positions.

If shift is positive, bits are shifted to the | eft.
If shift is negative, bits are shifted to the right.

Example
integer :: i=16,ia(2)=(/4,8/)
wite(*,*) i,ia | wites 16 4 8
wite(*,*) ishftc(i,-2) wites 4

wite(*,*) ishftc(ia,?2) wites 16 32

]
wite(*,*) ishftc(i,ia,8 ! wites 1 16
]
wite(*,*) ishftc(ia,i,16) ! wites 4 8

KIND Function

Description
The KIND function returns the kind type parameter for arguments of any intrinsic type.

LF Fortran 95 Language Reference 179

Chapter 2 Alphabetical Reference

Syntax
KIND (x)

Arguments
xisan INTENT(IN) scalar or array of any intrinsic type.

If x hasthe POINTER or ALLOCATABLE attribute, it does not have to be allocated, asso-
ciated, or defined.

Result
Theresult isascalar INTEGER. Itsvalueis equal to the compiler dependent kind type
parameter value of x.

The actual values returned by the KIND function are not necessarily portable to other com-
piling platforms.

Example
! display default Kkinds
integer :: i
real :: r
doubl e precision :: d
conplex :: ¢
logical :: |
character :: c
wite(*,*) "Default integer kind : ",kind(i) ! 4
wite(*,*) "Default real kind ", kind(r) ! 4
wite(*,*) "Default dp real kind : ",kind(d) ! 8
wite(*,*) "Default conplex kind : ",kind(qg) ! 4
wite(*,*) "Default logical kind : ",kind(l) ! 4
wite(*,*) "Default character kind: ",kind(c) ! 1
LBOUND Function
Description
The LBOUND function returns the lower bounds of awhole array or a particular dimension
of an array.
Syntax

LBOUND (array [, dim])

Required Arguments
array isan INTENT(IN) array of any type.

It must not be a pointer that is disassociated or an allocatable array that is not allocated.

180 LF Fortran 95 Language Reference

LEN Function

Optional Arguments

dimisan INTENT(IN) scalar of type INTEGER, with avauethat islessthan or equal to the
rank of array.

Result
Theresult is of type default INTEGER.
If dimis present, the result is a scalar with the value of the lower bound of dim.

If dimisabsent, theresult is an array of rank one with values corresponding to the lower
bounds of each dimension of array.

Thelower bound of an array section is always one. The lower bound of a zero-sized dimen-
sionisalso always one.

Example
integer :: j(10),i(0:10,-1:10,-2:10,-3:10)
wite(*,*) |bound(j) I wites 1

wite(*,*) | bound(i) I wites 0 -1-2 -3
wite(*,*) lbound(i,2) ! wites -1
wite(*,*) lbound(i,4) ! wites -3

LEN Function

Description
The LEN function returns the total length of a CHARACTER data object.

Syntax
LEN (string)

Arguments
stringisan INTENT(IN) scalar or array of type CHARACTER.

Result
Theresult isascalar default INTEGER.

Its value is the length of the character object string.

Example
character :: cl
character(len=4) :: c3="Yow"
character(len=*), paranmeter :: c6=" Howdy"
character(len=3),di nension(2) :: ca2=(/" Fo","lks"/)
character :: ca4*4(2)=(/" So ","long"/)

LF Fortran 95 Language Reference 181

Chapter 2 Alphabetical Reference

wite(*,*) len(cl),len(c3),len(c6) ! wites 1 4 6
wite(*,*) len(ca2),len(cad) I wites 3 4

LEN_TRIM Function

Description
The LEN_TRIM function returns the length of a CHARACTER string, not counting any
trailing blanks.

Syntax
LEN_TRIM (string)

Arguments
stringisan INTENT(IN) scalar or array of type CHARACTER.

Result
If string is scalar, the result isa scalar default INTEGER. Its value isthe number of charac-
tersin string, not counting any trailing blanks.

If string isan array, the result is a conformable type default INTEGER array. Each element
of the result contains the number of charactersin each element of string, not counting any
trailing blanks.

Example
character(len=10) :: c3="Yow "
character(l en=*), paraneter :: c6="Howdy
character(len=3),di nension(2) :: ca2=(/"Fol","ks "/)
wite(*,*) len_trin(c3),len_trimc6) ! wites 4 5
wite(*,*) len_trin{ca2) I wites 3 2

LGE Function

182

Description

The LGE function tests whether a string islexically greater than or equal to another string
based on the ordering of the ASCII collating sequence. See“ASCII Character Set” on
page 319.

Syntax
LGE (string_a, string_b)

LF Fortran 95 Language Reference

LGT Function

Arguments
string_aisan INTENT(IN) scalar or array of type CHARACTER.

string_bisan INTENT(IN) scalar or array of type CHARACTER.
If string_a and string_b are both arrays, they must have the same shape.
Result

Theresult is of type default LOGICAL. Itsvaueistrueif string_b precedes string_a in the
ASCII collating sequence, or if the strings are the same; otherwise the result is false.

Trailing blanks are ignored.

If both strings are of zero length the result istrue.

Example
character(len=3) :: a="abc", b="ABC'
character(len=0) :: al, bl
character(len=5) :: cl1l(2)=(/"abc ","123 "/)
character (I en=5) c2(2)=(/"CcBA "," 123"/)
wite(*,*) |ge(a, b) I wites T
wite(*,*) lge(a,cl) ! wites T T
wite(*,*) lge(c2,a) ! wites F F

wite(*,*) lge(cl,c2) ! wites T T

LGT Function

Description
The LGT function tests whether astring islexically greater than another string based on the
ordering of the ASCII collating sequence. See “ASCII Character Set” on page 319.

Syntax
LGT (string_a, string_b)

Arguments

string_aisan INTENT(IN) scalar or array of type CHARACTER.
string_bisan INTENT(IN) scalar or array of type CHARACTER.

If string_a and string_b are both arrays, they must have the same shape.
Result

Theresult is of type default LOGICAL. Itsvaueistrueif string_b precedes string_a in the
ASCII collating sequence; otherwise the result isfalse.

LF Fortran 95 Language Reference 183

Chapter 2 Alphabetical Reference

Trailing blanks are ignored.

If both strings are of zero length the result isfase.

Example
character (I en=3) a="abc", b="ABC'
character(len=0) :: al, bl
character (I en=5) cl(2)=(/"abc ","123 "/)
charact er (I en=5) c2(2)=(/"CcBA "," 123"/)
wite(*,*) lgt(a,b) I wites T
wite(*,*) lgt(a,cl) ! wites F T
wite(*,*) lgt(c2,a) ! wites F F
wite(*,*) lgt(cl,c2) ! wites T T

LLE Function

Description
The LLE function testswhether astring islexically lessthan or equal to another string based
on the ordering of the ASCII collating sequence. See “ASCII Character Set” on page 319.

Syntax
LLE (string_a, string_b)

Arguments

string_aisan INTENT(IN) scalar or array of type CHARACTER.
string_bisan INTENT(IN) scalar or array of type CHARACTER.

If string_a and string_b are both arrays, they must have the same shape.
Result

Theresult is of type default LOGICAL.

Itsvalueistrueif string_a precedesstring_binthe ASCII collating sequence, or if the strings
are the same; otherwise theresult is false.

Trailing blanks are ignored.

If both strings are of zero length the result is true.

Example

184

character (Il en=3)

a="abc", b="ABC'

character (I en=0) al, bl
charact er (I en=5) cl(2)=(/"abc ","123 "/)
character (I en=5) c2(2)=(/"CcBA "," 123"/)

LF Fortran 95 Language Reference

LLT Function

wite(*,*) lle(a,b) !
wite(*,*) lle(a,cl) !
wite(*,*) Ile(c2,a) !
wite(*,*) lle(cl, c2) !

LLT Function

Description

wites F

wites T F
wites T T
wites F F

The LLT function tests whether a string is lexically less than another string based on the
ordering of the ASCI| collating sequence. See “ASCII Character Set” on page 319.

Syntax
LLT (string_a, string_b)

Arguments

string_aisan INTENT(IN) scalar or array of type CHARACTER.

string_bisan INTENT(IN) scalar or array of type CHARACTER.

If string_a and string_b are both arrays, they must have the same shape.

Result
Theresult is of type default LOGICAL.

Itsvalueistrueif string_a precedes string_b inthe ASCI| collating sequence; otherwise the

result is false.

Trailing blanks are ignored.

If both strings are of zero length the result is fase.

Example
character(len=3) :: a="abc", b="ABC"
character(len=0) :: al,bl
character(len=5) :: cl(2)=(/"abc ","123 "/)
character(len=5) :: c2(2)=(/"CBA "," 123"/)

wite(*,*) Ilt(a,b) !
wite(*,*) Ilt(a,cl) !
wite(*,*) Ilt(c2,a) !
wite(*,*) Ilt(cl,c2) !

wites F

wites F F
wites T T
wites F F

LF Fortran 95 Language Reference

185

Chapter 2 Alphabetical Reference

LOG Function

186

Description
The LOG function returns the natural logarithm of areal or complex argument.

Syntax
LOG (x)

Arguments

xisan INTENT(IN) scalar or array of type REAL or COMPLEX.
If xis REAL, it must be greater than zero.

If xis COMPLEX, it must not be equal to zero.

Result

Theresult is of the same type and kind as x.

If xisREAL, itsvalueis equal to a REAL representation of log.x.

If xXisCOMPLEX, itsvalueisequal to the principal valuewith imaginary part w intherange
—-M<WSTT.

If xisREAL and equal to zero, afloating divide exception occurs, and unless trapped, the
value -Inf (negative infinity) is returned.

If xisREAL and lessthan zero, an invalid operation exception occurs, and unless trapped,
the value -NaN (not a number) is returned.

If xis COMPLEX with both thereal and imaginary parts equal to zero, aruntime error occurs
and execution is terminated.

Example
real :: x=1.,xa(2)=(/.5,1.5/), pi=3.141592654
real :: re,im
conplex :: g=(-1.,1.)
wite(*,*) log(x) ! wites 0.0

wite(*,*) log(xa) ! wites -.69314718 .40546509
wite(*,*) log(q) ! wites (.34657359, 2.3561945)
re=log((sqrt(real (q)**2+ai mag(q)**2))) ! real part of log(q)

i me-atan2(real (q), ai mag(q)) +pi/ 2. ! imag part of log(q)
wite(*,*) re,im
wite(*,*) log(0.) ! wites -Inf or error occurs

wite(*,*) log(-1.) ! wites -NaN or error occurs

LF Fortran 95 Language Reference

LOG10 Function

LOG10 Function

Description
The LOG10 function returns the common logarithm of area argument.

Syntax
LOG10 (x)

Arguments

xisan INTENT(IN) scalar or array of type REAL.
The value of x must be greater than zero.

Result

Theresult is of the same type and kind as x.
Itsvalueis a REAL representation of 1og;gX.

If xis zero, afloating divide exception occurs, and unless trapped, the value -1nf (negative
infinity) is returned.

If xislessthan zero, an invalid operation exception occurs, and unless trapped, the value
-NaN (not a number) is returned.

Example
real :: x=1.,xa(2)=(/.5,1.5/)
logical :: true=.true., |

wite(*,*) |0gl0(x) I wites 0.0

wite(*,*) loglO(xa) ! wites -.303103001 .17609125
wite(*,*) 10ogl0(0.) ! wites -Inf or error occurs
wite(*,*) loglO(-1.) ! wites -NaN or error occurs

LOGICAL Function

Description
The LOGICAL function converts between different kinds of data type LOGICAL.

Syntax
LOGICAL (I [, kind])

Required Arguments
[isan INTENT(IN) scalar or array of type LOGICAL.

LF Fortran 95 Language Reference 187

Chapter 2 Alphabetical Reference

Optional Arguments
kind is INTENT(IN) and determines the kind of the result. It must be ascalar INTEGER
expression that can be evaluated at compile time.

Result
If kind is present, the result is of that kind; otherwiseit is of default LOGICAL kind.

Theresult valueistrueif | istrueand falseif | isfalse.

Example
logical (kind=1) :: 11! not a portable declaration
logical (kind=2) :: 12! not a portable declaration
logical :: |4=.false.

wite(*,*) logical (I4,kind(11)) ! wites F
wite(*,*) logical (I14,kind(12)) ! wites F

LOGICAL Statement

188

Description
The LOGICAL statement declares entities having the LOGICAL data type.

Syntax
LOGICAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND=] scalar-int-initialization-expr)

scalar-int-initialization-expr is ascalar INTEGER expression that can be evaluated at com-
piletime.

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.
initialization-expr is an expression that can be evaluated at compile time.
entity-name is the name of an entity being declared.

function-name is the name of a function being declared.

LF Fortran 95 Language Reference

LOGICAL Satement

Remarks
function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, adouble colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin anamed common block.

The =initialization-expr must not appear if entity-name is adummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attributeisspecified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable
arrays, functions, or objectsin a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIV ATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unlessitisa
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be adummy argument or afunction
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC,
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

LF Fortran 95 Language Reference 189

Chapter 2 Alphabetical Reference

Example
| ogi cal , paraneter :: t=.true.,f=.false. ! nust be initialized
logical :: a, b(2,4) I explicit shape
| ogi cal ,di nension(2,2) :: ¢ = reshape((/t,t,f,f/), shape(c))
| ogi cal ,pointer :: d(:) I deferred shape
I ogical,allocatable :: e(:)

MATMUL Function

190

Description
The MATMUL function multiplies two matrices.

Syntax
MATMUL (matrix_a, matrix_b)

Arguments

matrix_aisan INTENT(IN) array of type INTEGER, REAL, COMPLEX, or LOGICAL. It
may be either rank one or two if matrix_bisof rank two, and must be of rank two if matrix_b
isrank one.

matrix_bisan INTENT(IN) array of numerical typeif matrix_aisof numerical type, and of
LOGICAL typeif matrix_aisof LOGICAL type. It may be of rank one or two if matrix_a
is of rank two, and must be of rank two if matrix_a is of rank one.

The size of thefirst dimension must be the same asthe size of the last dimension of matrix_a.

Result
If the arguments are of the same numeric type and kind, theresult is of that type and kind. 1f
their kind is different, the result kind is that with higher precision.

If the arguments are of different numeric types and neither is of type COMPLEX, the result
isof type REAL.

If one or both of the arguments are of type COMPLEX, then the result is COMPLEX.

If the arguments are of type LOGICAL, theresult isof type LOGICAL. If their kinds arethe
same, theresult kind isthat of the arguments. If their kind is different, the result kind isthat
of the argument with the greater kind parameter.

The value and shape of the result are as follows:

If matrix_a has shape (n, m) and matrix_b has shape (m, k), the result has shape (n, k). Ele-
ment (i, j) of theresult hasthe value SUM(matrix_a(i, :) * matrix_b(:, j)) if theargumentsare
of numeric type and has the value ANY (matrix_a(i, :) * matrix_b(:, j)) if the arguments are
of type LOGICAL.

LF Fortran 95 Language Reference

MAX Function

If matrix_a has shape (m) and matrix_b has shape (m, k), the result has shape (k). Element
() of the result has the value SUM (matrix_a(:) * matrix_b(:, j)) if the arguments are of
numerictypeand hasthevalue ANY (matrix_a(;) * matrix_b(:,])) if theargumentsare of type
LOGICAL.

If matrix_a has shape (n, m) and matrix_b has shape (m), the result has shape (n). Element
(i, j) of the result has the value SUM(matrix_a(i, ;) * matrix_b(;)) if the arguments are of
numerictypeand hasthevalue ANY (matrix_a(i, :) * matrix_b(:)) if theargumentsare of type
LOGICAL.

Example
integer :: al(2,3),a5(5,2),b3(3),hb2(2)
conplex :: c2(2)

al=reshape((/1,2,3,4,5,6/), shape(al))
ab=reshape((/0,1,2,3,4,5,6,7,8,9/), shape(ab))
b2=(/1, 2/)

b3=(/1, 2,3/)

wite(*,"(2i3)") al ! wites 1 2
! 3 4
! 5 6
wite(*,*) matmul (al,b3) ! wites 22 28
wite(*,*) matmul (b2,al) ! wites 5 11 17
wite(*,"(5i3)") a5 ! wites 0 1 2 3 4
! 5 6 7 8 9
wite(*,"(5i3)") matmul (a5,al1) ! wites 10 13 16 19 22
! 20 27 34 41 48
! 30 41 52 63 74
c2=(/(-1.,1.),(1.,-1.)/)
wite(*,*) matmul (a5,¢c2) ! wites (5.,-5.) five tines

MAX Function

Description
The MAX function returnsthe maximum value from alist of INTEGER or REAL arguments.

Syntax
MAX (al, a2, a3, ...)

Arguments
The arguments are INTENT(IN) scalars or arrays of type INTEGER or REAL. They must
all be of the same type and kind.

If more than one argument is an array, all arrays must have the same shape.

LF Fortran 95 Language Reference 191

Chapter 2 Alphabetical Reference

Result
Theresult is of the same type and kind as the arguments.

If al the arguments are scalar, the result is the value of the largest argument.

If any of the arguments are arrays, the result is an array with the same shape. Each element
of theresult isasif the scalar MAX function was called for each corresponding element of
the array argument(s).

Example
integer :: 16(6)=(/-14,3,0,-2,19,1/)
wite(*,*) max(i6,0) I wites 0300191

wite(*,*) max(-14,3,0,-2,19,1) ! wites 19

MAXEXPONENT Function

Description
The MAXEXPONENT function returns the maximum binary exponent possiblefor aREAL
argument.

Syntax
MAXEXPONENT (x)

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result
Theresultisascalar default INTEGER. Itsvalueisthe largest permissible binary exponent
in the data type of x.

Example
wite(*,*) maxexponent(1l.e0) ! wites 128
wite(*,*) nmaxexponent(1.d0) ! wites 1024
wite(*,*) maxexponent(1.q0) ! wites 16384

MAXLOC Function

Description
The MAXLOC function returns the location of the first element in array having the maxi-
mum value of all the elementsidentified by mask.

192 LF Fortran 95 Language Reference

MAXVAL Function

Syntax
MAXLOC (array [, dim] [, mask])

Required Arguments
arrayisan INTENT(IN) array of type INTEGER or REAL.

Optional Arguments
dimisan INTENT(IN) scalar INTEGER in therange 1 < dim< n, where n isthe rank of
array. The corresponding actual argument must not be an optional dummy argument.

mask isan INTENT(IN) scalar or array of type LOGICAL and must be conformable with
array.

Result
Theresult is of type default INTEGER.

If dimis present, the result is an array of rank n-1 where n isthe rank of array. The result
values are the locati ons containing the maximum value along dimension dim.

If dimisabsent, theresult is an array of rank one whose size isthe rank of array. Each ele-
ment contains the subscript val ue of the first element in array to have the maximum value of
all of the elements of array.

If mask is present, the elements of array for which mask is false are not considered.

Example
integer :: i6(6) = (/-14,3,0,-2,19,1/)
integer :: i23(2,3) = reshape((/-14,3,0,-2,19,1/), shape(i23))
wite(*,'(2i4)') i23 I wites -14 3
! 0 -2
! 19 1
wite(*,*) maxloc(i6) I wites 5
wite(*,*) maxl oc(i23) I wites 1 3
wite(*,*) maxloc(i23,dimFl) ! wites 2 1 1
wite(*,*) maxloc(i23,dim2) | wites 3 1
wite(*,*) maxloc(i23,diml, mask=(i 23 < 10))
I wites 2 1 2

MAXVAL Function

Description
The MAXVAL function returns the maximum value of elements of an array, along agiven
dimension, for which amask istrue.

LF Fortran 95 Language Reference 193

Chapter 2 Alphabetical Reference

Syntax
MAXVAL (array [, dim] [, mask])

Required Arguments
array isan INTENT(IN) array of type INTEGER or REAL.

Optional Arguments

dimisan INTENT(IN) scalar INTEGER in therange 1< dim< n, where n isthe rank of
array. Theactual argument to MAXVAL must not be an optional dummy argument.

mask isan INTENT(IN) scalar or array of type LOGICAL, and must be conformable with
array.
Result

The result is the same type and kind as array.

If dimis present, the result is an array of rank n-1 and of shape
(dy, dy, oo dgim—1:94im+ 15 -+ »dy) Where (dy, d,, ..., d,) istheshapeof array. The
results are the maximum values of all elements of array along dimension dim.

If dimisabsent, or arrayisrank one, theresult isascalar with the value of the largest element
of array.

If mask is present, the elements of array for which mask is false are not considered.

Example
integer :: i6(6) = (/-14,3,0,-2,19,1/)
integer :: i23(2,3) =reshape((/-14,3,0,-2,19,1/), shape(i23))
wite(*,'(2i4)') i23 I wites -14 3
! 0o -2
! 19 1
wite(*,*) maxval (i 6) I wites 19
wite(*,*) maxval (i23) I wites 19
wite(*,*) maxval (i23,dimFl) ! wites 3 0 19
wite(*,*) maxval (i23,dim2) ! wites 19 3

wite(*,*) maxval (i23,di mrl, mask=(i 23 < 10))
I wites 3 0 1

MERGE Function

Description
The MERGE function chooses alternative values based on the value of a mask.

194 LF Fortran 95 Language Reference

MIN Function

Syntax
MERGE (tsource, fsource, mask)

Arguments

tsourceisan INTENT(IN) scalar or array and can be of any type.

fsourceisan INTENT(IN) scalar or array of the same type and type parameters as tsource.
mask isan INTENT(IN) scalar or array of type LOGICAL.

If more than one argument is an array, all arrays must have the same shape.

Result

Theresult is of the same type and type parameters as tsource.

If all arguments are scalar, the value is tsource if mask istrue, and fsource otherwise.

If any argument is an array, the result is an array with the same shape. Each element of the
result isasif the scalar MERGE function was called for each corresponding element of the
array arguments.

Example
integer :: i=1, j= 2
integer :: m2,2)=reshape((/1,2,3,4/),shape(m)
integer :: n(2,2)=reshape((/4,3,2,1/),shape(n))

wite(*,10) m I wites 1 2
! 3 4
wite(*,10) n I wites 4 3
! 2 1
wite(*,10) nmerge(mn,m<n) ! wites 1 2
! 2 1
wite(*,'(213)") nmerge(.true.,.false., m<n) ! wites T T

! F F
10 format (2i3)

MIN Function

Description
The MIN function returns the minimum value from alist of INTEGER or REAL arguments.

Syntax
MIN (al, a2, a3, ...)

LF Fortran 95 Language Reference 195

Chapter 2 Alphabetical Reference

Arguments

The arguments are INTENT(IN) scalars or arrays of type INTEGER or REAL. They must
all be of the same type and kind.

If more than one argument is an array, all arrays must have the same shape.
Result

Theresult is of the same type and kind as the arguments.

If al the arguments are scalar, the result is the value of the smallest argument.

If any of the arguments are arrays, the result is an array with the same shape. Each element
of theresult isasif the scalar MIN function was called for each corresponding element of the
array argument(s).

Example
integer :: i6(6)=(/-14,3,0,-2,19,1/)
wite(*,*) mn(i6,0) I wites -14 00 -200

wite(*,*) mn(-14,3,0,-2,19,1) ! wites -14

MINEXPONENT Function

196

Description

The MINEXPONENT function returns the minimum binary exponent possible for a REAL
argument.

Syntax
MINEXPONENT (X)

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result

Theresult isascalar default INTEGER. Itsvalueisthe most negative binary exponent pos-
sible in the data type of x.

Example
wite(*,*) mnexponent(1l.e0) ! wites -125
wite(*,*) mnexponent(1.d0) ! wites -1021
wite(*,*) mnexponent(1.q0) ! wites -16381

LF Fortran 95 Language Reference

MINLOC Function

MINLOC Function

Description

The MINLOC function returnsthelocation of the first element in array having the minimum
value of al the elementsidentified by mask.

Syntax
MINLOC (array, dim, mask)

Required Arguments
arrayisan INTENT(IN) array of type INTEGER or REAL.

Optional Arguments

dimisan INTENT(IN) scalar INTEGER in therange 1< dim< n, where n isthe rank of
array. The corresponding actual argument must not be an optional dummy argument.

mask isan INTENT(IN) scalar or array of type LOGICAL, and must be conformable with
array.

Result
Theresult is of type default INTEGER.

If dimis present, the result is an array of rank n-1 where n isthe rank of array. The result
values are the locations having the minimum value along dimension dim.

If dimisabsent, the result isan array of rank one whose element values are the values of the
subscripts of the first element in array to have the minimum value of all of the elements of
array.

If mask is present, the elements of array for which mask is false are not considered.

Example

integer :: i6(6)=(/-14,3,0,-2,19,1/)

integer :: i23(2,3)=reshape((/-14,3,0,-2,19,1/), shape(i23))

wite(*,'(2i4)') i23 I wites -14 3
! 0-2
! 19 1

wite(*,*) mnloc(i®6) I wites 1

wite(*,*) mnloc(i23) I wites 1 1

wite(*,*) mnloc(i23,1) I wites 1 2 2

wite(*,*) mnloc(i23,2) I wites 1 2

wite(*,*) minloc(i23,1,(i23 <10)) ! wites 1 2 2

LF Fortran 95 Language Reference 197

Chapter 2 Alphabetical Reference

MINVAL Function

198

Description

The MAXVAL function returns the minimum value of elements of an array, along agiven
dimension, for which amask istrue.

Syntax
MINVAL (array [, dim] [, mask])

Required Arguments
arrayisan INTENT(IN) array of type INTEGER or REAL.

Optional Arguments

dimisan INTENT(IN) scalar INTEGER in therange 1< dim< n, where n isthe rank of
array. Theactual argument to MINV AL must not be an optional dummy argument.

mask isan INTENT(IN) scalar or array of type LOGICAL, and must be conformable with
array.
Result

The result is the same type and kind as array.

If dimis present, the result is an array of rank n-1 and of shape
(d, dy, ..., dgim—1-94im+ 1, ---»dy) Where (dy, d,, ..., d,) istheshapeof array. The
results are the minimum values of all elements of array along dimension dim.

If dimisabsent, or array isrank one, the result is a scalar with the value of the smallest ele-
ment of array.

If mask is present, the elements of array for which mask is false are not considered.

Example

integer :: i6(6)=(/-14,3,0,-2,19,1/)
integer :: i23(2,3)=reshape((/-14,3,0,-2,19,1/), shape(i23))
wite(*,'(2i4)') i23 I wites -14 3

! 0-2

! 19 1
wite(*,*) mnloc(i®6) I wites 1
wite(*,*) mnloc(i23) I wites 1 1
wite(*,*) mnloc(i23,1) I wites 1 2 2
wite(*,*) mnloc(i23,2) I wites 1 2
wite(*,*) minloc(i23,1,(i23 < 10)) ! wites 1 2 2

LF Fortran 95 Language Reference

ML_EXTERNAL Satement

ML_EXTERNAL Statement

Description
TheML_EXTERNAL statement makesaprocedure externally availabletoastatically linked

mixed-language calling routine.

Syntax
ML_EXTERNAL [::] ml-external-names

Where:
ml-external-namesis alist of procedures defined in the current scoping unit.

Remarks
The procedures in ml-external-names must not be module procedures.

The procedures nameslistedinan ML_EXTERNAL statement are "decorated” to match one
of several calling conventions by using the "-ml xxxx" switch at compile time.

Example
function hal f(x)
integer :: half,x
m _external half ! m _external statenent
hal f=x/2

end function half

function tw ce(x)
integer,m _external :: twice ! m _external attribute

integer :: X
tw ce=x*2
end function tw ce

MOD Function

Description
The MOD function returns the remainder from the division of the first argument by the sec-

ond argument.

Syntax
MQOD (a, p)

Arguments
aisan INTENT(IN) scalar or array of type INTEGER or REAL.

pisINTENT(IN) and of the sametype and kind asa. Itsvaue must not be zero.

LF Fortran 95 Language Reference 199

Chapter 2 Alphabetical Reference

Result
Theresult isthe sametypeand kind asa. Itsvalueisa-INT(a/p) * p.

Example
wite(*,*) nod(23.4,4.0)
wite(*,*) nod(-23,4)
wite(*,*) nod(23,-4)
wite(*,*) nod(-23,-4)

wites 3.4
wites -3
wites 3

wites -3

MODULE Statement

Description

The MODULE statement begins a module program unit. The module encapsul ates data and
procedures, provides aglobal datafacility, which can be considered areplacement for COM-
MON, and establishes implicit interfaces for procedures contained in the module.

Syntax
MODULE module-name

Where:
module-name is the name of the module.

Remarks

The module name must not be the same as the name of another program unit, an external pro-
cedure, or acommon block within the executable program, nor be the same asany local name
in the module.

In LF95, amodule program unit must be compiled before it is used.

Example
nodul e m
type nytype ! nytype avail abl e anywhere mis used
real :: a,b(2,4)
integer :: n,o,p
end type nytype
real :: rl=1 ! rl avail abl e anywhere mis used
cont ai ns
subroutine subl(i) ! inplicit interface for subl
integer :: i
i=1
end subroutine
function funl() ' inplicit interface for funl
integer :: funl
funl=1

200 LF Fortran 95 Language Reference

MODULE PROCEDURE Satement

end function
end nodul e m
program zee
use m ! makes nodul e avail abl e to program zee
type (mytype) bee, dee
integer :: i
i =funl()
call subl(i)
end program zee

MODULE PROCEDURE Statement

Description

The MODULE PROCEDURE statement specifies that the names in the modul e-procedure-
list are part of ageneric interface.

Syntax
MODULE PROCEDURE module-procedure-list

Where:
module-procedure-list is alist of module procedures accessible by host or use association.

Remarks

A MODULE PROCEDURE statement can only appear in ageneric interface block within a
modul e or within a program unit that accesses a module by use association.

Example
nodul e nodl
interface swap
nodul e procedure conplex_swap ! interface for a nodul e
nodul e procedure logical _swap ! procedure is inplicit
end interface
cont ai ns
subroutine conpl ex_swap(cx,cy) ! interface is defined here
conplex :: cx,cy,ct
ct=cx
cxX=cy
cy=ct
end subroutine
subroutine logical _swap(lx,ly) ! interface is defined here
logical :: Ix,ly, It
It=lx
I x=ly
ly=It

LF Fortran 95 Language Reference 201

Chapter 2 Alphabetical Reference

end subroutine
end nodul e

MODULO Function

Description
The MODULO function returns the modul o of two numbers.

Syntax
MODULO (a, p)

Arguments
aisan INTENT(IN) scalar or array of type INTEGER or REAL.

pisINTENT(IN) and must be of the same type and kind asa. Itsvalue must not be zero.

Result
The result is the same type and kind as a.

If aisaREAL, theresult valueisa - FLOOR(a/ p) * p.

If aisan INTEGER, MODULO(a, p) hasthevaluer such that a=q * p + r, whereqisan
INTEGER chosen so that r is nearer to zero than p.

Example
r =nodul o(23. 4, 4. 0)
i =nodul o(- 23, 4)
j =modul o(23, - 4)
k- modul o(- 23, - 4)

r is assigned the value 3
i is assigned the value 1
j is assigned the value -1
k is assigned the value -3

MVBITS Subroutine

202

Description

The MVBITS subroutine copies a sequence of bits from one INTEGER data object to
another.

Syntax
MVBITS (from, frompos, len, to, topos)

Arguments
fromisan INTENT(IN) scalar or array of type INTEGER.

LF Fortran 95 Language Reference

NAMELIST Satement

fromposisan INTENT(IN) scalar or array of type INTEGER. It must be non-negative.
frompos + len must be less than or equal to BIT_SIZE(from).

lenisan INTENT(IN) scalar or array of type INTEGER. It must be non-negative.

toisan INTENT(IN OUT) scalar or array of type INTEGER with the same kind as from. It
can be the same variable as from.

toposisan INTENT(IN) scalar or array of type INTEGER and must be non-negative. topos
+ len must be less than or equal to BIT_SIZE(to).

Remarks

toisset by copying len bits, starting at position frompos, from from, to to, starting at position
topos.

If any of from, frompos, len or topos are arrays, to must be an array with the same shape.

If toisan array, itsvalueisasif the scalar MVBITS operation were performed on each cor-
responding element of any array arguments.

Example
integer :: i; data i/z'0fOf'/
integer :: ia(2)=(/2,4/),ja(2)
wite(*,"(b32)") i ' wites 111100001111
call nmvbits(i,0,4,i,4)
wite(*,"(b32)") i ' wites 111111111111
call nvbits(i,ia, 4,ja,ia)
wite(*,"(b32)") ja I wites 111100

I wites 11110000

NAMELIST Statement

Description

The NAMELIST statement specifiesalist of variables that can be referred to by one name
for the purpose of performing input/output.

Syntax
NAMELIST /name/ group [[,] /name/ group] ...

Where:
name is the name of a namelist group.

group isalist of variable names.

LF Fortran 95 Language Reference 203

Chapter 2 Alphabetical Reference

Remarks

A namein agroup must not be the name of an array dummy argument with a non-constant
bound, avariable with anon-constant character length, an automatic object, a pointer, a vari-
able of atype that has an ultimate component that is a pointer, or an allocatable array.

If a name has the public attribute, no item in group can have the PRIVATE attribute.

The order in which the variables appear inaNAMELIST statement determines the order in
which the variables' values will appear on output.

Example
real :: a,b
integer :: i,j
nanelist /input/ a,b,i,j
open(10,file="data.dat"')
read(10, nm =i nput)
write(*, nm =i nput)
cl ose(10)
end

I nanelist data file
& nput

b=12.3

i=4

a=13.2

j=12

/

NDPERR Function (Windows Only)

Description
The NDPERR function detects exceptions raised by the numeric data processor.

Syntax
NDPERR (lvar)

Arguments
Ivar isan INTENT(IN) scalar of type LOGICAL.

If lvar istrue, NDPERR clears floating-point exception bits.
If lvar isfalse, NDPERR does not clear floating-point exception bits.

Result

204 LF Fortran 95 Language Reference

NDPEXC Subroutine (Windows Only)

Theresult isof type default INTEGER. Itsvalueisthe INTEGER value of the combination
of the following bits, where a bit set to one indicates an exception has occurred:

Table 10: NDPERR bits

Bit Exception

0 Invalid Operation

1 Denormalized Number

2 Divide by Zero

3 Overflow

4 Underflow

Example

wite(*,*) 0./0. I wites -NaN
wite(*,*) ndperr(.true.) I wites 1
wite(*,*) tiny(l.e0)/100000. ! wites 1.1770907e-43
wite(*,*) ndperr(.true.) I wites 2

NDPEXC Subroutine (Windows Only)

Description
The NDPEXC subroutine masks exceptions raised by the numeric data processor.

Arguments
The NDPEXC subroutine has no arguments.

Remarks

To mask specific exceptions use the subroutines INVALOP (invalid operator), OVEFL
(overflow), UNDFL (underflow), and DVCHK (divide by zero).

The precision exception is always masked.

Example
call ndpexc () ! mask floating-point exceptions

LF Fortran 95 Language Reference 205

Chapter 2 Alphabetical Reference

NEAREST Function

Description
The NEAREST function returns the nearest number of a given datatypein agiven direction.

Syntax
NEAREST (X, S)

Arguments

xisan INTENT(IN) scalar or array of type REAL.

sisan INTENT(IN) scalar or array of type REAL. It must be non-zero.

Result

Theresult is REAL and of the samekind as x.

If both x and s are scalar, the result value is the distinct number nearest to x, in the direction

indicated by the sign of s.

Example
real (kind(1.e0)) :: rl=1.e0
real (kind(1.d0)) :: r2=1.d0

wite(*,*) rl I wites 1.00000000
wite(*,*) nearest(r1,1.) ! wites 1.00000012
wite(*,*) nearest(rl1,-1.) ! wites 0.99999994

writes 3f800000
writes 3f800001
wites 3f7fffff

wite(*,"(3z10.8)") r1
wite(*,"(3z10.8)") nearest(rl,1.)
wite(*,"(3z10.8)") nearest(rl,-1.)

OrRr kP~ "0FrFr

wite(*, *) r2 ! wites 1.00000000000000000
wite(*,*) nearest(r2,1.) ! wites 1.00000000000000000
wite(*,*) nearest(r2,-1.) ! wites 0.99999999999999999
wite(*, "(z18.16)") r2 I wites 3ff0000000000000

wite(*,"(z18.16)") nearest(r2,1.) ! wites 3ff0000000000001
wite(*,"(z18.16)") nearest(r2,-1.)! wites 3f7fffffffffffff

NINT Function

Description
The NINT function returns the nearest INTEGER to a REAL argument.

Syntax
NINT (a[, kind])

206 LF Fortran 95 Language Reference

NOT Function

Required Arguments
aisan INTENT(IN) scalar or array of type REAL.

Optional Arguments

kind is INTENT(IN) and determines the kind of the result. It must be ascalar INTEGER
expression that can be evaluated at compile time. To maintain portability, this argument
should be the result of a“ KIND Function” or “ SELECTED INT_KIND Function” .

Result

Theresult is of type INTEGER. If kind is present the result is that kind; otherwiseitisa
default INTEGER.

If a> 0, the result hasthe value INT(a + 0.5);

If a<0, theresult hasthevalue INT(a - 0.5).

Example
real :: a=1.5,aa(3)=(/-.5,0.,.5/)
wite(*,*) nint(a) I wites 2
wite(*,*) nint(-a) ! wites -2
wite(*,*) nint(aa) ! wites -1 01

wite(*,*) nint(-aa) ! wites 1 0 -1

NOT Function

Description
The NOT function returns the bit-wise logical complement of an INTEGER argument.

Syntax
NOT (i)

Arguments
i isan INTENT(IN) scalar or array of type INTEGER.

Result

Theresult isan INTEGER of the samekind asi. Itsvalueisthe value of i with each of its
bits complemented (zeros changed to ones and ones changed to zeros).

LF Fortran 95 Language Reference 207

Chapter 2 Alphabetical Reference

Example
integer :: ia(3)=(/-1,0,1/)
wite(*,*) not(-1) ! wites O
wite(*,*) not(0) ! wites -1

wite(*,*) not(ia) ! wites 0 -1 -2

NULL Function

Description
The NULL function returns a disassociated pointer.

Syntax
NULL ([mold])

Optional Argument
mold must be a pointer and may be of any type.

mold must be present when a reference to NULL () appears as an actual argument in a refer-
ence to a generic procedureif the type, type parameters, or rank is required to resolve the
generic reference.

Result

A disassociated pointer of the same type, type parameters, and rank as the pointer that
becomes associated with the result.

Example
real ,pointer,dinmension(:) :: a=>null() ! ais disassociated

NULLIFY Statement

208

Description
The NULLIFY statement disassociates a pointer.

Syntax
NULLIFY (pointers)

Where:

pointersisacomma-separated list of variablesor structure components having the POINTER
attribute.

LF Fortran 95 Language Reference

OPEN Satement

Example
real,pointer :: a,b,c
real ,target :: t,u,v
a=>t; b=>u; c=>v ! a, b, and c are associ at ed
nullify (a,b,c) ! a, b, and c are disassoci ated

OPEN Statement

Description
The OPEN statement connects or reconnects an external file to an input/output unit.

Syntax
OPEN (connect-specs)

Where:

connect-specs is a comma-separated list of
[UNIT =] external-file-unit

or IOSTAT=iostat

or ERR=label

or FILE=file-name-expr

or STATUS=status

or ACCESS=access

or FORM=form

or RECL=recl

or BLANK=blank

or POSITION=position

or ACTION=action

or DELIM=delim

or PAD=pad

or BLOCK SIZE=blocksize

or CONVERT =file-format

or CARRIAGECONTROL =carriagecontrol

external-file-unit is a scalar INTEGER expression that evaluates to the input/output unit
number of an external file.

file-name-expr is a scalar CHARACTER expression that evaluates to the name of afile.

iostat isa scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

label isthe statement label of the statement that is branched to if an error occurs.

LF Fortran 95 Language Reference 209

Chapter 2 Alphabetical Reference

210

statusisascalar default CHARACTER expression. It must evaluateto NEW if the file does
not exist and isto be created; REPLACE if thefileisto overwrite an existing file of the same
name or create a new oneif the file does not exist; SCRATCH if thefileisto be deleted at
the end of the program or the execution of a CL OSE statement; OLD, if thefileisto be
opened but not replaced; and UNKNOWN otherwise. The default is UNKNOWN.

accessisascaar default CHARACTER expression. It must evaluate to SEQUENTIAL if
the file is to be connected for sequential access, DIRECT if thefile isto be connected for
direct access, or TRANSPARENT if the fileis to be connected for binary (transparent)
access. The default valueis SEQUENTIAL

formisascalar default CHARACTER expression. It must evaluateto FORMATTED if the
fileisto be connected for formatted input/output, UNFORMATTED if the fileisto be con-
nected for unformatted input/output, or BINARY if thefileisto be connected for binary
(transparent) access. The default valueis UNFORMATTED, for afile connected for direct
access, and FORMATTED, for afile connected for sequentia access.

recl isascalar default INTEGER expression. It must evaluate to the record length in bytes
for afile connected for direct access, or the maximum record length in bytes for afile con-
nected for sequential access.

blank isa scalar default CHARACTER expression. It must evaluate to NULL if null blank
control isused and ZERO if zero blank control isused. The default valueisNULL. This
specifier is only permitted for afile being connected for formatted input/output.

position is ascalar default CHARACTER expression. It must evaluate to REWIND if the
newly opened sequential accessfileisto be positioned at itsinitial point; APPEND if itisto
be positioned before the endfile record if one exists and at the file terminal point otherwise;
and ASISif the position isto be left unchanged. The default is ASIS. Note that the
POSITION keyword may only be used for sequential accessfiles.

action isa scalar default CHARACTER expression. It must evaluateto READ if thefileis
to be connected for input only, WRITE if the fileis to be connected for output only, and
READWRITE if the fileisto be connected for input and output. The default valueis
READWRITE.

delimisa scalar default CHARACTER expression. It must evaluate to APOSTROPHE if
the apostropheis used to delimit character constants written with list-directed or namelist for-
matting, QUOTE if the quotation mark is used, and NONE if neither quotation marks nor
apostrophesisused. The default valueisNONE. This specifier is permitted only for format-
ted files and isignored on input.

pad is ascalar default CHARACTER expression. It must evaluateto YES if the formatted
input record isto be padded with blanks and NO otherwise. The default valueis YES.

blocksizeis a scalar default INTEGER expression. It must evaluate to the size, in bytes, of
the input/output buffer.

LF Fortran 95 Language Reference

OPEN Satement

file-format isa scalar default CHARACTER variable that evaluatesto BIG_ENDIAN if big
endian conversionistooccur, LITTLE_ENDIAN if little endian conversionisto occur, IBM
if IBM style conversion isto occur, and NATIVE if no conversion isto occur.

carriagecontrol isascalar default CHARACTER expression. It must evaluateto FORTRAN
if thefirst character of aformatted sequential record used for carriage control, and LIST oth-
erwise. Non-storage devices default to FORTRAN; disk filesto LIST

Remarks

The OPEN statement connects an existing file to an input/output unit, creates afilethat is
preconnected, creates afile and connects it to an input/output unit, or changes certain char-
acteristics of a connection between afile and an input/output unit.

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must
be the first item in the connect-spec-list.

If the file to be connected to the input/output unit is the same as the file to which the unit is
already connected, only the BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers
can have values different from those currently in effect.

If afileis connected to an input/output unit, it may not be opened with a different unit
number.

FILE=isoptional if it isthe second argument and thefirst argument isaunit number with no
UNIT=.

A unit opened for BINARY or TRANSPARENT access is open for direct access with a
record length of one, so REC= may appear, and END= may not appear in any i/o statement
for the unit.

Example
integer :: ierr
open(8,"inf.dat",status="new') ! creates a new file
I error if file exists
open(9,fil e="open.f90",status="old") ! file must exist
open(10, status="scratch") I file deleted on close
open(11,"inf.dat",iostat=ierr) ! ierr returns status
I sane file cannot be
I open on two units
open(file="foo", & ! if unit is not first, nust
uni t=12, & ! have "unit=" keyword
access="direct", & ! direct access requires rec
recl =10)

LF Fortran 95 Language Reference 211

Chapter 2 Alphabetical Reference

OPTIONAL Statement

Description

The OPTIONAL statement declares that any dummy arguments specified need not be asso-
ciated with an actual argument when the procedure isinvoked.

Syntax
OPTIONAL [::] dummy-arg-names

Where:
dummy-arg-names is a commarseparated list of dummy argument names.

Remarks
A OPTIONAL dummy argument is tested for presence by using the * PRESENT Function” .

An optional dummy argument must not be referenced unlessit has been tested and found to
be present.

An interface is required before any procedure that has optional arguments can be called.

An optional argument may not be an actual argument if the corresponding dummy argument
isnot optional.

Example
nodul e nodl ! provides inplicit interface
cont ai ns
function funl(a,b)
real :: funl, a
real,optional :: b ! optional attribute
if(present(b)) then ! don't reference b unless
funl=a+b ' it is present
el se
funl=a
end if
end function
end nodul e
program present
use nodl
wite(*,*) funl(2.) I no optional argunent
wite(*,*) funl(2.,2.) ! optional argunent
end program

212 LF Fortran 95 Language Reference

OVEFL Subroutine (Windows Only)

OVEFL Subroutine (Windows Only)

Description
The OVEFL subroutine masks and detects floating-point overflow exceptions.

Syntax
OVEFL (Iflag)

Arguments

Iflag must be of type LOGICAL. It isassigned the value true if an overflow exception has
occurred, and false otherwise.

Remarks
Iflag must be set to true on the first invocation.

Theinitial invocation of the OV EFL subroutine masks the overflow interrupt on the floating-
point unit.

Subsequent invocation returns an Iflag value of true if the exception has occurred or false if
the exception has not occurred.

Example
real (kind(1.d0)) :: a=huge(a)
logical :: Iflag = .true.
call ovefl(lflag) ! nask the overflow interrupt
wite(*,*) Iflag I wites F
do
a=a*2.do0

call ovefl(lIflag)! test for overflow
if(lflag) exit

end do

wite(*,*) Iflag I wites T

PACK Function

Description
The PACK function packs an array into a vector under the control of a mask.

Syntax
PACK (array, mask [, vector])

LF Fortran 95 Language Reference 213

Chapter 2 Alphabetical Reference

Required Arguments
array isan INTENT(IN) array can be of any type.

mask isINTENT(IN) and must be of type LOGICAL. mask must be conformable with
array.

Optional Arguments

vector isan INTENT(IN) array of rank one, and must be the same type and kind asarray. It
must have at least as many elementsasthere aretrueelementsin array. If maskisscalar with
value true, vector must have at least as many elements as array.

Result
Theresult isan array of rank one with the same type and kind as array.

If vector is present, the result sizeis the size of vector.

If vector isabsent, theresult sizeisthe number of true e ementsin mask unless mask is scalar
with the value true, in which case the size isthe size of array.

Thevalue of element i of the result isthe ith true element of mask, in array-element order. If
vector is present and is larger than the number of true elementsin mask, the elements of the
result beyond the number of true elementsin mask arefilled with values from the correspond-
ing elements of vector.

Example
integer :: c(3,3)=reshape((/0,3,2,4,3,2,5,1,2/),shape(c))
integer :: cc(9)=-1
wite(*,'(3i3)') ¢ I wites

032
! 4 32
512
wite(*,*) pack(c, msk=(c > 2))
! wites 3435
wite(*,*) pack(c, mask=(c > 2),vector=cc)
! wites 3435-1-1-1-1-1
wite(*,*) pack(c,.true.) ! wites 032432512

PARAMETER Statement

Description
The PARAMETER statement specifies and initializes named constants.

Syntax
PARAMETER (named-constant-defs)

214 LF Fortran 95 Language Reference

PAUSE Satement (obsolescent)

Where:
named-constant-defs is a comma separated list of constant-name=init-expr

constant-name is the name of a constant being specified.

init-expr isan expression that can be evaluated at compile time.
Remarks

Each named constant becomes defined with the value of init-expr.

Any data objects defined in a PARAMETER statement cannot be subsequently redefined.

Example
real, paraneter :: pi=3.141592654 | paraneter attribute
integer :: i0
paraneter (i 0=0) I paraneter statenent

PAUSE Statement (obsolescent)

Description
The PAUSE statement temporarily suspends execution of the program.

Syntax
PAUSE

Remarks

When a PAUSE statement is reached, the string "Press any key to conti nue"isdis
played. The program resumes execution when akey representing any printable character is
pressed.

The PAUSE statement was considered obsolescent in Fortran 90, and has been del eted from
the Fortran 95 language specification. Regardless of this, the PAUSE statement will con-
tinue to be supported by LF95.

Example
pause I"Press any key to continue . . ." is displayed

Pointer Assignment Statement

Description
The pointer assignment statement associates a pointer with a target.

LF Fortran 95 Language Reference 215

Chapter 2 Alphabetical Reference

Syntax
pointer => target

Where:
pointer is avariable having the POINTER attribute.

target isavariable or expression having the TARGET or POINTER attribute, or is a subob-
ject of avariable having the TARGET attribute.

Remarks

If target is not a pointer, pointer becomes associated with target.

If target isan associated pointer, pointer becomes associated with the same object astarget.
If target is disassociated, pointer becomes disassociated.

If target’ s association status is undefined, pointer’s also becomes undefined.

Pointer assignment of a pointer component of astructure can also take place by derived type
intrinsic assignment or by a defined assignment.

When apointer assignment statement is executed, any previous association of pointer is
broken.

target must be of the same type, kind, and rank as pointer.
target must not be an array section with a vector subscript.

If target is an expression, it must deliver apointer result.

Example
real ,pointer :: a => null(),b => null()
real ,target :: ¢=5.0
a=>c ! ais an alias for b
b=>a ! bis an alias for a (and c)

wite(*,*) a,b,c

POINTER Function

216

Description

The POINTER function gets the memory address of avariable, substring, array reference, or
external subprogram.

Syntax
POINTER (item)

LF Fortran 95 Language Reference

POINTER Satement

Arguments
item can be of any type. It isthe name for which to return an address. item must have the
EXTERNAL attribute.

Result
Theresult is of type INTEGER. It isthe address of item.

Example
real :: a,b(10)
wite(*,*) pointer(a) I wites the nmenory
wite(*,*) pointer(b) I address of each of
wite(*, *) pointer(b(2)) ! these variables
end

POINTER Statement

Description
The POINTER statement specifies alist of variables that have the POINTER attribute.

Syntax
POINTER [::] variable-name [(deferred-shape)] [, variable-name [(deferred-
shape)]] ...

or (Cray pointer)
POINTER (int-var, target-var) [, (int-var, target-var) ...]

Where:
variable-name is the name of avariable.

deferred-shapeis: [, :] ... wherethe number of colonsisequal to the rank of variable-name.

int-var is assumed to be an INTEGER variable, and cannot appear in atype declaration
Statement.

target-var isthe target variable that int-var will be an aliasfor.
Remarks

A pointer must not be referenced or defined unlessit isfirst associated with atarget through
a pointer assignment or an ALLOCATE statement.

The INTENT attribute must not be specified for a variable having the POINTER attribute.

If the DIMENSION attribute is specified el sewhere in the scoping unit, the array must have
a deferred shape.

LF Fortran 95 Language Reference 217

Chapter 2

Alphabetical Reference

int-var cannot also appear as atarget-var.

int-var and target-var cannot also havethe ALLOCATABLE, INTRINSIC, EXTERNAL,
PARAMETER, POINTER or TARGET attributes.

Cray pointers are provided for compatibility purposes, and should not be used when writing
new code.

Example
integer,pointer :: index(:) ! pointer attribute
real :: next, previous,ri1(20)
pointer :: next(:,:),previous ! pointer statenent
pointer (i,j),(k,rl) I Cray pointers

PRECFILL Subroutine

Description
Set fill character for numeric fields that are wider than supplied numeric precision. The
defaultis’O'.

Syntax
PRECFILL (filchar)

Arguments
filchar isSINTENT(IN) and of type CHARACTER. Thefirst character becomesthe new pre-
cision fill character.

Example
call precfill(’*) ! "*" is the new precision fill character

PRECISION Function

Description
The PRECISION function returns the decimal precision of aREAL or COMPLEX datatype.

Syntax
PRECISION (X)

Arguments
xisan INTENT(IN) scalar or array of type REAL or COMPLEX.

218 LF Fortran 95 Language Reference

PRESENT Function

Result
Theresult is of type default INTEGER.

Itsvalueis equal to the number of decimal digits of precision in the data type of x.

Example
real (kind(1.e0)) :: r10
real (kind(1.d0)) :: r100
real (kind(1.g0)) :: r1000
wite(*,*) precision(rl0) I wites 6
wite(*,*) precision(rl100) ! wites 15
wite(*,*) precision(rl1000) ! wites 33

PRESENT Function

Description
The PRESENT function determines whether or not an optional argument is present.

Syntax
PRESENT (a)

Arguments

aisINTENT(IN) and must be an optional dummy argument of the procedure in which the
PRESENT function appears.

Result
Theresult isascalar default LOGICAL.

Its valueistrueif the actual argument corresponding to a was provided in the invocation of
the procedure in which the PRESENT function appears; otherwise, it isfalse.

Example
function funl(a,b)
real :: funl, a
real,optional :: b
if(present(b)) then ! don't reference b unless
funl=a+b it is present
el se
funl=a
end if
end function

LF Fortran 95 Language Reference 219

Chapter 2 Alphabetical Reference

PRINT Statement

220

Description
The PRINT statement writes values from an output list to the console.

Syntax
PRINT format [, outputs]

Where:

format is format-expr
or label

or*

or assigned-label

format-expr is adefault CHARACTER expression that eval uates to ([format-items])
label is astatement label of a FORMAT statement.

assigned-label isascalar default INTEGER variable that was assigned the label of a FOR-
MAT statement in the same scoping unit.

outputs is a comma-separated list of expr
or io-implied-do

expr is an expression.
io-implied-do is (outputs, implied-do-control)
implied-do-control is do-variable=start, end [, increment]

start, end, and increment are scal ar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variableis ascalar variable of type INTEGER, REAL or double-precision REAL.

format-itemsisacomma-separated list of [r] data-edit-descriptor, control-edit-descriptor, or
char-string-edit-descriptor, or [r] (format-items)

data-edit-descriptor isany valid format descriptor. See“FORMAT Statement” on page 139.
char-string-edit-descriptor isa CHARACTER literal constant or cHrep-chars

rep-charsisastring of characters
c isthe number of charactersin rep-chars

r, k, and n are positive INTEGER literal constants that are used to specify a number of repe-
titions of the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or
(format-items)

LF Fortran 95 Language Reference

PRIVATE Satement

Remarks
Thedo-variable of animplied-do-control that is contai ned within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it istreated as if the elements are specified in array-
element order.

If aderived type object appears as an output item, it istreated asif al of the components are
specified in the same order as in the definition of the derived type.

The comma used to separate itemsin for mat-items can be omitted between a P edit descriptor
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit
descriptor when the optional repeat specification is not present; after a slash edit descriptor;
and before or after a colon edit descriptor.

WithinaCHARACTER literal constant, if an apostrophe or quotation mark appears, it must
be as a consecutive pair without any blanks. Each such pair represents a single occurrence
of the delimiter character.

Example
integer :: i=1,j=2,k=3
print *," i =",i,"j =,j," k =",k
print "(3i8)",i,j,k
print 100,i,j,k
100 fornmat (3i8)

PRIVATE Statement

Description
The PRIVATE statement specifies that the names of entities are accessible only within the
current module.

Syntax
PRIVATE[[::] access-ids]|

Where:

access-idsis a comma-separated list of
use-name

or generic-spec

use-name is a name previously declared in the module.

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

LF Fortran 95 Language Reference 221

Chapter 2 Alphabetical Reference

generic-name is the name of a generic procedure.

defined-operator is one of theintrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
The PRIVATE statement is permitted only in amodule.

If the PRIV ATE statement appearswithout alist of objects, it setsthe default accessibility of
named itemsin the module to private; otherwise, it makes the accessibility of the listed
objects private.

If the PRIV ATE statement appearsin aderived type definition, the entitieswithin the derived
type definition are accessible only in the current module. Within a derived type definition,
the PRIVATE statement cannot have an object list.

Example
nodul e ex
implicit none
! default accessibility is public

real :: a,b
private a ! ais not accessible outside nodul e
! b is accessible outside nodule
real,private :: ¢ ! private attribute
type zee
private
integer :: I,m ! zee, | and mare private

end type zee
end nodul e ex

PRODUCT Function

222

Description
The PRODUCT function returns the product of elements of an array expression, along a
given dimension, or under the control of alogical mask.

Syntax
PRODUCT (array [, dim] [, mask])

Required Arguments
arrayisan INTENT(IN) array of type INTEGER, REAL or COMPLEX.

LF Fortran 95 Language Reference

PROGRAM Satement

Optional Arguments

dimisan INTENT(IN) scalar INTEGER in therange 1 < dim< n, where n isthe rank of
array. The corresponding actual argument must not be an optional dummy argument.

mask isINTENT(IN), must be of type LOGICAL, and must be conformable with array.
Result
Theresult is of the same type and kind as array.

Itisscalar if dimisabsent or if array has rank one; otherwise the result is an array of rank n-
landof shape (di, dy, ..., dgim—1:9gim+1,----d,) where (dy, d,, ..., d,) istheshapeof
array.

If dimisabsent, the result is the product of all the elements of array.
If dimis present, the result is the product of all elements of array along dimension dim.

If mask is present, the result isthe product of all elements of array for which mask evaluates

to true.
Example
i nteger, dinension(2,2) :: mrreshape((/1,2,3,4/),shape(n))
wite(*,72i3)’) m I wites 1 2
3 4
wite(*,*) product(m wites 24
wite(*,*) product(m di nFl) wites 2 12

wite(*,*) product(m mask=nr2) wites 12
wite(*,*) product(m di mel, mask=nmp2) wites 1 12

]
]
|
wite(*,*) product(m di m=2) I wites 3 8
|
]
wite(*,*) product(mdi me2, mask=np»2) ! wites 3 4

PROGRAM Statement

Description
The PROGRAM statement signals the beginning of a main program unit.

Syntax
PROGRAM program-name

Where:
program-name is the name given to the main program.

LF Fortran 95 Language Reference 223

Chapter 2 Alphabetical Reference

PUBLIC

Remarks

program-name is global to the entire executable program. It must not be the same as the
name of another program unit, external procedure, or common block in the executable pro-
gram. It may not be the same as any local name in the main program.

Example
program zyx
! code goes here
end program zyx

Statement

Description
The PUBLIC statement specifiesthat entities are accessible by use association anywhere the
modul e that contains the PUBLIC statement is used.

Syntax
PUBLIC[[::] access-ids]

Where:
access-idsis acomma-separated list of use-name
or generic-spec

use-name is any name within the scope of the module in which the PUBLIC statement
appears.

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of theintrinsic operators
or .op-name.

op-name is a user-defined name for the operation.
Remarks
The PUBLIC statement is permitted only within a module.

The default accessibility of namesin amoduleis public. If the PUBLIC statement appears
without alist of objects, it confirms the default accessibility.

If alist of objectsis present, the PUBLIC statement makes the objects specified accessible
both within the module, and to any procedure that uses that module.

224 LF Fortran 95 Language Reference

PURE Procedure

Example
nodul e zee
implicit none

private ! default accessibility is now private
real :: a,b

public a ! a is now accessi bl e outside nodul e
real,public :: ¢ ! public attribute

end nodul e zee

PURE Procedure

Description

A PURE procedure declaration ensuresthat no unseen side effectswill occur uponinvocation
of the procedure.

Syntax
PURE SUBROUTINE sub-name (arg-list)
or
PURE FUNCTION fun_name (arg-list) [result(result-var)]

Where:
sub-name is the subroutine name

fun-name is the function name.
arg-listisalist of dummy arguments.
result-var defines the type and kind of the result, and is assigned the result value.

Remarks

If the PURE procedure is a subroutine, then each argument in arg-list must declare the
INTENT attribute, unlessthat argument correspondsto a procedure, is an alternate return, or
has the POINTER attribute.

If the PURE procedure is afunction, then each argument in arg-list must be declared as
INTENT(IN) unlessthat argument correspondsto a procedure or hasthe POINTER attribute.

Local variables within the scope of a PURE procedure cannot have the SAVE attribute,
which implies that they cannot be initialized when declared, or by a DATA statement.

Any procedures (including dummy procedures) that are invoked from a PURE procedure
must be PURE.

LF Fortran 95 Language Reference 225

Chapter 2

Alphabetical Reference

Local variables of pure subroutines must not have the SAVE attribute, either by explicit dec-
laration or by initialization in a type declaration or DATA statement.

Any subprogram contained within a PURE procedure is also PURE.

A PURE procedure may not cause the value of avariable whichisin COMMON, or is avail-
able by use or host association to be altered.

No external 1/O operations may occur within a PURE procedure.

A PURE procedure may not contain a STOP statement.

Example
pure subroutine subl(a)
real,intent(in out) :: a ! intent nmust be declared
interface
pure function funl(a) ! any invoked procedure nust be pure

real,intent(in) :: a
end function funl
end interface
a=funl(a/10.)
end subroutine
pure function funl(a)

real :: funl
real,intent(in) :: a! all argunents nmust be intent(in)
funl=a

end function funl

RADIX Function

Description
The RADIX function returns the number base of the physical representation of a number.

Syntax
RADIX (X)

Arguments
x must be of type INTEGER or REAL.

Result
Theresult isadefault INTEGER scalar whose value is the number base of the physical rep-
resentation of x. Thisvalueistwo for all kinds of INTEGERs and REALS.

Example
wite(*,*) radix(2.3) ! wites 2

226 LF Fortran 95 Language Reference

RANDOM_NUMBER Subroutine

RANDOM_NUMBER Subroutine

Description

The RANDOM_NUMBER subroutine returns a uniformly distributed pseudorandom num-
ber or numbersintherange 0<x<1.

Syntax
RANDOM_NUMBER (harvest)

Arguments

harvest isan INTENT(OUT) scalar or array of type REAL. On return, itsvalueis a set of
pseudorandom numbers uniformly distributed intherange 0 < x< 1.

Remarks

The random number generator uses a multiplicative congruential algorithm with aperiod of
approximately 2%

Example
real, di nension(8) :: x
call random nunber(x) ! each elenent of x is assigned
! a pseudor andom nunber

RANDOM_SEED Subroutine

Description

The RANDOM _SEED subroutineinitializes or queriesthe pseudorandom number generator
used by RANDOM_NUMBER.

Syntax
RANDOM_SEED ([size=size] [put=put] [get=get])

Optional Arguments

sizeisan INTENT(OUT) scalar of type default INTEGER. It is set to the number of default
INTEGERS the processor usesto hold the seed. For LF95 thisvalueis one.

putisan INTENT(IN) default INTEGER array of rank one and size greater than or equal to
size. It isused by the processor to set the seed value.

getisan INTENT(OUT) default INTEGER array of rank one and size greater than or equal
tosize. Itisset to the current value of the seed.

LF Fortran 95 Language Reference 227

Chapter 2 Alphabetical Reference

Remarks
The RANDOM _SEED subroutine can only be called with one or zero arguments.

If no argument is present, the system generates a seed value and initializes the random num-

ber generator.
Example
integer :: seed_size
integer,allocatable :: seed(:)
call randomseed() ! initialize with system generated seed

call random seed(size=seed_size) ! find out size of seed
al | ocat e(seed(seed_si ze))

call random seed(get=seed) ! get system generated seed
wite(*,*) seed I wites system generated seed
seed=314159265

call random seed(put=seed) ! set current seed

call random seed(get=seed) ! get current seed

wite(*,*) seed I wites 314159265

deal | ocat e(seed) I safe

RANGE Function

Description
The RANGE function returns the decimal range of any numeric data type.

Syntax
RANGE (X)

Arguments
xisan INTENT(IN) scalar or array of any numeric type.

Result
Theresult isascalar default INTEGER.

If xis of type INTEGER, theresult valueis INT (LOG10 (HUGE(X))).

If xis of type REAL or COMPLEX, theresult valueis INT (MIN (LOG10 (HUGE(X)), -
LOG10 (TINY(X)))).

Example
real (kind(1.e0)) :: r10
real (kind(1.d0)) :: r100
real (kind(1.g0)) :: r1000
integer(selected_int_kind(r=1)) :: il

228 LF Fortran 95 Language Reference

READ Satement

integer(selected_int_kind(r=4)) :: i4
integer(selected_int_kind(r=7)) :: i7
integer(selected_int_kind(r=12)) :: i12
wite(*,*) range(r10) I wites 37

wite(*,*) range(r100) ! wites 307
wite(*,*) range(r1000) ! wites 4931

wite(*,*) range(il) I wites 2
wite(*,*) range(i4) I wites 4
wite(*,*) range(i7) I wites 9
wite(*,*) range(il2) I wites 18

READ Statement

Description

The READ statement transfers values from an input/output unit to the data objects specified
inaninput list or anamelist group.

Syntax
READ (io-control-specs) [inputs]

or
READ format [, inputs]

Where:
inputs is acomma-separated list of variable
or io-implied-do

variableisavariable.
io-implied-do is (inputs, implied-do-control)
implied-do-control is do-variable=start, end [, increment]

start, end, and increment are scal ar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variableis ascalar variable of type INTEGER, REAL or double-precision REAL.

LF Fortran 95 Language Reference 229

Chapter 2 Alphabetical Reference

io-control-specsis a commarseparated list of
[UNIT =] io-unit

or [FMT =] format

or [NML =] namelist-group-name
or REC=record

or IOSTAT=stat

or ERR=errlabel

or END=endlabel

or EOR=eor|abel

or ADVANCE=advance

or SIZE=size

io-unit is an external file unit or *
format is aformat specification (see “ Input/Output Editing” beginning on page 25).
namelist-group-name is the name of a namelist group.

record is the number of the direct access record that is to be read.

stat isa scalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

errlabel isalabel that is branched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.

endlabel isalabel that isbranched to if an end-of-file condition occurs and no error condition
occurs during execution of the statement.

eorlabel isalabel that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advanceisascalar default CHARACTER expression that evaluates to NO if non-advancing
input/output isto occur, and Y ES if advancing input/output isto occur. The default valueis
YES.

sizeisascalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing i nput/output
statement.

Remarks

io-control-specs must contain only oneio-unit, and cannot contain both aformat and a
namelist-group-name.

A namelist-group-name must not appear if inputsis present.

230 LF Fortran 95 Language Reference

REAL Function

If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in
io-control-specs. If the optional characters FMT= are omitted before format, format must be
the second item in io-control-specs. If the optional characters NML= are omitted before
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

If io-unitisaninterna file, io-control-specs must not contain a REC= specifier or anamelist-
group-name.

If thefileisopen for DIRECT, BINARY or TRANSPARENT access, an END= specifier
must not appear, a namelist-group-name must not appear, and format must not be an asterisk
indicating list-directed /0.

An ADVANCE= specifier can appear only in formatted sequential 1/0 with an explicit for-
mat specification (format-expr) whose control list does not contain an internal file specifier.
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with
thevalue NO.

Thedo-variable of animplied-do-control that is contai ned within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

Example
character(len=30) :: intfile
integer :: ios
read *,a, b, c I read values fromstdin
I using list directed i/o
read (3,"(3i10)") i,j,k ! read fromunit 3 using format
read 10,i,j,k ! read stdin using format at |abel 10

10 format (3i10)
read (11) a,b,c ! read unformatted data fromunit 11
intfile=" 1 2 3"
read(intfile,10) i,j,k I read frominternal file
read(12,rec=2) a,b,c ! read direct access file
read(13, 10, err=20) i,]j ! read with error branch

20 read(13,10,io0ostat=ios) a I read with status return
read(13, 10, advance='no') i,j ! next read fromsane |ine

REAL Function

Description
The REAL function converts a number to a REAL datatype.

Syntax
REAL (a[, kind])

LF Fortran 95 Language Reference 231

Chapter 2 Alphabetical Reference

Required Arguments
aisan INTENT(IN) scalar or array of any numeric type.

Optional Arguments

kind is INTENT(IN) and determines the kind of the result. It must be ascalar INTEGER
expression that can be evaluated at compile time. To maintain portability, this argument
should be the result of a“ KIND Function” or “ SELECTED REAL KIND Function” .

Result
Theresult is of type REAL. ItsvalueisaREAL representation of a
If kind is present, it determines the kind of the result.

If aisof type COMPLEX, the result’s value isthe rea part of a.

Example
integer :: i=10.
real :: a=2.5
conplex :: c¢=(1.5,2.5)
wite(*,*) i,real (i) ! convert integer to real
wite(*,*) a,real (a, kind(1.d0)) ! convert between real kinds
wite(*,*) c,real(c) ! return real part

REAL Statement

232

Description
The REAL statement declares entities having the REAL data type.

Syntax
REAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND=] scalar-int-initialization-expr)

scalar-int-initialization-expr is ascalar INTEGER expression that can be evaluated at com-
piletime.

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]

LF Fortran 95 Language Reference

REAL Satement

array-spec is an array specification.
initialization-expr is an expression that can be evaluated at compile time.
entity-name is the name of an entity being declared.

function-name is the name of a function being declared.

Remarks

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, adouble colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The =initialization-expr must not appear if entity-name is adummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attributeis specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attributes must not be specified.

The PARAMETER attribute cannot be specified for dummy arguments, pointers, alocatable
arrays, functions, or objectsin a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unlessitisa
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

LF Fortran 95 Language Reference 233

Chapter 2 Alphabetical Reference

An entity having the ALLOCATABLE attribute cannot be adummy argument or afunction
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC,
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

Example
real :: a,b(2,4) I explicit shape
real ,dinmension(2) :: c=/1.,2./ ! has save attribute
real,pointer :: d(:) I deferred shapes
real,allocatable :: e(:)
real ,paraneter :: f=3 ! nmust be initialized

REPEAT Function

Description
The REPEAT function concatenates copies of a string.

Syntax
REPEAT (string, ncopies)

Arguments
string isan INTENT(IN) scalar of type CHARACTER
ncopiesisan INTENT(IN) scalar non-negative INTEGER.

Result

Theresult isascalar of type CHARACTER with length equal to ncopies times the length of
string. Itsvalueisequal to the concatenation of ncopies copies of string.

Example
wite(*,*) repeat('ho',3) ! wites hohoho

RESHAPE Function

234

Description
The RESHAPE function constructs an array of a specified shape from atemplate array.

LF Fortran 95 Language Reference

RETURN Satement

Syntax
RESHAPE (source, shape[, pad] [, order])

Required Arguments
sourceisan INTENT(IN) array of any type. If padisabsent or of size zero, the size of source
must be greater than or equal to the product of the values of the elements of shape.

shapeisan INTENT(IN) INTEGER array of rank one. Itssize must be positive and lessthan
or equal to seven. It cannot have any negative elements.

Optional Arguments
padisan INTENT(IN) array of the same type and kind as source.

order isan INTENT(IN) array of type INTEGER with the same shape as shape. Itsvaue
must be a permutation of (1, 2, ..., n), where nisthe size of order. If order isabsent, itisas
if it were present with the value (1, 2, ..., n).

Result
Theresult isan array of the same type and kind as source, with a shape identical to shape.

The elements of theresult, taken in permuted subscript order, order (1), ..., order(n), arethose
of sourcein array element order followed if hecessary by elements of one or more copies of
pad in array element order.

Example
real :: x1(4)
real :: x2(2,2)=reshape((/1.,2.,3.,4./),shape(x2))
real :: x3(3,2)

x1l=r eshape(x2, shape(x1))

wite(*,*) x1 ! wites 1. 2. 3. 4.

wite(*,*) reshape(x1l, shape(x2),order=(/2,1/))
I wites 1. 3. 2. 4.

wite(*,*) reshape(xl, shape(x3), pad=(/0./))
I wites 1. 2. 3. 4. 0. 0.

RETURN Statement

Description
The RETURN statement causes a transfer of control from a subprogram back to the calling
procedure. Execution continues at the statement following the procedure invocation.

Syntax
RETURN [alt-return]

LF Fortran 95 Language Reference 235

Chapter 2 Alphabetical Reference

Where:
alt-return-label isascalar INTEGER expression.

Remarks

If alt-returnis present and has a value n between 1 and the number of asterisksin the subpro-
gram's dummy argument list, the CALL statement that invoked the subroutine transfers
control to the statement identified by the nth alternate return specifier in the actual argument
list.

Example
subroutine zee()
return I transfer of control back to caller
end subroutine zee

REWIND Statement

236

Description
The REWIND statement repositions afile toitsinitial point.

Syntax
REWIND (position-spec-list)

Where:
position-spec-list is[[UNIT =] unit-number][, ERR=label][, IOSTAT=stat] where UNIT=,
ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number must
be first.

unit-number isascalar INTEGER expression corresponding to the input/output unit number
of an externa file.

label is a statement label that is branched to if an error condition occurs during execution of
the statement.

stat isavariable of type INTEGER that is assigned a positive value if an error condition
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
Rewinding afile that is connected but has zero size has no effect.
Note that REWIND may only be used on sequential accessfiles.

Example
integer :: ios

LF Fortran 95 Language Reference

RRSPACING Function

rewi nd 10 I file on unit 10 rewound
rewind (10,iostat=ios) ! rewind with status

RRSPACING Function

Description
The RRSPACING function returns the reciprocal of relative spacing near a given number.

Syntax
RRSPACING (x)

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result

Theresult is of the same type and kind as x. Itsvalueisthe reciprocal of the spacing; x
divided by SPACING(X)

Example
real (kind(1.e0)) :: rl10=1.e0
real (kind(1.d0)) :: r100=1.d0
real (kind(1.g0)) :: r1000=1.q0
wite(*,*) rl1l0/spacing(r1l0) ! wites 8388608. 00
wite(*,*) rrspacing(r10) ! wites 8388608. 00
wite(*,*) rrspacing(rl100) ! wites 4503599627370496.
wite(*,*) rrspaci ng(r1000)
I wites 5192296858534827628530496329220096. 0

SAVE Statement

Description
The SAVE statement specifiesthat all data objects listed retain any previous association,
allocation, definition, or value upon reentry of a subprogram.

Syntax
SAVE [[::] saved-entities]

Where:
saved-entities is a comma-separated list of object-name
or / common-block-name /

LF Fortran 95 Language Reference 237

Chapter 2 Alphabetical Reference

object-name is the name of a data object.

common-block-name is the name of acommon block.

Remarks

Objects declared with the SAVE attribute in a subprogram are shared by all instances of the
subprogram.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

A SAVE statement without a saved-entities list specifies that al allowable objectsin the
scoping unit have the SAVE attribute.

If acommon block name appearsin a SAVE statement other than in the main program, it
must be have the SAVE attribute in every scoping unit in which the name appears.

A SAVE statement in a main program has no effect.

Example
subroutine subl()

logical,save :: first_tine=.true. ! save attribute

integer :: saveval

save :: saveval | save statenent

if(first_time) then ! do initializations
first_tine= fal se
saveval =1

end if

saveval =saveval +1 ! value is preserved

end subroutine

SCALE Function

238

Description
The SCALE function multipliesa REAL number by a power of two.

Syntax
SCALE (x, i)

Arguments

xisan INTENT(IN) scalar or array of type REAL.

i isan INTENT(IN) scalar or array of type INTEGER.

If both x and i are arrays, they must have the same shape.

LF Fortran 95 Language Reference

SCAN Function

Result '
The result is the same type and kind as x. Itsvalueis x x 2.

If either or both arguments are arrays, the result isan array of the same shape. Itsvaluesare
as though the scalar SCALE operation were performed on each respective array element.

Example
real :: x=1.5,xa(2)=(/2.5,3.5/)
integer :: i=3, ia(2)=(/2,4/)
wite(*,*) scale(x,i) I wites 12.0
wite(*,*) scale(xa,i) ! wites 20.0 28.0
wite(*,*) scale(x,ia) ! wites 6.0 24.0
wite(*,*) scale(xa,ia) ! wites 10.0 56.0

SCAN Function

Description
The SCAN function scans a string for any one of a set of characters.

Syntax
SCAN (string, set [, back])

Required Arguments

stringisan INTENT(IN) scalar or array of type CHARACTER.

setisan INTENT(IN) scalar or array of type CHARACTER.

Optional Arguments

backisan INTENT(IN) scalar or array of type LOGICAL.

If more than one argument is an array, they must all have the same shape.
Result

Theresult is of type default INTEGER.

If back is absent, or if it is present with the value false, the value of the result isthe position
number of the leftmost character in string that isin set.

If back is present with the value true, the value of the result is the position number of the
rightmost character in string that isin set.

If one or more arguments are arrays, the result is an array of the same shape. The value of
each element of theresulting array isasif the scalar SCAN operation were performed on each
respective element of the input arrays.

LF Fortran 95 Language Reference 239

Chapter 2 Alphabetical Reference

Example
character(len=12) :: cl="Howdy there!"
character(len=6) :: c2(2)=(/"Howdy ","there!"/)
character(len=3) :: c3(2)=(/"def","ghi"/)

wite(*,*) scan(cl, ' def') I wites 4
wite(*,*) scan(c2,c3) I wites 4 2
wite(*,*) scan(cl, ' def', back=.true.) I wites 11

wite(*,*) scan(c2,c3,(/.true.,.false./)) ! wites 4 2

SELECTED_INT_KIND Function

Description

The SELECTED_INT_KIND function returnsthe kind type parameter of an INTEGER data
type.

Syntax
SELECTED_INT_KIND (r)

Arguments
risan INTENT(IN) scalar INTEGER.

Result

Theresult isascalar default INTEGER. Itsvalueisequal to the processor dependent kind
type parameter of the data type that accommodates all values n with -10" <n<10'.

If morethan onekind isavailable, thereturn valueisthe kind type parameter with the smaller
decimal exponent range.

If no such kind is available in the specified range, the result is -1.

Example
wite(*,*) selected_int_kind(2) ! wites 1
wite(*,*) selected_int_kind(4) ! wites 2
wite(*,*) selected_int_kind(7) ! wites 4
wite(*,*) selected_int_kind(12) ! wites 8

wite(*,*) selected_int_kind(20) ! wites -1

240 LF Fortran 95 Language Reference

SELECTED_REAL_KIND Function

SELECTED_REAL_KIND Function

Description
The SELECTED_REAL_KIND function returns the kind type parameter of a REAL data

type with decimal precision of at least p digits and a decimal exponent range of at least r.

Syntax

SELECTED_REAL_KIND ([p] [, 1)

Optional Arguments
pisan INTENT(IN) scalar INTEGER, representing the requested precision.

risan INTENT(IN) scalar INTEGER representing the requested exponent range.

At least one argument must be present.

Result

Theresult isascalar default INTEGER. Itsvalueisequal to the processor dependent kind
type parameter of the REAL datatypewith decimal precision of at least p digits and adecimal
exponent range of at least r.

If more than one kind is available, the return value is the value of the kind type parameter of
the kind with the smallest decimal precision.

Theresultis-1if theprecisionisnot available, -2 if therangeisnot available, and -3 if neither

isavailable

Example
! request a precision
wite(*,*) selected real _kind(p=6) ! wites 4
wite(*,*) selected_real _kind(p=12) ! wites 8
wite(*,*) selected_real _kind(p=24) ! wites 16
wite(*,*) selected_real _kind(p=48) ! wites -1
! request a range
wite(*,*) selected_real kind(r=10) I wites 4
wite(*,*) selected_real _kind(r=100) I wites 8
wite(*,*) selected_real _kind(r=1000) ! wites 16
wite(*,*) selected_real kind(r=10000) ! wites -2
wite(*,*) selected_real kind(r=10000,p=48) ! wites -3

LF Fortran 95 Language Reference

241

Chapter 2 Alphabetical Reference

SEQUENCE Statement

Description

The SEQUENCE statement specifies a storage sequence for objects of aderived type. It can
only appear within a derived type definition.

Syntax
SEQUENCE

Remarks
If aderived type definition contains a SEQUENCE statement, the derived typeisasequence
type.

If SEQUENCE is present in aderived type definition, all derived types specified in compo-
nent definitions must be sequence types.

Example
type zee
sequence | zee is a sequence type
real :: a,b,c ! a,b,c is the storage sequence

end type zee

SET EXPONENT Function

242

Description
The SET_EXPONENT function returns the model representation of anumber with the expo-
nent part set to a power of two.

Syntax
SET_EXPONENT (X, i)

Arguments

xisan INTENT(IN) scalar or array of type REAL.

i isan INTENT(IN) scalar or array of type INTEGER.

If both arguments are arrays, they must have the same shape.

Result
The result is of the same type and kind as x. Itsvalueis FRACTION(x)*2'.

LF Fortran 95 Language Reference

SHAPE Function

If either or both arguments are arrays, the result is an array with the same shape. The value
of each result element is as though the scalar SET_EXPONENT operation were performed
for each respective element of the input arrays.

Example
real :: x=4.3,xa(2)=(/1.5,2.5/)
integer :: i=2,ia(2)=(/4,5/)
wite(*,*) fraction(x)*2**j I wites 2.15
wite(*,*) set_exponent(Xx,i) I wites 2.15
wite(*,*) set_exponent(xa,i) ! wites 3.0 2.5
wite(*,*) set_exponent(x,ia) ! wites 8.6 17.2

wite(*,*) set_exponent(xa,ia) ! wites 12.0 20.0

SHAPE Function

Description
The SHAPE function returns the shape of an array argument.

Syntax
SHAPE (source)

Arguments
sourceisan INTENT(IN) scalar or array of any type.

source must not be an assumed-size array, a pointer that is disassociated or an allocatable
array that is not allocated.

Result

Theresultisadefault INTEGER array of rank onewhose sizeistherank of source and whose
value is the shape of source.

If sourceisscalar, theresult is an array of rank one and zero size.

Example
integer :: i,ia(-2:2),ib(3,5,7),ic(9,2,4,6,5,3,3)
wite(*,*) shape(i) ! zero sized array

wite(*,*) shape(ia) ! wites 5
wite(*,*) shape(ib) ! wites 3 57
wite(*,*) shape(ic) ! wites 92 46533

LF Fortran 95 Language Reference 243

Chapter 2 Alphabetical Reference

SIGN Function

Description
The SIGN function transfers the sign of a REAL or INTEGER argument.

Syntax
SIGN (a, b)

Arguments

aisan INTENT(IN) scalar or array of type INTEGER or REAL.
bisan INTENT(IN) scalar or array of type INTEGER or REAL.
If both a and b are arrays, they must have the same shape.
Result

Theresult is of the same type and kind as a.

Itsvalueis|a, if bisgreater than or equal to zero; and -|q] if b islessthan zero. The compiler
does not distinguish between positive and negative zero.

If either or both arguments are arrays, the result is an array with the same shape. Each ele-
ment of the result is as though the scalar SIGN operation were performed on each respective
element of the argument arrays.

Example
real :: r=1.
integer :: ia(2)=(/2,-3/)
wite(*,*) sign(r,-1) ! wites -1.
wite(*,*) sign(r,ia) ! wites 1., -1.

wite(*,*) sign(ia,-1) ! wites -2 -3

SIN Function

244

Description
The SIN function returns the trigonometric sine of aREAL or COMPLEX argument.

Syntax
SIN (x)

Arguments
xisan INTENT(IN) scalar or array of type REAL or COMPLEX and must be expressed in
radians.

LF Fortran 95 Language Reference

SINH Function

Result
Theresult is of the same type and kind as x. Itsvalueisa REAL or COMPLEX representa-
tion of the sine of x.

Example
real :: x=.5y(2)=(/1.,1.1)
conplex :: z=(1.,1.)
wite(*,*) sin(x) ! wites .4794255
wite(*,*) sin(y) ! wites .8414709 .8414709
wite(*,*) sin(z) ! wites (1.298457 .6349639)

SINH Function

Description
The SINH function returns the hyperbolic sine of a REAL argument.

Syntax
SINH ()

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result
Theresult is of the same type and kind asx. ItsvalueisaREAL representation of the hyper-
bolic sine of x.

Example
real :: x=.5y(2)=(/1.,1.1)

wite(*,*) sinh(x) ! wites .5210953
wite(*,*) sinh(y) ! wites 1.175201 1.175201

SIZE Function

Description
The SIZE function returns the size of an array or a dimension of an array.

Syntax
SIZE (array [, dim])

LF Fortran 95 Language Reference 245

Chapter 2 Alphabetical Reference

Required Arguments

array isan INTENT(IN) array of any type. It must not be a pointer that is disassociated or

an alocatable array that is not allocated.

Optional Arguments

dimisan INTENT(IN) scalar of type INTEGER and must be adimension of array. If array
is assumed-size, dim must be present and less than the rank of array

Result
Theresult isascalar default INTEGER.

If dimis present, the result is the extent of dimension dimof array.

If dimisabsent, theresult is the total number of elementsin array.

Example
i nteger,dinension(3,-4:0) :: i
integer :: k,j
wite(*,*) size (i) I wites 15
wite(*,*) size (i,2) ! wites 5

SPACING Function

Description

The SPACING function returns the absol ute spacing near a given number; the smallest num-
ber that can be added to the argument to produce a number that is different than the argument.

Syntax
SPACING (X)

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result

Theresult is of the same type and kind asx. Itsvalueisthe spacing of REAL values near x.

Example
r eal a=1., b=1.el0

real (kind(1.d0)) c=1.d0, d=1.d10

wite(*,*) nearest(a,l1l.)-a ! wites
wite(*,*) epsilon(a) I wites
wite(*,*) spacing(a) I wites
wite(*,*) spacing(b) I wites

246 LF Fortran 95 Language Reference

1.1920929
1.1920929
1.1920929
1024. 0000

SPREAD Function

wite(*,*) spacing(c) I wites 2.22044604925031e-16
wite(*,*) spacing(d) I wites 1.90734863281250e- 06

SPREAD Function

Description
The SPREAD function adds a dimension to an array by adding copies of a data object along
agiven dimension.

Syntax
SPREAD (source, dim, ncopies)

Arguments
sourceisan INTENT(IN) scalar or array of any type. Itsrank must be less than seven.

dimisan INTENT(IN) scalar of type INTEGER with avalueintherange 1<dim<n+1,
where n isthe rank of source.

ncopiesisan INTENT(IN) scalar of type INTEGER.

Result
Theresult isan array of the same type and kind as source and of rank n + 1, where nisthe
rank of source.

If sourceis scalar, the shape of the result is MA X (ncopies, 0) and each element of the result
has avalue equal to source.

If sourceisan array with shape (d,, d,, ..., d,), the shape of theresult is (d,, d,, ..., Agim1,
MAX(ncopies, 0), dgims ---» dn) @nd the element of the result with subscripts (ry, I, ..., Fh.q)
has the value source(ry, 1y, ..., rgimas Mdime1s == Mne).,

Example
integer :: b(2,2)=reshape((/1,2,3,4/),shape(b))
! show how shape of array changes after spreading
wite(*,*) shape(b) wites 2 2

!
wite(*,*) shape(spread(b,1,3)) ! wites 3 2 2
wite(*,*) shape(spread(b,2,3)) ! wites 2 3 2
wite(*,*) shape(spread(b,3,3)) ! wites 2 2 3

I show el enent val ues after spreading

wite(*,*) b I wites 1 2 3 4

wite(*,*) spread(b,1,3) ! wites 111222333444
wite(*,*) spread(b,2,3) ! wites 121212343434
wite(*,*) spread(b,3,3) ! wites 123412341234

LF Fortran 95 Language Reference 247

Chapter 2 Alphabetical Reference

SORT Function

Description
The SQRT function returns the square root of a REAL or COMPLEX argument.

Syntax
SQRT (x)

Arguments

X isan INTENT(IN) scalar or array of type REAL or COMPLEX.

If xis REAL, its value must be greater than or equal to zero.

Result

The result is the same kind and type as x.

If xis REAL, the result value isa REAL representation of the square root of x.

If xis COMPLEX, the result value is the principal value with the real part greater than or
equal to zero. When thereal part of the result is zero, the imaginary part is greater than or
equal to zero.

Example
real :: x1=4.,x2(2)=(/2.,6.1)
conplex :: g=(-1.,0.)

wite(*,*) sgrt(x1) ! wites 2.0
wite(*,*) sqrt(x2) ! wites 1.4142135 2.4494898
wite(*,*) sgrt(q) ! wites (0., 1.)

Statement Function

248

Description
A statement function is afunction defined by a single statement.

Syntax
function-name ([dummy-args])=scal ar-expr

Where:
function-name is the name of the function being defined.

dummy-args is a comma-separated list of dummy argument names.

scalar-expr isascalar expression.

LF Fortran 95 Language Reference

STOP Satement

Remarks
scalar-expr can be composed only of literal or named constants, scalar variables, array ele-
ments, references to functions and function dummy procedures, and intrinsic operators.

If areferenceto a statement function appears in scalar-expr, its definition must have been
provided earlier in the scoping unit and must not be the name of the statement function being
defined.

Each scalar variablereferencein scalar-expr must be either areference to adummy argument
of the statement function or areference to avariable local to the same scoping unit as the
statement function statement.

The dummy arguments have a scope of the statement function statement.
A statement function must not be supplied as a procedure argument.
Example

nean(a, b) =(a+b)/ 2
c=nean(2.0,3.0) ! c is assigned the value 2.5

STOP Statement

Description
The STOP statement causes execution of a program to terminate.

Syntax
STOP [stop-code]

Where:
stop-codeis a scalar CHARACTER constant or aseries of 1 to 5 digits.

Remarks
When a STOP statement is reached, the optional stop-codeis displayed, if present.

Example
program f oo
stop I program execution terninated
end program f oo

LF Fortran 95 Language Reference 249

Chapter 2 Alphabetical Reference

SUBROUTINE Statement

250

Description

The SUBROUTINE statement begins a subroutine subprogram. It specifies the subroutines
name and dummy arguments, and any special characteristics such asPURE, ELEMENTAL,
or RECURSIVE.

Syntax

[PURE] [ELEMENTAL] [RECURSIVE] SUBROUTINE subroutine-name
([dummy-arg-names])

Where:
subroutine-name is the name of the subroutine.

dummy-arg-names is a commarseparated list of dummy argument names.

Remarks
The prefixes PURE, ELEMENTAL, and RECURSIVE may appear in any order.

A subroutine with the prefix PURE or ELEMENTAL is subject to the additional constraints
of pure procedures, which ensure that no unseen side effects occur on invocation of the sub-
routine. See“PURE Procedure” on page 225.

An ELEMENTAL subroutine is subject to the constraints of elemental procedures. See
“ELEMENTAL Procedure” on page 123.

The keyword RECURSIVE must be present if the subroutine directly or indirectly callsitself
or asubroutine defined by an ENTRY statement in the same subprogram. RECURSIVE
must also be present if a subroutine defined by an ENTRY statement directly or indirectly
callsitself, another subroutine defined by an ENTRY statement, or the subroutine defined by
the SUBROUTINE statement.

Example
subroutine subl() ! subroutine statement with no argunents
conmon /cl/ a
a=1.
end subroutine
subroutine sub2(a,b,c) ! subroutine statement with argunents
real :: a,b,c
a=b+c
end subroutine
recursive subroutine sub3(i) ! recursive required if the
i=i-1 I subroutine calls itself
if(i >0) call sub3(i) I directly or indirectly
end subroutine

LF Fortran 95 Language Reference

SUM Function

SUM Function

Description

The SUM function returns the sum of elements of an array, along a given dimension, for
which amask istrue.

Syntax
SUM (array [, dim] [, masK])

Required Arguments
arrayisan INTENT(IN) array of type INTEGER, REAL, or COMPLEX.

Optional Arguments

dimisan INTENT(IN) scalar INTEGER in therange 1< dim< n, where n isthe rank of
array. The corresponding dummy argument must not be an optional dummy argument.

mask isan INTENT(IN) scalar or array of type LOGICAL. It must be conformable with
array.

Result
Theresult is of the same type and kind as array.

Theresult isscalar if dimisabsent or if array has rank one; otherwiseit isan array of rank
n-1and of shape (d;, d,, ...,dgim-1:9im+1,---.d,) where (d;,d,, ...,d,) istheshape
of array.

If dimisabsent, the result is the sum of the values of al the elements of array.

If dimis present, the result isthe sum of the values of all elements of array along dimension
dim.

If mask is present, only the elements of array for which mask is true are considered.

Example
integer :: m2,2)=reshape((/1,2,3,4/),shape(m)
wite(*,'(2i3)’) m I wites 1 2
! 3 4
wite(*,*) sum(m I wites 10
wite(*,*) sum(m di me1) I wites 37
wite(*,*) sum m di m=2) I wites 4 6

wite(*,*) sum(m mask=n»2) ! wites 7

LF Fortran 95 Language Reference 251

Chapter 2 Alphabetical Reference

SYSTEM Function (Linux only)

Description
The SY STEM function executes a system command as if from the command line.

Syntax
SYSTEM (cmd)

Arguments

cmdisan INTENT(IN) scalar of type CHARACTER. It containsthe system command to be
executed asif it were typed on the command line.

Result
Theresult is of type INTEGER. It isthe exit status of the system command.

Example
if (system("ls > current.dir") /=0) wite(*,*) "Error"
! puts a listing of the current directory into
! the file "current.dir’

SYSTEM Subroutine

252

Description
The SY STEM subroutine executes a system command as if from the command line.

Syntax (Windows)
SYSTEM (cmd [, dosbox] [, spawn])

Syntax (Linux)
SYSTEM (cmd)

Required Arguments

cmdisan INTENT(IN) scalar of type CHARACTER. It isthe system command to be exe-
cuted asif it were typed on the command line.

Optional Arguments

dosboxisan INTENT(IN) scalar of type LOGICAL. It hasthe valuetrueif anew DOS box
isto be opened (required for internal commands like DIR) and false otherwise. By default,
dosbox has the value true.

LF Fortran 95 Language Reference

SYSTEM_CLOCK Subroutine

spawnisan INTENT(IN) scalar of type LOGICAL. It hasthe vauetrueif the command or
program to be executed is to be spawned as a separate process and false otherwise. By
default, spawn has the value true.

Example
call system("dir > current.dir")
! puts a listing of the current directory into
! the file "current.dir’

SYSTEM_CLOCK Subroutine

Description
The SYSTEM_CLOCK subroutine returns INTEGER data from the real-time clock.

Syntax
SYSTEM_CLOCK ([count] [, count_rate] [, count_max])

Optional Arguments
count isan INTENT(OUT) scalar of type default INTEGER. Itsvalueis set to the current
value of the processor clock or to -HUGE(O) if no clock is available.

count_rateisan INTENT(OUT) scalar of type default INTEGER. It is set to the number of
processor clock counts per second, or to zero if thereis no clock.

count_max isan INTENT(OUT) scalar of type default INTEGER. It is set to the maximum
value that count can have, or zero if thereis no clock.

At least one argument must be present.

Example
integer :: c,cr,cm
call systemclock(c,cr,cm
wite(*,*) c I wites current count
wite(*,*) cr I wites count rate
wite(*,*) cm I wites maxi mum count possible
wite(*,*) real(c)/real(cr) ! current count in seconds

TAN Function

Description
The TAN function returns the trigonometric tangent of a REAL argument.

LF Fortran 95 Language Reference 253

Chapter 2 Alphabetical Reference

Syntax
TAN (X)

Arguments
xisan INTENT(IN) scalar or array of type REAL, and must be expressed in radians.

Result

Theresultisof the sametypeand kind asx. ItsvalueisaREAL representation of the tangent
of Xx.

Example
real :: x=5,y(2)=(/1.,1.1)
wite(*,*) tan(x) ! wites .54630249
wite(*,*) tan(y) ! wites 1.5574077 1.5574077

TANH Function

254

Description
The TANH function returns the hyperbolic tangent of a REAL argument.

Syntax
TANH ()

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result

Theresult is of the sametype and kind asx. ItsvalueisaREAL representation of the hyper-
bolic tangent of x.

Example
real :: x=.5y(2)=(/1.,1.1)
wite(*,*) tanh(x) ! wites .4621171
wite(*,*) tanh(y) ! wites .7615941 .7615941

LF Fortran 95 Language Reference

TARGET Satement

TARGET Statement

Description
The TARGET statement specifies that data objects have the target attribute and thus can be
associated with a pointer.

Syntax
TARGET [::] object-name [(array-spec)] [, object-name [(array-spec)]] ...

Where:
object-name is the name of a data object.

array-spec is an array specification.

Example
integer, pointer :: z
integer :: a=1
target :: a I target statenent
integer,target :: b=2,c=3 ! target attribute
z => a
wite(*,*) z
z => b
wite(*,*) z
z =>¢

wite(*,*) z

TINY Function

Description
The TINY function returns the smallest positive number of a numeric data type that can be
represented without loss of precision.

Syntax
TINY (X)

Arguments
xisan INTENT(IN) scalar or array of type REAL.

Result

Theresult isascalar of the sametypeand kind asx. Itsvalueisthe smallest positive number
in the data type of x.

LF Fortran 95 Language Reference 255

Chapter 2 Alphabetical Reference

Example
real (kind(1.e0)) :: r10
real (kind(1.d0)) :: r100
real (kind(1.g0)) :: r1000
wite(*,*) tiny(r10) I wites 1.1754943E-38
wite(*,*) tiny(rl100) ! wites 2.2250738585072E- 308
wite(*,*) tiny(r1000)
I wites 3.362103143112093506262677817321752E- 4932

TRANSFER Function

256

Description

The TRANSFER function interprets the physical representation of a number with the type
and type parameters of a given number.

Syntax
TRANSFER (source, mold [, size])

Required Arguments
sourceisan INTENT(IN) scalar or array of any type.
mold isan INTENT(IN) scalar or array of any type.

Optional Arguments

sizeisan INTENT(IN) scalar of type INTEGER. The corresponding actual argument must
not be aoptional dummy argument.

Result
Theresult is of the same type and type parameters as mold.

If mold isscalar and size is absent the result is ascalar.

If mold isan array and sizeis absent, theresult isan array of rank one. Itssizeisassmall as
possible such that it is not shorter than source.

If sizeis present, the result is an array of rank one and of size size.

If the physical representation of the result isthe same length as the physical representation of
source, the physical representation of the result isthat of source.

If the physical representation of theresult islonger than that of source, the physical represen-
tation of the leading part of the result is that of source and the trailing part is undefined.

If the physical representation of the result is shorter than that of source, the physical repre-
sentation of the result is the leading part of source.

LF Fortran 95 Language Reference

TRANSPOSE Function

Example
character(len=4) :: c="LOVE"
integer :: i,j(2,2)
real ::r
logical :: |

wite(*,*) transfer(c,i) ! wites 1163284300
wite(*,*) transfer(c,r) ! wites 3428. 95605
wite(*,*) transfer(c,l) ! wites T

TRANSPOSE Function

Description
The TRANSPOSE function transposes an array of rank two.

Syntax
TRANSPOSE (matrix)

Arguments
matrix isan INTENT(IN) rank two array of any type.

Result
Theresult is of rank two and the same type and kind asmatrix. Itsshapeis(n, m), where (m,
n) isthe shape of matrix. Element (i, j) of the result has the value matrix(j, i).

Example
integer:: a(2,3)=reshape((/1,2,3,4,5,6/),shape(a))
wite(*,'(2i3)') a wites 1 2

|

! 34

! 56
wite(*,*) shape(a) I wites 2 3
wite(*,'(3i3)') transpose(a) ! wites 1 35

! 246
wite(*,*) shape(transpose(a)) ! wites 3 2

TRIM Function

Description
The TRIM function omits trailing blanks from a character argument.

LF Fortran 95 Language Reference 257

Chapter 2 Alphabetical Reference

Syntax
TRIM (string)

Arguments
string isan INTENT(IN) scalar of type CHARACTER.

Result
Theresult is of the sametype and kind as string. Itsvalue and length are those of string with
trailing blanks removed.

Example
character(l en=10) :: c="Howdy!

wite(*,*) len(c) I wites 10
wite(*,*) c,'end I wites Howdy! end
wite(*,*) len(trinm{(c)) ! wites 6

!

wite(*,*) trim(c)," ' end wites Howdy!end

Type Declaration Statement

SeeINTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER, or
TY PE statement.

TYPE Statement

258

Description
The TY PE statement defines a derived type, and declares entities having a derived type.

Syntax
(Definition)
TYPE[[, access-spec] ::] type-name
or
(Declaration)
TY PE (type-name) [, attribute-list ::] entity [, entity] ...

Where:
access-spec isPUBLIC
or PRIVATE

type-name is the name of the derived type being defined.

LF Fortran 95 Language Reference

TYPE Satement

attribute-list isacomma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT(IN) or INTENT(OUT) or
INTENT(IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET, VOLATILE, DLL_EXPORT or DLL_IMPORT or ML_EXTERNAL.

entity is entity-name [(array-spec)] [=initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.
entity-name is the name of an entity being declared.

function-name is the name of a function being declared.

Remarks

access-spec is permitted only if the derived type definition is within the specification part of
amodule.

If acomponent of aderived typeis of atype declared to be private, either the definition must
contain the PRIVATE statement or the derived type must be private.

type-name must not be the name of an intrinsic type nor of another accessible derived type
name.

function-name must be the name of an external, intrinsic, or statement function, or afunction
dummy procedure.

The =initialization-expr must appear if the statement contains a PARAMETER attribute.

If =initialization-expr appears, adouble colon must appear before the list of entities. Each
entity has the SAVE attribute, unlessit isin a named common block.

The =initialization-expr must not appear if entity-name is adummy argument, a function
result, an object in anamed common block unless the type declarationisin ablock data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

If an array or function with an array result is declared with the POINTER attribute, it must
have a deferred shape.

If an array is declared with the ALLOCATABLE attribute, it must have a deferred shape.

If an array or function with an array result does not have the POINTER or the ALLOCAT-
ABLE attribute, it must be specified with an explicit shape.

If the POINTER attributeisspecified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attributes must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attributes must not be specified.

LF Fortran 95 Language Reference 259

Chapter 2 Alphabetical Reference

The PARAMETER attribute cannot be specified for dummy arguments, pointers, allocatable
arrays, functions, or objectsin a common block.

The INTENT(IN), INTENT(OUT), INTENT(IN OUT), and OPTIONAL attributes can be
specified only for dummy arguments.

An entity may not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that isin acommon block, adummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL or INTRINSIC attribute specified unlessitisa
function.

A subprogram must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity having the ALLOCATABLE attribute cannot be adummy argument or afunction
result.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

If an entity has the VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC,
EXTERNAL, or INTENT(IN) attributes.

An entity may not be given the same attribute more than once in a scoping unit.

Example
type zee I type definition
sequence
real :: a,b
integer :: i
end type zee
type (zee) :: a,b,c(2,2) I type declaration
type (zee) :: e=zee(2.,3.5,-1) ! with initialization

UBOUND Function

260

Description
The UBOUND function retrieves the upper bounds of an array or adimension of an array.

Syntax
UBOUND (array [, dim])

Required Arguments
array isan INTENT(IN) array of any type. It must not be a pointer that is disassociated or
an alocatable array that is not allocated.

LF Fortran 95 Language Reference

UNDFL Subroutine (Windows Only)

Optional Arguments
dimisan INTENT(IN) scalar of type INTEGER and must be adimension of array.

Result
Theresult is of type default INTEGER.
If dimis present, the result is a scalar with the value of the upper bound of array.

If dimisabsent, theresult is an array of rank one with values corresponding to the upper
bounds of each dimension of array.

The result is zero for zero-sized dimensions.
Example

i nteger,dinension (3,-4:0) :: i
integer :: k,j(2)

wite(*,*) ubound(j) I wites 2
wite(*,*) ubound(i) I wites 30
wite(*,*) ubound(i,2) ! wites 0
wite(*,*) ubound(i,1) ! wites 3

UNDFL Subroutine (Windows Only)

Description
The UNDFL subroutine masks and detects floating-point underflow exceptions.

Syntax
UNDFL (Iflag)

Arguments
Iflagisan INTENT(IN) scalar of type LOGICAL. Itisassigned the valuetrueif an under-
flow exception has occurred, and fal se otherwise.

Remarks
[flag must be set to true on the first invocation.

Theinitia invocation of the UNDFL subroutine masks the underflow interrupt on the float-
ing-point unit.

Subsequent invocation returns an Iflag value of true if the exception has occurred or false if
the exception has not occurred.

Example
real (kind(1.d0)) :: a=tiny(a)

LF Fortran 95 Language Reference 261

Chapter 2 Alphabetical Reference

logical :: Iflag = .true
call undfl(lflag) ! mask the underflow interrupt
wite(*,*) Iflag I wites F
do
a=al/ 2.d0

call undfl(Iflag)! test for underflow
if(lflag) exit

end do

wite(*,*) Iflag I wites T

UNPACK Function

Description
The UNPACK function unpacks an array of rank one into an array under control of a mask.

Syntax
UNPACK (vector, mask, field)

Arguments

vector isan INTENT(IN) rank one array of any type. Itssize must be at least as large asthe
number of true elements in mask.

mask isan INTENT(IN) array of type LOGICAL.

field must be of the same type and type parameters as vector. It must be conformable with
mask.

Result

Theresult isan array of the same type and type parameters as vector and the same shape as
mask. Theelement of the result that correspondsto theith element of mask, in array-el ement
order, has the value vector(i) for i=1, 2, ..., t, wheret is the number of true valuesin mask.
Each other element hasthe valuefield if field is scalar or the corresponding element in field,

if fieldisan array.

Example
integer, dimension(9) :: ¢=(/0,3,2,4,3,2,5,1,2/)
| ogi cal ,di nension(2,2) :: d
integer,dinension(2,2) :: e

d=reshape((/.false.,.true.,.true.,.false./),shape(d))
e=unpack(c, mask=d, fi el d=-1)
wite(*,'(2i3)') e! wites -1 0

! 3-1

262 LF Fortran 95 Language Reference

USE Satement

USE Statement

Description
The USE statement specifiesthat amoduleis accessible from the current scoping unit. Italso
provides a means of renaming or limiting the accessibility of entitiesin the module.

Syntax

USE module [, rename-list]

or
USE module, ONLY: : [only-list]

Where:
module is the name of a module.

rename-list is acomma-separated list of local-name => use-name

only-list is a comma-separated list of access-id
or [local-name => use-name]

local-name is the local name for the entity specified by use-name
use-name is the name of a public entity in the specified module

access-id is use-name
or generic-spec

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of theintrinsic operators
or .op-name.

op-name is a user-defined name for the operation.
Remarks

A USE statement without ONLY provides access to all PUBLIC entitiesin the specified
module.

A USE statement with ONLY provides access only to those entities that appear in the only-
list.

If more than one USE statement appearsin a scoping unit, the rename-lists and only-listsare
treated as one concatenated rename-list.

If two or more generic interfaces that are accessible in the same scoping unit have the same
name, same operator, or are assignments, they are interpreted as a single generic interface.

LF Fortran 95 Language Reference 263

Chapter 2 Alphabetical Reference

Two or more accessible entities, other than generic interfaces, can have the same name only
if no entity is referenced by this name in the scoping unit.

If local-name is absent, the use-name is available by use association.
An entity can be accessed by more than one local-name.

A local-name must not be declared with different attributes in the scoping unit that contains
the USE statement, except that it can appear in a PUBLIC or PRIVATE statement in the
scoping unit of amodule.

Forward references to modules are not allowed in LF95. That is, if amoduleis used in the
same source file in which it resides, the module program unit must appear before its use.

Example
nodul e nodl
integer :: i,j,k
real :: a,b,c

end nodul e nodl
subroutine subl()
use modl ! a,b,c,i,j,k all available by use association
end subroutine subl
subroutine sub2()
use nodl, only: a,b! a,b are available, c,i,j,k not avail able
end subroutine sub2
subroutine sub3()
use nmodl, aa=>a ! a is known as aa within the scope of sub3
end subroutine sub3

VAL Function

264

Description
The VAL function passes an item to a procedure by value. VAL isonly used as an actual
argument. The VAL function has largely been superceded by the CARG function.

Syntax
VAL (item)

Arguments
itemisan INTENT(IN) data object of type INTEGER, REAL, or LOGICAL. It isthe data
object for which to return avalue.

Result
Theresult isthe value of item. Its C datatypeisasfollows:

LF Fortran 95 Language Reference

VALUE Satement

Table 11: VAL result types

Fortran Type Fortran Kind C type
INTEGER 1 longint
INTEGER 2 longint
INTEGER 4 longint
REAL 4 float
must not be passed by value; if
passed by reference (without
CARG) it isapointer to a structure
COMPLEX 4 of the form:
struct complex {
float rea _part;
float imaginary_part;};
LOGICAL 1 unsigned long
LOGICAL 4 unsigned long
CHARACTER 1 must not be passed by value with
VAL
Example

i=ny_c_function(val (a)) !

VALUE Statement

Description

a is passed by val ue

The VALUE statement specifiesthat the dummy argument is passed by value, rather than by

reference.

Syntax

[type-decl,] VALUE[::] var

WHERE:

type-decl isan intrinsic or derived type data declaration

var isavariable name

LF Fortran 95 Language Reference

265

Chapter 2 Alphabetical Reference

VERIFY

Remarks
The VALUE statement may only be specified for adummy argument.

If the VALUE statement is specified, the PARAMETER, EXTERNAL, POINTER, ALLO-
CATABLE, DIMENSION, INTENT(INOUT), or INTENT(OUT) attributes cannot be
specified for that variable.

If the VALUE statement is specified for adummy argument of type CHARACTER, the
length parameter shall be omitted, or be specified by an initialization expression having a
value of one.

If adummy argument has the VALUE attribute, atemporary copy of the actual argument is
made, and the copy is associated with the dummy argument. Subsequent changes to the
dummy argument do not affect the value or status of the actual argument.

If the dummy argument has both the VALUE and TARGET attributes, any pointers associ-
ated with the dummy argument become undefined when execution of the procedureis
complete.

By default, Fortran passes arguments by reference.

Example
subroutine net hodl(val ueargl, val uear g2)
real, value :: valueargl ! value attribute
integer :: val uearg2
val ue ;1 val uearg2 I val ue statenent

I do sonething
end subroutine

Function

Description
The VERIFY function verifies that aset of characters contain all the charactersin a string.

Syntax
VERIFY (string, set [, back])

Required Arguments
stringisan INTENT(IN) scalar or array of type CHARACTER.
setisan INTENT(IN) scalar or array of type CHARACTER

Optional Arguments
backisan INTENT(IN) scalar or array of type LOGICAL.

266 LF Fortran 95 Language Reference

VOLATILE Satement

If any or al the arguments are arrays, they must all have the same shape.

Result
Theresult is of type default INTEGER.

If back isabsent, or if it is present with the value false, the value of the result isthe position
number of the leftmost character in string that is not in set.

If back is present with the value true, the value of the result is the position number of the
rightmost character in string that is not in set.

The value of theresult is zero if each character in string isin set, or if string has length zero.

If one or more arguments are arrays, the result is an array of the same shape. The value of
each element of theresulting array isasif the scalar SCAN operation were performed on each
respective element of the input arrays.

Example
character(len=12) :: cl="Howdy there!"
character(len=6) :: c2(2)=(/"Howdy ","there!"/)
character(len=2) :: c3(2)=(/"de","gh"/)
wite(*,*) verify(cl,'de') I wites 1
wite(*,*) verify(c2,c3) I wites 11
wite(*,*) verify(cl,'de', back=. true.) I wites 12
wite(*,*) verify(c2,¢3,(/.true.,.false./)) ! wites 6 1

VOLATILE Statement

Description
The VOLATILE statement indicates that a data object may be referenced, become redefined
or undefined by means not specified in the Fortran standard.

Syntax
VOLATILE[::] object-name-list
Where:

object-name-list isalist of data objects.

Remarks
If an object hasthe VOLATILE attribute, it cannot have the PARAMETER, INTRINSIC,
EXTERNAL, or INTENT(IN) attributes.

If an object hasthe VOLATILE attribute, then all of its subobjects are VOLATILE.

An object may havethe VOLATILE attribute in one scoping unit without necessarily having
it in another scoping unit.

LF Fortran 95 Language Reference 267

Chapter 2 Alphabetical Reference

WHERE

If both POINTER and VOLATILE are specified, the volatility applies to the target of the
POINTER and to the pointer association status.

If both ALLOCATABLE and VOLATILE are specified, the volatility appliesto the aloca-
tion status, bounds and definition status.

Example
real :: rl
volatile :: r1l I volatile statenent
real,volatile :: r2 ! volatile attribute
Construct
Description

The WHERE construct controls which elements of an array will be affected by ablock of
assignment statements. Thisisalso known as masked array assignment.

The WHERE statement signal s the beginning of a WHERE construct.

The EL SE WHERE statement control s assignment of each element of aWHERE statement’s
logical mask that evaluatesto false, and each element of the ELSE WHERE' slogical mask
that evaluatesto true. It executes ablock of assignment statements for each of the corre-
sponding elementsin an assignment expression.

The END WHERE statement signals the end of the innermost nested WHERE construct.

Syntax
WHERE (mask-expr)
[assignment-stnt]
[assignment-stnt]

[ELSEWHERE (mask-expr)]
[assignment-stnt]
[assignment-stmt]

[EL SE WHERE]
[assignment-stnt]
[assignment-stnt]
END WHERE

Where:
mask-expr isa LOGICAL expression.

assignment-stmt is an assignment statement.

268 LF Fortran 95 Language Reference

WHERE Construct

Remarks

mask-expr is evaluated at the beginning of the masked array assignment and the result value
governs the masking of assignments in the WHERE statement or construct. Subsequent
changes to entities in mask-expr have no effect on the masking.

The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stmt is executed, the right-hand side of the assignment is evaluated for all
elements where mask-expr is true and the result assigned to the corresponding elements of
the left-hand side.

If a non-elemental function reference occursin the right-hand side of assignment-stmt, the
function is evaluated without any masked control by the mask-expr.

assignment-stmt must not be a defined assignment statement.
Each statement in a WHERE construct is executed in sequence.

If the EL SE WHERE statement does not have a mask expression, it must be the last block of
assignment code to appear in the construct.

There can be multiple EL SEWHERE statements with mask-exprs.

Example 1
integer :: a(3)=(/1,2,3/)
where (a == 2)
a=-1
end where

Example 2
integer :: a(3)=(/1,2,3/),b(3)=(/3,2,1/)
where (b > a)

a=b ! ais assigned (/3,2,3/)

el se where(b == a) ! (.NOI. b>a) .AND. b==a
b=0 ! bis assigned (/3,0,1/)

el sewhere(a == 2) ! (. NOT.b>a).AND. (. NOT. b==a) . AND. a==
a=a+l ! b==a got to these elenments first

el sewhere I (.NOT. b>a) .AND. (.NOT.b==a).AND. (.NOT.a==2)
b=-1 ! bis assigned (/3,0,-1/)

end where

wite(*,*) ab

LF Fortran 95 Language Reference 269

Chapter 2 Alphabetical Reference

WHERE Statement

Description

The WHERE statement masks the assignment of valuesin array assignment statements. The
WHERE statement can begin a WHERE construct that contains zero or more assignment
statements, or can itself contain an assignment statement.

Syntax
WHERE (mask-expr) [assignment-stmt]

Where:
mask-expr isaLOGICAL expression.

assignment-stmt is an assignment statement.

Remarks

If the WHERE statement contains no assignment-stnt, it specifies the beginning of a
WHERE construct.

The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stmt is executed, the right-hand side of the assignment is evaluated for all
elements where mask-expr istrue and the result assigned to the corresponding elements of
theleft-hand side.

If a non-elemental function reference occursin the right-hand side of assignment-stmt, the
function is evaluated without any masked control by the mask-expr.

mask-expr is evaluated at the beginning of the masked array assignment and the result value
governs the masking of assignments in the WHERE statement or construct. Subsequent
changes to entities in mask-expr have no effect on the masking.

assignment-stmt must not be a defined assignment.

Example

! a, b, and c are arrays

where (a>bh) a=-1 ! where statenent

where (b>c) ! begi n where construct
b=-1

el sewhere
b=1

end where

270 LF Fortran 95 Language Reference

WRITE Satement

WRITE Statement

Description
The WRITE statement transfers values to an input/output unit from entities specified in an
output list or a namelist group.

Syntax
WRITE (io-control-specs) [outputs]

Where:
outputs is a comma-separated list of expr
or io-implied-do

expr isavariable.
io-implied-do is (outputs, implied-do-control)
implied-do-control is do-variable=start, end [, increment]

start, end, and increment are scal ar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variableis ascalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specsis a comma-separated list of
[UNIT =] io-unit

or [FMT =] format

or [NML =] namelist-group-name
or REC=record

or IOSTAT=stat

or ERR=errlabel

or END=endlabel

or EOR=eorlabel

or ADVANCE=advance

or SIZE=size

io-unit is an external file unit, or *

format is aformat specification (see * Input/Output Editing” beginning on page 25).
namelist-group-name is the name of a namelist group.

record is the number of the direct-access record that is to be written.

stat isa scalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs and zero otherwise.

errlabel isalabel that is branched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.

LF Fortran 95 Language Reference 271

Chapter 2 Alphabetical Reference

272

endlabel isalabel that isbranched to if an end-of-file condition occurs and no error condition
occurs during execution of the statement.

eorlabel isalabel that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advanceisascalar default CHARACTER expression that evaluates to NO if non-advancing
input/output isto occur, and Y ES if advancing input/output isto occur. The default valueis
YES.

sizeisascalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing i nput/output
statement.

Remarks

If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in
io-control-specs. If the optional characters FM T= are omitted before format, format must be
the second item in io-control-specs. If the optional characters NML= are omitted before
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

io-control-specs must contain exactly one io-unit, and must not contain both aformat and a
namelist-group-name.

A namelist-group-name must not appear if outputsis present.

If io-unitisaninterna file, io-control-specs must not contain a REC= specifier or anamelist-
group-name.

If thefileisopen for DIRECT, BINARY or TRANSPARENT access, an END= specifier
must not appear, a namelist-group-name must not appear, and format must not be an asterisk
indicating list-directed /0.

An ADVANCE= specifier can appear only in formatted sequential 1/0 with an explicit for-
mat specification (format-expr) whose control list does not contain an internal file specifier.
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with
thevalue NO.

Thedo-variable of animplied-do-control that is contai ned within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it istreated as if the elements were specified in array-
element order.

If aderived type object appearsasan output item, it istreated asif all of the componentswere
specified in the same order as in the definition of the derived type.

LF Fortran 95 Language Reference

WRITE Satement

Example

10

20

character(len=30) :: intfile
integer :: ios,i=1,j=1,k=1
real :: a=1.,b=1.,c=1.

wite (*,*) a,b,c

wite values to stdout

!

I using list directed i/o
wite(3,"(3i10)") i,j,k ! wite to unit 3 using fornat
!

wite(10,*) i,j,k
f or mat (3i 10)

wite stdout using format

wite(1ll) a,b,c ! wite unformatted data to unit 11

wite(intfile,10) i,j,k !
wite(1l2, rec=2) a,b,c !
wite(13,10,err=20) i,j !
wite(13,10,iostat=ios) a [
wite(13, 10, advance="'no"') i,j !

wite internal file

wite direct access file
wite with error branch
wite with status return
next wite on sane |line

LF Fortran 95 Language Reference 273

Chapter 2 Alphabetical Reference

274 LF Fortran 95 Language Reference

Fortran 77
Compatibility

This chapter discussesissuesthat affect the behavior of Fortran 77 and Fortran 90 code when
processed by LF95.

Different Interpretation Under Fortran 95

Standard Fortran 95 is a superset of standard Fortran 90 and a standard-conforming Fortran
90 program will compile properly under Fortran 95. There are, however, two situationsin
which the program’ s interpretation may differ.

» Thebehavior of the SIGN intrinsic function is different if the second argument is
negative real zero.

» Fortran 90 hasmore intrinsic proceduresthan Fortran 77. Therefore, a standard-con-
forming Fortran 77 program may have a different interpretation under Fortran 90 if
it invokesa procedure having the same name as one of the new standard intrinsic pro-
cedures, unless that procedureis specified in an EXTERNAL statement as
recommended for non-intrinsi ¢ functions in the appendix to the Fortran 77 standard.

Different Interpretation Under Fortran 90

Standard Fortran 90 is a superset of standard Fortran 77 and a standard-conforming Fortran
77 program will compile properly under Fortran 90. There are, however, some situationsin
which the program’ s interpretation may differ.

» Fortran 77 permitted a processor to supply more precision derived fromaREAL con-
stant than can be contained in a REAL datum when the constant is used to initialize
aDOUBLE PRECISION dataobject inaDATA statement. Fortran 90 does not per-
mit this option.

LF Fortran 95 Language Reference 275

Appendix A Fortran 77 Compatibility

If anamed variablethat is not inacommon block isinitialized inaDATA statement
and does not have the SAVE attribute specified, Fortran 77 left its SAVE attribute
processor-dependent. Fortran 90 specifies that this named variable has the SAVE
attribute.

Fortran 77 required that the number of characters required by the input list must be
less than or equal to the number of charactersin the record during formatted input.
Fortran 90 specifiesthat the input record islogically padded with blanksif there are
not enough charactersin the record, unlessthe PAD="NO" optionis specified in an
appropriate OPEN statement.

Fortran 90 has moreintrinsic proceduresthan Fortran 77. Therefore, astandard-con-
forming Fortran 77 program may have a different interpretation under Fortran 90 if
it invokesaprocedure having the same name as one of the new standard intrinsic pro-
cedures, unless that procedureis specified in an EXTERNAL statement as

recommended for non-intrinsi ¢ functions in the appendix to the Fortran 77 standard.

Obsolescent Features

Thefollowing features are obsolescent or deleted from the Fortran 95 standard. While these

features are still supported in LF95, their use in new code is not recommended:

Arithmetic IF
REAL and double-precision DO control variables and DO loop control expressions

shared DO termination and termination on a statement other than END DO or
CONTINUE

Branching to an END IF statement from outside its IF block
Alternate return

PAUSE statement

ASSIGN statement and assigned GOTO statement
Assigned format specifier

nH (Hollerith) edit descriptor

Computed GOTO statement

Statement functions

DATA statements amongst executable statements
Assumed-length CHARACTER functions
Fixed-source form

CHARACTER* form of CHARACTER declaration

276 LF Fortran 95 Language Reference

New In Fortran 95

The following Fortran 95 features were not present in Fortran 77. Fortran 95 features that

were not present in Fortran 90 are marked with an asterisk.

Miscellaneous
free source form
enhancements to fixed source form:
;" statement separator
“1" trailing comment
names may be up to 31 charactersin length
both upper and lower case characters are accepted
INCLUDE line
relational operators in mathematical notation
enhanced END statement
IMPLICIT NONE
binary, octal, and hexadecimal constants
guotation marks around CHARACTER constants

Data
enhanced type declaration statements
new attributes:
extended DIMENSION attribute
ALLOCATABLE
POINTER
TARGET
INTENT
PUBLIC
PRIVATE
kind and length type parameters
derived types
pointers

LF Fortran 95 Language Reference

277

Appendix B New in Fortran 95

Operations

extended intrinsic operators
extended assignment
user-defined operators

Arrays

automatic arrays

allocatable arrays

assumed-shape arrays

array sections

array expressions

masked array assignment (WHERE statement and construct)
FORALL statement*

Execution Control
CASE construct
enhance DO construct
CYCLE statement
EXIT statement

Input/Output

binary, octal, and hexadecimal edit descriptors
engineering and scientific edit descriptors
namelist formatting

partial record capabilities (non-advancing 1/0)
extra OPEN and INQUIRE specifiers

Procedures

keyword arguments

optional arguments

INTENT attribute

derived type actual arguments and functions
array-valued functions

recursive procedures

user-defined generic procedures
user-defined elemental procedures*
pure procedures*

specification of procedure interfaces
internal procedures

278 LF Fortran 95 Language Reference

Modules

New Intrinsic Procedures
NULL*
PRESENT
numeric functions
CEILING
FLOOR
MODULO
character functions
ACHAR
ADJUSTL
ADJUSTR
IACHAR
LEN_TRIM
REPEAT
SCAN
TRIM
VERIFY
kind Functions
KIND
SELECTED INT_KIND
SELECTED_REAL_KIND
LOGICAL
numeric inquiry functions
DIGITS
EPSILON
HUGE
MAXEXPONENT
MINEXPONENT
PRECISION
RADIX
RANGE
TINY
BIT_SIZE
bit manipulation functions
BTEST
IAND
IBCLR
IBITS
IBSET
IEOR
IOR
ISHFT

LF Fortran 95 Language Reference

279

Appendix B New in Fortran 95

ISHFTC
NOT

TRANSFER

floating-point manipulation functions
EXPONENT
FRACTION
NEAREST
RRSPACING
SCALE
SET_EXPONENT
SPACING

vector and matrix multiply functions
DOT_PRODUCT
MATMUL

array reduction functions
ALL
ANY
COUNT
MAXVAL
MINVAL
PRODUCT
SUM

array inquiry functions
ALLOCATED
LBOUND
SHAPE
SIZE
UBOUND

array construction functions
MERGE
FSOURCE
PACK
SPREAD
UNPACK

RESHAPE

array manipulation functions
CSHFT
EOSHIFT
TRANSPOSE

array location functions
MAXLOC
MINLOC

ASSOCIATED

280 LF Fortran 95 Language Reference

intrinsic subroutines
CPU_TIME*
DATE_AND_TIME
MVBITS
RANDOM_NUMBER
RANDOM_SEED
SYSTEM_CLOCK

LF Fortran 95 Language Reference 281

Appendix B New in Fortran 95

282 LF Fortran 95 Language Reference

Intrinsic Procedures

The tablesin this chapter offer a synopsis of procedures included with Lahey Fortran. For
detailed information on individual procedures, see the chapter “ Alphabetical Reference” on

page 61.

All proceduresin thesetablesareintrinsic. Specific function names may be passed as actual
arguments except for where indicated by an asterisk in the tables. Note that for almost all
programming situations it is best to use the generic procedure name.

LF Fortran 95 Language Reference 283

Appendix C

Intrinsic Procedures

284

Table 12: Numeric Functions

Name
Foecific Function Type Argument Type | Description Class
Names
ABS Numeric Numeric
CABS REAL_4 COMPLEX_4
CDABS REAL_8 COMPLEX_8
CQABS REAL_16 COMPLEX_16
gﬁgg Egt—% Egt—% Absolute Value. Elemental
IABS INTEGER 4 INTEGER 4
I2ABS INTEGER 2 INTEGER 2
IIABS INTEGER 2 INTEGER 2
JIABS INTEGER 4 INTEGER 4
AIMAG REAL COMPLEX Imaginary part of
DIMAG REAL 8 COMPLEX 8 acomplex num- Elemental
QIMAG REAL 16 COMPLEX_16 ber.
AINT REAL REAL Truncationto a
DINT REAL_8 REAL_8 whole number Elemental
QINT REAL_16 REAL_16 '
ANINT REAL REAL REAL representa-
DNINT REAL_8 REAL_8 tion of the nearest | Elemental
ONINT REAL_16 REAL_16 whole number.
Smallest INTE-
CEILING | INTEGER 4 | REAL GER greater than | b iy
or equal to anum-
ber.
CMPLX COMPLEX Numeric Convert to tvpe
DCMPLX COMPLEX_8 | Numeric COMPLEXyp Elemental
QCMPLX COMPLEX_16 Numeric)
CONJG COMPLEX COMPLEX Coniucate of a
DCONJG COMPLEX_8 COMPLEX_8 comJ ng number Elemental
QCONJG COMPLEX_16 | COMPLEX_16 P '
DBLE REAL_8 Numeric Convert to dou-
DREAL* REAL 8 COMPLEX 8 ble-precision Elemental
DFLOAT* REAL_8 INTEGER 4 REAI\D L tvpe
DBLEQ REAL 8 REAL_16 Ype-

LF Fortran 95 Language Reference

Table 12: Numeric Functions

Name

Foecific Function Type Argument Type | Description Class

Names

DIM INTEGER or INTEGER or

REAL REAL .

DDIM REAL 8 REAL 8 gg‘jv‘ig;e{vfgcgum_

QDIM REAL 16 REAL 16 bersif the differ- | Elemental

IDIM INTEGER_4 INTEGER_4 ence is positive:

12DIM INTEGER 2 INTEGER 2 2610 oth%rwise ’

[IDIM INTEGER 2 INTEGER 2)

JIDIM INTEGER 4 INTEGER 4
Double-precision

DPROD REAL_8 REAL_4 REAL product. Elemental
Exponent part of

EXPO- the model repre-

NENT REAL REAL sentation of a Elementa
number.
Greatest INTE-

FLOOR INTEGER_4 REAL GERlessthanor | Elementa
equal to anumber.
Fraction part of

FRAC- the physical repre-

TION REAL REAL sentation of a Elemental
number.

INT INTEGER Numeric

IDINT* INTEGER REAL_8

IQINT* INTEGER REAL_16

[FIX* INTEGER REAL_4

INT2* INTEGER 2 Numeric

INT4* INTEGER 4 Numeric

HFIX* INTEGER 2 | REAL_4 ggg?t? INTE | Elemental

[INT* INTEGER_2 REAL 4 ype.

JINT* INTEGER 4 REAL 4

IIDINT* INTEGER 2 REAL_8

JIDINT* INTEGER 4 REAL_8

HEIX* INTEGER 2 REAL 4

JIFIX* INTEGER 4 REAL 4

LF Fortran 95 Language Reference 285

Appendix C

Intrinsic Procedures

286

Table 12: Numeric Functions

Name
Foecific Function Type Argument Type | Description Class
Names
MAX INTEGER or INTEGER or
REAL REAL
AMAXO0* REAL_4 INTEGER_4
AMAX1* REAL_4 REAL_4
DMAX1* REAL_8 REAL_8
QMAX1* REAL_16 REAL_16
MAXO0* INTEGER_4 INTEGER_4
MAX1* INTEGER_4 REAL_4 Maximum value. Elemental
2MAX0* INTEGER 2 INTEGER 2
IMAX0* INTEGER 2 INTEGER 2
JMAXO0* INTEGER 4 INTEGER 4
IMAX1* INTEGER 2 REAL 4
JMAX1* INTEGER 4 REAL 4
AIMAXO* REAL 4 INTEGER 2
AIMAXO* REAL 4 INTEGER 4
MIN INTEGER or INTEGER or
REAL REAL
AMINO* REAL_4 INTEGER 4
AMIN1* REAL_4 REAL_4
DMIN1* REAL_8 REAL_8
QMIN1* REAL_16 REAL_16
MINO* INTEGER 4 INTEGER 4
MIN1* INTEGER 4 REAL 4 Minimum value. Elemental
[2MINO* INTEGER 2 INTEGER 2
IMINO* INTEGER 2 INTEGER 2
JMINO* INTEGER 4 INTEGER 4
IMIN1* INTEGER 2 REAL 4
JMIN1* INTEGER 4 REAL_4
AIMINO* REAL 4 INTEGER 2
AIMINO* REAL 4 INTEGER 4

LF Fortran 95 Language Reference

Table 12: Numeric Functions

Name
Foecific Function Type Argument Type | Description Class
Names
MOD INTEGER or INTEGER or
REAL REAL
AMOD REAL 4 REAL 4
DMOD REAL 8 REAL 8 Remainder Elemental
QMOD REAL_16 REAL_16 ’
12MOD INTEGER 2 INTEGER 2
IMOD INTEGER 2 INTEGER 2
JMOD INTEGER 4 INTEGER 4
MODULO 'RNETAELGER or 'RNETAELGER | Modulo. Elemental
Nearest number of
NEAREST | REAL REAL agivendatatype | oo
inagiven direc-
tion.
NINT INTEGER REAL
IDNINT INTEGER 4 REAL_8
IQNINT INTEGER 4 REAL_16
I2NINT INTEGER 2 REAL Nearest INTE- Elemental
ININT INTEGER 4 REAL 4 GER.
JNINT INTEGER 2 REAL 4
IIDNNT INTEGER 2 REAL_8
JIDNNT INTEGER 4 REAL_8
REAL REAL Numeric
FLOAT* REAL 4 INTEGER
NGL* REAL 4 REAL 8
NGLQ* REAL 4 REAL 16 Convert to REAL
Elemental
FLOATI* REAL 4 INTEGER 2 type.
FLOATJ* REAL 4 INTEGER 4
DFLOTI* REAL 8 INTEGER 2
DFLOTJ* REAL 8 INTEGER 4
Reciprocal of rel-
FNRGSP AC- | ReAL REAL ative spacing near | Elemental

agiven number.

LF Fortran 95 Language Reference 287

Appendix C

Intrinsic Procedures

288

Table 12: Numeric Functions

Name
Foecific Function Type Argument Type | Description Class
Names
Multiply a num-
REAL and
SCALE REAL INTEGER ber by apower of | Elemental
two.
Model representa-
SET tion of a number
EXPO- REAL :?NE"I'A\ELGaEnI(?j with exponent Elemental
NENT part set to a power
of two.
SIGN INTEGER or INTEGER or
REAL REAL
DSIGN REAL_8 REAL_8
QSGN REAL_16 REAL_16 .
ISGN INTEGER 4 INTEGER 4 | |ransferofsign. | Elemental
129 GN INTEGER 2 INTEGER 2
IISSGN INTEGER 2 INTEGER 2
JISGN INTEGER 4 INTEGER 4
Absolute spacing
SPACING REAL REAL near agiven num- | Elemental
ber.

LF Fortran 95 Language Reference

Table 13: Mathematical Functions

Name
Foecific Function Type Argument Type | Description Class
Names
ACOS REAL REAL Arccosine, Elemental
DACOS REAL 8 REAL 8 '
ASIN REAL REAL .
DASN REAL 8 REAL 8 Arcsine. Elemental
ATAN REAL REAL
DATAN REAL_8 REAL_ 8 Arctangent. Elemental
Arctangent of y/x
ATANZ | REAL REAL theagumenor | Hemerta
DATAN2 | REAL_8 REAL_8 g
the complex num-
ber (x,y))-
COSs REAL or REAL or
COMPLEX COMPLEX
CCOSs COMPLEX 4 COMPLEX 4
CDCOs COMPLEX 8 COMPLEX 8 Cosine. Elemental
CQCOS COMPLEX_16 | COMPLEX_16
DCOS REAL 8 REAL 8
QCOS REAL 16 REAL 16
COSH REAL REAL Hvperbolic
DCOH REAL_8 REAL_8 Cg’s‘?ne Elemental
QCOH REAL_16 REAL_16 '
EXP REAL or REAL or
COMPLEX COMPLEX
CEXP COMPLEX 4 COMPLEX 4
CDEXP COMPLEX_8 COMPLEX_8 Exponential. Elemental
CQEXP COMPLEX_16 COMPLEX_16
DEXP REAL 8 REAL 8
QEXP REAL_16 REAL_16

LF Fortran 95 Language Reference 289

Appendix C

Intrinsic Procedures

290

Table 13: Mathematical Functions

Name
Foecific Function Type Argument Type | Description Class
Names
LOG REAL or REAL or
COMPLEX COMPLEX
ALOG REAL_4 REAL_4
CLOG COMPLEX_4 COMPLEX_4 .
CDLOG COMPLEX 8 | COMPLEX g | 'vaurd logarithm. | Elementa
CQLOG COMPLEX_16 | COMPLEX_16
DLOG REAL_8 REAL_8
QLOG REAL_16 REAL_16
LOG10 REAL REAL
ALOG10 REAL 4 REAL 4 Common loga Elemental
DLOG10 REAL_8 REAL_8 rithm.
QLOG10 REAL 16 REAL 16
SIN REAL or REAL or
COMPLEX COMPLEX
CSN COMPLEX_4 COMPLEX_4
CDSN COMPLEX_8 COMPLEX_8 Sine. Elemental
CQSN COMPLEX_16 | COMPLEX_16
DSIN REAL_8 REAL_8
QSN REAL_16 REAL_16
SINH REAL REAL
DSINH REAL_8 REAL_8 Hyperbolic sine. Elemental
QSNH REAL_16 REAL_16
SQRT REAL or REAL or
COMPLEX COMPLEX
CSQRT COMPLEX_4 COMPLEX_4
CDSQRT COMPLEX 8 COMPLEX 8 Square root. Elemental
CQSQRT COMPLEX_16 | COMPLEX_16
DSQRT REAL_8 REAL_8
QSQRT REAL 16 REAL 16
TAN REAL REAL
DTAN REAL_8 REAL_8 Tangent. Elemental
QTAN REAL_16 REAL_16

LF Fortran 95 Language Reference

Table 13: Mathematical Functions

Name

Foecific Function Type Argument Type | Description Class
Names

TANH REAL REAL Hyperbolic tan-

DTANH REAL_8 REAL_8 gent Elemental
QTANH REAL_16 REAL_16 '

LF Fortran 95 Language Reference

291

Appendix C

Intrinsic Procedures

Table 14: Character Functions

Name Description Class
ACHAR Character in aspecified position of the ASCII col- Elemental
lating sequence.
ADJUSTL Adj us_t to th_e _Ieft, removing leading blanks and Elemental
inserting trailing blanks.
ADJUSTR Adj u;t to the _rlght, removing trailing blanks and Elemental
inserting leading blanks.
CHAR G_|ven character in the collating sequence of thea Elemental
given character set.
IACHAR Position of a character in the ASCII collating Elemental
sequence.
Position of a character in the processor collating
ICHAR sequence associated with the kind of the character. Elemental
INDEX Starting position of a substring within a string. Elemental
LEN Length of a CHARACTER data object. Inquiry
LEN TRIM Length of a CHARACTER entity without trailing Elemental
- blanks.
Test whether astring islexically greater than or
LGE equal to another string based on the ASCII collat- | Elemental
ing sequence.
Test whether astring islexically greater than
LGT another string based on the ASCI|I collating Elemental
sequence.
Test whether astring is lexically less than or equal
LLE to another string based on the ASCI| collating Elemental
sequence.
Test whether astring is lexically less than another
LLT string based on the ASCI| collating sequence. Elemental
REPEAT Concatenate copies of a string. ;Ii'(r)?]n;forma-
SCAN Scan a string for any one of a set of characters. Elemental

292 LF Fortran 95 Language Reference

Table 14: Character Functions

Name Description s

TRIM Omit trailing blanks. Transforma-
tional

VERIEY Verify that a set of characters contains al the char- Elemental

actersin astring.

LF Fortran 95 Language Reference

293

Appendix C

Intrinsic Procedures

294

Table 15: Array Functions

Name Description Class
Determine whether al valuesin amask are true Transforma:
ALL : . : .
along agiven dimension. tional
ALLOCATED Indicate whether an allocatable array has been allo- Inqiry
cated.
Determine whether any values are true in a mask Transforma-
ANY : . : .
along agiven dimension. tional
Count the number of true elementsinamask along | Transforma-
COUNT . . X .
agiven dimension. tional
Circular shift of all rank one sectionsin an array.
Elements shifted out at one end are shifted in at the Transforma
CSHIFT other. Different sections can be shifted by differ- .
S . . tional
ent amounts and in different directions by using an
array-valued shift.
DOT_ S Transforma-
PRODUCT Dot-product multiplication of vectors. tional
End-off shift of all rank one sectionsin an array.
Elements are shifted out at one end and copies of
EOSHIET boundary values are shifted in at the other. Differ- | Transforma-
ent sections can be shifted by different amounts tional
and in different directions by using an array-valued
shift.
L BOUND Lower bounds of an array or adimension of an Inqiry
array.
MATMUL Matrix multiplication. Transformar
tional
Location of the first element in array having the Transforma
MAXLOC maximum value of the elements identified by .
tional
mask.
MAXVAL Maximum value of elements of an array, along a Transforma
given dimension, for which amask istrue. tional
MERGE Choose dternative values based on the value of a Elemental

mask.

LF Fortran 95 Language Reference

Table 15: Array Functions

Name Description Class
MINLOC Location of the first element in array having the Transforma-

minimum value of the elementsidentified by mask. | tional
MINVAL Minimum value of elements of an array, along a Transforma

given dimension, for which amask istrue. tional

Pack an array into a vector under control of a Transforma-
PACK .

mask. tional

Product of elements of an array, along agiven Transforma-
PRODUCT dimension, for which amask istrue. tional
RESHAPE C_onstruct an array of a specified shape from a Transforma—

given array. tional
SHAPE Shape of an array. Inquiry
SIZE Size of an array or adimension of an array. Inquiry
SPREAD Addsadimensionto an array by adding copiesof a | Transforma-

data object along a given dimension. tional

Sum of elements of an array, along agiven dimen- | Transforma-
SUM : : . .

sion, for which amask is true. tional
TRANSPOSE Transpose an array of rank two. Egar\]njforma—
UBOUND Upper bounds of an array or adimension of an Inqiry

array.
UNPACK Unpack an array of rank one into an array under Transforma—

control of amask. tional

LF Fortran 95 Language Reference

295

Appendix C

Intrinsic Procedures

296

Table 16: Inquiry and Kind Functions

Name Description Class

ALLOCATED Indicate whether an allocatable array has been allo- Inqiry
cated.

ASSOCIATED Igr;(tzh cate whether a pointer is associated with atar- Inqiry

BIT_SIZE Size, in bits, of a data object of type INTEGER. Inquiry

DIGITS Number of significant binary digits. Inquiry

EPSILON Posm_ve value that is almost negligible compared Inqiry
to unity.

HUGE Largest representable number of data type. Inquiry

KIND Kind type parameter. Inquiry

L BOUND Lower bounds of an array or adimension of an Inqiry
array.

LEN Length of a CHARACTER data object. Inquiry

MAXEXPO- Maximum binary exponent of datatype. Inquiry

NENT

MINEXPO- - . .

NENT Minimum binary exponent of datatype. Inquiry

PRECISION Decimal precision of datatype. Inquiry

PRESENT Determine whether an optional argument is Inqiry
present.

RADIX Number base of the physical representation of a Inqiry
number.

RANGE Decimal range of the data type of a number. Inquiry

SELECTED Kind type paramet_er of an INTEGER data type Transforma

- that represents all integer values n with .

INT_KIND r r tional
-10 <n<10'.

L ECTED_ | aon ol & et p it nd adecimal | TS

REAL_KIND P pdg tional

exponent range of at least r.

LF Fortran 95 Language Reference

Table 16: Inquiry and Kind Functions

Name Description Class

SHAPE Shape of an array. Inquiry

SIZE Size of an array or adimension of an array. Inquiry

TINY Smallest representable positive number of data Inqiry
type.

UBOUND Upper bounds of an array or adimension of an Inqiry

array.

LF Fortran 95 Language Reference

297

Appendix C

Intrinsic Procedures

298

Table 17: Bit Manipulation Procedures

Name
Foecific Function Type Argument Type | Description Class
Names
BTEST LOGICAL_4 INTEGER
BITEST LOGICAL_4 INTEGER 2 Bit testing. Elemental
BJTEST LOGICAL_4 INTEGER 4
IAND INTEGER INTEGER Bit-wise [ogical
[IAND INTEGER 2 INTEGER 2 AND d Elemental
JIAND INTEGER 4 INTEGER 4)
IBCLR INTEGER INTEGER Clear one bit to
IIBCLR INTEGER 2 INTEGER 2 2610 Elemental
JIBCLR INTEGER 4 INTEGER 4 ’
IBITS INTEGER INTEGER Extract a
1IBITS INTEGER 2 INTEGER 2 uence of bits Elemental
JIBITS INTEGER 4 INTEGER 4 4)
IBSET INTEGER INTEGER
[IBSET INTEGER 2 INTEGER 2 Set a bit to one. Elemental
JIBSET INTEGER 4 INTEGER 4
IEOR INTEGER INTEGER Bit-wise loqical
IIEOR INTEGER 2 INTEGER 2 exclusive C?R Elemental
JIEOR INTEGER 4 INTEGER 4 ’
IOR INTEGER INTEGER Bit-wise loqical
IIOR INTEGER 2 INTEGER 2 inclusive O?? Elemental
JIOR INTEGER 4 INTEGER_4 ’
ISHFT INTEGER INTEGER
IHSHFT INTEGER 2 INTEGER 2 Bit-wise shift. Elemental
JISHFT INTEGER 4 INTEGER 4
ISHFTC INTEGER INTEGER Bit-wise circular
[ISHFTC INTEGER 2 INTEGER 2 shift of rightmost | Elemental
JISHFTC INTEGER 4 INTEGER_4 bits.
Copy a sequence
of bits from one .
MVBITS INTEGER INTEGER data Subroutine
object to another.

LF Fortran 95 Language Reference

Table 17: Bit Manipulation Procedures

Name
Foecific Function Type Argument Type | Description Class
Names
NOT INTEGER INTEGER Bit-wise loqical
INOT INTEGER 2 INTEGER 2 com Iemen% Elemental
JNOT INTEGER 4 INTEGER 4 P '
Table 18: Other Intrinsic Functions

Name Description Class
LOGICAL Convert between kinds of LOGICAL. Elemental
NULL Disassociated pointer. Elemental

Interpret the physical representation of a number Transforma
TRANSFER with the type and type parameters of a given num- tional

ber.

Table 19: Standard Intrinsic Subroutines
Name Description Class
CPU_TIME CPU time. Subroutine
DATE_AND_ Date and real-time clock data. Subroutine
TIME
MVBITS quy a sequence of bits from one INTEGER data Subroutine

object to ancther.
RANDOM _ Uniformly distributed pseudorandom number or Subroutine
NUMBER numbersintherange 0<x<1.

Set or query the pseudorandom number generator
RANDOM _ used by RANDOM_NUMBER. If no argument is Subroutine
SEED present, the processor sets the seed to a predeter-

mined value.
SYSTEM _ . .
CLOCK INTEGER data from the real-time clock. Subroutine

LF Fortran 95 Language Reference 299

Appendix C

Intrinsic Procedures

300

Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name
Foecific Function Type Argument Type | Description Class
Names
ACOSD REAL_4 REAL_4 Arccosnein
DACOSD REAL 8 REAL 8 e ens Elemental
QACOSD | REAL_16 REAL_16 eoress
ALGAMA | REAL 4 REAL 4 | o0 cemmafunc.
DLGAMA | REAL 8 REAL 8 tiog 9 Elemental
QLGAMA | REAL 16 REAL_16 :
ASIND REAL_4 REAL_4 Arcsnein
DASIND REAL 8 REAL 8 e Elemental
QASND | REAL_16 REAL_16 eoress
ATAND REAL_4 REAL_4 Arctangent in
DATAND REAL 8 REAL 8 g reé’ Elemental
QATAND REAL_16 REAL_16 egrees.

Arctangent of y/x
ATAN2D REAL 4 REAL 4 (principal valueof
DATAN2D | REAL 8 REAL 8 :EE i;%ﬂ:;tn(jm- Elemental
QATANZ2D | REAL 16 REAL_16 P

ber (x,y)) in

degrees.
COsD REAL_4 REAL_4
DCOSD REAL_8 REAL_8 Cosinein degrees. | Elemental
QCOSD REAL_16 REAL_16
COTAN REAL_4 REAL_4
DCOTAN REAL_8 REAL_8 Cotangent. Elemental
QCOTAN REAL_16 REAL_16
ERF REAL 4 REAL 4
DERF REAL 8 REAL 8 Error function. Elemental
QERF REAL_16 REAL_16
ERFC REAL 4 REAL 4 Error function
DERFC REAL 8 REAL 8 o olement Elemental
QERFC REAL_16 REAL_16 P :

LF Fortran 95 Language Reference

Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name

Foecific Function Type Argument Type | Description Class
Names

GAMMA REAL_4 REAL_4

DGAMMA REAL_8 REAL_8 Gammafunction. | Elemental
QGAMMA REAL_16 REAL_16

SIND REAL 4 REAL 4

DSIND REAL 8 REAL 8 Sinein degrees. Elemental
QSIND REAL_16 REAL_16

TAND REAL_4 REAL_4 Tangent in

DTAND REAL_8 REAL_8 d ?ees Elemental
QTAND REAL_16 REAL_16 egrees.

|ZEXT INTEGER_2 LOGICAL_1

|ZEXT2 INTEGER_2 INTEGER_2

JZEXT INTEGER_4 LOGICAL_4 Zero extend. Elemental
JZEXT2 INTEGER_4 INTEGER_2

JZEXT4 INTEGER_4 INTEGER_4

LF Fortran 95 Language Reference 301

Appendix C

Intrinsic Procedures

302

Table 21: Utility Procedures

Name Description Class
CARG Passitemto aprocedure asa C datatype by value. | Utility
CARG can only be used as an actual argument. Function
DLL EXPORT Speufy Whlch_procedureﬁ should be availableina | Utility _
- dynamic-link library. Subroutine
DLL IMPORT Specify Whl _ch procedures areto beimported from | Ultility .
- adynamic-link library. Subroutine
Theinitial invocation of the DV CHK subroutine
masks the divide-by-zero interrupt on the floating-
point unit. Subsequent invocations return true or Utilit
DVCHK falsein thelflag variable if the exception has Subrguti ne
occurred or not occurred, respectively. DVCHK
will not check or mask zero divided by zero. Use
INVALOP to check for a zero divided by zero.
ERROR Print a message to the console with a subprogram | Utility
traceback, then continue processing. Subroutine
Terminate the program and set the DOS error Utility
EXIT .
level. Subroutine
Empty the buffer for an input/output unit by writ- Utilit
FLUSH ing to its corresponding file. Note that this does Subrguti ne
not flush the DOS file buffer.
. Utility
GETCL Get command line. Subroutine
- . . Utility
GETENV Get the specified environment variable. .
Function
Theinitia invocation of the INVALOP subroutine
masks the invalid operator interrupt on the float- Utilit
INVALOP ing-point unit. Subsequent invocations return true Subrguti ne
or falsein theIflag variable if the exception has
occurred or not occurred, respectively.
|OSTAT MSG Get _aruntl me /O error message then continue pro- | Utility _
- cessing. Subroutine
. . . Utility
NDPERR Report floating point exceptions. Function

LF Fortran 95 Language Reference

Table 21: Utility Procedures

Name Description Class
NDPEXC Mask all floating point exceptions. Utility .
' Subroutine
Get the DOS offset portion of the memory address Utilit
OFFSET of avariable, substring, array reference, or external Y
Function
subprogram.
Theinitial invocation of the OVEFL subroutine
masks the overflow interrupt on the floating-point Utilit
OVEFL unit. Subsequent invocationsreturn true or falsein Subrguti ne
the Iflag variable if the exception has occurred or
not occurred, respectively.
Get the memory address of avariable, substring, Utility
POINTER .
array reference, or external subprogram. Function
Set fill character for numeric fields that are wider Utilit
PRECFILL than supplied numeric precision. The default is Y
0 Subroutine
Set prompt for subsequent READ statements. For- | Utility
PROMPT . .
tran default is no prompt. Subroutine
Get the DOS segment portion of the memory Utilit
SEGMENT address of avariable, substring, array reference, or Y
Function
external subprogram.
SYSTEM Execut_eaDOS command asif from the DOS com- | Utility _
mand line. Subroutine
Theinitial invocation of the UNDFL subroutine
masks the underflow interrupt on the floating-point Utilit
UNDFL unit. Subsequent invocationsreturn true or falsein Subrguti ne
the Iflag variable if the exception has occurred or
not occurred, respectively.
VAL Pass an item to a procedure by value. VAL can Utility
only be used as an actual argument. Function
Causes a Windows 3.1 program to yield control to
YIELD Windows so that computation-intensive operations | Utility
do not monopolize the processor. YIELD has no Function

effect under other supported operating systems.

LF Fortran 95 Language Reference

303

Appendix C Intrinsic Procedures

304 LF Fortran 95 Language Reference

Porting Extensions

The following non-standard features are supported by LF95. Note that for service proce-
dures, amodule SERVICE_ROUTINES s provided. Use SERVICE_ROUTINES to have
the compiler check interfaces for the various service procedures. See the USE statement for
details on how to use amodule.

» Dollar sign as aletter

» Backslash asaspecial character

» Unlimited number of continuation linesin free or fixed source form
» Omission of required significant blanksin free source form
e DO UNTIL statement

* FIND statement

e STRUCTURE statement

e END STRUCTURE statement

* UNION statement

e END UNION statement

MAP statement

e END MAP statement

* RECORD statement

* Non-standard POINTER statement

* AUTOMATIC statement and attribute

e STATIC statement and attribute

* VALUE statement and attribute

* VOLATILE statement and attribute

LF Fortran 95 Language Reference 305

Appendix D Porting Extensions

306

DLL_IMPORT statement
DLL_EXPORT statement

BY TE statement

Double-precision COMPLEX constants
Hollerith constants

Bdigitsform of binary constant

digitsO form of octal constant

X'digits' form of hexadecimal constant
‘digits' X form of hexadecimal constant
Zdigits form of hexadecimal constant

Binary, Octal, or Hexadecimal constant inaDATA, PARAMETER, or type decla-
ration statement

*.” period structure component separator

type*n formin type declaration, FUNCTION or IMPLICIT statement (e.g.
INTEGER*4)

/literal-constant/ form of initialization in type declaration statement
IMPLICIT UNDEFINED statement

Namelist input/output on internal file

Variable format expressions

NUM specifier

ACTION ='BOTH’

FORM = ‘TRANSPARENT’ (use FORM=BINARY instead)
TOTALREC specifier

STATUS=‘SHR’

Gw edit descriptor

$ edit descriptor

\ edit descriptor

R edit descriptor

D,E F, G, 1,L,B,OorZ descriptor without w, d or eindicators

&name...&end namelist record

LF Fortran 95 Language Reference

e TIMER intrinsic subroutine
e SEGMENT and OFFSET intrinsic functions
VAL and LOC intrinsic functions

e Thefollowing service subroutines: ABORT, BEEP, BIC, BIS, CLOCK, CLOCKM,
DATE, ERRSAV, ERRSTR, ERRSET, ERRTRA, FDATE, FLUSH, FREE,
GETARG, GETDAT, GETLOG, GETPARM, GETTIM, GMTIME, IBTOD,
IDATE, IETOM, ITIME, IVALUE, LTIME, MTOIE, PERROR, PRECFILL,
PRNSET, QSORT, SETRCD, SETBIT, SLEEP, TIME

» Thefollowing service functions: ACCESS, ALARM, BIT, CHDIR, CHMOD,
CTIME, DRAND, DTIME, ETIME, FGETC, FPUTC, FSEEK, FSTAT, FTELL,
GETC, GETCWD, GETFD, GETPID, HOSTNM, IARGC, IERRNO, INMAX,
IRAND, JDATE, KILL, LNBLNK, LONG, LSTAT, MALLOC, NARGS, PUTC,
RAN, RAND, RENAME, RINDEX, RTC, SECOND, SECNDS, SETDAT, SET-
TIM, SHORT, SIGNAL, STAT, TIMEF, UNLINK

Additional information on serviceroutinesisinthefiler eadme_servi ce_routi nes. t xt
(Windows) or ser vi ce_r out i nes (Linux).

LF Fortran 95 Language Reference 307

Appendix D Porting Extensions

308 LF Fortran 95 Language Reference

e Glossary

action statement: A single statement specifying a computational action.

actual argument: Anexpression, avariable, aprocedure, or an alternate return specifier that
is specified in a procedure reference.

allocatablearray: A named array havingthe ALLOCATABLE attribute. Only when it has
space alocated for it does it have a shape and may it be referenced or defined.

argument: An actual argument or adummy argument.

argument association: The relationship between an actual argument and a dummy argu-
ment during the execution of a procedure reference.

argument keyword: A dummy argument name. It may be used in a procedure reference
ahead of the equals symbol provided the procedure has an explicit interface.

array: A setof scalar data, all of the same type and type parameters, whose individual ele-
ments are arranged in a rectangular pattern. It may be a named array, an array section, a
structure component, afunction value, or an expression. Itsrank isat least one.

array element: One of the scalar datathat make up an array that iseither named or isastruc-
ture component.

array pointer: A pointer to an array.

array section: A subobject that is an array and is not a structure component.
array-valued: Having the property of being an array.

assignment statement: A statement of the form ‘‘variable = expression’’.
association: Name association, pointer association, or storage association.

assumed-sizearray: A dummy array whose sizeisassumed from the associated actual argu-
ment. Itslast upper bound is specified by an asterisk.

LF Fortran 95 Language Reference 309

Appendix E Glossary

310

attribute: A property assigned to a data object that modifies how the object behaves. The
property may be specified in atype declaration statement, or in an attribute assignment
statement.

automatic data object: A dataobject that isalocal entity of a subprogram, that is not a
dummy argument, and that has a nonconstant CHARACTER length or array bound.

belong: If an EXIT or aCY CL E statement contains a construct name, the statement bel ongs
to the DO construct using that name. Otherwise, it belongsto the innermost DO construct in
which it appears.

block: A sequence of executable constructs embedded in another executable construct,
bounded by statements that are particular to the construct, and treated as an integral unit.

block data program unit: A program unit that provides initial values for data objectsin
named common blocks.

bounds: For anamed array, the limits within which the values of the subscripts of its array
elements must lie.

character: A letter, digit, or other symbol.
character string: A seguence of characters numbered from lefttoright 1, 2, 3,. . .
collating sequence: The order of all the different charactersin a particular character set.

common block: A block of physical storagethat may be accessed by any of the scoping units
in an executable program.

component: A constituent of a derived type.

conformable: Two arrays are said to be conformable if they have the same shape. A scalar
is conformable with any array.

conformance: An executable program conforms to the standard if it uses only those forms
and relationships described therein and if the executable program has an interpretation
according to the standard. A program unit conforms to the standard if it can be included in
an executable program in a manner that allows the executable program to be standard con-
forming. A processor conformsto the standard if it executes standard-conforming programs
in amanner that fulfills the interpretations prescribed in the standard.

connected:
For an external unit, the property of referring to an external file.

For an external file, the property of having an external unit that refersto it.

constant: A dataobject whose value must not change during execution of an executabl e pro-
gram. It may be a named constant or aliteral constant.

constant expression: An expression satisfying rules that ensure that its value does not vary
during program execution.

LF Fortran 95 Language Reference

construct: A sequence of statements starting with a CASE, DO, IF, or WHERE statement
and ending with the corresponding terminal statement.

contiguous: Having the property of being adjoining, or adjacent to.
data: A set of quantitiesthat may have any of the set of values specified for its data type.

data entity: A dataobject, the result of the evaluation of an expression, or the result of the
execution of afunction reference (called the function result). A data entity has a data type
(either intrinsic or derived) and has, or may have, adatavalue (the exception is an undefined
variable). Every dataentity has arank and isthus either a scalar or an array.

data object: A dataentity that is aconstant, avariable, or a subobject of a constant or
variable.

datatype: A named category of datathat is characterized by a set of values, together with a
way to denote these values and a collection of operations that interpret and manipul ate the
values. For anintrinsic type, the set of data values depends on the values of the type
parameters.

datum: A single quantity that may have any of the set of values specified for its data type.

deferred shape: The declaration of an arrays rank only, leaving the size and shape of the
array undefined.

definable: A variableisdefinableif itsvalue may be changed by the appearance of its name
or designator on the left of an assignment statement. An allocatable array that has not been
allocated is an example of adataobject that isnot definable. An example of a subobject that
isnot definable is Cwhen Cisan array that isa constant and | isan INTEGER variable.

defined: For adata object, the property of having or being given avalid value.

defined assignment statement: Anassignment statement that isnot an intrinsic assignment
statement and i s defined by asubroutine and aninterface block that specifiesASSIGNMENT

(3.

defined operation: An operation that is not an intrinsic operation and is defined by afunc-
tion that is associated with a generic identifier.

derived type: A typewhose data have components, each of which iseither of intrinsic type
or of another derived type.

designator: See subobject designator.

disassociated: A pointer isdisassociated following execution of aDEALLOCATE or NUL-
LIFY statement, or following pointer association with a disassociated pointer.

dummy argument: An entity whose name appears in the parenthesized list following the
procedure namein a FUNCTION statement, a SUBROUTINE statement, an ENTRY state-
ment, or a statement function statement.

dummy array: A dummy argument that is an array.

LF Fortran 95 Language Reference 311

Appendix E Glossary

312

dummy pointer: A dummy argument that is a pointer.
dummy procedure: A dummy argument that is specified or referenced as a procedure.

elemental: An adjective applied to an intrinsic operation, procedure, or assignment state-
ment that is applied independently to elements of an array or corresponding elements of a set
of conformable arrays and scalars.

entity: Theterm used for any of thefollowing: aprogram unit, a procedure, an operator, an
interface block, acommon block, an external unit, a statement function, atype, anamed vari-
able, an expression, acomponent of a structure, a named constant, a statement label, a
construct, or a namelist group.

executable construct: A CASE, DO, IF, or WHERE construct or an action statement.
executable program: A set of program units that includes exactly one main program.

executable statement: An instruction to perform or control one or more computational
actions.

explicit interface: For a procedure referenced in a scoping unit, the property of being an
internal procedure, amodule procedure, anintrinsic procedure, an external procedurethat has
an interface block, arecursive procedure reference in its own scoping unit, or adummy pro-
cedure that has an interface block.

explicit-shape array: A named array that is declared with explicit bounds.

expression: A seguence of operands, operators, and parentheses. It may beavariable, acon-
stant, afunction reference, or may represent a computation.

extent: The size of one dimension of an array.

external file: A seguence of records that existsin a medium external to the executable
program.

external procedure: A procedurethat is defined by an external subprogram or by ameans
other than Fortran.

external subprogram: A subprogram that is not contained in amain program, module, or
another subprogram.

external unit: A mechanism that isused to refer to an external file. Itisidentified by anon-
negative INTEGER.

file: Aninterna file or an externad file.
function: A procedure that isinvoked in an expression.
function result: The data object that returns the value of afunction.

function subprogram: A sequence of statements beginning with a FUNCTION statement
that is not in an interface block and ending with the corresponding END statement.

LF Fortran 95 Language Reference

genericidentifier: A lexical token that appearsin an INTERFACE statement and is associ-
ated with all the procedures in the interface block.

global entity: Anentity identified by alexical token whose scopeisan executable program.
It may be a program unit, acommon block, or an external procedure.

host: A main program or subprogram that contains an internal procedure is called the host
of the internal procedure. A module that contains a module procedure is called the host of
the module procedure.

host association: The process by which an internal subprogram, module subprogram, or
derived type definition accesses entities of its host.

implicit interface: A procedure referenced in a scoping unit other than itsown is said to
haveanimplicit interfaceif the procedureis an external procedure that doesnot have aninter-
face block, adummy procedure that does not have an interface block, or a statement function.

initialization expression: An expression that can be evaluated at compile time.

inquiry function: Anintrinsic function whose result depends on properties of the principal
argument other than the value of the argument.

instance of a subprogram: The copy of a subprogram that is created when a procedure
defined by the subprogram is invoked.

intent: An attribute of adummy argument that is neither a procedure nor a pointer, which
indicates whether it is used to transfer data into the procedure, out of the procedure, or both.

interface block: A sequence of statements from an INTERFACE statement to the corre-
sponding END INTERFACE statement.

interfacebody: A sequence of statementsin an interface block fromaFUNCTION or SUB-
ROUTINE statement to the corresponding END statement.

interface of a procedure: See procedure interface.

internal file: A CHARACTER variable that is used to transfer and convert data from inter-
nal storageto internal storage.

internal procedure: A procedure that is defined by an internal subprogram.
internal subprogram: A subprogram contained in a main program or ancther subprogram.

intrinsic: An adjective applied to types, operations, assignment statements, and procedures
that are defined in the standard and may be used in any scoping unit without further definition
or specification.

invoke:
To call asubroutine by a CALL statement or by a defined assignment statement.

To call afunction by areference to it by name or operator during the evaluation of
an expression.

LF Fortran 95 Language Reference 313

Appendix E Glossary

314

keywor d argument: The association of acalling program’ sargument with the subprogram’s
dummy argument by assigning a value to the dummy argument’ s keyword. Keywords are
associated with dummy arguments using either an implicit or explicit interface.

kind type parameter: A parameter whose values label the available kinds of an intrinsic
type.

label: See statement label.

length of a character string: The number of charactersin the character string.

lexical token: A sequence of one or more characters with an indivisible interpretation.
line: A source-form record containing from O to 132 characters.

literal constant: A constant without a name.

local entity: An entity identified by alexical token whose scope is a scoping unit.

logical mask: An array of logical valueswhich can be derived from alogical array variable
or alogical array expression.

main program: A program unit that is not a module, subprogram, or block data program
unit.

model r epresentation: A formulawhich describesthefinite set of numbers representable by
adigital computer.

module; A program unit that contains or accesses definitions to be accessed by other pro-
gram units.

module procedure: A procedure that is defined by a modul e subprogram.

module subprogram: A subprogram that is contained in a module but is not an internal
subprogram.

name: A lexical token consisting of aletter followed by up to 30 alphanumeric characters
(letters, digits, and underscores).

name association: Argument association, use association, or host association.
named: Having aname.

named constant: A constant that has a name.

numerictype: INTEGER, REAL or COMPLEX type.

object: Dataobject.

obsolescent feature: A feature that was considered to have been redundant in FORTRAN
77 but that is still in frequent use. Obsolescent features have modern counterparts that allow
agreater measure of safety with less effort on the part of the programmer.

operand: An expression that precedes or succeeds an operator.

LF Fortran 95 Language Reference

operation: A computation involving one or two operands.
operator: A lexical token that specifies an operation.

pointer: A variablethat hasthe POINTER attribute. A pointer must not be referenced or
defined unlessit is pointer associated with atarget. If itisan array, it does not have a shape
unlessit is pointer associated.

pointer assignment: The pointer association of a pointer with atarget by the execution of a
pointer assignment statement or the execution of an assignment statement for adata object of
derived type having the pointer as a subobject.

pointer assignment statement: A statement of the form *‘ pointer-name => target’’.

pointer associated: The relationship between a pointer and atarget following a pointer
assignment or avalid execution of an ALLOCATE statement.

pointer association: The process by which a pointer becomes pointer associated with a
target.

positional argument: The association of acalling program’s argument list with the subpro-
gram’s dummy argument list in sequential order.

present: A dummy argument ispresent in an instance of asubprogramif it isassociated with
an actual argument and the actual argument isadummy argument that is present in the invok-
ing procedure or is not adummy argument of the invoking procedure.

procedure: A computation that may be invoked during program execution. It may be a
function or a subroutine. 1t may be an intrinsic procedure, an external procedure, a module
procedure, an internal procedure, adummy procedure, or a statement function. A subpro-
gram may define more than one procedure if it contains ENTRY statements.

procedureinterface: The characteristics of a procedure, the name of the procedure, the
name of each dummy argument, and the generic identifiers (if any) by which it may be
referenced.

processor: Thecombination of acomputing system and the mechanism by which executable
programs are transformed for use on that computing system.

program: See executable program and main program.

program unit: Thefundamental component of an executable program. A sequence of state-
ments and comment lines. It may be amain program, amodule, an external subprogram, or
ablock data program unit.

rank: The number of dimensions of an array. Zero for ascaar.

record: A sequence of valuesthat istreated as a whole within afile.

LF Fortran 95 Language Reference 315

Appendix E Glossary

316

reference: The appearance of adata object name or subobject designator in acontext requir-
ing the value at that point during execution, or the appearance of a procedure name, its
operator symbol, or a defined assignment statement in a context requiring execution of the
procedure at that point.

scalar:
A single datum that is not an array.

Not having the property of being an array.

scope: That part of an executable program within which alexical token has a single inter-
pretation. It may be an executable program, a scoping unit, asingle statement, or a part of a
statement.

scoping unit: One of the following:
A derived-type definition,

An interface body, excluding any derived-type definitions and interface bodies con-
tained within it, or

A program unit or subprogram, excluding derived-type definitions, interface bodies,
and subprograms contained within it.

section subscript: A subscript, vector subscript, or subscript triplet in an array section
selector.

selector: A syntactic mechanism for designating:

Part of adataobject. It may designate asubstring, an array element, an array section,
or a structure component.

The set of values for which a CASE block is executed.

shape: Therank and extents of an array. The shape of an array may be represented by arank-
one array whose sizeisthe rank of the array, and whose elements are the extents of each
dimension.

size: For an array, the total number of elements.

specification expression: A scalar INTEGER expression that can be evaluated on entry to
the program unit at the time of execution.

statement: A sequence of lexical tokens. It usually consists of asingle line, but the amper-
sand symbol may be used to continue a statement from one line to another and the semicolon
symbol may be used to separate statements within aline.

statement entity: An entity identified by alexical token whose scope is asingle statement
or part of a statement.

statement function: A procedure specified by a single statement that is similar in form to
an assignment statement.

LF Fortran 95 Language Reference

statement keyword: A word that is part of the syntax of a statement and that may be used
to identify the statement.

statement label: A lexical token consisting of up to five digitsthat precedes a statement and
may be used to refer to the statement.

stride: The increment specified in a subscript triplet.

string delimiter: A character which isused in source code to mark the beginning and end of
character data. Fortran string delimiters are the apostrophe (‘) and the quote (*).

structure: A scalar data object of derived type.

structure component: The part of adata object of derived type corresponding to a compo-
nent of itstype.

subobject: A portion of a named data object that may be referenced or defined indepen-
dently of other portions. It may bean array element, an array section, a structure component,
or a substring.

subobject designator: A name, followed by one or more of the following: component
selectors, array section selectors, array element selectors, and substring selectors.

subprogram: A function subprogram or a subroutine subprogram.

subroutine: A procedure that isinvoked by a CALL statement or by a defined assignment
Statement.

subroutine subprogram: A sequence of statements beginning witha SUBROUTINE state-
ment that is not in an interface block and ending with the corresponding END statement.

subscript: One of the list of scalar INTEGER expressions in an array element selector.

subscript triplet: Aniteminthelist of an array section selector that contains a colon and
specifies aregular sequence of INTEGER values.

substring: A contiguous portion of a scalar character string. Note that an array section can
include a substring selector; the result is called an array section and not a substring.

target: A named data object specified in atype declaration statement containing the TAR-
GET attribute, adata object created by an ALL OCATE statement for apointer, or asubobject
of such an object.

type: Datatype.

type declaration statement: AnINTEGER, REAL, DOUBLE PRECISION, COMPLEX,
CHARACTER, LOGICAL, or TY PE statement.

type parameter: A parameter of anintrinsic datatype. KIND= and LEN= are thetype
parameters.

type parameter values: The values of the type parameters of a data entity of an intrinsic
datatype.

LF Fortran 95 Language Reference 317

Appendix E Glossary

318

ultimate component: For aderived-type or astructure, acomponent that is of intrinsic type
or has the POINTER attribute, or an ultimate component of a component that is a derived
type and does not have the POINTER attribute.

undefined: For adata object, the property of not having a determinate value.

use association: The association of names in different scoping units specified by a USE
statement.

variable: A data object whose value can be defined and redefined during the execution of
an executable program. It may be a named data object, an array element, an array section, a
structure component, or a substring.

vector subscript: A section subscript that isan INTEGER expression of rank one.

wholearray: A named array without a subscript reference.

LF Fortran 95 Language Reference

ASCII Character Set

FORTRAN programs may use the full ASCII Character Set aslisted below. The characters
arelisted in collating sequence from first to last. Characters preceded by up arrows (*) are
ASCII Control Characters.

DOS uses<cont r ol - Z> (7 Z) for the end-of-file delimiter and <cont r ol - M> (*M for car-
riage return. To enter these two charactersin a CHARACTER constant, use concatenation
and the CHAR function.

LF Fortran 95 Language Reference 319

Appendix F ASCII Character Set

Attempting to input or output ~Z (end-of-file), *M(new line), or ~C (break) in a sequential
file is not recommended and may produce undesirable results.

Table 22: ASCII Chart

Character \ZIIEJ(e D\(jglilrjneal ﬁﬁgr” Description
@ 00 0 NUL null<R>
~A 01 1 SCH start of heading
"B 02 2 STX start of text
~rC 03 3 ETX break, end of text
"D 04 4 EOT end of transmission
~E 05 5 ENQ enquiry
~F 06 6 ACK acknowledge
"G 07 7 BEL bell
H 08 8 BS backspace
N 09 9 HT horizontal tab
AN 0A 10 LF line feed
K 0B 11 VT verticad tab
AL 0C 12 FF form feed
M oD 13 CR carriage return
N OE 14 SO shift out
~O OF 15 Sl shiftin
AP 10 16 DLE datalink escape
~Q 11 17 DC1 device control 1
"R 12 18 DC2 device control 2
rS 13 19 DC3 device control 3
AT 14 20 D4 device control 4
U 15 21 NAK negative acknowledge

320 LF Fortran 95 Language Reference

Table 22: ASCII Chart

HEX

Decimal

ASCII

Character value value Abbr. Description
NV 16 22 SYN synchronousidle
AW 17 23 ETB end of transmission block
X 18 24 CAN cancel
Y 19 25 EM end of medium
nZ 1A 26 SuB end-of-file
A 1B 27 ESC escape
A 1C 28 FS file separator
A 1D 29 e group separator
AN 1E 30 RS record separator

A 1F 31 us unit separator
20 32 SP space, blank
! 21 33 ! exclamation point
“ 22 34 “ guotation mark
23 35 # number sign
$ 24 36 $ dollar sign
% 25 37 % percent sign
& 26 38 & ampersand
27 39 apostrophe
(28 40 (|eft parenthesis
) 29 41) right parenthesis
* 2A 42 * asterisk
+ 2B 43 + plus
, 2C 44 , comma
- 2D 45 - hyphen, minus

LF Fortran 95 Language Reference

321

Appendix F ASCII Character Set

322

Table 22: ASCII Chart

Character HEX DEEmE el Description
Value Value Abbr.

2E 46 period, decimal point
/ 2F 47 / slash, dant
0 30 48 0 zZero
1 31 49 1 one
2 32 50 2 two
3 33 51 3 three
4 34 52 4 four
5 35 53 5 five
6 36 54 6 Six
7 37 55 7 seven
8 38 56 8 eight
9 39 57 9 nine

3A 58 colon
; 3B 59 ; semicolon
< 3C 60 < less than
= 3D 61 = equals
> 3E 62 > greater than
? 3F 63 ? question mark
@ 40 64 @ commercial at sign
A 41 65 A uppercase A
B 42 66 B uppercase B
C 43 67 C uppercase C
D 44 68 D uppercase D
E 45 69 E uppercase E

LF Fortran 95 Language Reference

Table 22: ASCII Chart

HEX

Decimal

ASCII

Character value value Abbr. Description
F 46 70 F uppercase F
G 47 71 G uppercase G
H 48 72 H uppercase H
| 49 73 | uppercase |
J 4A 74 J uppercase J
K 4B 75 K uppercase K
L 4C 76 L uppercase L
M 4D 77 M uppercase M
N 4E 78 N uppercase N
(0] 4F 79 o) uppercase O
P 50 80 P uppercase P
Q 51 81 Q uppercase Q
R 52 82 R uppercase R
S 53 83 S uppercase S
T 54 84 T uppercase T
U 55 85 u uppercase U
\Y 56 86 \Y uppercase V
w 57 87 w uppercase W
X 58 88 X uppercase X
Y 59 89 Y uppercase Y
z 5A 90 z uppercase Z
[5B 91 [left bracket
\ 5C 92 \ backslash
| 5D 93] right bracket

LF Fortran 95 Language Reference

323

Appendix F ASCII Character Set

324

Table 22: ASCII Chart

Character HEX DEEmE el Description
Value Value Abbr.
A 5E 94 " up-arrow, circumflex, caret
_ 5F 95 UND back-arrow, underscore
: 60 96 GRA grave accent
a 61 97 LCA lowercase a
b 62 98 LCB lowercase b
c 63 99 LCC lowercase ¢
d 64 100 LCD lowercased
e 65 101 LCE lowercase e
f 66 102 LCF lowercase f
g 67 103 LCG lowercase g
h 68 104 LCH lowercase h
i 69 105 LC lowercasei
j 6A 106 LCI lowercase j
k 6B 107 LCK lowercase k
[6C 108 LCL lowercase |
m 6D 109 LCM lowercase m
n 6E 110 LCN lowercase n
0 6F 111 LCO lowercase o
p 70 112 LCP lowercase p
q 71 113 LCQ lowercase q
r 72 114 LCR lowercase r
s 73 115 LCS lowercase s
t 74 116 LCT lowercase t

LF Fortran 95 Language Reference

Table 22: ASCII Chart

Character HEX DEEmE el Description
Value Value Abbr.
u 75 117 LCU lowercase u
v 76 118 Lcv lowercase v
w 77 119 LCW lowercase w
X 78 120 LCX lowercase x
y 79 121 LCY lowercase y
z 7A 122 Lcz lowercase z
{ 7B 123 LBR |eft brace
| 7C 124 VLN vertical line
} 7D 125 RBR right brace
~ T7E 126 TIL tilde
7F 127 DEL, RO | delete, rubout

LF Fortran 95 Language Reference

325

Appendix F ASCII Character Set

326 LF Fortran 95 Language Reference

Index

A

A edit descriptor 28
ABSfunction 61, 284
ACCESS= specifier 162, 209
ACHAR function 62, 292
ACOS function 62, 289
ACOSD function 300
action statement 309
ACTION= specifier 162, 209
actual argument 309
adjustable array 15
ADJUSTL function 63, 292
ADJUSTR function 63, 292
ADVANCE= specifier 230, 271
AIMAG function 64, 284
AIMAXO function 286
AIMINO function 286
AINT function 64, 284
AIMAXO function 286
AJIMINO function 286
ALGAMA function 300
ALL function 65, 294
alocatable array 13, 309
ALLOCATABLE attribute and
statement 9, 36, 66
ALLOCATE statement 19, 39, 67—
69
ALLOCATED function 69, 294,
296
ALOG function 290
ALOG10 function 290
aternate return 50
AMAXO function 286
AMAX1 function 286
AMINO function 286
AMINI1 function 286
AMOD function 287
ANINT function 69, 284
ANY function 70, 294
apostrophe edit descriptor 30
apostrophes 30
argument 309
argument association 309
argument keyword 309
arguments

aternate return 50
intent 49
keyword 49
optional 50
procedure 49-51
arithmetic IF statement 34, 71
arithmetic operators 21
array 309
array constructor 15
array element 11, 309
array element order 11
array pointer 13, 309
array reference 10
array section 12, 309
arrays 10-16
adjustable 15
alocatable 13
assumed shape 14
assumed size 14
automatic 15
constructor 15
dynamic 13
dement 11
element order 11
pointer 13
reference 10
section 12
subscript triplet 12
vector subscript 12
array-valued 309
ASIN function 72, 289
ASIND function 300
ASSIGN statement 39, 73
assigned GOTO statement 34, 73
assignment and storage statements 39
assignment statement 39, 74, 309
assignments
defined 54
ASSOCIATED function 77, 296
association 309
assumed-shape array 14
assumed-size array 14, 309
asterisk comment character 3
ATAN function 78, 289
ATAN2 function 79, 289

ATANZ2D function 300
ATAND function 300
attribute 8-9, 310

automatic array 15
automatic data object 310
AUTOMATIC statement 305

B

B edit descriptor 26

BACKSPACE statement 23, 38, 80
belong 310

binary files 24

BIT_SIZE function 81, 296
BITEST function 298

BJTEST function 298

BLANK= specifier 162, 209
blanks 3

block 310

block data program unit 310
BLOCK DATA statement 39, 56, 81
BLOCKSIZE= specifier 162, 209
BN edit descriptor 30

bounds 310

BTEST function 82, 298

BY TE statement 306

BZ edit descriptor 30

C

C comment character 3
CABSfunction 284
CALL statement 34, 83
CARG function 86, 302
carriage control 24
CARRIAGECONTROL=
specifier 162, 209
CASE construct 88
CASE statement 34, 88
CCOS function 289
CDABSfunction 284
CDCOS function 289
CDEXP function 289
CDLOG function 290
CDSIN function 290
CDSQRT function 290
CEILING function 90, 284

LF Fortran 95 Language Reference 327

Index

CEXP function 289
CHAR function 91, 292
character 310
CHARACTER constant edit
descriptors 30
CHARACTER datatype 4, 7
CHARACTER edit descriptor 28,
30
CHARACTER literal 7
character set 1
CHARACTER statement 36
character string 310
CLOG function 290
CLOSE statement 38, 94
CMPLX function 95, 284
collating sequence 310
colon edit descriptor 30
column 3
comments 3
asterisk 3
trailing 3
common block 36, 59, 96, 310
COMMON statement 36, 96-98
COMPLEX datatype 4,7
COMPLEX literal 7
COMPLEX statement 36
component 310
computed GOTO statement 34,
100
concatenation operator 21
conformable 310
conformance 310
CONJG function 101, 284
connected 310
constant 6
constant expression 310
construct 311
construct name 42
constructors
array 15
structure 18
constructs
executable 42
CONTAINS statement 39, 48,
102
contiguous 311
continuation character 4
continuation line 3, 4, 305
CONTINUE statement 34, 103
control edit descriptors 29

control statements 34-35
COS function 103, 289
COSD function 300
COSH function 104, 289
COTAN function 300
COUNT function 104, 294
CPU_TIME subroutine 105, 299
CQABSfunction 284
CQCOS function 289
CQSQRT function 290
Cray pointer 217

CSHIFT function 106, 294
CSIN function 290
CSQRT function 290
CYCLE Statement 107
CYCLE statement 34

D

D edit descriptor 26
DABS function 284
DACOS function 289
DACQOSD function 300
DASIN function 289
DASIND function 300
data 4-19, 311
literal 6
named 8
data edit descriptors 25
dataentity 311
dataobject 311
DATA statement 36, 108
datatype 311
data types
CHARACTER 4,7
COMPLEX 4,7
DOUBLE PRECISION 4
INTEGER 4, 6
LOGICAL 4,7
REAL 4,6
DATAN function 289
DATANZ function 289
DATANZ2D function 300
DATAND function 300
DATE_AND_TIME subroutine 110,
299
datum 311
DBLE function 111, 284
DBLEQ function 284
DCMPLX function 284
DCONJG function 284

328 LF Fortran 95 Language Reference

DCOS function 289
DCQOSD function 300
DCOSH function 289
DCOTAN function 300
DDIM function 285
DEALLOCATE statement 39, 112
deferred shape 311
deferred-shape specifier 13
definable 311
defined 311
defined assignment 54
defined assignment statement 311
defined operation 53, 311
DELIM= specifier 162, 209
DERF function 300
DERFC function 300
derived type component reference 18
derived types 16-18, 56, 311
component reference 18
declaration 17
definition 16
structure constructor 18
DEXP function 289
DFLOAT function 284
DFLOTI function 287
DFLOTJfunction 287
DGAMMA function 301
DIGITSfunction 113, 296
DIM function 113, 285
DIMAG function 284
DIMENSION attribute and
statement 8, 10, 36, 114
DINT function 284
DIRECT= specifier 162
disassociated 311
DLGAMA function 300
DLL_EXPORT attribute and
statement 9, 36, 115
DLL_IMPORT attribute and
statement 9, 36, 116
DLOG function 290
DLOG10 function 290
DMAX1 function 286
DMIN1 function 286
DMOQOD function 287
DNINT function 284
DO Construct 116
DO statement 34, 116
DO UNTIL statement 305
DOT_PRODUCT function 119, 294

Index

DOUBLE PRECISION datatype 4

DOUBLE PRECISION
statement 36

DPROD function 122, 285

DREAL function 284

DSIGN function 288

DSIN function 290

DSIND function 301

DSINH function 290

DSQRT function 290

DTAN function 290

DTAND function 301

DTANH function 291

dummy argument 311

dummy array 311

dummy pointer 312

dummy procedure 51, 312

DVCHK subroutine 122, 302

dynamic arrays 13

E

E edit descriptor 26
edit descriptors 25-31
A 28
apostrophe 30
B 26
BN 30
BZ 30
CHARACTER 28, 30
CHARACTER constant 30
colon 30
control 29
D 26
data 25
E 26
EN 27
ES 27
F 26
G 28
generalized 28
H 31
1 26
INTEGER 26
L 28
LOGICAL 28
numeric 26
O 26
P 30
position 29
Q 26

quotation mark 30

REAL 26

S 30

dash 29

SP 30

SS 30

T 29

TL 29

TR 29

X 29

Z 26
elemental 312
elemental procedure 44, 48, 123
ELSE IF statement 34, 156
EL SE statement 34, 156
EL SE WHERE statement 268
ELSEWHERE statement 34, 268
EN edit descriptor 27
END DO statement 34, 116
END IF statement 35, 156
END INTERFACE statement 170
END MAP statement 305
END SELECT statement 35, 88
END statement 39, 125
END STRUCTURE statement 305
END TY PE statement 16
END UNION statement 305
END WHERE statement 35, 268
END= specifier 230, 271
ENDFILE statement 23, 38, 126
entity 312
ENTRY statement 35
EOR= specifier 230, 271
EOSHIFT function 129, 294
EPSILON function 130, 296
EQUIVALENCE statement 36, 131
ERF function 300
ERFC function 300
ERR= specifier 80, 94, 127, 162, 209,

230, 236, 271

ERROR subroutine 132, 302
ES edit descriptor 27
executable construct 312
executable constructs 42
executable program 312
executable statement 312
EXIST= specifier 162
EXIT statement 35, 133
EXIT subroutine 133, 302
EXP function 134, 289

explicit interface 56, 312
explicit interfaces 51
explicit-shape array 312
EXPONENT function 134, 285
expression 312
expressions 19-54
extent 312
EXTERNAL attribute and
statement 8, 36, 135
external file 312
external function 47
external procedure 43, 312
external subprogram 312
external unit 312

F
F edit descriptor 26
file 312
file position 22
filetypes 23-24
FILE= specifier 162, 209
files 2224
carriage control 24
formatted direct 23
formatted sequential 23
internal 24
position 22
unformatted direct 24
unformatted sequential 23
FIND statement 305
fixed source form 2
FLEN= specifier 162
FLOAT Function 287
FLOATI function 287
FLOATJfunction 287
FLOOR function 136, 285
FLUSH subroutine 137, 302
FMT= specifier 230, 271
FORALL construct 137
FORALL statement 138
FORM= specifier 162, 209
format control 25
format specification 25
FORMAT statement 25, 38, 139
formatted direct file 23
formatted input/output 25-31
formatted sequential file 23
FORMATTED= specifier 162
FRACTION function 146, 285
free source form 3

LF Fortran 95 Language Reference 329

Index

function 312
function reference 46
function result 312
FUNCTION statement 39, 47,
146

function subprogram 312
functions 45

external 47

reference 46

statement 47

G

G edit descriptor 28

GAMMA function 301

Gammafunction 175

generalized edit descriptor 28

generic identifier 313

generic interfaces 53

generic procedure 44

GETCL subroutine 149, 302

GETENV function 149

global data 56

global entity 313

GOTO statement 35, 134, 150,
178

GOTO, computed 34, 100

H

H edit descriptor 31
HFIX function 285
Hollerith constant 31, 306
host 313

host association 59, 313
HUGE function 150, 296

| edit descriptor 26
12ABS function 284
12DIM function 285
12MAXO function 286
12MINO function 286
12MOD function 287
I2NINT function 287
12SIGN function 288
IABSfunction 284
IACHAR function 151, 292
IAND function 152, 298
IBCLR function 152, 298
IBITS function 153, 298

IBSET function 154, 298
ICHAR function 155, 292
IDIM function 285
IDINT function 285
IDNINT function 287
IEOR function 155, 298
IF construct 156
IF statement 35, 157
IFIX function 285
IF-THEN statement 35, 156
IIABS function 284
IIAND function 298
IIBCLR function 298
1IBITS function 298
IIBSET function 298
1IDIM function 285
IIDINT function 285
IIDNNT function 287
IIEOR function 298
IIFIX function 285
IINT function 285
IIOR function 298
IISHFT function 298
IISHFTC function 298
IISIGN function 288
IMAXO function 286
IMAX1 function 286
IMINO function 286
IMIN1 function 286
IMQOD function 287
implicit interface 313
IMPLICIT statement 8, 36, 158
implicit typing 8
IMPLICIT UNDEFINED
statement 306
implied-do 108, 220, 229, 271
INCLUDE line 160
INDEX function 161, 292
ININT function 287
initialization expression 20, 313
INQOT function 299
input/output 22-33
edit descriptors 25-31
editing 25-33
formatted 25-31
list-directed 31
namelist 33
non-advancing 22, 23
statements 38-39
input/output units 22

330 LF Fortran 95 Language Reference

preconnected 22
INQUIRE statement 38, 162
inquiry function 313
instance of a subprogram 313
INT function 166, 285
INT2 function 285
INT4 function 285
INTEGER datatype 4, 6
INTEGER division 22
INTEGER edit descriptors 26
INTEGER litera 6
INTEGER statement 36, 167
intent 313
INTENT attribute and statement 9,
36, 49, 168
interface 51
interface block 52, 313
interface body 313
INTERFACE statement 40, 51, 52,
169, 170
interfaces
explicit 51, 56
generic 53
interna file 24, 313
internal procedure 43, 48, 313
internal subprogram 313
intrinsic 313
INTRINSIC attribute and statement 9,
37,175
intrinsic datatypes 4
intrinsic operations 21
INVALOP subroutine 176, 302
invoke 313
IOR function 176, 213, 262, 298
IOSTAT= specifier 80, 94, 127, 162,
209, 230, 236, 271
IOSTAT_MSG subroutine 177, 302
IQINT function 285
IQNINT function 287
ISHFT function 178, 298
ISHFTC function 179, 298
ISIGN function 288
IZEXT function 301
IZEXT2 function 301

J

JABSfunction 284

JAAND function 298

JBCLR function 298
JBITSfunction 298

Index

JIBSET function 298
JDIM function 285
JDINT function 285
JIDNNT function 287
JEOR function 298
JFIX function 285
JINT function 285
JOR function 298
JISHFT function 298
JISHFTC function 298
JSIGN function 288
JMAXO function 286
JMAX1 function 286
JMINO function 286
JMIN1 function 286
JMOD function 287
JININT function 287
JINOT function 299
JZEXT function 301
JZEXT2 function 301
JZEXT4 function 301

K

keyword argument 49, 314
kind 4

KIND function 179, 296
kind type parameter 4, 314

L

L edit descriptor 28
label 314
LBOUND function 180, 294, 296
LEN function 181, 292, 296
LEN_TRIM function 182
length 6
length of a character string 314
length type parameter 6
LENTRIM function 292
lexical token 314
LGE function 182, 292
LGT function 183, 292
line 314
list-directed formatting 31
list-directed input/output 31
literal constant 6, 314
literal data 6
literals
CHARACTER 7
COMPLEX 7
INTEGER 6

LOGICAL 7

REAL 6
LLE function 184, 292
LLT function 185, 292
LOC function 307
local entity 314
LOG function 186, 290
LOG10 function 187, 290
LOGICAL datatype 4,7
LOGICAL edit descriptor 28
LOGICAL function 187, 299
LOGICAL literal 7
logical mask 314
logical operators 21
LOGICAL statement 37, 188

M
main program 55, 314
MAP statement 305
masked array assignment 268
MATMUL function 190, 294
MAX function 191, 286
MAXO function 286
MAXZ1 function 286
MAXEXPONENT function 192, 296
MAXLOC function 192, 294
MAXVAL function 193, 294
MERGE function 194, 294
MIN function 195, 286
MINO function 286
MIN1 function 286
MINEXPONENT function 196, 296
MINLOC function 197, 295
MINVAL function 198, 295
ML_EXTERNAL attribute and

statement 9, 37, 199
MOD function 199, 287
model representation 314
module 314
module procedure 58, 314
MODULE PROCEDURE

statement 37, 201
MODULE statement 40, 57, 200
module subprogram 314
modules 56

name conflicts 58
use 58

MODULO function 202, 287
MVBITS subroutine 202, 298, 299

N

name 314

name association 314
NAME= specifier 162

named constant 314

named data 8

NAMED= specifier 162
namelist formatting 33
namelist input/output 33
NAMELIST statement 33, 37, 203
names 1

NDPERR function 204, 302
NDPEXC subroutine 205, 303
NEAREST function 206, 287
newlink logmask 314
NEXTREC= specifier 162
NINT function 206, 287
NML= specifier 33, 230, 271
non-advancing input/output 23
NOT function 207, 299

NULL function 208, 299
NULLIFY statement 39, 208
NUMBER= specifier 162
numeric edit descriptors 26
numeric type 314

O

O edit descriptor 26
object 314
obsolescent feature 276, 314
OFFSET function 303
OPEN statement 22, 38, 209
OPENED-= specifier 162
operand 314
operation 315
operations
defined 53
intrinsic 21
operator 315
operators 21
arithmetic 21
concatenation 21
logical 21
optional argument 50
OPTIONAL attribute and
statement 9, 37, 50, 212
OVEFL subroutine 213, 303

LF Fortran 95 Language Reference 331

Index

P

P edit descriptor 30
PACK function 213, 262, 295
PAD= specifier 162, 209
PARAMETER attribute and
statement 8, 37, 214
PAUSE statement 35, 215
pointer 315
pointer assignment 315
pointer assignment statement 19,
39, 215, 315
pointer associated 315
pointer association 315
POINTER attribute and
statement 8, 19, 37, 217
POINTER function 216, 303
pointers 19
association 19
declaration 19
pointer assignment
statement 19
position edit descriptors 29
POSITION= specifier 162, 209
positional argument 315
PRECFILL subroutine 218, 303
PRECISION function 218, 296
pre-connected units 22
present 315
PRESENT function 50, 219, 296
PRINT statement 38, 220
PRIVATE attribute and
statement 9, 16, 37, 221
procedure 315
procedure arguments 49-51
procedure interface 315
procedures 43-55
arguments 49-51
dummy 51
elemental 44
external 43
function 45
generic 44
interface 51
internal 43, 48
module 58
specific 44
subroutine 44
processor 315
PRODUCT function 222, 295
program 315

PROGRAM statement 40, 55, 223
program structure statements 3940
program unit 315
program units 55-58

block data 56

main program 55

module 56
PROMPT subroutine 303
PUBLIC attribute and statement 9,

37,224

pure procedures 48, 225

Q

Q edit descriptor 26
QABSfunction 284
QACOSD function 300
QASIND function 300
QATAN2D function 300
QATAND function 300
QCMPLX function 284
QCONJfunction 284
QCOSfunction 289
QCOSD function 300
QCOSH function 289
QCOTAN function 300
QDIM function 285
QERF function 300
QERFC function 300
QEXP function 289
QGAMMA function 301
QIMAG function 284
QLGAMA function 300
QLOG function 290
QLOG10 function 290
QMAX1 function 286
QMINL1 function 286
QMOD function 287
QNINT function 284
QSIGN function 288
QSIN function 290
QSIND function 301
QSINH function 290
QSOQRT function 290
QTAN function 290
QTAND function 301
QTANH function 291
quotation mark edit descriptor 30
quotation marks 30

332 LF Fortran 95 Language Reference

R

RADIX function 226, 296

RANDOM_NUMBER
subroutine 227, 299

RANDOM_SEED subroutine 227,
299

RANGE function 228, 296

rank 315

READ statement 38, 229

READ= specifier 162

READWRITE= specifier 162

REAL datatype 4, 6

REAL edit descriptors 26

REAL function 231, 287

REAL litera 6

REAL statement 37, 232

RECL = specifier 162, 209

record 315

RECORD statement 305

recursion 48

RECURSIVE attribute 48

reference 316

relational operators 21

REPEAT function 234, 292

RESHAPE function 16, 234, 295

RESULT option 48

RETURN statement 35, 235

REWIND statement 23, 38, 236

RRSPACING function 237, 287

S

S edit descriptor 30

SAVE attribute and statement 9, 37,
237

scalar 316

scalefactor 30

SCALE function 238, 288

SCAN function 239, 292

scope 58, 316

scoping unit 41, 56, 59, 316

section subscript 316

SEGMENT function 303

SELECT CASE statement 35, 88

SELECTED_INT_KIND function 4,
240, 296

SELECTED_REAL_KIND
function 5, 241, 296

selector 316

SEQUENCE attribute 9

SEQUENCE statement 16, 37, 242

Index

SEQUENTIAL= specifier 162
SET_EXPONENT function 242,
288
shape 316
SHAPE function 243, 295, 297
SIGN function 244, 288
significant blank 305
SIN function 244, 290
SIND function 301
SINH function 245, 290
size 316
SIZE function 245, 295, 297
SIZE= specifier 230, 271
dlash edit descriptor 29
SNGL function 287
SNGLQ function 287
source form 2—4
fixed 2
free 3
SP edit descriptor 30
SPACING function 246, 288
specia characters 1
specific procedure 44
specification expression 20, 316
specification statements 3638
SPREAD function 247, 295
SQRT function 248, 290
SS edit descriptor 30
statement 316
statement entity 316
statement function 40, 47, 248, 316
statement keyword 317
statement label 2, 317
statement order 40
statement separator 3, 4
statements 33
assignment and storage 39
control 34-35
input/output 38-39
order 40, 41
program structure 3940
specification 36-38
STATIC statement 305
STATUS= specifier 94, 209
STOP statement 35, 249
stride 317
string delimiter 317
structure 317
structure component 317
structure constructor 18

STRUCTURE statement 305

subobject 317

subobject designator 317

subprogram 317

subroutine 317

SUBROUTINE statement 40, 45, 250

subroutines 44

subscript 317

subscript triplet 12, 317

substring 9, 12, 317

SUM function 251, 295

SYSTEM function 252

SY STEM subroutine 252, 303

SYSTEM_CLOCK subroutine 253,
299

T

T edit descriptor 29

TAN function 253, 290

TAND function 301

TANH function 254, 291

target 19, 317

TARGET attribute and statement 8, 19,
38, 255

TINY function 297

TL edit descriptor 29

TR edit descriptor 29

trailing comment 3

TRANSFER function 256, 299

TRANSPOSE function 257, 295

TRIM function 257, 293

type declaration statement 8, 317

type parameter 317

type parameter values 317

TY PE statement 38, 258

U

UBOUND function 260, 295, 297

ultimate component 318

undefined 318

UNDFL subroutine 261, 303

unformatted direct file 24

unformatted sequential file 23

UNFORMATTED= specifier 162

UNION statement 305

UNIT= specifier 80, 94, 127, 162, 2009,
230, 236, 271

units 22

UNPACK function 262, 295

use association 318

USE statement 38, 58, 263

V

VAL function 264, 303, 307

VALUE statement 265, 305

variable 318

vector subscript 12, 318

VERIFY Function 266

VERIFY function 293

VOLATILE attribute and
statement 9, 38, 267

w

WHERE Construct 268
WHERE Statement 270
WHERE statement 35, 268
WRITE statement 39, 271
WRITE= specifier 162

X
X edit descriptor 29

Z
Z edit descriptor 26

LF Fortran 95 Language Reference

333

	Introduction
	Manual Organization
	Notational Conventions

	Elements of Fortran
	Character Set
	Names
	Statement Labels
	Source Form
	Data
	Table 1: Intrinsic Data Types

	Expressions
	Table 2: Intrinsic Operators

	Input/Output
	Table 3: Carriage Control

	Input/Output Editing
	Table 4: List-Directed Input Editing
	Table 5: List-Directed Output Editing

	Statements
	Table 6: Statement Order

	Executable Constructs
	Procedures
	Table 7: Procedures

	Program Units
	Scope

	Alphabetical Reference
	ABS Function
	ACHAR Function
	ACOS Function
	ADJUSTL Function
	ADJUSTR Function
	AIMAG Function
	AINT Function
	ALL Function
	ALLOCATABLE Statement
	ALLOCATE Statement
	ALLOCATED Function
	ANINT Function
	ANY Function
	Arithmetic IF Statement (obsolescent)
	ASIN Function
	Assigned GOTO Statement (obsolescent)
	ASSIGN Statement (obsolescent)
	Assignment Statement
	ASSOCIATED Function
	ATAN Function
	ATAN2 Function
	BACKSPACE Statement
	BIT_SIZE Function
	BLOCK DATA Statement
	BTEST Function
	CALL Statement
	CARG Function
	Table 8: CARG result types

	CASE Construct
	CEILING Function
	CHAR Function
	CHARACTER Statement
	CLOSE Statement
	CMPLX Function
	COMMON Statement
	COMPLEX Statement
	Computed GOTO Statement (obsolescent)
	CONJG Function
	CONTAINS Statement
	CONTINUE Statement
	COS Function
	COSH Function
	COUNT Function
	CPU_TIME Subroutine
	CSHIFT Function
	CYCLE Statement
	DATA Statement
	DATE_AND_TIME Subroutine
	DBLE Function
	DEALLOCATE Statement
	DIGITS Function
	DIM Function
	DIMENSION Statement
	DLL_EXPORT Statement
	DLL_IMPORT Statement
	DO Construct
	DOT_PRODUCT Function
	DOUBLE PRECISION Statement
	DPROD Function
	DVCHK Subroutine (Windows Only)
	ELEMENTAL Procedure
	END Statement
	ENDFILE Statement
	ENTRY Statement
	EOSHIFT Function
	EPSILON Function
	EQUIVALENCE Statement
	ERROR Subroutine
	EXIT Statement
	EXIT Subroutine
	EXP Function
	EXPONENT Function
	EXTERNAL Statement
	FLOOR Function
	FLUSH Subroutine
	FORALL Construct
	FORALL Statement
	FORMAT Statement
	Table 9: Format edit descriptors

	FRACTION Function
	FUNCTION Statement
	GETCL Subroutine
	GETENV Subroutine
	GO TO Statement
	HUGE Function
	IACHAR Function
	IAND Function
	IBCLR Function
	IBITS Function
	IBSET Function
	ICHAR Function
	IEOR Function
	IF Construct
	IF Statement
	IMPLICIT Statement
	INCLUDE Line
	INDEX Function
	INQUIRE Statement
	INT Function
	INTEGER Statement
	INTENT Statement
	INTERFACE Block
	INTRINSIC Statement
	INVALOP Subroutine (Windows only)
	IOR Function
	IOSTAT_MSG Subroutine
	ISHFT Function
	ISHFTC Function
	KIND Function
	LBOUND Function
	LEN Function
	LEN_TRIM Function
	LGE Function
	LGT Function
	LLE Function
	LLT Function
	LOG Function
	LOG10 Function
	LOGICAL Function
	LOGICAL Statement
	MATMUL Function
	MAX Function
	MAXEXPONENT Function
	MAXLOC Function
	MAXVAL Function
	MERGE Function
	MIN Function
	MINEXPONENT Function
	MINLOC Function
	MINVAL Function
	ML_EXTERNAL Statement
	MOD Function
	MODULE Statement
	MODULE PROCEDURE Statement
	MODULO Function
	MVBITS Subroutine
	NAMELIST Statement
	NDPERR Function (Windows Only)
	Table 10: NDPERR bits

	NDPEXC Subroutine (Windows Only)
	NEAREST Function
	NINT Function
	NOT Function
	NULL Function
	NULLIFY Statement
	OPEN Statement
	OPTIONAL Statement
	OVEFL Subroutine (Windows Only)
	PACK Function
	PARAMETER Statement
	PAUSE Statement (obsolescent)
	Pointer Assignment Statement
	POINTER Function
	POINTER Statement
	PRECFILL Subroutine
	PRECISION Function
	PRESENT Function
	PRINT Statement
	PRIVATE Statement
	PRODUCT Function
	PROGRAM Statement
	PUBLIC Statement
	PURE Procedure
	RADIX Function
	RANDOM_NUMBER Subroutine
	RANDOM_SEED Subroutine
	RANGE Function
	READ Statement
	REAL Function
	REAL Statement
	REPEAT Function
	RESHAPE Function
	RETURN Statement
	REWIND Statement
	RRSPACING Function
	SAVE Statement
	SCALE Function
	SCAN Function
	SELECTED_INT_KIND Function
	SELECTED_REAL_KIND Function
	SEQUENCE Statement
	SET_EXPONENT Function
	SHAPE Function
	SIGN Function
	SIN Function
	SINH Function
	SIZE Function
	SPACING Function
	SPREAD Function
	SQRT Function
	Statement Function
	STOP Statement
	SUBROUTINE Statement
	SUM Function
	SYSTEM Function (Linux only)
	SYSTEM Subroutine
	SYSTEM_CLOCK Subroutine
	TAN Function
	TANH Function
	TARGET Statement
	TINY Function
	TRANSFER Function
	TRANSPOSE Function
	TRIM Function
	Type Declaration Statement
	TYPE Statement
	UBOUND Function
	UNDFL Subroutine (Windows Only)
	UNPACK Function
	USE Statement
	VAL Function
	Table 11: VAL result types

	VALUE Statement
	VERIFY Function
	VOLATILE Statement
	WHERE Construct
	WHERE Statement
	WRITE Statement

	Fortran 77 Compatibility
	Different Interpretation Under Fortran 95
	Different Interpretation Under Fortran 90
	Obsolescent Features

	New in Fortran 95
	Intrinsic Procedures
	Table 12: Numeric Functions
	Table 13: Mathematical Functions
	Table 14: Character Functions
	Table 15: Array Functions
	Table 16: Inquiry and Kind Functions
	Table 17: Bit Manipulation Procedures
	Table 18: Other Intrinsic Functions
	Table 19: Standard Intrinsic Subroutines
	Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents
	Table 21: Utility Procedures

	Porting Extensions
	Glossary
	ASCII Character Set
	Table 22: ASCII Chart
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

