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Section 1. One-dimensional equations of
hydrodynamics
The hydrodynamic equations used in KB1 are difference representations of conservation of mass,
momentum and energy applied over elements1. Figure 1.1 shows element divisions for a one-
dimensional simulation. Depending on symmetry, the slices represent thin plates, cylindrical shells,
or spherical shells. The two sets of indices shown apply to elements and element boundaries
(vertices). Boundary quantities are denoted with upper case letters and element quantities with
lower case. For example, Element i with average radius ri has boundaries at Ri-1 and Ri. Elements
retain their material identity as they move and change size during the calculation. The method is
similar to Lagrangian finite-difference calculations2. An inherent limitation of the approach is the
difficulty of modeling processes like mixing. On the other hand, the element-centered approach
has two advantages: 

# Automatic zone refinement for compressional phenomena like shocks.

# Ability to model explosive processes where the solution volume size may change by
orders of magnitude.

In this discussion we shall concentrate on cylindrical systems. The extension to planar and
spherical systems is straightforward. Conservation of mass implies that element masses do not
change during the simulation. Consider an element with initial boundaries Roi-1 and Roi and initial
density ?oi. The mass is given by

The boundaries move in response to forces. The density at any time is related to the boundary
positions by

Note that Eqs. 1.1 and 1.2 do not employ approximations based on small element width. This
feature avoids numerical problems when elements compress to cylindrical or spherical axes.
Furthermore, the model allows the use of large elements. The average element radius corresponds
to the center-of-mass coordinate. Assuming a uniform density, the average radius of a cylindrical
element is related to the boundary radii by
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Figure 1.1. Index conventions used in KB1.

(1.3)

(1.4)

(1.5)

(1.6)

We express conservation of momentum as an equation of motion for element boundaries. The
object is to find the boundary velocities

The time rate-of-change of momentum at boundary i equals the time derivative of velocity times
half the masses of adjacent elements,

The force on the boundary is the sum of forces from adjacent elements. Summing pressure and
magnetic forces gives the equation of motion



1-3

(1.7)

(1.8)

(1.9)

(1.10)

The new element quantities introduced in Eq. 1.6 are the pressure pi and artificial viscosity force
wi. The pressure force equals the difference in pressure in the adjacent elements multiplied by the
cylindrical area at the boundary. The artificial viscosity force term damps non-physical oscillations
at shock fronts. The physical rationale for artificial viscosity and its inclusion in the hydrodynamic
equations are covered in Ref. 2. KB1 employs an adaptation of the von Neumann-Richtmyer
form3,4 used in finite-difference solutions, 

The quantity C in Eq. 1.7 is an adjustable parameter with value near unity to spread the shock
over several elements, ? is the element scale length, and ?v/?x is the spatial derivative of velocity.
KB employs the following difference representation for Eq. 1.7:

KB1 advances hydrodynamic quantities using the standard time-centered leap-frog method12. The
boundary velocities Vi are defined at half time steps and all other quantities apply at integral steps.
Throughout this discussion the superscript n denotes the time step, so that tn+½ = tn + ?t/2.
Replacing time derivatives in Eq. 1.6 with time-centered difference operators gives an equation to
advance the boundary velocity, 

Given the modified velocities, the next step is to advance the boundary radii to the next integral
time step,

New element densities and average radii can be determined from Ri
n+1 using Eqs. 1.2 and 1.3.

   The internal energy Ui is an element property equal to the material energy of element i divided
by mi. The present version of KB1 does not model changes of Ui resulting from convection or
radiation transport. Although straighforward to code, electron thermal conduction contributions
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(1.11)

are neglected for three reasons:

# Thermal conduction in solids and liquids is negligible compared to energy transport by
shocks.

# Thermal transport coefficients are not well known at high temperature and pressure.

# Energy transport in gases and plasmas is usually dominated by convection.

Under the limiting assumptions changes of internal energy in hydrodynamic calculations result
from work performed by pressure, artificial viscosity force and elastic stress. The work performed
by pressure and artificial viscosity force on element i in a time step is -(pi+wi)?Vi, where ?Vi is
the change in element volume. The equation to advance internal energy is

The first term in brackets is a time-centered expression involving the advanced value of pressure.
The pressure is estimated by the two-step process described in the next paragraph.

To close the set of equations we must find the new element pressures pi
n+1 corresponding to

modified values of density and internal energy, ?i
n+1 and ei

n+1. The values are determined from the
equation-of-state relationships discussed in Sects. 4 and 7. The KB Tables contain values of
pressure and internal energy as functions of density ? and temperature ?: p(?,?) and e(?,?). With
known values of density and internal energy the temperature ? can be determined with an inverse
interpolation. KB1 uses a modified two-step method12 to advance the pressure and preserve time-
centering in Eq. 1.11. The advanced internal energy Ui

n+1' is first estimated from Eq. 2.11 using
only pi

n. Equation-of-state relations give estimates of the advanced pressure pi
n+1'. The quantity

(pi
n+pi

n+1'/)/2 is then substituted in Eq. 2.11 to yield an improved value Ui
n+1. Equation-of-state

interpolations are repeated to the new pressure  pi
n+1 and (for materials represented by KB tables)

the new temperature ?i
n+1.
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Hydrodynamic quantities in KB1

Symbol Description Units

? Element density kg/m3

r Average element position m

R Element boundary position m

m Element mass kg

V Element boundary velocity m/s

?t Time step s

p Pressure Pa (newtons/m2)

w Artificial viscosity Pa (newtons/m2)

U Internal energy J/kg

1. S. Humphries and C. Ekdahl, Laser and Particle Beams 16, (1998), 405.

2. D. Potter, Computational Physics (Wiley, New York, 1973), Chap 9.

3. J. Neumann and R.D. Richtmeyer, J. Appl. Phys. 21 (1950), 232.

4. R.D. Richtmeyer and K.W. Morton, Difference Methods for Initial-value Problems, Second
Edition (Interscience, New York, 1967).
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Section 2. Shock equations

   The differential equations for conservation of mass and momentum at a point in a fluid are

The quantities in Eqs. 2.1 are the density ?, velocity v, and pressure p. For a one-dimensional
disturbance in the limit of small velocity, the linearized equations are

The derivative  is a characteristic of the medium, independent of position and time.
Therefore, Eqs. 2.2 imply that

Equation 2.3 describes small amplitude compression waves that move through the medium at the
sound speed 
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(2.5)

(2.6)

Figure 2.1. Propagation of a high-amplitude pressure
waveform at early (a) and late (b) times.

   Given an equation of state for the material, we can determine how Cs varies with pressure and
density. As an example, consider a ?-law ideal gas1:

Equation 2.5 implies that the change of pressure with density is

In a perfect gas with ? = 1, the compressibility (and hence the sound speed) is independent of
density. Real gases (and most solid and liquid materials) become less compressible at high density
because of overlap of electron shells. In this case, ? is greater than unity and hence the sound
speed increases with density and pressure. This fact accounts for the existence of shocks.

   A shock is a sharp discontinuity in density, pressure and temperature that propagates at a well-
defined speed us through a medium. We can understand the origin of such a discontinuity by
considering the excitation of a series of high-amplitude pulsed compressions generated by
applying a stair-step pressure waveform on the boundary of a medium. Figure 2.1a shows the
pressure profile early in time as the compressions propagate into the medium at the sound speed.
Because they move through regions of higher pressure and density, pulses produced later in time 
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(2.7)

(2.8)

move faster according to Eq. 2.6. Eventually, they join with the initial pulses to produce a strong
localized change in material properties (Fig. 2.1b). In other words, the characteristics of wave
propagation in the material cause a broad high amplitude pressure waveform applied at the
boundary to evolve to a sharp front.

   Given the existence of a discontinuity, we can find relationships between material properties
before and after passage of the shock by invoking conservation of mass, momentum and energy.
Figure 2.2 shows a snapshot of a one-dimensional shock front moving in the +x-direction at speed
us. The undisturbed medium to the right of the front has density ?o, pressure po and internal
energy Uo. We assume that the medium is initially at rest, or the average x-velocity of particles in
the medium is upo = 0. We can generalize the derivation by applying a coordinate transformation
to a moving frame. The characteristics on the left-hand side of the shock are density ?, pressure p
and internal energy U. The shocked medium has a net average velocity up in the +x-direction
consistent with conservation of mass and momentum. The quantity is usually called the particle
velocity.

   The total mass impinging on the shock from the right equals the total mass leaving to the left.
The shock overtakes the undisturbed medium with velocity -us, so the rate of mass entering the
shock per area is . Material leaves the shock front with apparent velocity , so the rate

of mass leaving per area is . We can write the equation of mass conservation as

Conservation of momentum implies that the time rate of change of particle momentum per unit
area crossing the shock equals the difference in the force per area on each side of the shock.
Initially, the particles have zero momentum. Time rate of charge is the rate of mass impinging on
the times the final velocity: . The momentum equation can be written

To express conservation of energy, we equate the rate of work performed by pressure force at the
shock to the rate of change of kinetic plus internal energy for mass crossing the shock. In a time
?t, material occupying a volume per area of us?t on the upstream side of the shock changes to a
volume per area (us-up)?t under the influence of a pressure p. The amount of work performed per
area equals the pressure times the change in volume per area, or pup?t. The rate of change of
kinetic energy per area equals the mass entering the shock per area times the square of the final
velocity or . The rate of change of the internal energy per area equals the mass rate 
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Figure 2.1. Change of quantities at a shock front

(2.9)

(2.10)

entering the shock times the change in energy per mass, or . The equation of energy
conservation is thus,

Equations 2.7, 2.8 and 2.9 involve the known quantities po and Uo and the five unknown
quantities ?, p, us, up and U. With an additional equation, we could determine values for four of
the unknown quantities in terms of one quantity and thereby generate a family of states that could
be achieved by inducing shock waves in materials. The extra relationship is called the equation of
state (EOS).

    Equation 2.9 is often expressed in an alternate form called the Hugoniot relation. Solving for
the change in internal energy gives,

Equation 2.8 implies that the particle velocity is . Substituting in Eq. 2.10, we 
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Figure 2.3. Hugoniot plot for aluminum. Marked points calculated
by the KBTView program.

(2.11)

(2.12)

find that

 Combining Eqs. 2.7 and 2.8 gives the relationship
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(2.13)

(3.14)

Finally, substituting Eq. 2.12 in Eq. 2.11 gives the Hugoniot relation,

Given an equation-of-state, the shocked material quantities can be plotted as a function of a
chosen independent variable. A useful curve is a plot of the change in pressure (p-po) versus the
particle velocity up. Figure 2.3 shows such a plot for aluminum generated from the table
ALUM3715.KBT using the KBTView program with po = 0.0 and ?o = 2700.0 kg/m3. The curve
shows the range of possible final states resulting from a shock. The material changes rapidly from
the initial state (origin) to a final state. A straight line on a Hugoniot plot connecting the initial
and final states (dashed line in Fig. 2.3) is called a Rayleigh line. On a p-up plot, the shock
velocity can be inferred from the slope of the Rayleigh line. The equation for momentum
conservation (Eq. 2.8) implies that

The dashed line in Fig. 2.3 connects to a final state with p = 3.401×1012 Pa and up = 3.0×104 m/s.
The predicted shock velocity is 4.199×104 m/s. Note that the shape of the curve in Fig. 3.3 implies
that us increases with the amplitude of the shock.

1. R. Courants and K.O. Friedrichs, Supersonic Flow and Shock Waves (Springer-Verlag,
NewYork, 1991), 7. 
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Section 3. Shock equations-of-state
For many materials we do not have the full equation-of-state information represented by the KB
tables. Fortunately complete information is not required in many useful applications. As an
example, consider propagation of a shock. The conservation laws discussed in Sect. 2 limit the
range of states that materials can attain. In this case, we can use a simplified equation-of-state that
applies only to shock transitions. We must keep in mind that such a model may not provide an
accurate description of how the material relaxes after the shock has passed. This limitation does
not present a problem for modeling shock-detonated explosives. At detonation the solid explosive
rapidly changes to a gas mixture that is well-described by a gamma-law equation of state (Eq.
2.5).

   An extensive database of material shock behavior has been generated from experiments. Usually
the measured quantities are the shock velocity us and the material velocity up behind the shock.
The relationship between these quantities for a wide variety of materials is well-described by the
polynomial relationship,

Given Eq. 3.1 we can substitute in the equations of Section 2 to find all material quantities from
any choice of the unknown: ?, p, U, us or up. Measured data have been collected in several
references1-5. 

The KB package includes an extensive tabulation of shock equation-of-state data derived from
Ref. 3. The file shockeos.raw contains measured data for over 400 materials. The file
shockeos.txt contains values of the parameters Co, S1 and S2 in Eq. 3.1 derived from least-
squares fits for all materials where a sufficient number of data points were available. The same
information is also available in the spreadsheet files shockeos.xls (Microsoft Excel) and
shockeos.qpw (Quattro Pro 9.0). All quantities are in SI units. Two additional quantities are
included. The first, Stdv, is the standard deviation of measured values of us about the fitted curve.
It indicates the variations in the experimental data. The second quantity, upmax, is the maximum
measured value of up. Use of the fitted curve beyond this point involves extrapolation. 

   The quality of available data varies considerably. For example, Figure 3.1 shows the data points
and fit for solid copper. As with most metals, the us(up) curve is almost a straight line. Figure 3.2
shows an exception, the curve for antimony. Figure 3.3 shows data for the explosive 
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Figure 7.1. Least-squares fit to the data for copper in Ref. 3

Figure 7.2. Least-squares fit to the data for antimony in Ref. 3 
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Figure 7.3. Least-squares fit to data of Ref. 3 for Composition B.

(3.2)

(3.3)

Composition B. Understandably, fewer data points are available. There could be significant errors
for extrapolations beyond up = 1000 m/s.

   As described in Sect. 1, we need a function of the form p(?,U) to close the hydrodynamic
equations used in the KB codes. We can derive such a relationship for materials undergoing a
shock transition by combining Eq. 3.1 with the equations of Section 2. The Hugoniot relation can
be written

Substituting for (p-po) from Eq. 2.8 gives
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(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

The mass conservation equation implies that 

Combining Eqs. 3.3 and 3.4,

or

Given up, we can find us from Eq. 3.1. Application of the energy equation (Eq. 2.9) gives an
expression for the pressure:

Equations 3.6 and 3.7 involve differences in internal energy, U-Uo. The convention in KB is to
take Uo ?  0 for materials described by the shock equation-of-state. 

   Another type of material model used in the KB codes is the gamma-law gas (Eq. 2.5). In this
case, the pressure is given by
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1. M.H. Rice, R.G. McQueen and J.M. Walsh, Sol. State Phys. 6 (1958), 9,

2. R.G. McQueen, S.P. Marsh, J.W. Taylor, J.N. Fitz and W.J. Carter, in R. Kinslow (ed.), High-
velocity Impact Phenomena (Academic Press, New York, 1970), 299.

3. S.P. Marsh (ed.), LASL Shock Hugoniot Data (University of California Press, Berkeley,
1980).

4. C.E. Anderson, J.S. Wilbeck, J.C. Hokanson, J.R. Asay, D.E. Grady, R.A. Graham and M.E.
Kipp in Y.M. Gupta (ed.), Shock Waves in Condensed Matter - 1985 (Plenum Press, New
York, 1986).

5. D.J. Steinberg, Equation-of-state and Strength Properties of Selected Materials (Lawrence
Livermore National Laboratory, Report UCRL-MA-106439, 1991), unpublished.
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Section 4. Detonation physics

   Explosive materials release chemical energy at a very high rate. In the process of detonation, a
solid or liquid explosive rapidly changes to a gas in a highly compressed state. During expansion
the gas can perform a considerable amount of work. The quantity Q denotes the chemical energy
released. Typical explosives have Q values of about 5 MJ/kG. Practical explosives have a high
activation energy so that they do not spontaneously ignite. The required energy to initiate
detonation is about 150 kJ/mole. For typical explosives the specific activation energy is about Ua

= 0.5 MJ/kG. Ignition of an explosive material is usually performed by a detonator that generates
a shock on the surface. The shock has sufficient amplitude to raise the internal energy by an
amount exceeding Ua. The resulting rapid transformation of the material amplifies the shock which
moves into adjacent regions. The process leads to a self-sustained detonation front that consumes
the explosive material. 

The detonation model used in KB1 and KB2 is straightforward1. Before detonation the properties
of explosive materials are determined from the shock equation-of-state model discussed in Sect.
3. If the pressure in an element of explosive material exceeds a threshhold value Pinit, the element
detonates. At detonation the code augments the internal energy of the element by Q and
subsequently determines the element pressure from the gamma law equation of state (Eq. 3.8). An
underlying assumption is that the chemical reaction occurs rapidly in comparison to the
propagation time for the detonation front. 

The following parameters are required for a complete description of an explosive material in KB1
and KB2:

# ?o. The density of the solid material under ambient conditions (kg/m3)

# Co,S1 and S2. Parameters in the us(up) relationship, tabulated in the resources discussed
in Sect. 7 and in Appendix 2. 

# Pinit. The threshhold pressure for detonation (Pa).

# Q, the specific energy released by the chemical reaction (J/kg).

# ?, constant for the gas equation-of-state.

The quantities ?o, Q and ? are tabulated in the file explode.txt for several materials. Additional
data can be found in the references listed at the end of this section.
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Figure 4.1. Quantities at a detonation front

(4.1)

(4.2)

(4.3)

   It is useful to review the equations for a one-dimensional detonation in a homogeneous material
in order to understand the underlying physics and to define benchmark tests for the KB1 and
KB2 codes. Figure 4.1 shows the geometry. A self-sustained front moves into an ambient
explosive at a velocity ud. The undisturbed material at rest has properties ?o, po, Uo and upo = 0.
The gaseous material behind the front has density ?, pressure p, internal energy U, and a directed
velocity up. We can determine unique values for the material state behind the front in terms of the
properties of the explosive by applying conservation of mass, momentum and energy at the
discontinuity. With the exception of the chemical energy released, the equations are the same as
those derived in Sect. 2. The equation for conservation of mass is

and conservation of momentum is given by

To express conservation of energy, we include the specific chemical energy in Eq. 3.5:
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Figure 4.2. Determination of the Chapman-Jouguet point

(4.4)

To simplify the equations, we assume that the initial pressure po and internal energy Uo are
negligible compared to the values in the detonated state. Furthermore, we assume that the
properties of the detonated material are governed by the gamma law equation-of-state:

The momentum equation (Eq. 4.2) implies that following relationship for the detonation velocity:
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(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

We can combine Eqs. 4.1 through 4.4 to derive an expression for the material pressure in terms of
the particle velocity,

Figure 4.2 shows a plot of Eq. 4.6 for Composition B (?o = 1770.0 kg/m3, Q = 6.270×106 J/kg
and ? = 3). The plot represents an infinite set of possible states consistent with the explosive
properties and conservation laws. The slope of a line connecting a point on the curve to the origin
(dashed line in Fig. 4.2) implies a value of the detonation velocity according to Eq. 4.5. Note that
there is an ambiguity for the dashed line illustrated. The same value of ud corresponds to two
different final states. The only possible unique state is shown by the solid line tangent to the curve,
corresponding to the minimum value of ud. This material state, the Chapman-Jouguet point2-3, is
the correct representation for a detonation front4.

   We can find material properties at the Chapman-Jouguet point by combining Eqs. 4.5 and 4.6 to
determine ud in terms of up:

Setting dud/dup = 0 gives the particle velocity at the Chapman-Jouguet point as:

Inserting Eq. 8.8 in Eq. 8.6 gives the Chapman-Jouguet pressure

Inserting the values up(CJ) and p(CJ) into Eq. 4.5 gives the detonation velocity,
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(4.10)

The parameters of Composition B used in Fig. 4.2 imply that up(CJ) = 2.50 km/s,  p(CJ) = 44.39
GPa, and ud = 10.0 km/s.

1. Adapted from M.A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994),
Chap 10.

2. D.L. Chapman, Lond. Edinb, Dubl. Phil. Mag. 47 (1899), 90.

3. E. Jouguet, J. Math. Pure Appl. 60 (1905) 347, 61 (1906), 1. 

4. The rationale for the Chapman-Jouguet condition is not intuitively obvious. A detailed
discussion is given in J. Taylor, Detonation in Condensed Explosives (Clarendon Press, Oxford,
1952), 69-78.
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Section 5. Two-dimensional hydrodynamics
on a triangular mesh

The numerical treatment of the hydrodynamic equations in KB2 is based on the division of the
solution volume into small elements. The elements have a triangular shape so that they conform
closely to boundaries in the initial system and can flex to follow changes in the geometry of the
medium. Elements have a unique material identity that does not change during the simulation. On
the other hand, the position, shape and size of elements may vary. The hydrodynamic quantities
(pressure, density, temperature and internal energy) also vary. The finite-element approach is
closely related to the Lagrangian viewpoint for finite-difference calculations. The calculation is
referenced to materials rather than to a fixed coordinate system.

The computational approach in KB2 has several advantages:

# The physical motion automatically refines the mesh - the code gives good results for
systems that undergo substantial compression or expansion,

#The conformal mesh accurately represents curved or slanted material boundaries,

# The element-centered view helps in modeling complex processes like detonation.

# Unspecified boundaries automatically represent unconstrained material with free
expansion.

On the other hand, KB2 has drawbacks so it may not be practical for all problems. During a
simulation it is essential to maintain the logical connections of the mesh. The implication is that
elements that are initially neighbors must remain adjacent. Because KB2 maintains continuity of
phase space, it is not well-suited to systems that disassemble, cavitate or mix. Simulations
terminate when elements are stretched to the breaking point (i.e., logical inversion of a triangle).
Similarly, it is difficult to represent systems with initially separated objects (i.e., a shaped
projectile striking a surface).

In KB2 the term element refers to the area inside a triangle while the term node applies to the
triangle vertices. Three quantities are associated with nodes: position ([x,y] or [r,z]), velocity
([vx,vy] or [vr,vz]) and mass (M). The remaining quantities are taken as properties of the elements:
pressure (P), temperature (T), density (?), internal energy (?) and artificial viscosity ([wx,wy] or
[wz,wr]). The code solves equations of motion for nodes to infer changes in the element size and
shape. The change in element volume is then used to update the hydrodynamic quantities. In the
TriComp mesh every internal node is surrounded by six elements as in Fig. 5.1.  In the figure,
elements and nodes surrounding the central node are labeled 1-6. The path shown in blue passes 
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Figure 5.1. Elements and nodes surrounding an internal
node

through the centers of lines connecting neighboring nodes and the centers-of-mass of the
elements. The path encloses one-third of the element areas. We set the node mass M equal to the
mass inside the path (one-third of the mass of the six elements). The element mass equals ?
multiplied by the element volume. The node masses are invariant because the element masses are
conserved. 

The force on a vertex arises from the pressure and artificial viscosity of surrounding elements. The
total force on a node is determined is determined from an integral of pressure over the
surrounding surface shown in Fig. 5.1. After some algebra, the integration yields a simple and
intuitive result. In planar geometry, the expression for pressure force (per length in z) is:

The quantities (xi,yi) are the coordinates of the surrounding nodes.

At each integer time step KB2 determines the force components at a node from values of
pressure and artificial viscosity in surrounding elements. The equation of motion is used to
determine new values of node velocities at the half-integer time step. The velocities are then used
to advance the node positions to the next integer time step. The node positions are then used to
find new element volumes in planar or cylindrical geometry. A new value of internal energy ? can
be determined from the change of volume and other possible processes (such as detonation) .
Finally, the new density ? and internal energy can be used to determine the pressure through the
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equation-of-state for the element material. The procedure is applied to all elements and continues
over subsequent time steps. 

Although the method is simple in principle, there are several challenges in the practical
application, including:

# representation of applied pressures over arbitrary boundaries,

# implementation of symmetry boundaries (sliding surfaces),

# determination of methods for cylindrical systems that maintain good accuracy near the
axis.

# addition of artificial viscosity contributions on arbitrary triangular meshes.

# organization of multiple materials and regions.


