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THE IMPORTANCE OF MODELING AND SIMULATION IN DFSS

Jesse Peplinski, Vice President
Statistical Design Institute, LLC

Abstract –  The fundamental objective of Design for Six Sigma (DFSS) is to design products
and processes that meet your customers’ needs, cost effectively, without production or
integration problems.  This objective can be achieved by following a simple set of good design
practices:  understand your customers’ needs, select the design concept that is most likely to
succeed, mathematically predict the cost and performance of your design, and then make design
improvements before committing to capital purchases and supplier contracts.  There can of
course be pitfalls in applying each of these practices, but the most common weaknesses we have
seen in DFSS implementations are in the area of mathematical prediction.  In this paper I will
show how modeling and simulation can be used to overcome these weaknesses and reap the full
benefits of DFSS.

1 Foundation:  Configuring DFSS for Success
Implementations of DFSS can take many forms.  While all share the common thread of the good
design practices above, most implementations lock them into a sequence of phases like DMADV
(Design, Measure, Analyze, Design, Validate) or IDOV (Identify, Design, Optimize, Validate).
Company-specific acronyms are also common.  More often than not, these sequences exist
separately from the company’s established development processes, so extra overhead of
“aligning” the DFSS acronym with the development process often becomes necessary.  A
solution to this complexity is to recognize that any development process is a series of tasks, and
that the DFSS good design practices fit within every task.  Implementing DFSS then becomes
completely independent from the specific development process, and instead can be deployed as
an enabler to the process itself.  This type of implementation is shown in Figure 1.
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Figure 1:  Integrating DFSS into a Development Process
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The design tasks of a typical development process are shown down the left side of Figure 1, with
the tasks grouped under the headings of “Concept Exploration”, “Conceptual Design”, and so on.
These specific headings are somewhat arbitrary and will change from one implementation to
another, but the activities within them are largely universal.  In Concept Exploration and
Conceptual Design many different design concepts are generated and evaluated.  Each “concept”
is typically a high-level layout of the different functions or subsystems of the design, with
selected components or technologies for each.  These concepts exist primarily on paper (or on
computer).  In Detail Design and Engineering Model the selected best concept(s) are fleshed out
in more detail, again primarily on paper.  Physical prototypes or mock-ups will be built to test
and verify the calculations behind key features of the design, but the expense of prototypes is
kept as small as possible.  Finally in Initial Production and Final Production the completed
design is implemented and released to your customers, perhaps in large quantities.

A design task typically culminates in a design decision – the selection of a technology or
component or material, the determination of the best dimensions or parameter values, and so on.
One by one, these decisions push the design forward and flesh out its details.  Ideally these
decisions are made in the best interests of your customers and stakeholders, both internal and
external.  Following the good design practices on the right side of Figure 1 helps accomplish this
goal.  The “Voice of the Customer” is data collected directly from your customers through
interviews, focus groups, surveys, warranty and complaint data, enhancement requests, etc.
From this unfiltered data the true customer needs are determined, and these are used to identify
the “Critical Requirements” for the design – quantifiable targets and characteristics that can be
tested and measured on the design itself.  The requirements should be stated generically enough
to encourage the creation of several different potential solutions for each element of the design.
The “Design Concept” is then the combination of all of the selected best solutions.

Once the design concept is assembled a determination can then be made as to whether it is
affected by variation.  If it will be made in large quantities, will all units perform the same the
same way every time?  Even for just one unit, will it be used in precisely the same manner and in
the same environmental conditions?  Will its performance remain constant over the life of the
design?  Typically the answer to at least one of these questions is “no”.  Physical components
and materials vary from one unit to the next and degrade over time.  Process parameters shift and
drift over time, and environmental conditions can seldom be controlled very precisely.

If variation must be considered, it is not sufficient to predict the design’s performance
deterministically.  In other words, having one prototype that works under controlled conditions
does not prove that the design will perform well under other conditions or over time.  Instead a
statistical analysis is used to assess the performance of the design across the complete range of
variation.  From this analysis an estimate of the probability of the design performing acceptably
can be determined.  There are two ways in which this analysis can be performed:  build many
samples and test and measure their performance, or predict the design’s performance
mathematically.  For the obvious reasons of time and expense, mathematical prediction is often
the only viable option.  Therefore it becomes a crucial step in DFSS to create mathematical
models of the design.
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2 Types of Mathematical Models for DFSS
A mathematical model of a design can take many forms.  It can be an equation from a textbook
(physics, engineering, finance, accounting, etc.), a computer simulation, a prototype whose
performance can be measured, or a set of historical data.  Regardless of the type of model it can
be represented as a “black box” as is shown in Figure 2.

Y=f(X)X2

X1

Xn

Y

Figure 2: A “Black Box” Representation of a Model

The output of the black box, “Y”, is a quantifiable parameter that maps directly to a critical
requirement from your customer. Examples of such output parameters are weight, efficiency,
cycle time, cost, and so on.  (A model may have more than one “Y”, but for simplicity only one
is shown here.)  The inputs to the black box are parameters “Xi” that characterize the given
design.  Examples of these input parameters are material properties, process settings, dimensions,
component values, etc.  When the inputs are specified one can “turn the crank” and generate a
value for the output Y. This output parameter is deterministic and is completely determined by
the model’s input parameter values.  Notice that there is no distinction between “control factors”
or “noise factors” here;  all are classified as X’s.  The mathematics of the black box is shown as
“Y=f(X)”, but the math may not actually be an explicit equation.  For example, different
prototypes can be built with different parameter values Xi, and their outputs Y can be measured
instead of calculated.

Statistical analyses such as Sensitivity Analysis or Monte Carlo analysis are performed on the
black box by changing the input parameter values and observing the changes on the output
parameter.  When a sufficient number of output values have been collected, a probability
distribution can be constructed for the output parameter, and this distribution will tell us the
likelihood of the design satisfying the customer requirement.  More details of these analyses will
be given in the next section, but for now it is enough to note that typically large numbers of
output values (on the order of hundreds or thousands) will be required.  It therefore becomes
important that the output values can be generated quickly and cost-effectively.

However, not all models can be computed in a cost-efficient manner.  Prototype designs can be
very expensive to produce and measure.  Finite-element simulations of a design can take hours or
days to generate a single output Y value.  In these cases statistical modeling techniques can be
applied to create fast, accurate approximations of the original model.  A decision tree to guide
users through this statistical modeling process is shown in Figure 3.  All of the different
categories of models are listed down the left side of the figure – equations, data, simulations,
prototypes, and the actual system.  These represent the actual models gathered or generated to
predict each of the design’s critical requirements.  Observe that for all cases it is possible to
generate fast, accurate approximations if necessary.

In Figure 3 there are three paths shown.  For the first path, existing equations (from textbooks,
from expert judgement, etc.) typically will compute very quickly with today’s computer tools.
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As long as their accuracy is sufficient, they can be used for DFSS as is.  (If their accuracy is not
sufficient then that may initiate a separate activity of improving them or perhaps choosing a
different type of model to predict the critical requirement.)  The second path is for models that
exist as data sets.  These data sets typically are a set of measurements taken over time or over
different production units where, for each unit, all of the input X’s and the output Y’s are
measured.  The standard format for this data is shown on the left of Figure 4.  By applying
regression analysis a fitted equation can be generated from the data, and a simple equation is
shown on the right of Figure 4.
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Figure 3:  Decision Tree for Statistical Modeling

Computer simulations, prototypes and the actual system do not have explicit mathematics, but if
they could generate a set of data then regression analysis could be applied.  As is shown by the
third path of Figure 3, the Design of Experiments is a powerful way to efficiently collect a small
set of data from these expensive sources, and from this data a fitted equation can be built for use
in DFSS analyses.  In this section we have discussed the types of mathematical models, the
importance of having models that compute quickly, and the techniques for creating fast
approximations for every model type.  In the next section we will show the benefits of such fast
models in terms of statistical analysis, statistical allocation, and multi-objective optimization.
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Figure 4:  Transforming a Data Set into a Fitted Equation

3 Benefits of Modeling and Simulation
If a model can be created to predict your design’s performance with respect to a critical
requirement, and if this model can be computed relatively quickly, then powerful statistical
analyses become available that allow you to reap the full benefits of DFSS.  You can predict the
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probability of the design meeting the requirement given environmental variation, manufacturing
variation, and usage variation.  If this probability is not sufficiently large then you can determine
the maximum allowable variation on the models inputs to achieve the desired output probability.
And if the input variation can not be controlled, you can explore new input parameter values that
may improve your design’s statistical performance with respect to multiple requirements
simultaneously.  We will call these techniques “Statistical Analysis”, “Statistical Allocation”,
and “Statistical Optimization”, respectively.

3.1 Statistical Analysis
With a typical model a single value is specified for each input parameter, and a single value is
computed for each output parameter.  However, in real-world applications each input parameter
will vary over time or from one unit to the next.  It is imperative while designing to capture all of
these sources’ variation and to ensure that the output parameter behaves as needed across all
combinations of input parameter values.  This problem is represented in Figure 5 as a black-box
model with a probability distribution specified for each input parameter.  As these probability
distributions filter through the mathematics of the model, they generate a probability distribution
for each output parameter.  If the mathematics is nonlinear, then the shape of the output
distribution may not bear a resemblance to any of the input distributions.
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Figure 5:  Black-Box Representation of Statistical Analysis

When the output parameter maps to a customer requirement, typically there are numerical limits
defined that represent acceptable or unacceptable values.  For an output parameter like weight or
cost or cycle time, often there will be an upper limit that when exceeded would lead to customer
dissatisfaction.  For an output parameter like efficiency or speed or reliability, often there will be
a lower limit that if not achieved would lead to customer dissatisfaction.  There are also
parameters like resonant frequencies or delivery times that may have both upper and lower
limits.  These limits are shown as the Upper Specification Limit (USL) and Lower Specification
Limit (LSL) in Figure 5.  The areas of the output probability distribution that fall outside these
limits represent the probability of non-compliance (PNC) of the requirement.  PNC can be a very
useful metric in DFSS for tracking and improving the design’s performance in terms of customer
satisfaction.

The central challenge in this type of statistical analysis is generating the probability distribution
for the output parameter.  Many different techniques exist, but two of the most prevalent are
Sensitivity Analysis and Monte Carlo Analysis.  Sensitivity Analysis approximates the output
distribution by taking a low-order Taylor’s Series expansion of the mathematical model and
combining it with the low-order moments of the input distributions to compute the low-order
moments of the output distribution.  From these moments the location, spread and sometimes the
shape of the output distribution can be determined.  Monte Carlo Analysis approximates the
output distribution by randomly generating single values for each of the input parameters,
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plugging these values into the model, and computing a value for the output parameter.  This
process is repeated hundreds or thousands of times, generating a large sample of output values.
By then applying sample statistics a substantial amount of information can be derived about the
output distribution – its location, spread and shape.  Monte Carlo Analysis is the gold standard to
which all other techniques are judged, and if computational expense is not a problem, then it will
always be the preferred method.  (We have found Crystal Ball by Decisioneering in either the
Standard or Professional version to be a very useful, Excel-based Monte Carlo package.)
Sensitivity Analysis often is just as accurate as Monte Carlo Analysis, and it typically requires
fewer model calculations to generate results.  If the model is slow or expensive to compute, then
Sensitivity Analysis is often used.

3.2 Statistical Allocation
Once a statistical analysis is performed, often the PNC value that results is unacceptably high.  In
these cases, one way to improve the PNC value is to apply statistical allocation.  Allocation
techniques use Sensitivity Analysis or Monte Carlo analysis to work the problem backward and
identify the input factor standard deviations (roughly a measure of the spread of their
distributions) that will reduce the PNC to a desired level.  An illustration of statistical allocation
is shown in Figure 6.  An infinite number of closed-form solutions (vectors of input standard
deviations) can be generated if the allocation is based on Sensitivity Analysis techniques.  If
Monte Carlo analysis is employed, then allocation becomes a brute-force iterative process.
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Figure 6:  Black-Box Representation of Statistical Allocation

3.3 Statistical Optimization
Improving an output parameter’s PNC by reducing its input parameters’ variation is seldom
ideal.  Often it is preferable to reduce an output’s PNC while keeping the input variation
constant, thus making the output robust to input parameter variation.  This can be accomplished
by searching for new mean values for each input parameter – in essence shifting the distributions
higher or lower but keeping the width of the distributions the same.  This can easily be done for
multiple output parameters simultaneously by employing multi-objective statistical optimization
techniques.  A graphical representation of multi-objective, statistical optimization is shown in
Figure 7.

To apply optimization techniques, the first step is to build a formulation of the problem that
captures all of the input parameters and output parameters.  Each input parameter’s mean value
can be specified as fixed or as searchable, and in both cases variation can be specified.
Searchable input parameters can be defined three ways:  as continuous, integer, or discrete.  A
continuous parameter can take on any values between a specified minimum and a specified
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maximum.  Integer parameters can take on only integer values between a minimum and a
maximum, and discrete parameters can take on only values specified in a user-defined list.

Optimization software tools automatically try different values for the input parameters in an
attempt to improve the design’s output parameters.  “Improvement” is defined by constraints and
goals in the formulation.  Constraints typically take an output’s mean, standard deviation or PNC
and specify a threshold value that it must achieve.  Goals typically take a similar value and
define a target value that it will ideally achieve.  By definition constraints are a higher priority
than goals.  The logic behind the search sequence of input parameter mean values is contained in
the software tool’s algorithm, typically either gradient-based or heuristic.  The output of a
statistical optimization problem is a vector of input parameters mean values and/or standard
deviations that bring the critical requirements’ means, standard deviations, and PNC values as
close as possible to their customer-specified targets.
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Figure 7:  Black-Box Representation of Statistical Optimization

4 Statistical Optimization Example
The typical examples we see in DFSS applications contain several nonlinear models that map
into multiple, conflicting objectives across the dimensions of design performance, cost and
reliability.  Therefore it is our standard recommendation to employ optimization packages and
algorithms that can perform a global, nonlinear, multi-objective, statistical search.  One such
example that works well for engineering audiences is the design of a low-pass filter.  This is a
component selection problem where the circuit configuration is given and the mathematical
models are well-understood.  A schematic of the filter to be designed is shown in Figure 8.

Figure 8:  Schematic of a Low-Pass Filter
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In this design problem resistors must be chosen for R1 and R2, capacitor values must be chosen
for C1 and C2, and an op amp must also be selected.  For each resistor and capacitor a nominal
value must be specified along with a “percent tolerance”.  When components are purchased in
bulk, the supplier will warranty that all individual values fall within plus-or-minus some
percentage of the nominal value.  If we assume that all values are uniformly distributed, then an
equation can be derived for the component’s standard deviation.  In addition, we also have the
ability to select components with different published failure rates.  Components with higher
failure rates are cheaper but less reliable.  Because we wish to purchase standard components
from published catalogs, we do not have the luxury of specifying custom values for each
component.  Instead we must select our components from standard published lists.  A summary
of all of this design parameter information is shown in Table 1.

X Name Type
Standard
Deviation Feasible Mean Values Units

1 R1 Discrete

3100
1% RTolR ⋅

=
6800; 7500; 8200; 9100; 10000; 11000; 12000; 13000;

15000; 16000; 18000; 20000; 22000; 24000
Ohms

2 R2 Discrete

3100
2% RTolR ⋅

=
6800; 7500; 8200; 9100; 10000; 11000; 12000; 13000;

15000; 16000; 18000; 20000; 22000; 24000
Ohms

3 C1 Discrete

3100
1% CTolC ⋅

=
1e-10; 1.2e-10; 1.5e-10; 1.8e-10; 2.2e-10; 2.7e-10; 3.3e-10;
3.9e-10; 4.7e-10; 5.6e-10; 6.8e-10; 8.2e-10;   1e-9; 1.2e-9;
1.5e-9; 1.8e-9; 2.2e-9; 2.7e-9; 3.3e-9; 3.9e-9; 4.7e-9; 5.6e-
9; 6.8e-9; 8.2e-9; 1e-8; 1.2e-8; 1.5e-8; 1.8e-8; 2.2e-8; 2.7e-

8; 3.3e-8; 3.9e-8; 4.7e-8; 5.6e-8; 6.8e-8; 8.2e-8

Farads

4 C2 Discrete

3100
2% CTolC ⋅

=
1e-10; 1.2e-10; 1.5e-10; 1.8e-10; 2.2e-10; 2.7e-10; 3.3e-10;
3.9e-10; 4.7e-10; 5.6e-10; 6.8e-10; 8.2e-10;   1e-9; 1.2e-9;
1.5e-9; 1.8e-9; 2.2e-9; 2.7e-9; 3.3e-9; 3.9e-9; 4.7e-9; 5.6e-
9; 6.8e-9; 8.2e-9; 1e-8; 1.2e-8; 1.5e-8; 1.8e-8; 2.2e-8; 2.7e-

8; 3.3e-8; 3.9e-8; 4.7e-8; 5.6e-8; 6.8e-8; 8.2e-8

Farads

5 %Tolerance for
resistors R%T

Discrete 0 1; 2; 5 %

6 %Tolerance for
capacitors C%T

Discrete 0 1; 2; 5 %

7 R failure rate λR Discrete 0 .0022; .0037; .051; .07 failures per
million hours

8 C failure rate λC Discrete 0 0.001; 0.0017; 0.039; 0.064 failures per
million hours

9 Op amp failure rate
λOP

Discrete 0 0.033; 0.11 failures per
million hours

Table 1:  Design Parameter Information

The target performance requirements for the circuit are that it must maintain a cutoff frequency
of 1000 Hertz, and the slope of its frequency response shape should follow the ideal Butterworth
value of 0.707.  Customer satisfaction should be maintained if these targets can be met within ±
10%.  In addition, the customer would like the reliability of the circuit expressed in terms of its
10-year life, and lower costs are preferred.  Mathematical models for the design’s performance
can be found in engineering textbooks, and a model for the probability of the design lasting 10
years without failure can be derived by applying an exponential failure rate to each component
and by summing up the components in series.  Component costs can fluctuate, so instead of
trying to predict costs in absolute units a relative cost index is derived, where lower costs are
given to components with higher percent tolerances and higher failure rates.  A summary of the
mathematical models employed is shown in Table 2.
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Y Name
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Table 2:  Mathematical Models and Specifications

The next step in building the optimization problem is to map the multiple conflicting
requirements into constraints and goals.  We have found that the best way to handle multi-
objective problems like this is to construct different scenarios that vary the relative priorities of
the objectives.  In this fashion a Pareto-optimal family of design solutions can be generated,
trading off cost with performance and reliability.  Following this logic there is no one “optimal”
solution, and instead the design team as a whole will choose the “balanced” design that best
meets all relative customer preferences.  A list of four different scenarios is shown in Table 3.

Scenario Balanced
Cost

Balanced
Reliability

High
Performance

High
Reliability

Constraints FC PNC ≤ 0.001
Q PNC ≤ 0.001

FC PNC ≤ 0.001
Q PNC ≤ 0.001

FC PNC ≤ 0.001
Q PNC ≤ 0.001

Priority 1 Goals Cost Mean = 0 P(Life) Mean >= 0.98 FC PNC ≤ 3.4E-6
Q PNC ≤ 3.4E-6

P(Life) Mean >= 0.999

Priority 2 Goals P(Life) Mean >= 0.98 Cost Mean = 0 Cost Mean = 0 Cost Mean = 0
Priority 3 Goals FC PNC ≤ 3.4E-6

Q PNC ≤ 3.4E-6
FC PNC ≤ 3.4E-6
Q PNC ≤ 3.4E-6

P(Life) Mean >= 0.98 FC PNC ≤ 3.4E-6
Q PNC ≤ 3.4E-6

Table 3:  Multi-Objective Scenarios

To perform the optimization search we employ Apogee, an Excel-based software tool that is part
of the SDI Tools suite.  With Apogee all of the design parameters, mathematical models,
constraints and goals are easily specified in Excel workbooks.  Running different scenarios is
accomplished simply by changing the goal priorities and targets as desired.  A screenshot of the
“Balanced Cost” scenario’s input is shown in Figure 9, and a summary of the results from all of
the scenarios is shown in Table 4.

Notice in Table 4 that there are multiple combinations of resistor and capacitor values that yield
nominal cutoff frequencies near 1000 Hertz and nominal frequency response shapes near 0.707.
In the “Balanced Cost” solution it is possible to use the lowest-cost components and still achieve
acceptable performance (PNC’s of 0.001 or less) and a 96% chance of a 10-year life.  If higher
performance is desired, then the circuit’s PNC’s can be reduced to better than six-sigma levels of
quality by using 2% components at a higher cost.  Finally if reliability is pursued above all else
then the probability of a 10-year life can be increased to 99.6% with an even greater impact on
component costs.  Which solution is best?  That judgment is best made by the design team,
weighing the relative trade-offs between performance, cost and reliability.
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Figure 9:  Apogee Screenshots for Scenario 1 Inputs

Solution
Balanced

Cost
Balanced

Reliability
High

Performance
High

Reliability
R1 16000 16000 16000 16000
R2 24000 13000 24000 24000
C1 1.20E-08 1.50E-08 1.20E-08 1.20E-08
C2 5.60E-09 8.20E-09 5.60E-09 5.60E-09

R%T 5 5 2 5
C%T 5 2 2 5
λR 0.07 0.0037 0.07 0.0022
λC 0.064 0.039 0.064 0.001
λOP 0.11 0.11 0.11 0.033

Results
FC Mean 990.7632359 995.0293896 990.7632359 990.7632359

FC Std Dev 28.60087123 21.87556531 11.44034849 28.60087123
FC PNC 0.000820114 7.79192E-06 1.06435E-15 0.000820114
Q Mean 0.717137166 0.672624021 0.717137166 0.717137166

Q Std Dev 0.014928401 0.005672643 0.00597136 0.014928401
Q PNC 2.48962E-05 7.59933E-11 1.7943E-24 2.48962E-05

Cost Mean 1.479626623 2.135771436 2.079626623 13.88484848
P(Life) Mean 0.967429427 0.983028624 0.967429427 0.996554509

Table 4:  Multi-Objective Solutions
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What can we conclude from this example?  First, there is tremendous power in building
mathematical models to predict a design’s behavior.  Even simple textbook equations display
nonlinear wrinkles.  Second, in the early stages of a design’s development it is not difficult to
build relative models for cost and reliability.  These models can be very effective in driving the
optimization towards low-cost or high-reliability solutions.  Third, in a multi-objective
environment it is important to generate a family of Pareto-optimal solutions for the design team
to review.  Do NOT give the software the ultimate authority and assume that there is just one
“optimal” solution.  And finally, although the low-pass filter is relatively simple, we have had
similar success applying modeling, simulation and optimization to larger, system-level problems
across many design disciplines.  We encourage you to do the same.

5 Summary
The fundamental objective of Design for Six Sigma (DFSS) is to design products and processes
that meet your customers’ needs, cost effectively, without production or integration problems.  In
this paper we have discussed how this objective can be achieved by configuring DFSS as a
simple set of good design practices.  A key step in the process is to use modeling and simulation
to create “black box” predictive models for your design’s critical requirements, and statistical
modeling techniques such as regression and the design of experiments can help ensure that the
mathematics are explicit and compute quickly.  With these models the design can be statistically
analyzed and optimized to ensure it will perform as expected while being robust to the variation
inherent in its production, environment and use.  In this manner the full benefits of DFSS can be
realized.
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